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Abstract

In this study, different controllers have been applied to investigate and suppress
the vibrations of a second-order nonlinear dynamical system. Active controllers such as
the position feedback (PF), negative velocity feedback (VF) and negative cubic velocity
feedback controller are related directly to the considered system. While Passive
controllers such as the nonlinear saturation (NS) and positive position feedback (PPF)
controllers involve a second nonlinear oscillator coupled with the main system. The
system under investigation is subjected to external and parametric excitation forces. The
method of multiple scales as one of the perturbation techniques is used to reduce the
second-order nonlinear differential equation into a set of two first-order differential
equations that govern the time variation of the amplitude and phase of the response, and
obtain the response equation near various resonance cases. The stability of the system is
investigated by applying frequency response equations and phase-plane. The numerical
solution and the effects of the parameters on the vibrating system are studied and

reported. The simulation results are achieved using Maplel13 software.
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Chapterl

Introduction and Literature review

1.1 Introduction

Important advances in mathematics, physics, biology, engineering and economics
have shown the importance of the analysis of nonlinear vibrations, stabilities and

dynamical behavior.

A nonlinear system refers to a set of nonlinear equations (algebraic, differential,
integral, functional, or abstract operator equations, or a combination of some of these)
used to describe a physical device or process that otherwise cannot be clearly defined by
a set of linear equations of any kind. Dynamical system is used as a synonym of
mathematical or physical system when the describing equations represent evolution of a
solution with time and, sometimes, with control inputs and/or other varying parameters as

well.

Vibration and dynamic chaos, occurring in most machines, vehicles, building,
aircraft and structures are undesired phenomenon. Not only because of the resulting
unpleasant motions. The dynamic stresses which may lead to fatigue and failure of the
structure or machine. The energy losses and reduction in performance which accompany
vibrations, but also because of the produced noise. Noise is an undesirable event. And
since sound is produced by some source of motion or vibration causing pressure changes
which propagate through the air or other transmitting medium. Vibration control is of
vital importance to sound attenuation. Vibration analysis of machines and structures is
often a necessary prerequisite for controlling vibration and noise. The theory and
techniques of vibration suppression have been extensively studied for many years.
Various types of controller are developed so as to channel the excess energy from
excitation to the slave system in order that vibration in the primary system can be
suppressed. The positive position feedback (PPF), velocity feedback (VF), acceleration
feedback (AF) and nonlinear saturation (NS) controllers used extensively for vibration
reduction for many linear and nonlinear dynamical systems, which show their feasibility

and efficiency in practice.



In numerical analysis, the fourth order Runge-Kutta method can be used to solve

differential equations. it is defined for any initial value problem of the following type:
y'=fty), Y)=Yo (1.1)
Where vy is an unknown function (scalar or vector) of time t, y’' the rate at which y

changes.
The definition of the RK4 method for the initial value problem in equation (1.1) is shown

in equation (1.2).
h
yM:yn+€(kl+2k2+2k3+k4), (1.2)

with h the time step, and the coefficients k,,k,,k,and k, are defined as follows:
k= f(t,Y,),
@:fm+gmﬁg&)
&:fm+gMﬁg@) (1.3)
k, = f(t, +g, Y, +gk3).

These coefficients indicate the slope of the function at three points in the time interval,

the beginning, the mid-point and the end. The slope at the mid-point is estimated twice,
first using the value of k,to determine k, next using the value of k, to compute k.

Knowing the k-coefficients, the solution at the next time step can be computed by

equation (1.2).

1.2 Literature Review

Vibrations are the cause of discomfort, disturbance, damage, and sometimes
destruction of machines and structures. It must be reduced or controlled or eliminated.
One of the most common methods of vibration control is the dynamic absorber. It has the
advantages of low cost and simple operation at one model frequency. In the domain of
many mechanical vibration systems the coupled non-linear vibration of such systems can
be reduced to non-linear second order differential equations which are solved analytically

and numerically.

Elhefnawy and Bassiouny [1], studied the nonlinear instability problem of two
superposed dielectric fluids by using the method of multiple scales. Frequency response
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curves are presented graphically. The stability of the proposed solution is determined.
Numerical solutions were presented graphically for the effects of the different parameters
on the system stability, response and chaos. The method of multiple time scale
perturbation technique is applied to solve the nonlinear differential equations up to and
including the third order approximation [2,3,4]. Nayfeh and Mook [5], studied system
having a single degree of freedom, which concerned with introducing basic concepts and
analytic methods, then the concepts and methods are extended by them to systems
having multi-degrees of freedom. All possible resonance cases were extracted at third
approximation order and investigated numerically. The effects of the different parameters
on system behavior are studied. The stability of the system is investigated using both
frequency response functions and phase plane methods. The solutions of the frequency
response functions regarding the stability of the system are shown graphically. Phase
plane was shown for the steady state amplitudes as a criterion for system stability and
chaos presence [6]. EI Behady and El-Zahar [7], studied the effect of the nonlinear
controller on the vibrating system. The approximate solutions up to the second order are
derived using the method of multiple scale perturbation technique near the primary,
principal parametric and internal resonance case. Moreover, they investigated the stability
of the solution using both phase plane method and frequency response equations, and the
effects of different parameters on the vibration of the system. Warminski et. al. [8],
studied active suppression of nonlinear composite beam vibrations by selected control
algorithms.The saturation phenomenon has been the subject of extensively theoretical
and experimental research [9-10]. Eissa et. al. [11,12], investigated a single-degree-of-
freedom non-linear oscillating systems subject to multi-parametric and/or external
excitations. The multiple time scale perturbation technique is applied to obtain solution
up to the third order approximation to extract and study the available resonance cases.
They reported the occurrence of saturation phenomena at different parameters values.
Kwak and Heo [13], presented effectiveness of the PPF algorithm applied for a model of
a solar panel, where the first four modes of vibration have been considered. Siewe and
Hegazy [14], applied different active controllers to suppress the vibration of the
micromechanical resonator system. Moreover, a time-varying stiffness was introduced to
control the chaotic motion of the considered system. Different techniques were applied to
analyze the periodic and chaotic motions. Eissa and Amer [15] and Yaman and Sen [16]
studied the vibration control of a cantilever beam subject to both external and parametric
excitation but with different controllers. Sayed [17], studied the effects of different active

3
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controllers on simple and spring pendulum at the primary resonance via negative velocity
feedback or its square or cubic. Golnaraghi [18] indicated that when the system is excited
at a frequency near the high natural frequency, the structure responds at the frequency of
the excitation and the amplitude of the response increases with the excitation amplitude.
Oueini et al. [19], proposed a non-linear control law to suppress the vibrations of the first
mode of a cantilever beam when subjected to a principal parametric excitation, which is
based on cubic velocity feedback to suppress the vibration. The method of multiple scales
was used to derive two first-order differential equations governing the time evolution of
the amplitude and phase of the response. Then, a bifurcation analysis was conducted to
examine the stability of the closed-loop system and investigate the performance of the
control law. The theoretical and experimental findings indicate that the control law leads
to effective vibration suppression and bifurcation control. El-Serafi et al. [20,21] showed
how effective is the active control in vibration reduction at resonance at different modes
of vibration. They demonstrated the advantages of active control over the passive one.
Hegazy [22] studied the nonlinear dynamics and vibration control of an
electromechanical seismograph system with time-varying stiffness. An active control
method is applied to the system based on cubic velocity feedback. In [23], Hegazy
investigated The problem of suppressing the vibrations of a hinged—hinged flexible beam
that is subjected to primary and principal parametric excitations. Different control laws
are proposed, and saturation phenomenon is investigated to suppress the vibrations of the
system. El-Ganaini et. al. [24] applied positive position feedback active controller to
suppress the vibration of a nonlinear system when subjected to external primary
resonance excitation. The multiple scale perturbation method is applied to obtain a first-
order approximate solution. The equilibrium curves for various controller parameters are
plotted. The stability of the steady state solution is investigated using frequency-response
equations. The approximate solution was numerically verified. They found that all
predictions from analytical solutions are in good agreement with the numerical

simulation.

1.3 Objective of The Work

The objective of this work is to study analytically and numerically techniques and

to reduce the oscillations of a nonlinear dynamical system using different control (the



position feedback (PF), negative velocity feedback (VF), a negative cubic velocity
feedback and the nonlinear saturation (NS) controllers ). Moreover we use the phase

plane and frequency response method to investigate the systems stability. This study will
include the following systems.

e Nonlinear differential equation with direct “active” controls
» Position Feedback (PF) controller

U"+ " + 0+ BU° + B =5 (uu® +uu") =f, cos(Qt) cos(c)

(1.4)
+uf , cos(Qt)sin(a) +T .

Where T is a control input, that will expressed, separately, as Gu, Gu® and Gu® to give a

linear, cubic, and quintic PF controllers, respectively. G is a positive constant called the
gain.

> Negative Velocity Feedback (\VF) controller

U"+ 4" + 0’ + B’ + B - 5(uu +u’u”) =f, cos(Qt) cos(a)

(1.5)
+uf , cos(Qt)sin(e) -T .

Where T will expressed, separately, as Gu’, Gu'> and Gu" to give a negative linear,
quadratic, and cubic VF controllers.

> Negative Acceleration Feedback (AF) controller

U"+ 4" + 0’ + B’ + B =5 (uu’? +u’n”) =, cos(Qt) cos(a)

(1.6)
+uf , cos(Qt)sin(er) —-Gu”.
e Nonlinear differential equation with indirect “passive” controls
» Positive Position Feedback (PPF) controller
" ' 2 3 5 12 2.n
U"+ 40"+l + U + Bu° =5 (uu +uu") =, cos(Qt) cos(a) 1

+uf , cos(Qt)sin(a) + v,



V"' +2E0N "+ @V = pu. (1.8)
» Nonlinear Saturation (NS) controller

U+ 4" + U + BU° + Bu° — 5 (uu +u’u”) =f, cos(Qt) cos(a) (L9)
+uf, cos(Qt)sin(a) + v ?, '

V" + 20N+ o = puv. (1.10)



Chapter 2

Active Control of a Nonlinear Dynamical System

In this chapter we will consider a system of second-order nonlinear ordinary
differential equation and apply a different active controllers to reduce the vibrations of
the system and choose some of best active controllers. The nonlinear system with the
chosen controllers is solved and studied using 4™ order Rung-Kutta numerical method
and the method of Multiple Scales perturbation technique. The stability of the controlled

system is also conducted.

2.1 System model:

The considered equation is the modified non-linear ordinary differential equation

describing the vibration of inclined beam which is given by [16] :

U"+ "+ + BUs + Bu° -5 (uu"? +uu") =f, cos(Qt) cos(cr) 2.1)
+uf , cos(Qat)sin(e) +T , '

where u,u’and u”represent displacement, velocity and acceleration of the vibrating
system, respectively, wis the natural frequency, g, is the damping coefficient , S, 5,

and o are nonlinear coefficients, f, and f, are the forcing amplitude, Q is the excitation

frequency, a =30 and T is a control input.

We will apply a different controllers and solve it by 4" order Rung-Kutta numerical

method using Maple 13 then choose some of the best active controllers.
The different controllers are used to reduce the vibration of the considered system:

1. Position Feedback (PF) control T =Gu, this controller modifies the frequency of

the system, where G is a positive constant called the gain.
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Fig. 2.1 Performance of (PF) controller for different values of the gain, ®=2.1, £=15.0,
£,=5.0, 6=0.03, £4=0.0005, Q=2.7, f,=0.4, f,=0.2, «=30.0

2. Cubic Position Feedback control T =Gu?, this controller modifies Au® due to non-
linear curvature.
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Time Time
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(c) G=10.0 (d) G=30.0

Fig. 2.2 Performance of cubic (PF) controller for different values of the gain, w=2.1,
£,=15.0, B,=5.0, 6=0.03, £4,=0.0005, O=2.7, f,=0.4, f,=0.2, «=30.0

3. Quintic Position Feedback control T =Gu®, this controller modifies A,u’due to
non-linear curvature.

R T o
Time Time

(@) G=0.05 (b) G=0.5

booom om m @ om R
Tima Tine

(c) G=10.0 (d) G=30.0
Fig. 2.3 Performance of quintic (PF) controller for different values of the gain, =2.1,

B,=15.0, B,=5.0, 5=0.03, 14=0.0005, Q=2.7, f,=0.4, f,=0.2, @=30.0



4. Negative Velocity Feedback (VF) control T =—Gu’, in this controller the damping

of the system is modified.

il 1do 200 300 0o s00 SO0 F o0 z00 =00 0o 0o a0
Time Time
0 05
0.4 0.4
03 035
nz
-8
0.1
2 w014
i i
] _
ni- Jl
1 0.1-+
0.2
0.3-4 0.2-4
il 100 2 00 anin 500 &0 il 100 2 300 anin s 00
Time Time

Fig. 2.4 Performance of negative (VF) controller for different values of the gain, w=2.1,

£,=15.0, B,=5.0, 6=0.03, £4,=0.0005, O=2.7, f,=0.4, f,=0.2, «=30.0

5. Negative Quadratic (VF) control T =—Gu’?, in this controller the term Suu’® due

to non-linear inertia of the system is modified.

mom m & W
Time

T T T T T T T T T T T T
0 0 m il qn n il
Time

T
0

(@) G=0.05 (b) G=05
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Fig. 2.5 Performance of negative quadratic (\VVF) controller for different values of the
gain, »=2.1, $,=15.0, $3,=5.0, 6=0.03, £4=0.0005, O=2.7, f,=0.4, f,=0.2, «=30.0

6. Negative cubic (VF) control T =—-Gu".

0.5 0.5

0.4 0.4

0.3 03

02
01

0z

01
w0

0
oL
01
02
03- 0

04 03-

0.4

100 200 300 40 500 400

T T T
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Fig. 2.6 Performance of negative cubic (VF) controller for different values of the gain,

w=2.1, 4,=15.0, 5,=5.0,06=0.03, 14, =0.0005,0Q=2.7, f,=0.4, f,=0.2, «=30.0
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7. Negative Acceleration Feedback (AF) control T =—-Gu”, which modifies the

acceleration of the system.

il 100 200 ] ann =00 00 4 1do 200 =00 adn 500 &00
Time Time

() G=0.05 (b) G=05

0.4

0.z

0.2-—

0.4

il 100 200 T ann 500 00 g 100 200 2do ado 500 an
Time Time

) G=10 (d) G=50

Fig. 2.7 Performance of negative (AF) controller for different values of the gain, w=2.1,

B,=15.0, B3,=5.0, 5=0.03, 14=0.0005, Q=2.7, f,=0.4, f,=0.2, @=30.0

The above figures show the effect of various active controllers for different values
of the gain. In figure 2.1 more increase in G, for (PF) control lead to more decrease in
the amplitude. In figure 2.2 cubic (PF) control is the same as (PF) control but with a few
chaotic in the system. In figure 2.3 quintic (PF) control lead to small decrease in the
amplitude. In figure 2.4 for negative (VF) control, it is clear that small values of the gain
lead to significant decrease in the amplitude. In figure 2.5 increasing the gain, for
negative quadratic (VF) control lead to chaotic behavior in the system . In figure 2.6
more increase in G, for negative cubic (VF) control would lead to more reduce in the
amplitude. Figure 2.7 show that as the gain is increased the motion is changing to become

stable but the amplitude is not.

12



So we will choose T =—Gu’ negative Velocity Feedback (VF), T =-Gu”
negative cubic (VF) andT =Gu Position Feedback (PF) controllers as active internal
controllers to investigate the behavior of the system analytically and numerically.
U"+ 40"+ + U + Bu° =5 (uu +uu") =, cos(Qt ) cos(a)

(2.2)
+uf , cos(Qt)sin(er) +Gu.

U"+ 40"+ + U + Bu° =5 (uu +uu") =, cos(Qt ) cos(a)
+uf , cos(Qt)sin(a) —Gu'.

(2.3)

U"+ 40" + ' + U + Bu° =5 (uu +uu") =, cos(Qt ) cos(a) (2.4)
[} .
+uf , cos(Qt)sin(a) -Gu ™.

2.2 Perturbation analysis for the nonlinear equation with (PF) control :

The nonlinear equation (2.2) with position feedback (PF) control is scaled using the

perturbation parameter & as follows

U"+ g’ + @°u+gBu’ + gBu° — g&(uu’2 + uzu”) = ¢ f, cos(Qt) cos(ar)

+euf, cos(Qt) sin(er) + Gul.

Applying the multiple scales method [2,3], we obtain first order approximate solutions

for equation (2.2) by seeking the solutions in the form
ut, &) =u,(T,,T,)+eu,(T,,T)), (2.5)
where ¢ is a small dimensionless book keeping perturbation parameter, T, =t and

T,=¢6l,=¢t are the fast and slow time scales, respectively, the time derivatives

transform are recast in terms of the new time scales as

d =D, +¢&D,,
dt
42 (2.6)
W = D02 +2€DOD1,
where D, = 2 , D, = 2 : (2.7)
a7, oT,

13



Substituting u and time derivatives from equation (2.5) and (2.6)

u’ = Dy, + DU, + DU, +£*Dyu,, 28)
u” = D,u, +£D,’u, + 2¢D,Dyu, +2£°D,Dyu,. '

Substituting equation (2.8) into equation (2.2) we get,

Dlu, +&D2u, +2¢D,Du, +2£°D,Du, + @* (U, + £U,)

+e1, (DU, + DU, + DU, + 2Dy, ) + g8, (Uy + e4y)* + &8, (U + £u,)°

—£6 (U, +&U,)(Dyu, +£Dyu, + DU, +£°Dyu,)? (2.9)
—£6 (U, + &u,)?(Du, + £Du, + 2eD,Du, +2£°D,D,u,)

= ¢ f, cos(Qt) cos(ax) + (U, + eu,) f, cos(Qt) sin(a) + G(u, + u,).

Eliminating terms in which the powers of & is more than or equal to 2 yields

2 2 2 2 3 5
D;u, +&Dyu, +26D,Du, + €14 Dyu, + 00U, + go’u, + Uy + 65U,

2.10
—2e6D}us — & f, cos(Qt) cos(ar) — eu, f, cos(Qt) sin(a) — eGu, = 0. (2.10)

Equating the coefficient of same powers of ¢ in equation (2.10) gives

0(&°) : Dlu, + w’u, =0,

L (2.12)
= (D} + o )u, =0,
O(&"): DZu, +2D,Du, + 14, Dyu, + @’u, + BUs + Bue —28D2ug 2.12)
—f, cos(Qt) cos(er) —u, f, cos(Qt) sin(er) — Gu, =0. '
Rearranging equation (2.12) to get,

(D3 +@” )u, ==2D, Dy, — 14 DU, — Bs — B,us +25D}u;
+f, cos(Qat) cos(ex) +u, f, cos(Qat) sin(exr) + Gu,.

(2.13)

The general solution of (2.11) can be written in the form
Uy (T, Ty) = A(T,)e™™ + A(T,)e ™™, (2.14)
where A(T,) is unknown function in T, .

In order to solve equation (2.12) for u,, we substitute u, from equation (2.14) to get
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(D; + @ )u, =—2D,D, (Ae"™ + Ae™ ) - 1D, (Ae"™ + Ae ™ )
—f (A + Ae ) — g, (A€ + Ae ) + 25DF (A€ + Ag ) (2.15)
+, cos(Qt) cos() + ( Ae™™ + Ae ™ ) £, cos(Qt)sin(ar) + G ( Ae"™ + Ae ™" ),

which implies

(Df +@* )u, =—2D,D,Ae"™ — 2D, D, Ae "™ — 14D A" — 14Dy A

—B A 38 A? A" —35 AA%e T — g A% — g NS>
—56,A*Ae** —108,A’A%'™ —108,A’ A’ —58 AA‘e ¥l — g A%
+26D A% + 65D A’ Ae'™ + 65D AA%e ™ + 25D A% ¥

+f, cos(Qt) cos(a) + f,Ae"™ cos(Qt)sin(a) + f,Ae "™ cos(Qt) sin(a)
+GAe"™ + GAe ",

(2.16)

eino +e—in0 ioTy _e—inO
Substituting equation (2.7) and using the form cos(wTo)=T,sin(wTo)= 5
[

into equation (2.16), to get
(D02 + aoz)u1 = 2ioAe“" +2ioAe™™ — ninAe“" + ioAe " — B AR

_3ﬂ1A2Aein0 _SﬁlMZG—inO _ﬁl'&3e—3in0 _ﬂzASeSinO _5ﬁ2A4Ae3in0 —10ﬂ2A3:&26in°
_10ﬂ2 AZ A3e—in0 _SﬂZAA4e—3i(uT0 _ﬂZASE—SinO _18a)25A363in0 _ 6@25A2Aeiaﬁo

60’ S AN’ ™" —180* S A% ¥ + % f,e' " cos(ar)+ % f.e "™ cos(a) (2.17)
+% f, A" sin () + % f,Ae"™ " sin () + % f,Ae™™" % sin(a)

+% f,Ae”" 7 sin () + GAe™™ + GAe ™.

Or simply,

(D5 + 0 )u, = —2iwAe"™ - ioAe'" - A% —35 A Ae™™
_ﬁZASESinO —5,32 A4’E‘e3i(z)'|—0 —10ﬂ2A31&26in° _18a)2§A3€3ia)T0 _ 6a)26A2 '&ei(uTo (218)

+% fleiQTO COS(Q) +% fZAeia)ToHQTO Sin (a) +% szeing_iQTo Sin (a) +GAeia)T° +cc.

where ccdenotes the complex conjugate terms.

Rearranging equation (2.18), to get
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(D5 +0")u, =(-2i0A - pioA-3HA A-105AR ~60°SA A+CA)e"™
+(_ﬂ1A3 —5ﬂ2A4IE\—180)25A3)e3in0 _ﬁZASeSinO +% fleiQTO COS(G) (219)

+% f, A" sin(a) +% f, A" sin (o) +ce.
The particular solution of equation (2.19) can be written in the following form

U1 (TOYTl) — A1 (Tl)ei(uTo _%(_ﬂlAS _5ﬂ2A4A_18(025A3)63in0 _I_T];UzﬂZASeSinO

1 | 1 - .
f IQTO _ fA I((A)+Q)T0
+2(a)—Q)(a)+Q) cos(a)e 20(20+Q) ° e sin(a) (2.20)
+—2Q(22_Q) f,Ae" T sin () +cc.

where A is a function of T, to be determined in the next approximation .
From the equation (2.19), the reported resonance cases at this approximation order are

i. Primary resonance : Q2=

ii. Sub-harmonic resonance : Q=20

2.3 Stability analysis

We will study the stability by considering the relation between the forcing

frequency  and the natural frequency @

After studying perturbation analysis of the above system, we have two resonance cases,

231 Primary resonance $2=@:

In this case we introduce a detuning parameter o, such that
Q=w+¢eo, , (2.21)

Substituting equation (2.21) into equation (2.19), eliminating the terms that produce

secular term and performing some algebraic manipulations, we obtain
—2iwA — pioA-38 AN A-105,A°A° —6a>25A2A+GA+% f,e" cos(ar) =0, (2.22)
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Letting A as the polar form A :%a(r e’ where aand @ are the steady-state

amplitude and the phases of the motions respectively, then we have

A=1ae“9 A2=1a262i9 A3=£a3e3‘9
2 1 4 1 8 1

A-laeto | Ar-lanene A’:%aié"ei‘9+%a’e“’.

N |-

Substituting A,A2 A% A A% A’ in (2.22), we obtain

wad’e’ —ipale - = wiwae’ — 3 Ba‘e’ - > B,a%e" — 3 sate”
2 8 16 4 (2.23)
0.

+Lgaev i1 f,e”" cos(«)
2 2
Dividing equation (2.23) by «e" , we get

] 1 . 3 5 3 1 1 o
ad' —ia' - = uia—— Ba*——— Ba°——woa’+—Ga+— fe """ cos(a)=0. (2.24
P R TN 20 20 " () (2.24)

Using the form e™ = cos x +isin x, to get

a@'—ia’—lyiia—iﬂla3 —iﬂ2a5 _3woat+ L Ga
2 8w 16w 4 20 (2.25)
1 1. . '
too f, cos(—9+alTl)cos(a)+£|fls|n(—¢9+alTl)cos(a) =0.

Now equating the imaginary and real parts of equation (2.25) we obtain the following

equations describing the modulation of amplitude and phase of the motions

, 1 1 )
A== pa+—— f,sin(-6+o,T,)cos(a), (2.26)
And
! 3 3 5 5 3 3 1 1
ald'—— pa’ — pa’——woda’+—Ga+— f, cos(—0+ o, T, )cos =0. 2.27
8(0'8l 16(0'82 4a) 2w 20 ' ( % 1) (a) ( )

Sitting A=t f,, y=(-0+al),
20

17



equations (2.26) and (2.27), become as the following

a':—%ﬂlaJrAsin(;/)cos(a), (2.28)
3 Ga
——ﬂl ——ﬁza —Zwoa’ +—+Acos(;/)cos(a):0. (2.29)
4 2w
since y'=-0'+0o,, (2.30)
then ad’'=aoc,—ay’. (2.31)

Substituting equation (2.31) into equation (2.29), gives

3 s b 3 Ga
ay'=ca-—pBa’—-— Ba’-=wsa’ +—+Acos cosS ,
Y =03 860’81 160 B, 4 2w (7/) (a)

(2.32)

For steady-state solutions, setting a’ =y’ =0, equation (2.28) becomes
wa=2Asin(y)cos(a), (2.33)

and equation (2.32), becomes

20,a— ﬁla ——ﬁza —g woa’ +G—:—2Acos(y)cos(a) : (2.34)
w

Squaring both sides of equations (2.33) , (3.34) and adding, we have

3 3 Ga . 2
202 1 | 245 — 3__ —Zws - 2A
R T A a)J sersin(eestel) ) g
+(~2Acos(y)cos(a))’,
,ufa2+(2861 ,Bla - ,Bza —g woa’ +%) =4A%sin’(y)cos® () (2.36)
+4A® COSZ()/)COS (@),
1i2a +(2a01—43 Ba ——ﬁza -~ wsa’ +%j =4A°cos’ (a). (2.37)
) w

Equation (2.37) is called the frequency response equation.

18



(a) Stability of trivial solution:

To determine the stability of the trivial solutions, we investigate the solutions of

the linearized form of equation (2.22)
—2iwA — 1ioA+GA=0, (2.38)
For stability analysis we expressed A in the Cartesian form
1 : i,
A:E(pl—lpz)e L (2.39)

where p, and p, are real.

Substituting A from equation (2.39) into equation (2.38), we get

- 1 ] - ] | 1- - | 1- - |
—2uw(§( p—ip; )e"" +§l¢(p1—lpz)e¢“)—5lwm(pl—lpz)eﬂl

(2.40)
+%G( p,—ip,)e"™ =0.
Dividing both sides of equation (2.40) by e, to get
L . 1. 1 1 1.
—ip,— p; +#p, —igp, _E P4 _E P44 +2_Gp1 ——1Gp, =0. (2.41)
w 2w
Separating real and imaginary parts, we get
, 1 1
P =—¢p, _E Pty _Z_sz’ (2.42)
w
And
, 1 1
P2 :¢p1__ pz:ul"'_Gpl . (2-43)
2 2w
Rearranging equations (2.42), (2.43), gives
, 1 1
plz(_z/'ﬁj p1+(_¢_2_6j P, (2.44)
w
, 1 1
p2=(¢+_Gj p1+(__:ulj P, - (2.45)
2w 2
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The stability of the trivial solution is investigated by evaluating the eigenvalues of the

Jacobian matrix of equations (2.44), (2.45)

1 1
S S e
{pl}: 2" 2 {pl}
p; 1 1 P, |’
-G _=
P e 244

The eigenvalues can be obtained by solving the determinant

L et
2 2w 0
1 1 o
p+—G - -1
2w
, 1, 1 Y
y) +,ul/1+zyl+ ¢+ZG =0 . (2.46)

The solution of the equation (2.46) is

1 1Y
A=—Smt _(¢+ZGJ : (2.47)

2
The trivial solution is stable if 1 <0, that is 1 > —4(¢+ZLGJ .
()

(b) Stability of non-trivial solution:

To determine the stability of the non-trivial solutions we let
a=a,+a(T),and y=y,+7(T). (2.48)

Where a, and y, correspond to a non-trivial solutions while a, and y, are perturbation

terms which are assumed to be small compared to a, and y,.

Substituting equation (2.48) into equations (2.28) and (2.32), using estimate siny, =y,

and cosy, =1, we get
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[ ’ 1 1 1
ao+a1=—5;¢l(a0 +a1)+Zfls|n(yo+yl)cos(a), (2.49)

(3 +a,) (7 +7) =01 (a +a1)—iﬂ1(ao +a,) _iﬁz (3 +3,)

(2.50)
3 1 1
—Ea)§(a0+a1) +—wG(a0+a1)+£f cos(y, +7,)cos(a).
Simplifying equations (2.49), (2.50), to get

| 1 1.,
ao+a1=—5ﬂ1ao—§,ulal+zfl(Sln(J/O)+71008()/0))COS(06), (2.51)
875+ 8,75 + gy + 2, = aoal+a161——ﬂl(ao+3aoa1+ )

5 3 1 1
—%ﬂz(ag+5a§a1+...)—§a)5(a§’+3a§a1+...)+%6a0+%Ga1 (2.52)

+% f, (cos (7o) = 715in (7)) cos ().

Since a, and g, are solutions of equation (2.28) and (2.32) then equation (2.51) and
(2.52), becomes

| 1
a :—Eﬂlal +Z f.y,cos(y,)cos(a), (2.53)

ay, gy Ty =0, - ﬂlaoa1 ﬂzaoai ——w5a0a1 +—661

1 (2.54)
o flylsin(;/o)cos(a).
Substituting from equations (2.33) , (2.34) into equations (2.53) , (2.54), we get
, 1 1 3 5 3 G
a1:——ylai——;/l(Z(rlao——,Blag——ﬂzag——w5a§+;a°) (2.55)
2 2 4w 8w 2 w

’ ' ' 9 25 9 1 l
8,70+ 8y + 8y =40, —— 368 — o~ f,808 — 0683 +——Ga, —— iy, (256)
10} 8w 2 20 2
Simplifying equations (2.55) , (2.56), gives

a :(_%M)ai"'(_o_lao"' ﬂlao ﬁzao - 530 _;aoj Y1 (2.57)
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ao7{+(76+7{)81=(01—4w

Dividing equation (2.58) by a, and using y,+7 =»"=0, we get

, , 9 G ( 1 j
S ——woa, + +| —=
7= [ao 4wﬂl ﬂzao 5 ©0% Za)aoJai M
We can put equations (2.57) and (2.59) as the following form

a=Fa+Ty , pn=Ta+Iy

Where rl:_%:ul ’ 1—‘2:_61"310"' /Blao _ﬁ2a0+ a)é‘aﬂ_
r=2-2 a2 pat-Sasa, S
3 a, 4w 18 2 208,

9 25 9 1 1
— fag _S_ﬂzaé__w5a§ 4‘—(3}’:!1 +[——,uiaoj}/1. (2.58)
0] 2 2w 2

(2.59)

(2.60)

ao

The eigenvalues can be obtained by solving the determinant of the Jacobian matrix of the

equation (2.60)

2 el

The eigenvalues can be obtained by solving the determinant

AP =2(21,)+T; -T,I, =0.
The eigenvalues of equation (2.61) are

A=T,+T,T,.

(2.61)

(2.62)

Therefore the steady-state solutions are stable if and only if I'7 <T",T",.
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2.3.2  Sub-harmonic resonance : Q2=2®
In this case we introduce a detuning parameter o,

Q=2w+¢o, , (2.63)

Substituting equation (2.63) into equation (2.19), €liminating the terms that produce

secular term and performing some algebraic manipulations, we obtain

“2ioA — pioA-35,A°A-105,A°A° —6w25A2/X+GA+% f,Ae"sin(a)=0, (2.64)

Letting A in the polar form A :%a(l'l)e“g(“’, where aand @ are the steady-state

amplitude and the phases of the motions respectively, then we have

wad’e’ —ipa’e’ — - wiwae" — 3 pa’e’ - > B,a%" — 3 wsa’e”
2 8 16 4 (2.65)
+ % Gae" +% f,ae™"*'"" sin(a) = 0.

Dividing equation (2.65) by «e", to get

a@'—ia’—l,ulia—iﬂla?’ —i,b’za‘r’ _3 woa+ L Ga
2 8w 16w 4 20
. (2.66)
+— f,ae """ sin(a) = 0.

Using the form e™ =cosx+isinx ,we get

a@'—ia’—l,ulia—iﬂla?’—i,li’za5 _3 o'+ Ga
2 8w 16w 4 2w (2.67)
1 : 1. . . '
to- fzacos(—20+02Tl)sm(a)+E|f2asm(—29+02T1)sm(a) =0.
Now equating the imaginary and real parts of equation (2.67), we obtain the following
equations describing the modulation of amplitude and phase of the motions

1 1. .
&= pa+ f,asin(-20+0o,T,)sin(a)=0, (2.68)

And
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a@’—iﬂla3——ﬂ2 a)5a +iGa+ifacos( —20+0,T,)sin(a)=0 .  (2.69)
8w 20 4o

Sitting A, =4iaf2 , 7, =(-20+0,T,) , then equations (2.68) and (2.69) becomes
@
.1 : :
a :—EMa+Alsln(72)sm(a), (2.70)

220’ _iﬁlafﬂ _iﬂzas 3w+ S8 2A, cos(y,)sin(a)=0. (2.71)
4w 8w 2 0]

Since y, =-26'+ 0o, , then we have
2ad’' =ao, —ay,. (2.72)
Substituting equation (2.72) into equation (2.69), to get

ay, =o,a— ,Bla — ﬂza —g woa’ +G—+2A ,€0s(7,)sin(a). (2.73)
w

For steady-state solution, setting a’ =y, =0 equation (2.70) and (2.73) becomes
wa=2A,sin(y,)sin(a), (2.74)

o=~ ﬂla - ﬁza —g woa’ +%=—2Alcos(;/2)sin(a). (2.75)
w

Squaring both sides of equation (2.74) and (2.75)and adding, we have

3 5 3 GaY’ . . 2
‘a’ a-— pBa’-— Ba’——wda’+— | =(2A,sin n

1 +(02 4(0,6’1 8a)ﬁ2 5 @5a’+ a)j (2A,sin(y,)sin(a)) 2.76)
+(—2Alcos(;/2)sin(a))2.

More simply,

2
wa +(02 ﬂla — ﬂza —g woa’ +%j =4A;sin’ (a). (2.77)
w

Equation (2.77) is called the frequency response equation.
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(a) Stability of trivial solution :

To determine the stability of the trivial solutions, we investigate the solutions of

the linearized form of equation (2.64)
- ’ - 1 re IO—T -
—2iwA —ILLlIa)A+GA+§ f,Ae'”"sin(a) =0,
For stability analysis we expressed A in the Cartesian form
1 N
A:_( p1—|p2)e"’T1 |
2
where p, and p, are real.

Substituting A from equation (2.79) into equation (2.78), we get

i 1 ol 1. : i
_2Ia)( (pl_lpz) ¢T1 E¢(p_|pz) ¢T1j—§|a),ui(pl—|p2)e‘/ﬂ—l

+%G(pl —ip, )e"" +1 f,(p,+ip,)e """ sin(a) =0.
Dividing both sides of equation (2.80) by we“™and simplifying , we get

S, . 1. 1 1 1.
—1p, = P, +¢p1_|¢pz_z|p1/vﬁ—§ D2M+ZGp1—£|Gp2

1 =2igTy+ioy Ty o 1 H =2igT +io, Ty o3
o f, pe 27nrioeh Sln(a)+Elf2 p,e 2o sin (o) = 0.
Using the form e* = cos x +isin x, separating real and imaginary parts, we get

, 1 1 1
pl:—¢5p2—§pl,u1 sz wfzplsln( 24T, + 0,1, )sin(a)
S f,p, cos(—=24T, +o,T, )sin(a),
0}
And

1 1
p2:¢p1_z Pty +— Gpl a)f plcos( 2¢T +O_2 )Sm( )

20
1 i

—Efzpzsm( 24T, + 0,1, )sin(a).

Sitting 4 =(—24T, +o,T,), gives

25
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(11, . 1 1 .
P :(—EM+E fzsm(.91)sm(a)j P, +(—¢—%G tos f, cos(&ﬁ)sm(a)} D, (2.84)
p, = ¢+iG+if cos(4)sin(a) |p, + —lﬂl—if sin(4)sin(a) | p,- (2.85)
’ 20 4o P L2 4e TV 2
Sitting T z—l,ui+if sin(4)sin(ar) , T :—¢—iG+if cos(4)sin(a) ,
2 4o . ° 20 Ao’ '
Fy=g+ G+ fcos(8)sin(a) , Ty=—2 s+ f,sin(8)sin(a).
6 2% 4o 1 7 5 4o (1

The stability of the trivial solution is investigated by evaluating the eigenvalues of the
Jacobian matrix of equations (2.84), (2.85) gives

{p{}{n Fﬂ{pﬂ
P, I TP,

The eigenvalues can be obtained by solving the determinant

L4 Ty |_ 0
r, T,-A
A*=A(T,+T,)+I,I, - ,IT =0. (2.86)

The trivial solution is stable if I",I", —I';I', <0.

(b) Stability of non-trivial solution :

To determine the stability of the non-trivial solutions we let
a=a,+a(T),and h=h,+h(T). (2.87)

Where a, and h, correspond to a non-trivial solutions while a, and h, are perturbation

terms which are assumed to be small compared to a, and h; .

Substituting equation (2.87) into equation (2.70), (2.73) where h=y,, using estimate

sinh, =h, and cosh =1, to get
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a{)+a1’:—%ﬂl(a0 +a1)+ifz(a0+a1)sin(h0+l"5)sin(a), (2.88)

o 3 s 5 5 3 3
(ao+a1)(h0+n)=az(ao+a1)—aﬂ1(ao+al) —%ﬂz(aﬁai) —§w5(ao+ai) (289)

+£G(a0 +a1)+i f,(a,+a,)cos(h, +h)sin(a).

@

Simplifying the above equations, gives

a, +ay =—1ulao —l,ula1 = f,a, (sinh, +h, coshy)sin(«)
2 2 4o 2.90)

1 . .
v f,a,(sinhy +h coshy )sin(«a),
! ! ! ! 3 5
ah +ah +ah +ah =a.c,+a0, —Eﬂl(ag +3a%a, +...)—£ﬂz (a5 +5a5a, +...
3 Ga, G 1 . .
—Ea)é(ag +3ala, +...)+7°+—a1+£ f,a, (cosh, —h sinh)sin(a) (2.91)

(o

+2i f,a, (coshy —h;sinhg)sin(a).
@

Since a, and h, are solutions of equations (2.70) and (2.73) then equations (2.90) , (2.91)

, become

o Liac L i Lt asi i
&=~ s+ f,a,h cos(h,)sin (&) + ™ f,a sin(h, )sin(a) 092

+% f,a,h, cos(h,)sin(a),

, - 9 25 9 G
i +a, (W +1Y) =0, - Aaa, - - Aaia - ooaa + —
@ 8w 2 @ (2.93)
—% fzaohlsin(ho)sin(aﬁi f,a, cos(ho)sin(a)—% f,ah sin(h,)sin(«).
Now since a;h;is a very small term and h; +h/ =h’"=0 then they can be eliminated

Thus equations (2.92) , (2.93) can expressed as

al = —%Mai +$ f,a,h, cos(ho)sin(a)+i f,a,sin(h, )sin (@), (2.94)
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ah =a0,- ﬂlaoai——ﬁzaoai—— 5aoa1+—a1——fzaomsm(ho)si”(a) 295

+$ fzalcos(ho)sin(a).

Substituting from equations (2.74) , (2.75) into equations (2.94), (2.95) and simplifying ,

to get

, 1 a,
a = (_Eo-zao +— ﬂlao _ﬂzao +— W5ao __a)jhl’ (2.96)
h/ = (——ﬂlao ﬂzao 3wda, —%Jai +(=4)h. (2.97)

We can put equations (2.96) and (2.97) as the following form

a:L, :h1rs , hl!=a11—‘9+hlr10 . (2.98)
Where FS:—%azao+ £ad+ ,32 — 5%—% :
20
G
Iy :__ﬂlao_ ,826\0 360530_—610 v Tyo=—4.

The non-trivial solution is stable if and only if the real parts of equation (2.98) are less

than or equal to zero using the Jachian matrix mothed to solve the equation

hl, FQ 1—‘10 hl .
The eigenvalues can be obtained by solving the determinant

-1 T,

-0
r, rm—z‘ |

A? =, T, =0. (2.99)

The eigenvalues of equation (2.99) are
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r J_m/rz AT.T
p=-0N 0T M elo (2.100)

- 2

Therefore the steady-state solutions are stable if and only if I';I'y <0.

2.4 Perturbation analysis for the nonlinear equation with negative (VF) control :

The nonlinear equation (2.3) with negative velocity feedback (VF) control is scaled using

the perturbation parameter ¢ as follows

U"+ g0+ 0°U + gBU° + g,U° — &5 (uu +u”u") = £ f, cos(Qt) cos(ar)

+euf, cos(Qt) sin(a) —eGu’

Applying the multiple scales mothed, similarly as in the perturbation analysis equations
(2.5) - (2.9) , we have

DZu, +&D2u, +2eD,D,u, + £14D,u,
+@’Uy +ew’U, + gBUS + B — 25D (2.101)

—¢& f, cos(Qt) cos(ar) — eu, f, cos(Qt) sin(er) + eGD,u, = 0.

Equating the coefficient of same powers of ¢ in equation (2.101), to get

0(¢°):(D5 +@” )u, =0, (2.102)
O(s"):(Dj +@” )u, =—2D,Dyu, — 14DyU, — BUS — Byus +25Diu; (2.103)
+ f, cos(Qt) cos(ex) + u, f, cos(Qat) sin(er) —GD,u,.

The general solution of (2.102) is given by

U, =A(,)e' ™ +A, )", (2.104)

where A(T,) is unknown function in T, at this stage of the analysis.

Now to solve equation (2.103), substituting equation (2.104) into it then substituting

—iwTy T, —iaTy

T, _
equation (2.7), and using the form cos(a)TO):%, sin(a)TO):Z—_e , to
i

get this simplified equation,
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(D} + " )u, =(-2i0A - piwA-35 A’ A-108,A°A’ — 60’5 A’ A-GiwA)e"™

+(-BA -5B,AA-180’5 A’ )™ — g, €™ +% f.e'"" cos(a) (2.105)
1 (01 Q)T o 1 (0-Q)Ty o;

+2 f,Ae sm(oc)+E f,Ae sin(a) +cc,

where cc denotes the complex conjugate terms.

The particular solution of equation (2.105) can be written in the following form

ioTy 1 N ioTy 1 iy
u (Ty. T,) = A (T, )e"" —W(—ﬁlﬁ—5ﬂ2A4A—18a)25A3)e3 T +Tw2ﬁ2A5e5 T

1 - 1 - .
f IQTO _ f A I(w+Q)T0
+2(a)—Q)(a)+Q) icos(ae 20(20+Q) * ° sin(a) (2.106)
+—2Q(22_Q) f,Ae" " sin (a)+cc,

From the equation (2.106), the reported resonance cases at this approximation order are

a. Primary resonance Q= :

b. Sub-harmonic resonance Q=2w:

2.5 Stability analysis
2.5.1 Primary resonance Q= :

To describe the nearness of excitation frequency Q to frequency of the natural

frequency @ introducing the detuning parameter o, such that
Q=w+¢eo, , (2.107)

Substituting equation (2.107) into equation (2.105), eliminating the terms that produce

secular term and performing some algebraic manipulations, we obtain

H ’ H 2N 372 2 2N H l iofT;
—2i0A — wioA-35A°A-108,A°A° — 600 A A—Gla)A+§ fe'"cos(a)=0. (2.108)
Substituting A :%a(l'l)e‘““’ similarly in equations (2.22) — (2.25) , we obtain the

following equations describing the modulation of amplitude and phase of the motions
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a’:—%Ma—%Ga+Asin(y)cos(a), (2.109)
a@’—iﬁa3—i,6’a5—§co5a3+Acos(y)cos(a):O, (2.110)
8o’ 16w’ 4

where A:i f,, y=(-0+0oT).

since y'=-0'+0o,,
then ad'=ac, —ay’ . (2.111)
Substituting equation (2.111) into equation (2.110), to get

, 3 s 5 s 3 3
ay'=ca—-—— pa’——— pa’——wdoa’ + Acos cos . 2112
4 Yoget 1660'32 4a) (7/) (a) ( )

For steady-state solutions, setting a’ =y’ =0, equation (2.109) and (2.112) become

a+Ga=2Asin(y)cos(a) , (2.113)
20 a—iﬁa3 —iﬂ a’ —Ea)&a3 =—2Acos(y)cos(«). (2.114)
Y40t 80"t 2

From equation (2.113) and (2.114), we have

3 5 3 2
a+Ga) +| 2ac, —— fa® —— a5——co5a3j =4A?cos’ (a). 2.115
(ua+Ga) +| 200~ > pa =% gt -3 (a) 2119

Equation (2.115) is called the frequency response equation.

(a) Stability of trivial solution:

To determine the stability of the trivial solutions, we investigates the solutions of

the linearized form of equation (2.108)

—2i0A — 1ioA-GioA=0. (2.116)
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For stability analysis we expressed A in the Cartesian form and substituting similarly as
equation (2.38) — (2.43), we have

(.1, 1 _

pl_( 2/“1 ZGJ p1+( ¢) P, » (2.117)
- 211

P, —(¢) P +( 5 H 5 Gj p,- (2.118)

The stability of the trivial solution is investigated by evaluating the eigenvalues of the
Jacobian matrix of equations (2.117), (2.118) gives

1 1

T -=-G-4A —
2/ ¢ 0
11 -
— S -=G-4
¢ 2177
2 1 2 1 2 1 2
A +(,ul+G)ﬂp+Z/,¢l +ZG +EMG+¢ =0. (2.119)

The solution of the equation (2.119) is

ﬂ=—%(,ul+G)i (-¢°) - (2.120)

The trivial solution is stable if 2 <0, that is (14 +G)” > —4¢°.

(b) Stability of non-trivial solution:

To determine the stability of the non-trivial solutions we let
a=2a,+a,(T) and y =y, +x(T). (2.121)

Substituting equation (2.121) into equations (2.109) , (2.112), and simplifying, similarly

as in the above, we have

1 11 1 1.,
a0+a1=_§Mao—§Ma1—§Ga0—§Gal+Zfl(S|n(y0)+;/1cos(yo))cos(a), (2.122)
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! ! ! ! 3 5
897+ 87+ 8y +8y)) :a00'1+6161——ﬁ1(a§+3a§ai+...)——ﬁ2 (a§+5agai+"')
4o 8w (2.123)

3 1 .
-Ewa(ag +3a’a, +...)+% f, (cos(7,) - 75in () ) cos(«).

Since a, and y, are solutions of equations (2.109),(2.112) and y; +y, =" =0 then

1 1
a{:(_EM_EGJaﬁ'(_O—@o"' Brag + _ﬂzao"' a)é‘aoj%’ (2.124)
7= ﬁ——ﬂao— ﬂao—— 058, aﬁ(—l —lGj% (2.125)
1 a, Ao 1 2 2 2 1

We can put equations (2.124) and (2.125) as the following form
a=Ipa+Ly . =T+, (2.126)

1 1 3 .3 5 5 3 o3
Where I.. =—=u-=-G , T, =— +— +— +—woa;,
11 > H > 12 0,8, 80 B, 160 B3, 4 a,

_o_9 2_9
a, 4w B, - ﬁzao > 003, .

13

The eigenvalues can be obtained by solving the determinant of the Jacobian matrix of the
equation (2.126)

r11 -4 F12 -0
1_‘13 1_‘11 -4 ,
AP =2(2Ty, )+T5, —T,I, =0. (2.127)

The eigenvalues of equation (2.127) are

A=T,+ T, . (2.128)

Therefore the steady-state solutions are stable if and only if T2, <T',I",,
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2.5.1 Sub-harmonic resonance : 2=2@
In this case we introduce a detuning parameter o,
QZZCO'FSO'Z, (2129)

Substituting equation (2.129) into equation (2.105), eliminating the terms that produce

secular term and performing some algebraic manipulations, we obtain

—2ioA - wioA-3B A A-108,A°A* —60° S A’ A—GiwA

o (2.130)
+% f,Ae'”" sin(a) =0.

Substituting A =%a(|’1)e“9“1) similarly in equations (2.65) — (2.67) , we obtain the

following equations describing the modulation of amplitude and phase of the motions

1 1 1 . .

-a _EMa_EGaJrE f,asin(-20+o,T,)sin(a) =0, (2.131)

And

a@’—iﬁa3—iﬁ a°—3 psa’ + L f acos(—-20+o,T,)sin(a)=0. (2.132)
8w' " 16w’ 4 4o 2 i

Sitting A, = iaf2 , ¥, =(=20+0,T,), then equations (2.163) , (2.164) becomes

a’=—%,ula—%GaJrAlsin(;/Z)sin(a), (2.133)
ay, =o a—iﬂae’ —iﬁ a’ —§w5a3 +2A,¢08(y,)sin(a) (2.134)
2 2 4a) 1 80) 2 2 1 2 - .

For steady-state solution, setting a’ =y, =0 equation (2.133), (2.134) becomes

wa+Ga=2A,sin(y,)sin(a), (2.135)

aa—iﬁa3—iﬂa5—§a)§a3:—2A cos(y,)sin(«) (2.136)
40" 80"t 2 ! 2 ' '

From (2.135) and (2.136) we have
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2
(ma+Ga)’ +(02a—%,81a3 —%ﬂzaf —gaﬁa‘?j =4A;sin’ (). (2.137)

Equation (2.137) is called the frequency response equation.

(@) Stability of trivial solution

To determine the stability of the trivial solutions, we investigates the solutions of

the linearized form of equation (2.130)

—2iwA — ulia)A—Gia)AJr% f,Ae'" sin(a) =0. (2.138)
Substituting Azé(pl—ipz)e‘“’T1 into equation (2.138) and simplifying, then separating
real and imaginary parts, we have

, 1 1 1 . .
—p —¢P, —5 Ptk _EGpl tos f, p,sin(—24T, + o,T, )sin(a)

. (2.139)
o f,p, cos(—2¢4T, +o,T,)sin(a) =0,
And
, 1 1 1 .
—P+op ) Pat4 _Esz +4_ f,p COS(_2¢T1 +O_2T1)Sm(a)
@
. (2.140)
" f,p,sin(=24T, +o,T,)sin(a) =0.
Sitting 9, =(—24T, +0o,T,), gives
p’:(—EM—EG +if sin(&)sin(a))p +(—¢+if cos(S)sin(a)jp , (2.141)
1 2 2 40) 2 1 1 4(0 2 1 2
P, = ¢5+if2cos(.91)sin(a) p, + —EM—EG—ifzsin(gl)sin(a) p,. (2.142)
4o 2 2 4o
Sittingl’ :—EM—EG+if sin(9)sin(a) , T :—¢+if cos(4)sin(a),
14 2 2 4(0 2 1 15 4(0 2 1
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1 . 1 1 1 . .
1“16:¢+Ef2 COS(Sl)SIn(a) , Ty :—EM—EG—E f25|n(191)s|n(a)_
The stability of the trivial solution is investigated by evaluating the eigenvalues of the

Jacobian matrix of equations (2.141), (2.142)

1—‘14 -4 r15
rlG 1ﬂ17 -4

A2 =2(Fyy+T; )+, Iy, —T e =0. (2.143)

The trivial solution is stable if T",,I';; —I',;I';, <0.

(b) Stability of non-trivial solution

To determine the stability of the non-trivial solutions we let
a=a,+a,(T;) and h=h,+h(T) . (2.144)

Substituting equation (2.144) into equations (2.133) , (2.134), and simplifying, similarly
as in the above, we have

a, +a :—l,uia0 —lylal—lGa0 —lGaﬁi f,a, (sinh, +h coshy)sin(a)
2 2 2 2 4o

. (2.145)
Yo f,a, (sinh, +h, coshy)sin(a),

! ! ! ! 3 5
B+ + &N + &l = 8,0, + 8,0, == () + 35, + )~ o (& +5agay + )

3 1 . .
—Ea)é(ag +3aca, +'")+Z f,a, (coshy —h;sinhy )sin(a) (2.146)

+2i f,a, (cosh, —h,sinhy )sin(a).
@

Since a, and h, are solutions of equations (2.133) , (2.134) ,a,h, is a very small term and

h, +h =h"=0 then they can be eliminated

Thus equations (2.145) , (2.146), becomes

36



o1 1 1 . 1 . .
&=ty —EGa1 tos f,ah cos(ho)sm(a)+a f,a sin(hy)sin(a), (2.147)

, 9 25 9 1 . .
A =a,0, ——— fagd ——— faga, — wda;a, ——— fah sin(hy )sin(a)
4o 8w 2 20 (2.148)
+i f,a, cos(hy)sin(a).

Substituting from (2.147),(2.148) into equations (2.135),(2.136) and simplifying, we get

- 3 53, 2 pos 3 cos
a1_h1( 2a00_2+8a)ﬁ1a0+16wﬂ2a0+4a)5aoj’ (2.149)

, 3 5
=2 h e i ~3003, [+ (4G 2150
w 2w
We can put equation (2.149) and (2.150) as the following form

a1, = hlrlB ' hl, =gl + thZO ) (2.151)
1 3 5 3
Where Fls :—an()'2 +%ﬁ1ag +@ﬂ2a€’ +Z(05ag ,

3 5
T =— B, — ﬂzag_3a)5ao y Tp=—1-G.
20 20

The non-trivial solution is stable if and only if the real parts of equation (2.193) are less

than or equal to zero using the Jachian matrix mothed to solve the equation

-1 |
Fw rm_l

=0

The eigenvalues are

A= 1—‘20 * \Irgo +4F18F19 . (2152)

2

Therefore the steady-state solutions are stable if and only if T';;I",; <0.
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2.6 perturbation analysis for the system with negative cubic (VF):

The nonlinear equation (2.4) with negative cubic velocity feedback (VF) control is scaled

using the perturbation parameter ¢ as follows

U"+ U+ °U + gBU° + gB,0° — &5 (uu +uu") = £ f, cos(Qt) cos()

+euf, cos(Qt) sin(a) — Gu”.

Applying the multiple scales mothed, similarly as in the perturbation analysis equations
(2.5) - (2.9) , we have

DZu, +&Diu, +2¢D,Dyu, + &4, Dy,
+w Uy + e@lU, + gBUS + gBUg — 2e5 DS (2.153)
—¢ f, cos(Qt) cos(a) — &u, f, cos(Qt) sin(ar) + eGDJuS = 0.

Equating the coefficient of same powers of ¢ in equation (2.153), we have

0(£%): (D} + e )u, =0, (2.154)
O(¢"):(D] + @} )u, =—2D, Dy, — £4Dglly — A5 — ByUs +25DJu; 2.155)
+1, cos(Qt) cos(e) +u, f, cos(€t) sin(a) — GDZUE. '

The general solution of (2.154) is given by

u,=A e +AT)e ", (2.156)

where A(T,) is unknown function in T, .

To solve equation (2.155), substituting equation (2.156) into it then substituting equation
(2.7), and using the form cos(wTO)zw, sin(wTO)zw , to get this
simplifying equation,

(D} +af )u, =(-2iwA - pioA-3BA°A-105,A°A’ —60°SA°A+3ie’GA’A )™

+(-BA -5p,A'A-180"5 A’ +18i°GA’ )" - g, ™" +% f,e“ cos(a) (2.157)

+% f, A" sin () +% f, A" sin(a)+cc,
where cc denotes the complex conjugate terms.
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The particular solution of equation (2.157) can be written in the following form

Uy =A(T,)e"" —%(—ﬂw ~5B,A'A-180"5 A’ +18iw°GA’ )& + 241

ﬁz A5e5ia)TO

2
10

1 , 1 . _
f IQTO - f A I(a)+Q)TO 2_158
T [ R AT P G (2.458)

1

+m f,Ae" M sin (o) +cc.

From the equation (2.157), the reported resonance cases at this approximation order are

a. Primary resonance : Q=®

b. Sub-harmonic resonance : Q=20

2.7 Stability analysis
2.7.1 Primary resonance =@

In this case we introduce a detuning parameter o, such that
Q=w+sco,, (2.159)

Substituting equation (2.159) into (2.157), eliminating the terms that produce secular

term and performing some algebraic manipulations, we obtain

—2ioA — ioA-38,A°A-105,A°A* —60°S A’ A+ 3iw’GA’A
1 (2.160)
+= fe" cos(ar)=0.
2

Substituting A :%a(l'l)e”’(“’ and using the form e™ =cosx+isinx and separating the

imaginary and real parts, we obtain the following equations describing the modulation of

amplitude and phase of the motions

, 1 3 1 .
a =—§Ma+§a3a)26 - f,sin(-6+0,T,)cos(a)=0, (2.161)
And
ag'_iﬂaS _i/} a°— 3 psat+ 1§ cos(—0+o,T,)cos(a)=0 (2.162)
8w’ " 16w’ > 4 20 o ' '
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Sitting A=—— 1, , y=(-6+0T).
2w

Equation (2.161) and (2.162) become as the following

a'=—%MaJrga%ozG+Asin(7)cos(a), (2.163)
ay’:aa—iﬂas—iﬁa5—§a)5a3+Acos(7)cos(a). (2.164)
8wt 160" ° 4

For steady-state solutions, setting a’ = ' =0 equations (2.163) , (2.164), becomes

Ma—%a%zG =2Asin(y)cos(a), (2.165)

3 5 3
200a—— fa’—— pa° —=wda® =—2Acos(y)cos(a). 2.166
0, 10 B 8(0'82 2(0 (7) (a) ( )
From equation (2.165) and (2.166), we have

2 2
(,ula—gaBa)sz +(2a0'1 —%ﬂﬁ —%ﬂzaf’ —gwc‘)‘a‘“‘} =4A%cos’ (). (2.167)

Equation (2.167) is called the frequency response equation.

(a) Stability of trivial solution:

To determine the stability of the trivial solutions, we investigates the solutions of

the linearized form of equation (2.160)

—2iwA — 1iwA=0. (2.168)

Substituting A = %( p, —ip, )e"™ into equation (2.168) and simplifying, we get

L : 1. 1
4m—m+¢m—mm—EMM—§mM:0. (2.169)

Separating real and imaginary parts we get
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, 1
P = _¢p2 _E Pty s (2-170)

, 1
P, =¢p1_§ Py - (2.171)

The stability of the trivial solution is investigated by evaluating the eigenvalues of the
Jacobian matrix of equations (2.170), (2.171) gives

1
—Eﬂl—i —¢
1 =0
a2
¢ 2t
/12+(,ul)/1+%,uf+¢2=0. (2.172)

The solution of the equation (2.172) is
1 2
A==t (-4). (2.173)

The trivial solution is stable if 1 <0, thatis g >—4¢°.

(b) Stability of non-trivial solution:
To determine the stability of the non-trivial solutions we let
a=a,+a,(T) andy =y, +x(T) . (2.174)

Substituting equation (2.174) into equations (2.163) , (2.164), and simplifying, we have

b 1 1 3
a8 == 48y = 12, +§(a§ +3a3, +...) G
. (2.175)
o f,(sin(7,)+7 COS(7O))COS(a),

! ’ ! ! 3 5
QYo Tayy t &) tay :aoo-l—l_aio-l_4_ﬁl(ag+3a§a1+"')_8_ﬁ2 (ag+Saéa1+-")
. . @ @ (2.176)
—Eaﬁ(ag +3a§a1+...)+£ f, (cos(7,)—7:5in (7, ))cos(a).
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Since a, and y, are solutions of equations (2.163) , (2.164) and y;+y, =" =0 then
' 1 9 2 2 1
8 == /4By + 28 G+£ f.7,cos(y,)cos(a), (2.177)

8,7, = a0, — /%aoa1 ﬂz%%—— wbaja, — —fmsm(yo)COS( a). (2.178)

Substituting from equations (2.165) , (2.166) into equations (2.177) , (2.178), we get

1 9
a{:[—zuﬁgaga)szaﬁ(—alaﬁ Bad+ —,Bza0+ 60530)71’ (2.179)
! —"——ﬂ ﬁz—gw5 4{§zd@—l j (2.180)
= a, 4o 13y 29 5 a |q 830 2/*& V1 .

We can put equation (2.179) and (2.180) as the following form

a{:F2131+F2271! 7/1'=F2331+F24;/1, (2.181)
1 9 ,,
Where F21=—§yl+§aoa)G , Fzzz—ola0+ ,Blao —,Bza0+ a)5a0
O

9 3 1
g‘@ﬂlao ,3285—56058.0 ’ F24=§a§a)2G—§,ul.

23

The eigenvalues can be obtained by solving the determinant of the Jacobian matrix of the
equation (2.181)

le -4 rzz -0
1_‘23 1_‘24 /1 ’
A2 = 2Ty + T, )+ T, 0, — T, 5 =0. (2.182)

Therefore the steady-state solutions are stable if and only if I",,I",, —I",,I',; <0.

42



2.7.2 Sub-harmonic resonance : Q=2
In this case we introduce a detuning parameter o,

Q=2w+¢o, , (2.183)

Substituting equation (2.183) into equation (2.157), eliminating the terms that produce

secular term and performing some algebraic manipulations, we obtain

—2ioA — 1ioA-36A°A-108,A°A* —60° 6 A’ A+ 3iw’GA’A

_ 2.184

e f,Ae'”" sin(a) =0. ( )
2

Substituting A :%a(l'l)e‘ml’ and using the form e™ =cosx+isinx and separating the

imaginary and real parts, we obtain the following equations describing the modulation of
amplitude and phase of the motions

, 1 35, 1 .
-a' - pa+—-a‘wG+— f.asin(-20+ sin 0, 2.185
2:“1 8 2 1o ° ( 0,1, ) ( ) ( )
And
——ﬁl ——ﬂza —%a)éa +4—facos( 20+0,T,)sin(a)=0. (2.186)
(0]

Sitting Al:iaf2 , ¥, =(-20+0,T)), then
do
1 3.3, : :
A=-Cmatodw G+A,;sin(y,)sin(a), (2.187)

ay, =o0,a ﬂla ——ﬂza —gaﬁa +2A, cos(y,)sin(a). (2.188)

4w 8w
For steady-state solution, setting a' =y, =0 equation (2.187) , (2.188) becomes
Ma—%a%ozG =2A,sin(y,)sin(a), (2.189)

3 5 3 .
08 PR g i =5 063 =2, cos(r; Jsin (). (2.190)
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From (2.189) and (2.190) we have

2 2
(Ma—%aSa)sz +(02a—%,81a3 —%ﬂzas —gaﬁa‘?j =4A;sin* (). (2.191)

Equation (2.191) is called the frequency response equation.

(a) Stability of trivial solution

To determine the stability of the trivial solutions, we investigates the solutions of
the linearized form of equation (2.184)

—2iwA — Mia)m% f,Ae'" sin(a)=0. (2.192)
Substituting A= %( p,—ip,)e”" and simplifying, we get

] ' H 1. 1 1 —2igT, +io. H
_|pl—p2+¢pl—|¢p2—5|plﬂl—§pZ/Jle_fzple2¢T1 2T1SIn(a)

1 4o (2.193)
to- if,p,e " "h sin () = 0.
Using the form e* = cos x+isin x and separating real and imaginary parts we get

, 1 1 . .
—p.—9p, —5 Pt~ f,p,sin(-2¢T, + o,T,)sin ()

1 ¢ (2.194)
s f,p, cos(—2¢T, + 0,1, )sin(a) =0,

: 1 1 .
SRR AY —5 Pt~ f,p, cos(—24T, + o,T, )sin(a)

. @ (2.195)
" f,p,sin(—24T, +o,T, )sin(a) =0.
Sitting 9, =(—24T, +0o,T,), gives

, 1 1 . . 1 .

P = (_Eﬂl t f,sin (@)sm(a)} P, +(—¢+E f,cos()sin (a)j p,, (2.196)
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, 1 . 1 1 . .
P, =(¢+E f, cos(ﬂ)sm(a)j P, +(—§M "1 fzsm(Sl)sm(a)j p,. (2.197)

Sitting FZS:—%M+ifzsin(.9l)sin(a) : 1"26:—¢+if2008(191)8in(a),

1 . 1 1 . .
T, :¢+E f,cos()sin(a) , Ty ==, f,sin(4)sin(a).
The stability of the trivial solution is investigated by evaluating the eigenvalues of the

Jacobian matrix of equations (2.196), (2.197) gives

A= A(Tps+ T )+ Tl =TT, =0. (2.198)

The trivial solution is stable if T",.I",; —I',[",; <0.

(b) Stability of non-trivial solution

To determine the stability of the non-trivial solutions we let
a=a,+a(T) and h=h,+h(T). (2.199)

Substituting equation (2.199) into equations (2.187), (2.188) and simplifying, we get

S, 1 13 1 . .
B+ & == i~ +§(a§ +3303, +...)0’G to f,a, (sinhy +h, cosh, )sin(e)

. (2.200)
to f,a, (sinhy +h coshy)sin(a),
! ! ! ! 3 5
ah +ah +ah +ah =ao,+a0, —Eﬁl(ag +3a’a, +...)—£ﬁ2 (a +5a5a,+...
3 1 . .
—Ea)5(a§ +3a’a, +...)+£ f,a, (cosh, —h;sinhy)sin(a) (2.201)

+2i f,a, (coshy —h;sinh,)sin(a).
@
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Since a, and h, are solutions of equations (2.187), (2.188), a,h, is a very small term and

h, +h =h"=0 then they can be eliminated, we have
al Z—l#& +ga§a1sz L f,ah cos(ho)sin(az)+i f,a sin(hy)sin(a), (2.202)
2 8 4w o)

, 9 25 9 1 . .
a,h =ao, —4—ﬂla§a1 ~ == B,asa, —— wdaia, —— f,a.h sin(hy)sin(e)
@ S0 2 20 (2.203)

+i f,a cos(h,)sin(«).

Substituting from equations (2.189) , (2.190) into equations (2.202) , (2.203) and

simplifying, we have

L (9 5 o0 3., ., 1 3 ., 5 .3 .,
a =| ~a’’G-2a’w’G |a, +| —>a,0, +— Bal + — Bl + > woal |, 2.204
(8 8 j ( 2771 8 ™ 160 70 T 4 )hl (2.204)

3 5 3
h[:[—z—ﬂlao——ﬂzag—l%a)éao)ai +(—a§a)ZG—,uljhl. (2.205)
@ 20 4

We can put equations (2.204) and (2.205) as the following form

31’ = F29a1 + hlr30 ) hl, = a1F31 + hlr32 ) (2-206)
9 3 1 3 5 3
Where F29=§a§a)zG—§a12a)zG y FSO=—§a001+%ﬂlaos+ﬁﬁ2a§+za)5ag,

3 pa 5

3
Iy=——pB3,- :Bzag_3a)§ao ) F32:—a§a)2G—/,Ll.
2w 4

20

The non-trivial solution is stable if and only if the real parts of (2.206) are less than or
equal to zero, using the Jacbian matrix mothed to solve the equation

rzg -4 F30
r31 Fsz -4

=0

(Fzg +1, ) * \/(Fzg +1y )2 — A0 oI, +4T5 1,

The eigenvalues A = >

(2.207)

Therefore the steady-state solutions are stable if and only if I',jI";, =", ;I";; <0.
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2.8 Numerical results and discussions

In this section the steady state response of the nonlinear dynamical system is
investigated for various system parameters under primary and sub-harmonic resonance
conditions when the negative linear velocity feedback is considered. The stability of
the numerical solution is studied using the frequency response function and the phase

plane method.

2.8.1 Time response solution

The time history and stability of the dynamical system (inclined beam) subject to both
harmonic and parametric excitations are obtained under position feedback, linear
negative velocity feedback and cubic negative velocity feedback controllers at
nonresonance, as shown in Figs. (2.8a,9a,10a), and at primary resonance case, as
shown in Figs. (2.8b,9b,10b), and sub-harmonic resonance case, as shown in Figs.

(2.8¢,9¢,10c). Comparing these figures, we may notice the followings:

Control Type The response at primary | The response at sub-
resonance (2= w) harmonic  resonance
(2= 2w).

Position Feedback | Chaotic with multi limit | May reach steady state

cycles. at t >>> 600s.

Negative cubic Modulated with multi | May reach steady state

velocity Feedback | limit cycles. at t > 600s.

Negative linear | Modulated then stable | Reaches steady state at
velocity Feedback | after t=500s, with multi | t = 400s.

limit cycles.

Based on the above comparison, we may conclude that the best performance among
the three active controllers is the negative velocity feedback one as it suppresses the
vibration to the minimum steady state amplitude at a shorter time when the system is at

principal parametric resonance case.

47



2.8.2 Theoretical frequency response solution

The frequeny response equations (2.115) and (2.137) under primary and subharmonic
resonance conditions with positive position feedback controller, is solved and the
stabillity of the steady state response is obtained from the eigenvalues of the
corresponding Jacobian matrix. The results are shown in Figs. (2.11) and (2.12),
respectively, as the steady state amplitude against the detuning parameter o for different
values of the system parameters.

Considering Fig. (2.11a) as a basic case for comparison. It is noted that the
frequeny response curve consists of two branches that are bent to right showing that the
system posseses hardenning nonlinearity charateristic. It can be seen from Fig. (2.11b),
(2.11c), (2.11d) and (2.11g) that the steady state amplitude increases as each of the
natural frequency w, the linear damping coefficient p; and the nonlinear coefficients f;
and ¢ decrease. Figure (2.11f) shows that as the excitation force amplitude f increases, the
branches of the response curves diverge away and the amplitude increases. The effect of
the gain of the position feedback control is illustrated in Fig. (2.11h).

Fig.(2.12) represents the solution of the the sub-harmonic resonant frequency
response equation (2.137) under the positive position feedback controller, which shows a
different kind of frequeny curves but result in same effects of the system parameters that
discussed in Fig.(2.11). It should be mentiond that the resonant frequency response
curves under the other studied controllers (negative linear and cubic velocity feedback)
have not been included since they do not represent significant change in the behavior or
the shape of the curves discussed in Figs.(2.11) and (2.12).
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Fig 2.8 Resonant time history solution of the system with (PF) control when: o=2.1,
£,=15.0,6=0.03, 14 =0.0005,0Q=2.7,3,=5.0, f,=04,f,=02,0=30,G=0.05
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Fig 2.9 Resonant time history solution of the system with negative (VF) control when:
w=21, 4=15.0,0=0.03, 1 =0.0005,02=2.7, 3,=50, f,=04,f,=02,a =30,
G=0.05
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Fig 2.10 Resonant time history solution of the system with negative cubic (VF) control
when: w=2.1, #,=15.0,06=0.03, g4 =0.0005,0=2.7,5,=5.0, f,=04,f,=0.2,2 =30,
G=0.05
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Fig 2.11 Theoretical frequency response curves to primary resonance case for (PF)
control w=2.7, #,=15.0,6=0.03, 14 =0.0005,0=2.7, 5,=5.0, f,=0.4 ,a=30,G=0.05.
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Fig 2.12 Theoretical frequency response curves to sub-harmonic resonance case for (PF)
controlw=5.4, 5=15.0,6=0.03, 14 =0.0005,0=2.7,5,=50 , f,=0.2,¢=30,G=0.01.
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Fig 2.13 Theoretical frequency response curves to primary resonance case for negative
(VF) control w=2.7, 5,=15,6=0.03, 14 =0.0005,0Q=2.7, 4,=5.0, f,= 0.4, =30,G=0.01.
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Fig 2.14 Theoretical frequency response curves to sub-harmonic resonance case for
negtive (VF) control o=5.4, 4=15.0,0=0.03, =0.0005,Q=2.7,4,=50 ,f,=0.2,

a=30,G=0.01.
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Fig 2.15 Theoretical frequency response curves to primary resonance case for negative
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a=30,G=0.01.
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Chapter 3

Passive Control of a Nonlinear Dynamical System

In this chapter, we present the perturbation and numerical solutions of two-
dimensional nonlinear differential equations with two different controller, Positive
Position Feedback (PPF) control and Nonlinear Saturation (NS) control . The multiple
scale analytical method and Rung-Kutta fourth order numerical methods are used to
investigate the system behavior and its stability. All possible resonance cases will be
extracted and effect of different parameters on system behavior at resonance cases were
studied.

3.1 System model

The modified second-order nonlinear ordinary differential equation that describes the

dynamical behavior is given as [10,24]

U"+ " + ol + BU° + Bu° = 5(uu +u’u") =f, cos(Qt) cos(a)
+uf , cos(Qt)sin(e) + zF, (t).

(3.1)

We introduce two a second-order non-linear controllers, which are coupled to the main
system through a control law. Then, the equation governing the dynamics of the

controllers is suggested as ~ v"+2&aV '+ v = pF, (t). (3.2)

We choose the control signal F, =v, and feedback signal F, =u ,for (PPF) control, and

F. =v?, F. =uv, for (NS) control.

C
So the closed loop system equations to the both controllers are

» Positive Position Feedback (PPF) control

u”+ U’ +w’u + Bu’ + pu’ —5(uu Z +ulu ”) =f, cos(Qt) cos(c) (3.3)
+uf , cos(Qt)sin(e) + v, '

V"4 250N + 0N = pu (3.4)
» Nonlinear Saturation (NS) control
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U"+ " + ol + BU° + Bu° =5 (uu +u’u") =f, cos(Qt) cos(a) 5)
+uf, cos(Qt)sin(a) + v 2, '

V" +2E0N "+ @ = puv (3.6)

where v,v’ and v" represent displacement, velocity and acceleration of the controller,
w,is the natural frequency of the controller, & is the damping coefficient of the
controller , 7, p is nonlinear coefficients of the controller, the main system parameter is

shown in chapter 2.

3.2 Perturbation analysis for the main system with indirect (PPF) control

The nonlinear differential equation (3.3) with PPF control (3.4) is scaled using the

perturbation parameter & as follows

U"+ U’ + olu+ efU° + gfU° — 5 (U™ +u’u") = £ f, cos(Qt) cos(a)

+euf, cos(Qt)sin(a) + ezv,
V' +2Eew N + oV = gpu .

Applying the multiple scales method, we obtain first order approximate solutions
for equation (3.3) and (3.4) by seeking the solutions in the form

u(Ty, Ty) =y (To, T) + &4, (T, Ty),

(3.7)
V(T Ty) = Vo (Ty, T) +evi (T, T)),

where ¢ is a small dimensionless book keeping perturbation parameter, T, =t and
T,=¢T,=¢t are the fast and slow time scales, respectively. The time derivatives

transform are recast in terms of the new time scales as

d =D, +¢D,,
dt
42 (3.8)
pri DZ +2¢D,D,,
where D, :i , D, :i : (3.9
aT, oT,
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Substituting u and time derivatives from equations (3.7) and (3.8), we get

U=u,+é&u,
' 2

u' =Dy, + Dy, + D, + Dy, (3.10)
" 2 2 2

u”=D,u, +&D,u, +2¢D,Du, +2&°D,D,u,,

and
V=V, +év
V' =DV, +£DyV, + DV, +£°Dy, (3.11)

V' =D,%V, +&D,, +2¢D,D,v, +2£°D,D,v,.
Substituting equations (3.10) and (3.11) into equations (3.3) and (3.4) we get,

DZu, +&Diu, +2eD,D,u, +2£°D,D,u, + 14, (Dyu, + £D,u, +£DyU, +£°Dyu,)

+a’ (U, +&u,) + &8, (U, + eu,)’ + &8, (U, +eu,)’

—£6 (U, + U, ) (DU, + £Dgu, + DU, +£°Dyy, )’ (3.12)
—&6 (U, + &u,)? (Déu, + eDlu, +2¢D,Dyu, +2£2D, Dy,

= ¢ f, cos(Qt) cos(a) + £(u, + &u,) f, cos(Qt) sin(a) + e (v, + &V,),
and

D2v, + D}V, +2eD,D,v, +2£°D,DyV, + 2eéw, (D, +£DyV, + DV, + £°DyV,) (3.13)
+@ (V, +8V,) = gp(U, + £U,). '

Eliminating terms containing the power of £>2 , equation (3.12) and (3.13) become

2 2 2 2 3 5 2,3
D;u, + eDju, +26D,Dyu, + 14 Dyu, + @lU, + solu, + gfUy + B,U, — 20D u;

—& f, cos(Qt) cos(a) — eu, f, cos(Qt) sin(a) — s7v, =0, (3.14)
and

D2V, +&DV, + 2D DV, + 2w, DV, + @V, + eV, — gpu, =0. (3.15)
Equating the coefficient of same powers of ¢ in equation (3.14) and (3.15), gives

O(e%):

(D§ +ef )u, =0, (3.16)
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and

(D5 + )V, =0. (3.17)
O(s"):

(D +f )u, =—2D,Dyu, — 14 Dgly — AU — B,Us +25Diu; + f, cos(Qt) cos() (3.18)
+Uu, f, cos(Qxt) sin(a) + zv,,

and

(D +f )V, =—2D, Dy, — 28£0, DoV, + pU. (3.19)
The general solution of equation (3.16) and (3.17) is given by

Uy (T, Ty) = AT, )e"™ + AT, )e ™", (3.20)
and

Vo (T,,T,) = B(T,)e"*™ + B(T,)e ™. (3.21)

Where the quantities A(T,) and B(T,) are unknown function in T, at this stage of the

analysis.

Substituting equation (3.20) and (3.21) into equation (3.18) and (3.19), we get

(D§ +@’ )u, =-2D,D; (A" + Ae ™™ ) - 14D, A" + Ae ™ )
6, (AT + Re ™) - g, (A6 + Ae )+ 25DF (A + Ag T ) (3.22)

+f, cos(Qt) cos(ar) Jr(Ae“”STO + Ae Mo ) f, cos(Qt) sin(er) + r(Be“"°TO +Be D )
and

(0 ot 200 (30 480 2 e s )
+p( AT + AT, -

Expanding and simplifying equation (3.22) and (3.23), we get
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(DZ +@? )u, =—2D,D,Ae"*" —2D,D,Ae™" — 14D, Ae"*" — 14D Ae ™"
_ﬂlA3e3ia)sTo _BﬂlAZ E\ei(USTO —BﬂlAE\ZE_i%T" _ ﬂlz‘Se—Sia)sTo _ﬁ2A5e5ia)5T0
_5[32 A4 Ae:‘}ia)sTo _10[82 A3,E\Zeia)5'|—0 _1Oﬁ2 A2 ASe—i(z)sTo —5ﬂ2 A'E\4e—3inT0

- _ o o (3.24)
B, A>T 125 Do2 A¥e¥T 165 Dg A’Ae'" + 66 Do2 AA%e "o
+26D2 A% " + f cos(Qt) cos(a) + f,Ae"™ cos(Qt) sin(cx)
+f,Ae™" cos(Qt)sin(a) + rBe" ™ + rBe ",
and
(D3 + @ v, =—2D,D,Be"" — 2D, D,Be " — 2w, D,Be" " .25

2, D,Be” " + p A" + pAeT",

ialg —idl,
Substituting equations (3.9) and Using the form COS(a)TO)=+e :

ial _ —idl

sin(al ) = % into equation (3.24) and (3.25), to get
i

(Dg +@) ) U, = —2io, A'e"" + 2, A'e ™" — io, Ae*" + o, Ae "
_ﬂlA3e3iwsT0 _ 3ﬂ1A2 AeiwsTO _ 3ﬂlAA2e—iwsT0 _ ﬁ1A3e—3iwsT0 _ ﬂz A5e5iwsT0
_5ﬂ2A4Ae3iwsT0 —10ﬁ2A3AZeiwsT0 _1Oﬁ2A2A3e—iwsT0 _5ﬂ2AA4e—3iwsTo _ﬂZASE—SinTO

~18w 5 A%*" — 6w S A A" — 6w 5 AR’ —180m? 5 A% +% fe"cos(a)  (3.26)
-iQT, 1 6Ty +OT, o 1 i&Ty-iQT, o
+= fe cos(a)+§ f,Ae sm(oc)+E f,Ae sin(a)

+

NI N~

o 1. - . _
f,Ag "N sm(a)+§ f,Ae™ " sin (o )+ rBe"" + 7Be ™",

and

(D; + wcz)vl — _ZiCOCBreia)cTo + 2i0)0§’e_iwcT0 _ 2i§(0CZBeiw°T°
Se- - — (3.27)
'|'2|§a)<;2 DOBeflwcTO +pAe'wsTo +pAeflwsTo.

Simplifying equation (3.26) and (3.27) we get
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(Df +a? )u, =(-2iw,A - pio, A-34 A A-108,A°A* 60} 5 A°A) e ™
+(-BA° -5B,A'A-180! S A° )€ — B, Ae™ " +% f,e""" cos(a) (3.28)

+% szei(aH—Q)To Sin(a)+% szei(a)—Q)To sin(a)+rBe‘“’cT° +cc,
and
(D5 + 0 )v, =(~2im,B' - 2ia)B)e"™ + pAe'™ +cc. (3.29)

where cc denotes the complex conjugate terms.

The particular solution of equation (3.28) and (3.29) can be written in the following form

ula-O'Tl) = Ai(Tl)eia)To _ 8a) ( ﬂ1A3 5ﬂ2A4A 180)25A3) SIwSTo +—— 24a)2 ﬂzAS 5ic,T,

S

1 - 1 i )
f T, f A i(0+Q)T,
e )era) W o erg) AT SNte) (3:30)
1 (o } 1 .
f A i(0-Q)Ty B iw,T, ’
+—ZQ(2(0—Q) ,Ae S|n(a)+(_wc+ws)(wc+ws)r e'%h 4 cc
and

v, (T, T,) = B/(T,)e"*™ + pAe“™ 1cC. (3.31)

(-0, +,)(o,+,)

From the equation (3.28) and (3.29) the reported resonance cases at this approximation

order is simultaneous resonance 2=, and @, = @,

3.3 Stability analysis
3.3.1 Simultaneous primary resonance Q@ =, and @, =,
In this case we introduce a detuning parameters o, and o, such that
Q=w,+e0, , @ =0,+¢&0,. (3.32)

Substituting equation (3.32) into equation (3.28) and (3.29), eliminating the terms that

produce secular term and performing some algebraic manipulations, we obtain
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“2io A — o, A-36,A° A-105,A° A —6a)§5A2/K+% f,e' " cos(a)+7Be' " =0, (3.33)

and
~2iw,B'—2iéw?B + pAe 7" = 0.
Now we use polar forms

i0,

1 1
A==ae% |, B==aege?
2% 2 ?

where a,,a,,d,,6, are functions in T,.

(3.34)

(3.35)

Substituting A, B from equation (3.35) into equation (3.33) and (3.34), we get

a)saiel'eig1 _iwsai’ewl _%Iuliwsaieigl _gﬂlaiseigl _%ﬂZafeigl

—%wjéafe“gl +% felh cos(a)+%razei92”"2“ =0,

and

wcazezrelé’z _ |a)ca;e“92 _ Ié:a)CZaZelgz +§pa1e|91 oy _ 0.

Dividing equation (3.36) by w.e'* and dividing equation (3.37) by w,e"

. 1 . 3 5 3
6 —ia —= pia, — 3 P - w.oa]
o 18 =5 18, 8o, pa 160, B2 4 %0
1 -6, +ioyT 1 —i60,+i60, +io, T,
+— f.e 4" cos(a )+ ——ra,e 1% =,
20, 20,
and

o 1 o
a,0, —ia, —icw,a, o Pae 0o =,
a,

C

Using the form e* =cosx+isinx ,we get
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(3.37)

, we obtain

(3.38)

(3.39)



5 s 3 ,
—Zws
Gwsﬂzal 4(05 ai

.., 1. 3
aﬂl—lal—gwai—zgwsﬁlaf—l

L f,cos(—6, +o,T,)cos(a )+ 1 if,sin(—-6, + o,T, ) cos(«) (3.40)

20, 20,

+iTa2 cos(—6, + 06, +o,T,) + L iza, sin(-6, + 6, +o,T,) =0,
20 20

S S

and

a0, —ia, —iém,a, +2ipa1 cos(—6,+6, —02T1)+2iipa1 sin(-6,+6,-0,T,)=0.  (3.41)
[9)

a)C C

Separating imaginary and real parts of equations (3.40) and (3.41), we get

28] = —ua, +i f,sin(—6, +01Tl)cos(oz)+ira2 sin(-6, + 6, +o,T,), (3.42)
@, .
! 3 3 5 5 3 3 1
28,0, -—— pa) ——— B,a; ——w,0a; +— f,cos(-6, +o,T,)cos(a)
4o, 8w, 2 o, (3.43)

+ el ra, cos(-6, + 6, +o,T1,) =0,
a,

S

a, =—¢w.a, —zipalsin(—eﬁe2 +o,T,), (3.44)
a)C
and
, 1
a0, + 2—,oa1 cos(—6, +6,+0,T,)=0. (3.45)
a)C
. 1 1 1
Letting A, =—f,,A,=—7a,,A, = S P = (-6, +0o.T,) andy, =(-6,+6,+0,T,)
a)S S a)C

Then, equations (3.42) - (3.45) become

2a) =—pa, + A, sin(y,)cos(a) + A, sin(y,), (3.46)

' 3 5 3
2a,y, =20, _Eﬂlaf —gﬂgaf —Ea)sé‘af +A; COS(}/l)COS(O()+A2 COS(}/Z), (3.47)
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a, =—¢w.a, —A,siny,, (3.48)
and
a2(71'_7£):az(al_(fz)+A3C0572- (3.49)

The steady state solutions correspond to constant a,,a,,,, 7, thatis aj, =a, =y, =y, =0

ta, = A sin(y,)cos(a)+A,sin(y,), (3.50)

2o, 2 pad > pa+ S w58 = A, cos(7,)cos(ar) + A, cos(7,), (351)
4o, 8, 2

¢w.a, =—A,;Siny,, (3.52)

and

-a,(0,—0,)=A,C057,. (3.53)

Squaring both sides of equations (3.50), (3.51) and adding, to gives

(:ula1)2 [ 20—1a1+ ﬂlai ﬂ2a1+ a)é‘ai) :(Alsin(7/1)C05(a)+A23in(72))2

(3.54)
+(Alcos(;/1)cos(oc)+A2 COS(;/Z))Z,
and squaring both sides of equations (3.52), (3.53) and adding, to gives
(éa)caz)2 +(—a,(o; —02))2 =(—A,siny, )2 +(A;cos7, )2 : (3.55)

Simplifying (3.54) and (3.55), we get

2
(a)* + [ 201a1+ ,Bla1 to ,Bza1 += wéai] =A; cos’ (a)+A; +2A,A, cos(ar), (3.56)
and

(£m3,) +(8,(0,-0,)) = A . (3.57)

Equation (3.56) and (3.57) are called frequency response equations
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(a) Trivial solution :

To determine the stability of the trivial solutions, we investigate the solutions of
the linearized form equations (3.33) and (3.34)

~2io,A — i, A+1Be" =0, (3.58)
and
~2i,B' - 2iéa?B+ pAe " =0. (3.59)

A and B are expressed in cartesian form as
— 1 1 BTy d — 1 1 ig,Ty
A—E(pl 'pz)e an B—E(ps |p4)e !

where p,, p,, p;, p, are real.

Substituting in equations (3.58) and (3.59), we get

. 1, ., .\ 1. . i 1. . :
_Zst(E(pl_lpz)eml+§|¢1(pl_Ipz)emlj_alws:ul(pl_lpz)eml

(3.60)
+% T( p3 N ip4)ei¢2T1+i0'2T1 — O,
and
: 1 T NAYNIAN 1. H ig)Ty i 2 i idyTy
—2iw,| =(p;—ip;)e”" +=ig, (p, —ip,)e™" |—-icw; (P, —ip,)e
2 2 (3.61)

1 H igT —io.
+Ep( p, —ip,)e"" 7 =0.

Dividing both sides of equation (3.60) by w.e"*"and both sides of equation (3.61) by

w.e*" and using the form e* =cosx+isinx, to get
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H ! 14 - 1' 1 1
—Ip;— P, +4p, — 14 P, _Elpl:ul _E P14 +57p3 COS(_@Tl +o,1, +O—2T1)

+2i i p,sin(—gT, + 4,1, +0,T,)— Zi irp, cos(—4T, + 4,1, +0,T,) (3.62)
[0) @,

S S

+2iz' p,sin (4T, +¢,T, +0,T,) =0,
Q,

S

and

., , ] . 1
—Ip; — P, + 9,05 —19,p, —10, P& — @, p4§+5pp1 COS(_¢2T1 +4T, _O'le)

c

1. 1. .
~5 PP, cos(—¢,T, + 4T, —o,T,) o —ippsin (-1, +¢T,—0o,T,) (3.63)

c c

1 )
+£Io p,sin (_¢2T1 +oT - Gle) =0.

c

Separating real and imaginary parts in equations (3.62) and (3.63), we get

, 1 1 ]
—p =P, _E Pty +ZT Py SIN (_¢1T1 +@,T + O-le)

1 s (3.64)
_ZT p, cos(—-4T, + 4,1, +0,T,) =0,

S

, 1 1
—p;+ AP _E Pty +ZT Ps COS(_¢1T1 +@T, + O-le)
s (3.65)

+2ir p,sin(—¢ T, + 4,1, +0,T,) =0,
()

S

, 1
—P;—@,P, — @, P;S _gp P, COS(—¢2T1 +@T - Ule)

L ¢ (3.66)
Jrzpplsin(—@T1 +@T, —o,T,) =0,

c

and

, 1
—p,+d, P — @S+ Z PP COS(_¢2T1 +@T — Ule)
¢ (3.67)

1 .
+Zp p,sin(—¢,T, +4T, —o,T,)=0.

C
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Setting 9 =(-4T,+&T, +0o,T) , % =(4T,—4,T,—0,T,) and rearranging the above

equations, we get

(1 L s L
plz(_i'uljpl+(_¢1)p2+[2_a)STS|n81jp3+[_2_a)srcosgljp4’ (3.68)
p!:(¢)p+ —lﬂl D, + iz-cosg P, + iz'Sinx9 p (3.69)
2 1) M 2 2 20)5 1 3 20)5 1 4

! 1 1 1

P, :[gpsm SZJ P, +(—chosn92j p, +(—a.8) P +(—4,) P, (3.70)
and

, 1 1 .

Seting  Ju=-ju . o=k . Ju=porsing L l=-porcosd

S S

1 . 1
J31=2—psm 9, Jp, =———pcCosY, , Jy=-0 and J,, =—¢,.

@, 20,

The stability of the trivial solution is investigated by evaluating the eigenvalues of the

Jacobian matrix of equations (3.68) - (3.71)

_‘]12 ‘]11_1 _‘]14

J
J
13 -0
‘J31 ‘]32 ‘]33 -4 ‘]34 '
_Jsz J31 _‘J34 ‘]33 -4
A+ A +mA2 v d+n, =0, (3.72)
where

m==2d; =23y,

772 = ‘]121 + 4Jll‘]33 - 2"]31"]13 + ‘]323 + J324 + ‘]122 ’
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2‘]11‘]33 + 2‘]11‘]31‘]13 + 2‘]32‘]34‘]13 + 2‘J31‘J13‘]33 + 2‘]12‘]32‘]13
2‘]12‘]33 2"]34‘]11 2‘]33‘J11

and

774 = _2‘]11‘]32‘]34‘]13 + J11J31J14‘]34 - 2J11J 31J13‘] 33 2‘]12‘]32‘]13‘:| 33 + 2‘]12‘]31J 34‘]13

272 272 212 212 212 212 212 242"
_‘]31‘]11‘]14‘]33 + ‘]11‘]33 + ‘]ll‘]34 + ‘]12‘]33 + J12J34 + ‘]31‘]13 - ‘]31‘]14 + ‘]32‘]13 - ‘]32‘]14

The trivial solution is stable if 7, >0,mn, —1,>0,1,(mn, —n,)—nin, >0,n, >0.

(a) Non-trivial solution:

To determine the stability of the non-trivial solutions
We let a, =b, +b,(T)) , a,=¢,+¢,(T)) and p=¢, +(T) , ¥ =y, +y,(T)), (3.73)

where b,,c,,¢,, v, correspond to a non-trivial solution, while b,c,¢,y, are

perturbation terms which are assumed to be small compared to by, c,, ¢,, ¥,
Substituting equation (3.73) into equations (3.46) , (3.47) and (3.48) , (3.49) , where

=y, ¥ =y, ,using estimate sing, ~¢,, cosg, =1, siny, =y,, and cosy, =1

2(0; +b) = —tg (B 41, )+ i (9, + )08 () 4 = 7(Co +€,)SiN (W +1) . (3.74)
. [0)

S S

2(0, +,)(0% + ) =20 (0, +b) =54, (B, +0.)' =52, (b,+b,)

; : (3.75)
_gwsa( +b,)’ +—f L oS (@, +¢,)cos(ar )+ L —7(cy+¢,)cos(w, +v,),
S a)S
(c()+cl’):—§a)c(co+cl)—2ip(b0+bl)sin(y/0+z//l), (3.76)
(4)

and

(6 +0) (g8 + )~ (v +) =(6 +6) (01 0) 5 (B +B)eos(wy 1) BT
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Simplifying equations (3.74) - (3.77), we get

2b} +2b) = — b, — b, L f, (sin @, + ¢, cos g, )cos( )

. @ . (3.78)
+-—1C, (Siny, +y, cosy, ) +—17C, (siny, +, Cosy,),

. 0)

S S

! ’ ’ U 3
2bypl + 2b,l + 2bypl + 2b,0) = 20,0, + 20,b, — v B, (b5 +3051, + ..

S

) 3 1 .
55 (105 +5b5by +...)—Ea>35(b§ +3b2h, +...)+; f,(cosp, —g@sing, )cos(a)  (3.79)

S S

1 . 1 .
+—10y (cosy, —y;, sin x//o)+;rc1(c051//0 —y,siny,),

S S

o 1 . 1 .
o+ €1 = ~ECy = 60.Gy = o by (SiNwy +y, 008y )= o= by (siny, +y; 08y ), (3.80)

C C

and

! ’ ’ ! ! 1A ’ 1A
Co®o +Co, +C +Cp —Coyy —Coyy — Qi —Cy; =Gy (0'1 —0, ) +C ((71 —0, )

1 . 1 . (3.81)
+ 5Py (oS, —ysinyg ) + 2= ply (cosy —ysiny ).

c

Since by, c,, ¢,,, are solution of equation (3.46), (3.47) and (3.48), (3.49) then

2b/ =—ub NS f., cos g, COS(a)—i—iTCOl//l cosy, +irc1 siny, +ircln//l cosy,, (3.82)
a, a, a, a,

S S S S

/ ' , 9 25 9

20, + 20,0 + 20, = 20,0, - 1o ﬂlbozbl - %ﬁzbgbl D) a’s5b02b1

n ! ) L ° 1 (3.83)
—— f,p,sing, cos(a ) ——rCyy, Siny, +—1C, COSY, ——TCY; Siny,,

a)S a)S a)S a)S
, 1 1 . 1
€, =—80,C, ——— phyy, COSyy ——— phy siny, ——— pby, cosy,, (3.84)
20, 20, 20,

and

71



! ! ’ [ 1 1 H
ot +Cioy +Cpf — Coiy —C g —Cyy = ( 0-2) ow —— pbyy; siny;

C

1 1 .
+—— pby cosy, —— phyy; siny,,.
20, 20

c c

Now since b, and cy, are avery small termand ¢y +@/ =¢' =0, y,+y, =y’ =

they can be eliminated,

2b = — by L f., cos g, cos(ac)+irc0gul cosy, +iTC1 siny,,
a, (0) a,

S S S

9
2b0¢)1 20b, - :Blb b, — ﬂ2b4b1 s5b02b1

1 . 1 . 1
—— . sing, cos(a)——rcoy/lsm W, +—17C, COSY,,
. . .

S S S

1 1
= —80.C — —— Py, COSY ——— Pl siny,

C C

and

1 . 1
Col ~Co1 =€, (0 =0 ) ——— Pl siny +—— phy cosy,.

C c

Rearranging equations (3.86) - (3.89), to gives

(3.85)

Othen

(3.86)

(3.87)

(3.88)

(3.89)

, 1 1 1 . 1
blz(—Eluljbl+(5 flcos%cos(a)]gol+[grsmz//ojcl+[grco coswonl, (3.90)
’ 0-1 9 3
= B, ﬂzb wé‘b b,
b, 8w,

1 . 1 1 .
+| ———— f.sin CoS|(ox + 7 COS +| — 7C, SINn ,
( 200, 121N @, ( )] 2 ( 20.b, 4 ] G [ 20.h, o oMY, ] 4

1 1
C {Z—/OSIWOJQ +(—¢o,)c, +[—pbo COS%J%,
, 2m,

c c

and
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, o, 9 25 9
‘//1:(——1+—,B1b0+—ﬂ2b03+_ws§b0_ pCOSWOJbl

b, 8w, 16a,b, 4b, 2C,0,
. f,sing, cos(a) @ + —1(0'1—0'2)—L7C08l//0 C, (3.93)
20.b, C, 20.b,

[ 1 . 1 . ]
+ 7C, Siny, + —— phy siny, |y,.
s-0

0™7c

Letting J11=—%ILL1 , Jp, =£ f,cosg, cos(a), Jy, =%z’sint//o, J. :%rco cosy,,

S S S

o, 9 25 9 1 .
J, =—t——pBb ———pb-=wos, J,=———1Fsing,cos(a),
21 b, 8, Bib, 160, Boby 2 %% Y2 200, 191N @, ( )
. 1 i
Jas = TCOSYW,, Jpy =— ¢ SNy, Jy =——psiny,, J;=—Co,
20,b, b, 20,

25 9

1 o 9
J,, =— pb cosy,, J,, =——+ b, + b +—w.5h, — cosy,,
34 20, Py Vor Y b, 8w, Bib, 16w, 5.0, 4b, 5O 2c,0, P Yo

Jus :—i(al—az)— rcosy, and J,, :ﬁrcosinwo+%pbosinwo.

Co ;0 s 0@,

The stability of the non-trivial solution is investigated by evaluating the eigenvalues of

the Jacobian matrix of equations (3.90) - (3.93)

‘]11 -4 ‘]12 ‘]13 ‘]14

‘]21 ‘]22_/1 J23 ‘]24 -0

‘]31 0 ‘J33 -4 'J34 ’

‘]41 _‘Jzz ‘J43 ‘]44 A

A+ A+t v A+, =0 . (3.94)

The non-trivial solution is stable if 7, > 0,77, -1, > 0,1, (mm, —12,) 11, > 0,1, > 0.

3.4 Perturbation analysis for the main system with indirect (NS) controls

The nonlinear differential equation (3.5) with NS control (3.6) is scaled using the

perturbation parameter & as follows
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U"+ U’ + U+ efU° + gfU° — 5 (U™ +u’u") = £ f, cos(Qt) cos(a)

+euf, cos(Qt)sin(a) + erv?,
V' +2Ee N + oV = gpuV .

Applying the multiple scales method,
Similarly as in equations (3.7) - (3.13) , we have

DZu, +£D2u, +2D,Dyu, + £14D U, + w’U, + g’u, + B3 + gB,Us —2e5Dud

: (3.95)
—¢ f, cos(Qt) cos(ar) — eu, f, cos(Qt) sin(a) — ervi =0,
and
Div, +£DV, + 2D, DV, + 2&w, DV, + @V, + eV, — gpu,V, =0. (3.96)
Equating the coefficient of same powers of ¢ in equation (3.95) and (3.96), gives
O(e%):
(D5 + e )u, =0, (3.97)
and
(D§ +f )v, =0. (3.98)
o(e):
(DO2 + a)f)ul =-2D,D,U, — 14Dy, — AU — B,Us +28Dius + f, cos(Qt) cos(r) (3.9)
+U, f, cos(Qt) sin(a) + 7V, '
and
(D + @} ), =—2D, DV, — 280, DoV, + pligyy. (3.100)
The general solution of equation (4.14) and (4.15) is given by
U, =A(,)e' ™ +A(,)e "™, (3.101)
and
V,=B(T,)e' ™ +B(T,)e ", (3.102)
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where the quantities A(T,) and B(T,) are unknown function in T,

Now to solve equation (3.99) and (3.100) substituting equations (3.101) and (3.102) into

—ialg

eia)T0 +e

it, then Substituting equation (3.9) and Using the form cos(al ,) = 5

ial _ —idl

sin(al ) = — similarly as equations (3.22) — (3.27), we have
[
(D} +a? )u, =(-2io,A - phio, A-34 A A-108,A°A* ~ 60} 0 A°A) e ™
+(-BA° -5B,A'A-180!SA° )€ — B, Ae™ " +% f.e""" cos(a) (3.103)
+% f,Ae" M sin(e) + % A" sin(e) + rB%% ™ + BB + cc,
and
(D5 + 0l )v, =(~2i,B’ - 2iafB)e"™ + pBA ) 1 pABe!+ ) .. (3.104)

where cc denotes the complex conjugate terms.

The particular solution of equation (3.103) and (3.104) can be written in the following

form
o 1 A i 1 o,
u (T, T,)=Ae g _@(_ﬁlAg —5ﬂ2A4A—180)525A3)93 0 24&)52 ﬂzAse5 To
1 , 1 : )
f o, - £ A i(0+Q)T,
Do a)ra) O e e @) (3105
1 (0O, o 1 . _
—f A i(0-Q)Ty BZ 2T, BB |
"aae-a) M O G ) ) e TR
and
T, 1 i(@g+o,)T, 1 =0 (e
Vl(TO’Tl):Ble ©0 = PBAg T — pABe "’ +cc. (3.106)
o, (o, +2w,) o, (o, - 2a,)

From the equation (3.105) and (3.106) the reported resonance cases at this approximation

order are

; 1
(a) simultaneous resonance 2=, and @, = Ews
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1
(b) simultaneous resonance 2=2®; and @, = Ews

3.5 Stability analysis
: 1
3.5.1 simultaneous resonance 2=, and @, =§a)s
In this case we introduce a detuning parameter o, and o, such that
1
=§COS +&0, . (3107)

Q=w,+e0, , o

Substituting equation (3.107) into equation (3.103) and (3.104), eliminating the terms that

produce secular term and performing some algebraic manipulations, we obtain

—2io A — pio, A-3B8 A A-108,A°A’ —6a)§5Azﬂ+% f,e'" cos(a)

(3.108)
+TBZei20'2T1 — o’
and
(~2i,B’ - 2iéw!B)+ pABe " =0. (3.109)

Substituting A=%a1e“91 B =%a2e“92, similarly in equations (3.36) — (3.41) , we obtain

the following equations describing the modulation of amplitude and phase of the motions

2a) =—pa L f,sin(—6, + alTl)COS(a)+2iTazz sin(—6, +26,+20,T,), (3.110)
(O Q,
! 3 3 5 5 3 3 1
28,0, ——— pa; ——— f,a; —~ w08, +— f,cos(-6, +o.T, )cos(a)
4o, 8w, 2 o,
1 (3.111)
+£ra§ cos(-6, +26, +0,T,) =0.
a, =—¢w.a, —%palazsin(—eﬁzez +20,T,), (3.112)
a)C
and
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a0, + %pala2 cos(—6, +26, +20,T,)=0. (3.113)

Letting A, = 1 f,A,= iraf A, = i,oala2 71 =(-6,+0oT,)andy, = (-6, + 26, + 20,T,)
10 20 ¥0)

S S c

Then, equations (3.110) - (3.113) becomes

2a) =—ma, + A, sin(y,)cos(a)+A,sin(y,) (3.114)

3
2a,7) = Zalal——ﬂla1 ——,8231 —Ea)séaf +A, c0s(y,)cos(ar)+A,cos(y,), (3.115)

8, =—w,a, — A;sin(y,), (3.116)
and

1 ! ’ 1

Ea2(71_72) =§a2(01—202)+A3 cos(7,). (3.117)

The steady state solutions correspond to constant a,,a,,y,, 7, thatis aj, =a, =y, =y, =0

wa, = A sin(y,)cos(a)+A,sin(y,), (3.118)
—201a1+ ﬂ1a1 —,6’2a1 +3a)5a1 = A, cos(y,)cos(a)+A,cos(y,), (3.119)
Em,a, =—A,sin(y,), (3.120)
and

—%%(01—202) =A;c0s(7,). (3.121)

From equations (3.118) - (3.121), we have

2
() + ( 201a1+ ,Bla1+ ﬂ2a1+ w&alJ =A;cos’ (a)+A;+2A,A,c08(a), (3.122)

(ém.a, )’ {% a,(o, —20‘2)j =AZ, (3.123)
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Equation (3.122) and (3.123) are called frequency response equations.
(a) Trivial solution :

To determine the stability of the trivial solutions, we investigate the solutions of
the linearized form equation (3.108) and (3.109)

2o, A — o, A=0, (3.124)
and
—2iw,B' -2iéa’B=0. (3.125)

We expressed A and B in Cartesian form
1 . i 1 : :
A:E(pl_lpz)evilTl B:E(p3_|p4)e¢zT1’

where p,, p,, p;, P, are real

(1, e 1 L 1. L
_2|a)s (E( pl_lpz)e¢lTl +§|¢1(pl_lpz)eqnj_zlwslul(pl_lpz)eml =0, (3-126)
and
~2icw, (%( p; —ip; )e"" +%i¢2 (P —ip4)ei¢ZT1j—i§a)c2 (p,—ip,)e*"™ =0. (3.127)

Dividing both sides of equation (3.126) by ,e*" and both of sides of equation (3.127)

by w,e*"

(= P+ Py~ iP5 Pyt~ P =0, (3,128
and

—ip;— Py + &P —i,p, —iw, Pd — 0, p, s =0. (3.129)

Separating real and imaginary parts in equation (3.128) and (3.129) to get
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Py :(—%Mj P +(=¢) P (3.130)

Py =(4) pﬁ(—%ﬂlj P, (3.131)
P =(-2.£) ps +(~4,) P (3.132)
and

P, =(4) ps+(-0.&) p, - (3.133)

- 1
Sitting ‘]11:_51% A=  Jy=-08, Jy=—9,.

The stability of the trivial solution is investigated by evaluating the eigenvalues of the
Jacobian matrix of equations (3.130) - (3.133)

Jy—4 I, 0 0

-J., J,-14 0 0 0

0 0 -4 3, |

0 0 —-J., J—4

! +771&3+77222 +n,A+n,=0. (3.134)

The trivial solution is stable if 7, > 0,77, —17, > 0,7, (17, —13,) — 13717, > 0,17, > 0.

(a) Non-trivial solution:

To determine the stability of the non-trivial solutions
We let a =b, +b,(T,) , &, =¢,+¢,(T) and o=+ (T)) , W=y, +y, (1) . (3.135)

Substituting equation (3.135) into equations (3.114) - (3.117) similarly as in above, we

have
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2b) +2b) = — b, — b, L f, (sin g, + ¢, cosg, )cos(a)
. @ . (3.136)
+——17Cq (SN, +, COSY, )+ =——7C,C, (SiNy, +y, COSY, ),
20 20,

S S

! ’ ’ U 3
2b,p, + 2b,¢, + 2b,pl + 2bg! = 20,0, + 20,b, — v B, (b5 +3051, + ..

S

-%ﬂz (b3 + 5%, +...)—ga)s§(b§ +302h, +...)+wi f,(cosg, g, sing, )oos(ar)  (3.137)

S

+irc§ (cosy, —y; sin l//o)-i-iTCOCl (cosy, —w, siny,),
20 20

S S

o 1 . 1 .
Co+C =—E,Cy — (o Cy _proco (siny, +y, COS%)—EPQ% (siny, +y, cosy, )
. ¢ ¢ (3.138)
——— pbyC, (Sin‘//o +, €08y, ),
4oy

C

and

1 ' ’ ' ' ' ' ' ' 1 1
E(Co% +Co@ +C +Cp —Coiy —Coy; — G _Cllrl/l) = Eco (0-1 —0'2)+§Cl(0'1 _0_2)

1 . 1 .
+E,oboc0 (cosy, —y,siny, )+ prlco (cosy, —y,siny,) (3.139)

c c

1 .
+—— phyc, (cosy, —y; siny,).
4o

c

Since by, c,, ¢,,w, are solutions of equations (3.114) - (3.117), bp,,cy, are a very small

termand ¢, +¢  =¢ =0, y; +y, =y’ =0 then they can be eliminated, we have

, 1 1 1 .
by :(——Mjbﬁ[g f, cos g, cos(a)}(pﬁ(afco Sln‘/IOJCl

2 s s
(3.140)
+(i ¢ cosyxo}//l,
4o,
@ = [b—:— 80, Bb, " 160, JiAH —Za’s&’ojbl J{— 200, fising, COS(“)J%
(3.141)

1 1 )
+ 7C, COS C, +| — 7C, SIn ,
[Zboa)s 0 ‘//o] 1 [ 4by0, 0 ‘//OJ(//l
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, 1 : 1 : 1
c :(—Epco sin Wojbl +[—§a)c —prosm x//o]cl +(—proco cos%]y/l , (3.142)

, o 9 25 3,9 1
=|-24+—Bh +— B0 +—wdb, ——— pcos
4 { bo 80 Bb, 160, Bib, 400 20, pLOSY, bl

S

1 . 1 1 1
+(ﬁ f,sing, cos(oc)}ol +(—C—O(a1 _02)_TTC° cosyy — ob, cosyonc1 (3.143)

0)5 0 Oa)s Oa)c

1 . 1 5.
+ gpbosml//ﬁwrco siny, |y,

(o Oa)s

Letting J,, = —%,ul, J, :% f,cosg, cos(er), J;; = ﬁrcosin AN :irc(f cosy,,

S S S

_01_

21
b,

J

9 25 9 .
gﬂlbo—ﬁﬁzbg—za)sé‘bo, J22 =— flS|n¢0 COS(Q),

;0

1 2 1 :
Jy= 7C, COSY,, J,y =— 7CySiny,, Jy =———pCysiny,,,
Wb, WL, 4o,

1 . 1
Jo =, ———— physiny,, J,, =——— ph,c, cosy,,
do 4o

c c

o, 9 25 9 1
Jy=—2+—Bby+—— B0 +=wob, —=—— pcosy,,
41 bo 8605 ﬂl 0 16(05 /82 0 4 0 2 , P Yo
Jus :—i(al—az)—cho Cosy, — P, cosyy
CO 2b0a)s 0*“c

Ju :ipbosin A +ch§ siny, .
20, o Vs

The stability of the non-trivial solution is investigated by evaluating the eigenvalues of
the Jacobian matrix of equations (3.140) - (3.143)

‘J11 —A ‘]12 ‘]13 ‘]14

‘]21 Jzz -4 ‘]23 ‘]24 -0
‘]31 0 ‘]33 —4 ‘]34 ’
J41 _‘]22 ‘]43 ‘]44 —4
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A+ A +mA7 +nd+n, =0. (3.144)

The non-trivial solution is stable if 7, >0,1,m, —1, > 0,7, (17, —12,) 13717, > 0,17, > 0.

1
3.5.2 simultaneous resonance =20, and @, =§a)s

In this case we introduce a detuning parameter o, and o, such that

Q=2w,+e0, , @,

= %a) +¢0, . (3.145)

Substituting equation (3.145) into equation (3.103) and (3.104), similarly as above

resonance, we have

(“2ie, A - pi, A-3B, A A-108,A°A” - 6w§5A25)+% f,Ae"" sin (a)

(3.146)
+rB%'*7" =0,
and
(~2i,B’ - 2iéw!B)+ pABe " =0. (3.147)

Substituting A=%a1e“91 B =%a2e“92, similarly in equations (3.36) — (3.41) , we obtain

the following equations describing the modulation of amplitude and phase of the motions

2/ :_Maﬁzi f,a,5in(~26, + o,T,)sin (@) + ——rasin (~6, + 26, + 20,T,), (3.148)
),

20

S S

Zaief—iﬂlaf —iﬂzaf 3 oa + L f,a, cos(~26, +o.T,)sin (e
4o, 8w, 2 20,
L (3.149)
+gra§ cos(-6, + 26, + 20,T,) =0,
a, = —fo,a, ——41 paa, sin(—6, + 26, +20,T,), (3.150)
a)C
and
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a0, + %pala2 cos(—6, +26, +20,T,)=0. (3.151)

LettingElzialfz,Ez=%ra§,E3:ipalaz,¢1 (—26,+0.T,)and ¢, =(-6,+26,+20,T,)

S N

Then, equations (3.148) - (3.151) becomes

2a) =—a, +E, sin(¢ )sin(a)+E,sin(g,), (3.152)
3 .

ad =0 ——ﬁla1 ——ﬁza1 —Ea)séaf +E, cos(¢, )sin(a)+E, cos(4, ), (3.153)

&, =-m,a, —E;sin(4, ), (3.154)

and

1 0 5 1

22 (¢ —24,) = 7301~ %0; +E,cos(g,). (3.155)

The steady state solutions correspond to constant a,a,,d,, ¢, that is a =@ =@ =

wa, =E,;sin(¢)sin(a)+E,sin(¢,) (3.156)

0@+ — ﬂ1a1 —ﬁ2a1 += a)5a1 E, cos(¢,)sin(«)+E, cos(¢,) (3.157)

And

ém,a, =—E;sin(¢,) (3.158)
1

a,0, _Z a,0, =E; COS(¢2) (3.159)

From equations (3.156) - (3.159), we have

2
(1a,)’ +(—0'1a1 +%ﬂlaf +%ﬂzaf +ga)s§af] =E;sin*(a)+E; + 2E,E,sin(«a), (3.160)

S

2
(ém,a,)° +(a202 —%azalj =E:. (3.161)
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Equations (3.160) and (3.161) are called frequency response equations.

3.6 Numerical Results and Discussions

The numerical study of the response and the stability of two nonlinear systems, are
conducted. Each system is represented by two (the plant and the absorber) coupled
second order nonlinear differential equations. The plant (oriented beam) has quadratic,
cubic and quintic nonlinearities and is subjected to external and parametric excitations.
The coupling terms are either produce the positive position absorber or nonlinear sink
absorber. All possible resonance cases were extracted and effects of different parameters
and controllers on the plant were discussed and reported.

3.6.1 Time-response solution

The time response of the nonlinear systems (3.3), (3.4) and (3.5), (3.6) has been
investigated applying fourth order Runge-Kutta numerical method and the results are
shown in Figs. (3.1) and (3.2), respectively. The phase plane method is used to give an
indication about the stability of the system. Figs. (3.1a) and (3.1b) show the non-resonant
behavior of the main system and the PPF absorber, respectively, with fine limit cycle for
the plant. Whereas, a chaotic behaviour is illustrated in Figs. (3.1c) and (3.1d) for both
the plant and the absorber at the simultaneous primary resonance case. The responses of
the plant and the NS absorber at non-resonance and at two resonance cases are shown in
Fig.3.2. It is clear that the response of the plant with the NS absorber is much better than
of PPF absorber. The NS might be more effective in controlling behavior of the main
system at resonance, which resulted in a slight chaotic response, Fig. (3.2c) or a

modulated amplitude, (Fig.3.2e).

3.6.2 Theoretical Frequency Response solution
The resonant frequency response equations of the main system (3.56, 57), with PPF
controller, and (3.122,123), with NS controller are solved numerically. The results are
shown in Figs. (3.3,4) and (3.5,6) which represents the variation of the steady state
amplitudes a; » against the detuning parameter o1, respectively, for different values of
other parameters. Fig. 3.3 shows the theoretical frequency response curves of the main
system to simultaneous primary resonance case. It can be noted from Fig. (3.3b,c,d,g)

that steady state amplitude increases as each of the natural frequency w, the linear
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damping coefficient p; and the nonlinear coefficients £, and ¢ decrease. Figure (3.3f)
indicates that as the excitation force amplitude f increases, the branches of the response
curves diverge away and the amplitude increases. The effect of the gain is shown in Fig.
(3.3h). Fig. 3.4 iluustrates the resonant frequency response curves of the PPF control for
various parameters. Each figure consists of two curves that either diverge away when the
gain p, and the steady state ampltiude of the plant increase, Fig.(3.4b,f). Or they converge
to each others as the natural frequency wc, and the linear damping { are decreased as
shown in Fig.(3.4c,d). The curves in Fig. (3.4e) shifts to the right as the detuning
parameter o increases. Fig. 3.5 shows similar effects of the parameters of the system that

were explained and disussed previously in Figs. (3.3) and (3.4).

0 100 2o 3o 40 300 400

Time 0.4 -0z 0 oz o4
amplitude

(@) Non-resonance time series of the main system

0 W W A0 A
Time A dE a0 0o e 0E 0a o

(b) Non-resonance time series of the controller system

—
Time —da dz -6z -d1 d 01 02 03 04 o5
amplinude

(c) Resonant time series of the main system when Q =, and o, =,
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0 mo oW W 4 W M
Time

(d) Resonant time series of the controller system when Q =, and o, = @,

Fig 3.1 Non-resonance and resonant time history solution of the main system and (PPF)
controller system when: o,=2.1, #,=15.0,6=0.03, 54 =0.0005,0=2.7, 5,=5.0, f,=0.4,

f,=0.2, =30 ,7=0.1,£=0.0001, p =10.0, », =6.5.

i m @ @ & @ 6 ™
Time 04 —dz2 a 02 04
amplitude

(a) Non-resonance time series of the main system

T T T
Time
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(b) Non-resonance time series of the controller system

i 1 m m i 50 &

Time

(c) Resonance time series of the main system when Q =, and o, = %a)

S
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Tima —0a4-03 -dz —D'ﬂly:ﬁz;;z'l 02 03 04 o5
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. . 1
(d) Resonance time series of the controller system when Q =, and o, = i

il

Time

amplitude

S

. . . 1
(e) Resonance time series of the main system when Q =2m,and o, = Ea)

T T T
T!'me 04 0z o Emdz 0z 0

S

. . 1
(f) Resonance time series of the controller system when Q =2®, and o, = Ew

Fig 3.2 Non-resonance and resonant time history solution of the main system and (NS)
controller system when: o,=2.1, 5,=15.0,6=0.03, 14 =0.0005,0Q=2.7, 3,=5.0, f,=0.4,
f,=02,0=30,7r=0.1,£=0.0001, p=0.1,w, =6.5.
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Fig 3.3 Theoretical frequency response curves to simultaneous primary resonance case in

the main system o,=2.7, 5= 15.0,6=10.03, 4 =0.0005 , 5,=5.0, f,=0.4, =30,7=0.1.
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Fig 3.4 Theoretical frequency response curves to simultaneous primary resonance case in

the (PPF) controller system @,=2.7 ,£ =0.0001 ,0=0.01,a,= 0.01, p =10.0.
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Fig 3.5 Theoretical frequency response curves to simultaneous resonance case in the

main system o,= 2.7, 5,=15.0,6=0.03, 14 =0.0005 , 3,=5.0, f,=0.4, «=30,7r=0.1
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Chapter 4

Conclusions

4.1 Summary

The control and stability of a non-linear differential equation representing the
non-linear dynamical one-degree-of-freedom inclined beam are studied. The inclined
beam has cubic and quintic nonlinearities subjected to external and parametric excitation
forces. Various active and passive control techniques have been applied. The
investigation includes the solutions applying both Runge-Kutta numerical method and the
perturbation technique. The stability of the system under the applied control techniques
is investigated applying both the phase plane and the frequency response equation. The
phase-plane is a good criterion for the presence of dynamic chaos. From the study it is
concluded that the negative velocity active controller is very effective tool in vibration
reduction at many different resonance cases. Passive controllers are very helpful in
suppressing the undesired vibration of the nonlinear dynamical system but more

expensive than active ones.

4.2 Future Work

There are many directions of future research in which the present work can be

extended, such as

1. investigate the non-linear vibration of the inclined beam to multi-excitations
(harmonic and parametric), tuned forces, mixed excitation forces.

2. apply other different tools of control such as time delay control technique, if
applicable.

3. validate the theoretical and numerical obtained results of the nonlinear

dynamical system experimentally.
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