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Plant mitochondrial genomes are composed of unusually complex structures, due to 

active recombination at numerous repeated sequences in the genome. The maintenance of 

mitochondrial genome stability is under the control of identifiable nuclear genes. In 

plants, three nuclear genes (MSH1, RECA3 and OSB1) have been shown to participate in 

recombination surveillance and the suppression of illegitimate recombination in 

mitochondria. Disruption of these loci in Arabidopsis results in reproducible 

mitochondrial genome rearrangements. We demonstrated that repeat-mediated de novo 

recombination was also enhanced in both Arabidopsis and tobacco during passage 

through in vitro culture.  Furthermore, in vitro conditions led to suppression of MSH1 and 

RECA3 expression. Subsequent regeneration processes restored normal MSH1 transcript 

levels and mitochondrial DNA configuration in tobacco. Our results show the utility of in 

vitro culture as an effective means to study the dynamic features of plant mitochondrial 

genomes and to facilitate more complete mitochondrial sequence assembly in plants. 

            Disruption of the nuclear gene MSH1, which functions in maintaining 

mitochondrial and chloroplast genome stability, produces an array of unusual plant 

growth phenotypes and imparts stress tolerance in Arabidopsis.  Similarly, transgenic 

suppression of MSH1 by RNA interference in crop plants (tobacco, tomato and soybean) 



 

 

 

produces mitochondrial genome alterations and the associated phenotype of cytoplasmic 

male sterility. We have observed other phenotypes in MSH1-RNAi tobacco, including 

dwarfism, enhanced branching, altered leaf morphology, and delayed flowering.  The 

dwarfed growth phenotype was partially reversed by application of gibberellic acid (GA). 

We have characterized these novel phenotypes, and shown them to be heritable in lines 

lacking the RNAi transgene.  We have also investigated their behavior in crossing. 
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CHAPTER ONE 

Literature Review 

Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes 

 

Early evidence about the origin of mitochondria has suggested that mitochondria arose 

from an endosymbiotic event involving the encapsulation of α-proteobacteria in an 

ancestor common to all extant eukaryotes a billion years ago (Gray et al., 1999). A 

subsequent endosymbiotic event gave rise to the present day chloroplast, during which a 

cynobacteria-like organism is in association with a eukaryote which has already 

contained mitochondria.  Following this important event, the divergence between the 

plant and animal mitochondrial genomes is established. Contrary to animal mitochondrial 

genomes, which are characterized by a highly homogenous population of DNA molecules 

of small size (usually between 16-20 kb; Boore et al., 1999), often circular structures with 

dense gene organization, plant mitochondrial genomes have several distinctive features 

that include large size (379-2,900kb in the single plant family Cucurbitacea; Alverson et 

al., 2010), variable organization and multipartite DNA structures combining large linear 

and small circular or branched forms (Oldenburg and Bendich 1996; Backert et al.,1997).  

The plant mitochondrial DNA population is commonly referred to as 

heteroplasmic, which refers to the fact that a predominant main genome is accompanied 

by substoichiometric mitochondrial DNA molecules, termed “sublimons”. In plants, these 

sublimons are found in 10- to100- fold lower abundance compared with the main genome 

(Laser et al., 1997; Woleoszynska and Trojanowski, 2009). In one case, the copy number 

of sublimons was estimated at one copy per 100-200 cells (Arrieta-Montiel et al., 2001).  
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Heteroplasmy is currently believed to be the natural physiological state of plant 

mitochondria (Arrieta-Montiel et al., 2001; Welch et al., 2006), although 

substoichiometric forms were initially described in mitochondrial mutants (Small et al., 

1987), breeding lines (Bellaoui et al., 1998) and tissue cultures (Kanazawa et al,1994).  

Heteroplasmy imparts the evolutionary benefit of genetic diversity through a 

process called substoichiometric shifting - the transition in the concentration of 

mitochondrial DNA configuration relative to the prevalent form. The ratio of prevalent 

mitochondrial forms to substoichiometric forms is variable, subject to the control of 

nuclear and/or environment factors (Arrieta-Montiel and Mackenzie, 2011), which is 

validated in experiments in Chapter Two. Substoichiometric shifting can be detected by 

DNA gel blot analysis and standard PCR techniques, during which mitochondrial forms 

existing at a substoichiometric level are shifted to the approximately the same copy 

number of the principal genome.  

Recent evidence indicates that asymmetric recombination activity at intermediate-

size genomic repeats in plant mitochondria contributes to substoichiometric shifting. 

(Arrieta-Montiel et al., 2009; Davila et al. 2011). Another suggested mechanism for 

substoichimetric shifting is the favored replication of the subgenomic mitochondrial 

DNA molecules (Kanazawa et al., 1994). It was postulated that tobacco mitochondrial 

genome alterations from plant to callus stage were probably the consequence of DNA 

recombination while genome configuration reversion occurring during tobacco 

regeneration could only result from the preferential amplification of the mitochondrial 

DNA molecules (Kanazawa et al., 1994). Whether this favored replication operates by its 

own or is facilitated in any way by recombination remains unclear.  
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Plant mitochondrial recombination and nuclear gene control 

 

Plant mitochondrial genomes are typically composed of direct and inverted repeat 

sequences of up to several kilobases in length (Allen et al., 2007; Unseld et al., 1997).  

Homologous recombination at the large (>1,000 bp) repeats in plant mitochondrial 

genomes are of high frequency, resulting in the formation of multiple forms of genomic 

and subgenomic molecules (Mackenzie and McIntosh, 1999). Apart from the 

homologous recombination that is prevalent at large repeats within plant mitochondria, a 

low frequency ectopic recombination activity at intermediate (50 to 550 bp) repeats 

involves asymmetric DNA exchange, which leads to the accumulation of only one of the 

predicted recombinant products (Shedge et al., 2007). Intermediate repeats can be large in 

number in most plant mitochondrial genomes. In Arabidopsis, approximately 47 

intermediate repeat pairs (Arrieta-Montiel et al., 2009; Davila et al., 2011) account for the 

de novo asymmetric recombination that is detected. In some other plant species like 

tobacco, 26 repeats from 200 to 405 bp are predicted (Arrieta-Montiel et al., 2009), and 

Chapter Two shows evidence of recombination among these repeats.  

Nuclear genes have been identified that influence plant mitochondrial genome 

recombination. Introduction of the nuclear fertility restorer (Fr) gene to a cytoplasmic 

male sterile (CMS) common bean line restores pollen fertility accompanied by 

mitochondrial DNA rearrangements within restored plants. These rearrangements are also 

identical to those observed upon spontaneous cytoplasmic reversion to fertility, and result 

in copy number suppression of the mitochondrial male sterility sequence pvs-orf239 

(Mackenzie and Chase, 1990). At least three nuclear genes have been cloned and reported 

to participate in the control of plant mitochondrial recombination in Arabidopsis: MSH1, 
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RECA3 and OSB1. The nuclear gene MSH1, originally designated CHM1-1 (Redei, 1973), 

was shown to encode the homolog of E.coli MutS protein that participates in mismatch 

repair and suppression of illegitimate DNA recombination (Abdelnoor et al., 2003). 

Mutation of MSH1 results in accelerated mitochondrial DNA exchange activity at  47 

repeat sites in Arabidopsis (Arrieta-Montiel et al., 2009; Davila et al., 2011). Disruption 

of RECA3, which resembles bacterial recombination component RecA, leads to 

recombination at a subset of the repeated sites active in the msh1 mutant, while 

mitochondrial rearrangement patterns in recA3 and msh1 double mutants suggested 

MSH1 and RECA3 function in distinct but overlapping pathways (Shedge et al., 2007).  

OSB1 (organellar single-stranded DNA binding protein 1) is also believed to play a role 

in controlling stoichiometry of alternative mtDNA forms generated by recombination, 

and OSB1 T-DNA mutants appear to display a more gradual accumulation of 

mitochondrial rearrangements (Zaegel et al., 2006). Among these nuclear genes, MSH1 

appears to have the most profound effect on plant mitochondrial recombination 

surveillance and inherited plant phenotype-associated recombination activities (Shedge et 

al., 2007; Sandhu et al., 2007). In plants, while mitochondrial substoichiometic shifting 

can occur spontaneously at low frequency, disruption of nuclear genes MSH1, RECA3 or 

OSB1 appears to be an effective way to enhance DNA exchange activity.   

An application of in vitro tissue culture to the study of the plant mitochondrial 

genome 

Earlier evidence has shown mitochondrial genome polymorphism in numerous plant 

species, such as maize, wheat, cucumber, Brassicas and tobacco when passaged through 

tissue culture. These mitochondrial alterations include disappearance or decrease in the 
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relative stoichiometry of particular molecules in wheat callus culture (Rode et al., 1987), 

and the amplification of pre-existing substoichiometric mitochondrial DNA molecules in 

cultured cells of Brassica campestris (Shirzadegan et al., 1989). In T-cytoplasm maize, 

reversion to fertility via substoichiometric shifting occurs by passaging through culture 

and regeneration of whole plants.  Under in vitro culture condition, it has been suggested 

that the mitochondrial alterations are associated with repeat-mediated recombination 

(Vitart et al., 1992; Kanazawa et al., 1994). The derived recombinant molecules are found 

to be amplified during the regeneration process in Nicotiana sylvestris (Vitart et al., 

1992), or alternatively, can be reversed to substoichiometric levels as reported in plants 

regenerated from Nicotiana tabacum callus (Kanazawa et al., 1994).The involvement of 

nuclear genes responsible for the control of mitochondrial rearrangements under tissue 

culture condition has also been reported (Hartmann et al., 2000).  

Speculation has been made of association of the nuclear gene MSH1 with 

enhanced mitochondrial recombination under cell suspension culture conditions, 

suggesting that MSH1 might be suppressed in its expression or activity (Arrieta-Montiel 

et al., 2009).  Chapter Two will test this model, showing that when Arabidopsis and 

tobacco were passaged through in vitro culture, the function of nuclear genes MSH1 and 

RECA3 in maintaining mitochondrial genome stability was relaxed, resulting in repeat-

mediated de novo mitochondrial recombination. This feature of in vitro culture can be 

exploited to solve the problem of incomplete mitochondrial genome information for 

physical mapping that arises due to difficulties in accessing substoichiometric molecules. 

It is providing a useful system for the assembly of mitochondrial genome sequences into 

a more accurate physical map of the genome.  
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Influence of the nuclear gene MSH1 on plant phenotype, development and responses 

to the environment  

Although the extensive mitochondrial genome polymorphism in higher plants has been 

well documented over the past two decades, the genetic control and phenotypic 

consequences are only recently emerging. Among the aberrant plant phenotypes 

originating from mitochondrial genome dysfunction in higher plants, the most prevalent 

phenotype was cytoplasmic male sterility (CMS), which refers to a maternally inherited 

inability to produce viable pollen in an otherwise phenotypically normal plant. CMS has 

been observed in over 150 plant species (Laser and Lersten, 1972). In most of the cases, 

CMS is caused by the expression of novel mitochondrial open reading frames (ORFs) 

associated with mitochondrial genome rearrangements (Hanson and Bentolila, 2004). 

Suppression of MSH1 in tobacco, tomato and soybean by RNAi confirmed a condition of 

heritable male sterility accompanied by reproducible mitochondrial DNA rearrangements 

and transcriptome responses, implying that MSH1-associated mitochondrial genome 

changes can give rise to CMS (Sandhu et al., 2007; Sandhu, unpublished). 

Early publications documented other phenotypes including alterations in plastid 

development to produce leaf variegation and mosaic phenotypes (Sandhu et al., 2007; 

Bartoszewski et al., 2007), altered GA-mediated pathways for growth and flowering 

(Pellny et al., 2008), changes in stem height and flowering time (Albert et al., 2003), and 

changes in leaf morphology (Mackenzie unpublished). In msh1 Arabidopsis, the 

phenotypes including reduced growth rate, delayed flowering (Shedge et al., 2007), 

altered leaf morphology and enhanced thermotolerance (Shedge et al., 2010). Recent 

results suggested these phenotypes are the consequence of chloroplasts changes in 
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response to MSH1 disruption (Xu et al., 2011; 2012). A wide range of emerging 

phenotypes and physiological changes were observed upon MSH1 disruption, facilitating 

an understanding of the role chloroplasts play in plant cellular and developmental 

processes.  

The nuclear gene MSH1 is a MutS homolog that suppresses homologous 

mitochondrial DNA exchange in plants. Fused fluorescence reporter gene assays 

validated the localization of MSH1 to both mitochondrial and plastid nucleoids in 

Arabidopsis (Xu et al., 2011). Genetic hemicomplementation experiments further 

demonstrated MSH1 functions within the mitochondrion and plastid to influence 

organellar genome behavior and plant growth patterns in Arabidopsis (Xu et al., 2011). 

Dual targeting of MSH1 in Arabidopsis also enhances the plant’s stress responses to the 

environment. MSH1 regulation at a cellular metabolic and developmental level in crop 

plants such as tobacco, sorghum and tomato is a subject under future investigation. 
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CHAPTER TWO 

Utility of in vitro culture to the study of plant mitochondrial 

genome configuration and its dynamic features 

Abstract 

 

Recombination activity plays an important role in the heteroplasmic and stoichiometric 

variation of plant mitochondrial genomes. Recent studies show that the nuclear gene 

MSH1 functions to suppress asymmetric recombination at 47 repeat pairs within the 

Arabidopsis mitochondrial genome. Two additional nuclear genes, RECA3 and OSB1, 

have also been shown to participate in the control of mitochondrial DNA exchange in 

Arabidopsis. Here, we demonstrate that repeat-mediated de novo recombination is 

enhanced in Arabidopsis and tobacco mitochondrial genomes following passage through 

tissue culture, which conditions MSH1 and RECA3 suppression. The mitochondrial DNA 

changes arising through in vitro culture in tobacco were reversible by plant regeneration, 

with correspondingly restored MSH1 transcript levels. For a growing number of plant 

species, mitochondrial genome sequence assembly has been complicated by insufficient 

information about recombinationally -active repeat content. Our data suggest that passage 

through cell culture provides a rapid and effective means to decipher the dynamic 

features of a mitochondrial genome by comparative analysis of passaged and non-

passaged mitochondrial DNA samples following next-generation sequencing and 

assembly. 
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Introduction 

 

The plant mitochondrial genome is organized into an unusual multipartite structure 

derived from high and low frequency DNA recombination between repeated sequences in 

the genome (Fauron et al. 1995). Large sized (>1,000 bp) repeats participate in high-

frequency reciprocal DNA exchange to subdivide the genome and facilitate inter-

conversions between DNA molecules (Mackenzie and McIntosh 1999). Intermediate-

sized (50 to 550 bp) repeats mediate low frequency asymmetric DNA exchange that 

results in accumulation of only one of the expected recombinant products (Shedge et al. 

2007). Frequency of DNA exchange at these intermediate repeats appears to control the 

relative copy number of the recombinant forms within the genome. 

In plants, the mitochondrial DNA population in vegetative tissues is organized 

into predominant and substoichiometric DNA configurations. Changes in relative 

abundance of these mitochondrial genomic forms, often occurring within a single plant 

generation, is referred to as substoichiometric shifting (SSS) (Arrieta-Montiel and 

Mackenzie 2011), a phenomenon first reported in maize (Small et al. 1987). The SSS 

process participates in the rapid generation of mitochondrial genome variation within a 

plant species (Davila et al. 2011), and appears to underlie reversible phenotypic 

transitions between cytoplasmic male sterile to male fertile plants within a population 

(Mackenzie 2011). Asymmetric recombination at intermediate-size repeats in 

mitochondria accounts for SSS activity (Arrieta-Montiel et al. 2009). 

Three nuclear genes have been cloned and reported to participate in the control of 

plant mitochondrial recombination in Arabidopsis: MSH1, RECA3 and OSB1 (Abdelnoor 
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et al. 2003; Shedge et al. 2007; Zaegel et al. 2006). Among these nuclear genes, MSH1 

appears to have the most profound effect on plant mitochondrial recombination 

surveillance and inherited plant phenotypic effects (Shedge et al. 2007; Sandhu et al. 

2007). In Arabidopsis, mutation of MSH1 elevates the mitochondrial DNA exchange 

activity at 47 repeat pairs ranging from 50-550bp in size (Arrieta-Montiel et al. 2009; 

Davila et al. 2011). Although mitochondrial recombination and SSS activity can occur 

spontaneously at low frequency, disruption of nuclear genes MSH1, RECA3 or OSB1 

enhances SSS frequency. 

Earlier evidence of mitochondrial DNA polymorphisms arising in cultured cells is 

plentiful (Rode et al. 1987; Shirzadegan et al. 1989; Vitart et al. 1992; Hartmann et al. 

2000). Most provocative among these reports is the observation of recombination events 

in tobacco that are reversible with plant regeneration, implying SSS activity under culture 

conditions (Kanazawa et al. 1994). We investigated the nature of mitochondrial genome 

changes under tissue culture conditions to assess the feasibility of capitalizing on this 

process for mitochondrial genome mapping. Here we present evidence that tissue culture 

results in reduced expression of both MSH1 and RECA3, together with enhanced 

recombination at intermediate repeats. This effect is reversible with plant regeneration, 

providing a useful system for the assembly of mitochondrial genome sequences into a 

more accurate physical map of the genome. 

Materials and methods 

 

Sterilization and plating of Arabidopsis and tobacco seeds 



25 

 

 

Seeds were measured in an Eppendorf tube to 100 ul. 1 ml 100% ethanol was added into 

tube. The tube was vortexed or turned upside down for 1 minute. After the seeds settled, 

ethanol was taken out with a pipet.1 ml 50% (v/v) Clorox with a drop of Tween 20 was 

added to tube. Seeds were kept shaking in Clorox for 20 minutes (Arabidopsis) or 30 

minutes (tobacco). Five washes with sterile water were performed. Each time after 1 ml 

water added, the tube was flicked upside down to make sure all the seeds get rinsed. After 

seeds settled, water was taken out and then fresh water was added to get the seeds in 

suspension. 1 ml seeds solution was added to a Petri dish with 0.5X Murashige and 

Skoog media and then 1ml sterilized 0.4% agar (w/v) was added on top. The plate was 

tilted to get the seeds spread more or less evenly over the surface. Antibiotic selection 

was performed by adding cefotaxime at 100 mg/ml to the germination plates. The seed 

plates were placed in a growth chamber at 12-h daylength and 24 °C for germination. 

Arabidopsis and tobacco callus induction  

Callus-inducing medium for Arabidopsis consists of basic Murashige & Skoog (1962) 

inorganics and MS vitamins supplemented with 1 mg L
-1 

2,4-dichlorophenoxyacetic acid 

(2,4-D), 0.5 mg L
-1

 benzylaminopurine (BAP), 1 mg L
-1 

1-naphthyl acetic acid (NAA), 

and 1 mg L
-1 

Indole-3-acetic acid (IAA). Callus-inducing medium for tobacco includes 

basic Murashige & Skoog inorganics and Gamborg's B5 medium vitamins, supplemented 

with 0.25 mg L
-1

 benzylaminopurine (BAP), 1 mg L
-1 

1-naphthyl acetic acid (NAA). 

Basic Murashige & Skoog inorganics media with 3% (w/v) sucrose were adjusted to pH 

5.7 +0.1 before the addition of 0.8% (w/v) agar and then sterilized by autoclaving. MS 

medium and Gamborg's B5 medium vitamins supplemented with plant hormones were 
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adjusted to pH 5.0 +0.1 and filter sterilized before being added into the basic Murashige 

& Skoog inorganics media.  

In a sterile hood environment, leaf segments of Arabidopsis (8-10 days old) and 

tobacco (14-16 days old) were detached and lightly abraded on surface with a sterilized 

scalpel and transferred to callus-inducing medium for callus initiation, following the 

protocol of Encina et al. (2001). Callus cultures were maintained in the dark at 24 °C. 

 

Tobacco regeneration 

Tobacco shooting medium consisted of basic Murashige & Skoog inorganics and 

Gamborg's B5 vitamins, supplemented with 1 mg L
-1

 benzylaminopurine (BAP), 0.1 mg 

L
-1

 1-naphthyl acetic acid (NAA) and 3% (w/v) sucrose. Tobacco rooting medium 

included basic Murashige & Skoog inorganics, Gamborg's B5 vitamins, 0.1 mg L
-1

 1-

naphthyl acetic acid (NAA) and 1% (w/v) sucrose. All media were solidified with 0.8% 

(w/v) agar (pH 5.7 +0.1). To induce regeneration of tobacco shoots, 3- to 4- week-old 

tobacco callus was cultured on tobacco shooting medium. After formation of shoots, the 

newly grown shoots were cut and transferred to new shooting medium. After the 1
st
 

subculture, regenerated young seedlings were transferred to tobacco rooting medium in 

culture cups and later transferred to potting mix later when enough roots were emerging. 

Shooting and rooting processes were maintained in a growth chamber at 12- h daylength 

and 24 °C. 

 

Arabidopsis cell suspension culture from callus (optional) 
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Cell suspension culture medium is the same as callus-inducing medium for Arabidopsis 

without the addition of agar. In a sterile hood environment, approximately 3 g of 3- to 4-

week-old calli were weighed and transferred in 80 mL of liquid cell suspension medium 

in a 100 ml Erlenmeyer flask and incubated in a rotary shaker set at 110 rpm, at 24 ℃ in 

dark. Cell suspension was subcultured every 3 days by settling the cells down in the 

bottom of the flask and replacing the entire supernatant with 80 ml of fresh suspension 

medium using a pipet. Cell clumps were sieved through 850 µm sieves (Sigma) to obtain 

a homogenous material for suspension culture. Dark yellow dead tissue was removed.  

Usually the initiation of 3 g (fresh weight) callus suspended in 80 ml of medium 

is subcultured and sieved every 3 days, and a double increase in fresh weight is obtained 

during a growth period of 10 days. At this stage, the suspensions can be divided into two 

portions. To achieve this, approximately 80 ml of fresh suspension medium was added to 

the 80 ml cell suspension in the flask. After swirling the flask, 80 ml aliquots were 

dispensed into new flasks (Mathur and Koncz 1998). Alternatively, instead of dividing, 

the entire approximate 160 ml cell suspension can be transferred into new 500 ml flask 

for expansion culture. With this technique, a fine stable cell suspension can be obtained 

after approximate 2 months of incubation; with regular subculturing it can be maintained 

for a much longer period. 

 

Total genomic DNA isolation, gel blot and PCR assays 

1-, 2-, 3- and 4-week-old Arabidopsis and tobacco calli were sampled. Young leaves 

from Arabidopsis Col-0 and msh1 mutant plants (Abdelnoor et al. 2003) and tobacco 

wild-type (Xanthi) plants served as control samples. Total genomic DNA was isolated 
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from calli and plants, according to Li and Chory (1998). Total genomic DNA was 

digested with BamHI (Arabidopsis) and ClaI (tobacco), and analyzed by DNA gel blot 

hybridization (Hybond-N, Amersham). Mitochondrial DNA repeats in Arabidopsis and 

tobacco mitochondrial genomes were PCR amplified, labeled with [α-
32

P] dCTP by 

random priming (Stratagene), and used as probes. Primers for PCR amplification of 

Arabidopsis and tobacco mitochondrial repeats are listed in Table 2.1. 

Total genomic DNA from tobacco regenerants at three different growth stages 

was assayed by three-primer competitive PCR, which is to detect parental molecules and 

recombinant molecules amplified by three primers flanking a pair of repeat sequences in 

one reaction. Primers (Table 1) were designed to assay each environment flanking Repeat 

A. Actin was used as an internal control. 

RNA isolation and Real-Time quantitative PCR analysis 

Total RNA was extracted from Arabidopsis and tobacco callus, and wild-type and 

regenerated plants, with TRIzol (Invitrogen) and purified with the plant RNeasy kit 

(Qiagen). RNA was purified and normalized to equal initial amount used to synthesize 

first-strand cDNA (SuperScript III First-Strand Synthesis SuperMix for qRT-PCR; 

Invitrogen). cDNA then were used for quantitative PCR with SYBR GreenER for iCycler 

(Invitrogen). Quantitative PCR analysis used iCycler iQ software (version 3.1, Bio-Rad). 

The ubiquitin gene was used as an internal standard in gene expression analyses. Fold 

change for MSH1, RECA3 or OSB1 expression in each sample, compared to wild-type, 

was calculated as 2
-ΔΔ Ct 

(ΔΔCt = ΔCtS – ΔCtWT, ΔCtS = CtMSH1 - CtUbq, ΔCtWT = CtMSH1 - 
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CtUbq). Primers for RT-PCR analysis of ubiquitin, MSH1, RECA3 and OSB1 in 

Arabidopsis and ubiquitin and MSH1 in tobacco are included in Table 1. 

Results 

Mitochondrial recombination increased markedly at very early stages of 

Arabidopsis and tobacco callus culture 

Initiation of callus formation could be detected one-week following placement of 

Arabidopsis and tobacco leaf segments on callus-inducing medium, with mature friable 

callus formed after 4 weeks (Fig. 2.1). Total genomic DNA extracted from 1-, 2-, 3- and 

4-week-old calli was digested with BamHI (Arabidopsis) or ClaI (tobacco) for 

mitochondrial genome analysis. In Arabidopsis, repeat-mediated recombination was 

detected in 1-week-old cultures, with the level of recombination increasing over time. 

The 4-week-old cultured tissues displayed the same 4.1-kb recombinant form at Repeat F 

that is observed in the msh1 mutant (Arrieta-Montiel et al. 2009), (Fig. 2.2a). 

Recombination at Repeat D gave the predicted 2.2-kb recombinant molecule in callus 

culture, again increasing with time (Fig. 2.2a). In the recombination events at Repeat F 

and D, both parental forms were also retained. In tobacco callus, recombination at Repeat 

A was evident in the predicted recombinant 6-kb form (Fig. 2.2c), which was observed 

only at very low levels in the wild-type plant. 

MSH1 and RECA3, but not OSB1, expression levels are modulated under tissue 

culture conditions 

Real-time PCR analysis in Arabidopsis and tobacco callus showed down-regulation of 

MSH1 expression relative to wild-type (Col-0 and Xanthi) plant samples (Fig. 2.3). In 

both Arabidopsis and tobacco, the decrease in expression was more pronounced with age 

a. 
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of the callus. RECA3 expression was also down- regulated in Arabidopsis, but OSB1 

transcript levels did not change under tissue culture conditions. We suggest that the 

mitochondrial genomic rearrangements observed are the likely consequence of altered 

MSH1 and RECA3 expression. 

MSH1 expression is responsible for SSS activity during tobacco plant regeneration 

 

During tobacco regeneration from 4-week-old callus, three stages were investigated (Fig. 

2.4a): Stage 1, one month following transfer of 4-week-old callus to shooting medium; 

Stage 2,  two months following callus transfer, when roots emerge in rooting medium; 

and Stage 3, one week following transfer of the young seedling to potting mix. Genomic 

DNA was extracted from the different growth stages, and three-primer competitive PCR 

analysis (Fig. 2.4b) allowed resolution of changes in relative stoichiometries for parental 

and recombinant forms during the regeneration process. Recombinant forms were 

predominant in callus, and Stage 1 reversed the trend back toward substoichoimetric 

levels in the subsequent regeneration stages. Recombinant and parental forms were 

confirmed by DNA sequencing. Similarly, down-regulation of MSH1 expression in Stage 

1 was gradually reversed during regeneration, reaching normal MSH1 transcript levels in 

the regenerated plant (Fig. 2.4c). 

Discussion 

 

Over the past twenty years, mitochondrial genome rearrangements were often reported to 

occur in plant cells grown in vitro (Cloutier et al. 1994). It was generally thought that 

these rearrangements were the consequence of extended culture periods. Evidence 

presented here of mitochondrial SSS activity within the first week of callus culture 
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suggests that the rearrangement activity is non-random and initiates immediately. 

Previous studies of the msh1 mutant in Arabidopsis, involving 47 mitochondrial repeats 

that are enhanced in DNA exchange activity (Arrieta-Montiel et al. 2009; Davila et al. 

2011), permitted assay of SSS activity under cell culture conditions. These earlier studies 

showed that an “early” generation msh1 mutant produces mitochondrial genome 

rearrangements at lower frequency that are reversible following re-introduction of the 

MSH1 gene (Davila et al. 2011). The “advanced” generation msh1 mutants produced 

more extensive rearrangements that were less readily reversible and could become fixed 

in the mitochondrial population. Combining the msh1 and recA3 mutations resulted in the 

most extensive mitochondrial genome rearrangements (Shedge et al. 2007). In this study, 

we have shown that down-regulation of both MSH1 and RECA3 occurs under cell culture 

conditions, suggesting that conditions are appropriate for rapid and extensive 

mitochondrial genome changes. The effects of in vitro culture on the nuclear background 

giving rise to the mitochondrial DNA rearrangements were reported previously 

(Hartmann et al., 2000). However, the mechanism underlying the down-regulation of 

nuclear genes under in vitro culture conditions in this study is still unknown.  

A question raised by this study is whether plant regeneration would be facilitated 

if the mitochondrial genome were stably maintained during in vitro culture. Tobacco, 

where plants can be readily regenerated from callus, has been reported to display a highly 

reversible mitochondrial rearrangement process (Kanazawa et al. 1994). We also 

observed reversibility of mitochondrial genome rearrangement in tobacco upon 

regeneration from callus. Might this reversibility be a factor in the plant’s amenability to 

regeneration? There appear to be several plant developmental implications of the msh1 
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recA3 double mutation (Shedge et al. 2007; 2010), suggesting that this type of gene 

expression change can have dramatic implications for plant growth. 

Because the plant mitochondrial genome is characterized by numerous 

recombinational repeats, assembly of an intact genome sequence, particularly using deep 

sequence reads of relatively small size, can be extremely difficult. Sequence assembly 

without the availability of information from substoichiometric forms provides an 

incomplete picture of the genome, so that intra-specific mitochondrial comparative 

studies can imply far more extensive genomic variation than is actually present. 

Information about substoichiometric forms can allow one to deduce the inter-

convertibility of related mitochondrial configurations. In many plant species, particularly 

those being investigated for ecological studies, little mitochondrial genome information is 

currently available and details of intra-specific mitochondrial relationships may be of 

crucial importance. In these cases, implementing callus culture for mitochondrial genome 

analysis may be valuable. Comparative assembly of the callus culture-derived 

mitochondrial genome sequence and intact plant-derived form would reveal 

recombinational repeats and substoichiometric forms. This type of information is 

valuable for subsequent ecotype comparisons and for developing an understanding of 

evolutionary trends within a species (Davila et al. 2011). 

 

 

 

 



33 

 

 

References 

 

1. Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA 

(2003) Substoichiometric shifting in the plant mitochondrial genome is influenced 

by a gene homologous to MutS. Proc Natl Acad Sci USA 100: 5968-5973 

 

2. Arrieta-Montiel M, Mackenzie S (2011) Plant mitochondrial genomes and 

recombination. In:  Kempken F (Ed) Plant mitochondria, Advances in Plant 

Biology1. Springer, New York, pp 65-82 

 

3. Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (200) 

Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled 

recombination activity. Genetics 183:1261-1268 

 

4. Davila JI, Arrieta-Montiel MP, Wamboldt Y, Cao J, Hagmann J, et al. (2011) 

Double-strand break repair processes drive evolution of the mitochondrial 

genome in Arabidopsis. BMC Biol 9:64 

 

5. Encina CL, Constantin M, Botella J (2001) An easy and reliable method for 

establishment and maintenance of leaf and root cell cultures of Arabidopsis 

thaliana. Plant Mol Biol Rept 19: 245-248 

 

6. Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: 

Dynamic, yet functional. Trends Genet 11: 228-235 

 

7. Hartmann C, Henry Y, Tregear J, Rode A (2000) Nuclear control of 

mitochondrial genome reorganization characterized using cultured cells of 

ditelosomic and nullisomic- tetrasomic wheat lines. Curr Genet 38:156-162 

 



34 

 

 

8. Li J, Chory J (1998) Preparation of DNA from Arabidopsis. In: Martinez-Zapater 

J, Salinas J (Eds) Methods in Molecular Biology, 82: Arabidopsis Protocols. 

Humana Press, New Jersey, pp 55-60 

 

9. Kanazawa A, Tsutsumi N, Hirai A (1994) Reversible changes in the composition 

of the population of mtDNAs during dedifferentiation and regeneration in tobacco. 

Genetics 138: 865-870 

 

10. Mackenzie SA (2011) Male Sterility in Plants, In: Plant Biotechnology and 

Agriculture: Prospects for the 21st century, A. Altman and P.M. Hasegawa eds., 

Elsevier Press, pp 185-194  

 

11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay 

with tobacco tissue cultures. Physiol Plant 15: 473-479 

 

12. Rode A, Hartmann C, Falconet D, Lejeune B, Quétier F, et al. (1987) Extensive 

mitochondrial DNA variation in somatic tissue cultures initiated from wheat 

immature embryos. Curr Genet 12: 369-376 

 

13. Sandhu AP, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of 

mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc 

Natl Acad Sci USA 104:1766-1770 

 

14. Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant 

mitochondrial  recombination surveillance requires unusual RecA and MutS 

homologs. Plant Cell 19: 1251-1264 

 

15. Shedge V, Davila JI, Arrieta-Montiel MP, Mohammed S, Mackenzie SA (2010) 

Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular 

conditions for thermotolerance. Plant Physiol 152:1960-1970 

 



35 

 

 

16. Shirzadegan M, Christey M, Earle ED, Palmer JD (1989) Rearrangement, 

amplification, and assortment of mitochondrial DNA molecules in cultured cells 

of Brassica campestris. Theor Appl Genet 77: 17-25 

 

17. Small ID, Isaac PG, Leaver CJ (1987) Stoichiometric differences in DNA 

molecules  containing the atpA gene suggest mechanisms for the generation of 

mitochondrial genome diversity in maize. EMBO Journal 6: 865-869 

 

18. Cloutier S, Landry BS (1994) Molecular Markers applied to plant tissue culture. 

In Vitro Cell   Dev Biol Plant 30P, 32-39 

 

19. Vitart V, de Paepe R, Mathieu C, Chetrit P, Vedel F (1992) Amplification of   

substoichiometric recombinant mitochondrial DNA sequences in a nuclear, male 

sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol 

Gen Genet   233:193-200 

 

20. Zaegel V, Guermann B, LeRet M, Andres C, Meyer D, et al. (2006) The plant-

specific ssDNA binding protein OSB1 is involved in the stoichiometric 

transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18: 3548-3563 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.springerlink.com/content/?Author=M.+Shirzadegan
http://www.springerlink.com/content/?Author=M.+Christey


36 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 2.1  1-, 2-, 3- and 4-week-old Arabidopsis and tobacco calli on callus-inducing 

medium. 
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Fig. 2.2 Repeat-mediated recombination in Arabidopsis and tobacco callus cultures. 

DNA gel blot analysis shows changes in mitochondrial DNA configurations, with A and 

B designating parental configurations and R the recombinant form. The indicated repeats 

were used as probes. 

(a) Analysis of recombination at Repeats F and D in1-, 2-, 3- and 4-week-old Arabidopsis 

callus. Col-0 and msh1 mutant plant tissues served as controls, and DNA was digested 

with BamH1. 

(b) ClaI restriction map of the parental forms (A and B) and the predicted recombinant 

forms (R1 and R2) in tobacco mitochondria. 1F, 2R and 4R are primers designed for 

three-primer competitive PCR. 

(c) Evidence of mitochondrial DNA recombination at Repeat A in 1-, 2-, 3- and 4-week-

old tobacco callus. Xanthi plant tissue serves as a control, and DNA was digested with 

ClaI. 
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Fig. 2.3  MSH1, RECA3 and OSB1 gene expression changes in 1, 2, 3 and 4-week-old 

Arabidopsis and tobacco calli. Gene expression is interpreted as the threshold cycle 

number (Ct) and normalized as fold change, compared with wild-type control plants set at 

100%. Ubiquitin serves as an internal standard. The final results were the average of three 

biological replicates. 
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Fig. 2.4  Mitochondrial genome configuration and associated MSH1 expression changes 

during tobacco regeneration. 

(a) Tobacco regenerants at three different growth stages from 4-week-old callus. 

(b) Substoichiometic shifting detected by PCR in experiments involving regeneration 

from 1-, 2-, 3- and 4-week-old tobacco calli at three stages. Actin is used as an internal 

standard. A designates the parental band, while R designates the amplified recombinant 

band. 1F, 2R and 4R are the primers used in three-primer competitive PCR. 

(c) MSH1 gene expression fold change by real-time PCR in regenerated tobacco at three 

stages. Xanthi plants serve as a control and ubiquitin as an internal standard. Results 

shown are the average of three biological replicates. 
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Table 2.1  Primers used in the study 

 

 

 

 

Arabidopsis Repeat D-F AGTGATCTGTTCATCTAACTCA 

Arabidopsis Repeat D-R TACTACTACCTCGTCCATTG 

Arabidopsis Repeat F-F CACGAGGAATGGAAAGAAACAT 

Arabidopsis Repeat F-R GCGCACAAACCACTCTAAAG 

Tobacco Repeat A-F TGGTAGTCGTGGTTGATTCGAGGAT 

Tobacco Repeat A-R TTAGGGGCGGAATCGAATGATTACG 

Tobacco PCR-1F GCGGCTACGAAGCAGTCAAG 

Tobacco PCR-2R TGAACACTGCTCTGCTGCATG 

Tobacco PCR-3F AGCGAAGAAAGCGGGCTTTG 

Tobacco PCR-4R ATTTCCCTCTATCAGGAACCCGCT 

Tobacco Actin-F GAACGGGAAATTGTCCGCGATGTT 

Tobacco Actin-R ATGGTAATGACCTGCCCATCTGGT 

Arabidopsis Real-Ubquitin-F CACCATTGACAACGTCAAGGCCAA 

Arabidopsis Real-Ubquitin-R CACGCAGACGCAAGACCAAATGAA 

Arabidopsis Real-MSH1-F TCATGCGTGTATGTGATGCGGAGA 

Arabidopsis Real-MSH1-R ACTTGACCCTTGCAGTCCTTCCTT 

Arabidopsis Real-RECA3-F ATCTAACATGCATTTCCCGCACGC 

Arabidopsis Real-RECA3-R TGGACGCAGACATTGAGACCACTT 

Arabidopsis Real-OSB1-F ACGATTGGTGGGACAACAGGAGAA 

Arabidopsis Real-OSB1-R TCTGAGCAAAGCCAGAGAGCTTCA 

Tobacco Real-Ubquitin-F TTTGCACCTTGTGCTTCGTCTTCG 

Tobacco Real-Ubquitin-R CCATCTTCCAATTGCTTTCCCGCA 

Tobacco Real-MSH1-F TGATGGATCCTACTTGGGTGGCAA 

Tobacco Real-MSH1-R ACCTTTCCATGGCGACTCCATATC 
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CHAPTER THREE 

Phenotypic consequences of RNA interference (RNAi)-

mediated suppression of MSH1 in tobacco 

Abstract 

 

Earlier evidence showed that RNAi suppression of MSH1 in tobacco generated heritable 

male sterility. This transgenically induced phenotype is associated with mitochondrial 

DNA rearrangements and shows maternal inheritance in subsequent generations. Here, 

various phenotypes besides male sterility, including dwarfism, delayed flowering, altered 

leaf morphology and altered growth branching were documented. Preliminary selection 

of each heritable phenotype was carried out and additional generations of testing are 

needed. Plants displaying altered leaf morphology were used as explants for in vitro 

regeneration and genetic crossing; results from these experiments were consistent with a 

possible epigenetic trait, with no evidence of vegetative cytoplasmic sorting or maternal 

inheritance. Partial reversal of the dwarf phenotype was also observed with gibberellic 

acid (GA) application, similar to earlier observations in MSH1-RNAi lines of sorghum. 

Introduction 

  

Environmentally-induced shifts in phenotype (phenotypic plasticity) play an important 

role in plant performance in response to environment change (Nicotra et al. 2010). 

Accumulating evidence suggests that transgenerational phenotype maintenance may 

involve non-genetic contributions under the control of epigenetic mechanisms. (Kappeler 

and Meaney 2010; Danchin et al. 2011).  
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MSH1 is a nuclear gene product that has been shown to be dual targeted to both 

mitochondria and plastids to maintain genome stability in Arabidopsis. Suppression of 

MSH1 expression produces cytoplasmic male sterility and variegation through direct 

DNA rearrangement of the chloroplast and mitochondrial genomes (Sandhu et al.,2007; 

Xu et al., 2011). RNAi suppression of MSH1 also gives rise to additional phenotypic 

plasticity including dwarfed growth and reduced internode elongation, enhanced 

branching, reduced stomatal density, altered leaf morphology, and delayed flowering (Xu 

et al., 2012). Genetic hemi-complementation experiments showed that this phenotypic 

plasticity derives from changes in chloroplast state (Xu et al., 2011; 2012).  The 

phenotypic consequences occur in response to organellar disruption but there is little or 

no direct evidence of organellar genome instability contributing to those developmental 

changes.  The altered phenotypes in Arabidopsis and sorghum were partially reversed 

with gibberelic acid application, which suggests perturbation of the chloroplast-

associated GA biosynthesis process (Xu et al., 2012). In the monocot Sorghum bicolor, 

this developmental reprogramming, once established in response to MSH1 suppression by 

RNAi, is stably heritable independent of the RNAi transgene in subsequent generations 

(Xu et al., 2012). Complete reversal of phenotype in MSH1-RNAi lines lacking the 

transgene  occurs with pollination by wild-type plants, suggesting epigenetic influences 

that arise through an organellar signal following MSH1 suppression (Xu et al., 2012).  

In the dicot tobacco, we have documented a wide range of phenotypes emerging 

with RNAi suppression of MSH1. These transgenically-induced phenotypes resemble 

those observed in Arabidopsis and sorghum, including male sterility, dwarfism, altered 

flowering time and flower morphology, enhanced branching and altered leaf morphology; 
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these phenotypes show variable inheritance in subsequent generations, based on 

preliminary data. Transmission of altered plant phenotypes through tissue culture differed 

from seed transmission patterns. This study provides evidence to suggest that MSH1-

RNAi in tobacco produces similar developmental reprogramming as has been observed 

previously, and provides an alternative model for studies of species differences in 

phenotypic outcomes. 

Materials and Methods 

 

Plant materials  

The RNAi construction and transformation procedure for transgenic tobacco plants 

(Nicotiana tabacum cv. Xanthi) is described in a previous study (Sandhu et al.,2007).  

Seed progeny of T2 plant 23-5, derived from transformant T0 (Sandhu et al., 2007) 

tobacco plant #23, was investigated for phenotype segregation through multiple 

generations in this study. Tobacco plants were grown under a 14-h light-10-h dark cycle 

at 25°C in greenhouse mix (40% Canadian Peat; 40% Coarse Vermiculite; 15% Masonry 

Sand; 5% Screened Topsoil).   

Tobacco regeneration from leaves  

Thick texture leaves of tobacco plants were collected and rinsed. Leaf sections of uniform 

size were immersed into a beaker with 10% (v/v) Clorox for 8 min, then rinsed in sterile 

water. A sterilized hole-punch was used to obtain uniform sized leaf segments. These 

segments were transferred to tobacco shooting medium and then rooting medium as 

described in Chapter Two.  
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Application of exogenous GA3 

The effect of GA3 on height of tobacco plants (wild-type, transgenic and non-transgenic 

plants) were tested by spraying the entire plant with a 250-ppm GA3 solution containing 

0.1% (v/v) Tween 80 (Vidal et al., 2001). Control plants were sprayed with a solution 

replacing GA3 with 70% (v/v) ethanol. The first treatment was made when plants were 1 

month-old and the second was performed 20 days later. Tobacco plant height was 

measured before each treatment and again 20 days after each treatment.  

 

Results 

 

Variant phenotypes were observed in MSH1-RNAi tobacco plants 

Altered phenotypes in transgenic MSH1-RNAi tobacco lines included dwarfism, delayed 

flowering, enhanced branching, and wrinkled or thick leaf growth patterns (Fig. 3.1). 

Male sterile T2 plant 23-5 was derived from the confirmed transformant MSH1-

RNAi tobacco plants from Sandhu et al. (2007). Segregation of variable phenotypes 

through multiple generations is shown in Table 3.1. All the plants listed in the table were 

confirmed to be MSH1-RNAi transgenic lines by PCR. Male sterility seems to have low 

heritability through generations (Table 3.1 a). Dwarfism, branching and wrinkled leaf 

phenotypes were detected in an increasing proportion of the population for each 

generation (preliminary data in Table 3.1 b, d, e). Altered flowering time in tobacco was 

classified as 10 days or more later/ earlier than wild-type (Table 3.1 c). Plants observed 

were generally a maximum of 10 days earlier than normal flowering time, while late 

flowering plants could be up to several months later than normal. Severely delayed 
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flowering plant 23-5-3-4 had a larger proportion of late flowering progeny than did the 

less severe later flowering plant 23-5-3-4-1. Interestingly, two early flowering plant lines 

generated a larger proportion of late flowering than early flowering plants. Similarly, late 

flowering plants segregated a small proportion of early flowering plants. Both late and 

early flowering plants could be fertile, semi- sterile or male sterile. These results are 

evidence of the complexity of the MSH1 suppression phenotype.  

T3 plant 23-5-10 (MSH1-RNAi transgenic) displayed much thicker leaf texture 

(Fig. 3.1 b right) compared with normal wild-type leaves. The thick leaf segments from 

23-5-10 were used as explants subjected to tissue culture and nine tobacco plants were 

regenerated. All regenerated plants (MSH1-RNAi transgenic)  from plant 23-5-10 

through tissue culture maintained the thick leaf texture; however, seed progenies (MSH1-

RNAi transgenic) obtained by crossing plant 23-5-10 with wild-type pollen all displayed 

the normal leaf morphology (Fig. 3.2 a; Table 3.2). To confirm this difference in 

phenotype transmission, regenerated plant 23-5-10-L2(3) was subjected to a 2
nd

 round of 

tissue culture and regeneration, and no phenotype sorting was observed. However, when 

the leaf variant was crossed as female to wild-type, progeny no longer showed the thick 

leaf phenotype (Fig. 3.2 b; Table 3.2). This observation suggests that thick leaf phenotype 

is the consequence of epigenetic changes in response to MSH1 disruption in tobacco. 

Likewise with other phenotypes of the plant 23-5-10, such as male sterility, dwarfism and 

branching, plants passed through tissue culture seem to have a good propensity to 

maintain the variant parental plant phenotype (data not shown). 
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The dwarf phenotype is influenced by application of gibberellic acid (GA3) 

Experiments have demonstrated that gibberellic acid (GA) could partially reverse the 

dwarfism in MSH1-RNAi sorghum (Xu et al. 2012). Here, GA3 was used in tobacco to 

investigate the effects on transgenic (RNAi+) and non-transgenic (RNAi-)  plants derived 

from population segregation. Wild-type, transgenic and non-transgenic tobacco plants all 

showed an increase in height with GA3 treatment (Fig. 3.3). After the 2
nd

 treatment, 

medium height transgenic plants were promoted to a height greater than normal wild-type. 

Likewise, dwarf non-transgenic plants were restored to approximately normal wild-type 

height.  

 

Discussion  

 

Although the frequency of some variant phenotypes increased with selection in our 

preliminary studies, additional generations are likely needed to complete the heritability 

test. All current tobacco lines contain the MSH1-RNAi transgene; we now intend to carry 

out selection for stable heritable phenotypes in lines without the transgene to test for 

evidence of epigenetic and/ or organellar factors in the transmission of phenotypic 

variation across generations. 

In tobacco, multiple traits emerged from MSH1 suppression, including dwarfed 

growth, branching and delay flowering, similar to those described for sorghum (Xu et al., 

2012). This suggests that similar developmental pathways are programmed to respond to 

MSH1 down-regulation in both monocot and dicot species. In sorghum, the dwarf 

phenotype is consistently co-inherited with enhanced tillering and delayed flowering (Xu 
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et al., 2012). Based on data to date, however, the altered tobacco phenotypes seemed to 

segregate independently with no evidence of stable co-inheritance across generations.   

Although dual targeting of MSH1 has not been confirmed in tobacco, similarity of 

derived phenotypes suggests that both plastid and mitochondrial properties are altered in 

tobacco MSH1-RNAi lines as well.  Leaf variegation of the msh1 mutant in Arabidopsis 

was shown to be associated with plastid genome instability as a consequence of MSH1 

mutation (Xu et al., 2011). Likewise, altered developmental phenotypes, including dwarf 

growth, enhanced branching, and delayed flowering were shown to be plastid-associated 

changes in Arabidopsis (Xu et al., 2012). Disruption of the plastid accD gene in tobacco 

gives rise to leaf morphology changes (Kode et al., 2005). Similarly, mutation of the 

nuclear gene CND41, encoding a plastid nucleoid protein in tobacco, causes a dwarf 

phenotype and altered leaf morphology, which is partially reversed by application of GA 

(Nakano et al., 2003). GA treatment partially restores the dwarf phenotype in MSH1-

RNAi lines of sorghum (Xu et al. 2012) and tobacco. These results are not completely 

surprising, since GA biosynthesis is carried out as a plastid function.  Similarly, altered 

flower time, a light responsive process, is also controlled by chloroplast functions.  

Consequently, we assume that disruption of MSH1, a protein localized within the plastid 

nucleoid (Xu et al. 2011), perturbs the organelle and gives rise to similarly altered 

phenotypes.   

            In summary, the results presented in this study document various trangenically 

induced phenotypes, and provides the opportunity to investigate MSH1 behavior in plant 

development and adaptive phenotypic plasticity responding to environment in the future.    
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Fig. 3.1 RNAi suppression of MSH1 expression results in various phenotypes in tobacco. 

(a) dwarfism (left: wild-type) 

(b) left: wrinkled leaf surface; right: thick leaf texture 

(c) male sterility, absence of visible pollen accompanied by short filament or petaloid 

anthers (left: wild-type) 

(d) branching 
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Fig. 3.2 The thick leaf phenotype was maintained in regenerated plants but not in plants 

from seed. 

(a) Left: seed progeny from plant 23-5-10; middle: plant 23-5-10; right: regenerated 

plant 23-5-10-L2(3) from plant 23-5-10  

(b) Left: regenerated plant from 23-5-10-L2(3); right: seed progeny from 23-5-10-

L2(3) 
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Fig. 3.3 Effect of GA3 on transgenic plants (RNAi+) and non-transgenic plants (RNAi-) 

height. The entire plants were untreated (control) or treated with GA3 (250ppm) 1 month 

following seed germination. The 2
nd

 treatment was applied 20 days after the 1
st
 treatment. 

Values are averages of three biological replicates.  
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Table 3.1 Evaluation of transgenic tobacco plant populations for male sterility, dwarfism, 

delayed or advanced flowering, branching and wrinkled leave phenotype. 

(a) male sterility segregation through generations 

 

Generation Self  Progeny  Testcross Resultsd 

No. of 

plants 

No. (%) No. of 

plants 

No. (%) 

Fertile  Semi-

sterileb 
  

Male 

Sterilec 

Fertile 

 

Semi-sterile 

 

Male 

Sterile 

 

T2
a   23-5     20 2 (10%) 15 (75%) 3 (15%) 

T3    23-5-3 

        23-5-18 

10 5 (50%) 4 (40%) 1 (10%)  

5 

 

4 (80%) 

 

0 (0) 

 

1 (20%) 

T4   23-5-3-4 

        23-5-3-2 

        23-5-18x WT-4 

4 

 

0 (0) 

 

4 (100%) 

 

0 (0) 

 

 

4 

4 

 

1 (25%) 

3 (75%) 

 

2 (50%) 

1 (25%) 

 

1 (25%) 

0 (0) 

T5   23-5-3-4-1 5 2 (40%) 1 (20%) 2 (40%)     

 

a 
T2 plant 23-5 is the selected  progeny from confirmed transformants T0 plants with 

RNAi suppressed MSH1 expression in tobacco (Sandhu, et al., 2007) 

b 
Semi-sterility in tobacco is defined as dramatic reduction or absence of visible pollen on 

the anthers of some plants, greatly reduced capsule size and reduced seed set.  

c 
Full male sterility is absence of visible pollen on some plants and fully collapsed seed 

capsules with no seed set. 

d
 Testcross progeny derive from pollination with wild-type pollen. 
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(b) dwarfism segregation through generations  

 

a
 The wild-type plant height is subject to the range of 112-170 cm. Dwarfism in tobacco 

is defined as the half or less of wild-type height. Among all the dwarf plants, the “+”is 

assigned according to the following categories: dwarf: 80-60 (cm); dwarf +:60-50 (cm); 

dwarf++:50-40 (cm). Medium height is defined as about two thirds of the wild-type 

height. 

 

(c) flowering time segregation through generations 

 

Generation 

(Phenotype) 
 

Self  Progeny Testcross Results 
No. of 

plants 
No. (%) No. of 

plants 
No. (%) 

Normal Late 

floweringa 

 

Early 

floweringb 

Normal Late 

Flowering 

Early 

Flowering 

T2  23-5     20 9 (45%) 9 (45%) 2 (10%) 

T3  23-5-3  (9 days late) 

      23-5-17 (10 days early) 

10  

15 

4(60%) 

6 (40%) 

6 (60%) 

8 (53%) 

0 (0) 

1 (7%) 

    

T4  23-5-3-4 (49 days late) 

     23-5-17-2 (6 days early) 

4 

4 

0 (0) 

2 (50%) 

4 (100%) 

0 (0) 

0 (0) 

2 (50%) 

    

T5 23-5-3-4-1 (30 days late) 

     23-5-17-2-1 (7 days early) 

5 

5 

0 (0) 

1 (20%) 

2 (40%) 

3 (60%) 

3 (60%) 

1 (20%) 

    

 

a 
Normal flowering time of wild-type tobacco plant is observed as about 2 months after 

seed germination. Late flowering is defined as 10 days or more days later than normal 

flowering time; 

b 
Early flowering is defined as 10 days or more days earlier than normal flowering time; 

 

 

 

 

Generation (Phenotype) Self  Progeny Testcross Results 

No. of 
plants 

No. (%) No. of 
plants 

No. (%) 

Normal Medium Dwarf  Normal Medium Dwarf  

T2   23-5     20 3 (15%) 15 (75%) 2 (10%) 

T3  23-5-3 (dwarf+)a 10 2 (20%) 4 (40%) 4 (40%)     

T4  23-5-3-4 (dwarf++) 4 0 (0) 1 (25%) 3 (75%)     

T5  23-5-3-4-1 (dwarf+) 5 0 (0) 0 (0) 5 (100%)     
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(d) branching segregation through generations  

 

Generation (Phenotype) No. of 

Plants 

Self  Progeny No. of 

plants 

Testcross  Results 

No. (%) No. (%) 

Normal Branching Normal Branching 

T2  23-5    20 13 (65%) 7 (35%) 

T3  23-5-10 (branching) 

      23-5-17 (branching) 

5 

15 

4 (80%) 

6 (40%) 

1 (20%) 

9 (60%) 

   

T4  23-5-10-4 (branching) 

      23-5-17-1 (branching) 

      23-5-17-5 (branching) 

4 

4 

4 

2 (50%) 

0 (0) 

1 (25%) 

2 (50%) 

4 (100%) 

3 (75%) 

   

 

 

(e) wrinkled leaf phenotype segregation through generations  

 

 

 

 

 

 

 

 

 

 

 

Generation (Phenotype)  Self  Progeny Testcross Results 

No. of 

plants 
No. (%) No. of 

plants 
No. (%) 

Normal Wrinkled Normal Wrinkled 

T2   23-5    20 13 (65%) 7 (35%) 

T3   23-5-15 wrinkled 15 10 (67%) 5 (33%)    

T4   23-5-15-4   slightly wrinkled 

       23-5-15-13 wrinkled 

4 

4 

1(25%) 

1(25%) 

3 (75%) 

3 (75%) 
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Table 3.2 The thick leaf phenotype’s segregation through regeneration and seed progeny 

 

 

 

 

 

 

a 
In the crossed progenies of regenerated plant 23-5-10-L2(3), two plants have slightly 

thick leaves on the top and normal leaves going down from the top 

 

 

 

 

 

Generation (Phenotype) Progeny 

from 
No. of 

 plants 
Phenotype 
No. (%) 

Normal  Thick 

T3 
23-5-10 (thick leaf) 

 

Cross (xWT) 10 10 (100%) 0 (0) 
Regeneration 9 0 (0) 9 (100%) 

Regenerated  

23-5-10-L2(3) (thick leaf) 

 

Cross (xWT) 4 4
a 
(100%) 0 (0) 

Regeneration 5 0 (0) 5 (100%) 
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