

Islamic University of Gaza
Deanery of Higher Studies
Faculty of Commerce
Department of Management

An Optimization-Based Decision Support System

For Higher Education Student Preferences-Based

Scheduling (DSSPS)

By

Ahmad F. Abu Libda

Thesis Advisors:

 Prof. Salah Agha Prof. Yosuif Ashour

A thesis
 Submitted in partial fulfillment of the requirements

for the degree of MBA

July_2013

 بسم الله الرحمن الرحيم

I

Abstract

With the rapid evolution of the computer and the increasing human dependence on it,
new and innovative decision support systems are being designed continually to support
and optimize decision making activities.

The objective of this study is to develop a decision support system based on zero-one
goal programming and the analytic hierarchy process to aid the process of academic
preferences-based scheduling in universities that adopt the credit hours system.

Usually, a high education student cares about making a satisfactory progress toward
graduation; however, students usually have their own financial, timing or other personal
issues regarding their study load.

The objective of this system is to provide the student with a schedule that optimizes
achievement of his/her semester registration preferences, considering each one
importance. These preferences are represented by the commonly considered ones,
such as the desired number of credit hours, the desired empty days between final
exam, the desired and the undesired group of courses, the proffered and the non-
proffered lecturers and the desired empty days or periods throughout the week. Trying
to reach these preferences, the system will also avoid all kinds of timing conflicts or
breaching any of the commonly known registration regulations. Thus, the outcome of
this system is a rapid, optimum and ready schedule.

The main component of this system is a computer software that serves as a linear
programming models generator. This software – with the help of a backend database -
generates different goal programming models for different cases, solve it and present
the results in a readable way.

II

يهدف ,البرمجة الخطية متعددة الأهداف و أداة التحليل الهرمي يعتمد علىنظام دعم قرار
 الشخصيةه في عملية الجدولة الفصلية على أساس تفضيلاتالجامعي الطالب لمساعدة

)ملخص(.

Abstract in Arabic
أنظمة دعم القرار مع التطور السريع الذي نشيده لمحاسوب وزيادة اعتماد الإنسان لو, تظير باستمرار العديد من

 الجديدة والمبتكرة و التي تساعد بشكل كبير عمميات اتخاذ القرار وتحقيق الأمثمية.

البرمجة الخطية متعددة الأىداف و أداة التحميل يعتمد عمىنظام دعم قرار تطويرإن اليدف من ىذا البحث ىو
و لجدولة الفصمية عمى أساس تفضيلاتعممية ا فيالجامعي الذي يتبع نظام الساعة الطالب ييدف لمساعدة ,اليرمي

 الشخصية.

أكثر ما ييم الطالب الجامعي ىو أن يحقق باستمرار تقدما مرضيا نحو التخرج, ولكن ىذا اليدف عادة ما من إن
يتصادم و ظروفو الشخصية, والتي قد تكون مادية أو ذات علاقة بالوقت أو أي اعتبارات أخرى خاصة بالعبئ

 فصمي.الدراسي ال

إن اليدف من ىذا النظام ىو تحقيق الأمثمية في الوصول إلى مجموعة من الأىداف المتمثمة في رغبات الطالب
 المعاييرتعد مجموعة حيث الشخصية المتعمقة بالعبئ الدراسي الفصمي آخذا بالاعتبار مدى أىمية كل منيا.

كعدد الساعات ,المتضمنة في ىذا النظام أكثر ما ييم الطمبة عادةً عند قياميم بعممية تجييز الجدول الفصمي
المعتمدة المرغوب و عدد الأيام الفارغة التي يرغب الطالب بأن تفصل بين الامتحانات النيائية و مجموعة المساقات

الأيام و الفترات التي يرغب بالإضافة إلى وغير المفضمين المرغوبة والغير مرغوبة و قائمة المحاضرين المفضمين
 . الطالب بتفريغيا من المحاضرات خلال الأسبوع

خرق أي من قوانين اضافة إلى تجنب جميع أنواع التعارضات عممية تحقيق الأمثمية تم تطوير النظام ليتجنب أثناء
 دراسي سريع و أمثل و قابل لمتسجيل في نفس الوقت. التسجيل المعروفة. وىكذا, فإن النظام سيزود الطالب بجدول

إن لب النظام و أىم مكون فيو ىو عبارة عن برنامج حاسوب, والذي يعمل كمولد لمنماذج الخطية متعددة الأىداف.
من و ,إدخالاتو حسب يقوم ىذا البرنامج بمساعدة قاعدة بيانات مرتبطة بتوليد نماذج خطية مختمفة حسب المستخدم و

 واضح. دراسي يقوم بحميا وعرضيا عمى صورة جدول ثم

III

Dedication

To my mother

IV

ACKNOWLEDGMENTS

Thanks first to him from whom all life flows.

To my advisors, Prof. Salah Agha and Prof. Yousif Ashour for their

supervision and guidance.

To thesis examiners, Prof. Mohammed Hussein and Dr. Sanaa’ El Sayegh

To Mohammed El-Telbany - registration database specialist in the Islamic

university of Gaza - for his help building the required query.

To anyone else that ever helped the author with his work.

http://www.google.ps/url?sa=t&rct=j&q=thesis%2Bexaminers&source=web&cd=1&cad=rja&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.monash.edu.au%2Flls%2Fhdr%2Fwrite%2F5.13.html&ei=YV7WUcKZFYnTPIiJgZgC&usg=AFQjCNE2rprVz3U0daF8SfhxNHa2TurMuw&bvm=bv.48705608,d.bGE

V

Table of Contents

Abstract ... I

Abstract in Arabic .. II
Dedication .. III

ACKNOWLEDGMENTS ... IV

List of Tables .. IX

List of Figures ... X

List of Abbreviations .. XII
Glossary ... XV

CHAPTER 1: General Introduction .. 1

1.1 Introduction ... 2

1.2 Research Objectives .. 5

1.3 Population of the study ... 6

1.4 Research Importance... 6

1.5 Research Methodology ... 7

1.6 Goal Definition ... 9

1.7 A Brief Description of the System.. 10

1.7.1 Criteria Identification.. 10

1.7.2 Formulating the Integer Goal Programming Model and Constructing Its Generation
Mechanism .. 11

1.7.3 Building and Developing the Computer Program .. 11

1.7.4 Information Feeding Mechanism ... 12

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 Expert Systems. ... 14

2.1.1 Knowledge Engineering and Expert Systems. .. 14

2.1.2 An Expert System for Freshman Advisement (FROSH). .. 15

2.1.3 Developing (FROSH2). .. 16

2.1.4 A Web-Based Academic Advising System... 18

2.1.5 A Prototype Student Advising Expert System Supported with an Object-Oriented
Database .. 20

VI

2.1.6 Academic Virtual Advisor ... 24

2.2 Decision Support Systems (DSS) .. 28

2.2.1 ADVISER .. 28

2.2.2 DSS for Academic Advising ... 29

2.2.3 Virtual Academic Advisory “A solution using Integer Linear Optimization”. 31

2.3 Comments. .. 33

2.3.1 Virtual Academic Advisory “A solution using Integer Linear Optimization”, Andres
Scharifker (2010) – An Extensive Analysis. .. 36

Chapter 3: Background .. 43

3.1 Multi-Criteria Decision Making (MCDM) ... 45

3.1.1 Steps of the MCDM process ... 46

3.2 Analytic Hierarchy Process (AHP) .. 47

3.2.1 AHP Definition .. 47

3.2.2 AHP Principles and Axioms ... 48

3.2.3 AHP Methodology .. 49

3.2.4 Hierarchical Structuring of the Problem ... 51

3.2.5 Performing Pairwise Comparisons ... 52

3.2.6 Synthesis ... 53

3.2.7 Consistency Evaluation ... 54

3.2.8 AHP Applications .. 55

3.2.9 AHP Strengths and Weaknesses ... 56

3.3 Goal Programming (GP) ... 61

3.3.1 Goal Programming Definition ... 62

3.3.2 History of GP ... 63

3.3.3 GP Algorithms ... 64

3.3.4 GP strengths and weaknesses .. 67

3.4 Combined AHP and GP .. 70

3.5 Decision Support Systems (DSS) .. 73

3.5.1 Definitions .. 73

3.5.2 Three DSS technology levels ... 74

3.5.3 DSS Classification .. 76

3.5.4 DSS Benefits .. 77

Chapter 4: System Design .. 78

4.1 The Theoretical Design of the System ... 80

4.1.1 Database ... 82

VII

4.1.2 Model Formulation ... 85

4.2 The Analytic Hierarchy Process (AHP) ... 106

4.2.1 Application of AHP .. 109

4.2.2 Criteria penalization: .. 111

4.3 The Software ... 113

4.3.1 A background of the software developing tools. ... 113

4.3.2 The Interface .. 116

4.3.3 The Analytic Hierarchy Process (AHP) Part ... 125

4.3.4 Model Document .. 128

4.3.5 Solving .. 131

4.3.6 The Solution .. 138

4.3.7 Other Used Tools .. 140

4.3.8 User's Guide .. 142

4.4 Information Feeding Mechanism .. 146

4.4.1 Available Classes Query .. 146

4.4.2 Data Format. ... 149

4.5 DSSPS Flexibility ... 150

4.6 Cost of Application .. 152

4.7 DSSPS Assumptions ... 152

4.7.1 Assumptions Used To Develop the Software ... 152

4.7.2 General Assumptions of the System .. 152

Chapter 5: RESULTS AND ANALYSIS ... 154

5.1Testing Approach .. 156

5.2 Testing Goal ... 158

5.3 Software Testing Part .. 159

5.3.1 Manual Schedule Evaluation .. 161

5.3.2 Software Testing Part: Way of Working ... 164

5.4 The Questionnaire ... 165

5.5 Results ... 166

5.5.1 Value of the Objective Function ... 167

5.6 Analysis .. 172

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 174

6.1 Conclusions .. 175

6.2 Limitations ... 176

VIII

6.3 Recommendations ... 177

6.3.1 Developing the software interface ... 177

6.3.2 An easier and more efficient prioritizing method .. 177

6.3.3 Targeting Lecturers ... 178

6.3.4 Moving to cloud computing ... 178

6.3.5 Implementation Plan .. 179

Bibliography ... 180

Appendices ... 184

Appendix A: A Form Designed To Facilitate Testing Of A Decision Support System For
Higher Education Student Preferences-Based Scheduling. 185

Appendix B: A Form Designed To Facilitate Testing Of A Decision Support System For
Higher Education Student Preferences-Based Scheduling. (In Arabic) 191

Appendix C: The available classes query block written in SQL 197

Appendix D: Functions written in VB used to convert data enquired to the familiar
software format. ... 199

IX

List of Tables

Table 3.1: Saaty's Scale of Importance Intensities [Saaty, 1980]. 52

Table 3.2: Random Consistency Index (RI) [Saaty, 1980]. 54

Table 3.3: Pros and cons of AHP [17] ... 60

Table 3.4: Combined AHP-GP application from literature [26] 72

Table 4.1: Criteria Penalization .. 111

Table 4.2: Islamic University Days Coding Versus DSSPS 149

Table 4.3: Islamic University Timing System versus DSSPS 150

Table 5.1: goals set in test number one. .. 167

Table 5.2: Final results of the testing process (objective function value). 170

X

List of Figures

Figure 1.1: Research Methodology .. 8

Figure 2.1: The Object hierarchy of the Object-Oriented database of IS-Advisor. 22

Figure 2.2: Case Based Query used in AVA .. 27

Figure 2.3: Preferences Page of the Virtual Academic Advisory developed in the study
of Andres Scharifker (2010). .. 39

Figure 2.4: Representation of periods throughout the week defined in the study of
Andres Scharifker (2010) .. 40

Figure 3.1: AHP Methodology (Saaty, 1980) ... 50

Figure 3.2: AHP Hierarchy (Saaty, 1980).. 51

Figure 3.3: Pairwise Comparison Matrix ... 52

Figure 3.4: Three levels of DSS Technology .. 75

Figure 4.1: DSSPS Structure ... 81

Figure 4.2: IPO schema of the system ... 81

Figure 4.3: Courses Table .. 84

Figure 4.4: Sections Table .. 85

Figure 4.5: Cases of Conflicting Periods of Time .. 102

Figure 4.6: Hierarchal Structure of Objectives .. 108

Figure 4.7: MDAC (Microsoft Data Access Components) 115

Figure 4.8: Classes Selection Decision Support Software Interface 117

Figure 4.9: Course Type... 118

Figure 4.10: Desired Hours ... 119

Figure 4.11: Minimum Number of Days between Final Exams 119

XI

Figure 4.12: Final Exams Last day .. 120

Figure 4.13: The Desired Courses, the Desired Lecturers And 121

Figure 4.14: The Undesired Courses ... 122

Figure 4.15: The Undesired Lecturers .. 123

Figure 4.16: The Desired Empty Days ... 124

Figure 4.17: The Desired Empty Periods .. 125

Figure 4.18: AHP Clusters Navigation Form .. 126

Figure 4.19: Main criteria Pairwise comparison matrix 126

Figure 4.20: Desired courses sub-criteria ... 127

Figure 4.21: Model Document Controls .. 128

Figure 4.22: Model Document in Progress .. 129

Figure 4.23: Finalized Model Document ... 131

Figure 4.24: LP-Solve IDE ... 133

Figure 4.25: LP-Solve IDE ... 134

Figure 4.26: LP-Solve settings .. 137

Figure 4.27: LP-Solve IDE ... 139

Figure 4.28: Solution window ... 140

Figure 5.1: manual scheduling buttons ... 159

Figure 5.2: manual scheduling window ... 161

Figure 5.3: main criteria Pairwise Comparison matrix filled in test number one. 168

Figure 5.4: the manual schedule of test number one. 168

Figure 5.5: The optimized schedule of test number one. 169

Figure 5.6: OFV‖s of both the manual and the proposed schedules for all 25 tests. 171

XII

List of Abbreviations

ADO ActiveX Data Objects
AGPA Academic Grade Point Average
AHP Analytic Hierarchy Process
ALGOL Algorithmic Language
ANSI American National Standards Institute
ASP Active Server Pages
AVA Academic Virtual Advisor
CBR Case-Based Reasoning
CGP Chebyshev Goal Programming
COM Component Object Model
CR Consistency Ratio
DAC Data Access Components
DLL Dynamic-Link Library
DSS Decision Support System
DSSPS Decision Support System for higher education student Preferences-

based Scheduling
ES Expert System
EXE Executable
FAQ Frequently Asked Questions
FAU Florida Atlantic University
FROSH An Expert System for Freshman Advisement
FROSH2 An Expert System for Freshman Advisement (Version 2)
GP Goal Programming
GUI Graphical User Interface

XIII

HTML
IPO

HyperText Markup Language
Input-Process-Output

IS Information System
ISE Industrial and Systems Engineering
LGP Lexicographic Goal Programming
LP Linear Programming
MCAL Multi-Choice Aspiration Levels
MCDM Multi Criteria Decision Making
MCGP Multi-Criteria Goal Programming
MDAC Microsoft Data Access Components
MILP Mixed Integer Linear Programming
MODM Multi-Objective Decision Making
OBDSS Optimization-based Decision Support System
ODBC Open Database Connectivity
OLE DB Object Linking and Embedding, Database
OO Object-Oriented
OODB Object-Oriented Data base
OR/MS Operations Research and Management Sciences
R&D Research and Development
RAD Rapid Application Development
RBKB Rule-Based Knowledge Base
RDBMS Relational Database Management Systems
RI Random Consistency Index
RS Rule Set
SAT Scholastic Assessment Test
SMART Simple Multi-Attribute Rating Technique

XIV

SQL Structured Query Language
SWOT Strengths, Weaknesses, Opportunities, and Threats
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
VB Visual Basic
VBA Visual Basic for Office Applications
WGP Weighted Goal Programming

XV

Glossary

Analytic hierarchy process: A structured technique for organizing and analyzing
complex decisions.

Backend database: A database that is accessed by users indirectly through an external
application.

Credit hour: Time-based reference for measuring educational attainment.

Database management system: A software system designed to allow the definition,
creation, querying, update, and administration of databases.

Database: A collection of information designed to offer an organized mechanism for
storing, managing and retrieving information.

Decision support system: A computer system designed to provide assistance in
determining and evaluating alternative courses of action.

Expert system: A computer program that simulates the judgment and behavior of a
human or an organization that has expert knowledge and experience in a particular
field.

Goal programming: A branch of multi-objective optimization. It is an extension or
generalization of linear programming to handle multiple, normally conflicting objective
measures.

Linear programing: A specific case of mathematical optimization. It is a mathematical
method for determining a way to achieve the best outcome in a given mathematical
model for some list of requirements represented as linear relationships.

XVI

Multi Criteria Decision Making: A sub-discipline of operations research that explicitly
considers multiple criteria in decision-making environments.

Operation Research: An analytical method of problem-solving and decision-making. It
can also be defines as the Application of mathematical (quantitative) techniques to
decision making.

Query language: A computer language used to make queries into databases and
information systems.

The available classes: Classes represented by courses and their sections that are
offered by the university for a certain student in a certain semester.

Zero-one goal programming: A special case of goal programming in which all the
decision variables must have integer solution values of 0 or 1.

1

CHAPTER 1: General Introduction

1.1 Introduction
1.2 Research Objectives
1.3 Population of the study
1.4 Research Importance
1.5 Research Methodology
1.6 Goal Definition
1.7 A Brief Description of the System

1.7.1 Criteria Identification
1.7.2 FORMULATING THE INTEGER GOAL PROGRAMMING MODEL

AND CONSTUCTING ITS GENERATION MECHANISM
1.7.3 Developing the computer Program
1.7.4 Information feeding Mechanism

2

1.1 Introduction

In a perfect world, a student‖s advisor at high education would only care about
ensuring that the student is continually making a satisfactory progress toward
graduation, so does the student.

However we do not live in a perfect world. Students usually have special
circumstances. For example students may have financial issues as being unable to
afford a certain number of credit hours. They may be unable to attend at certain
times or at specific days for many reasons such as working part time while studying
or being a parent or because of any other personal issues.

Sometimes their main priority becomes to empty a certain day from classes or to
have final exams finish before a certain date, maybe because they need to travel,
get a job or join an outside training course.

Besides, students may have a set of preferences about the classes they are going
to attend regardless of their timing specifications such as the courses themselves
because some students prefer to enroll in a certain combinations of courses - other
than what is stated in their study plan prepared by the college - as they think they
best fit with each other in the same semester, or because they would cause
graduation delay if not taken. They may also specify groups of desired and
undesired lecturers. Yet other goals can be considered a matter of concern form
student‖s perspective such as the minimum number of days between final exams or
the difficulty level of their study load.

Too many goals in mind with different importance while timing conflicts between
classes and final exams continue to show up during the process of registration that
may take the student too much time to overstep them. Even when the student
manages to overstep these conflicts, he finds himself unsatisfied with the resulting
schedule because it no longer or partially satisfies his/her goals.

3

Moreover, one can Easley notice the mess resulting from registration delay and
instability by a significant portion of the students every semester, and how difficult it
can be for the new students to decide what to register due to the confusion
described before. This mess usually extends for more than a month each semester
causing a number of academic and managerial problems. In this period Students
make too many moves between classes, therefore in any class the students
themselves and their number remain unstable, thus, it is impossible to follow them
up or enforce the persevering term of not to miss more than 25 percent of any
courses lectures applied in the Islamic university of Gaza. This will result in a
decrease in their academic attainment because of the missed material that should
have been covered by that time; this will in turn result in a decrease in the credibility
of the education process itself of the university.

On the other hand, the credit hour system has too many advantages over the year
system. For one thing, students enjoy more freedom when choosing courses and
professors. It allows them to distribute their graduate requirements over the years of
their study. There is also a substantial list of electives to choose from and one can
delay taking certain courses till later. Furthermore, the credit hour system recognizes
the principle of individual differences. Students who are unable to complete 18
hours a semester for one reason or another, can take 15 or 12 hours. In some
cases, they can even take nine or six since some universities provide a part time
educational system for students who cannot commit to the normal system. Thus
Students have the opportunity to finish earlier, if they wish (i.e. three or three and a
half years, instead of four) or finish later (i.e. five or six years).

In addition, while the yearly system allows students who are accepted in the same
year to get to know each other well, the credit hour system allows one to get to
know students from the previous and subsequent years as well. Furthermore, the
credit hour system enables students study diversification, through the minors and

4

double majors, this reflects positively on their employment opportunities as well as
on their broadness of vision and it gives them more freedom in changing majors. On
the other hand, if one fails a course, he will have to repeat this course alone if it is a
compulsory course or take a substitute course if it is an elective.

Moreover, there are usually more than one exam per semester for each course in
addition to the final exam, the daily quizzes and homework assignments which give
the student more chances to do well. The multiple exams enable the students to get
more feedback with respect to their performance, also simultaneously enabling the
professor to assess the progress the students make far more accurately. Some
educationalists have also argued that the credit hour system places more pressure
on students and trains them (due to the shortness of the semester and frequency of
exams compared to the yearly system) to work and think at a faster pace.

From the above, it's clear that the whole idea behind the credit hour system is to
consider the students private issues and give them more freedom as for the various
specifications of their semester study load, such as courses, lectures timing,
professors or exams timing, however the question that remains is to how much the
student can benefit from these privileges.

Most of the previous applications of the decision support systems in education field
tended to concentrate mainly on the problem of scheduling times and places for the
classes offered by a university in a certain semester, however, this DSS is directed
greatly towards the student.

Other systems were developed to suggest an ideal schedule that guarantees a rapid
and safe graduation to the students regardless of their issues, preferences or
capabilities as discussed later in chapter two.

5

1.2 Research Objectives

The main objective of this work is to develop an optimization-based Decision
Support System for higher education Student Preferences-based Scheduling
(DSSPS). This system aims to maximize the student achievement of his/her
semester registration goals considering each goal weight of importance while
avoiding all kinds of timing conflicts represented in lectures timing or final exams
timing. The optimization process will be within the framework of the general laws of
the academic registration system at the university. The system is expected to
provide the student with a ready, quick and optimal schedule from his point of view;
this schedule will be in a form that is easily readable to the human eye. The system
will also provide alternate solutions -as long as there are any- each time the user
changes his input. When this system is placed in an online environment, it will be
capable of counseling a numerous number of students simultaneously.

The research objectives can be summarized as follows:

A. Develop a system based on integer goal programming and the Analytic
Hierarchy Process (AHP). The objective of this system is to provide the student
with an optimal combination of classes from his/her point of view according to a
set of criteria and weights that he/she should specify. The system will be
capable of generating various multi-objective optimization models for various
cases as for:

a. Different student situations.
b. Different specializations.
c. Different goals and weights inserted by the user.

B. Evaluate the adoption potential of the system using a case study in the Islamic
university of Gaza.

6

1.3 Population of the study

This study targets all universities that adopt the credit hours system. However, it will
focus on universities in Gaza strip through the process of testing and data
collection.

1.4 Research Importance

A successful implementation of this application will benefit the students as well as
the university. As for students, this DSS will allow them to obtain an optimal
combination of difficulty and credit hours, it will allow them to work part time while,
at the same time, enabling him to graduate sooner. It will also enable them to enroll
in their favorite courses with their favorite lecturers and be able to schedule final
exams timetable the way they best feel comfortable with. All of these goals are
roughly possible for a student to achieve while too many conflicts between lectures
and final exams timing continue to show up. Consequently, student‖s registration
process usually turns out to be a trial and error procedure which ends up with an
unsatisfying schedule.

As for the university, a fast, computerized and scientific resolving of the previously
stated confusing complex and repetitive matter which a vast number of students find
themselves facing every semester, will be highly appreciated. Thus, in addition to
the managerial and academic benefits of this system, its adoption as a student
service is considered a competitive advantage and a point of strength to any
university since it provides a sense of satisfaction and relief to the students by
satisfying their goals while resolving timing conflicts.

Besides, the application of this system will significantly decrease the student online
registering time and help him/her to select his/her classes as soon as possible. This

7

will result in the highest academic attainment which in turn will result in an increased
credibility and better reputation of the university.
Furthermore, this DSS will integrate with the academic advisor task since it does not
only aim to satisfy personal schedule preferences but also include a criteria for the
desired courses which can be filled with courses called for by the academic advisor.

From another point of view, this system can be used as an easy and effective
information source for the criteria involved in it. If this system is imbedded in the
university web site it can be prepared to store all choices made by the users. These
data will be updated continuously and automatically so that it can be analyzed later
to whatever end, for example in assessing lecturers, planning final exams timetable
or lectures timetable.

Finally, this system will have the potential of being adopted by all universities that
adopt the credit-hour system for registration which is the most commonly used
system in universities everywhere nowadays.

1.5 Research Methodology

Research methodology explains the road map needed to reach the research goal.

Figure 1.1 shows the methodology followed in this study.

8

Figure 1.1: Research Methodology

Goal Definition

To design a decision support system for academic registration based on the
student preferences

Explore Previous Studies

Criteria Identification

Build the DSS

Verification and Validation

Results

Recommendations

9

1.6 Goal Definition

The output of the DSSPS is represented in an easily readable schedule. This
schedule consists of a combination of classes which - due to their characteristics-
form an optimal solution for the intended user. Optimality here will be subject to the
user input represented in a set of criteria associated with weights of importance.
These criteria represent the various characteristics of a class such as the course
itself, the course number of credit hours, lectures timing, subordinate lectures timing,
professor or final exam timing. Based on the principle of goal programming, a
satisfactory level of these criteria will be reached according to its associated weights
of importance and to the extent that the available classes for the user in that
semester allow. The system will also provide alternate solutions -as long as there
are any- each time the user changes his/her input. The output schedule will be free
of all kinds of timing conflicts and it will be within the framework of the general laws
of the academic registration system at the university. This system can be placed
later in an online environment to counsel a numerous number of students
simultaneously.

The core of the DSSPS is represented by a computer software which works as a
multi-objective model generator. The software will take input from the user about
his/her criteria of interest, it will also incorporate the analytic hierarchy process in
order to produce relative weights of importance among the inserted goals -as
pairwise comparisons between the different criteria are supposed to be set by the
user- then, based on the principle of goal programming and using the information
acquired from the university database about the offered courses of the user in that
semester, the system will generate a zero-one goal programming model that can be
solved using one of the various linear programming engines. The resulting solution
represented in zeros and ones will go back to the software to be translated to a

11

readable schedule form. The resulting schedule can be called an optimal solution
from the student perspective with respect to the specified criteria and weights; this
result is mainly driven by the user insertion. Nevertheless, the system can lead to
superb results when used under the supervision of an academic advisor.

1.7 A Brief Description of the System

1.7.1 Criteria Identification

As a start, a survey is used that contains a set of criteria which are - from the
author's point of view – the most commonly considered by students, however, later it
will be clear that other criteria can be easily involved in this DSS. These criteria are
as follows:

A. The desired range of credit hours.
B. The desired number of specialization requirements, faculty requirements or

university requirements courses.
C. Minimum empty days between final exams.
D. The furthest date of final exams.
E. The desired courses (with or without a preferred lecturer).
F. Number of empty days before a certain course final exam.
G. The undesired courses.
H. The undesired lecturers.
I. The desired empty days in schedule during the week.
J. The desired empty periods in schedule.

It should be noted that a student will neither necessarily consider all of these criteria
nor that those that interest him have the same importance.

11

Through this study, students were asked to express their opinion about the previous
criteria and whether there are other criteria that interest them.

On the other hand, the software itself can be used later to gather data about any
other criteria that may be added to the model later.

1.7.2 Formulating the Integer Goal Programming Model and
Constructing Its Generation Mechanism

This stage of the research involves a detailed description of the typical model that is
generated by the software. It contains an explanation of the model variables, the
model objective function and all types of constraints related to all of the criteria
involved in the DSS in addition to the hard constraints of the model related to the
general laws of the academic registration system. It also shows how the analytic
hierarchy process was incorporated programmatically in the software and how its
results are introduced to the model. Furthermore, this stage illustrates the algorithms
of the generation approach followed by the software to construct the various types of
constraints.

1.7.3 Building and Developing the Computer Program

This stage involves the process of the software developing. The code of the
software is written in visual basic 6.0, the Structured Query Language (SQL) is also
used to obtain information about the current user of the application.

From a programmer point of view, this stage includes two parts. The first part is the
process of designing a flexible and efficient user interface while the second part

12

includes the process of coding the software, however, practically, the software can
be divided into four parts as follows:

A. Model generation part.
B. Analytic hierarchy process part.
C. Solving and translation Part.
D. Testing Part.

Other tools used to develop the DSS include:

A. Microsoft Access.
B. Lp_solve (a Mixed Integer Linear Programming (MILP) solver).

1.7.4 Information Feeding Mechanism

The software is built to be fed with information from a virtual database that is
designed on Microsoft Access to integrate perfectly with the software, however, any
university that wishes to adopt the DSS will have to develop a mechanism that is
responsible of creating a database with the same design and the required
information to be provided to the software from whatever database management
system they are currently using. In this research an attempt is done in the Islamic
university of Gaza with the help of the registration program specialists to reach this
mechanism.

13

CHAPTER 2: LITERATURE REVIEW

2.1 Expert Systems
2.2 Decision Support Systems
2.3 Comments

14

2.1 Expert Systems.

In this section, briefly, previously created expert systems to handle the task of
academic advising will be discussed.

2.1.1 Knowledge Engineering and Expert Systems.

An expert system can be thought of as a program with two components: a rule set
(RS) and an inference engine. The RS consists of the information that the inference
engine will process. Each piece of the RS typically contains two parts: the
antecedent (ant) or condition and a conclusion (cul) coupled with a probability (prb).
Because the rules form a set, these rules must be “syntactically different”. The
antecedents must be both sensitive and selective to insure that a conclusion will be
“triggered” and that it is the correct conclusion. The inference engine is comprised of
two pieces, a pattern-matcher and a conflict- resolution procedure. A basic
approach would involve pattern-matching the antecedents of the rule with any new
information found. If a pattern is found, the antecedents “triggered rule is added as
new information. If it finds two rules triggered simultaneously, it uses a priori criteria
to obtain a conflict resolution and get the best choice. After these steps, the process
repeats with the updated data.

Expert system is meant to emulate human cognitive abilities. Because the results of
a triggered rule can then become information later used to trigger another rule, the
system produces a causal relationship to the data. One could even argue that it
“learns” how to better deal with certain behaviors, similar to how a human learns
which foods they like and which ones make them sick and how later on, they use
this knowledge to avoid certain foods. Knowledge engineering refers to the process
of creating an RS. Between acquiring the knowledge, testing it, and evaluating it,
the knowledge engineer determines the rules and makes sure these new rules to

15

not produce unanticipated problems with pre-existing rules. This is continued until
there are no new rules [1].

2.1.2 An Expert System for Freshman Advisement (FROSH).

Advising freshmen is complicated by three factors: the heterogeneity of the skill
levels of the freshman class, the fact that freshman advisors are usually expected to
be able to advise students regardless of their prospective major, and the diversity
within the core curriculum requirements. Frequently, this can lead to difficulties and
delays during freshman registration as well as placing students into courses that do
not meet the proper requirements for their prospective major. Expert systems are
software programs that try to emulate the judgment of human expertise. FROSH2 is
a rule-based expert system that guides the freshman advisor through planning a
first semester's course schedule. It uses student data and information that appears
in the advisor's handbook and university course schedule. FROSH2 then places the
students in the classes appropriate for their placement scores, major, degree
requirements, and academic preparedness, alleviating the aforementioned issues.
Lastly, it gives the student a choice of one or more additional classes designed to
meet general degree requirements compatible with the choice of major. The
algorithms, rules, and design of FROSH2 are discussed as well as examples of
class programs designed by it.

Siegfried, et al. developed FROSH to aid in advising freshmen at Saint Peter‖s
College. The system was developed using the expert system development tool VP-
expert and could be used as a consultant or as a training tool for freshman
advisors. This was helpful because the academic diversity of the student body
together with the twenty-nine majors available to incoming freshmen made the
advisors‖ job difficult and error-prone.

16

FROSH helped the freshman advisor select a set of courses for the first-semester
freshman. Initially, the user supplied basic data about the freshman including name,
SAT scores, placement test scores and choice of major. FROSH first determined
the maximum number of courses that a student should take, and then chose the
appropriate composition and mathematics classes for the student. After determining
the student‖s choice of major, it selected the appropriate beginning course(s) in that
major for the student (or advised the student to wait until certain prerequisites were
taken) and then helped the student choose additional courses until his or her
program was complete.

FROSH had several shortcomings. It did not take course scheduling into account
nor did it consider the possibility of course conflicts or closed and cancelled sections
of courses. These deficiencies are being dealt with in subsequent versions [2].

2.1.3 Developing (FROSH2).

FROSH's biggest limitation is that it was built specifically to handle the advising
needs of Saint Peter's College and any attempt to adapt it to another school's
advising criteria required extensive modification. Additionally, the problems that are
the most perplexing to advisors deal with unusual cases that FROSH did not and
could not consider. These included cases where a student was planning to pursue
two majors or a minor in addition to a major. So-called "double majors" and minors
require the system to consider an additional set of requirements. But the most
perplexing is the situation where a student needs to take two or three courses and
the only available sections conflict. In such a case, the student usually postpones
the course of lesser importance, but this "less important" course will vary depending
on the students major.

17

The immediate goal in developing FROSH version 2 (also known as "FROSH2") was
to explore the feasibility of a general framework for such an expert system, as well
as handling the student's scheduling concerns. The latter is essential for such a
system to be more than a toy or rudimentary teaching tool and the former is
important if FROSH is to be made available to other colleges.

While two separate versions of FROSH2 were written, the basic algorithm was the
same for both:

 Make sure that all necessary data were entered on the input frame. If not,
display the appropriate error message.

 Determine the maximum number of credits/courses that the student must
take.

 Determine the freshman courses to be taken by the student.
 Determine the major courses to be taken by the student.
 Allow the student or advisor to choose sections for these courses.
 Allow the student or advisor to choose other courses with which to complete

the schedule.
 Make sure that there are no time conflicts and that the student is not taking

multiple sections of the same course.
 Printing the complete schedule in Microsoft Excel.

VB6 was utilized for the rules and logic needed in advising, Microsoft Access was
used to store the database of course sections, and Microsoft Excel was used to
display the finished schedule as a spreadsheet [2].

18

2.1.4 A Web-Based Academic Advising System

At Florida Atlantic University. Personal interactions were found to cause
inconsistencies in the advising process. Most of these inconsistencies involved
answering recurring questions and the poor utilization of resources among the
different advisors. Therefore, they set out to research and design a system that
would provide stability in advising. However, most of the web-based advising
systems they found were forums, PDF or HTML official documents available for
download, useful links, or some amalgamation of the three. Through this research,
several objectives were outlined for web-based advising:

• To minimize repetitive tasks currently performed by advisors.
• To encourage students to adopt a proactive attitude toward advising-related

issues.
• To extend the availability of official advising-related information to remote

students.
• To provide academic guidance in a consistent way
• To make advising-related information available in a single place, in electronic

format.
• To maintain a (set of) HTML page(s) with the most frequently asked questions

(FAQs).
• To develop a set of HTML forms and related ASP (Active Server Pages)

scripts that allow a student to input the courses they have taken, press a
button (“Advise Me”) and get a list of courses to take next.

The resulting program was created using HTML, forms and ASP scripts. From its
main page a user can access the requirements for their degree, a career guide,
information pertaining to advising, and frequently asked questions. Most importantly,
the user can access the form which allows him/her to input course information and

19

personalized advice. The system supports three types of users: student users,
faculty users, and administrative users, each with a different graphical user interface
(GUI), appropriate rights and privileges, and set of actions. The students will use the
system for advice, the faculty will update and manage information relevant to the
FAQ page, and the administrative users will be responsible for the next courses to
take module. All information that is regarded as classified or sensitive is password
protected. Within the system there are 2 modules: FAQ and the next courses to
take (hereafter known as ‖Courses‖). The FAQ module is a dynamically generated
page that uses a backend database maintained by advisors. Questions are sorted
across three categories: general, CS-specific, and CE-specific. Each question is
input into the database with a unique key (identifier), category, question, answer, a
date representing when it was last updated, and the name of who did the updating.
The Courses module is designed to resemble the hard copy worksheets that are
preexisting within the FAU CSE department. There are also three types of
worksheets correlating to four-year students, transfer students, and second bachelor
students. The backend database for the Courses subsystem consists of two tables,
Course Info and Prerequisite. Course Info contains the course number, prefix,
description, number of credit hours and type, which are the same three types
previously mentioned for FAQ questions. Prerequisite has two input fields: one for
the course to be taken and one for the course that is its prerequisite. After the
Course subsystem retrieves input on courses available to be taken, it builds a
directed graph based on the prerequisite information and does a topological sort.
The designers of this system found several benefits to it. Not only did it increase the
ability to access official information, but it also allowed answers to be found in a
timely manner to most questions. Additionally, it decreased the amount of time
advisors typically spent on recurring tasks along with a reduction in inconsistent
advising [3].

21

2.1.5 A Prototype Student Advising Expert System Supported with an
Object-Oriented Database

Using intelligent computer systems technology to support the academic advising
process offers many advantages over the traditional student advising. The objective
of this research is to develop a prototype student advising expert system that assists
the students of Information Systems (IS) major in selecting their courses for each
semester towards the academic degree. The system can also be used by academic
advisors in their academic planning for students. The expert system is capable of
advising students using prescriptive advising model and developmental advising
model. The system is supported with an object-oriented database and provides a
friendly graphical user interface. Academic advising cases tested using the system
showed high matching (93%) between the automated advising provided by the
expert system and the advising performed by human advisors. This proves that the
developed prototype expert system is successful and promising [4].

The Object-Oriented Database (OODB)

An important objective in database design is to develop an efficient database
structure so that data can be stored, accessed, and modified easily. Much of the
work in creating an effective database is in the modeling. It is the application
domain that determines how the database should be modeled in order to be
successful. The nature of university subjects' and students' records (the domain of
this research) reveals that the OO model is the most appropriate database modeling
method. OO structure allows each course and each student to be constructed as a
different object, and the database modeled as a collection of these objects. This
structure gives more flexibility to each object to have whatever features (i.e.
attributes or fields) required to identify it while maintaining the integrity of the whole

21

system. The database of IS-Advisor consists of the main classes: Courses and
Students. Figure 2.1 presents a portion of the object hierarchy of IS-Advisor which
is the Kappa-PC's graphical representation of the OO database structure. Each
study plan course in the database includes the following data: Title, ID, plan
semester number (1 to 8), number of pre requisite courses, List of pre-requisite
courses (if any), pre-requisite hours (Some courses have a specified number of
hours as their pre-requisite), type of course (There are three types of courses:
Compulsory courses, major elective courses, and university elective courses),
keywords describing course contents (e.g. mathematics, programming, algorithm,
management, marketing, etc.; these keywords are used to assist students in
selecting courses based on their preferences as will be addressed later), course
components (theory, lab, and/or tutorial), and course status (offered or not offered;
note that fall -or odd- semester courses are offered in fall semester and spring -or
even- semester courses are offered in spring semester). Each student object
includes the following fields: ID, name, AGPA, passed compulsory courses, passed
major elective courses, passed university elective courses, course grades semester-
by-semester, earned credit hours, allowable courses, registered courses, course
keyword preferences, and load preferences. Note that some data listed above are
known and saved in the database (example: offered courses in a particular
semester or AGPA of a student) and some data are inferred by the ES (example:
lists of allowable and registered courses of a student). It is important to note that the
proposed ES is intended to be used for course selection only, and based on
courses selected by all students the timing of lectures will be determined manually
by the timetabling committee in order to prevent the time conflict between courses.
Thus the ES's recommended courses for students will be used as the input for the
college timetabling committee. Therefore course timing is not a factor in the current
version of the system and a component to automate the determination of lecture
timings can be added to the system as a future work.

22

Figure 2.1: The Object hierarchy of the Object-Oriented database of IS-Advisor.

B. The Rule-Based Knowledge Base (RBKB)

The rules of the rule base can be classified into two categories: Academic rules and
student-preference rules.

Academic rules are rules that are concerned with academic regulation like pre-
requisites, the minimum and maximum number of courses that can be registered by
a student (usually: minimum 3 courses and maximum 6 courses), etc.

As an example of this rule category, consider the following rules written in English:

Rule1:

If: The student passed Programming I AND Programming II is offered

Then: Add Programming II to the student's allowable courses list.

23

Rule2:

If: The student's passed hours are greater than or equal to 45 AND Computer
Ethics is offered then: Add Computer Ethics to the student's allowable courses list.

Student-preference rules are If-Then rules related to preferences input by the
student like preferred courses and preferred number of courses that the student is
willing to register in a particular semester. As an example of this rule category,
consider the following rule:

Rule3:

If: The student's course preference keyword is Management

Then: Mark all allowable courses having Management as a course keyword.

There are three main steps performed in the process of determining the
recommended courses for a particular IS student. In Step 1 all courses that are
offered and can be registered by the student are stored in a list called Allowable
Courses. Step 2 performs the ranking process for the courses contained in
Allowable Courses list. The courses are ranked in a descending order as following:
(1) Courses that are pre-requisite for subsequent courses (have the highest
priority), (2) Courses matching student preferences (in case preferences are given),
(3) Courses officially in the current student's registration semester (fall or spring)
according to the study plan, (4) Courses whose pre-requisites were passed in the
previous semester (in order not to leave a long time gap between a course and its
pre-requisite), and (5) Remaining 'equal' allowable courses (if any) are displayed to
the user in order to rank them as preferred.

The list resulted from this step is called Ordered Allowable Courses. Step 3 is the
filtering step that generates the ordered list of Recommended Courses based on the
contents of the list Ordered Allowable Courses. This step follows one of the two

24

advising models: Perspective advising (option 'One-Step Advising') or
developmental advising (option 'Student's Preferences'). In 'One-Step Advising'
option the list of Recommended Courses is generated as following: (a) Students
with AGPA greater than or equal to 3.00 are given the courses ranked from 1 to 6
(from the Ordered Allowable Courses list). (b) Students with AGPA greater than
2.24 and less than 3.00 are given the courses ranked from 1 to 5. (c) Students with
AGPA greater than or equal to 2.00 and less than 2.25 are given the courses
ranked from 1 to 4. Note that if the remaining number of courses for a student
towards graduation is less than the number of courses that can be suggested by the
system, then the students is recommended to take the remaining courses only. In
"Students' Preferences" option the student is asked to select the number of courses
he/she is willing to register (3 to 6 courses) and course keyword preferences.
Consequently the list Recommended Courses is prepared as explained in 'One-Step
Advising' option above however here level 2 of ranking (courses matching student's
preferences) is activated and the number of courses is equal to the number of
courses selected by the student (if possible). In addition, more system messages
are given here during the user-system interaction in order to guide the student to
consider a 'more' suitable course selection [4].

2.1.6 Academic Virtual Advisor

In a perfect world, there would be one advisor for every student at every collegiate
campus all across the globe. One advisor to ensure that each student not only
made satisfactory progress towards graduation, but tailor made the student‖s
academic schedules to best suit the student. But we do not live in a perfect world.
We live in a world where the students vastly outnumber the academic advisors. With

25

such a disproportionate number, time is of the essence. Advisors must find a way to
determine each student‖s perfect schedule for typically hundreds of students.

Additionally, academic advising for an entire university often occurs in less than a
month. Therefore, most students must find time in the approximately twenty
business days to meet with their advisor, often being forced to meet with them
before they are able to register for classes.

This limits each student to five to ten minutes to determine the next six to eight
months of their academic career. And yet it often takes a student an entire
afternoon to line up a possible schedule.

It is not uncommon for student records to be kept in a different building than the
building within which a student will be advised in. Furthermore, it is often the student
who must retrieve their own records and present them to their advisor. As the
student does not hold a key to their own records, they must wait in line to have
them located, trek across campus to their advisor where it is typical to wait in line
again. This can become quite frustrating. But as technology becomes more
prevalent and campuses become more wired, the registration lines of not too long
ago seem archaic. And yet, if it is possible to register online and course information
is already stored in a secure database, why is it that students still must wait in line
to be advised?

The Academic Virtual Advisor (AVA) was designed with this in mind. Intended as a
tool to alleviate the overcrowding of advisor offices, AVA can be used to supplement
existing advisors. By using existing databases that contain student information and
allowing advisors to create new databases stipulating available courses, course
prerequisites and plan of studies for their departments (potentially in a less hectic
portion of their schedule), AVA can be a surrogate advisor to most students.

26

AVA was also designed to leave the academic advisor in control of the advising
process. While it can be used alone to assist a student, the advisor may choose to
approve each potential schedule before a student registers. In the case of automatic
approval, although not intended, AVA could be used to serve as a temporary advisor
if an institution is currently lacking in human advisors. However, it is the web-based
aspect of AVA that will assist human advisors and students the most. Since AVA is
an online, database driven system, it is capable of supporting more than one student
advising session at a time. Furthermore, each student has the ability to be advised
where it is most convenient for them. By using the aforementioned existing student
information databases, AVA eliminates the wait time students incur to retrieve their
records and to be advised. Also, it eliminates the transit between record offices and
advisor offices.

Using AVA, a student can be advised in as little or as much time as they would like,
but is not forced to cancel their plans for an entire afternoon. In short, AVA is a
customizable solution to the ever-increasing advisor to student ratio.

Schedule Creation
Case Based Reasoning

AVA uses Case Based Reasoning (CBR) to create one of the proposed schedules.
As AVA was built with a database designed to simulate a real database of student
records, fictitious data was created and inserted to provide cases. These fake
records are full records of what classes the student took, when, and what grades
they earned in that course. It also stores when they graduated and their GPA upon
graduation, if appropriate.

After the student logs in, the system retrieves their completed courses, the grades
they received, and when they completed the courses. It then matches, based on

27

time and grade earned, those courses to another full record of a graduated student.
Using the most accurate match, the student is then advised to take the courses that
the matched case took to complete the curriculum.

These recommendations are checked to make sure the student has not already
taken them. If so, they are no longer included in the possible schedule. This may
leave the proposed schedule with fewer courses than needed to maintain a full load.
In this case, the schedule is completed using the next courses in the chain made up
by the plan of study.
The query for the CBR schedule is shown in Figure 2.2.

Figure 2.2: Case Based Query used in AVA

Plan of Study Schedule

A plan of study can be thought of as a roadmap to graduation. In this situation, the
students completed courses are considered nodes along that path. The completion
of a node opens up other nodes as possible options (by completing prerequisites).

28

In the plan of study based schedule, the student‖s completed courses are compared
to a listing of prerequisites. The courses that have their prerequisites met are listed
in order of semester and year the plan of study advises them to be taken minus the
courses that have already been taken.

The schedule is then formed by choosing the first five courses from this list. The
query for the plan of study based schedule is the same query used to determine
available courses during the information confirmation step [5].

2.2 Decision Support Systems (DSS)

In this section, briefly, previously created Decision Support systems to handle the
task of academic advising will be discussed.

2.2.1 ADVISER

Designed at the University of Wisconsin in 1968, ADVISER was one of the first
programs of its kind. ADVISER was programmed in ALGOL on 3000 cards with 22
methods.

It was developed not only to deal with the University of Wisconsin‖s course
requirements, but to also handle the equivalencies generated by transfer credits.
ADVISER is also not only for undergraduates, but also advises graduate level
students, an aspect not often duplicated in other advising software. According to its
algorithm, ADVISER first conducts an interview with the student to gather
information on the student‖s completed courses and to conduct educated guesses
concerning courses the student is unsure of having taken. It then calculates what

29

the student‖s course load should be. However, it uses a great deal more math and
statistics to determine a suggested course load for each student than other similar
software. Adviser did have a study conducted on it. The study had eleven
participants from various degree programs within the computer science department
at the University of Wisconsin. Although the study had a small number of
participants, the testers felt the diversity of the pool made up for it and validated
their results. The study concluded that the interview process was far too long, that
most participants were satisfied with the program, and that all would use it again if it
were kept up-to-date. However, it was also found that not all enjoyed using it and
that most of the subjects that were in graduate school did not enjoy using it and
some were dissatisfied with the system.

Another important conclusion was the most students preferred a human advisor to a
programmed one. Since advice is a subjective matter and cannot be measured
holistically concerning its quality, it is impossible to determine if the advice of the
computer was better or worse than the advice of a human advisor. Therefore, the
only measure of quality is that of the student‖s perception, which is clearly slanted
towards the human advisor, based on these results [6].

2.2.2 DSS for Academic Advising

This Decision Support System (DSS) was implemented to allow human advisers to
focus on the more complicated problems rather than the more algorithmic course
load selections. It takes into account the four types of academic courses: university
requirements taken by all students (courses such as English, mathematics, and
history), core requirements taken by students within a wide area (such as a college),
major requirements, and electives. Unlike most of programs of its nature, this

31

advising software was designed initially for business students rather than
engineering, more specifically computer science.

A DSS is presented as an easier way to evaluate a student‖s progress towards
graduation. It can also be a quick way to not just list courses that are required, but
also those that the student is allowed to take in that the student has completed the
necessary prerequisites. This calculation must be an error-free one for the system
to have merit.

Since academic advising is typically a very structured process with the selection and
sequencing of courses, the concept of a DSS can easily be applied. Additionally, an
expert system (ES) can be used because the problem scope is quite narrow. Both
methods include similar components of a knowledge base, an inference engine, and
a user interface. Typically, an advising support system will use the plan of study for
a major, taking into account the optimal scheduling to minimize semesters in school.
This ignores course content and individual student issues. This particular Academic
Advising software requires the student to input their own course information each
time the system is used. Beyond this step, the program is designed quite similar to
other advising systems. After the student has input his/her completed courses, the
DSS produces a list of eligible courses and completed courses using binary
categories within the database.

Also used to choose eligible courses and more specifically, their order, are three
hierarchical rules. The first rule is the ―Deepest Layer Rule‖ which chooses courses
on the deepest level of prerequisites first and then choose courses based on the
descending order of their layers. Next is the ―Maximum Dependency Rule‖, which
sorts courses within each layer by the number of prerequisites they will complete.
Lastly, the ―Course Number Rule‖, which chooses courses based on the ascending
order by their course number. It is concluded that this DSS will work, but is not the

31

best option. Instead, a database management system is recommended. Since the
database is the largest part of the DSS it becomes difficult to separate it from the
inference engine, a DSS generator would create a more flexible user experience as
well as provide an easier method of maintaining degree requirements [7].

2.2.3 Virtual Academic Advisory “A solution using Integer Linear
Optimization”.

Describes the research done to create a Web Decision Support System that
suggests alternative feasible course schedules that a student can choose for the
upcoming semester. The research has 3 main components: Coding of the computer
program, formulation of an integer program, and the gathering of meaningful data
from students and department of industrial and systems engineering (ISE) in the
university of Florida.

In a typical session of the application, a student (user) will log in using his Gator link
and Password. The program will obtain from a database relevant information about
the current user, including name, major, courses already taken, unmet requirements,
and prerequisites for the unmet requirements. The user will then select the courses
he wishes to be included in the suggestions, the degree of desirability of each time
period (e.g. 7:25 AM is very undesirable), and a range of number of credit hours
that he wants to take on the upcoming semester (e.g. between 12 and 14 credit
hours).

The application will then create multiple feasible course schedules and display them
so that that the user can choose the one he finds the most attractive for the
upcoming semester.

32

The application can be considered in part as an “automated academic adviser”
because it will provide students with multiple options that will be laid out in an easy-
to-read manner.

A human academic adviser will still be required because the application does not
provide enrollment capabilities or other important functions.

The application will be capable of gathering information from an individual student
(user) to determine relevant parameters in order to suggest a meaningful
combination of classes.

Scope and Limitations

To develop the application, the majority of the effort was allocated to a proper
formulation and partial coding. An attractive and embellished user interface is not
yet a characteristic of the software. More importantly, the program does not yet
output alternative course schedules easily readable to the human eye. Instead, the
program currently specifies which periods will be filled with which class. The final
step of the Web DSS project will be to use this information to create schedule tables
to lay out the optimal combination of courses.

As of now, the code of the application does not contain all of the information
gathered throughout this research project. Instead, it uses synthetic data. As
previously mentioned, this research focused on gathering the necessary information
to enhance a class project developed in the Web DSS graduate course of spring
2010. Including this information in the code would require a considerable amount of
time. Nevertheless, it is not expected it would alter the functionality of the system
when inserted.

33

In addition, due to time constraints and simplicity, the application was developed
using information, such as classes, about the ISE department only. Nevertheless,
the program is capable of easily incorporating other departments and majors, along
with the courses and sections that they entail. To do this, the database supporting
the application would need to include this information.

For security reasons, all of the data used in the application is synthetic. However,
the data obtained from the set of surveys is real. The names of the surveyed are
not supplied because it is irrelevant and could constitute a privacy issue.

Currently, the application is only useful for university of Florida students due to the
fact that some sections, such as course schedules, have meeting times that are
hard coded in the system. Integrating the program to another University would
require certain modifications to the code. Also, the course planner does not support
the suggestion of courses to be taken at a different school, which is a common thing
to do among students during the summer semesters [8].

2.3 Comments.

All of the studies viewed before concentrate mainly on the problem of the traditional
counseling, as how to present the student with the best course plan that guarantees
the shortest route towards graduation through the completion of all of his major
requirements.

 These systems are trying to imitate the role of the academic advisor, so, they
focused only on what courses should be taken next depending on what the student
has completed so far and what offered courses are now available for him. They
even hardly handled the issue of the conflicted sections, but for sure have not taken

34

the student preferences into account except for the study of Andres Scharifker
(2010) which will be discussed deeply later.

Because of the above, due to the prerequisites issue and the fact that it is not
logical to suggest courses that have been taken already, most of the systems
discussed before are rule-based expert systems that is meant to emulate human
cognitive abilities depending on the information they get about the dealt case.
Because of that, these systems can be applied only in universities in which they
were first developed. This is because there are some rules and information related
to these universities that are hardly coded into these systems, consequently, these
systems will require extensive modification to adapt to another universities.

On the other hand suggesting courses for the upcoming semesters is a bit vague,
because there is no knowing whether a student is going to pass his suggested
courses or not and whether a certain courses will be offered by the collage on a
certain semesters. That is why this issue was handled in the study of “Academic
Virtual Advisor” for Kathryn Nobles using case based reasoning where the system
matches - based on time and grade earned - a student records to another full
record of a graduated student. And then advise the student to take the courses that
the matched case took to complete the curriculum.

However, the decision support system of this study is less interested in enhancing a
student progress towards graduation than it is in satisfying his personal preferences
regarding the current semester. All possible aspects that may concern a student
regarding the classes he is going to attend are addressed. These aspects include
the desired number of credit hours, the number of each type of courses, the
minimum period between final exams, the desired last date of final exams, the
desired and the undesired courses, the desired and the undesired lecturers and the
desired empty days or periods throughout the study schedule.

35

The main point that features the approach of this tool over other DSS‖s is the use of
goal programming and AHP being a model-based DSS. Goal programming can be
thought of as an extension or generalization of linear programming. Thus it depends
mainly on the mathematical representation of a problem in the form of an objective
function that is subject to a set of constraints. A mathematical approach is a good
reason as why the output will be considered a robust and undeniable solution. On
the other hand, the use of the analytic hierarchy process will ensure the maximum
prioritization accuracy among the various goals by maintaining the lowest level of
inconsistency through pairwise comparisons.

As integer programming was used as a base to construct this DSS and due to the
efficient way in which the model and its generation mechanism was created, this
system has the ability to be adapted in any university directly, or maybe with a very
slight modifications. Besides, it is capable of including any other criteria easily as
they may show up later.

http://en.wikipedia.org/wiki/Linear_programming

36

2.3.1 Virtual Academic Advisory “A solution using Integer Linear
Optimization”, Andres Scharifker (2010) – An Extensive Analysis.

1. Formulation of the integer program:

 The objective function.

 Constraint #1: Ensures that 2 different courses are not assigned to the same
period.

 Constraint #2: Ensures that the difficulty level of a specific suggested schedule
is within constants DL and DU.

(2.1)

(2.2)

(2.3)

37

 Constraint #3: Ensures that the number of credits suggested is bounded

 Constraint #4: Ensures that a certain course is not only partially assigned to a
schedule. In other words, it guarantees that if a course will be suggested, it will
appear in all of its corresponding periods.

 Constraint #5: Ensures that if a section of a course is suggested, no other
section of that course will also be suggested in the same schedule.

Variables and Constants of the Integer Program

xijk = 1 If section k of class i is assigned to period j, 0 otherwise – Decision
Variable
yik = 1 If section k of class i is assigned, 0 otherwise – Decision Variable
i : Courses considered for suggestion. Each i represents one course -> i ∈ [1, 44].
m: Number of Courses considered for suggestion (i.e. i : 1, …. ,m)

(2.4)

(2.5)

(2.6)

38

j : Periods in a schedule. Each j represents one period-> j ∈ [1, 75] (See next
page)
n: Number of periods considered for suggestion (i.e. j : 1…, n)
k : Sections. Each k represents one section.
s : Number of Sections considered for suggestion that belong to a specific course
w : Weight Factor – Constant
cj : Cost of assigning a class to period j – Derived Constant
ui : Cost of assigning class i – Derived Constant
ri : Number of credits that class i entails – Constant
di : Difficulty associated with Class i – Constant
pi : Number of meeting periods required by class i – Constant
DL: Constant denoting the minimum level of difficulty desired for the schedules –
Constant
DU: Constant denoting the maximum level of difficulty desired for the schedules –
Constant
L: Credits Lower Bound, and it is a constant that denotes the minimum number of
credits considered for suggestions – Constant
U: Stands for Credits Upper Bound – Constant
Aijk: Binary constant existing for each combination of cours (i) period(j) and
section(k)
Bik: Binary constant existing for each combination of course (i) and section (k)

39

The current user selected the periods for which he has a preference, and also
specified on the range of number of credits he is willing to take as shown in figure
2.3. He also selected which courses he wants included in the suggestions. If he
does not select any, the program will assume he wants all the courses included in
the suggestions [8].

Figure 2.3: Preferences Page of the Virtual Academic Advisory developed in the study
of Andres Scharifker (2010).

41

Figure 2.4 shows the way by which periods throughout the week were defined.

Figure 2.4: Representation of periods throughout the week defined in the study of
Andres Scharifker (2010)

41

Comments:

 Variables of the model were defined in such way that makes it very complex to
construct the various relations of the model.
Variables were defined to express the possibility of the existence of the
combination of a section (k) of a class (i) to be in a period (j) for all 75 periods
and all sections of all classes. The same number of variables were also defined
for the possibility of assigning a certain combination to the schedule What results
in a very large number of redundant variable, although timing in which the
various sections meet is already defined and fixed by the university..

 The system addressed only four types of student preferences which are:
A. Desired courses.
B. Undesired periods throughout the week.
C. Desired range of credit hours.
D. Desired range of the difficulty of the study load.

 Only undesired periods and undesired courses are penalized in the objective

function while the range if the desired difficulty and the range of the desired
number of credit hours are expressed as hard constraints. This may result in
infeasible solutions as they may conflict with each other‖s or with the available
courses and sections.

 The cost of each time slot is already defined using the information obtained from
a survey. These costs is hard coded in the application, then a variable “w” is
used in the objective function to determine the relative importance of both the
undesired periods costs and the undesired courses costs, although these costs
may differs from a student to another.

42

 As for the desired courses. The application present a list with all available
courses so that the user will select his desired group of courses, thus, the
application will consider the reminder of the courses as undesired and place a
penalty for them as they are assigned.
However, to specify two desired and undesired courses groups gives the student
more control as in this way courses will be classified into three groups which are
desired courses, undesired courses and courses that do not matter.
Moreover:

A. It will be easier for the student to specify two small groups of desired and
undesired courses leaving the rest of the courses rather than being
forced to select all available courses leaving the undesired ones.

B. There will be a penalty for choosing an undesired course while no
penalty is assigned for neglecting a desired one.

 Time periods is determines as one hour periods, although half an hour would be
more efficient and comprehensive.

 It is unpractical for the user to fill the desirability degree for 75 period slots each
time he uses the application.

 The application will assign a penalty for each assigned undesired hour, however,
when the user specify a large period as undesired for some reason, this period
should be penalized the same way whether it was violated entirely or partially.

 No constraints were built to handle the problem of the subordinated classes.
 No constraints were built to handle the problem of final exams conflicts.

43

Chapter 3: Background

3.1 The Credit Hours System
3.1 Multi-Criteria Decision Making (MCDM)
3.2 Analytic Hierarchy Process (AHP)

3.2.1 AHP Definition
3.2.2 AHP Principles and Axioms
3.2.3 AHP Methodology
3.2.4 Hierarchical Structuring of the Problem
3.2.5 Performing Pairwise Comparisons
3.2.6 Synthesis
3.2.7 Consistency Evaluation
3.2.8 AHP Applications
3.2.9 AHP Strengths and Weaknesses

3.3 Third: Goal Programming (GP)
3.3.1 Goal Programming Definition
3.3.2 History of GP
3.3.3 GP Algorithms
3.3.4 GP strengths and weaknesses

3.4 Combined AHP and GP
3.5 Decision Support Systems (DSS)

3.5.1 Definition
3.5.2 Three DSS technology levels
3.5.3 DSS Classification
3.5.4 DSS Benefits

44

3.1 The Credit Hours System

The credit hour system in higher education is considered a modern system that
appeared in the late nineteenth century and was first adopted by the American and
European universities in the early twentieth century. Now, most of the universities
around the world use it.

Raubinger, Rowe, Piper, and West (1969) [9], described the history of the credit unit
as divided into three phases:

 1873–1908: Increasing dissatisfaction with the college admissions process and
high school-to-college articulation

 1908–1910: The proposal and implementation of a standard high school unit.
 1910 to the present: The introduction of the Carnegie unit, its widespread

growth, and its effect on both secondary and higher education

At the end of the 1800‖s and the beginning of 1900‖s, the Carnegie unit became
the basis for granting high school diplomas and credit hours for the baccalaureate
[10].

China has been using the scholastic year system since the 50s last century. Since
1978, Chinese universities have gradually adopted the credit system [11]. A
semester credit hour is the most commonly used system of measuring course work
and is usually based on at least a 14-17 week calendar [12].

In the credit hours system, a credit hour represents a measurement unit for courses
that have to be studied by the student in order to fulfill the requirements of a certain
major. It refers to the weekly teaching activity of a certain course during the
semester such that a one hour course means that its classes meet for one hour a
week.

45

In the credit hour system – adopted by the Islamic university of Gaza and most of
the Palestinian universities -, the academic year is divided into two semesters, the
first semester and the second semester with an optional summer semester. Each
semester is usually 15 to 16 weeks except for the summer semester which is about
8 weeks. In each semester, the student usually takes between 12 to 18 hours or
four to six courses. Each course is usually three credit hours which is three class
hours a week for four months. However, the academic systems differs from a
university to another, and sometimes from a college to another with respect to the
maximum and minimum limits of credit hours allowed per semester or the number of
credit hours assigned to courses.

3.1 Multi-Criteria Decision Making (MCDM)

A decision is a choice out of a number of alternatives. This choice is made in such
a way that the preferred alternative is the "best" among the possible candidates. The
decision maker does not only have the task to judge the performance of the
alternatives in question under each criterion, he/she also has to weigh the relative
importance of the criteria in order to arrive at a global judgment.

One must acknowledge the presence of several criteria which are at least partially
contradictory and often non commensurable, leading to the development of MCDM.

MCDM is an advanced field of operations research that is devoted to the
development and implementation of decision support tools and methodologies to
confront complex decision problems involving multiple criteria, goals, or objectives of
conflicting nature [13].

Numerous multi-criteria decisions are daily made, both in public and in private life.
Such as a company choice of products and markets or the choice of a location for
production. In private life, the choice of a partner or a career.

46

Methods for MCDM have been designed in order to designate a preferred
alternative, to classify the alternatives in a small number of categories, and/or to
rank the alternatives in a subjective order of preference; they may sometimes also
be used to allocate scarce resources to the alternatives on the basis of the analysis
results [14].

3.1.1 Steps of the MCDM process

The step of the MCDM process include

A. Problem identification
The process of problem identification can be supported by stakeholders.

B. Defining relevant attributes
C. Extracting relevant criteria related to the attributes

This step includes the building of the problem hierarchy.
D. Discussing and proposing alternatives

Description of potential alternative actions for achieving the attributes.
E. Recognizing alternatives and eliminating the infeasible ones

Design and execute the studies necessary to collect data for the decision
criteria.

F. Making judgments and weighting the criteria-related preferences
Elicit weighting structure for the criteria, as appropriate.

G. Building the decision matrix
Populate a decision matrix for the alternatives and decision criteria.

H. Synthesizing and ranking alternatives
Synthesize criteria and weights to rank alternatives.

I. Examining, verifying and documenting the decision
Communicate with stakeholders and select alternatives [15].

47

3.2 Analytic Hierarchy Process (AHP)

AHP is one of MCDM methods; it was originally developed by Thomas L. Saaty in
the mid-1970s. It combines tangible and intangible aspects to obtain the priorities
associated with the alternatives of the problem.

AHP is a structural framework that allows decision-makers to model a complex
problem in a hierarchical structure by breaking it down into smaller parts, then
calling for a simple comparison with respect to pairs of judgments to develop
priorities within each level of hierarchy. Finally, results are synthesized to obtain
overall weights of the alternatives. The input can be obtained from actual
measurement such as price, weight etc., or from subjective opinion such as
satisfaction feelings and preference. AHP allows some small inconsistency in
judgment because human is not always consistent. The ratio scales are derived
from the principal Eigen vectors and the consistency index CI is derived from the
principal Eigen values.

3.2.1 AHP Definition

According to Saaty definition (1977) "The AHP is a simple, mathematically based
MCDM tool to model deal complex, unstructured and multi-attribute problems in a
hierarchal structure showing the relationships of goal, criteria, sub criteria, and
alternatives”. AHP not only support decision makers by enabling them to structure
complexity and exercise judgment, but it allows them to corporate both objective and
subjective considerations on the decision problems.

48

3.2.2 AHP Principles and Axioms

AHP is built on a simple theoretical foundation to determine how much the
alternatives contribute to the goal. According to Forman and Gass (2001), AHP is
based on three basic principles; decomposition, comparative judgments and
synthesis. The decomposition principle is applied to structure a complex problem
into hierarchy of clusters, sub-clusters, sub- sub clusters and so on. The principle
of comparative judgments is applied to construct pairwise comparisons of all
combinations of elements in a cluster with respect to the parent of the cluster. The
principle of synthesis or hierarchal composition is applied to multiply the priorities of
elements in a cluster by the priority of the parent element.

Axioms provide the foundations for any methodology or technique. Saaty has
specified four axioms for AHP and these have been described more simply by
Forman and Gass (2001).

The first axiom; the reciprocal axiom, requires that if A is three times better than B,
then B is one third as good as A.

The second axiom; the homogeneity axiom, states that the elements to be
compared should not differ too much to not have large errors in judgments that lead
to a decrease in accuracy and increase in inconsistency.

The third axiom states that the priorities of the elements in a cluster do not depend
on lower level elements, that means when comparing elements at each level a
decision-maker has just to compare with respect to the contribution of the lower-
level elements to the upper-level one. This local concentration of the decision-
maker on only part of the whole problem is a powerful feature of the AHP.

49

The fourth axiom; the expectation axiom, says that individuals who have reasons
for their beliefs should make sure that their ideas are adequately represented for the
outcomes to match these expectations. This axiom means that output priorities
should not be radically different to any prior knowledge or expectation that a
decision maker has [16].

3.2.3 AHP Methodology

AHP is based on the assumption that when faced with a complex decision, the
natural human reaction is to cluster the decision elements according to their
common characteristics. It involves building a hierarchy of decision elements and
then making comparisons between each possible pair in each cluster. This gives a
weighting for each element within a cluster and also a consistency ratio (CR) which
is useful for checking the consistency of the data. The methodology of the AHP is
explained in figure 3.1.

51

Figure 3.1: AHP Methodology (Saaty, 1980)

51

3.2.4 Hierarchical Structuring of the Problem

In the first stage, the decision maker defines a hierarchical structure representing
the problem at hand. A general form of AHP structure is presented in figure (3.2).
In the simplest case, the hierarchy has three levels. The first level represents the
goal of the decision problem and is analyzed as resulting from the aggregation of
evaluation criteria represented by the second level; the last level of the hierarchy
involves the alternatives to be evaluated. In more complex cases, there may be
more levels, corresponding to splitting criteria into sub-criteria. The objective or the
overall goal of the decision is represented at the top level of the hierarchy. The
criteria and sub-criteria contributing to the decision are represented at the
intermediate levels. Finally, the decision alternatives or selection choices are laid
down at the last level of the hierarchy. The number of the levels in a hierarchy
depends on the complexity of the problem being analyzed and the degree of detail
of the problem that an analyst requires to solve.

Figure 3.2: AHP Hierarchy (Saaty, 1980)

52

3.2.5 Performing Pairwise Comparisons

Once the hierarchy of the problem is defined, the decision-maker performs a series
of pairwise comparisons within the same hierarchical level and then between
sections at a higher level in the hierarchy structure to have n*(n-1)/2 comparisons
if there are n criteria. In comparisons, a ratio scale of 1-9 is used to compare any
two elements. Table (3.1) shows the measurement scale defined by Saaty (1980).
The matrix of pair-wise comparisons is:

Figure 3.3: Pairwise Comparison Matrix

 Table (3.1): Saaty's Scale of Importance Intensities [Saaty, 1980].

The pairwise comparisons of various criteria are organized into a square matrix as
shown in matrix A. The diagonal elements of the matrix are 1. The criterion in the

Intensity of importance Definition
1 Equal importance
3 Weak importance of one over another
5 Essential or strong importance
7 Demonstrated importance
9 Absolute importance

2,4,6,8 Intermediate values between the two adjacent judgments

53

ith row is better than criterion in the jth column if the value of element (i, j) is more
than 1; otherwise the criterion in the jth column is better than that in the ith row. The
(j, i) element of the matrix is the reciprocal of the (i, j) element. The pair wise
comparisons depend on subjective judgment without any scientific measurements,
so it has been verified that a number of these pairwise comparisons taken together
forms a sort of average. This average is calculated through a complex mathematical
process using Eigen values and Eigen vectors. The principal Eigen value and the
corresponding normalized right Eigen vector of the comparison matrix give the
relative importance of the various criteria being compared. The elements of the
normalized Eigen vector are termed weights with respect to the criteria or sub-
criteria and ratings with respect to the alternatives (Saaty, 1980).

The procedure of pairwise comparison is to evaluate the importance of the criteria
and then the preference for the alternatives with respect to each criterion.
The final solution results in the assignment of weights to the alternatives located at
the lowest hierarchical level.

3.2.6 Synthesis

Once judgments have been entered for each part of the model, the rating of
alternative is multiplied by the weights of the sub-criteria and aggregated to get
local ratings with respect to each criterion. The local ratings are then multiplied by
the weights of the criteria and aggregated to get global ratings. The AHP produces
weight values for each alternative based on the judged importance of one alternative
over another with respect to a common criterion. The results are then synthesized to
obtain rank of the alternatives in relation to the overall goal.

54

3.2.7 Consistency Evaluation

Comparisons made are subjective and AHP tolerates inconsistency through the
amount of redundancy in the approach. If this CI fails to reach a required level, then
answers to comparisons may be re-examined. The Eigen value technique enables
the computation of a consistency measure which is an approximate mathematical
indicator of the inconsistencies or intransitivity in a set of pairwise ratings. This
consistency measure is called the CI which is calculated as:

CI= (λ max-n)/ (n-1)

Where λmax is the maximum Eigen value of the judgment matrix.

This CI can be compared with that of Random Consistency Index, (RI). RI can take
a value between 0 to 1.49 as shown in table (3.2). The ratio derived, CI/RI, is
termed the CR, Saaty suggests the value of CR should be less than 0.1, if it is
greater than 0.1 (or 10%), the level of inconsistency in the set of ratings is
considered to be unacceptable. In this situation, the evaluation procedure has to be
repeated to improve consistency. Sensitivity analysis can be performed to see how
well the alternatives performed with respect to each of the objectives as well as how
the alternatives are sensitive to changes of the objectives. (Saaty, 1980)

Table (3.2): Random Consistency Index (RI) [Saaty, 1980].
N 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

55

3.2.8 AHP Applications

Broad areas where AHP has been successfully employed include: selection of one
alternative from many; resource allocation; forecasting; total quality management;
business process re-engineering; quality function deployment, and the balanced
scorecard (Saaty and Vargas, 1991). By scanning the literature different uses of
AHP can be found these include:

 Serkan et al. (2009) used AHP and TOPSIS methods under fuzzy
environment for weapon selection.

 Hambali et al. (2009) applied AHP for composite manufacturing process
selection.

 Steven (2008) used AHP for asset allocation.
 Agha (2008) used AHP for evaluating and benchmarking non-governmental

training programs.
 Ahmet and Bozbura (2007) used AHP for prioritization of organizational

capital measurement indicators.
 Forman and Gass (2001) constructed AHP model for assessing risk in

operating cross-country petroleum pipelines.
 Babic and Palzibat (1998) used AHP for ranking of enterprises according to

the achieved level of business efficiency.
 Berrittella, (2007) used AHP in deciding how best to reduce the impact of

global climate change
 McCaffrey, (2005) used AHP in quantifying the overall quality of software

systems in Microsoft Corporation
 Grandzol, (2005) used AHP in selecting university faculty in Bloomsburg

University of Pennsylvania.

56

 Atthirawong, (2002) used AHP in deciding where to locate offshore
manufacturing plants.

 Dey, (2003) used AHP in assessing risk in operating cross-country
petroleum pipelines for American Society of Civil Engineers.

 Chengjing Jounio (2013) used AHP to find the best suitable supplier in
China.

 Zimmer et al. (2012) used AHP to evaluate projects.

 3.2.9 AHP Strengths and Weaknesses

Several researchers, including Triantaphyllou and Mann (1990), have pointed out
the weakness of AHP as follows

A. Weaknesses of AHP

 High inconsistency Ratio (CR) Between the Stakeholders

The weakness of AHP in assessing the relative importance weights of various
criteria, in addition to that the ability of humans to accurately express their
knowledge decreases with increasing problem complexity, are considered the two
main sources of the high inconsistency ratio (CR). The weakness in assessing the
relative importance weights of various criteria results primarily from two limitations,
the difficulty of using Saaty's discrete 9-value scale to reflect the belief of decision
makers in the relative importance relationship among the various criteria, and the
difficulty of identifying the in-between numbers of fuzzy sets. Saaty's discrete 9-
value scale method forces decision makers to select numbers from the finite set
{1/9, 1/8, 1/ 7… 1, 2, 3… 7, 8, 9}, contradicting the real world fuzzy memberships
of elements in a fuzzy set. In most real world problems, the membership values in a

57

fuzzy set take on continuous values (namely real numbers) rather than discrete
numbers. Triantaphyllou and Mann, (1990), found that this limitation can cause
extremely high failure rates for AHP.

 Rank Reversal

Other drawback sometimes arises with AHP known as ―rank reversal‖, which is
associated with the relative nature of the judgments involved. Here, changing the set
of alternatives changes the ranking of all alternatives. If new alternatives are likely to
be added to the model after initial analysis, and alternatives are amenable to a
direct rating approach (i.e. not so qualitative as to require pair wise comparison),
then an approach in which ratings of alternatives are assigned directly (such as the
Simple Multi-Attribute Rating Technique or SMART) could be a better choice.

 Complexity

AHP is by nature a multi-stakeholder and multi criteria approach to decision-
support. Such feature may make using AHP especially for strategic decision making.
The first obstacle faced while dealing with such case is lack of agreement on how to
identify stakeholder groups, and how to select samples or representatives from
them. Stakeholders' interviews sometimes are long. So, a well-trained stuff is
needed to prepare a valid questionnaire as well as explain the questions briefly and
obviously. In short, AHP may appear invalid approach in situations where time is
crucial.
On the contrary, according to Morrissey and Browne (2004), a number of benefits
have been noted with the AHP process in general as a (MCDM) technique.

58

B. AHP Strengths

AHP has been applied in a wide variety of decision areas including those related to
economy, planning, energy policy, health, conflict resolution, project selection,
budget allocation (Zahidi, 1985), operations management (Partovi et al., 1990),
benchmarking (Eyrich, 1991), total quality management, win-win management
(Gunther et al., 2002), site selection, and education (Bahurmoz, 1999 & 2003). In
addition to being used alone, the AHP has been combined with a number of
quantitative analysis techniques such as LP, goal programming, Data Envelopment
Analysis, game theory, conjoint analysis and SWOT analysis (ISAHP 1999 & 2001).

Narasimhan (1983) states the benefits of using AHP as follows:

 It formalizes and makes systematic what is largely a subjective decision
process and thereby facilitates “accurate” judgments.

 As a by-product of the method, management receives information about the
evaluation criteria‖s implicit weights.

 The use of computers makes it possible to conduct sensitivity analysis of the
results.

Wu & Wu (1984) adapted the AHP technique for the selection of the best single
plant location reported the benefits of it as follows:

 AHP is an effective management tool. It can handle many alternatives at one

time and so permit comparisons to be made. Other popular techniques, such as
the Relative Merit Method or Dimensional Analysis, can only handle two
alternatives at a time.

 The AHP can handle complex situations where different weights are assigned to
the same attributes. Judges‖ opinions may vary when determining how important
an attribute is. Also, a weight could be assigned to the Judges‖ authority in the
decision-making process. For instances, the President of a firm may have more

59

say than the Vice President. Therefore, his opinion can be weighted at 0.65 and
the Vice President‖s at 0.35. This rationale could also be applied to several
stockholders.

 Inclusiveness

A mixture of quantitative and qualitative information and taking into account multiple
stakeholders with conflicted objectives makes AHP to go beyond the evaluation of
purely economic consequences and allows non-economic criteria to be assessed on
an equal basis, which enhance the results confidence.

 Flexibility

The hierarchal nature of AHP makes priority of each element depend on the higher
level elements. So, if the surrounded conditions lead to change the judgment of any
criteria the final rank of the alternatives will change according to the changes in the
ground. So, managers can automatically allocate their resources to accommodate
the new circumstances.

 Easiness

AHP methodology does not depend on cumbersome mathematical concepts. So, it
is easy to understand and be applied by the majority of people. AHP easiness
makes it one of the most decision making widely used tools. In addition to all AHP
benefits and drawbacks were mentioned above, the following table, Table (3.3),
summarizes other pros/ cons related to it.

61

Table 3.3: Pros and cons of AHP [17]
Pros Cons

 It allows MCDM.
 It is applicable when it is difficult to

formulate criteria evaluations, i.e., it
allows qualitative evaluation as well
as quantitative evaluation.

 It is applicable for group decision
making environments

 The inclusion of the managers at
every step of the decision analysis
in the AHP method gave them a
feeling of ownership that nearly
insured the implementation of the
findings.

 Inconsistency measure helps users
to know when they make
inconsistent judgments, especially if
they are working as a group. People
want to be logically consistent in
making decisions.

 Using AHP in group setting results in
better communication, leading to
clearer understanding and
consensus among the members of
decision making group, and hence a
greater commitment to the chosen
alternative.

 There are hidden assumptions like
consistency. Repeating evaluations
is cumbersome.

 Difficult to use when the number of
criteria or alternatives is high, i.e.,
more than 7.

 Difficult to add a new criterion or
alternative

 Difficult to take out an existing
criterion or alternative, since the
best alternative might differ if the
worst one is excluded.

61

3.3 Goal Programming (GP)

One of the most optimistic techniques for multiple objective decision analysis is GP.
This is a powerful tool which draws upon the highly developed and tested technique
of LP but it also provides a simultaneous solution to a complex system of competing
objectives. GP can handle decision problems having a single goal with multiple sub-
goals.

Generally, many decision problems in organizations involve multiple objectives. Such
problems are not simple to analyze by optimization techniques such as LP. (MCDM)
or multiple-objective decision making (MODM) has been a popular topic of
management science during the past decade. A number of different approaches of
MCDM or MODM have been proposed, such as the multi-attribute utility theory, the
multiple-objective “LP”, “GP”, “Compromised Programming” and various heuristics.
Among these, “GP” has been the most widely accepted and applied technique [18].

Ijiri (1965), stated that “In conventional LP the objective function is one-dimensional,
intended either to maximize effectiveness or to minimize sacrifice. GP techniques
are capable of handling multiple goals in multiple dimensions and therefore have no
dimensional limitation of the objective function.

GP techniques offer optimal solutions to the problem of conflicting or
incommensurable goals if an ordinal ranking of goals in terms of their contributions
or importance to the organization can be provided [19].

62

3.3.1 Goal Programming Definition

Goal Programming is a branch of multiple objective programming, which in turn is a
branch of MCDA, also known as MCDM. It can be thought of as an extension or
generalization of linear programming to handle multiple, normally conflicting objective
measures. Each of these measures is given a goal or target value to be achieved.
Unwanted deviations from this set of target values are then minimized in an
achievement function. This can be a vector or a weighted sum dependent on the
GP variant used [20].

Rifai (1994), defined in GP as "Mathematical model manages a set of conflicting
objectives by minimizing deviations between the target values and the realized". An
explicit definition of GP was given by Charnes and Cooper (1961) as “a branch of
multi objective optimization that can be thought of as an extension or generalization
of LP to handle multiple, normally conflicting objectives.”

GP handles the MCDM problems through considering the measures related to the
conflicting objectives as a given goal or target value to be achieved. Unwanted
deviations from this set of target values are then minimized in an achievement
function. This can be a vector or a weighted sum dependent on the GP variant
used. As satisfaction of the target is deemed to satisfy the decision-maker(s), an
underlying satisfying philosophy is assumed.

GP is a well-known modification and extension of LP. LP deals with only one single
objective to be minimized or maximized, and subject to some constraint; therefore,
has limitations in solving a problem with multiple objectives. GP, instead, can be
used as an effective approach to handle a decision concerning multiple and

63

conflicting goals. Further, the objective function of a GP model may consist of non-
homogeneous units of measure [19].

3.3.2 History of GP

GP was first used by Charnes, Cooper and Ferguson in 1955, although the actual
name first appear in a text by Charnes and Cooper (1961). Seminal works by Lee
(1972), Ignizio (1976), Ignizio and Cavalier (1994) and Romero (1991) followed.
Scniederjans (1995) gives in a bibliography of a large number of pre 1995 articles
relating to GP and Jones and Tamiz give an annotated bibliography of the period
(Jones and Tamiz, 1990-2000). The first engineering application of GP, due to
Ignizio in 1962, was the design and placement of the antennas employed on the
second stage of the Saturn V. This was used to launch the Apollo space capsule
which landed the first men on the moon [20].

GP is a branch of MCDA. It was first introduced by Charnes et al. in 1955, more
explicitly defined by the same authors in 1961, and further developed by Ijiri during
the 1960's. The first books dedicated to GP by Lee and Ignizio appeared during the
early to mid 1970's. In the 1970's, GP and its variants were applied to many
different subject areas.

Questions were raised as to the effectiveness of GP as an application tool by
Zeleny and Harrald during the late 1970's and early 1980's, but GP still grew in
popularity judging by the increase of papers applying GP during that period [21].

64

3.3.3 GP Algorithms

Three basic methods have been developed to optimize a multi objective model with
possibly conflicting goals:

a. The weights method (mini-sum)
b. The Lexicographic method (preemptive)
c. Chebyshev GP (mini-max)

1. Weighted GP (WGP)

The objective is to find a solution that minimizes the weighted sum of the goal
deviations. If the decision-maker is more interested in direct comparisons of the
objectives then weighted, or non pre-emptive, GP should be used. In this case all
the unwanted deviations are multiplied by weights, reflecting their relative
importance, and then added together as a single sum in order to minimize the
weighted sum of the goal deviations. It is important to recognize that deviations
measured in different units cannot be summed directly due to the phenomenon of
incommensurability. Hence each unwanted deviation is multiplied by a normalization
constant to allow direct comparison. Popular choices for normalization constants are
the goal target value of the corresponding objective (hence turning all deviations into
percentages) or the range of the corresponding objective between the best and the
worst possible values, hence mapping all deviations onto a zero-one range [22].

WGP assumes that the positive and negative deviations of the criterion outcomes
are equally undesirable. That is, that decision-maker perceives both
overachievement and underachievement of specified goals as equally undesirable
outcomes.

65

Chang (2007) defined the WGP structure in the following model:

 ∑

 (3.1)

Subject to:

 ∈ (3.2)

 (3.3)

 ∈

Where
fi(x): is the linear function of the ith goal.
gi: is the aspiration level of the ith goal.
hr: represent the index set of goals placed in the rth priority level.
αi and βi: are the respective positive weights attached to these deviations in the
achievement function.

 respectively, over and

under achievements of the ith goal.

2. Lexicographic GP (LGP)

The initial GP formulations ordered the unwanted deviations into a number of priority
levels, with the minimization of a deviation in a higher priority level being of infinitely
more importance than any deviations in lower priority levels. This is known as
lexicographic or pre-emptive GP. Ignizio (1976) gives an algorithm showing how a
lexicographic GP can be solved as a series of LP. LGP should be used when a
clear priority ordering exists amongst the goals to be achieved. Chang (2007)
defined the LGP structure in the following model:

66

 ∑

 ∑

 ∈ (3.4)

Subject to:

 ∈ (3.5)

 (3.6)

 ∈

Where definitions of variables included in this model (LGP) are the same as the
(WGP). Objective functions are ordered according to their importance. Given the
ordering, the most important function is minimized first, then on the set of optimal
solutions with respect to the first function the second function is minimized, and so
on, until a unique solution is obtained or all the specified functions are minimized.
This implies that goals of higher priority must be met before those of lower priority
are considered.

3. Chebyshev GP (CGP)

Can be considered a specific form of a WGP approach, it seeks the solution that
minimizes the worst unwanted deviation from any single goal. For decision-makers
more interested in obtaining a balance between the competing objectives, CGP,
which is considered a specific form of a WGP approach, should be used. Introduced
by Flavell, (1976), this variant seeks to minimize the maximum unwanted deviation,
rather than the sum of deviations. This utilizes the Chebyshev distance metric,
which emphasizes justice and balance rather than ruthless optimization. Chang
(2007) defined the CGP structure in the following model:

67

Subject to:

 (3.7)

 ∈ (3.8)

 (3.9)

 ∈

Where
Z: is an extra continuous variable that measures the maximum deviation. While

definitions of variables included in this model (CGP) are the same as the
(WGP).

Instead of using subjective notions to set the aspiration levels for the objectives, a
set of single optimization problems is solved to arrive at the “best” and “worst”
possible values of each objective. The best values are then used as aspiration
levels for the objectives. The objective then becomes to minimize the deviation from
those aspiration levels so that the worst deviation from any single-goal aspiration
level is minimized [23].

3.3.4 GP strengths and weaknesses

A. GP weaknesses

In spite of the vital role of GP in handling the problem with multi criteria and multi
stakeholders; GP methodology suffers from some limitations that need to be
overcome to enhance its ability to give more accurate and confident decisions. The
following sections summarize the limitations of GP.

68

 Incommensurability

Incommensurability means the incompatibility of different decision variables into a
single objective function, which mainly occurs due to the use of different units of
deviational variables in an objective function of weighted goal programming where
the sum of unwanted deviational variables are minimized. These different
measurement units damage the relative importance of the objective to the decision
maker (Tamiz and Jones, 1994).

 Complexity

Making decisions is part of our daily lives. In fact, the conflicts of resources and the
incompleteness of available information make it almost impossible for decision-
makers to build a reliable mathematical model for representation of their
preferences. In order to overcome the problem of underestimation of the decision,
the decision-makers according to the above mentioned, not only must consider the
only single aspiration level in the local region, but also develop multiple aspiration
levels under given constraints to obtain more confident solution. It is obvious that
the complexity of the Multi-Criteria GP (MCGP) problem with n aspiration levels
requires adding (ln n /ln 2) extra binary variables. The proposed GP model, with
membership function, is used to handle the MODM problem with imprecise
aspiration levels of the proposed. Multi-Choice Aspiration Levels (MCAL) model is
used for solving the MODM problem with more than one aspiration level [24].

 Sensitivity

The results obtained by solving the model, the model output, are completely
dependent on the importance weights. So, GP requires that the decision-maker
specify fairly detailed a priori information about his or her aspiration levels,
preemptive priorities, and the importance of goals in the form of weights.

69

In many complex problems, it is difficult (or even impossible) for the decision maker
to provide the precise information required by these methods, these difficulties are
aggravated further when the goals are unrelated to each other.
McGeehan (1978) listed the primary disadvantages of GP in its linear form as
follows:

A. The objective function or achievement function, constraints and goal relations

must be linear. In fact, true linearity may not exist. GP requires that the measure
of goal attainment and resource utilization be proportional to the level of each
activity conducted individually.

B. Fractional values of decision variables must be acceptable in the solution
because the optimal solution of a linear GP problem often yields non-integer
values for the decision variables.

C. GP requires a static rather than a dynamic environment. This due to the fact that
the model coefficients must be constants rather than subject to change as
conditions change. This disadvantage can be minimized by including in the
model coefficients which are based on forecasts of future conditions [25].

D. GP strengths

Despite the existence of some limitations related to the GP model, GP has enough
strengths to be considered one of the most important multi objectives mathematical
programming models. These strengths are mentioned in the following sections.

 Simplicity

A major strength of GP is its simplicity and ease of use. This accounts for the large
number of GP applications in many and diverse fields. As weighted and CGP can

71

be solved by widely available LP computer packages, finding a solution tool is not
difficult in most cases. LGP can be solved as a series of LP models, as described
by Ignizio and Cavalier (1994).

 Flexibility

The weights, aspiration levels, preemptive priorities can be changed during the
analysis as the decision maker‖s knowledge of the decision problem changes
(Interactive Programming). So, when it is necessary to change the model's input
according to the business rapid change nature, no much efforts are needed for
modify the model construction to be suitable for the new scenarios.

McGeehan (1978) listed the primary advantages of GP over traditional decisions
processes as follows:

 It helps define the decision environment in ambiguous terms.
 It provides systematic consideration of alternative decision strategies, often

involving different levels of management.
 It ensures that all key elements are considered each time a decision strategy

is evaluated.
 It creates a documented record of the decision process.
 It provides quantitative solutions to management problems.

On balance, the advantages of GP appear to outweigh the disadvantages for the
problems of decision making [25].

3.4 Combined AHP and GP

GP is a structured decision-making approach used to evaluate and satisfying
solution based on the priorities or weighted ranking assigned to each goal. While

71

GP provides no systematic method to prioritize or rank relative importance or
weights of the goals, the AHP measures the relative importance of multiple goals
with consistency. A systematic approach to rank elements (goals or alternatives) in
AHP can be utilized in the replacement of a subjective judgment to prioritize each
goal in GP. Khorramshagol and Ignition (1984) originally discussed an integration of
GP and AHP concepts in the study of single and multiple decision- making in a
multiple objective environment.

Since AHP is most widely accepted remedy to establish a relative importance
among goals, the integrated model in the study utilizes AHP to determine the
priorities to be used in GP model development to solve the problem.
The use of AHP alone for a strategic selection problem is not sufficient, because it
is not able to incorporate the resource constraints, dependencies among the
alternatives and multiple conflicting goals, criteria, and sub criteria into their decision
structure.
At the same time, GP cannot also be used alone, because it still requires calculation
of the weights of various criteria to use in the objective function of the GP model.
One of the most suitable solutions of this dilemma is to use a combination of (AHP)
with GP in order to gain a final solution that is nearest to the ideal one. Table 3.4
presents examples of studies which approach depended on Combined AHP and
GP.

72

Table 3.4: Combined AHP-GP application from literature [26]

Authors Applications Specific areas
Schniederjans and Garvin
(1997)

Business Cost driver selection

Kwak and Lee (1998) Higher education IT-based project selection
Radash and Kwak (1998) Marketing Offset proposal selection
Badri (1999) Logistics Facility location selection
Guo and He (1999)

Agriculture Harvesting measure selection

Kim et al. (1990) Military Nuclear fuel cycle selection
Zhou et al. (2000) Health Care IT-based project selection
Badri (2001) Logistics Scheduling plan selection
Kwak and Lee (2002) Service Customer data collection method

selection
Radeliffe and
schniederjans (2003)

Health care IT-based project selection

Wang et al. (2004) Industry Trust factor selection

Yurdakul (2004) Logistics Supplier selection

Kwak et al. (2005)

Manufacturing Computer-integrated manufacturing
technology selection

Wang et al. (2005) Marketing Advertising medium selection

Bertolini and
Bevilacqua (2006)

Logistics Supplier selection

Slah Bahloul and Fathi
Abid (2013)

Business International portfolio selection in the
presence of investment barriers.

73

3.5 Decision Support Systems (DSS)

3.5.1 Definitions

The concept of a decision support system (DSS) is extremely broad and its
definitions vary depending on the author‖s point of view [27]. It can take many
different forms and can be used in many different ways [28]. On the one hand,
Finlay (1994) and others [29] define a DSS broadly as "a computer-based system
that aids the process of decision making". In a more precise way, it can be defined
as "an interactive, flexible, and adaptable computer-based information system,
especially developed for supporting the solution of a non-structured management
problem for improved decision making. It utilizes data, provides an easy-to-use
interface, and allows for the decision maker‖s own insights." [30]. For Keen and
Scott Morton (1978) [31], "DSS are computer-based support for management
decision makers who are dealing with semi-structured problems." For Sprague and
Carlson (1982) [32], DSS are "interactive computer-based systems that help
decision makers utilize data and models to solve unstructured problems."

A DSS may be defined by its capabilities in several critical areas-capabilities which
are required to accomplish the objectives which are pursued by the development
and use of a DSS. Observed characteristics of a DSS which have evolved from the
work of Alter (1977), Keen (1977), and others include:

 They tend to be aimed at the less well structured, underspecified problems that
upper level managers typically face;

 They attempt to combine the use of models or analytic techniques with
traditional data access and retrieval functions;

 They specifically focus on features which make them easy to use by non-
computer people in an interactive mode.

74

 They emphasize flexibility and adaptability to accommodate changes in the
environment and the decision making approach of the user.

The manager or user is the person faced with the problem or decision - the one
that must take action and be responsible for the consequences [33].

3.5.2 Three DSS technology levels

It is helpful to identify three levels of hardware/software which have been included in
the label “DSS.” They are used by people with different levels of technical capability,
and vary in the nature and scope of task to which they can be applied.

1. Specific DSS

The system which actually accomplishes the work might be called the Specific DSS.
It is an information systems “application,” but with characteristics that make it
significantly different from a typical data processing application. It is the
hardware/software that allows a specific decision maker or group of decision makers
to deal with a specific set of related problems.

2. DSS Generator

The second technology level might be called a DSS Generator. This is a “package”
of related hardware and software which provides a set of capabilities to quickly and
easily build a Specific DSS.

75

3. DSS Tools

The third and most fundamental level of technology applied to the development of a
DSS might be called DSS Tools. These are hardware or software elements which
facilitate the development of a specific DSS or a DSS Generator. This category of
technology has seen the greatest amount of recent development, including new
special purpose languages, improvements in operating systems to support
conversational approaches, color graphics hardware and supporting software, etc
[33].
The relationships between these three levels of technology and types of DSS are
illustrated by figure 3.4.

Figure 3.4: Three levels of DSS Technology

76

Components of a specific DSS

Three fundamental components of a DSS architecture are:

1. The database (or knowledge base),
2. The model (i.e., the decision context and user criteria), and
3. The user interface.

The users themselves are also important components of the architecture [34].

3.5.3 DSS Classification

Different authors propose different classifications. Using the relationship with the
user as the criterion, Haettenschwiler (1999) [34] differentiates passive, active, and
cooperative DSS. A passive DSS is a system that aids the process of decision
making, but that cannot bring out explicit decision suggestions or solutions. An
active DSS can bring out such decision suggestions or solutions which is the case
in this DSS. A cooperative DSS allows the decision maker (or its advisor) to modify,
complete, or refine the decision suggestions provided by the system, before sending
them back to the system for validation. The system again improves, completes, and
refines the suggestions of the decision maker and sends them back to him for
validation. The whole process then starts again, until a consolidated solution is
generated.

Another taxonomy for DSS has been created by Daniel Power. Using the mode of
assistance as the criterion, Power differentiates communication-driven DSS, data-
driven DSS, document-driven DSS, knowledge-driven DSS, and model-driven DSS
[35].

 A communication-driven DSS supports more than one person working on a
shared task; examples include integrated tools like Microsoft's NetMeeting or
Groove [36]

http://en.wikipedia.org/wiki/Microsoft_Groove
http://en.wikipedia.org/wiki/Microsoft_Groove

77

 A data-driven DSS or data-oriented DSS emphasizes access to and
manipulation of a time series of internal company data and, sometimes,
external data.

 A document-driven DSS manages, retrieves, and manipulates unstructured
information in a variety of electronic formats.

 A knowledge-driven DSS provides specialized problem-solving expertise
stored as facts, rules, procedures, or in similar structures [35].

 A model-driven DSS emphasizes access to and manipulation of a statistical,
financial, optimization, or simulation model. Model-driven DSS use data and
parameters provided by users to assist decision makers in analyzing a
situation; they are not necessarily data-intensive. Dicodess is an example of
an open source model-driven DSS generator [37].

An optimization-based DSS – the one built here - can be classified as a model-
driven DSS since it generates linear programming models.

3.5.4 DSS Benefits
1. Improves personal efficiency.
2. Speed up the process of decision making.
3. Increases organizational control.
4. Encourages exploration and discovery on the part of the decision maker.
5. Speeds up problem solving in an organization.
6. Facilitates interpersonal communication.
7. Promotes learning or training.
8. Generates new evidence in support of a decision.
9. Creates a competitive advantage over competition.
10. Reveals new approaches to thinking about the problem space.
11. Helps automate managerial processes.
12. Create Innovative ideas to speed up the performance.

http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Problem-solving
http://en.wikipedia.org/wiki/Computer_Simulation
http://en.wikipedia.org/w/index.php?title=Dicodess&action=edit&redlink=1
http://en.wikipedia.org/wiki/Open_source

78

Chapter 4: System Design

4.1 The Theoretical Design of The System
4.1.1 The Database
4.1.2 Model Formulation

4.2 The Analytic Hierarchy Process (AHP)
4.2.1 Application of AHP
4.2.2 Criteria Penalization

4.3 The Software
4.3.1 A Background Of The Software Developing Tools
4.3.2 The Interface
4.3.3 The AHP Part
4.3.4 Model Document
4.3.5 Solving
4.3.6 The Solution
4.3.7 Other Used Tools
4.3.8 User‖s Guide

4.4 Information feeding mechanism
4.4.1 Available Classes Query
4.4.2 Data format

4.5 DSSPS Flexibility
4.6 Cost of Application
4.7 DSSPS Assumptions

4.7.1 Assumptions Used To Develop The Software
4.7.2 General Assumptions of The System

79

This chapter will focus mainly on the practical part of the research. Steps followed to
build the DSS will be described in details. The theoretical design of the system will
be the first section of the chapter in which system idea and structure will be
presented. Moreover, the theoretical formulation of the standard model that is
supposed to be generated by the system will be illustrated, beginning with the
definition of the variables, the objective function and going through the various soft
and hard constraints. The following part will focus on the software that is designed
to finally, assumptions used in formulation.
In addition, the approach followed to incorporate the analytic hierarchy process is
viewed.
The second section of this chapter presents the developed computer software. The
actual code of the software will not be presented, however, its various parts will be
presented in details clarifying all of the controls and tools used in them, meanwhile,
some programming aspects regarding some logical issues will be discussed. Finally,
guidance on steps that should be followed to properly use the software will be
introduced.

The third and the last section of the chapter discuss theoretically the information
feeding mechanism that is supposed to be developed by universities that wish to
adopt the system. This mechanism may and may not be actually implemented
through this research due to differences in programming languages and/or
databases management systems, however, a general approach of it will be given.
Besides, an attempt will be done in the Islamic university of Gaza with the help of
the registration program specialists to implement this mechanism.

81

4.1 The Theoretical Design of the System

The idea of the system is to maximize achievement of a student registration goals
using integer goal programming while avoiding all kinds of conflicts, it will provide
the student with a ready, quick and optimal registration with respect to his/her
personal preferences. A satisfactory level of these goals will be reached according
to the priorities set by the student and to the extent that the available and suitable
courses for him in that semester allow.

The core part of the DSSPS is a computer software which acts as a model
generator. As soon as a user log in to the software, it will contact the university
database and query about the current available courses and sections for that user.
The software will then take input from the user about his/her criteria of interest and
the associated importance weight of each generated by the analytical hierarchy
process incorporated in the software - as pairwise comparisons between the
different criteria are supposed to be set by the user - then, based on the enquired
data, the software will generate an integer multi-objective optimization model that
can be solved using one of the various linear programming engines to come out
with the optimal solution from the student perspective and according to his specified
criteria and weights while taking responsibility of overstepping all kinds of conflicts.
The resulting solution represented in zeros and ones will go back to the software to
be translated to a readable schedule form. (Figure 4.1) illustrates the structure of
the DSSPS while figure 4.2 illustrates IPO schema of the system.

81

Figure 4.1: DSSPS Structure

Figure 4.2: IPO schema of the system

The approach used to develop this system integrated both operation research and
computer science. Operation research is represented in modeling techniques and
optimization algorithms while computer science is represented in databases
management, graphical user interface (GUIs), and software development
techniques.

Input

•Site DB

•Goals+ Pairwise
Comparisons

Processing

•AHP

•ZOGP

Output

•A schedule

82

The approach used in model construction depends mainly on the software enquired
database. The main idea of this DSS is to exploit the way by which programming
languages deal with databases to the benefit of the model formulation and
generation. The database is designed in such a way that each row in any of its
tables consists of a group of fields that represent different characteristics of either
the course or the section, thus, a decision variable is declared to represent each
row in the database, consequently, giving it the value of one means the acceptance
of all associated characteristics.

4.1.1 Database

As for now, the system still in the developing stage, because of that, this system
was designed to operate with a local Access backend database for the purpose of
developing and testing.

The software backend database should be formed to contain information about
courses and their classes suitable for a student to be registered in a certain
semester. This database consists of two tables, the available courses table and the
available sections table. For a course to be considered “Available”, it should meet
the following conditions:

a. Offered for the current semester.
b. Unstudied before.
c. Their prerequisites are fulfilled.
d. At least, one section of it still available. Any course of which all sections are

full should not be listed in the courses table, even though it satisfies all three
previous conditions.

83

On the other hand, every single course in the available courses table should have
an associated group of sections listed in the available sections table. These sections
should meet only two conditions:

a. Relates to a course in the available courses list.
b. Offered for the current semester.
c. Not full yet.

Database Form

The database consists of two tables; the first table which is called "courses" (Figure
4.3) contains general information about the available courses which are:

A. Course name
B. Course number of credit hours.
C. Course type as a university, college or department requirement (with

respect to the student major).
D. Final exam date.
E. Final exam starting time.
F. Final exam ending time.

84

Figure 4.3: Courses Table

The second table called "Sections" contains specific information about the available
sections (Figure 4.4) which are:

A. Course name of the section.
B. Section number.
C. Days in which sections are held.
D. Section starting time.
E. Section ending time.
F. Section lecturer name.

85

Figure 4.4: Sections Table

4.1.2 Model Formulation

As stated before, goal programming can be thought of as an extension or
generalization of linear programming. Thus, it mainly depends on the mathematical
representation of the problem in the form of an objective function that is subject to a
set of constraints.

Goal programming problems can be categorized according to the type of
mathematical programming model that it forms. The model produced by the system
here can be called a regular zero-one integer goal programming. A non-preemptive
goal programming problems refers to problems which goals are of comparable

http://en.wikipedia.org/wiki/Linear_programming

86

importance, while “zero-one Integer programming” refers to a special case of integer
programming in which all the decision variables must have integer solution values of
0 or 1.

The basic approach of goal programming is to establish a specific numeric goal for
each of the objectives, formulate an objective function for each objective, and then
seek a solution that minimizes the (weighted) sum of deviations of these objective
functions from their respective goals. There are three possible types of goals:

A. A lower, one-sided goal sets a lower limit that we do not want to fall under
(but exceeding the limit is fine).

B. An upper, one-sided goal sets an upper limit that we do not want to exceed
(but falling under the limit is fine).

C. A two-sided goal sets a specific target that we do not want to miss on
either side [38].

The type of goal programming used in this system is the weighted one. It is also
named regular GP. The weighted GP is used when the decision-maker is interested
in direct comparisons of the objectives and is actually able to place a weight of
importance for these objectives with respect to each other, which is usually the case
in this scheduling issue. Besides, in this system, the user can chose not to consider
all criteria.

Variables

A. Decision variables

The software is built based on the assumption that all information regarding the
available courses in a certain semester are already assigned by the university such
as the courses themselves, classes timing, final exams timing or lecturers. Whatever

87

tools used to do that job have nothing to do with this software. This means that
students have no choice but to choose whether to enroll in a certain course or not, if
they choose to enroll it, then they will have to choose between its classes.

It may seem as if there are two kinds of decision variables:

A. Course decision variable: equals one in case the course is taken, 0
otherwise.

B. Sections decision variable: equals one in case a section is chosen, 0
otherwise.

However, in fact, it is just one, which is the section variable, since it carries the
class specific information while implicitly means that the related course is chosen.
Nevertheless, later we will see that a course binary variable is used to ease the
formulation and the programmatic work.

A set of variables starting with the letter “d” will be declared to denote sections
decision variables while another starting with the letter “c” is declared to denote
courses decision variables.

The declaration of the courses variables will make it easier to formulate constraints
that relate to course characteristic whether they are soft or hard.
Soft constraints that pertain to a course characteristic:

A. Desired number of credit hours in a semester.
B. Number of each Courses type.
C. Desired and undesired courses.
D. Empty Periods before final exams.

88

Hard constraints that pertain to a course characteristic:

A. Final exams timing conflicts.
B. Maximum and minimum allowed number of credit hours
C. The relation between courses and their subordinates.

Thus, instead of summing variables of all sections of all courses that are involved in
a certain constraint, we can use the course variable only and then, a simple set of
equations can be created to bind each group of sections to their associated course.

B. Deviation Variables

Most of the deviation variables that enter the objective function are binary variables,
that is, it cannot be assigned values other than zero or one, however, there are
some deviations that are set to be integers such as those used in the desired
number of credit hours constraint, number of each course type and those used for
the undesired lecturers constraints. Moreover, later it will be clear that it is not
necessary to have both a positive and a negative deviation in all types of
constraints.
On the other hand, there are some deviation variables that do not enter the
objective function such as those which are only important to balance the equation.

The objective Function

As stated, the objective function will be to minimize the weighted sum of deviations
of the various goals from their targeted values.

In this model, the objective function may turn out to be huge due to the large
number of criteria which are 11. Each one of them may generate a large number of
equations; each equation will contribute to the objective function with its positive

89

deviation, negative deviation or both depending on the related criteria and the
targeted goal. Besides, these deviations are named in a meaningful way for
programmatic issues. These names may be formed of 2 to 6 characters. Structure
of the objective function is shown in equation 4.1.

 ∑

Where:

 respectively, over and under achievements of the ith goal.
αi and βi: are the respective positive weights attached to these deviations.

Assigning weights of the deviations in the objective function will be processed
according to the results from the analytic hierarchy process incorporated in the
software. These weights can be thought of as a determinant of the penalty placed
upon being far from the desired goal. Distribution process of these weights will be
discussed in the AHP part.

Soft Constraints

Represent the various goals viewed as equations which represent the criteria that
matter to the student during registration. They are called soft because of the
addition of both the positive and the negative deviations. This addition means that
these equations cannot restrict the problem since the two deviations can be given
any value, however, the optimization process will try to minimize as much as
possible the value of those deviations whose weights in the objective function are
high.

91

The structure of the equations built for each type of the various criteria will be
discussed next.

A. Number of Courses in Each Type

which in turn consists of three parts:
A. The desired number of department requirements courses.

∑

B. The desired number of faculty requirements courses.

∑

C. The desired number of university requirements courses.

∑

Where:

S,F and R: Denotes the desired amount of courses of each type.
S,f,r: Denotes the number available for registration of each type.
Cxi : Denotes the ith course of type x.
dnx, dpx: Denote the negative and the positive deviation of the equation of type x.

91

The user will also be able to determine ranges with respect to this amount as
follows:

A. Greater than. only the negative deviation will be penalized.
B. Lower than. only the positive deviation will be penalized.
C. Equal to. both the negative and the positive deviations will be penalized.

B. The Desired Number of Credit Hours

∑

Where:

Dh: Denotes the desired number of credit hours.
n: Denotes the total number of the available courses.
Ci : Denotes the ith course.
Xi: Denotes the number of credit hours of the ith course.
dhn, dhp: Denote the negative and the positive deviation of the equation.

Again, the user will be able to determine ranges for this number as greater, lower or
equal to.
It should be noted that both deviation variables used in the desired number of each
course type and the desired number of credit hours are integers –not binary-, since
they can be assigned any value that is equal or greater than zero.

92

C. The Minimum Number Of Empty Days Between Exams.

Where:
Ca, Cb: denotes any couple of courses whose final exam dates separates by less
than the desired period.
Eapb, Eanb: denotes both the positive and the negative deviations of the equation.

Note that only the positive deviation will be penalized since – as the equation states
- giving this variable the value of one means that both courses variables whose final
exam dates violate the desired separation period are also assigned the value of
one. On the other hand, the negative deviation only exists to balance the equation
in case both courses variables were assigned the value of zero.

The next step is to generate similar equations for all different couples of courses
whose final exam dates violate the desired separation period. That would be a
programming issue. Note that the same penalty will be assigned for all generated
equations.

D. The Furthest Date Of Final Exams

Here comes the most confusing problem that faced the author during the formulation
presses which is:
You cannot just simply sum courses variables which final exam date bypass the
desired furthest date, making this sum equal to zero and then assign a penalty for
the positive deviation, because this penalty will increase as the number of these
variables whose values turned out to be one increases, however, the penalty of

93

having one course or ten bypassing that date should be the same since the student
goal failed anyway.
The same thing applies for both the desired empty periods and days throughout the
week, because, for a student who needs a certain day to be entirely empty from
lectures, it does not matter whether one lecture is assigned to that day or more
because he will have to go anyway.
Multiplying the inverse of these variables, making them equal to one and then,
assigning a penalty for the negative deviation will result in a nonlinear equation.

A solution to this problem was proposed as follows:

All decision variables that pertain to a course or a section whose characteristics
violate the desired goal of such issue will be summed, then, a group of binary
variables with the same number will be subtracted from this summation. Each
variable will be multiplied by its order in the group. All of these subtracted binary
variables will enter the objective function with the same weight, thus, the
optimization process will give a value of only one to the binary variable that is
multiplied by the number that represents the amount of decision variables who were
assigned a value of one.
The generation process of such equations will of course be accomplished
programmatically keeping in mind that the number of decision variables which
should be included in each case is variable.

94

Thus, the constraint for the furthest date of final exams can be expressed as
follows:

∑

 ∑

Where:
Cvi: the ith course decision variable that violate the desired furthest date of final
exams.
 n: the number of the violating courses.
FED: a binary variable.

E. The Desired Courses
If the course decision variable was assigned a value of zero, then the negative
binary deviation which is penalized in the objective function will be assigned a value
of one as a penalty of not taking the desired course.

Where:
Ci: The desired Course decision variable.
DCi: a binary variable.

Note that there is no positive deviation because the course decision variable is
binary, hence, it cannot take a value more than one.
The software interface allows for eight desired courses to be selected by the user,
thus, the same equation will be generated for all courses selected.

95

F. The Preferred Lecturers

It is uncommon for a student to desire a certain lecturer regardless of the course.
This is why the desired lecturer criteria is bound to the desired courses criteria, thus,
a desired course should be selected first, then, a list with all of its available lecturers
will be filled. The user will have the choice not to select a certain lecturer, as a
result, the desired course constraint shown previously will be generated. But, in
case the user selected a certain lecturer from the list, then the desired lecturer
constraint shown in equation 4.9 will be generated instead, since it implicitly means
that the associated course is also desired.

∑

Where:
di: Denotes the ith section which course and lecturer are desired.
ddx: a binary variable.
n: Denotes the number of sections course and lecturer are desired.

Again, there will be no need for a positive deviation. Note that the summation is
made because there may be more than one section of that course that is given by
that lecturer, however, assigning one section of them will be enough. Of course
there is no way to assign more than one section of the same course, this will be the
function of the hard constraints discussed later.
All eight slots available for the selection of the desired courses will have an
associated eight lists that will be filled with the available lecturers of each course
upon its selection. Thus, the previous constraint will be generated for all lecturers
selected by the user.

96

G. The Desired Empty Days Before A Certain Course Final Exam

This criteria is also bound to the desired courses criteria. The user will be able to
specify the minimum number of empty days that precedes the final exam date of
every desired course he selects.

Constraints that represent this criteria is a bit more complicated. For one thing, it is
meaningless to make one relationship between all courses whose final exams fall in
the specified range, multiple relations should be constructed between the intended
course and every violating course separately, for another, the same penalty should
be placed for the violation of this period regardless the number of violations.
Thus, there will be two stages:

A. A set of bilateral relations is constructed between the intended course and all
courses whose final exam fall in the desired empty period. All of these
relations will include a binary variable which will be assigned the value of
one if both courses were taken.

Where:
Ca: Denotes the decision variable of the course which is assigned a period to
precede its final exam date.
Cb: Denotes the decision variable of a course which final exam falls in the
desired empty period assigned to precede the final exam of course “a”.
Pbpa, Pbna: binary variables.
The same constraint will be constructed for all courses whose final exams
fall in the desired empty period assigned to precede the final exam of course
“a”.

97

B. A final constraint will be constructed between all binary variables included in
the previous set of bilateral relations and the same number of another group
of binary variables. This constraint ensures that the penalty will not be
affected by the number of violations.

∑

Where:
Pbipa: a binary variable which denotes that course “b” violates the desired
period of course “a‖.
CaEi: a binary variable that goes in the objective function.
n: the number of courses whose final exams fall in the desired empty period
before course “a”.
The previously mentioned two stages will be performed for all courses which
are assigned a period to precede its final exam date.

H. The Undesired Courses

One would think, if there are a group of courses that are undesirable to the student,
then, why would not they be excluded from the backend database in the first place?.
This necessitate a clear definition of the term “undesired courses”. Undesired
courses refer to available courses that –for some reason- a student is trying to
avoid, however, he/she accepts to enroll in these courses as a final resort lest
he/she should fill in the trap of an infeasible solutions due to unfulfilled hard
constraint of the minimum number of credit hours that has to be registered per
semester, or because there are other criteria that are more important to the student

98

that necessitate acceptance of these courses, such as a desired amount of credit
hours or a desired amount of a certain courses type.
These courses being excluded from the backend database means that they will not
enter the optimization process in the first place, as a result, these courses will not
appear what so ever in the solution.

Where:
Ci: Denotes the decision variable of the undesired course.
UCi: a binary variable.
If the course decision variable was assigned a value of one, then the positive binary
deviation which is penalized in the objective function will also be assigned a value of
one as a penalty of taking the undesired course.
The software interface allows for eight undesired courses to be selected by the user,
thus, the same equation will be generated for all courses selected.

I. The Undesirable Lecturers

∑

Where:
ddi: Denotes the ith section given by the xth undesired lecturer.
ULx: an integer variable.

99

Note that this constraint is built to include all sections given by the undesired
lecturer regardless of the course. Because of that, the deviation variable here is
integer because more than one section that are given by the undesired lecturer may
be assigned, consequently, the deviation variable will increase which in turn will
cause the penalty to increase.
The software interface allows for eight undesired lecturers to be selected by the
user, thus, the same equation will be generated for all lecturers selected. The
selection will be made from a list that is filled with all lecturers of the available
sections once the program operates.

J. The Desired empty days throughout the week

As mentioned in the furthest date of final exams criteria, the most important point
here is to unify the penalty of not being able to empty a day entirely with respect to
the number of violations (lectures assigned to that day). Thus:

∑

Where:
dyi: Denotes the ith section that meets on the yth day.
EDyi: a binary variable.
n: Denotes the number of sections held on the yth day.

The same constraint will be constructed for all days desired to be empty.

111

K. The Desired Empty Periods Throughout the week

A desired empty period on a certain day refers to the interval of time throughout that
day at which a student prefers not to appoint lectures.

It should be noted that a student will still has the choice of defining a desired empty
period within a certain day even though that day was set as a desired empty day in
the ninth criteria. It may seem as if it is going to cause double penalty, however it
will not.

Empting a certain day is a thing, empting a certain period within it is another. Failing
to empty a certain day does not necessarily means failing to avoid a certain period
within it. A student may wish to define a desired empty period within a day that is
set to be empty. It is a way of guiding the optimization process to avoid this
particular period just in case it had no other choice but to assign courses to that
day.

On the other hand, double penalty will apply only if the defined desired empty period
within a certain day was large enough to involve all possible sections in that day.

∑

Where:
dyi: Denotes the ith section that meets in the undesired period of the yth day.
EPyi: a binary variable.
n: Denotes the number of sections held in the undesired period of the yth day.

The same constraint will be constructed for all days that include an undesired
period.

111

Usually lectures begin and end at an exact hour during the day, however,
sometimes, they may start or end at half an hour. Nevertheless, and for the sake of
thoroughness, time was incorporated into this system in term of units such that each
unit represents half an hour.
Note that what is actually meant by sections that meet in the desired empty period
is all of those sections which timing intersects with that period by at least the
smallest amount of time which is in this case “half an hour”.

Timing conflicts

To detect conflict in timing, five cases where defined as the only states at which two
periods are said to be intersecting each other. Suppose we have a primary period
known as “P” and a secondary one known as “S”. Ps, Pe, Ss, Se denote the
starting time of the primary period, the ending time of the primary period, the starting
time of the secondary period and the ending time of the secondary period
respectively.

These cases – also viewed in figure 4.5 - are as follow:

A. (Ss < Ps) And (S > (Ps – Ss)).
B. (Se > Pe) And (S > (Se – Pe)).
C. (Ps < Ss) And (Pe > Se).
D. Ps = Ss.
E. Pe = Se.

112

Figure 4.5: Cases of Conflicting Periods of Time

The same principle was also applied to check for both lectures and final exams
timing conflicts in the hard constraints section coming next.

Hard Constraints

Represent laws of the academic registration system, some axiomatic issues and some
relations which importance arise due to the way by which model variables are defined.

A. Maximum and Minimum Allowed Number of Credit Hours

By default, the maximum number is set to 22 and the minimum is set to 12, which
are the limits in effect in the Islamic university of Gaza for the regular student in any
faculty. However, the software grants the user the ability to change these values,
because in some certain situations, the student will be allowed to break these limits
(graduate students for example).

113

a. The maximum number of credit hours

∑

b. The minimum number of credit hours

∑

Where:
Xi: Denotes the number of credit hours of the ith course.
Ci: Denotes the decision variable of the ith course.
n: Denotes the number of all available courses.
MAXH: Denotes the maximum allowed number of credit hours
MINH: Denotes the minimum allowed number of credit hours

B. Final Exams Conflicts

It means those courses which final exams timing overlaps. A bilateral set of hard
constraints will be constructed between any pair of courses which final exams timing
overlaps as follows:

Where:
Ca, Cb: Denotes the decision variables of any pair of courses which final exams
timing overlaps.

114

The previous equation will allow at most for one course of this pair to be assigned.

C. Courses And their Related Sections

As stated before, the declaration of the courses decision variables will make it easier
to formulate constraints that relate to course characteristic – although they are not
really needed – it also makes it easier to write the generation code of such
constraints, however, it is necessary to bind each group of sections to their related
course. This is because the final output of the software will be presented in sections
not in courses. Thus, these set of constraints will be responsible for binding all
constraints – soft or hard – which contain courses decision variables to the model.

 ∑

. .
.

 ∑

Where:
C1: Denotes the decision variable of the first available course.
X1: Denotes the number of sections related to the first course.
d1i: Denotes the decision variable of the ith section that relates to the first course.
m: Denotes the number of available courses.

These constraints will play another important role by preventing selection of more
than one section of the same course, since the summation of each section group is
equal to a binary variable.

115

D. Lectures Conflicts

Represent constraints that prevent lectures timing conflicts. A bilateral set of hard
constraints will be constructed between any pair of sections which any of its
meetings timing overlaps with the other.

Where:
da, db: Denotes the decision variables of any pair of sections which any of its
meetings timing overlaps with the other.

The previous constraint will allow at most for one section of this pair to be assigned.

E. Courses And Their Subordinates

The function of this type of constraints is to bind each course to its subordinate
classes. These classes should be registered along with their related courses in the
same semester, such as discussions or laboratory classes. The constraint shown in
equation 4.21 will bind these subordinate classes in such a way that if a course is
taken then its subordinate class will be taken as well. These subordinates will be
treated by the system as normal courses Because, they also will have their own
sections each of which will have its own timing and lecturer. Thus, those classes will
be included in the courses table the same way as other normal courses, however,
usually, they will have no credit hours, nor final exam information.
These subordinates are recognized by the software by their names. It is their names
that enable the software bind them to their related courses.

116

 (4.21)

Where:

Ca: Denotes the decision variable of a course “a”.
Cb: Denotes the decision variable of a course “b” which is a subordinate for course
“a”.

4.2 The Analytic Hierarchy Process (AHP)

The previously discussed ten criteria are not always of the same importance to the
student, besides, the student may not consider them all. A student may chose a
course as a desired, a lecturer as undesired, a minimum number of credit hours and
in the same time a certain day to be empty, however, the last goal is the one that
matters to him most, so, there must be a way to enable the user to represent his
priorities since most of the previously mentioned goals will be conflicting within the
narrow framework of the available sections and the hard constraints during the
optimization process. That is why the analytic hierarchy process was incorporated in
the system, so that it can be used to derive weights or priorities that will be
assigned to the various goals involved in the model. These weights will be derived
from a set of pairwise comparisons established between the goals involved.

Other reasons as why AHP is used:

A. Humans are much more capable of making relative rather than absolute
judgments.

B. AHP incorporates redundancy through pairwise comparisons, which results in
a reduction of measurement error [39].

117

Decomposition is the first phase of AHP in which this problem is structured into two
levels. The first level is represented by the main cluster which includes the ten main
criteria which are:

A. The desired number of credit hours.
B. The desired number of each course type.
C. Minimum empty days between final exams.
D. The furthest date of final exams.
E. The desired courses. (Within available) or the desired courses given by the

desired lecturers.
F. Number of empty days before a certain course final exam.
G. The undesired courses.
H. The undesired lecturers.
I. The desired empty days in schedule.
J. The desired empty periods in schedule.

Some criteria are ramified into a set of elements, which give the user the choice to
determine a set of sub-objectives that follow the same main title. Such as:

A. The desired number of each course type.
B. The desired courses. (Within available) or the desired courses given by the

desired lecturers.
C. Number of empty days before a certain course final exam.
D. The undesired courses.
E. The undesired lecturers.
F. The desired empty days in schedule.
G. The desired empty periods in schedule.

These sub-objectives will be treated into a group of sub-clusters which represent
the second level. Figure 4.6 shows hierarchal structure of objectives.

118

Figure 4.6: Hierarchal Structure of Objectives

Preparing A schedule

“Ultimate Goal”

The desired
number of

credit hours

The desired
number of

each course
type.

Minimum
empty days
between

final exams.

The furthest
date of final

exams.

The desired
courses and

lecturers

The desired
empty days

before a
desired

course final
exam

The
undesired
courses

The
Undesirable

lecturers

Desired
Empty days
throughout
the week

Desired
Empty
Periods

Throughout
the week

NO of Department Requirements Courses

NO of College Requirements Courses

NO of University Requirements Courses

Undesired Course

1

Undesired Course

2

Undesired Course

3

Undesired Course

4

Undesired Course

5

Undesired Course

6

Undesired Course

7

Undesired Course

8

Undesired

Lecturer 1

Undesired

Lecturer 2

Undesired

Lecturer 3

Undesired

Lecturer 4

Undesired

Lecturer 5

Undesired

Lecturer 6

Undesired

Lecturer 7

Undesired

Lecturer 8

Desired Course

And Lecturer 1

Desired Course

And Lecturer 2

Desired Course

And Lecturer 3

Desired Course

And Lecturer 4

Desired Course

And Lecturer 5

Desired Course

And Lecturer 6

Desired Course

And Lecturer 7

Desired Course

And Lecturer 8

Days Before Final

Exam 1

Days Before Final

Exam 2

Days Before Final

Exam 3

Days Before Final

Exam 4

Days Before Final

Exam 5

Days Before Final

Exam 6

Days Before Final

Exam 7

Days Before Final

Exam 8

Empty Day 1

Empty Day 2

Empty Day 3

Empty Day 4

Empty Day 5

Empty Day 6

Empty Period on

Day 1

Empty Period on

Day 2

Empty Period on

Day 3

Empty Period on

Day 4

Empty Period on

Day 5

Empty Period on

Day 6

119

4.2.1 Application of AHP

It should be noted that the first criteria allows for three sub-objectives. Criteria from
5 to 8 allow for 8 sub-objectives representing the eight slots available for the
selection of the desired and the undesired courses and lecturers, in addition to the
eight slots available for the determination of the desired empty days before some
certain courses final exams.
The last two criteria allow for 6 sub-objectives representing the desired empty days
or periods throughout the 6 days of the weak.
However, only those objectives –elements- set by the user will be considered,
whether at the first or the second level.
The second step is to construct pairwise comparisons of all combinations of
elements in all clusters. The importance of any element can be compared to any
other element in the same cluster on a scale that ranges from 1/9 to 9 using a
comparison matrix which dimension depends on the included elements. Yet,
elements of the same cluster will be given equal importance in case their
comparison matrix was not manipulated.

 Only half of the matrix will be visible to the user on the form of a triangle such that
the intersection of a certain element row and another‖s column represents the
relative value of the first with respect to the last. Thus, the other matrix half will be
automatically calculated as the inverse of the first one.

To calculate priorities of the various elements in a certain pairwise comparisons
matrix, AHP uses the Eigen value method to compute the priority vector which is the
normalized Eigen vector of the matrix. However, an approximation of the Eigen
value method is usually used in AHP due to its ease and precision.

111

Steps to compute the Eigen vector are as follow:

A. Sum each column of the reciprocal matrix.
B. Divide each element of the matrix with the sum of its column to get a

normalized relative weight.
C. The normalized Eigen vector can be obtained by averaging through the

rows.

The third step of AHP is to apply the principle of hierarchic composition by
multiplying the local priorities of elements in a cluster by the ―global‖ priority of the
parent element, producing global priorities or final scores throughout the hierarchy.
Usually the final step of AHP is to evaluate the existing alternative as to how much
they would contribute to the achievement of the ultimate goal. This is done by
adding up the importance of the lowest level elements that each alternative satisfies.
However in this problem, there are no alternatives. Final scores will be used as
weights in the objective function of the integer goal programming model are solved
to yield the optimum alternatives.
Final weight of each considered element will be distributed among all of its deviation
variables that go into the objective function (discussed in the formulation part).

Use of the analytic hierarchy process is not just the most important step, it is the
only step that determines the quality of the software output. The slightest change in
the objective function weights could result in a completely different schedule. Hence,
it is very important for the user to be precise during this process.

The most important thing for any user is that he should know what he is comparing,
particularly in the main level. The ten main criteria are clearly dissimilar,
nevertheless, at least the user should know the units of each criterion that are

111

panelized at the corresponding weight of that criteria, thus, he/she will be able to
compare the importance of these units with respect to each other in the pairwise
comparison process of the main matrix.

4.2.2 Criteria penalization:

Table 4.1 defines the units at which each of the ten criteria is penalized for being
far from the corresponding specified goal.

Table 4.1: Criteria Penalization

NO Criteria Penalized Unit
1 The desired number of credit hours.

Each single hour outside
the desired range
specified by the user

2 The desired number of each course type.

Each single course
outside the desired
range of each type.

3 Minimum empty days between final exams.

One violation of this
period (one case at
which two courses final
exams separate by less
than the desired period).

4 The furthest date of final exams.

To violate this date (no
matter how many exams
bypass that date)

112

Table 4.1: Criteria Penalization (Continued).

5 The desired courses. (Within available) or
the desired courses given by the desired
lecturers.

Not to take a desired
course or not to take a
desired course with the
desired lecturer in case
one is specified.

6 Number of empty days before a certain
course final exam.

To violate this period
(some other courses
final exams fall in this
period no matter how
many).

7 The undesired courses.

To take one undesired
course.

8 The undesired lecturers.

To take one course that
is given by un undesired
lecturer.

9 The desired empty days in schedule.

Not to entirely empty a
certain day that is set to
be empty.

10 The desired empty periods in schedule.

Not to entirely empty a
certain period in a
certain day that is set to
be empty.

113

4.3 The Software

This section focuses on the applied part of the system represented by the computer
software itself. A general view of the software will be presented starting with the
criteria part and going through the AHP part, model control, solving and the results.
Finally guidance to the proper use of the software is given.

 4.3.1 A background of the software developing tools.

The software was developed using visual basic 6; its related database is designed
on Microsoft access 2007 and used Microsoft's ActiveX Data Objects (ADO) to
access data stores. Also, the Structured Query Language (SQL) was used to query
tables.
Visual Basic is a third-generation event-driven programming language from
Microsoft first released in 1991. Visual Basic is designed to be relatively easy to
learn and use. Visual Basic was derived from BASIC and enables the rapid
application development (RAD) of Graphical User Interface (GUI) applications,
access to databases using Data Access Objects, Remote Data Objects, or ActiveX
Data Objects, and creation of ActiveX controls and objects. The final release was
version 6 in 1998.

Like the BASIC programming language, Visual Basic was designed to be easily
learned and used by beginner programmers. The language not only allows
programmers to create simple GUI applications, but also to develop complex
applications. Programming in VB is a combination of visually arranging components
or controls on a form, specifying attributes and actions of those components, and
writing additional lines of code for more functionality. Since default attributes and
actions are defined for the components, a simple program can be created without
the programmer having to write many lines of code. Performance problems were

http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data_Access_Object
http://en.wikipedia.org/wiki/Remote_Data_Objects

114

experienced by earlier versions, but with faster computers and native code
compilation this has become less of an issue.

Although VB programs can be compiled into native code executables from version 5
onwards, they still require the presence of runtime libraries of approximately 1 MB in
size. Runtime libraries are included by default in Windows 2000 and later, however
for earlier versions of Windows, i.e. 95/98/NT, runtime libraries must be distributed
together with the executable.

Forms are created using drag-and-drop techniques. A tool is used to place controls
(e.g., text boxes, buttons, etc.) on the form (window). Controls have attributes and
event handlers associated with them. Default values are provided when the control
is created, but may be changed by the programmer. Many attribute values can be
modified during run time based on user actions or changes in the environment,
providing a dynamic application. For example, code can be inserted into the form
resize event handler to reposition a control so that it remains centered on the form,
expands to fill up the form, etc. By inserting code into the event handler for a key
press in a text box, the program can automatically translate the case of the text
being entered, or even prevent certain characters from being inserted.

Visual Basic can create executables (EXE files), ActiveX controls, or DLL files, but is
primarily used to develop Windows applications and to interface database systems.
Dialog boxes with less functionality can be used to provide pop-up capabilities.
Controls provide the basic functionality of the application, while programmers can
insert additional logic within the appropriate event handlers. For example, a drop-
down combination box will automatically display its list and allow the user to select
any element. An event handler is called when an item is selected, which can then
execute additional code created by the programmer to perform some action based
on which element was selected, such as populating a related list.

Microsoft Access, also known as Microsoft Office Access, is a database
management system from Microsoft that combines the relational Microsoft Jet

115

Database Engine with a graphical user interface and software-development tools. It
is a member of the Microsoft Office suite of applications

In addition to using its own database storage file, Microsoft Access may also be
used as the 'front-end' with other products as the 'back-end' tables, such as
Microsoft SQL Server and non-Microsoft products such as Oracle and Sybase.
Multiple backend sources can be used by a Microsoft Access Jet Database (accdb
and mdb formats). Similarly, some applications will only use the Microsoft Access
tables and use another product as a front-end, such as Visual Basic or ASP.NET.
which is done in this project.

Microsoft Data Access Components (commonly abbreviated MDAC; also known as
Windows DAC) is a framework of interrelated Microsoft technologies that allows
programmers a uniform and comprehensive way of developing applications that can
access almost any data store. Its components include: ActiveX Data Objects (ADO),
OLE DB, and Open Database Connectivity (ODBC), figure 4.7 shows these
components.

Figure 4.7: MDAC (Microsoft Data Access Components)

116

Microsoft's ActiveX Data Objects (ADO) is a set of Component Object Model (COM)
objects for accessing data sources. A part of MDAC, it provides a middleware layer
between programming languages and OLE DB (a means of accessing data stores,
whether they be databases or otherwise, in a uniform manner). ADO allows a
developer to write programs that access data without knowing how the database is
implemented; developers must be aware of the database for connection only. No
knowledge of the Structured Query Language (SQL) is required to access a
database when using ADO, although one can use ADO to execute SQL commands
directly.

Structured Query Language (SQL) is a special-purpose programming language
designed for managing data in relational database management systems (RDBMS).
SQL was first created by Edgar F. Codd, as described in his influential 1970 paper,
"A Relational Model of Data for Large Shared Data Banks". It became the most
widely used database language. Also, SQL became a standard of the American
National Standards Institute (ANSI) in 1986.

4.3.2 The Interface

Today the graphical user interfaces (GUIs) is in a growing importance. Besides, a
software interface is the most visible component of an OBDSS. However, an
attractive user interface is not considered so far since the project is yet to be built.
Also, it is very difficult for one person to develop the fundamental design of a model,
write the code of a large and complicated computer software, design a query system
that binds the software with the university database and in the same time care about
a fancy interface, since all of the previously mentioned tasks was carried out by the
author alone.

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/SQL

117

Right now, the interface is clearly stuffed with too many parts and objects – as
shown in figure 4.8 -. This is done essentially for the sake of a clear and explicit
presentation. Nevertheless, a friendlier interface may be developed later.
As for now, the software interface is divided into three sections. The first section is
occupied by the main ten criteria. This section is for the user to determine his goals
regarding the criteria that concern him. The second section contains a view of the
software related database including both courses and sections tables. The third
section is for control buttons.

Figure 4.8: Classes Selection Decision Support Software Interface

118

A. Criteria Section

a. Course Type

Figure 4.9: Course Type

As shown in (figure 4.9) this criteria contains three parts, departmental, faculty and
university requirements. The user will be able to set whatever parts he wants or
leave them all. To define a goal, the user should set two combo-boxes, one for the
desired number of courses and the other is for desired range whether it is greater
than, less than or equal to. The combo box for the desired number of courses is
filled upon student login with numbers from 0 to the maximum number of courses
that exist of the associated type in the database. The button named “construct” is
responsible of constructing the required constraints in the model document
according to what is set by the user.

119

b. The Desired Number Of Credit Hours

Again, the user will have to set two combo boxes, one is for the range operator
and the other is for the desired number of credit hours as shown in figure 4.10.
Also, the maximum and the minimum allowed number of credit hours are set in
this box. Although these two values relate to hard constraints, they are the
determinants of the desired number of hour‖s combo box list of values. Of
course it is illogical to desire a number of credit hours outside this list.

Figure 4.10: Desired Hours

c. Minimum number of days between final exams

Here, the user will just have to specify the minimum number of days he wishes
to separate between final exams inside the only text box there (figure 4.11).
This text box which only accepts numbers can be filled by only one number.

Figure 4.11: Minimum Number of Days between Final Exams

121

d. Final Exams Last day

The user will not have to enter the date manually, once this date picker box is
clicked, a calendar will show up (figure 4.12) to choose from.

Figure 4.12: Final Exams Last day

e. The Desired Courses, The Desired Lecturers And The Desired
Period Before a Certain Course

Both the desired lecturer and the desired period before a certain course final
exam are bound to the desired courses. As stated before, it is uncommon for a
student to desire a certain lecturer regardless of the course. Although it is not
justified to bind the desired period before a certain course final exam to the
desired courses, these two criteria will only be allowed to be set once a desired
course is selected.
As in (Figure 4.13), there are eight combo boxes for the desired courses
criteria. These boxes are filled upon user login with all available courses. Since
the number of credit hours per course is usually three, eight courses will be

121

more than enough, however, the idea behind the desired courses criteria has
nothing to do with the study load, and it is about giving the software more
alternatives. Once a course is selected in any of the desired courses criteria
combo boxes, it will be subtracted from all other combo boxes list items,
moreover, the associated combo box of the desired lecturer combo box will be
filled by all lecturers who give this course. Besides, the associated text box of
the desired period before final exam will be enabled.
The reset button will empty all boxes and refill the desired courses combo boxes
with the available courses again.

Figure 4.13: The Desired Courses, the Desired Lecturers And

 The Desired Period before a Certain Course

f. The Undesired Courses

This section is composed of eight combo boxes that are filled with all available
courses upon user login the same way as in the desired courses section (figure

122

4.14). In both the desired and the undesired criteria sections, user can select
courses from any scattered group of combo boxes, they should not necessarily
be successive.
Also, the desired and the undesired courses sections are bound in a way such
that any course selected in any section will be subtracted from the other section
combo boxes list items. This is done to prevent selecting the same course in
both sections since it does not make sense.

Figure 4.14: The Undesired Courses

g. The Undesired Lecturers

This section is also composed of eight combo boxes that are filled upon user
login with all lecturers of all available sections (figure 4.15). This section is
bound to the desired lecturers section. Whenever a lecturer is selected in any
section, he will be subtracted from all of the other section combo boxes list
items. Also, whenever a lecturer is deleted in any section, he will be relisted in

123

all of the other section combo boxes. A gain these combo boxes can be chosen
randomly.

Figure 4.15: The Undesired Lecturers

h. The Desired Empty Days.

This section consists of six checkboxes representing days from Saturday to
Thursday respectively (Figure 4.16). The user needs just to check those boxes
of the days which he desires to be empty.

124

Figure 4.16: The Desired Empty Days

i. The Desired Empty Periods

This section consists of six boxes representing days from Saturday to Thursday.
Inside each box there are two slider tools gradual into 20 steps such that 0
represents eight o‖clock morning while 20 represents six o‖clock afternoon so
each step represents half an hour (Figure 4.17).
To specify an empty period in a certain day, user should set the two slider tools
of that day to the timings at which that period starts and ends. It does not matter
which slider tool represents which timing.

125

Figure 4.17: The Desired Empty Periods

4.3.3 The Analytic Hierarchy Process (AHP) Part

AHP can be accessed through the button named “Set Priorities (AHP)” which leads
to the form shown in figure 4.18. This form navigates through the various AHP
clusters. Each button in this form lead to a form that contains a group of combo
boxes with the shape of a half matrix. This half matrix provides a way by which
users can assign pairwise comparisons between the various concerned elements.
The button named “main” leads a form that establish a pairwise comparison
between the main ten criteria while the rest of the buttons lead to forms that
establish a pairwise comparison between sub-elements related to any of the
ramified criteria. The number in these buttons names refer to the number of the
associated main criteria in the interface.

126

Figure 4.18: AHP Clusters Navigation Form

Figure 4.19 shows the pairwise comparison form of the main criteria.

Figure 4.19: Main criteria Pairwise comparison matrix

127

Figure 4.20 shows the pairwise comparison form of the desired courses sub-
criteria.

Figure 4.20: Desired courses sub-criteria
 Pairwise comparison matrix

Either in the main pairwise comparison form or the other sub-criteria forms,
Comparison will be conducted only between elements that were set by the user in
the criteria section in the application interface. Also, weights resulted from AHP will
be distributed among them. The software is programmed such that once the AHP
button is clicked, combo boxes matrices will be generated in all of the pairwise
comparison forms, each one has a dimension equal to the number of elements set
by the user in it is associated cluster. Also, both dimensions will be named after
these elements. The combo box that falls at the intersection of a certain element
row and another‖s column represents the relative value of the first with respect to
the last. These combo boxes are filled upon their creation with values from 9 to 1/9,
however the default value will be one. That is why in case a matrix was not

128

manipulated, then all of its elements will get the same weight of importance with
respect to each other.

4.3.4 Model Document

The model document is a text file created at the same location of the application
once it is launched. The function of this file is to contain the model while it is
constructed gradually. Once the model is complete, this file will be converted into Lp
format file that is recognized by the solving package used to solve the model.
This file is also good in case other solvers rather the one used in this system is
used to solve the problem in order to generate other solutions or to fasten the
solving process.
The model document can be opened any time through notepad or any other text
application either manually by going to its path on the computer, or simply by
clicking the button named “Open File” in the control section of the software (Figure
4.21).

Figure 4.21: Model Document Controls

The model document is first created with the word “min:” in it as a start, since the
objective function will always be a minimization, it also takes into consider the

129

required format of LP files. A function called Write-To-File is developed in the
software which continuously appends to this file. This function is a bit complicated
because writing to text files in visual basic necessitate reading and rewriting of the
entire file each time a modification is needed since supplements is continuously
needed at the end of the file represented in new constraints and then another is
also needed back in the objective function in the first line represented in deviation
variables. Moreover, it is necessary to keep the format of LP files. Each time a
construct button is pressed in any of the various criteria in the criteria section, all
associated constraints to that criterion that were discussed earlier in the theoretical
section and the appropriate deviation variables will be appended to the model using
this function. A preview of the model document as it is in progress is shown in
figure 4.22.

Figure 4.22: Model Document in Progress

The function of the button named “Close File” shown in figure 4.18 is to close the
model document in case it was opened. Both “Open File” and “Close File” buttons

131

are provided only for demonstration purposes. They are also necessary for the
operation research analyst to keep monitoring the development of the model.

The button named “Clear” is responsible of wiping the entire model document and
prepare it again to be filled. It should be pressed in case the user needs to
construct a new problem with different input with respect either to the criteria
involved or the weights of importance.
The last button in the model document controls is called “Finalize” (Figure 4.18). it
was called so because it is responsible of setting the model document in its final
shape that is ready to be solved.

Finalize has four functions as follows:
1. Add the hard constraints.
2. Define all variables involved in the model. Each variable will be declared with

its appropriate type.
3. Set the model in its final shape which format is of LP file.
4. Make a copy of the model document with “LP” extension, so to be solved

using the solving package.

Figure 4.23 shows the model document upon finalizing.

131

Figure 4.23: Finalized Model Document

 4.3.5 Solving

The solver used in DSSPS is a freeware package named Lp-solve. Lp_solve is a
linear (integer) programming solver based on the revised simplex method and the
Branch-and-bound method for the integers. Lp_solve was originally developed by
Michel Berkelaar at Eindhoven University of Technology.
From its name Lp-solve do not have the capability of solving models that contains
equations of the second order or higher, however, other commercial solving
packages do. Nevertheless, there will be no need for them since the model is
designed to contain linear equations only.
Lp-solve can also be called as a library from different languages like C, VB, .NET,
Delphi, Excel and Java using APIs. The API is a set of routines that can be called
from a programming language to build the model in memory, solve it and return the
results.

mailto:michel@magma-da.com

132

There is now also an IDE program called LP-Solve IDE (Figure 4.24) that uses the
API to provide a Windows application to solve models. With this program there is no
need to know anything of API or computer programming languages. If a model is
provided to the program it will solve the model and give the results.

The following is a list of Lp-solve features:

 Mixed Integer Linear Programming (MILP) solver
 Basically no limit on model size
 It is free and with sources
 Supports Integer variables, Semi-continuous variables and Special Ordered

Sets
 Can read model from MPS, LP or user written format
 Models can be built in-memory without the use of files
 Has a powerful API interface
 Easy callable from other programming languages
 Provides different scaling methods to make the model more numerical

stable
 Has pre-solve capabilities to tighten constraints/make the model smaller

and Faster to solve
 Has a base crashing routine to determine a starting point
 Allows restart after making changes to the model. Solve continues from the

last found solution
 Has the possibility to convert one model format to another format
 Provides post-optimal sensitivity analysis.

133

Figure 4.24: LP-Solve IDE

Although Lp-solve supports models to be built in memory so that to avoid the use of
text files. It was necessary to use a text file for monitoring purpose, so that to
continually examine the generation code as it was built, besides, this text file will be
useful in case LP solving engines other than LP-Solve were used.
Figure 4.25 shows the group of buttons related to the final process in the software
represented by solving and introducing the solution.

134

Figure 4.25: LP-Solve IDE

Once the model document is finalized, it is now ready to be solved. The button
named “RUN LP-SOLVE” will launch the LP-SOLVE IDE in case it was installed on
the computer. It is going to run the file named “Model.lp” which was created by the
“Finalize” process. Thus, LP-SOLVE IDE will open with the same model file opened
through it and is just ready to be solved (Figure 4.24) either by clicking on the
“solve” button up in the toolbar or by pressing “F9”.
However, the software does not need the IDE to be installed, since it is going to
solve the model using the application programming interface functions of the LP-
solve library. This library will be included in the software package so to be installed
with the software to any machine. Nevertheless, running the IDE will still be
important for the sake of a deep analysis of the solving process. It may help OR/MS
experts to review the iterations of the optimization process, get other information
about the solving process and the resulting solution or to conduct sensitivity
analysis.
To use the LP-SOLVE APIs to just solve the model silently, the user can click the
button named “SOLVE”.

135

Prior to solving, this “Solve” button will create an output file called “output.txt” and
set it to contain the resulting solution.

Solving time varies according to the complexity of the model. It also depends on the
computer processor. A model complexity is determined by the number of variables
and constraints that exist. The number of variables and constraints depend mainly
on three factors:

A. The number of available courses and sections in the related database and
their characteristics.
The previous factor relates to the number of decision variables which will
increase as the size of the available classes‖ database increases. Moreover,
the characteristics of these classes determine the number of constraints built
due to lectures timing conflicts or final exams conflicts in both the soft and
the hard section.

B. Criteria involved by the user.
The type of criteria involved affects the number of constraints built in the soft
section, because some certain criteria produce more constraints than others
as discussed earlier in the theoretical design section.

C. Goals set by the user.
This factor applies particularly in both the minimum number of days that
separates between final exams and the minimum number of empty days that
precedes a certain course final exam. The higher this number is, the more
constraints will be built.

136

The problem is that unlike the IDE platform there will be no sign whether the solving
process is yet finished or not. The software will just hang during this period. To
solve this issue, a progress bar was created that is periodically refilled. This
progress bar will hang during the solving process and rerun again when it is
finished.
Once the solving process is over, results will be printed in the output file mentioned
earlier. Results include the value of the objective function, besides, the values of all
engaged variables. However, only sections decision variables are the ones that
matter. Those decisions variables that were assigned the value of one represent the
group of classes that should be taken as a final result of the system. Note that the
word “Class” is used to denote a course, timing and a lecturer.

Solving Options

Many commercial solving packages support presenting multiple optimum solutions
for a certain linear programming problem. Other optimum alternatives represent
other solutions that have the same optimum objective function value with different
decision variables ones.
This feature is not supported in LP-Solve. LP-Solve will just present the first
optimum solution it finds. It will search no more for alternatives. This is because of
the nature of the branch and bound algorithm that LP-Solve follow to solve an
integer problem.
However in fact, one should think whether this feature really matters. Since the
resulting solution satisfies the user targeted goals to the maximum extent. Why
should he search for alternatives?
If the user is not satisfied with the resulting solution, he can simply redefine his
goals and priorities then solve the problem again.

137

Nevertheless, as previously stated, this system allows for problems to be solved
using other solving packages that may support this feature since it creates a model
file with LP format. This format can be transformed to any other using the LP-Solve
IDE. This file can be taken to be solved by the intended solving package, then,
result can be returned to be translated using this software as shown next in the
solution section.
Moreover, a solution to this matter is presented in this software through solving
settings. Solving settings represent the ways by which LP-Solve approaches the
solution. By clicking the button named “Set Options” a window shown in figure 4.26
will show up that permits the user to manipulate solving settings. Changing these
options may cause – but not necessarily - the optimization process to reach another
optimum solution.

Figure 4.26: LP-Solve settings

138

4.3.6 The Solution

A main feature of this system is that it is designed to provide a tool by which non-
experts or those who have no OR/MS background are allowed to construct their
own models and use them to support their decisions. There will be no need for an
analyst to act as an intermediary between the system and the decision makers as
most of the OBDSSs do. As stated earlier, most of the procedures involved so far in
the software are purely for demonstration purposes as this system is still to be
introduced. Such procedures may mean something to an operation research
specialist but non to a first year student.

The function of the two buttons named “open solution” and “close solution” is to
open and close the output text file in which the solution is printed. The values of
both the objective function and all involved variables as a final result of the
optimization process are included in this file. This file helped the author during the
process of designing the system but again may not be of great value to the user. An
example of the output file is presented in figure 4.27.

To an OR/MS analyst, value of the objective function represents the summation of
deviations from the targeted values of each considered criteria according to weights
assigned to each one of them. In other words, the smaller this value the closer the
resulting solution from the user targeted set of goals. In case value of the objective
function was zero, this means either that all of the user goals are met or that the
user did not set any goals.

139

Figure 4.27: LP-Solve IDE

Thus, the final step of the software is to translate the output file in a form that is
familiar to the student eyes. Once the button named “translate” is clicked, the output
file will be read line by line. Finally, according to the database of the available
classes, a list of the sections that should be registered will be viewed in a new
window along with all of their related information which is:

A. Name of the course
B. Section number
C. Days in which a sections meet
D. meeting timing of a section
E. Lecturer name
F. Final exam date
G. type of the course

141

Figure 4.28 shows the window in which final results is viewed as a readable
schedule.

Figure 4.28: Solution window

 4.3.7 Other Used Tools

A. Progress Bars

Progress bars are distributed among the various elements in the criteria section.
These bars denote the weight that each element gets as a result from the AHP
process.
There are two types of progress bars. The big ones - vertically positioned -
represent the main criteria elements, and the small ones - horizontally
positioned - represent the sub-criteria elements.

141

Once the OK button in the AHP clusters navigation form is clicked, both local
and global weights will be calculated. At the beginning, progress bars will be
assigned local weights, that is, each element will be assigned a weight with
respect to its cluster. However, once the button called “calculate final scores” is
clicked, progress bars will be assigned its associated elements global weights,
resulted from multiplying the local weight of each element by its parent. The
overall weights that sum to one will be only distributed among the final level.
Final level may contain both sub-criteria and main criteria which have no sub-
criteria, these main criteria will keep its local weights as it is, as a result, its
associated progress bars value will remain the same. The unbranched main
criteria are the desired number of credit hours, the desired minimum number of
days between exams and the desired furthest final exams date. Progress bars of
the branched main criteria will be assigned a zero as its local weight is now
distributed among its sub-criteria.

B. Check boxes

They are also distributed among the various elements in the criteria section.
Check boxes are important to denote that a certain element is considered by the
user whether it is a main criterion or a sub-criterion, consequently, it will be
considered in the AHP process. Check boxes are automatically checked once
their associated elements are manipulated. Also, the check box of a branched
main criterion will be automatically checked once any of its sub-criteria is
checked and unchecked once all of its sub-criteria are unchecked.

142

C. “X” Buttons

These “X” buttons is associated with all sub-criteria of main criteria number five,
seven and eight. Their function is to cancel a selected item of the associated
sub-criteria whether it is a desired course, an undesired course or an undesired
lecturer.
As discussed before, canceling an item will refill it in all combo boxes lists of the
same main criteria and the ones from the opposite criteria. For example,
selecting a desired course will subtract it from all other combo boxes lists as well
as the undesired courses ones, however, canceling it, will refill this course in all
of them again.

4.3.8 User's Guide

This part clarifies how to use the current version of the software. It shows in details
steps that should be executed respectively in order to obtain meaningful results.

Login to the Program

Login is important to inquire the proper information of the current user. As for
now there will be no need to enter a user name and a password until the
software is actually bound to the university database. As stated before, the
database used so far is an imaginary one. This database was used for
developing purposes.

143

Define Goals

This step is accomplished through the criteria section of the software
interface the way it is discussed before.
Whenever the user manipulates any element in the criteria section, the
associated check box will be checked. Check boxes denote which elements
will be considered in the AHP process, they also determine which elements
constraints are going to be built. If a certain element is no longer considered,
user can simply uncheck its associated check box. This step involves a
determination of goals but not yet to press the construct buttons till weights
is assigned in the next step.

Set Priorities

Upon software startup global and local weights of all elements will be
assigned the value of zero. Unless the user enter the AHP clusters
navigation window there will be no meaning of the model since coefficients of
all objective function variables will be zeros.
Once the user enter the AHP clusters navigation window, elements of the
same cluster will be given equal weights, also, global weights will be
calculated based on that, even though the user did not enter any of the
pairwise comparison forms, however, the user can enter these forms and set
customized weights through pairwise comparisons.
An equal weight to elements of the same cluster may be unrealistic,
especially in the main cluster, for one thing, some elements such as main
criteria that are not widely ramified will obtain a lot more weight than those
how are widely ramified – of course it depends on the number of elements
considered in each -. For another, the nature of elements considered differs.

144

That is why pairwise comparisons should be conducted at least for the main
cluster, it is also why unit penalized of each criteria – discussed earlier in the
theoretical section – should be recalled during this process.

If the user was perfectly consistent, there will be no need to fill the entire
matrix; relations of one element with respect to the others will be enough to
calculate the weight vector, while the rest of the matrix will be redundant,
since:

However, the user will not be perfectly consistent. On the other hand being
perfectly consistent is not necessarily error free. So this is the idea of AHP,
which is based on strengthening accuracy through redundancy.
Once the user finishes the pairwise comparisons process and exit the AHP
clusters navigation form, global weights will be recalculate and distributed
among the considered elements.

Construct the Model

The fourth step is to construct the model by clicking the construct buttons in
all criteria sections that contain any considered elements.
It is not important to wait for the progress bars to be filled as weights are
already calculated and stored. Also, the order at which these buttons are
pressed does not matter. The objective function is just a summation of
deviations, besides; the order by which constraints are arranged does not
matter in linear programming.

145

Finalize the Model

By pressing the “Finalize” button which function is discussed earlier.

Solve

In case “Run LP-Solve” is pressed, the IDE platform of LP-Solve will run
with the model already opened in it. From there, the user is able to solve the
problem, however, will not be able to translate the results unless he
understood the theoretical design of the system.
Nevertheless, the “Solve” button that uses the LP-Solve APIs is the one
designed for normal users, once clicked, the solving process will begin
causing the whole software to hang as well as the running progress bar
beneath the solve button. When this bar runs again, it means that solving
process has ended and the solution is now already printed in the output file.

Translate the Results

By clicking the translate button. The output file will be translated into a
readable schedule form.

146

4.4 Information Feeding Mechanism

Information feeding mechanism refers to the way by which the software needed
information is going to be enquired from the university registration database,
reformed in the appropriate shape and delivered to the software as it asks for it.
The software backend database is supposed to be formed to suit the logged in
student. It should be emptied from all previous data and refilled with the new user‖s
automatically. This is the vision of the system, a vision that cannot come to reality
unless the system is granted permission to access the university registration
database and use the appropriate queries. However, till this point, all I am offering is
an idea of a DSS, not a ready software package.

4.4.1 Available Classes Query

As stated before, for a course to be considered “Available”, it should meet the
following conditions:

e. Offered for the current semester.
f. Unstudied before.
g. Their prerequisites are fulfilled.
h. At least, one section of it still available. Any course of which all sections are

full should not be listed in the courses table, even though it satisfies all three
previous conditions.

On the other hand, every single course in the available courses table should have
an associated group of sections listed in the available sections table. These sections
should meet only two conditions:

d. Relates to a course in the available courses list.

147

e. Offered for the current semester.
f. Not full yet.

It should be noted that the software will work with whatever information provided to
it, on the other hand, it is illogical to expect realistic results when the input is not, for
example, if the backend database included unavailable courses or sections, the
output may also include them, furthermore, should the backend database includes
wrong data about some sections or courses, it will cause the entire optimization
process to be based on wrong data, what will result in either a non-realistic solution
or a solution that is not really optimized with respect to the actual data. That is why
it is essential for any university that wishes to adopt the system to design the proper
queries that guarantees all of the previous conditions. These queries will cause the
previously listed five issues to be out of the way as they have been already taken
care of.

The process of building this query depends on the schema and diagram of a
university registration database. So, it is better to show an example of it instead of a
strict approach. An example is the approach followed to reach this information
feeding mechanism in the Islamic university of Gaza.

Once the software is ready, its backend database can be replaced with a direct
access to the university registration database, however, during the experiment of
testing the system in the Islamic university of Gaza, not only they refused to grant
the system an authorization to the registration database, but also refused to provide
me with the exact query built to retrieve the required data.

Appendix C shows the query used by the Islamic university registration database
specialist to fetch the available courses and section for a certain student in a certain
semester along with its characteristics required by the software.

148

It‖s important to note that “Available courses” in universities that adopt the credit
hour system not only refer to courses required by the major but also to any course
that a student is allowed to be enrolled in during a certain semester. Even though it
is not a part of his/her major. Besides, sometimes a student may decide to repeat a
certain course just to have the opportunity of achieving a higher score. This may
lead us to categorize the available courses as follows:

A. Basic Available Courses:
Refer to courses required by the current major. (Available), should be
automatically included.

B. Other Available Courses:
Refer to courses from other majors that a student is allowed to be enrolled in.
only included as requested by the user.

C. Repeated Courses:
Refer to courses that a student wishes to study again.

The system is designed to just include the first type of courses automatically as they
are obligatory. The other two types need the student requesting. Nevertheless,
these two types may be included later. However, other queries should be developed
to prepare tables for both.

Another important point –regarding the first criteria- is that there must be a
mechanism by which courses can be classified as university, faculty and department
requirements as they are inquired with respect to the student major, because a
course may be considered as a university requirement for a student but a
department requirement to another.

149

4.4.2 Data Format.

Data contained in both tables should have a certain form with which the software
was designed and is familiar. For example:

A. Time is expressed in the software code as numbers that begins with zero
representing 8 o'clock morning, and ends with 20 representing 6 o'clock
afternoon, so that each step represents half an hour.

B. Days from Saturday to Thursday are represented by numbers from 1 to 6.

Data retrieved by the Islamic university specialist were not as they are supposed to
be –as for the software-. For example, days were not denoted in the Islamic
university registration databases the same way as in the DSSPS. Table 4.2 shows
the difference between the two.

Table 4.2: Islamic University Days Coding Versus DSSPS

Day
Islamic University

System
DSSPS

Saturday S 1
Sunday N 2
Monday M 3
Tuesday T 4

Wednesday W 5
Thursday - 6

Whereas time was represented in 24 hours system with no separation between
minutes and hours, the difference between the Islamic university system and the
DSSPS is shown in table 4.3.

151

Table 4.3: Islamic University Timing System versus DSSPS

Thus, it was necessary to convert these data to the familiar format recognized by
the software. Appendix D shows the functions written in VB to accomplish this task.

4.5 DSSPS Flexibility

A. The number of desired courses, undesired courses, desired lecturers, undesired
lecturers allowed in the software.
Although, it is unlikely for any of the previously mentioned criteria to exceed
eight, this limit can be extended easily through a few modifications of the
software code and interface.

B. Lectures may be held at days from Saturday to Thursday.
At any university, there must be at least one day off, however, the only problem
that remains is which one it is. This problem can be simply solved by only
altering names of the days referring slots in the ninth and the tenth criteria in the
software interface according to that day. There will be no need to modify the
code because days are represented in it as numbers from one to six rather than
letters that represent the first letter of each day. Another thing that will also need
to be modified is the way by which characters denoting days retrieved from the
university database will be transformed to the software recognizable format.

Time Islamic University
system

DSSPS

08:00 AM 800 0
08:30 AM 830 1
01:00 PM 1300 10
01:30 PM 1330 11

151

In case a university had more than one day off, then, the missed day in the
software should be assigned to one of them, there will be no problem with the
other empty days, the generation process will simply realize that there are no
lectures in it, as a result, no constraints will be built regarding the ninth and the
tenth criteria for these days.

C. This system has the ability to be used in any university that uses the credit
hours system, however, maybe with slight modifications.

D. Even if this software was not imbedded within a university site, it still can be
used by students privately as a desktop application. The university will just has
to deliver the required data regarding the available sections once asked by a
student in the form of an access database file. Then, the student can only place
it in the right path on his PC and run the software.

E. Due to the way by which the regular model is formulated and the mechanism by
which models are generated, it is too easy to add other criteria that may show
up later. All what is needed is to add an additional field to the courses or the
sections table of the available classes‖ database depending on to which table
this new criterion or characteristic belongs.
Also, an additional section must be developed at the software interface that is
responsible for generating the appropriate constraints related to the new
criterion.

F. What applies to undergraduate students also applies to graduate students who
follow the credit hours system since they share the same characteristics and
procedures of registration, moreover, the system was designed to cover time
from 8 o‖clock morning to 6 o‖clock afternoon, thus, graduate students lectures
which are usually held at late hours are also covered.

152

4.6 Cost of Application
Such system will not cost the university a lot. Cost can be summarized in the
software development costs which should take into account a fancy, easy and
effective interface besides taking care of the security issues using a modern and
a strong programming language. The second thing is a set of servers with super
specifications that qualify it to serve multiple users spontaneously

4.7 DSSPS Assumptions

4.7.1 Assumptions Used To Develop the Software

A. Classes held at multiple days are at the same timing.
B. Course information of a certain course (such as the number of credit hours,

course type, final exam timing) is the same for all of its sections.
C. For a student, desired courses, undesired courses, desired lecturers or

undesired lecturers will not exceed eight per semester.
D. Lectures may be held at days from Saturday to Thursday.
E. A student may set a minimum period to precede a certain course final exam

only if this course is desired.
F. It‖s uncommon for a student to have more than one undesired period within

the same day.

4.7.2 General Assumptions of the System

A. Offered courses, offered sections, sections timing, final exams timing or
lecturer‖s allocation are supposed to be prepared by the university as they
will be treated by the software as fixed information.

B. University site should provide the software with a database that contains the
required information with the required form.

153

C. The student is well aware about what courses is best for him at the current
time to avoid problems in the upcoming semesters. (This may be also the
rule of the academic advisor).

154

Chapter 5: RESULTS AND ANALYSIS

5.1 Testing approach

5.2 Testing Goal

5.3 Software Testing Part

5.3.1 Manual Schedule Evaluation
5.3.2 Software Testing Part Way of Working

5.4 The Questionnaire

5.5 Results

5.6 Analysis

155

This chapter shows the process of validating the software through testing. Testing
phase involves the process of experimenting the software in an environment in
which the software is designed to work.

Software testing can be stated as the process of validating and verifying that a
computer program, application or product:

 Meets the requirements that guided its design and development.
 Works as expected.
 Can be implemented with the same characteristics.
 Satisfies the needs of stakeholders.

Depending on the testing method employed, software testing can be implemented at
any time in the development process. Traditionally most of the test effort occurs
after the requirements have been defined and the coding process has been
completed.

The developing stage of the software took about four months. During that period,
the software was not developed, tested or seen by anyone, -testing mentioned here
means the ongoing testing process of the code as it was developed using a virtual
database-.

This is the main reason why testing phase meant a lot. This phase was not only
necessary to investigate stakeholders‖ satisfaction but more importantly to ensure its
functionality within the outside environment.

As mentioned before, the experiment of testing the system in the Islamic university
of Gaza faced a few obstacles. Well, as a start, the software was not granted an
authorization to the registration database. It meant that the system will not be able
to directly fetch its required data nor ask for filling its backend database.

The only Approach that appeared suitable to overstep this problem at that time is to
fetch data for a group of students picked randomly from different departments and

156

levels so that these students will experiment the software one by one. Each time the
backend database will be filled with the proper student data. Thus, testing approach
steps could be arranged as follow.

5.1Testing Approach

The first step was to have the registration database specialist from the Islamic
university design the available classes query shown in chapter four. This query is
responsible for fetching the exact data required by the software for a certain student
in a certain semester.

The second step would be to start fetching data for random students using the
designed query. The information retrieved by that query represents a data table that
includes all available sections of all available courses for a student. This information
are supposed to include all what is needed for the software, nevertheless some
unimportant information was also included.

The third step is to retain this information which is exported as excel files by copying
them to the testing computer -Testing computer is the computer on which testing
process will be conducted using the software-, after that, these files will be
classified, transformed into Access databases and finally adjusted to the proper
format recognized by the software (as discussed earlier in chapter four).

The fourth step is to start experimenting the software with each student one by one.
Each time the backend database will be replaced with the proper one that matches
the experimenting student.

157

Again, this approach appeared to be very exhausting because of the following:

A. It is not easy to randomly pick students in order to participate in such a long
and complicated process.

B. It takes the database specialist too much time to fetch data for a certain
student, moreover, this specialist will not be always available nor have the
time.

C. The process of copying, transforming, adjusting data files also take too much
time.

All previous points made it almost impossible to follow this procedure. So, instead of
gathering specific databases for specific students then, conduct private testing
processes, it would be better to retrieve a group of databases that represent a group
of departments and/or levels. Once transformed and adjusted, these databases will
be suitable to be applied to whatever student who matches that database related
department and level. Therefore, one database may fit a large number of students.

However, it may be important to address another point here. It is meaningless to
conduct a test regarding a certain student in a certain department, then retest the
software for the same student after he changed his department because the
student‖s style choosing his criteria, goals and priorities will not change upon
changing the department, on the other hand, the way by which the software work
will not differ upon changing the available classes list.

For that, it makes more sense to increase the number of the testing students rather
than trying to achieve a specialization diversification.

158

So, it may be possible to conduct this testing process using a group of a real or
imaginary databases even though it does not match the users specializations. In
another word, these users – who may also be graduates, not just students - will be
asked to imagine that database as if it represents what is available for them
currently, they will assume a group of goals regarding this database, assign
hypothetical priorities, then, let the software find the best schedule for that data. On
the other hand, this user will construct a schedule manually, taking into account the
goals and priorities he has already defined while taking caution not to violate the
registration regulations.

5.2 Testing Goal

Obviously, the main goal of the testing process is to compare the schedule prepared
by the student manually with that one optimized by the software. This goal
necessitates existence of criteria to be used for comparison.

Customer satisfaction could be a reasonable criteria, however, it cannot be
presented as a strong scientific evidence that corroborate the software, besides,
customer satisfaction cannot be quantified, as a result, the advantage of this
software over the manual scheduling will not be measurable.

Moreover, the user being unsatisfied with the resulting optimized schedule will
usually be a result of an inaccurate determination of his priorities. For example,
usually the user will unintentionally place too much weight to a certain goal with
respect to the other group of goals that interest him; as a result, he will get a
schedule that only satisfies that goal while ignoring all others. This happens
because the optimization process only cares about minimizing the objective function

159

value which represents the final penalization score. This score is mainly driven by
the penalization factor – or weight - of each goal.

So, testing process cannot rely on user satisfaction, the software has no idea what
the user exactly wants, it will only deal with whatever input entered by him. Till the
user master usage of the software, testing process will assume that whatever input
entered by him describes exactly what he wants.

Thus, a criterion that could be used in such case as a fair and a quantifiable index
is the objective function value which should be calculated for both the optimized and
the manually prepared schedule. A user inaccuracy defining his priorities will not be
a matter anymore, since the resulting inaccurate weights will be applied equally in
both the original model and the model used to evaluate the manual schedule.

5.3 Software Testing Part

Therefore, another part was added to the software that permits the tester to form a
schedule manually from the current available classes‖ database.

Figure 5.1 shows a group of buttons used in the software interface that belong to
the manual scheduling part.

Figure 5.1: manual scheduling buttons

161

The first button leads to the manual scheduling part shown in figure 5.2. Through
this window, the user will be able to form his schedule the same way he does on his
page at the university website. The manual scheduling window is divided into two
parts, two data tables that represent the two courses and sections tables of the
database are located in the first part the same way as in the interface. The other
part includes an empty list that contains the chosen classes. In between, a group of
buttons that add and remove classes to that list.

An important feature that worth mentioning is that this window is programmed to
prevent lectures and final exams timing conflicts, once a certain class is added,
there will be no way to add another class that has a timing conflict with the that one
either for the lecturers or the final exams. This feature will continuously check for
conflicts as the classes are being added, it will also inform the user as with which
class this conflict happened, in addition to the cause of this conflict whether it is due
to lectures or final exams timing. This will certainly be helpful to avoid such conflicts
during the process of manual scheduling, eventually, it is meaningless to evaluate
an infeasible schedule.

The final stage is to evaluate this schedule by trying to calculate its corresponding
objective function value.

161

Figure 5.2: manual scheduling window

5.3.1 Manual Schedule Evaluation

Thus, the main problem here is how to calculate the corresponding objective
function value of this manually prepared schedule. In another words, how to
formulate the right model of such case?

The first thing we should keep in mind to solve this issue is that the objective
function of this model is supposed to be subject to the goals that are already
defined by the user, it means that if the soft constraints representing the various
goals are violated due to the classes already selected by the user then the value of
the objective function should increase with respect to the magnitude of that violation
and its corresponding penalization weight, thus, the same objective function, weights
and constraints used in the original model should also be used in the manual
schedule evaluation model.

162

So, what is the difference between the original model and the model used to
evaluate the manual schedule?

The user being choosing a group of classes is like forcing the optimization process
to contain these classes in the final suggested schedule. In another word, the
corresponding decision variables of these classes should be assigned the value of
one prior to the beginning of the optimization process.

This can be simply accomplished by adding a group of constraints to the model.
These constraints are usually equalities that assign the value of one to all of the
manually chosen classes in order to ensure selection of these classes (equation
5.1).

Where:

di: denotes the decision variable of a selected class.

But what about the other classes?. The process of evaluating the manually prepared
schedule can be describe as a normal multi-equation with multi-unknown problem
Solving process rather than an optimization process. Since most or all of the
decision variables are already set to a value, all is needed is the value of the
corresponding penalized deviation variables. However, in some cases the model will
perform a slight optimization activity that does not affect the chosen classes. For
example, the user may define eighteen as a preferred number of credit hours,
however, upon manual scheduling, he selected classes that only sums for 14 credit
hours. In that case the optimization process will try to select a group of classes in
addition to the ones already selected manually by the user in order to approach the

163

credit hours goal as possible. So, for the sake of a just comparison, this optimization
activity should be prevented, the only way to do that is to force avoidance of all
other classes that were not selected by the user. Thus, the corresponding decision
variables of these classes should be assigned the value of zero prior to the
beginning of the optimization process.

This can be simply accomplished by adding another group of equality constraints to
the model. These constraints assign the value of zero to all other classes that were
not selected by the user in order to ensure neglecting of these classes (equation
5.2).

Where:

di: denotes the decision variable of a non-selected class.

Since the manual scheduling window already prevents timing conflicts, should the
hard constraints be also added?

The answer is yes, because there are other constraints related to regulations that
are not included in the manual scheduling window such as the maximum and
minimum allowed number of hours besides the constraints responsible for binding
classes to their subordinates.

Solving process of the manual schedule model will not take time, the optimization
process will not check for alternatives the way as the normal model will, because all
of the decision variables are already known.

164

5.3.2 Software Testing Part: Way of Working

As mentioned before, the manual schedule evaluation model is the same as the
original optimization one as for the objective function, its weights, the soft
constraints and the hard constraints except for the additional equality constraints
that force the selection of the manually selected classes only, so, logically, the
original model should be built prior to coming to the manual schedule evaluation
phase. Or in another word, steps needed to build the original optimization model
should be conducted first. It means that the user should first identify his goals and
priorities prior to the manual schedule evaluation phase since they represent the
base upon which both the objective function and the soft constraints will be
generated.

Once both goals and priorities are identified, the user can press the “construct all”
button which will construct the objective function and the soft constraints within the
model file and the same within anther file that is meant to contain the manual
schedule evaluation model.

At this point, the user will be eligible to enter the manual scheduling window and
start selecting classes. Once the user is done forming his schedule he can press
the “OK” button. This button will construct both the equality constraints that force
inclusion of the manually selected classes, avoidance of all other classes and the
hard constraints that guarantee full subordination to the university registration
regulations.

The “Translate” button in figure 5.1 will show the manual schedule and the
associated objective function value will be displayed on top.

165

5.4 The Questionnaire

Another obstacle that faced the testing process is that users need a lot of time to
understand the idea of the DSS besides goal and method of the testing process.
So, it seemed logical to illustrate all of this to a large number rather than doing it
one by one, however, there was a difficulty providing that number of users with
computers at that very moment so that they would use the software. And even if
somehow it was possible to provide that number of computers, users will face a
difficulty using the software and again it will be necessary to instruct them one by
one, each one will take no less than 20 minutes, thus, the remaining users will not
wait.

And so, the only solution that appeared convenient in order to solve this problem is
to design some sort of a questionnaire that replaces this long and weary process.

The objective of this questionnaire is to gather all required testing data about a
certain user which enables me to conduct the testing process later by myself.

These data is classified into three categories, and so, the questionnaire. These
three categories are as follow:

A. Goals.
B. Priorities.
C. A manually prepared schedule.

At the end of the questionnaire, there is a table that contains the suggested
available classes for the current semester. The process of filling the questionnaire
should be done taking into account that the only available classes are represented
by what exist in that table. Defining goals and priorities will logically precedes
preparing of the manual schedule, because the manual schedule is supposed to be
formed based on what goals and priorities the user has in mind.

166

The goals section imitates the software interface in which the ten criteria are
addressed. The user will only specify goals regarding the set of criteria that interest
him.

The prioritizing section contains a relationship diagram for the main ten criteria. The
user is supposed to conduct the pairwise comparisons method among the various
criteria that interest him. To clarify this method to those who are not familiar with it,
a simple example is first demonstrated that illustrates it. If part or the entire diagram
was left blank, then – as stated in the questionnaire – the associated criteria will be
given the same importance (only if they were considered in the first place).

For the sake of simplicity and shortening the time, this prioritizing section will not go
further to the sub-criteria level.

The final step in the questionnaire is the process of constructing a schedule
manually using the classes in the available classes table.

For the sake of an impartial comparison between the system proposed schedule and
the manually prepared one, the user should make the utmost effort preparing this
manual schedule to comply with his predefined goals and priorities, but more
importantly, the user should avoid breaching any of the registration restrictions since
it meaningless to calculate the objective function value of an infeasible schedule.
Anyway, the software will not calculate it unless the hard constraints were excluded
from the model.

5.5 Results

A variety of students shared filling of the questionnaire. Students from the Islamic
university of Gaza, Palestine University and Al-Aqsa University, moreover,
graduates from other universities shared this process.

167

5.5.1 Value of the Objective Function

An example of the main results of a test is shown next, represented in goals shown
in table 5.1 and priorities set by the user (figure 5.3), the manual schedule prepared
(figure 5.4) and the optimized schedule calculated by the software (figure 5.5).

Table 5.1: goals set in test number one.

1

The desired
number of each
courses type

= 3

= 2

= 1

2 The desired range
of credit hours

= 16

3
Minimum empty
days between
final exams.

2

4 furthest date of
final exams.

…

5
desired courses.
(with or without a
desired lecturer)

EElE3351 HADT4204 POLS3220

6

Number of empty
days before a
certain course

final exam

…

7 The undesired
courses.

EMEC330
8 EMEC3111

8 The undesired
lecturers.

…

9
The desired
empty days

Saturday Sunday Monday Tuesday Wednesday THURSDAY

10 The desired
empty periods

Saturday Sunday
10-11 Monday Tuesday Wednesday

11-12 THURSDAY

168

Figure 5.3: Pairwise Comparison matrix for the main criteria filled in test number one.

Objective function of the manually prepared schedule of test number one had a
value of 0.5832 as shown in figure 5.4.

Figure 5.4: the manual schedule of test number one.

CRITERIA 1 2 3 4 5 6 7 8 9 10

1. The desired number of each courses type 1 1 1 1 1 1 1 1 1

2. The desired range of credit hours 1 1 1 1 1 1 1 1

3. Minimum empty days between final exams. 1 1 1 1 1 1 1

4. Furthest date of final exams. 1 1 1 1 1 1

5. Desired courses. 1 1 1 1 1

6. days before a certain course final exam 1 1 1 1

7. The undesired courses. 1 1 1

8. The undesired lecturers. 1 1

9. The desired empty days 1

10. The desired empty periods

169

Objective function of the optimized schedule of test number one had a value of
0.2082 as shown in figure 5.5.

Figure 5.5: The optimized schedule of test number one.

Table 5.2 shows the results of 25 tests conducted in all of the previously mentioned
universities. The table includes both objective function values of both the manual
and the optimized schedule in addition to the time needed for both.

171

Table 5.2: Final results of the testing process (objective function value).

Test No
Manual

Schedule
Proposed
Schedule

Objective Function Value
Reduction Percentage

1 0.5832 0.2082 64.30%

2 1.4672 0.6087 58.51%

3 1.6708 0.423 74.68%

4 0.9786 0.7759 20.71%

5 1.8396 0.3022 83.57%

6 1.8666 0.7332 60.72%

7 0.6188 0.3094 50.00%

8 0.7676 0.3906 49.11%

9 0.0738 0.0547 25.88%

10 1.0709 0.6509 39.22%

11 0.7999 0.4666 41.67%

12 0.3292 0.1264 61.60%

13 1.1219 0.3665 67.33%

14 0.6291 0.3509 44.22%

15 1.0275 0.6201 39.65%

16 0.7234 0.2283 68.44%

17 1.0914 0.608 44.29%

18 0.3874 0.056 85.54%

19 0.2483 0.0972 60.85%

20 0.7082 0.1768 75.04%

21 0.8832 0.4999 43.40%

22 0.5829 0.2415 58.57%

23 0.9234 0.4879 47.16%

24 0.9741 0.3519 63.87%

25 1.2912 0.6496 49.69%

Average 0.906328 0.391376 55.1%

Standard Deviation 0.162939

171

Figure 5.6 is a graph that demonstrates the difference between the objective function
value calculated for both the manual schedule and the optimized one.

Figure 5.6: OFV‖s of both the manual and the proposed schedules for all 25 tests.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25

Objective function value of
the manual schedule

Objective function value of
the optimized schedule

172

5.6 Analysis

Naturally, decision making process gets more complicated as both the number of goals
and the number of alternatives increase.

Some decisions aim to achieve a single goal while many alternatives exist. Such
decisions will be easy to make, because simply one would choose the alternative that
best satisfies that single goal.

Similarly, a situation where there is a decision to be made that aims to maximize
achievement of a variety of goals while only one alternative exists, such situation cannot
be considered a decision making process at all.

In this case, goals are represented by preferences set by the user while alternatives can
be measured by the degree to which sections are granted and diversified.

As the number of the available sections and the assigned preferences increase, the
multi-objective optimization model generated by the software will be more complicated,
worthy to be solved using a computer linear programing solver.

Moreover, when taking about goals that are weighted by their relative importance, it
should be noted that having one goal that is assigned a very high weight with respect to
the other goals is similar to the case where there is only one goal. In other words, a
decision will be too easy to be made –exactly what happened in test number nine.

By easy I mean that a student may not need to use this DSS at all, because his
manually prepared schedule will most likely be evaluated as being too close to the
optimized one proposed by the system.

Test number nine scored the lowest difference between the manual schedule and the
optimized one objective function values. Input used by that user showed that criteria
number four was given the maximum degree of importance with respect to the other

173

assigned goals, moreover, that goal was assigned a value that is already actualized – in
other words cannot be breached - referring to the data of the available sections that
was retrieved for that case, there was no courses which exam

A user can approach the optimal objective function value by giving the highest
percentage of penalization to something that is already – or can be easily - actualized.
Even if the system could satisfy the remaining goals, the user score will still be so close
to the system one, because – in this case - these goals account for a relatively very
small penalty.

The standard deviation and the arithmetic mean measure two different characteristics of
a set of data. The arithmetic mean measures where the data is centered whereas the
standard deviation measures how spread out the data is. Both values were calculated
for the OFV reduction percentage data so as to evaluate the system efficiency.

A high (large) standard deviation indicates a wide range of scores or a great deal of
variance. The greater the range of scores, the less representative the mean becomes.

A large standard deviation is usually indicated by comparing it to the mean. That is why
precision is measured using the relative standard deviation which equal standard
deviation divided by the mean. So that low values mean that data is precise.

The relative standard deviation can also be thought of as an index that gets smaller as
the mean of the OFV‖s reduction percentages get bigger and their Dispersion gets
smaller which is proper to measure the system efficiency.

174

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions
6.2 Limitations
6.3 Recommendations

6.3.1 Developing the software interface
6.3.2 An easier and more efficient prioritizing method
6.3.3 Targeting Lecturers
6.3.4 Moving to cloud computing
6.3.5 Implementation Plan

175

6.1 Conclusions

According to the OFV estimation of both the prepared schedule and the DSSPS
proposed one, and as a result of 25 tests of different students who used different
insertions. DSSPS proposed schedule was improved by an average of 55.1% with
respect to the manually prepared one with a standard deviation equals 0.1629 so
that the relative standard deviation equals 0.2956. This means that about 68.2% of
the readings deviate from the mean by no more than 29.5% of it.

The best improvement was 85.54% while the least one was 20.71%, but a gain this
improvement depends on how complicated the problem is, as how many goals set
by the user, for example, if the user defined only one goal– for example registering
15 hours – then, there will be no need to use the system at all, because such goal
can easily be achieve. The more criteria get involved in the problem the more
effective this system can be. Nevertheless, the previous values of both the average
and standard deviation of the OFV reduction percentage data were a result of
randomly tested students who were not obliged to maintain a certain level of
complexity.

It took DSSPS almost a fraction of a second to calculate its optimized schedule for
all of the cases while the tested students took from 15 to 30 minutes to prepare the
manual schedule although they were in a rush, however in fact, this manual
preparation usually takes much more time especially for students at the first two
levels who may take days to reach a final registration.

DSSPS met a wide acceptance among the students. Importance survey results
show that 72% of the students stated that this system is very important while 24%
stated that it is important.

176

6.2 Limitations

a. The software was built on the assumption that multiple sections of the same
course are held at the same timing. This is usually the case in universities that
adopt the credit hours system. However, if it was not, then, a new searching
mechanism should be developed to handle the task of constructing both hard
and soft constraints that relate to timing conflicts issues.

b. For a student, desired courses, undesired courses, desired lecturers or
undesired lecturers will not exceed eight per semester. Although, it is unlikely for
any of the previously mentioned criteria to exceed eight, this limit can be
extended easily through a few modifications of the software code and interface.

c. The software does not support more than one desired empty period within the
same day, however, again this problem can be solved with a few programmatic
work besides a slight modification to the interface.

d. This system is targeting the students, so, it assumes that type of the classes
themselves, their timing, their lecturers and final exams are already set by the
university so that this information will be treated by the system as fixed input.
The system did not take into account lecturers or any other university employees
preferences, So, a preliminary process that is similar to this one could be
developed to assign classes, their timing and final exams in a way that form a
compromise solution between all stakeholders.

e. The outcome of this process will be an input for the system developed here.
f. To use the system a computer – desktop or laptop – should be available that

runs windows XP, vista or seven, furthermore, the software should be installed
on it in case it was not embedded in the university website as a student service.
This will usually be the case to transport calculations effort to the clients PC‖s.
This issue raised the need for transforming this effort towards mobiles and
portable devises.

177

6.3 Recommendations

6.3.1 Developing the software interface

All the work accomplished through this study including design of the system, design
of the model, coding the generation process, the AHP part, the testing part, the
translation process, designing the database and the information feeding mechanism,
made it almost impossible to continue designing a fancy interface.
Although the interface already built through this study is quite suitable, it was mainly
designed to test the system and not for a final end-user application.
The interface could be redesigned so that everything is categorized, obvious and
easy to understand, it may include a variety of languages which are
interchangeable, also, other helpful features can be added, for example, the
possibility of saving the multiple scenarios created. This friendly interface could be
the topic of a whole new study.

6.3.2 An easier and more efficient prioritizing method

During the process of testing the software, it was obvious that the students face a
difficulty understanding the pairwise comparison method and how could it be applied
through the relationship diagram half matrix. Even students from the engineering
college failed to do it right.
On the other hand -as stated in chapter 5-, the user being unsatisfied with the
resulting optimized schedule is usually a result of an inaccurate determination of his
priorities. This happens because students fail to Realizes the difference between the
units at which each criterion is penalized (described in chapter four).
Thus, a creative method to replace this traditional and rather complicated process
may be developed. This method may clearly illustrate the difference between the

178

various criteria and help reach an accurate prioritizing exactly the way meant by the
user.

6.3.3 Targeting Lecturers

The same idea of this system can be used to develop anther one that targets
lecturers. This system may be used for lectures scheduling, halls and lecturers
allocation at the very beginning, however, other criteria should be defined, the ones
that interest lecturers. Later on, Output of this system should be the input for the
one developed here.
Moreover, there will be no database representing the available classes since they
are still to be determined, instead, study plans, the number of students, the number
of halls and labs will represent the initial input for the models generator.
This system will be used by the management. It will consider all lecturers
preferences spontaneously and reach a compromise solution.

6.3.4 Moving to cloud computing
Cloud computing relies on sharing of resources to achieve coherence and
economies of scale similar to a utility (like the electricity grid) over a network [40].
The cloud also focuses on maximizing the effectiveness of the shared resources.
Proponents claim that cloud computing allows companies to avoid upfront
infrastructure costs, and focus on projects that differentiate their businesses instead
of infrastructure [41].
In marketing, cloud computing is mostly used to sell hosted services in the sense of
Application Service Provisioning that run client server software on a remote location.
Such services are given popular acronyms like 'SaaS' (Software as a Service) and
'PaaS' (Platform as a Service). End users access cloud-based applications through

179

a web browser or a light-weight desktop or mobile application while the business
software and user's data are stored on servers at a remote location.
Consequently, developing a mobile application that emulates the function of the
computer application built in this study would be of a great use especially in places
where electricity supply is discontinuous, besides, a student will not necessarily
always has access to a computer.

6.3.5 Implementation Plan
The Implementation Plan describes how the system will be deployed, installed and
transitioned into an operational system. The plan contains an overview of the
system, a brief description of the major tasks involved in the implementation, the
overall resources needed to support the implementation effort (such as hardware,
software. facilities, materials, and personnel) Including costs estimations.

181

Bibliography

[1] Chubb, D. W. J. (1984). “Knowledge Engineering Problems during Expert System
Development.”
[2] A. M. Wittenstein and T. Sharma (2002). "FROSH2: An expert system for
freshman advisement", Proceeding of the National Conference on Undergraduate
Research (NCUR), University of Wisconsin, Whitewater, Wisconsin, USA, April 25-27.
[3] Marques, O., X. Ding, et al. (2001). “Design and development of a Web-based
academic advising system.”
[4] Al Ahmar, M. A. (2011). “A Prototype Student Advising Expert System Supported
with an Object-Oriented Database”.
[5] Kathryn Nobles (2007). “Academic Virtual Advisor”.
[6] Timmreck, E. M. (1968). “ADVISER - a program which advises students on
courses.”
[7] Murray, W. S. and L. A. LeBlanc (1995). “A Decision Support System for Academic
Advising.”
[8] Andres Scharifker (2010). “Virtual Academic Advisory: A solution using Integer
Linear Optimization”
[9]. Raubinger, F. M., Rowe, H. G., Piper, D. L., and West, C. K. “The Development of
Secondary Education. Old Tappan, N.J.: Macmillan, 1969.
[10]. John Harris, 2002. “BRIEF HISTORY OF AMERICAN ACADEMIC CREDIT
SYSTEM: A Recipe for Incoherence in Student Learning”
[11]. “Credit Systems and Learning Outcomes in ASEM Member Countries” ASEM
Seminar in Berlin, April 15—16, 2010
[12]. Ashford, Brenda (AACRAO). “2000-2001 Academic Calendars Study: Analytical
Profiles of Calendar Use and Conversions”.

181

[13] CHO, K. (2003) “Multi Criteria Decision Methods: An Attempt to Evaluate and
Unify” Mathematical and Computer Modeling, Vol. 37, (2003), pp 1099-1119
[14] Lootsma, F. (1999) “Multi-Criteria Decision Analysis via Ratio and Difference
Judgment” Applied Optimization, Vol 29, Kluwer Academic Publishers, London
[15] Haarstrick, A., lazarevska, A. (2009). Multi-criteria decision making MCDM – a
conceptual approach to optimal landfill monitoring.
[16] Dyer, R. and Forman, E. (1992) “Group decision support with the Analytic
Hierarchy Process” Decision Support Systems, Vol. (8), (1992), pp 99-124 , North-
Holland
[17] Bahurmoz, A. (2006) “The Analytic Hierarchy Process: A Methodology for Win-Win
Management”, JKAU: Econ. & Adm., Vol. 20, No. 1, pp: 36-16
[18] Rifai, A. K. (1994). “A note on the structure of the goal programming model:
Assessment and Evaluation” International Journal of Operations and Production
Management, Vol. (16), pp 40–49.
[19] Romero, C. (1991) “Handbook of critical issues in goal programming” Oxford:
Pergamon Press.
[20] Vencheh, A., Aghajani, M., (2010) “Designing a Production Programming Model
with Multiple Objectives in Textile Industry” Australian Journal of Basic and Applied
Sciences, Vol. 4, No. 9, pp 4390-4399.
[21] Tamiz, M., Jones, D., and El-Darzi, E., (1995) “A review of Goal programming and
its applications”, Annals of Operations research, Vol. 58, No. 1, pp 39-53
[22] Wise, K. and Perushek, D. (2000), “Goal Programming as a Solution Technique”,
Library Publications and Other Works. University of Tennessee, Knoxville, Available:
http://trace.tennessee.edu/utk_libfpubs/25, (Accessed: 2011, June 22)
[23] Bertolini, M. and Bevilacqua, M. (2007) “A combined goal programming—AHP
approach to maintenance selection problem” Reliability Engineering and System Safety,
Vol. 91, (2006), pp 839–848

182

[24] Triantaphyllou, E., and Mann, S., (1990) "An Evaluation of the Eigen value
Approach for Determining the Membership Values in Fuzzy Sets", Fuzzy Sets and
Systems, Vol. 35, No. 3, pp. 295-301
[25] McGeehan, T., (1978) “Information service planning and evaluation: a goal
programming approach”, (Doctoral Dissertation, Rutgers University)
[26] Ho, W., (2008) “Decision Support Integrated analytic hierarchy process and its
applications – A literature review”, European Journal of Operational Research, Vol. 186,
(2008), pp 211–228
[27] Druzdzel, M. J. and R. R. Flynn (1999). Decision Support Systems. Encyclopedia
of Library and Information Science. A. Kent, Marcel Dekker, Inc.
[28] Alter, S. L. (1980). Decision support systems : current practice and continuing
challenges.
Reading, Mass., Addison-Wesley Pub.
[29] Finlay, P. N. (1994). Introducing decision support systems. Oxford, UK Cambridge,
Mass., NCC Blackwell; Blackwell Publishers.
[30] Turban, E. (1995). Decision support and expert systems : management support
systems.
Englewood Cliffs, N.J., Prentice Hall.
[31] Keen, P. G. W. and M. S. Scott Morton (1978). Decision support systems : an
organizational
perspective. Reading, Mass., Addison-Wesley Pub. Co.
[32] Sprague, R. H. and E. D. Carlson (1982). Building effective decision support
systems.
Englewood Cliffs, N.J., Prentice-Hall.
[33] Ralph H. Sprague, Jr (1980). “A Framework for the Development of Decision
Support Systems”
[34] Hättenschwiler, P. (1999). New user-friendly concept of decision support. Good
decisions in business, politics and society. Zurich vdf, Hochschulverlag AG: 189-208.

183

[35] Power, D. J. (2002). Decision support systems: concepts and resources for
managers. Westport, Conn., Quorum Books.
[36] Stanhope, P. (2002). Get in the Groove: building tools and peer-to-peer solutions
with the Groove platform. New York, Hungry Minds
[37] Gachet, A. (2004). Building Model-Driven Decision Support Systems with
Dicodess. Zurich, VDF.
[38] hil61217_ch07_supplement (2004).
[39] Forman, E. and Selly, M. (2002) “Decision By Objectives (How to convince others
that you are right), World Scientific Pub Co Inc.
[40] "The NIST Definition of Cloud Computing". National Institute of Standards and
Technology. Retrieved 24 July 2011.
[41] "What is Cloud Computing?". Amazon Web Services. 2013-3-19. Retrieved 2013-
3-20.

184

Appendices

185

Appendix A: A Form Designed To Facilitate Testing Of A Decision Support
System For Higher Education Student Preferences-Based Scheduling.

186

 بسم الله الرحمن الرحٌم

A Form Designed To Facilitate Testing Of A Decision Support System

 For Higher Education Student Preferences-Based Scheduling

Dear Student:

This form aims to test an optimization-based decision support system for higher education student scheduling process.

Optimization done is mainly for the student personal preferences regarding his/her study schedule. These preferences

represent the various characteristics of a study schedule such as the number of credit hours, the courses, the

lecturers, lectures and final exams timing..etc.

This form aims to collect the required information about a group of students that enable the DSS creator to test the

system by himself, since it is still too difficult to be used directly by students.

This form includes three parts, the first part is about a student personal desires. This part includes ten criteria which

represent – from the author point of view – the most commonly considered. The student is supposed to define goals

regarding the group of criteria that matter to him. At the end of this part, the student will be asked to suggest other

criteria that may also be important.

The second part of this form is designed to define a student priorities for the goals he already defined in part one. This

prioritizing process is conducted using the pairwise comparison method. (there is an example to clarify this process).

The third part is designed to perform a manual scheduling process in order to compare both schedules, the one

prepared by the student manually and the one suggested by the system.

Note: the process of filling this form should be done assuming that the available classes is represented by the table

exists in the last page of this form. (even though these classes are not really available for you at the moment)

Data collected will remain secret and will only be used by the researcher for scientific purposes.

All thanks and appreciation.

Islamic University Of Gaza

Deanery Of Higher Studies

Faculty Of Commerce

Department Of Management

Researcher

Eng. Ahmad F. Abu Libda

187

First: Desired Setting: (fill only what matter you)

1- Number of courses of each type:

Departmental (<,>,=)

College (<,>,=)

University (<,>,=)

2- Desired number of credit hours (<,>,=)

3- Least number of days to separate between final exams

4- Furthest date of final exams …………………………..

5. The desired courses (with or without a preferred lecturer) 6. Number of days to precede a course final exam.

7. Undesired courses 8. Non-preferred lecturers

9- Certain days within the week the student wishes to empty from lectures

Saturday Sunday Monday Tuesday Wednesday Thursday

10- Certain periods throughout the week the student wishes to empty from lectures

Saturday Sunday Monday Tuesday Wednesday Thursday

Are there any other criteria that may interest you? …………………………………………………………………………………………………

 A desired course A preferred lecturer

1

2

3

4

5

6

7

8

 A desired course
No of days to precede the

final exam

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Name: Number: Major: Level:

- - - - - -

188

Second: prioritizing. (Using pairwise comparisons)

Using numbers from 1 to 9 and ratios from ½ to 1/9 set relative importance between the various goals.

An example:

 The number “3” means that criterion A is 3 times more important than criteria B.

 The ratio “1/3” means that criterion C is 3 times more important than criteria B.

 The number “1” means that both criteria A and C have the same importance.

Note:

 Fill only the white half of the matrix.

 Do not set comparisons between criteria that do not interest you.

 To leave a square empty is the same as assigning “1” to it. It means that the corresponding criteria have the same

importance.

Criteria A B C

A 3 1

B 1/3

C

Main Criteria 1 2 3 4 5 6 7 8 9 10

1- Number of courses of each type

2- Desired number of credit hours

3- Least number of days to separate between final exams

4- Furthest date of final exams

5- The desired courses (with or without a preferred lecturer)

6- Number of days to precede a course final exam.

7- Undesired courses

8- Non-preferred lecturers

9- Desired empty days

10- Desired empty periods

189

Third: Manual Scheduling.

In order to test the software, a schedule should be constructed manually by the user as if he/she going to do

it on his page at the university site. This schedule as well as the one suggested by the system will be

evaluated.

For this evaluation to be fair, the user should take into account all the goals and priorities he has already

defined in this form, but more importantly, he should avoid breaching registration regulations such as timing

conflicts, minimum and maximum allowed number of credit hours…etc.

Use the available courses table in last page.

Record the time needed to construct the schedule:………………………….

What do you think of an optimization-based decision support system that tries to optimize achievement of

the student personal desires regarding his/her schedule. This DSS will do the following:

1- Choose a group of sections that best satisfy the personal desires of a student represented in the

previously mentioned ten criteria taking into account importance of each one.

2- This optimization process will avoid breaching any of the registration regulations; thus, introduce a

schedule that is optimum, fast and feasible.

This DSS:

Very important Important Moderately important little important not important

Do you have suggestions or comments?

...

...

Course
number

Lecturer name
Section
number

Lecture
ending

time

Lecture
starting

time

Lectures
days

(SNMTWH)

Final
exam
date

Final
exam

ending
time

Final
exam

starting
time

Course Name

191

The Available Sections Table

Course
number

Course Name
of

hours

Sectio
no

Lectures
days

Lecture
start

Lecture
end

Lecture
date

Start
of final
exam

End of
final
exam

lecturer

PHYSB1102)114 1 فٍشٌاء عايتعًهٍت)ب W 1200 1400 13/05/2013 900 1100 إبزاهٍى قدورة

PHYSB1102)112 1 فٍشٌاء عايتعًهٍت)ب W 800 1000 13/05/2013 900 1100 يحًد انقزٌُاوي

PHYSB1102)108 1 فٍشٌاء عايتعًهٍت)ب T 1200 1400 13/05/2013 900 1100 يعٍٍ عبٍد

PHYSB1102)108 1 فٍشٌاء عايتعًهٍت)ب T 1200 1400 13/05/2013 900 1100 يعٍٍ عبٍد

PHYSB1102)106 1 فٍشٌاء عايتعًهٍت)ب M 800 1000 13/05/2013 900 1100 حاحى انغًزي

PHYSB1102)106 1 فٍشٌاء عايتعًهٍت)ب M 800 1000 13/05/2013 900 1100 ٌإسلاو رضىا

PHYSB1102)102 1 فٍشٌاء عايتعًهٍت)ب S 1000 1200 13/05/2013 900 1100 ٌإسلاو رضىا

PHYSB1102)102 1 فٍشٌاء عايتعًهٍت)ب S 1000 1200 13/05/2013 900 1100 إبزاهٍى قدورة

PHYSB1301)101 3 فٍشٌاء عايت)ب NT 930 1100 22/05/2013 900 1100 حسٍٍ داوود

PHYSB1301)102 3 فٍشٌاء عايت)ب SMW 1100 1200 22/05/2013 900 1100 سفٍاٌ حاٌه

POLS 3220 103 2 دراساث فهسطٍٍُت SW 1300 1400 23/05/2013 1430 1630 ًصانح انُعاي

POLS 3220 102 2 دراساث فهسطٍٍُت NT 1230 1330 23/05/2013 1430 1630 هاًَ انبسىص

POLS 3220 101 2 دراساث فهسطٍٍُت SW 1100 1200 23/05/2013 1430 1630 هاًَ انبسىص

EELE 3351 101 3 اَلاث انكهزبائٍت NT 1400 1530 28/05/2013 1200 1400 َاهض انشزفا

ECON 4203 ً101 2 يباديء الإقخصاد الإسلاي SW 1000 1100 20/05/2013 1430 1630 يحًد خفاجت

ECON 4203 ً102 2 يباديء الإقخصاد الإسلاي NT 1000 1100 20/05/2013 1430 1630 يحًد خفاجت

HADT 4204 101 2 دراساث فى انحدٌث انشزٌف SW 1100 1200 18/05/2013 1430 1630 ٌبزاء رٌا

HADT 4204 103 2 دراساث فى انحدٌث انشزٌف NT 1400 1500 18/05/2013 1430 1630 يحًد انًظهىو

HADT 4204 102 2 دراساث فى انحدٌث انشزٌف SW 1300 1400 18/05/2013 1430 1630 رأفج َصار

HADTD2100 (جشء انذارٌاث4قزآٌ كزٌى) 102 1 M 1000 1100 27/05/2013 1430 1530 ًصبحً انٍاسج

HADTD2100 (جشء انذارٌاث4قزآٌ كزٌى) 101 1 M 1100 1200 27/05/2013 1430 1530 عبدانسلاو انهىح

HADTD2100 (جشء انذارٌاث4قزآٌ كزٌى) 103 1 M 900 1000 27/05/2013 1430 1530 ًصبحً انٍاسج

EIND 3303 (1عًهٍاث انخصٍُع) 101 3 NT 930 1100 25/05/2013 1200 1400 أحًد أبىنبدة

EMEC 3308 101 3 1دٌُايٍكا حزارٌت SMW 1000 1100 21/05/2013 1200 1400 جًال انشبدة

EMEC 3306 101 3 1حصًٍى اَلاث SMW 1200 1300 20/05/2013 1200 1400 جًال انشبدة

EMEC 3111 101 1 يعًم انعهىو انحزارٌت N 1200 1400 18/05/2013 1400 1600 جًعت انعاٌدي

EMEC 3313 101 3 2دٌُايٍكا حزارٌت SMW 1300 1400 29/05/2013 1200 1400 انعاٌديجًعت

191

Appendix B: A Form Designed To Facilitate Testing Of A Decision Support System For
Higher Education Student Preferences-Based Scheduling. (In Arabic)

192

 بسم الله الرحمن الرحٌم

 استبٌان بهدف اختبار نظام دعم قرار لعملٌة التسجٌل الفصلً للطالب الجامعً

 على أساس تفضٌلات الطالب الشخصٌة

 عزٌزي الطالب:

 كل فصل دراسي. بداية الطالب فييهدف هذا الاستبيان إلى اختبار نظام دعم قرار مبني على أساس تحقيق الأمثلية لعملية الجدولة التي يقوم بها

لمواصفات يعتمد هذا النظام بشكل أساسي في عملية تحقيق الأمثلية على رغبات الطالب الشخصية المتعلقة بالجدول الدراسي. تتلخص هذه الرغبات في ا

 مواعيد المحاضرات والاختبارات النهائية..الخ.الكمية والكيفية للعبء الدراسي الفصلي كعدد الساعات الأكاديمية ونوعية المساقات و المحاضرين و

واجهة نظرا لأنتمكن الباحث من اختبار النظام بنفسه عن عينة عشوائية من الطلبة في مختلف جامعات قطاع غزةيهدف الاستبيان إلى جمع معلومات

 البرنامج و خطوات الاستخدام ما زالت معقدة.

ول يتعلق برغبات الطالب الشخصية بخصوص الجدول الدراسي الفصلي الذ يود أن يقوم بتجهيزه. ويتلخص الاستبيان مكون من ثلاث أجزاء, الجزء الأ

المعايير التي تهمه بخصوصأهم و أكثر المعايير شيوعا. يقوم الطالب بملء رغبات معينه - من وجهة نظر الباحث –معايير والتي تعد 11هذا الجزء في

 يمنح الطالب مجالا لاقتراح معايير أخرى قد تهمه.فقط, وفي نهاية هذا الجزء

مقارنات زوجية بين إجراءعن طريق ويتم ذلكالجزء الثاني من الاستبيان مخصص لتحديد الأهمية النسبية لكل هدف قام الطالب بتسجيله في الجزء الأول,

 مختلف المعايير التي تهم الطالب. وهناك مثال توضيحي لهذه العملية.

 ين الجدول المقترح بواسطة النظام. وب المعد بواسطة الطالب لإجراء مقارنة بين الجدول, وذلك لإجراء عملية جدولة يدوية معدالجزء الثالث من الاستبيان

إن كانت المساقات : عملية ملئ الاستبيان يجب أن تتم بافتراض أن الشعب المتاحة لك حاليا متمثلة بالجدول الموجود بآخر صفحة.) وملاحظة مهمة

 الموجودة به لا تخصك(.

 جميع المعلومات التي سيتم جمعها في هذا الاستبيان ستبقى سرية ولن تستخدم سوى لأغراض بحثية بواسطة الباحث فقط.

 و لكم جزيل الشكر والتقدير.

 الباحث:

 م. أحمد فايز أبولبدة

 الجامعة الإسلامٌة بغزة

 عمادة الدراسات العلٌا

التجارةكلٌة

 قسم إدارة الأعمال

193

 فقط(: قم بملء المعايير التي تهمكملاحظةافترض أن الشعب المتاحة لك متمثلة بالجدول الموجود بآخر صفحة) تحدٌد الرغبات:أولا:

 جامعة(–كلٌة –وع)تخصص عدد المساقات المرغوب من كل ن .1

 (= , > , <تخصص)

 (= , > , <كلٌة)

 (= , > , <جامعة)

 (= , > , < مجال عدد الساعات المرغوب) .2

 أقل عدد من الأٌام التً تفصل بٌن الامتحانات النهائٌة .3

 :تارٌخ آخر امتحان نهائً .4

 .. عدد الأٌام التً تسبق الامتحان النهائً لمساق معٌن6 .)مع تحدٌد محاضر مرغوب أو بدون(مساقات معٌنة مرغوبة.5

 . المحاضرٌن غٌر المرغوبٌن.8 .مساقات معٌنة غٌر مرغوبة.7

 فً مربع الٌوم)أو الأٌام(الذي ترغب بتفرٌغه(Xأٌام معٌنة خلال الأسبوع ٌرغب بتفرٌغها)ضع علامة . 9

 الأربعاء الخميس السبت الأحد الاثنين الثلاثاء

 (التً تعنٌكفً مربعات الأٌام -من إلى –أوقات معٌنة خلال الأسبوع ٌرغب بتفرٌغها)حدد فترة زمنٌة . 01

 الأربعاء الخميس السبت الأحد الاثنين الثلاثاء

.................................هل هناك معايير أخرى تهمك أثناء قيامك بعملية التسجيل الفصلي؟ ...

 المساق المرغوب المحاضر المرغوب

 1

 2

 3

 4

 5

 6

 7

 8

الامتحان النهائًالفترة التً تسبق المساق المرغوب

 1

 2

 3

 4

 5

 6

 7

 8

 المساق غٌر المرغوب

 1

 2

 3

 4

 5

 6

 7

 8

 المحاضر غٌر المرغوب

 1

 2

 3

 4

 5

 6

 7

 8

-

الرقم الجامعً: التخصص: المستوى: الاسم:

- - - - -

194

:()باستخدام المقارنات الزوجٌة تحدٌد الأولوٌاتثانٌا:

لتحديد الأهمية النسبية بين مختلف المعايير الداخلة كالتالي: 1/9إلى ½ بالإضافة إلى النسب من 9إلى 1استخدام الأرقام من تعتمد هذه الطريقة

 مثال توضٌحً:

C B A المعاٌٌر

1 3 A

3/1 B

 C

 " يعني أن المعيار "3الرقم "A" أهم من المعيار "B.بثلاث مرات "

 تعني أن المعيار " "1/3"النسبةC" أهم من المعيار "B.بثلاث مرات "

 " يعني أن لكل من المعيار "1الرقم "A" والمعيار "C.نفس الأهمية "

 ملاحظة:

)فقط. يقوم الطالب بملء الشق الأيسر)الغير مظلل

 تقم بتحديد أهداف معينة بخصوصها في الصفحة الأولى(.لا يجب إجراء مقارنات لمعايير لا تهمك)يقصد بها تلك المعايير التي لم

 .ترك المربع فارغا يعني أن لكل من المعيارين نفس الأهمية

 المعاٌٌر 1 2 3 4 5 6 7 8 9 10

 جامعة(–كلٌة –عدد المساقات المرغوب من كل نوع)تخصص .0

 مجال عدد الساعات المرغوب .2

 الأٌام التً تفصل بٌن الامتحانات النهائٌةعدد .3

 تارٌخ آخر امتحان نهائً .4

 مساقات معٌنة مرغوبة)مع تحدٌد محاضر مرغوب أو بدون(.5

 عدد الأٌام التً تسبق الامتحان النهائً لمساق معٌن .6

 مساقات معٌنة غٌر مرغوبة .7

 مرغوبٌنمحاضرٌن غٌر .8

 أٌام معٌنة خلال الأسبوع ٌرغب بتفرٌغها .9

 أوقات معٌنة خلال الأسبوع ٌرغب بتفرٌغها .01

195

جدول دراسي فصلي يدويا كما لو كنت ستقوم بهذه العملية على صفحتك بموقع الجامعة طبقا بهدف اختبار البرنامج يرجى تكوين :ٌدوٌةالجدولة ثالثا: ال

. مع مراعاة تجنب التعارضات وطبقا لرغباتك التي قمت بتسجيلها و مدى أهمية كل منها هو متوفر في جدول الشعب المتاحة)الموجود بآخر صفحة(لما

المسموح به فً المتعلقة بمواعٌد المحاضرات و الامتحانات النهائٌة بالإضافة إلى تجنب تسجٌل عدد ساعات أكبر من الحد الأعلى أو أقل من الحد الأدنى

 حالتك.

: ٌرجى تسجٌل الوقت الذي استغرقته لتكوٌن الجدول -

تحقٌق الأمثلٌة فً الوصول إلى مجموعة من ل لدعم قرار عملٌة تجهٌز الجدول الفصلً, ٌعتمد على أسالٌب كمٌةما رأٌك ببرنامج كمبٌوتر

المتمثلة فً رغبات الطالب الشخصٌة المتعلقة بالجدول الدراسً الفصلً. ٌقوم هذا البرنامج بتجهٌز جدول دراسً خال من الأهداف

التعارضات خلال ثوانً حسب الأهداف التً سٌقوم الطالب بإدخالها مما سبق ذكره لٌصل هذا البرنامج إلى أفضل جدول دراسً ٌحقق جمٌع

 أي أنه ٌقوم بالتالً: لبها حسب ما هو مطروح من مساقات و شعب و حسب ما تمثله أهمٌة كل هدف للطالب.هذه الأهداف إن أمكن أو أغ

, آخذاً اختيار مجموعة الشعب التي تحقق بقدر الإمكان أهداف الطالب الشخصية التي قام بتحديدها, و المتمثلة في المعايير العشرة السابق ذكرها -1

 بالنسبة للطالب.بالاعتبار أهمية كل هدف منها

 تما ذكر في النقطة الأولى سيتم بالتزامن مع تجنب خرق قوانين الجامعة للتسجيل المتمثلة في تعارضات المحاضرات و تعارضات الاختبارا -2

 النهائية أو الحد الأقصى و الأدنى من الساعات الأكاديمية المسموح بتسجيله بالإضافة إلى اعتبارات أخرى.

 هذا البرنامج:

 شدٌد الأهمٌة مهم متوسط الأهمٌة قلٌل الأهمٌة غٌر مهم

 هل لدٌك تعلٌق أو اقتراحات؟

...

...

...

 رقم الشعبة اسم المحاضر رقم المساق
وقت انتهاء
 المحاضرة

وقت بدء
 المحاضرة

أٌام انعقاد
 المحاضرات

(SNMTWH)

تارٌخ
 الامتحان

وقت انتهاء
الامتحان
 النهائً

وقت بدء
الامتحان
 النهائً

 اسم المساق

196

 جدول الشعب المطروحة

 اسم المساق رقم المساق
عدد

 الساعات
رقم
 الشعبة

أٌام انعقاد
 المحاضرات

بداٌة
 المحاضرة

نهاٌة
 المحاضرة

تارٌخ الامتحان
 النهائً

وقت بدء
الامتحان
 النهائً

وقت انتهاء
الامتحان
 النهائً

 المحاضر

PHYSB1102)114 1 فٍشٌاء عايتعًهٍت)ب W 1200 1400 13/05/2013 900 1100 إبزاهٍى قدورة

PHYSB1102)112 1 فٍشٌاء عايتعًهٍت)ب W 800 1000 13/05/2013 900 1100 يحًد انقزٌُاوي

PHYSB1102)108 1 فٍشٌاء عايتعًهٍت)ب T 1200 1400 13/05/2013 900 1100 يعٍٍ عبٍد

PHYSB1102)108 1 فٍشٌاء عايتعًهٍت)ب T 1200 1400 13/05/2013 900 1100 يعٍٍ عبٍد

PHYSB1102)106 1 فٍشٌاء عايتعًهٍت)ب M 800 1000 13/05/2013 900 1100 حاحى انغًزي

PHYSB1102)106 1 فٍشٌاء عايتعًهٍت)ب M 800 1000 13/05/2013 900 1100 ٌإسلاو رضىا

PHYSB1102)102 1 فٍشٌاء عايتعًهٍت)ب S 1000 1200 13/05/2013 900 1100 ٌإسلاو رضىا

PHYSB1102)102 1 فٍشٌاء عايتعًهٍت)ب S 1000 1200 13/05/2013 900 1100 إبزاهٍى قدورة

PHYSB1301)101 3 فٍشٌاء عايت)ب NT 930 1100 22/05/2013 900 1100 حسٍٍ داوود

PHYSB1301)102 3 فٍشٌاء عايت)ب SMW 1100 1200 22/05/2013 900 1100 سفٍاٌ حاٌه

POLS 3220 103 2 دراساث فهسطٍٍُت SW 1300 1400 23/05/2013 1430 1630 ًصانح انُعاي

POLS 3220 102 2 دراساث فهسطٍٍُت NT 1230 1330 23/05/2013 1430 1630 هاًَ انبسىص

POLS 3220 101 2 دراساث فهسطٍٍُت SW 1100 1200 23/05/2013 1430 1630 هاًَ انبسىص

EELE 3351 101 3 انكهزبائٍتاَلاث NT 1400 1530 28/05/2013 1200 1400 َاهض انشزفا

ECON 4203 ً101 2 يباديء الإقخصاد الإسلاي SW 1000 1100 20/05/2013 1430 1630 يحًد خفاجت

ECON 4203 ً102 2 يباديء الإقخصاد الإسلاي NT 1000 1100 20/05/2013 1430 1630 يحًد خفاجت

HADT 4204 101 2 فى انحدٌث انشزٌفدراساث SW 1100 1200 18/05/2013 1430 1630 ٌبزاء رٌا

HADT 4204 103 2 دراساث فى انحدٌث انشزٌف NT 1400 1500 18/05/2013 1430 1630 يحًد انًظهىو

HADT 4204 102 2 دراساث فى انحدٌث انشزٌف SW 1300 1400 18/05/2013 1430 1630 رأفج َصار

HADTD2100 ٌ102 1 (جشء انذارٌاث4كزٌى)قزآ M 1000 1100 27/05/2013 1430 1530 ًصبحً انٍاسج

HADTD2100 (جشء انذارٌاث4قزآٌ كزٌى) 101 1 M 1100 1200 27/05/2013 1430 1530 عبدانسلاو انهىح

HADTD2100 (جشء انذارٌاث4قزآٌ كزٌى) 103 1 M 900 1000 27/05/2013 1430 1530 ًصبحً انٍاسج

EIND 3303 (1عًهٍاث انخصٍُع) 101 3 NT 930 1100 25/05/2013 1200 1400 أحًد أبىنبدة

EMEC 3308 101 3 1دٌُايٍكا حزارٌت SMW 1000 1100 21/05/2013 1200 1400 جًال انشبدة

EMEC 3306 101 3 1حصًٍى اَلاث SMW 1200 1300 20/05/2013 1200 1400 جًال انشبدة

EMEC 3111 101 1 يعًم انعهىو انحزارٌت N 1200 1400 18/05/2013 1400 1600 جًعت انعاٌدي

EMEC 3313 101 3 2دٌُايٍكا حزارٌت SMW 1300 1400 29/05/2013 1200 1400 جًعت انعاٌدي

197

Appendix C: The available classes query block written in SQL

198

SELECT

STUDENT_NO,

A.SUBJECT_NO,

A.SUBJECT_A_NAME,

B.SMTR_NO,

B.BRANCH_NO,

DAY,

TIMEFROM,

TIMETO,

EXAM_DATE,

EXAM_TIMEFROM,

EXAM_TIMETO,

SUBJECT_TEACHER_NAME(K.SMTR_NO,K.SUB_NO,K.BRANCH_NO) EMP_NAME

FROM REMAIN_STD_SUBJECT A, SUBJECT_ROOM_TIMES B ,SUB_TEST S , sub_teacher k

WHERE A.SUB_NO=B.SUB_NO

AND A.SMTR_NO=B.SMTR_NO

AND A.SMTR_NO=20132

AND A.SUB_NO=S.SUB_NO

AND A.SMTR_NO=S.SMTR_NO

AND B.SUB_NO=K.SUB_NO

AND B.SMTR_NO=K.SMTR_NO

AND B.BRANCH_NO=K.BRANCH_NO

AND STUDENT_NO=120101013

AND SUBSTR(B.BRANCH_NO,1,1) <>2

AND SUBSTR(B.BRANCH_NO,2,1) <>5

199

Appendix D: Functions written in VB used to convert data enquired to the
familiar software format.

211

Function used to convert days.

Function Dc(Dn As String) As String

Dc = ""
For n = 1 To Len(Dn)
Dc = Dc & ConvertDay(Mid(Dn, n, 1))
Next n

End Function

Function ConvertDay(S1 As String) As String

Select Case S1
Case "S"
ConvertDay = "1"
Case "N"
ConvertDay = "2"
Case "M"
ConvertDay = "3"
Case "T"
ConvertDay = "4"
Case "W"
ConvertDay = "5"

End Select

End Function

211

Function used to convert time.

Function Tc(Tn As String) As Double

If Mid(Tn, Len(Tn) - 1, 1) = "3" Then
Tc = ((Val(Tn) - 830) / 50) + 1
Else
Tc = ((Val(Tn) - 800) / 50)
End If

End Function

212

Code used to rename the fields

CurrentDb.TableDefs("divisions").Fields("xxx").Name = "s"

CurrentDb.TableDefs("divisions").Fields("xxx").Name = "e"

CurrentDb.TableDefs("divisions").Fields("xxx").Name = "lecturer"

CurrentDb.TableDefs("divisions").Fields("xxx").Name = "dno"

CurrentDb.TableDefs("courses").Fields("xxx").Name = "s"

CurrentDb.TableDefs("courses").Fields("xxx").Name = "e"

CurrentDb.TableDefs("courses").Fields("xxx").Name = "examd"

