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A survival response study was carried out by using D. melanogaster and the 

opportunistic pathogen B. cereus as the agent of selection. The spores of B. cereus, a 

gram-positive bacteria that can cause the human pathogen disease, were applied in our 

artificial laboratory selection. Selected lines were treated with B. cereus spores. Wound 

control lines were punctured with a needle dipped into sterile H2O. Control lines did not 

apply any treatment. Three different environmental treatments were used within each line 

type (autoclaved spores of B.cereus, sterile H2O and no treatment). The autoclaved spores 

were used as an inducer of the immune response in our study, with the purpose of 

boosting their innate immunity. Our hypothesis was that selected lines will live longer as 

they are immune to “B. cereus” spores. By comparing the average mortality rate of 

different line types, flies in selected lines were observed to die slowest, which was 

correspondent to our hypothesis. Selected and control lines were studied in different 

stress environment (starvation, desiccation, chill coma, oxidation) to investigate their 

survival response to stress. Those flies resistant to B. cereus spores in our selection were 

expected to survive longer than the flies in other line type under different stresses. To 

study the trade-off for these survival responses, energy components were measured. The



result showed that there was a change in lipid and glycogen concentration in selected flies, 

which confirmed our trade-off hypothesis between survival responses and energy 

component. 
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Introduction 

 

Drosophila melangaster as the model for immunity research 

Drosophila melangaster (D. melanogaster) has been used for basic and applied 

research for a long time. There are several reasons to choose D. melangaster as the 

genetic research model. First, it is easy to build a population in the lab environment. It 

only takes 7 to 10 days to breed a new generation under the room temperature. Besides, it 

has high fecundity. Females could lay up to 100 eggs per day and around 2000 in a 

lifetime (James Sang 2001). It has only four pairs of chromosomes, three autosomes and 

one sex chromosome, which are easy to study. Its complete genome structures have been 

sequenced (Adams et al. 2000). According to their gene sequences, D. melanogaster has 

been found to share highly similar genetic pathways with human beings. About 75% of 

known human disease genes have a recognizable match in the genome of D. 

melanogaster (Reiter 2001) and 50% of fly protein sequences have mammalian homologs. 

This is why D. melanogaster is widely used as an important eukaryote genetic model.  In 

addition, D. melanogaster share the similar innate immune system with human beings. 

The innate immune responses provide immediate defense against infection. It triggers 

ancient defense strategy. Different from adaptive immunity, innate immune responses can 

be activated rapidly after infection occurs. This response plays a crucial role in the early 

mortality control. The Toll receptor in Drosophila is known to be a homologue of Toll-

like receptors in mammals (Lemaitre and Hoffman 2007). The highly conserved innate 

immunity (Figure 1) is one of the reasons that Drosophila is a good model system with 

relevance to human health. 
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Laboratory Artificial Selection 

Artificial selection was conducted in our laboratory for this study. Different from 

laboratory natural selection, where populations evolves under some environments without 

human intervention, artificial selection is a way of intentional breeding for certain traits 

or combination of different traits from breeders over generations (Catherine Linnen 

2001). The purpose of artificial selection is to increase the genetic difference between 

different lines (selected and control lines). The result can be allele frequency changes in 

many genes of D. melanogaster. Through artificial selection, two types of responses will 

occur: direct responses and indirect responses. Direct responses to the selection are 

changes in the phenotype that was selected, while indirect (correlated) responses are 

defined as changes in characters, that occur as incidental consequences of selection. 

Direct responses have been studied previously in our laboratory (Ma et al. 2012). In this 

study, indirect responses, such as stress responses and energy storage of lipid and 

glycogen were studied.  

For artificial selections, there are advantages and disadvantages for studying 

evolution of physiological system.  The most important advantage is that we can simulate 

selection for a specific direction in the laboratory environment according to their 

experimental design. Enough replications in the experiment can especially provide a 

greater statistical power than in a similar natural environment (Garland and Adolph 1994). 

The artificial selection can be repeated in different laboratory environment with different 

populations, as the overall process is still similar.  Moreover it can be modified according 

to the experimental design to include not only selected and control lines. In this study, 
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other than control and selected lines, we designed to include another control line as the 

wound control of selected lines. 

However, there are still many disadvantages in artificial selection studies. First, 

indirect responses (correlated responses) are not always consistent among different 

experiments. Through artificial selection, many different factors can affect the 

experiment and cause the various results, e.g. inadvertent selection on controls or random 

errors caused by researchers. According to the population genetics theory, small 

population size can also cause inconsistenies. To avoid this, large population sizes are 

applied in our study. Different conditions between selection experiments and related 

assays might contribute to inconsistencies in the outcomes. For instance, while flies 

selected for starvation were maintained under the condition being lack of food source,  

correlated assays were performed under a condition with abundant of nutrition and food 

source (Zera and Harshman 2001). Genetic correlation were highly context-dependent. 

Thus the correlated responses observed in one laboratory might not be the same as in 

another laboratory (Clark 1987).  

Artificial selection is usually conducted inside the laboratory environment, which 

is not equivalent to natural environments. One major difference is that selection in the 

laboratory occurs in an environment with a super-abundant food source. Consequently, 

the results of such selection experiments can be "biased" through the accumulation of 

energy due to the unlimited amount of food during the response to the selection. This 

could explain why in some cases, storage of energy sources is common for stress 

resistance and longevity selection experiments (Chippindate et al. 1996, Harshman et al. 

1999, Djawdan et al. 1997, Van Herrewege and David 1997). Furthermore, artificial 
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selection in the laboratory is considered as the result by increasing intensity of the same 

pattern of selection. However, it cannot represent the fluctuating environments and 

selection in natural environment.  

 

Stress Response and Energy Storage 

This section will first cover the four stress responses conducted in this study, 

which is starvation, desiccation, cold response, and oxidation. Then it will explain the 

relationship between these stress responses and energy storage components, lipid and 

glycogen.   

 

Starvation Stress Response 

Under the laboratory artificial selection, D. melanogaster has presented resistance 

to environmental stress in many studies.  Stress resistance characters, such as starvation 

and desiccation were proven to be importance in evolutionary physiology (Hoffmann and 

Parsons 1991). Selection for postponed senescence increased the resistance of Drosophila 

adults to desiccation and starvation (Rose 1984, Service et al. 1985). Starvation 

resistance study and longevity were also associated by phenotypic manipulation 

experiments in D. melanogaster (Zwaan et al. 1991, Chippindale et al. 1993).  Levels of 

lipid storage were used to explain the relationship between starvation and longevity 

(Service 1987). However reduced metabolic rate could also simultaneously increase 

longevity and starvation resistance.  

During the starvation response (Figure 2), Adipokinetic hormone(AKH) activates 

cAMP-dependent protein kinase first, then this will stimulates lysine-specific 
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demethylase 1(Lsd1) and Brummer lipase, which is located at the surface of the 

intercellular lipid droplets, to release diacylglycerols to transport through the 

haemolymph by lipophorins (Leopold and Perrimon, 2007). When liberated 

diacylglycerols reach the oenocytes, they are converted to free fatty acids by the actions 

of lipases. During this process, a series of enzymatic reactions convert the fatty acids to 

acetyl-CoA, which can be used in the Krebs cycle for ATP synthesis in the later process 

(Hong and Park, 2010). In the later phases, the liberated free fatty acids are converted 

into ketone bodies to be used in the Drosophila brain for energy (Baker and Thummel 

2007, Hong and Park 2010). 

 

Desiccation Stress Response 

 Desiccation stresses also contribute to the energy storage and metabolism in  

D. melanogaster.  Drosophila living desert environment were reported to be more 

resistance to high temperature and desiccation than species living other habits (Stratman 

and Markow 1998, Krebs 1999, Gibbs and Matzkin 2001, Patton and Krebs 2001). The 

mechanisms responsible for these differences include expression of heat-shock proteins 

(Krebs 1999) and reduction of water-loss rates (Gibbs and Matzkin 2001).  

 

Cold Stress Response 

 In the evolutionary study, genetics and mechanisms of cold resistance can be 

productively investigated in Drosophila (Stanley et al. 1980, Kimura 1988, Gibert et al. 

2001), including cold resistance selection (Tucic 1979, Chen and Walker 1993, Watson 

and Hoffmann, 1996). But this selection study has proved to be difficult to conduct as its 
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carryover effects were brought on by stressful conditions. Cold exposed parents, 

especially mothers, often had the issue of their offspring with a low fitness and lack of 

replication (Hoffmann et al. 2003). This selection was replaced by chill coma recovery 

experiment. Chill coma is a narcosis-like state induced in many species under cool 

temperatures (Schenker 1984, Leather et al. 1993). This state is reversible in Drosophila 

upon returning to warmer temperature. The amount of time taken for flies to recover can 

be used as a reliable measure of cold tolerance (Gibert et al. 2001). As less severe stress 

levels are used, this method is likely to be more amenable to genetic analysis than 

methods based on mortality.  

 

Oxidation Stress Response 

Oxidation has been tested as a form of stresses, which is less obviously associated 

with endogenous energetics.  Oxidative stress, or the overabundance of reactive oxygen 

species (ROS) as an unavoidable consequence of aerobic respiration, has been implicated 

in aging (Harman 1957, Finkel and Holbrook 2000), neurodegenerative and 

cardiovascular disease (Barnham et al. 2004, Finkel 2005),  and the disruption of cell 

signaling processes that control cell growth and death (Giorgio et al. 2007) . 

 

Energy Storage  

In this study, we simulate four different stresses in the laboratory environment, 

which is starvation, desiccation, oxidation, and chill coma recovery. Energy storage 

components, such as lipid and glycogen concentrations, are measured for these stress 

responses. A previous study has reported that starvation and desiccation resistance were 
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positively correlated with lipid levels (van Herrewege and David, 1997). Lipids are 

considered as important fuels to store the energy for starvation resistance. It provides 

more than twice energy per gram as carbohydrates produced (Withers, 1992).  However , 

Glycogen is less energy-dense but provides slightly more metabolic water per gram than 

lipid.  So inspecting the lipid and glycogen concentration of D. melanogaster might 

provide us a good interpretation of the stress response result.  

 

Bacillus cereus (B. cereus) Selection for Resistance of D. melanogaster 

In this study, we choose Bacillus cereus to conduct the artificial selection in the 

laboratory environment. Bacillus cereus is a gram-positive human pathogen bacterium. It 

can be easily found in human food products. Previous studies have proved that B. cereus 

can be detected in the faecal samples of both adults and children (Ghosh 1978, Turnbull 

1985). It can also cause the food-borne diseases, like diarrhoeal syndrome and emetic 

syndrome (Kotiranta et al. 2000, Granum and Lund 1997) and local and systemic 

infection as a human opportunistic pathogen.  

The reason we choose B. cereus in this study is because it is closely related to 

Bacillus anthracis (B. anthracis), which has been used as a bioterrorism weapon against 

humans with a long history. However, previous study has proved that B. anthracis cannot 

infect D. melanogaster (Guillemin 1999). Thus we have to find another bacteria species, 

which is closely related to B. anthracis for our study. According to the phylogenetic tree, 

B. cereus shares the highest similarity to B. anthracis among other species (Figure 3). 

There are five other species in the B. anthracis cluster, which is B. thuringiensis, B.s 

mycoides, B. pseudomycoides, B. weihenstephanensis and B. cereus (Fratamico et al. 
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2005). B. cereus is further divided into seven phylogenetic groups (I to VII) based on 

thermotolerance ecological differences (Guinebretiere et al. 2008). B. cereus strain 

ATCC 10987 is grouped together with B. anthracis in group II based on fluorescent 

amplified fragment length polymorephism (fAFLP) (Økstad et al. 1999). It contains 

genes similar to those on virulence plasmids pXO1 (Read et al. 2003). B. cereus ATCC 

10987 became the strain of B. cereus we used to infect D. melanogaster. In our study, we 

used the live spores of B. cereus ATCC10987, as it is most similar to the B. anthracis 

spores, which has been used as bioterrorism weapon. The B. cereus strain used in our 

study was ATCC 10987. It was isolated from a survey of cheese spoilage in Canada in 

1930 (Smith 1952, Herron 1930). 

 

Experimental Design and Treatments 

The artificial selection process of this study has described in Ma et al. (2012). Our 

study has three different lines. The selected lines are flies punctured with B. cereus spores 

by a fine tungsten needle. This acute infection triggers their innate immune responses and 

simulates the pathogenic mechanism. The concentration of B. cereus spores in each 

generation is adjusted to reach 50% mortality rate, which is the goal for this laboratory 

selection. During this selection, another injury factor has to be considered. In this case, a 

wound-healing control groups are involved. Flies in these wound control lines are 

punctured with sterile water, which will cause the injury only but no bacteria infection is 

included. This is the “real” control line we are interested in, compared to the selected 

lines. The third line is regular control lines, without causing any perturbation to the flies.  

In this research, we used flies from generation 26 and relaxed two more 
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generations for stress responses and energy storage study. The purpose of relaxing two 

generation was to make sure they were not too stressed for the following experiments. 

Two generations later, three treatments are applied in each single line. The first treatment 

is to puncture flies with autoclaved (dead) spores. This is to induce their immune 

response. Another treatment is to puncture flies with sterile water, which aims to induce 

the response of wounding.  The last treatment is the control, where nothing was done. 

 

Specific Aims 

The goal of this study is to study the stress responses and energy storage in  

D. melanogaster selected for resistance to gram-positive human pathogen B. cereus. 

After the artificial selection in the laboratory, autoclaved spores of B. cereus ATCC 

10987 are induced to boost the immunity of D. melanogaster. Then stress survival studies, 

like starvation, desiccation, oxidation, and chill coma recovery were considered in the 

context of life history traits (life span, development time, and egg production). Energy 

storage compounds, glycogen and lipid concentration in D. melanogaster lines and 

treatments were also investigated. It was anticipated to illustrate a trade-off between 

stress responses and energy storage in the body of D. melanogaster. This could help to 

study the immunity response of D. melanogaster and pathogen related mechanism behind. 
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Figure 1. Homologous proteins described in the Drosophila Toll signaling pathway and 
the mammalian TLR signaling pathway.  
 
Source : Immunobiology. Garland Science ( Janeway et al., 2005.)  
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Figure 2. Metabolic signaling in Drosophila melanogaster during the starved state. 
 
Source:  Baker, 2007. 
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Figure 3. The maximum likelihood phylogenetic tree of Bacillus genera. All sequences 
were aligned on Clostridium botulinum Ba4 str. 657 (NC_012658). Values for 
frequencies less than 50% are not given. The scale bars represent the number of 
substitutions per base position. 
 
Source: Anthony Arguelles-Arias et al. 2009 
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Stress Responses and Energy Storage in Drosophila melanogaster Selected for 

Resistance to a Gram-Positive Bacillus cereus Spores 
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Abstract 

D. melanogaster was developed as a model for resistance to Bacillus infection 

using B. cereus spores as an agent of artificial selection. The direct response to selection 

in D. melanogaster survival after B. cereus infection was already investigated in our 

laboratory. In this study, the indirect responses to our laboratory selection, such as stress 

responses and energy storage of lipid and glycogen, were investigated. Stress survival 

studies against starvation, desiccation, oxidation, and chill coma recovery were 

performed in the context of life history traits (life span, development time, and egg 

production). Energy storage compounds, glycogen and lipid concentration in Drosophila 

melanogaster lines and treatments were investigated to explain the trade-offs of these 

survival responses under stress environment. Our expectation was to detect the resistance 

in selected line type by comparing the average mortality rate among different line types. 

In the starvation stress experiment, females in selected and wound control groups died 

more slowly than those in control group under all treatment conditions, while selected 

males died slower than control males under non-treatment conditions. In the desiccation 

experiment, selected males always died more slowly than flies in any other line type. In 

oxidation experiment, males in selected and wound control groups died more slowly than 

males in control group under all treatments conditions. In chill coma recovery experiment, 

selected females had a higher recovery time compared to flies in other line types.  These 

results were correspondent to our hypothesis, which illustrated a higher survival rate of 

selected flies. By investigating the energy component, males in selected lines had already 

presented a higher body lipid concentration, while females in control lines showed a 

higher glycogen concentration. This difference detected might be considered as one 
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explanation for our survival responses study.  By studying the trade off between 

different traits, our goal is to understand the evolved resistance and/or tolerance 

mechanism behind.  
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Introduction 

Stress responses may be caused by a trade-off between different traits. A 

phenotypic trade-off was observed between reproduction and two other traits, longevity 

and starvation resistance (Chippindale et al. 1993). According to Chippindale et al. 1993, 

dietary stimulation of reproduction might lead to a net depletion of lipids reserves, 

resulting in decreasing starvation resistance. Selection for starvation and desiccation 

resistance have increased mean longevity and reduced early fecundity, which represented 

a positive genetic correlation between these stress-resistance traits and longevity. Besides, 

a negative genetic correlation was detected between such survival-related characters and 

early fecundity (Luckinbill et al. 1984, Rose 1984, Serivce and Rose 1985, Rose et al. 

1990, 1992, Leroi et al. 1994 a, 1994 b). Starvation-selected populations of D. 

melanogaster were detected to accumulate high lipid and carbohydrate levels (Guillemin 

J., 1999, Chippindale et al. 1998), while desiccation-selected populations were detected 

to store less lipids but much more glycogen than control populations (Djawdan et al., 

1998). 

A trade-off between oxidation stress responses and lifespan has been observed 

(Harman 1956, Wallace 1992, Dudas and Arking 1995, Martin et al. 1996). A cost of 

female reproduction increasing and oxidative stress resistance was studied by using 

Methoprene, a juvenile hormone III analog, to stimulate vitelogenesis and egg production 

(Salmon et al. 2001). Temperature stress, like cold and heat environment, also played a 

crucial role for detecting the trade-off between phenotypic responses and their related 

proteins. For example, heat shock proteins (Hsps) were important in environmental stress 

tolerance and in thermal adaptation (Feder and Hoffman 1999, Hoffmann AA et al. 2003, 
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Frydenberg et al. 2003, Sørensen et al. 2003). The report of a cold-induced response in 

insects was provided by Burton et al. (1988) who noticed the induction of a 70 kDa 

protein after a cold treatment.  

In this study, we will investigate the stress responses and energy storage in D. 

melanogaster selected for resistance to gram-positive human pathogen B. cereus. Stress 

survival responses, including starvation, desiccation, chill coma recovery, and oxidation 

stresses, will be studied as the indirect responses and energy storage compounds, 

glycogen and lipid body concentration will be considered as the trade-offs. By comparing 

the mean mortality rate of D. melanogaster in different line types, we expected to see a 

resistance tendency of those flies in selected lines and their associated energy 

components concentration changes as the trade offs for their survival responses.  

 

Materials and Methods 

 

Fly Population 

The base population and subpopulation used for the selected and control lines had 

been described in Ma. et al. (2012). More than 10,000 individuals were maintained in a 

laboratory environment, and then divided into 9 subpopulations for laboratory artificial 

selection. In our laboratory artificial selection, there were nine lines from outbred 

populations which evolved independently; selected lines, wound-control lines and no 

perturbation lines. Each line had three replicated lines and within each replication, 1000 

males and 1000 females were used as breeders in each generation.  

Selected lines (S) are flies injected with B. cereus spores, a species that is closely 
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related to B. anthracis. Spores of B. anthracis have been used as a bioterrorism agents 

and an ultimate goal of the selection experiment is to identify spore resistance genes in D. 

melanogaster. The spores were introduced by puncturing them into the thorax with a fine 

needle. The concentration of B. cereus spores was adjusted to result in 50% mortality in 

each generation. During this selection, another factor injury had to be considered. In this 

case, a wound-healing control groups were involved. Flies in these wound control lines 

(CI) were punctured with sterile water, which might cause the injury only, but no bacteria 

infections. This was the “real” control line we were interested in, compared to the 

selected lines. The third line was no perturbation line (Cn), without any injury in each 

generation.   

 

Treatments 

In the present study, we used flies from the second generation without selection 

after 26 generations of selection. After two generations, 200 males and 200 females 

virgin flies were collected for treatments. Three different conditions were used for each 

line (autoclaved spores, sterile water and no treatment). Autoclaved spores (As) are dead 

B. cereus spores. Live B. cereus spores were left into autoclaved machine to generate 

dead B. cereus spores. For the autoclaved spores, they were not supposed to kill the flies 

as they had lost their pathogenic toxicity. Instead they were just to work as an inducer to 

boost flies innate immunity. For our study, the dose concentration for autoclaved B. 

cereus spores was 5 × 108 g/ml. Another treatment was the sterile water (H2O), which was 

used as the wound control for the B. cereus spores treatment. No treatment (Non) was 

also used in the study. The detailed experiment design was illustrated in Figure 1.  
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Stress Response  

For the following stress response study (starvation, desiccation, chill coma 

recovery and oxidation), we used flies from generation 26 and relaxed for two 

generations. When the flies were hatched, virgin flies were collected in both sexes. After 

3 to 5 days later, three different treatments mentioned above were applied for each line.  

For each treatment, 50 males and 50 females were tested among 9 lines. Then mortality 

rate were recorded up to 72 hours as the result of these treatments. Those survival flies 

were used for the following stress responses experiments. 

 

Starvation Assay 

For the starvation experiment, the survival flies after the treatments were kept in 

the environment without adequate food. Within each cage, 50 males or females were fed 

with agar. Then put all the cages into a huge bag with wet paper towel inside. The 

purpose of this is to keep the humidity of overall environment.  Vials with agar food and 

wet paper towel were changed every 48 hours. Then the mortality rate was monitored 

every 8 hours and the number of dead flies was recorded until all flies in the cage were 

dead.  

 

Desiccation Assay 

For the desiccation experiment, we put each single fly in one empty vial and taped 

the vial along the side of a glass tank. The bottom of tank was covered with desiccant, 

which was used to dry the atmosphere in the tank. An IButton (Maxim Integrated 

Products, Inc) was left inside the tank to monitor the humidity and temperature of the 
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overall tank environment. Then top of the tank was sealed with glass and vaseline. 

Every 60 minutes, the mortality rate of each fly was monitored until all flies were dead.  

 

Chill Coma Recovery 

For the chill coma recovery experiment, we used the similar methods described in 

Colinet et al (2010).  Flies were kept in the empty vials and plug tightly. Then these vials 

were embedded in ice for 5 hours. Ice should cover upto the bottom of the plugs. Five 

hours later, flies were removed from ice box and kept on a 40 cm × 27 cm white tray.  

Then flies were monitored for 60 -75 minutes and the time to standing was recorded as 

each fly. After 75 minutes later, the remaining flies were considered as non-recovering 

flies and recorded as dead. Average recovery time for each line was calculated at the 

same time.  

 

Oxidation Assay 

For the oxidation experiment, the flies were fed with food full of nutrients, which 

had yeast and cornmeal nutrients. 50 males and 50 females were kept in vials with cotton 

plugs and flies were transferred to new food every 48 hours. All the vials were kept 

inside a huge sealed bag, with one side connected to oxygen tank. The oxygen tank had 

the 95 % pure oxygen inside and continuously releasing 5 psi to the bag. One bottle of 

water was connected between the oxygen tank and experiment bag, which was used to 

maintain humidity. Then flies were monitored every 8 hours and the number of dead flies 

was recorded until all flies were dead. 
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Lipid Assay 

The lipid and glycogen experiments used flies from generation 37 after relaxing 

selection for two generations. Lipid concentration was measured by the method from Van 

Handel (1985).  Ten males and ten females were homogenized in 100ul chloroform: 

methnanol (2:1) using plastic pestles and 1.5 ml Eppendorf. Then 0.88% KCl was added 

into the homogenized solution and centrifuged them with low speed (5000 rpm). After 

centrifugation, solvent was added to a glass tube. Triolein was prepared into different 

concentration (0.1 g/ml. 0.2 g/ml, 0.6 g/ml, 0.8 g/ml, 2 g/ml, 3 g/ml, 4 g/ml) as standard 

to determine the standard curve and add into 2:1 chloroform : mathnanol to generate a 

total solution volume of 1ml . The glass tubes with samples and standards were incubated 

in water bath at 90 degree Celsius for 10 minutes. Ten minutes later, sulfuric acid (30 ul) 

was added into the glass tube, then left them into the water bath with same temperature 

for another 10 minutes. After this period, the tubes were removed from water bath and 

allowed to cool to room temperature. Thereafter, vanillin-phosphoric acid reagent (1 ml) 

was added and mixed gently. 250 ul of each sample and standard were transferred to each 

cell in 96 well plates and read in a spectrophotometer at 525 nm. Concentrations of lipid 

present in different treatment for each line were determined by comparison to the 

standard curve. 

 

Glycogen Assay 

Quantify of glycogen was measured as reported in Tiffany (2012). Ten males and 

ten females were homogenized in 200 ul of a 2% sulfate solution in water by using plastic 

pestles and 1.5 ml Eppendorf. Then 1ml of methanol was added to the homogenized 
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samples prior to a 1-minute centrifugation at 2000 rpm. After centrifugation, glycogen 

within the sample was present in the precipitated sodium sulfate with fly tissue.  An 

anthrone reagent was added to the glycogen solution to generate a total reaction volume 

of 5 ml.  This solution was mixed and left into water bath at 90 degree Celsius for 10 

minutes. Ten minutes later, the solution was removed from water bath and waited to cool 

to room temperature. Optical density readings were obtained for each sample using the 

Versa Max microplate reader (Molecular Devices) reading at 625 nm. Glycogen was used 

at different concentrations (1.0 g/ml, 2.0 g/ml, 2.5 g/ml, 5 g/ml, 7.5 g/ml) as the standard 

to establish a standard curve at 625 nm at the same time. The concentrations of glycogen 

was determined by comparison to the standard curve. 

  

Statistical Analysis 

Our statistical analysis was conducted using SAS 9.3 (SAS 2009). The data are 

analyzed using a mixed model. Fix effects include line types and treatments. Random 

effects included linear nested with line types in addition to the residual. All the data were 

created as continuous data. A mixed model analysis of variance was used with line types 

and treatments as fixed effects. Random effects consisted of variation among the three 

lines of each type. Variation among lines of the same type was nested within fixed effects 

for the analysis.  

For the starvation, desiccation, and oxidation assays, the comparison of average 

death time for reaching 50% mortality rate among different lines and treatments were 

analyzed. For the chill coma recovery assay, using statistical analysis also compared a 

total recovery time of flies among different lines and treatments. The lipid and glycogen 
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assays were determined for all lines, by comparing different treatments. Males and 

females were also analyzed separately to compare the sex difference between treatment 

and line types for each experiment. 

 

Results 

 

Starvation Assay 

The average mortality rate among different lines types for males treated with 

autoclaved spores treatments was presented in Figure 2. The selected males had a lower 

mortality compared to the other two groups. The same situation occurred in control 

injected and non-perturbation males (Figure 3 and Figure 4), especially for non-

perturbation males (Figure 4). There was an interaction detected between treatments and 

line types for male flies (P = 0.02) (Table 1). We thus inspected the simple effect of the 

treatment and line type interaction. Based on the statistical analysis, males in control lines 

with treatment were dying significantly faster than selected males (P = 0.0023) (Table 2).  

 For the female flies, control females were dying significantly faster than CI and S 

females under all three treatments conditions (Figures 5, 6, and 7). The statistical analysis 

showed no interaction detected between line types and treatments. In this case, treatment 

effect did not affect the result of line types. So we only need to inspect the line type 

effects (main effect) for female flies. The result illustrated a significant difference 

between selected and non-perturbation females, also between wound control females and 

non-perturbation females, with P value of 0.0406 and 0.0074 separately (Table 3). In this 

case, the selected and control injected females survived acute starvation longer than those 
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in non-perturbation lines.  

 

Desiccation Assay 

When compared the average mortality rate of males under H2O injected treatment 

of different line types (Figure 9), selected males died significantly slower than other two 

lines with P value of 0.0005 (Table 4). There was no significant difference between 

injections with autoclaved spores compared to non-perturbation treatment (Figures 8 

and10). But there was an interaction between line types and treatments (P = 0.0142) 

(Table 1). Besides, there was a significant difference detected between wound control and 

non-perturbation lines (P = 0.0213) (Table 4).  Without any treatment, wound control 

lines survived longer than non-perturbation lines (P = 0.0344) (Table 4).  

Female flies did not present any difference between line types under all treatments 

conditions (Figures 11, 12, and 13). Comparing the survival time when they reached 50% 

mortality rate, there was no interaction detected between line types and treatments for 

females, and also no significantly difference detected between line types (Table 5).  

 

Chill Coma Recovery 

For chill coma recovery assay, there was no significantly difference of total 

recovery time detected between line types for male flies (Table 6) and the overall mean 

of males for total recovery time under among different line types were very close under 

each treatment (Figures 14, 15, and 16). However for female flies, selected group had a 

quicker recovery time than the other two groups under autoclaved spore treatment (Figure 

17). There was a significant interaction between line types and treatments among females 
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(P < 0.0001) (Table 1).  Selected females recovered significantly slower under 

autoclaved spores treatment than females in non-perturbation lines (P = 0.0014) (Table 

7). Under H2O injected treatment, a significant difference of recovery time among 

selected females and H2O injected females were detected (P = 0.004) (Figure 18). 

Without any treatment, there was also a significantly difference of recovery time among 

different line types (P = 0.0022 and P = 0.0062) (Figure 19).  

 

Oxidation Assay 

For oxidation assay, the no-perturbation control males (Cn) died faster than other 

two line types under all three treatments (Figures 20, 21, and 22). Based on the statistic 

analysis, when flies reach 50% mortality rate, control males had a significantly lower 

survival time compared to the other two groups under all treatments (P = 0.0069 and P = 

0.0002) (Table 8). However, for female flies, selected groups died slower than other two 

groups for some specific time point, especially under H2O treatment (Figure 24), but 

there was no interaction detected between line types and treatment effect for females at 

50% mortality and no significantly difference of survival time among female line types 

(Table 9). 

 

Lipid Assay 

For lipid assay, the average lipid concentration in selected males was higher than 

other two groups under all treatment conditions, followed by H2O injected groups 

(Figures 26, 27, and 28). There was a significantly difference of male lipid concentration 

detected among lines types (P = 0.0071) (Table 11). Selected males presented a 
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significantly higher lipid concentration than non-perturbation lines (P = 0.0019) (Table 

12). However for female flies, the average lipid concentration between different line 

types for under each treatment condition (Figures 30, 31, and 32) did not significantly 

among line types (Table 13).  

 

Glycogen Assay 

The average glycogen concentration of selected males was higher than other two 

line types, especially under autoclaved spores treatment (Figure 32). There was no 

interaction detected among line types and treatments, and no significant difference 

detected among line types (Table 14). However, for females, control groups presented a 

significantly higher glycogen concentration than any other two groups, especially under 

autoclaved spores treatment (Figure 35) and no treatment condition (Figure 37). 

Significant differences in glycogen concentration were detected under all treatments 

among selected females and non-perturbation females (P = 0.0407) (Table 15). 

 

Discussion 

Evolution of resistance to bacterial spores has been observed in laboratory and 

field population of Aedes aegypti populations when Bacillus thuringiensis subspecies 

israelensis was the pathogen (Goldman et al. 1985). In our study, the level of resistance 

to B. cereus spores was many-fold greater than previously observed for selection on A. 

aegypti using B. thuringiensis spores. After 26 generations, the dose concentration of B. 

cereus for artificial selection have increased to 1.47×1010 g/ml from 2×106 g/ml in the 

first generation of selection. The selected lines are considered as resistant to B. cereus 
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spores. Moreover, autoclaved spores are used as an inducer of the immune response in 

our study. “Deployment” is the cost of maintaining the immune system in an activated 

state under conditions where its function is unnecessary and indeed detrimental, and this 

can also exert a cost (McKean and Lazzaro 2011). This is in many ways analogous to the 

detrimental effects of inflammation on multiple systems in humans (e.g. metabolic 

disorders, arthritis) as illustrated by the inflammatory bowel diseases (Anderson et al. 

2011). Life history traits, like life span, development time and egg production, have also 

been investigated in the present study (Ma et al. 2012). Survival flies in selected lines 

might present indirect responses to the stress conditions as the effect of selection 

resistance to B. cereus spores. In this stress survival studies, starvation, desiccation, 

oxidation and chill coma recovery will be consider as different stress conditions for the 

experiment flies and stress responses are studied as the trade-off behavior for comparison 

among different line types and treatments.  

For starvation, desiccation and oxidation experiments, we compared the overall 

mortality rate among different line types. For the chill coma recovery experiment, we 

compared the overall recovery time among different line types. In our hypothesis, 

selected lines were supposed to survive longer and recover slower compared to the other 

two line types, as they were resistant to B. cereus spores.  

Our results support our hypothesis. For starvation assay, control females died 

significantly faster than selected and control injected females under all treatment 

conditions (Table 3), while selected males died significantly slower than control males 

under non- perturbation situations (Table 2). For desiccation assay, selected males always 

died slower than other two line types (Table 10). For chill coma recovery assay, selected 
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females presented significantly higher recovery time for cold environment than other 

two line types, under autoclaved spores treatment and non-perturbation treatment (Table 

7).  For oxidation assay, both selected and control injected males died significantly 

slower than non-perturbation males under all treatments (Table 8). All the stress survival 

studies above proof our hypothesis that selected flies resistant to B. cereus spores might a 

stronger immune system, which could help them resist to the other stress environment.  

To investigate the physiological mechanism for these indirect responses, energy 

storage components were studied. In our experiment, we inspected the lipid and glycogen 

concentration as their energy component. Previous studies have reported that starvation 

and desiccation resistance were positively correlated with lipid levels (van Herrewege 

and David, 1997). Desiccation-selected populations were reported to store fewer lipids 

but much more glycogen than control populations (Djawdan et al., 1998). In our result, 

selected males presented a significantly higher body lipid concentration than males in 

control lines (Table 12), while control females presented a significantly higher glycogen 

concentration than selected females (Table 15).  This could explain the survival responses 

results of starvation and desiccation experiment.  

 A future plan of this study could work on the insight into the evolution of B. 

cereus spore infection resistance and/or tolerance in D. melanogaster.  According to 

Schneider (2008), when challenged with a pathogen, a host would evolve two types of 

defense mechanisms to increase its fitness, which is tolerance and resistance mechanism. 

Antimicrobial peptides and phenol oxidases activity of B. cereus selected flies would 

provide insight into mechanisms of resistance or tolerance of our “D.melangaster” lines 

selected using “B. cereus” spores.
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Figure 1. Experiment design of line types and treatments.  
Three line types: Selected line (S), wound control line (CI) and control line (Cn). Each 
line type has 3 replications. Within each line, three treatments are applied: autoclaved 
spores (As), sterile water (H2O) and no treatment (Non). Each treatment also has 3 
replications. 
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Figure 2. A comparison of average mortality rate for autoclaved spores (As) injected 
male flies from the selected and two control lines for starvation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 3. A comparison of average mortality rate for sterile H2O injected male flies from 
the selected and two control lines for starvation assay. The mean was determined from 
the replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 4. A comparison of average mortality rate for control male flies without any 
treatment (Non) from the selected and two control lines for starvation assay. The mean 
was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines. 
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Figure 5. A comparison of average mortality rate for autoclaved spores (As) injected 
female flies from the selected and two control lines for starvation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 6. A comparison of average mortality rate for sterile H2O injected (H2O) female 
flies from the selected and two control lines for starvation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 7. A comparison of average mortality rate for control female flies without any 
treatment (Non) from the selected and two control lines for starvation assay. The mean 
was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines. 
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Figure 8. A comparison of average mortality rate for autoclaved spores (As) injected 
male flies from the selected and two control lines for desiccation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 9. A comparison of average mortality rate for sterile H2O (H2O) injected male 
flies from the selected and two control lines for desiccation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 10. A comparison of average mortality rate for control male flies without any 
treatment from the selected and two control lines for desiccation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 11. A comparison of average mortality rate for autoclaved spores (As) injected 
female flies from the selected and two control lines for desiccation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 12. A comparison of average mortality rate for H2O injected (H2O) female flies 
from the selected and two control lines for desiccation assay. The mean was determined 
from the replicate lines of the same type: S-selected lines, CI-lines punctured with H2O 
(wound control), Cn-no perturbation lines. 
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Figure 13. A comparison of average mortality rate for control female flies without any 
treatment (Non) from the selected and two control lines for desiccation assay. The mean 
was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines. 
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Figure 14. A comparison of total recovery time for autoclaved spores (As) injected male 
flies from the selected and two control lines for chill coma recovery assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
 
 



	   51	  

 
Figure 15. A comparison of total recovery time for H2O injected (H2O) male flies from 
the selected and two control lines for chill coma recovery assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines 
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Figure 16. A comparison of total recovery time for male flies without any treatment (Non) 
from the selected and two control lines for chill coma recovery assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines 
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Figure 17. A comparison of total recovery time for autoclaved spores (As) injected 
female flies from the selected and two control lines of chill coma recovery assay. The 
mean was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines 
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Figure 18. A comparison of total recovery time for H2O injected (H2O) female flies from 
the selected and two control lines for chill coma recovery assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines 
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Figure 19. A comparison of total recovery time for female flies without any treatment 
(Non) from the selected and two control lines for chill coma recovery assay. The mean 
was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines 
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Figure 20. A comparison of average mortality rate for autoclaved spores (As) injected 
male flies from the selected and two control lines of oxidation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 21. A comparison of average mortality rate for H2O injected (H2O) male flies 
from the selected and two control lines of oxidation assay. The mean was determined 
from the replicate lines of the same type: S-selected lines, CI-lines punctured with H2O 
(wound control), Cn-no perturbation lines. 
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Figure 22. A comparison of average mortality rate for control male flies without any 
treatment (Non) from the selected and two control lines for oxidation assay. The mean 
was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines. 
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Figure 23. A comparison of average mortality rate for autoclaved spores (As) injected 
female flies from the selected and two control lines of oxidation assay. The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
 
 
 
 
 
 



	   60	  

 
Figure 24. A comparison of average mortality rate for H2O injected (H2O) female flies 
from the selected and two control lines of oxidation assay. The mean was determined 
from the replicate lines of the same type: S-selected lines, CI-lines punctured with H2O 
(wound control), Cn-no perturbation lines. 
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Figure 25: A comparison of average mortality rate for control female flies without any 
treatment (Non) from the selected and two control lines for oxidation assay. The mean 
was determined from the replicate lines of the same type: S-selected lines, CI-lines 
punctured with H2O (wound control), Cn-no perturbation lines. 
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Figure 26. A Comparison of male average lipid concentration between selected and two 
different control lines with autoclaved spores injection (As). The mean was determined 
from the replicate lines of the same type: S-selected lines, CI-lines punctured with H2O 
(wound control), Cn-no perturbation lines. 
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Figure 27. A Comparison of male average lipid concentration between selected and two 
different control lines with H2O injection (H2O).  The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 28. A Comparison of male average lipid concentration between selected and two 
different control lines without any treatment (Non). The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 29. A Comparison of female average lipid concentration between selected and two 
different control lines with autoclaved spores injection (As). The mean was determined 
from the replicate lines of the same type: S-selected lines, CI-lines punctured with H2O 
(wound control), Cn-no perturbation lines. 
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Figure 30. A Comparison of female average lipid concentration between selected and two 
different control lines with H2O injection (H2O) . The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 31. A Comparison of female average lipid concentration between selected and two 
different control lines without treatment (Non). The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 32. A Comparison of male average glycogen concentration between selected and 
two different control lines with autoclaved spores injection (As). The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 33. A Comparison of male average glycogen concentration between selected and 
two different control lines with H2O injection (H2O). The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 34. A Comparison of male average glycogen concentration between selected and 
two different control lines without treatment (Non). The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 35. A Comparison of female average glycogen concentration between selected and 
two different control lines with autoclaved spores injection (As). The mean was 
determined from the replicate lines of the same type: S-selected lines, CI-lines punctured 
with H2O (wound control), Cn-no perturbation lines. 
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Figure 36. A Comparison of female average glycogen concentration between selected and 
two different control lines H2O injection (H2O). The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Figure 37. A Comparison of female average glycogen concentration between selected and 
two different control lines without treatment (Non). The mean was determined from the 
replicate lines of the same type: S-selected lines, CI-lines punctured with H2O (wound 
control), Cn-no perturbation lines. 
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Table 1. P values of different treatments and lines comparison for each stress response 
assay * by Generalized Linear Mixed Model in SAS 9.3.  
 

 
*Starvation, desiccation and oxidation is compared by hours when flies reach 50% 
mortality rate; chill coma is compared by average recovery hours. 
 
 ** Trt–treatments: autoclaved spores(As),  sterile H2O (H2O) and no treatment (Non). 
Lines – line types: selected lines(S), wound control lines(CI) and non-perturbation lines 
(Cn).  

Overall Comparisons Starvation Desiccation Chill Coma Oxidation 

 
Female Male Female Male Female Male Female Male 

Lines 0.0201 0.0798 0.1758 0.0563 0.4813 0.2529 0.4882 0.0007 

Trts** 0.7533 0.0025 <0.0001 <0.0001 0.1654 0.5167 0.0147 0.7129 

Lines*trts** 0.8625 0.0204 0.2246 0.0142 <0.0001 0.3906 0.7712 0.7706 

 
Lines 

         

 
Cn Trts** 0.4717 0.0029 0.0029 <0.001 0.0012 0.8235 0.1352 0.8401 

 
CI Trts** 0.9121 0.2856 0.0046 <0.001 0.0028 0.7452 0.3618 0.5638 

 
S Trts** 0.9267 0.0084 0.2484 <0.001 0.0296 0.1080 0.1085 0.6135 

 
Trts** 

         

 
As Lines 0.5434 0.1807 0.5253 0.7357 0.0055 0.7739 0.6267 0.0423 

 
H2O lines 0.2611 0.1398 0.0260 0.0021 0.0145 0.0773 0.5171 0.0727 

 
Non lines 0.0681 0.0088 0.7711 0.0816 0.0035 0.5424 0.6144 0.0645 
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Table 2. A comparison of average survival time for male flies among different line type 
under starvation assay at 50% mortality rate. Estimate represents the mean comparison 
between line types under same treatment. 
 

Differences of trt*selection Least Squares Means 
Effect trt selection trt selection Estimate S.E. DF t Value Pr > |t| 

trt*Selection As CI As Cn -13.9844 7.7151 72 -1.81 0.0741 
trt*Selection As CI As S -3.8667 7.7151 72 -0.50 0.6178 
trt*Selection As Cn As S 10.1178 7.7151 72 1.31 0.1939 
trt*Selection H2O CI H2O Cn 11.0522 7.7151 72 1.43 0.1563 
trt*Selection H2O CI H2O S -3.9067 7.7151 72 -0.51 0.6141 
trt*Selection H2O Cn H2O S -14.9589 7.7151 72 -1.94 0.0564 
trt*Selection Non CI Non Cn 9.7000 7.7151 72 1.26 0.2127 
trt*Selection Non CI Non S -14.6744 7.7151 72 -1.90 0.0612 
trt*Selection Non Cn Non S -24.3744 7.7151 72 -3.16 0.0023 

 
Trt–treatments: autoclaved spores(As),  sterile H2O (H2O) and no treatment (Non).  
Selection – line types: selected lines(S), wound control lines(CI) and non-perturbation 
lines (Cn).  
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Table 3. A comparison of average survival time for female flies among different line 
types under starvation assay at 50% mortality rate. Estimate represents the mean 
comparison between line types under all treatments. 
 

Differences of selection Least Squares Means 
selection selection Estimate S.E. DF t Value Pr > |t| 

CI Cn 9.0285 4.3267 70 2.09 0.0406 
CI S -2.8974 4.3267 70 -0.67 0.5053 
Cn S -11.9259 4.3267 70 -2.76 0.0074 

 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
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Table 4. A comparison of average survival time for male flies among different line type 
under desiccation assay at 50% mortality rate. Estimate represents the mean comparison 
between line types under same treatment. 

 
Trt–treatments: autoclaved spores (As), sterile H2O (H2O) and no treatment (Non).  
 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
 
 
 
 
 
 
 
 
 

Differences of trt*selection Least Squares Means 
Effect trt Selection trt Selection Estimate S.E. DF t Value Pr > |t| 

trt*Selection As Cl As Cn 0.1595 0.5033 259 0.32 0.7516 
trt*Selection As Cl As S -0.2265 0.5032 259 -0.45 0.6531 
trt*Selection As Cn As S -0.3859 0.4947 257 -0.78 0.4360 
trt*Selection H2O Cl H2O Cn -1.1484 0.4958 257 -2.32 0.0213 
trt*Selection H2O Cl H2O S -1.7503 0.5001 259 -3.50 0.0005 
trt*Selection H2O Cn H2O S -0.6019 0.4974 258 -1.21 0.2273 
trt*Selection Non Cl Non Cn 1.0703 0.5034 259 2.13 0.0344 
trt*Selection Non Cl Non S 0.2156 0.4958 257 0.43 0.6640 
trt*Selection Non Cn Non S -0.8547 0.4980 258 -1.72 0.0873 
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Table 5. A comparison of average survival time for female flies among different line 
type under desiccation assay at 50% mortality rate. Estimate represents the mean 
comparison between line types under all treatments.   
 

Differences of Least Squares Means 
Effect Selection Selection Estimate S.E. DF t Value Pr > |t| 

Selection Cl Cn 0.8287 0.5059 259 1.64 0.1026 
Selection Cl S 0.01852 0.5059 259 0.04 0.9708 
Selection Cn S -0.8102 0.5059 259 -1.60 0.1105 

 
Selection – line types: selected lines (S), wound control lines(CI) and non-perturbation 
lines (Cn).  
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Table 6. A comparison of average recovery time for male flies among different line 
type under chill coma recovery assay. Estimate represents the mean comparison between 
line types under all treatments.   
 

Differences of Least Squares Means 
Effect Selection Selection Estimate S.E. DF t Value Pr > |t| 

Selection Cl Cn 0.01157 0.6461 636 0.02 0.9857 
Selection Cl S -0.9230 0.6461 636 -1.43 0.1536 
Selection Cn S -0.9345 0.6461 636 -1.45 0.1485 

 
Selection – line types: selected lines(S), wound control lines(CI) and non-perturbation 
lines (Cn).  
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Table 7. A comparison of average recovery time for female flies among different line 
type under chill coma recovery assay. Estimate represents the mean comparison between 
line types under same treatment.   
 

Differences of trt*selection Least Squares Means 
Effect trt Selection trt Selection Estimate S.E. DF t Value Pr > |t| 

trt*Selection As Cl As Cn 1.0425 0.8238 634 1.27 0.2062 
trt*Selection As Cl As S -1.6058 0.8238 634 -1.95 0.0517 
trt*Selection As Cn As S -2.6483 0.8238 634 -3.21 0.0014 
trt*Selection H2O Cl H2O Cn 1.5000 0.8238 634 1.82 0.0691 
trt*Selection H2O Cl H2O S 2.3775 0.8238 634 2.89 0.0040 
trt*Selection H2O Cn H2O S 0.8775 0.8238 634 1.07 0.2872 
trt*Selection Non Cl Non Cn -2.5317 0.8238 634 -3.07 0.0022 
trt*Selection Non Cl Non S -2.2615 0.8238 634 -2.75 0.0062 
trt*Selection Non Cn Non S 0.2701 0.8238 634 0.33 0.7431 

 
Trt–treatments: autoclaved spores (As), sterile H2O (H2O) and no treatment (Non).  
 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
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Table 8. A comparison of average survival time for male flies among different line type 
under oxidation assay at 50% mortality rate. Estimate represents the mean comparison 
between line types under all treatments.   
 

Differences of Least Squares Means 
Effect selection selection Estimate S.E. DF t Value Pr > |t| 

selection CI Cn 3.8963 1.4000 72 2.78 0.0069 
selection CI S -1.5222 1.4000 72 -1.09 0.2805 
selection Cn S -5.4185 1.4000 72 -3.87 0.0002 

 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
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Table 9. A comparison of average survival time for female flies among different line 
type under oxidation assay at 50% mortality rate. Estimate represents the mean 
comparison between line types under all treatments. 
 

Differences of Least Squares Means 
Effect selection selection Estimate S.E. DF t Value Pr > |t| 

selection CI Cn 2.0285 1.7161 70 1.18 0.2412 
selection CI S 0.6767 1.7161 70 0.39 0.6946 
selection Cn S -1.3519 1.7161 70 -0.79 0.4335 

 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   83	  
Table 10. The overall mean and standard Error (S.E.) among different treatments and 
lines comparison for each stress response.  

 
*starvation, desiccation and oxidation is compared by hours when flies reach 50% 
mortality rate, chill coma is compared by average recovery hours. 
 
 ** Trt–treatments: autoclaved spores(As),  sterile H2O (H2O) and no treatment (Non).  
Lines – line types: selected lines(S), wound control lines(CI) and non-perturbation lines 
(Cn).  
 
 
 

Lines
** 

Trts** Starvation Desiccation Chill Coma Oxidation 

  Female Male Female Male Female Male Female Male 

CN  112.40 86.7459 12.9713 9.0201 16.2803 16.3761 152.25 159.74 

CI  121.43 89.0019 13.8 9.0472 16.2839 16.3876 154.27 163.64 

S  124.32 96.4844 13.7815 9.761 16.7805 17.3106 153.6 165.16 

 As 121.02 92.6881 12.7130 7.9974 15.9397 16.4069 154.79 163.22 

 H2O 119.38 81.9115 13.0296 9.9432 16.6017 17.1116 150.41 163.14 

 Non 117.76 97.6326 14.8102 9.7610 16.8033 16.5559 154.92 162.18 

Overall S.E. 5.28 3.15 0.57 0.33 1.0055 0.6861 1.2958 0.99 

CN As 116.72 100.72 12.5972 7.8156 14.7094 16.2024 154.01 160.36 

CN H2O 112.94 73.2411 11.6806 10.1253 16.3942 16.7775 148.76 159.90 

CN Non 103.57 86.2744 14.6361 9.1193 17.7372 16.1483 153.96 158.96 

CI As 121.32 86.7378 12.2833 7.975 15.7519 16.8685 156.45 162.75 

CI H2O 119.88 84.2933 13.9417 8.9769 17.8942 16.0433 152.19 165.13 

CI Non 123.09 95.9744 15.175 10.1896 15.2056 16.2511 154.19 163.03 

S As 125.02 90.6044 13.2583 8.2015 17.3578 16.1497 153.9 166.54 

S H2O 125.31 88.2 13.4667 10.7272 15.5167 18.5139 150.27 164.38 

S Non 122.64 110.65 14.6194 9.974 17.4671 17.2682 156.62 164.55 

S.E. 6.83 5.4554 0.76 0.44 1.1123 0.9424 2.1504 1.7147 
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Table 11. P values of different treatments and lines comparison for lipid and glycogen 

assay.  
 
 
 
 
 
 
 
 

Trts–treatments: autoclaved spores (As), sterile H2O (H2O) and no treatment (Non).  
 
Lines – line types: selected lines (S), wound control lines (CI) and non-perturbation lines 
(Cn).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overall Comparisons Lipid Glycogen 

 
Female Male Female Male 

Lines 0.9897 0.0071 0.0958 0.8379 

Trts** 0.6512 0.0857 0.3545 0.1661 

Lines*trts** 0.7752 0.8341 0.6905 0.5007 
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Table 12. Lipid concentration comparison for male flies among different line types.  
Estimate represents the difference of average lipid concentration between line types 
under all treatments.  
 

Differences of Selection Least Squares Means 
Selection Selection Estimate S.E. DF t Value Pr > |t| 

CI Cn 1.8509 0.9492 18 1.95 0.0669 
CI S -1.5946 0.9492 18 -1.68 0.1102 
Cn S -3.4454 0.9492 18 -3.63 0.0019 

 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
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Table 13. Lipid concentration comparison for female flies among different line types.  
Estimate represents the difference of average lipid concentration between line types 
under all treatments.  
 
 

Differences of Selection Least Squares Means 
Selection Selection Estimate S.E. DF t Value Pr > |t| 

CI Cn -0.02478 1.0869 18 -0.02 0.9821 
CI S 0.1211 1.0869 18 0.11 0.9125 
Cn S 0.1459 1.0869 18 0.13 0.8947 

 
Selection – line types: selected lines (S), wound control lines(CI) and non-perturbation 
lines (Cn).  
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Table 14. Glycogen concentration comparison for male flies among different line types.  
Estimate represents the difference of average glycogen concentration between line types 
under all treatments.  
 

Differences of selection Least Squares Means 
Selection Selection Estimate S.E. DF t Value Pr > |t| 

CI Cn -0.04444 0.1506 18 -0.30 0.7713 
CI S -0.09000 0.1506 18 -0.60 0.5575 
Cn S -0.04556 0.1506 18 -0.30 0.7657 

 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
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Table 15. Glycogen concentration comparison for male flies among different line types.  
Estimate represents the difference of average glycogen concentration between line types 
under all treatments.  
 
 

Differences of selection Least Squares Means 
Selection Selection Estimate S.E. DF t Value Pr > |t| 

CI Cn -0.4567 0.2666 18 -1.71 0.1039 
CI S 0.1311 0.2666 18 0.49 0.6288 
Cn S 0.5878 0.2666 18 2.20 0.0407 

 
Selection – line types: selected lines (S), wound control lines (CI) and non-perturbation 
lines (Cn).  
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