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Abstract 
 

Chirality can be induced in achiral solvent molecules located near a chiral 

molecule or surface, but there have been very few systematic studies in this field either 

experimentally or theoretically.  The focus of this thesis is to study the chirality transfer 

from chiral molecules to achiral solvents. 

To capture the chirality transfer in solvent molecules, a solvent model that is 

sensitive to the changes in the environment is needed.  We developed new polarizable 

and flexible models based on an extensive series of ab initio calculations and molecular 

dynamics simulations. The models include electric field dependence in both the atomic 

charges and the intramolecular degrees of freedom.  Modified equations of motion are 

required and we have implemented a multiple time step algorithm to solve these 

equations.  Our methodology is general and has been applied to ethanol as a test.  For 

other solvents in our simulations, such as 2-propanol, limited models are used. 

The chirality transfer from chiral solutes to achiral solvents and its dependence on 

the solute and solvent characteristics are then explored using the new polarizable models 

in molecular dynamics simulations.  The chirality induced in the solvent is assessed based 

on a series of related chirality indexes originally proposed by Osipov[Osipov et al., Mol. 

Phys.84, 1193(1995)].  Two solvents are considered: Ethanol and benzyl alcohol.  The 

solvation of three chiral solutes is examined: Styrene oxide, acenaphthenol, and n-(1-(4-

bromophenyl)ethyl)pivalamide (PAMD).  All three solutes have the possibility of 

hydrogen-bonding with the solvent, the last two may also form π-π interactions, and the 

last has multiple hydrogen bonding sites.  
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The chirality transfer from chiral surfaces to achiral solvents is also explored.  

Emphasis is placed on the extent of this chirality transfer and its dependence on the 

surface and solvent characteristics is explored.  Three surfaces employed in chiral 

chromatography are examined:  The Whelk-O1 interface; a phenylglycine-derived chiral 

stationary phase (CSP); and a leucine-derived CSP.  The solvents consist of ethanol, a 

binary n-hexane/ethanol solvent, 2-propanol, and a binary n-hexane/2-propanol solvent.  

Molecular dynamics simulations of the solvated chiral interfaces form the basis of the 

analysis and position dependent chirality indexes are analyzed in detail.   
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Chapter 1   
Introduction 
1.1 Introduction to chirality 

The definition of chirality was first stated in Kelvin’s Baltimore Lectures on 

Molecular Dynamics and the Wave Theory of Light in 1904: "I call any geometrical 

figure, or group of points, chiral, and say it has chirality, if its image in a plane mirror, 

ideally realized, cannot be brought to coincide with itself" [1].  Chiral molecules don’t 

have mirror planes, centers of inversion, or rotation-reflection axes [2]. 

 

Figure 1.1. Chiral molecules are not super imposable with their mirror images. 

 

Chiral molecules can be found everywhere: in drugs, in agriculture, in electronics, 

in foods and beverages.  Mirror-image chiral molecules are referred to as enantiomers, 

and two enantiomers are shown in Fig. 1.1.  They have the same connectivity and most of 

the same physical properties, but they have different biological properties. For example, 

carvone is an important constituent in many plant oils [3].  Its R-isomer has a strong 

spearmint odor and is essential in oil of mint, while the S-isomer is found in caraway oil 
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and has a different odor [4].  Similarly, lemon and orange peels both contain limonene. 

The S-enantiomer and R-enantiomer are found in lemon and orange peels, respectively, 

and they have different odors [4]. These enantiomers have different scents because of the 

different interactions between these molecules and our olfactory chiral receptors [5].  In a 

more extreme case, thalidomide, which was a sedative drug in the late 1950s, caused a 

tragedy because one enantiomer helped against nausea, while the other caused fetal 

damage [6].  In 1992, the United States Food and Drug Administration (FDA) released a 

new policy on chiral drugs, stating that all new drugs would need to be characterized 

pharmacologically and toxicologically if they are to be marketed as racemic mixtures [7].  

As a result of this new policy, the demand for chemical processes that can selectively 

produce chiral molecules has greatly increased.  In 1985, most chiral medicines were sold 

as racemic mixtures [8]. In 1999, single-isomer chiral drugs accounted for only 32% of 

the $360 billion pharmaceutical sales [9].  In 2006, in contrast, 75% of new drugs 

approved by the FDA were single enantiomers [10].  

The separation of chiral molecules is often difficult.  Chiral pool and chiral 

resolution are the most widely applied methods in industry [11].  The chiral pool consists 

of naturally occurring chiral molecules that are enantiomerically pure, such as amino 

acids, carbohydrates, hydroxy acids, alkaloids and terpenes. It is a very effective way of 

introducing asymmetry into synthesis and keeping the chirality intact. In the early 1990s, 

chiral pool materials were used to derive most of the chiral drugs [10].  However, chiral 

pool synthesis relies heavily on catalysis, which makes it very time consuming, 

unpredictable and costly [10].   
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Chromatographic techniques for separation of enantiomers have been developing 

quickly in the past years.  The chromatographic separation of enantiomers can be 

achieved by various methods, but chiral discriminators or selectors are always needed.  

There are two types of selectors that can be used:  Chiral mobile phase additives and 

chiral stationary phases (CSP) [12].  In the first case, enantioselective retention is caused 

by the differences in adsorption properties of the formed diastereomeric complexes to an 

achiral stationary phase [13, 14].  The chiral selection by CSP is due to differences in the 

two stereo isomeric complexes that are formed between the enantiomers and the  

selector [15].   

 

1.2 Studies on chirality transfer 

When an achiral solvent molecule is placed near a chiral molecule or surface, its 

environment becomes chiral and it may respond to the environment in an asymmetric 

way.  In that case, chirality is transferred from the chiral molecule to nearby achiral 

solvent.  This chirality transfer may occur in a zone near the chiral molecule and this 

defines a “chiral zone”, as shown in Fig. 1.2.  The size and character of the chiral zone 

will be critical to understanding chemical reactions involving chiral molecules, the 

mechanism of chiral chromatography and the results of chiral spectroscopy. 

Chirality transfer in liquid crystals has been studied in detail and some chiral 

dopants are well-known to induce macroscopic chirality in mesogenic hosts [16-22].  

Experimental results suggest that the solute influences solvents by polar ordering of the 

solvent medium and steric hindrance [20].  For example, Lemieux[22] studied the chiral 
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induction in a smectic liquid crystal phase when doped with molecules with 

atropisomeric biphenyl cores.  It was found that the chirality transferred from chiral 

dopants heavily depended on the core structure of the liquid crystal host and the 

mechanism of the chirality transfer was explained by the concepts of host-guest 

chemistry.  Most of the current theoretical studies of this chirality transfer focus on the 

correlation of solute properties with the experimentally measured helical twisting 

power[23].   

 

 

Figure 1.2. Representation of chiral “zones”.  The left and right panels illustrate the 
chiral zone idea around a chiral solute and between chiral surfaces, respectively. 

 

Compared to studies of chirality transfer in liquid crystals, isotropic phases are 

relatively unexplored.  However, it is known that solvent effects can greatly influence 

spectroscopy, such as optical rotatory dispersion (ORD).  Solvents can influence the 

structures of solutes and indirectly affect the spectroscopy.  For instance, Kumata et 

al.[24] measured ORD spectra for S-methyloxirane, which is a small and relatively rigid 
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molecule with a three-membered ring, and observed a significant difference between its 

optical rotation in water and in benzene.  Fischer et al.[25] measured the optical rotation 

of (S)-methylbenzylamine in a wide range of solvents with various concentrations, and 

very large variations were observed.  After comparing the experimental and calculated 

results, they concluded that hydrogen bonding has large contributions on specific rotation.  

Recently, experimental and theoretical studies have begun to focus on the 

chirality induced in achiral solvent when it surrounds a chiral solute.  Yashima et al.[26] 

mentioned, in an NMR study, that the two methyl groups in 2-propanol were not 

equivalent when they were in the proximity of cellulose tris(4-

trimethylsilylphenylcarbamate).  Jennings[27] has reviewed the effect of chiral lanthanide 

shift reagents, such as the tris[3-trifluoromethylhydroxymethylene-d-

camphorato]europium(III), on achiral solvents where the appearance of chemical shift 

nonequivalence was observed in methyl groups of 2-propanol, 2-propylamine and 2-

methyl-2-butanol, and the methylene protons in 2,2-dimethylpropanol and 2-methyl-2-

butanol.  In a recent vibrational circular dichroism(VCD) study, Losada et al.[28] found 

evidence for chirality transfer from methyl lactate to hydrogen-bonded water.  It was 

found that the H–O–H bending modes of the achiral water molecules that are H-bonded 

to a methyl lactate molecule gave rise to a strong VCD peak.  This was further supported 

by a series of density functional theory (DFT) calculations of methyl lactate-(H2O)n 

complexes and it was concluded that the transfer involved one primary solvent molecule.  

In contrast, Mukhopadhyay et al.[29, 30] suggested that solvent imprinting was a major 

component of the ORD of methyloxirane in benzene and water.  The authors used Monte 

Carlo (MC) simulations combined with DFT methods and explicit solvent models and 
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found that the chiral distribution of the solvent molecules exceeded the contribution of 

the solute itself.  They also mentioned that an explicit solvent model was essential in 

describing the chiroptical properties of molecules in solution.  Fidler et al.[31] used MD 

simulations to study the distribution of simple achiral solvent molecules surrounding a 

chiral solute, and found that achiral solvents can contribute 10-20% of the circular 

dichroism (CD) intensity.  This implies that chirality has been induced in the solvation 

shell.  It was also found that the magnitude of the solvent effect depended strongly on the 

nature of both the solute and the solvent.   

These studies clearly confirm the presence of chirality transfer in solutions. This 

effect can be important in organic reactions that employ chiral reagents and achiral 

solvents because the induced chirality in solvents can have an impact on the reaction.  

Alternatively, chiral chromatography uses binary or ternary achiral solvents in contact 

with chiral surfaces.  The induced chirality in the solvent hasn’t been considered in any of 

the proposed selection mechanisms[15, 32-38], but, at least in principle, it could 

influence the stereo selectivity if it is significant.  Also, except for the examples 

mentioned above, most of the current theoretical calculations of spectroscopy, such as 

VCD and ORD, only consider the contributions from the chiral solutes and the solvent 

effects on solutes, but the solvent molecules are always considered as internally achiral 

and have no direct impact on the spectra.  However, if the chirality transfer is strong 

enough, the induced chirality in solvents may directly contribute to the spectra and, 

therefore, can be important when trying to correctly interpret experimental results.  
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1.3 Polarizable models 

Non-polarizable force fields for molecular simulations use effective pairwise 

potentials for electrostatic interactions and are widely used in simulations of condensed 

phases and biological systems [39, 40].  However, limitations exist in non-polarizable 

force fields [39].  Because they use fixed atomic charges and intramolecular potentials, 

which cannot adjust themselves according to different environments, the molecules are 

not treated accurately.  For instance, solvation free energy calculations indicate that these 

force fields tend to underestimate the solubility of amino acid side chain analogs [41]. In 

other studies, non-polarizable flexible models have been found to underestimate the 

dipole moment of water molecules in bulk [42]. 

There is no doubt that simulation reliability depends upon the accuracy of the 

potential functions.  In order to study chirality transfer, potential functions should be very 

sensitive to environmental changes so that asymmetric effects can be reflected.  

Therefore, non-polarizable models are not sufficient for chirality transfer, and addition of 

polarizability into the models is necessary.   

There have been continuing efforts to incorporate polarization effects into non-

polarizable force fields [43-47].  More specifically, molecule’s mean response to a field 

is taken into account by iterative schemes: The charges or dipole moments of molecules 

can generate fields and the fields will, in turn, influence the charges or dipole moments of 

each molecule.  Gao et al.[43] developed a polarizable intermolecular potential function 

(PIPF) for liquid alcohols.  In this model, all atoms are represented explicitly, and the 

total energy of the system consists of a pairwise term and a nonadditive polarization term.  

The pairwise term is classical and is also used in non-polarizable models.  The 
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polarization term follows from interactions between induced atomic dipole moments ( iμ ) 

and the electrostatic field at the position of each atom ( 0
iE ):  

∑−=
N

i
ii

pol EE 0

2
1 μ       [1.1] 

The induced dipole moment is defined as  

∑
≠

⋅−=
ij

jijiii TE )( 0 μαμ       [1.2] 

where iα  is the polarizability and ijT  is the dipole tensor.   The induced dipole moments 

are calculated self-consistently and 4-5 iterations are typically needed [43].  This model 

provides a more accurate calculation of intermolecular interactions for heterogeneous 

systems compared to non-polarizable models.  The disadvantage of this model is obvious:  

Self-consistency requires iterations at each time step, which makes it much more time 

consuming than non-polarizable models.  More importantly, the atomic dipole moment is 

only conceptual and cannot provide information on real properties such as charge 

distributions. 

Noskov et al.[42, 44, 45, 48] include charge carrying Drude particles in their 

molecular model to allow the molecular dipole to respond to the field.  This model, 

originally proposed by Paul Drude in 1900[49],  redistributes the partial charge on a 

heavy atom, such as oxygen, among a set of massless charged sites connected by a 

harmonic spring.  The positions of these auxiliary sites are self-consistently determined in 

response to the external field, and the charges and force constants of these fictitious 

particles are related to the atomic polarizability.  Before using the Drude model, the 

number and distribution of these auxiliary sites should be chosen.  This model has been 
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used to successfully reproduce the vaporization enthalpy, dielectric constant, and self-

diffusion of bulk liquids, such as water and ethanol.  Similar to the PIPF, this model is 

computationally expensive because for each simulation step, about 16 iterations are 

required by the self-consistent procedure [42, 44].   

Svishchev et al.[47] developed a polarizable point-charge (PPC) model for water.  

This three-site water model introduced field-dependence to atomic charges and 

intramolecular structures.  In the implementation of this model, the atomic charges are 

iterated to calculate the self-consistent electrostatic fields and three to four iterations are 

normally required in each time step. This model has been used to successfully reproduce 

the static and dynamics properties of liquid water from supercooled to near-critical 

conditions[47]. 

Rick et al.[46], building upon earlier work by Rappé and Goddard[50], introduced 

a fluctuating charge (FC) model that uses an extended Hamiltonian approach to allow the 

molecules to respond to their environment.  Specifically, this model was derived on the 

basis of the principle of electronegativity equalization[50], and starts with the energetic 

costs of charging an atom.  The atomic charges are assigned fictitious masses and the 

charge values are dynamic variables.  The charge fluctuations are dependent on the 

electrostatic field and subjected to the overall charge constraint, such as charge neutrality 

for each molecule.  This model has been used by a number of groups[51-55] to study 

condensed phases as well as biological systems, such as peptides, and favorable results 

have been reported.  For instance, average molecular dipole moments predicted by the FC 

model were found to be higher than those in non-polarizable models and closer to 

experiments even though the starting dipole moments are consistent with those in the gas 
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phase [54]. Unlike other polarizable models, the FC model doesn’t require any iteration 

to achieve self-consistency since it is an extended Hamiltonian approach.  This makes the 

cost of the simulation only slightly more than for a non-polarizable model.  The 

disadvantage of this model is that, due to the fast fluctuations of atomic charges, the time 

step in the simulations is smaller in order to remain on the Born-Oppenheimer surface.  A 

way to improve this is to propagate charge degrees of freedom separately from the 

nuclear degrees of freedom [56].   

Although these models incorporate polarization effects by making electrostatic 

potentials field-dependent, they all treat the intramolecular potentials to be stationary.  

However, when molecules are in different environments, their intramolecular potentials, 

such as the torsional potentials, could be different.  A field-dependent intramolecular 

potential has been developed only once previously, for water [57].  In that model, the HH 

and OH stretching potentials depended on the field magnitude of oxygen.  However, this 

model is specific to water and the atomic charges were field-independent.  Therefore, 

prior to the current work, a polarizable model that includes field dependence in both the 

atomic charges and the intramolecular degrees of freedom had not been considered. 

In all, polarizable models can accurately describe a molecule’s responses to 

different environments and hence, can increase the accuracy of MD simulations.   Both 

the atomic charges and intramolecular potentials should be polarizable in order to 

accurately capture rapid changing properties, such as the induced chirality.  However, 

none of the existing methods incorporates all these features.  Therefore, a new 

methodology for developing this polarizable model is needed.  The development and 

implementation of a flexible, polarizable model is discussed in Chapter 3. 
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1.4 Measuring chirality 

The usual way to experimentally measure chirality is to use spectroscopy, such as 

CD, ORD and VCD [58-60].  These techniques are usually restricted to bulk samples.  In 

a recent study of fluorescence-detected circular dichroism, Hassey et al.[61] analyzed 

dissymmetry parameters of single (bridged triarylamine) helicene molecules, and found 

that both relatively large positive and negative dissymmetry parameters could be 

observed although the measured spectra of bulk samples only have very small positive or 

negative values because of cancellation effects. 

The chirality of individual molecules can be quantified by chirality indexes, 

which have been a subject of continuing interest over the past fifteen years, as 

summarized in several reviews[62, 63].  Many chiral indexes have been proposed[62, 64-

69], but most of them can be divided into two general classes: measures that quantify the 

difference between a chiral object and an achiral reference[68], and those that quantify 

the difference between an enantiomer and its mirror image[69].   

The first chirality function in chemistry was proposed by Guye et al.[70] in 1890.  

They introduced a function that correlated the optical rotation, which is a pseudoscalar 

property, with the molecular structure of a chiral molecule [62].  According to Guye, if 

the masses of the four points in a tetrahedral model are set to be the same, the chirality 

index P for a tetrahedron can be defined by ∏
>

−=
4

)()(
ji

ji llclP , where jl  is the distance 

between the four vertices. In this definition, )(lP  is only a function of geometry and is 

non-zero only in the asymmetric tetrahedron.  Therefore, this index indicates the 

distortion of a simple tetrahedron from its achiral form.  Murrayrust et al.[71, 72] 
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improved this chirality function and represented the atomic configuration of a molecule 

by a point in a multidimensional space.  The deformation of the configuration away from 

the symmetric reference structure can be calculated from the distance from this point to 

the axis. 

In the chiral indexes that quantify the difference between two enantiomers, the 

common volumes and Hausdorff Distances are the most famous [68, 69].  Let’s still take 

the tetrahedron as an example.  When overlapping the tetrahedron with its mirror image, 

there’s a volume that is occupied by both of them.  When you rotate one tetrahedron 

around and get the maximum overlapping volume, that volume is the common volume.  

When a tetrahedron is achiral, the common volume is equal to the molecular volume.  

Therefore, this property can be used as a chiral index.  A Hausdorff Distance measures 

how far two subsets of a space are from each other and is defined as: 

)},(infsup),,(infsupmax{ yxdyxdD
XxYyYyXx

H ∈∈∈∈
=     [1.3] 

where sup and inf are supremum and infimum, respectively, and d(x,y) is the distance of 

two points x and y.  Fig. 1.3 illustrates the concept of Hausdorff Distance.  The nuclear 

positions in a rigid molecular model can be represented by a subset of points in three-

dimensional space, and the Hausdorff Distance between the original and achiral point sets, 

indicates the measure of chirality.  
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Figure 1.3.  The Hausdorff Distance.  The set X and Y correspond to all points inside the 
rectangle and the ellipse, respectively.  ),(infsup yxd

YyXx ∈∈
 is the maximum distance from any 

points in X (rectangle) to the closest point in Y (ellipse).  ),(infsup yxd
XxYy ∈∈

 is the maximum 

distance from any points in Y to the closest point in X.  The Hausdorff Distance is the 
maximum of the two.   

 

More recently, Osipov et al.[66] proposed a new chirality index that is different 

from the previous ones.  It does not rely on a comparison to an achiral reference or a 

mirror image.  This chirality index is analogous to the optical activity tensor[66], and has 

been found to accurately predict the helical twisting power of chiral dopants[73-76] for 

relatively rigid twisted-core additives.  For more flexible additives, the relationship 

between the chiral index and the twisting power reflected conformational preferences due 

to interaction with the liquid crystal host[76, 77].   

Although chirality indexes are supposed to be non-zero when a molecule is chiral, 

it has been found that if a chirality index is continuous, there almost always exist chiral 

zeroes [78].  The rationale for this is based on the following arguments.  It is assumed 

that a molecular structure belongs to a continuous set, and any two structures can be 

connected by a continuous conversion.  Except for some rare cases[79, 80], a chiral 
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molecule can be converted into its mirror image along a chiral path and all structures on 

this path are chiral.  Since the chirality indexes of the two enantiomers have the same 

magnitude and opposite signs, there must be at least a point, during the conversion, that 

the chirality index becomes zero but the molecular structure is still chiral.  In fact, there 

are an infinite number of such points for any molecule.  Therefore, special care should be 

taken to deal with chiral zeroes when selecting chirality indexes. 

There are several challenges to assess chirality in molecular dynamics simulations.  

First, within the simulations, all the molecules are flexible and mobile.  The assessed 

chirality must reflect the conformational changes of each molecule but stay constant for 

reorientation or translation.  Second, achiral molecules will be instantaneously chiral but, 

over long times, this chirality should average to zero when the molecules are far from a 

source of chirality.  Third, the evaluation of instantaneous chirality must be rapid enough 

to allow simulations to proceed. 

In order to study chirality transfer, it is important to choose proper chirality 

indexes.   The indexes developed by Osipov et al[66] are chosen in our study because 

they fit all our requirements and can be modified to emphasize molecular shape, atomic 

charges, or atomic masses, etc..  By using multiple indexes, we can focus on different 

aspects of the molecular structures and charge distributions and prevent chiral zeroes at 

the same time. 
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1.5 Thesis organization 

The main objective of this thesis is to explore the chirality transfer from chiral 

solutes and surfaces to achiral solvents.  To achieve this goal, a new methodology for 

building polarizable, flexible models is developed. 

This thesis is organized as follows.  Chapter 2 presents theoretical methods, 

simulation algorithms, and details on polarizable models and chirality indexes.  Chapter 3 

describes the development of polarizable and flexible molecular models based on 

extensive ab initio calculations.  In this methodology, intramolecular motion is directly 

coupled to electrostatic fields.  Chapter 4 presents MD simulation results on chirality 

transfer from chiral solutes to achiral solvents, such as ethanol and benzyl alcohol.  

Detailed aspects such as the importance of solvent polarizability and solute flexibility, 

hydrogen-bonding network, and the solvent-solute interaction sites are described.  

Chapter 5 presents results on chiral induction studies for surfaces used in chiral 

chromatography, such as the Whelk-O1, leucine- and phenylglycine-based CSPs.  The 

solvents consist of ethanol, 2-propanol, and binary solvents that are commonly used in 

chromatography, such as n-hexane/ethanol and n-hexane/2-propanol.  Emphasis is placed 

on the location of the chirality transfer zones and the solvent characteristics in these 

zones.  Brief conclusions are presented in Chapter 6.   
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Chapter 2  
Theoretical Methods and Models 
2.1 Molecular dynamics simulations 

Most of the results in this thesis are obtained from Molecular Dynamics (MD) 

simulations.  The MD simulation technique is used to calculate equilibrium and 

dynamical properties of many-body systems.  It has been used widely from ideal gases 

and liquids to biomolecules[40, 81].  For every particle in the system, the forces acting 

upon it are calculated and Newton’s equations are used to evolve the system.  In the 

simulations, the coordinates and momenta of all particles are obtained and the physical 

properties can be calculated using statistical mechanics methods.  Therefore, MD is a 

bridge between theoretical and experimental approaches: It is a computer-based 

experiment.  MD simulation is particularly useful for systems that are too difficult to be 

studied experimentally or too complicated to be studied by quantum mechanical 

approaches. 

In a classical system of N molecules, the Hamiltonian ),( pqH rr
 is the sum of 

kinetic and potential energies and is a function of the coordinates ),...,,( 21 Nqqqq rrrr
=  and 

momenta ),...,,( 21 Npppp rrrr
=  of each atom: 

)()(),( qUpKpqH rrrr
+=      [2.1] 

where )(pK r
 and )(qU r

 are kinetic and potential energies, respectively.  The kinetic 

energy has the form 
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where N and M are the number molecules and the number of atoms in each molecule, 

respectively, and αim  is the atomic mass of atom i in molecule α .  From the Hamiltonian, 

the equations of motion can be derived: 
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Eq. [2.4] can also be written as the total force acting on atom i of molecule α : 

αα
α

α
α

α ii
i

i
i

i am
dt

qdm
q
UF r

r

r
r

==
∂
∂

−= 2

2

     [2.5] 

In MD simulations, forces are calculated in each time step and the equations of motions 

are solved to advance the system in time.  Therefore, the force calculation is essential to 

MD simulations. 

2.1.1  Potentials 

 As shown in Eq. [2.5], forces are obtained from first derivatives of the potential 

( )(qU r
).  Generally, the total potential is divided into two parts: An intramolecular part 

and an intermolecular part: 

interintra UUU +=       [2.6] 
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 The intramolecular potential in Eq. [2.6] typically consists of four parts: 

stretching( stU ), bending ( bendU  ), torsion ( torU  ) and improper torsion ( impU  ), as shown 

in Fig. 2.1. 

Bond-stretching 
 

Bond-bending 

 

Torsion 

 

Improper torsion 

 

Figure 2.1. Examples of intramolecular degrees of freedom. 

 

Stretching motion can be most accurately defined by a Morse potential[82], which 

has the form 2)( ]1[)( err
e

st eDrU −−−= α , where  eD , α and re are the well depth (bond 

dissociation energy), the inverse of potential ‘width’, and the equilibrium bond distance.  

However, the Morse potential is computationally expensive and not well suited to MD 
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simulations.  Therefore, a harmonic potential is commonly used to describe the stretching 

motion: 

2)()( es
st rrkrU −=

 
      [2.7] 

where sk  and er  are the stretching force constant and the corresponding equilibrium 

bond length, respectively.  As shown in Fig. 2.2, a harmonic potential provides a good 

description of the stretching potential near er .  In MD simulations at 298K, only the 

bottom of the well (<15kJ/mol) will be important.  As a result, fluctuations in bond 

lengths are generally quite small. 

 

Figure 2.2.   Comparison of Morse potential and harmonic potential for bond stretching. 
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Typical MD simulations keep bond lengths fixed by using the RATTLE[83] or 

SHAKE[84] algorithms,  and a bond stretching potential is only used for some selected 

bonds.   

Bending can also be defined by a harmonic potential, 

2bend )()( ekU θθθ θ −=     [2.8] 

where θk  and eθ  are the bending force constant and the corresponding equilibrium angle, 

respectively.  Other more complicated forms have been employed, but, as with bond 

stretches, bending motion is limited at typical temperatures and a harmonic potential is 

usually sufficient.  

The torsion potential has the form of a modified Ryckaert-Bellemans potential[85] 

     [2.9] 

where iC  is the ith torsional coefficient, ϕ  is the dihedral angle and iϕ  is the 

corresponding phase shift.  Other forms of torsion potentials are also available[86] and 

will not be discussed here. 

Improper torsion potentials have the form  

2)()( et
imp ttktU −=

     
[2.10] 

where t, te, and kt are the improper torsion angle, the equilibrium value of the angle, and 

the force constant, respectively.   

 The intermolecular potential in Eq. [2.6] can be written as 
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LJelinter UUU +=      [2.11] 

where elU  and LJU  are electrostatic and Lennard-Jones potentials, respectively.  The 

Lennard-Jones (LJ) potential is given by 

     [2.12] 

where atoms i and j belong to molecules α and β, respectively.  This potential sums over 

all pairs of atoms from different molecules.  ijε  and ijσ  are the combined Lennard-Jones 

energy and length parameters, respectively.  In force field development, iiε  and iiσ  are 

parameterized for each atom in a molecule to fit to experimental results, such as the 

diffusion coefficients [87].  In MD simulations, they are combined to ijε  and ijσ  in order 

to be used in calculation of pair-wise LJ potentials in Eq. [2.12].  A common choice is the 

Lorentz-Berthelot mixing rules[40] 

2
ji

ij

σσ
σ

+
= , jiij εεε =     [2.13] 

As shown in Fig. 2.3, ijε  is the magnitude of the minimum potential energy (the well 

depth) and ijσ  is the atomic distance (rij) when the potential energy is zero. 
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Figure 2.3. Lennard-Jones potential. 

 The electrostatic potential in Eq. [2.11] in non-polarizable models has the form 

∑
<

=
βα βα

βα

πεji ji

jiel

r
QQ

U
04

      [2.14] 

where atoms i and j belong to molecules α and β, respectively.  αiQ  is the charge of atom 

i in molecule α, and 0ε  is the dielectric constant.  In polarizable models, additional terms 

are added to Eq. [2.14] and the charges of atoms may not be fixed.  This will be discussed 

in more detail in Section 2.2.1.   

 For atoms within the same molecule, Eqs. [2.13-2.14] are evaluated only for atom 

pairs that are separated by four, or more, bonds. 
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2.1.2  Periodic Boundary Conditions 

 Computer simulations are usually performed on small systems (with less than 

10000 molecules) because of the limitations of computer storage and calculation  

speed [40].  These molecules are confined to a simulation cell that is space filling when 

replicated in 3D.  A cubic simulation cell is most commonly chosen.  For hundreds or 

thousands of molecules confined to a cube, a large proportion of the molecules are at the 

surface, and they will experience different forces from the ones in the bulk [88].  In order 

to overcome this surface effect, periodic boundary conditions (PBC)[88] are usually 

applied.  A 2-dimensional PBC system is shown in Fig. 2.4.  The central box is replicated 

throughout the 2-dimensional space to form an infinite lattice. When an atom in the 

original box (with thick frame) moves, its periodic images in all boxes move in exactly 

the same way.  If an atom leaves the central box into a neighboring box, such as the atom 

“a” in figure 2.4, one of its images will enter the central box from another neighboring 

box through the opposite face, which is shown as a'.  With this replication, the simulation 

volume is effectively infinite and no molecules are at a surface. 

 When calculating forces on each atom, the influence of atoms in other boxes 

should also be taken into account.   In principle, there are an infinite number of atom 

pairs to be evaluated in PBC systems, and of course it is impossible to calculate them all.  

In order to solve this problem, some modifications in the force calculation are necessary.  

For short-range interactions, such as the LJ potential, the dominating contribution is from 

the interactions between particles that are close to each other.  For example, in Fig. 2.3, 

the potential energy is almost zero when the atom distance is more than 8Å.  Therefore, a 

cut-off radius ( cr ) can be applied to each particle and only the interactions between this 
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particle and other particles within this radius are evaluated.  In MD simulations, the cut-

off radius should meet some criteria:  it should be large enough so that only negligible 

interactions are ignored, and it should be smaller than half of the simulation cell length so 

that each molecule is counted only once (only the original or one of the images should be 

counted). 

 

Figure 2.4.  2-dimensional periodic boundary condition system. 

 

Figure 2.5. Discontinuity at the distance of the cut-off radius 
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Applying a cut-off radius will introduce a discontinuity at the distance of cr , as 

shown in Fig. 2.5.  Since forces are obtained from derivatives of the potential, the 

discontinuity in the potential can cause an infinite force at cr .  The potential is normally 

shifted after truncation so that it becomes continuous: 

 

)()()( c
LJ

ij
LJ

ij
shiftedtruncated rUrUrU −=−

  

  when cij rr ≤     

0)( =−
ij

shiftedtruncated rU     when cij rr ≤    [2.15] 

and the potential and force vary smoothly with distance. 

2.1.3  Ewald summation 

In MD simulations, the evaluation of long-range interactions (charge-charge, 

charge-dipole, dipole-dipole) is time consuming.   In a cubic simulation cell of side 

length L with N charged atoms, the Coulombic potential energy is: 

∑
=

Φ=
N

i
ii

Coulomb rQU
1

)(
2
1 r

     [2.16] 

where iQ

 

and irr

 

are the partial charge and position of atom i, respectively, and )( ir
r

Φ

 

is 

the electrostatic potential at the position of atom i. 
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where ),,( zyx nnnn =
r ,

 

with zyx nnn ,, integers, includes the positions of atoms in the 

images.  The summation omits the case of i=j, where )0,0,0(=nr  since a charge does not 

interact with itself.  Here, atomic units are used to make the notation more compact.  
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Unlike LJ potentials, molecules in neighboring cells must be included in the evaluation of 

)( ir
r

Φ , but the result of this summation depends on the order in which the terms are 

added up, and thus a direct evaluation of )( ir
r

Φ  suffers from convergence problems [81]. 

The Ewald summation[89] was introduced many years ago to effectively sum the 

long-range interactions between an infinite number of particles and all their periodic 

images.  In this approach, each charge is considered to be surrounded by a screening 

charge distribution (normally Gaussian distribution) of equal magnitude but of opposite 

sign, as shown in Fig. 2.6.   

 

Figure 2.6. The charge distribution in the Ewald summation.  Vertical lines represent 

point charges and Gaussian curves represent screening charge distributions. 

 

In this way, the potential is converted into three terms  

0UUUU krel ++=        [2.18] 
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The first term, rU , is the sum of the interactions between the charges plus the 

screening distributions, and it is a real space sum[89]: 

∑∑
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2
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    [2.19] 

where α determines the size of the screening distribution and )(xerfc  is the 

complementary error function that decreases monotonically as x increases 

∫
∞

−=
x

t dtexerfc
22)(

π
       [2.20] 

 The second term in Eq. [2.18], kU , exactly counteracts the first screening 

distribution, and this summation is performed in reciprocal space 
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with zyx nnn ,, integers. 

 The third term in Eq. [2.18], 0U , is a correction term that cancels out the 

interaction of each of the introduced artificial counter-charges with itself. 
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π
α

       [2.22] 

 Therefore, Eq. [2.18] can be written as: 
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where α and the number of k
r

 vectors in the second sum are configurable parameters and 

they should be carefully chosen so that Eq. [2.23] converges quickly.  In practice, α can 

be chosen such that rU  only requires the central simulation cell and no images are 

needed. 

 In Eq. [2.23], it is assumed that the simulation cell is cubic.  If the simulation cell 

is not cubic, an additional shape-dependent correction term,  ),( PMJ
r

, should be 

added,[90] where M
r

 is the dipole moment of the simulation cell and ∑
=

=
N

i
iirQM

1

rr
. This 

correction term depends on the summations geometry and has the following form for the 

rectangular shape cell elongated on the z axis: 

22)( zM
V

MJ π
=

r
       [2.24] 

where Mz and V are the z component of the total dipole moment and the volume of the 

simulation cell, respectively. 
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2.2 Polarizable Models 

2.2.1 Fluctuating Charge Model 

In non-polarizable force fields, fixed atomic charges are used in the molecules.  

Since the charges are constant, they cannot reflect the changes in electrostatic 

environments experienced by the molecules during the simulation.  Rick et al.[46], 

introduced a fluctuating charge (FC) model that allows the molecules to respond to their 

environment.  In the FC model, the energy of an isolated charged atom, bearing a charge 

iQ , can be expanded in a Taylor expansion up to second order: 

200

2
1~)0()( iiiiiii QJQEQE ++= χ     [2.25] 

where )0(iE  and 0~
iχ  are the ground state energy and the electronegativity per unit 

charge of atom i, respectively, and 0
iiJ  is twice the hardness of the electronegativity of 

the atom.  The values of 0~
iχ  and 0

iiJ can be obtained from ab initio calculations, from 

empirical forms, or from experiments.   

Within the FC model, the electrostatic energy of a system of M molecules (with N 

atoms per molecule) is: 

  [2.26] 

where i is an atom in molecule α and j belongs to molecule β.  The first term is the energy 

for each isolated atom and the second term is the electrostatic energy between all pairs of 

atoms, both intramolecular and intermolecular.  For intermolecular atomic pairs or 
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intramolecular atomic pairs that are separated by more than three bonds, the atoms are 

relatively far apart and )( βαjiij rJ is simply 
βαjir

1
.  The second term in Eq. [2.26] then 

becomes the Coulomb potential between two point charges.  For intramolecular atomic 

pairs that are separated by 1-3 bonds, )( βαjiij rJ  is a more complex function of the electron 

density that includes screening contributions. The  )( βαjiij rJ  can be defined as the 

Coulomb overlap integral[50] between Slater orbitals, )( ini rϕ , centered on each atom: 

∫ −−
= 22 |)(|

||
1|)(|)( jnj

ijji
inijiijij r

rrr
rrdrdrJ ϕϕ rrr

rr
   [2.27] 

Since this integral is only evaluated for intramolecular atomic pairs, )( βαjiij rJ  is written as

)( ijij rJ , which is a function of two parameters iζ  and jζ  and the distances between the 

two atoms, ijr .  As shown in Fig. 2.7, )( ijij rJ  rapidly approaches the pure Coulomb 

interaction as the distance between the atoms increases: )( ijij rJ  converges to the 

Coulomb potential when the atoms are more than a few Angstroms apart.   

The Slater orbitals in Eq. [2.27] have the form[46] 

rn
ini

ii erNr ζϕ −−= 1)(       [2.28] 

where in  is the principal quantum number of the atom, iζ  is the valence orbital exponent 

for atom i, and Ni  is a normalization constant.   The value of )(rJ ii at r = 0 is 0
iiJ , which 

appears in the first term in Eq. [2.26] and is trivially related to iζ .  For example for 

hydrogen, 1=Hn , and it can be shown[46] that HHHJ ζ
8
50 = .  Thus the atomic response 
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(see Eq. [2.26]) to the presence of an electrostatic field can be expressed in terms of the 

iζ  and 0~
iχ  parameters.   

 

 

Figure 2.7. Comparison of the Coulomb overlap (solid line) evaluated from Eq. [2.27] 

with 
ijr
1

 (dotted line) and the approximate form in Eq. [2.29] (dashed line).   

 

 Since the Coulomb overlap integral in Eq. [2.27] is computationally expensive to 

calculate, an alternative has been proposed by Patel et al.[53]  In their approximation, 

)( ijij rJ  is 
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and the requirement for numerical integration (Eq. [2.27]) is avoided.   

In Fig. 2.7, the Coulomb overlap evaluated from Eq. [2.27] is compared with 
ijr
1

 

(Coulomb potential) and the approximate form in Eq. [2.29].  The approximate form in 

Eq. [2.29] leads to )( ijij rJ  that are close to the values from Eq. [2.27].   However, it has 

been found[91] that even small changes in the )( ijij rJ lead to large differences in the 

fluid structure and properties.   Therefore, the more accurate form (Eq. [2.27]) is used in 

our studies.  In order to prevent expensive on-the-fly calculations of Eq. [2.27] during the 

simulations, we evaluate the overlap for 500 interatomic separations, ijr , from 0-5 Ǻ prior 

to the simulation.  During the simulations, the interatomic separations will not normally 

coincide with a pre-calculated separation, and we employ spline fits to interpolate 

between calculated potentials and provide the Coulomb overlap at the required separation.  

The approximation is very accurate because of the large number of interatomic 

separations that are pre-evaluated and the monotonically decreasing nature of )( ijij rJ .   

2.2.2 Fluctuating Charge and INTRAmolecular potential model 

The intramolecular potentials are typically parameterized prior to the simulations 

and are kept fixed thereafter.  However, the potentials could be field sensitive and may 

change during simulations due to the varying electrostatic environments experienced by 

the molecules.  In this thesis, the development of a new model, the Fluctuating Charge 

and INTRAmolecular potential (fCINTRA) model, is described.  In this model, the 

environmental effects on atomic charges and intramolecular potentials are taken into 
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account.  We have chosen ethanol as a test molecule but note that the principles outlined 

below are general.   

The field-dependent intramolecular potential generally consists of four parts: 

)()()()()(intra EUEUEUEUEU imptorbest
rrrrr

+++= .   [2.30] 

where E
r

 is the electrostatic field, and )(EU st
r

, )(EU be
r

, )(EU tor
r

 , and )(EU imp
r

 are the 

field-dependent stretching, bending, torsion, and improper torsion potentials, respectively.  

Similar to Eq. [2.7], stretching motion is described by a harmonic potential,  

∑ −=
is

iseisiss
st ErrEkEU 2

;; ))()(()(
rrr

     [2.31] 

where )(; Ek iss

r
 is the field-dependent stretching force constant, and )(; Er ise

r
 is the 

corresponding equilibrium bond length.  The bending potential is also described by a 

harmonic potential 

∑ −=
ib

ibeibib
be EEkEU 2

;; ))()(()(
rrr

θθθ     [2.32] 

where )(; Ek ib

r
θ  is the field-dependent bending force constant, and )(; Eibe

r
θ  is the 

corresponding equilibrium angle.  The torsional potential has the form 

∑ ∑ ⎟
⎠
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⎝

⎛ +=
=it i
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iit
tor EECEU ))((cos)()(

6

0
,0;

rrr
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  [2.33] 

where itϕ  is the dihedral angle and )(,0 Eit

r
ϕ  is the corresponding phase shift.  The latter is 

important in representing the field response of the molecule.  Specifically, the potential in 
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the presence of a field may have a lowest energy conformer at a different torsional angle 

than the zero-field case and the potential must allow for this shift.  Improper torsion 

potentials have the form  

∑ −=
im

imeimimt
imp EttEkEU 2

,, ))()(()(
rrr

 
,
  

[2.34] 

where imt , )(, Et ime

r
, and )(, Ek imt

r
 are the improper torsion angle, the equilibrium value of 

the angle, and the force constant, respectively.   

For ethanol, the intramolecular motion is divided into 8 stretches, 13 bends, and 2 

torsions.    

The field-dependent coefficients in Eqs. [2.31]-[2.34] are expanded according to 

“structural” analogs, which include 

|| 1
XE ,      [2.35] 

the field magnitude on the indicated atom, for each atom.  Pairs of fields contribute via 

|| 12
XYE = |||| 21

YX EE
vv

,     [2.36] 

the product of the field magnitude on two atoms, and 

12
XYE = 21

YX EE
vv

•       [2.37] 

the dot product of the fields on two atoms.  For ethanol, there are 45 and 36 distinct  

|| 12
XYE  and 12

XYE  expansion terms, respectively.  Fields on three atoms are included in 

123
XYZE = )()( 1223

ZYYX EEEE
vvvv

−•− ,    [2.38] 
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corresponding to a field “angle” term on the middle atom, and 

123
XYZE

)
= )()( 1223

ZYYX EEEE
vvvv

×•× ,    [2.39] 

corresponding to a “dihedral angle” form of 123
XYZE .  For ethanol, all possible angles are 

considered, leading to 13  123
XYZE  and 123

XYZE
)

 terms.  Finally, we include 

1234
XYZAE = ))()(())()(( 12232334

XYYZYZZA EEEEEEEE
vvvvvvvv

−×−•−×− ,  [2.40] 

which is analogous to a dihedral angle.  With all possible torsions considered, twelve 

four-field terms are obtained for ethanol.   The expansion terms in Eqs. [2.35]-[2.40] are 

invariant to the coordinate system (body-fixed or space-fixed) and, consequently, can be 

readily evaluated during the simulation without a coordinate transformation.     

In principle, coefficients in Eqs. [2.31]-[2.34] can be expanded to many field-

dependent terms obtained from Eqs. [2.35]-[2.40].   Symmetry considerations can reduce 

the number of expressions.  Take ethanol as an example, following the numbering in Fig. 

2.8, since H(8) and H(9) are related by symmetry, we define 

X
HOCHE 123 = 1238

HOCHE + 1239
HOCHE     [2.41] 

where X is used to represent atoms 8 and 9.  Equivalently, for H(5), H(6), and H(7), we 

have sums of three terms: 

Y
CCHE 34)

= 345
CCHE
)

+ 346
CCHE
)

+ 347
CCHE
)

    [2.42] 
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where Y denotes H(5), H(6), and H(7).  The summed terms replace the individual ones in 

the fits to ensure that the expansions are always symmetric with respect to the 

interchange of these atoms.   

 The torsional energy for a rotation of φ about the C(3)-O(2) bond should be the 

same for a rotation of –φ in the field obtained by reflection in the C(4)-C(3)-O(2) plane.  

That is, the “opposite” field with the “opposite” torsional angle should correspond to the 

same energy.  The cosine terms in Eq. [2.33] are symmetric about 180 degrees and 

automatically satisfy this constraint.  To incorporate this symmetry into the asymmetric 

coefficients, such as sine terms, we include a multiplicative factor of  

 Sy=Ey1+Ey2+Ey3+Ey4     [2.43]  

in the expansions of these coefficients.  In Eq. [2.43], the y-components are in body-fixed 

coordinates.  In this regard, C(3) is at the origin of the body-fixed coordinate system, O(2) 

lies on the x-axis, and the y-axis is perpendicular to the C(3)-O(2)-H(1) plane.  This 

multiplicative factor enforces the appropriate symmetry in Eq. [2.33]. 
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Figure 2.8. The ethanol molecule showing the atom numbering used throughout this 
thesis.   
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2.3 Equations of motion 

2.3.1 Verlet Algorithms 

In MD simulations, equations of motion are integrated to evolve the system after 

the forces on all particles are calculated.  A good integration algorithm should be time 

reversible, which means that the system can go forward and backward in time 

symmetrically.  One of the most well-known algorithms of integrating the equations of 

motion is the Verlet algorithm[92], which was derived from the Taylor expansion about 

the positions )(trr at time t: 

...)(
2
1)()()( 2 +Δ+Δ+=Δ+ ttattvtrttr rrrr    [2.44] 

...)(
2
1)()()( 2 −Δ+Δ−=Δ− ttattvtrttr rrrr    [2.45] 

where )(tar  is the acceleration at time t and is evaluated from the following: 

m
tFta )()(

r
r

=        [2.46] 

where )(tF
r

 is the total force on the particle at time step t and m is the particle mass.  

Adding up Eq. [2.44] and Eq. [2.45] neglecting the high order derivative terms, the 

following relationship will be obtained: 

2)()()(2)( ttattrtrttr Δ+Δ−−=Δ+
rrrr    [2.47] 
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In this algorithm, the positions )( ttr Δ+
r

 only depend on the original positions )(trr , 

accelerations )(tar , and the positions )( ttr Δ−
r

 at the previous time step.  This equation 

shows that the Verlet algorithm is time reversible because the )( ttr Δ+
r

 and )( ttr Δ−
r

 

play symmetric roles.  This algorithm is also stable in regards to long-time energy 

conservation.  The velocities are not used in the trajectory calculation, but when they are 

needed to calculate kinetic energy or other properties, they can be easily obtained from 

the following formula: 

t
ttrttrtv

Δ
Δ−−Δ+

=
2

)()()(
rr

r      [2.48] 

The errors in Eq. [2.47] and Eq. [2.48] are of the orders 4tΔ  and 2tΔ , respectively.   

 The original Verlet algorithm has several equivalent versions that explicitly use 

velocities in the equations of motion.  The most commonly used are the Leap-frog 

algorithm, where velocities are calculated at half time steps, and the Velocity-Verlet 

algorithm, where velocities are advanced in a two-step process.   

 The Velocity-Verlet algorithm has the following form 

2)(
2
1)()()( ttattvtrttr Δ+Δ+=Δ+
rrrr     [2.49] 

)]()([
2
1)()( ttatattvttv Δ++Δ+=Δ+

rrrr    [2.50] 

This algorithm is equivalent to the original Verlet algorithm because when the velocities 

are eliminated, Eq. [2.49] and Eq. [2.50] will be turned into Eq. [2.47].  The 

implementation of this algorithm involves two stages.  In the first stage, the new positions 
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are calculated using Eq. [2.49] and the velocities at half time step )
2
1( tt Δ+  are 

calculated using 

ttatvttv Δ+=Δ+ )(
2
1)()

2
1( rrr      [2.51] 

In the second stage, forces ( )( ttF Δ+
r

) and accelerations ( )( tta Δ+
r

) are computed and 

the velocities are advanced 

tttattvttv ΔΔ++Δ+=Δ+ )(
2
1)

2
1()( rrr    [2.52] 

The appearance of explicit velocities in the equations of motion has some advantages.  

For instance, it is very easy to transition from the NVE to the NVT ensemble by 

appropriately scaling the velocities.   

2.3.2 Nosé-Hoover Thermostat 

 In this thesis, all the simulations are performed under constant temperature.   

There are many ways to do this.  Stochastic methods[93], in which the velocity of a 

random molecule in the system is reset at intervals according to a Maxwell-Boltzmann 

distribution,  and constraint methods[94], in which the velocities of all molecules are 

rescaled at each time step to get to the desired temperature, are two examples.  A more 

popular method is the extended Lagrangian method[46].   

Following Nosé[95] and Hoover’s work[96], the Hamiltonian of this extended 

system is 
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where s is the additional degree of freedom, and Q and ps are the effective mass and its 

momentum.  g is the number of degrees of freedom plus 1.  Following Hoover, the 

equations of motion are written as 

i
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m
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dt
rd rr
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     [2.54] 
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ζ==
dt

sd
sdt
ds ln      [2.57] 

Eq. [2.54]-[2.56] are a complete set of equations of motion and Eq. [2.57] is used to 

check the conservation of the system.  Specifically, H in Eq. [2.53] should remain 

constant throughout the simulation. 

 Separate sets of Nosé-Hoover thermostats are applied to translational motion, 

rotational motion of rigid units (RUs), and charge fluctuations to define the temperature 

of each of these degrees of freedom with three thermostats.  The relevant conserved 

quantity in the simulations is 
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where αipr  is the linear momentum of the ith atom or RU in molecule α and αim  is the 

corresponding mass.  )1( −= NMg fq  and 33 −= MNgtr are the numbers of degrees of 

freedom associated with charge fluctuation and translational motion, respectively.  The 

former includes a correction since each molecule is constrained to be neutral, while 3 is 

subtracted from the translational degrees of freedom since the system, as a whole, is 

stationary.   Iiα and RUω
r  are the moment of inertia tensor and angular velocity, 

respectively, of the RU, in the principal axis system and rotg  is the number of degrees of 

freedom for rotations.  A constant temperature ensemble for the atomic positions is 

obtained with the fictitious variable trtr sln=η with a mass of trW  and an associated 

momentum of trtrtr Wp η&= .  Similarly, a constant temperature ensemble for the rotation of 

rigid units is obtained with the fictitious variable rotrot sln=η with a mass of rotW  and an 

associated momentum of rotrotrot Wp η&= .  Both the translational and rotational 

temperatures are 298K.  The atomic charges, αiQ , have a fictitious mass, Qm , and 

associated momentum αα iQiQ Qmp &=; .  The fictitious variables fqfq sln=η  and 

fqfqfq Wp η&= , with associated mass fqW  are defined to constrain the charges to a canonical 

ensemble with a temperature of KT fq 1= .  This low temperature minimizes the energy 

transfer between the atomic positions and the atomic charges.   
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2.4 Reversible Multiple Time Step MD 

When the fCINTRA model is applied, the coupling between the rapid changes in 

atomic charge and the intramolecular potential makes the simulation unstable with typical 

time steps.  In order to solve the problem, the simulation time step should be set to a very 

small number.  However, this is not very efficient because it requires much longer wall 

time to simulate.  Another way to solve the problem is to use multiple time steps and 

assign different steps to slow and fast motions.  Our implementation of a reversible 

multiple time step algorithm follows from Tuckerman et al.[97, 98].  The basic 

methodology is presented below along with our extensions to the case of polarizable 

models. 

The classical propagator is defined as 

iLtetG =)(      [2.59] 

where )(tG  is a unitary operator, and L is the Liouville operator.  For example, in 1-D 

space, the Liouville operator can be defined as 

∑
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F
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xiL
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][ &     [2.60] 

where f is the number of degrees of freedom of the system.  The state of the system at 

time t is defined as )}(),({)( tptxt ii=Γ .  The propagation of the system from time t to 

time )( tt Δ+  is given by 

)()()( ttGtt ΓΔ=Δ+Γ      [2.61] 
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If the Liouville operator can be decomposed into two parts 

21 iLiLiL +=        [2.62] 

according to Trotter’s theorem[99],  the propagator can be written as 

)()( 322)( 1
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    [2.63] 

So Eq. [2.61] can be rewritten as 
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In each time step of an MD simulation, the rightmost operator, 21
tiL

e
Δ

, is applied to the old 

state to generate a new state.  After that, tiLe Δ2  is applied to the new state and then the 

leftmost operator, 21
tiL

e
Δ

, is used to get the final state at the new time step.  Trotter 

factorization can be expanded to higher orders to improve the accuracy, but this will 

require the calculation of force derivatives, which may be very time-consuming[97].  

Let’s take a simple example and set p
rFiL r
r

∂
∂

= )(1  and 
r

riL r&r

∂
∂

=2 , where rmp &rr
= .  Thus, 

the propagator is  
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and each time step is divided into three steps.  In the first step, )(tr&r  is propagated to 

)
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( ttr Δ
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e
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In the second step, )(trr  is propagated to )( ttr Δ+
r

 by r
tr

e
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Finally, )
2

( ttr Δ
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The full equations of motion can be derived by combining Eqs. [2.66]-[2.68], and it can 

be seen that they are equivalent to the Velocity Verlet algorithm (Eq. [2.49] and Eq. 

[2.50]).   Since the )( tG Δ  is unitary, and has the relationship )()( 1 tGtG Δ=Δ− − , we can 

get the following 

)()()()()()()( 221 1
2

1 ttteeettGttG
tiLtiL

tiL
Δ−Γ=Γ=ΓΔ=ΓΔ−

Δ
−Δ−

Δ
−−

  [2.69] 

Therefore, all the equations of motion derived from it are symmetric in time.   

In Eq. [2.65], the momenta are propagated forward in time, by ∆2/ݐ, followed by 

a full time step propagation of the positions, and finally another half time step 

propagation of the momenta.  This division can be repeated as many times as required[97] 
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leading to an endless family of propagators of increasing accuracy.  We have found that a 

suitable propagator for polarizable and flexible models is  

 [2.70]
 

where the charge-related operators are placed in the center bracket which will be iterated 

M times with a smaller time step of Mtt /Δ=δ .  In this way, the overall time step ∆ݐ is 

consistent with the time scale for nuclear motion but the charges vary over the smaller 

time step ݐߜ.  The propagator in Eq. [2.70] leads to an important reduction in simulation 

cost since the atomic positions, and associated CPU intensive force calculations, are 

minimized.  
 

In our simulation, the fictitious variables from Nosé-Hoover thermostats also vary 

with time and must be included.  The complete, reversible propagator is[91] 
 

 
[2.71] 
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where time derivatives are identified by superscript dots, square brackets identify single 

applications of Trotter’s rule[99], round brackets isolate the inner loop with the smaller 

time step, and ttM Δ=δ .  The variables associated with the charges are advanced in the 

inner loop with the small time step of .tδ   The force associated with charge fluctuations, 

),( QrFQ
v , is evaluated in the inner loop and requires the charge dependence of the 

electrostatic energy, the field dependence of the intramolecular potential, and the charge 

dependence of the field.  These terms can each be evaluated efficiently since, although 

they are complex, their dependence on charge is straightforward.  The application of Eq. 

[2.71] can be divided into three stages: the advancement of positions, momenta, ,η  and 

η&  by 2/tΔ ; the iterative inner loop advancement, in steps of tδ ,of the charges, their 

associated momenta, fqη , and fqη& ; and the final advancement of positions, momenta, ,η  

and η& .  The equations of motion are given explicitly below.  In the first stage, the 

equations of motion are 
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where )(tFrv is the force on the atomic positions evaluated in the previous time step.  

)(tF
trη  is given by  
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The second stage consists of the following steps: 
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These steps are iterated M times to yield )( ttQi Δ+α , )(; ttp iq Δ+α , )( ttfq Δ+η , and 

)( ttfq Δ+η& .  The force on the charges )'(tFQ is evaluated at each step of the inner loop.  

The force )'(tF
fqη is given by 
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The third stage is similar to the first, and consists of the following sequence of time steps:   
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2.5 Quantum Mechanics Methods 

2.5.1 Ab initio calculations 

Ab initio, or first principles, calculations predict the properties of molecular 

systems without using any empirical data.  In this thesis, ab initio calculations are used 

for intramolecular potentials, atomic charges, and to parameterize polarizable force fields. 

A main disadvantage of this approach is that it is very time consuming.  

 The theory starts with the Schrödinger equation that governs the behavior of the 

system: 

Ψ=Ψ EĤ       [2.72] 

where E is the total energy of the system and Ψ  is the wavefunction 

),...,,,,...,,( 2121 mn rrrRRR rrrrrr
Ψ=Ψ     [2.73] 

where R
r

 and rr  are the positions of the nuclei and electrons, respectively, and n and m 

are the number of nuclei and electrons in the system, respectively.  Ĥ  is the Hamiltonian 

operator that is given by 
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where i,j and k,l refer to electrons and nuclei, respectively, em  and kM  are the electron 

and nucleus masses, respectively, and atomic units are used.  Eq. [2.74] can be written as 

ennneene UUUTTH ˆˆˆˆˆˆ ++++=      [2.75] 

where eT̂  and nT̂  are kinetic energies of the electrons and nuclei, respectively, and eeÛ , 

nnÛ  , and enÛ  are the potential energies of electron-electron, nucleus-nucleus, and 

electron-nucleus interactions.   Because nuclei weigh about 2000 times more than 

electrons, Schrödinger equation can be roughly divided into nuclear and electronic 

equations.  This approximation is the well-known Born-Oppenheimer approximation.  

Focusing on the electronic Hamiltonian, one has 
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2.5.2 Density function theory 

DFT is a very popular method for electronic structure calculations in chemistry 

and solid-state physics.  In DFT, the Hohenberg-Kohn theorem[100] states that the 

expectation value of any operator depends only on the ground state electronic density.  

Kohn and Sham[101] developed a method to find the ground state density and energy.  In 

the theory, the energy of the real system with respect to the electron density, )(rn r
, is 

given by 



50 
 

][][][][ nUnVnTnE ++=       [2.77] 

where ][nT  is the kinetic energy, ][nU  is the two-body electron-electron interaction, and 

∫= rdrnrVnV rrr 3)()(][  is the energy due to the external potential from the nuclei.   To 

minimize the energy functional, it can be written as a density functional of non-

interacting particles: 

][||][][ nVTnnE sssss ψψ +=      [2.78] 

where sT  is the kinetic energy of the non-interacting electrons, sV  is the external 

potential, and the density of the non-interacting system, )(rns
r , is equal to the density of 

interest, )(rn r
.  The full ground state energy of a real system is written as 
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The first three terms are the electron-nuclear interaction energy, the average ground state 

kinetic energy of non-interacting electrons, and the electron-electron interaction energy, 

respectively.  The last term, ][ 0nExc , is the Kohn-Sham exchange-correlation energy.  

The exchange-correlation potential is the derivative of the exchange-correlation energy 
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The spatial part of Kohn-Sham orbital, KS
iθ , is determined by solving the Kohn-Sham 

equations of the non-interacting system iteratively: 

)()()](
2
1[ 2 rrrV KS

ii
KS

isi
rrr θεθ =+∇−      [2.81] 

where iε  are Kohn-Sham orbital energies and the electron density is given by 

∑=
i

KS
i rrn 2|)(|)( rr θ .   

An important problem of this method is that the Kohn-Sham exchange-correlation 

functional xcE  is unknown.  One of the most popular exchange-correlation functionals is 

the B3LYP, which is a hybrid functional combining the local-spin-density approximation 

exchange functional[102], the Lee-Yang-Par correlation functional[103], and the Becke's 

exchange functional[98], which is combined with the exact energy from Hartree-Fock 

theory. 

DFT generally gives accurate results for most properties such as molecular 

geometries, frequencies and dipole moment, and is much more efficient than perturbation 

theory, coupled cluster methods and Configuration Interaction method. 

2.5.3 Basis sets 

 In quantum calculations, the molecular orbitals are represented by linear 

combinations of basis functions: 

∑=
i

iii c χφ        [2.82] 
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where iχ  are atom-centered basis functions and ic  are the variational coefficients.  There 

are many choices of basis functions.  Slater type orbitals (STOs) are a natural choice, but 

they are computationally expensive and impractical for nonlinear polyatomic systems.  

An alternative to STOs is the Gaussian-type functions (GTFs).  A Cartesian Gaussian 

centered on a nucleus is defined as 
2

,,
rkji

kji ezyNxg α−= , where N is the normalization 

coefficient, α  is a positive orbital exponent, i,j,k are nonnegative integers, and x, y, z are 

Cartesian coordinates with the origin at the nucleus.  However, a single GTF cannot 

reproduce an STO very well, because it has no cusp at the nucleus and decays to zero too 

quickly.  Thus, the contracted Gaussian-type functions (CGTFs) are more commonly 

used.  CGTFs, often referenced to as primitives, are linear combinations of GTFs and can 

better reproduce the STOs.  For example, in the STO-3G basis set, each STO is 

reproduced by three GTFs.  The minimal basis set has one basis function for each 

occupied atomic orbital.  Multiple-zeta basis set has multiple CGTFs for each occupied 

atomic orbital.  For instance, cc-pVDZ represents two CGTFs for each atomic orbital.  A 

more popular type of basis set is the split valence basis set, which applies multiple-zeta 

basis functions to valence orbitals and single-zeta basis functions to core orbitals. 

 In molecules, atomic orbitals (AOs) are distorted.  In order to account for this 

shape distortion, additional Gaussian functions with high angular momenta, called 

polarization functions, are required.  For instance, 6-311G(d,p) basis set has 6 primitive 

Gaussians for each inner-shell AO, and each valence-shell AO is represented by 3 CGTFs, 

one formed by three pieces composed of three Gaussian primitives, one Gaussian 

primitive, and one Gaussian primitive.  The “(d,p)” denote that a set of 6 d-type Gaussian 

functions is added  to nonhydrogen atoms and a set of 3 p-type Gaussian functions is 
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added to hydrogen atoms.  For some molecules, such as anions and those with lone pairs, 

the electron density is still very significant at large distances from the nuclei.  To improve 

the accuracy of treating such molecules, highly diffuse functions with a very small orbital 

exponent can be added.  For instance, the aug-cc-pVDZ basis set augments the cc-pVDZ 

basis by additional slowly decaying s, p and d Gaussian functions. 

2.5.4 Atomic charges 

 There are many different definitions and algorithms to assign atomic  

charges [104-109]. Mulliken population analysis approach [104-106, 108] is one of the 

most often used.  In this approach, atomic charges are assigned on the basis of atomic 

orbital populations.   

Another approach of obtaining atomic partial charges is to fit the molecular 

electrostatic potential (MEP).  The MEP at position 1r
r

 is: 
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where αZ  and )( 2rn r  are the charge on nucleus α and the charge density at position 2r
r , 

respectively, and the first and second terms are the nuclear and electronic part, 

respectively.  The atomic partial charges are fitted to reproduce the MEP at a number of 

points: 

 ∑=
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and the charges are obtained by least square fit to minimized the following 
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where N is the total number of points used in the MEP. 

In this thesis, the CHarges from Electrostatic Potentials using a Grid based 

method (CHELPG) scheme[110], which is one of the most common schemes, is used to 

obtain atomic charges.  We choose this scheme because the charges calculated by 

CHELPG depend on the environment and the actual potential, which is a feature we want 

to integrate into our simulation.   

2.5.5 Conformational Minimization 

In order to obtain the most stable molecular structures, conformational 

minimization is needed to get the local energy minima.  The potential energy surface of a 

molecule has 3N-6 degrees of freedom, where N is the number of atoms in the molecule.  

Starting from the input geometry, the potential energy and its first derivatives are 

calculated and then the 3N-6 degrees of freedom are changed to get a lower potential 

energy.  This procedure is iterated until a local minimum is found.  Large molecules 

normally have many local minima, and in order to locate the global minimum, it is 

necessary to repeat the search procedure for different starting geometries. 

In this thesis, DFT calculations are used to obtain equilibrium structures and 

intramolecular potentials of solvents, such as ethanol, benzyl alcohol, and 2-propanol.  

B3LYP/6-311++G(d,p), B3LYP/6-311G(d,p) and B3LYP/aug-cc-pVDZ calculations are 

performed for ethanol, benzyl alcohol, and 2-propanol, respectively.  For ethanol, the 

intramolecular motion is divided into 8 stretches, 13 bends, and 2 torsions.  For benzyl 
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alcohol, since the aromatic ring is very rigid, only 5 stretches, 9 bends, 2 torsions, and 1 

improper torsion are chosen to represent the molecular flexibility.  For 2-propanol, 19 

bends and 3 torsions are employed to represent intramolecular motion.   

Each stretching force constant is extracted from nine energy calculations, as the 

bond is compressed and stretched away from the equilibrium value.  Bending potentials 

are obtained by least squares fits to nine energy calculations where the angle is varied 

within sixteen degrees of the equilibrium value.  For torsion potentials, the angle is varied 

from 0 to 360o, in steps of 10 degrees.  Each of the improper torsion potentials is obtained 

from nine restricted geometry optimizations. 

DFT calculations are also used to obtain the FC and fCINTRA parameters.  The 

details will be described in Chapter 3. 

2.6 Chirality indexes 

The aim of this thesis is to study the transfer of chirality from chiral solutes or 

surfaces to achiral solvents.  Therefore, it is very important to find a way to quantify the 

chirality.  As introduced in the previous chapter, chirality indexes have been a subject of 

continuing interest over the past fifteen years.  Most of the proposed measures are not 

suited to this particular study since the chirality measure employed here should be 

evaluated from individual solvent molecules.  The measure should also be unchanged by 

a simple translation or rotation of the solvent, should change signs upon reflection, 

should average to zero for solvent in an achiral environment, and should be fast to 

calculate since millions of calculations will be required in MD simulations.  With these 

considerations, we use a chirality index which was originally developed by Osipov et 
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al[66].  Our implementation includes a modification introduced by Solymosi et al.[111] 

to partially correct for a strong dependence on the number of atoms N in the molecule.  

The chiral index is defined as: 

  [2.86] 

where the sum runs over all combinations of four atoms in the molecule. The superscript 

of w
SG0  shows the type of atomic weights, where 1, q and m correspond to unity, atomic 

charges and atomic masses, respectively.  From Eq. [2.86], w
SG0  has a strong dependence 

on molecular structure, as reflected by the presence of interatomic vectors.  Dependence 

on other properties can be included via the atomic weights, wi , that can be chosen to be 

atomic charges, van der Waals radii, atomic masses, and so on.  The powers n and m in 

the denominator of Eq. [2.86] can be chosen to emphasize the contributions from atoms 

well separated within the molecule (small values for m and n) or atoms that are close 

together (large values for m and n).   

 A strictly shape-dependent index can be obtained by choosing all weights equal to 

unity in Eq. [2.86].  The resulting index, 1
0SG , gives equal weighting to all the atoms and 

reflects only the asymmetry of the atomic positions. In addition to this index, we explore 

indexes m
SG0  and q

SG0 , where the weights are atomic masses and atomic charges, 

respectively.  The former will de-emphasize the hydrogen atoms and, for the ethanol, 2-

propanol, and benzyl alcohol solvents, terms involving the oxygen and carbon atoms will 

contribute most to m
SG0 .  The latter index, where the terms are weighted by the atomic 

charges, will place greater emphasis on the alcohol group of the solvents where the 
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atomic charges are largest.  For 1
0 SG , when the powers m and n in Eq. [2.86] are set to 1 

and 2, respectively, the index becomes dimensionless.   

 Regardless of the choice of atomic weights, or m and n, in Eq. [2.86], the indexes 

are zero for an achiral solvent structure.  To see the response of w
SG0  to reflection, 

consider the term ))(]()[( 34232312143412 rrrrrrr vvvvvvv ⋅⋅⋅× in Eq. [2.86]. If the mirror operation is 

performed, ])[( 143412 rrr vvv ⋅×  will change sign but )( 2312 rr vv ⋅  and )( 3423 rr vv ⋅  will stay the same, 

and the whole term will change sign.  Thus, all indexes obtained from Eq. [2.86] will 

change sign for the mirror-image molecule.  Within the simulations, this symmetry 

ensures that all indexes will average to zero for solvents in an achiral environment.  In 

addition, translational and rotational invariance follows from Eq. [2.86] since the indexes 

are determined from dot products of interatomic vectors and these are unchanged by 

translation and molecular reorientation.  Thus, as required, the instantaneous index 

reflects the shape of the molecule but not its position or orientation. 

Despite these important advantages, there is one important concern with the use 

of w
SG0 .  As discussed by Solymosi[111], the index depends on the number of atoms in 

the molecule:  They introduced the N! term in Eq. [2.86] to partially eliminate this 

dependence.  Nonetheless, a residual dependence remains and we cannot compare the 

magnitude of the excess chirality >< w
SG0  for the two different solvents.  However, we 

are most interested in the impact of various chiral solutes on a given solvent and, for this, 

< w
SG0 > can be compared.  
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 w
SG0  will generally have units, and its magnitude depends on the molecule under 

examination, on the weights chosen in Eq. [2.86], and on the values for m and n.  Take 

ethanol as an example, to ascertain “typical” values for the indexes, Fig. 2.9 presents 

m
S

q
SS GGG 00

1
0 ,,  for a single ethanol molecule as a function of two torsional angles.  Clearly, 

the indexes respond differently to changes in the molecular conformation.  When the 

molecule is in an achiral environment, each index in Fig. 2.9 will be sampled over time to 

yield an excess chirality of zero.  In a chiral environment, complete cancellation will not 

occur and a non-zero excess chirality will be achieved.  When the solvent happens to 

have an instantaneously achiral structure, all three indexes will be simultaneously zero.   

2.7 Surface representations 

In this thesis, the interfacial chirality transfer is studied for three brush-type 

selective interfaces that include amide linkages and DNB (dinitrobenzoyl) groups:  

Whelk-O1, based on a 1-(3,5-dinitrobenzamido)-1,2,3,4-tetrahydrophenanthrene chiral 

selector; DNB-phenylglycine, based on a N-(3,5-dinitrobenzoyl)-phenylglycine selector; 

and DNB-leucine, based on a N-(3,5-dinitrobenzoyl)-leucine selector are considered.  

These three selectors are shown in Fig. 2.10.  The atom numbering provided in the figure 

will be used throughout this thesis.  The Whelk-O1 selector (Fig. 2.10(a)) consists of a 

dinitrophenyl group and a 1,2,3,4-tetrahydrophenanthrene group joined by an amide 

linkage. The selector includes two chiral carbons [C(9) and C(10) in Fig. 2.10(a)], one 

connecting the 1,2,3,4-tetrahydrophenanthrene group to the amide linkage and the other 

joining the selector to the alkyl tether that, in turn, connects to the underlying surface.  As 

shown in Fig. 2.10(b) and (c), DNB-leucine and DNB-phenylglycine selectors are 
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structurally similar:  the two selectors consist of a dinitrophenyl group, a chiral carbon 

[C(15) in Figs. 2.10(b) and 2.10(c)] located between two amide linkages, a lateral group 

(a phenyl ring for DNB-phenylglycine and an isobutyl chain for DNB-leucine), and a 

tether that bonds the selector to the surface. Despite their similarity ab initio 

calculations[112] indicate that the difference in the lateral group is sufficient to 

significantly alter the conformational energetics of the selectors [112].  In particular, 

these two selectors have distinct minimum energy conformers, DNB-leucine has several 

low energy conformers whereas DNB-phenylglycine has only one conformer within  

12.0 kJ/mol of the global energy minimum.  More detailed descriptions of all three 

selectors can be found elsewhere [112, 113].  

A side view of a typical simulation cell is shown in Fig. 2.10(d).  The simulation 

cell includes two interfaces, with solvents in between.  In order to be consistent with 

experiment[114-116], the model interface includes silanol groups and trimethylsilyl end 

caps on the silicon surface.  For all three model CSPs, the selector surface coverage is 

1.07µmol/m2, the surface density of trimethylsilyl end-caps is 3.20 µmol/m2, and silanol 

groups are present at a density of 4.26µmol/m2.  A selective surface consists of a total of 

9 selectors, 27 trimethylsilyl end caps, 36 silanol groups, and an underlying layer of 72 

silicon atoms, with a Si-Si distance of 3.2Å.  Empty space is placed above the top layer 

and below the bottom layer in order to minimize interactions between the periodic images 

in z direction, and the simulation cell is duplicated in three dimensions.  Ewald 

summations with a correction for the rectangular prism shape of the simulation cell[40] 

are used to evaluate electrostatic interactions. 
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Figure 2.9.  The influence of torsional angles on chirality indexes of ethanol. Panel (a) 
shows the two torsions under consideration. For the conformation shown in Panel (a), 
both torsion 1 and torsion 2 are 180 degrees. Panels (b), (c), and (d) show 1

OSG , q
OSG , m

OSG , 
respectively, as the torsional angles vary.  The atomic charges from the ab initio 
calculations are used for (b).  Panel (e) presents q

OSG  for a different set of average atomic 
charges observed in the simulations. 
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Figure 2.10. Molecular structures and numbering system for (a) Whelk-O1, (b) DNB-
leucine, (c) DNB-phenylglycine. The atom numbering will be used throughout this 
chapter. Panel (d) provides a side view of a typical simulation cell.  In this case, the 
Whelk-O1 surface in the presence of ethanol is shown. Silicon, oxygen, hydrogen, 
nitrogen, and carbon are shown in yellow, red, white, blue, and grey respectively.  
Solvent atoms are shown in wireframe.  Please note that the hydrogen atoms connected to 
achiral carbons are omitted for simplicity. 



62 
 

 Within the simulations, the chiral selectors are semi-flexible.  In particular, the 

rings are kept rigid while the rest of the molecule is flexible.  The atoms within these 

rigid units do not move relative to each other but rather they collectively translate and 

rotate according to their aggregate forces.  The conserved quantity in the simulations is 

the Nosé-Hoover Hamiltonian (HNH), which is defined in Eq. [2.58]. 

 

2.8 Practical considerations 

All the simulations were performed using the MDMC program that originated from 

our group.  Prior to this work, the MDMC program had been applied to simulations of bulk 

phases and interfacial systems using non-polarizable models.  To achieve the objectives of 

this thesis, the program has been modified extensively to include the charge fluctuation 

model, the field-dependent intramolecular potential, the multiple time step algorithm, and 

chirality index collection.  

The charge fluctuation model requires additional force calculations and new 

equations of motion, so the relevant part of the program has been modified.  The field-

dependent intramolecular potential requires new force calculation subroutines and a 

multiple time scale approach.  For the latter, each inner step requires force calculations, 

which is very time-consuming.  Therefore, much effort has been used to improve the 

efficiency of the calculations.   

The non-bonding force calculations and the evaluation of forces from the field-

dependent intramolecular potential are the most time-consuming aspects of the 
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computation.  We have parallelized this segment of the code to allow for rapid 

computation of the forces.  More specifically, the message-passing interface (MPI) has 

been employed.  The message passing model is defined as a set of processes that have 

local memory and communicate with each other by sending and receiving messages.  In 

the simulation program, a master/slave model is used.  All the serial work, such as the 

initialization and input/output, is done on the master node. Also, the computationally 

inexpensive parts of the simulation, such as the intramolecular force calculation and 

integration of equations of motion, are done on the master node.  The time-consuming 

parts of the simulation, such as the LJ forces and Ewald summation, are implemented in 

parallel on both master and slave nodes.  In each time step, the master node distributes 

the task evenly on all processes and sends the necessary information to all the slave nodes 

using broadcast statements.  After calculations are done, all nodes send their part back to 

the master node, which then sums up the results.   The implementation of MPI in the 

simulation has been optimized to minimize the communication time.  Our simulations are 

performed on High Performance Computing Virtual Laboratory (HPCVL), Westgrid and 

SHARCNET high performance computing facilities.  Most of the single processor 

simulations are performed on Westgrid (Glacier) and most of the MPI simulations are 

performed on Requin and Narwhal clusters of SHARCNET.  Our parallel simulations use 

8 processors and are about 7.5 times as fast as simulations with single processor.  About 

20-30 independent simulations are performed for each solute/solvent and surface/solvent 

pair and, as a rough guide, each simulation requires roughly two weeks of simulation 

time.  
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Chapter 3  
Development of a polarizable and 
flexible model 

Intuitively, chirality transfer and polarization are closely related.  In this chapter, 

methodology for developing a polarizable and flexible model (the fCINTRA model) is 

discussed in detail.  All aspects of the model design are discussed along with details of 

the simulations, including the implementation of a multiple time step molecular dynamics 

algorithm.   This methodology is general and can be applied to any molecules.  In this 

chapter, an example has been provided for ethanol and the results of MD simulations 

with this model are analyzed and compared with experiments and other popular models. 

3.1 Introduction 

Hydrogen bonding in alcohols is complex and quite different from bulk  

water [117].  Neutron diffraction[118], ab initio calculations[119], and simulations[120] 

show that bulk methanol under supercritical conditions is characterized by monomers and 

small hydrogen-bonded rings.  Under ambient conditions, it has been suggested[121] that 

methanol prefers closed-chain hydrogen-bonded hexamers.  The situation is less clear for 

ethanol[117, 122] where hydrogen-bonded networks have been assumed to prefer 

tetrameric loops, hexameric loops, U-shapes, or coils.   A recent neutron diffraction[123] 

study, along with previous X-ray[124] and neutron diffraction[125] work on ethanol, 

provides increasingly accurate experimental interatomic distributions in the bulk.  

Ethanol has also been the subject of several statistical mechanics studies [43, 45, 126, 
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127].  The simplest molecular models for ethanol[128, 129] have fixed-charges on the 

atoms and are pairwise-additive.   Fixed-charge transferable potentials, such as 

OPLS[127], have been well studied for alcohols[127].  The use of fixed charges means 

that the molecules are not polarized by the local electric field: An important effect for 

hydrogen-bonded liquids[47].    

The importance of polarizability, and the impact of its inclusion, are well 

understood for water where a variety of polarizable models have been designed [42, 46, 

47, 130].  In this thesis, we employ the FC model to govern the atomic charge 

fluctuations in bulk ethanol.  Relative to other polarizable models, ours is unique in one 

important respect:  It includes field dependence in both the atomic charges and the 

intramolecular degrees of freedom.  In this way, the model reflects the field-induced 

redistribution of electrons that results in instantaneous changes to atomic charges and to 

the potential energy surface that defines intramolecular motion.  This is particularly 

important for the torsional motion governing the position of the hydrogen-bonding 

hydrogen:  We find that this potential is highly field-dependent and, in some fields the 

minima appear at very different angles relative to the zero-field potential.  Thus, the 

optimal position of the hydrogen depends on the field experienced by the molecule and 

this will, in turn, influence the hydrogen bonding structure in the fluid.  As mentioned in 

Chapter 1, a field-dependent intramolecular potential has been attempted only once 

previously.   In that study, the HH and OH stretching potentials of water depended on the 

magnitude of the field of oxygen but the atomic charges were field-independent [57]. 

Aside from this one exception, existing polarizable flexible models fully separate the 

molecular flexibility from the field response.   
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Persuasive arguments for a systematic application of the FC method have been 

presented by Patel and Brooks[53] and Banks et al.[131]  Our implementation of the FC 

method differs primarily in that we rely exclusively on ab initio results to describe the 

atomic charge fluctuations.   The field-dependent intramolecular potentials are also 

derived strictly from ab initio results.  Overall, we have placed considerable emphasis on 

developing a methodology that can be readily extended to other molecules.  In particular, 

relatively few parameters remain to be determined empirically and these are optimized by 

comparison with experimental interatomic distributions for bulk ethanol[123] and by 

comparison with the measured self-diffusion coefficient[87], dielectric constant[132], and 

enthalpy of vaporization[133].  The simultaneous implementation of field-dependent 

atomic charges and intramolecular potentials impacts the equations of motion for the 

fluid and the simulations are significantly more lengthy than for corresponding non-

polarizable models.   

Results from extensive molecular dynamics simulations of bulk ethanol are 

reported.  In particular, the hydrogen bonding network is examined in detail.   We 

compare our results with a non-polarizable ethanol model, a partially polarizable model 

where the intramolecular motion is field-independent but atomic charges respond to the 

electric field, and a partially polarizable model where the atomic charges are field-

independent but the intramolecular potential responds to the electric field.   

This chapter is organized as follows.  Section 3.2 outlines the methods we have 

used to arrive at the polarizable flexible model for ethanol.  Section 3.3 analyzes the fluid 

structure and properties, with an emphasis on hydrogen bonding.  Concluding remarks 

are given in Section 3.4.   
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3.2. Methods 

The full field-dependent potential, )(EU
r

, is written as 

LJel UEUEUEU ++= )()()( intra
rrr

    [3.1] 

where the evaluation of the electrostatic energy, )(EU el
r

, is discussed in Section 3.2.3.  

The field-dependent intramolecular potential, )(intra EU
r

, is the subject of  Section 3.2.5.  

The Lennard-Jones contribution to the energy, LJU , is not field-dependent and has been 

discussed in Chapter 2. 

Fig. 2.8 shows the atom labeling employed throughout this chapter.  The model 

developed in this chapter is referred to as the Fluctuating Charge and INTRAmolecular 

potential (fCINTRA) model.  A flowchart summarizing our procedure for ethanol model 

development is given in Fig. 3.1.    

The process begins by assessing the range and frequency of fields experienced in 

bulk ethanol.  As shown in Fig. 3.1, molecular dynamics simulations using a non-

polarizable model are used to provide an estimate of “typical” fields in bulk ethanol.  The 

second and third steps in our procedure involve the analysis of the collected fields and the 

selection of a representative subset.  Steps 1-3 in Fig. 3.1 are discussed in detail in 

Section 3.2.1 below.  The field-response of ethanol molecules is assessed via an extensive 

series of ab initio calculations.  A very large number of calculations is required and, as a 

result, the ab initio method chosen to evaluate field response must be efficient as well as 

accurate. Thus, benchmarking against high level calculations is a necessary step to 

choose the appropriate basis set and method used to quantify the molecular response.   

The discussion of the ab initio calculations is provided in Section 3.2.2.  Following these 
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preliminary steps to select appropriate fields and gauge the molecular response, the 

polarizable model is developed as discussed in Sections 3.2.3, 3.2.4, and 3.2.5.   

 

 
 

Figure 3.1.  Flow chart showing the seven steps involved in the design of the polarizable 
flexible ethanol model. 
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3.2.1 Assessment of typical electric fields in bulk ethanol 

In the parameterization of a polarizable model, a limited number of fields can be 

explicitly considered.  We chose to proceed by directly assessing the fields a typical 

ethanol molecule experiences in the bulk.   Specifically, a lengthy molecular dynamics 

simulation of bulk ethanol was undertaken. The flexible non-polarizable model of Chen 

et al.[134] was employed with fields recorded every 500 time steps.  The simulations 

were performed in the NVE ensemble, for 2000 molecules, over 50000 iterations, and 

with a time step of 0.127 fs.  Ewald[90] sums were employed, with tinfoil boundary 

conditions, a convergence parameter α of 0.1609 Å-1, and a momentum space cutoff of  

k*2 ≤ 27.   

Throughout the simulation, the field on the C(3), O(2), and H(1) atoms of each 

molecule were monitored.  Information was not gathered for the other atoms since C(4) is 

uncharged in the Chen et al.[134] model and the other hydrogens do not appear explicitly 

in the model.  The end result, summarized in Fig. 3.2, is a distribution of electric fields in 

bulk ethanol, as predicted from a non-polarizable ethanol model.   While the field 

distributions will change for a polarizable model, Fig. 3.2 provides a rough estimate of 

the range of fields experienced by ethanol molecules in the bulk, and the probability of a 

given field.  It is important to note that long-ranged contributions to these fields are 

substantial.  Thus, the intuitive process of generating fields by placing charges at 

hydrogen-bonding sites[131], or other local sites, will not produce typical fields 

experienced by ethanol molecules in the bulk liquid.   

The 200,000 fields summarized in Fig. 3.2 are too numerous to consider directly. 

The number of fields is reduced to 618 as follows.  Figs. 3.2(a), 3.2(b), and 3.2(c) are 
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individually employed to select 350, 158, and 110 fields, respectively, from the 200000 

possibilities.  Consider Fig. 3.2(a).  We divide the magnitude of the field squared, E2, on 

C(3) into 2000 equal segments.   For a given E2 range, 405 to 405.5 say, the height of the 

curve is compared to the maximum.  If a random number is less than this ratio then one 

of the fields with an E2 in this range will be selected for further analysis.   In this way, the 

field selection is biased by the frequency of occurrence of the field.  The procedure is 

repeated for Figs. 3.2(b) and 3.2(c).   Note that the broader peak in Fig. 3.2(a) results in a 

larger number of selected fields.  Distributions corresponding to the 618 fields are shown 

in Fig. 3.2.  The desired result has been achieved:   a manageable number of fields, 

representative of typical fields experienced by ethanol molecules in the bulk.   

3.2.2  Ab initio calculations for molecular response 

The parameterization of molecular response to a given field requires that the field 

be reproduced in the ab initio calculation.  Here, the field is obtained by placing four 

point charges around a single ethanol molecule with the magnitudes and positions of the 

charges chosen to reproduce the fields at C(3), O(2), and H(1).  In practice, the charges 

must be far enough from the molecule so that the molecule responds to an overall field 

rather than to individual charges.  We accomplish this by excluding the charges from the 

volume defined by a box of dimensions 2(xmax,ymax,zmax), where xmax, ymax, and zmax are 

the largest components of the atomic positions.  This procedure is repeated for 618 fields 

and a set of four point charges is obtained for each field. 
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Figure 3.2.  Statistics on the electric fields collected during the MD simulation using the 
flexible, non-polarizable Chen et al.[134] model of ethanol.   Panels (a)-(c) each 
summarize 200000 measurements of the electric field on C(3), O(2), and H(1), 
respectively.    Panels (d)-(f) show the corresponding distributions for the 618 selected 
electric fields.   The field magnitudes are in reduced units. 
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In a bulk liquid, the molecule cannot rotate or translate fast enough to respond to 

an instantaneous change in the field, but its atomic charges and potential surface change.  

That is, the electrons rapidly move about the molecule to respond to the field but the 

nuclei respond much more slowly.   A full optimization of the molecular structure in the 

presence of a field would lead to translation and rotation.   In order to prevent this, C(3) is 

forced to remain at the origin, O(2) must lie on the z-axis, and H(1) is in the xz plane 

during the optimization.  These constraints prohibit translation and, to a large extent, 

rotation due to the field.  Other than these constraints, the molecule is fully optimized.   

All ab initio calculations are performed using Gaussian 03[135].  Before selecting 

a basis set and method, benchmark calculations were performed.  Specifically, 16 fields 

were selected randomly and the molecular structure was optimized in each of these fields, 

for 20 functional/basis set combinations.  In addition, for each field, a benchmark 

calculation was performed using 2nd order Moller-Plesset perturbation theory[136] (MP2) 

with the augmented correlation consistent triple-zeta (aug-cc-pVTZ) basis set of Dunning 

et al.[137, 138] Table 3.1 shows the average error in the molecular dipole, relative to the 

benchmark, for the 20 functional/basis set combinations.  Specifically, for each 

combination, the ratio 

20,2,2

2,2,16

1 )(
)(

16
1

MPFMP

FMPFMethod

F μμ
μμ

−
−∑

=

 [3.2] 

 is calculated.  FMethod ,μ and FMP ,2μ  are the dipole moments obtained in the field for the 

selected functional/basis set combination and for the benchmark, respectively, and 0,2MPμ  

is the zero-field dipole.  Table 3.1 clearly shows the importance of basis set on the 

response:  All of the basis sets are large, but additional polarization and diffuse functions 
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improve the dipole prediction.   In particular, for the cc-pVDZ and cc-pVTZ basis 

sets[137], a deficit in diffuse functions resulted in optimized structures significantly in 

error for 2 of the 16 fields under consideration and this raised their overall average in Eq. 

[3.2].   

 

Table 3.1.  Average error in the dipole moment, relative to MP2/aug-cc-pVTZ reference 
calculations (see Eq. [3.2]), for ethanol in 16 electric fields.  Errors are reported for four 
functionals and five basis sets.   

 6-311G(d,p)
[139, 140]

aug-cc-pVDZ
[138]

cc-pVDZ
[137]

cc-pVTZ 
[137] 

6-311++G(d,p)
[139, 140]

B3LYP[141] 0.5740 0.5151 2.1598 1.0070 0.0298
B97-2[142, 143] 0.6875 0.7436 2.0186 1.3059 2.0682
PBE1PBE[144] 0.6756 0.723 1.9964 1.2630 0.9359
PBEPBE[144] 1.0741 1.0435 3.0747 1.7321 2.0156

 
 

 From Table 3.1, the B3LYP functional[141] with the 6-311++G(d,p) basis 

set[139, 140] predicts dipoles in closest agreement with the MP2 benchmark.   We find 

that a measure similar to Eq. [3.2], but based on atomic positions, also indicates that the 

B3LYP/6-311++G(d,p) combination is superior.  In addition, the zero-field optimized 

structure from B3LYP/6-311++G(d,p) gives a dipole of 1.706D  which is in close 

agreement to the experimental gas phase value of 1.71D[145].  Based on these results, all 

further ab initio calculations employ the B3LYP functional with the 6-311++G(d,p) basis 

set.   

The evaluation of the field-dependence of intramolecular motion begins with a 

series of geometry optimizations in the presence of the individual fields.  At each field, 

one full geometry optimization and a series of 122 restricted geometry optimizations are 
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performed.  The final field-dependent potentials for ethanol are extracted from 76014 

B3LYP/6-311++G(d,p) calculations.   

3.2.3 Fluctuating Charge Model 

The FC model has been discussed in detail in Chapter 2.  In this section, we 

briefly introduce our implementation.  Appendix A describes our methodology for 

extracting the charge response parameters from ab initio calculations.   

Our ethanol-specific FC parameter values are compared with CHARMM 

transferable parameters[53] in Table 3.2.   Our calculations predict electronegativities 

( 0~
iχ ) that are consistently larger than for CHARMM[53], and hardnesses ( 0

iiJ ) of the 

atomic polarizabilities that are larger than the CHARMM values except for H(5)-H(9) 

where the values are 5-10% smaller.   

The parameters in Table 3.2 for a given atom incorporate the effects of the other 

atoms in the molecule.   That is, the parameterization reflects the response of the atom 

within the ethanol molecule.  In this thesis, the parameters for chemically equivalent 

hydrogens (H(5), H(6), H(7)) and (H(8), H(9)) have been constrained to be equal.  

Symmetry arguments dictate that H(8) and H(9) should have the same parameters, and 

interconversion of the methyl hydrogens (H(5)-H(7)) during the simulation requires that 

these three have the same response parameters.  In Appendix A we discuss our method 

for imposing symmetry on the hydrogen parameters.  As a result of these symmetry 

constraints, the final zero-field atomic charges in the fCINTRA model (see Table 3.2) 

give a dipole moment of 1.734D, slightly larger than the gas-phase  B3LYP/6-

311++G(d,p) dipole moment of 1.706D.   
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Table 3.2.  Charge fluctuation parameters (see Eq. [2.25]) and Lennard-Jones parameters for the polarizable, flexible fCINTRA 
ethanol model.  The fCINTRA parameters are compared with polarizable CHARMM[53] values.  For comparison with CHARMM, 

the 0~
iχ have been shifted to give an H(1) value of zero in the sixth column.  0

iiJ  are given in kJ/(mol |e|2) and 0~
iχ  are reported in 

kJ/(mol |e|).  The LJ parameters for H(1) and O(2) were optimized for the fCINTRA model while the remaining values are from 
CHARMM[53]. 

 

 

 
iζ  

fCINTRA 
(nm-1) 

0
iiJ  

fCINTRA
 

0
iiJ   

CHARMM 

0~
iχ  

fCINTRA 
 

0~
iχ  

(shifted) 
fCINTRA 

0~
iχ   

CHARMM 

 
iiε  

(kJ/mol) 

 
iiσ  

(nm) 

 
0
iQ  

fCINTRA 
(|e|)

H(1) 26.24  2278.6 2164.2 -264.0 0.0 0.0 0.1 0.1 0.40
O(2) 29.31  1479.3 1286.2 262.4 526.4 444.9 1.3 0.295 -0.71
C(3) 21.54  1087.0 874.2 -2.7 261.3 207.5 0.251 0.358 0.48
C(4) 21.30  1075.1 1005.6 -8.2 255.7 233.7 0.305 0.360 -0.19
H(5) 23.52  2042.7 2098.0 -34.3 229.7 216.7 0.09614 0.235 0.051
H(6) 23.52  2042.7 2098.0 -34.3 229.7 216.7 0.09614 0.235 0.051
H(7) 23.52  2042.7 2098.0 -34.3 229.7 216.7 0.09614 0.235 0.051
H(8) 22.13  1921.6 2098.0 -35.7 228.3 228.0 0.1338 0.239 -0.066
H(9) 22.13  1921.6 2098.0 -35.7 228.3 228.0 0.1338 0.239 -0.066
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As described in Chapter 2, )( βαjiij rJ  can be defined as a Coulomb overlap integral 

(Eq. [2.27])  or using an approximation form (Eq. [2.29]).  In Fig. 3.3, we compare the 

H(1)-H(1) radial distribution from two simulations that differ only in the form of )( ijij rJ

for intramolecular atomic pairs separated by less than four bonds.  From the figure, even 

small changes in the )( ijij rJ lead to important differences in the fluid structure.  In 

particular, the fluid is less structured when Eq. [2.29] is employed and the average dipole 

is 1.9 D.  The experimental dipole moment in the bulk is 3.04 D[145] and the use of 

)( ijij rJ  from Eq. [2.27] gives an average dipole of 2.64 D.  It appears that seemingly 

small differences in the Coulomb overlaps can lead to significant differences in the fluid 

structure and properties.    

 

Figure 3.3.  The impact of the representation of the interatomic Coulomb interaction, 
)( ijij rJ .  The H(1)-H(1) radial distribution is shown for bulk ethanol at ρ=0.787 g/cm3 

and T=298K.  Results for the fCINTRA model with the overlap integral (Eq. [2.27]) form 
of the Coulomb interaction are given by a solid line, while use of  Eq. [2.29] leads to the 
distribution identified by the dotted line.   
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3.2.4  Lennard-Jones potentials 

 The Lennard-Jones energy and length parameters, ijε  and ijσ , are the only 

adjustable parameters in our simulations:  All other parameters are extracted from 

B3LYP/6-311++G(d,p) calculations.  In fact, we adjust only the LJ parameters for O(2) 

and H(1), all others are taken from the CHARMM force field[53].   

 

3.2.5 Intramolecular potentials 

The functional forms for the stretch, bend, and torsion potentials have been 

introduced in Chapter 2.  For ethanol, we divide the intramolecular motion into 8 

stretches, 13 bends, and 2 torsions, and the corresponding potentials are described by Eqs. 

[2.31]-[2.33].  For Eq. [2.33], a form with a slight variation is used 

, [3.3] 

The ab initio energies used to define the potentials should be corrected[146], prior 

to further analysis, by removing contributions from atoms separated by more than 3 

bonds.  For ethanol, this contribution is only from H(1) interacting with H(5)-H(7).  Bond 

lengths and angles do not change much during a simulation and the corrections will be 

slowly varying over the relevant parameter range.  Consequently, we have not corrected 

the ab initio potentials for stretches and bends.  Consider the torsions.  The largest 

contribution to the correction is expected from electrostatic interactions between the 

hydrogens.  We correct the ab initio energies as follows.  For each torsional angle and 

field, we subtract the electrostatic contribution to the energy, elU , as given in Eq. [2.26].  
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The atomic charges required for this correction are obtained by solving the equations of 

motion for the charges (see Section 3.2.6 and Appendix B) for a single molecule 

constrained to the appropriate geometry and in the chosen field.  In this way, the 

electrostatic contribution to the energy from atoms separated by more than three bonds, 

as it is evaluated during a simulation, is removed from the ab initio energy.   

The incorporation of field dependence in the coefficients of Eqs. [2.31]-[2.33] is 

challenging.  As a first step, we fitted power series in the fields at each atom, the field 

components at each atom, and products between field components.  While the resulting 

fits were of acceptable quality, most of the individual terms were not physically 

meaningful and the fitted potentials did not reproduce expected symmetry in the 

potentials.  Rather than pursue this approach, we have chosen to expand the field-

dependent parameters in Eqs. [2.31]-[2.33], according to “structural” analogs.  These 

terms are listed in Eqs. [2.35]-[2.43].  With these considerations in mind, the parameters 

in Eqs. [2.31]-[2.33] are expanded using the terms in Eqs. [2.35]-[2.43] and the 

multiplicative coefficients are obtained by least-squares fits with the SPSS package 

(Version 13.0).  The coefficients are prioritized and only the most significant are kept, so 

that expansions for the individual coefficients are relatively short (11 terms or less).  For 

example, the equilibrium bond angle of H(1)-O(2)-C(3) is expanded as follows 

...||1008.1|)||||(|1043.17.108)( 1231716154 +×−++×−= −−
HOHHHHHHe EEEEE

r
θ

 
[3.4] 

Table 3.3 gives the expansion coefficients describing the field dependence of the 

bond lengths.  As described in Eqs. [2.41]-[2.42], X is used to represent atoms 8 and 9, 

and Y denotes H(5), H(6), and H(7).  Only the first term contributes in the absence of the 
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field, and the coefficient listed for this term is simply the zero-field equilibrium bond 

length.  The expansions generally produce an 8.02 ≥R .   As is evident from the 

magnitude of the coefficients in the table, the bond lengths do not change significantly 

with the field.   

Table 3.3. The zero-field bond stretching constants and the field dependence of the 
equilibrium bond lengths (see Eq. [2.31]) extracted from B3LYP/6-311++G(d,p) 
calculations of ethanol.  AB

HOB  identifies the bond: the superscripts follow the atom 
numbering shown in Fig. 2.8, while the subscripts are added for convenience and identify 
the atom types.  ks is the zero-field bond stretching force constant, and re is the 
corresponding zero-field equilibrium bond length.  The terms, and the coefficients, are 
given for each bond.  The minimum and maximum bond lengths observed in the 618 
fields are provided in the 4th and 5th rows, respectively.  Note that nAnA −×=− 10)( . 

         
Bond 12

HOB  23
OCB  34

CCB  Y
CHB 4  X

CHB 3  

ks(kJ/Å2mol) 251105.1 132438.5 128123.6 157499.1 148234.4 

re(Å) 0.962 1.430 1.517 1.093 1.099 
rmin(Å) 0.961 1.416 1.514 1.092 1.094 
rmax(Å) 0.978 1.464 1.526 1.098 1.102 

Term || 1
HE  

1.07(-4) 
|| X

HE  
1.61(-4) 

|| XX
HHE  

1.84(-6) 
|| 3

CE  
2.61(-5) 

|| 1
HE  

1.68(-5) 

Term || 2
OE  

-7.37(-5) 
|| 11

HHE  
1.04 (-5) 

|| 24
OCE  

-2.60(-6) 

X
OHE 2  

-8.76(-7) 
|| 3

CE  
-1.24(-4) 

Term || 11
HHE  

6.93(-7) 
|| 22

OOE  
2.78(-5) 

|| 14
HCE  

1.98(-6) 

31
CHE  

7.77(-7) 
|| XX

HHE  
9.22(-7) 

Term 
432
CCOE  

-8.79(-7) 
|| XX

HHE  
-6.11(-6) 

|| 89
HHE  

-2.77(-6) 

X
CHE 3  

1.98(-6) 
|| 2 X

OHE  
-6.37(-7) 

Term 
32X

HCOE  
-1.52(-6) 

|| YX
HHE  

6.82(-7) 

Y
OHE 2  

-4.34(-7) 

89
HHE  

-2.35(-6) 
|| 32

COE  
4.32(-6) 

Term 
34X

HCCE  
1.02(-6) 

21
OHE  

-3.53(-5) 

Y
HHE 1  

7.13(-7) 

YY
HCHE 4  

1.18(-6) 
|| 3Y

CHE  
-1.79(-7) 

Term 
839
HCHE  

-3.70(-6) 

YY
HCHE 4  

-4.27(-6) 

43Y
HCCE  

2.51(-6) 

32X
HCOE  

8.42(-10) 

24
OCE  

-1.80(-5) 

Term 
321
COHE
)

 
-4.69(-10) 

32X
HCOE  

-7.71(-6) 

YY
HCHE 4ˆ  

-6.01(-10) 

YY
HCHE 4)

 
-2.14(-10) 

Y
OHE 2  

4.64(-6) 

Term 
432
CCOE
)

 
5.63(-10) 

32X
HCOE
)

 
-8.98(-9) 

32X
HCOE
)

 
1.26(-9) 

32X
HCOE
)

 
8.42(-10) 

89
HHE  

6.22(-7) 

Term 
34X

HCCE
)

 
9.46(-10) 

34X
HCCE
)

 
-4.93(-9) 

34X
HCCE
)

 
2.13(-9) 

839
HCHE
)

 
1.12(-9) 

32X
HCOE
)

 
6.18(-10) 
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Table 3.4 gives the expansion coefficients for the field-dependence of the 

equilibrium angles.  The first coefficient in Table 3.4 is constrained to be the equilibrium 

angle in the absence of a field.  The other coefficients are obtained by regression.  In 

general, the fitted potentials provide a good representation of the bend potentials with the 

exception of the H(1)-O(2)-C(3) angle.   Even with a substantial number of expansion 

terms the  R2 is roughly 0.4.   However, as indicated by the θmin and θmax values, this 

angle does not vary much in the course of the simulation.   

Consider the torsion about the O(2)-C(3) bond.    This motion reflects the ease 

with which the hydrogen-bonding hydrogen can rotate and will clearly be relevant to the 

hydrogen bonding characteristics in the fluid.  Fig. 3.4 shows this torsional potential in 

six different fields.  The uncorrected ab initio potential, the corrected potential obtained 

by subtraction of the intramolecular electrostatic contribution, and the fitted potential are 

compared. From the figure, the corrected and ab initio potentials are qualitatively similar.  

However, the corrected potential has a higher barrier for rotation through the eclipsed 

conformation in most fields.   It is clear from the figure that some fields radically change 

the characteristics of the torsion potential.  For instance, in Fig. 3.4(d), in the presence of 

this particular field, the minimum at 1800 has nearly disappeared.  On the other hand, 

many fields leave the potential virtually unchanged, as illustrated in Fig. 3.4(b).  The 

fitted potentials shown in the figure illustrate the overall quality of the fitted potentials:   

very good agreement with the corrected ab initio potentials is shown in Figs. 3.4(a)-(c) 

and poorer agreement is evident in Figs. 3.4(d) and 3.4(f).  It is important to realize that 

the curves are not fitted individually, rather a single functional form of the torsional 

potential, Eq. [2.33], is used to model the response to all fields.  That is, for 618 fields 
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and 35 energies on each potential curve a total of 21630 energies have been evaluated 

and these are fitted simultaneously.  As illustrated in Figs. 3.4(e) and 3.4(f), even for the 

poorest fits, the fitted and corrected ab initio potentials are qualitatively similar. The 

overall R2 value is 0.90.   If we rank each field according to the quality of the fitted 

torsional potential, then 390 fields have R2 values above 0.8.  Only 94 fields have R2 

values below 0.6.   The expansion coefficients for the O(2)-C(3) torsion are given in 

Table 3.5.   

The field dependence of the torsion potential for rotation about the CC bond is 

shown in Fig. 3.5.   The methyl hydrogens are interchanged by this torsion and, 

regardless of the applied field, interconversion of the hydrogens by a 120 degree rotation 

forces the potential to return to its original value.   The fields selected for the figure 

illustrate the range of variability found for this potential.  Clearly, the field has little 

impact on this motion.  As a result, we employ only the zero-field coefficients and these 

have the following values (in kJ/mol):  183.70;2 =C , 798.211;2 −=C , 625.303;2 =C , and

644.15;2 −=C .  All other coefficients in Eq. [2.33] are zero for this torsion and this field-

independent potential yields and R2 value of 0.975.   

Within our simulations, we have focused on the more strongly field-dependent 

motions.  As a result, we have not considered the field dependence of the stretching force 

constants, )(; Ek iss

r
, or the equilibrium bond lengths.  After a detailed exploration of the 

bending potentials in the presence of the fields, we found that the field dependence of 

)(; Ek ib

r
θ  was weak.  Consequently, we have only used the zero-field force constants in 

the bending potentials.   Finally, field dependence has not been included for the torsion 
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about C(3)-C(4).  Field-dependence remains in the equilibrium bond angles, and the 

torsion about C(3)-O(2).   

 
 
 
Table 3.4.  The zero-field angle bending force constant and the field dependence of the 
equilibrium bond angles (see Eq. [2.32]) extracted from B3LYP/6-311++G(d,p) 
calculations of ethanol.  The terms, and the coefficients, are given for each bend.  The 
minimum and maximum bond angles observed in the 618 fields are provided in the 4th 
and 5th rows, respectively.  Note that nAnA −×=− 10)( . 

 
 

 123
HOCA  234

OCCA  Y
CCHA 34  X

OCHA 23  YY
HCHA 4  X

CCHA 43  938
HCHA  

θk  
( kJ/deg2mol ) 

 
0.064392 

 
0.113844 

 
0.066162 

 
0.090502 

 
0.06207 

 
0.074054 

 
0.064054 

eθ (deg) 108.7 107.8 110.5 110.2 108.4 110.2 107.8 

minθ (deg) 106.1 107.6 109.5 106.9 105.4 109.0 106.7 

maxθ (deg) 111.9 112.8 113.7 111.2 109.7 111.9 109.4 

Term || 1Y
HHE  

-1.43(-4) 
|| Y

HE  
7.06(-3) 

|| 1
HE  

7.45(-3) 
|| 1Y

HHE  
-2.11(-4) 

|| 14
HCE  

-1.10(-4) 
|| 11

HHE  
3.58(-4) 

|| 1
HE  

-2.88(-2) 

Term || 12
HOE  

-1.08(-3) 
|| 24

OCE  
-1.25(-3) 

|| 3
CE  

-6.43(-3) 
|| 2Y

OHE  
1.02(-4) 

|| YX
HHE  

1.73(-5) 
|| 2 X

OHE  
8.26(-5) 

|| 2
OE  

3.03(-2) 

Term || 4Y
CHE  

8.79(-4) 
|| 1Y

HHE  
2.21(-4) 

|| 11
HHE  

-6.93(-5) 
|| YX

HHE  
5.36(-4) 

14
HCE  

9.50(-5) 
|| 1Y

HHE  
7.93(-5) 

|| 11
HHE  

4.44(-4) 

Term 
21
OHE  

1.24(-3) 
|| YX

HHE  
5.02(-5) 

|| 14
HCE  

6.40(-5) 
|| 14

HCE  
-8.76(-5) 

43Y
HCCE  

-5.59(-4) 
|| YY

HHE  
-2.72(-5) 

|| 22
OOE  

3.17(-4) 

Term 
YY
HHE  

-8.11(-4) 

Y
HHE 1  

1.57(-4) 
|| YX

HHE  
-1.46(-5) 

321
COHE  

9.86(-4) 

839
HCHE  

7.52(-4) 

13
HCE  

-7.11(-4) 
|| 21

HHE  
-6.98(-4) 

Term 
321
COHE  

1.84(-3) 

89
HHE  

-5.08(-4) 

43Y
HCCE  

5.84(-4) 

34X
HCCE  

-2.51(-4) 

YY
HCHE 4)

 
-1.21(-7) 

321
COHE  

-1.94(-3) 
|| 34

CCE  
1.60(-4) 

Term 
432
CCOE  

7.39(-4) 

321
COHE  

7.14(-4) 

839
HCHE  

-2.72(-4) 

432
CCOE
)

 
-1.50(-7) 

432Y
HCCOE  

-5.43(-7) 

YY
HCHE 4  

-3.11(-4) 

89
HHE  

-3.56(-4) 

Term 
321
COHE
)

 
-5.15(-7) 

32X
HCOE
)

 
-7.45(-7) 

432
CCOE
)

 
-1.24(-7) 

YY
HCHE 4)

 
-1.54(-7) 

321X
HCOHE  

-2.12(-7) 

32X
HCOE  

-8.06(-4) 

321
COHE  

-8.10(-4) 

Term 
34X

HCCE
)

 
7.23(-7) 

321X
HCOHE  

3.65(-7) 

YY
HCHE 4)

 
1.28(-7) 

32X
HCOE
)

 
1.04(-6) 

 
839
HCHE  

-7.20(-4) 

32X
HCOE  

6.74(-4) 

Term 
839
HCHE
)

 
1.70(-6) 

YX
HCCHE 34  

-3.65(-6) 

32X
HCOE
)

 
-1.18(-7) 

839
HCHE
)

 
1.22(-6) 

 
432Y

HCCOE  
-9.32(-7) 

32X
HCOE
)

 
-1.12(-7) 
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Figure 3.4.  The torsional potential, )(EU tor

r
, between H(1)-O(2)-C(3)-C(4) as a 

function of the dihedral angle.  For convenience, each vertical scale is shifted so that the 
ab initio curve minimum corresponds to an energy of zero.  The B3LYP/6-311++G(d,p) 
results are shown with open circles, corrected ab initio results are open squares, and least-
squares fits to the corrected ab initio results are filled squares. The sequence of panels 
shows the dependence of the potential on the field.  In reduced units:  (a) || 1

HE
v

=0.00,
|| 2

OE
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CE
v
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Table 3.5.  Field dependence of the torsional coefficients for rotation about the C(3)-O(2) 
bond in ethanol (see Eq. [2.33]).  The minimum and maximum values for the coefficients 
in 618 fields are given in the 2nd and 3rd rows, respectively.  The third row gives the 
coefficients in the absence of a field and the following rows list the field-dependent terms.  

nAnA −×=− 10)( . 

 C1;0 C1;1 C1;2 C1;3 C1;4 C1;5 C1;7 C1;8 

Cmin -1.67 -13.41 -12.78 -2.45 -2.48 -4.07 -8.60 -13.88 
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Figure 3.5.  The torsional potential, )(EU tor
r

, between O(2)-C(3)-C(4)-H(5) as a 
function of the dihedral angle.   For convenience, each vertical scale is shifted so that the 
ab initio curve minimum corresponds to an energy of zero. The B3LYP/6-311++G(d,p) 
results are shown with open circles, corrected ab initio results are open squares, and the 
field-independent fit to the corrected ab initio results are filled squares. The panels show 
the dependence of the potential on the field. In reduced units:  (a) || 1

HE
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3.2.6 Simulation details  

The canonical (NVT) ensemble is employed for MD simulations of 200 ethanol 

molecules, at a density of 0.787 g/cm3 and a temperature of 298 K.  Periodic boundary 

conditions are employed together with a spherical cut-off for LJ interactions.   

The fluid structure is particularly sensitive to the parameters chosen for H(1) and 

O(2).  This is expected based on the importance of hydrogen bonding in the fluid.  

Simulations were performed for 486 models differing in the Lennard-Jones parameters 

for O(2) and H(1).  Specifically, εo=(0.7, 0.9, 1.1, 1.3, 1.5, 1.7), σo=(0.25, 0.27, 0.29, 

0.295, 0.3, 0.305, 0.31, 0.33, 0.35), εH=(0.1, 0.2, 0.3), and σH=(0.02, 0.05, 0.10).  We 

initially perform 20 ps simulations for the 486 parameter combinations and assess the 

fluid structure based on peak positions and coordination numbers, versus neutron 

diffraction results[123].  We also require that the charge on O(2) be less than -1.0|e| and 

that the diffusion coefficient is within a factor of three of the experimental value[87], 

1.2x10-9 m2/s.  With these criteria, 25 parameter sets were selected for further 

consideration.  50 ps simulations were undertaken for these parameter sets, and the 5 sets 

with diffusion coefficients closest to experiment were selected.   For the remaining five 

models, 1 ns simulations were performed and the final model has been chosen based on 

the predicted dielectric constant.  Our optimal LJ parameters are given in Table 3.2.  

EWALD summations[90], with conducting boundary conditions, are applied for 

the long-ranged electrostatic interactions.  The additional contributions from the charge 

fluctuations are included in the EWALD contribution to the energy by first computing the 

EWALD contribution for an atomic fluid and then removing the contribution for the 

intramolecular pairs where Eq. [2.26] differs from the point-charge Coulombic potential.  
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For these atomic pairs, the electrostatic energy is calculated from Eq. [2.26].  The results 

reported below correspond to a position space cut-off of 26685.0=α Å-1, and a 

momentum space cutoff of 272* ≤k .  

The procedure employed to generate the starting configuration has been discussed 

in detail elsewhere[147].  Briefly, an excess of molecules is placed in the simulation cell 

and some are removed at random until the desired number (200) remains.  These 

molecules are oriented randomly within the simulation cell.  Finally, the system is 

expanded to reduce any strong repulsions, and Monte Carlo cycles are performed 

(assuming that the molecules are rigid and non-polarizable) while the cell is gradually 

recompressed to the desired volume.  The molecules are then assigned random linear and 

angular velocities, consistent with the desired temperature.  Following this, the equations 

of motion for the charges are equilibrated and the corresponding field-dependent 

intramolecular potentials are calculated.  In this way, the starting configuration is liquid-

like and each ethanol molecule begins the simulation with distinct intramolecular 

potentials and atomic charges.    

We compare four different simulations to evaluate the importance of charge 

fluctuations and field-dependent intramolecular motion.   First, we consider bulk ethanol, 

as represented by a non-polarizable flexible molecular model.  Second, we allow the 

charges to respond to the molecular field but use the zero-field intramolecular potentials.  

Third, we consider electric-field dependent charges and intramolecular motion but, in the 

evaluation of forces, we treat the intramolecular contribution as though it is field-

independent. With this approximation, the simulation time increases only marginally 

while the intramolecular potential still responds to the field.   Of course, dynamical 
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motion will not be correct but we explore the accuracy of the equilibrium fluid structure.  

Finally, we simulate the full model and include forces due to the field-dependence of the 

atomic charges and intramolecular potential.   

Nosé-Hoover thermostatting[95, 96] was used to generate canonical averages.  

Following Rick et al.[46], extended Lagrangian equations of motion are also applied to 

the charges.  The relevant conserved quantity in our simulations is shown in Eq. [2.58].  

The mass Qm is set to 3 x 10-5 kcal/mol (ps/e)2, a very small value chosen to allow the 

atomic charges to rapidly respond to changes in atomic positions.  Since these 

fluctuations are intended to capture electronic reorganization, it is expected that the 

variations in charge should be much faster than atomic motion.  Fig. 3.6 shows the impact 

of Qm on the fluid structure and diffusion coefficient.  The diffusion coefficients in the 

figure are evaluated from the slope of the mean square displacement[40] for 20 ps 

simulations.  The mass chosen in this work is identified by (a) in the figure.  From the 

figure, the diffusion coefficient’s dependence on the charge mass can be characterized by 

a plateau region at very small mass (rapid response region), followed by a sharp peak, 

then a drop down to very small values and a gradual rise to the fixed-charge limit.  

Clearly, the value of Qm  has an important impact on the fluid structure:  a very small 

value allows the charges to fully respond to changes in nuclear positions, a large value 

suppresses the charge fluctuations, but at intermediate values the charges drastically alter 

the fluid properties, either by reducing the intermolecular structure, or by greatly 

enhancing it.  For the simulations Qm must be chosen carefully since an exceedingly 

small value will negatively impact the time step of the simulation but a large value will 
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lead to unphysical results.  In particular, the hydrogen bonding structure will only be 

accurately predicted if the chosen mass allows a sufficiently fast charge response. 

 

 

Figure 3.6. The impact of charge “mass” on the diffusion coefficient and radial 
distribution functions obtained from 20 ps simulations.  The final mass chosen for the 
simulations is identified by (a).  The diffusion coefficients are plotted against the 
logarithm of the charge mass (in units of kcal/mol (ps/e)2).  Radial distributions are given 
for four masses, identified with (a)-(d).   

 

A direct application of a velocity Verlet scheme for integrating the equations of 

motion requires a time step of less than 0.02 fs in order for HNH to be conserved because 

of the time scale of the charge fluctuations. This is an unfeasibly small time step, and we 

have introduced a reversible multiple time step MD algorithm, following Tuckerman et 
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al.[97], to integrate the equations of motion.    Details of the force calculations and the 

equations of motion are provided in Appendix B.  The larger time step for the simulations 

was 0.1 fs, while the atomic charges, and their associated extended Lagrangian variables 

fqη and fqp  , are advanced every 0.01 fs.  Fig. 3.7 shows the energy components and HNH  

as a function of time for a 50 ps simulation.  The kinetic energy of the charges is very 

small (effectively zero on the scale of the figure) since the charge “temperature” is set at 

1 K.  The potential energy, which includes the contribution from the FC model for 

electrostatic interactions, stabilizes after 5-10 ps.  The short-time fluctuations in HNH  are 

clearly very small but a slight long-term drift is evident even with the small time steps 

employed here.  Throughout the simulation HNH is monitored and fluctuations are within 

1% over 10ps. 

 

Figure 3.7.  The energy components and the conserved quantity HNH as a function of 
time.   The potential energy includes all contributions except for the intramolecular 
potential which is shown separately.   The kinetic energy for the charges is effectively 
zero throughout the simulation. 

 
The simulations of polarizable, flexible ethanol are performed using the MDMC 

program[148].  Modifications were introduced to include the charge fluctuation model,  
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the field-dependent intramolecular potential, and the multiple time step algorithm.  The 

evaluation of forces from the field-dependent intramolecular potential is, by far, the most 

time-consuming aspect of the computation (see Appendix B).  We have parallelized this 

segment of the code to allow for rapid computation of the forces.   

In the simulations, it is possible for atoms to experience fields for which the 

parameters in Eqs. [2.31]-[2.33] are outside of the range used in building their field-

dependent forms. Although this is a rare event, and the model may perform well in such a 

field, we have chosen to introduce a damping function for each parameter in Eqs. [2.31]-

[2.33].  Specifically, we consider the fitted parameters, and extract the minimum and 

maximum values observed in the 618 fields.  These values are given in Tables 3.3-3.5.  

The damped value, xDamp , of a parameter x is obtained from  
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where xmin and xmax are the minimum and maximum values of the parameter, respectively.  

Away from the minimum and maximum values, the damping has a negligible effect. The 

last term in Eqs. [3.6] and [3.7] is present to ensure continuity of the damped function, 

and its slope, at the midpoint value of the parameter range.   To evaluate the constant a in 
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Eqs. [3.5]-[3.8], we identify x* as the damped parameter that satisfies 02
2

=dx
xd Damp

 

and we require that  

%10
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|*|

minmax

max =
−
−

xx
xx

     [3.9] 

to determine the exponent a.  The ratio of 10% is decided based on trial and error.  We 

have found that it leads to a damping function which restricts the parameter to lie within 

the range [xmin , xmax] but without altering the value significantly away from the end points.  

As well, the force contribution from the damping (see Appendix B) is only significant in 

the region near xmin and xmax.  The ratio of the damped coefficient to the original, 

xxx Damp /'= , is illustrated in Fig. 3.8.  We see that x’ is close to one over most of the 

parameter range and deviates by less than 10% near the extreme values of the parameter 

range.  Beyond the range of parameters values obtained from the 618 fields, the damped 

parameter adopts the maximum or minimum value. 

 

Figure 3.8.  The impact of damping on the range of parameter values allowed in the 
simulation.  The solid line shows the ratio of the damped coefficient to the original (see 
Eqs. [3.5]-[3.8]).    
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3.3. Results and discussion 

In this section, we examine the fluid structure in bulk ethanol.  First, we compare 

our results to experiment and to those of other ethanol models, then we turn to the 

hydrogen-bonding structure in the bulk.   

3.3.1 Bulk ethanol 

 Fig. 3.9 compares radial distributions from the fCINTRA model, from neutron 

diffraction[123], and from the non-polarizable OPLS model [127].  The distribution 

between hydrogen-bonding hydrogens (H(1) in Fig. 2.8) is shown in the top-panel.  The 

first peak in the experimental distribution is relatively broad and all models we have 

examined (both polarizable and non-polarizable) have narrower peaks.  Given this, we 

have chosen to optimize our model based on the coordination number and peak position.  

Coordination number is the total number of neighbors around a central atom and can be 

obtained by integrating over the first peak of the radial distribution [42].  As shown in 

Table 3.6, these are well reproduced with the fCINTRA model.  The small secondary 

peak in gHH(r), at r ≈ 4.3 Å, is also well-reproduced by the fCINTRA model.  In contrast, 

the OPLS model places this peak at too large a separation and underestimates the 

coordination number.   

 The second distribution, gXH(r), is a combination from the O(2)-H(1), C(3)-H(1), 

and C(4)-H(1) interatomic pairs.  The neutron diffraction experiments[123] were not able 

to separate these contributions, and the combination in Fig. 3.9 is 

gXH(r) =0.303 gH(1)O(2) (r) +0.349 gH(1)C(3) (r) +0.349 gH(1)C(4) (r).  [3.10] 
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Figure 3.9. A comparison of radial distributions in bulk ethanol obtained from 
experiment, a non-polarizable model, and the fCINTRA polarizable model.  The solid, 
dotted, and dashed lines correspond to the fCINTRA model, the OPLS model, and the 
experimental[123] curves, respectively.  The topmost panel shows the distribution 
between hydrogen-bonding hydrogens.   The lower panels include multiple contributions 
from O(2), C(3), and C(4), as discussed in Section 3.3.1.   
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Table 3.6.  Properties of bulk ethanol as predicted from the polarizable, flexible fCINTRA model are compared with experiment.  
Values for the polarizable OPLS[126] and PIPF[43] models and for the non-polarizable OPLS[127] model are included.   The second 
column reports the average oxygen charge from the simulations.  The OPLS-pol and PIPF do not introduce polarization directly into 
the charge so the tabulated values correspond to the zero-field limit.   The third, fifth, and seventh columns report peak positions (PP) 
in the interatomic distributions.   For experiment, this work, and OPLS, X represents the total contribution from O(2), C(3), and C(4).  
The peak positions for the polarizable OPLS and PIPF models correspond only to oxygen (X=O(3)).  Corresponding coordination 
numbers (CN) are given in the fourth and sixth columns.   The self-diffusion coefficient is given in the eighth column, while the 
dielectric constant, the average dipole moment, and enthalpy of vaporization are given in the following columns.  The 7th row 
identifies the quantities obtained with a fluctuating charge model with a zero-field intramolecular potential.  Likewise, the following 
row refers to the fixed charge limit, with a field-dependent intramolecular potential.  The final row (“E shift”) corresponds to the field-
dependent charges and intramolecular potential implemented with an omitted force contribution  (See Section 3.2.6). 

 
 
 

  QO(|e|) PP 
(HH)(Å) 

CN 
(HH) 

PP 
(XH)(Å) 

CN 
(XH) 

PP  
(XX)(Å) 

D 
(10-9m2/s) ε  

Average 
dipole 

(D) 

ΔHvap 
(kJ/mol) 

Exp.   2.26[123] 2.00[123] 1.82[123] 0.95[123] 2.89[123] 1.20[87] 24.35[132] 3.04[145] 42.30[133] 
fCINTRA 
This work -0.99  2.30  2.11  1.73  0.96  2.62  1.74  24.89 2.64 45.77 

OPLS[126, 
127] -0.68 2.54 1.70 1.86 0.53  2.81 1.10 16.00 2.22 43.00 

OPLS-
pol[126] -0.53      1.80   2.62 1.30   2.55 40.70 

PIPF[43] -0.54     1.85 0.99 2.70     2.44 42.17 

FC, 

)0(intraU  
-0.95 2.38 1.91 1.79 0.75 2.68 1.45  2.49 

 

no FC, 
)(intra EU
r

 -0.71 2.43 1.90 1.84 0.67 2.78 1.21  3.24 
 

E shift -0.98 2.35 2.02 1.76 0.81 2.68 0.59  2.60  
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As shown in Fig. 3.9 and Table 3.6, the fCINTRA model reproduces the first peak 

position and coordination number but is much sharper than the experimental curve.  

Following the initial peak, due almost entirely to oxygen, the experiments indicate an 

oscillatory behavior due to contributions from all three atoms.  Our polarizable model 

also shows oscillatory behavior and reproduces the second peak position accurately but 

the third peak is shifted to smaller separations.  The OPLS curve shows far less structure 

than either the experiment or the fCINTRA distributions and the coordination number is 

underestimated by roughly 40%.   

 The final distribution in Fig. 3.9, gXX(r), includes a contribution from several 

atom pairs, as follows 

gXX (r) =0.0924 gO(2)O(2)(r)+0.212 gC(3)O(2)(r)+0.121 gC(3)C(3)(r)+0.212 gC(4)O(2)(r)+ 

0.242 gC(4)C(3)(r)+0.121 gC(4)C(4) (r)    [3.11] 

Benmore et al.[123] note concerns about contributions from hydrogens remaining in this 

distribution.  As a result, we have opted to focus on overall agreement between 

experiment and theory for this particular distribution.  We find that the position and 

intensity of the first peak is highly variable.  Our final parameters (in Table 3.2) give a 

peak that appears at smaller separations relative to experiment but the area under this 

peak is reasonable.  The broad secondary structure is also sensitive to model details but, 

as shown in Fig. 3.9, the fCINTRA model shows the expected double peak followed by a 

broad shoulder.   

 Table 3.6 provides a comparison of the properties predicted from the fCINTRA 

model, from experiment, from the non-polarizable OPLS model, and for two polarizable 

models.  Consider first the charge on O(2).  The OPLS-pol and PIPF models do not 
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include the polarizability directly into the charges.  The PIPF model, for example, 

introduces atomic dipoles to represent the polarizability.  However, the static charges 

employed in these simulations are significantly smaller than the gas phase charge (Table 

3.2).  The average charges obtained in this work are fairly large but we note parameter 

sets that gave smaller average charges inevitably led to a high diffusion coefficient and 

low coordination numbers.    

 Self-diffusion is overestimated by the fCINTRA model.  However, as shown in 

Fig. 3.6, the diffusion coefficient is highly sensitive to the mass associated with charge 

fluctuations.  Fig. 3.6 suggests that a further reduction in the mass would decrease the 

diffusion coefficient slightly but the final value would still lie above the experimental 

value.   

 The fCINTRA model predicts a dielectric constant, ε, in very close agreement 

with experiment.  The dielectric constant is calculated from[149]: 

)||||(
3

4 22 ><−><+= ∞ MM
TVkb

rrπεε     [3.12] 

where M
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 is the total dipole moment of the simulation box: 
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Over the course of the simulation <| M
r

|> should average to zero and we monitor this 

quantity as a measure of the convergence of the dielectric.  The value given in Table 3.6 

includes the contribution from <| M
r

|>2 , although it should be strictly zero, and it is less 

than 1% of the reported dielectric constant.  In Eq. [3.12], ∞ε  is calculated from the 

Clausius-Mossotti equation[150]: 
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where α is the molecular polarizability (see Appendix A) and v is the molecular volume.  

The fCINTRA model predicts ∞ε  to be 1.88, which is quite close to the experiment 

value[132] of 1.93.   

 The average dipole moment and the enthalpy of vaporization, ΔHvap, are evaluated 

from the simulations but are not considered in the parameter selection.  Relative to the 

non-polarizable OPLS and the polarizable models, the fCINTRA model predicts the 

average dipole in closest agreement with experiment although the experimental value is 

still underestimated by 13%. The distribution of molecular dipole moments is a Gaussian 

for the fCINTRA model with a standard deviation of 0.308D.   The evaluation of the 

enthalpy of vaporization proceeds as discussed elsewhere[43].  Briefly, ΔHvap is evaluated 

from  

ΔHvap = [Eintra(g)-Ei(l)-Eintra(l)] + RT - (Ho- H)   [3.15] 

where Ho- H is obtained from experiment[127].  The calculation of the average gas phase 

intramolecular energy, Eintra(g), proceeds by simulating a “fluid” in which all the 

intermolecular interactions are omitted.  In other words, individual molecules are flexible 

and polarizable but no longer interact in the fluid.  The equations of motion are integrated 

as discussed in Section 2.4, except that Nosé-Hoover chains[81] are implemented to 

ensure proper canonical averages.  From Table 3.6, the fCINTRA model predicts a 

vaporization enthalpy in good agreement with experiment, although the experimental 

value is exceeded by 8%.   
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 The last three rows in Table 3.6 show the properties from sub-models 

corresponding to simplified versions of the fCINTRA model.  All three models result in 

simulations that are comparable, time-wise, to those for non-polarizable models.  The use 

of the FC model, with zero-field intramolecular potentials, leads to properties that are in 

reasonable agreement with experiment although the coordination numbers and the 

average dipole are consistently too small.  The use of field-dependent intramolecular 

potentials with fixed-charges also reduces the coordination numbers and average dipole.  

In this case, the dipole distribution is bimodal with a peak at 2.34D and a peak at 3.80D.  

The “E shift” method, in which the forces due to the field-dependence of the 

intramolecular coefficients (the last term in Eq. [B1]) are neglected, yields a diffusion 

coefficient that is far too small.  This suggests that the coupling term cannot be omitted.   

 Overall, the fCINTRA model compares favorably with experiment and other 

polarizable models.  The introduction of field-dependence in the charges and the 

intramolecular potentials leads to accurate predictions for a range of properties including 

the fluid structure, the diffusion coefficient, the dielectric, the average dipole, and the 

enthalpy of vaporization.  Further model refinement would undoubtedly improve the 

agreement with experiment.  Such improvements would include optimization of all the LJ 

parameters, further minimization of the charge mass, and perhaps inclusion of  field-

dependence in all the intramolecular parameters.  The limit on the maximum oxygen 

charge could also be relaxed.  The latter may lead to an increase in the average dipole and 

a decrease in the self-diffusion coefficient, but may adversely impact the dielectric 

constant and vaporization enthalpy.  
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3.3.2 Hydrogen bonding 

Fig. 3.10 shows three snapshots of the fluid.  The left-most panel shows alkyl rich 

regions with a “loose” hydrogen bonding network separating the regions.  Consider the 

central panel where O(2) and H(1) are emphasized.  From the figure, the hydrogen 

bonding network in the fluid consists of complex chain-like structures.  In order to 

quantify this network, we apply a stringent structural definition of the hydrogen-

bond[120]: rHO < 2.6 Å, rOO < 3.5 Å, and the O-H-O angle is greater than 150 degrees.  

Using this definition, snapshots have been analyzed to ascertain the hydrogen bond 

characteristics and the results are collected in Table 3.7.  For the fCINTRA model, the 

average chain length includes roughly 24 molecules.  A branch, in which an ethanol 

molecule hydrogen bonds to three others, occurs on average once or twice every chain.  

As well, only 1% of the molecules are not participating in a hydrogen-bond at any given 

time.  The statistics collected for the non-polarizable OPLS model show a drastically 

reduced chain length, with a commensurate increase in the percentage of single 

molecules.  Thus, this nonpolarizable model greatly underestimates the extent and 

character of hydrogen-bonding in the fluid.  The statistics for the “partial” models are 

also given in Table 3.7.  In all cases, the length of the hydrogen bonding chains has 

decreased.  Overall, the FC model with zero-field intramolecular potentials is superior to 

the other sub-models.   
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Figure 3.10.   Snapshots of bulk ethanol from the fCINTRA polarizable, flexible model.  
All atoms appear in the snapshot on the right, while the center snapshot emphasizes O(2) 
and H(1), and the rightmost snapshot shows the carbons and their hydrogens.   

 

 

 

 

Table 3.7.  Hydrogen bond statistics evaluated from snapshots of the simulation cell.  A 
chain is defined by a series of hydrogen bonds, the percentage of single molecules 
identifies the average number of molecules that are not hydrogen bonding, and branches 
correspond to molecules that simultaneously hydrogen bond to three others.    

 
 

 
 

  Average chain 
length 

Percent 
single 

molecules  

Branches 
per 

chain 
fCINTRA 
This work 23.7 1.0 1.6 

OPLS 6.2 23.9  0.6 

FC, )0(intraU  21.1  2.7 1.7  

no FC, )(intra EU
r

  13.2  3.7 1.8 

E shift 19.4  0.0 3.0 
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3.4. Conclusions 

In this chapter, we have developed a polarizable and flexible model for ethanol.  

Our approach differs from others[43, 45, 46, 126, 127] in that we allow the 

intramolecular potential to vary with the field.  Atomic charges also fluctuate with the 

field according to the FC method[46].  At any instant in time, each ethanol molecule in 

the bulk has a unique set of atomic charges, and its own set of intramolecular potentials.   

The idea here is that, for each molecule, the electron distribution is unique and leads to 

distinct atomic charges and intramolecular potentials.   

The model we have developed relies heavily on ab initio calculations, and we 

begin with benchmarking of density functionals and basis sets.  As well, we collect 

information on the fields typically experienced by ethanol molecules in the bulk.  

Following this, an extensive series of B3LYP/6-311++G(d,p) calculations of ethanol, in 

the presence of 618 fields, is undertaken to develop field-dependent intramolecular 

potentials. The final ethanol model is obtained by comparison with interatomic 

distributions[123] and other properties.    Although the distribution functions available 

for comparison are not fully resolved, we find that they do provide a sensitive test of our 

models.  In the end, only four Lennard-Jones parameters are chosen by direct comparison 

with experiment.  In particular, the fluid structure is highly sensitive to the LJ parameters 

on O(2) and H(1) and small changes in the parameters change the H-bonding in the fluid 

and lead to significant differences in interatomic distributions.   

The stretching and bending motion in ethanol is not strongly field-dependent, and 

we have chosen to introduce field dependence in only the equilibrium bond angles, 

leaving the equilibrium bond lengths and the force constants field-independent.  On the 
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other hand, the torsional potential for rotation about the C(3)-O(2) bond, which governs 

the position of the H-bonding hydrogen, is strongly field-dependent.  In some fields, this 

torsional potential is highly asymmetric, and the global minimum is not at the zero-field 

value of 180 degrees.  An analysis of hydrogen bond characteristics shows that the 

fCINTRA model predicts longer chains of H-bonded molecules, with very few branching 

events and few isolated molecules.  Other models underestimate the chain lengths and 

overestimate the fraction of non H-bonding molecules.  The fCINTRA model allows the 

hydrogen to reposition itself in response to the field, thereby optimizing the hydrogen-

bond network. 

We have analyzed the impact of field-sensitivity of the model by performing a 

series of simulations on sub-models of fCINTRA.  First, the fluid in which the 

intramolecular potential is field-independent but the charges respond to the field is 

considered.  This model compares favorably with the fCINTRA model although, on 

average, the hydrogen bonded chains are shorter and the average dipole has been 

lowered.  Second, the intramolecular potential changes with the field, but the atomic 

charges do not vary.  Table 3.6 suggests that this model compares favorably with 

experiment.  However, the model yields a bimodal dipole distribution and the average 

length for hydrogen-bonded chains is much shorter than for fCINTRA.  Finally, both the 

charges and the intramolecular potential vary but some force terms are omitted.  This 

approach yields a diffusion coefficient well below experiment.  Overall, the sub-model in 

which only the charges fluctuate compares best with fCINTRA.   

The implementation of the fCINTRA model presents several challenges.  First, 

the evaluation of the field-dependent intramolecular potential parameters must be 
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efficient.  We have chosen to expand the coefficients into field-analogs of structural 

quantities.  We have also been careful to enforce any expected symmetries in the 

coefficients.   Second, the FC method has only been applied in a few instances[46, 50, 53, 

55, 131] and we have found that the simulations are highly sensitive to the choice of 

charge “mass” and to the definition of the Coulomb overlap.  For the latter, we employed 

a simple interpolation of numerically integrated overlaps(Eq. [2.27]) that was accurate, 

stable, and efficient  (See Section 2.2.1).   Third, within the simulations, the molecules 

experience a range of fields and some of these may lead to intramolecular potential 

coefficients that lie outside of the range used in the parameterization of the model.  We 

have dealt with this by introducing a damping function that constrains the coefficients to 

within the interval.  Fourth, the charges may “heat up” during the simulation, but we have 

implemented a Nosé-Hoover thermostat to constrain their temperature to 1K.  Finally, the 

time required for charge fluctuations must be much shorter than for nuclear motion.  As a 

result, a multiple time-step molecular dynamics algorithm is also required.   

The polarizable model methodology developed in this chapter offers a viable 

alternative to ab initio simulations.  Although the model development requires a large 

number of initial ab initio calculations, the individual calculations are fast.  As well, the 

simulations are far less demanding than full ab initio simulations although they are much 

more time-consuming than for non-polarizable models.  In particular, nanosecond 

simulations are still feasible with the methodology developed in this chapter.   
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Chapter 4 
Chirality transfer: The impact of a 
chiral solute on an achiral solvent 
 In this chapter, the chirality transfer from chiral solutes to achiral solvents is 

discussed.  The study is based on MD simulations of two solvents, which are ethanol and 

benzyl alcohol, and three solutes, which are PAMD, styrene oxide and acenaphthenol.  

The induced chirality is quantified by a chirality index and the spatial characteristics of 

the chirality transfer are analyzed. 

4.1. Introduction 

 The impact of solvent on the properties of chiral solutes has been studied in some 

detail using spectroscopy [24, 30, 31].  Recently, experimental studies have begun to 

focus on the chirality present in the solvent when it surrounds a chiral solute [26-29].  

 The chirality transfer from a chiral solute to an achiral solvent, in the isotropic 

phase, is the focus of this chapter.  To our knowledge, this is the first detailed simulation 

study of chirality transfer in isotropic fluids.  With this in mind, we assess the structural 

chirality introduced in the solvent molecules rather than emphasizing a particular 

property (such as VCD or ORD spectra).  This is accomplished with molecular dynamics 

(MD) simulations of a small number of chiral solutes surrounded by solvent, and the 

chirality induced in the solvent molecules is assessed via the long-time average of a 

chirality index.  A chirality index proposed by Osipov et al.[66] has been chosen for the 

present work since it can be readily evaluated and satisfies all the requirements noted in 
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Section 1.4.  In this chapter, the Osipov index is evaluated for all solvents in the vicinity 

of the chiral solute (within 15 Å of specified solute atoms).  The excess solvent chirality, 

as represented by the long-time average of the Osipov chirality index, is evaluated and 

categorized based on the solvent position about the solute.  

 In docking processes, including selectivity in chiral chromatography[151-153] 

and lock-and-key mechanisms in biology,[154, 155] three-point recognition models are 

often assumed.  Here, hydrogen bonding and π-π interactions between aromatic groups 

are usually present in the recognition models.  By analogy with these models, we assume 

that such interactions also play an important role in the chirality transfer process.  To 

study the impact of these interactions in more detail, we examine two solvents: Ethanol 

and benzyl alcohol.  The former will interact with the chiral solute primarily via a 

hydrogen bond while the latter can simultaneously form a π- π interaction and a hydrogen 

bond.  Three solutes have been considered: Styrene oxide, acenaphthenol, and n-(1-(4-

bromophenyl)ethyl)pivalamide (PAMD).  Styrene oxide is small, compact, and accessible 

to the solvent from all sides.  Acenaphthenol is larger, but conformationally restricted.   

PAMD has multiple functional groups, a more complex structure, and many conformers.  

A comparison between these solutes will provide some indication of the relationship 

between the chirality transfer and the solute size and properties.   We also examine the 

impact of conformational averaging by comparing the excess solvent chirality about rigid 

and flexible PAMD.   

 The MD simulations provide insights into the magnitude and characteristics of the 

chirality transfer between a chiral solute and its surrounding solvent.  However, the level 

of solvent representation is important for an exploration of chirality transfer.  In typical 
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MD simulations, the molecules are nonpolarizable and the instantaneous molecular 

environment does not impact any of the parameters defining the molecular force field.  

The importance of polarizability has been explored for small solvents, including water[44, 

46, 47, 130] and alcohols[43, 45, 91, 126], during the past decade.  These studies show 

that the fluid structure, in particular the hydrogen bonding network, is impacted by the 

response of the molecules to their environment.  The relationship between solvent 

polarizability and chirality transfer is examined here, with the expectation that a 

polarizable solvent will respond more effectively to a chiral environment, as discussed in 

Chapter 3 [91].  Several polarizable models for ethanol have been reported [43, 45, 91, 

126], but in most cases the molecular flexibility parameters (intramolecular potential) are 

unchanged by the local environment.  Polarizability is included via variations in atomic 

charges, multipole moments, or by the addition of atomic dipoles.  In Chapter 3,[91] we 

discussed a polarizable ethanol model that allows for fluctuating atomic charges and 

intramolecular potentials that are field dependent.  In this chapter, we explore the impact 

of solvent representation by evaluating chirality transfer for a fully nonpolarizable 

solvent, a partially polarizable solvent (atomic charge fluctuations only), and a fully 

polarizable solvent.  We find that chirality transfer is greatly underestimated without 

allowance for solvent polarization.    

In section 4.4.2, we briefly discuss the solvent models, the inclusion of 

polarizability, the chiral index, and the simulation details.  Results from extensive MD 

simulations are reported in Section 4.4.3 and brief conclusions are presented in Section 

4.4.4.  
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4.2. Methods 

4.2.1 Solvent and solute models 

 The fully polarizable fluctuating charge and intramolecular potential (fCINTRA) 

model for ethanol is discussed in detail in Chapter 3.  In this section, we begin by briefly 

describing the molecular potentials used to represent benzyl alcohol.  The solvents and 

solutes are shown in Fig. 4.1 along with the atom numbering used throughout this 

chapter. For benzyl alcohol, a fully polarizable solvent model is not available.  We have 

proceeded to develop a partially polarizable model as follows.  First, we employ OPLS 

parameters[156] for the LJ potential in Eq. [2.12].  For the intramolecular potential, an 

extensive series of B3LYP/6-311G(d,p) ab initio calculations have been performed.  

Since the aromatic ring is very rigid, only 5 stretches, 9 bends, 2 torsions, and 1 improper 

torsion are chosen to represent the molecular flexibility.  The potential parameters, 

obtained by least squares fits to the ab initio calculations, are given in Table 4.1.  Each 

stretching force constant is extracted from nine energy calculations, as the bond is 

compressed and stretched away from the equilibrium value.  Bending potentials are 

obtained by least squares fits to nine energy calculations where the angle is varied within 

sixteen degrees of the equilibrium value.  For torsion potentials, the angle is varied from 

0 to 360o, in steps of 10o.  The improper torsion potential about C(6) is obtained from 

nine restricted geometry optimizations as C(6) is raised above and below the plane of the 

neighboring three atoms.     
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(a)        (d) 

      
 
(b)        (e) 

      
 
(c) 

 
   
Figure 4.1.  The B3LYP/6-311++G(d,p) optimized structures for the solutes (a-c) and the 
solvents (d and e).  S-styrene oxide (a), S-PAMD (b), R-acenaphthenol (c), ethanol (d), 
and benzyl alcohol (e) are shown.  The atom numbering shown above will be used 
throughout this chapter.   
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Table 4.1.  Intramolecular potential parameters for benzyl alcohol.  The first column 
identifies the atoms (see Fig. 4.1) involved in the potential.  When two, three, or four 
atoms are specified the potential parameters correspond to stretching, bending, or torsion, 
respectively.    

 
Atom 
labels 

Potential 
Type Potential parameters (see Eqs. [2.7]-[2.10]) 

1,2 stretch issk ; =252512 kJ/(Å2 mol) iser ; =0.961 Å    

2,3 stretch issk ; =138317 kJ/(Å2 mol) iser ; =1.426 Å    

3,4 stretch issk ; =151875 kJ/(Å2 mol) iser ; =1.099 Å    

3,5 stretch issk ; =151875 kJ/(Å2 mol) iser ; =1.099 Å    

3,6 stretch issk ; =133458 kJ/(Å2 mol) iser ; =1.511 Å    

1,2,3 bend ibk ;θ =0.0677 kJ/(deg2 mol) ibe ;θ =108.7 deg    

2,3,4 bend ibk ;θ =0.0846 kJ/(deg2 mol) ibe ;θ =110.4 deg    

2,3,5 bend ibk ;θ =0.0846 kJ/(deg2 mol) ibe ;θ =110.4 deg    

4,3,5 bend ibk ;θ =0.0665 kJ/(deg2 mol) ibe ;θ =107.5 deg    

2,3,6 bend ibk ;θ =0.1016 kJ/(deg2 mol) ibe ;θ =110.1 deg    

4,3,6 bend ibk ;θ =0.0728 kJ/(deg2 mol)  ibe ;θ =109.2 deg    

5,3,6 bend ibk ;θ =0.0728 kJ/(deg2 mol)  ibe ;θ =109.2 deg    

3,6,7 bend ibk ;θ =0.1190 kJ/(deg2 mol)  ibe ;θ =120.5 deg    

3,6,9 bend ibk ;θ =0.1190 kJ/(deg2 mol) ibe ;θ =120.5 deg    

1,2,3,4 torsion 
=2.857 

kJ/mol 
1;itC =-1.774 

kJ/mol 

=2.466 

kJ/mol 

=10.030 

kJ/mol 
4;itC =2.260 

kJ/mol 
5;itC =0.690 

kJ/mol 
6;itC =1.364 

kJ/mol 

2,3,6,7 torsion 
=1.364 

kJ/mol 
1;itC =-0.295 

kJ/mol 

=3.514 

kJ/mol 

=0.534 

kJ/mol 
4;itC =1.646 

kJ/mol 
5;itC =-0.284 

kJ/mol 
6;itC =-6.480 

kJ/mol 

3,7,9,6 improper 
torsion tiik ;

=0.0809 kJ/(deg2 mol) et =-0.9397 deg    

 

 

 Following the parameterization of the intramolecular potential, fluctuating atomic 

charges (the FC model) were implemented for benzyl alcohol as follows.  In the first 

instance, the CHARMM-FC transferable parameters[53] were used for the charge 

fluctuation parameters in Eq. [2.26].  We found that the simulations only converged when 

0;itC 2;itC 3;itC

0;itC 2;itC 3;itC



111 
 

the “mass” governing charge fluctuation was 7x10-3 kcal/mol (ps2/e2) or larger.  In 

practice, this mass must be small enough to allow rapid charge fluctuation in response to 

molecular motion.  Unfortunately, the mass required for benzyl alcohol was large and we 

found that the average charge on C(3) was unphysical.  We proceeded to develop charge-

fluctuation parameters specifically for benzyl alcohol, following the methodology 

discussed in Appendix A.  adopted previously for ethanol [91].  Briefly, the atomic 

charges, as evaluated from the CHELPG[110] algorithm applied to B3LYP calculations 

with the 6-311++G(d,p) basis set, were obtained when the molecule was placed in 30 

diverse fields.  Based on the fitting of the molecular response, parameters for Eq. [2.26] 

were extracted.  With the new parameters, convergence was achieved for a “mass” as low 

as 5x10-5 kcal/mol (ps2/e2) and the corresponding atomic charges were reasonable.  Table 

4.2 presents the fluctuating charge parameters for benzyl alcohol.  It is interesting to note 

that the atomic electronegativities derived specifically for benzyl alcohol were 

consistently larger than the transferrable CHARMM-FC values.  The resulting benzyl 

alcohol model gives a self diffusion coefficient of 4.27 x 10-12 m2/s, a dielectric constant 

of 12.13, and a dipole polarizability of 14.67 Å3.  These values are in good agreement 

with the corresponding experimental values of 4.01 x 10-12 m2/s [157], 12.5 (estimated 

from measured dielectric constants at 20oC and 30oC [158]), and 12.87 Å3 [159, 160], 

respectively.   

 The molecular models employed for styrene oxide and PAMD have been 

described elsewhere [113, 161]. Here we note that these solutes are represented by 

flexible and nonpolarizable models and that the rings are kept rigid during the 

simulations, as is also done for benzyl alcohol and acenaphthenol.  That is, the ring atoms 
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move in unison and their motion is represented by translation and rotation about the 

center-of-mass of the atoms forming the rigid unit.   

 

Table 4.2.  Charge fluctuation parameters (see Eq. [2.26])  and zero-field charges for 
benzyl alcohol.  The FC parameters obtained from B3LYP/6-311++G(d,p) calculations 
(this work) are compared with those of the transferable CHARMM-FC parameter set[54].  
The atom numbering follows Fig. 4.1.  The 0

iiJ , 0~
iχ , and iQ are given in kcal/(mol |e|2) , 

kcal/(mol |e|), and |e|, respectively. 

 

Atom 
label  

0
iiJ  

(This 
work) 

0
iiJ  

(CHARMM
-FC) 

0~
iχ   

(Shifted, 
This 

work) 

0~
iχ  

(Shifted, 
CHARMM

-FC) 

 
iQ  

H(1) 608.53  517.26  0.00  0.00  0.414  
O(2) 374.67  307.20  159.04  101.66  -0.682  
C(3) 270.58  208.92  91.14  50.17  0.304  
H(4) 474.71  501.42  78.43  55.08  -0.022  
H(5) 474.71  501.42  78.43  55.08  -0.022  
C(6) 276.42  225.48  99.10  69.18  0.128  
C(7) 266.54  225.48  109.40  69.18  -0.167  
H(8) 435.88  454.14  88.25  56.27  0.100  
C(9) 266.54  225.48  109.40  69.18  -0.167  

H(10) 435.88  454.14  88.25  56.27  0.100  
C(11) 269.02  225.48  113.23  69.18  -0.059  
H(12) 432.16  454.14  86.64  56.27  0.083  
C(13) 269.02  225.48  113.23  69.18  -0.059  
H(14) 432.16  454.14  86.64  56.27  0.083  
C(15) 274.17  225.48  114.57  69.18  -0.123  
H(16) 483.57  454.14  83.87  56.27  0.089  

 

 

 An interaction potential for acenaphthenol was obtained as follows.  First, as with 

benzyl alcohol, ab initio B3LYP/6-31G(d) calculations provide the intramolecular 

potential and, using the CHELPG algorithm, the atomic charges.   Second, OPLS 
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parameters[156] have been chosen for the LJ potential.  Fig. 4.2 shows the intramolecular 

potential for torsion about C(3)-O(2).   As shown in the figure, the potential has a well-

defined minimum that corresponds to the placement of H(1) above the aromatic region 

(see Fig. 4.1(c)).   

 

 

Figure 4.2.  The barrier to rotation about the C(3)-O(2) bond of R-acenaphthenol as 
evaluated from B3LYP/6-31G(d) calculations.  The equilibrium structure, corresponding 
to the minimum, is shown in Fig. 4.1(c).   

  

 

4.2.2 The assessment of chirality 

In Chapter 2, we discussed chirality indexes in detail and introduced the Osipov 

chirality index[66, 111], 
w
SG 0  , which is defined in Eq. [2.86].  In the definition of this 
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chirality index, the powers m and n and the atomic weights, wi, are adjustable, and can be 

chosen to form multiple chirality indexes.  In this chapter, we focus on w
SG 0  for solvent 

molecules near chiral solutes.  Instantaneous solvent structures will typically be chiral, 

leading to a nonzero value for the index.  Over long times, the average index of an achiral 

solvent molecule will be zero as the molecule samples energetically-equivalent 

configurations, with equal frequency, but with opposite values of the index.  If the 

molecule is in a chiral environment, configurations that are equivalent for the isolated 

molecule, or when the molecule is in an achiral environment, will no longer be sampled 

with equal probability.  This yields an excess chirality, as reflected by a nonzero value of 

>< w
SG 0 .     

The chirality indexes m
S

q
SS GGG 00

1
0 ,,  for a single ethanol molecule as a function of 

two torsional angles has been discussed in Chapter 2.  The chirality indexes for benzyl 

alcohol as a function of torsional angle is shown in Fig. 4.3.  Relative to ethanol, m
SG 0  is 

now sensitive to both torsions and q
SG 0  is qualitatively similar for both sets of atomic 

charges.   Two chirality indexes, q
SS GG 0

1
0 and , have strong correlations in their 

conformation dependence.  The mass-dependent index, m
SG0 , is distinct from the others in 

that it depends more strongly on torsions about the C(6)-C(3) bond.   
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(a) 

 
      (b)              (c) 

 
           (d)         (e) 

 
Figure 4.3.  The influence of torsional angles on chirality indexes of benzyl alcohol. 
Panel (a) shows the two torsions under consideration. For the conformation shown in 
Panel (a), torsion 1 is 0 and torsion 2 is 180 degrees. Panels (b), (c), and (d) show 1

OSG , 
q
OSG , m

OSG , respectively, as the torsional angles vary.  The atomic charges from the ab 
initio calculations (see Table 4.2) are used for (c).  Panel (e) presents q

OSG  for a different 
set of atomic charges that are representative of average atomic charges observed in the 
simulations:  the charges, in units of |e|, for atoms 1-16 are 0.53, -0.84, 0.40, -0.021,  
-0.021, 0.073, -0.16, 0.087, -0.16, 0.087, -0.064, 0.088, -0.064, 0.088, -0.13 and 0.095, 
respectively and these that are representative of average atomic charges observed in the 
simulations. 
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  (a)        (b)  

  
  (c)        (d)   

      
 
Figure 4.4.  The coordinate system used to evaluate chirality indexes for solvent, 
illustrated for S-PAMD(a).  The oxygen lies at the origin of the coordinate system, the 
carbonyl carbon is on the z-axis, and the amide nitrogen lies in the xz plane.  With this 
coordinate system, the index for an H-bonding solvent is categorized according to two 
angles (θ and φ) that are used to locate the solvent via its oxygen atom. These angles 
define a sphere, as shown in (b), which can be used to map out the 3-dimensional 
variation of the chirality index.  The color scale in (b) shows the number of hydrogen-
bonded solvents found in the various angle ranges. Panel (c) shows an example of 
hydrogen-bonding ethanol around S-PAMD. The sphere is centered on the oxygen of S-
PAMD with a radius of 3.5Å, which is the maximum O…O distance for H-bonds.  The 
dependence of θ and φ is also important, but is not shown here for simplicity.  Panel (d) 
shows three spheres around the oxygen of S-PAMD. The ethanol is in the second sphere, 
with an oxygen-oxygen distance between 4 and 7Å. 
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 In what regions around the solute will the excess chirality of the solvent be most 

significant?   To address this question, a solute-based coordinate system is defined as 

shown in Fig. 4.4(a).  This coordinate system will move with the solute within the 

simulation.  It is important to realize that the solute is flexible and the atoms defining the 

coordinate system undergo intramolecular motion: The coordinate system varies with 

time (by a limited amount).  For all solutes, the oxygen atom is at the origin of the 

coordinate system.  For PAMD, as shown in Fig. 4.4(a), C(5) is on the z-axis and N(7) is 

in the xz plane.  For styrene oxide, C(1) is on the z-axis and C(4) is in the xz-plane while, 

for acenaphthenol, C(3) and C(5) define the z-axis and the xz-plane, respectively.  With 

the coordinate system in place, the angular space is divided into 648 angular bins (see Fig. 

4.4(b)) defined by 010=Δθ  and 010=Δϕ .  This division allows us to associate a excess 

chirality with the solvent position about the solute.  The resulting average chirality index 

is referred to as an “angle-dependent” excess chirality, ϕθ ,0 >< w
SG , and integration of this 

index over all angles yields >< w
SG0 .   

 Within the simulations, the chirality indexes are evaluated in two ways.  First, the 

indexes are collected for solvent directly hydrogen-bonded to the chiral solute, as shown 

in Fig. 4.4(c).  The sphere is centered on the oxygen of S-PAMD with a radius of 3.5Å, 

which is the maximum O…O distance for H-bonds.  The dependence of θ and φ is also 

important, but is not shown here for simplicity.  We have found that the chirality transfer 

to H-bonded solvent is larger than that for other solvents in the vicinity of the solute.  As 

a result, we focus primarily on the H-bonded solvent.  However, we also examine a 

position dependent index r
w
SG >< 0  for solvent found within a certain distance of the 
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solute oxygen (up to 15 Å), as shown in Fig. 4.4(d).  For simulations involving 

polarizable fluids, the charge-weighted index, q
SG0 , should be more sensitive to the 

molecular environment due to the field-dependent fluctuation in atomic charges.  As a 

result, emphasis is placed on < q
SG0 > .   

 

4.2.3. Simulation details 

Chirality transfer is evaluated from MD simulations of chiral solute (styrene oxide, 

PAMD, or acenaphthenol) surrounded by solvent (ethanol or benzyl alcohol).  Each 

simulation includes 500 solvent and 4 solute molecules.  The solvent density, at 298K, is 

0.789g/cm3 for ethanol[162] and 0.990g/cm3 for benzyl alcohol.  The latter is slightly 

below the experimental density[162] of 1.044 g/cm3 but gave a diffusion coefficient 

consistent with experiment[157].  Periodic boundary conditions are applied in the 

simulations, with the cutoff chosen as slightly less than half of the box length.  Ewald 

summations, with conducting boundary conditions,[40] are used for the electrostatic 

interactions.  In the case of polarizable fluids, the electrostatic forces are first evaluated 

according to the Ewald summations, then corrections from the modified electrostatic 

potential (Eq. [2.26]) are included.  The results reported below correspond to a 

momentum space cutoff of 272* ≤k and a position space cut-off of 1592.0=α Å-1 for 

benzyl alcohol, and 1891.0=α Å-1 for ethanol.   

 Independent Nosé-Hoover thermostats are used to generate canonical averages for 

translation and rotation.  Only the rigid rings in benzyl alcohol and in the three solutes 

contribute to the latter.  For polarizable models, extended Lagrangian equations of motion 
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are also applied for charge fluctuation.  The relevant conserved quantity in the 

simulations is 

)(ln
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where )(EU
v

is the potential energy from Eq. [2.6], the first sum is the translational 

kinetic energy evaluated for all atoms except those included in rigid units (RU), and the 

second sum is the rotational kinetic energy for RUs. αipr  is the linear momentum of atom 

i in molecule α and αim  is the corresponding mass. Iiα and RUω
r  are the moment of inertia 

tensor and angular velocity, respectively, of the RU, in the principal axis system. fqg , trg ,

rotg  are the numbers of degrees of freedom associated with charge fluctuation, 

translational motion, and rotations, respectively.   

 A constant temperature of 298 K is obtained with the variables trs  and rots  with 

associated masses of trW  and rotW , respectively, and momenta of trp  and rotp .  For the 

polarizable models, the atomic charges, αiQ , have a mass, Qm , and associated momentum

αiQp ; . The variables fqs  and fqp , with associated mass fqW = 3.6 x 10-3 kcal/(mol·ps2), 

are defined to constrain the charges to a temperature of KT fq 1= . This temperature is low 

enough to minimize the energy transfer between the atomic positions and the charges. 

The charge mass Qm is set to 5 x 10-5 kcal/mol (ps/e)2, as discussed in Section 4.2.1, 
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which is small enough to allow a rapid response of the atomic charges to changes in 

atomic positions.  

 The time step for all simulations, except for the fCINTRA solvent, is 0.3 fs.  As 

discussed elsewhere,[91] a multiple time step algorithm is required for fCINTRA, and the 

large and small time steps are 0.1 and 0.01 fs, respectively, for this model.  The 

equilibration period consists of the first 10 000 steps of each simulation.  Following this, 

angle-dependent chirality indexes are collected every 20 iterations.    

 

4.2.4 Convergence of the chirality transfer 

 The evaluation of the excess solvent chirality requires lengthy simulations due to 

significant cancellation between instantaneous values of the chirality index.  In this 

section, the convergence is examined in detail and Fig. 4.5 provides the results of several 

tests of convergence.   

 The first test examines the chirality transfer about an achiral solute.  Consider Fig. 

4.5(a).  The position and angle-dependent excess chiralities are shown in the left and right 

panels, respectively.  In the right panel, the vertical line at φ=180 corresponds to the 

“solute” H(1) positioned in the O(2)-C(3)-C(4) plane and the contours identify the most 

probable locations for H-bonded solvent.  The two panels show the results of 17 ns 

simulations of bulk ethanol, in which four ethanol molecules have been selected and 

identified as solutes.  The left panel shows the radial dependence of the average chirality 

index r
q
SG >< 0  for solvent molecules with oxygen atoms found at a distance r from the 

oxygen atom of a “solute”.   As expected, since the “solute” is achiral, the average 
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chirality index is zero at all separations.  The right panel shows the angle-dependent 

excess chirality, ϕθ ,0 >< q
SG , for ethanol H-bonded to the solute.  As shown in the panel, 

when divided into angular zones, the chirality transfer is small but not zero.  This is 

exactly analogous to the “chirality” of molecules that are achiral in the isotropic phase 

but chiral when deposited on a surface [163].  Thus, each side of the ethanol “solute” is 

seen as chiral, but the two sides together cancel out to yield an overall chirality of zero, as 

shown in the left panel.  The vertical line in the right panel corresponds to the “solute” 

H(1) positioned in the O(2)-C(3)-C(4) plane.  Thus this line defines the two sides of the 

solute, and symmetry about this line is clearly evident in the panel.  The overlaid 

contours in the right panel identify the most probable angles for finding an H-bonded 

solvent.  As the probability drops, so does the quality of the average chirality index as 

indicated by the loss of symmetry about φ=180o for low probability angles.  The legend 

shows that ϕθ ,0 >< q
SG  is less than |10-6| despite the fact that instantaneous values may be 

as large as |10-4|.  Cancellation is clearly significant and, as a result, lengthy simulations 

are required to properly capture the small angle-dependent excess chirality.   
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(a) 

   
(b) 

 
(c) 

 

 
Figure 4.5.  Convergence tests for excess chirality. Panel (a) shows results for bulk 
ethanol where four molecules have been selected and identified as “solutes”.  Panel (b) 
shows the convergence of ϕθ ,0 >< q

SG .  Panel (c) shows the excess chirality for ethanol 
around acenaphthenol.  
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 A comparison of results between independent simulations provides another 

assessment of convergence.  Fig. 4.5(b) shows the convergence of ϕθ ,0 >< q
SG  for the 

angular range (θ=30-40o and φ=30-40o) and for hydrogen-bonding ethanol around rigid 

PAMD.  The specific angular location is shown by the arrow in the right panel.  Fourteen 

independent simulations were performed and the average chirality transfer at this position 

about the solute, as a function of time, is shown.  By 4 ns, the chirality transfer for all 14 

runs is clearly converging to a value of roughly -4.2 x 10-6 e4, where e4 is the unit of the 

chirality index.  The average over all 14 runs, indicated by the bold line, has converged 

after roughly 0.6-0.7 ns of simulation time.  This convergence test suggests that 4 ns is 

adequate, at least in this case.   

Fig. 4.5(c) provides a final convergence test of the chirality transfer.  The upper 

left and right panels show results for R- and S-enantiomers, respectively. Note that the 

upper right panel shows ϕθ ,0 ><− q
SG  versus 360o-φ for ease of comparison. The lower 

left panel shows the corresponding standard deviation of the average excess chirality for 

the S-enantiomer.  The lower right panel shows r
q
SG >< 0  as a function of oxygen-

oxygen distance between ethanol and S-acenaphthenol.  Results from 17-19 ns 

simulations are shown.  Before discussing the content of the panels, we note that 

subsequent presentations of chirality transfer will follow the format shown in these panels.  

Specifically, the angle-dependent chirality transfer, ϕθ ,0 >< q
SG , is presented as a color-

coded three-dimensional plot.  The associated contour diagram, shown beneath the 3D 

plot, identifies angles where H-bonded solvent is most likely to be found.   
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 The two top panels in Fig. 4.5(c) differ in that they correspond to individual 

enantiomers of acenaphthenol.  By symmetry, the two enantiomers must have angle-

dependent chirality transfers that are equal in magnitude but opposite in sign.  As well, 

based on our solute-based coordinate system, φ corresponds to 360o-φ in the mirror-

image solute.  For ease of comparison, one of the panels presents - ϕθ ,0 >< q
SG  as a 

function of 360o-φ.  Clearly, the two panels are very similar, with slight differences 

observed in the peak heights and in low probability regions.  The third panel shows the 

standard deviation of the average chirality index for S-acenaphthenol.  In the high-

probability regions, the standard deviation is less than 1.5 x 10-6 and, clearly, increases in 

the lower probability regions where fewer hydrogen-bonded solvents are located.   

 The position-dependent excess chirality for ethanol about R-acenaphthenol is 

shown in the final panel of Fig. 4.5(c).  All solvent molecules are included in this 

quantity, not just the H-bonded solvent considered in the first two panels.  At small 

separations, where the oxygen-oxygen distance is relatively small, the position dependent 

index is negative.  Following this, the average index climbs close to zero before 

decreasing again.  The position of this second minimum corresponds roughly to the most 

probable distance for the second solvation layer.  These features are  statistically 

significant, as shown in Fig. 4.5(c). Overall, the average index is most negative for the 

first and second solvation layers, the average index is less negative (or positive) between 

layers, and is statistically zero once the solvent is more than 10.5 Å from the solute.   

 Collectively, the convergence studies in Fig. 4.5 illustrate that the chirality 

transfer from solute to solvent involves considerable cancellation between instantaneous 

solvent configurations.  As a result, simulations of chirality transfer for isotropic fluids 
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should monitor the fluid properties for a minimum of several nanoseconds.  With these 

considerations in mind, the simulations of chirality transfer in benzyl alcohol and in 

ethanol are conducted for a minimum of 10 ns and 17 ns, respectively.  The chirality 

transfers reported in Section 4.3 have been averaged over the four solutes in the 

simulation cell, for a total monitoring time of 40-68 ns.  The only exception is the 

fCINTRA ethanol model where we have found that the chirality transfer converges more 

quickly and, since the fCINTRA simulations are demanding, we report results for 4 ns.   

4.3.  Results and discussion  

4.3.1 Analyte solvation 

 Before assessing the chirality transfer, we begin by examining the intermolecular 

structure, and the hydrogen-bonding, in the bulk solvents and in solvents in the vicinity of 

solute.  Fig. 4.6 shows the radial distribution between oxygens for the bulk solvent and 

for solvent about the solute.  A comparison of hydrogen bonding events in the bulk and 

near the chiral solutes is presented in Table 4.3.  The structural definition of hydrogen 

bonding[120] has been discussed in Section 3.3.2.  

Consider first the hydrogen bonding in ethanol.  Styrene oxide disrupts the 

solvent H-bonding network only weakly, with a few percent fewer ethanol molecules 

participating in two hydrogen bonds and a small increase in the number that have only 

one hydrogen bond.  The hydrogen-bonding structure of ethanol is disrupted much more 

significantly around acenaphthenol and PAMD, with a decrease of 13-18% in the number 

of solvent with two H-bonds and a commensurate increase of 13-18% in the number of 

solvent in the vicinity of the solute with only one hydrogen bond.  A similar situation 
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occurs for benzyl alcohol:  The smaller solute has little impact on the hydrogen-bonding 

characteristics of the solvent but the larger solutes increase the number of solvent 

molecules with only one hydrogen bond and decrease the number with two hydrogen 

bonds.   

 As shown in Fig. 4.6(a), pure solvents have a strong preference for oxygens 

separated by roughly 2.6 Å.  Both solvents also show a secondary peak at around 4.6 Å.  

At first glance, benzyl alcohol appears more highly structured in the bulk.  However, the 

different solvent molecular weights lead to a number density of ethanol roughly twice 

that of benzyl alcohol.  This density difference is reflected in the peak heights in Fig. 

4.6(a) so that the coordination numbers resulting from the oxygen-oxygen distributions 

are close for both solvents, as are the hydrogen-bonding statistics in Table 4.3.  Figs. 

4.6(b) and 4.6(c) provide the distributions between the oxygen of the solvent and the 

oxygen of the solutes.  Clearly, acenaphthenol and PAMD interact much more strongly 

with the solvent.  This is consistent with the statistics in Table 4.3:  The solvent interacts 

strongly with these solutes and this contributes to the disruption of the solvent hydrogen-

bonding network.  For styrene oxide, the radial distributions show that the solvent 

interacts very weakly with the solute:  it prefers to hydrogen bond with other solvent.  

Overall, ethanol and benzyl alcohol have similar responses to the solutes.    
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Figure 4.6.  Structure of ethanol and benzyl alcohol in the bulk and around the solutes.  
Radial distribution between the alcohol oxygens in the bulk solvent are shown in panel 
(a), where the solid and dashed lines refer to benzyl alcohol and ethanol, respectively.  
The distribution of solvent oxygens about the solute oxygens are shown in panels (b) and 
(c) for ethanol and benzyl alcohol, respectively.  Results for styrene oxide, acenaphthenol 
and PAMD solutes are represented by solid, dotted and dashed lines, respectively.  
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Table 4.3.  An analysis of solvent hydrogen-bonding and the average chirality of the 
solutes.  The fraction of solvent molecules with 1-3 hydrogen bonds is given in columns 
3-5, respectively.  Fractions are reported for solvents in the bulk and for solvents in the 
vicinity of a solute.  In this regard, a solvent is considered to be in the vicinity of solute 
when any solvent atom is within 2.6 Å of any solute atom. The average chirality of the 
solutes, as evaluated from the long-time average of unweighted, charge weighted, and 
mass weighted Osipov indexes (Eq. [2.86]) is given in columns 6-8, respectively. Results 
from 1 ns simulations are given for the FC solvent models.  Standard deviations included 
below have been calculated from 166 sub-averages collected during the simulations.  
Note that A(-n)=A×10-n. 

 
Solute Solvent 1 H-bond 2 H-bond 3 H-bond >< 1

0SG  >< q
SG0 >< m

SG0

None Ethanol  0.12 0.80 0.07 0 0 0
S-Styrene 

Oxide Ethanol 0.15 0.78 0.04 2.3(-2) 
±0.1(-2) 

3.5(-7)
±0.2(-7)

2.6(1)
±0.1(1)

R-
Acenaphthenol Ethanol 0.25 0.67 0.04 1.4(-2) 

±0.1(-2) 
5.2(-6)

±0.2(-6)
9.8(1)

±0.1(1)
S-PAMD Ethanol 0.30 0.62 0.03 -4.3(-3) 

±0.6(-3) 
-1.1(-6)
±0.2(-6)

1.7(2)
±0.2(2)

None Benzyl 
alcohol 0.15 0.78 0.06 0 0 0 

S-Styrene 
Oxide 

Benzyl 
alcohol 0.16 0.78 0.03 2.5(-2) 

±0.1(-2) 
2.3(-7)

±0.2(-7)
2.2(1)

±0.1(1)
R-

Acenaphthenol 
Benzyl 
alcohol 0.28 0.66 0.03 1.4(-2) 

±0.1(-2) 
4.6(-6)

±0.5(-6)
9.8(1)

±0.1(1)

S-PAMD Benzyl 
alcohol 0.35 0.58 0.02 -2.9(-3) 

±0.9(-3) 
-1.1(-6)
±0.3(-6)

3.3(1)
±0.3(1)

  
 
 
 
 
 The average chirality indexes of the three solutes, in both solvent environments, 

are given in Table 4.3.  We have found that the long time average of the indexes 

converges quickly and this is reflected in the standard deviations.  In contrast, the 

position or angle dependent chirality transfer into the solvent is much more slowly 

converged, as discussed in Section 4.2.4.   
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4.3.2 The solvent representation:  Is polarizability important?   

 Typical simulations employ nonpolarizable molecular models so that 

instantaneous changes in the molecular force field, as represented by the potential 

parameters, are not allowed.  However, the chirality transfer from solute to solvent may 

involve solvent polarization, since the solvent experiences and responds to the chiral field 

of the solute.  In this section, we examine the excess chirality of ethanol about PAMD as 

predicted by three solvent models.  First, a nonpolarizable solvent model is considered.  

Second, we examine a partially-polarizable model (the FC model) which shares all the 

same potential parameters as the nonpolarizable model, except that the atomic charges 

vary instantaneously.  Finally, ethanol is represented by a fully-polarizable model (the 

fCINTRA model) that is identical to the FC model except that some intramolecular 

potential parameters fluctuate instantaneously and the fCINTRA-optimized LJ 

parameters for O(2) and H(1) have been selected.  The similarity between these three 

models provides a clear basis for an assessment of the relationship between solvent 

polarizability and chirality transfer.   

 The angle-dependent excess chirality, ϕθ ,0 >< q
SG , is shown in Fig. 4.7 as a 

function of solvent position about PAMD.  The three panels in Fig. 4.7 differ in that 

ethanol is represented by the nonpolarizable model, the FC model, and the fCINTRA 

model.  The contour plots in Fig. 4.7 identify the high probability regions for hydrogen-

bonded ethanol around PAMD.  All three solvent representations give very similar 

probability distributions:  Polarizability has a small impact on the distribution of ethanol 

around PAMD.  In Figs. 4.7(d)-4.7(e), two snapshots of ethanol and PAMD, 

corresponding to the high probability region around θ=0-10 degrees, are shown.  The 
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hydrogen-bonding is evident in the snapshots but it is important to realize that the ethanol 

can adopt many positions consistent with these angles and the preservation of H-bonding.  

Thus, there is substantial cancellation and the instantaneous chirality indexes are large 

relative to the excess chiralities. 

 A comparison between Fig. 4.7(a) and Fig. 4.7(c) shows that the nonpolarizable 

model predicts excess chiralities that are roughly 60 times too small.  This is consistent 

with the expectation that the chirality transfer between the solute and solvent involves 

polarization of the solvent molecules.  In comparison, the index for the FC model is too 

small by a factor of roughly three.  Thus, the incorporation of fluctuating atomic charges 

allows for adequate solvent response to the nearby chiral solute.  A detailed comparison 

of Figs. 4.7(b) and 4.7(c) shows that the FC solvent representation predicts an angle-

dependent index that is qualitatively correct except for the region around φ > 200 degrees 

and θ > 40 degrees.  Here the FC model predicts a positive average index whereas the 

fCINTRA model shows a negative index.  As shown by the contour plots, the solvent has 

a low probability of being found within this angular range.  Therefore, the average index 

for these angles is determined to lower precision, as discussed in Section 4.2.4 and 

illustrated by Fig. 4.5(c). 

 Simulations with the fCINTRA model are roughly ten times slower than for the 

FC and nonpolarizable solvent models.  Given that the FC representation is in qualitative 

agreement with the fully-polarizable model, all further results employ the FC solvent 

representation.   
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 (a)      (d)   

 
 (b)      (e)  

    
 (c)          

 
Figure 4.7.  The impact of solvent polarizability on chirality transfer: The angle-
dependence of ϕθ ,0 >< q

SG for ethanol hydrogen-bonded to the oxygen of S-PAMD. 
Results from MD simulations are shown for a non-polarizable model (a), a fluctuating 
charge (FC) representation (b) and the fully-polarizable fCINTRA ethanol model (c). 
Panels (d) and (e) show hydrogen-bonding ethanol in the high probability regions.   
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4.3.3 Chirality transfer and conformational averaging. 

The relationship between conformational changes and chirality transfer is 

assessed in this section.  At first glance, the excess chirality is expected to decrease when 

the solute is flexible since solute motion should reduce the overall impact of chirality on 

the solvent.  The angle-dependence of this decrease is less evident:  Will the excess 

chirality decrease regardless of the solvent position?  In this section, the chirality induced 

in an ethanol solvent is compared for a rigid, versus a flexible, PAMD solute.  We begin 

by considering solvent hydrogen-bonded to the solute, but continue with an analysis of 

all solvents within a specified distance around PAMD.   

 Figs. 4.8(a) and 4.8(b) show the angle-dependent chirality indexes for hydrogen-

bonded ethanol around rigid and flexible PAMD, respectively.  The most significant 

conformational changes in PAMD arise from torsions:  The torsion about the C(7)-C(9) 

bond is particularly relevant since it repositions the bulky aromatic ring and this may 

sterically interfere with solvent hydrogen-bonded to O(6).  As shown in Fig. 4.8, 

conformational averaging has a relatively small impact on the overall magnitude of the 

angle-dependent excess chirality in H-bonded solvent:  The angle-dependent index is 

roughly two times smaller when the solute is flexible.   The qualitative variation in excess 

chirality, as a function of solvent position, is similar for rigid and flexible PAMD, 

although conformational averaging is found to eliminate the negative region at φ=200 

degrees (Fig. 4.8(a)) and broaden the region of negative chirality centered around φ=0 

degrees (Fig. 4.8(b)).  Due to the latter, the chirality index is consistently negative in the 

regions where a hydrogen-bonding solvent is most likely to be found (see contour plot in 

the figure).  As a result, the overall excess chirality, < q
SG 0 >, is only -5.1x10-8 e4 for rigid 
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PAMD but is -2.6x10-7 e4 when the solute is flexible.  Thus, the angle-dependent excess 

chirality decreases as a result of solute flexibility but the overall, angle-averaged value 

increases due to qualitative changes in the H-bonded solvent, particularly when the 

solvent is positioned around φ=0 degrees.  From the PAMD-based coordinate system 

shown in Fig. 4.4(a), this angular range corresponds to solvent near the N(7)-C(5)-O(6) 

plane (see Fig. 4.1).  From Fig. 2.9, these results are consistent with the H-bonded solvent 

near this plane favoring angles greater than 180o for torsion 2 when the solute is flexible.   

  

(a)      (b) 

 
(c)      (d) 
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 (e)      (f) 

 
 

(g)      (h) 

 
 
 
Figure 4.8.  The impact of solute flexibility on chirality transfer.  Results for ethanol 
about rigid S-PAMD are shown in (a,c,e, and g) while corresponding results for flexible 
S-PAMD are given in (b,d,f, and h).  Panels (a) and (b) show the charge-dependent chiral 
indexes of hydrogen-bonded ethanol molecules around the oxygen atom of S-PAMD. 
Panels (c) and (d) show the average chiral indexes for all ethanol molecules in the first 
shell around the oxygen of S-PAMD (oxygen-oxygen distance within 4Å). Similarly, 
Panels (e) and (f), and Panels (g) and (h), consider oxygen-oxygen distances between 4 
and 7Å, and between 7 and 11 Å, respectively.  

 

 Figs. 4.8(c) and 4.8(d) show angle-dependent excess chiralities for ethanol located 

in the vicinity of the PAMD oxygen atom when the solute is rigid or flexible, respectively.  

In particular, the ethanol oxygen should be within 4 Å of the PAMD oxygen and all 

solvents are considered regardless of whether they H-bond with PAMD.  When the solute 
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is rigid, certain areas about the oxygen are simply inaccessible to the solvent and this is 

evident in the contour plot of Fig. 4.8(c).  Figs. 4.8(c) and 4.8(d) are fairly distinct: The 

flexibility of the solute has an impact on the spatial characteristics of the chirality transfer 

when all solvents are considered.      

A comparison of Figs. 4.8(b) and 4.8(d) reveals distinctions between H-bonded 

ethanol and ethanol in the vicinity of the solute oxygen.  Specifically, as shown by the 

contour plots in Figs. 4.8(b) and 4.8(d), hydrogen-bonded ethanol molecules have a 

restricted orientation relative to the solute and form a subset of the ethanol molecules 

found near the PAMD oxygen.  Thus, Fig. 4.8(d) includes a larger number of ethanol 

molecules, and these display a broad range of orientations relative to the PAMD.  As a 

result, the excess chirality in Fig. 4.8(d) varies less with the solvent position, although it 

is important to note that the angle-dependent excess chirality is still negative, although 

smaller in magnitude, in the primary hydrogen bonding regions. The angle-averaged 

excess chirality for H-bonded ethanol (Table 4.5) is -2.6x10-7 e4 whereas the equivalent 

average (Table 4.4), for all ethanol molecules in the vicinity of the PAMD oxygen, is  

-2.2x10-7 e4.  The extensive cancellation of instantaneous indexes, to yield the excess 

chirality, is evident from a comparison with the conformational variations in q
SG 0  shown 

in Fig. 2.9 , where values as high as ±8x10-5 e4 were obtained.   

For solvent “far” from the chiral solute, the local environment is achiral, on 

average, and the angle-dependent excess chirality should vanish for all angles.  Figs. 

4.8(e)-(h) show the decrease in the angle-dependent excess chirality as the solvent is 

farther from the solute.   Solvents within 7-11 Å of the PAMD oxygen atom are found to 

have an angle-dependent chirality index that is roughly ten times smaller than for 
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solvents located within 4 Å.  Thus it is fair to say that the chirality transfer from PAMD 

to ethanol occurs primarily for solvent within the first few solvation layers about the 

chiral solute.  The last panel of Fig. 4.5(c), for ethanol about R-acenaphthenol, is 

consistent with this result since the chirality transfer is statistically zero once the oxygens 

are separated by more than 10.5 Å.  Solute conformational averaging hastens this decay, 

as shown by a comparison of Figs. 4.8(g) and 4.8(h).  

 
Table 4.4.  Average excess chirality for solvent around chiral solute.  >< 1

0 SG , >< q
SG 0  

in units of |e|4 where e is the electron charge, and >< m
SG 0  in (g/mol)4 are given for each 

pair.  Standard deviations included below have been calculated from 1666-3332 sub-
averages collected during the simulations. rOO is the distance between the solvent oxygen 
and the solute oxygen.  Note that A(-n)=A×10-n. 

 

Solute Solvent 

rOO <4Å 4Å< rOO <7Å 7Å< rOO <11Å 

>< 1
0SG  >< q

SG0  >< m
SG0  >< 1

0SG  >< q
SG0  >< m

SG0  >< 1
0SG  >< q

SG0  >< m
SG0  

S-Styrene oxide ethanol -2.2(-5) 
±0.5(-5) 

-6.9(-7) 
±1.0(-7) 

-3.4(-2) 
±0.6(-2) 

-1.8(-6) 
±0.8(-6) 

-9.1(-8) 
±3.2(-8) 

-4.5(-3) 
±0.9(-3) 

-1.6(-6) 
±0.4(-6) 

-3.1(-8) 
±1.7(-8) 

-1.9(-3) 
±0.5(-3) 

S-PAMD ethanol -5.6(-6) 
±4.0(-6) 

-2.2(-7) 
±0.8(-7) 

-1.1(-2) 
±0.5(-2) 

-1.1(-6) 
±0.9(-6) 

-1.7(-7) 
±0.4(-7) 

-7.4(-3) 
±1.1(-3) 

2.2(-7) 
±4.3(-7) 

-0.4(-8) 
±2.0(-8) 

1.6(-4) 
±5.5(-4) 

R-
Acenaphthenol ethanol 3.4(-6) 

±5.5(-6) 
1.6(-7) 

±1.1(-7) 
9.0(-3) 

±7.1(-3) 
-5.3(-6) 
±1.6(-6) 

-1.8(-7) 
±0.7(-7) 

-7.9(-3) 
±2.0(-3) 

-1.5(-6) 
±0.8(-6) 

-3.1(-8) 
±3.7(-8) 

-1.8(-3) 
±1.1(-3) 

S-Styrene oxide benzyl 
alcohol 

-1.6(-5) 
±0.9(-5) 

-8.2(-8) 
±1.3(-8) 

0.5(-2) 
±1.9(-2) 

-1.4(-5) 
±0.4(-5) 

-2.1(-8) 
±0.6(-8) 

-1.9(-2) 
±0.8(-2) 

-4.4(-6) 
±2.0(-6) 

-0.4(-9) 
±3.1(-9) 

0.8(-3) 
±3.9(-3) 

S-PAMD benzyl 
alcohol 

8.4(-5) 
±0.7(-5) 

1.1(-7) 
±0.1(-7) 

1.1(-1) 
±0.1(-1) 

-4.6(-5) 
±0.4(-5) 

-7.0(-8) 
±0.7(-8) 

-6.4(-2) 
±0.9(-2) 

-7.6(-5) 
±0.2(-5) 

-9.6(-8) 
±0.4(-8) 

-7.4(-2) 
±0.5(-2) 

R-
Acenaphthenol 

benzyl 
alcohol 

-3.8(-5) 
±1.0(-5) 

-5.4(-8) 
±1.4(-8) 

2.2(-2) 
±2.0(-2) 

2.9(-5) 
±0.7(-5) 

4.4(-8) 
±1.1(-8) 

8.2(-2) 
±1.4(-2) 

-1.1(-5) 
±0.4(-5) 

-1.1(-9) 
±5.9(-9) 

-1.8(-2) 
±0.8(-2) 
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Table 4.5.  Average excess chirality for solvent hydrogen bonded to the chiral solute.  
>< 1

0 SG , >< q
SG 0  in units of |e|4 where e is the electron charge, and >< m

SG 0  in (g/mol)4 

are given for each solute-solvent pair.  Standard deviations included below have been 
calculated from 1666-3332 sub-averages collected during the simulations.   

Note that A(-n)=A×10-n. 
 

Solute Solvent 
H-bond 

characteristics 
>< 1

0 SG >< q
SG 0  >< m

SG 0

S-Styrene oxide ethanol O-H(solvent)…O(solute) -3.2(-5)  
±1.2(-5) 

-7.6(-7) 
±1.7(-7) 

-6.4(-2) 
±1.3(-2) 

S-PAMD ethanol 
O-H(solvent)…O(solute) -7.0(-6) 

±5.0(-6) 
-2.6(-7) 
±0.9(-7) 

-1.8(-2)  
±0.6(-2) 

N-H(solute)…O(solvent) 3.7(-5) 
±1.2(-5) 

2.6(-7) 
±2.0(-7) 

1.5(-2)  
±1.3(-2) 

R-acenaphthenol ethanol 
O-H(solvent)…O(solute) 8.7(-6) 

±9.9(-6) 
2.5(-7)  

±1.8(-7) 
2.2(-2)  

±1.3(-2) 

O-H(solute)…O(solvent) -1.3(-6) 
±8.5(-6) 

-1.4(-7)  
±1.8(-7) 

-1.2(-2)  
±1.2(-2) 

S-Styrene oxide 
benzyl 

alcohol O-H(solvent)…O(solute) 1.9(-4)  
±0.2(-4) 

1.1(-7)  
±0.2(-7) 

4.9(-1)  
±0.3(-1) 

S-PAMD 
benzyl 

alcohol 

O-H(solvent)…O(solute) 1.7(-4)  
±0.1(-4) 

1.5(-7)  
±0.1(-7) 

4.4(-1)  
±0.2(-1) 

N-H(solute)…O(solvent) 2.0(-4)  
±0.2(-4) 

4.2(-7)  
±0.3(-7) 

5.2(-1)  
±0.5(-1) 

R-acenaphthenol 
benzyl 

alcohol 

O-H(solvent)…O(solute) -1.7(-4)  
±0.2(-4) 

-5.2(-7)  
±0.2(-7) 

9.7(-2)  
±3.3(-2) 

O-H(solute)…O(solvent) -6.7(-5)  
±1.9(-5) 

-2.5(-7)  
±0.3(-7) 

1.3(-1)  
±0.4(-1) 
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 Overall excess chiralities are presented in Table 4.4.  The averages have been 

evaluated over three spatial regions:  roo ≤ 4Å, 4Å < roo ≤ 7Å, and 7Å < roo ≤ 11Å.  By 

comparison with the radial distributions in Fig. 4.6, this first region includes the contact 

peak, the second region includes the second solvation shell and some of the third, while 

the last region incorporates solvents “far” from the solute.  As shown in the table, the 

chirality transfer systematically decreases from the contact region to the second solvation 

shell to the outer region.  In general, the sign of the chirality transfer may remain 

unchanged or alternate between regions.  However, as illustrated by Fig. 4.5(c), the 

position-dependent excess chirality may switch signs within these ranges so that the 

averages in Table 4.4 may include some cancellation.   

 

4.3.4 Contact points and chirality transfer. 

In chiral chromatography, the number of interaction points between the analyte 

and the chiral selector is essential to the recognition process.  In this section, we explore 

the relationship between the number of solute-solvent interactions, and the chirality 

transferred to nearby solvent molecules.   

 Fig. 4.9 provides the angle-dependent chirality index for ethanol about the three 

solutes.  The location of hydrogen-bonded solvent, relative to the solute oxygen, is 

different for all three solutes, as indicated by the contour plots.  The angle-dependent 

chirality indexes are distinct as well.  Panels 4.9(d)-4.9(f) indicate the long-time average 

values for the unweighted, charge-weighted, and mass-weighted indexes at angles 

corresponding to the most probable location for H-bonded solvent.  A representative 
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snapshot is provided to show an H-bonded solvent molecule in the most probable 

location and having an instantaneous index of the same sign as the time averaged values. 

 The angle-dependent chirality index for ethanol about acenaphthenol (Fig. 4.9(b)) 

has several well-defined regions, but these mostly lie outside the most probable locations 

for the solvent.  Overall, the average index (see Table 4.5) is small.  Focusing on the most 

probable solvent location, the long-time average of each index is negative.  From Fig. 2.9, 

this corresponds to torsion 2 having an average angle greater than 180 degrees.  A 

representative snapshot is provided in Fig. 4.9(e).  When ethanol hydrogen-bonds to 

styrene oxide(Fig. 4.9(a)), the chirality transferred to the solvent is strongly dependent on 

the position of the solvent.  However, the overall excess chirality in Table 4.5 is an order 

of magnitude smaller than angle-dependent values due to cancellation.  From Fig. 4.9(a), 

the long-time average of each index, for solvent in the most probable location is positive.  

This corresponds to an average angle for torsion 2 that is less than 180 degrees, as shown 

in the snapshot in Fig. 4.9(d).  Thus, styrene oxide and acenaphthenol have different 

impacts on the conformations of H-bonded solvent.  For ethanol about PAMD, the angle-

dependent chirality induced in the solvent is smaller than for the other two solutes (note 

that the vertical scales are the same in Figs. 4.9(a), (b), and (c)).  However the index is 

consistently negative in regions where the H-bonded solvent is most likely located, and 

the overall average index, >< q
SG0 , in Table 4.5 is comparable with the other solutes.   

 Fig. 4.10 gives the overall chirality index for benzyl alcohol about the three 

solutes.  As with ethanol, the angle-dependent excess chirality is qualitatively different 

for all three solutes.  The angle-dependence is largest for acenaphthenol where the index 

is negative over a significant angular range that includes the most probable angles for H-
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bonding solvents.  Acenaphthenol has an extended aromatic region, relative to the other 

two solutes, and it is not surprising that chirality transfer is larger for this solute.  Fig. 

4.10(e) shows an H-bonded benzyl alcohol positioned at angles consistent with the most 

probable location for H-bonded solvent about acenaphthenol.  The long-time average 

values for the three indexes, at this location, indicate that the solvent prefers to have 

torsion 2 between 270-300 degrees and torsion 1 between 140-170 degrees (or 

equivalently, between 320-350 degrees).   

 Although it is tempting to directly compare results for ethanol and benzyl alcohol, 

this is problematic since the chirality index has some residual dependence on the number 

of atoms in the solvent.  As well, the relationship between the index and the molecular 

structure is complex, although the similarity between Figs. 2.9 and 4.3 implies that some 

cautionary remarks can be made.  With this in mind, we note that Figs. 4.9 and 4.10 

suggest that acenaphthenol has the most pronounced impact on the solvent since the 

angle-dependence in the chirality index is largest for this solute.  The stronger impact of 

acenaphthenol suggests that, for this solute, localized hydrogen-bonded solvent has a 

stronger preference for certain chiral configurations.  This may be related to the overall 

accessibility of the hydrogen-bonding group following the molecular shape and the 

restricted conformations available for this solute.    
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     (a)       (d) 

   
     (b)       (e) 

   
                (c)        (f) 

   
Figure 4.9.  Impact of solutes on chirality transferred into hydrogen-bonding ethanol. 

ϕθ ,0 >< q
SG  chiral indexes are shown along with illustrative snapshots.   The panels are 

organized as follows:  Panels (a) and (d) refer to S-styrene oxide; Panels (b) and (e) refer 
to R-acenaphthenol; and Panels (c) and (f) refer to S-PAMD.   
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      (a)      (d) 

  
      (b)      (e) 

  
     (c)      (f) 

  
Figure 4.10.  Impact of solutes on chirality transferred into hydrogen-bonding benzyl 
alcohol. The ϕθ ,0 >< q

SG  chiral indexes are shown along with illustrative snapshots.   The 
panels are organized as follows: Panels (a) and (d) refer to S-Styrene oxide; Panels (b) 
and (e) refer to R-acenaphthenol; and Panels (c) and (f) refer to S-PAMD.   
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 Table 4.5 gives the angle-averaged chirality index for hydrogen-bonded solvent.  

For ethanol and benzyl alcohol, the average charge-dependent index < q
SG0 > is less than 

10-6 for all solutes.  In light of the conformational dependence of this index, shown in 

Figs. 2.9 and 4.3, these averages clearly reflect significant cancellation so that, overall, 

the amount of chirality transferred is small.  Despite the small overall average, a stronger 

spatial dependence is present and this is evident in the angular distribution of the average 

index shown in Figs. 4.9 and 4.10.   Thus, within certain spatial regions about the solute, 

the chirality transfer may be significant and much larger than the angle-averaged value.   

 In bulk benzyl alcohol, inter-solvent π-π interactions are possible.  This situation 

differs from chromatographic separations where the solvent does not include aromatic 

rings but the analytes usually do.  To explore this fundamental difference, we have also 

examined the solvation of acenaphthenol in a mixed solvent.  Specifically, simulations of 

a binary n-hexane/benzyl alcohol solvent around acenaphthenol were performed.  Here, 

the n-hexane is nonpolarizable and is the major solvent component.  Interestingly, we 

found that the angle-dependent chirality transfer to benzyl alcohol was qualitatively very 

similar to Fig. 4.10(c), but smaller in magnitude.  The similarity in the 3D surfaces likely 

reflects the overall structural constraints placed on an H-bonding solvent molecule.  On 

the other hand, the decrease in magnitude for the mixed solvent suggests that benzyl 

alcohol samples more conformations in this environment.  This follows from the fact that 

an H-bonded benzyl alcohol will be mostly surrounded by n-hexane in the mixed solvent.  

In the absence of n-hexane, the benzyl alcohol molecule H-bonded to the solute will be 

surrounded by other alcohols, and these H-bond extensively forming a more structured 

local environment. 
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4.4.  Conclusions 

In this chapter, the chirality transfer from a chiral solute to an achiral solvent has 

been assessed.  The importance of solvent polarizability, conformational averaging, and 

the details of the solvent-solute interactions have been considered.  We have found that 

chirality transfer is most evident for solvent molecules directly H-bonded to the solute.  

In addition, ethanol and benzyl alcohol both show a clear relationship between excess 

chirality and position of the solvent relative to the chiral solute.  That is, chirality transfer 

is larger at certain positions about the solute.   

Ethanol provided the basis for examining the relationship between solvent 

polarization and chirality transfer.  Here, solvation of PAMD was examined for a 

nonpolarizable ethanol, a fluctuating charge representation of ethanol, and a fully 

polarizable ethanol model where the atomic charges and the intramolecular potential vary 

with the molecular environment.  Inclusion of solvent polarization was found to be very 

important, as the solvent must respond to the chiral field of the solute.   

 The impact of conformational averaging was explored for PAMD.  Here the 

chirality transfer was assessed for ethanol about a rigid and a flexible PAMD solute.  As 

expected, conformation averaging decreases the magnitude of the angle-dependent 

chirality transfer, by a factor of roughly two, but it also changes some of the 

characteristics of the angular dependence of the chirality transfer:  In certain regions, the 

solvent molecules adopt different conformations depending on the flexibility of PAMD.  

The impact of this is significant for PAMD:  Solute rigidity has increased the overall 

chirality transfer via a reduction in cancellation.  Considering PAMD, the chirality 
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transfer was also assessed as the solvent was farther away from the chiral solute.  We 

have found that the chirality transfer decreases quickly and a 3D representation is 

essentially featureless for solvent within 7-11 Å from the chiral solute.   

 The Osipov chirality index[66] formed the basis of the analysis of chirality 

transfer.  Long-time averages of this index, for solvents located at various positions about 

the solute, identify the excess chirality present in the solvent molecules due to the 

presence of a chiral solute.  Three indexes were examined: One determined by structure 

alone, another weighed by atomic mass, and a third dependent on atomic charges.  The 

Osipov index is directly related to molecular shape, and can be adapted to emphasize 

charge fluctuations, proximate atoms, larger atoms, etc.  The spatial decomposition of 

multiple time-averaged indexes can be used to generate an average structure of the 

solvent about the solute, as a function of the solvent position.  This, in turn, may prove 

useful in predicting the solvent contributions to experimental properties, such as VCD 

spectra, without the requirement for individual snapshot analysis.   
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Chapter 5 
Chirality transfer from chiral 
surfaces to nearby solvents 
 In this chapter, chirality transfer from chiral surfaces to achiral solvents is 

discussed.  The study is based on MD simulations of four solvents (ethanol, 2-propanol, 

ethanol/n-hexane, and 2-propanol/n-hexane) and three brush-type selective interfaces 

(Whelk-O1, DNB-phenylglycine, and DNB-leucine).  Emphasis is placed on the location 

of the chirality transfer zones on each surface and the solvent characteristics in these 

zones.  The spatial characteristics of the chirality transfer and its dependence on the 

nature of the surface and solvent are examined in detail. 

 

5.1. Introduction 

The impact of solvent on chiral high-performance liquid chromatography (HPLC) 

has been studied extensively, and it is understood that solvent polarity impacts elution 

times and, to a lesser extent, selection factors. For instance, the role of solvent has been 

examined for Whelk-O1, where separations are performed under normal phase, reverse 

phase, and supercritical conditions[164-166].  The effect of solvent has also been studied 

for phenylglycine-based and leucine-based CSPs, where separations under various mobile 

phases and binary solvents with different component ratios have been investigated [167-

170]. Similarly, Persson et al.[171] studied the chiral separation of omeprazole on a 
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Chiralpak AD column and observed opposite elution orders when using different mobile 

phases. Roussel et al.[172, 173] analyzed elution orders for cellulose tris(3,5-

dimethylphenylcarbamate) and cellulose tris(4-methylbenzoate) CSPs under different 

mobile phases using Circular Dichroism and Optical Rotatory Dispersion (ORD) 

spectroscopy and found a dependence on the mobile phase.  In this chapter, we reverse 

this perspective and focus instead on the impact of the CSP on nearby solvent molecules. 

Specifically, we address the question of chirality transfer from the surface to nearby 

solvent.  This transfer may be important because it can, in turn, contribute to the 

separation mechanism and influence the resolution achieved by the stationary phase.  

In Chapter 4, we examined the solute-to-solvent chirality transfer for several 

small solutes and found that chirality transfer was enhanced for solvent located in 

specific regions around the solutes.  In this chapter, we focus on interfacial chirality 

transfer and consider three brush-type selective interfaces:  Whelk-O1, based on a 1-(3,5-

dinitrobenzamido)-1,2,3,4-tetrahydrophenanthrene chiral selector; DNB-phenylglycine, 

based on a N-(3,5-dinitrobenzoyl)-phenylglycine selector; and DNB-leucine, based on a 

N-(3,5-dinitrobenzoyl)-leucine selector.  Whelk-O1 is commonly used in HPLC and 

successfully separates a wide range of racemates under various solvent 

environments[174].  DNB-phenylglycine and DNB-leucine were among the first 

commercially available HPLC CSPs [175]. DNB-leucine has enhanced enantioselectivity 

for several classes of compounds[175], benzodiazepines for example.  DNB-

phenylglycine is suitable for the separation of aryl-substituted cyclic sulfoxides, bi-β-

naphthol and its analogs, α-indanol and α-tetralol analogs, and aryl-substituted 

hydantoins [175].  In chiral chromatography, these CSPs are used in conjunction with 
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achiral binary or ternary solvents.  Molecular dynamics studies of the solvated interfaces 

has been considered previously[112, 176] but here a wider array of solvents is examined, 

solvent polarizability is considered, and emphasis is placed on solvent chirality rather 

than solvent distribution. Typical normal phase solvents consist of alkane-alcohol 

mixtures, with n-hexane most commonly used in conjunction with varying amounts of 2-

propanol.  With this in mind and to isolate the co-solvent impact, four solvents are 

considered in this chapter:  pure ethanol, pure 2-propanol, 80/20 n-hexane/ethanol, and 

80/20 n-hexane/2-propanol.   

Molecular dynamics (MD) simulations of the twelve solvent-surface 

combinations form the basis of our analysis.  The solvent chirality is assessed based on 

the evaluation of the Osipov chirality index[66], which has been discussed in detail in the 

previous chapters.  Specifically, this index is practical and versatile, has been 

successfully applied to predict polarization power of chiral dopants[74, 177-180] and to 

assess excess chirality – the chirality introduced into nearby solvent - around chiral 

solutes[181].  In any simulation, the solvents explore a range of conformations but, for 

the systems of interest here, excess chirality results from a small inherent conformational 

bias and a polarization due to the proximity of the chiral surface.  Thus, long simulations 

are required. The solvent chirality will depend on the solvent’s position relative to the 

chiral selector and, for this reason, we evaluate position dependent chiral indexes.   

Section 5.2 begins with a brief discussion of the solvents, chiral surfaces, and the 

simulation details.  Results from extensive MD simulations are reported in Section 5.3 

and brief conclusions are presented in Section 5.4.  
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5.2. Methods 

5.2.1 Surface representations 

The Whelk-O1, DNB-leucine and DNB-phenylglycine selectors are shown in Fig. 

2.10.  The atom numbering provided in this figure will be used throughout this chapter.  

The structures of all three selectors are described in Section 2.7, and more detailed 

descriptions can be found elsewhere[112, 113].  

A side view of a typical simulation cell is shown in Fig. 2.10(d).  In order to be 

consistent with experiment[114-116], the model interface consists of a total of 9 selectors, 

27 trimethylsilyl end caps, 36 silanol groups, and an underlying layer of 72 silicon atoms, 

with a Si-Si distance of 3.2 Å.   

  

5.2.2 Models 

The interaction potentials for the system are introduced in Eq. [3.1] in Chapter 3.  

Both the surface and the solvent contribute to these potentials.   

A solvent near a chiral molecule or surface will experience a chiral field and 

become polarized.  Previous simulations have shown that the alcohol prefers the 

interface[112, 113, 161, 182] and forms hydrogen bonds with the selectors.  Thus, chiral 

polarization is most important for the alcohol and, as a result, a polarizable solvent model 

has been adopted for ethanol and 2-propanol.  Specifically, the electrostatic energy is 

evaluated from the Fluctuating Charge (FC) model[46] and is given by Eq. [2.26].  The 

intramolecular potential is not field dependent, but as shown in Chapters 3 and 4, the FC 
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model is an acceptable alternative.  The parameterization of the FC model for ethanol[91] 

has been discussed in detail in Chapter 3.  A suitable flexible and polarizable model (FC 

model) for 2-propanol has been developed for the simulations of interest in this chapter.  

Full details of the model are provided in the Appendix C.  Briefly, CHARMM parameters 

are chosen for the Lennard-Jones potential (see Eq. [2.12]).  For the intramolecular 

potential, 19 bends and 3 torsions are employed to represent the molecular flexibility, and 

an extensive series of B3LYP/aug-cc-pVDZ DFT calculations have been performed.   

Each bending potential is obtained by least squares fits to nine energy calculations where 

the angle is varied within sixteen degrees of the equilibrium value.  For torsion potentials, 

the angle is varied from 0 to 360o, in steps of 10 degrees.  The FC parameters for Eq. 

[2.26] are derived by fitting atomic charge response to the presence of electric fields.  

Similar to previous findings[181] for ethanol, the atomic electronegativities derived 

specifically for 2-propanol were larger than the transferrable CHARMM-FC values[53] 

for most atoms.  The TraPPE-UA model[134] was chosen for n-hexane.  This model has 

been employed in previous solvation studies and is particularly appropriate for alkane-

alcohol mixtures, such as the mixed solvents examined in this chapter.   

As discussed in Chapter 2, the intramolecular potential consists of four parts: 

stretching ( stU ), bending ( beU ), torsion ( torU ) and improper torsion ( impU ).  In this 

chapter, improper torsions are employed for carbons joining aromatic rings, for the amide 

carbons, and for the amide nitrogens.  That is, improper torsions are implemented for 

N(25), C(27), and C(29) of Whelk-O1, N(11), C(13), N(17), C(19), and C(21) of DNB-

phenylglycine and DNB-leucine and, in addition, for C(33) in the lateral group of DNB-

phenylglycine.  Full details on the surface potentials are provided elsewhere[112, 176].  
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Here, we note that the intramolecular potentials were derived specifically for each CSP, 

based on extensive exploration of the ground state potential energy surface via ab initio 

calculations.   

 

5.2.3 Chirality indexes 

Detailed discussions of the Osipov chirality index[66, 111] can be found in previous 

chapters.  Fig. 5.1 shows several chirality indexes for 2-propanol.  The indexes are 

plotted as a function of the torsional angles and for different combinations of m and n, the 

powers in the denominator of Eq. [2.86] that control the range of indexes. With twelve 

atoms in the molecule, there are 495 unique combinations of four atoms contributing to 

the sum in Eq. [2.86]. As m and n increase, the index becomes increasingly dominated by 

clusters of neighboring atoms.  However, even for n=3 and m=3, the index only 

converges after several hundred terms due, in part, to cancellation between terms.  Thus, 

it is not correct to assume that any of the chirality indexes considered here are dominated 

by a small group of atoms within the molecule.  

Panels (d)-(j) in Fig. 5.1 show that Torsion 1, which rotates the position of the 

alcohol hydrogen, is the most important contributor to the various chirality indexes.  In 

contrast, Torsion 2 which rotates a methyl group has a small impact.  One can combine 

several chirality indexes to arrive at a new index, ܩ෨௢௦
௠ , that is strongly dependent on 

Torsion 2 and weakly dependent on Torsion 1. We have arrived at ܩ෨௢௦
௠ shown in Figs. 

5.1(k) and 5.1(l) by trial and error, and by least squares fitting to optimize the 

combination of indexes.  First, by visual inspection ܩ଴ௌ
௠ (m=1,n=1) and ܩ଴ௌ

௠ (m=1,n=2) 
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were identified as having very similar dependence on Torsion 1(t1) but distinct variations 

with Torsion 2(t2).  An appropriate combination of these indexes could potentially have 

the desired t2 dependence.  We therefore began by writing ܩ෨௢௦
௠  as a linear combination of 

these two indexes.    To optimize the combination, torsion 3 was fixed at 180 degrees and 

torsions 1 and 2 were scanned from 0 to 360 degrees, in 10 degree steps.  Following this, 

the average  

ҧ଴ௌܩ
௠ ሺ2ݐሻ ൌ ଵ

ଷ଺
∑ ෨଴ௌܩ

௠ ሺ1ݐ, 2ሻ௧ଵݐ      [5.1] 

was evaluated, where the explicit dependence of the index on Torsions 1 and 2 is shown.  

Then, the optimal linear combination in ܩ෨௢௦
௠  is obtained by minimizing  

∑ ቀ∑ ൫ܩ෨଴ௌ
௠ ሺ1ݐ, 2ሻݐ െ ҧ଴ௌܩ

௠ ሺ2ݐሻ൯ଶ
௧ଵ ቁ௧ଶ      [5.2] 

The resulting index is m
SG0

~ ଴ௌܩ=
௠ (m=1,n=1)-2.681ܩ଴ௌ

௠ (m=1,n=2).  Panels (k) and (l) 

show that ܩ෨௢௦
௠  is only weakly dependent on the position of the alcohol hydrogen but 

strongly dependent on both methyl torsions.  In Section 5.3, ܩ଴ௌ
ଵ ሺ݉ ൌ 3, ݊ ൌ 1ሻ  and 

଴ௌܩ
௠ ሺ݉ ൌ 3, ݊ ൌ 2ሻ will be used to isolate the chirality induced bias (excess chirality) for 

Torsion 1.  The methyl positions will be determined from ܩ෨௢௦
௠.  ܩ଴ௌ

௤ ሺ݉ ൌ 3, ݊ ൌ 1ሻ will 

be employed to assess the polarization contribution to chirality transfer.   
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(a)                     (b)       (c) 

       
 
  (d) ܩ଴ௌ

ଵ (m=1,n=1)   (e) ܩ଴ௌ
ଵ (m=1,n=2)   (f) ܩ଴ௌ

ଵ (m=3,n=1) 

 
  (g) ܩ଴ௌ

௠ (m=2,n=1)   (h) ܩ଴ௌ
௠ (m=3,n=2)  (i) ܩ଴ௌ

௤ (m=1,n=1) 

  
  (j) ܩ଴ௌ

௤ (m=3,n=1)   (k) m
SG0

~     (l) m
SG0

~  

  
 
Figure 5.1.  The influence of torsional angles on chirality indexes of 2-propanol. As 
shown in (a), torsions 1, 2, and 3, are defined by atoms H(2)-O(1)-C(3)-H(4), O(1)-C(3)-
C(5)-H(7), and O(1)-C(3)-C(6)-H(10), respectively.   Panel (b) shows a snapshot in 
which torsion 1, torsion 2 and torsion 3 are set to 180o, 30o, and 30o, respectively, while 
panel (c) shows a snapshot in which torsions 1, 2 and 3 are set to 180o, 90o, and 90o, 
respectively.  Panels (d)-(j) show selected chirality indexes as a function of torsion 1 and 
torsion 2, while torsion 3 is set to 180o.  Panels (k) and (l) show the combination index 

m
SG0

~ .  For panel (l), torsion 1 is set to 180o.  In (i) and (j), the atomic charges, in unit of |e| 
are -0.68, 0.37, 0.59, -0.08, -0.30, -0.30, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, for atoms 1-12, 
respectively. 
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The analysis of chirality transfer presented in this chapter focuses on potential 

hydrogen bonding atomic pairs, for example the hydrogen of 2-propanol with O(28) of 

Whelk-O1.  The indexes will be evaluated as a function of the distance between the two 

atoms and, specifically, the distance will be divided into two cylindrical coordinates: z, 

the distance between the two atoms in the direction perpendicular to the surface, and r, 

the distance parallel to the surface.  The cylinder is centered about a selector atom, as 

shown in Fig. 5.2, and will move up and down and side to side as the selector moves.  

However the cylinder axis always remains perpendicular to the underlying Si layer.  By 

choice of convention, we define z to be negative when the solvent atom is closer to the 

underlying Si layer than is the selector atom.  With this coordinate system, the excess 

chirality is calculated as follows:  For a given solvent-selector atomic pair (the O of 2-

propanol and H(28) of Whelk-O1, for example), when the solvent atom is located 

between (r,z) and (r+dr, z+dz) relative to the specific selector atom,  the excess chirality,  

zr
w
SG ,0 ><  is calculated as follows: 

∑
=

=><
cN

i

w
S

c
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w
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[5.3]

 
where Nc  is the total number of solvent molecules located between (r,z) and (r+dr, z+dz) 

over the course of the simulation, dr=dz=0.12 Å,  and w
SG0  is an instantaneous value of 

the chirality index for the solvent molecule located at this position.   In practice, solvent 

positions are recorded every 20 iterations, each solvent molecule is identified by its r and 

z value, and 27 instantaneous chirality indexes are evaluated and added to the appropriate 

sum (see Eq. [5.3]).  An identical positional breakdown is applied to calculate average 

atomic charges and molecular dipole moments.   
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Figure 5.2.  The cylindrical coordinate system used in the spatial breakdown of excess 
chirality, average atomic charges, and average solvent dipole.  A chosen selector atom is 
placed at the center of the cylinder.  Averages are collected over solvent molecules 
located between (r,z) and (r+dr,z+dz), where dr = dz = 0.12 Å.   The cylinder axis is 
perpendicular to the underlying Si layer.   

 

5.2.4 Simulation details 

Surface-to-solvent chirality transfer is evaluated from molecular dynamics 

simulations of the CSPs (Whelk-O1, DNB-leucine and DNB-phenylglycine) surrounded 

by solvent.  The solvent consists of either pure ethanol, pure 2-propanol, 80/20 n-

hexane/ethanol, or 80/20 n-hexane/2-propanol.   The simulation cell, as shown in Fig. 

2.10, has solvent confined between an upper and a lower surface that each include nine 

selectors, end-caps, silanol groups and an underlying layer of Si.  The full simulation cell 

actually has empty space above the upper, and below the lower, surface such that roughly 

2/3 of the entire cell is empty. 3D Periodic boundary conditions are applied in the 

simulations and the space above and below the interfacial region minimizes interactions 

between neighboring surface-fluid-surface slabs.  The distance between the two 
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underlying Si layers is adjusted so that the solvent density in the center of the simulation 

cell is close to the experimental density.  Each simulation with pure solvent includes 600 

solvent molecules, while each simulation with mixed solvents includes 400 solvent 

molecules.   

Electrostatic interactions are evaluated using Ewald summations, including a 

correction for the rectangular prism shape of the simulation cell[40].  The results reported 

below correspond to a momentum space cutoff of 272* ≤k and an Ewald parameter of  

0.1916=α Å-1.  The FC electrostatic interaction is incorporated into the Ewald 

summations by replacing the Ewald forces for close intramolecular pairs of atoms where 

Eq. [2.26] differs from the usual electrostatic potential.   

 Three Nosé-Hoover thermostats are used to generate canonical averages:  one 

thermostat is applied to translations; another is independently applied to rotations of the 

rigid ring units in the selectors; and a third constrains the temperature associated with 

charge fluctuations. The relevant conserved quantity in the simulations is defined by Eq. 

[4.1] and has been described in detail in Chapter 4. 

The initial configuration for the simulations is obtained by placing a large excess 

of solvent molecules on a cubic lattice between the two surfaces and some are removed at 

random until the desired number remain. Following this, the surface-to-surface distance 

is increased until strong overlaps are removed.  Then Monte Carlo cycles are performed 

as the simulation cell is gradually recompressed.  Finally, the molecules are assigned 

random linear and angular velocities consistent with the desired temperature.   
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Simulations of 10-15 ns are performed for all twelve solvent-surface interfaces.  

The time step for all simulations is 0.3 fs and the total change in the Nosé-Hoover 

Hamiltonian, HNH, is 1% over 200 ps.  The equilibration time of each simulation is 60 ps.  

The duration of the equilibration period was decided based upon the dihedral 

distributions of torsion 2 (O(1)-C(3)-C(5)-H(7)) for 2-propanol.  Specifically, in the 

starting structure of 2-propanol, torsion 2 is set to 60 degrees, and after 50 ps, we find 

that it becomes equally distributed between the three isoenergetic conformers (60, 180, 

and 270 degrees).  In our previous work on chirality transfer about solutes[181], we 

found that 4 ns was adequate to get converged results.  The excess chirality reported in 

this work has been averaged over the 18 selectors in the simulation cell, for a total 

monitoring time of 180–270 ns.    

The 2D solvent distribution about the chiral selectors, ݃ሺݎ,  is collected every ,(ݖ

20 iterations along with chirality indexes, atomic charges, and molecular dipoles.  

Snapshots of the entire simulation cell are collected every 5000 iterations.  These 

snapshots form the basis of the collection of hydrogen bonding statistics, where a 

hydrogen bond is defined as X—H---Y, where X and Y are either O or N.  

 

5.3. Results and discussion 

The chirality transfer between surface and solvent is examined in this section for 

the three CSPs, Whelk-O1, DNB-phenylglycine, and DNB-leucine, in the four solvents, 

ethanol, 2-propanol, n-hexane/ethanol, n-hexane/2-propanol.   
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In our analysis of excess chirality, we place emphasis on solvent-to-selector 

hydrogen bonding.  Molecular dynamics simulations have been widely used to provide 

detailed information on the spatial, energetic, and dynamic aspects of hydrogen bonds in 

condensed phases [183-185].  Analyte-selector hydrogen bonding is invoked in many 

CSP selective mechanisms[15] and simulations have successfully revealed the 

importance of H-bonding for these selectors[161].   CH-π interactions are also included in 

some CSP selectivity mechanisms[161, 186, 187] and will be noted below in regards to 

chirality transfer to solvent.   

5.3.1 Solvation of Chiral Stationary Phases 

Before analyzing the selector-solvent chirality transfer, we begin with an analysis 

of solvent structure about the stationary phases.  2D distributions are presented to show 

solvent position, relative to specified selector atoms, as a function of distance along the 

surface (r) and perpendicular to the surface (z).  In the mixed solvents, results are shown 

only for the alcohol component, since n-hexane does not interact strongly with the 

selectors and prefers to be in the bulk.  We also focus on the chirality transfer to alcohol 

since it has the potential to hydrogen bond to the selectors and is most likely to be found 

at the interface.  Solvation studies for these selectors have been published elsewhere[112, 

161], although not necessarily for the solvents of interest here.  

H-bonding statistics for the three CSPs and the four solvents are presented in 

Table 5.1.  The probabilities in Table 5.1 are consistent with a previous study[112] of H-

bonding for DNB-phenylglycine and DNB-leucine, although they are consistently 

somewhat lower. The selector representation is identical in both studies but a polarizable 
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alcohol model is used in this chapter along with an all-atom molecular representation of 

the alcohol.   

Table 5.1.  Hydrogen bonding statistics for Whelk-O1, DNB-phenylglycine and DNB-
leucine selectors in pure ethanol, pure 2-propanol, 80/20 n-hexane/2-propanol, and 80/20 
n-hexane/ethanol.  In cases where two solvent and selector atoms are listed, the table 
gives the percentage of selectors with simultaneous formation of the two specified H-
bonds with a single solvent.   

 
Selector 

component 
Solvent 

component 
Percentage in 

ethanol 

Percentage in n-
hexane/ 
ethanol 

Percentage 
in 2-

propanol 

Percentage in 
n-hexane/ 2-

propanol 
Whelk-O1 

H(26) O 16.9 16.3 20.3 9.0 
O(28) H 60.6 29.0 39.3 18.3 

DNB-phenylglycine 
H(12) O 5.6 4.9 2.0 2.0 
O(14) H 12.1 9.5 26.0 11.4 
H(18) O 7.2 5.0 7.4 4.1 
O(20) H 33.0 18.4 41.2 22.1 

H(12) and 
O(20) H and O 0.0 0.0 0.0 0.0 

O(14) and 
H(18) H and O 0.4 1.1 1.2 1.3 

DNB-leucine 
H(12) O 62.1 23.4 39.9 19.1 
O(14) H 29.9 17.4 33.7 19.6 
H(18) O 55.8 42.9 42.2 37.0 
O(20) H 36.4 15.3 44.8 17.8 

H(12) and 
O(20) H and O 3.1 2.7 4.8 3.2 

O(14) and 
H(18) H and O 1.3 1.5 0.7 2.1 

 

 

The solvent distribution about Whelk-O1 is shown in Fig. 5.3, for all four solvents.  

Peaks in this distribution identify most probable solvent locations.  The arrows in the 

figure are color-matched to specific solvent molecules in the snapshots.  The Whelk-O1 

structure places H(26) inside the cleft region and this placement is crucial to chiral 

selectivity[113, 161].   In particular, the dominant analyte docking arrangement involves 
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H-bonding to H(26) and, as a result, any solvent in this region must be displaced by 

analyte in order for chiral recognition to occur.  Panels 4(a)-(d) show the 2D distribution 

of the alcohol oxygen about H(26) in the four solvents.  The ridge beginning at around 

z=2Å, r=0 is due to direct solvent-selector H-bonding.   The fact that this ridge occurs for 

positive z clearly indicates that the solvent H-bonds from above (i.e. in the cleft).  A 

second ridge at somewhat higher z is also evident in the panels and this ridge is due to a 

second solvent, within the cleft region, that is not directly H-bonded to the selector but 

may H-bond to another solvent.  The snapshots in panels (i)-(l) show these in-the-cleft 

solvents.  Solvent-selector H-bonding to the amide oxygen, O(28), occurs frequently and 

this is evident from the prominence of the ridge at r=2Å in Panels (e)-(h).   The solvent 

prefers to place its hydrogen on the side of O(28), or closer to the surface as evident from 

the shift in the peak position towards negative z. Thus, this solvent molecule is outside of 

the cleft region and is less likely to interfere with chiral recognition.   

The alcohol placement relative to the Whelk-O1 selector is similar for all four 

solvents.  Overall, 2-propanol is more likely to H-bond to H(26) and this is clear from the 

stronger peak around z=2Å, r=0 in panels (c) and (d), relative to panels (a) and (b).  The 

2D distributions in panels (e)-(h) show that the H-bonding probability to O(28) is 

comparable for ethanol and 2-propanol.  The probability for secondary solvents, not 

directly H-bonded to the selector, increases in 100% alcohol solvents.  This is evident 

from the prominent secondary ridges in 100% alcohol solvents (compare the z=4Å, r=0 

ridge in Figs. 5.3(a) and 5.3(b) for example).   
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  ethanol        n-hexane/ethanol       2-propanol   n-hexane/2-propanol 

 

 

 
Figure 5.3.  2D solvent-selector distributions for potential H-bonding pairs at the Whelk-
O1 interface. The position variables, z and r, are given in Å.  Four solvents are shown: 
pure ethanol[(a),(e),(i)], n-hexane/ethanol [(b),(f),(j)], pure 2-propanol [(c),(g),(k)], and 
n-hexane/2-propanol [(d),(h),(l)].  Distributions between H(26) of the Whelk-O1 selector 
and the alcohol oxygen, and between O(28) of the Whelk-O1 selector and the alcohol 
hydrogen, are shown in (a)-(d) and (e)-(h), respectively.  Snapshots are provided in (i)-(l). 
The solvent molecules in the snapshots are color coded to correlate their positions with 
peaks and ridges in the 2D distributions, as shown by arrows of the same colour in (a)-(h).   
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2D distributions for n-hexane/2-propanol solvated DNB-phenylglycine and DNB-

leucine interfaces are provided in Fig. 5.4.  The solvent molecules in the snapshots are 

color coded to correlate their positions with peaks and ridges in the 2D distributions, as 

shown by arrows of the same colour in (a)-(h).  The distribution of O(2-propanol) about 

H(12), the amide hydrogen closest to the surface, is given in the first row.  Results for the 

DNB-phenylglycine selector (Fig. 5.4(a)) show a very weak distribution between this 

potential H-bonding pair.  In contrast, a strong peak is evident for DNB-leucine (Fig. 

5.4(b)) showing that alcohol prefers this selector.   The peak location is consistent with 

direct solvent-selector H-bonding.  Steric hindrance due to the lateral phenyl ring may 

contribute to the lack of H-bonding for H(12) in DNB-phenylglycine.  However, as 

shown in Panels (e) and (f), the upper amide hydrogen, H(18), also has weak H-bonding 

for DNB-phenylglycine but is much more strongly interacting for DNB-leucine.  From 

Table 5.1, 37% of the H(18) in DNB-leucine are H-bonding to solvent but only 4% are 

H-bonding for DNB-phenylglycine.   

H-bonding to the upper and lower amide oxygens, O(14) and O(20), is common 

for both selectors.  For O(14), the proximity of the underlying surface means that solvent 

prefers to H-bond from above whereas, for O(20), the solvent preferentially places its 

hydrogen closer to the surface although H-bonding from the side and above still occurs.  

Secondary features, such as the strong ridge at z=4Å in Panel (b) or the broad 

ridge at r=6Å in Panel (c), are evident in Fig. 5.4.  These features arise primarily from 
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solvents H-bonding to other sites in the selector, or to solvents H-bonded to a solvent that 

has a solvent-selector H-bond.     

DNB-phenylglycine      DNB-leucine  
in 2-propanol/n-hexane    in 2-propanol/n-hexane 
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Figure 5.4.  2D distributions from 2-propanol/n-hexane solvated DNB-phenylglycine and 
DNB-leucine interfaces. The position variables, z and r, are given in Å.  Each column 
refers to a specific stationary phase.  Specifically, panels [(a),(c),(e),(g)] and 
[(b),(d),(f),(h)] show g(r,z) for DNB-phenylglycine and DNB-leucine, respectively.  
Corresponding snapshots are provided in Panels (i) and (j).   The first, second, third, and 
fourth rows show the distribution between H(12)-O(2-propanol), O(14)-H(2-propanol), 
H(18)-O(2-propanol), and O(20)-H(2-propanol), respectively.  The solvent molecules in 
the snapshots are color coded to correlate their positions with peaks and ridges in the 2D 
distributions, as shown by arrows of the same colour in (a)-(h).   

 

2D distribution for 2-propanol, ethanol, and ethanol/n-hexane about DNB-

phenylglycine and DNB-leucine have not been shown but Table 5.1 provides H-bonding 

statistics.  Qualitatively, the 2D distributions are similar to those in Fig. 5.4 but there is a 

more pronounced quantitative difference between DNB-leucine and DNB-phenylglycine 

in an ethanol solvent.  For DNB-phenylglycine, the overall number of ethanol-selector H-

bonds is less than for 2-propanol, and this is particularly true for the pure solvents.  In 

contrast, ethanol forms more H-bonds to DNB-leucine, on average, than does 2-propanol.   

 In order to correlate solvent position with chirality transfer, the 2D solvent 

distributions shown in this section will be represented as contour plots in the subsequent 

sections.   
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5.3.2 Chirality transfer at interfaces 

  The alcohol molecules at the interface necessarily explore a broad range of 

conformations.  The excess chirality of interest here results from a small imbalance in the 

conformational distributions resulting from the chiral environment.  It follows that some 

estimation of the accuracy of the predicted chirality transfers is required.  Fig. 5.5 

provides a selection of excess chiralities for 2-propanol in 2-propanol/n-hexane solvated 

DNB-phenylglycine and DNB-leucine.   

The panels in Fig. 5.5, and in all subsequent presentations of excess chirality, use 

color coding to identify regions where the excess chirality is negative (blue, indigo) 

versus regions where it is positive (yellow, orange, red).  Green indicates an average 

close to zero.  In the panels, green is also used for regions where solvent is rarely found:  

We require a minimum of 20000 instantaneous chiralities recorded before presenting an 

excess chirality for the region.  In practice, the solvent is rarely found within the end cap 

region for steric reasons.  In higher probability regions, such as H-bonding areas, the 

number of instantaneous chirality indexes normally exceeds 200,000.  Overlaid on the 

maps of chirality transfer are contour maps that show the 2D probability distributions 

analogous to Figs. 5.3 and 5.4.  In this way, with color coded maps and contour plots, one 

can correlate regions of high solvent density with regions of high chirality transfer.  
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Figure 5.5.  An illustration of the convergence statistics for excess chirality.  Panels (a) 
and (b) show (<ࡳ૙ࡿ

૚ (m=3,n=1)>r,z - CI95) and (<ࡳ૙ࡿ
૚ (m=3,n=1)>r,z + CI95), respectively, 

for H(12)-O(2-propanol) in the 2-propanol/n-hexane solvated DNB-leucine interface. 
Panels (c) and (d) show (<ࡳ૙ࡿ

૚ (m=3,n=1)>r,z - CI95) and (<ࡳ૙ࡿ
૚ (m=3,n=1)>r,z + CI95), 

respectively, for H(12)-O(2-propanol) in the 2-propanol/n-hexane solvated DNB-
phenylglycine interface. Panels (e) and (f) show (< ࡿ૙ࡳ

૚ (m=3,n=1)>r,z - CI95) and 
(< ࡿ૙ࡳ

૚ (m=3,n=1)>r,z + CI95) for H(12)-O(2-propanol) in the 2-propanol/n-hexane 
solvated Whelk-O1 interface. Panels (g) and (h) show (<ࡳ૙ࡿ

࢓ (m=3,n=2)>r,z - CI95) and 
(< ࡿ૙ࡳ

࢓  (m=3,n=2)>r,z + CI95) for O(20)-H(2-propanol) in the 2-propanol/n-hexane 
solvated DNB-leucine interface.  The cylindrical coordinates r and z are in Å, 
ࡿ૙ࡳ>

૚ (m=3,n=1)>r,z is in Å, and <ࡳ૙ࡿ
࢓ (m=3,n=2)>r,z is in g4/(mol4•Å 2). 
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The rightmost panels in Fig. 5.5 show ܩۃ௢ௌ
௪  ௥,௭ minus the 95% confidence intervalۄ

(CI95). The leftmost panels show ܩۃ௢ௌ
௪   ௥,௭ plus the CI95, which is calculated from[188]ۄ
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where Nc is the number of solvent molecules located between (r, z) and (r+dr, z+dz) 

about the selector atom during the collection period of the simulation.  In calculating 

CI95, a Gaussian distribution is assumed.  Regions of consistent color coding between 

the right and left panels indicate good statistics.  Notice that the color coding is similar in 

many regions on both panels, and particularly regions of high solvent density, where the 

error is generally small relative to the overall magnitude of the excess chirality.  The 

largest errors tend to occur for regions of low solvent density, where there are fewer 

values of the chirality index recorded, and for small r values, due to a smaller collection 

volume, leading to a reduction of counts.   

Before proceeding to a detailed analysis of the chirality transfer, it is worth noting 

the scale of the chirality transfers in Fig. 5.5.  For ܩۃ௢ௌ
ଵ ሺ݉ ൌ 3, ݊ ൌ 1ሻۄ௥,௭, the excess 

chirality induced in 2-propanol can be up-to 20% of the maximum value observed in Fig. 

5.1(f).  Thus, there is cancellation between instantaneous chirality indexes but the 

residual remains significant.  Likewise, the average value of ܩۃ௢ௌ
௠ ሺ݉ ൌ 3, ݊ ൌ 2ሻۄ௥,௭ can 

reach up-to 17% of the maximum value.  These excess chiralities are much larger than 

were observed in Chapter 4, where solutes in the bulk were considered.  As expected, the 

immobilization of the chiral selectors onto a surface, and possibly the collective effect of 

multiple selectors, has lead to a significant chirality transfer into nearby solvents.    
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5.3.3 Comparisons between selectors:  Conformational chirality 

In this section, we analyze the chirality transfer to 2-propanol, in the binary 2-

propanol/n-hexane solvent, when this solvent is near a DNB-leucine, DNB-phenylglycine, 

or Whelk-O1 interface.  In this section, we focus on characterizing conformational bias 

introduced into the solvent molecules.  Solvent polarization due to the chiral interface 

will be examined in Section 5.3.4 and comparisons between different solvents will be 

presented in Section 5.3.5.   

Fig. 5.6 presents ܩۃைௌ
ଵ ைௌܩۃ ,௥,௭ۄ

௠ ෨௢௦ܩۃ ௥,௭, andۄ
௠ۄ௥,௭,  collected around the H-bonding 

sites (H(12), O(14), H(18), O(20)) of the DNB-leucine selector.  The cylindircal 

coordinates r and z are in Å, <ܩ଴ௌ
ଵ (m=3,n=1)>r,z is in Å, and <ܩ଴ௌ

௠ (m=3,n=2)>r,z is in 

g4/(mol4•Å 2).  H(12) is closest to the underlying surface, and H-bonding imposes steric 

constraints on the solvent.  This solvent is often located on the same side as the lateral 

isopropyl group of the selector, as shown in the snapshot 5.6(d), which introduces 

additional steric constraints. Both   ܩۃ௢ௌ
ଵ ௥,௭ۄ  and ܩۃ௢ௌ

௠ ௥,௭ۄ  are strongly dependent on 

Torsion 1, defined by H(2)-O(1)-C(3)-H(4), which orients the alcohol hydrogen relative 

to the rest of the molecule.  Figs. 5.6(a) and 5.6(b) show a significant negative excess 

chirality for 2-propanol in the high probability region where direct H-bonding to H(12) 

occurs.  One can extract from Fig. 5.1 that simultaneous negative average values for these 

two indexes means a bias in Torsion 1 towards values between 0 and 60 degrees, where 

the alcohol hydrogen is gauche to the methine hydrogen.  The snapshot in Fig. 5.6(d) 

provides an illustration of this solvent configuration (Torsion 1 = 48 degrees in the 

snapshot) .    
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଴ௌܩ>
ଵ (m=3,n=1)>r,z    <ܩ଴ௌ

௠ (m=3,n=2)>r,z         < m
SG0

~ >r,z 

 

 

 

 
Figure 5.6.  2D distributions of average chirality indexes from the 2-propanol/n-hexane 
solvated DNB-leucine interface.  Panels (a), (e), (i) and (m) show <ࡳ૙ࡿ

૚ (m=3,n=1)>r,z, 
panels (b), (f), (j) and (n) show <ࡳ૙ࡿ

࢓ (m=3,n=2)>r,z, and panels (c), (g), (k) and (o)  show 
the combined index < m

SG0
~ >r,z.  Panels (d), (h), (l) and (p) show snapshots where the 

selector, nearby end-caps and silanol groups are shown in space filling representation 
while 2-propanol is shown in bright colors for contrast. Distance measures r and z in 
panels (a)-(d), (e)-(h), (i)-(l), and (m)-(p) refer to H(12)-O(2-propanol), O(14)-H(2-
propanol), H(18)-O(2-propanol), and O(20)-H(2-propanol), atom pairs respectively.    
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Hydrogen bonding to the upper amide hydrogen, H(18), is distinct from the lower 

amide hydrogen, as shown in Panels 5.6(i) and 5.6(j).  First, the H-bonding solvent 

adopts a wider range of positions and may even be closer to the surface than H(18).  

Consistent with the greater positional freedom allowed to the solvent, the excess chirality 

for H-bonding solvent is generally small indicating significant conformational freedom as 

well.  However, there is an indication of some excess chirality around z=-1.0Å, when the 

solvent is positioned close to the surface while maintaining an H-bond with H(18).  A 

closer inspection of solvents in this location indicates that a non-negligible fraction 

simultaneously form two H-bonds to the selector, one to O(14) and one to H(18).  This 

forces the alcohol group to point towards the underlying surface, and one methyl group 

points towards the bulk.  The spatial constraints of forming two H-bonds, coupled with 

steric constraints from the selector lateral group and the underlying surface, lead to a 

negative excess chirality in this case.    

According to Table 5.1 20% of the DNB-leucine selectors have H-bonds to O(14), 

but these solvents do not have significant excess chirality for several reasons.  First, the 

solvent has some positional flexibility and can H-bond from above or slightly below 

O(14).  Second, the solvent often adopts a position opposite, or tangential to, the lateral 

group.  These factors indicate minimal steric constraints and lead to small excess chirality.  

It is interesting to note that dual H-bonding with H(18), as discussed in the preceding 

paragraph, has a smaller contribution for O(14).  This follows because these multiple H-

bonding solvents tend to occupy positions relative to O(14) that also occur much more 

frequently for solvents with a single H-bond to the selector. 
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H-bonding to O(20) is generally characterized by small-to-negligible chirality 

transfer except for solvents located closer to the underlying surface (ridge ending around 

z=-2Å in Figs. 5.6(m) and 5.6(n)).  Upon close inspection of the corresponding snapshots, 

we find that a significant fraction of solvents at this location simultaneously form an H-

bond to H(12).  This forces the alcohol group to point towards the bulk, and one methyl 

group points towards the underlying surface.  On average, these 2-propanol molecules 

have the methine H and the alcohol H in a gauche configuration, leading to an overall 

negative excess chirality.  Overall, H-bonding to the amide oxygens is probable (see 

Table 5.1) but is not accompanied by significant chirality transfer to solvent.  In contrast, 

H-boding to the amide hydrogens can be accompanied by steric or energetic constraints 

that lead to significant excess chiralities.   

Panels 5.6(c), 5.6(g), 5.6(k), and 5.6(o) show ൏ ෨଴ௌܩ
௠ ൐௥,௭, the combination index 

introduced to isolate the contribution of methyl torsions.  Overall, this index is negligible 

in regions where ܩۃ଴ௌ
ଵ ௥,௭ۄ  and ܩۃ଴ௌ

௠ ௥,௭ۄ  are small, indicating that “unbiased” solvent 

conformational averaging occurs in these cases and chirality transfer is small-to-

negligible.  The largest values of ൏ ෨଴ௌܩ
௠ ൐௥,௭ occur for solvent H-bonding to H(12) and 

the excess ൏ ෨଴ௌܩ
௠ ൐௥,௭ is significantly positive.  By reference to Figs. 5.1(k) and 5.1(l), 

this indicates that the methyl groups prefer to orient such that a hydrogen is cis-to-gauche 

relative to the alcohol oxygen.   

Hydrogen bonding to the backbone of DNB-phenylglycine occurs less frequently 

than for DNB-leucine, as shown in Table 5.1.  This is particularly true for the amide 

hydrogens, where only 2-4% of the selectors have H-bonding to these atoms.  The 
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occurrence of simultaneous multiple H-bonds is also less common for DNB-

phenylglycine due to the bulky lateral group and a small number of energetically 

accessible backbone conformations.  The lateral phenyl ring impacts excess solvent 

chirality in two ways.  First, CH-π interactions will encourage certain energy lowering 

solvent positions and orientations.  On the other hand, the ring imposes steric constraints 

when the solvent is too close and this may bias towards specific conformations.   

The excess solvent chirality for 2-propanol in 2-propanol/n-hexane about DNB-

phenylglycine is shown in Fig. 5.7.  The cylindircal coordinates r and z are in Å, 

଴ௌܩ>
ଵ (m=3,n=1)>r,z is in Å, and <ܩ଴ௌ

௠ (m=3,n=2)>r,z is in g4/(mol4•Å 2).  Panels (a) and (b) 

show a positive excess chirality introduced in 2-propanol molecules that H-bond to H(12) 

of DNB-phenylglycine (see z=0, r=2Å region).  This is in direct contrast to DNB-leucine 

where solvent hydrogen bonded to H(12) has a negative excess chirality:  The change in 

lateral group has reversed the conformational bias of the nearby solvent.  For the other H-

bonding atoms (O(14), H(18), and O(20)) of DNB-phenylglycine, a negative excess 

chirality is induced for a localized subset of the H-bonding solvent.  For example, 

chirality transfer for solvent H-bonded to O(14) is generally small except when the 

solvent is closer to the underlying surface.   
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଴ௌܩ> 
ଵ (m=3,n=1)>r,z     <ܩ଴ௌ

௠ (m=3,n=2)>r,z          < m
SG0

~ >r,z 

 

 

 

 
Figure 5.7.  2D distributions of average chirality indexes from the 2-propanol/n-hexane 
solvated DNB-phenylglycine interface.  Panels (a), (e), (i) and (m) show 
ࡿ૙ࡳ>

૚ (m=3,n=1)>r,z, panels (b), (f), (j) and (n) show <ࡳ૙ࡿ
࢓ (m=3,n=2)>r,z, and panels (c), 

(g), (k), and (o) show the combined index < m
SG0

~ >r,z.  Panels (d), (h), (l) and (p) show 
snapshots where the selector, nearby end-caps and silanol groups are shown in space 
filling representation while 2-propanol is shown in bright colors for contrast. Panels (a)-
(d), (e)-(h), (i)-(l), and (m)-(p) represent the H(12)-O(2-propanol), O(14)-H(2-propanol), 
H(18)-O(2-propanol), and O(20)-H(2-propanol), respectively.  
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Fig. 5.8 shows the chirality transfer to 2-propanol when it is near a Whelk-O1 

selector.  This selector is distinct from DNB-leucine and DNB-phenylglycine in many 

ways.  For the purposes of chirality transfer to solvent, it is important to realize that 

Whelk-O1 has a cleft-like structure, and that the amide linkage is often parallel to the 

surface.  For DNB-leucine and DNB-phenylglycine, in contrast, the selector backbone is 

more-or-less perpendicular to the underlying surface.  The amide hydrogen, H(26), of 

Whelk-O1 points toward the cleft region and an H-bonding solvent will necessarily 

occupy the cleft.  The cylindircal coordinates r and z are in Å, <ܩ଴ௌ
ଵ (m=3,n=1)>r,z is in Å, 

and <ܩ଴ௌ
௠ (m=3,n=2)>r,z is in g4/(mol4•Å 2). 

 
 
< 1

0SG (m=3,n=1)>r,z   < m
SG0 (m=3,n=2)>r,z      < m

SG0
~ >r,z 

 

 
 
Figure 5.8.  2D distributions of average chirality indexes from the 2-propanol/n-hexane 
solvated Whelk-O1 interface.  Panels (a) and (e) show < 1

0SG (m=3,n=1)>r,z, panels (b) and 
(f) show < m

SG0 (m=3,n=2)>r,z and panels (c) and (g) show the combined index < m
SG0

~ >r,z. 
Panels (a)-(d) and (e)-(h) represent the H(26)-O(2-propanol) and O(28)-H(2-propanol), 
respectively.  Panels (d) and (h) show snapshots of a hydrogen bonding 2-propanol, with 
methine and methyl groups in blue for emphasis, near a selector.  
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Fig. 5.3(a), and the contour plots in Figs. 5.8(a)-(c), reflect that there are multiple 

solvents in the cleft region:  an alcohol that H-bonds to H(26) directly and additional 

solvent.  The snapshot in Fig. 5.8(d) shows a typical solvent H-bonding to H(26), and the 

excess chiralities in Panels (a) and (b) are weakly positive for this solvent in this region, 

indicating that the alcohol H prefers to orient towards the methyl on the left (see Fig. 

5.1(a)).  Other in-the-cleft solvents appear at slightly larger separations from H(26) and 

the simulations show that the chirality transfer to these solvent molecules is significant 

and, depending on solvent position, the alcohol hydrogen is oriented away from the 

methyls.  From the perspective of chirality transfer, both in-the-cleft solvents experience 

a significant but distinct conformational imbalance due to the nearby chiral selector.   

Hydrogen bonding to O(28) of Whelk-O1 occurs primarily from the side, as noted 

previously.  Regardless of solvent position, this solvent is not in the cleft region, nor is it 

typically close to the aromatic regions of the selector.  Thus, it is the proximity of the end 

caps that plays the largest steric role.  Consistent with this, the excess chirality varies as a 

function of the solvent distance from the underlying surface.  Panel 5.7(h) shows a typical 

solvent, and the steric constraints due to the nearby end-caps are evident.   

5.3.4 Comparisons between selectors:  Solvent polarization 

Solvent molecules in the vicinity of a chiral selector will respond by biasing 

towards certain conformations, as discussed in Section 5.3.3.  In addition, the solvent will 

become polarized as the electrons respond to the local chiral environment.  Although our 

molecular dynamics simulations are classical, the alcohol models are polarizable and 

parameterized based on molecular response to electric fields.  In this section, we examine 
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average atomic charges, and dipole moments for alcohol in the vicinity of the chiral 

selectors.   

Fig. 5.9 shows simulation results for 2-propanol, in a 2-propanol/n-hexane solvent, 

near a DNB-leucine interface.  It is immediately clear from Fig. 5.9 that the atomic 

charges of the oxygen and hydrogen decrease, along with the dipole moment, for solvent 

near the selector.  Thus proximity to the interface is accompanied by a reduction in 

solvent polarity.  The bulk is primarily n-hexane, with occasional clusters of 2-propanol 

molecules.  Within these clusters, alcohol-to-alcohol H-bonding occurs.  The shift 

towards lower polarity at the interface indicates that H-bonding between 2-propanol 

molecules is more polarizing than the alcohol-DNB-leucine interaction, even when the 

alcohol H-bonds directly to the selector.     

The dipole moment shows more variation with solvent location than the atomic 

charges.  Solvent hydrogen bonded to H(12), for example, has an average oxygen charge 

of around -0.85 |e| and an average hydrogen charge between 0.45 |e| and 0.50 |e| .  In 

contrast, the dipole moment varies from 2.2 to 2.5 Debye.  The variation in the dipole 

moment reflects conformational changes as well as changes in atomic charges.  

Unfortunately, this conformational effect can occur in the absence of chirality.  For 

instance, ab initio calculations indicate that the gas phase molecular dipole of 2-propanol 

is 1.67 D when torsion 1 is 180 degrees, but is 1.58 D when this torsion is 60 degrees or 

300 degrees.  A shift towards the latter angles, without biasing towards either one, will 

decrease the dipole but not introduce chirality.   
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    <QO>r,z  <QH>r,z  <μ>r,z  <ܩைௌ

௤ (m=3,n=1)>r,z 

 

 

 

 
Figure 5.9.  Polarization of 2-propanol at the 2-propanol/n-hexane solvated DNB-leucine 
interface.  2D distributions of average charges, dipole moments, and chirality transfer are 
shown.  Panels (a), (e), (i) and (m) represent average atomic charges on O(1), panels (b), 
(f), (j) and (n) represent average charges for H(2), panels (c), (g), (k) and (o) show 
average dipole moments in Debye, and panels (d), (h), (l) and (p) represent 
ࡿࡻࡳ>

ࢗ (m=3,n=1)>r,z. Panels (a)-(d), (e)-(h), (i)-(l) and (m)-(p) refers to the H(12)-O(2-
propanol), O(14)-H(2-propanol), H(18)-O(2-propanol), and O(20)-H(2-propanol) atom 
pairs, respectively. 
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To assess chiral polarization, we show <ܩைௌ
௤ (m=3,n=1)>r,z in the final column of 

Fig. 5.9.  This chirality index incorporates charge and conformational effects, as does the 

average dipole, but achiral conformers do not contribute.  A closely related index, 

< ைௌܩ
ଵ (m=3,n=1)>r,z, was analyzed in Fig. 5.6.  We have found that typical charge-

dependent indexes strongly depend on the instantaneous charges.  Specifically, different 

combinations of atomic charges lead to very different conformation dependences so that 

Fig. 5.1(i) and 5.1(j) are expected to change in a nontrivial manner for different charges.  

However for 2-propanol, different instantaneous atomic charges strongly influence the 

magnitude of ܩைௌ
௤ (m=3,n=1) while leaving the qualitative features reasonably unchanged.    

We can, as a result, analyze this index in more detail.  Both <ܩைௌ
௤ (m=3,n=1)>r,z and 

ைௌܩ>
ଵ (m=3,n=1)>r,z, have the same instantaneous structural dependence, but the former 

weights each instantaneous configuration by a combination of atomic charges while the 

latter gives all atoms an equal weight, regardless of charge.  Comparing the first column 

in Fig. 5.6 with the last column in Fig. 5.9, both indexes show similar positional 

dependence, except that the charge dependent index typically has opposite sign to 

ைௌܩ>
ଵ (m=3,n=1)>r,z.  Several conclusions can be drawn from the overall correlation 

between these two chirality indexes.  First, regions of small-to-negligible chirality 

transfer are truly indicative of an absence of excess chirality in the solvent, and inclusion 

of atomic charge fluctuations does not introduce new features:  Both the charges and the 

structure indicate that the solvent at these positions is, on average, achiral.  Second, the 

correlations between <ܩைௌ
௤ (m=3,n=1)>r,z and <ܩைௌ

ଵ (m=3,n=1)>r,z  suggest that the largest 

contributor to the chirality transfer from DNB-leucine to 2-propanol, in a binary 2-

propanol/n-hexane solvent, is the introduction of configurational chirality.  
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ைௌܩ>
௤ (m=3,n=1)>r,z  includes contributions from configurations and charge distributions.  

The similarity between <ܩைௌ
௤ (m=3,n=1)>r,z and <ܩைௌ

ଵ (m=3,n=1)>r,z  shows that the charge 

distributions have a secondary impact in this case.   

Although Fig. 5.9 shows the polarization induced in 2-propanol due to a nearby 

DNB-leucine interface, very similar changes in the solvent are observed for a DNB-

phenylglycine interface.  Similar conclusions also follow from an analysis of the 

polarization induced by the Whelk-O1 selector.  However, it is interesting to note that, 

for in-the-cleft solvents, the solvent that H-bonds to H(26) has reduced atomic charges 

and dipole moment.  In contrast, other in-the-cleft solvents have charges and dipole 

moments consistent with molecules in the bulk.    

5.3.5 Comparison of different solvents 

In this section, we focus on the changes in excess chirality when the solvent 

composition changes from pure alcohol to alcohol/alkane.  In practice, normal phase 

chiral separations tend to have varying amounts of alcohol in a predominantly nonpolar 

(typically n-hexane) solvent.  The analysis in this section will provide some indication of 

the changes in the alcohol due to the presence of a co-solvent.   

Fig. 5.10 provides several chirality indexes, atomic charges, and the dipole 

moment for alcohol in the vicinity of the amide hydrogen, H(26), of Whelk-O1.  Four 

solvent environments are compared and the trends are representative of those observed 

for the other CSPs.  The spatial extent of the excess chirality is evident from the panels in 

Fig. 5.10.  First, chirality transfer to the alcohol is larger and persists further into the bulk 

in an alcohol/alkane solvent than in a pure alcohol solvent.  Both solvent environments 
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are fundamentally different and, from our results, the extensive hydrogen bonding 

network in a 100% alcohol solvent diminishes the selector-to-solvent chirality transfer, 

both in terms of magnitude and extent.  In an alcohol/alkane solvent, the alcohols interact 

individually with a selector or, at best have one or two nearby alcohols.  Thus, the alcohol 

molecule in this solvent has fewer opportunities to form H-bonds and this increases the 

impact of the chiral selectors at the surface.  In general, the range of the chirality transfer 

into 2-propanol/n-hexane is larger than for ethanol/n-hexane: 2-propanol is larger and 

will be more susceptible to sterically induced chirality transfer from the selector.   

The absence of an alkane co-solvent may also impact the details of the chirality 

transfer.  This in not particularly evident for H(26) of Whelk-O1 but, for DNB-leucine 

and DNB-phenylglycine, the excess chirality may change signs in certain regions around 

the selector.   For example, when ethanol H-bonds to the upper amide oxygen, O(20), of 

DNB-leucine, the chirality transfer is weakly positive for an ethanol/n-hexane solvent but 

negative in a pure ethanol solvent.   

Panels 5.10(e) and 5.10(i) show that the charge on oxygen and on hydrogen are 

smaller in magnitude for solvent near the surface and that the decrease is reasonably 

systematic.  This is particularly true for pure alcohol, as evident from the strong z 

dependence of the charges shown in panels (f), (h),(j), and (l).  This decrease in charge 

occurs regardless of the solvent environment and, overall, the atomic charges are roughly 

10-15% smaller near the surface, relative to the bulk.  As expected, the dipole moment 

also decreases but by a somewhat larger 15-25%.   As noted in Section 5.3.3, this 

contribution does not necessarily result from chirality and this is clear when the relatively 

featureless <ܩைௌ
௤ (m=3,n=1)>r,z  is examined for the pure alcohols (Panels (n) and (p)).  
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      ethanol/n-hexane          ethanol        2-propanol/n-hexane    2-propanol 

 

 

 

 
 
Figure 5.10.  2D distributions of charges and average chirality indexes from the 
ethanol/n-hexane, ethanol, 2-propanol/n-hexane and 2-propanol solvated Whelk-O1 
interface. Only the H(26)-O(alcohol) is shown.  Panels (a), (e), (i) and (m) show 
ethanol/n-hexane, panels (b), (f), (j) and (n) show ethanol, panels (c), (g), (k), and (o) 
show 2-propanol/n-hexane, and panels (d), (h), (l) and (p) show 2-propanol. Panels (a)-
(d), (e)-(h), (i)-(l), and (m)-(p) represent < ࡿ૙ࡳ

࢓ (m=3,n=2)>r,z, <qO>r,z, <qH>r,z, and 
ࡿ૙ࡳ>

ࢗ (m=3,n=1)>r,z, respectively. 
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5.4. Conclusions 

In this chapter, the impact of a nearby chiral surface on solvent is explored.  

Emphasis is placed on evaluating the extent and characteristics of chirality transferred 

from the surface to the solvent.  The spatial characteristics of this chirality transfer, and 

its dependence on the nature of the surface and solvent are examined in detail.  Molecular 

dynamics simulations of the solvated chiral interfaces form the basis of the analysis.  The 

chirality induced in the solvent is assessed based on a broad series of related chirality 

indexes, and combinations of indexes are also employed to isolate specific contributions, 

such as individual torsions.  Three surfaces, employed in chiral chromatography, are 

considered:  The Whelk-O1 interface; a phenylglycine-derived CSP; and a leucine-

derived CSP.  The solvents consist of ethanol, a binary n-hexane/ethanol solvent, 2-

propanol, and a binary n-hexane/2-propanol solvent.  Our results show that chirality 

transfer is significantly larger at an interface, relative to the transfers observed for chiral 

solutes in Chapter 4.  

 The excess chirality is divided into two contributions, a conformational chirality 

and a polarization contribution.  Strictly speaking, these two factors are interrelated and 

cannot be fully separated.  However, with the use of appropriate chirality indexes, we can 

emphasize the individual contributions.  Our simulations reveal that solvents H-bonded to 

the selectors have reduced atomic charges and reduced dipole moments.  While the latter 

is interesting, it does not necessarily follow from a selector-to-solvent chirality transfer: 

conformational changes can alter the dipole but a conformational bias is required for 
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chirality transfer.  Chirality indexes suggest that conformational chirality is dominant at 

these interfaces, with solvent polarization having a smaller secondary effect.  

 A detailed analysis of conformational chirality reveals that the chirality transfer is 

largest when the solvent experiences steric constraints or, alternatively, when the solvent 

forms multiple interactions with the selector.  The latter occurs via multiple hydrogen 

bonds or CH-π interactions.  In the absence of these constraints, the chirality transfer is 

small, as exemplified by the minimal chirality transferred to 2-propanol when it H-bonds 

to a carbonyl oxygen of DNB-leucine or DNB-phenylglycine.  We find that the excess 

chirality is attributable to local factors and that collective effects, due to the chiral field of 

multiple selectors, appear to be minimal.   

 Chirality transfer is more significant and persists to larger distances away from 

the selector in an alcohol/alkane solvent relative to a pure alcohol solvent.  In addition, 

the spatial range over which the chirality transfer is significant is typically larger for 2-

propanol than for ethanol, due mostly to additional steric constraints for the former.  
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Chapter 6  
Conclusions 
The main objective of this thesis is to examine chirality transfer from chiral solutes and 

surfaces to achiral solvents.  Ab initio calculations are applied to develop polarizable 

models and intramolecular potentials for solvents and solutes, and MD simulations are 

used to study the induced chirality in achiral solvents.  Five solvents (ethanol, 2-propanol, 

benzyl-alcohol, ethanol/n-hexane, and 2-propanol/n-hexane), three solutes (PAMD, 

acenaphthenol and styrene oxide) and three chiral surface selectors (Whelk-O1, DNB-

phenylglycine and DNB-leucine) are the focus of this study. 

The methodology for developing a new polarizable and flexible model (the 

fCINTRA model) is discussed in Chapter 3.  In this methodology, the direct coupling 

between polarization and intramolecular motion, such as bends and torsions, is novel.  

The methodology integrates the FC method, field-dependent intramolecular potentials, 

new equations of motion, damping functions for outside-of-range fields, and a reversible 

multiple time step algorithm.  The development of the field-dependent intramolecular 

potentials of the fCINTRA model relies heavily on extensive ab initio calculations that 

generate information on the molecule’s responses to various external electrostatic fields.  

This methodology has been applied to ethanol as a test case. 

MD simulations of bulk ethanol using the fCINTRA model are performed and the 

physical properties, such as the self-diffusion coefficient, are assessed to evaluate the 

quality of the model.  Comparisons with other models show that the average dipole 

moment of liquid ethanol predicted by the fCINTRA model is in closest agreement with 
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experiments and ab initio simulation results.  The dielectric constant, interatomic 

distributions and the enthalpy of vaporization are also in close agreement with 

experiments.  Self-diffusion is overestimated by the fCINTRA model, but it has been 

found that the diffusion coefficient is highly sensitive to the fictitious charge mass and 

further improvements could be made by reducing the mass.  H-bonding analysis with the 

fCINTRA model predicts longer chains of H-bonded molecules and fewer isolated 

molecules.  In all, the fCINTRA model has many advantages over non-polarizable 

models and other existing polarizable models, and is a feasible alternative to ab initio 

simulations.   

Further development of this model can be made in several aspects.  First of all, 

the computation costs can be decreased.  In fCINTRA model, the most time-consuming 

part in simulations is the evaluation of the electrostatic field derivatives, and thus, any 

improvement in the EWALD summation algorithm can significantly speed up the 

computation.  For instance, the use of particle-mesh Ewald, which is a faster alternative 

to EWALD, could greatly reduce the computation time.  Second, the model parameters 

can be refined by reiterating the parameterization process.  As shown in Fig. 3.1, the 

model parameters are developed from the electrostatic fields that are collected in original 

MD simulations with a non-polarizable model.  Since the electrostatic fields are sensitive 

to models, molecules sometimes experience fields that are outside of the parameterization 

range in simulations, and a damping function is required to deal with some extreme cases.  

In order to improve this, the model parameters can be further refined from the 

electrostatic fields collected from the MD simulations with the fCINTRA model.  Ideally, 

this procedure can be iterated for many times until the electrostatic fields are fully 
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converged, but it will be a very time consuming process.  As described in the previous 

chapters, the fCINTRA model is able to treat molecules in significantly differing 

environments, and thus, it can be very useful when applied to biological systems, such as 

membranes.  For instance, when a compound goes across lipid bilayers, it passes through 

both hydrophobic and hydrophilic regions.  The fCINTRA model can correctly describe 

the behavior of the compound in different environments and can help to uncover some 

important mechanisms in the process. 

In Chapters 4 and 5, the fCINTRA model and other models are used in MD 

simulations to study chirality transfer from chiral solutes and surfaces to achiral solvents.  

Chapter 4 focuses on two solvents (ethanol and benzyl alcohol) and three solutes (PAMD, 

styrene oxide and acenaphthenol).  Detailed aspects such as the importance of solvent 

polarizability and solute flexibility, hydrogen-bonding network, and the solvent-solute 

interactions have been discussed.  In our study, chirality transfer is found to be the most 

evident at H-bonding sites of chiral solutes, and depends heavily on the positions of the 

solvents relative to the chiral solute.  As expected, solvent polarization is found to be 

important, and non-polarizable models tend to underestimate the transfer.  It is also found 

that the transfer is the most obvious within the first few solvation shells about the chiral 

solute. 

In Chapter 5, chirality transfer is discussed for chiral surfaces that are used in 

chiral chromatography, such as Whelk-O1, leucine- and phenylglycine-based CSPs.  Four 

solvents are studied: Pure ethanol, pure 2-propanol, n-hexane/ethanol and n-hexane/2-

propanol.  Comparing to the solute-solvent chirality transfer, the transfer at interfaces is 

significantly larger.  An in-depth analysis shows that the chirality transfer is a result of 
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multiple interactions, including H-bonds and CH-π interactions, and steric constrains 

between the solvents and solutes.  The chirality transfer in 2-propanol is found to be 

larger than in ethanol because of the additional steric constraints for 2-propanol. 

The results of chirality transfer analysis can be used to design chiral molecules 

with different abilities to transfer chirality.  For instance, one may wish to find solutes 

with very localized regions of high chirality transfer or those that transfer chirality over a 

longer distance.  

In complementary to the results in this thesis, ab initio studies will be helpful to 

further investigate the chirality transfer.  The interactions between solvent and solute or 

surface selector can be analyzed in ab initio studies, which can give more details on the 

mechanism and origin of the chirality transfer.  For instance, solvent molecules can be 

placed around a solute molecule and ab initio calculations can be used to get the most 

stable solvent structures in different positions.  Further analysis can be focused on the 

places where the most stable solvent structures are chiral.  Because the interactions are 

relatively weak, high level functionals, such as CCSD(T), and large basis sets, such as 

aug-cc-pVTZ, will be required to get accurate results.   

The study of chirality transfer can be further applied to many areas.  It is widely 

known that in chiral chromatography, the solvent has a strong impact on the separation.  

With different solvents, the separation factors of the same enantiomers in the same 

column can differ dramatically, and sometimes even the elution orders are switched.  

Most of the current studies in this field focus on the direct solvent effects on average 

structures of analytes, and the influence of the induced chirality within solvents near 
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surfaces is often neglected.  If the induced chirality is evident in solvents near selection 

sites of chiral surfaces, the analytes will be surrounded by an environment of chiral 

solvents when interacting with selectors, and thus, the solute-selector interactions and the 

outcome of the chiral separation will be affected.  Therefore, the chirality transfer in 

solvents can be an important factor in the mechanism of chiral chromatography.  The 

chirality transfer can also be of great importance in spectroscopy.  The current theoretical 

calculations of spectra, such as CD and ORD, are not accurate enough when compared to 

experiments.  In the calculation of these spectra, emphasis has been placed on the direct 

contributions from chiral solutes and solvent effects on the average structures of solutes.  

Recently, asymmetric solvation shell of solvent molecules around solutes has also been 

studied and its effects on spectra have been found to be significant in some cases.  

However, the solvent molecules are always regarded as internally achiral and no direct 

contributions to the spectra.  From our studies, it can be seen that the chirality transfer 

can turn achiral solvents into intrinsically chiral and thus can directly affect the spectra.  

The inclusion of this contribution in theoretical calculations of spectra can be a future 

direction. 
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APPENDIX A 
Evaluation of charge fluctuation 
parameters 0~

iχ  and iζ .  
 

In this appendix, we briefly discuss our methodology for extracting the 

electronegativities, 0~
iχ , and the Slater exponents iζ  that determine the atomic charge 

fluctuations and the Coulombic interaction between intramolecular atomic pairs.  Patel 

and Brooks[53] have analyzed the parameterization of the FC model in considerable 

detail.  Our approach differs from theirs in that we adhere to the Coulomb definition of 

the )( ijij rJ  (Eq. [2.27]), we impose symmetry constraints and require that certain atoms 

have the same values for the parameters, and we rely strictly on ab initio calculations to 

define these quantities.     

In the absence of an external field, the electrostatic energy of a single N-atom 

molecule is: 

∑∑∑∑
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N
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el QQrJQEU
ij
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intra )(

2
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where the superscript “0” has been added to the charges to indicate that they correspond 

to zero-field gas phase values. Recall that the Coulomb overlap and 0
iiJ  are functions of 

iζ , the exponent in the Slater orbital (Eq. [2.28]). The electrostatic energy for the 

molecule, confined to its zero-field equilibrium geometry, in the presence of an external 

field is: 
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where iΦ  is the external electrostatic potential at atom i, iQ is the atomic charge in the 

presence of the field, )( 0
ijij rJ is the Coulomb interaction between atoms i and j at the zero-

field equilibrium interatomic separation 0
ijr .   

At equilibrium, with or without a field, the electrostatic energy should be a 

minimum with respect to all the atomic charges.  Following Patel and Brooks[53], 

derivatives of [A2] yield 

)~()( 0
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0
ii

N

j
jijij QrJ Φ+−=∑
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χ  ( i=1, N)     [A3] 

and  

0

1

00 ~)( i
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j
jij QrJ

ij
χ−=∑

=
        ( i=1, N)     [A4] 

is obtained from derivatives of [A1].  Taking the difference of these equations, we obtain 

an expression for the response due to the external field 

i

N

j
jij QrJ

ij
Φ−=Δ∑

=1

0 )(         ( i=1, N)       [A5] 

where 0
jjj QQQ −=Δ  is the change in the partial charge on atom j due to the field.  Note 

that Eq. [A5] no longer includes electronegativities, 0~
iχ .   The parameters iζ  , which are 

directly related to )( 0
ijij rJ , are obtained by solving Eq. [A5].  With the iζ  in hand, Eq. 

[A4] can be solved for the 0~
iχ .  The parameters are listed in Table 3.2.  
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Consider the extraction of the iζ  from Eq. [A5].  The solution of Eq. [A5] requires 

subjecting individual molecules to a range of fields.  The number of fields must equal or 

exceed the number of atoms in the molecule.  In this chapter, the molecular response is 

extracted from ab initio calculations as follows:  First, the molecule is fixed at its 

equilibrium zero-field geometry.  Second, 30 perturbing fields are generated by placing a 

dipolar probe at random locations around the molecule (greater than a distance of 2.0 Å 

from any atom and less than 4.5 Å from all atoms) and the atomic charges are collected 

from ab initio calculations.  The CHELPG algorithm[110], where the atomic charges are 

varied to best reproduce the molecular electrostatic potential at grid points around the 

molecule, is used for the charges.   In principle, the magnitude and direction of the fields 

can be chosen arbitrarily but, in practice, they should be reflective of typical fields 

experienced by the molecule.   If  the number of fields is equal to the number of 

parameters, then Eq. [A5] is solved directly.  However, one usually assesses the response 

for a larger number of fields, as we do in this case, and a least-squares procedure is 

required to solve for the parameters.    

Parameter determination based directly on Eq. [A5] proceeds by varying the iζ , 

which determine the )( 0
ij

rJij , to minimize the difference between the approximate atomic 

fields predicted from Eq. [A5] and the actual fields used in the ab initio calculations.  

This approach is straightforward but suffers from an important drawback:   It selects the 

iζ  based on predicted fields, rather than predicted atomic charges.  However, Eq. [A5] 

can be inverted to give, in matrix form, Φ−=Δ −1JQ , which provides a relationship 

between the ( ) 10 )( −

ij
rJ ij   and the charge response due to the external field. Then, following 
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Patel and Brooks[53], we search for the optimal iζ  parameters by minimizing the 

residual21 

∑∑ ∑
= = =

− Δ+Φ
M

k

N

i

N

j
ikjkijij QrJ

1 1

2

1

10 ))((      [A6] 

where M is the number of perturbations (which is 30 in this case), N is the number of 

atoms in the molecule, ikQΔ  is the change in the partial charge on atom k due to field i, as 

predicted from the ab initio calculations, and jkΦ is the k-th field on atom j.   

In minimizing Eq. [A6] the Coulomb integrals, )( 0
ij

rJij , are evaluated numerically 

as discussed in Section 3.2.3.  However, since new Coulomb integrals are required at 

each iteration, we use a coarser grid of (51)3 points for the Simpson’s rule integration.  

The latter was tested and found to yield )( 0
ij

rJij  accurate to two decimal places: a 

sufficient level of accuracy for the minimization of Eq. [A6].   Once the final set of 

parameters is chosen, Eq. [2.27] is recalculated using a much finer grid as discussed in 

Section 3.2.3.   

Patel et al.[53] do not assume a functional form for the )( 0
ij

rJij  prior to the 

minimization.  Rather they obtain these elements directly from the minimization of Eq. 

[A6] and then apply a functional form to reproduce their numerical values.  Certainly, our 

process will be more time consuming since, for each trial  iζ  a number of multiple 

integrals are required, followed by matrix inversion.  However, these calculations are 

fairly rapid.  Banks et al.[131] discuss, at length, difficulties in the minimization process.  

We have not encountered any problems and minimize Eq. [A6] directly.  This is partly 
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due to the small size of the molecule, but we believe that the use of a well-defined 

Coulomb element from the outset also improves numerical stability.   

The optimized zero-field structure has a plane of symmetry defined by C(3), O(2), 

and H(1).  Because of this symmetry plane, the response parameters for H(8) and H(9) 

should be equal.  Likewise, H(5)-H(7) should share the same parameters since, during a 

simulation, interconversion will occur.  We impose this symmetry on the iζ , which 

leaves six independent Slater exponents to vary in turn.   The best set of exponents is 

given in Table 3.2 and the corresponding residual is 4.34 x 10-3.   

In principle, the electronegativities are obtained by directly solving Eq. [A4].  

However, even with symmetry imposed on the hydrogen iζ , Eq. [A4] will not lead to 

equal 0~
iχ since the ab initio charges are not equal.  As a result, we minimize  
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+
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2

1

000 ))((χ     [A7] 

subject to the constraint of a common electronegativity for H(5), H(6), and H(7) and for 

H(8) and H(9).  The final residual in Eq. [A7] is 7.8 x 10-5.   

 The final parameters listed in Table 3.2 can be assessed by evaluating the 

molecular polarizability.  Following others[53], the polarizability is calculated from 
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where Δxi is the atomic coordinate of atom i relative to the center of geometry.  The 

calculated value is 5.264Å3, in good agreement with the experimental value[159] of 

5.1Å3. 



205 
 

APPENDIX B 
Evaluation of forces 
 

The introduction of a field dependence into the intramolecular potential results in 

additional force contributions.  In this Appendix, we provide the modified equations of 

motion and the required derivatives of the potential.   

The equations of motion for the position of atom α are 
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where mα is the mass of the atom and the contribution from the extended Lagrangian is 

included.  The second-to-last and last terms on the right capture the explicit and the 

implicit dependence of the intramolecular potential on the positions.   Following Rick et 

al.[46], the equations of motion for the charges are 
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where mQ is the fictitious mass of the charge and the last term derives from the implicit 

dependence, via the fields, of the intramolecular potential on atomic charges.   
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 In the evaluation of the field derivatives of the intramolecular potential, we 

calculate 
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where x is one of the linear parameters from Eqs. [2.31]-[2.33],  the sum runs over all 

coefficients x, and xDamp is the damped value for x (see Eqs. [3.5]-[3.8]).  The derivative 

of the intramolecular potential with respect to the damped coefficients, Dampx
U

∂
∂ intra , is 

obtained directly from Eqs. [2.31]-[2.33].  Consider the derivative of the damped 

coefficient, xDamp, with respect to x.  Beyond the range [xmin, xmax], the derivative is zero. 

Within this interval, the derivative of Eqs. [3.6] or [3.7] is taken.  Recall that the 

expressions are equal, and have equal derivatives, when x=xmin, xmax, and (xmax+xmin)/2, so 

that Eqs. [3.5]-[3.8] transition smoothly.  The last derivative of Eq. [B3] derives directly 

from the field-dependence of the expansion coefficients.  In other words, this last term 

vanishes when the intramolecular potential does not depend on the field.   

When the expansion coefficients include the multiplicative factor Sy the field-

dependence of the potential is obtained from 
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where we have defined xSx y=' , as a torsion coefficient that enforces proper symmetry.  

The factor A converts Sy from body-fixed to space-fixed coordinates, and is 
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with our choice of coordinates.  Since the conversion factor is a function of atomic 

positions, 
αi

intra

r
r
∂

∂U in Eq. [B1] will also include a contribution from A.    

The terms in Eqs. [2.35]-[2.40] are independent of the coordinate system, but their 

derivatives with respect to the field are not.  In particular, the derivatives of the expansion 

terms required for the evaluation of Eqs. [B3] and [B4] are taken in space-fixed 

coordinates.  We provide only the x-component derivatives below since the y- and z-

components can be obtained directly from the expressions provided.  For Eq. [2.35], the 

derivative is  
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where 1
xHE  is the x-component of the field on the atom in question (hydrogen in this 

case).  For Eqs. [2.36] and [2.37], where fields on pairs of atoms are involved, the 

derivatives are 
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respectively. For the three-field terms, we have 
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and 
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The derivatives of the four-field term are 
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The derivatives in Eqs. [B6]-[B11], along with the coefficients in Tables 3.3-3.5, are 

sufficient to calculate Ex
r

∂∂  in Eqs. [B3] and [B4].   

The evaluation of the position and charge derivatives of the electrostatic field are 

the most time-consuming aspects of the simulation.  These derivatives are obtained from 

the Ewald sums, but since a derivative is required for each atom, the derivatives are O(N) 

more time consuming than the Ewald sums.  The field on atom i of molecule α is 

∑∑∑
= =

•−=
M N

j k
ji

j
i rkkk

k
q

V
E

1 1

2

2 )sin()
4

exp(2
β

βα
β

α

β

α
π vvvv

 



209 
 

∑∑ ∑
= =

−+
−+

M N

j k
ji

ji

ji
ji

ji

jij r
r

r
r

rerfc
q

1 1
3

22 )exp(
2

)(
)1(

β
βα

βα

βα
βα

βα

βαβ

β
α

π
α

α
δδ v

    

∑
=

−−
α

αα
αα

αδ
N

j
ji

ji

j
ij r

r
q

1
3)'1( v           [B12] 

where the last sum removes the contribution from atoms within the same molecule and 

separated by less than 4 bonds.  ij'δ  in the last term is zero for atoms that are separated 

by four or more bonds, and one otherwise.   The derivatives of the x-component of this 

field are  
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with the exception of the case where the derivative is with respect to xiα.  In that case,  
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The derivative with respect to the y-coordinate is  
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with the exception of the case where the derivative is with respect to yiα.  In that case, 
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Other derivatives of the field can be trivially obtained from the ones provided above.  

 Field derivatives with respect to charges appear in the equations of motion for the 

charges, Eq. [B2].  The derivatives are  
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when jβ≠iα.  The derivative vanishes when jβ=iα.  That is,   
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APPENDIX C 
Details of the potentials for 2-
propanol 

Semi-flexible models for 2-propanol developed in this work are described herein. 

Models for other solvents and the selectors can be found elsewhere[112, 161, 181].  

          The intramolecular potential, which dictates the energetic costs for changes in 

molecular conformations, consists of four parts: bond stretching, angle bending, dihedral 

torsion, and improper torsion. These potentials are listed in Eqs. [2.7]-[2.10]. In this work, 

all bonds of 2-propanol are kept fixed using the Rattle algorithm[83] during the 

simulations, and 19 bends and 3 torsions are employed to represent the molecular 

flexibility. The equilibrium bond angles are obtained from the global energy minimum 

and bending potentials are obtained by least squares fits of Eq. [2.8] to nine energy 

calculations, where the angle is varied within sixteen degrees of the equilibrium value. As 

shown in Eq. [2.9], the torsions are represented by modified Ryckaert-Bellemans[189] 

potentials. Each torsional potential is extracted from 36 B3LYP/aug-cc-pVDZ 

calculations as the angle is varied from zero to 360 degrees, in steps of 10 degrees.   

          Initial atomic positions and CHELPG charges[110] are extracted from B3LYP/aug-

cc-pVDZ global energy minimum. For the nonbonding potential parameters, the 

CHARMM parameters for Lennard-Jones (LJ) potential and CHELPG charges from the 

ab initio global minimum are applied.   
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 The parameterization of the fluctuating charge model has been discussed in detail 

in Chapter 3.  Briefly, the molecule was placed in 30 diverse fields and atomic charges 

were evaluated by the CHELPG algorithm applied to B3LYP/aug-cc-pVDZ calculations. 

Based on the fitting of the molecular response, the 0~
iχ  and 0

iiJ  parameters were extracted.  

Similar to the findings for ethanol in Chapter 3, the atomic electronegativities derived 

specifically for 2-propanol were larger than the transferrable CHARMM-FC values[53] 

for most atoms.  All electronic structure calculations are performed using the Gaussian 03 

program[135]. 

 

LJ and FC parameters 

Atom 

No. 
Atom σ(Å) 

ε 

(kJ/mol) 

CHARMM 
0
iiJ  

(kcal/mol.|e|2) 

0
iiJ (this 

work) 

(kcal/mol.|e|2) 

CHARMM 
o
iχ~  

(kcal/mol.|e|) 

Shifted o
iχ~  

(kcal/mol.|e|) 

o
iχ~ (this 

work) 

(kcal/mol.|e|) 

0
iQ

(|e|) 

1 O 0.312 0.7113 307.20 317.07 364.85 101.66 107.41 -0.685 

2 H 0.05 0.1000 517.26 544.06 263.19 0.00 0.00 0.369 

3 C 0.35 0.2761 196.88 212.95 306.79 43.60 71.68 0.591 

4 H 0.25 0.1255 501.42 470.07 319.83 56.64 66.18 -0.084 

5 C 0.35 0.2761 240.34 283.89 319.65 56.46 66.16 -0.298 

6 C 0.35 0.2761 240.34 283.89 319.65 56.46 66.16 -0.298 

7 H 0.25 0.1255 501.42 576.59 315.56 52.37 50.94 0.067 

8 H 0.25 0.1255 501.42 576.59 315.56 52.37 50.94 0.067 

9 H 0.25 0.1255 501.42 576.59 315.56 52.37 50.94 0.067 

10 H 0.25 0.1255 501.42 576.59 315.56 52.37 50.94 0.067 

11 H 0.25 0.1255 501.42 576.59 315.56 52.37 50.94 0.067 

12 H 0.25 0.1255 501.42 576.59 315.56 52.37 50.94 0.067 
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Angle bending 

Angle θ(deg) kθ(kJ. mol-1 . deg-2) 

3,1,2 108.81 0.065813 

4,3,1 108.80 0.090213 

5,3,1 108.72 0.121507 

6,3,1 108.72 0.121507 

5,3,4 108.81 0.077831 

6,3,4 108.81 0.077831 

6,3,5 112.87 0.107790 

7,5,3 110.56 0.066107 

8,5,3 110.56 0.066107 

9,5,3 110.56 0.066107 

8,5,7 108.36 0.060220 

9,5,7 108.36 0.060220 

9,5,8 108.36 0.060220 

10,6,3 110.56 0.066107 

11,6,3 110.56 0.066107 

12,6,3 110.56 0.066107 

11,6,10 108.36 0.060220 

12,6,10 108.36 0.060220 

12,6,11 108.36 0.060220 

 

Torsions 

Torsion c0, c1, c2, c3, c4, c5, c6 (kJ/mol) 

2,1,3,4 7.76,1.89,6.06,10.76,-4.56,-0.94,2.44 

1,3,5,7 6.66,-20.53,2.04,28.26,-7.61,-0.96,5.68 

1,3,6,10 6.66,-20.53,2.04,28.26,-7.61,-0.96,5.68 
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