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Lactic acid bacteria are a vital part of the fermented food industry and are the subject of 

much interest and research.  Industry is especially interested in using modern molecular 

approaches to maintain and improve selected strains; several industrial uses could be 

improved by closer investigation, namely the protocooperation of S. thermophilus and L. 

bulgaricus, the role of CRISPRs in phage resistance, and the utilization of prebiotic 

carbohydrates. Questions such as what genes and pathways are shared during milk 

fermentation between S. thermophilus and L. bulgaricus, when and what genes are 

active during bacteriophage infection, and how and where does prebiotic carbohydrate 

utilization occur can be answered.  By using microarrays, complete snapshot of gene 

expression during each of these conditions are generated and detailed expression 

profiles can be produced. By devising a screening system, the distribution of the 

phenotype of GOS fermentation over a wide array of lactic acid bacteria from 

Bifidobacterium, Lactobacillus, Lactococcus, Leuconostoc, and S. thermophilus can be 

explored.  Once this phenotypic distribution is generated, selected strains that are able  

 



 

to utilize GOS can be studied in detail to determine the mechanics of GOS fermentation.  

Answering these questions will add to the understanding of what factors are involved in 

successful fermentation and eventually be able to improve strain selection methods.  
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Preface 

 

This thesis is comprised of three chapters and a conclusion section.  The first chapter is a 

literature review on the influence of protocooperation and bacteriophage infection in  

Streptococcus thermophilus, and the fermentation of prebiotic carbohydrate by lactic 

acid bacteria.  The second chapter describes our completed S. thermophilus 

transcriptome project in publication form.  In the third chapter, we report our results of 

the fermentation of the prebiotic galactooligosaccharide (GOS), by lactic acid bacteria, 

with a focus of fermentation by Lactobacillus reuteri.  A conclusion section is included at 

the end to summarize the major research findings outlined within this thesis.
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Introduction 

 

 Lactic acid bacteria, commonly referred to as LABs, are a group of commercially 

important organisms that are classified by their ability to ferment hexose sugars into 

mainly lactic acid. These bacteria are an integral part of the fermented foods industry, 

performing the main bioconversions in fermentations involving dairy products, meats, 

and vegetables [20]. The manufacture of these fermented foods is dependent on the 

proper and reliable function of the bacterial cultures used to produce those foods.  As 

such, production of high cell density and active cultures are among the top priorities of 

the fermented food industry.  Many factors can play a role in the difference between a 

successful fermentation and a failed one.  Historically, strictly maintained culture 

collections and careful strain selection methods have been used to help minimize failed 

fermentations and to maintain product quality.  In addition, much research has been 

done to help assess other aspects of the fermentation process.  This literature review 

will focus on three such aspects: the influence of protocooperation among LAB groups, 

the influence of bacteriophage infection, and the fermentation of the prebiotic 

carbohydrate galactooligosaccharides (GOS). 
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A Story of Protocooperation: The Functional and Evolutionary Relationship of 

Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus 

 

 In fermented diary products such as cheese and yogurt, Streptococcus 

thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are often paired together in 

an equally beneficial relationship, termed ‘protocooperation’ [18].  In such a 

relationship, each provides something that the other needs, and both organisms grow 

better as a result of this association.  The production of these fermented dairy products 

rely on this synergistic relationship for a prompt and complete fermentation. S. 

thermophilus grows first, fermenting lactose to lactic acid. This initial growth of S. 

thermophilus continues until all the free amino acids within the medium are depleted. 

This production of lactic acid lowers the pH to a level more favorable to L bulgaricus, 

thereby stimulating cell growth.  As L. bulgaricus begins to grow, it secretes an 

extracellular protease that hydrolyzes proteins in milk or any other medium, and secrete 

amino acids and other peptides that both itself and S. thermophilus can utilize. The 

result is that both bacteria grow better and faster together than apart [6]. 

Recent analysis of the genomes of these organisms gives several clues to the 

importance of this relationship. The genomes of S. thermophilus and L. bulgaricus have 

each undergone extensive and reductive evolution, driven in part by their high 

adaptation to the milk environment as well as to each other [13,14].   This is evidenced 

by the overall small genome size and the large number of psuedogenes, or genes that 

do not code for functional sequences, found within each genome.  
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 At around 1700 genes in size, the genome of L. bulgaricus is one of the smaller 

genomes of lactic acid bacteria, where the largest genome size, that of Lactococcus 

lactis, is approximately 2700 genes [20].   In addition to this small size, recent 

annotation of the sequenced genome has determined that almost 27 percent of the L. 

bulgaricus genome consists of either psuedogenes or fragments of non-coding regions 

[30].   This high percentage indicates active genome change and gives evidence for a 

strong environmental driving force.  The genome of S. thermophilus has also been 

sequenced and its genome annotated.  Very much paralleling the genome of L 

bulgaricus, it is small, only 1800 genes in size, and 10 percent of its genome is comprised 

of psuedogenes [5].     

Perhaps more interesting is what genes are missing, what genes have been 

retained, and what genes are otherwise non-functional in these two genomes.    When 

compared to the genomes of other dairy-related members of the genus Lactobacillus 

that have been sequenced and annotated, the L. bulgaricus genome has lost several 

sugar transport and metabolism genes and amino acid biosynthetic pathways [30].  This 

loss of functioning metabolic systems has been suggested to be a direct result of 

adaptation to the milk environment [20].  The ability to transport and metabolize 

multiple sugars was no longer necessary in an environment where lactose availability is 

high, and likewise the ability to synthesize amino acids was non-essential in the 

nutrient-rich milk [31].  The genes missing or non-functional in the S. thermophilus 

genome also indicate a high amount of adaptation. Multiple carbohydrate uptake and 
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fermentation pathways are missing and four of the seven sugar phosphotransferase 

system transporters (PTS) are psuedogenes [5].   

As for the genes that were retained, the relationship between these two 

organisms has also become particularly clear.  The extracellular proteinase of L. 

bulgaricus, which enables it to hydrolyze proteins in the environment, is absent in S. 

thermophilus.  S. thermophilus has retained its ability to synthesize amino acids, 

something that L. bulgaricus has lost [30].  The two organisms must therefore work 

together in a multi-dimensional capacity for the benefit of both. 

  The occurrence of lateral gene transfer between S. thermophilus and L. 

bulgaricus has also played a role in their evolutionary relationship.  Their close 

association with one another within the milk environment necessitates the occurrence 

of cell-to-cell contact at regular intervals, thereby increasing the probability of exchange 

of genetic material.  The limited number of cell wall-bound or other extracellular 

proteins enables close contact of each organism’s cell surface with the other [30].  In 

fact, such a cell-to-cell contact has been documented (Fig 1).  
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   Bolotin, et al. 2004. Nature Biotechnology. 12:1554-1558. 

 Figure 1: Cell to cell contact of S. thermophilus and L. bulgaricus.  

 

In addition to this physical evidence, there is also genetic evidence that lateral 

gene transfer occurs.  Methionine is an amino acid not commonly found in milk, yet the 

methionine biosynthesis regions of S. thermophilus and L. bulgaricus are 95 percent 

identical to each other [5].  Since these two organisms are relatively phylogenetically 

distant, such a high level of similarity indicates a lateral gene transfer event.  There has 

also been evidence of exopolysaccharide (EPS) gene transfer between S. thermophilus 

and L. bulgaricus [18]. 

The relationship of S. thermophilus and L. bulgaricus in fermented dairy products 

has become so intertwined that it is difficult to examine one genome and not see 

evidence of the other.  The highly specific milk environment and the evolutionary 

changes observed in each organism’s genome as a result of this environment is clearly 

seen in many aspects of the metabolism and molecular biosynthesis capacities of these 
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two organisms.   As the rapid adaptation and reductive evolution continues, additional 

changes may occur that not only affect their own genomes, but each other’s as well.  

The importance of such a close relationship as these two share necessitates a deeper 

and more complete understanding than has currently been studied. 
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Methods and Techniques of Bacteriophage Infection Resistance and the Role of 

CRISPRs 

 

 One of the most common causes of bacterial culture failure is bacteriophage 

infection.  Bacteriophage infection can result in inferior fermentations or fermentation 

products and loss of culture viability.  To ensure product quality and avoid monetary 

losses as a result of bacterial infection, several factors should be considered.  These 

factors include limiting conditions favorable for bacteriophage growth and infection, 

rotation of bacterial strains used as starter cultures, selection and use of naturally 

occurring bacteriophage resistant strains, and genetic engineering of bacterial strains to 

improve bacteriophage resistance. 

 A variety of practical strategies for limiting bacteriophage growth have long been 

used and established as an effective way to avoid bacteriophage infection.  Functional 

design of the manufacturing plant, proper aseptic culture propagation, and increased 

sanitation are among the most important components of a bacteriophage control plan.  

Another practical strategy is to introduce changes into the media composition.  The 

addition of compounds like phosphates and citrates to bind calcium that could 

otherwise be used by the bacteriophage to infect cells can help to limit bacteriophage 

growth [7].  Temperature control and maintenance is also an important factor in 

reducing the chance of bacteriophage infection and the reduction of bacteriophage 

multiplication rates, as extremely high temperatures or low temperatures slow 

bacteriophage multiplication [1].  Unfortunately, the optimum temperature of the 

starter culture is often also the optimum temperature of bacteriophage infection, so 
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great changes in temperature are not possible, as this would impair fermentation.  

While these strategies have become accepted as necessary steps to avoid infection, they 

do not provide full protection. 

Careful selection of starter culture composition and strain rotation has been a 

relatively simple, yet effective way to avoid fermentation failure due to bacteriophage 

infection. It is thought that by rotating the strains used in fermentation, bacteriophage 

that are able to infect one strain will not necessarily be able to infect another strain, and 

thus the fermentation will be saved.  Several methods of rotation have been developed 

along this line.  A common method is the introduction and rotation of isogenic strains 

that each have a diverse anti-phage system to ensure maximum bacteriophage 

resistance without sacrificing fermentation ability [7].  Another common method is the 

rotation of strains based on bacteriophage sensitivity.  This method employs using a 

starter culture with a mix of bacteriophage sensitivities, so that no one bacteriophage 

can infect all strains within the culture.  Strain rotation is also a desirable alternative to 

more complex molecular methods which may carry legal and safety ramifications. 

In addition to strain rotation, the utilization of naturally occurring bacteriophage 

resistant strains can decrease the occurrence of bacteriophage infection.  Use of such 

bacteriophage resistant strains is much less expensive than genetic manipulations, and 

the selection process is quite simple.  The main approach is to generate bacteriophage 

insensitive mutants, or BIMs, directly from the starter species by exposing the culture to 

bacteriophage in successive rounds of exposure until a highly resistant strain is 
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produced [21].   For this technique to be useful industrially, the bacteriophage 

insensitive mutants must, and perhaps most importantly, retain their desired 

fermentation phenotype, be generated without the use of specialized equipment, and 

remain stable during fermentation  

Though often more costly and subject to regulatory restrictions, genetic 

engineering of bacteriophage resistant strains remains a useful tool.  While other 

methods may result in resistant strains, often the range of bacteriophage resistance is 

narrow and does not confer total protection from infection.  In addition, changes in 

other important phenotypic properties may also occur.  Genetic engineering and 

recombination by use of plasmids and food-grade vectors to introduce bacteriophage-

resistance mechanisms can result in a much wider range of bacteriophage resistance. 

Phage-resistance systems are commonly plasmid linked, which can be both helpful and 

a hindrance for genetic engineering.  It is helpful in the sense that plasmid DNA can 

more easily be involved in horizontal gene transfer, and so bacteriophage-resistance 

genes can be transferred in this manner.  It is also a hindrance in that plasmid DNA is 

often easily lost, and therefore bacteriophage resistance can be unstable.   

In addition to plasmids, food-grade vectors are an important means to introduce 

or improve bacteriophage resistance mechanisms.  Food-grade vectors are often 

difficult to engineer, and several conditions must be met before any vector can be 

determined as safe for use in foods.  The first condition is that the vector must not 

contain any commonly used markers that would be unsafe in food, such as antibiotic 
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resistance markers.   A second condition is that gene sequence and expression integrity 

is maintained, without risking the occurrence of horizontal gene transfer [28].  Third, in 

general, the vector must be comprised of DNA obtained from “food-grade” organisms; 

thus E. coli-based vectors would not be permissible. Once these conditions are met, the 

vector can be approved for use.  While the use of food grade vectors can be costly and 

arduous to design, they remain one of the most powerful tools available and are often 

the most successful at conferring stable bacteriophage infection resistance.   

Recently, the role of CRISPRs, or clustered regularly interspaced short 

palindromic repeats, in phage resistance was shown by Barrangou et al. [3] and van de 

Guchte [30], in S. thermophilus and L. bulgaricus respectively, with the potential to be 

found in many more bacterial genomes.  The CRISPR locus consists of several 

noncontiguous direct repeats separated by stretches of variable regions, or spacers, and 

are often next to CRISPR-associated genes (cas genes) [3]. It is thought that these 

CRISPR regions confer a RNA-interference mechanism, whereby the composition of 

sequences within these regions corresponds to particular and specific phage-expressed 

mRNA.  When the phage-expressed mRNA is present within a phage infected cell, it 

hybridizes with the complementary CRISPR sequence and no phage proteins can be 

expressed.  S. thermophilus LMD-9 possess three separate CRISPR loci, and 14 cas genes, 

with possibly more as yet uncharacterized (Fig 2). 
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 Horvath, et. al. 2008. J Bacteriology. 190:1401-1412. 

 

Figure 2: Overview of the three S. thermophilus CRISPR loci in the LMD-9 genome. The 

cas genes are shown in black. Numbers within the genes indicate the genomic ORF 

number. Numbers on the gray shading indicate percent identity and percent similarity 

between homologous cas protein sequences. 

 

Though the methods described above to prevent bacteriophage infection can be 

effective, phage-host interactions are constantly evolving and changing.  As the 

fermented food industry continues to grow, failed batches or inferior fermentations 

cannot be tolerated.  Multiple strategies and techniques are available and in use, but 

that is not likely to be enough.  As time passes and the industry continues to grow, the 

occurrence of bacteriophage mutations and recombination will continue to increase, 

and novel approaches must be developed to ensure product quality remains standard 

and consistent.   
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Prebiotic Oligosaccharides, Probiotics, and Synbiotics: Their role in gut health and 

utilization by Lactic Acid Bacteria  

The term “prebiotic” refers to non-digestible food ingredients that selectively stimulate 

the growth or activity of a limited number of intestinal bacteria which results in 

improved host health [9].  The most common commercially available prebiotics include 

inulin, fructooligosaccharides (FOS), and galactoolicgosaccarides (GOS).   

Galactooligosaccharides are complex carbohydrates that are formed from lactose via a 

transgalactosylation reaction by beta-galactosidase.  The GOS molecule is comprised of 

a glucose subunit with several galactose subunits attached in either a 1,4 or 1,6 beta 

linkage (Fig 3). 

 

 

 

 

 

 

 

Figure 3: Structure of GOS including linkages 
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GOS qualifies as a prebiotic by virtue of its stability throughout passage through the 

digestive tract [19].  Few organisms inhabiting the GI tract possess the enzymes needed 

to hydrolyze GOS, therefore by ingesting GOS it is possible to, in essence, “enrich” for 

only those organisms able to utilize it as a substrate.  GOS also fulfills other desirable 

requirements to be a successful prebiotic: temperature stability, resistant to acid and 

bile, and low calorific value [19]. Among the organisms capable of fermenting GOS are 

species and strains from the genera Bifidobacterium and Lactobacillus.  Bifidobacterium, 

a gram-positive, anaerobic, non-motile, non-spore forming organism, is often the first to 

colonize the gut as infants, and higher numbers of bifidobacteria are found in breast-fed 

infants when compared to formula fed infants [8]. The levels of Bifidobacterium in 

adults varies, but is usually found in health adults at around 1% [31].  Bifidobacterium 

are attributed to be active in many aspects of host health, from 

immunostimulation/modulation [23,31], to the prevention of diarrhea [24].   

 In addition to these specific health aspects, Bifidobacteria and Lactobacillus may 

play an important role in colonization resistance.  In other words, if “good” bacteria 

such as Bifidobacteria and Lactobacillus are present in the gut, then they, complimented 

by the normal host microflora, occupy every available niche, thereby excluding any 

possible pathogens or attempted colonization by undesirable bacteria.  

 The term “probiotic” refers to “defined viable microorganisms, sufficient 

amounts of which reach the intestine in an active state and thus exert positive health 

effects” [25]. For a bacteria to be considered “probiotic”, it must fulfill the following 
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criteria: exert positive health effects whether by colonization or during passage through 

the GIT, be acid and bile resistant, be safe and non-pathogenic, and selectively stimulate 

growth and activity of intestinal bacteria.  Most of the probiotic bacteria used 

commercially are either lactobacilli or bifidobacteria, which as previously discussed are 

known to be beneficial to host health.  When a specific pairing of a probiotic bacterial 

strain to a prebiotic carbohydrate is made within a food product, it is called a synbiotic 

[19].  This idea of specific pairings within food products is a particularly effective 

strategy when trying to exert a change in the gut microflora, as it essentially “self-feeds” 

the probiotic bacteria during its time in the GI tract. 

 Most lactic acid bacteria have abundant proteolytic systems, with the ability to 

take up macromolecules, such as oligosaccharides [25], and so have been suggested for 

use as probiotics.  Probiotic strains must be able to survive passage through the GI tract, 

and be able to compete with the host microflora for nutrients during passage.  The 

specific pathways used to ferment prebiotics may be strain specific and unique, or may 

involve “borrowing” a pathway normally used for a different carbohydrate.  The 

carbohydrate utilization pathways of several important lactic acid bacteria, whether 

significant health wise in the gut or commercially, have been studied [3.10, 11.12,19, 25, 

26,27, 29, 31]. The first question to answer is how does carbohydrate uptake happen?  

Most research completed so far indicates that carbohydrate transporters sit within cell 

membranes, with capture of the carbohydrate accomplished by specific receptors, while 

the breakdown of the carbohydrate can occur intra- or extra- cellularly (Fig 4). 
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van den Broek et al. 2007. Mol. Nutr. Food Res. 52:146-163. 

Figure 4: Schematic of different strategies to secure carbohydrate nutrients; IM= inner 

membrane, OM= outer membrane, M=membrane, B. longum = B. longum biotype 

longum 

 

The utilization of large molecules, like prebiotic carbohydrates, presents a particular 

challenge. From the microbe’s perspective, the important factor in where uptake and 

utilization occurs is how to keep the carbohydrates for themselves and not lose them to 

the environment or other microbes during the breakdown and utilization process.  The 

inner and outer membrane of a gram negative organism, such as B. thetaiotamicron, 
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Schell M A et al. PNAS 2002;99:14422-14427

allows for larger carbohydrates to enter the intermembrane space and then be further 

hydrolyzed within the periplasm or intracellularly by enzymes within the cell cytoplasm.  

Gram positive organisms, such as Bifidobacterium longum, have a thicker, single 

membrane, so greater hydrolysis must occur outside the cell via either secreted or cell-

anchored enzymes, with the  smaller carbohydrate subunits transported into the cell via 

specific transporters. 

 Previous studies performed have examined how prebiotic carbohydrates are 

metabolized in bifidobacteria and certain Lactobacillus species.  Schell [26] sequenced 

the genome of Bifidobacterium longum and found that many of the oligosaccharide 

transporters are organized in seven separate clusters with conserved modular 

architecture, consisting of: (1) a LacI-type repressor, (2) an ABC-type oligosaccharide 

transporter, and (3) one to six genes encoding glycosyl hydrolases (Fig 5).  

Figure 5: Oligosaccharide utilization gene clusters in B. longum 
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 When the genome of Bifidobacterium longum ssp. infantis was sequence by Sela 

et al [27], they found that oligosaccharides were broken down into monosaccharides by 

glycosidases extracellularly before entering the bifid shunt, which converts D-fructose -

6-phosphate into acetyl phosphate . 

 Gonzalez et al [11] used microarrays to study the transcriptional response of 

Bifidobacterium longum to media with GOS.  They found an upregulation of a cluster 

containing a β-galactosidase and an ABC sugar permease transporter, with additional 

upregulation of other sugar permease transport systems, including those with 

gycosyltransferases and genes involved in galactose transport, indicating that 

carbohydrate metabolism is specifically induced. In lactobacilli, utilization of prebiotic 

carbohydrates is usually tied to specific hydrolases and transporters.  Barrangou et al [2] 

determined that fructooligosaccharide (FOS) utilization in Lactobacillus acidophilus was 

an adaptation by the microbe where a raffinose operon was combined with a β- 

fructosidase to form a four-component ABC transport system with regulation based on 

preferred carbohydrate availability (Fig 6).  

Barrangou R et al. PNAS 2003;100:8957-8962

Figure 6:  Operon layout of L. acidophilus NCFM 
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Goh et al [10] also examined FOS utilization, in Lactobacillus paracasei.  In this case, it 

was determined that a cell surface-anchored fructosidase cleaved FOS via a 

phosphotransferase system, and the resulting free fructose was transported into the 

cell. 

 The ability to utilize prebiotic carbohydrates can be very strain specific, as only 

those microbes with the enzymes to cleave the specific linkages in complex 

oligosaccharides are capable of utilizing them.  In general, screening methods and 

phenotypic test are performed based on growth curves of strains in appropriate media.  

Screenings of many strains from major groups of lactic acid bacteria including 

Bifidobacterium, Lactobacillus, Lactococcus, Leuconostoc, and S. thermophilus, reveal 

that the ability to ferment GOS is overwhelmingly limited to the so called “good” 

bacteria, Bifidobacteria and Lactobacillus. 
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Conclusion 

Lactic acid bacteria are a vital part of the fermented food industry and are the subject of 

much interest and research.  Industry is especially interested in using modern molecular 

approaches to maintain and improve selected strains; several industrial uses could be 

improved by closer investigation, namely the protocooperation of S. thermophilus and L. 

bulgaricus, the role of CRISPRs in phage resistance, and the utilization of prebiotic 

carbohydrates. Questions such as what genes and pathways are shared during milk 

fermentation between S. thermophilus and L. bulgaricus, when and what genes are 

active during bacteriophage infection, and how and where does prebiotic carbohydrate 

utilization occur can be answered.  By using microarrays, complete snapshot of gene 

expression during each of these conditions are generated and detailed expression 

profiles can be produced. By devising a screening system, the distribution of the 

phenotype of GOS fermentation over a wide array of lactic acid bacteria from 

Bifidobacterium, Lactobacillus, Lactococcus, Leuconostoc, and S. thermophilus can be 

explored.  Once this phenotypic distribution is generated, selected strains that are able 

to utilize GOS can be studied in more detail to determine the mechanics of GOS 

fermentation.  Answering these questions add to the understanding of what factors are 

involved in a successful fermentation and eventually be able to improve strain selection 

methods.  
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Introduction 

 

 Streptococcus thermophilus is a Gram-positive, low GC bacterium belonging to a 

larger cluster of lactic acid bacteria (LAB).  This organism is an integral part of the 

fermented foods industry, performing the main bioconversions in fermentations 

involving dairy products such as yogurt and Italian cheeses [18].  According to traditional 

classification schemes, S. thermophilus belongs to the viridans group streptococci, 

specifically, the S. salivarius
 
group, whose other members include Streptococcus 

salivarius and Streptococcus vestibularis [25]. Despite its somewhat close phylogenetic 

proximity to pathogenic streptococci, S. thermophilus has “Generally Recognized As 

Safe” (GRAS) status and is widely used as a starter culture in dairy foods.  In fact, this 

organism is now second only to Lactococcus lactis with respect to its use in fermented 

dairy products [5,6].  

 The genomes of most LAB are relatively small, encoding for both auxotrophic 

and prototrophic biosynthetic capabilities [18].  The genome of three strains of S. 

thermophilus have been sequenced, and comparative genome hybridization studies by 

Rassmussen et al. reveal a core genome of 1,271 genes, the majority of which are 

energy metabolism and transport systems.  Although S. thermophilus is thought to have 

originally been a soil organism, it has undergone extensive genome evolution fueled by 

its adaptation to a milk environment rich in lactose and casein [10,11].  Indeed, 

approximately 10 percent of the genes are classified as psuedogenes  [2], reflecting 

active gene decay consistent with a strong environmental driving force.  It has been 

suggested that the evolution of S. thermophilus during the last 3,000 to 30,000 years 
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correlates with human dairy activities and the domestication of milk-producing animals, 

beginning around 7,000 years ago [23].  Indeed, several of its most important 

physiological properties appear to be intimately associated with its adaptation to the 

milk environment. 

 During most milk fermentations in which S. thermophilus is used as a starter 

culture, strains of Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus are 

ordinarily included.  These organisms share a well-studied synergistic relationship 

[1,2,10,18,29,30].   It is thought that there are three major phases that occur during 

growth in milk. In the first phase, growth of S. thermophilus results in rapid formation of 

lactic acid, with decreases the pH of the medium.  However, when the free amino acids 

are exhausted, growth of the weakly proteolytic S. thermophilus decreases [4]. The 

second phase consists of growth of L. bulgaricus, which is stimulated by the lactic acid 

and reduced redox potential resulting from growth of S. thermophilus.   L. bulgaricus 

produces an extracellular protease that generates amino acids and other peptides. The 

formation of a pool of amino acids stimulates a final stage of growth of both S. 

thermophilus and L. bulgaricus.  This interaction is supported by the observation that 

amino acid transport machinery accounts for up to 33% of all membrane transport 

activity in both bacteria [18].  The increased growth rate of both organisms that results 

from their association with each other is crucial to successful milk fermentations, not 

only for prompt milk coagulation, but also for generating flavor compounds [21].  

 The successful manufacture of yogurt and other S. thermophilus-fermented dairy 

products is also dependent on the ability of this organism to withstand bacteriophage 
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infections, which can otherwise result in slow or arrested fermentations.  Ordinarily, 

most starter strains of S. thermophilus are sensitive to phage, and research aimed at 

understanding phage resistance in this organism is now actively being pursued.  

Recently, it was reported that clustered regularly interspaced short palindromic repeats 

(CRISPRs) exist in S. thermophilus and provide a natural mechanism by which this 

organism defends itself against lytic phage.  The CRISPR locus consists of several 

noncontiguous direct repeats separated by stretches of variable regions, or spacers, and 

are often next to CRISPR-associated genes (cas genes) [1].  It is thought that these 

CRISPR regions confer a RNA-interference mechanism, whereby the composition of 

sequences within these regions corresponds to particular and specific phage-expressed 

mRNA.  When the phage-expressed mRNA is present within a phage infected cell, it 

hybridizes with the complementary CRISPR sequence and no phage proteins can be 

expressed.  S. thermophilus LMD-9 possess three separate CRISPR loci, and 14 cas genes, 

with possibly more as yet uncharacterized [13].  

Given the importance of S. thermophilus in the dairy industry, our goal was to 

understand how this organism responds to the milk environment.  Specifically, we 

sought to identify genes that were transcribed during typical milk fermentations, 

including growth in the presence of Lactobacillus delbrueckii ssp bulgaricus and lytic 

bacteriophage. 
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Materials and Methods 

 

Organisms and growth conditions. Streptococcus thermophilus LMD-9 was routinely 

propagated in Elliker broth (Difco, Inc. Ann Arbor, MI) statically at 42°C.  Lactobacillus 

delbrueckii ssp. bulgaricus BAA-365 was routinely propagated in MRS broth ((Difco, Inc. 

Ann Arbor, MI) statically at 37°C.  For phage expression experiments, S. thermophilus 

LMD-9 was grown at 42°C in M17 broth (Difco, Inc. Ann Arbor, MI) supplemented with 

1% glucose.  The lytic phage DT1 (provided by Moineau), was propagated in modified 

M17 broth containing (per liter): 19.0 g disodium β-glycerophosphate, 5.0 g beef 

extract, 5.0 g papiac digest of soybean meal, 2.5 g yeast extract, 0.5 g ascorbic acid, and 

0.25 g MgSO4, supplemented with 10mM calcium chloride, then purified by 0.45 µm 

filter.  For S. thermophilus/L. bulgaricus synbiosis expression experiments, S, 

thermophilus and L. bulgaricus were propagated in indicated media, then used to 

inoculate 10% rehydrated skim milk that had been steamed previously for 1 hour and 

stored at 4°C until usage. 

 

Microarray Fabrication.     Microarrays were fabricated as 60mer oligo-chip arrays 

generated from the S. thermophilus LMD-9 genome (Invitrogen).  Each oligomer was 

contact-printed using the OminGrid robotic arrayer (GeneMachine), in triplicate, for a 

total of 4,866 features per microarray.  Slides were pre-treated according to the 

manufacturer’s recommendations using a UV cross-linking method to anchor the oligos 

to the surface of the epoxy slide. Steps include: (1) using diamond pen, mark the outside 
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edges of the printed area on the back side of the slide, (2) Heat water to 65ºC and heat 

slide moat to 90ºC. (3) Hold slide spotted side down over the water to steam for 10 

seconds, followed by placing the slide spotted side up on the slide moat for 5 seconds, 

(4) Repeat step 3, (5) Place slide spotted side up on paper towel inside UV Stratalinker 

and set to 2400, (6) Gently wash slide in 1% SDS solution for 5 minutes, (7) dip slide 

quickly in water 20 times, then in ethanol 10 times, (8) place slides in glass slide holder 

and centrifuge at 750 rpm for 4 minutes to dry. 

 

Cell harvesting and RNA isolation procedures. Cells were harvested for 

centrifugation after the treatment and incubation was completed, RNAprotect (Qiagen) 

was used to stop gene expression and stabilize the RNA (protocol modified from 

Monnet [20]). RNA isolation was achieved using the chaotropic agent TRI reagent 

(Molecular Research Center) according to manufacturer’s instructions.  Following the 

use of this reagent, 0.1 mm glass beads and a beadbeater were used to complete seven 

cycles of 2 minutes in the beadbeater and 2 minutes on ice in between cycles.  

Homogenate was incubated at room temperature for 5 minutes before chloroform 

extraction and purification. Steps include: (1) Add 0.2 ml chloroform to homogenate and 

shake vigorously for 15 seconds, (2) store mixture at room temperature for 15 minutes, 

(3) centrifuge at 13000 rpm for 15 minutes at 4ºC, (4) transfer upper phase to new tube 

and add 0.5 ml isopropanol and mix by inversion, (5) store at room temperature for 8 

minutes, (6) centrifuge at 13000 rpm for 8 minutes at 4ºC, (7) Decant supernatant and 

wash pellets with 1 ml cold 75% ethanol and mix, (8)  centrifuge at 12000 rpm for 3 
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minutes at 4ºC, (9) repeat steps 7 and 8, (10) decant ethanol and air dry tubes until 

ethanol has evaporated, (11) add 100 uL Ambion nuclease-free water the each pellet 

and incubate at 55-60ºC for 10 minutes.  DNAse treatment (Turbo DNAse, Ambion),  was 

used to treat RNA, also according to manufacturer’s instructions.  Steps include: (1) Add 

5 uL of 10x DNase I Buffer and 1.5 uL DNase (2U/uL) to 50 uL RNA sample, (2) mix gently 

and incubate at 37ºC for 1 hour, (3) add 5 uL DNase Inactivation Reagent and mix well, 

(4) incubate mixture at room temperature for 2 minutes, (5) centrifuge for 5 minutes at 

room temperature to pellet, (6) transfer supernatant to new tubes. 

 

cDNA synthesis and hybridization  cDNA was synthesized using Superscript II Reverse 

Transcriptase (Invitrogen) from 30 µg of extracted RNA and directly labeled with two 

different fluorochromes; Cy3 (Perkin Elmer) was used to label the experimental group or 

the group of cells that underwent the treatment and Cy5 (Perkin Elmer) was used to 

label the control group.  Steps include: (1) Prepare reaction mixture as follows: 

     Cy3  Cy5 

  treatment RNA 13.5 ul    - 

  control RNA     -  10 ul 

  random hexomers 1 ul  1 ul 

   (1ug/ul) 

  nuclease-free H2O to 14.5 ul to 14.5 ul 

(2) incubate mixture at 65ºC for 10 minutes and place on ice, (3) on ice, add to each 

tube:  

     Cy3  Cy5 

  5x 1
st

 strand buffer 6 ul  6 ul 

  0.1 M DTT  3 ul  3 ul 

  dNTP mix (low dCTP) 0.6 ul  0.6 ul 

  RNase out  1.0 ul  1.0 ul 

  Cy3-dCTP dye  3.0 uL     - 
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  Cy5 -dCTP dye     -  3.0 ul 

 

(4) add 3 ul Superscript III reverse transcriptase (200U/ul), (5) incubate at 42ºC for 2 

hours, (6) add 3 ul of 0.2 um-filtered 0.5 M EDTA and incubate for 2 minutes at room 

temperature. (7) add 3 ul of 0.2 um-filtered 1M and incubate at 65ºC for 30 minutes, (8) 

cool to room temperature and add 3 ul of 0.2 um-filtered 1M HCl and incubate for 3 

minutes at room temperature. The labeled probes were hybridized to the microarray 

surface using Hyb Low Temp/Target buffer and incubating in a HybChamber 

(GeneMachine) for 16-20 hours before the slide was washed in a series of three washing 

buffers: (1) 1x SSC, 0.03% SDS, (2) 0.2x SSC, (3) 0.05 x SSC, and scanned using the 

GenePix 4000B scanner (Axon Instruments) at 5 um per pixel resolution.   

 

Response to bacteriophage.  S. thermophilus LMD-9 was incubated in M17 + glucose at 

42°C until reaching OD625 ~ 0.4, then the culture was split. The lytic bacteriophage DT1 

was added at a M.O.I of 1 to one culture as the expression treatment and 10 ml samples 

were taken at time points of -5 minutes before infection and 0,5,10,20,30, and 40 

minutes after infection and added directly to 20 ml RNAprotect (Qiagen) to halt gene 

expression. The cells of the other half of the culture were immediately harvested by 

centrifugation as the control.  RNA was collected using the RNA protect method. Steps 

are as follows: (1) 10 ml of sample is added to 20 ml RNA protect (Qiagen) + 0.89 ul of 

rifampicin (2.25 mg/ml), (2) mixture is incubated 5 minutes at room temperature, (3) 

centrifuge at 5,500 x g for 15 minutes at 4ºC, (4) resuspend pellet in 5 ml lysozyme 

(20mg/ml) and 0.22 ml rifampicin (2.25 mg/ml), (5) incubate mixture for 25 min at 37ºC 
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before centrifuging at 5,500 x g for 15 min at 4ºC, (6) resuspend pellet in 5 ml TrIzol 

reagent, (7) incubate 10 minutes at room temperature, (8) centrifuge 16,000 x g for 15 

minutes at 4ºC, (9) remove upper phase and mix with equal volume isopropanol, (10) 

shake gently on shaker for 30 minutes before pelleting RNA by centrifugation and 

continuing with RNA purification and DNAse treatment as described above.  

 

 

S. thermophilus and L. bulgaricus synergism in milk.    L. bulgaricus BAA-365 was grown 

in skim milk for 7 hours at 42°C, and then added at an equal volume to S. thermophilus 

LMD-9, also in skim milk.  Sterile skim milk at a similar pH was added to a parallel culture 

of S. thermophilus LMD-9 as a control.  After incubating both cultures at 42ºC for 4 

hours or when pH 5.5 is reached, RNA was collected using the RNA protect method and 

purified as described above.  

 

Statistical Analysis.  The median feature pixel intensity at wavelengths of 635 and 532 

nm in raw data amounts generated by the GenePix scanner were normalized between 

spots and between each of the three replicates performed using LimmaGui software 

package (http://bioinf.wehi.edu.au/limmaGUI/) using general loess after background 

correction.  The least squares method was used to determine differentially expressed 

genes, and only those genes with a p value of ≤ 0.05 were considered significantly 

differentially expressed. 
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Results and Discussion 

 

Response to Bacteriophage 

 

 In order to obtain an accurate representation of the activity of CRISPR genes 

during the phage shock time trial, gene expression levels of each of the 14 known 

CRISPR genes, spread among 3 separate loci, in the S. thermophilus LMD-9 genome were 

compared at each time point (Figure 1).  The phage response arrays indicate a transient 

increase in global gene expression, including that of CRISPR genes, 5 minutes post 

infection, followed by decrease in gene expression.  Genes significantly differentially 

expressed at each time point are listed in Table 1. 

 The increased expression of the CRISPR1 locus reflects the expected response to 

phage infection.  CRISPR1 is known to have repeat degeneracy within the CRISPR gene 

sequence, with spacer size more highly conserved and in the highest number when 

compared to the other two loci [13].  This increase in spacer number and conservation 

in CRISPR1 is likely evidence of an effective mechanism to integrate novel spacers when 

faced with novel phage infection [19].  CRISPR3 plays a lesser role in phage response, 

and likewise we see a lesser degree of gene expression.  CRISPR 2 has not been 

associated with active phage response [13,19]. 

 Global gene expression profiles during this phage infection time course did not 

indicate great shifts or specific trends.  At 5 minutes after infection, the most highly 

expressed gene is a replication and repair gene, STER_1614.  Three of the seven other 

genes upregulated at this timepoint were membrane transport genes including two PTS 
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system components. Twenty minutes after infection, we see only one gene with a 

statistically significant change in gene expression, a P-loop containing kinase, 

STER_0875.  At 30 minutes post infection, there is very little significant change in any 

upregulated genes, but there is a slight down regulation in a nucleotide metabolism 

gene gmk, a guanylate kinase (STER_1398), as well as a down regulation in an arsenate 

reductase (STER_1485).  Finally, after 40 minutes post infection, an even steeper down 

regulation of gmk was observed.  Guanylate kinase is involved in purine metabolism, so 

this down regulation may indicate that the cell is in distress and is no longer normally 

synthesizing nucleotides. 

 

 

S. thermophilus and L. bulgaricus synergism in milk. 

 

 The analysis of the milk expression arrays, listed in Table 2 and shown graphically 

by KEGG function in Figure 2, revealed several trends in gene expression.  First, there is 

an up regulation of amino acid metabolism and transport genes, with the highest fold 

change in expression coming from STER_1318, and amino acid transporter.  This result 

was expected, as the presence of L. bulgaricus and its extracellular protease would 

increase the level of hydrolyzed proteins that would be available for use once the free 

amino acids from the milk media were depleted.  A significant increase in replication 

and repair genes, seven in total, was observed indicating a stimulation of cell activity 

and growth rate.  Interestingly, there was a down-regulation trend in membrane 

transport gene expression, specifically ABC-type PTS (STER_1007) and an ABC-type 

dipeptide  transport (STER_1407).  The most down-regulated gene was STER_1274, an 
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aspartate-semialdehyde dehydrogenase, and enzyme involved in glycine, serine and 

threonine metabolism and lysine biosynthesis.   This was surprising as Herve-Jimenez et 

al. [10] showed that there was an upregulation of AA biosynthesis, particularly branched 

chain amino acids (BCAA) and nucleic acid metabolism in S. thermophilus when grown in 

co-culture with L. bulgaricus.  While the change in gene expression on the global scale 

does not show any great shifts either up or down, based on the overall relatively few 

significantly expressed genes and somewhat low log2 ratios observed, there was a 

general increase in cell activity in the presence of L. bulgaricus compared to that of S. 

thermophilus LMD-9 alone, indicating that the protocooperation between these two 

bacteria many involve a subtle give and take, rather than an overwhelming change in 

just one or two aspects of interaction. 
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Conclusion 

 

In this study, global gene expression profiles of Streptococcus thermophilus were 

generated using DNA microarrays during specific conditions to which the microbe would 

be exposed during processing. This allowed us to gather large amounts of data within a 

single experiment, which resulted in a much clearer picture of the cell activity during 

these conditions.  The role of CRISPR genes emerges, as the response of the genes on 

each of the three CRISPR loci respond to phage infection by 5 minutes after phage is 

introduced into the culture, and then expression shift downwards by 20 minutes after 

phage infection, indicating that the CRISPR response in S. thermophilus is likely involved 

in early bacteriophage defense.  A subtle pattern of reciprocity between S. thermophilus 

and L. bulgaricus emerges, where the cell activity of S. thermophilus is enhanced by 

incubation in co-culture with L. bulgaricus.  By increasing our understanding in this way 

of the transcriptomics of this important dairy organism, we can begin to more 

accurately relate phenotype to genotype and ultimately greatly improve strain selection 

methods.    
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Tables and Figures 

 

Table 1. Genes differentially expressed during phage shock by time point 

 

Locus Tag  Function                           KEGG   Fold change 

           function code  (log 2 ratio) 

 

-5 min 

STER_1485  arsenate reductase                    PS       0.542 

STER_1649  response regulator LytR/AlgR                  PS      -0.354 

 

5 min 

STER_1614  N6-adenine-specific methylase      RR        2.93 

STER_0100  predicted flavoprotein         PS        2.23 

STER_0111  transposase     RR        2.039 

STER_0239  phospotransferase system IIA component     MT        1.96 

STER_0941  alpha-acetolactate decarboxylase (alsD)                C       1.91  

STER_1318  amino acid transporter     MT             1.760 

STER_0370  mannose-specific PTS system component  MT        1.313 

 

20 min 

STER_0875  predicted P-loop containing kinase   PS                 0.319 

 

30 min 

STER_1115  signal transduction histidine kinase (vicK)  PS        0.739 

STER_0239  phosphotransferase system IIA component       C                   0.719 

STER_0998  restriction endonuclease S subunit     N             0.545 

STER_0977  CRISPR-system related protein (Csm5)    PS             0.460 

STER_0786  Mn2+/Fe2+ transporter of NRAMP family  PS                 0.396 

STER_1607  ABC-type molybdenum transport   MT              0.239 

STER_0875  predicted P-loop-containing kinase   PS                      0.188 

STER_1584  predicted RNA-binding protein      TR           0.1309 

STER_0721  uncharacterized protein      FU              0.0635 

STER_0138  transposase      PS                      0.0426 

STER_0249  ribose/xylose/arabinose/galactoside ABC   MT                     -0.00433 

    transporter  

STER_1485  arsenate reductase     PS                      -0.00723 

STER_1398  guanylate kinase (gmk)        N                      -0.759 
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40 min 

STER_0239  phosphotransferase system IIA component   C                 0.509 

STER_1624  uncharacterized protein             FU                        0.434 

STER_1990  S4-like RNA binding protein      TS              0.321 

STER_1256  DNA gyrase, A subunit (gyrA)       RR                0.123 

STER_1398  guanylate kinase (gmk)               N               -1.09 

     

 

KEGG (Kyoto Encyclopedia of Genes and Genomes) function codes: PS, cellular 

processes and signaling; RR, replication and repair; MT, membrane transport; C, 

carbohydrate metabolism; N, nucleotide metabolism; FU, function unknown; TR, 

translation.  Values given are indicative of the fold change in gene expression.  

 



46 

 

Figure 1: CRISPR gene activity by time point 

 

 

 

Numbers refer to each of the three CRISPR loci; red = CRISPR 1, green= CRISPR 2, blue, 

CRISPR 3.  Each line indicates one of the 14 cas, or CRISPR associated genes.  Log2 values 

are indicative of fold change in gene expression.
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Table 2. Genes differentially expressed during growth in the presence of L. bulgaricus  

  

Locus Tag  Function                           KEGG   Fold change 

           function code  (log 2 ratio) 

 

STER_1318  amino acid transporter    AA  2.80 

STER_0842  transposase     RR  2.39 

STER_1381  DNA segregation ATPase   RR  2.16 

STER_0003  transposase     RR  2.14 

STER_0018  transposase     RR  2.05 

STER_0300  transcriptional regulator   RR  1.96 

STER_0111  transposase     RR  1.87 

STER_0311  trk-type K+ transport system, membrane MT  1.59 

STER_0375  xanthine/uracil/vitamin C permease  PS  1.59 

STER_1169  predicted membrane protein   FU  1.43 

STER_0215  undecaprenyl pyrophosphate phosphatase C  1.42 

STER_0886  cystathionine beta-lyase   AA  1.34 

STER_1406  ABC-type dipeptide transport system  PS  1.25 

STER_0193  CTP synthase     N  1.21 

STER_0312  K+ transport system    MT  1.21 

STER_1454  ABC-type amino acid transport   PS  1.20 

STER_1192  short-chain dehydrogenase   EM  1.20 

STER_0139  transposase     RR  1.18 

STER_0001  ATPase involved in DNA replication  RR  0.20 

STER_0190  small-conductance mechanosensitive  MT  0.19 

    channel  

STER_1849  acetolactate synthase    C  -0.17 

STER_1571  predicted ABC-type exoprotein transport MT  -0.22 

    system 

STER_1925  ABC-type multidrug transport system  MT  -0.43 

STER_1800  carbonic anhydrase    EM  -0.45 

STER_1007  ABC-type PTS     MT  -0.66 

STER_1407  ABC-type dipeptide transport system  MT  -1.03 

STER_1980  very conserved membrane protein  MT  -1.56 

STER_1274  aspartate-semiadehyde dehydrogenase  AA  -1.74 

     

KEGG (Kyoto Encyclopedia of Genes and Genomes) function codes: AA, amino acid 

transport and metabolism; EM, energy metabolism; PS, cellular processes and signaling; 

RR, replication and repair; MT, membrane transport; C, carbohydrate metabolism; N, 

nucleotide metabolism; FU, function unknown; TR, translation. Values given are 

indicative of the fold change in gene expression.  
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Figure 2. Fold change in gene expression by KEGG function 

 

 

 

Genes are separated based on KEGG function and abbreviated as follows: AA; amino 

acid metabolism, ABC; ABC-type transport, CARBO; carbohydrate metabolism, CELL; 

cellular processes, DNAR; DNA replication, ENER; energy metabolism, MEM; membrane 

related genes, NUCL; nucleic acid metabolism, RIBO; ribosome related genes, TCRP; 

transcription. Those genes with specific names are labeled as such. Log2 values are 

indicative of fold change in gene expression.
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Introduction 

 

The term “prebiotic” refers to non-digestible food ingredients that selectively stimulate 

the growth or activity of a limited number of intestinal bacteria which results in 

improved host health [4].  Galactooligosaccharides (GOS) are complex carbohydrates 

that are formed from lactose via a transgalactosylation reaction by beta-galactosidase.  

The GOS molecule is comprised of a glucose subunit with several galactose subunits 

attached in either a 1,4 or 1,6 beta linkage.  GOS are of prebiotic importance, as few 

organisms inhabiting the GI tract possess the enzymes needed to hydrolyze GOS, 

therefore GOS “enriches” for only those organisms able to utilize it as a substrate.  GOS 

fulfills other necessary requirements to be a successful prebiotic: temperature stable, 

resistant to acid and bile and low calorific value [8].  Among organisms in the GI tract 

that are able to utilize GOS are certain groups of bacteria considered beneficial to the 

health of the host.  These include Bifidobacteria and Lactobacillus.  Bifidobacterium, a 

gram-positive, anaerobic, non-motile, non-sporeforming organism, is often the first to 

colonize the gut as infants, and higher numbers of bifidobacterium are found in breast-

fed infants when compared to formula fed infants [3]. Levels of Bifidobacterium are 

highest in infants, but steadily decrease after weaning and into adulthood.   

Bifidobacterium are attributed to be active in many aspects of host health, from 

immunostimulation/modulation [9,15] , to the prevention of diarrhea [10].   

 In addition to these specific health aspects, Bifidobacteria and Lactobacillus may 

play an important role in colonization resistance.  In other words, if “good” bacteria 
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such as Bifidobacteria and Lactobacillus are present in the gut, then they, complimented 

by the normal host microflora, occupy every available niche, thereby excluding any 

possible pathogens or attempted colonization by undesirable bacteria. 

 The term “probiotic” refers to “defined viable microorganisms, sufficient 

amounts of which reach the intestine in an active state and thus exert positive health 

effects” [25]. For a bacteria to be considered “probiotic”, it must fulfill the following 

criteria: exert positive health effects whether by colonization or during passage through 

the GI tract, be acid and bile resistant, be safe and non-pathogenic, and selectively 

stimulate growth and activity of intestinal bacteria. Most of the probiotic bacteria used 

commercially are either lactobacilli or bifidobacteria, which as previously discussed are 

known to be beneficial to host health.  When a specific pairing of a probiotic bacterial 

strain to a prebiotic carbohydrate is made within a food product, it is called a synbiotic 

[19].  This idea of specific pairings within food products is a particularly effective 

strategy when trying to exert a change in the gut microflora, as it essentially “self-feeds” 

the probiotic bacteria during its time in the GI tract. 

 Most lactic acid bacteria have abundant proteolytic systems, with the ability to 

take up macromolecules, such as oligosaccharides [25], and so have been suggested for 

use as probiotics.  Probiotic strains must be able to survive passage through the GI tract, 

and be able to compete with the host microflora for nutrients during passage.  The 

specific pathways used to ferment prebiotics may be strain specific and unique, or may 

involve “borrowing” a pathway normally used for a different carbohydrate.  The 
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carbohydrate utilization pathways of several important lactic acid bacteria, have been 

well studied [3.10, 11.12,19, 25, 26,27, 29, 31].   Most research indicates that 

carbohydrate transporters sit within cell membranes, with capture of the carbohydrate 

accomplished by specific receptors, while the breakdown of the carbohydrate can occur 

intra- or extra- cellularly [1, 5, 6, 12, 13, 14].  In Lactobacillus, utilization of prebiotic 

carbohydrates is usually tied to specific hydrolases and transporters.  The ability to 

utilize prebiotic carbohydrates can be very strain specific, as only those microbes with 

the enzymes to cleave the specific linkages in the complex oligosaccharides are capable 

of utilizing them. We designed a screening method and media to carry out phenotypic 

tests and growth curves of many strains from major groups of lactic acid bacteria 

including Bifidobacterium, Lactobacillus, Lactococcus, Leuconostoc, and S. thermophilus.  

Once this phenotypic distribution is generated, we will be able identify strains that are 

able to utilize GOS and determine the mechanics of GOS fermentation in more detail. 

 



54 

Materials and Methods 

Organisms and growth conditions. Lactic acid bacteria used in this study were 

propagated in the following media according to their nutritional needs: Bifidobacteria, 

MRS supplemented with 0.5% L-cysteine (Difco, Inc. Ann Arbor, MI); Lactobacillus and 

Leuconostoc, MRS (Difco, Inc. Ann Arbor, MI); Lactococcus, M17 (Difco, Inc. Ann Arbor, 

MI); Streptococcus thermophilus, Elliker (Difco, Inc. Ann Arbor, MI).  All bacteria were 

incubated statically at 37ºC, with Bifidobacteria incubated anaerobically in an anaerobic 

chamber.  Media used to complete growth curve and plate screenings was modified to 

contain lower concentration of extraneous carbohydrates per 900 mL as follows: MRS; 5 

g protease peptone #3, 5g beef extract, 2.5g yeast extract, 1g polysorbate 80, 2g 

ammonium citrate dibasic, 5g sodium acetate, 0.1 g MgSO4, 0.5g MnSO4, 2g K2HPO4, 

0.5g L-cysteine (bifidobacteria only); Elliker; 20g pancreatic digest of casein, 5g yeast 

extract, 4g NaCl, 2.5g gelatin, 1.5g sodium acetate, 0.5g ascorbic acid; M17; 19.0g 

disodium β-glycerophosphate, 5.0g beef extract, 5.0g papiac digest of soybean meal, 

2.5g yeast extract, 0.5g ascorbic acid, 0.25g MgSO4 .  The remaining 100 mL was made 

up of a 2% galactooligosaccharide (GOS) solution added after sterilization.  The 

commercial GOS, from GTC Nutrition, was provided in a powder form and then 

rehydrated into stock solutions.  Composition of commercial GOS is comprised of mix of 

three sugar components: 92% GOS, 7% lactose, 0.75% glucose, 0.25% galactose.  To 

account for the 8% of non-GOS sugars, from here on referred to as “contaminating 

sugars”, these sugars were added to media in the same concentration as would be 
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found in the 2% GOS solution used in the other modified media to act as a control.  The 

final control used was the basal media without any sugars added.  

 

Strain Screening Strains were screened with a combination of plating and liquid 

media.  Plate screening was completed using the modified media appropriate for the 

nutritional needs of each type of bacteria supplemented with 2% GOS solution and 

bromcresol purple as a pH indicator.  Liquid media screening consisted of measuring cell 

growth over a time course at OD620 in three separate media: (1) basal media with no 

additional carbohydrate added, (2) control media with only the “contaminating sugars” 

added, and (3) media with 2% GOS added.  These screenings were completed statically 

at 37ºC, with only the bifidobacteria incubated anaerobically.  Strains were considered 

positive for GOS fermentation if they produced yellow colonies on the plate screening 

(indicating that they were producing lactic acid which lowered the pH), and had a p-

value of <0.05 in a paired t-test of the OD values between the three medias at each time 

point in three separate biological replicates.   

 

Random mutagenesis of Lactobacillus reuteri DSM 20016T Random mutagenesis 

was achieved using a mariner transposon system from Bacillus subtilus (provided by 

Haldenwang).    Transposons was propagated in B. subtilus and transformed colonies 

selected using LB kandamycin
5
/erythramycin

1
 at 50ºC, and plasmid DNA was isolated 

using the QIAprep Spin Miniprep kit (Qiagen) with the following modification: 250U/ml 

of mutanolysin (Sigma)  and 10mg/ml of lysozyme (Fisher) was added to Buffer P1.  
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After checking plasmid DNA quality on agarose gel, 400 µL of pelleted and washed L. 

reuteri DSM 20016T cells were electrotransformed with 5µL plasmid DNA in an 

electroporation cuvette (Midwest Scientific) using an electroporater and a single pulse 

(12.5 KV/cm, 200 Ω, 25 µFD).  Cells are then transferred to 10 mL prewarmed MRS and 

incubated for 2.5h at 37ºC before 100µL is plated on MRS + kan
5
/ery

1
 and incubated at 

30ºC for 48h.  The resulting transformed colonies were picked and then screened using 

the same plating method as described above. 

 

Directed Mutagenesis of Lactobacillus reuteri DSM 20016T Directed mutagenesis 

was achieved via site-directed gene inactivation as described by Walter et al. [16].  Four 

genes and two separate clusters were chosen to be inactivated based on their likelihood 

to be involved in GOS hydrolysis: Cluster 1; (1) LAR_0276 beta-galactosidase large 

subunit, (2) LAR_0277 beta-galactosidase small subunit; Cluster 2; (3) LAR_1032 beta-

galactosidase, (4) LAR_1033 PTS system transporter.  Gene inactivation was confirmed 

using test primers (see Table 4). 

 

GOS synthesis  GOS synthesis was achieved by adding 0.25U commercial enzyme 

(Biolacta, provided by GTC Nutrition) to 400µL of 40% lactose solution and 200µL 5% 

lactose solution in AC buffer (50 ml glycerol, 10 ml 5M NaCl, 10 ml 1M Tris, pH 7.6, 1 ml 

0.5M EDTA) and incubating at 60ºC for 18h.  The solution was then boiled at 100ºC for 5 

minutes to deactivate any remaining enzyme.  Radiolabeled GOS was synthesized in the 

same manner but with the following substitutions: 100 µL of 
14

C-labeled lactose (ARC 
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chemicals) was added in addition to 200µL 5% lactose in AC Buffer, 400µL 40% lactose 

solution, and 100U commercial enzyme. 

 

Thin Layer Chromatography of Carbohydrates The products of GOS enzymatic 

synthesis were purified using preparative TLC.  High Performance TLC glass plates 

coated with silica 60 at 200 µm (Dynamic Absorbents Inc.) were used to separate 

carbohydrates generated during GOS synthesis or other experiments. Plates were 

spotted using capillary pipettes, with volumes averaging 1-2 ul per spot.  Plates were 

developed two times in a 22:9:9 butanol-acetic acid-water solution, then sprayed with a 

1:1 (v/v) sulfuric acid-ethanol solution and baked at 275ºF for 5-10 minutes to char the 

carbohydrates into distinct spots.  Plates were run with 2% solutions of sugar standards 

such as full GOS, lactose, galactose, and/or glucose. 

 

Radiolabeled GOS uptake experiments MRS media supplemented with 2% GOS was 

inoculated from an overnight and incubated at 37ºC for 8-12h, then pelleted and 

washed twice with 0.1M PBS after taking the initial OD620.  The pellet was then 

resuspended in buffer so the final OD620 is 1.0-1.2.  A pulse of 0.1M glucose was added 

to energize cells when necessary.  Radiolabeled GOS is added and 1 mL samples are 

taken in duplicate at time points 1, 5, 10, 20, and 30 minutes.  These 1 mL samples are 

added to tubes containing 500µL mineral oil, then centrifuged for 1 minute.  The cells 

are separated from the supernatant by the oil, leaving the cells in a pellet at the bottom 

of the tube. The supernatant and oil is poured off, and the tubes are inverted over 
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absorbent towels to dry.  The intact pellet is removed from the tube using guillotine 

clippers, and placed in scintillation vials.  Four ml of scintillation liquid (Fisher) is added 

to the vials and mixed well.  The vials are counted in a scintillation counter and each vial 

is measured at 5 minute intervals within the 
14

C spectrum.  Counts are then averaged 

over the duplicate samples at each time point and graphed. 

 

Intracellular and Extracellular enzyme tests  To determine the location of GOS 

hydrolysis enzyme activity,  two separate cell components were extracted from a L. 

reuteri DSM 20016T cell population grown in MRS supplemented with 2% GOS at 37ºC 

for 12h.  To measure the intracellular activity, cells were pelleted after incubation and 

washed twice with 1X PBS. Cells were resuspended in buffer and cells lysed using 

microbeads and beadbeating for 7 cycles of 1 min with 1 min on ice in between cycles.  

After centrifugation, the supernatant was removed and 100ul added to new tubes 

containing 2% GOS.  The tubes were incubated at 37ºC and 1 ml samples taken at 0,2,4, 

and 8 hours.  To measure the extracellular activity, cells were incubated as before, then 

the 150ml cell solution was pelleted and the supernatant was filtered to remove any 

remaining cells.  2% GOS was added to the filtered cell-free supernatant and samples 

were taken at 0, 2, 4, and 8 hours during incubation at 37ºC.  Samples from both 

enzyme activity tests were run on HPTLC plates to qualify any GOS hydrolysis activity, as 

well as intracellular enzyme assays of the mutant knock-outs. 
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Microarray Fabrication.     Microarrays were fabricated as 60mer oligo-chip arrays 

generated from two separate L. reuteri genomes, DSM 20016T, a human isolate, and 

100-23, a rat isolate (Invitrogen).  Each oligomer was contact-printed using the 

OminGrid robotic arrayer (GeneMachine), in duplicate, for a total of 5,026 features per 

microarray.  Slides were pre-treated according to the manufacturer’s recommendations 

using a UV cross-linking method to anchor the oligos to the surface of the epoxy slide. 

Steps include: (1) using diamond pen, mark the outside edges of the printed area on the 

back side of the slide. Label slide with number if necessary, (2) Heat water to 65ºC and 

heat slide moat to 90ºC. (3) Hold slide spotted side down over the water to steam for 10 

seconds, followed by placing the slide spotted side up on the slide moat for 5 seconds, 

(4) Repeat step 3, (5) Place slide spotted side up on paper towel inside UV Stratalinker 

and set to 2400, (6) Gently wash slide in 1% SDS solution for 5 minutes, (7) dip slide 

quickly in water 20 times, then in ethanol 10 times, (8) place slides in glass slide holder 

and centrifuge at 750 rpm for 4 minutes to dry. 

 

Cell harvesting and RNA isolation procedures. Cells were harvested for 

centrifugation after the treatment and incubation was completed, RNAprotect (Qiagen) 

was used to stop gene expression and stabilize the RNA (protocol modified from 

Monnet 2008). RNA isolation was achieved using the chaotropic agent TRI reagent 

(Molecular Research Center) according to manufacturer’s instructions.  Following the 

use of this reagent, 0.1 mm glass beads and a beadbeater were used to complete seven 

cycles of 2 minutes in the beadbeater and 2 minutes on ice in between cycles.  
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Homogenate was incubate at room temperature for 5 minutes before chloroform 

extraction and purification. Steps include: (1) Add 0.2 ml chloroform to homogenate and 

shake vigorously for 15 seconds, (2) store mixture at room temperature for 15 minutes, 

(3) centrifuge at 13000 rpm for 15 minutes at 4ºC, (4) transfer upper phase to new tube 

and add 0.5 ml isopropanol and mix by inversion, (5) store at room temperature for 8 

minutes, (6) centrifuge at 13000 rpm for 8 minutes at 4ºC, (7) Decant supernatant and 

wash pellets with 1 ml cold 75% ethanol and mix, (8)  centrifuge at 12000 rpm for 3 

minutes at 4ºC, (9) repeat steps 7 and 8, (10) decant ethanol and air dry tubes until 

ethanol has evaporated, (11) add 100 uL Ambion nuclease-free water the each pellet 

and incubate at 55-60ºC for 10 minutes.  DNAse treatment (Turbo DNAse, Ambion),  was 

used to treat RNA, also according to manufacturer’s instructions.  Steps include: (1) Add 

5 uL of 10x DNase I Buffer and 1.5 uL DNase (2U/uL) to 50 uL RNA sample, (2) mix gently 

and incubate at 37ºC for 1 hour, (3) add 5 uL DNase Inactivation Reagent and mix well, 

(4) incubate mixture at room temperature for 2 minutes, (5) centrifuge for 5 minutes at 

room temperature to pellet, (6) transfer supernatant to new tubes. 

 

cDNA synthesis and hybridization  cDNA was synthesized using Superscript II Reverse 

Transcriptase (Invitrogen) from 30 µg of extracted RNA and directly labeled with two 

different fluorochromes; Cy3 (Perkin Elmer) was used to label the experimental group or 

the group of cells that underwent the treatment and Cy5 (Perkin Elmer) was used to 

label the control group.  Steps include: (1) Prepare reaction mixture as follows: 

 



61 

     Cy3  Cy5 

  treatment RNA 13.5 ul    - 

  control RNA     -  10 ul 

  random hexomers 1 ul  1 ul 

   (1ug/ul) 

  nuclease-free H2O to 14.5 ul to 14.5 ul 

(2) incubate mixture at 65ºC for 10 minutes and place on ice, (3) on ice, add to each 

tube:  

     Cy3  Cy5 

  5x 1
st

 strand buffer 6 ul  6 ul 

  0.1 M DTT  3 ul  3 ul 

  dNTP mix (low dCTP) 0.6 ul  0.6 ul 

  RNase out  1.0 ul  1.0 ul 

  Cy3-dCTP dye  3.0 uL     - 

  Cy5 -dCTP dye     -  3.0 ul 

 

(4) add 3 ul Superscript III reverse transcriptase (200U/ul), (5) incubate at 42ºC for 2 

hours, (6) add 3 ul of 0.2 um-filtered 0.5 M EDTA and incubate for 2 minutes at room 

temperature. (7) add 3 ul of 0.2 um-filtered 1M and incubate at 65ºC for 30 minutes, (8) 

cool to room temperature and add 3 ul of 0.2 um-filtered 1M HCl and incubate for 3 

minutes at room temperature. The labeled probes were hybridized to the microarray 

surface using Hyb Low Temp/Target buffer and incubating in a HybChamber 

(GeneMachine) for 16-20 hours before the slide was washed in a series of three washing 

buffers: (1) 1x SSC, 0.03% SDS, (2) 0.2x SSC, (3) 0.05 x SSC, and scanned using the 

GenePix 4000B scanner (Axon Instruments) at 5 um per pixel resolution.   

 

GOS expression of L. reuteri measured by DNA microarray  L. reuteri DSM 

20016T was used to inoculate MRS supplemented with 2% GOS as the treatment and 

MRS supplemented with 2% glucose as the control in parallel cultures incubated 
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statically at 37ºC.  Thirty ml samples of each treatment were taken at time points 3, 8, 

and 16 hours after inoculation.  Cells were immediately harvested by centrifugation at 

10,000 rpm for 10 min at 4ºC. RNA was extracted and purified as described above. 

 

Statistical Analysis.  The median feature pixel intensity at wavelengths of 635 and 532 

nm in raw data amounts generated by the GenePix scanner were normalized between 

spots and between each of the three replicates performed using LimmaGui software 

package (http://bioinf.wehi.edu.au/limmaGUI/) using general loess after background 

correction.  The least squares method was used to determine differentially expressed 

genes, and only those genes with a p value of ≤ 0.05 were considered significantly 

differentially expressed. 
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Results and Discussion 

 

Strain screening 238 strains were screened using plating on selective media and 

liquid media growth curves from Bifidobacteria, Lactobacillus, Lactococcus, Leuconostoc, 

and Streptococcus thermophilus.  GOS fermentation seemed to be the most common in 

Bifidobacteria, where 12 of the 19 strains screened were positive (Table 1).  GOS 

fermentation was also fairly common in lactobacillus, where 60 of the 117 strains 

screened were positive, or roughly 50% (Table 2). The stand out among the Lactobacilli 

was definitely L. reuteri, where 42 of the 46 strains tested were positive for GOS 

fermentation, or 91 %.  The screenings of the other groups of lactic acid bacteria 

showed GOS fermentation was much less common, only 10 out of 102 strains (10%) 

tested among Lactococcus, Leuconostoc, and S. thermophilus were positive (Table 3).  

This indicates that GOS fermentation, or at least the ability to use complex 

oligosaccharides, is an important ability in bifidobacteria and lactobacilli.  As such, we 

decided to focus our efforts on L. reuteri, specifically L. reuteri DSM 20016T, the 

sequenced type strain. 

 

Mutagenesis of L. reuteri DSM 20016T Both random and site-directed mutants 

were generated to determine which genes might be involved in GOS hydrolysis.  

Random mutations were problematic to quantify, as screening is difficult and many 

genes may be involved in providing the GOS fermentation phenotype.  As a result, we 

did not find a suitable random mutant over many plating screens.  We therefore 

concentrated on site-directed mutagenesis.  Four genes on two separate clusters were 
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chosen to knock-out (Figure 1), as they seemed the most likely to be involved in GOS 

fermentation. Once gene inactivation was validated using test primers and PCR (Table 

4), we screened the resulting mutants in liquid media (Figure 2). Until 16 hours, growth 

in media with GOS is greatly reduced compared to the wild type (Figure 3).  After 16 

hours, the phenotype is somewhat repaired, possibly due to the presence of secondary 

GOS hydrolysis systems. 

 

Radiolabeled GOS uptake experiments  We first completed uptake experiments 

with phenotypically positive and negative L. reuteri strains from our screening to 

determine uptake patterns and relate those patterns to a known phenotype (Figure 4).  

Phenotypically positive strains, such as DSM 20016T, take up the radiolabeled GOS 

steadily until plateauing at 20 minutes after adding the radiolabeled GOS.  The 

phenotypically negative strains, such as LMS 11-3, for the most part do not take up any 

GOS at any statistically significant rate.  We continued these uptake assays with our 

knock-out mutants to determine if the phenotype was lost.  When compared to the 

wild-type DSM 20016T, all the mutants have little or no uptake, even the mutants with 

presumably intact transporters (Figure 5).  This may be a result of polar effects between 

neighboring genes among the beta-galactosidase gene clusters, or because of the 

relatively low uptake counts. 

 

Intracellular and Extracellular enzyme tests  Samples from both the intra- and 

extra-cellular tests were run on TLC to determine if any GOS hydrolysis occurred.  For 
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the extracellular enzyme test, samples from each timepoint were spotted and run on 

TLC plates.  There is no change at any of the time points in the spotting pattern, and the 

pattern that is seen is the same as the GOS standard (Figure 6).  This indicates that 

enzymatic hydrolysis activity is not likely extracellular.  For the intracellular enzyme test, 

samples from each timepoint were likewise spotted and run on TLC plates.  In this assay, 

there is a gradual shift in GOS fractions over the timepoints, with spots appearing at the 

different fraction locations at the 4,6, and 8 hour timepoints (Figure 7).  In the 

intracellular enzyme tests completed with the knock-out mutants, the phenotype of the 

is maintained.  The spots remain constant throughout the timepoints in the mutants, 

indicating no significant hydrolysis occurs to produce separate fractions (Figure 8).  This 

further supports that knocking out these four genes impairs L. reuteri DSM 20016T from 

normal levels of GOS hydrolysis activity. 

 

GOS expression of L. reuteri measured by DNA microarray The gene expression 

profile generated by the GOS treatment were not very revealing.  Only 7 genes were 

found to be statistically differentially expressed in the three timepoints combined (Table 

5).  At 3 hours after inoculation, the majority of genes upregulatd were transcription 

(Lreu_1039, Lreu_0673) and transportation genes (Lreu_0074), with a riboflavin sythase 

(Lreu_0879) being slightly downregulated.  At 8 hours after inoculation only 1 gene is 

statistically differentially expressed, glpQ, a glycerophosphoryl phosphodiesterase 

(Lreu_0065), is slightly upregulated.  At 16 hours after inoculation, only 2 genes are 

differentially expressed: Lreu_0849, a hypothetical protein, and Lreu_1113, an 
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uncharacterized phage protein, are both slightly down regulated.  This small number of 

genes and relatively moderate fold changes in gene expression indicate that expression 

of GOS hydrolysis related genes may be constitutive, or otherwise expressed in a 

manner that global expression profiles would not likely reveal.
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Conclusion 

Common prebiotic bacterial groups such as Bifidobacteria and Lactobacillus groups such 

as L. reuteri, are among the highest percentages of strains that are able to utilize GOS, 

indicating that these strains may be able to utilize many different oligosaccharides and 

complex carbohydrates, an important characteristic for a commensal organism in the GI 

tract or as a probiotic. Indeed, when genes thought to be associated with GOS 

hydrolysis, specifically beta-galactosidases, were knocked out of a L. reuteri strain, we 

see a loss of the ability to ferment GOS.   As for the other groups of LABs screened, 

namely Lactococcus, Leuconostoc, and S. thermophilus, only 10% were positive for GOS 

fermentation, indicating that these strains may not be as well suited as probiotics, or 

may not posses the cell machinery or transport systems to utilize oligosaccharides. The 

overall conclusion that can be drawn is that for a particular strain to be a successful 

probiotic, or to be paired with GOS as a synbiotic, it must possess specific enzymes to 

successfully hydrolyze complex oligosaccharides such as GOS.
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Species (total number) Number negative (%)Number positive (%)

B. adolescentis (2)

B. bifidum  (3)

B. breve  (2)

B. coagulans  (4)

1 (50%) 1 (50%)

2 (67%)

1 (50%)

2 (50%)

1 (33%)

1 (50%)

2 (50%)

B. infantis (2)

B. lactis (1)

B. longum (3)

2 (100%) 0 (0%)

1 (100%)

3 (100%)

0 (0%)

0 (0%)

Other Bifidobacterium spp. (2)

12 (63%) 7 (37%)TOTAL  (19)

1 (50%) 1 (50%)

Tables and Figures 

 

 

Table 1: GOS fermentation by Bifidobacterium 
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Table 2:  GOS fermentation by Lactobacillus 

 

Species (total number) Number negative (%)Number positive (%)

L. acidophilus  (9)

L. amylophilus  (1)

L. amylovorus  (4) 

L. brevis  (5)

1 (11%) 8 (89%)

0 (0%)

0 (0%)

3 (60%)

1 (100%)

4 (100%)

2 (40%)

L. buchneri  (1)

L. casei  (8)

L. confusus (1) 

L. delbrueckii subsp. bulgaricus  (10)

0 (0%) 1 (100%)

3 (38%)

0 (0%)

2 (20%)

5 (62%)

1 (100%)

8 (80%)

L. helveticus (3) 

L. hilgardii  (1)

0 (0%)

0 (0%)

3 (100%)

1 (100%)

L. lactis (2) 

L. paracasei (3)

0 (0%)

0 (0%)

2 (100%)

3 (100%)

L. pentosus (1) 1 (100%) 0 (0%)

L. plantarum (5) 2 (40%) 3 (60%)

L. reuteri (46) 42 (91%) 4 (9%)

L. rhamnosus (1) 0 (0%) 1 (100%)

L. xylosus (1) 0 (0%) 1 (100%)

Other Lactobacillus spp. (16) 6 (38%) 10 (62%)

60 (51%) 57 (49%)TOTAL  (117)
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Table 3:  GOS fermentation by other Lactic Acid Bacteria 

 

Species (total number) Number negative (%)Number positive (%)

Lactococcus lactis subsp, lactis (16)

Streptococcus thermophilus (67)

Leuconostoc citrovorum  (4) 

1 (6%) 15 (94%)

4 (6%)

0 (0%)

63 (94%)

4 (100%)

10 (10%) 92 (90%)TOTAL  (102)

Leuconostoc cremoris (3) 1 (33%) 2 (33%)

Leuconostoc dextranicum (5) 1 (20%) 4 (80%)

Leuconostoc mesenteroides (2) 0 (0%) 2 (100%)

Leuconostoc paramesenteroides (1) 0 (0%) 1 (100%)

Other Leuconostoc spp. (4) 3 (75%) 1 (25%)
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Table 4: Primers used to generate knock-out mutants 

 

 

Target gene  Primer  Sequence (5’-3’)   Application 

 

LAR_0276  BLF  TTACCCCCTCTGAATTTGAC  Insert primer 

   BLR  CCAGATTATTTTCGGCCATC  Insert primer 

   BLFT  GGTCACTTTATTGGTTACGC  Test primer 

   BLRT  TTGCTCCCATCTTCTGCC  Test primer 

 

LAR_0277  BSF  ATGCGCTATGGTGGTGA  Insert primer 

   BSR  GTAAACCGTCAACATGGAA  Insert primer 

   BSFT  GTTAAGGATCCGGTAAGTGGGC Test primer 

   BSRT  GGGGAACGAGATACTTAGTAACC Test primer 

 

LAR_1032  BGF  CTGAATTACAGGCAGTTGC  Insert primer 

   BGR  GGTTACCGCGGGAGTC  Insert primer 

   BGFT  CGTCCGGGACAGATGGCAGCC Test primer 

   BGRT  CCAACATACCATGCTTTCCC  Test primer 

 

LAR_1033  PF  TGGATTGTTGGGGTCATC  Insert primer 

   PR  GGGCGTACAACTTATCAC  Insert primer 

   PFT  GTTATTGGTAAACCTGGTG  Test primer 

   PRT  TTCTTTCATGGCGACTATCTCC  Test primer 

 



75 

Table 5: Genes significantly differentially expressed in L. reuteri DSM 20016T during 

growth in media supplemented with 2%  GOS 

  

Locus Tag  Function                           KEGG   Fold change 

           function code  (log 2 ratio) 

 

3 hours 

Lreu_1039  transcriptional regulator   TC  2.216 

Lreu_0074  transposase     RR  2.031 

Lreu_0673  phage transcriptional regulator   TC  1.585 

Lreu_0879  riboflavin synthase    EM  -0.552 

 

8 hours 

Lreu_0065  glycerophosphoryl diester phosphodiesterase EM  1.214 

 

16 hours 

Lreu_1113  uncharacterized phage protein   FU  -0.667 

Lreu_0849  hypothetical protein    FU  -0.889  

 

     

KEGG (Kyoto Encyclopedia of Genes and Genomes) function codes: AA, amino acid 

transport and metabolism; EM, energy metabolism; PS, cellular processes and signaling; 

RR, replication and repair; MT, membrane transport; C, carbohydrate metabolism; N, 

nucleotide metabolism; FU, function unknown; TR, translation; TC, transcription. Values 

given are indicative of the fold change in gene expression.  
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Figure 1: Beta-galactosidase gene clusters and surrounding genes in L. reuteri. Genes 

knocked-out are in grey. 
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Figure 2: L. reuteri DSM 20016T knock-outs in liquid media. Blue = basal media, Red = 

control media (basal + “contaminating sugars”), Yellow = basal + GOS. Graphs are of OD 

over time.  Top graphs are of knock-out mutants in cluster 2 (P = PTS transporter 

knockout mutant, BG = beta-galactosidase mutant); Bottom graphs are of knock-out 

mutants in cluster 1 (BS= beta-galactosidase small subunit, BL= beta-galactosidase large 

subunit). 
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Figure 3: L. reuteri DSM 20016T wild type in liquid media. Blue = basal media, Red = 

control media (basal + “contaminating sugars”), Yellow = basal + GOS 
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Figure 4: Radiolabeled GOS assays of L. reuteri.  Positive strain: DSM 20016T; Negative 

strain: LM11-3. Graphed in radioactivity (DPM) over time.  Blue = DSM, Yellow = LM11-3. 

Significant uptake is seen in the positive strain, DSM 20016T, and little uptake is seen in 

the negative strain LM11-3. 
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Figure 5: Radiolabeled GOS assays of L. reuteri knockout mutants. Graphed in 

radioactivity (DPM) over time.  Blue = DSM wild type, Red = PTS transporter mutant, 

Yellow = Beta-galactosidase from cluster 2 mutant, Green = Beta-galactosidase large 

subunit from cluster 1 mutant.  Moderate uptake is seen in DSM wild type, with no 

uptake activity in any of the three mutants. 
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Figure 6: TLC separation of samples taken from extra-cellular enzyme assay.  Samples 

are spotted at 10-12 ul volumes per spot. TLC plates are developed twice in developing 

buffer (22:9:9 butanol-acetic acid-water), sprayed with 1:1 (v/v) sulfuric acid:ethanol, 

and baked at 275ºC until developed spots appear. Spotting pattern consistent with 

standards run on each end of plate, indicating that no GOS hydrolysis occurred. 

 

    2%    0h      2h        4h     8h         2% 
GOS GOS 
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Figure 7: TLC separation of samples taken from intra-cellular enzyme assay.  Samples are 

spotted at 3-4 ul volumes per spot. TLC plates are developed twice in developing buffer 

(22:9:9 butanol-acetic acid-water), sprayed with 1:1 (v/v) sulfuric acid:ethanol, and 

baked at 275ºC until developed spots appear.  The locations of spots change over time, 

indicating GOS hydrolysis activity. 

 

    2%     0h  2h   4h       8h              2% 
GOS GOS 



83 

Figure 8: TLC separation of samples taken from intra-cellular enzyme assay of three 

knock-out mutants.  Samples are spotted at 3-4 ul volumes per spot. TLC plates are 

developed twice in developing buffer (22:9:9 butanol-acetic acid-water), sprayed with 

1:1 (v/v) sulfuric acid:ethanol, and baked at 275ºC until developed spots appear. 

Spotting pattern consistent with standards run on each end of plate, indicating that no 

GOS hydrolysis occurred. 
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Conclusion 
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 At the start of this thesis work, our goals were to answer the following 

questions: (1) what genes and pathways are involved in the protocooperation 

relationship during milk fermentation between S. thermophilus and L. bulgaricus, (2) 

when and what genes are active during bacteriophage infection, and (3) how and where 

does prebiotic carbohydrate utilization occur.   

 

The ramifications and implications of this research are as follows: 

 

1. Microarray experiments showed the relationship between S. 

thermophilus and L. bulgaricus to be a subtle give-and-take, with the 

sharing of amino acids and spurring overall cell activity and replication.  

 

2. Microarray experiments showed the three CRISPR loci in S. thermophilus 

have different expression profiles during bacteriophage infection, 

indicating that the CRISPR genes are involved almost at the onset of 

infection, and within 30 minutes, they are no longer actively participating 

in bacteriophage infection, whether because infection has been 

stemmed, or because they are no longer able to provide a beneficial 

function to the cell. 

 

3. Seeing the overwhelming number of phenotypically positive L. reuteri 

strains during screening, knock-out mutants were generated to uncover 
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which genes may be involved in GOS fermentation. It was shown that 

indeed there is a loss-of-function phenotype when beta-galactosidase 

function is impaired.  By completing intracellular and extracellular 

enzyme test and separating carbohydrates using thin layer 

chromatography, it was determined that GOS is broken down 

intracellularly, rather than extracellularly.  We can therefore propose the 

pairing of GOS with either a Bifidobacterium or Lactobacillus strain, 

specifically L. reuteri, to make a potential synbiotic food product. 
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