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Human Immunodeficiency Virus type 1 (HIV-1) infection causes a growing pandemic 

throughout the world, of which women comprise 51% of people who live with HIV-1, more 

than 60% in sub-Saharan Africa. HIV-1 infections of women are mainly acquired through 

female reproductive tract where cervical and vaginal epithelial cells are the first line of 

defense. Although HIV-1 does not directly infect epithelial cells, HIV-1 obligatorily interacts 

with and crosses over epithelial layer to infect susceptible target cells, mainly CD4+ T cells, 

in the lamina propria to initiate an infection. However, the mechanism and ramification of 

the interaction of HIV-1 and epithelial cells in vaginal transmission of HIV-1 remain to be 

elucidated. We hypothesized that cervical epithelial cells are not a passive barrier, but 

actively respond to HIV-1 to modulate the mucosal milieu and facilitate HIV-1 transmission. 

We tested this hypothesis by studying the responses of cervical epithelial cells to HIV-1 

through profiling genome-wide transcription, analyzing of cytokine and chemokine proteins, 

and confirming some differentially expressed key genes in rhesus macaques model of SIV 

infection. We found: 1) cervical epithelial cells actively respond to HIV-1. Five hundred 

forty-three transcripts/genes in cervical epithelial cells were significantly altered in 

expression at four hours post exposure to HIV-1, of which many relate to important signaling 

pathways, such as innate immune responses, pattern recognition receptors, apoptosis, 

biosynthesis, and energy production, 2) HIV-1 increases the expression of CXC Chemokines 

(IL-8, CXCL1 and CXCL3) in cervical epithelial cells. IL-8 and CXCL1 are potent 

chemotactic for multinuclear neutrophils (MNP), monocytes and a minority of lymphocytes, 

and CXCL3 is predominant chemotactic for monocytes, 3) HIV-1 increases the expression of 



key inflammatory enzymesCOX-1 and COX-2.  COX-1 is responsible for the production of 

prostaglandins that are important for homeostasisi, and COX-2 is a key enzyme to convert 

arachidonic acid to prostaglandins, key inflammatory mediators, and 4) the increased 

expression of IL-8 and COX-2 revealed using microarraywas mapped to the endocervical 

epithelial cells of the macaques intravaginally inoculated with SIV in vivo. Our date lead to a 

role model of epithelial cells in HIV-1 vaginal transmission, that is the axis of HIV-1, 

epithelial cells, proinflammatory molecules (IL-8, CXCL1, CXCL3, COX-1 and COX-2), 

cell recruitment (MNP, monocytes and T cells), and inflammation. This model implies that 

moderating epithelial proinflammatory response to HIV-1 may be a utilityto prevent of HIV-

1 vaginal transmission.
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CHAPTER 1

Transcriptional analysis of cervical epithelial cell responses to HIV-1
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Introduction

Human immunodeficiency virus type 1 (HIV-1) is a global pandemic that 

disproportionally infects women.  Early events of HIV-1 transmission are not well 

understood, but dictate the course of infection.  The female reproductive tract (FRT) - 

more specifically cervical epithelial cells - is the first barrier to HIV infection.  The 

overarching goal of this research is to investigate cervical epithelial cells and HIV-1 

interaction and better understand the role of cervical epithelial cells in HIV-1 vaginal 

transmission.  The introduction reviews the background of HIV-1 including the 

progression to the acquired immune deficiency syndrome (AIDS), the genetic bottleneck, 

and the role of the female reproductive tract in HIV-1 transmission.

Section I: Background of HIV-1, transmission and pathogenesis

Human immunodeficiency virus (HIV) is classified in the Retroviridae family and 

evolved from primates.  HIV includes type 1 (HIV-1) and type 2 (HIV-2).  Lentiviriae - 

'slow viruses' - are a member of the Retroviridae family and cause slow 

immunodeficiency diseases (Chiu et al.).  Lentiviriae infects a range of mammals 

including ovines, bovines, equines, felines, and primates.  Lentiviriae infecting primates 

are more closely related to each other than to those of other mammals (Myers, MacInnes, 

and Korber 1992).  HIV evolved from Simian Immunodeficiency Virus (SIV).  Primate 

Lentiviriae fall into five groups: (1) HIV-1 & Chimpanzees, (2) HIV-2, Sooty mangabeys 

& Macaques, (3) African green moneys, (4) Mandrills and (5) Sykes' monkeys (Myers, 

MacInnes, and Korber 1992; Emau et al. 1991).  The evolution of the five groups of 

SIV/HIV is not completely understood. 
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HIV contains two strains of positive single-stranded RNA encoding  nine genes 

surrounded by the capsid and a plasma membrane from the host-cell.  HIV attaches to the 

cell CD4 using the Env glycoprotein gp120.  CD4 is found on T helper cells, regulatory T 

cells, monocytes, macrophages, and dendritic cells.  The virus also has two co-receptors: 

C-C chemokine receptor type 5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4). 

CCR5 normally interacts as a receptor for RANTES, MIP-1β, and MIP-1α.  CXCR4 

normally interacts as a receptor for stromal-derived factor-1.  Once HIV enters the cell, 

the reverse transcriptase transcribes the RNA to DNA in the cytoplasm.  Host factors 

transport the DNA to the nucleus.  The DNA inserts itself into the host genome in random 

locations by integrase.  The integrated copies of DNA serve as templates for RNA 

synthesis.  The virion particles form and bud from the cell.

HIV has three major genetic factors that drive evolution: inefficient coping, 

recombination, and modular evolution.  Reverse transcriptase (RT) is responsible for 

RNA-dependent DNA synthesis and has inefficient proof-reading (Bebenek et al. 1993).  

Single nucleotide polymorphics (SNIPs) from template-primer misalignment, base 

miscoding, or frame shift errors causes variations within HIV-1.  The most variable 

region of HIV is the envelope gene, specifically the V3-V5 region (Lemey, Rambaut, and 

Pybus).  The rate of nucleotide substitution per silent site per year is 10x10-3 for HIV-1 

compared to 10x10-9 in a range of mammals including humans (Wolfe, Sharp, and Li 

1989).  HIV's evolution is about a million times faster than the human genome and at a 

similar rate as influenza A virus (Buonagurio et al. 1986).  HIV-1 is able to go through 

high levels of recombination during replication due to the enzyme dissociation-re-
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association (Zhuang et al. 2002).  Infected cells can have more than one copy of viral 

genome integrated with the host, the average is two, and allowing for more 

recombination (Jung et al. 2002).  Recombination can also occur in the virion, due to the 

two copies carried within the virion.  Modular evolution, the ability to change packages, 

sets of genes, lead to the transformation and evolution of the Lentiviriae (McClure 1996).

HIV-1 is transmitted through the exchange of body fluids by sexual, parenteral, 

and mother-to-child transmission.  Transmission by sexual contact varies from 1 in 10 to 

1 in 3,000 exposures, while mother-to-child is 1 in 4 exposures (Galvin and Cohen 2004). 

Women comprise 51% of people who live with HIV-1 globally, and comprise more than 

60% in sub-Saharan Africa (Sidibé 2010).  Women mainly acquired HIV-1 through 

mucosal surfaces of female reproductive tract (FRT) (Shattock et al. 2008; Brenchley and 

Douek 2008; Hladik and Hope 2009; Hladik, Florian and McElrath 2008).  Paradoxically, 

vaginal transmission of HIV-1 is not efficient and the estimated transmission rate is about 

0.0005 to 0.004 per coital contact (Gray et al. 2001; Wawer et al. 2005). The CCR5-tropic 

HIV-1 strain is more prevalent in North America (Wainberg 2004).

HIV-1 once set a foot in mucosa rapidly spreads throughout the body leaving a 

limited time frame to stop the infection locally.  In ex vivo models and simian 

immunodeficiency virus (SIV) - rhesus macaque models, the virus is able to cross the 

epithelial mucosal in hours (Hu, Gardner, and Miller 2000; Bomsel 1997).  Two to three 

days later, HIV is found in the portal of entry or blood of macaques (C. Miller et al. 

2005).  During transmission, the viruses go through a genomic bottleneck and reduce the 

number of viruses as founder and transmitted viruses.  However, the location and the 
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mechanism of genomic bottleneck has not been fully elucidated.  CCR5 tropism HIV-1 is 

the major viruses establishing a new infection.  The infection becomes entrenched in the 

body 10-14 days later.  The virus reaches peak viral replication around 25 days.  The host 

experiences acute HIV-1 syndrome.  The viral load decreases over time and several 

months later, HIV reaches a steady level of replication or set point.  The long-term 

repercussion of a HIV-1 infection is acquired immune deficiency syndrome (AIDS).  The 

targeted cells, such as CD4+ T cells, are lysed or made nonfunctional and no longer 

respond to foreign pathogens. People usually die from an opportunistic  pathogen 

infection that would be harmless to a healthy immune system or tumor such as Kaposi’s 

sarcoma.

Section II: Genetic bottleneck during HIV-1 transmission

Inter-host transmission poses a genetic bottleneck to Human immunodeficiency 

virus type 1 (HIV-1) viruses (Rambaut et al. 2004).  During the bottleneck, HIV-1 regains 

a homogeneous viral population that resets the evolutionary clock back to the original 

starting point (Stilianakis and Schenzle 2006).  We would expect the virulence of HIV to 

increase overtime without the bottleneck.  The founder population has several 

characteristics which show the evolution of HIV-1 during transmission.  CCR5-tropic 

virus variants dominate early HIV-1  infections (Tersmette et al. 1989).  The phenotype of 

CCR5 virus comes from the V3 domain (De Jong et al. 1992; Fouchier et al. 1992).  

CXC4 tropic virus variants are identified between 24 and 30 months post infection 

(Kuiken et al. 1992).  Viral pathogenesis also relates to  the type of co-receptor used by 

the virus.  Early T-cell tropic viruses contain both CXCR4 and CCR5 receptors (Doranz 
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et al. 1996; Dragic et al. 1996).  Evidence suggests CCR5 is the only co-receptor used by 

HIV-1 during entry, although other transmembrane proteins have been shown to play a 

role in the entry of HIV-1 (Alfsen et al. 2005; Arthos et al. 2008; Bergelson 2009; de 

Witte et al. 2007; Liu, Lingwood, and Ray 1999).  Cytotoxic T-lymphocyte (CTL)  

immune response also shapes intra-host HIV-1 evolution, but does not affect the 

population level (Leslie et al. 2004).  The overall mechanism of inter-host transmission is 

a complicated interaction between  sub-types of the virus and individual immune system.

The evolution sub-subtype mosaic forms of HIV-1 can be classified as 

quasispecies.  When individual variants gain the ability to outcompete the population, the 

virus is driven to extinction by the immune system.  The high turn over of HIV-1 can lead 

to mutations and phenotype changes.  The different quasispecies also lead to parallel 

evolution, allowing  for more successful variants to dominate at one time .  The intra-host 

evolution is based on the community, not just the individual virion.

The transmission of HIV-1 from donor to recipient causes evolutionary changes in 

the viral variant depending on the transmission method.  The first transmission method is 

a direct passage of variants (Takahashi et al. 1989; Siliciano and Guthrie 1988; Palker et 

al. 1988; Looney et al. 1988).  Donor variants escape immune surveillance, and when 

transmitted, the variants have survival advantages.  Another transmission method is when 

a limited number of the majority variants in the donor are transmitted and within-host 

selection causes the majority to become the minority (Wolinsky et al. 1992; Mano and 

Chermann; Courgnaud et al. 1991).  Third, the donor may have a minority variant that 

has selective advantages in cell tropism, co-receptors, or replication capacities and allow 
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the variant to become the majority in the recipient (Zhu et al. 1993; Connor and Ho 

1994).  Each of these methods supports the selection of a particular variation based on 

phenotype for intra-host evolution.

Section III: The role of the female reproductive tract in HIV-1 transmission

The female reproductive tract (FRT) can be divided into two major compartments 

(Hladik, Florian and McElrath 2008).  The lower tract consists of the vaginal and 

ectocervix and the upper track consist of endocervix, uterus, and fallopian tubes.  The 

mucosal membranes are divided into two different types: type I and type II (Iwasaki 

2007).  The lower tract consists of multi-layered squamous epithelium, type II; whereas 

the upper tract contains a single layer columnar epithelium, type I.  The multiple layers of 

epithelial cells in the ectocervix and vagina provide better mechanical protection than that 

of the single layer in endocervix, although the vaginal wall and ectocervix has a greater 

surface area compared to the endocervix.  Several lines of evidence indicate Human 

immunodeficiency virus type 1 (HIV-1) preferentially gains entry of FRT through the 

endocervix (C. Miller et al. 2005; Zhang et al. 1999; Q. Li, Estes, et al. 2009).

The low efficiency of HIV-1 vaginal transmission indicates that cervicovaginal 

mucosal tissue including epithelial cell lining provides a robust barrier to HIV-1 

infections. Thus HIV-1 vaginal transmission is a complex process of HIV-1 overcoming 

host defenses.  Mucus is secreted into the lumen of the FRT to trap or delay HIV-1 and 

other microorganisms from gaining access to the epithelial cells (Lai et al. 2009).  Anti-

HIV-1 proteins secreted by epithelial cells into the lumen include Beta-defensins, 

Trappin-2/Elafin, CCL20/MIP3α, Serine Protease Inhibitor Secretory Leukocyte Protease 
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Inhibitor (SLPI), and LL-37 (Sun et al. 2005; Zapata et al. 2008; Ghosh et al. 2010; 

Levinson et al. 2009; McNeely et al. 1997; Wahl et al. 1997; Bergman et al. 2007).  Since 

the epithelial cells of cervix and vagina are the first line of defense, HIV-1 obligatorily 

interacts with and crosses over in order to gain access to submucosal target cells to 

initiate an infection. Once in the laminar propria, HIV-1 has to find a small set of CD4+ T 

cells to initiate an infection, but the precise role of dendritic cells (DCs) and macrophages 

in vaginal transmission remains controversial (Shen, Richter, and Smith 2011; Haase 

2010).  

Despite recent efforts and progress made in understanding the acute events 

following HIV-1 vaginal transmission, how HIV-1 interacts with epithelial cells, and 

what  role this interaction may play in HIV-1, vaginal transmission remain incompletely 

understood.  Further, the mechanisms of how HIV-1 crosses the epithelial barrier remain 

undefined (Shattock and Moore 2003).  Four plausible mechanisms are proposed to 

explain how HIV-1 crosses epithelial cells.  First, HIV-1 gains access to susceptible target 

cells in mucosa via a damaged epithelial barrier.  Second, HIV-1 is transported through 

the mucosal barrier by dendritic cells (de Witte et al. 2007).  Lawrence et al suggested 

monocytes preferential transmit CCR5-tropisms (Lawrence et al. 2012).  Both of these 

models are difficult to test and does not explain results described below.  Third, HIV-1 

could contact epithelial cells, causing changes within the epithelial cells.  HIV-1 interacts 

by some unknown mechanism with those cells to down regulate tight junction proteins 

allowing HIV-1 and other microorganisms to pass through the submucosa (Nazli et al. 

2010).  Fourth, HIV-1 is transcytosis - the process by which HIV-1 is transported across 
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the interior of a epithelial cell by endosomes, and is released on basolateral  side.  Both 

ex vivo cervico-vaginal culture model and  transformed epithelial cells in transwells have 

been used to study transcytosis (Bomsel 1997; de Witte et al. 2007; Maher et al. 2005; 

Collins et al. 2000).  Intestinal epithelial cells have also been shown to transcytosis HIV-1 

indicating a common mechanism (Meng et al. 2002).  

Conversely, some in vitro studies showed HIV-1 could productively infect 

epithelial cells, but there is no convincing in vivo evidence to support that (Tan, Pearce-

Pratt, and Phillips 1993).   Many different surface proteins are suggested in  HIV-1 and 

epithelial cell interactions: salivary agglutinin (SAG) glycoprotein gp340, beta 1 integrin, 

epithelial cell sulfated lactosylceramide,  integrin alpha4 beta7, syndecans and 

intercellular junctions (Alfsen et al. 2005; Arthos et al. 2008; Bergelson 2009; Bobardt et 

al. 2007; Stoddard et al. 2007b).  HIV-1  may interact with several of these proteins at the 

same time or one of these proteins and/or other an unidentified protein.

Studies of Rhesus macaque (Macacca mulatta)/ Simian Immunodeficiency Virus 

(SIV) model of HIV-1 vaginal transmission suggested that HIV-1 may interact with 

cervical epithelial cells to trigger an “outside-in" chemokine signaling cascade to recruit 

CD4+ T cells into submucosa and facilitate HIV-1 infection (Q. Li, Estes, et al. 2009).  

However, this study has not directly evaluated the interaction of HIV-1 and epithelial 

cells.  Research shows Interleukin 6 (IL-6), IL-8, IL-1Ra, MIP-1α, CCL20/MIP3α, MCP-

1, RANTES, TNF-α, INF-α, and INF-γ can be induced in the cervix from 3 to 10 days 

post SIV infection.  Nazli et al used mono-layer of epithelial cells, but only tested six 

different cytokines (Nazli et al. 2010).  Katsikis et al and Abel et al infected rhesus 
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macaques and isolated mRNA from tissue samples to identify changes in cytokines, but 

homogenized complex mucosal tissues cannot discern altered genes in expression 

(Katsikis, Mueller, and Villinger 2011; Abel et al. 2005).  Jespers et al used 

cervicovaginal lavage samples from highly exposed, limited exposure or no exposure to 

HIV-1 to identify changes in cytokines and chemokines (Jespers et al. 2011).  Jespers' 

study is limited by not knowing the direct cause of the changes in expression.  Overall, 

these studies are limited in numbers of cytokines and chemokines tested and where the 

cytokines were derived.  Additionally, conflicting results have been found on the different 

expression levels and time post HIV-1/SIV infection.

Section IV: Hypothesis and goals

HIV-1 transmission in women is a major problem worldwide. During 

transmission, HIV-1  interacts with epithelial cells lining cervicovaginal tract and crosses 

this first line of defense. We hypothesize cervicovaginal epithelial cells actively respond 

to the presence of HIV-1 during HIV-1 vaginal transmission.  We tested the hypothesis by 

(1) measuring cytokines and chemokines proteins levels, (2) profiling genome-wide 

transcription and (3) confirming some differentially expressed key genes in rhesus 

macaques model of SIV infection. This study underscores the importance of epithelial 

cells in HIV-1 vaginal transmission and suggests that modulating epithelial cell responses 

to HIV-1 may be a new target for preventing HIV-1 vaginal transmission.
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Methods and Materials

Cervical Epithelial Cells and HIV-1

Human endocervical epithelial cells, CRL-2615, were obtained from ATCC and 

maintained in keratinocyte-serum free ATCC complete media.  The cells were cultured in 

six well plates and incubated over 48 hours to ensure attachment to the plate, and then the 

media was removed and fresh media containing CCR5 tropism HIV-1ME1 at 0.2 TCID50 

per cell were added. HIV-1ME1 was obtained from Dr. Phalguni Gupta through the AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, NIH (Chen et al. 

1997).  Cells in fresh media without adding HIV-1 were used as a control. The cells and 

supernatant from both HIV-1 treated and control cultures were collected at 0, 4, 6, 12 and 

24 hours post HIV-1 exposure.  The supernatant was centrifuged at 1000 rpm for 6 

minutes and the total volume was measured and frozen at -80°C until analysis.  The cells 

were rinsed with 0.25% trypsin, 0.53 mM EDTA solution, and detached by incubating at 

37°C with 0.1M trypsin-EDTA solution. The trypsin was neutralized by adding a 1:1 

mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium containing 10% 

fetal bovine serum.  The cell pellet was collected after centrifugation at 1000 rpm for 6 

minutes and placed at -80°C until use.  The viral stock suspension was separated from the 

viral stock by centrifugation at 10,000 rpm for 60 minutes (Iordanskiy and Bukrinsky 

2009).  The suspension was added and processed similar to the viral stock.

Cytokine, Chemokine and growth factor analysis

Cytokine Human 30-Plex Panel (Catalog number: LHC6003, Invitrogen) 

quantified thirty cytokine, chemokine and growth factor proteins, following the 
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manufacturer's instructions. Briefly, samples were diluted using a 1:1 mixture of assay 

dilutant and media.  Each sample contained three replicates with one technique replicate.  

The panel was read on a Bio-Plex 200 System using Bio-Plex Manager software version 

4.0 (Bio-Rad, Hercules, CA). The calibration curves were generated using the kit 

standards.  IL-6, IL-8, IL-1Ra, and MIP3α were quantified using Quantikine human 

Enzyme-linked immunosorbent assay (ELISA, R&D Systems, Minneapolis, MN) 

according to the manufacturer’s protocol.  Statistical analysis was conducted with 

SigmaPlot (San Jose, CA).  The samples were normalized to the amount of supernatant 

collected for each sample. Any measured level below the sensitivity of the individual 

cytokine detection was considered as a zero.

Quantitative real-time reverse transcriptase polymerase chain reaction

Gene expression quantifications were performed using qRT-PCR and reported 

according to MIQE guidelines (Bustin et al. 2009).  Qiagen mRNA purification kit 

(Valencia, CA) extracted and purified mRNA.  Melting curve analysis was performed at 

the end of each run to check for primer dimers.  Four target genes were selected from the 

microarray data, and the primers were selected from the RTPrimer database (table 1) 

(Birkenkamp-Demtroder et al. 2002; Johnson et al. 2002; Lefever et al. 2009; 

Vandesompele et al. 2002).  The cDNA was synthesized and quantified was conducted 

with iScriptTM One-step RT-PCR kit with SYBR® Green (Bio-Rad) with the program: 

50°C 10 min, 95°C 5min, and 40 cycles of 95°C 10 sec, and 55°C 30sec.  Data analyses 

were conducted using Biogazelle qbasePLUS version 2.3 (Hellemans et al. 2007).  Briefly, 
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quantification cycle (Cq) values were converted into relative expression values taking 

into account amplification efficiency, and the relative expression values were normalized 

using GAPDH as a reference gene.  Calibrated Normalized Relative Quantity values were 

exported from the qbasePLUS software and statistically analyzed using SigmaPlot.

RNA extraction and microarray    

The genome-wide transcriptional responses in epithelial cells exposed to HIV-1 

were analyzed using human microarrays (Human Genome U133 Plus 2.0 Array, 

Affymatrix, Santa Clara, CA).  Cells at four hours post HIV-1 exposure and the un-

exposed control, in duplication, were analyzed. mRNA was extracted and purified using 

the Qiagen mRNA purification kit (Valencia, CA).  The mRNA (15ng) was amplified and 

labeled with biotin using Ovation WGA System and Ovation Pico WTA System 

(NuGEN, San Carlos, CA).  The Genomics Core Research Facility of the University of 

Nebraska –Lincoln labeled and hybridized the cDNA to microarray per the 

manufacturer’s instructions.  The signals on the chips were scanned with the Affymetrix 

GCS 3000 7G scanner and GeneChip Operating Software.  

Data normalization and statistical analysis

  Data normalization and statistical analysis were based on  published methods 

(Gillespie et al. 2010).  Briefly, raw microarray data were processed and analyzed using 

Affy and Lumma packages of Bioconductor, an R package 

(http://www.bioconductor.org/, http://www.r-project.org/).  The backgrounds were 

corrected with Robust Multiple-array Average (RMA).  Significance of differential 

http://www.bioconductor.org/
http://www.r-project.org/
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expressed genes in controls and HIV-1 exposed group were compared with a moderated t-

statistic.  Significantly altered genes in expression were defined as a log 2 fold change of 

> 1 or < 1 and P <0.05,  and were annotated and assigned biological function using the 

Database of Annotation, Visualization and Integrated Discovery (DAVID) 

(http://david.abcc.ncifcrf.gov/home.jsp) and Ingenuity Pathways Analysis ( Ingenuity 

Systems,  http://www.ingenuity.com/ ).  All microarray data has been deposited in the 

NCBI's Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/gds; accession 

number GSE42291).

Mapping IL-8 and COX-2 to the cervical epithelial cells of Indian rhesus macaques

Five adult female Indian rhesus macaques (Macaca mulatta) were intravaginally 

inoculated with SIVsmB7, a non-infectious virus-like particle (VLP), twice daily for 3 days. 

The macaques were euthanized on the 4th day post inoculation. The cervix was collected 

and fixed in 4% paraformaldehyde and embedded in paraffin for sectioning at 6 microns 

(Kraiselburd and Torres 1995).  Immunohistochemical staining of IL-8 and COX-2 were 

conducted using previously published protocol (Q. Li, Smith, et al. 2009).  Antibodies 

against IL-8 (clone Ab7747, 1:50, Abcam) and COX-2 (clone CX-294, 1:25, Dako) were 

used and with an isotope control IgG as the negative control. Staining was detected and 

visualized using the Dako Envision Polymer kit and 3, 3-Diaminobenzidine (DAB) as 

substrate.

http://www.ingenuity.com/
http://david.abcc.ncifcrf.gov/home.jsp
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Results

Measurement of cytokine, chemokine and growth factor proteins

We measured the interactions of HIV-1 with cervical epithelial cells at protein 

level.  Cervical epithelial cells, CRL-2615, were exposed to HIV-1ME1, and the supernatant 

of cultures was collected at 0, 4, 6, 12, and 24 hours post HIV-1 exposure. Out of the 30-

Plex panel, eight proteins (IL-6, IL-8, IL-1Ra, RANTES, IL-13, IP-10, VEGF and MIL-

1α) from HIV-1 exposed cervical epithelial cells changed expression over the time course 

in comparison with that of control epithelial cells (Figure 1).  We used ELISA to: 1) 

confirm the Bio-plex results and 2) measure CCL20/MIP3α, which was not included in 

the 30-Plex panel. There were more prominent changes at four hours post exposure than 

at other time points. Interleukin 6 was significantly up regulated at four hours, but not at 

any other time points (t = -3.648, d.f. = 4, p = 0.022, Figure 2a).  Three proteins increased 

at four hours, but not significantly:  IL-8 (t = -1.997, d.f. = 4, p = 0.116, Figure 2b),  IL-

1Ra (t = -2.535, d.f. = 3, p = 0.056, Figure 2c), and CCL20/MIP3α (t = -1.158, d.f. = 4, p 

= 0.311, Figure 2d).  

Global gene expression measurement using human microarray

The epithelial cells at four hours post HIV-1 exposure changed more than at any 

of the other time points based upon the results of human 30-Plex and ELISA.  We 

selected four hours to conduct genome-wide transcriptional analysis of epithelial cells 

response to HIV-1 using the Affymetrix human microarray. The gene expression in HIV-1 

exposed epithelial cells was compared to that of epithelial cells without HIV-1 exposure.  

The microarray showed 574 altered expression out of 54,675 transcripts/genes (213 up 
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regulated and 361 down regulated). Based on functional annotation from DAVID and 

extensive examination of published literature, we were able to classify ~55% (314) of the 

altered genes in expression (Figure 3 and 4, Table 2).  The microarray results were 

validated using qRT-PCR (Figure 5).  We exclude the possibility that the altered genes in 

expression in epithelial cells exposed to HIV-1 were caused by other factors, such as 

growth factors in culture media used in virus stock preparation rather than HIV-1.  The 

viral stock supernatant was separated from virus using centrifugation.  The analysis of the 

supernatant for its effects on the epithelial cells detected no significant difference in gene 

expression compared to that of controls (Figure 5).

Of the classifiable altered genes in expression, ~7% (23) are related to innate 

immune function. Proinflammatory chemokine IL-8 - one of the major mediators of the 

inflammatory response and a chemoattractant for MNP, monocytes and T cells - was 

significantly upregulated, which is in concurs with the increase at protein level revealed 

by Bio-Plex assay (Figure 1b). Other proinflammatory chemokine, CXCL1 and CXCL3, 

were also significantly upregulated.   CXCL1 and CXCL3 are chemoattractants for MNP 

and monocytes respectively.  COX-1 and 2 -rate-limiting enzymes for prostaglandins 

production and key mediators for inflammation- were upregulated.  Another 

inflammation related molecule CD55, a complement pathway regulator, was also 

upregulated.  Furthermore, genes encoding toll-like receptor regulators were 

downregulated (TIRAP, IL1-RL1 & IRAK2).  Toll-interleukin 1 receptor (TIR) domain 

containing adapter protein (TIRAP) is involved in TLR2 and TLR4 signaling pathways in 

innate immune response.  Interleukin 1 receptor-like 1 (IL1-RL1) is a member of the 
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Toll-like receptor superfamily and receptor for IL-33.  Interleukin-1 receptor-associated 

kinase 2 (IRAK2) binds to the IL-1 type I receptor following IL-1 engagement to trigger 

intracellular signaling cascades.  TRIM6 (Tripartite motif-containing protein 6) and 

S100A8, known antiviral peptides, were significantly down regulated. Four transcripts of 

genes related to phagocytosis were significantly altered in expression (three upregulated 

and one downregulated).  Of note, RAB7 (Ras-related protein Rab-7a), an important 

molecule in the late endocytic pathway, was upregulated; ELMO3 (engulfment and cell 

motility 3), involving in cytoskeletal rearrangements required for phagocytosis, was 

downregulated. In concurrency with innate immune genes alteration in expression, 

Ingenuity Pathway Analysis revealed the activation of  Jak/Stat canonical pathway, 

known for regulating interferon, interleukin, growth factors, or other chemical 

messengers (Figure 6b).

DAVID indicated ~4% (13) of classifiable altered genes in expression relate to 

epithelial cells (Figure 4), including epithelial membrane protein 1, keratinocyte growth 

factor-like protein 2, epithelial membrane protein 1 and endothelin 1.  IRF6 (interferon 

regulatory factor 6), a key regulator for the keratinocyte proliferation-differentiation, was 

upregulated.  The genes (19, 8 up regulated) related to cytoskeleton organization were 

altered in expression. The genes encoding membrane bound proteins were downregulated 

and genes encoding cell-to-cell adhesion proteins (11, 7 up regulated) were altered in 

expression.  This indicates epithelial cells changing their internal and external structure in 

the presence of HIV-1.  Most ubiquitin genes are downregulated, but genes encoding 

SMAD specific E3 ubiquitin protein ligase 2 and calcyclin binding protein were 
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upregulated (11, 4 up regulated).  In addition, genes related to cell cycle (~11%), 

apoptosis (~3%) and some transcription factors (~16%) were altered in expression 

(Figure 6c).  

 Biosynthesis was the largest group of altered genes in expression (~24%, 74) 

(Figure 4), a process of synthesis of tRNAs and the production of and regulation of 

energy within the cell.  Major categories with biosynthesis are GTP production, glucose 

metabolic process, ion binding, membrane lipid biosynthetic process, sulfur metabolism 

and sphingoid metabolic process.  The genes of sphingoid metabolic process were 

upregulated, including sphingomyelin synthase 1, sphingomyelin synthase 2, UDP-

glucose ceramide glucosyltransferase and sialidase 3.

Mapping IL-8 and COX-2 proteins to the endocervical epithelial cells of rhesus 

macaques

We tested whether the altered IL-8 and COX-2 genes expression are relevant in 

vivo using immunohistochemical staining.  Adult female Indian rhesus macaques were 

intravaginally inoculated with inactivated SIV.  We found that both IL-8 and COX-2 were 

expressed in the cervical epithelial cells in addition to the cells in the lamina propria, 

(Figure 7).



19

Discussion

Women, especially in sub-Saharan Africa, are disproportionally impacted by HIV-

1 infections, which are mainly acquired through vaginal transmission. The interplay 

between HIV-1 and its host at cervicovaginal mucosal surfaces, where epithelial cells are 

the first line of defense, ultimately determine the outcomes of infection or protection. 

Although epithelial cells are not directly infected by HIV-1, its interactions with HIV-1 

are prerequisite for HIV-1 to establish vaginal transmission.  However, the interaction of 

epithelial cells and HIV-1 remains incompletely understood and the epithelial cells are 

thought to function only as a passive barrier in HIV-1 infection (Stoddard et al. 2007a; 

Bouschbacher et al. 2008; C. J. Miller and Shattock 2003).  To better understand the 

interaction of cervical epithelial cells and HIV-1 and its role in HIV-1 vaginal 

transmission, we studied genome-wide transcriptional responses of cervical epithelial 

cells to HIV-1.

We found that cervical epithelial cells actively respond to HIV-1. We found 574 

transcripts/genes (213 upregulated and 361 downregulated) were altered in expression in 

the epithelial cells at 4 hours post HIV-1 exposure (Figure 3) indicating cervical epithelial 

cells are not a passive barrier, but play an active role in HIV-1 vaginal transmission.

Strikingly, ~7% (23 transcripts/genes) of classifiable, altered genes are related to 

innate inflammatory immune response (Figure 4).  Our results demonstrated that HIV-1 

can increase the expression of  IL-8 , CXCL1 and CXCL3 in cervical epithelial cells.  IL-

8 and CXCL1 are potent chemotactic for MNP, monocytes and a minority of lymphocytes 

(Bouschbacher et al. 2008).  CXCL3 is predominant chemotactic for monocytes (Smith et 
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al. 2005).  It has been shown that IL-8 enhances HIV-1 replication in macrophage and T 

cells and increase susceptibility of cervical tissue to HIV-1 infection (Lane et al. 2001; 

Narimatsu, Wolday, and Patterson 2005).  Elevated cervical IL-8 correlated with 

increased HIV-1 shedding in female reproductive tract (Gumbi et al. 2008).   

Furthermore, it has been shown that mononuclear phagocytes (MNP) transepithelial 

migration mediates epithelial injury, comprises barrier function and enhances luminal 

pathogen such as HIV-1 to cross epithelial barrier (Chin and Parkos 2007).  IL-6 was 

upregulated within the microarray data, but not significantly.  The difference between the 

results is currently not known.  Our data suggest the recruitments of cells (MNP, 

monocytes and T cells) through the upregulation of  CXC Chemokines by cervical 

epithelial cells that is triggered by HIV-1, may play a key role in HIV-1 vaginal 

transmission.  

Concomitantly, cyclooxygenase (COX)- 1 and -2 genes were upregulated in 

expression. COX-1 is responsible for the production of prostaglandins (PG) that are 

important for homeostatic functions (Crofford 1997).  COX-2 is a key enzyme to convert 

arachidonic acid to prostaglandins, key inflammatory mediators. It has been demonstrated 

that COX-2 is upregulated during various inflammatory conditions (Martel-Pelletier, 

Pelletier, and Fahmi 2003; Chang et al. 2003; Morton and Dongari-Bagtzoglou 2001; 

Tsujii and DuBois 1995). It was previously demonstrated that COX-2 was upregulated in 

the presence of vaginal topic contraceptive microbicide, Nonoxynol-9, a well-known 

agent inducing cervicovaginal mucosal inflammation and damage (Zalenskaya et al. 

2011).  The clinic trials of Nonoxynol-9 as vaginal topical microbicide showed it 
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increased HIV-1 vaginal transmission (Pettersen et al. 2011).  Furthermore, increased 

prostaglandins from epithelial cells may activate adjacent T cells and monocytes in 

submucosa, since it has been demonstrated that COX-2 contributes to immune activation 

during HIV-1 infection (Pettersen et al. 2011).  Chronic HIV-1 infection is associated 

with significantly increased COX-2 in cervical cells collected using cytobrush compared 

that of HIV-1 uninfected women (Fitzgerald et al. 2012).  Our data extended these results 

and unambiguously showed that cervical epithelial cells increase COX-2 expression after 

exposure to HIV-1.  COX-1 and 2 are key in initiating and amplify mucosal 

inflammation, thus moderating mucosal inflammation by selectively inhibiting COX-2 

using non-steroidal anti-inflammatory drugs is worthy to further explore.  

Ingenuity Pathway Analysis revealed that Jak/Stat canonical pathway, known for 

regulating interferon, interleukin, growth factors, or other chemical messengers, was up 

regulated (Fig 6b).  The Jak/Stat pathway has been shown to be important in HIV 

infections  (Wang et al. 2010).  Concurrently, with increased expression of 

proinflammatory innate immune genes, four genes related to phagocytosis were 

significantly altered in expression, of note, RAB7 (Ras-related protein Rab-7a), an 

important molecule in the late endocytic pathway, was upregulated; and ELMO3 

(engulfment and cell motility 3), involving in cytoskeletal rearrangements required for 

phagocytosis, were downregulated.

The transcriptome analysis also showed alternations of genes related to 

biosynthesis and life cycle of the epithelial cells.  Biosynthesis is an important part of the 

interactions of HIV-1 and epithelial cells. Sphingoid metabolic process is the synthesis of 
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lipids and other compounds associated with lipid rafts. Recent studies have shown that 

lipid rafts are important to the entry and budding of HIV-1 (Fantini et al. 2004; Clayton 

et al. 2001).  Our results showed an increase in transcripts in sphingoid metabolic 

process, but the role in HIV-1 transmission is unknown.

The internal and external structure of epithelial cells creates a barrier to 

pathogens.  Our results show a loss of alterations in the structure of the epithelial cells.  

The loss of receptors and alterations of the internal and external structure may indicate 

significant tissue rearrangement.  The lost of tight junction proteins may allow gaps in the 

epithelial barrier allowing HIV-1 to past the barrier without infecting the cells (Nazli et 

al. 2010).  Actin and cytoskeleton play an important part in the assembly and 

transmission of HIV-1 (Matarrese and Malorni 2005).  Alterations in the cytoskeleton 

can lead to apoptosis.  Although our results do not indicate apoptosis; further study needs 

to be done on the effects the alteration of the internal and external structure has on the 

entrance of HIV-1.

Some anti-HIV-1 molecules, such as TRIM5α, Tetherin, LL-37, trappin-2, and 

CCL20/MIP3α, are naturally expressed by epithelial cells and may increase in expression 

in the presence of HIV-1 (Ghosh et al. 2010; Neil, Zang, and Bieniasz 2008; Perez-

Caballero et al. 2009; Bergman et al. 2007; Levinson et al. 2009; Ghosh et al. 2009).  

CCL20/MIP3α has also been shown as anti-HIV-1 peptide secreted into the lumen of the 

cervix (Ghosh et al. 2009).  Our results showed the down regulation of TRIM6 and 

S100A8, known antiviral peptides.  TRIM6 is associates with HIV-1 virion, but does not 

show inhibition like TRIM5α (X. Li et al. 2007; X. Li et al. 2006).  S100A8 has not been 
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shown to effect HIV-1, but has been shown to be important to Human Papillomaviruses 

18 (Lo et al. 2007).  Drannik et al. suggested trappin-2  has an inhibitory effect on HIV-1 

by altering epithelial cell surface proteins (Drannik et al. 2012).  Trappin-2 reduce 

activation of NF-kB, AP-1, RIG-I, and MDA5 (Henriksen et al. 2004; Drannik, Henrick, 

and Rosenthal 2011).  Our results show an increase in , indicating trappin-2 is not 

functioning with the epithelial cells.  We speculate increasing the expression of the anti-

HIV-1 molecules or stopping the downregulation will help prevent HIV-1 transmission.   

Our results lacked some genes that have been previously found.  Trappin-2 

downregulates activation of NF-kB, AP-1, Retinoic acid-inducible gene 1 (RIG-I), 

Melanoma differentiation-Associated protein 5 (MDA5) (Henriksen et al. 2004; Drannik, 

Henrick, and Rosenthal 2011).   Our results matched an increases in trappin-2, but we did 

not find changes in any of the other proteins.  Past studies used HeLa cells or TZM-bl 

cells; theses cells are a cancer line and do not represent cervical epithelial cells.  We used 

a cell line created by inoculating the cells with viral oncogenes.  The cells are closer to an 

accurate representation of cervical epithelial cells, and are easy to culture and manipulate. 

We did not test if the cells could be infected by HIV-1. Our intentions were to study the 

effect of HIV-1 on epithelial cells - not HIV-1 transmission by the epithelial cells. 

Our data and previously published works provides a model  for the interactions 

between epithelial cells and HIV-1 in vaginal transmission.  HIV-1 interacts with the 

epithelial cells by some unknown surface protein and is recognized as a pathogen.  The 

epithelial cells induce pro-inflammatory molecules (IL-8, CXCL1, CXCL3, COX-1 and 

COX-2) triggering cell recruitment (MNP, monocytes and T cells) and inflammation.  
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The inflammation and alterations within the epithelial cells causes changes in the cell and 

tissue structure possibly allowing for HIV-1 access to the sub-mucosa.

In summary, our study has gained new insights into the interaction of HIV-1 and 

cervical epithelial cells. We found 1) cervical epithelial cell actively respond to HIV-1, 2) 

HIV-1 increases the expression of CXC Chemokines (IL-8, CXCL1 and CXCL3) in 

cervical epithelial cells, 3) HIV-1 increases the expression of key inflammatory enzymes-

COX-1 and COX-2, and 4) the increased expression of IL-8 and COX-2 revealed using 

microarray analysis was mapped into the endocervical epithelial cells of macaques 

inoculated with inactivated SIV in vivo (Figure 6). Our data lead to a role model of 

epithelial cells in HIV-1 vaginal transmission, that is an axis of HIV-1, epithelial cells, 

proinflammatory molecules (IL-8, CXCL1, CXCL3, COX-1 and COX-2), cell 

recruitment (MNP, monocytes and T cells), and inflammation. This model implies that 

moderating epithelial proinflammatory response to HIV-1 may be utilized in prevention 

of HIV vaginal transmission.
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Figure 1. Protein measurements in the supernatant of cultured cervical epithelial cells at 
different time points post HIV-1 exposure using Cytokine Human 30-Plex Panel. 
Attached human endocervical epithelial cells-CRL-2615 were cultured and exposed to R-
5 HIV-1ME1 at 0.2 TCID50 per cell. The supernatant from both HIV-1 treated and control 
cultures were collected at 0, 4, 6, 12 and 24 hours post HIV-1 exposure. Thirty cytokine, 
chemokine and growth factor proteins were quantified using Cytokine Human 30-Plex 
Panel. Eight proteins (IL-6, IL-8, IL-1Ra, RANTES, IL-13, IP-10, VEGF and MIL-1α) 
from HIV-1 exposed cervical epithelial cells showed alteration over the time course in 
comparison with that of control epithelial cells.  a) IL-6,  b) IL-8,  c) Il-1Ra,  d) 
RANTES,  e) IL-13,  f) IP-10,  g) VEGF,  and h) MIL-1α



37

Figure 2. Quantified Proteins in the supernatant of cultured cervical epithelial cells at 4 
and 6 hours post HIV-1 exposure using ELISA. IL-6 was significantly upregulated at four 
hours post HIV exposure (t = -3.648, d.f. = 4, p = 0.022, part a).  IL-8 (t = -1.997, d.f. = 4, 
p = 0.116, part b), IL-1Ra (t = -2.535, d.f. = 3, p = 0.056, part c) and CCL20/MIP3α (t = 
-1.158, d.f. = 4, p = 0.311, part d) increased, but not significantly.  The black bars 
represent the control and the gray bars represent epithelial cells exposed to HIV-1.
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Figure 3.  Heatmap of significantly altered 574 transcripts/genes in expression from the 
cervical epithelial cells at four hours post HIV-1 exposure using Affymetrix Human 
Genome microarray.  
mRNA was extracted from the cultured cervical epithelial cells at 4 hours post R-5 HIV-
1ME1 at 0.2 TCID50 per cell, amplified and labeled with biotin. The labeled cRNA was 
hybridized to microarray chip data normalization and statistical analysis was based on 
published methods .  
Significantly altered genes in expression were defined as a log 2 fold change of > 1 or < 1 
and P <0.05 in comparison with that of control epithelial cells.  
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Figure 4.  Functional classification of some significantly altered genes in expression 
from epithelial cells at 4 hours post HIV-1 exposure.  A total of 574 transcripts/genes 
were significantly altered in expression, of which 314 genes can be classified (lfc = 1, p 
value = 0.05). The size of each sector in the pie diagram is proportional to the number of 
genes in the corresponding category. The numbers of altered genes and upregulated genes 
in expression for each category are shown in parentheses. All the gene names, 
abbreviations, log-fold change and p-values can be found in Table 2.  
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Figure 5.  Detection of select genes in cervicovaginal epithelial cells inoculated with 
HIV-1.  Data expressed as fold-change of cellular gene expression based on GAPDH 
gene with standard deviation based on three replicates with a technical replicate.  
Asterisks indicate statistically significant differences using an one way ANOVA and 
Holm-Sidak post-hoc analysis (p < 0.05).
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Figure 6. Significantly activated signaling pathway and networks. Pathway and networks 
of significantly altered genes in expression were generated using the Ingenuity Pathways 
Analysis software. a) the network of inflammatory response, b) Jak/Stat canonical 
pathway and c) the network of cellular development, proliferation & death. Red indicates 
genes significantly increased in expression, green indicates genes significantly decreased 
in expression, and black indicates no significant change in gene expression.
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Figure 7. Photogram of IL-8 (A) and COX-2 (B) expression in the endocervical 

epithelial cells of Indian rhesus macaques (Macaca mulatta) after intravaginal inoculation 

of inactivated SIV. The enlarged photograms are from the rectangular boxes of whole 

cervical sections.  Red arrows indicates detected positive signals in epithelial cells.  Scale 

bar equals 50 microns.
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