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Abstract 

In this study, different controllers have been applied to investigate and suppress 

the vibrations of a second-order nonlinear dynamical system. Active controllers such as 

the position feedback (PF), negative velocity feedback (VF) and negative cubic velocity 

feedback controller are related directly to the considered system. While Passive 

controllers such as the nonlinear saturation (NS) and positive position feedback (PPF) 

controllers involve a second nonlinear oscillator coupled with the main system. The 

system under investigation is subjected to external and parametric excitation forces. The 

method of multiple scales as one of the perturbation techniques is used to reduce the 

second-order nonlinear differential equation into a set of two first-order differential 

equations that govern the time variation of the amplitude and phase of the response, and 

obtain the response equation near various resonance cases. The stability of the system is 

investigated by applying frequency response equations and phase-plane. The numerical 

solution and the effects of the parameters on the vibrating system are studied and 

reported. The simulation results are achieved using Maple13 software. 
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 ملخص الرسالة

 

في هذه الرسالة تم دراسة أنواع مختلفة من أنظمة وطرق التحكم في اهتزازات نظام ديناميكي لا خطي من 

الرتبة الثانية , النوع الأول ويشمل التحكم المباشر في النظام باستخدام التغذية الراجعة في اتجاه الازاحة, السرعة 

في التحكم عبر نظام اهتزازي لا خطي  يتمثلسية", أما النوع الثاني فهو لعكالخطية "العكسية" و السرعة التكعيبية "ا

مرتبط مع النظام الديناميكي قيد الدراسة فيتكون نظام من زوج من المعادلات التفاضلية غير الخطية وقد تم تطبيق 

 نظام التشبع غير الخطي ونظام التغذية الراجعة للإزاحة .

ة المضطربة لإيجاد الحل التقريبي للنظام الديناميكي غير الخطي تحت تأثير لقد تم استخدام طريقة الأزمن

قوى خارجية وبارا مترية والمتمثل في معادلة تفاضلية غير خطية من الرتبة الثانية والتي تم تحويلها إلى معادلتين 

معادلات  لىحصول عتفاضليتين من الرتبة الأولى تصفان حركة الإزاحة والطور بالنسبة للزمن ومن ثم تم ال

 الاستجابة عند حالات رنين مختلفة .

ان استقرار النظام قد تم دراسته باستخدام طريقة معادلات الاستجابة ومستوى الطور وكذلك تم دراسة 

 والتعرف على تأثير البارامترات المختلفة في المعادلات على حركة واهتزازات النظام .

 في ايجاد ورسم جميع الحلول في هذه الدراسة . Maple13 ونشير إلى أنه تم استخدام برنامج 
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Chapter1 

Introduction and Literature review 

 

1.1 Introduction 

Important advances in mathematics, physics, biology, engineering and economics 

have shown the importance of the analysis of nonlinear vibrations, stabilities and 

dynamical behavior. 

A nonlinear system refers to a set of nonlinear equations (algebraic, differential, 

integral, functional, or abstract operator equations, or a combination of some of these) 

used to describe a physical device or process that otherwise cannot be clearly defined by 

a set of linear equations of any kind. Dynamical system is used as a synonym of 

mathematical or physical system when the describing equations represent evolution of a 

solution with time and, sometimes, with control inputs and/or other varying parameters as 

well. 

Vibration and dynamic chaos, occurring in most machines, vehicles, building, 

aircraft and structures are undesired phenomenon. Not only because of the resulting 

unpleasant motions. The dynamic stresses which may lead to fatigue and failure of the 

structure or machine. The energy losses and reduction in performance which accompany 

vibrations, but also because of the produced noise. Noise is an undesirable event. And 

since sound is produced by some source of motion or vibration causing pressure changes 

which propagate through the air or other transmitting medium. Vibration control is of 

vital importance to sound attenuation. Vibration analysis of machines and structures is 

often a necessary prerequisite for controlling vibration and noise. The theory and 

techniques of vibration suppression have been extensively studied for many years. 

Various types of controller are developed so as to channel the excess energy from 

excitation to the slave system in order that vibration in the primary system can be 

suppressed. The positive position feedback (PPF), velocity feedback (VF), acceleration 

feedback (AF) and nonlinear saturation (NS) controllers used extensively for vibration 

reduction for many linear and nonlinear dynamical systems, which show their feasibility 

and efficiency in practice.  
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In numerical analysis, the fourth order Runge-Kutta method can be used to solve 

differential equations. it is defined for any initial value problem of the following type: 

        ( , ),y f t y      0 0( ) .y t y              (1.1) 

Where y  is an unknown function (scalar or vector) of time t , y  the rate at which y  

changes.                                                

The definition of the RK4 method for the initial value problem in equation (1.1) is shown 

in equation (1.2). 

     1 1 2 3 42 2 ,
6

n n

h
y y k k k k         (1.2) 

with h the time step, and the coefficients 1 2 3, ,k k k and 4k are defined as follows: 

    

1

2 1

3 2

4 3

( , ),

( , ),
2 2

( , ),
2 2

( , ).
2 2

n n

n n

n n

n n

k f t y

h h
k f t y k

h h
k f t y k

h h
k f t y k



  

  

  

                (1.3)                                                                                                    

These coefficients indicate the slope of the function at three points in the time interval, 

the beginning, the mid-point and the end. The slope at the mid-point is estimated twice, 

first using the value of 1k to determine 2k next using the value of 2k to compute 3k . 

Knowing the k-coefficients, the solution at the next time step can be computed by 

equation (1.2). 

 

1.2 Literature Review 

Vibrations are the cause of discomfort, disturbance, damage, and sometimes 

destruction of machines and structures. It must be reduced or controlled or eliminated. 

One of the most common methods of vibration control is the dynamic absorber. It has the 

advantages of low cost and simple operation at one model frequency. In the domain of 

many mechanical vibration systems the coupled non-linear vibration of such systems can 

be reduced to non-linear second order differential equations which are solved analytically 

and numerically. 

Elhefnawy and Bassiouny [1], studied the nonlinear instability problem of two 

superposed dielectric fluids by using the method of multiple scales. Frequency response 

http://en.wikipedia.org/wiki/Numerical_analysis
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curves are presented graphically. The stability of the proposed solution is determined. 

Numerical solutions were presented graphically for the effects of the different parameters 

on the system stability, response and chaos. The method of multiple time scale 

perturbation technique is applied to solve the nonlinear differential equations up to and 

including the third order approximation [2,3,4]. Nayfeh and Mook [5], studied system 

having a single degree of freedom, which concerned with introducing basic concepts and 

analytic methods, then the concepts and methods  are extended by them to systems 

having multi-degrees of freedom. All possible resonance cases were extracted at third 

approximation order and investigated numerically. The effects of the different parameters 

on system behavior are studied. The stability of the system is investigated using both 

frequency response functions and phase plane methods. The solutions of the frequency 

response functions regarding the stability of the system are shown graphically. Phase 

plane was shown for the steady state amplitudes as a criterion for system stability and 

chaos presence [6]. El Behady and El-Zahar [7], studied the effect of the nonlinear 

controller on the vibrating system. The approximate solutions up to the second order are 

derived using the method of multiple scale perturbation technique near the primary, 

principal parametric and internal resonance case. Moreover, they investigated the stability 

of the solution using both phase plane method and frequency response equations, and the 

effects of different parameters on the vibration of the system. Warminski et. al. [8], 

studied active suppression of nonlinear composite beam vibrations by selected control 

algorithms.The saturation phenomenon has been the subject of extensively theoretical 

and experimental research [9–10]. Eissa et. al. [11,12], investigated a single-degree-of-

freedom non-linear oscillating systems subject to multi-parametric and/or external 

excitations. The multiple time scale perturbation technique is applied to obtain solution 

up to the third order approximation to extract and study the available resonance cases. 

They reported the occurrence of saturation phenomena at different parameters values. 

Kwak and Heo [13], presented effectiveness of the PPF algorithm applied for a model of 

a solar panel, where the first four modes of vibration have been considered. Siewe and 

Hegazy [14], applied different active controllers to suppress the vibration of the 

micromechanical resonator system. Moreover, a time-varying stiffness was introduced to 

control the chaotic motion of the considered system. Different techniques were applied to 

analyze the periodic and chaotic motions. Eissa and Amer [15] and Yaman and Sen [16] 

studied the vibration control of a cantilever beam subject to both external and parametric 

excitation but with different controllers. Sayed [17], studied the effects of different active 

http://file.scirp.org/Html/11-7400639_16764.htm#ref20


  4 
 

controllers on simple and spring pendulum at the primary resonance via negative velocity 

feedback or its square or cubic. Golnaraghi [18] indicated that when the system is excited 

at a frequency near the high natural frequency, the structure responds at the frequency of 

the excitation and the amplitude of the response increases with the excitation amplitude. 

Oueini et al. [19], proposed a non-linear control law to suppress the vibrations of the first 

mode of a cantilever beam when subjected to a principal parametric excitation, which is 

based on cubic velocity feedback to suppress the vibration. The method of multiple scales 

was used to derive two first-order differential equations governing the time evolution of 

the amplitude and phase of the response. Then, a bifurcation analysis was conducted to 

examine the stability of the closed-loop system and investigate the performance of the 

control law. The theoretical and experimental findings indicate that the control law leads 

to effective vibration suppression and bifurcation control. El-Serafi et al. [20,21] showed 

how effective is the active control in vibration reduction at resonance at different modes 

of vibration. They demonstrated the advantages of active control over the passive one. 

Hegazy [22] studied the nonlinear dynamics and vibration control of an 

electromechanical seismograph system with time-varying stiffness. An active control 

method is applied to the system based on cubic velocity feedback. In [23], Hegazy 

investigated The problem of suppressing the vibrations of a hinged–hinged flexible beam 

that is subjected to primary and principal parametric excitations. Different control laws 

are proposed, and saturation phenomenon is investigated to suppress the vibrations of the 

system. El-Ganaini et. al. [24] applied positive position feedback active controller to 

suppress the vibration of a nonlinear system when subjected to external primary 

resonance excitation. The multiple scale perturbation method is applied to obtain a first-

order approximate solution. The equilibrium curves for various controller parameters are 

plotted. The stability of the steady state solution is investigated using frequency-response 

equations. The approximate solution was numerically verified. They found that all 

predictions from analytical solutions are in good agreement with the numerical 

simulation. 

 

1.3 Objective of The Work 

The objective of this work is to study analytically and numerically techniques and 

to reduce the oscillations of a nonlinear dynamical system using different control (the 
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position feedback (PF), negative velocity feedback (VF), a negative cubic velocity 

feedback and the nonlinear saturation (NS) controllers ). Moreover we use the phase 

plane and frequency response method to investigate the systems stability. This study will 

include the following systems. 

 

 Nonlinear differential equation with direct “active” controls 

  Position Feedback (PF) controller 

  
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t T

     



          

  
                 (1.4) 

Where T is a control input, that will expressed, separately, as Gu, Gu
3
 and Gu

5
 to give a 

linear, cubic, and quintic PF controllers, respectively. G is a positive constant called the 

gain. 

 

 Negative Velocity Feedback (VF) controller 

   
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t T

     



          

  
                         (1.5) 

Where T will expressed, separately, as Gu  , 2Gu 
 
and 3Gu   to give a negative linear, 

quadratic, and cubic VF controllers. 

 

 Negative Acceleration Feedback (AF) controller 

 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t Gu

     



          

  
                      (1.6) 

 

 Nonlinear differential equation with indirect “passive” controls 

 Positive Position Feedback (PPF) controller 

     
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) ,

su u u u u uu u u f t

uf t v

     

 

          

  
                     (1.7) 



  6 
 

     22 .c cv v v u                                                                                           (1.8) 

 Nonlinear Saturation (NS) controller 

 
 2 3 5 2 2

1 1 2 1

2

2

cos( )cos( )

cos( )sin( ) ,

su u u u u uu u u f t

uf t v

     

 

          

  
                        (1.9) 

    22 .c cv v v uv                                                                                            (1.10) 
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Chapter 2 

Active Control of a Nonlinear  Dynamical System 

In this chapter we will consider a system of second-order nonlinear ordinary 

differential equation  and apply a different active controllers to reduce the vibrations of 

the system and choose some of best active controllers. The nonlinear system with the 

chosen controllers is solved and studied using 4
th

 order Rung-Kutta numerical method 

and the method of Multiple Scales perturbation technique. The stability of the controlled 

system is also conducted. 

 

2.1 System model: 

            The considered equation is the modified non-linear ordinary differential equation 

describing the vibration of inclined beam which is given by [16] : 

    
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) ,

u u u u u uu u u f t

uf t T

     



          

  
               (2.1)                                                                                                                                

where ,u u and u represent displacement, velocity and acceleration of the vibrating 

system, respectively,  is the natural frequency, 1  is the damping coefficient , 1 2, 

and   are nonlinear coefficients, 1f  and 2f are the forcing amplitude,   is the excitation 

frequency, 30   and T is a control input. 

We will apply a different controllers and solve it by 4
th

 order Rung-Kutta numerical 

method using Maple 13 then choose some of the best active controllers. 

The different controllers  are used to reduce the vibration of the considered system:  

1. Position Feedback (PF) control T Gu , this controller modifies the frequency of  

the system, where G is a positive constant called the gain. 
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(a) 0.05G                                                    (b) 0.5G   

     

                            (c)  10.0G                                                     (d) 30.0G   

Fig. 2.1 Performance of (PF) controller for different values of the gain, =2.1 , 1=15.0 , 

2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0  

 

2. Cubic Position Feedback control 3T Gu , this controller modifies 3

1u due to non-

linear curvature.  

     

(a) 0.05G                                                (b) 0.5G   
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                        (c)  10.0G                                               (d) 30.0G   

Fig. 2.2 Performance of cubic (PF) controller for different values of the gain, =2.1 , 

1=15.0 , 2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0  

 

3. Quintic Position Feedback control 5T Gu , this controller modifies 5

2u due to 

non-linear curvature. 

     

(a) 0.05G                                                (b) 0.5G   

        

                            (c)  10.0G                                                     (d) 30.0G   

Fig. 2.3 Performance of quintic (PF) controller for different values of the gain, =2.1 , 

1=15.0 , 2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0  
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4. Negative Velocity Feedback (VF) control T Gu  , in this controller  the damping 

of  the system is modified. 

        

                            (a)  0.02G                                                   (b)  0.05G   

       

                           (c)   0.5G                                                      (d) 1.0G   

Fig. 2.4 Performance of negative (VF) controller for different values of the gain, =2.1 , 

1=15.0 , 2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0  

5. Negative Quadratic (VF) control 2T Gu  , in this controller the term 2uu   due 

to non-linear inertia of  the system is modified. 

     

                         (a)  0.05G                                                 (b)  0.5G   
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      (c)  1.0G   

Fig. 2.5 Performance of negative quadratic (VF) controller for different values of the 

gain, =2.1 , 1=15.0 , 2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0  

  

6. Negative cubic (VF) control 3T Gu  . 

  

                          (a)  0.05G                                               (b) 0.5G    

   

                        (c) 1.0G                                                   (d) 5.0G   

Fig. 2.6 Performance of negative cubic (VF) controller for different values of the gain, 

=2.1 , 1=15.0 , 2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0   
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7. Negative Acceleration Feedback (AF) control T Gu  , which modifies  the 

acceleration of  the system. 

   

                          (a)  0.05G                                                 (b)  0.5G   

  
 

                               (c)  1.0G                                               (d)  5.0G   

 

Fig. 2.7 Performance of negative (AF) controller for different values of the gain, =2.1 , 

1=15.0 , 2 =5.0 , =0.03 , 1=0.0005 , =2.7 , 1=0.4f , 2 =0.2f , =30.0  

The above figures show the effect of various active controllers for different values 

of the gain. In figure 2.1 more increase in G , for (PF) control lead to more decrease in 

the amplitude. In figure 2.2 cubic (PF) control is the same as (PF) control but with a few 

chaotic in the system. In figure 2.3 quintic (PF) control lead to small decrease in the 

amplitude. In figure 2.4 for negative (VF) control, it is clear that small values of  the gain 

lead to significant decrease in the amplitude. In figure 2.5 increasing the gain, for 

negative quadratic (VF) control lead to chaotic behavior in the system . In figure 2.6 

more increase in G , for negative cubic (VF) control would lead to more  reduce in the 

amplitude. Figure 2.7 show that as the gain is increased the motion is changing to become 

stable but the amplitude is not.    
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So we will choose T Gu   negative Velocity Feedback (VF), 
3T Gu   

negative cubic (VF) andT Gu  Position Feedback (PF) controllers as active internal 

controllers  to investigate the behavior of the system analytically and numerically.  

 
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t Gu

     



          

  
                  (2.2) 

 
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t Gu

     



          

  
                   (2.3) 

 
 2 3 5 2 2

1 1 2 1

3

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t Gu

     



          

  
                   (2.4) 

 

2.2 Perturbation analysis for the nonlinear equation with (PF) control : 

The nonlinear equation (2.2) with position feedback (PF) control is scaled using the 

perturbation parameter   as follows 

   
 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t Gu

      

  

          

  
                     

Applying the multiple scales method [2,3], we obtain first order approximate solutions 

for equation (2.2) by seeking the solutions in the form 

0 0 1 1 0 1( , ) ( , ) ( , )u t u T T u T T   ,                                                                                       (2.5) 

where   is a small dimensionless book keeping perturbation parameter, 0T t and

1 0T T t   are the fast and slow time scales, respectively, the time derivatives 

transform are recast in terms of the new time scales as 

0 1

2
2

0 0 12

,

2 ,

d
D D

dt

d
D D D

dt





 

 

                                                                                                       (2.6) 

where  0

0

D
T





   ,   1

1

D
T





    .                                                                               (2.7) 
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Substituting  u  and time derivatives from equation (2.5) and (2.6) 

2

0 0 0 1 1 0 1 1

2 2 2

0 0 0 1 0 1 0 0 1 1

,

2 2 .

u D u D u D u D u

u D u D u D D u D D u

  

  

    

    
                                                               (2.8) 

Substituting equation (2.8) into equation (2.2) we get, 

2 2 2 2

0 0 0 1 0 1 0 0 1 1 0 1

2 3 5

1 0 0 0 1 1 0 1 1 1 0 1 2 0 1

2 2

0 1 0 0 0 1 1 0 1 1

2 2 2 2

0 1 0 0 0 1 0 1 0 0 1 0

1

2 2 ( )

( ) ( ) ( )

( )( )

( ) ( 2 2 )

cos( )cos( ) (

D u D u D D u D D u u u

D u D u D u D u u u u u

u u D u D u D u D u

u u D u D u D D u D D u

f t u

    

       

    

    

  

    

       

    

    

   0 1 2 0 1) cos( )sin( ) ( ).u f t G u u      

                         (2.9) 

Eliminating terms in which the powers of   is more than or equal to 2 yields 

 

2 2 2 2 3 5

0 0 0 1 0 1 0 1 0 0 0 1 1 0 2 0

2 3

0 0 1 0 2 0

2

2 cos( )cos( ) cos( )sin( ) 0.

D u D u D D u D u u u u u

D u f t u f t Gu

      

     

      

      
                  (2.10) 

Equating the coefficient of same powers of   in equation (2.10) gives 

 

0 2 2

0 0 0

2 2

0 0

( ) : 0,

0,

O D u u

D u

 



 

  
                                                                                               (2.11) 

1 2 2 3 5 2 3

0 1 0 1 0 1 0 0 1 1 0 2 0 0 0

1 0 2 0

( ) : 2 2

cos( )cos( ) cos( )sin( ) 0.

O D u D D u D u u u u D u

f t u f t Gu

     

 

     

     
                                 (2.12) 

Rearranging equation (2.12) to get, 

 2 2 3 5 2 3

0 1 0 1 0 1 0 0 1 0 2 0 0 0

1 0 2 0

2 2

cos( )cos( ) cos( )sin( ) .

D u D D u D u u u D u

f t u f t Gu

    

 

      

    
                                          (2.13) 

The general solution of (2.11) can be written in the form 

0 0

0 0 1 1 1( , ) ( ) ( )
i T i T

u T T A T e A T e
 

  ,           (2.14) 

where 1( )A T is unknown function in 1T  . 

In order to solve equation (2.12) for 1u , we substitute 0u  from equation (2.14) to get 
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0 0 0 0

0 0 0 0 0 0

0 0 0 0

2 2

0 1 0 1 1 0

3 5 3
2

1 2 0

1 2

2

2

cos( )cos( ) cos( )sin( ) ,

i T i T i T i T

i T i T i T i T i T i T

i T i T i T i T

D u D D Ae Ae D Ae Ae

Ae Ae Ae Ae D Ae Ae

f t Ae Ae f t G Ae Ae

   

     

   

 

  

 

 

  

 

     

     

      

           (2.15) 

which implies 

  0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

2 2

0 1 0 1 0 1 1 0 1 0

3 3 53 2 2 3 5

1 1 1 1 2

3 3 54 3 2 2 3 4 5

2 2 2 2 2

32 3

0

2 2

3 3

5 10 10 5

2 6

i T i T i T i T

i T i T i T i T i T

i T i T i T i T i T

i T

D u D D Ae D D Ae D Ae D Ae

A e A Ae AA e A e A e

A Ae A A e A A e AA e A e

D A e

   

    

    



  

    

    



 

 

  

     

    

    

  0 0 0

0 0

0 0

32 2 2 2 2 3

0 0 0

1 2 2

6 2

cos( )cos( ) cos( )sin( ) cos( )sin( )

.

i T i T i T

i T i T

i T i T

D A Ae D AA e D A e

f t f Ae t f Ae t

GAe GAe

  

 

 

  

  

 





 

     

 

            (2.16) 

Substituting  equation (2.7) and using the form 
0 0

0cos( )
2

i T i T
e e

T
 





 ,

0 0

0sin( )
2

i T i T
e e

T
i

 





   

into equation (2.16), to get 

  0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

32 2 3

0 1 1 1 1

3 5 32 2 3 5 4 3 2

1 1 1 2 2 2

3 5 32 3 4 5 2 3 2

2 2 2

2 2

3 3 5 10

10 5 18 6

i T i T i T i T i T

i T i T i T i T i T i T

i T i T i T i T

D u i A e i A e i Ae i Ae A e

A Ae AA e A e A e A Ae A A e

A A e AA e A e A e

    

     

   

       

     

     

 

 

  

       

     

    

   

     

 

0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

2

32 2 2 3

1 1

2 2 2

2

1 1
6 18 cos cos

2 2

1 1 1
sin sin sin

2 2 2

1
sin .

2

i T

i T i T i T i T

i T i T i T i T i T i T

i T i T i T i T

A Ae

AA e A e f e f e

f Ae f Ae f Ae

f Ae GAe GAe



 

  

  



     

  



    

      

   

   

  

  

     (2.17) 

Or simply, 

 

     

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

32 2 3 2

0 1 1 1 1

5 3 35 4 3 2 2 3 2 2

2 2 2

1 2 2

2 3

5 10 18 6

1 1 1
cos sin sin .

2 2 2

i T i T i T i T

i T i T i T i T i T

i T i T i T i T i T i T

D u i A e i Ae A e A Ae

A e A Ae A A e A e A Ae

f e f Ae f Ae GAe cc

   

    

  

     

      

      

     

    

    

        (2.18) 

where cc denotes the complex conjugate terms. 

Rearranging equation (2.18), to get 
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0

0 0 0

0 0

2 2 2 3 2 2 2

0 1 1 1 2

3 53 4 2 3 5

1 2 2 1

2 2

2 3 10 6

1
5 18 cos

2

1 1
sin sin .

2 2

i T

i T i T i T

i T i T

D u i A i A A A A A A A GA e

A A A A e A e f e

f Ae f Ae cc



 

 

       

     

 



 

       

     

  

                (2.19) 

The particular solution of equation (2.19) can be written in the following form 

     

  
 

 
   

 
   

0 0 0

00

0

3 53 4 2 3 5

1 0 1 1 1 1 2 22 2

1 2

2

1 1
, 5 18

8 24

1 1
cos sin

2 2 2

1
sin .

2 2

i T i T i T

i Ti T

i T

u T T A T e A A A A e A e

f e f Ae

f Ae cc

  





    
 

 
  








     

 
   

 
 

                  (2.20) 

where 1A  is a function of 1T  to be determined in the next approximation . 

From the equation (2.19), the reported resonance cases at this approximation order are 

i. Primary resonance :    

ii. Sub-harmonic resonance : 2  
 

2.3 Stability analysis  

We will study the stability by considering the relation between the forcing 

frequency   and the natural frequency  . 

After studying perturbation analysis of the above system, we have two resonance cases, 

  

2.3.1 Primary resonance   : 

In this case we introduce a detuning parameter 1 such that  

            1     ,                                                                                                    (2.21) 

Substituting equation (2.21) into equation (2.19), eliminating the terms that produce 

secular term and performing some algebraic manipulations, we obtain 

 1 12 3 2 2 2

1 1 2 1

1
2 3 10 6 cos 0,

2

i T
i A i A A A A A A A GA f e

                          (2.22) 
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Letting A as the polar form 1( )

1

1
( )

2

i T
A a T e


 , where a and   are the steady-state 

amplitude and the phases of the motions respectively,  then we have 

1

2

iA ae     ,  2 2 21

4

iA a e    ,    3 3 31

8

iA a e  , 

1

2

iA ae    ,    2 2 21

4

iA a e      ,   
1 1

2 2

i iA ai e a e       .                                                                                                                                                                                                       

Substituting  
2 3 2, , , , ,A A A A A A   in (2.22), we obtain 

 1 1

3 5 2 3

1 1 2

1

1 3 5 3

2 8 16 4

1 1
cos 0.

2 2

i i i i i i

i Ti

a e i a e i ae a e a e a e

Gae f e

     



        



     

  

                             (2.23) 

Dividing equation (2.23) by ie   , we get 

 1 13 5 3

1 1 2 1

1 3 5 3 1 1
cos 0.

2 8 16 4 2 2

i i T
a ia ia a a a Ga f e

      
   

              (2.24) 

Using the form cos sinixe x i x  , to get 

       

3 5 3

1 1 2

1 1 1 1 1 1

1 3 5 3 1

2 8 16 4 2

1 1
cos cos sin cos 0.

2 2

a ia ia a a a Ga

f T if T

    
  

     
 

      

      

                              (2.25) 

Now equating the imaginary and real parts of equation (2.25) we obtain the following 

equations describing the modulation of amplitude and phase of the motions 

   1 1 1 1

1 1
sin cos

2 2
a a f T   


      ,                                                                 (2.26) 

And 

   3 5 3

1 2 1 1 1

3 5 3 1 1
cos cos 0

8 16 4 2 2
a a a a Ga f T      

   
        .       (2.27) 

Sitting 
1

1

2
f


   ,  1 1( )T      , 
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equations (2.26) and (2.27), become as the following 

   1

1
sin cos

2
a a      ,                                                                                    (2.28) 

   3 5 3

1 2

3 5 3
cos cos 0

8 16 4 2

Ga
a a a a     

  
      .                               (2.29) 

since 1      ,                                                                                                       (2.30) 

then  1a a a     .                                                                                                   (2.31) 

Substituting equation (2.31) into equation (2.29), gives  

   3 5 3

1 1 2

3 5 3
cos cos

8 16 4 2

Ga
a a a a a      

  
       ,                             

(2.32) 

For steady-state solutions, setting 0a    , equation (2.28)  becomes 

   1 2 sin cosa    ,                                                                                              (2.33) 

and equation  (2.32), becomes 

   3 5 3

1 1 2

3 5 3
2 2 cos cos

4 8 2

Ga
a a a a     

  
        .                                (2.34) 

Squaring both sides of equations (2.33) , (3.34) and adding,  we have 

    

    

2
22 2 3 5 3

1 1 1 2

2

3 5 3
2 2 sin cos

4 8 2

2 cos cos ,

Ga
a a a a a      

  

 

 
       
 

  

             (2.35) 

   

   

2

2 2 3 5 3 2 2 2

1 1 1 2

2 2 2

3 5 3
2 4 sin cos

4 8 2

4 cos cos ,

Ga
a a a a a      

  

 

 
       
 

 

             (2.36) 

 
2

2 2 3 5 3 2 2

1 1 1 2

3 5 3
2 4 cos

4 8 2

Ga
a a a a a     

  

 
       
 

.                         (2.37) 

Equation (2.37) is called the frequency response equation.  
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(a)  Stability of trivial solution: 

To determine the stability of the trivial solutions, we investigate the solutions of 

the linearized form of equation (2.22) 

12 0i A i A GA      ,                                                         (2.38) 

For stability analysis we expressed A  in the Cartesian form  

  1

1 2

1

2

i T
A p ip e


  ,                                                                                                (2.39) 

where 1p  and 2p  are real.  

Substituting A  from equation (2.39) into equation (2.38), we get  

     

 

1 1 1

1

1 2 1 2 1 1 2

1 2

1 1 1
2

2 2 2

1
0.

2

i T i T i T

i T

i p ip e i p ip e i p ip e

G p ip e

  



  
 

       
 

  

                             (2.40) 

Dividing both sides of equation (2.40) by 1i T
e
 , to get 

1 2 1 2 1 1 2 1 1 2

1 1 1 1
0.

2 2 2 2
ip p p i p ip p Gp iGp   

 
                                         (2.41) 

Separating real and imaginary parts, we get 

1 2 1 1 2

1 1

2 2
p p p Gp 


     ,                                             (2.42) 

And  

2 1 2 1 1

1 1

2 2
p p p Gp 


     .                                    (2.43) 

Rearranging equations (2.42), (2.43), gives 

1 1 1 2

1 1

2 2
p p G p 



   
        

   
,                                   (2.44) 

2 1 1 2

1 1

2 2
p G p p 



   
       

   
.                                   (2.45) 
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The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations (2.44), (2.45)  

1
1 1

2 2
1

1 1

2 2

1 1

2 2

G
p p

p p
G

 


 


 
      

          
  

. 

The eigenvalues can be obtained by solving the determinant  

1

1

1 1

2 2
0

1 1

2 2

G

G

  


  


   



  

 ,  

2

2 2

1 1

1 1
0

4 2
G    



 
     

 
 .                                                                             (2.46) 

The solution of the equation (2.46) is  

2

1

1 1

2 2
G  



 
     

 
 .                                                                (2.47) 

The trivial solution is stable if 0  , that is 

2

2

1

1
4

2
G 



 
   

 
. 

 

(b)  Stability of non-trivial solution: 

To determine the stability of the non-trivial solutions we let  

          0 1 1( )a a a T  , and 0 1 1( )T    .                                                                    (2.48) 

Where 0a  and 0  correspond to a non-trivial solutions while 1a  and 1  are perturbation 

terms which are assumed to be small compared to 0a  and 0 . 

Substituting equation (2.48) into equations (2.28) and (2.32), using estimate 1 1sin   

and 1cos 1   , we get 
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     0 1 1 0 1 1 0 1

1 1
sin cos

2 2
a a a a f   


       ,         (2.49) 

        

       

3 5

0 1 0 1 1 0 1 1 0 1 2 0 1

3

0 1 0 1 1 0 1

3 5

4 8

3 1 1
cos cos .

2 2 2

a a a a a a a a

a a G a a f

    
 

   
 

        

     

                            (2.50) 

Simplifying equations (2.49), (2.50), to get 

      0 1 1 0 1 1 1 0 1 0

1 1 1
sin cos cos

2 2 2
a a a a f     


       ,                                (2.51) 

 

   

      

3 2

0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1

5 4 3 2

2 0 0 1 0 0 1 0 1

1 0 1 0

3
3 ...

4

5 3 1 1
5 ... 3 ...

8 2 2 2

1
cos sin cos .

2

a a a a a a a a a

a a a a a a Ga Ga

f

      


 
  

   


          

       

 

               (2.52) 

Since 0a  and 0g  are solutions of equation (2.28) and (2.32) then equation (2.51) and 

(2.52), becomes 

   1 1 1 1 1 0

1 1
cos cos

2 2
a a f   


    ,                                                    (2.53) 

   

2 4 2

1 0 0 1 1 1 1 1 1 0 1 2 0 1 0 1 1

1 1 0

9 25 9 1

4 8 2 2

1
sin cos .

2

a a a a a a a a a a Ga

f

      
  

  


        



                       (2.54) 

Substituting from equations (2.33) , (2.34) into equations (2.53) , (2.54), we get 

3 5 3 0
1 1 1 1 1 0 1 0 2 0 0

1 1 3 5 3
2

2 2 4 8 2

Ga
a a a a a a     

  

 
        

 
,                              (2.55) 

2 4 2

1 0 0 1 1 1 1 1 1 0 1 2 0 1 0 1 1 1 0 1

9 25 9 1 1

4 8 2 2 2
a a a a a a a a a a Ga a        

  
          .      (2.56) 

Simplifying equations (2.55) , (2.56), gives 

3 5 3 0
1 1 1 1 0 1 0 2 0 0 1

1 3 5 3

2 8 16 4 2

Ga
a a a a a a     

  

  
           

   
 ,                          (2.57) 
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  2 4 2

0 1 0 1 1 1 1 0 2 0 0 1 1 0 1

9 25 9 1 1

4 8 2 2 2
a a a a a G a a        

  

   
             

   
.    (2.58) 

Dividing equation (2.58) by 0a  and using 0 1 0       , we get 

21
1 1 0 2 0 0 1 1 1

0 0

9 25 9 1

4 8 2 2 2

G
a a a a

a a


     

  

   
          

  
   .                             (2.59) 

We can put equations (2.57) and (2.59) as the following form 

1 1 1 2 1a a      ,  1 3 1 1 1a                                                                                     (2.60) 

Where  
1 1

1

2
      ,    

3 5 3 0
2 1 0 1 0 2 0 0

3 5 3

8 16 4 2

Ga
a a a a   

  
       , 

21
3 1 0 2 0 0

0 0

9 25 9

4 8 2 2

G
a a a

a a


  

  
       .    

The eigenvalues can be obtained by solving the determinant of the Jacobian matrix of the 

equation (2.60) 

1 21 1

3 11 1

a a

 

      
           

. 

The eigenvalues can be obtained by solving the determinant  

1 2

3 1

0




  


  
, 

 2 2

1 1 2 32 0       .                                                                                       (2.61) 

The eigenvalues of equation (2.61) are  

1 2 3      .                                                                                                         (2.62) 

Therefore the steady-state solutions are stable if and only if 2

1 2 3    . 
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2.3.2 Sub-harmonic resonance : 2  

In this case we introduce a detuning parameter 2  

            22     ,                                                                                                  (2.63) 

Substituting equation (2.63) into equation (2.19), eliminating the terms that produce 

secular term and performing some algebraic manipulations, we obtain 

 2 12 3 2 2 2

1 1 2 2

1
2 3 10 6 sin 0

2

i T
i A i A A A A A A A GA f Ae

               ,       (2.64) 

Letting A in the polar form 1( )

1

1
( )

2

i T
A a T e


 , where a and   are the steady-state 

amplitude and the phases of the motions respectively,  then we have 

 2 1

3 5 2 3

1 1 2

2

1 3 5 3

2 8 16 4

1 1
sin 0.

2 4

i i i i i i

i i Ti

a e i a e i ae a e a e a e

Gae f ae

     

 

        

 

     

  

                             (2.65) 

Dividing equation (2.65) by ie  , to get 

 2 1

3 5 3

1 1 2

2

2

1 3 5 3 1

2 8 16 4 2

1
sin 0.

4

i i T

a ia ia a a a Ga

f ae
 

    
  




 

      

 

                                          (2.66) 

Using the form cos sinixe x i x   ,we get 

       

3 5 3

1 1 2

2 2 1 2 2 1

1 3 5 3 1

2 8 16 4 2

1 1
cos 2 sin sin 2 sin 0.

4 4

a ia ia a a a Ga

f a T if a T

    
  

     
 

      

      

                     (2.67) 

Now equating the imaginary and real parts of equation (2.67), we obtain the following 

equations describing the modulation of amplitude and phase of the motions 

   1 2 2 1

1 1
sin 2 sin 0

2 4
a a f a T   


      ,                       (2.68) 

And 
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   3 5 3

1 2 2 2 1

3 5 3 1 1
cos 2 sin 0

8 16 4 2 4
a a a a Ga f a T      

   
         .       (2.69) 

Sitting 
1 2

1

4
af


   ,  2 2 1( 2 )T      , then equations (2.68) and  (2.69) becomes 

   1 1 2

1
sin sin

2
a a      ,                                                                                  (2.70) 

   3 5 3

1 2 1 2

3 5 3
2 2 cos sin 0

4 8 2

Ga
a a a a     

  
       .                (2.71) 

Since 2 22       , then we have  

2 22a a a     .                                                                                                          (2.72) 

Substituting equation (2.72) into equation (2.69), to get 

   3 5 3

2 2 1 2 1 2

3 5 3
2 cos sin

4 8 2

Ga
a a a a a      

  
        .                         (2.73) 

For steady-state solution, setting 2 0a     equation (2.70) and (2.73) becomes 

   1 1 22 sin sina    ,                                                                                            (2.74) 

   3 5 3

2 1 2 1 2

3 5 3
2 cos sin

4 8 2

Ga
a a a a     

  
       .                               (2.75) 

Squaring both sides of equation (2.74) and (2.75)and adding,  we have 

    

    

2
22 2 3 5 3

1 2 1 2 1 2

2

1 2

3 5 3
2 sin sin

4 8 2

2 cos sin .

Ga
a a a a a      

  

 

 
       
 

  

              (2.76) 

More simply, 

 
2

2 2 3 5 3 2 2

1 2 1 2 1

3 5 3
4 sin

4 8 2

Ga
a a a a a     

  

 
       
 

.           (2.77) 

Equation (2.77) is called the frequency response equation.  
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(a)  Stability of trivial solution : 

To determine the stability of the trivial solutions, we investigate the solutions of 

the linearized form of equation (2.64) 

 2 1

1 2

1
2 sin 0

2

i T
i A i A GA f Ae

        ,                                              (2.78) 

For stability analysis we expressed A  in the Cartesian form  

  1

1 2

1

2

i T
A p ip e


   ,                                                                                                    (2.79) 

where 
1p  and 2p  are real. 

Substituting A  from equation (2.79) into equation (2.78), we get  

     

     

1 1 1

1 1 2 1

1 2 1 2 1 1 2

1 2 2 1 2

1 1 1
2

2 2 2

1 1
sin 0.

2 4

i T i T i T

i T i T i T

i p ip e i p ip e i p ip e

G p ip e f p ip e

  

  

  

 

 
       

 

    

           (2.80) 

Dividing both sides of equation (2.80) by 1i T
e
 and simplifying , we get 

   1 2 1 1 2 1

1 2 1 2 1 1 2 1 1 2

2 2

2 1 2 2

1 1 1 1

2 2 2 2

1 1
sin sin 0.

4 4

i T i T i T i T

ip p p i p ip p Gp iGp

f p e if p e
   

   
 

 
 

   

        

  

        (2.81) 

Using the form cos sinixe x i x  , separating real and imaginary parts, we get 

   

   

1 2 1 1 2 2 1 1 2 1

2 2 1 2 1

1 1 1
sin 2 sin

2 2 4

1
cos 2 sin ,

4

p p p Gp f p T T

f p T T

    
 

  


       

  

                   (2.82) 

And  

   

   

2 1 2 1 1 2 1 1 2 1

2 2 1 2 1

1 1 1
cos 2 sin

2 2 4

1
sin 2 sin .

4

p p p Gp f p T T

f p T T

    
 

  


      

  

                                (2.83) 

Sitting  1 1 2 12 T T     , gives 
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       1 1 2 1 1 2 1 2

1 1 1 1
sin sin cos sin

2 4 2 4
p f p G f p     

  

   
          

   
,         (2.84) 

       2 2 1 1 1 2 1 2

1 1 1 1
cos sin sin sin

2 4 2 4
p G f p f p     

  

   
         

   
.           (2.85) 

Sitting    4 1 2 1

1 1
sin sin

2 4
f  


      ,      5 2 1

1 1
cos sin

2 4
G f  

 
       , 

              6 2 1

1 1
cos sin

2 4
G f  

 
       ,      7 1 2 1

1 1
sin sin

2 4
f  


    . 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations (2.84), (2.85) gives 

4 51 1

6 72 2

p p

p p

      
           

. 

The eigenvalues can be obtained by solving the determinant  

4 5

6 7

0




  


  
, 

 2

4 7 4 7 5 6 0         .                                                                        (2.86) 

The trivial solution is stable if 4 7 5 6 0     . 

(b)  Stability of non-trivial solution : 

To determine the stability of the non-trivial solutions we let  

                0 1 1( )a a a T  , and 0 1 1( )h h h T  .                                                              (2.87)   

Where 0a  and 0h  correspond to a non-trivial solutions while 1a  and 1h  are perturbation 

terms which are assumed to be small compared to 0a  and 0h . 

Substituting equation (2.87) into equation (2.70), (2.73) where 2h  , using estimate 

1 1sin h h  and 1cos 1h  , to get 
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       0 1 1 0 1 2 0 1 0 1

1 1
sin sin

2 4
a a a a f a a h h 


        ,                                (2.88) 

          

       

3 5 3

0 1 0 1 2 0 1 1 0 1 2 0 1 0 1

0 1 2 0 1 0 1

3 5 3

4 8 2

1 1
cos sin .

2

a a h h a a a a a a a a

G a a f a a h h

   
 


 

          

    

          (2.89) 

Simplifying the above equations, gives 

   

   

0 1 1 0 1 1 2 0 0 1 0

2 1 0 1 0

1 1 1
sin cos sin

2 2 4

1
sin cos sin ,

4

a a a a f a h h h

f a h h h

  





      

 

             (2.90) 

   

     

   

3 2 5 4

0 0 1 0 0 1 1 1 0 2 1 2 1 0 0 1 2 0 0 1

3 2 0 1
0 0 1 2 0 0 1 0

2 1 0 1 0

3 5
3 ... 5 ...

4 8

3 1
3 ... cos sin sin

2 2

1
cos sin sin .

2

a h a h a h a h a a a a a a a a

Ga Ga
a a a f a h h h

f a h h h

   
 

 
  




             

      

 

     (2.91) 

Since 0a  and 0h  are solutions of equations (2.70) and (2.73) then equations (2.90) , (2.91) 

, become 

       

   

1 1 1 2 0 1 0 2 1 0

2 1 1 0

1 1 1
cos sin sin sin

2 4 4

1
cos sin ,

4

a a f a h h f a h

f a h h

  
 




    



                              (2.92) 

 

           

2 4 2 1
0 1 1 1 0 1 2 1 0 1 2 0 1 0 1

2 0 1 0 2 1 0 2 1 1 0

9 25 9

4 8 2

1 1 1
sin sin cos sin sin sin .

2 2 2

Ga
a h a h h a a a a a a a

f a h h f a h f a h h

   
  

  
  

        

  

            (2.93) 

Now since 1 1a h is a very small term and 0 1 0h h h      then they can be eliminated 

Thus equations (2.92) , (2.93)  can expressed as 

       1 1 1 2 0 1 0 2 1 0

1 1 1
cos sin sin sin

2 4 4
a a f a h h f a h  

 
     ,       (2.94) 
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2 4 2 1
0 1 1 2 1 0 1 2 0 1 0 1 2 0 1 0

2 1 0

9 25 9 1
sin sin

4 8 2 2

1
cos sin .

2

Ga
a h a a a a a a a f a h h

f a h

    
   




      



         (2.95) 

Substituting from equations (2.74) , (2.75) into equations  (2.94) , (2.95) and simplifying , 

to get 

3 5 3 0
1 2 0 1 0 2 0 0 1

1 3 5 3

2 8 16 4 2

Ga
a a a a a h   

  

 
       

 
,                           (2.96) 

 3

1 1 0 2 0 0 1 1 1

0

3 5
3

2 2 2

G
h a a a a h

a
   

  

 
        

 
.                             (2.97) 

We can put equations (2.96) and (2.97) as the following form 

1 1 8a h    ,  1 1 9 1 10h a h      .                                                                                       (2.98) 

Where  3 5 3 0
8 2 0 1 0 2 0 0

1 3 5 3

2 8 16 4 2

Ga
a a a a   

  
          ,     

, 3

9 1 0 2 0 0

0

3 5
3

2 2 2

G
a a a

a
  

  
         ,   10 1   . 

The non-trivial solution is stable if and only if the real parts of equation (2.98) are less 

than or equal to zero using the Jacbian matrix mothed to solve the equation  

81 1

9 101 1

0a a

h h

     
           

. 

The eigenvalues can be obtained by solving the determinant  

8

9 10

0




 


  
, 

2

10 8 9 0      .                                                                                                    (2.99) 

The eigenvalues of equation (2.99) are  
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2

10 10 8 94

2


     
  .                                                                                           (2.100) 

Therefore the steady-state solutions are stable if and only if 8 9 0   . 

 

2.4 Perturbation analysis for the nonlinear equation with negative (VF) control : 

The nonlinear equation (2.3) with negative velocity feedback (VF) control is scaled using 

the perturbation parameter   as follows 

 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( )

u u u u u uu u u f t

uf t Gu

      

  

          

  
         

Applying the multiple scales mothed, similarly as in the perturbation analysis equations 

(2.5) – (2.9) , we have 

2 2

0 0 0 1 0 1 0 1 0 0

2 2 3 5 2 3

0 1 1 0 2 0 0 0

1 0 2 0 0

2

2

cos( )cos( ) cos( )sin( ) 0.

D u D u D D u D u

u u u u D u

f t u f t GD u

  

    

    

  

    

     

                                        (2.101) 

Equating the coefficient of same powers of   in equation (2.101), to get 

 0 2 2

0 0( ) : 0O D u   ,                                                                                            (2.102) 

 1 2 2 3 5 2 3

0 1 0 1 0 1 0 0 1 0 2 0 0 0

1 0 2 0 0

( ) : 2 2

cos( )cos( ) cos( )sin( ) .

O D u D D u D u u u D u

f t u f t GD u

     

 

      

    
                            (2.103) 

The general solution of  (2.102) is given by  

0 0

0 1 1( ) ( )
i T i T

u A T e A T e
 

  ,                                              (2.104) 

where 1( )A T is unknown function in 1T  at this stage of the analysis. 

Now to solve equation (2.103), substituting equation (2.104) into it then substituting  

equation (2.7), and using the form 
0 0

0cos( )
2

i T i T
e e

T
 





 , 

0 0

0sin( )
2

i T i T
e e

T
i

 





  , to 

get this  simplified equation, 
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0

0 0 0

0 0

2 2 2 3 2 2 2

0 1 1 1 2

3 53 4 2 3 5

1 2 2 1

2 2

2 3 10 6

1
5 18 cos

2

1 1
sin sin ,

2 2

i T

i T i T i T

i T i T

D u i A i A A A A A A A Gi A e

A A A A e A e f e

f Ae f Ae cc



 

 

        

     

 



 

       

     

  

         (2.105) 

where cc  denotes the complex conjugate terms. 

The particular solution of equation (2.105) can be written in the following form 

     

  
 

 
   

 
   

0 0 0

00

0

3 53 4 2 3 5

1 0 1 1 1 1 2 22 2

1 2

2

1 1
, 5 18

8 24

1 1
cos sin

2 2 2

1
sin .

2 2

i T i T i T

i Ti T

i T

u T T A T e A A A A e A e

f e f Ae

f Ae cc

  





    
 

 
  








     

 
   

 
 

                (2.106) 

From the equation (2.106), the reported resonance cases at this approximation order are 

a. Primary resonance     : 

b. Sub-harmonic resonance 2 : 

 

2.5    Stability analysis  

2.5.1  Primary resonance     : 

To describe the nearness of excitation frequency   to frequency of the natural 

frequency   introducing the detuning parameter 1 such that  

         1     ,                                                                                                     (2.107) 

Substituting equation (2.107) into equation (2.105), eliminating the terms that produce 

secular term and performing some algebraic manipulations, we obtain 

 1 12 3 2 2 2

1 1 2 1

1
2 3 10 6 cos 0

2

i T
i A i A A A A A A A Gi A f e

                .    (2.108) 

 Substituting 1( )

1

1
( )

2

i T
A a T e


  similarly in equations (2.22) – (2.25) , we obtain the 

following equations describing the modulation of amplitude and phase of the motions 
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   1

1 1
sin cos

2 2
a a Ga       ,                  (2.109) 

   3 5 3

1 2

3 5 3
cos cos 0

8 16 4
a a a a     

 
     ,    (2.110) 

 where 
1

1

2
f


   ,  1 1( )T     . 

since 1      ,   

then  1a a a      .                                                                                                (2.111) 

Substituting equation (2.111) into equation (2.110), to get 

   3 5 3

1 1 2

3 5 3
cos cos

8 16 4
a a a a a      

 
      .        (2.112)     

For steady-state solutions, setting 0a    , equation (2.109) and (2.112) become 

   1 2 sin cosa Ga      ,                  (2.113) 

   3 5 3

1 1 2

3 5 3
2 2 cos cos

4 8 2
a a a a     

 
      .               (2.114) 

From equation  (2.113) and (2.114), we have 

   
2

2 3 5 3 2 2

1 1 1 2

3 5 3
2 4 cos

4 8 2
a Ga a a a a     

 

 
       

 
.                     (2.115) 

Equation (2.115) is called the frequency response equation.  

 

(a) Stability of trivial solution: 

To determine the stability of the trivial solutions, we investigates the solutions of 

the linearized form of equation (2.108) 

12 0i A i A Gi A       .        (2.116) 
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For stability analysis we expressed A  in the Cartesian form and substituting similarly as 

equation (2.38) – (2.43), we have  

 1 1 1 2

1 1

2 2
p G p p 

 
      

 
 ,                                (2.117) 

 2 1 1 2

1 1

2 2
p p G p 

 
     

 
.                                 (2.118) 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations (2.117), (2.118) gives 

1

1

1 1

2 2
0

1 1

2 2

G

G

  

  

   



  

,  

 2 2 2 2

1 1 1

1 1 1
0

4 4 2
G G G            .                                                          (2.119) 

The solution of the equation (2.119) is  

   2

1

1

2
G        .                                                                         (2.120) 

The trivial solution is stable if 0  , that is  
2 2

1 4G    . 

 

(b) Stability of non-trivial solution: 

To determine the stability of the non-trivial solutions we let  

      0 1 1( )a a a T   and 0 1 1( )T    .                   (2.121) 

Substituting equation (2.121) into equations (2.109) , (2.112), and simplifying, similarly 

as in the above, we have 

      0 1 1 0 1 1 0 1 1 0 1 0

1 1 1 1 1
sin cos cos

2 2 2 2 2
a a a a Ga Ga f     


          ,   (2.122) 
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3 2 5 4

0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 2 0 0 1

3 2

0 0 1 1 0 1 0

3 5
3 ... 5 ...

4 8

3 1
3 ... cos sin cos .

2 2

a a a a a a a a a a a a

a a a f

       
 

    


             

    

     (2.123) 

Since 
0a  and 

0  are solutions of equations (2.109),(2.112) and 0 1 0        then  

3 5 3

1 1 1 1 0 1 0 2 0 0 1

1 1 3 5 3

2 2 8 16 4
a G a a a a a     

 

   
           

   
,    (2.124) 

21
1 1 0 2 0 0 1 1 1

0

9 25 9 1 1

4 8 2 2 2
a a a a G

a


     

 

   
          

  
.   (2.125) 

We can put equations (2.124) and (2.125) as the following form 

1 11 1 12 1a a      ,  1 13 1 11 1a     .       (2.126) 

Where  
11 1

1 1

2 2
G       ,    

3 5 3

12 1 0 1 0 2 0 0

3 5 3

8 16 4
a a a a   

 
      , 

21
13 1 0 2 0 0

0

9 25 9

4 8 2
a a a

a


  

 
      .    

The eigenvalues can be obtained by solving the determinant of the Jacobian matrix of the 

equation (2.126) 

11 12

13 11

0




  


  
, 

 2 2

11 11 12 132 0       .       (2.127) 

The eigenvalues of equation (2.127) are  

11 12 13      .         (2.128) 

Therefore the steady-state solutions are stable if and only if 2

11 12 13    . 
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2.5.1 Sub-harmonic resonance : 2  

In this case we introduce a detuning parameter 2  

        22    ,                                                                                                     (2.129) 

Substituting equation (2.129) into equation (2.105), eliminating the terms that produce 

secular term and performing some algebraic manipulations, we obtain 

 2 1

2 3 2 2 2

1 1 2

2

2 3 10 6

1
sin 0.

2

i T

i A i A A A A A A A Gi A

f Ae


       



     

 
                                       (2.130) 

Substituting 1( )

1

1
( )

2

i T
A a T e


  similarly in equations (2.65) – (2.67) , we obtain the 

following equations describing the modulation of amplitude and phase of the motions 

   1 2 2 1

1 1 1
sin 2 sin 0

2 2 4
a a Ga f a T   


       ,        (2.131) 

And 

   3 5 3

1 2 2 2 1

3 5 3 1
cos 2 sin 0

8 16 4 4
a a a a f a T      

  
       .  (2.132) 

Sitting  
1 2

1

4
af


   , 2 2 1( 2 )T     , then equations (2.163) , (2.164) becomes 

   1 1 2

1 1
sin sin

2 2
a a Ga       ,                  (2.133) 

   3 5 3

2 2 1 2 1 2

3 5 3
2 cos sin

4 8 2
a a a a a      

 
       .      (2.134) 

For steady-state solution, setting 2 0a     equation (2.133), (2.134)  becomes 

   1 1 22 sin sina Ga     ,         (2.135) 

   3 5 3

2 1 2 1 2

3 5 3
2 cos sin

4 8 2
a a a a     

 
      .               (2.136) 

From (2.135) and (2.136)  we have 
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2

2 3 5 3 2 2

1 2 1 2 1

3 5 3
4 sin

4 8 2
a Ga a a a a     

 

 
       

 
.   (2.137) 

Equation (2.137) is called the frequency response equation.  

 

(a)  Stability of trivial solution  

To determine the stability of the trivial solutions, we investigates the solutions of 

the linearized form of equation (2.130) 

 2 1

1 2

1
2 sin 0

2

i T
i A i A Gi A f Ae

         .      (2.138) 

Substituting   1

1 2

1

2

i T
A p ip e


   into equation (2.138) and simplifying, then separating 

real and imaginary parts, we have 

   

   

1 2 1 1 1 2 1 1 2 1

2 2 1 2 1

1 1 1
sin 2 sin

2 2 4

1
cos 2 sin 0,

4

p p p Gp f p T T

f p T T

    


  


      

   

   (2.139) 

And  

   

   

2 1 2 1 2 2 1 1 2 1

2 2 1 2 1

1 1 1
cos 2 sin

2 2 4

1
sin 2 sin 0.

4

p p p Gp f p T T

f p T T

    


  


      

   

    (2.140) 

Sitting  1 1 2 12 T T     , gives 

       1 1 2 1 1 2 1 2

1 1 1 1
sin sin cos sin

2 2 4 4
p G f p f p     

 

   
          

   
,       (2.141) 

       2 2 1 1 1 2 1 2

1 1 1 1
cos sin sin sin

4 2 2 4
p f p G f p     

 

   
         

   
.       (2.142) 

Sitting    14 1 2 1

1 1 1
sin sin

2 2 4
G f  


      ,    15 2 1

1
cos sin

4
f  


    , 
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   16 2 1

1
cos sin

4
f  


      ,      17 1 2 1

1 1 1
sin sin

2 2 4
G f  


     . 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations (2.141), (2.142)  

14 15

16 17

0




  


  
, 

 2

14 17 14 17 15 16 0         .                                                          (2.143) 

The trivial solution is stable if 14 17 15 16 0     . 

 

(b) Stability of non-trivial solution 

To determine the stability of the non-trivial solutions we let  

0 1 1( )a a a T   and 0 1 1( )h h h T   .                  (2.144) 

Substituting equation (2.144) into equations (2.133) , (2.134), and simplifying, similarly 

as in the above, we have 

   

   

0 1 1 0 1 1 0 1 2 0 0 1 0

2 1 0 1 0

1 1 1 1 1
sin cos sin

2 2 2 2 4

1
sin cos sin ,

4

a a a a Ga Ga f a h h h

f a h h h

  





        

 

        (2.145) 

   

     

   

3 2 5 4

0 0 1 0 0 1 1 1 0 2 1 2 1 0 0 1 2 0 0 1

3 2

0 0 1 2 0 0 1 0

2 1 0 1 0

3 5
3 ... 5 ...

4 8

3 1
3 ... cos sin sin

2 2

1
cos sin sin .

2

a h a h a h a h a a a a a a a a

a a a f a h h h

f a h h h

   
 

 





             

    

 

     (2.146) 

Since 0a  and 0h  are solutions of equations (2.133) , (2.134) , 1 1a h is a very small term and 

0 1 0h h h      then they can be eliminated 

Thus equations (2.145) , (2.146), becomes 
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       1 1 1 1 2 0 1 0 2 1 0

1 1 1 1
cos sin sin sin

2 2 4 4
a a Ga f a h h f a h  

 
      ,  (2.147) 

   

   

2 4 2

0 1 1 2 1 0 1 2 0 1 0 1 2 0 1 0

2 1 0

9 25 9 1
sin sin

4 8 2 2

1
cos sin .

2

a h a a a a a a a f a h h

f a h

    
  




     



    (2.148) 

Substituting from (2.147),(2.148) into equations (2.135),(2.136) and simplifying, we get 

3 5 3

1 1 0 2 1 0 2 0 0

1 3 5 3

2 8 16 4
a h a a a a   

 

 
      

 
,     (2.149) 

 3

1 1 0 2 0 0 1 1 1

3 5
3

2 2
h a a a a G h   

 

 
        

 
.    (2.150) 

We can put equation (2.149) and (2.150) as the following form 

1 1 18a h    ,  1 1 19 1 20h a h      ,       (2.151) 

Where  3 5 3

18 0 2 1 0 2 0 0

1 3 5 3

2 8 16 4
a a a a   

 
       , 

, 3

19 1 0 2 0 0

3 5
3

2 2
a a a  

 
      , 20 1 G    . 

The non-trivial solution is stable if and only if the real parts of equation (2.193) are less 

than or equal to zero using the Jacbian matrix mothed to solve the equation  

18

19 20

0




 


  
, 

The eigenvalues are  

2

20 20 18 194

2


     
 .        (2.152) 

Therefore the steady-state solutions are stable if and only if 18 19 0   . 
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2.6 perturbation analysis for the system with negative cubic (VF): 

The nonlinear equation (2.4) with negative cubic velocity feedback (VF) control is scaled 

using the perturbation parameter   as follows 

 2 3 5 2 2

1 1 2 1

3

2

cos( )cos( )

cos( )sin( ) .

u u u u u uu u u f t

uf t Gu

      

  

          

  
  

Applying the multiple scales mothed, similarly as in the perturbation analysis equations 

(2.5) – (2.9) , we have 

2 2

0 0 0 1 0 1 0 1 0 0

2 2 3 5 2 3

1 0 1 1 1 0 2 0 0 0

3 3

1 0 2 0 0

2

2

cos( )cos( ) cos( )sin( ) 0.

D u D u D D u D u

u u u u D u

f t u f t GD u

  

    

    

  

    

     

       (2.153) 

Equating the coefficient of same powers of   in equation (2.153), we have  

 0 2 2

0 1 0( ) : 0O D u   ,               (2.154) 

 1 2 2 3 5 2 3

0 1 1 0 1 0 1 0 0 1 0 2 0 0 0

3 3

1 0 2 0 0

( ) : 2 2

cos( )cos( ) cos( )sin( ) .

O D u D D u D u u u D u

f t u f t GD u

     

 

      

    
      (2.155) 

The general solution of  (2.154) is given by  

0 0

0 1 1( ) ( )
i T i T

u A T e A T e
 

   ,                        (2.156) 

where 1( )A T is unknown function in 1T  . 

To solve equation (2.155), substituting equation (2.156) into it then substituting  equation 

(2.7), and using the form 
0 0

0cos( )
2

i T i T
e e

T
 





 , 

0 0

0sin( )
2

i T i T
e e

T
i

 





  , to get this  

simplifying equation, 

   

   

       

0

0 0 0

0 0

2 2 2 3 2 2 2 3 2

0 1 1 1 1 2

3 53 4 2 3 3 3 5

1 2 2 1

2 2

2 3 10 6 3

1
5 18 18 cos

2

1 1
sin sin ,

2 2

i T

i T i T i T

i T i T

D u i A i A A A A A A A i GA A e

A A A A i GA e A e f e

f Ae f Ae cc



 

 

        

      

 



 

       

      

  

     (2.157) 

where cc  denotes the complex conjugate terms. 
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The particular solution of equation (2.157) can be written in the following form 

   

  
 

 
   

 
   

0 0 0

00

0

3 53 4 2 3 3 3 5

0 1 1 1 2 22 2

1 2

2

1 1
5 18 18

8 24

1 1
cos sin

2 2 2

1
sin .

2 2

i T i T i T

i Ti T

i T

u A T e A A A A i GA e A e

f e f Ae

f Ae cc

  





     
 

 
  








      

 
   

 
 

    (2.158) 

From the equation (2.157), the reported resonance cases at this approximation order are 

a. Primary resonance :    

b. Sub-harmonic resonance : 2  

2.7    Stability analysis 

2.7.1 Primary resonance    

In this case we introduce a detuning parameter 1 such that  

     1    ,                                                                                                          (2.159) 

Substituting equation (2.159) into (2.157), eliminating the terms that produce secular 

term and performing some algebraic manipulations, we obtain 

 1 1

2 3 2 2 2 3 2

1 1 2

1

2 3 10 6 3

1
cos 0.

2

i T

i A i A A A A A A A i GA A

f e


       



     

 
   (2.160) 

Substituting 1( )

1

1
( )

2

i T
A a T e


  and using the form cos sinixe x i x   and separating the 

imaginary and real parts, we obtain the following equations describing the modulation of 

amplitude and phase of the motions 

   3 2

1 1 1 1

1 3 1
sin cos 0

2 8 2
a a a G f T    


        ,            (2.161)               

And 

   3 5 3

1 2 1 1 1

3 5 3 1
cos cos 0

8 16 4 2
a a a a f T      

  
       .                (2.162) 
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Sitting 
1

1

2
f


   ,  1 1( )T     . 

Equation (2.161) and (2.162) become as the following 

   3 2

1

1 3
sin cos

2 8
a a a G        ,        (2.163) 

   3 5 3

1 1 2

3 5 3
cos cos

8 16 4
a a a a a      

 
      .      (2.164) 

For steady-state solutions, setting 0a     equations (2.163) , (2.164), becomes 

   3 2

1

3
2 sin cos

4
a a G      ,         (2.165) 

   3 5 3

1 1 2

3 5 3
2 2 cos cos

4 8 2
a a a a     

 
      .               (2.166) 

From equation  (2.165) and (2.166), we have 

 
2 2

3 2 3 5 3 2 2

1 1 1 2

3 3 5 3
2 4 cos

4 4 8 2
a a G a a a a      

 

   
         

   
.     (2.167) 

Equation (2.167) is called the frequency response equation.  

 

(a) Stability of trivial solution: 

To determine the stability of the trivial solutions, we investigates the solutions of 

the linearized form of equation (2.160) 

12 0i A i A     .        (2.168) 

Substituting   1

1 2

1

2

i T
A p ip e


   into equation (2.168) and simplifying, we get  

1 2 1 2 1 1 2 1

1 1
0

2 2
ip p p i p ip p           .           (2.169) 

Separating real and imaginary parts we get 
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1 2 1 1

1

2
p p p     ,          (2.170) 

2 1 2 1

1

2
p p p    .                  (2.171) 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations (2.170), (2.171) gives 

1

1

1

2
0

1

2

  

  

  



 

,  

 2 2 2

1 1

1
0

4
        .                                                             (2.172) 

The solution of the equation (2.172) is  

 2

1

1

2
      .                                                                           (2.173) 

The trivial solution is stable if 0  , that is 
2 2

1 4   . 

 

(b) Stability of  non-trivial solution: 

To determine the stability of the non-trivial solutions we let  

      0 1 1( )a a a T   and 0 1 1( )T     .      (2.174) 

Substituting equation (2.174) into equations (2.163) , (2.164), and simplifying, we have  

 

      

3 2 2

0 1 1 0 1 1 0 0 1

1 0 1 0

1 1 3
3 ...

2 2 8

1
sin cos cos ,

2

a a a a a a a G

f

  

   


       

 

        (2.175) 

   

        

3 2 5 4

0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 2 0 0 1

3 2

0 0 1 1 0 1 0

3 5
3 ... 5 ...

4 8

3 1
3 ... cos sin cos .

2 2

a a a a a a a a a a a a

a a a f

       
 

    


             

    

     (2.176) 
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Since 0a  and 0  are solutions of equations (2.163) , (2.164) and 0 1 0        then  

   2 2

1 1 1 0 1 1 1 0

1 9 1
cos cos

2 8 2
a a a a G f    


     ,     (2.177) 

   2 4 2

0 1 1 1 1 0 1 2 0 1 0 1 1 1 0

9 25 9 1
sin cos

4 8 2 2
a a a a a a a a f       

  
      .  (2.178) 

Substituting from equations (2.165) , (2.166) into equations (2.177) , (2.178), we get 

2 2 3 5 3

1 1 0 1 1 0 1 0 2 0 0 1

1 9 3 5 3

2 8 8 16 4
a a G a a a a a      

 

   
           

   
,  (2.179) 

2 2 21
1 1 0 2 0 0 1 0 1 1

0

9 25 9 3 1

4 8 2 8 2
a a a a a G

a


      

 

   
         

  
.   (2.180) 

We can put equation (2.179) and (2.180) as the following form 

1 21 1 22 1a a      ,  1 23 1 24 1a      ,      (2.181) 

Where  2 2

21 1 0

1 9

2 8
a G        ,    

3 5 3

22 1 0 1 0 2 0 0

3 5 3

8 16 4
a a a a   

 
      , 

21
23 1 0 2 0 0

0

9 25 9

4 8 2
a a a

a


  

 
         ,    2 2

24 0 1

3 1

8 2
a G    . 

The eigenvalues can be obtained by solving the determinant of the Jacobian matrix of the 

equation (2.181) 

21 22

23 24

0




  


  
, 

 2

21 24 21 24 22 23 0         .      (2.182) 

Therefore the steady-state solutions are stable if and only if 21 24 22 23 0     . 
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  2.7.2  Sub-harmonic resonance : 2  

In this case we introduce a detuning parameter 2  

          22     ,                                                                                                  (2.183) 

Substituting equation (2.183) into equation (2.157), eliminating the terms that produce 

secular term and performing some algebraic manipulations, we obtain 

 2 1

2 3 2 2 2 3 2

1 1 2

2

2 3 10 6 3

1
sin 0.

2

i T

i A i A A A A A A A i GA A

f Ae


       



     

 
          (2.184) 

Substituting 1( )

1

1
( )

2

i T
A a T e


  and using the form cos sinixe x i x   and separating the 

imaginary and real parts, we obtain the following equations describing the modulation of 

amplitude and phase of the motions 

   3 2

1 2 2 1

1 3 1
sin 2 sin 0

2 8 4
a a a G f a T    


       ,         (2.185) 

And 

   3 5 3

1 2 2 2 1

3 5 3 1
cos 2 sin 0

8 16 4 4
a a a a f a T      

  
       .  (2.186) 

Sitting  
1 2

1

4
af


   , 2 2 1( 2 )T     , then  

   3 2

1 1 2

1 3
sin sin

2 8
a a a G        ,        (2.187) 

   3 5 3

2 2 1 2 1 2

3 5 3
2 cos sin

4 8 2
a a a a a      

 
       .     (2.188) 

For steady-state solution, setting 2 0a     equation (2.187) , (2.188) becomes 

   3 2

1 1 2

3
2 sin sin

4
a a G      ,        (2.189) 

   3 5 3

2 1 2 1 2

3 5 3
2 cos sin

4 8 2
a a a a     

 
      .     (2.190) 
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From (2.189) and (2.190) we have 

 
2 2

3 2 3 5 3 2 2

1 2 1 2 1

3 3 5 3
4 sin

4 4 8 2
a a G a a a a      

 

   
         

   
.   (2.191) 

Equation (2.191) is called the frequency response equation.  

 

(a) Stability of  trivial solution  

To determine the stability of the trivial solutions, we investigates the solutions of 

the linearized form of equation (2.184) 

 2 1

1 2

1
2 sin 0

2

i T
i A i A f Ae

       .       (2.192) 

Substituting   1

1 2

1

2

i T
A p ip e


   and simplifying, we get  

 

 

1 2 1

1 2 1

2

1 2 1 2 1 1 2 1 2 1

2

2 2

1 1 1
sin

2 2 4

1
sin 0.

4

i T i T

i T i T

ip p p i p ip p f p e

if p e

 

 

    





 

 

       

 

    (2.193) 

Using the form cos sinixe x i x   and separating real and imaginary parts we get 

   

   

1 2 1 1 2 1 1 2 1

2 2 1 2 1

1 1
sin 2 sin

2 4

1
cos 2 sin 0,

4

p p p f p T T

f p T T

    


  


     

   

     (2.194) 

   

   

2 1 2 1 2 1 1 2 1

2 2 1 2 1

1 1
cos 2 sin

2 4

1
sin 2 sin 0.

4

p p p f p T T

f p T T

    


  


     

   

    (2.195) 

Sitting  1 1 2 12 T T     , gives 

       1 1 2 1 1 2 1 2

1 1 1
sin sin cos sin

2 4 4
p f p f p     

 

   
         

   
,      (2.196) 
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       2 2 1 1 1 2 1 2

1 1 1
cos sin sin sin

4 2 4
p f p f p     

 

   
        

   
.      (2.197) 

Sitting     25 1 2 1

1 1
sin sin

2 4
f  


      ,       26 2 1

1
cos sin

4
f  


     , 

               27 2 1

1
cos sin

4
f  


      ,      28 1 2 1

1 1
sin sin

2 4
f  


    . 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations (2.196), (2.197) gives 

25 26

27 28

0




  


  
, 

 2

25 28 25 28 26 27 0         .                                                          (2.198) 

The trivial solution is stable if 25 28 26 27 0     . 

 

(b) Stability of  non-trivial solution  

To determine the stability of the non-trivial solutions we let  

          0 1 1( )a a a T   and 0 1 1( )h h h T  .       (2.199) 

Substituting equation (2.199) into equations (2.187), (2.188) and simplifying, we get 

     

   

3 2 2

0 1 1 0 1 1 0 0 1 2 0 0 1 0

2 1 0 1 0

1 1 3 1
3 ... sin cos sin

2 2 8 4

1
sin cos sin ,

4

a a a a a a a G f a h h h

f a h h h

   





         

 

  (2.200) 

   

     

   

3 2 5 4

0 0 1 0 0 1 1 1 0 2 1 2 1 0 0 1 2 0 0 1

3 2

0 0 1 2 0 0 1 0

2 1 0 1 0

3 5
3 ... 5 ...

4 8

3 1
3 ... cos sin sin

2 2

1
cos sin sin .

2

a h a h a h a h a a a a a a a a

a a a f a h h h

f a h h h

   
 

 





             

    

 

    (2.201) 
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Since 0a  and 0h  are solutions of equations (2.187), (2.188), 1 1a h  is a very small term and 

0 1 0h h h      then they can be eliminated, we have 

       2 2

1 1 1 0 1 2 0 1 0 2 1 0

1 9 1 1
cos sin sin sin

2 8 4 4
a a a a G f a h h f a h   

 
      , (2.202) 

   

   

2 4 2

0 1 1 2 1 0 1 2 0 1 0 1 2 0 1 0

2 1 0

9 25 9 1
sin sin

4 8 2 2

1
cos sin .

2

a h a a a a a a a f a h h

f a h

    
  




     



  (2.203) 

Substituting from equations (2.189) , (2.190) into equations (2.202) , (2.203) and 

simplifying, we have 

2 2 2 2 3 5 3

1 0 1 1 0 1 1 0 2 0 0 1

9 3 1 3 5 3

8 8 2 8 16 4
a a G a G a a a a a h     

 

   
          

   
,          (2.204) 

3 2 2

1 1 0 2 0 0 1 0 1 1

3 5 3
3

2 2 4
h a a a a a G h    

 

   
         

   
.    (2.205) 

We can put equations (2.204) and (2.205) as the following form 

1 29 1 1 30a a h      ,  1 1 31 1 32h a h     ,      (2.206) 

Where  2 2 2 2

29 0 1

9 3

8 8
a G a G     ,  3 5 3

30 0 1 1 0 2 0 0

1 3 5 3

2 8 16 4
a a a a   

 
      , 

3

31 1 0 2 0 0

3 5
3

2 2
a a a  

 
      , 2 2

32 0 1

3

4
a G    . 

The non-trivial solution is stable if and only if the real parts of (2.206) are less than or 

equal to zero, using the Jacbian matrix mothed to solve the equation  

29 30

31 32

0




  


  
, 

The eigenvalues 
   

2

29 32 29 32 29 32 30 314 4

2


          
 .  (2.207) 

Therefore the steady-state solutions are stable if and only if 29 32 30 31 0     . 
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2.8  Numerical results and discussions 

In this section the steady state response of the nonlinear dynamical system is 

investigated for various system parameters under primary and sub-harmonic resonance 

conditions when the negative linear velocity feedback is considered. The stability of 

the numerical solution is studied using the frequency response function and the phase 

plane method. 

 

   

 2.8.1     Time response solution 

The time history and stability of the dynamical system (inclined beam) subject to both 

harmonic and parametric excitations are obtained under position feedback, linear 

negative velocity feedback and cubic negative velocity feedback controllers at 

nonresonance, as shown in Figs. (2.8a,9a,10a), and at primary resonance case, as 

shown in Figs. (2.8b,9b,10b), and sub-harmonic resonance case, as shown in Figs. 

(2.8c,9c,10c). Comparing these figures, we may notice the followings:  

 

Control Type The response at primary 

resonance  (Ω = ω) 

The response at sub-

harmonic resonance 

(Ω= 2ω). 

Position Feedback Chaotic with multi limit 

cycles. 

May reach steady state 

at t >>> 600s. 

Negative cubic 

velocity Feedback 

Modulated with multi 

limit cycles.  

May reach steady state 

at t > 600s. 

Negative linear 

velocity Feedback 

Modulated then stable 

after t=500s, with multi 

limit cycles. 

Reaches steady state at 

t = 400s. 

  

Based on the above comparison, we may conclude that the best performance among 

the three active controllers is the negative velocity feedback one as it suppresses the 

vibration to the minimum steady state amplitude at a shorter time when the system is at 

principal parametric resonance case.    
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2.8.2     Theoretical frequency response solution  

The frequeny response equations (2.115) and (2.137) under primary and subharmonic 

resonance conditions with positive position feedback controller, is solved and the 

stabillity of the steady state response is obtained from the eigenvalues of the 

corresponding Jacobian matrix. The results are shown in Figs. (2.11) and (2.12), 

respectively, as the steady state amplitude against the detuning parameter σ for different 

values of the system parameters. 

 Considering Fig. (2.11a) as a basic case for comparison. It is noted that the 

frequeny response curve consists of two branches that are bent to right showing that the 

system posseses hardenning nonlinearity charateristic. It can be seen from Fig. (2.11b), 

(2.11c), (2.11d) and (2.11g) that the steady state amplitude increases as each of the 

natural frequency ω, the linear damping coefficient µ1 and the nonlinear coefficients β1 

and δ decrease. Figure (2.11f) shows that as the excitation force amplitude f increases, the 

branches of the response curves diverge away and the amplitude increases. The effect of 

the gain of the position feedback control is illustrated in Fig. (2.11h). 

 Fig.(2.12) represents the solution of the the sub-harmonic resonant frequency 

response equation (2.137) under the positive position feedback controller, which shows a 

different kind of frequeny curves but result in same effects of the system parameters that 

discussed in Fig.(2.11). It should be mentiond that the resonant frequency response 

curves under the other studied controllers (negative linear and cubic velocity feedback) 

have not been included since they do not represent significant change in the behavior or 

the shape of the curves discussed in Figs.(2.11) and (2.12). 
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(a) Nonresonant time series 

 

    

(b) Resonant time series when    

 

        

(c) Resonant time series when 2  

 

Fig 2.8  Resonant time history solution of the system with (PF) control when: = 2.1 , 

1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f , 2 0.2f  , 30  , 0.05G   
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(a) Nonresonant time series 

    

(b) Resonant time series when    

     

(c) Resonant time series when 2  

 

Fig 2.9  Resonant time history solution of the system with negative (VF) control when: 

= 2.1 , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f , 2 0.2f  , 30  ,

0.05G   
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(a) Nonresonant time series 

 

  

(b) Resonant time series when    
 

      

(c) Resonant time series when 2  

 

Fig 2.10 Resonant time history solution of the system with negative cubic (VF) control 

when: = 2.1 , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f , 2 0.2f  , 30  ,

0.05G   
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(a) Basic case                                              (b) Natural frequency 

                                      

            (c) The damping coefficient                          (d) Nonlinear coefficient 

                                     

            (e) Nonlinear coefficient                               (f) The forcing amplitude 

                                          

       (g) Nonlinear coefficient                                    (h) The gain 

Fig 2.11 Theoretical frequency response curves to primary resonance case for (PF) 

control = 2.7 , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f  , 30  , 0.05G  . 

1.7  

3.7  

1 0.05  

1 5 

 

1 25  

2 15  

2 0.5 

 

1.0  

0.001  
1.5G  

0.0001G  

1 0.15f 

 

1 0.7f 
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(a) Basic case                                           (b) Natural frequency 

                                          

            (c) The damping coefficient                            (d) Nonlinear coefficient 

                                       

            (e) Nonlinear coefficient                              (f) The forcing amplitude 

                                           

       (g) Nonlinear coefficient                                                (h) The gain 

Fig 2.12 Theoretical frequency response curves to sub-harmonic resonance case for (PF) 

control = 5.4 , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0  , 2 0.2f  , 30  , 0.01G  . 

4.4  

6.4  

1 0.2  

1 5 

 

1 25 

 

2 20 

 

2 0.01  

1.0  

0.01  
0.1G  

0.001G  

2 0.1f  

2 0.6f  
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(a) Basic case                                                     (b) Natural frequency 

                                      

            (c) The damping coefficient                           (d) Nonlinear coefficient 

                                     

            (e) Nonlinear coefficient                                  (f) The forcing amplitude 

                                          

       (g) Nonlinear coefficient                                   (h) The gain 

Fig 2.13 Theoretical frequency response curves to primary resonance case for negative 

(VF) control = 2.7 , 1= 15 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f , 30  , 0.01G  . 

 

1.7  

3.7  

1 0.05  

1 5 

 

1 25  

2 15  

2 0.5 

 

1.0  

0.001  
0.1G  

0.001G  

1 0.15f 

 

1 0.7f 
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(a) Basic case                                          (b) Natural frequency 

                                          

            (c) The damping coefficient                          (d) Nonlinear coefficient 

                                       

            (e) Nonlinear coefficient                                 (f) The forcing amplitude 

                                           

       (g) Nonlinear coefficient                                   (h) The gain 

Fig 2.14 Theoretical frequency response curves to sub-harmonic resonance case for 

negtive (VF) control = 5.4 , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0  , 2 0.2f  , 

30  , 0.01G  . 

4.4  

6.4  

1 0.2  

1 5 

 

1 25 

 

2 20 

 

2 0.01  

1.0  

0.01  
0.015G  

0.001G  

2 0.1f  

2 0.6f  
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(b) Basic case                                                     (b) Natural frequency 

                                      

            (c) The damping coefficient                            (d) Nonlinear coefficient 

                                     

            (e) Nonlinear coefficient                                 (f) The forcing amplitude 

                                          

       (g) Nonlinear coefficient                                                (h) The gain 

Fig 2.15 Theoretical frequency response curves to primary resonance case for negative  

cubic (VF) control = 2.7 , 1= 15 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f , 

30  , 0.01G  . 

1.7  

3.7  

1 0.1 

 

1 5 

 

1 25  

2 15  

2 0.5 

 

1.0  

0.001  

0.1G  
0.001G  

1 0.15f 

 

1 0.7f  
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(b) Basic case                                           (b) Natural frequency 

                                          

            (c) The damping coefficient                             (d) Nonlinear coefficient 

                                       

            (e) Nonlinear coefficient                                   (f) The forcing amplitude 

                                           

       (g) Nonlinear coefficient                                      (h) The gain 

Fig 2.16 Theoretical frequency response curves to sub-harmonic resonance case for 

negtive cubic (VF) control = 5.4 , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0  ,

2 0.2f   , 30  , 0.001G  . 

4.4  

6.4  

1 0.005  

1 5 

 

1 25 

 

2 20 

 

2 0.01  

1.0  

0.01  
0.1G  

0.0001G  

2 0.1f  

2 0.6f  
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Chapter 3 

Passive Control of a Nonlinear  Dynamical System 

In this chapter, we present the perturbation and numerical solutions of two-

dimensional nonlinear differential equations with two different controller, Positive 

Position Feedback (PPF) control and Nonlinear Saturation (NS) control . The multiple 

scale analytical method and Rung-Kutta fourth order numerical methods  are used to 

investigate the system behavior and its stability. All possible resonance cases will be 

extracted and effect of different parameters on system behavior at resonance cases were 

studied. 

 

3.1  System model 

The modified second-order nonlinear ordinary differential equation that describes the 

dynamical behavior is given as [10,24] 

 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) ( ).

s

c

u u u u u uu u u f t

uf t F t

     

 

          

  
                             (3.1) 

We introduce two a second-order non-linear controllers, which are coupled to the main 

system through a control law. Then, the equation governing the dynamics of the 

controllers is suggested as      22 ( )c c fv v v F t      .                                   (3.2) 

We choose the control signal cF v , and feedback signal fF u ,for (PPF) control, and  

2

cF v  , fF uv , for (NS) control.  

So the closed loop system equations to the both controllers are 

 Positive Position Feedback (PPF) control 

 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) ,

su u u u u uu u u f t

uf t v

     

 

          

  
                (3.3) 

22 c cv v v u      ,            (3.4) 

 Nonlinear Saturation (NS) control 
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 2 3 5 2 2

1 1 2 1

2

2

cos( )cos( )

cos( )sin( ) ,

su u u u u uu u u f t

uf t v

     

 

          

  
          (3.5) 

22 c cv v v uv      ,                (3.6) 

where v , v  and v  represent displacement, velocity and acceleration of the controller, 

c is the natural frequency of the controller,   is the damping coefficient of the 

controller ,  ,   is nonlinear coefficients of the controller, the main system parameter is 

shown in chapter 2. 

 

3.2 Perturbation analysis for the main system with indirect (PPF) control 

The nonlinear differential equation (3.3) with PPF control (3.4) is scaled using the 

perturbation parameter   as follows 

 2 3 5 2 2

1 1 2 1

2

cos( )cos( )

cos( )sin( ) ,

su u u u u uu u u f t

uf t v

      

  

          

  
       

22 c cv v v u      .              

Applying the multiple scales method, we obtain first order approximate solutions 

for equation (3.3) and (3.4) by seeking the solutions in the form 

0 1 0 0 1 1 0 1

0 1 0 0 1 1 0 1

( , ) ( , ) ( , ),

( , ) ( , ) ( , ),

u T T u T T u T T

v T T v T T v T T





 

 
                                                                                    (3.7) 

where   is a small dimensionless book keeping perturbation parameter, 0T t and

1 0T T t   are the fast and slow time scales, respectively. The time derivatives 

transform are recast in terms of the new time scales as 

0 1

2
2

0 0 12

,

2 ,

d
D D

dt

d
D D D

dt





 

 

                                                                                                        (3.8) 

where  
0

0

D
T





   ,   
1

1

D
T





 .                                                                                  (3.9) 
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Substituting  u and time derivatives from equations (3.7) and (3.8), we get 

0 1

2

0 0 0 1 1 0 1 1

2 2 2

0 0 0 1 0 1 0 0 1 12 2 ,

u u u

u D u D u D u D u

u D u D u D D u D D u



  

  

 

    

    

                                                              (3.10) 

and 

0 1

2

0 0 0 1 1 0 1 1

2 2 2

0 0 0 1 0 1 0 0 1 12 2 .

v v v

v D v D v D v D v

v D v D v D D v D D v



  

  

 

    

    

                                                               (3.11) 

Substituting equations (3.10) and (3.11) into equations (3.3) and (3.4) we get, 

2 2 2 2

0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1

2 3 5

0 1 1 0 1 2 0 1

2 2

0 1 0 0 0 1 1 0 1 1

2 2 2 2

0 1 0 0 0 1 0 1 0 0 1 0

1

2 2 ( )

( ) ( ) ( )

( )( )

( ) ( 2 2

cos( )cos( ) (

s

D u D u D D u D D u D u D u D u D u

u u u u u u

u u D u D u D u D u

u u D u D u D D u D D u

f t u

      

     

    

    

  

      

     

    

    

   0 1 2 0 1) cos( )sin( ) ( ),u f t v v      

            (3.12) 

and 

2 2 2 2

0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1

2

0 1 0 1

2 2 2 ( )

( ) ( ).

c

c

D v D v D D v D D v D v D v D v D v

v v u u

      

   

      

   
          (3.13) 

Eliminating terms containing the power of 2   , equation (3.12) and (3.13) become  

2 2 2 2 3 5 2 3

0 0 0 1 0 1 0 1 0 0 0 1 1 0 2 0 0 0

1 0 2 0

2 2

cos( )cos( ) cos( )sin( ) 0,

s sD u D u D D u D u u u u u D u

f t u f t v

       

    

       

     
          (3.14) 

and 

2 2 2 2

0 0 0 1 0 1 0 0 0 0 1 02 2 0.c c cD v D v D D v D v v v u                                           (3.15) 

Equating the coefficient of same powers of   in equation (3.14) and (3.15), gives 

0( ) :O   

 2 2

0 0 0sD u  ,                                       (3.16) 



  61 
 

and 

 2 2

0 0 0cD v  .                      (3.17) 

1( ) :O   

 2 2 3 5 2 3

0 1 0 1 0 1 0 0 1 0 2 0 0 0 1

0 2 0

2 2 cos( )cos( )

cos( )sin( ) ,

sD u D D u D u u u D u f t

u f t v

     

 

        

  
          (3.18) 

and 

 2 2

0 1 0 1 0 0 0 02 2c cD v D D v D v u       .                    (3.19) 

The general solution of  equation (3.16) and (3.17) is given by  

0 0

0 0 1 1 1( , ) ( ) ( )s si T i T
u T T A T e A T e

 
  ,                                             (3.20) 

and 

0 0

0 0 1 1 1( , ) ( ) ( )c ci T i T
v T T B T e B T e

 
  .                (3.21) 

Where the quantities 1( )A T  and 1( )B T  are unknown function in 1T  at this stage of the 

analysis. 

Substituting equation (3.20) and (3.21) into equation (3.18) and (3.19), we get 

     

     

   

0 0 0 0

0 0 0 0 0 0

0 0 0 0

2 2

0 1 0 1 1 0

3 5 3
2

1 2 0

1 2

2

2

cos( )cos( ) cos( )sin( ) ,

s s s s

s s s s s s

s s c c

i T i T i T i T

s

i T i T i T i T i T i T

i T i T i T i T

D u D D Ae Ae D Ae Ae

Ae Ae Ae Ae D Ae Ae

f t Ae Ae f t Be Be

   

     

   

 

  

  

 

  

 

     

     

      

              (3.22) 

and 

     

 

0 0 0 0

0 0

2 2

0 1 0 1 02 2

.

c c c c

s s

i T i T i T i T

c c

i T i T

D v D D Be Be D Be Be

Ae Ae

   

 

 



 



     

 
                        (3.23)     

Expanding and simplifying equation (3.22) and (3.23), we get 
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  0 0 0 0

0 0 0 0 0

0 0 0 0

0

2 2

0 1 0 1 0 1 1 0 1 0

3 3 53 2 2 3 5

1 1 1 1 2

3 34 3 2 2 3 4

2 2 2 2

55

2

2 2

3 3

5 10 10 5

s s s s

s s s s s

s s s s

s

i T i T i T i T

s

i T i T i T i T i T

i T i T i T i T

i T

D u D D Ae D D Ae D Ae D Ae

A e A Ae AA e A e A e

A Ae A A e A A e AA e

A e

   

    

   



  

    

   



 

 

 



     

    

   

  0 0 0

0 0

0 0 0

32 3 2 2 2 2

0 0 0

32 3

0 1 2

2

2 6 6

2 cos( )cos( ) cos( )sin( )

cos( )sin( ) ,

s s s

s s

s c c

i T i T i T

i T i T

i T i T i T

D A e D A Ae D AA e

D A e f t f Ae t

f Ae t Be Be

  

 

  

  

  

  





 

 

    

   

                  (3.24) 

and 

  0 0 0

0 0 0

2 2

0 1 0 1 0 1 0

0

2 2 2

2 .

c c c

c s s

i T i T i T

c c

i T i T i T

c

D v D D Be D D Be D Be

D Be Ae Ae

  

  

 

  



 

    

  
                                     (3.25) 

Substituting  equations (3.9) and Using the form  
0 0

0cos( )
2

i T i T
e e

T
 





   ,    

0 0

0sin( )
2

i T i T
e e

T
i

 





   into equation (3.24) and (3.25), to get 

  0 0 0 0

0 0 0 0 0

0 0 0 0

2 2

0 1 1 1

3 3 53 2 2 3 5

1 1 1 1 2

3 3 54 3 2 2 3 4 5

2 2 2 2 2

2 2

3 3

5 10 10 5

s s s s

s s s s s

s s s s s

i T i T i T i T

s s s s s

i T i T i T i T i T

i T i T i T i T i T

D u i A e i A e i Ae i Ae

A e A Ae AA e A e A e

A Ae A A e A A e AA e A e

   

    

    

      

    

    

 

 

  

      

    

    

 

     

   

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

3 32 3 2 2 2 2 2 3

1

1 2 2

2 2

1
18 6 6 18 cos

2

1 1 1
cos sin sin

2 2 2

1 1
sin sin ,

2 2

s s s

c c

i T i T i T i T i T

s s s s

i T i T i T i T i T

i T i T i T i T i T i T

A e A Ae AA e A e f e

f e f Ae f Ae

f Ae f Ae Be Be

   

 

   

        

  

   

  

     

      

    

  

   

        (3.26) 

and 

  0 0 0

0 0 0

2 2 2

0 1

2

0

2 2 2

2 .

c c c

c s s

i T i T i T

c c c c

i T i T i T

c

D v i B e i B e i Be

i D Be Ae Ae

  

  

   

  



 

     

  
              (3.27) 

Simplifying equation (3.26) and (3.27) we get 
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0

0 0 0

0 0 0

2 2 2 3 2 2 2

0 1 1 1 2

3 53 4 2 3 5

1 2 2 1

2 2

2 3 10 6

1
5 18 cos

2

1 1
sin sin ,

2 2

s

s s

c

i T

s s s s

i T i T i T

s

i T i T i T

D u i A i A A A A A A A e

A A A A e A e f e

f Ae f Ae Be cc



 

  

       

     

  



 

      

     

   

                     (3.28) 

and 

    0 02 2 2

0 1 2 2 .c si T i T

c c cD v i B i B e Ae cc
                                                    (3.29) 

where cc  denotes the complex conjugate terms. 

The particular solution of equation (3.28) and (3.29) can be written in the following form 

   

  
 

 
   

 
   

  

0 0 0

00

0 0

3 53 4 2 3 5

1 0 1 1 1 1 2 22 2

1 2

2

1 1
( , ) 5 18

8 24

1 1
cos sin

2 2 2

1 1
sin ,

2 2

s s

c

i T i T i T

s

s s

i Ti T

i T i T

c s c s

u T T A T e A A A A e A e

f e f Ae

f Ae Be cc

  



 

    
 

 
  

 
    





     

 
   

  
    

    (3.30) 

and 

  
0 0

1 0 1 1 1

1
( , ) ( ) c si T i T

s c s c

v T T B T e Ae cc
 

   
  

  
.       (3.31) 

From the equation (3.28) and (3.29)  the reported resonance cases at this approximation 

order is simultaneous resonance s   and  s c   

 

3.3 Stability analysis  

3.3.1  Simultaneous primary resonance s   and  s c   

In this case we introduce a detuning parameters 1  and 2 such that  

      1s          ,      2c s    .                                                                      (3.32) 

Substituting equation (3.32) into equation (3.28) and (3.29), eliminating the terms that 

produce secular term and performing some algebraic manipulations, we obtain 
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 1 1 2 12 3 2 2 2

1 1 2 1

1
2 3 10 6 cos 0,

2

i T i T

s s si A i A A A A A A A f e Be
                    (3.33) 

and 

2 122 2 0.
i T

c ci B i B Ae
                (3.34) 

Now we use polar forms  

1

1

1

2

i
A a e


    ,    2

2

1

2

i
B a e


  ,                      (3.35) 

where 1 2 1 2, , ,a a    are functions in 1T . 

Substituting ,A B from equation (3.35) into equation (3.33) and (3.34), we get  

 

1 1 1 1 1

1 1 1 2 2 1

3 5

1 1 1 1 1 1 1 2 1

2 3

1 1 2

1 3 5

2 8 16

3 1 1
cos 0,

4 2 2

i i i i i

s s s

i i T i i T

s

a e i a e i a e a e a e

a e f e a e

    

   

      

    

    

   

      (3.36) 

and 

2 2 2 1 2 12

2 2 2 2 1

1
0

2

i i i i i T

c c ca e i a e i a e a e
              .       (3.37) 

Dividing equation (3.36) by 1i

se
 and dividing equation (3.37) by 2i

ce
 , we obtain 

 1 1 1 1 2 2 1

3 5 3

1 1 1 1 1 1 1 2 1 1

1 2

1 3 5 3

2 8 16 4

1 1
cos 0,

2 2

s

s s

i i T i i i T

s s

a ia ia a a a

f e a e
    

     
 

 
 

    

     

  

        (3.38) 

and 

2 1 2 1

2 2 2 2 1

1
0.

2

i i i T

c

c

a ia i a a e
    



               (3.39) 

Using the form cos sinixe x i x   ,we get 
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3 5 3

1 1 1 1 1 1 1 2 1 1

1 1 1 1 1 1 1 1

2 1 2 2 1 2 1 2 2 1

1 3 5 3

2 8 16 4

1 1
cos cos sin cos

2 2

1 1
cos( ) sin( ) 0,

2 2

s

s s

s s

s s

a ia ia a a a

f T if T

a T i a T

     
 

     
 

       
 

     

     

        

     (3.40) 

and 

   2 2 2 2 1 2 1 2 1 1 2 1 2 1

1 1
cos sin 0

2 2
c

c c

a ia i a a T i a T         
 

            .       (3.41) 

Separating imaginary and real parts of equations (3.40) and (3.41), we get 

   1 1 1 1 1 1 1 2 1 2 2 1

1 1
2 sin cos sin( )

s s

a a f T a T       
 

          ,      (3.42) 

   3 5 3

1 1 1 1 2 1 1 1 1 1 1

2 1 2 2 1

3 5 3 1
2 cos cos

4 8 2

1
cos( ) 0,

s

s s s

s

a a a a f T

a T

       
  

   


     

    

    (3.43) 

 2 2 1 1 2 2 1

1
sin ,

2
c

c

a a a T    


               (3.44) 

and 

 2 2 1 1 2 2 1

1
cos 0.

2 c

a a T    


               (3.45) 

Letting 
1 1

1

s

f


  ,
2 2

1

s

a


  ,
3 1

1

2 c

a


  ,  1 1 1 1T      and  2 1 2 2 1T      

. 

Then, equations (3.42) - (3.45) become 

     1 1 1 1 1 2 22 sin cos sina a        ,                   (3.46) 

     3 5 3

1 1 1 1 1 1 2 1 1 1 1 2 2

3 5 3
2 2 cos cos cos

4 8 2
s

s s

a a a a a        
 

       ,       (3.47) 
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2 2 3 2sinca a     ,          (3.48) 

and 

2 1 2 2 1 2 3 2( ) ( ) cosa a         .          (3.49) 

The steady state solutions correspond to constant 1 2 1 2, , ,a a   that is 1 2 1 2 0a a          

     1 1 1 1 2 2sin cos sina      ,        (3.50) 

     3 5 3

1 1 1 1 2 1 1 1 1 2 2

3 5 3
2 cos cos cos

4 8 2
s

s s

a a a a       
 

       ,               (3.51) 

2 3 2sinca   ,           (3.52) 

and 

2 1 2 3 2( ) cosa       .          (3.53) 

Squaring both sides of equations (3.50), (3.51) and adding, to gives  

      

      

2

22 3 5 3

1 1 1 1 1 1 2 1 1 1 1 2 2

2

1 1 2 2

3 5 3
( ) 2 sin cos sin

4 8 2

cos cos cos ,

s

s s

a a a a a        
 

  

 
        
 

  

     (3.54) 

and squaring both sides of equations (3.52), (3.53) and adding, to gives 

       
2 2 2 2

2 2 1 2 3 2 3 2( ) sin cosca a            .      (3.55) 

Simplifying (3.54) and (3.55), we get 

   
2

2 3 5 3 2 2 2

1 1 1 1 1 1 2 1 1 1 2 1 2

3 5 3
( ) 2 cos 2 cos

4 8 2
s

s s

a a a a a       
 

 
           
 

,    (3.56) 

and 

   
2 2 2

2 2 1 2 3( )ca a       .          (3.57) 

Equation (3.56) and (3.57) are called frequency response equations 
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(a) Trivial solution :  

To determine the stability of the trivial solutions, we investigate the solutions of 

the linearized form equations (3.33) and (3.34) 

2 1

12 0
i T

s si A i A Be
       ,                                               (3.58) 

and 

2 122 2 0
i T

c ci B i B Ae
       .         (3.59) 

A  and B  are expressed in cartesian form as 

  1 1

1 2

1

2

i T
A p ip e


   and    2 1

3 4

1

2

i T
B p ip e


  , 

where 1 2 3 4, , ,p p p p  are real. 

Substituting in equations (3.58) and (3.59), we get 

     

 

1 1 1 1 1 1

2 1 2 1

1 2 1 1 2 1 1 2

3 4

1 1 1
2

2 2 2

1
0,

2

i T i T i T

s s

i T i T

i p ip e i p ip e i p ip e

p ip e

  

 

   

 

 
       

 

  

               (3.60) 

and 

     

 

2 1 2 1 2 1

1 1 2 1

2

3 4 2 3 4 3 4

1 2

1 1
2

2 2

1
0.

2

i T i T i T

c c

i T i T

i p ip e i p ip e i p ip e

p ip e

  

 

  

 

 
       

 

  

        (3.61) 

Dividing both sides of equation (3.60) by 1 1i T

se
 and both sides of equation (3.61) by 

2 1i T

ce
 and using the form cos sinixe x i x  , to get 
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1 2 1 1 1 2 1 1 2 1 3 1 1 2 1 2 1

3 1 1 2 1 2 1 4 1 1 2 1 2 1

4 1 1 2 1 2 1

1 1 1
cos

2 2 2

1 1
sin cos

2 2

1
sin 0,

2

s

s s

s

ip p p i p ip p p T T T

i p T T T i p T T T

p T T T

       


       
 

   


          

       

    

    (3.62) 

and 

 

   

 

3 4 2 3 2 4 3 4 1 2 1 1 1 2 1

2 2 1 1 1 2 1 1 2 1 1 1 2 1

2 2 1 1 1 2 1

1
cos

2

1 1
cos sin

2 2

1
sin 0.

2

c c

c

c c

c

ip p p i p i p p p T T T

i p T T T i p T T T

p T T T

         


       
 

   


          

       

    

   (3.63) 

Separating real and imaginary parts in equations (3.62) and (3.63), we get 

 

 

1 1 2 1 1 3 1 1 2 1 2 1

4 1 1 2 1 2 1

1 1
sin

2 2

1
cos 0,

2

s

s

p p p p T T T

p T T T

     


   


      

    

          (3.64) 

 

 

2 1 1 2 1 3 1 1 2 1 2 1

4 1 1 2 1 2 1

1 1
cos

2 2

1
sin 0,

2

s

s

p p p p T T T

p T T T

     


   


      

    

       (3.65) 

 

 

3 2 4 3 2 2 1 1 1 2 1

1 2 1 1 1 2 1

1
cos

2

1
sin 0,

2

c

c

c

p p p p T T T

p T T T

      


   


      

    

        (3.66) 

and 

 

 

4 2 3 4 1 2 1 1 1 2 1

2 2 1 1 1 2 1

1
cos

2

1
sin 0.

2

c

c

c

p p p p T T T

p T T T

      


   


      

    

       (3.67) 
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Setting   1 1 1 2 1 2 1T T T        ,  2 1 1 2 1 2 1T T T       and rearranging the above 

equations, we get 

 1 1 1 1 2 1 3 1 4

1 1 1
sin cos

2 2 2s s

p p p p p     
 

    
           

     
,                (3.68) 

 2 1 1 1 2 1 3 1 4

1 1 1
cos sin

2 2 2s s

p p p p p     
 

    
         

     
,       (3.69) 

   3 2 1 2 2 3 2 4

1 1
sin cos

2 2
c

c c

p p p p p      
 

   
          

   
,                (3.70) 

and 

   4 2 1 2 2 2 3 4

1 1
cos sin

2 2
c

c c

p p p p p      
 

   
        

   
.     (3.71) 

Setting 
11 1

1

2
J    , 12 1J    , 

13 1

1
sin

2 s

J  


  , 
14 1

1
cos

2 s

J  


   , 

31 2

1
sin

2 c

J  


  , 
32 2

1
cos

2 c

J  


   , 33 cJ     and 34 2J   . 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations  (3.68) - (3.71) 

11 12 13 14

12 11 14 13

31 32 33 34

32 31 34 33

0

J J J J

J J J J

J J J J

J J J J











  




  

, 

4 3 2

1 2 3 4 0            ,                                                (3.72) 

where  

1 11 332 2J J    , 

2 2 2 2

2 11 11 33 31 13 33 34 124 2J J J J J J J J       , 
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2

3 11 33 11 31 13 32 34 13 31 13 33 12 32 13

2 2 2

12 33 34 11 33 11

2 2 2 2 2

2 2 2

J J J J J J J J J J J J J J

J J J J J J

      

  
, 

and 

4 11 32 34 13 11 31 14 34 11 31 13 33 12 32 13 33 12 31 34 13

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

31 11 14 33 11 33 11 34 12 33 12 34 31 13 31 14 32 13 32 14

2 2 2 2J J J J J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J J J J J

      

        
, 

The trivial solution is stable if 1 0  , 1 2 3 0   ,   2

3 1 2 3 1 4 0       , 4 0  . 

 

(a) Non-trivial solution: 

 

To determine the stability of the non-trivial solutions 

 We let 1 0 1 1( )a b b T   , 2 0 1 1( )a c c T   and 0 1 1( )T     ,  0 1 1( )T     ,        (3.73) 

where 0 0 0 0, , ,b c    correspond to a non-trivial solution, while 1 1 1 1, , ,b c    are 

perturbation terms which are assumed to be small compared to 0 0 0 0, , ,b c    

Substituting equation (3.73) into equations (3.46) , (3.47) and (3.48) , (3.49) , where

1   , 2   , using estimate 1 1sin  , 1cos 1  , 1 1sin  , and 1cos 1   

           0 1 1 0 1 1 0 1 0 1 0 1

1 1
2 sin cos sin

s s

b b b b f c c      
 

           ,   (3.74)  

        

         

3 5

0 1 0 1 1 0 1 1 0 1 2 0 1

3

0 1 1 0 1 0 1 0 1

3 5
2 2

4 8

3 1 1
cos cos cos ,

2

s s

s

s s

b b b b b b b b

b b f c c

    
 

       
 

        

      

                 (3.75) 

       0 1 0 1 0 1 0 1

1
sin

2
c

c

c c c c b b   


        ,      (3.76)  

and 

            0 1 0 1 0 1 0 1 1 2 0 1 0 1

1
( ) cos

2 c

c c c c b b        


             .     (3.77) 
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Simplifying equations  (3.74) - (3.77), we get 

   

   

0 1 1 0 1 1 1 0 1 0

0 0 1 0 1 0 1 0

1
2 2 sin cos cos

1 1
sin cos sin cos ,

s

s s

b b b b f

c c

     


       
 

      

   

         (3.78) 

 

       

   

3 2

0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1

5 4 3 2

2 0 0 1 0 0 1 1 0 1 0

0 0 1 0 1 0 1 0

3
2 2 2 2 2 2 3 ...

4

5 3 1
5 ... 3 ... cos sin cos

8 2

1 1
cos sin cos sin ,

s

s

s s

s s

b b b b b b b b b

b b b b b b f

c c

      


      
 

       
 

          

       

   

        (3.79) 

   0 1 0 1 0 0 1 0 1 0 1 0

1 1
sin cos sin cos

2 2
c c

c c

c c c c b b         
 

         ,       (3.80) 

and 

   

   

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 2 1 1 2

0 0 1 0 1 0 1 0

1 1
cos sin cos sin .

2 2c c

c c c c c c c c c c

b b

           

       
 

                 

   
   (3.81) 

Since 0 0 0 0, , ,b c    are solution of equation (3.46), (3.47) and (3.48), (3.49) then 

 1 1 1 1 1 0 0 1 0 1 0 1 1 0

1 1 1 1
2 cos cos cos sin cos

s s s s

b b f c c c           
   

       , (3.82) 

 

2 4 2

1 0 0 1 1 1 1 1 1 0 1 2 0 1 0 1

1 1 0 0 1 0 1 0 1 1 0

9 25 9
2 2 2 2

4 8 2

1 1 1 1
sin cos sin cos sin ,

s

s s

s s s s

b b b b b b b b b b

f c c c

       
 

          
   

       

   

    (3.83) 

1 1 0 1 0 1 0 1 1 0

1 1 1
cos sin cos

2 2 2
c

c c c

c c b b b        
  

      ,     (3.84) 

and 
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 0 1 1 0 1 1 0 1 1 0 1 1 1 1 2 0 1 0

1 0 1 1 0

1
sin

2

1 1
cos sin .

2 2

c

c c

c c c c c c c b

b b

          


    
 

            

 

    (3.85) 

Now since 1 1b  and 1 1c  are a very small term and 0 1 0       , 0 1 0       then 

they can be eliminated, 

 1 1 1 1 1 0 0 1 0 1 0

1 1 1
2 cos cos cos sin

s s s

b b f c c        
  

      ,    (3.86) 

 

2 4 2

0 1 1 1 1 0 1 2 0 1 0 1

1 1 0 0 1 0 1 0

9 25 9
2 2

4 8 2

1 1 1
sin cos sin cos ,

s

s s

s s s

b b b b b b b b

f c c

     
 

       
  

    

  

                 (3.87) 

1 1 0 1 0 1 0

1 1
cos sin ,

2 2
c

c c

c c b b     
 

            (3.88) 

and 

 0 1 0 1 1 1 2 0 1 0 1 0

1 1
sin cos

2 2c c

c c c b b        
 

      .                 (3.89) 

Rearranging equations (3.86) - (3.89), to gives 

 1 1 1 1 0 1 0 1 0 0 1

1 1 1 1
cos cos sin cos

2 2 2 2s s s

b b f c c        
  

      
           

       
,   (3.90) 

 

31
1 1 0 2 0 0 1

0

1 0 1 0 1 0 0 1

0 0 0

9 25 9

8 16 4

1 1 1
sin cos cos sin ,

2 2 2

s

s s

s s s

b b b b
b

f c c
b b b


    

 

       
  

 
     

 

     
         
     

   (3.91) 

 1 0 1 1 0 0 1

1 1
sin cos

2 2
c

c c

c b c b     
 

   
       

   
,                 (3.92) 

and 
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31
1 1 0 2 0 0 0 1

0 0 0 0

1 0 1 1 2 0 1

0 0 0

0 0 0 0 1

0 0

9 25 9 1
cos

8 16 4 2

1 1 1
sin cos cos

2 2

1 1
sin sin .

2 2

s

s s c

s s

s c

b b b b
b b b c

f c
b c b

c b
b c


      

  

      
 

    
 

 
       

 

   
       
   

 
  
 

       (3.93) 

Letting 
11 1

1

2
J    ,  12 1 0

1
cos cos

2 s

J f  


 , 
13 0

1
sin

2 s

J  


 , 
14 0 0

1
cos

2 s

J c 


 , 

31
21 1 0 2 0 0

0

9 25 9

8 16 4
s

s s

J b b b
b


   

 
    ,   22 1 0

0

1
sin cos

2 s

J f
b

 


  , 

23 0

0

1
cos

2 s

J
b
 


 ,  

24 0 0

0

1
sin

2 s

J c
b
 


  ,  

31 0

1
sin

2 c

J  


 ,  33 cJ   , 

 
34 0 0

1
cos

2 c

J b 


 , 31
41 1 0 2 0 0 0

0 0 0 0

9 25 9 1
cos

8 16 4 2
s

s s c

J b b b
b b b c


     

  
      , 

 43 1 2 0

0 0

1 1
cos

2 s

J
c b

   


     and 
44 0 0 0 0

0 0

1 1
sin sin

2 2s c

J c b
b c
   

 
  . 

The stability of the non-trivial solution is investigated by evaluating the eigenvalues of 

the Jacobian matrix of equations  (3.90) - (3.93) 

11 12 13 14

21 22 23 24

31 33 34

41 22 43 44

0
0

J J J J

J J J J

J J J

J J J J
















 

, 

4 3 2

1 2 3 4 0             .                                               (3.94) 

The non-trivial solution is stable if 1 0  , 1 2 3 0   ,   2

3 1 2 3 1 4 0       , 4 0  . 

 

3.4 Perturbation analysis for the main system with indirect (NS) controls 

The nonlinear differential equation (3.5) with NS control (3.6) is scaled using the 

perturbation parameter   as follows 
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 2 3 5 2 2

1 1 2 1

2

2

cos( )cos( )

cos( )sin( ) ,

su u u u u uu u u f t

uf t v

      

  

          

  
       

22 c cv v v uv      .             

Applying the multiple scales method,  

Similarly as in equations (3.7) - (3.13) , we have 

2 2 2 2 3 5 2 3

0 0 0 1 0 1 0 1 0 0 0 1 1 0 2 0 0 0

2

1 0 2 0

2 2

cos( )cos( ) cos( )sin( ) 0,

s sD u D u D D u D u u u u u D u

f t u f t v

       

    

       

     
          (3.95) 

and 

2 2 2 2

0 0 0 1 0 1 0 0 0 0 1 0 02 2 0c c cD v D v D D v D v v v u v            .                            (3.96) 

Equating the coefficient of same powers of   in equation (3.95) and (3.96), gives 

0( ) :O   

 2 2

0 0 0sD u  ,                                      (3.97) 

and 

 2 2

0 0 0cD v  .                      (3.98) 

1( ) :O   

 2 2 3 5 2 3

0 1 0 1 0 1 0 0 1 0 2 0 0 0 1

2

0 2 0

2 2 cos( )cos( )

cos( )sin( ) ,

sD u D D u D u u u D u f t

u f t v

     

 

        

  
          (3.99) 

and 

 2 2

0 1 0 1 0 0 0 0 02 2c cD v D D v D v u v       .                 (3.100) 

The general solution of  equation (4.14) and (4.15) is given by  

0 0

0 1 1( ) ( )s si T i T
u A T e A T e

 
  ,                    (3.101) 

and 

0 0

0 1 1( ) ( )c ci T i T
v B T e B T e

 
  .           (3.102) 
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where the quantities 1( )A T  and 1( )B T  are unknown function in 1T  

Now to solve equation (3.99) and (3.100)  substituting equations (3.101) and (3.102) into 

it, then Substituting equation (3.9) and Using the form  
0 0

0cos( )
2

i T i T
e e

T
 





   ,    

0 0

0sin( )
2

i T i T
e e

T
i

 





 , similarly as equations (3.22) – (3.27), we have 

   

   

       

0

0 0 0

0 0 0

2 2 2 3 2 2 2

0 1 1 1 2

3 53 4 2 3 5

1 2 2 1

22

2 2

2 3 10 6

1
5 18 cos

2

1 1
sin sin ,

2 2

s

s s

c

i T

s s s s

i T i T i T

s

i T i T i T

D u i A i A A A A A A A e

A A A A e A e f e

f Ae f Ae B e BB cc



 

  

       

     

   



 

      

     

    

                    (3.103) 

and 

    0 0 0( ) ( )2 2 2

0 1 2 2 c s c c si T i T i T

c c cD v i B i B e BAe ABe cc
                .          (3.104) 

where cc  denotes the complex conjugate terms. 

The particular solution of equation (3.103) and (3.104) can be written in the following 

form 

 

  
 

 
   

 
   

  

0 0 0

00

0 0

3 53 4 2 3 5

1 0 1 1 1 2 22 2

1 2

22

2

1 1
( , ) 5 18

8 24

1 1
cos sin

2 2 2

1 1
sin ,

2 2 2 2

s s s

c

i T i T i T

s

s s

i Ti T

i T i T

c s c s

u T T A e A A A A e A e

f e f Ae

f Ae B e BB cc

  



 

    
 

 
  

  
    





     

 
   

   
    

          (3.105) 

and 

   
0 0 0( ) ( )

1 0 1 1

1 1
( , ) .

2 2
c s c c si T i T i T

s s c s s c

v T T B e BAe ABe cc
     

     

 
   

 
   (3.106) 

From the equation (3.105) and (3.106) the reported resonance cases at this approximation 

order are 

(a) simultaneous resonance s   and  
1

2
c s   
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(b) simultaneous resonance 2 s   and  
1

2
c s   

3.5 Stability analysis  

3.5.1  simultaneous resonance s   and  
1

2
c s   

In this case we introduce a detuning parameter 
1  and 2 such that  

      1s          ,      
2

1

2
c s     .                                                                (3.107) 

Substituting equation (3.107) into equation (3.103) and (3.104), eliminating the terms that 

produce secular term and performing some algebraic manipulations, we obtain 

 1 1

2 1

2 3 2 2 2

1 1 2 1

22

1
2 3 10 6 cos

2

0,

i T

s s s

i T

i A i A A A A A A A f e

B e





       



     

 

             (3.108) 

and 

  2 1222 2 0i T

c ci B i B ABe        .      (3.109) 

Substituting 1

1

1

2

i
A a e


 , 2

2

1

2

i
B a e


 , similarly in equations (3.36) – (3.41) , we obtain 

the following equations describing the modulation of amplitude and phase of the motions 

     2

1 1 1 1 1 1 1 2 1 2 2 1

1 1
2 sin cos sin 2 2 ,

2s s

a a f T a T       
 

                     (3.110) 

   

 

3 5 3

1 1 1 1 2 1 1 1 1 1 1

2

2 1 2 2 1

3 5 3 1
2 cos cos

4 8 2

1
cos 2 0.

2

s

s s s

s

a a a a f T

a T

       
  

   


     

    

       (3.111) 

 2 2 1 2 1 2 2 1

1
sin 2 2

4
c

c

a a a a T    


       ,      (3.112) 

and 
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 2 2 1 2 1 2 2 1

1
cos 2 2 0

4 c

a a a T    


      .        (3.113) 

Letting
1 1

1

s

f


  , 2

2 2

1

2 s

a


  ,
3 1 2

1

4 c

a a


  ,  1 1 1 1T     and 2 1 2 2 1( 2 2 )T        

Then, equations (3.110) - (3.113) becomes 

     1 1 1 1 1 2 22 sin cos sina a         ,                (3.114) 

     3 5 3

1 1 1 1 1 1 2 1 1 1 1 2 2

3 5 3
2 2 cos cos cos

4 8 2
s

s s

a a a a a        
 

        ,    (3.115) 

 2 2 3 2sinca a     ,        (3.116) 

and 

 2 1 2 2 1 2 3 2

1 1
( ) ( 2 ) cos

2 2
a a         .        (3.117) 

The steady state solutions correspond to constant 1 2 1 2, , ,a a   that is 1 2 1 2 0a a          

     1 1 1 1 2 2sin cos sina      ,                 (3.118) 

     3 5 3

1 1 1 1 2 1 1 1 1 2 2

3 5 3
2 cos cos cos

4 8 2
s

s s

a a a a       
 

       ,              (3.119) 

 2 3 2sinca   ,         (3.120) 

and 

 2 1 2 3 2

1
( 2 ) cos

2
a        .      (3.121) 

From equations (3.118) - (3.121), we have 

   
2

2 3 5 3 2 2 2

1 1 1 1 1 1 2 1 1 1 2 1 2

3 5 3
( ) 2 cos 2 cos

4 8 2
s

s s

a a a a a       
 

 
           
 

,  (3.122) 

 
2

2 2

2 2 1 2 3

1
( 2 )

2
ca a  

 
    
 

.        (3.123) 
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Equation (3.122) and (3.123) are called frequency response equations. 

(a) Trivial solution :  

To determine the stability of the trivial solutions, we investigate the solutions of 

the linearized form equation (3.108) and (3.109) 

12 0s si A i A     ,         (3.124) 

and 

22 2 0c ci B i B    .        (3.125) 

We expressed A  and B  in Cartesian form  

  1 1

1 2

1

2

i T
A p ip e


       2 1

3 4

1

2

i T
B p ip e


  , 

where 1 2 3 4, , ,p p p p  are real 

     1 1 1 1 1 1

1 2 1 1 2 1 1 2

1 1 1
2 0

2 2 2

i T i T i T

s si p ip e i p ip e i p ip e
     

 
        

 
,             (3.126) 

and 

     2 1 2 1 2 12

3 4 2 3 4 3 4

1 1
2 0

2 2

i T i T i T

c ci p ip e i p ip e i p ip e
    

 
        

 
.      (3.127) 

Dividing both sides of equation (3.126) by 1 1i T

se
 and both of sides of equation (3.127) 

by 2 1i T

ce
   

1 2 1 1 1 2 1 1 2 1

1 1
0

2 2
ip p p i p ip p           ,      (3.128) 

and 

3 4 2 3 2 4 3 4 0c cip p p i p i p p              .       (3.129) 

Separating real and imaginary parts in equation (3.128) and (3.129) to get 



  79 
 

 1 1 1 1 2

1

2
p p p 

 
     

 
,              (3.130) 

 2 1 1 1 2

1

2
p p p 

 
    

 
,          (3.131) 

   3 3 2 4cp p p       ,            (3.132) 

and  

   4 2 3 4cp p p      .           (3.133) 

Sitting 
11 1

1

2
J    , 12 1J     , 33 cJ     , 34 2J   . 

The stability of the trivial solution is investigated by evaluating the eigenvalues of the 

Jacobian matrix of equations  (3.130) - (3.133) 

11 12

12 11

33 34

34 33

0 0

0 0
0

0 0

0 0

J J

J J

J J

J J











 




 

, 

4 3 2

1 2 3 4 0            .                                              (3.134) 

The trivial solution is stable if 1 0  , 1 2 3 0   ,   2

3 1 2 3 1 4 0       , 4 0  . 

 

(a) Non-trivial solution: 

 

To determine the stability of the non-trivial solutions 

 We let 1 0 1 1( )a b b T   , 2 0 1 1( )a c c T   and 0 1 1( )T     ,  0 1 1( )T     .      (3.135) 

Substituting equation (3.135) into equations (3.114) - (3.117) similarly as in above, we 

have 
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0 1 1 0 1 1 1 0 1 0

2

0 0 1 0 0 1 0 1 0

1
2 2 sin cos cos

1 1
sin cos sin cos ,

2 2

s

s s

b b b b f

c c c

     


       
 

      

   

               (3.136) 

 

       

   

3 2

0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1

5 4 3 2

2 0 0 1 0 0 1 1 0 1 0

2

0 0 1 0 0 1 0 1 0

3
2 2 2 2 2 2 3 ...

4

5 3 1
5 ... 3 ... cos sin cos

8 2

1 1
cos sin cos sin ,

2 2

s

s

s s

s s

b b b b b b b b b

b b b b b b f

c c c

      


      
 

       
 

          

       

   

      (3.137) 

   

 

0 1 0 1 0 0 0 1 0 1 0 0 1 0

0 1 0 1 0

1 1
sin cos sin cos

4 4

1
sin cos ,

4

c c

c c

c

c c c c b c b c

b c

         
 

   


        

 

 (3.138) 

and 

     

   

 

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 2 1 1 2

0 0 0 1 0 1 0 0 1 0

0 1 0 1 0

1 1 1

2 2 2

1 1
cos sin cos sin

4 4

1
cos sin .

4

c c

c

c c c c c c c c c c

b c b c

b c

           

       
 

   


                 

   

 

(3.139) 

Since 0 0 0 0, , ,b c    are solutions of equations (3.114) - (3.117), 1 1b , 1 1c  are a very small 

term and 0 1 0       , 0 1 0        then they can be eliminated, we have  

 1 1 1 1 0 1 0 0 1

2

0 0 1

1 1 1
cos cos sin

2 2 4

1
cos ,

4

s s

s

b b f c c

c

     
 

  


    
        

     

 
 
 

         (3.140) 

 31
1 1 0 2 0 0 1 1 0 1

0 0

2

0 0 1 0 0 1

0 0

9 25 9 1
sin cos

8 16 4 2

1 1
cos sin ,

2 4

s

s s s

s s

b b b b f
b b

c c c
b b


       

  

    
 

   
         

   

   
     
   

               (3.141) 
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1 0 0 1 0 0 1 0 0 0 1

1 1 1
sin sin cos

4 4 4
c

c c c

c c b b c b c       
  

     
            

     
 , (3.142) 

and 

   

31
1 1 0 2 0 0 0 1

0

1 0 1 1 2 0 0 0 0 1

0 0 0 0

2

0 0 0 0 1

0

9 25 9 1
cos

8 16 4 2

1 1 1 1
sin cos cos cos

2 2 2

1 1
sin sin .

2 4

s

s s c

s s c

c s

b b b b
b

f c b c
b c b c

b c
b


      

  

        
  

    
 

 
       

 

   
        
   

 
  
 

  (3.143) 

Letting 
11 1

1

2
J   ,  12 1 0

1
cos cos

2 s

J f  


 ,
13 0 0

1
sin

4 s

J c 


 , 2

14 0 0

1
cos

4 s

J c 


 , 

31
21 1 0 2 0 0

0

9 25 9

8 16 4
s

s s

J b b b
b


   

 
    ,   22 1 0

0

1
sin cos

2 s

J f
b

 


  , 

23 0 0

0

1
cos

2 s

J c
b
 


 ,  2

24 0 0

0

1
sin

4 s

J c
b
 


  , 

31 0 0

1
sin

4 c

J c 


  , 

33 0 0

1
sin

4
c

c

J b  


   , 
34 0 0 0

1
cos

4 c

J b c 


  , 

 31
41 1 0 2 0 0 0

0

9 25 9 1
cos

8 16 4 2
s

s s c

J b b b
b


     

  
      , 

 43 1 2 0 0 0 0

0 0 0

1 1 1
cos cos

2 2s c

J c b
c b c

     
 

     , 

2

44 0 0 0 0

0

1 1
sin sin

2 4c s

J b c
b

   
 

  . 

The stability of the non-trivial solution is investigated by evaluating the eigenvalues of 

the Jacobian matrix of equations  (3.140) - (3.143) 

11 12 13 14

21 22 23 24

31 33 34

41 22 43 44

0
0

J J J J

J J J J

J J J

J J J J
















 

, 
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4 3 2

1 2 3 4 0            .                                              (3.144) 

The non-trivial solution is stable if 1 0  , 1 2 3 0   ,   2

3 1 2 3 1 4 0       , 4 0  . 

 

3.5.2  simultaneous resonance 2 s   and  
1

2
c s   

In this case we introduce a detuning parameter 
1  and 2 such that  

      12 s          ,      
2

1

2
c s     .                                                              (3.145) 

Substituting equation (3.145) into equation (3.103) and (3.104), similarly as above 

resonance, we have 

   1 1

2 1

2 3 2 2 2

1 1 2 2

22

1
2 3 10 6 sin

2

0,

i T

s s s

i T

i A i A A A A A A A f Ae

B e





       



     

 

   (3.146) 

and 

  2 1222 2 0i T

c ci B i B ABe        .      (3.147) 

Substituting 1

1

1

2

i
A a e


 , 2

2

1

2

i
B a e


 , similarly in equations (3.36) – (3.41) , we obtain 

the following equations describing the modulation of amplitude and phase of the motions 

     2

1 1 1 2 1 1 1 1 2 1 2 2 1

1 1
2 sin 2 sin sin 2 2

2 2s s

a a f a T a T       
 

          ,    (3.148) 

   

 

3 5 3

1 1 1 1 2 1 1 2 1 1 1 1

2

2 1 2 2 1

3 5 3 1
2 cos 2 sin

4 8 2 2

1
cos 2 2 0,

2

s

s s s

s

a a a a f a T

a T

       
  

   


     

    

  (3.149) 

 2 2 1 2 1 2 2 1

1
sin 2 2

4
c

c

a a a a T    


       ,     (3.150) 

and 
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 2 2 1 2 1 2 2 1

1
cos 2 2 0

4 c

a a a T    


      .      (3.151) 

Letting
1 1 2

1

2 s

a f


  , 2

2 2

1

2 s

a


  ,
3 1 2

1

4 c

a a


  ,  1 1 1 12 T     and  2 1 2 2 12 2 T        

Then, equations (3.148) - (3.151) becomes 

     1 1 1 1 1 2 22 sin sin sina a        ,                 (3.152) 

     3 5 3

1 1 1 1 1 1 2 1 1 1 1 2 2

3 5 3
cos sin cos

4 8 2
s

s s

a a a a a        
 

       ,           (3.153) 

 2 2 3 2sinca a     ,        (3.154) 

and 

 2 1 2 2 1 2 2 3 2

1 1
( 2 ) cos

4 4
a a a         .         (3.155) 

The steady state solutions correspond to constant 1 2 1 2, , ,a a   that is 1 2 1 2 0a a          

     1 1 1 1 2 2sin sin sina                         (3.156) 

     3 5 3

1 1 1 1 2 1 1 1 1 2 2

3 5 3
cos sin cos

4 8 2
s

s s

a a a a       
 

                         (3.157) 

And 

 2 3 2sinca            (3.158) 

 2 2 2 1 3 2

1
cos

4
a a             (3.159) 

From equations (3.156) - (3.159), we have 

   
2

2 3 5 3 2 2 2

1 1 1 1 1 1 2 1 1 1 2 1 2

3 5 3
( ) sin 2 sin

4 8 2
s

s s

a a a a a       
 

 
           
 

, (3.160) 

 
2

2 2

2 2 2 2 1 3

1

4
ca a a  

 
    
 

.         (3.161) 
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Equations (3.160) and (3.161) are called frequency response equations. 

3.6    Numerical Results and Discussions 

The numerical study of the response and the stability of two nonlinear systems, are 

conducted. Each system is represented by two (the plant and the absorber) coupled 

second order nonlinear differential equations. The plant (oriented beam) has quadratic, 

cubic and quintic nonlinearities and is subjected to external and parametric excitations. 

The coupling terms are either produce the positive position absorber or nonlinear sink 

absorber. All possible resonance cases were extracted and effects of different parameters 

and controllers on the plant were discussed and reported.  

 

   

 3.6.1     Time-response solution 

The time response of the nonlinear systems (3.3), (3.4) and (3.5), (3.6) has been 

investigated applying fourth order Runge-Kutta numerical method and the results are 

shown in Figs. (3.1) and (3.2), respectively. The phase plane method is used to give an 

indication about the stability of the system. Figs. (3.1a) and (3.1b) show the non-resonant 

behavior of the main system and the PPF absorber, respectively, with fine limit cycle for 

the plant. Whereas, a chaotic behaviour is illustrated in Figs. (3.1c) and (3.1d) for both 

the plant and the absorber at the simultaneous primary resonance case. The responses of 

the plant and the NS absorber at non-resonance and at two resonance cases are shown in 

Fig.3.2. It is clear that the response of the plant with the NS absorber is much better than 

of PPF absorber. The NS might be more effective in controlling behavior of the main 

system at resonance, which resulted in a slight chaotic response, Fig. (3.2c) or a 

modulated amplitude, (Fig.3.2e).  

 

   3.6.2     Theoretical Frequency Response solution 

The resonant frequency response equations of the main system (3.56, 57), with PPF 

controller, and (3.122,123), with NS controller are solved numerically. The results are 

shown in Figs. (3.3,4) and (3.5,6) which represents the variation of the steady state 

amplitudes a1,2 against the detuning parameter σ1,2, respectively, for different values of 

other parameters. Fig. 3.3 shows the theoretical frequency response curves of the main 

system to simultaneous primary resonance case. It can be noted from Fig. (3.3b,c,d,g) 

that steady state amplitude increases as each of the natural frequency ω, the linear 
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damping coefficient µ1 and the nonlinear coefficients β1 and δ decrease. Figure (3.3f) 

indicates that as the excitation force amplitude f increases, the branches of the response 

curves diverge away and the amplitude increases. The effect of the gain is shown in Fig. 

(3.3h). Fig. 3.4 iluustrates the resonant frequency response curves of the PPF control for 

various parameters. Each figure consists of two curves that either diverge away when the 

gain ρ, and the steady state ampltiude of the plant increase, Fig.(3.4b,f). Or they converge 

to each others as the natural frequency ωc, and the linear damping ζ are decreased as 

shown in Fig.(3.4c,d). The curves in Fig. (3.4e) shifts to the right as the detuning 

parameter σ increases. Fig. 3.5 shows similar effects of the parameters of the system that 

were explained and disussed previously in Figs. (3.3) and (3.4). 

            

(a) Non-resonance time series of the main system 

             

(b) Non-resonance time series of the controller system 

              

(c) Resonant time series of the main system  when s  and s c   
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(d) Resonant time series of the controller system  when s  and s c   

Fig 3.1 Non-resonance and resonant time history solution of the main system and (PPF) 

controller system when: = 2.1s , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f ,

2 0.2f  , 30   , 0.1  , 0.0001  , 10.0  , 6.5c  . 

                   

(a) Non-resonance time series of the main system 

               

(b) Non-resonance time series of the controller system 

               

(c) Resonance time series of the main system when s  and 
1

2
c s   
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(d) Resonance time series of the controller system when s  and 
1

2
c s   

 

                 

(e) Resonance time series of the main system when 2 s  and 
1

2
c s   

 

                  

(f) Resonance time series of the controller system when 2 s  and 
1

2
c s   

 

Fig 3.2 Non-resonance and resonant time history solution of the main system and (NS) 

controller system when: = 2.1s , 1= 15.0 , = 0.03 , 1  = 0.0005 , = 2.7 , 2 = 5.0 , 1= 0.4f ,

2 0.2f  , 30   , 0.1  , 0.0001  , 0.1  , 6.5c  . 
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(a) Basic case                                                 (b) Natural frequency 

                                      

            (c) The damping coefficient                           (d) Nonlinear coefficient 

                                     

            (e) Nonlinear coefficient                                (f) The forcing amplitude 

                                          

       (g) Nonlinear coefficient                                      (h) The gain 

Fig 3.3 Theoretical frequency response curves to simultaneous primary resonance case in 

the main system = 2.7s , 1= 15.0 , = 0.03 , 1  = 0.0005  , 2 = 5.0 , 1= 0.4f , 30  , 0.1  . 

1.7s  

3.7s  

1 0.1 

 

1 5 

 

1 25  

2 15  

2 0.5 

 

1.0  

0.0003  
5.0  

1 0.15f 

 

1 0.7f 
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(a)  Basic case                                                      (b) The gain 

                                      

            (c) The damping cofficient                           (d) Natural frequency 

                                     

            (e) Nonlinear coefficient                  (f) The steady state amplitude 

                                          

Fig 3.4 Theoretical frequency response curves to simultaneous primary resonance case in 

the (PPF) controller system = 2.7c  ,  = 0.0001  , = 0.01 , 1= 0.01a , 10.0  .  
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(a) Basic case                                                      (b) Natural frequency 

                                      

         (c) The damping coefficient                            (d) Nonlinear coefficient 

                                     

            (e) Nonlinear coefficient                               (f) The forcing amplitude 

                                          

       (g) Nonlinear coefficient                          (h) The steady state amplitude 

Fig 3.5 Theoretical frequency response curves to simultaneous resonance case in the 

main system = 2.7s , 1= 15.0 , = 0.03 , 1  = 0.0005  , 2 = 5.0 , 1= 0.4f , 30  , 0.1   
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Chapter 4 

Conclusions 

4.1 Summary 

 

The control and stability of a non-linear differential equation representing the 

non-linear dynamical one-degree-of-freedom inclined beam are studied. The inclined 

beam has cubic and quintic nonlinearities subjected to external and parametric excitation 

forces. Various active and passive control techniques have been applied. The 

investigation includes the solutions applying both Runge-Kutta numerical method and the  

perturbation technique. The stability of the system under the applied control techniques  

is investigated applying both the phase plane  and the frequency response equation. The 

phase-plane is a good criterion for the presence of dynamic chaos. From the study it is 

concluded that the negative velocity active controller is very effective tool in vibration 

reduction at many different resonance cases. Passive controllers are very helpful in 

suppressing the undesired vibration of the nonlinear dynamical system but more 

expensive than active ones.  

 

 

4.2 Future Work 

There are many directions of future research in which the present work can be 

extended, such as 

1. investigate the non-linear vibration of the inclined beam to multi-excitations 

(harmonic and parametric), tuned forces, mixed excitation forces. 

2. apply other different tools of control such as time delay control technique, if 

applicable. 

3. validate the theoretical and numerical obtained results of the nonlinear 

dynamical system experimentally.  
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