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Adviser: Guillermo Orti

The current trends in molecular phylogenetics are towards assembling large data
matrices from many independent loci and employing realistic probabilistic models. Large
genome-scale data sets shall reduce the sampling error, whereas complex models
accommodating heterogeneity among sites and along the phylogenetic tree can decrease
systematic errors. The theme of this dissertation project is using both bioinformatic and
experimental approaches to develop genome-scale nuclear gene markers and applying
them in studies of phylogeny of ray-finned fish (Actinopterygii) and systematics of
clupeiforms. Bioinformatic tools and computer programs were developed to search for
conserved single-copy nuclear genes with long exons. By comparing within and between
genomes of zebrafish and pufferfish, I have found 138 candidate markers. Ten of fifteen
candidates tested were found as good phylogenetic markers, showing similar
performance as the popular nuclear marker, recombination activating gene 1 (RAGL1).
Using the ten newly developed nuclear markers, |1 conducted a phylogenetic analysis on
52 taxa representing 41 of 44 ray-finned fish orders along with four tetrapods as
outgroups. The effects of different data partitioning methods were also tested. Some
classic hypotheses about phylogenetic interrelationships of ray-finned fish based on
morphological characters were rediscovered in this study, such as the “Holostei”” group.
In the last two chapters, | present the results of phylogenetic analyses of clupeiforms
based on mitochondrial 12S and 16S ribosomal RNA genes, RAG1, RAG2 and six new
nuclear loci. Clupeiforms include herrings, anchovies, etc. They have worldwide
distribution and important commercial values. The most significant result of the study on
clupeiforms is that Clupeidae is not monophyletic. Finally, the last chapter showed that



adding sequences from the six new loci significantly improved the resolution and
suggested a different relationship at the basal clupeiods.
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Preface

In the dawn of genomic era, molecular systematics studies are under a transition
from typically using a single gene or a few gene markers to seeking genome-scale
multiple loci data. The arrangement of this thesis followed the thread of developing new
phylogenetic markers and applying them onto the phylogeny of ray-finned fish
(Actinopterygii), with an emphasis on interrelationships of Clupeiformes, herrings,

anchovies and etc.

In the first Chapter, I reviewed the current problems and trends in molecular
evolution and systematics. Also, the rational of developing genome-scale nuclear makers
was illustrated in this Chapter. In Chapter two, | proposed three criteria for a good
phylogenetic marker. The strategy and a computerized tool to develop single-copy
nuclear gene markers were the major contributions of this Chapter. Also, results of
testing the newly developed markers in fourteen ray-finned fish taxa were reported. Parts

of material in the Chapter have been published:

Li, C., Orti, G., Zhang, G., and Lu, G., A practical approach to phylogenomics: the
phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC: Evol. Biol.
7(1), 44.

As Chapter two focused on the development of new markers, in Chapter three, |
presented the phylogenetic study of ray-finned fish using ten newly developed nuclear
gene markers and 52 taxa representing 41 of 44 orders of ray-finned fishes. Several
interesting phylogenetic relationships were found and discussed. In Chapter four, the
phylogenetic relationships of Clupeiformes were assessed using both mitochondrial
rDNA (12S and 16S) sequences and nuclear recombination activating gene (RAG1 and
RAG2) sequences. Some relationships supported by old morphological studies were
rediscovered, while deep nodes among some lineages were still unresolved. The results

shown in this Chapter have been published in a recent paper:



vii

Li, C., Orti, G., Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from
nuclear and mitochondrial DNA sequences, Mol. Phylogenet. Evol. 44, 386-398

As a follow-up study of Chapter four, more taxa and six more newly developed
nuclear gene markers were used to address the interrelationships in Clupeiformes that
were not able to be answered by using mitochondrial and RAG genes. The results were

summarized in Chapter five.

Besides high-lever (deep) phylogeny in ray-finned fish, my other research
interests lie in population genetics and phylogeography of fishes. | have worked on two
projects: “Phylogeography of Prochilodus (Charaicformes) in South America” and
“Conservation genetics of the plains topminnow, Fundulus sciadicus”. However, I did
not write them in this dissertation because of the large volume already included. Out of

these two projects, one primer note is in press and two more papers are in preparation:

Li, C., Bessert, M. L., Macrander, J. and Orti, G., Microsatellite loci for the plains
topminnow (Fundulus sciadicus, Fundulidae). Molecular Ecology Notes (2007),

in press.

Li, C., Bessert, M. L., Macrander, J. and Orti, G., Conservation genetics of the plains

topminnow, (Fundulus sciadicus, Fundulidae). in prep.

Orti, G., Li, C., Farias, I., Vasconcelos, W. R., Lima D. N. E., Saturnino, A., Phylogeny
and Population Genetics of Prochilodus (Characiformes) based on mtDNA and

nuclear intron DNA sequences. in prep.
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Chapter 1 - Introduction

1.1. Abstract

In this Chapter, I introduce the major issues in phylogenetic studies:
morphological vs. molecular data, parsimony vs. probabilistic methods, assumptions in
likelihood models, analytical and biological systematic errors and data partitioning. I also
review the current solutions to address the systematic errors. At the end, | discuss the

rational of developing genome-scale nuclear gene markers for phylogenetic analysis.

1.2. Morphological vs. molecular data

Understanding phylogeny, the evolutionary relationships of life, is fundamentally
important to many aspects of biological studies, such as taxonomy, comparative ecology,
genome evolution, etc. Until the late 20" century, the majority data used to infer
phylogeny were morphological characters. As the cost of collecting molecular data
decreased and the computational capacity was improved, more and more phylogenetic
studies included molecular data, especially DNA sequences as their primary data source.
Although there is no question about the importance of morphology in understanding
adaptation, life history, taxanomy, evolution, etc., the role of morphology in phylogenetic
study is controversial (Jenner, 2004; Wiens, 2004; Wortley and Scotland, 2006). In a
review of 26 recent studies using both molecular and morphological data, Wortley and
Scotland (2006) found that adding morphological data into the analysis did not increase
the support for the resulted phylogeny and improved little in the resolution, whereas
adding molecular data into the analysis dramatically improved both the support and the
resolution of the results.

Both morphological and molecular data have pros and cons as phylogenetic

characters, but there are two shortcomings in morphological data constraining it from



being the ultimate solution to phylogenetic studies. Firstly, few homologous characters
can be found in a wide range of taxa. Many morphological characters are considered as
“synapmorphies”, the characters defining a clade, but the homologous counterparts in
more diverged taxa are hard to be established, resulting a lot of missing data. For
example, it is difficult to find a set of morphological characters that can be used to score
all ray-finned fish, a wide range of taxonomic group. Secondly, the total number of
potential morphological characters is limited, so morphological characters alone are not
enough to resolve many phylogenetic questions. Instead of adding more to the debate of
whether one should use morphological data in phylogenetic analysis or not, | would like
to point out that the imminent need is to include more informative data in the analysis.
Because homologous genes exist in a wide taxonomic range of taxa and the number of
potential molecular characters is enormous, developing more independent molecular
markers should be the foremost task to facilitate phylogenetic studies, and it is the major
goal of this dissertational study.

1.3. Parsimony vs. probabilistic methods

The analytical approaches commonly used in current phylogenetic inferences
include maximum parsimony (MP) and probabilistic methods, such as maximum
likelihood (ML) or Bayesian analysis. The important advantage of probabilistic methods
over parsimony is statistically consistent. MP is not consistent, particularly in the case of
unequal evolutionary rates between different lineages (Felsenstein, 1978).

Because no explicit models are used in MP method, it is claimed as a “model
free” method and immune from model misspecification. But in fact, MP method have
been shown always producing the same results as a parameter-rich ML model (Goldman,
1990; Steel and Penny, 2000). The “model freeness” of MP methods does not grant it less
error from model misspecification, but rather they are less flexible to accommodate
complex data signals. For example, nonstationarity can mislead both MP and
probabilistic methods (Foster and Hickey, 1999; Lockhart et al., 1994). Using



probabilistic methods, the misleading effects of nonstationarity can be avoided by explicit
modeling (Blanquart and Lartillot, 2006; Foster, 2004), while nothing can be changed to
rectify the misleading effect from nonstationarity when MP method is used. The relative
performance and the connections between MP and ML methods have been hotly debated
(Farris, 1983; Felsenstein and Sober, 1986; Goldman, 1990; Kolaczkowski and Thornton,
2004; Sanderson and Kim, 2000; Sober, 2004; Steel, 2005; Steel and Penny, 2000), and
no consensus has been reached. In this dissertation, | use mainly the probabilistic method
(both ML and Bayesian) and report the results from MP analyses just for comparisons,
because probabilistic methods are consistent and flexible to accommodate complex
signals in data.

1.4. Probabilistic methods and assumptions

The popular probabilistic methods include ML and Bayesian methods. ML
method starts with a model of how the data evolve and calculates the probability of the
observed data given the model. The parameters of the model, including the phylogenetic
tree, can be optimized by maximizing the probability of the observed data. For a general
introduction to ML, see Felsenstein (2004) or Bryant et al. (2005). Because of the large
size of tree space and many nuisance parameters, the regular implementation of ML
(Swofford, 2003) is not efficient enough to handle large data sets (30 taxa or more). New
implementations of ML gain considerable efficiency by not optimizing all parts of each
step (Guindon and Gascuel, 2003; Jobb et al., 2004) or by using genetic algorithm
(Zwickl, 2006). The Bayesian method combines the prior of parameters with the data to
generate the posterior distribution of parameters, upon which all inferences about the
parameters are based. The development of Markov chain Monte Carlo (MCMC)
algorithms was the computational breakthrough that made the Bayesian method tractable
and generally faster than ML method. For a general introduction to Bayesian method, see
Yang (2005) or Felsenstein (2004).



Both ML and Bayesian methods involve a hypothetical evolutionary model,
which approximates the rules that the evolving sequence characters followed. For DNA
sequence, the basic model is composed of the topology of the phylogenetic tree, the
branch lengths, stationary nucleotide frequencies and substitution matrix. In reality, too
many complicated forces and stochastic processes drive molecular evolution. It is
impossible and unnecessary to determine the exact model of molecular evolution. The
basic model used in phylogenetic analysis is simplified model based on many
assumptions to make them computationally tractable and statistically efficient. There is
always a trade-off for complex models. Complex models fit the data better, but it would
also have higher sampling errors because more parameters need to be estimated from the
data. The basic model works well when the assumptions are met. Below, I list most if not

all assumptions made in the basic models:

1. The evolution of characters follows a Markov model with Poisson distribution, but
some evidence suggested the overdispersed point process fits the data better
(Gillespie, 1994).

2. Each site evolves independently and according to the identical process, so called
“i.1.d.” process. This is an unrealistic assumption. Some sites interact functionally
with each other may be correlated. Different sites do not necessarily evolve in the

same way.

3. Molecular clock assumption describes the evolutionary rate as constant along the
evolutionary process. Most implementations of probabilistic methods assume no
molecular clock while some enforce strict molecular clock. In reality, the behavior of

the evolutionary rate should be in between the two extremes.

4. Stationarity and time reversibility. Stationarity and time reversibility assure the
expected frequencies of the nucleotides or amino acids are constant along the

evolutionary pathway.



All these assumptions are made to facilitate the likelihood calculation and
improve the efficiency of the models. However if the assumptions are violated, using
these models will lead to inconsistency, so called model misspecification. Thus, more

parameters need to be introduced into the models to reduce the systematic errors.

1.5. Analytical systematic errors and improved models

When the assumptions are not held and the model cannot account for the
confounding signals in the data, the inferred results may become inconsistent and
erroneous. | call this type of errors as analytical systematic errors, because the errors are
caused by model misspecification. Below, | discuss the types of analytical systematic
errors and the assumptions being violated. | also review the improved models that have

been proposed to relax the assumptions (Fig. 1.1).

When the assumption of stationarity is not held, that is the nucleotide (or amino
acid) frequencies changed along the evolutionary pathway, the phylogenetic inference
could be misled (Foster, 2004; Foster and Hickey, 1999; Steel et al., 1993). For example,
it was found that the high GC bias in the recombination activating protein 1 (RAG1) gene
of Clupeiformes and Elopeiformes artifactually grouped them together (Orti et al.,
unpublished data) in spite of other molecular and morphological evidences indicating that
they are not closely related (Lecointre and Nelson, 1996). One easy way to reduce the
systematic error from GC bias is to recode the data. For example, RY coding (code A and
Gas R, Cand T as Y) can homogenize the base composition and remove the GC bias
(Phillips et al., 2004; Woese et al., 1991), but it cannot remove the more general base
compositional bias and may also lose some phylogenetic information. The better way is
to account the nonstationarity in the model explicitly. A series of models has been
proposed including a distance method (Lockhart et al., 1994), likelihood methods
assigning local base frequencies to each branch (Galtier and Gouy, 1998; Yang and
Roberts, 1995), and Bayesian methods assigning different base frequencies to predefined
number of clades (Foster, 2004). However, the methods assigning base frequencies to



branches or clades associate the change of base frequencies with speciation events, which
is not realistic. Blanquart et al. (2006) proposed a new model that employing a compound
stochastic process, that is the variation of base frequencies also is driven by a stochastic
process. Their method is more reasonable, because it decouples the change of base
frequencies from speciation events and also reduces the number of parameters to

estimate.

When the assumption of molecular clock is not held, that is, the substitution rates
are varied along the tree, heterogeneity of the rates has to be considered in the model. In
most common implementations, no molecular clock is enforced (Felsenstein, 2005;
Ronquist and Huelsenbeck, 2003; Swofford, 2003), and each branch is allowed to have a
different rate. However, the model would be overparameterized if no constrains are
imposed on the rate variation. Hence, autocorrelated relaxed-clock models have been
devised based on the assumption that the rate for a branch is correlated to its adjacent
branches (Sanderson, 1997). Recently, an uncorrelated relaxed-clock model was
proposed, which does not assume the rate correlation among different lineages, but the
correlation can be detected from the data if it exists (Drummond et al., 2006). The other
advantage of the uncorrelated relaxed-clock model is that it can optimize the rate and the

phylogeny simultaneously, which cannot be done by using the autocorrelated models.

Until now, | only focus on how to model the molecular evolution at single site.
The likelihood of observing the data would be the product of likelihoods of all individual
sites calculated using the same model, if all sites follow the “i.i.d.” process. However, in
reality, different sites could have different rates, substitution matrix and even different
stationary frequencies. When the rate is heterogeneous among different sites, among site
rate variation (ASRV) model (Yang, 1994) and invariable sites model (Churchill et al.,
1992) often can increase the likelihood significantly. When the rates are not only varied
among site but also along the tree, they can mislead both MP and ML inference and the
process is called covarion (for Concomitantly VARiable codON), heterotachy or site-
specific rate variation (Fitch, 1971; Lopez et al., 2002). Existing models addressing the

conundrum of heterotachy are simple covarion models, which assume a compound



process of evolution, so called Markov-modulated Markov processes or Cox processes
(Fitch, 1971; Galtier, 2001; Galtier and Jean-Marie, 2004; Tuffley and Steel, 1998). In
the covarion model, the rate of substitution is also modeled as Markov processes so that
the rate can stochastically take values from a discrete rate space. The new uncorrelated
relaxed-clock model (Drummond et al., 2006) mentioned above is also a promising
direction to solve the problem of heterotachy (Pybus, 2006).

Besides the evolutionary rate, the substitution matrix and stationary frequencies
can also vary among sites. For example, some sites of the molecule may have different
base composition from other sites (Gowri-Shankar and Rattray, 2006). A Gaussian
process model has been proposed to account for the compositional variation among sites
(Gowri-Shankar and Rattray, 2006). Especially when multiple gene sequences are
analyzed concatenately, each gene or codon position may have different evolutionary
properties. In this case, dividing the data into partitions and allowing each data partition
to has its own model would increase the likelihood (Brandley et al., 2005), and this kind
of models are termed as mixed models. Naturally, concatenated multiple gene data can be
partitioned by genes and by codon positions. However, if some partitions are similar to
each other, assigning separate models for each partition may become overparameterized.
In the other hand, if there is still heterogeneity within each “nature” partitions (by genes
or codon positions), the mixed model is underparameterized. Another different strategy
dealing with heterogeneity among sites is the mixture model (Lartillot and Philippe,
2004; Pagel and Meade, 2004). In the mixture model, no predefined partition is required.
The likelihood for each site is calculated for a number of models and then summed up
with a weight for each model. The mixture model does not need predefined partitions,
because it can detect the heterogeneous evolutionary patterns from the data themselves.
The mixture model also has no risk of overparameterizing, because the number of models
can be chosen by the data (Pagel and Meade, 2005)..

1.6. Biological systematic errors



If the model used can sufficiently describe the data, there will be less error
resulted from the model misspecification. However, phylogenetic inferences may still be
confounded by another type of errors that are caused by the discrepancy between the gene
genealogy and organismal phylogeny. | call them biological systematic errors. For
example, paralogy (Maddison, 1997), incomplete lineage sorting (Funk and Omland,
2003; Maddison, 1997; Maddison and Knowles, 2006) and horizontal gene transfer
(Kurland et al., 2003) can all led to inconsistent results. To identify the biological
systematic errors, one can resolve the speciation and other confounding events
simultaneously (Page and Cotton, 2002) or include data from more individuals or more
gene markers to unveil the phylogenetic signals (Maddison and Knowles, 2006).

1.7. Genome-scale data and the “super model”

To reduce the random as well as systematic errors, data from many independent
loci are needed. Genome-scale data, including complex genome-level characters (such as
gene content and gene order) and sequences from many independent gene loci, provide
great potential to sort out the nonphylogenetic noise and recover the true phylogenetic
signals. With a large number of characters, the stochastic errors associated with the
estimations should decrease (Delsuc et al., 2005). Using many independent nuclear genes
can also reduce some systematic errors (Collins et al., 2005; Maddison and Knowles,
2006; Poe and Swofford, 1999). As discussed above, more complicated models would fit
the data better and alleviate the misleading effects from analytical systematic errors.
However, the complicated models are only useful when there are enough data to estimate
the large number of parameters. Thus, including a large number of genome-scale data is
not only beneficial but also necessary for using more realistic models. Genome-scale
phylogenetics or phylogenomics was criticized as not immune from systematic errors
(Kelchner and Thomas, 2006; Soltis et al., 2004), but these conclusions were based on

analyses using underparameterized models.



To avoid the biological systematic error, using many independent genome-scale
data is one of the solutions, such as inferring phylogeny despite incomplete lineage
sorting (Maddison and Knowles, 2006). In the light of genome-scale sequence data, the
future complex model, the “super model” should incorporate all complex data structure
and confounding signals, such as the variation of base composition and rates among sites
and along the tree (Fig. 1.1). The “super model” should be always tested as the null
model. Then, the “super model” or reduced models can be selected by using AIC or BIC

model selection approaches (Posada and Buckley, 2004).

In this dissertational work, | describe a new tool to develop genome-scale nuclear
gene markers. | used the newly developed markers to infer the phylogeny of Ray-finned
fish (Actinopterygii) and the interrelationships among clupeiforms. I discussed the
potential base compositional bias in Chapter two, Chapter four and Chapter five. |
explored the RY coding method to reduce the error form compositional bias. | tested
different partitioning schemes and proposed a novel partitioning approach in Chapter

three.
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Chapter 2 - A practical approach to phylogenomics: the
phylogeny of ray-finned fish (Actinopterygii) as a case study

2.1. Abstract

Molecular systematics occupies one of the central stages in biology in the
genomic era, ushered in by unprecedented progress in DNA technology. The inference of
organismal phylogeny is now based on many independent genetic loci, a widely accepted
approach to assemble the tree of life. Surprisingly, this approach is hindered by lack of
appropriate nuclear gene markers for many taxonomic groups especially at high
taxonomic level, partially due to the lack of tools for efficiently developing new
phylogenetic makers. | report here a genome-comparison strategy for identifying nuclear
gene markers for phylogenetic inference and apply it to the ray-finned fishes - the largest

vertebrate clade in need of phylogenetic resolution.

A total of 138 candidate markers were obtained by comparing whole genome
sequences of two model organisms, zebrafish (Danio rerio) and Japanese pufferfish
(Takifugu rubripes). Experimental tests of 15 randomly sampled markers on 50 taxa
representing nearly all of the ray-finned fish orders demonstrate that ten of these
candidates are easily amplified by PCR from whole genomic DNA extractions in a vast
diversity of fish taxa. The phylogeny of 14 taxa inferred from concatenated sequences of
ten markers (total of 7,872bp) showed large congruencies with the consensus view of the

fish phylogeny except for two discrepancies.

I developed a practical approach that compares whole genome sequences to
identify single-copy nuclear gene markers for inferring phylogeny. Compared to
traditional approaches (manually picking genes for testing), my methods use genomic
information and automate the process to identify larger number and genome-scale

candidate makers. The approach shown here to be successful for fishes could be applied



12

to other groups of organisms for which two or more complete genome sequences exist,

which has important implications for assembling the tree of life.

2.2. Background

The ultimate goal of obtaining a well-supported and accurate representation of the
tree of life relies on the assembly of phylogenomic data sets for large numbers of taxa
(Delsuc et al., 2005). Molecular phylogenies based on DNA sequences of a single locus
or a few loci often suffer from low resolution and marginal statistical supports due to
limited character sampling. Individual gene genealogies also may differ from each other
and from the organismal phylogeny (gene-tree vs. species-tree issue) (Fitch, 1970;
Pamilo and Nei, 1988), and in many cases this is due to systematic biases leading to
statistical inconsistency in phylogenetic reconstruction (i.e., compositional bias, long-
branch attraction, heterotachy) (Felsenstein, 1978; Foster and Hickey, 1999; Lopez et al.,
2002; Weisburg et al., 1989). Phylogenomic data sets—using genome sequences to study
evolutionary relationship—provide the best solution to these problems (Delsuc et al.,
2005; Eisen and Fraser, 2003). This solution requires compilation of large data sets that
include many independent nuclear loci for many species (Bapteste et al., 2002; Driskell et
al., 2004; Murphy et al., 2001; Philippe et al., 2004; Rokas et al., 2003b; Takezaki et al.,
2003). Such data sets are less likely to succumb to sampling and systematic errors (Rokas
et al., 2003b) by offering the possibility to focus on more phylogenetically reliable
characters and also of corroborating phylogenetic results by varying the species sampled.
Most attempts to use this approach have been based either on available complete genomic
sequence data (Chen et al., 2004; Rokas et al., 2005; Rokas et al., 2003b), or cDNA and
ESTs sequences (Bapteste et al., 2002; Philippe et al., 2004; Rokas et al., 2005; Whittall
et al., 2006) for relatively few taxa. Availability of complete genomes limits the number
of taxa that can be analyzed (Chen et al., 2004; Rokas et al., 2003b), imposing known
problems for phylogenetic inference associated with poor taxon sampling (Hillis et al.,
2003; Soltis et al., 2004). On the other hand, methods based on ESTs or cDNA sequence
data are not practical for many taxa because they require construction of DNA libraries
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and fresh tissue samples. In addition, some genes may not be expressed in certain tissues
or developmental stages, leading to cases with undesirable amounts of missing data
(Philippe et al., 2004). The most efficient way to collect nuclear gene sequences for many
taxa is to directly amplify target sequences using “universal” PCR primers, an approach
so far used for just a few widely-used nuclear genes (Groth and Barrowclough, 1999;
Lovejoy and Collette, 2001; Mohammad-Ali et al., 1995; Saint et al., 1998), or selected
taxonomic groups (e.g., placental mammals and land plants). Widespread use of this
strategy in most taxonomic groups has been hindered by the paucity of available PCR-

targeted gene markers.

Mining genomic data for phylogenetic studies requires stringent criteria, since not
all loci are likely to carry desired levels of historical signal. The phylogenetic
informativeness of characters has been extensively debated on theoretical grounds
(Lyons-Weiler et al., 1996; Philippe et al., 2005b), as well as in empirical cases (Collins
et al., 2005; Phillips et al., 2004; Steel et al., 1993). My study does not intend to
contribute to this debate, but rather to focus on the practical issues involved in obtaining
the raw data for analysis. What is the best strategy to select a few hundreds candidate loci
from thousands of genes present in the genome? For practical purposes, a good
phylogenetic nuclear gene marker must satisfy three criteria. First, orthologous genes
should be easy to identify and amplify in all taxa of interest. One of the main problems
associated with nuclear protein-coding genes used to infer phylogeny is uncertainty about
their orthology (Fitch, 1970). This is especially true when multiple copies of a target gene
are amplified by PCR from whole genomic DNA. To minimize the chance of sampling
paralogous genes among taxa (the trap of “mistaken paralogy” that will lead to gene-tree-
species-tree discordance), my approach is initiated by searches for single-copy nuclear
genes in genomic databases. Under this criterion, even if gene duplication events may
have occurred during evolution of the taxa of interest (e.g., the fish-specific whole-
genome duplication event) (Amores et al., 1998; Meyer and Van de Peer, 2005),
duplicated copies of a single-copy nuclear gene tend to be lost quickly, possibly due to
dosage compensation (Ciccarelli et al., 2005). Some authors estimate that almost 80% of
the paralogs have been secondarily lost following the genome-duplication event (Jaillon
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et al., 2004; Woods et al., 2005). Thus, if duplicated copies are lost before the relevant
speciation events occur (Fig. 2.1a, b), no paralogous gene copies would be sampled. If
the alternative situation occurs (Fig. 2.1c) paralogy will mislead phylogenetic inference.
In the latter case, the distribution of this discordance is, however, not expected to
influence all genes in the same way (i.e., it should not lead to systematic error when
many genes are analyzed). The second criterion that will facilitate data collection is to
identify protein-coding genes with long exons (longer than a practical threshold
determined by current DNA sequencing technology, for example 800 bp). Most genes are
fragmented into small exons and large introns. For high taxonomic-level phylogenetic
inference (deep phylogeny), intron sequences evolve too fast and are usually not
informative, becoming an obstacle for the amplification and sequencing of more
informative exon coding sequences. The third criterion is to identify reasonably
conserved genes. Genes with low rates of evolution are less prone to homoplasy, and also
provide the practical advantage of facilitating the design of universal primers for PCR
that will work on a diversity of taxa. Usually, conserved protein-coding genes also are

easy to align for analysis, based on their amino acid sequences.

Sequence conservatism and long exonic regions have been used as the criteria to
choose phylogenetics markers in the past (Friedlander et al., 1992). However, the
probability of finding a reliable, easy-to-apply gene marker would be very small if genes
are haphazardly selected for study. This complexity partially explains the scarcity of
currently available nuclear gene markers in many taxonomic groups. To address this
problem, | developed a simple approach to obtain nuclear gene markers based on the
three aforementioned criteria using both bioinformatic and experimental methods. My
method incorporates two improvements over the traditional way of manually picking
genes and testing their phylogenetic utilities. These improvements include using genomic
information and automating the process of searching for candidate makers. I apply the
method to Actinopterygii (ray-finned fish), the largest vertebrate clade—they make up
about half of all known vertebrate species—that has a poorly defined phylogenetic
backbone (Arratia, 2000; Greenwood et al., 1973; Miya et al., 2003; Stiassny et al.,
1996a; Stiassny et al., 2004).
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2.3. Materials and Methods

2.3.1. Genome-scale mining for phylogenetic markers

Whole genomic sequences of Danio rerio and Takifugu rubripes were retrieved
from the ENSEMBL database (http://www.ensembl.org/index.html). Exon sequences
with length > 800 bp were then extracted from the genome databases. The exons
extracted were compared in two steps: (1) within-genome sequence comparisons and (2)
between genome comparisons. The first step is designed to generate a set of single-copy
nuclear gene exons (length > 800 bp) within each genome, whereas the second step
should identify single-copy, putatively orthologous exons between D. rerio and T.
rubripes (Fig. 2.2). The BLAST algorithm was used for sequence similarity comparison.
In addition to the parameters available in the BLAST program, | applied another
parameter, coverage (C), to identify global sequence similarity between exons. The
coverage was defined as the ratio of total length of locally aligned sequences over the
length of query sequence. The similarity (S) was set to S < 50% for within-genome
comparison, which means that only genes that have no counterpart more than 50%
similar to themselves were kept. The similarity was set to Sx > 70% and the coverage
was set to C > 30% in cross-genome comparison, which selected genes that are 70%
similar and 30% aligned between D. rerio and T. rubripes. EST sequences from five
additional species (Gasterosteus aculeatus, Ictalurus punctatus, Oreochromis niloticus,
Pagrus auriga and Tetraodon nigroviridis) from the TIGR Gene Indices project
(http://www.tigr.org/tdb/tgi/) were used to further select for markers that have no
paralogous loci in any of these species (Sx > 70% and C = 30%). Note that this step may
not identify all paralogs, since genomic sequences are not complete in these species. The
pipelines were automated in PERL language with the help from Dr. Guoging Lu at

University of Nebraska at Omaha.
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2.3.2. Experimental testing for candidate markers

PCR and sequencing primers were designed on aligned sequences of D. rerio and
T. rubripes for 15 randomly selected genes. Primer3 was used to design the primers
(Rozen and Skaletsky, 2000). Degenerate primers and a nested-PCR design were used to
assure the amplification for each gene in most of the taxa. Ten of the 15 genes tested
were amplified with single fragment in most of the 50 taxa examined. PCR primers for
ten gene markers are listed in Table 2.1. The amplified fragments were directly
sequenced, without cloning, using the BigDye system (Applied Biosystems). Sequences
of the frequently used RAG1 gene were retrieved for the same taxa from GenBank for
comparison to the newly developed markers [GenBank: AY430199, NM_131389,
U15663, AB120889, DQ492511, AY 308767, AF108420, EF033039 — EF033043]. When
RAGL1 sequences for the same taxa were not available, a taxon of the same family was
used, i.e. Nimbochromis was used instead of Oreochromis and Neobythites was used

instead of Brotula.

2.3.3. Phylogenetic analysis

In this Chapter, sequences of the ten new markers in 14 taxa were used to assess
the performance of these markers for phylogenetic analysis. For analyses and discussions
on the phylogeny of ray-finned fish using all 52 taxa with some missing data, see Chapter
three. Sequences were aligned using ClustalX (Thompson et al., 1997) on the translated
protein sequences. ML corrected genetic distances were calculated using PAUP
(Swofford, 2003). Relative substitution rates for each marker was estimated using a
Bayesian approach (Ronquist and Huelsenbeck, 2003). Relative composition variability
(RCV) and treeness were calculated following Phillips and Penny (Phillips and Penny,
2003). Prottest (Abascal et al., 2005) was used to chose the best model for protein
sequence data and the AIC criteria to determine the scheme of data partitioning. Bayesian
analysis implemented in MrBayes v3.1.1 and maximum likelihood analysis implemented
in TreeFinder (Jobb et al., 2004) were performed on the protein sequences. One million
generation with 4 chains were run for Bayesian analysis and the trees sampled prior to
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reaching convergence were discarded (as burnin) before computing the consensus tree
and posterior probabilities. Two independent runs were used to provide additional
confirmation of convergence of posterior probability distribution. To reduce the potential
effect of biased base composition to the resulted phylogeny, I also analyzed the
nucleotide data under the RY-coding scheme (Cand T =Y, A and G = R), partitioned by
gene in TreeFinder, since RY-coded data are less sensitive to base compositional bias
(Phillips and Penny, 2003). Alternative hypotheses were tested by one-tailed Shimodaira
and Hasegawa (SH) test (Shimodaira and Hasegawa, 1999) with 1000 RELL bootstrap

replicates implemented in TreeFinder.

2.4. Results

The bioinformatic pipeline used is shown in Fig. 2.2. Within-genome sequence
comparison resulted in 2,797 putative single-copy exons (> 800 bp) in zebrafish (D.
rerio) and 2,833 in torafugu (T. rubripes). Among them, 154 putative homologs were
identified between zebrafish and torafugu by cross-genome comparison. Further
comparison with EST sequences from other fish species reduced this number to 138
candidate markers (Appendix A). The candidate markers are distributed among 24 of the
25 chromosomes of zebrafish (Fig. 2.3), and a Chi-square test did not reject a Poisson
distribution of the markers among chromosomes (y=16.99, df=10, p=0.0746). The size
of candidate markers identified by these search criteria ranged from 802 to 5811 bp (in D.
rerio). Their GC content ranged from 41.6% to 63.9% (in D. rerio), and the average
similarity of the DNA sequence of these markers between D. rerio and T. rubripes varied
from 77.3% to 93.2% (determined by the search criteria).

To test the practical value of these candidate markers for phylogenetic inference,
15 candidate markers were randomly chosen and tested experimentally on 52 taxa,
representing all ray-finned fish orders except for Saccopharyngiformes,
Ateleopodiformes and Stephanoberyciformes (Nelson, 2006). Ten out of the 15 markers

tested were successfully amplified by a nested PCR approach in 50 taxa (Table 2.2), and
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83% PCR reactions resulted single fragment (see Appendix B). Fourteen representative
taxa with all ten genes sequenced (Amia calva, D. rerio, Semotilus atromaculatus,
Ictalurus punctatus, Oncorhynchus mykiss, Brotula multibarbata, Fundulus heteroclitus,
Oryzias latipes, Oreochromis niloticus, Gasterosteus aculeatus, Lycodes atlanticus, T.
rubripes, Morone chrysops, Lutjanus mahogoni) were used to evaluate the ten new
markers [GenBank: EF032909 — EF033038]. The size of the sequenced fragments ranged
from 666 to 987 bp, while the average genetic distances for DNA sequence (likelihood
corrected) of the ten markers among the 14 taxa ranged from 28% to 41% (Table 2.2).
Some parameters obtained by phylogenetic analysis of these sequences, such as the
substitution rate, consistency index (CIl), gamma shape parameter (o), relative
composition variability (RCV) and treeness (Phillips and Penny, 2003) of the ten new
markers are similar to a commonly used nuclear marker—recombination activating gene
1 (RAG-1, Table 2.2). For the newly obtained phylogenetic markers, the substitution rate
is negatively correlated with CI (r = -0.84, P = 0.0026) and marginally correlated with o
(r=-0.56, P = 0.095). In contrast, base composition heterogeneity (RCV) and the
phylogenetic signal to noise index (treeness index) are not correlated with substitution
rate (Fig. 2.4). Based on the treeness value, genes ENC1, plagl2, Ptc and tbrl are
especially recommend for phylogenetic studies at high taxonomic level among ray-finned

fishes.

A phylogeny of the 14 taxa using concatenated sequences of all ten markers (total
of 7,872 bp) was inferred on the basis of protein and DNA sequences. For the protein
sequence data, a JTT model with gamma parameter accounting for rate heterogeneity was
selected by Prottest (Abascal et al., 2005). The data were partitioned by gene, as this
strategy was favored by the Akaike information criterion (AIC) over treating the
concatenated sequences as a single partition. Maximum likelihood (ML) and Bayesian
analysis (BA) resulted in the same tree (Fig. 2.5a). A similar topology to Fig. 2.5a was
obtained by ML analysis of nucleotide sequences with RY-coded nucleotides to address
potential mpractic due to base compositional bias (Phillips and Penny, 2003). The
positions of Brotula and Morone remain somewhat unresolved, receiving low bootstrap

support and conflicting resolution based on protein or RY-coded nucleotide data. When
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analyzed separately, all individual gene trees have low support in many branches and
none of them has the same topology as the tree based on all ten genes (Fig. 2.6.).
Alternative topologies recovered by individual gene markers were rejected by data
combining all ten genes, based on a one-tailed SH test (p<0.05), except for the one
supported by tbrl (p=0.162) and plagl2 (p=0.498). Also, six individual genes (zicl,
RYRS, Ptc, tbrl, ENC1 and SH3PX3) rejected the best tree supported by data

concatenating ten genes, indicating conflicting signal in individual genes.

2.5. Discussion

The bioinformatic approach implemented in this study resulted in a large set (138
loci) of candidate genes to infer high-level phylogeny of ray-finned fishes. Experimental
tests of a smaller subset (15 loci) demonstrate that a large fraction (2/3) of these
candidates are easily amplified by PCR from whole genomic DNA extractions in a vast
diversity of fish taxa. The assumption that these loci are represented by a single copy in
the fish genomes could not be rejected by the PCR assays in the species tested (all
amplifications resulted in a single product), increasing the likelihood that the genetic
markers are orthologous and suitable to infer organismal phylogeny. My method is based
on searching the available complete genomic databases of organisms closely related to
the taxa of interest under specific criteria. Therefore, the same approach that is shown to
be successful for fishes could be applied to other groups of organisms for which two or
more complete genome sequences exist. Parameter values (L, S, and C) used for the
search (Fig. 2.2) may be altered to obtain fragments of different size or with different
levels of conservation (i.e., less conserved for phylogenies of more closely related

organisms).

An alternative way to develop nuclear gene markers for phylogenetic studies is to
construct a cDNA library or sequence several ESTs for a small pilot group of taxa, and
then to design specific PCR primers to amplify the orthologous gene copies in all the
other taxa of interest (Small et al., 2004; Whittall et al., 2006). The major potential
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problem with this approach stems from the fact that the method starts with a cDNA
library or a set of EST sequences, with no prior knowledge of how many copies a gene
has in each genome. As discussed above, this condition may lead to mistaken paralogy.
In my approach, | search the genomic sequence to find single-copy candidates so no

duplicate gene copies, if present, would be missed.

Recent studies have proposed whole genome duplication events during vertebrate
evolution and also genome duplications restricted to ray-finned fishes (Amores et al.,
1998; Meyer and Van de Peer, 2005; Taylor et al., 2003; Van de Peer et al., 2003). My
results indicate that many single-copy genes still exist in a wide diversity of fish taxa
(representing 41 orders of actinopterygian fishes), in agreement with previous estimates
that a vast majority of duplicated genes are secondarily lost (Jaillon et al., 2004; Woods
et al., 2005). All 138 candidates were identified as single-copy genes in D. rerio and T.
rubripes, and out of the 15 tested experimentally, ten were found in single-copy condition
in all successful amplifications, including the tetraploid species, O. mykiss. My results
also show the 138 candidate genes are randomly distributed in the fish genome (at least
among chromosomes of D. rerio). The existence and identification of genome-scale
single-copy nuclear markers should facilitate the construction of the tree of life, even if
the evolutionary mechanism responsible for maintaining single-copy genes is poorly
known (Ciccarelli et al., 2005).

The molecular evolutionary profiles of the ten newly developed markers are in the
same range as RAG-1, a widely used gene marker in vertebrates. The genes with high
treeness values have intermediate substitution rate, suggesting that optimal rate and base
composition stationarity are important factors that determine the suitability of a
phylogenetic marker. The phylogeny based on individual markers revealed incongruent
phylogenetic signal among individual genes. This incongruence suggests that systematic
error might overrun the true phylogenetic signal in some individual genes, but the
direction of the bias is hardly shared among genes (Fig. 2.6), justifying the use of
genome-scale gene makers to infer organismal phylogeny.
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Finally, with respect to the phylogenetic results per se, there are two main
discrepancies between the phylogeny obtained in this study (Fig. 2.5a) and a consensus
view of fish phylogeny (Fig 2.5b) (Nelson, 2006). Although these differences could be
due to poor taxonomic sampling (see Chapter 3), I discuss them briefly. First, the
traditional tree groups O. niloticus with other perciformes, whereas my results showed
the O. niloticus is more closely related to Cyprinodontiformes + Beloniformes. This latter
result also was supported by two recent studies analyzing multiple nuclear genes (Chen
et al., 2004; Steinke et al., 2006). The second difference is that the traditional tree groups
Lycodes with other Perciformes, while Lycodes was found closely related to Gasterosteus
(Gasterosteiformes) in my results. My observation was supported by the one-tailed
Shimodaira-Hasegawa (SH) test (p=0.000) (Shimodaira and Hasegawa, 1999).

2.6. Conclusions

I developed a genome comparison approach that compares whole genome
sequences to identify nuclear gene markers that are single copy copies, contain large
exons, and are conserved across extensive taxonomic distance for phylogeny inference. |
showed that my approach is viable through direct experimentation on a representative
sample of ray-finned fish, the largest vertebrate clade in need of phylogenetic resolution.
The same approach, therefore, could be applied to other groups of organisms as long as
two or more complete genome sequences are available. This research may have important

implications for assembling the tree of life.
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Table 2.1. PCR primers and annealing temperatures used to amplify ten new markers.
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Gene* Primers Sequences Annealing PCR
temp steps

zicl zicl F9 5" GGACGCAGGACCGCARTAYC 3’ 57 1" PCR
zicl_R967 5" CTGTGTGTGTCCTTTTGTGRATYTT 3’
zicl_F16 5" GGACCGCAGTATCCCACYMT 3’ 57 2" PCR
zicl_R963 5 GTGTGTCCTTTTGTGAATTTTYAGRT 3’

myh6 myh6_F459 5 CATMTTYTCCATCTCAGATAATGC 3’ 53 1" PCR
myh6_R1325 5" ATTCTCACCACCATCCAGTTGAA 3’
myh6_F507 5" GGAGAATCARTCKGTGCTCATCA 3’ 62 2" PCR
myh6_R1322 5’ CTCACCACCATCCAGTTGAACAT 3’

RYR3 RYR3_F15 5" GGAACTATYGGTAAGCARATGG 3’ 55 1" PCR
RYR3_R968 5" TGGAAGAAKCCAAAKATGATGC 3’
RYR3_F22 5’ TCGGTAAGCARATGGTGGACA 3’ 62 2" PCR
RYR3_R931 5" AGAATCCRGTGAAGAGCATCCA 3’

Ptc Ptc_F458 5" AGAATGGATWACCAACACYTACG 3’ 55 1" PCR
Pct_R1248 5" TAAGGCACAGGATTGAGATGCT 3’
Ptc_F463 5" GGATAACCAACACYTACGTCAA 3’ 62 2" PCR
Pct_R1242 5" ACAGGATTGAGATGCTGTCCA 3’

tbrl tbrl_F1 5" TGTCTACACAGGCTGCGACAT 3’ 57 1" PCR
tbrl_R820 5" GATGTCCTTRGWGCAGTTTTT 3’
tbrl_F86 5" GCCATGMCTGGYTCTTTCCT 3’ 62 2" PCR
tbrl_R811 5" GGAGCAGTTTTTCTCRCATTC 3’

ENC1 ENC1_F85 5" GACATGCTGGAGTTTCAGGA 3’ 53 1" PCR
ENC1_R982 5" ACTTGTTRGCMACTGGGTCAAA 3’
ENC1_F88 5" ATGCTGGAGTTTCAGGACAT 3’ 62 2" PCR
ENC1_R975 5 AGCMACTGGGTCAAACTGCTC 3’

Gylt Glyt_F559 5" GGACTGTCMAAGATGACCACMT 3’ 55 1" PCR
Glyt_R1562 5" CCCAAGAGGTTCTTGTTRAAGAT 3’
Glyt_F577 5" ACATGGTACCAGTATGGCTTTGT 3’ 62 2" PCR
Glyt_R1464 5" GTAAGGCATATASGTGTTCTCTCC 3’

SH3PX3 SH3PX3_F461 5" GTATGGTSGGCAGGAACYTGAA 3’ 55 1" PCR
SH3PX3_R1303 5" CAAACAKCTCYCCGATGTTCTC 3’
SH3PX3_F532 5" GACGTTCCCATGATGGCWAAAAT 3’ 62 2" PCR
SH3PX3_R1299 5" CATCTCYCCGATGTTCTCGTA 3’

plagl2 plagl2_F9 5" CCACACACTCYCCACAGAA 3’ 55 1% PCR

plagl2_R930

5 TTCTCAAGCAGGTATGAGGTAGA 3’
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Table 2.1. PCR primers and annealing temperatures used to amplify ten new markers (cont.).

Gene* Primers Sequences Annealing PCR
temp steps

plagl2_F51 5" AAAAGATGTTTCACCGMAAAGA 3’ 62 2"PCR
plagl2_R920 5’ GGTATGAGGTAGATCCSAGCTG 3’

sreb2 sreb2_F10 5" ATGGCGAACTAYAGCCATGC 3 55 1" PCR
sreb2_R1094 5" CTGGATTTTCTGCAGTASAGGAG 3’
sreb2_F27 5" TGCAGGGGACCACAMCAT 3 62 2" PCR
sreb2_R1082 5" CAGTASAGGAGCGTGGTGCT 3’

“Gene markers are named following annotations in ENSEMBLE. Zic1, zic family member 1; myh,
myosin, heavy polypeptide 6; RYR3, ovel protein similar to vertebrate ryanodine receptor 3; Ptc,
hypothetical protein LOC564097; thrl, T-box brain 1; ENC1, similar to ectodermal-neural cortex 1; Glyt,
glycosyltransferase; SH3PX3, SH3 and PX domain containing 3; plagl2, pleiomorphic adenoma gene-like

2; sreb2, super conserved receptor expressed in brain 2.



Table 2.2. Summary information of the ten gene markers amplified in 14 taxa.
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Gene Exon ID No.of No.of No. Genetic Sub. CI- o RCV  Treeness
bp var. of PI  distance (%) rate MP
zicl ENSDARE00000015655 894 296 210  28(2.6-65.8) 064 061 164 013 0.23
myh6 ENSDARE00000025410 735 323 235 36(10.1-59.5) 135 054 068 0.11 0.22
RYR3 ENSDARE00000465292 825 389 258  36(10.1-58.1) 125 056 0.67 011 0.21
Ptc ENSDARE00000145053 705 304 234 41(6.1-93.6) 1.03 057 164 0.12 0.29
tbrl ENSDARE00000055502 666 256 170  28(3.1-79.1) 065 067 291 010 0.28
ENC1 ENSDARE00000367269 810 312 248 38(8.4-78.0) 113 055 110 0.16 0.33
Gylt ENSDARE00000039808 870 463 335  41(7.6-77.0) 118 060 170 012 0.27
SH3PX3  ENSDARE(00000117872 705 290 226 30(7.5-60.0) 111 055 153 0.14 0.22
plagl2 ENSDARE00000136964 675 250 184  29(6.0-60.6) 081 061 092 010 033
sreb2 ENSDARE00000029022 987 344 225 30(4.6-75.5) 085 061 088 011 0.23
RAG1 - 1344 684 514 38(9.8-75.0) 128 057 168 0.05 0.23

bp, base pairs; var., variable sites; Pl, parsimony informative sites; Genetic distance, average ML-corrected

distance, number in parenthesis are range of the distances; Sub. rate, relative substitution rate estimated

using Bayesian approach; CI-MP, consistency index; o, gamma distribution shape parameter; RCV,

relative composition variability.
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a b C

Taxon1 Taxon2 Taxon3 Taxon1 Taxon2 Taxon3 Taxon1 Taxon2 Taxon3

Fig. 2.1 Single-copy genes are useful markers for phylogeny inference. Gene duplication and subsequent
loss may not cause incongruence between gene tree and species tree if gene loss occurs before the first
speciation event (a), or before the second speciation event (b). The only case that would cause
incongruence is when the gene survived both speciation events and is asymmetrically lost in taxon 2 and

taxon 3 (c).
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Y

Genome databases Phylogenomic database
(ENSEMBLE) (Tree of Life)

Genome sequences Successful amplification
(22,899 genes*) and sequencing
L=800 bp
ORFs > 800 bp Sequence alignment
(6,764 exons*) PCR primer design
S5=50%
C=30%

Single-copy exons 138 single-copy markers
(2,797 within genome?*) conserved among taxa
Sx=70% Sx=70%

C=30% C=30%

154 single-copy exons shared
(D. rerio and T. rubripes)

Fig. 2.2 The bioinformatic pipeline for phylogenetic markers development. It involves within- and across-
genome sequences comparison, in silico test with sequences in other species, and experimental validation.
Numbers of genes and exons identified for D. rerio are indicated by the asterisk. Exon length (L), within-
genome similarity (S), between-genome similarity (Sx), and coverage | are adjustable parameters (see

methods).
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phylogeny. Right panel — the phylogram of 14 taxa inferred from protein sequences of ten genes; left panel
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Fig. 2.6 Maximum likelihood phylogeny based on protein sequences of individual genes, zicl, myh6,
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Chapter 3 — Data Partitioning Guided by Cluster Analysis and
Phylogeny of Ray-finned Fish (Actinopterygii) Based on Ten

Nuclear Loci

3.1. Abstract

Partitioned analysis is one of the best ways to accommodate heterogeneities in
evolutionary rates and patterns among sites in molecular phylogenetic analysis. The
common ways of data partitioning are dividing data by genes, codon positions, or by
both. Partitioning by both genes and codons has high risk of over-parameterizing,
although it often result in better likelihood. Reducing the number of partitions by
grouping similar data partitions should increase the efficiency of the models. | propose
using cluster analysis on model parameters to guide the procedure of data grouping. |
tested this strategy using sequence data of ten nuclear genes collected from 52 ray-finned
fish (Actinopterygii) and four tetrapods. Concatenating sequences of exons of ten nuclear
genes resulted 7995 nucleotide sites. The results showed that most of heterogeneities
exist among three codon positions. Reduced number of partitions guided by the cluster
analysis performed better than the full 30 partitions by both genes and codon positions
indicated by AIC values and Bayes factors. Data partitioning not only affected the fit of
the models but also changed the topologies inferred from my data, particularly when
Bayesian analysis method was used. The phylogenetic relationships among the major
clades of ray-finned fish were assessed using the best data partitioning schemes selected
by AIC values and Bayesian factors. Some significant results include the monophyly of
“Chondrostei” (polypteriforms + acipenseriforms), the monophyly of “Holostei”,
elopmorphs as the sister-group to all other extant teleosts, the sister-taxa relationship
between esociformes and salmoniforms, a sister-taxa relationship between osmeriforms
and stomiforms, a close relationship between lophiiforms and tetraodontiforms, the non-
monophyly of protacanthopterygians, the non-monophyly of paracanthopterygians and

the non-monophyly of perciforms.
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3.2. Background

In the light of genomic era, phylogenetic studies using multilocus sequence data
become increasingly popular (e.g. Baurain et al., 2007; Comas et al., 2007; McMahon
and Sanderson, 2006; Rokas et al., 2005; Rokas et al., 2003b). The large number of
characters and the independent phylogenetic evidences from the multilocus data often
resulted in well-resolved and highly supported phylogenies (e.g. Comas et al., 2007;
Philippe et al., 2005a; Rokas et al., 2003a). In spite of these successes and the initial
optimism about “genome-scale” approach (Gee, 2003; Rokas et al., 2003b), cautions
have been called for phylogenetic analysis even when “genome-scale” data were used, in
the case of sparse taxon-sampling (Soltis et al., 2004), base compositional bias (Collins et
al., 2005; Phillips et al., 2004) or incompleted lineage sorting (Kubatko and Degnan,
2007). Models accommodating these complexities in real molecular evolution should be
developed to avoid the inconsistency resulted from analyzing multilocus data. One of
these complexities is the heterogeneity in evolutionary rates and patterns among sites
(Buckley et al., 2001; Bull et al., 1993). A common way to explicitly model the
heterogeneous rates and patterns among sites is to partition the data — using different
model for each data partition. Data partitioning should be the obvious choice when
analyzing multilocus data, because each locus may have different evolutionary properties
(Nylander et al., 2004; Reed and Sperling, 1999). Simulation and empirical studies have
shown that analyzing each partition with its own model can significantly improve the
likelihood, often increase the nodal supports and may also result in different topologies
(Brandley et al., 2005; Castoe et al., 2004; Caterino et al., 2001; Pupko et al., 2002).

The common partitioning strategy is to divide the concatenated sequences by
genes, codon positions or both, because this probably captures the most heterogeneity in
the sequences. Many studies indeed found out that partitioning by both genes and codon
positions resulted in the best fit of the data (Brandley et al., 2005; Caterino et al., 2001).
However, over partitioning — dividing the data into too many partitions could result in
high sampling errors, because too many parameters associated with excess data partitions
need to be estimated from the data. Instead, combining predefined partitions (e.g. by
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codon positions or genes) that have similar patterns may improve the overall efficiency of
the model. For example, first codon positions of two similar genes might be better fitted
with one model than two separate models. To choose the best partitioning strategy,
ideally, all possible combinations of predefined data partitions should be compared, but
the number of combinations becomes astronomically large and mpractical to evaluate
when many genes are used. “Background information” or model parameters of each
partition have been used to guide the combination of data partitions (Brandley et al.,
2005; Poux et al., 2005). For example, the first codon positions were grouped with
second condon positions but not the third (Brandley et al., 2005), or partitions with no
model parameters differed by more than 100% were grouped together (Poux et al., 2005).
These strategies were good attempts for grouping similar data partitions, but they failed
to provide a systematic and objective way to explore potential combinations. A better
way to group similar data into categories is cluster analysis (Hartigan, 1975). In this
study, we proposed using cluster analysis to group the predefined partitioins (by genes
and codon positions) into fewer number of data partitions. The model parameters
estimated from each predefined partitions were used as the raw data for cluster analysis.
We tested whether the reduced number of partitions fit the data better or not by
comparing the AIC values and Bayes factors. Partitioned analysis were implemented in
both maximum likelihood (ML) method (Jobb, 2006) and in Bayesian approach
(Ronquist and Huelsenbeck, 2003).

Ray-finned fish (Actinopterygii) comprises near 27,000 described species,
recognized as three subclasses, 44 orders and 453 families (Nelson, 2006). It is the most
speciose vertebrate group with high diversity in morphology, ecology, behavior and
physiology (see Helfman et al., 1997). Ray-finned fish dates as far back as the Late
Silurian (Burrow and Turner, 2000). Understanding the phylogeny of ray-finned fish
would help us in studies, such as comparative anatomy, adaptation, taxonomy, vertebrate
evolution, biogeography and etc. Because ray-finned fish has the largest diversity in
vertebrates, thus high comparative values, knowing the phylogenetic relationships of ray-
finned fishes also helps in study of vertebrate genome evolution (Crollius and
Weissenbach, 2005). The phylogenetic relationships of ray-finned fish have been the
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interest of ichthyologists and systematists for many years, yet many parts of the
phylogeny are still controversial and unresolved (e.g. Cloutier and Arratia, 2004;
Greenwood et al., 1973; Kocher and Stepien, 1997; Lauder and Liem, 1983; Meyer and
Zardoya, 2003; Miya et al., 2003; Springer and Johnson, 2004; Stiassny et al., 1996b).

Because the wide range of taxa involved and the lack of synapmorphies, it is
difficult to resolve higher-level phylogenies of ray-finned fish by morphological
characters alone. To better address the phylogenetic relationships using morphological
characters, we still have a lot to learn about the homologies of various characters
(Cloutier and Arratia, 2004). Alternatively, molecular data have been used to uncover the
phylogenies of ray-finned fish. (Chen et al., 2003; Kocher and Stepien, 1997; Lopez et
al., 2004; Miya et al., 2005; Miya et al., 2003; Wiley et al., 2000). Many of the early
molecular studies used short sequences and a few loci. Because of the stochastic nature of
molecular evolution and insufficient data in short sequences, nodes supported by strong
signal can be recovered, whereas some difficult nodes, such as the deep and short internal
branches, are hard to be resolved (Weisrock et al., 2005). Collecting data from long
sequences or concatenating sequences from many loci would increase the signal to noise

ratio and improve the resolution of phylogenetic inference.

One strategy to collect more data is to sequence whole mitochondrial genome,
which has the advantage of easy amplification and no difficulty in identifying homologs
in contrast to using nuclear genes (Curole and Kocher, 1999; Miya and Nishida, 2000).
Impressive works have been done on ray-finned fish phylogenies using mitochondrial
genomic data (Inoue et al., 2003; Ishiguro et al., 2003; Miya et al., 2001; Miya et al.,
2005; Miya et al., 2003; Saitoh et al., 2003). Novel phylogenetic hypotheses have been
proposed, and the resolutions of many parts of the ray-finned fish phylogeny have been
improved by these studies. However, one major problem with mitochondrial genomic
data is that all genes are usually linked in mitochondrial of vertebrates, thus the whole
mitochondrial genome is essentially a single locus. While the large number of characters
in mitochondrial genomes can reduce the sampling errors, the linkage of all
mitochondrial genes will increase the risk of systematic errors. In fact, independent
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evidences from nuclear genes have been called to investigate the discrepancies between
the results based on mitochondrial loci and morphological data (Curole and Kocher,
1999; Hurley et al., 2007; Meyer and Zardoya, 2003). Here we collected DNA sequences
for ten newly developed nuclear gene markers (see Chapter two) in 52 ray-finned fish

taxa and four outgroups to assess the hypotheses of ray-finned fish phylogenies.

3.3. Materials and methods

3.3.1. Taxon Sampling, Amplification and Sequencing

We sampled 52 ray-finned fish taxa representing 41 of 44 ray-finned fish orders,
except for Saccopharyngiformes, Ateleopodiformes and Stephanoberyciformes due to the
short of tissue samples (see Appendix B). Four tetrapods Xenopus tropicalis,
Monodelphis deomestica, Mus musculus and Homo sapiens were used as outgroups to
root the ray-finned fish phylogeny. Certainly the taxon sampling in the present paper is
not enough to represent the most diversity of ray-finned fish, even the 41 order, because
the delineation of the orders is still an open question (Nelson, 1976, 1984, 1994, 2006).
Nevertheless, this is the first attempt to address the phylogenetic relationships among ray-

finned fishes using sequences of multiple nuclear genes in a large taxonomic scale.

The nuclear gene makers used were zic family member 1 (zicl), cardiac muscle
myosin heavy chain 6 alpha (myh6), ryanodine receptor 3-like protein (RYR3), si:ch211-
105n9.1-like protein (Ptr), T-box brain 1 (tbrl), ectodermal-neural cortex 1-like protein
(ENC1), glycosyltransferase (Glyt), SH3 and PX domain-containing 3-like protein
(SH3PX3), pleiomorphic adenoma protein-like 2 (plagl2) and brain super conserved
receptor 2 (serb2) gene (see Chapter two). Sequences of these ten loci for the four
tetrapods and the two tetraodontiforms were retrieved from the ENSEMBL genome
browser (http://www.ensembl.org, see Appendix B). Sequences for the rest of taxa were
determined in this study. The primers used for PCR and sequencing and the reaction
conditions followed Chapter 2.


http://www.ensembl.org/
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3.3.2. Alignment and Homology Assessment

Because the ten loci used are exons of protein-coding genes, the alignments were
done on translated protein sequences using ClustalW (Thompson et al., 1994)
implemented in MEGA3.1 (Kumar et al., 2004). Then the aligned protein sequences were
translated back into nucleotides for phylogenetic analysis. The ten nuclear genes used are
“practical single-copy” gene, which have no duplicates that are more than 50% similar to
themselves. Nonetheless, to test whether or not the sequences collected for each locus
have paralogs resulted from the fish specific genome duplication events (Taylor et al.,
2003; Van de Peer et al., 2003), the most similar fragments, putative “paralogs” in the
genome other than the locus itself were download from ENSEMBL for zebrafish,
stickleback, medaka, torafugu and spotted green pufferfish. The putative “paralogs” were
aligned with all sequences collected in the present study and Neighbor-joining (NJ) trees
were constructed for each locus (Saitou and Nei, 1987). If all sequences collected are
homologous to each other, the “paralogs” are expected to be positioned at the base of the

common ancestor of ray-finned fishes.

3.3.3. Parameters Estimation, Cluster Analysis and Data Partitioning

At first, data matrix for ten nuclear genes was partitioned as the common ways —
by genes, by codon positions or by both genes and codons. The most thorough
partitioning scheme was by both genes and codons, resulting in 30 blocks of data.
Reduced number of partitions may exist that can better explain the data because some of
the 30 partitions could have similar evolutionary properties. To reduce the number of
partitions from the full 30, I used cluster analysis to group partitions based on parameters
estimated from each partitions using GTR + Gamma model. The parameters, including
five substitution rates, three base compositional proportions, one gamma parameter and
one relative rate for each data partition were estimated using both ML method
implemented in TreeFinder (Jobb, 2006) and Bayesian method implemented in MrBayes
(Nylander et al., 2004). The ten parameters estimated were then used in a hierarchical
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cluster analysis with centroid distance to join the partitions into reduced number of
groups. The cluster analysis was carried as PROC CLUSTER in SAS program. The tree
resulted from the cluster analysis was used to guide the grouping process that reducing
the number of partitions. All different partitioning schemes, from one to 30 partitions
were compared for their effects in phylogenetic analysis using AIC values and Bayes
factors. The effects of different partitioning on resulted topology were also examined.

3.3.4. Phylogenetic Analysis

The basic summary information for each loci, such as the number of parsimony
informative site, average genetic distance and consistence index were calculated using
PAUP (Swofford, 2003). All data partitioning schemes were tested use both ML and
Bayesian methods. The best partitioning scheme was chosen by AIC values or Bayes
factors. Bayesian analyses implemented in MrBayes v3.1.1 and ML analyses
implemented in TreeFinder (Jobb, 2006) were performed on the nucleotide sequences.
GTR + G model was used for all data partitions, and the model parameters were
estimated for each partition. Three million generations with 4 chains were run for
Bayesian analysis. The tree sampling frequency used was one in a hundred. The last 1/6
trees sampled were used to compute the consensus tree and posterior probabilities. Two
independent runs were used to provide additional confirmation of convergence of
posterior probability distribution. Two hundreds bootstraps was carried for ML analysis
for the best partitioning scheme. Alternative hypotheses were tested by one-tailed
Shimodaira and Hasegawa (SH) test (Shimodaira and Hasegawa, 1999) with 1000 RELL

bootstrap replicates implemented in TreeFinder.

3.4. RESULTS

3.4.1. Characteristics of the Ten Nuclear Loci Amplified in Ray-finned Fishes
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The aligned sequences concatenating all ten loci produced 7995 nucleotides.
Sequences were collected for most taxa and loci with about 16% missing data (see
Appendix B). The summary information for each locus is listed in Table 3.1. NJ analyses
on putative “paralogs” and sequences collected showed that the “paralogs” sequences are
all positioned at the root of ray-finned fish tree or join the root as polytomies, suggesting
the sequences collected are homologous fragment (results not shown).

3.4.2. Comparison among Partitioning by Genes and Codons and Its Reduced Forms

To analyze the concatenated sequences, data were traditionally partitioned by
genes, codon positions or by both genes and codons. Partitioning by both genes and
codons resulted in 30 blocks of data in the present study. Hierarchical cluster analysis
was carried to join the 30 blocks into smaller number of groups. Cluster analyses were
performed on the model parameters (results not shown) estimated using both ML and
Bayesian approaches. Clusterings based on parameters estimated from ML or Bayesian
method have similar patterns except for minor differences exist within the major clades
(Fig. 3.1). The most significant clustering indicated by the PST2 values (data not show)
for both ML and Bayesian approach are two clusters and three clusters. The two clusters
include a clade of first and second codon positions and a clade of third codon positions of
all ten genes, while the three clusters include three clades grouped by codon positions
(Fig. 3.2).

All different partitioning schemes, from 1 partition (no partitions) to 30 paritioins
guided by the tree resulted from cluster analysis as well as the traditional partitioned by
genes strategy were compared for their effects on phylogenetic analysis. The
performances of different partitioning schemes were evaluated under both ML and
Bayesian context (Table 3.2). The AIC value decreases dramatically when the data were
partitioned by (1% + 2" and 3" codon position, while the AIC value decreases slowly in
subsequent further dividing the data. Nonetheless, partitioning by both genes and codons
has the lowest the AIC value (Table 3.2, Fig. 3.2a). Because there were very little
improvements after more than 21 partitions were used indicated by the value of AIC;-

AIC .1, | chose 21 partitions as our best scheme for phylogenetic analysis (Table
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3.2).The Bayesian analysis for different partitioning schemes resulted in the similar
patterns (Table 3.2, Fig. 3.2b). However, partitioning the data by 17 groups yielded the
best likelihood instead of using the full 30 partitions by both genes and codons (Table
3.2, Fig. 3.2b). When more partitions are used, less data are available to estimate the
increased number of parameters, which can lead to higher sampling errors and the slower
convergence of MCMC runs in MrBayes. | found that higher number of partitions
resulted in slower convergence of two MrBayes runs suggested by the average standard
deviation of split frequencies (Table 3.2). Considering both the likelihoods and the
standard deviation of split frequencies, | chose 16 partitions instead of 17 partitions for
the best partitioning scheme (Table 3.2). In both of the ML and Bayesian context,
partitioning by 10 genes produced much worse likelihood than the 10 partitions selected
by cluster analysis (Table 3.2, Fig. 3.2). Data partitioning not only changed the
likelihood, but also changed topology of the resulted phylogeny (Fig. 3.2,).

3.4.3. Interrelationships among Ray-finned Fishes

Considering both AIC values and Bayes factors, the reduced number of partitions
preduced better results than the tranditional partitioning by both genes and codon
positions. ML analysis and Bayesian analysis based on their best partitioning schemes
yielded almost the same topology (Fig. 3.3). The only difference between the results from
ML methods and Bayesian approach is the branching order among Aulopiformes,
Percopsiformes, and Gadiformes, which is depicted as a polytomy in Fig. 3.3.

3.5. DISCUSSION

3.5.1. Effects of Different Partitioning Schemes

When data from multiple loci are used in phylogenetic analysis, partitioned
analysis is one of the best ways to accommodate the heterogeneous molecular evolution
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among different parts of the concatenated sequences. The most common ways of
partitioning multiple loci data are by secondary structures, by genes or by codons
(Brandley et al., 2005; Castoe et al., 2004). Using more partitions should increase the
likelihood of the data, but it also loses statistic power because more parameters need to be
estimated for more partitions. Therefore, combining partitions into smaller groups should
be considered and evaluated by their AIC values or Bayes factors to optimize the best
strategy of partitioning. However, no systematic and objective ways of combining
partitions have been proposed other than using “background information” (Brandley et
al., 2005) or similarity between model parameters (Poux et al., 2005). In this paper,
parameters estimated from the smallest block of partitions (by genes and codons) were
used in cluster analyses to determine the way of grouping data. My results show that
partitioning by codons resulted in the biggest improvement in AIC values and Bayes
factor, indicating the most heterogeneity is between different codon sites, especially
between the first and second codon and the third codon. The cluster analysis has been
shown as an effective way to group the small partitions. Although, the improvement of
partitioning became smaller when a larger number of partitions used, the largest number
of partitions is still the best strategy according to AIC values (Table 3.2 and Fig. 3.2).
However, the Bayes factors suggest that reduced number of partitions is better than the
full 30 partitions by genes and codons. Nylander et al. (2004) also found Bayes factor
preferred simple partitioning model than complex ones in comparison of non-nested
models. Because Bayes factors choose the reduced number of partitions other than the
full 30 partitions and the AIC values indicates small gains after more than 21 partitions,
we think reduced number of partitions obtained from cluster analysis is more efficient
than fully partitioned by both genes and codon positions.

Data partitioning not only improves the likelihood of the data, but also increases
sampling error due to too many parameters introduced. Therefore, when selecting the
partitioning scheme, we prefer a conservative rule — picking the model with less number
of partitions if there is no significant improvement for the more complex model. If a
partition has only a few characters, there would be just not enough data to estimate the
model parameters, which could lead to no convergency of MCMC process. The slower

convergency rate when data were analyzed with higher number of partitioins were
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observed in my Bayesian analysis indicated by the standard deviation of split frequencies
(Table 3.2). The high standard deviation of split frequencies can be used as a good
indicator of excessive number of data partitions.

In the contrary of the large change in the likelihood, the topology usually remain
similar among different partitioned analysis (Buckley et al., 2001). However, | observed
many changes in topology when the data were analyzed with different number of
partitions for both ML and Bayesian methods (Fig. 3.2). First topology changes happened
when the partitioning used switched from no partition to two partitions and to three
partitions (Fig. 3.2). Then the topology remained the same as the number of partitions
increased. When the number of partitions kept rising, more topological changes were
resulted (Fig. 3.2). This pattern of topological changes may suggust that when a few
reasonable partitions were introduced into the model, it would reveal the true topology by
fitting the data better. When too many partitions were used, it many change the topology
again just because the high random errors being introduced into the model along with
more parameters. These later topological changes were more conspicuous in Bayesian
analysis than in ML methods (Fig. 3.2), which is consistant with that Bayesian approach
account for model uncertainty more than ML methods does. The failure of covergency of
MCMC runs indicated by the standard deviation of split frequencies also predicted the

unstable topology inferred using Bayesian method when too many partitions were used.

3.5.2 Lower Actinopterygians

The extant actinopterygians belong to five major clades, polypteriforms,
acipenseriforms, lepisosteiforms, amiiforms and teleosts. Lower actinopterygians are the
basal ray-finned fishes, including two extant lineages, polypteriforms and
acipenseriforms and about 270 fossil genera (Gardiner, 1993; Grande and Bemis, 1996).
Lower actinopterygians were sometimes referred to as “Chondrostei” (Nelson, 1994;
Schaeffer, 1973), but recent evidences from both morphological (Gardiner et al., 2005;
Grande and Bemis, 1996) and molecular (Inoue et al., 2003; Kikugawa et al., 2004;
Venkatesh et al., 2001) data all pointed out that “Chondrostei” is actually a paraphyletic

group. The most consensus view place polypteriforms as the basal group to all other
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actinoterygians while putting acipenseriforms as the sister group to neopterygians
(Lepisosteus, Amia and teleosts) (Nelson, 2006). Interestingly, my results support the old
“Chondrostei” hypothesis, grouping the polypteriforms together with acipenseriforms as
a monophyletic group with a bootstrap value of 64% and a posterior probability of 0.86.
However, the SH-test cannot reject polypteriforms as the basal clade to all other ray-
finned fishes (p=0.823, Table 3.3).

3.5.3. Basal Neopterygians

Most morphological (Patterson, 1973; Regan, 1923) and molecular (Crow and
Wagner, 2006; Hurley et al., 2007; Kikugawa et al., 2004; Lé et al., 1993) evidences
support the monophyly of Neopterygii, a group represented by extant lepisosteiforms,
amiiforms and teleosts. However, the relationships among these three lineages are hotly
debated. Historically, Lepisosteus and Amia were grouped into a monophyletic clade as
“Holostei”, placed as the sister-group to teleosts (Jessen, 1972; Nelson, 1969). More
recent morphological hypotheses suggest that either Amiiformes (Grande and Bemis,
1996; Patterson, 1973) or Lepisosteiformes (Olsen, 1984) is the sister-group to teleosts.
However, mitogenome data and a insertion in nuclear RAG2 gene support a very
different view, that is the Acipenseriformes, Lepisosteidae and Amia form a
monophyletic “ancient fish” group, and together join to teleost as a sister-group (Inoue et
al., 2003; Venkatesh et al., 2001). My data support the “Holostei”” hypothesis with a
100% bootstrap value and a 1.0 posterior probability. SH-tests using our data could not
reject the “ancient fish” (p=0.225) hypothesis, but rejected either the Amia and teleosts
sister-group (p=0.028) or the Lepisosteidae and teleost sister-group hypotheses (p=0.023)
(Table 3.3). The “Holostei” hypothesis was also recovered in a study using multiple
nuclear genes (Kikugawa et al., 2004) and in a re-analysis of morphological characters
using both extant and fossil species (Hurley et al., 2007). The discrepancies between my
results and the “ancient fish” theory could be explained by the artifacts in data analysis of
mitogenome data (Kikugawa et al., 2004) or parallel insertion events in the RAG2 gene.
However, to settle this controversy, | should collect more molecular and morphological
data and understand better about the evolution of molecular and morphological
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characters. Rare genomic changes (RGCs), such as the insertions in coding region of
RAG2 are good phylogenetic characters (Rokas and Holland, 2000), but they are not
immune from homoplasy. Only one insertion in RAG2 gene support the “ancient fish”
hypothesis (Venkatesh et al., 2001), therefore more RGCs characters should be pursued
to test the competing hypotheses.

3.5.4. Basal Teleosts

The monophyly of Teleostei is supported by many morphological characters
(Arratia, 2000; de Pinna, 1996). There are four major teleostean lineages, Elopmorpha,
Osteoglossomorpha, Ostarioclupeomorpha and Euteleostei (Nelson, 2006). After strong
evidences grouped the Clupeomorpha and Ostariophysi into Ostarioclupeomorpha
(Arratia, 1997; Lé et al., 1993; Lecointre and Nelson, 1996), ostarioclupeomorphs are
generally placed as the sister-group to euteleosts (Arratia, 1997; Inoue et al., 2001; Lé et
al., 1993). However, the interrelationships among elopmorphs, osteoglossomorphs and
more advanced teleosts are still controversial. Both morphological (Patterson and Rosen,
1977) and molecular (Inoue et al., 2001) studies support that osteoglossomorphs are more
primitive than elopmorphs, but this view was challenged by a hypothesis suggesting that
elopmorphs is the living sister-group of all other extant teleosts (Arratia, 1991, 1997,
2000; Shen, 1996). Base on weak support from 28S gene, L€ et al. (1993) proposed
another different hypothesis that osteoglossomorphs and elopmorphs are more close to
each other than to the rest teleosts. Our data support elopforms as the basal teleost,
although with very low node support (Fig. 3.3). This result is the first evidence from
molecular data that confirmed the view of Arratia (1997) that elopmorphs are the most

primitive living teleost.

As | mentioned above, sister-group relationship of clupeomorphs and
ostariophysans are well established (Arratia, 1997; Lé et al., 1993; Lecointre and Nelson,
1996). My results are consistant with the Ostarioclupeomorpha hypothesis. Ostariophysi
has five major lineages, gonorynchiforms, cypriniforms, characiforms, siluriforms and

gymonotiforms (Fink and Fink, 1981; Nelson, 2006). Because the lack of otophysic
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connection, gonorynchiforms were named as Anotophysi and constantly placed as the
basal group to all the rest ostariphysans (Fink and Fink, 1981; Nelson, 1994, 2006; Rosen
and Greenwood, 1970). A recent study using mitogenomic data challenged this view and
proposed that gonorynchiforms are more closely related to clupeomorphs (Saitoh et al.,
2003). However, my results support the classic 