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The starvation resistance is an important trait for insect survival. The studies 

presented in this dissertation investigated starvation resistance using Drosophila 

melanogaster in terms of genetic correlations, physiological mechanisms and 

evolutionary trajectory.  

The increase of starvation can also extend lifespan is a controversial issue in D. 

melanogaster. Quantitative trait locus (QTL) mapping can provide a good evidence of 

this controversial problem. A QTL analysis was conducted to test the correlation between 

starvation resistance and longevity using a set of recombination inbred lines (RILs) from 

a natural population of D. melanogaster. We found the QTL effects were consistent for 

sexes and environments. Importantly, one QTL region was associated with increased 

starvation resistance and increased longevity. This QTL region provides support for the 

hypothesis that starvation resistance and longevity may have a common genetic basis as a 

result of coupled evolution of the two traits.  

 The same RILs derived from a natural population were used to investigate natural 



genetic variation for lipid abundance and starvation resistance. QTLs for lipid proportion 

(lipid abundance normalized by weight or protein abundance) were present on all 

chromosomes; a lipid proportion QTL on the third chromosome correlated with a QTL 

for starvation resistance observed in a previous study using the same set of RILs 

suggesting it might underlie both traits  

The laboratory selection lines are usually beneficial for us to compare the 

physiological changes under starvation. We have been doing laboratory selection on 

starvation resistance for over 20 generations. Selected flies in our laboratory had similar 

traits that other papers had: lower early fecundity, higher lipid contents and heavier, 

comparing to control populations. Besides, we found our starvation selected lines had 

longer lifespan which not all laboratory starvation selection discovered. The idea of if 

starvation resistant flies can use energy efficiently under stressful situation was also 

tested. The results showed that starvation resistant flies can maintain stable energy under 

stressful situation through physiological adjustment.  

Differential lipid (triglycerides and phospholipids) abundances were measured in 

starvation selected lines and control lines to examine the Y model which indicating 

differential allocation of limited internal resources. We identified the physiological and 

genetically causes of life-history variation and trade-off in starvation resistance and cost 

of reproduction in D. melanogaster by differential lipid allocation.  
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A. Starvation resistance and Longevity 

 

The definition of stress is exposure to any environmental factor that acts to reduce 

the fitness of an organism (Koehn and Bayne, 1989). Environmental stress might be one 

of the most important sources of natural selection, as indicated by many specific 

adaptations that have evolved to resist stress (Hoffman & Parsons, 1991; Randall et al., 

1997). One important cause of stress is shortage of nutrition and certainly most species 

experience periodical starvation. Since most animals face periods of food shortage they 

are thus expected to have evolved adaptations resulting in starvation resistance.  

The evolutionary relationship between starvation and longevity has been confirmed 

in some selection experiments. In flies, there is evidence for a relationship between 

starvation resistance and longevity. The relevant Drosophila data are based almost 

exclusively on studies using D. melanogaster. Laboratory lines selected for enhanced 

longevity are also relatively more resistant to starvation stress (Rose & Archer, 1996), 

moreover selection for stress resistance can increase longevity (Rose et al., 1992; 

Hoffmann & Parsons, 1993). In addition, long- lived D. melanogaster mutants are usually 

stress resistant (Lin & Benzer, 1998). The chico gene in D. melanogaster encodes an 

insulin receptor substrate that functions in an insulin/insulin-like growth factor (IGF) 

signaling pathway. Mutation of chico extends life-span by up to 48% and also increases 

starvation resistance in females (Clancy et al., 2001). However, these results are not 

always consistent since there are exceptions.  

Hoffman and Harshman (1999) summarized the relationship between starvation 

resistance and longevity. In one experiment, populations selected for starvation resistance 

showed no correlated change in longevity (Harshman et al., 1999). Moreover, in another 

study, lines selected for greater longevity did not exhibit starvation resistance as a 

correlated response to selection (Force et al., 1995). In another study, selection for 

starvation resistance was initially accompanied by an increase in longevity, but in 

subsequent generations, as starvation increased, a decline in longevity was observed 

(Archer et al., 2003). Also, in another set of lines there was a genetically correlated 

change in increased stress resistance under selection for reduced longevity (Zwaan et al., 

1995) and the other lines where increased virgin lifespan was selected for showed that 



 3

there was a genetic correlation for reduced starvation resistance (Vermeulen et al., 2006).  

There is also evidence of processes which affecting starvation resistance and 

longevity independently. For example, the Target of Rapamycin (TOR) signaling pathway 

is thought to regulate lifespan (Tatar et al., 2003). Several genes involved in this pathway 

can be manipulated to increase life span with no associated change in starvation 

resistance (Kapahi et al., 2004). On the other hand, Adipokinetic hormones (AKHs, 

metabolic neuropeptides) which mediate mobilization of energy substrates can also 

regulate feeding behavior under starvation. Flies devoid of AKH neurons lacked 

hyperactivity under starvation and also display strong resistance to starvation compared 

to starved wild-type flies, but they didn’t show longer life span (Lee & Park, 2004).  

There is a genetic basis for increased lipid abundance which is associated with 

starvation resistance and longevity in D. melanogaster. These starvation resistant flies 

have greater lipid reserves that are genetically determined (Chippindale et al., 1996). 

Quantitative trait loci (QTL) mapping points to several genes that might influence 

starvation resistance by being involved in lipid accumulation (Harbison et al., 2004). 

QTL studies of starvation resistance and longevity are important because the literature 

suggests that the traits are genetically associated. Moreover, physiological studies of 

mutants indicate that increased starvation resistance can be associated with metabolic 

changes leading to the accumulation of lipids (Hader et al., 2003).  

The generally positive correlation between life span and stress resistance is a 

controversial issue in D. melanogaster. There are also complex mechanisms underlying 

starvation resistance responses and longevity and it appears that alterations in lipid 

metabolism may be important.  

 

B. Quantitative trait loci (QTL) studies in starvation resistance 

 

Drosophila has been used to identify many quantitative trait loci (QTLs) that 

account for correlations observed in complex traits. Some of those QTLs are pleiotropic 

and interact epistatically. The list of quantitative trait phenotypes that can be investigated 

using Drosophila include sensory bristles number, a broad range of behaviors, stress 

resistance, drug tolerance, enzymatic activity, metabolic traits, fertility and longevity 



 4

(Mackay, 2004). Mapping of QTLs responsible for natural variation is facilitated by 

rearing large numbers of flies, and constructing recombinant (near-isoallelic) inbred lines. 

Mackay (2004) reviewed recent progress that had recently been made towards elucidating 

the complex genetic architecture of quantitative traits in Drosophila. Techniques allowing 

this progress include complementation of deficiency stocks enabling rapid high resolution 

QTL mapping, as well as complementation of mutations allowing the identification of 

positional candidate QTLs. Linkage disequilibrium decays rapidly in Drosophila regions 

of normal recombination (Long et al., 1998), enabling identification of specific molecular 

polymorphisms that correspond to QTLs. Finally, the genome sequence (Adams et al., 

2000) and multiple platforms for whole genome transcriptional profiling facilitate 

genomic approaches for identifying genes affecting quantitative traits, and variation in 

quantitative traits.  

Starvation resistance is a typical quantitative trait that displays considerable genetic 

variation in Drosophila (Service and Rose 1985; Da Lage et al. 1990; Hutchinson and 

Rose 1991; Hutchinson et al. 1991; Toda and Kimura 1997; van Herrewege and David 

1997; Karan and Parkash 1998; Karan et al. 1998; Hoffmann and Harshman, 1999; 

Harbison et al. 2004) and in response to artificial selection (Harshman and Schmid 1998; 

Harshman et al. 1999). The form of stress resistance that indirectly responds to selection 

for longevity is inconsistent (Tower, 1996; Harshman & Hoffmann, 2000) because 

selection experiments are notorious for heterogeneous outcomes, which could be due to a 

range of factors including the intensity of selection (Harshman & Hoffmann, 2000). 

Consequently, a better test of the genetic relationship between these traits is whether or 

not they colocalize in QTLs that have a positive effect on starvation survival and 

longevity. 

Recombinant inbred lines (RILs) can be used to identify QTLs as regions of the 

genome that account for a significant component of the segregating genetic variation and 

also to characterize genetic correlations in starvation resistance. Harbison et al. (2004) 

identified 383 P-element insertions affecting starvation resistance and found 13 loci (of 

those six with sex-specific effects) contributing to a difference in starvation resistance 

between two inbred laboratory strains. The sex-specific QTL effect implies that genes 

affecting development in both sexes may also exhibit sex-specific pleiotropy for adult 
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traits. 

The characterization of natural genetic variation for the control of obesity in humans 

is an important goal in human health research. However, it is difficult to acquire this 

information because there are limited methods available for the study of the genetic 

architecture of complex traits in humans. Conversely, quantitative trait loci studies of 

lipid abundance in model organisms such as Drosophila are especially suited for this 

purpose. Because of its short life span, well-characterized biology, low cost, and excellent 

genetic and genomic resources, this organism has been useful in the genetic studies of 

several biological aspects of obesity and lipid biochemistry. The study of obesity in 

Drosophila is relevant to humans because pathways of lipid metabolism are generally 

conserved between vertebrates and invertebrates (Canavoso et al., 2001). Insights derived 

from the Drosophila model may help to elucidate the genetic architecture of obesity 

variation in humans.  

Wang et al. (2005) found that a lipid proportion QTL on the third chromosome 

correlated with a QTL for starvation resistance. As lipid content is associated with 

starvation resistance, it is tempting to compare mapping results with whole genome 

microarray data on gene expression during starvation and sugar feeding (Zinke et al., 

2002). In particular, the overlap of QTL and microarray data sets has been used to 

produce a list of candidate genes (Wayne and McIntyre, 2002). For example, the Lsd2 

gene (at cytological position 13A) belongs to the PAT family of proteins. Lsd2 mutants 

have reduced levels of lipid indicating that the gene is involved in lipid storage (Teixeira 

et al., 2003). Another example is the pumpless gene located at 78C (Zinke et al., 1999) 

that is involved in amino acid-dependent signaling arising from fat bodies that induce 

cessation of feeding in larvae. The most interesting gene that has been found is a 

microRNA, miR14, located at 45F (Xu et al., 2003). miR14 suppresses cell death and is 

required for normal fat metabolism. miR14 appears to synchronize multiple physiological 

responses related to stress, as supported by the fact that miR14 loss-of-function flies 

display increased sensitivity to a variety of stress conditions. 

Among the molecular family of lipids, triglycerides are the most abundant in insects. 

Triglyceride storage is a quantitative trait, and segregating variation has been shown to 

exist in natural populations of D. melanogaster (Clark and Keith, 1988; Clark, 1989). De 
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Luca et al., (2005) identified QTLs that contribute to variation in triacylglycerol (TAG) 

storage in D. melanogaster. QTLs have been found that contain the natural and variable 

genetic information that directly accounts for variation in TAG storage, and fine-scale 

mapping of these QTLs can identify candidate genes. The female-specific QTL for TAG 

storage includes acyl-coenzyme A oxidase (CoA) at 57D proximal (Acox57D-p) and 

acyl-CoA oxidase at 57D distal (Acox57D-d) that both encode a product with palmitoyl- 

CoA oxidase activity putatively involved in fatty acid-oxidation in peroxisomes. Genes 

encoding transforming growth factor β (TGF-β) receptor signaling pathway members 

have also been found to affect TAG storage in D. melanogaster. Increased TGF-β1 

expression has been associated with Body Mass Index (BMI) and increase in abdominal 

adipose tissue in human morbid obesity (Petruschke et al., 1994), and variation in 

TGF-β1 has been associated with obesity phenotypes. 

 

 

C. Physiological studies of starvation resistance with respect to lipid metabolism 

 

Drosophila experiences periods of food shortage in nature, yet the suite of 

mechanisms or genes affecting their physiological and behavioral responses to starvation 

remain unclear. Physiological studies of starvation resistance are used to determine the 

specific physiological mechanisms used by organisms to resist famine since these can 

have substantial adaptive significance. For starvation, there is good evidence that an 

increase in the lipid content of adults underlies increased resistance to starvation 

(Chippindale et al., 1996; Harshman & Schmid, 1998; Harshman et al., 1999; Hoffmann 

et al., 2005). D. melanogaster demonstrates a strong response to selection for starvation 

resistance through a genetically determined increase in lipids but not carbohydrates or 

glycogen (Djawdan et al., 1998). Carbohydrate and glycogen reserve increases are 

significantly correlated with desiccation resistance (Djawdan et al., 1998; Graves et al., 

1992). This suggests that different forms of stress are tolerated by distinct physiological 

mechanisms and that the evolutionary responses of flies to stress selection are specific to 

the stress imposed.  

Some data suggest that lipid abundance accounts for much of all the variation in 
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starvation resistance. For instance, Chippindale et al. (1996) scored lipid and starvation 

levels in different sets of lines selected for starvation or changes in life history traits. It 

was found that there was a close correlation between starvation and lipid levels when all 

lines were considered. The association between lipid level and starvation resistance has 

also been documented from a set of starvation-selection lines derived from a different 

base population (Harshman et al., 1999), in comparisons of allozyme genotypes (Oudman 

et al., 1994), and the way in which lipid levels and starvation change with age (Service, 

1987). Similar experiments have not been conducted in other species of Drosophila, 

although at the species level there is a correlation between starvation resistance and lipid 

level, as already noted (Van Herrewege & David, 1997). 

The enzymes indirectly associated with lipid biogenesis also increased in starvation 

selected populations (Harshman et al., 1999). Important for lipid biogenesis, 

glucose-6-phosphate dehydrogenase (G6PD, a pentose shunt regulatory enzyme) 

exhibited higher activity in starvation selected lines but 6-phosphogluconate 

dehydrogenase (PGD, another pentose shunt regulatory enzyme) and glycogen 

phosphorylase (GP, relative to glycogen use) activities decreased in selected lines in 

response to starvation (Harshman et al., 1999).  

Triglycerides are preferentially allocated to somatic tissue and phospholipids are 

important in egg development (Zhao and Zera, 2002). Flight-capable Morph Crickets 

contain a substantially greater amount of total lipid and triglyceride, the main flight fuel 

of this species (Zera et al, 1999), than the flightless morph, whereas the reproductive 

morph contains a greater amount of phospholipids (Grapes et al, 1989; Zhao and Zera, 

2002). In D. melanogaster, higher starvation resistance is correlated to early fecundity in 

that female flies that are able to tolerate starvation well usually have lower early 

fecundity. If there is existing trade-off between starvation resistance and early fecundity, 

it is possible to detect the trade-off between triglycerides and phospholipids in starvation 

resistant and non-starvation resistant flies. 

 

D. Significant Studies Included 

 

In this dissertation, I used quantitative genetic and physiological methods to 
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investigate starvation resistance and lipid abundance. The overall goal of these present 

studies is to demonstrate viable mechanisms which explain starvation resistance in fruit 

flies. The following questions and topics were addressed:  

 

1. Are there any significant QTLs for life span survival when food is present and 

starvation survival when food is absent? Do longevity and starvation survival coincide 

in one or more QTLs? The method used in this section is QTL mapping. We found that 

one QTL region was associated with increased starvation resistance and increased 

longevity. This QTL region provides support for the hypothesis that starvation 

resistance and longevity may have a common genetic basis as a result of coupled 

evolution of the two traits. 

 

2. Lipid levels are found correlated to starvation survival. Is there any genetic correlation 

between lipid abundance and starvation resistance of D. melanogaster? The method 

used in this section is QTL mapping. QTLs for lipid proportion (lipid abundance 

normalized by weight or protein abundance) were present on all chromosomes; a lipid 

proportion QTL on the third chromosome correlated with a QTL for starvation 

resistance observed in a previous study using the same set of recombinant inbred lines 

suggesting it might underlie both traits.  

 

3. Here the life history traits of laboratory starvation selected lines and control lines are 

compared. In addition, lipid abundance at different starvation time points and the lipid 

level in eggs are measured to determine whether or not if starvation resistant flies have 

more lipid reserves. The results of this study show that starvation resistant flies have 

greater weight, longer life span, more lipids and lower fecundity. The starvation 

selected females also maintain stable triglycerides after 36 hours of starvation. 

Starvation resistant females have more lipids in their stage-14 oocytes but lose some 

proportion of their lipid reserves after 36 hours of starvation stress.   

  

4. Is there any trade-off between starvation resistance and fecundity? At the base of the 

‘Y’ model, energy resources are allocated to reproduction versus the functions of the 
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somatic tissues. The method used in this study was to measure the differential lipid 

(triglycerides and phospholipids) distribution. In soma, higher triglycerides are found 

in starvation resistant females and more phospholipids are found in control females. 

After 36 hours of starvation, resistant flies still have similar amount of triglycerides 

and greater enzyme activity.  
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Chapter II 

Environment-dependent survival of Drosophila melanogaster: a quantitative genetic 

analysis 

 

[Published by Mei-Hui Wang, Oleg Lazebny, Lawrence G. Harshman and Sergey V. 

Nuzhdin (2004) In Aging Cell 3: 133-140] 
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Abstract 

Survival under starvation conditions was investigated in relationship to survival 

when food was present because these traits could be linked by evolutionary history. 

Recombinant inbred lines derived from natural populations of Drosophila melanogaster 

were used to test genetic correlations and architecture of these survival traits. Sexes were 

genetically correlated within traits and there was significant correlation between survival 

traits. A number of quantitative trait loci (QTLs) were present for starvation survival 

and/or survival on food. In general, the QTL effects were consistent for sexes and 

environments. QTL effects were found on each major chromosome, but the major effects 

were largely localized on the second chromosome. Importantly, the ‘four-allele’ 

progenitor of the recombinant inbred lines used in the present study allowed the sign and 

magnitude of effects to be assigned to linkage groups. One such linkage group on the 

second chromosome conferred starvation resistance and longevity, supporting the 

hypothesis of an association between starvation resistance and lifespan.  
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Introduction 

 

Survival under starvation conditions might be a driving factor in the evolution of 

longevity. Omnipresent environmental variation could produce a universal adaptation that 

promotes survival during times of insufficient food and allows for subsequent 

reproduction when resources are more plentiful. A gene with pleiotropic effects on both 

starvation survival and survival when food is present, or closely linked genes affecting 

both traits, could evolve when starvation is the agent of selection. Therefore, we expected 

to find colocalization of genetic variation for starvation resistance and longevity in the 

genome of Drosophila melanogaster. Of the model species used for genetic studies of 

longevity, D. melanogaster is particularly useful for ecologically relevant research. 

Importantly, genetic methods and other technologies have been developed for D. 

melanogaster that are potentially useful for genetic identification of complex trait 

candidates, including genome-wide deletion mapping and microarrays. 

 

Quantitative trait loci (QTL) studies of longevity and stress resistance are important 

because the literature suggests that the traits are genetically associated. Artificial 

laboratory selection experiments on longevity in D. melanogaster have documented 

genetic correlations between longevity and stress resistance (Luckinbill et al., 1984; Rose, 

1984; Service et al., 1985; Service, 1987; Dudas & Arking, 1995; Force et al., 1995; 

Arking et al., 2000a,b). However, the form of stress resistance that indirectly responds to 

selection for longevity is inconsistent (Tower, 1996; Harshman & Hoffmann, 2000). For 

example, one set of lines responded to longevity selection by evolving resistance to 

starvation and desiccation (Rose, 1984; Service et al., 1985; Service, 1987), but another 

set of longevity-selected lines evolved resistance to oxidative stress and not to starvation 

or desiccation (Luckinbill et al., 1984; Dudas & Arking, 1995; Force et al., 1995; Arking 

et al., 2000a,b). Similarly, artificial selection for starvation resistance increased lifespan 

in one set of selected lines (Rose et al., 1992), but not in another set of lines (Harshman et 

al., 1999). Selection experiments are notorious for heterogeneous outcomes, which could 

be due to a range of factors including the intensity of selection (Harshman & Hoffmann, 

2000). Consequently, a better test of the genetic relationship between these traits is 
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whether or not they colocalize in QTLs that have a positive effect on starvation survival 

and longevity. 

 

Recombinant inbred lines (RILs) can be used to identify QTLs as regions of the 

genome that account for a significant component of the segregating genetic variation and 

characterize genetic correlations between traits. One set of RILs derived from laboratory 

stocks has been used to map quantitative trait loci for longevity and stress-related traits in 

female and male D. melanogaster (Nuzhdin et al., 1997). Using a dense molecular map, a 

genome-wide screen was conducted for QTLs that affect the lifespan of individually held 

virgin males and females. Five QTLs were identified that had a significant effect on 

longevity, but they affected lifespan in only one sex or the other. Vieira et al. (2000) 

extended this study by measuring the lifespan of virgin females or males under high and 

low temperature conditions and after heat shock. In addition, survival was determined 

under starvation conditions. Seventeen QTLs were identified that affected lifespan under 

different conditions as well as starvation survival. The QTLs typically were sex- and 

condition-dependent and there was no statistically significant positive covariation 

between starvation survival and longevity QTLs. Longevity QTL studies based on mixed 

sex cohorts have produced different results in that no sex-specific QTLs were observed in 

the same panel of RILs (Reiwitch & Nuzhdin, 2002) or in a different set of RILs 

(Curtsinger & Khazaeli, 2002). Only in one study has positive QTL covariation between 

longevity and stress resistance (oxidative stress resistance) been reported (Curtsinger & 

Khazaeli, 2002). In this case, the RILs were derived from a laboratory selection 

experiment for extended longevity. Given that the lines had been maintained for many 

generations in the laboratory before inbreeding to generate the RILs, it was not clear that 

the QTL represented naturally occurring positive genetic covariation between longevity 

and stress resistance. 

 

The purpose of the present study was to investigate the genetic relationship between 

longevity and starvation resistance in D. melanogaster using recombinant inbred lines 

that were recently derived from the field. The RILs employed were derived from 

heterozygous individuals taken from a natural population (Kopp et al., 2003). The 
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following questions were of particular interest given that our RIL lines are relatively 

representative of natural genetic variation: 

 

1. Is survival with food present genetically correlated with survival under starvation 

conditions? 

2 . Are there significant QTLs for survival when food is present and when it is absent? 

3 . Do longevity and starvation resistance coincide in one or more QTL? 

 

Of particular note, a major QTL for extended longevity and starvation resistance was 

identified. 
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Materials and Methods 

 

Recombinant inbred lines (RILs) and genotypes 

A panel of 144 RILs was generated by crossing a single virgin female from the F1 

progeny of a fertilized female caught in the wild (Winters, CA, USA) to a single male 

from the F1 progeny of a different fertilized female caught at the same location. 

Chromosomes of the parental flies were allowed to recombine for one generation, and 

recombinant F2 genomes were isogenized by 25 generations of full-sib inbreeding. 

Because the parental individuals were heterozygous, up to four different alleles may be 

segregating at each locus. The genetic crosses employed, and genotyping of the 

derivative lines, is described elsewhere in more detail (Kopp et al., 2003). 

As markers, we have used positions of transposable elements that are highly 

heterogeneous in natural populations (see Charlesworth & Langley, 1989, for a review). 

Positions of the roo elements were determined by in situ hybridization to polytene 

salivary gland chromosomes, using a biotinylated DNA probe (Shrimpton et al., 1986). 

For use as probe, a plasmid carrying a full-length roo element was labelled with 

bio-7-dATP (BRL) by nick translation. Hybridization was detected using the Elite 

Vectastain ABC kit (Vector Laboratories) and visualized with diaminobenzidine. Element 

locations were determined from the images at the level of cytological bands on the 

standard Bridges’ map of D. melanogaster polytene chromosomes (Lefevre, 1976). We 

genotyped five individuals per line. The marker was recorded as present if detected in all 

larvae, as absent if not detected in any larva and as segregating otherwise. On the four 

homologous chromosomes per autosome, and similarly on the X chromosome, initial 

linkage of markers was inferred from residual linkage disequilibrium in the population of 

RILs (Proc CORR, SAS Institute, 1988). In some cases, roo elements either were 

uninformative (present in more than one complementation group) or gave a hybridization 

signal that was too weak to be scored reliably. Such elements were dropped from further 

analysis, leaving 152 markers that segregated between parental chromosomes (see figure 

2 in Kopp et al., 2003). Given that the genome size of D. melanogaster is approximately 

170 Mb, the average density of markers is approximately 0.9 per Mb, but as indicated in 

Kopp et al. (2003), the markers are not evenly distributed. All chromosomes were 
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homosequential, with the exception of an inversion on 3R that contains 7% of the 

physical genome (approximately 89EF−96A). This inversion was not associated with 

either starvation or lifespan in either males or females (P = 0.69, 0.30, 0.78, 0.70), and is 

not be discussed further. 

 

Phenotypic measurements 

Lifespan 

For each measurement of lifespan, all RILs were expanded for one generation at a 

density of ten pairs of flies per vial and six vials per line to obtain a sufficient number of 

individuals for testing. In the following generation, ten pairs of flies were placed in each 

of ten vials per line for 3 days. Virgin males and females were collected at 8-h intervals 

over a 24-h period, 9 days after the parents were discarded. The following day, 25 males 

and females per RIL were placed in population cages made from 500-mL plastic Dixie 

Cups with attached glass vials containing 8 mL of cornmeal–agar–molasses medium plus 

yeast. Dead flies were removed by aspiration and deaths recorded at 2-day intervals. The 

food was changed every fourth day. 

 

Starvation resistance 

For each measurement of survival under starvation conditions (no food present), all 

RILs were expanded in one generation using a low density of females and males in each 

vial. Adults emerging from these vials were used for egg production; approximately 75 

eggs were transferred to each of three vials per RIL. A vial contained 8–10 mL of 

cornmeal–agar–molasses medium plus yeast. For the starvation assay, males and females 

emerging in the egg transfer vials were collected within a 24-h period for most lines, but 

some lines required another day to accumulate the target number of flies. Fifteen males 

and females were held together in vials for 3 days and then transferred to fresh food and 

this procedure was repeated a total of three times. Thereafter, females and males were 

separated into single sex vials for 2 days based on the expectation that this was enough 

time for the flies to have completely recovered from the brief exposure to ether used to 

separate them. First, this pre-assay fly housing regime allowed us to emulate the 

conditions of the mixed sex cohort used to assess longevity. It also allowed us to record 
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the time interval of death of males and females in separate vials, which would have been 

difficult if the sexes had not been previously sorted into separate vials for starvation. Ten 

females or the same number of males were transferred to empty vials with a 

water-saturated fibre plug. Replicate vials were assayed for each sex for each line. Every 

8 h, mortality was recorded in each vial until all flies died. Recording mortality every 8 h 

has been shown to be sufficient to differentiate populations that exhibit relatively small 

differences in starvation survival time (Harshman & Schmid, 1998). Both experiments 

were fully replicated twice. 

 

Analysis of variance 

For each trait, we first log transformed the data to normalize them (tested with the 

UNIVARIATE procedure, SAS Institute, 1989; option normal). Two-way anovas were 

then performed with sex as the fixed effect, and line and line by sex as random effects. 

Significance of the component of variance was assayed with the GLM procedure. The 

genetic component of variance was estimated with the VARCOMP procedure. Genetic 

correlations between traits and sexes were estimated with the CORR procedure, after 

averaging measurements between replicates. 

 

Single marker analysis (SMA) 

For each of the marker loci, the significance of the difference in the mean trait 

values was tested between two groups of lines, one with the marker allele containing the 

roo insert and the other with the marker allele having no roo insert (GLM procedure). An 

empirical distribution of the test statistics under the null hypothesis of no association 

between any of the markers and trait values was obtained by randomly permuting the trait 

data 1000 times and calculating the most significant probability for marker–trait 

associations across all markers for each permutation. Statistics from the original data that 

were exceeded fewer than 50 times by those from the permutation are significant at P = 

0.05 (Doerge & Churchill, 1996). The contribution of the QTL in the overall genetic 

variance was estimated with the VARCOMP procedure with the marker effect as random. 

 

Composite interval mapping (CIM) 
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The standard QTL mapping software was not designed for the type of RILs used in 

the present study. These software packages fit a single difference in effects of alleles 

fixed between two isogenic parental stocks, which segregate among RILs. However, the 

standard mapping software has been adapted to the RILs used in the present study. For 

that, we test whether an allele from one homologous chromosome codes a trait value 

significantly different from the average trait due to combined effects of other alleles: two 

for the X or three for the second chromosomes. Except the chromosome tips, two of the 

parental third chromosomes appear identical (Kopp et al., 2003), and thus we modelled 

only three parental third chromosomes. For each of the parental chromosomes, we 

generate a separate likelihood profile: three for the X, four for the second and three for 

the third chromosome. Note that the number of different allelic effects we can 

independently estimate is equal to the number of segregating chromosomes minus 1. 

With the above logic, likelihood profiles were generated with the CIM procedure in QTL 

Cartographer (Basten et al., 1994, 1999). QTL effects (Table 3) were expressed as 

additive effect (a) on log transformed data, as estimated by QTL Cartographer software. 

Recombination distances between markers were reconstructed as described in detail 

elsewhere (Mezey, unpubl. data). Note that recombination distances reflect history of 

recombination events during derivation of RILs, and thus for some chromosomes they are 

contracted and for others expanded in comparison with the standard D. melanogaster 

recombination map (Fig. 1). The options were two (number of background markers), 30 

(window size in cM) and two (Kosambi mapping function). Every parental chromosome 

has its own set of positions of roo markers. Only those were followed in the CIM 

analyses for a given chromosome; the other markers were disregarded. The significance 

of a QTL was tested with 1000 permutations for each trait and chromosome. Significance 

thresholds – likelihood ratios corresponding to 5% of the highest values obtained on 

permuted data sets – substantially varied (from 6.49 to 27.23), perhaps due to uneven 

sample sizes for different marker alleles. For convenience of comprehension we scaled 

experimental likelihoods by permutation thresholds. These likelihood ratios show 

significant QTL when in excess of unity. Note that we performed ten tests for four traits, 

or 40 analyses in total. By chance alone, we expect to detect two QTLs, whereas in fact 

we detected 11 (Fig. 1). We might have further adjusted significance thresholds for 
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multiple tests to verify significance of every individual QTL. This, however, would 

substantially increase the type 2 error. As our composite interval mapping is exploratory, 

and intended to generate a list of candidate regions for the follow-up genetic analyses, we 

chose to make no such adjustment. 
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Results 

 

Analysis of variance 

The mean longevity (± standard deviation) for females was 39.03 (11.405) days and 

for males 44.25 (12.770) days. The mean survival under starvation conditions for females 

was 32.58 (9.070) h and males 33.47 (9.021) h. Using anova, there was a significant 

genetic component of variance for starvation and lifespan among RILs for both sexes (P 

< 0.0001). For starvation survival, anovas indicated a line by sex interaction (P < 0.0001). 

Starved females lay few eggs in the empty vials in comparison with egg laying in the 

presence of food. This makes it unlikely that the significant line by sex interaction is 

explained by variation in egg laying rate during starvation. There was a significant line 

effect (P < 0.0001) when tested over the line by sex term plus error. For survival on food, 

anovas indicated significant line and sex effects (P < 0.0001), but no line by sex 

interaction (P = 0.9581). There was a significant correlation between sexes for the same 

trait, and the lifespan and starvation survival traits were correlated. As indicated by the 

statistical analysis of genetic correlation, the correlation between male and female mean 

longevity was 0.83 (P < 0.0001) and between male and female starvation survival the 

correlation was 0.59 (P < 0.0001). The correlation between longevity and starvation 

survival was positive and significant within sexes, but only marginally significant across 

sexes (Table 1). 

 

QTL analyses 

Single marker analysis 

Table 2 presents probabilities and genetic variance components accounted for by the 

strongly supported markers that are bolded when they exceed the whole genome 

permutation threshold. Across the centromere of chromosome 2 (approximately 

corresponding to cytological positions 38A−41F as described, Kopp et al., 2003), there 

are markers that are associated with longevity and starvation survival (Table 2, 38A and 

41CE). A nearby region of the genome (Table 2, 42D), has a strongly supported QTL 

longevity as well as starvation survival. Other markers that exceed permutation threshold 

in relationship to male longevity and female survival under starvation conditions are 
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listed in Table 2. Other regions (48A and 48D) are associated with male and female 

longevity, but not starvation resistance of either sex. Importantly, alleles of the most 

significant QTLs account for approximately half genetic variation in both traits. 

 

Composite interval mapping 

Figure 1 represents the outcome of composite interval mapping (starvation 

resistance of males in cyan, females in pink, lifespan of males in blue, females in red), 

with the data for three X chromosomes in the panels A–C, four second chromosomes 

D–G, three third chromosomes H–J. Out of five significant QTLs identified by single 

marker analysis, three hold unchanged, and one is nearby a composite interval QTL (42D) 

illustrating the robustness of inferences. As expected from the higher power of composite 

interval analysis it identifies five additional QTLs listed in Table 3. The major QTL 

effects are associated with the second chromosome. On this chromosome, the QTL 

2-1/48D (see Figure 1 legend for explanations on designations) and the three third 

chromosome QTLs affect lifespan of males and females but not starvation survival. The 

second homolog of the second chromosome QTLs affects starvation survival but not 

survival in the presence of food (longevity). The rest of the QTLs have significant and 

largely concordant effects on both starvation survival and survival on food, accounting 

for much of genetic correlation between these traits. One of these QTLs is associated 

with longevity and starvation resistance, whereas the other QTL decreases survival when 

food is absent or present. 

 

Because we compare the effect of a QTL allele with the mean effect of many alleles, 

we can record whether this allele decreases lifespan and starvation survival (presumably 

deleterious mutations) or improves performance for these traits. Interestingly, one of the 

QTL alleles (41CE−42B, Table 3) appears to belong to the latter category. 
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Discussion 

 

The present study has identified QTLs that affect survival. QTLs were detected that 

affected survival only under starvation conditions or that affected survival only when 

food was present. However, there were QTLs that affected survival under both 

environmental conditions (food present or absent). Importantly, one QTL region was 

associated with increased starvation resistance and increased longevity. This QTL region 

provides support for the hypothesis that starvation resistance and longevity may have a 

common genetic basis as a result of coupled evolution of the two traits. 

Natural selection for the almost invariable association of the two traits might be 

expected in variable food resource environments (potentially most environments), where 

individuals must survive starvation in a sufficiently youthful condition to be able to 

reproduce. If this prediction describes some aspects of evolutionary reality, then a 

common genetic basis for longevity and starvation resistance might be expected. A partial 

test of the hypothesis is to determine if the two traits have a common genetic basis and 

the present study takes one step toward that goal. It provides evidence that one, or more, 

allele segregating in a natural population has a positive effect on both traits and that the 

effect can be localized to a genomic region that encompasses hundreds of genes. It does 

not yet identify a common genetic basis for starvation resistance and longevity, but makes 

that goal realizable. 

 

Lifespan QTLs have previously been mapped in D. melanogaster. To form 98 RILs, 

Nuzhdin et al. (1997) crossed two homozygous laboratory strains with one allele at a 

variable site contributed by each of the parental strains. Using these RILs, five 

quantitative trait loci for longevity were identified for virgin flies. The genetic markers 

that comprise the QTLs account for approximately 50% of the genetic variation among 

the lines. The QTLs were sex-specific, in accord with the low level of genetic correlation 

between female and male longevity among the lines. However, the effects of two of the 

QTLs were in the same direction, positive or negative, in males and females. In this 

regard, Reiwitch & Nuzhdin (2002) and Curtsinger (2002) have pointed out that some of 

the sexual dimorphism attributed to QTLs might be due to limited statistical power. In 
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Nuzhdin et al. (1997), one QTL was associated with a significant positive effect on males 

and a non-significant positive effect on females. This QTL was located in map position 

interval 38A to 44C, a region that encompasses the QTL for female and male longevity in 

the present study (38CD−41F). 

QTLs for longevity and starvation survival have been identified using the set of 98 

RILs (Vieira et al., 2000). In this study, starvation survival was investigated as well as 

longevity at low and high temperature, longevity after heat shock and longevity at the 

control environment. The genetic correlation between the starvation environment and 

other environments was not significantly different from zero, but it typically was negative. 

For example, and of most relevance to the present study, the genetic correlation between 

starvation survival and longevity in the control environment was 0.021. There were 

multiple significant QTLs for starvation survival that were not significantly different 

from zero in terms of correlations with QTLs for longevity in the control environment. It 

might be noteworthy to mention that for one QTL (map region 38A−48D), starvation 

survival was positively associated with female longevity in the control environment, but 

negatively associated with male longevity. This cytogenetic region includes significant 

QTL regions in the present study corresponding to starvation survival and survival with 

food present. Deficiency mapping in the 32F−44E map region of chromosome 2 

delineated a relatively fine-scale longevity QTL for males in the 38–39 map region with 

evidence for line effects on male longevity and line-by-genotype interaction for both 

sexes (Pasyukova et al., 2000). 

Results from the aforementioned studies (Nuzhdin et al., 1997; Vieira et al., 2000) 

overlap to variable degrees with subsequent QTL studies on D. melanogaster lifespan. 

Substantial differences are associated with the mating status of flies used for assays and 

the origin of the RILs employed. Using the panel of 98 RILs, longevity was assayed by 

holding males and females together in cages (Reiwitch & Nuzhdin, 2002). Lifespan 

declined in both sexes presumably due to courtship, mating and increased gamete 

production. Generally, the location of longevity QTLs did not change, with the 

noteworthy exception of the loss of the lifespan QTL in the region 38E−43A. However, 

the sexual dimorphism characteristic of earlier studies was not observed in Reiwitch & 

Nuzhdin (2002). Similarly, results from a set of 120 RILs, derived from a longevity 
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selection experiment, indicated an absence of sexual dimorphism associated with lifespan 

QTLs (Curtsinger & Khazaeli, 2002). In this study lifespan was tested with females and 

males housed together, and most of the genetic variation for longevity was found on the 

third chromosome. In contrast to the negative association between longevity and other 

traits reported in Vieira et al. (2000), the study by Curtsinger & Khazaeli (2002) observed 

a positive association between QTLs for longevity, mid-life fertility and resistance to 

oxidative stress. A study of age-specific mortality in the RILs used in the present study, 

based on large sample size and mixed sex cohorts, has been conducted and the data 

analysed (Nuzhdin et al., unpubl. data). There is substantial overlap with lifespan QTLs 

in the present study, regardless of the fact that the diet and other environmental conditions 

were different in the two studies. 

To date, RILs have been derived from three sources: established laboratory stocks 

(Nuzhdin et al., 1997), lines selected for extended longevity in the laboratory (Curtsinger 

& Khazaeli, 2002) and lines inbred immediately after collection from natural populations 

(Kopp et al., 2003). Laboratory populations evolve shortened lifespan (Promislow & 

Tatar, 1998; Hoffmann et al., 2001) and thus inbred lines from laboratory-adapted 

populations could represent a pattern of genetic variation for life history and related traits 

that deviates considerably from natural populations. Lines from natural populations could 

include the effect of ecological conditions that maintain genetic variation with pleiotropic 

effects on lifespan. However realistic in concept, lines recently derived from natural 

populations have only been assessed in laboratory environments and it remains to be 

determined if the results extend to natural environments. The assay conditions may also 

affect the results of lifespan QTL studies. Temperature, larval density and genetic 

background can affect the location of QTLs that affect lifespan of virgin males and 

females (Vieira et al., 2000; Leips & Mackay, 2000). Mating status changed whether 

sexual dimorphism was observed for lifespan QTLs (Nuzhdin et al., 1997; Reiwitch & 

Nuzhdin, 2002). Studies on virgin flies indicate that QTLs have antagonistic pleiotropic 

effects on lifespan in different environments (Vieira et al., 2000), whereas QTLs defined 

using mated flies exhibit positive genetic covariation between longevity and stress 

resistance or fecundity traits as shown in Curtsinger & Khazaeli (2002) and the present 

study. 
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Mutation analysis of longevity using model species for genetic studies indicates a 

general relationship between lifespan and stress resistance. Yeast (Saccharomyces 

cerevisiae) mutations that extend longevity can confer resistance to various 

environmental stresses (Jazwinski, 1996), including starvation resistance (Kennedy et al., 

1995). Worm (Caenorhabditis elegans) mutations that extend longevity tend also to 

confer resistance to various stresses (Guarente & Kenyon, 2000). Mutations in the insulin 

signalling pathway can considerably extend the lifespan of C. elegans (Johnson & Wood 

1982; Kenyon et al., 1993). Mutations in daf-2, and other genes in the insulin pathway, 

accumulate lipid and glycogen in adults (Kimura et al., 1997). Similarly, mutation in the 

insulin signalling pathway extend the lifespan of D. melanogaster (Clancy et al., 2001; 

Tatar et al., 2001). In addition to extended lifespan, mutation in an insulin receptor 

substrate gene (chico) results in adult lipid accumulation (Bohni et al., 1999) and 

starvation resistance (Clancy et al., 2001). Thus, a single insulin signalling gene could 

underlie longevity and starvation resistance. Research on insulin signalling mutations in 

C. elegans has led to the hypothesis that food scarcity might modulate lifespan in diverse 

species (Kenyon, 2001) and similar research on D. melanogaster has led to the related 

hypothesis of an evolutionarily conserved mechanism based on a process that matches 

reproduction to food supply (Partridge & Gems, 2002). The latter hypothesis is not yet 

specified in detail, but presumably the idea is that joint regulation of reproduction and 

metabolism maximizes the former and serves to maintain endogenous resources at an 

evolutionarily ‘optimal’ level, including the ability to withstand starvation. 

Multiple stress resistance is an issue of considerable general interest in relationship 

to longevity. One long-lived mutant of D. melanogaster has been shown to be resistant to 

multiple forms of environmental stress (Lin et al., 1998), whereas a different long-lived 

mutation in an insulin signalling pathway gene was resistant to starvation but not to 

oxidative stress (Clancy et al., 2001). An extended question for the set of RILs used in the 

present study is whether there are QTLs that confer resistance to more than one 

environmental stress and whether such regions of the genome are associated with 

longevity in the absence of environmental stress. Starvation resistance might be 

especially salient because it presumably evolved from food scarcity, which might have 
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been the selective agent producing a conserved mechanism that mediates aging and 

lifespan. In any case, QTL studies ultimately have the goal of identifying genes that are 

polymorphic for alleles that control genetic variation in populations (DeLuca et al., 2003) 

and this is also our goal with respect to the QTLs for extended starvation resistance and 

longevity. 
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Table 1 

Pearson correlation coefficients (r, below the diagonal) and probability (P, above the 

diagonal) that the absolute value of r is greater than zero for female and male survival 

with (lifespan = ‘Life’) and without (starvation condition = ‘Starve’) food present 
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  Life male Life female Starve male Starve female 

Life male 1.0000 P < 0.0001 P = 0.0332 P = 0.1072 

Life female 0.8264     1.0000 P = 0.0764 P = 0.0505 

Starve male 0.2121     0.1772     1.0000 P = 0.0001 

Starve female 0.16374     0.1981     0.5852     1.0000 
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Table 2 

Single marker analysis for female and male survival traits. The proportion of 

variance accounted by marker segregation is shown for each sex and condition 

corresponding to the cytogenetic region of the marker (for example, 38C). The 

probability (P) reported is that marker segregation is not associated with trait segregation. 

The values in bold type indicate marker effects whose probability is less than the 

permutation threshold (life male = 0.000461, life female = 0.000489, starve male = 

0.000523, starve female = 0.000468). ‘Life’ refers to survival when food is present and 

‘Starve’ refers to survival when no food is present 
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Marker region Life male Life female Starve male Starve female 

0.34 0.20 0.30 0.13 
38C 

(P < 0.000001) (P = 0.00086) (P = 0.00001) (P = 0.00254) 

0.40 0.23 0.20 0.11 
41F 

(P < 0.000001) (P = 0.00026) (P = 0.00023) (P = 0.00448) 

0.39 0.27 0.19 0.12 
42B 

(P < 0.000001) (P = 0.00006) (P = 0.00034) (P = 0.00235) 

0.00 0.01 0.20 0.25 
44C 

(P = 0.444370) (P = 0.26769) (P = 0.00062) (P = 0.00008) 

0.29 0.09 0.18 0.25 
48D 

(P = 0.00004) (P = 0.02237) (P = 0.00075) (P = 0.05210) 

0.25 0.06 0.02 0.00 
49B 

(P = 0.00003) (P = 0.04033) (P = 0.17224) (P = 0.75553) 
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Table 3 

QTL effects on starvation survival and lifespan. QTL effects are indicated by 

positive or negative magnitude of table values and statistically significant effects are 

given in bold type. In the table, chromosome is followed by complementation group 

(chromosome-complementation), which is one of the four linkage groups in the starting 

population used to produce the RILs. ‘Life’ refers to mean longevity and ‘Starve’ refers to 

mean survival time when no food is present 
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ChromosomeTable 2 

QTL* 

QTL position 

(interval) 

Life 

males 

Life 

females 

Starve 

male 

Starve 

female 

2–1/48D 33F (22C−48D)  0.18  0.11  0.03 −0.01 

2–2 37C (36F−49F) −0.00  0.01  0.09  0.10 

2–2 54C (54A−55C) −0.03 −0.01  0.11  0.07 

2–3/41F 
36AB−41CE 

(35CD−41F) 
−0.26 −0.20 −0.19 −0.15 

2–3/42B 41F (41CE−42B)  0.26  0.20  0.20  0.16 

2–4/44C, 49B 49B (44C−50C)  0.16  0.18  0.06  0.02 

3–1 66B (66A−67D)  0.09  0.06  0.04  0.02 

3–4 62E (61A−64B) −0.24 −0.17 −0.10  0.00 

3–4 65E (65C−73D) −0.23 −0.23 −0.10 −0.00 

*QTL intervals corresponding to single marker analyses in Table 2 are shown after 

the back-slash. Note that the marker 38C does not correspond to a QTL identified by 

composite interval mapping. 
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Figure 1 

The QTL likelihoods for starvation of males (cyan) and females (pink), and the 

lifespan of males (blue) and females (red) on X chromosome panels (A–C), second 

chromosome panels (D–G) and third chromosome panels (H–J). The ordinate of each 

panel shows the strength of support for QTL regions and the line at 1 indicates the 

permutation threshold for significant QTLs above this level. The abscissa is scaled to 

recombination distance across the genome.  

(Imagine was made by Sergey V. Nuzhdin)
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Abstract   

Recombinant inbred lines derived from a natural population were used to investigate 

natural genetic variation for lipid abundance, protein abundance and weight of D. 

melanogaster.  Females were heavier and contained more lipid and soluble protein than 

males.  Lipid and protein abundance were genetically correlated with female weight, but 

male weight was not correlated with lipid or protein.  Lipid and protein abundance were 

genetically correlated in males, but not in females.  Quantitative trait loci (QTLs) for 

weight and protein abundance were predominantly on the X chromosome whereas QTLs 

for lipid abundance were found on the second and third chromosome.  QTLs for lipid 

proportion (lipid abundance normalized by weight or protein abundance) were present on 

all chromosomes; a lipid proportion QTL on the third chromosome correlated with a QTL 

for starvation resistance observed in a previous study using the same set of recombinant 

inbred lines suggesting it might underlie both traits.  Candidate genes are discussed in 

relationship to lipid abundance, lipid proportion and starvation resistance. 
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 The characterization of natural genetic variation for the control of obesity in 

humans is an important goal in human health research.  However, it is difficult to 

acquire this information because there are limited methods available for the study the 

genetic architecture of complex traits in humans.  Conversely, quantitative trait loci 

studies of lipid abundance in model organisms like Drosophila are especially suited for 

this purpose.  The study of obesity in Drosophila is relevant to humans because 

pathways of lipid metabolism are generally conserved between vertebrates and 

invertebrates (1). Insights from the Drosophila model may help to elucidate genetic 

architecture of obesity variation in humans. We have previously constructed a set of 144 

recombinant inbred lines (RILs) that segregate for up to four natural alleles per locus (2). 

Here, we weigh males and females from these lines and assay for lipid and protein 

abundance, and for lipid proportion which is analogous to obesity.  The goal was to map 

quantitative trait loci (QTLs) for genetic variation in these characters. 

Protein and lipid content, and body weight were all significantly higher in females 

(0.793 mg/ml, 0.552 ug/ml, 0.315 mg respectively) than males (0.424 mg/ml, 0.369 

ug/ml, 0.217 mg). The genetics of body size differences in females and males is not 

known, but it may be relevant to note that body size is controlled by a nutrient sensor 

mechanism during Drosophila growth (3). Scaled by body weight, lipid content was no 

longer different between sexes (1.78 ug/ml versus 1.80 ug/ml in males and females 

respectively) but protein content remains sexually differentiated (1.99 ug/ml versus 2.55 

ug/ml). In two way ANOVAs, effects of sex, line, and sex by line interactions were 

significant at P<0.0001 level for every trait (data not shown).  Male female line means 

were correlated within traits (Table 1). In males, neither protein nor lipid abundance was 

correlates with body weight, but in females, these correlations were positive and highly 

significant. Protein and lipid abundance were significantly correlated in males but not in 

females. Genetic correlations between some of these characters have been previously 

studied by selection in the laboratory, but the results were not consistent between 

experiments (4).  Partially due to this reason, selection experiment results are marginally 

suitable for comparison to the present study.  

The QTL likelihood profiles for three X chromosome haplotypes (linkage groups), 

four second chromosome haplotypes, and three third chromosome haplotypes are 
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represented on the left panels of the Figures 1, 2, and 3.  Two haplotypes of the third 

chromosome (2 and 3) are indistinguishable in this set of RILs have been merged 

together into a “2-3” haplotype. Altogether, we have detected 12 QTLs significant at 

P=0.05 level while 3 are expected by chance alone. The false discovery rate might then 

be approximated as 0.25. The QTL effects are summarized in the Table 2.  A majority of 

the protein abundance and weight QTLs were located on the X chromosome. QTLs 

affecting lipid abundance were observed on the second and third chromosomes.   

Contiguous haplotype QTL might in fact represent a single large effect QTL, for for 

instance protein abundance QTLs 5C-12C on the X chromosome.  As another 

consideration, estimates of QTL effects on different haplotypes of the same chromosome 

might not be independent.  For instance, protein content QTLs at 5C on haplotype 1 and 

5D on the haplotype 3 of the X chromosome (italicized in the Table 2), and body weight 

QTLs at 22A on the haplotype 2 and 22B on the haplotype 3 of the second chromosome 

(underlined in the Table 2) might in fact represent a the effect of a single allele (see 

research methods and procedures for more explanations).  In spite of these caveats, the 

effect of QTLs was similar to the pattern of line means. 

As we were primarily interested in obesity QTLs we standardized lipid abundance 

by protein content and body weight which also has the effect of improving the power of 

detection by reducing unaccounted variation.  Lipid proportion QTLs scaled by body 

weight and by protein content are presented in the right panels of Figures 1, 2, and 3. We 

detected an additional lipid proportion QTL at cytological position 11CD on the X 

chromosome (haplotype 3) and two additional lipid proportion QTLs at cytological 

position 51A on the second chromosome (haplotype 2).  Notably, a third chromosome 

(cytological position 73C) female lipid proportion QTL (scaled by body weight) was also 

significant for lipid proportion in males indicating a region of the genome responsible for 

a general impact on lipid proportion irrespective of sex.  We conclude that the genetic 

architecture of lipid and protein abundance, and lipid proportion, variation in flies is 

likely to be multi-factorial comprised of major and smaller effects to varying degree 

depending on the character.  

As lipid content is associated with starvation resistance, it is tempting to compare 

our mapping results with whole genome microarray data on gene expression during 
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starvation and sugar feeding (5).  In particular, the overlap of QTL and microarray data 

sets has been used to produce a list of candidate genes (6).   However, it is not clear that 

phenotypic manipulations are expected to produce a similar pattern of gene expression to 

that observed for related evolved responses (7) including extant genetic variation 

maintained by selection. 

Genetic variation in lipid composition might be due to allelic variation at the loci 

previously implicated in control of this trait. One can speculate about candidate genes 

corresponding to QTLs, as numerous genes are positioned in the QTL proximity. For 

instance Lsd2 gene (at cytological position 13A) belongs to the PAT family of proteins. 

Lsd2 mutants have reduced level of neutral lipid indicating that the gene is responsible 

for normal lipid storage (8). Another example is pumpless located at 78C (9) is a gene 

involved in amino acid-dependent signaling arising from fat body that induces cessation 

of feeding in the larva. Perhaps the most interesting example of a gene co-located with 

one of our QTLs is that of micro RNA miR14 located at 45F (10). miR14 suppresses cell 

death and is required for normal fat metabolism. Micro RNAs appear to be involved in 

systemic regulation of multiple genes including that respond to stress conditions (11). C. 

elegans miR234 is probably induced as a consequence of nutrient stress. D. melanogaster 

miR14 appears to synchronize multiple physiological responses related to stress, as 

supported by the fact that miR14 loss-of-function flies display increased sensitivity to a 

variety of stress conditions. Interestingly, lipid content was frequently increased in the 

lines selected for increased stress resistance (12).  Intriguingly, QTL mapping in the 

same set of RILs as used in the present study identified a chromosomal region in 

proximity of 45F which was associated with D. melanogaster survival under starvation 

conditions (13). We therefore hypothesize that miR14 is a candidate locus potentially 

accounting for differential lipid abundance and starvation resistance. We will employ 

quantitative complementation tests (6) to test this prediction. 
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RESEARCH METHODS AND PROCEDURES 

Recombinant Inbred lines (RILs) 

A panel of 144 RILs was generated by crossing a single virgin female from the F1 

progeny of a fertilized female caught in the wild (Winters, CA) to a single male from the 

F1 progeny of a different fertilized female caught at the same location. The genetic 

crosses employed and methods for genotyping the lines are described in detail in (2). 

Briefly, recombinant F2 genomes were isogenized by 25 generations of full-sib 

inbreeding. We assayed positions of roo transposable elements by in situ hybridization to 

polytene salivary gland chromosomes with a biotinylated DNA probe (14). Locations 

were determined at the level of cytological bands on the standard Bridges’ map in five 

individuals per line. A marker was recorded as present if detected in all larvae, absent if 

not detected in any larva, and otherwise segregating. 123 markers were retained for the 

analysis, and recombination distances between them were calculated as in (15). Two of 

the founding third chromosomes appeared to be identical except for chromosome tips (2), 

thus we assumed three parental haplotypes for the third chromosome (see 16 for the list 

of marker positions).  

 

Fly Rearing 

Flies were reared at 22OC in vials with 7 ml of Drosophila medium.  This 

medium was made as follows.  To 1.5 ml of water, 11 gm of agar, 90 ml of molasses, 

150 g of cornmeal, 125g of Torula yeast was added and the mixture cooked and mixed 

followed by addition of 30 ml ethanol, 3 ml of propionic acid and 3 g of Tegosept as 

anti-fungal agents.  All flies from all lines were reared from vials that were seeded with 

approximately 75 eggs to control rearing density.  Adult flies were transferred to fresh 

vials (15 males and 15 females) when they were 2-6 days old.  Subsequently, flies were 

transferred to fresh food every three days for three successive transfers.  At the end of 

the third transfer the flies were frozen at –80OC for the assays described below.    

 

Lipid Assay 

Total lipid was measured using a method described by van Handel (17) adopted 

by Zera et al. (18) and slightly modified for the present study.  Three females or three 
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males were homogenized in 100 µl of chloroform:methanol (2:1) using plastic pestles 

and 1.5ml Eppendorf tubes.  After low speed centrifugation (5,000 rpm) the solvent was 

transferred to a glass test tube.  Triolein (0.08, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 and 1.2 mg/ml) 

in 2:1 chloroform:methanol  was used for standards.  Glass tubes with samples and 

standards were incubated in a 85-90ºC water bath for 10 minutes to evaporate the solvent 

before addition of sulfuric acid and additional incubation in the 85-90ºC water bath for 10 

minutes.  The tubes were removed and allowed to cool to room temperature before 

addition of vanillin-phosphoric acid reagent followed by gentle vortexing.  250 µl of 

each sample or standard was transferred to a well in a 96-well plate and read in a 

spectrophotometer at 525 nm. 

 

Protein Assay 

Soluble protein was measured using the BCA Protein Assay Kit (Pierce Company, 

Rockford Illinois).  Five males or females from each line were homogenized as 

described in the lipid assay section, but in 250 µl of Tris-HCL pH 8.0.  The homogenate 

was duplicated 1:3 in homogenizing buffer and 10 µl was added to each well (96 well 

plate) for The Microplate Assay Procedure.  The following standard concentrations of 

protein were employed: 2 mg/ml, 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, and 0.125 mg/ml.  

The BCA reagents were added and after a 30 minute incubation at 37OC the plate was 

read at 562 nm. 

 

Weight 

 Total body weight was determined after previously frozen flies were placed in a 

vacuum drier for at least 24 hours.  For each recombinant inbred line, the weight of five 

females and five males was determined using a Satorius M2P Microbalance (1µg to 1g).  

Samples were removed  

from the vacuum drier such that flies were weighed within 2 hr after removal. 

 

Statistical Analysis 

For the analysis of variance, we first transformed the data to improve normality of 

residuals. Box-Cox transformation was found that maximized Shapiro-Wilkinson test 
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statistics (19, SAS MACRO using UNIVARIATE procedure, option “normal”, is 

available from SVN). Two way ANOVAs were then performed with effects due to sex 

(fixed), line (random), and line * sex interaction (random). Statistical significance of 

components of variance was assayed with SAS procedure GLM. Genetic correlations 

between traits and sexes were approximated as correlations between line means, and 

estimated with the SAS procedure CORR.  

Our study makes use of wild, outbred founder flies. We adapted standard QTL 

mapping software that was designed for homozygous founders to analyze our data (see 

13 for a detailed explanation). Briefly, we test whether an allele from one haplotype 

encodes a trait value significantly different from the average trait due to the combined 

effects of other haplotypes. The number of different allelic effects that we can 

independently estimate is equal to the number of segregating haplotypes minus one. 

Using haplotype specific marker alleles, we generated a separate likelihood profile with 

the CIM procedure in QTL Cartographer (20). Options in the CIM module were set to 

two background parameters, window size of 30 cM, and Kosambi mapping function. 

Significance thresholds were determined by 1000 permutations for each trait and 

chromosome.  
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Table 1 

Correlation matrix of line means between lipid and protein abundance, and body weight 

of males and females. Correlation coefficients above the diagonal (italicized if significant 

and bold faced if P = 0.001 or less) with the level of statistical significance indicated 

below the diagonal.  

Trait  Protein abundance Lipid abundance Body weight 

 sex male female male female male female 

Protein male - .376 .215 .091 .034 .168 

content female <.0001 - .138 .053 .233 .285 

Lipid male .013 ns - .640 -.114 .152 

content female ns ns <.0001 - .037 .307 

Body male ns .011 ns ns - .613 

weight female ns .002 ns .001 <.0001 - 
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Table 2 

Quantitative trait loci affecting lipid and protein abundance, and body weight. Significant 

effects are bold-faced. 

Chromosome Marker Protein content Lipid content Body weight 

  male female male female male female 

X-1 4C .012 -.014 -.002 .001 .01 -.002 

X-1 5C .037 .018 .007 .027 .014 .009 

X-1 9C .038 .027 .006 .016 .007 .013 

X-1 12C .039 .033 -.007 .018 .007 .018 

X-3 5D -.016 -.005 .007 -.000 -.016 -.013 

2-2 22A .045 .015 .024 -.004 -.000 .005 

2-3 22B -.026 -.025 -.015 .002 .002 .004 

2-3 47E .005 .024 .037 .008 -.001 .010 

3-23 63E .008 .005 .009 .008 .011 .008 

3-23 73C -.001 .004 -.041 -.026 .003 -.001 

3-23 82C .009 .023 -.043 -.009 .002 .005 
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Figure 1 

Left panels (A, C, and E) represent quantitative trait loci affecting male (blue) and female 

(red) protein content, lipid content (cyan and pink) and body weight (black and gray) on 

haplotypes 1, 2, and 3 of the X chromosome. QTLs for lipid content weighed by protein 

content (blue and red), and for lipid content weighed by body weight (cyan and pink) are 

in the three right panels. Horizontal lines correspond to significance thresholds for same 

colored traits. 

(Imagine was made by Sergey V. Nuzhdin)
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Figure 2  

QTLs for lipid and protein abundance, and body weight on haplotypes 1, 2, 3, and 4 of 

the second chromosome. 

(Imagine was made by Sergey V. Nuzhdin)
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Figure 3  

QTLs for lipid and protein abundance, and body weight on haplotypes 1, 2-3, and 4 of the 

third chromosome. 

(Imagine was made by Sergey V. Nuzhdin)
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Introduction  

 

For most of species, essential nutrition may sometimes be limited during their life 

cycles. For Drosophila, food abundance changes depending on season or location 

(Hoffmann and Parson, 1991; Gibbs, 1999) and the ability to survive starvation is 

presumably an important fitness trait. Survival strategies may include genetic, 

physiological or behavioral changes (Hoffmann and Parsons 1991; Harshman, Hoffmann 

and Clark 1999; Zou et al, 2000; Lee and Park, 2004; Harbison et al 2005). Starvation 

resistance is important in evolutionary physiology (Hoffmann and Parsons 1991; Zera 

and Harshman, 2001), impinging on a wide variety of traits, from fitness, to longevity, to 

fecundity. Starvation resistance is correlated to lifespan and reproduction, such that there 

sometimes is a positive genetic correlation between starvation and longevity, and a 

negative genetic correlation between resistance and early fecundity (Leroi et al. 1994a.b; 

Prasad and Joshi 2003). The abundance of lipids, the most important energy storage 

molecules, is commonly correlated with starvation resistance as well (Service, 1987; 

Chippindale et al, 1996; Harshman 2003; Wang et al. 2005). Further evidence supporting 

the notion that lipids are be the primary resources involved is that they are differentially 

allocated in survival (longevity) and reproduction.  

Many questions remain regarding the physiological mechanism of starvation 

resistance in D. melanogaster, especially the dynamics of lipid usage and the 

physiological trade-off between starvation and reproduction. The physiological traits 

correlated to starvation response and life history tradeoffs, especially reproduction, have 

been examined by comparing laboratory populations that have undergone selection. By 

utilizing laboratory selection to explore the physiological and genetic changes associated 

with the starvation selection response, insights can be gained into the physiology basis of 

the phenomenon. Selection studies can aid in elucidating the genetic basis of 

physiological changes, while comparing physiology between selected populations and 

control populations may explain common resistance mechanisms and the interaction 

between life history traits (Gibbs, 1999; Zera and Harshman, 2001; Telonis-Scott et al., 

2006).  

For starvation resistant females, it has been previously shown that a tradeoff exists 
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which points to a decrease in fecundity and an increase in lifespan or stress resistance 

(Williams 1966; Roff 1992 ). Decreased reproduction costs ascertained by phenotypic 

measurements confirmed the tradeoff between somatic and germ line success. Although 

lower fecundity is related to increased stress resistance, there are no studies that have 

been done to examine the differences in nutritional distribution of the eggs between 

non-selected and selected females. Nor are there data showing any difference in oocyte 

maturation between them. Is it possible that starvation resistant flies have a lower number 

of more nutritious eggs? Do starvation resistant flies have more or less oocytes in their 

ovaries? Can fruit flies scavenge energy from their ovaries under stressful environmental 

situations? In Eretmocerus eremicus, a short-lived whitefly parasitoid that produces 

anhydropic oocytes, the existence of oosorption by yolk degradation has been verified 

(Asplen and Byrne, 2006). Messina and Fox (2001) think chorion nutrient recycling is 

important in females producing large egg numbers at the cost of lowered yolk investment 

per egg.  

The ovary and the fat body of D. melanogaster both synthesize vitellogenins in vivo. 

The ovary contributes nearly as much vitellogenin to the yolk of an oocyte as does the fat 

body (Isaac and Bownes, 1982). There have not been any studies done that specifically 

quantified and compared the lipid content of oocytes of starvation sensitive and resistance 

flies. Most research has focused on differential allocation of internal resources to either 

combat starvation or reduce reproduction but the specific mechanisms underlying 

tradeoffs at the physiological level remain poorly understood (Rose and Brandley, 1998; 

Zera and Harshman, 2001; Harshman and Zera, 2007).  

We confirmed basic life history traits with existing methods proposed in early papers 

by using our starvation resistant flies. Our results demonstrated that our selected flies had 

similar traits to those described in other references e.g. lower early fecundity, higher lipid 

contents and larger mass, compared to control populations. We also found that our 

starvation selected flies had longer lifespans which was not a universal discovery of all 

previous starvation selected lines. Some hypotheses have been provided in the attempt to 

explain how starvation resistant flies can live longer, but there are still some unknown 

physiological mechanisms relating to starvation resistance and longevity. In this study, we 

asked the following unexplored questions which can provide a brand new insight for 
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studying starvation resistance.  

1. If selected females had more fecundity, did they have more oocytes in their 

ovaries? 

2. What are the lipid dynamics in flies at different starvation time points? 

3. Did resistant females have more or less lipids in their eggs? 
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Materials and Methods 

 

Population Source and Procedure of Starvation Selection  

A base population from 20 inbred lines of D. melanogaster was initiated and 

propagated in the lab for approximately 2 years before selection. These inbred lines were 

derived from inseminated females collected in the field (Wolfskill Orchards, maintained 

by the University of California at Davis, Yolo County, CA, USA). To establish the base 

population, each of the inbred lines was reciprocally crossed to a subset of other inbred 

lines in a balanced design based on the goal of equal representation of all lines. A 

standard number of progeny was harvested from each cross.  

Thousands of these heterozygous progeny were released at the same time into a 91 

X 60 X 31 cm population cage.. The next generation, the population of adult flies in the 

cage, consisted of over 10,000 individuals. Twenty bottles containing a standard 

Drosophila food (yeast, cornmeal, molasses and agar) were kept in the cage with the adult 

flies at any one time, each one added a week apart. Every week five fresh bottles of food 

were added to the cage replacing the five oldest spent food bottles. This overlapping 

generation regime was maintained for 26 months before the start of laboratory selection. 

 

For laboratory selection we established three selected and three control populations. 

All experimental lines (three independent control lines and three independent selection 

lines) were derived from this mass culture simultaneously. About 500 individuals (250 

males and 250 females) were initiated for each control line or selection lines and adult 

flies were randomly sampled from the wild population cage. The control lines are 

designated SC (starvation control) and the selection lines are designated ST (starvation 

selection). Flies were reared at 25 °C under constant illumination. All flies were only 

cultured on a standard cornmeal, yeast, sugar, agar Drosophila medium in this study. This 

study was conducted from generations 1 to 21 of laboratory selection for starvation 

resistance in both sexes. 

 

The regime of selection was based on differential survival of adult males and 

females in the absence of food. About 500 flies (males or females) were placed in to two 
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empty bottles per selection line. The cotton plug for each bottle was saturated with water 

and thus flies were held in a high-humidity environment in constant proximity to 

moisture. The plugs were inspected every 12 hours to ensure that they remained wet. 

After approximately 50% mortality, the survivors, including females and males both, 

were transferred to laboratory medium to produce the next generation.  

  

After one round of starvation selection, selected flies or control flies were 

transferred to fresh food in bottles, where they laid eggs overnight. We used the same 

number of flies for ST1 and SC1, ST2 and SC2 and ST3 and SC3. For example, if there 

were 1000 ST1 females that survived selection during the first round, exactly the same 

number of flies from SC1 would be transferred to bottles. Approximately 100 eggs were 

collected into each vial. Overall, 10 vials seeded with eggs were collected from each 

selected and control line. These vials were placed at 25 °C in a 12h:12h light and 

darkness incubator. Within 2-3 days after eclosion, approximately 15 females and 15 

males were collected into vials with fresh food for 2 days, providing sufficient time for 

sexual maturation, and then transferred to another vial for another 2 days to prevent the 

increasing adhesiveness of the food from restricting or trapping the adult flies. 

 

Flies were separated by sex under ether anesthesia and held for at least 24 hours on 

medium before flies were used in the following experiments. Selected and control line 

flies were reared for at least one generation without selection and appropriate egg 

densities were collected and placed on laboratory Drosophila medium prior to any 

experiments. Flies used in the assays were 6-7 days old and were raised and tested at 

room temperature (25 °C).  

 

Starvation Resistance & Longevity Assays 

We compared starvation resistance between control and selected lines every a couple 

of generations in order to monitor their response to starvation selection. For the starvation 

survival assay, flies (females and males) from all lines (control lines 1-3 and starvation 

selected lines 1-3) were tested for survival in the absence of food at room temperature. 

Ten females or 10 males were placed in an empty plastic vial capped with a 
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water-saturated cotton plug. The number of dead flies was determined every 12 hours 

until all flies had died. Five replicate vials for each sex and six total populations, as stated 

above, were used to test for starvation resistance. 

To obtain lifespan measurements, control lines and selected lines were selection 

relaxed at least one generation at a density of 90-100 eggs per vial, with five vials per line, 

to obtain a sufficient number of individuals for testing. In the following generation, 

fifteen pairs of flies per line were placed in each of three vials for 3 days. For 6-7 days 

after eclosion, 15 males and 15 females were placed in population cages made from 

500-mL plastic Dixie Cups with attached plastic vials containing 8 mL of 

cornmeal–agar–molasses medium plus yeast, standard food. For each line, there were 

three replicates and experiments were done at two different generations. Dead flies were 

removed by aspiration and mortality recorded at 3-day intervals. Food was changed every 

three days. 

 

Dry Weight and Protein Assays 

To conduct these assays, it was decided that we would measure dry flies instead of 

wet flies because this way any effects caused by humidity could be eliminated. We 

reasoned that dry weight would be most accurate at estimating the exact energy stored in 

the bodies of the flies. For each line and sex, 20 single flies were weighted. All flies were 

6-7 days old and were not virgins. Body weight was determined after previously frozen 

flies were lyophilized for at least 24 hours. The masses of the flies were determined using 

a Satorius M2P Microbalance (1 µg to 1 gram). Samples were weighed within 2 hours 

after removal from the vacuum drier. 

Soluble protein was measured using the BCA Protein Assay Kit (Pierce Company, 

Rockford Illinois). Five males or females from each line were homogenized in 250 µl of 

Tris-HCL pH 8.0. The homogenate was duplicated 1:3 in homogenizing buffer and 10 µl 

was added per well in a 96-well plate for the Microplate Assay Procedure. The following 

standard concentrations of protein were employed: 2 mg/ml, 1 mg/ml, 0.5 mg/ml, 0.25 

mg/ml, and 0.125 mg/ml. The BCA reagents were added and after a 30 minute incubation 

at 37° C, the plate was read in a spectrophotometer at 562 nm. 
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Fecundity  

Virgin females and males were collected within 8 hours after eclosion, and one 

female and male from each line were put into a vial, containing standard fly food, for 

mating. Flies were transferred to new vials every day and eggs were counted daily. For 

each control or selection line, there were ten replicates. If a male happened to die during 

the experiment, a male of the same age would be replace it. 

 

Determination of oocyte stages and stage-14 oocyte collection. 

Ovaries were dissected in Ringer’s solution (130 mM NaCl, 5 mM KCl, 2 mM 

CaCl2, 50 mM Na2HPO4, pH 7.0). Ovaries were further dissected into single ovarioles 

and the oocyte stages counted according to the procedure of King (1970). Stage-14 

oocytes are easy to detect due to the obvious presence of two breathing tubes, making 

them easily distinguishable from oocytes in other stages. From each female, we collected 

20 stage-14 oocytes into 1.5 ml plastic tubes containing 50μl Ringer’s solution. We then 

added 100μl 2:1 chloroform: methanol immediately after collection into the Ringer’s 

solution. The lipid content of 20 stage-14 eggs was determined by the assay described 

below.   

 

Total Lipid Assays 

Total lipid was measured using a method described by van Handel (1985), adopted 

by Zhao and Zera (2002) and slightly modified for the present study. We placed all flies 

in a -20° C freezer in preparation for the lipid assay. Three female flies or 20 stage-14 

eggs were homogenized in 1.5ml Eppendorf tubes containing 100 μl of a 

Chloroform/Methanol (2:1) solution using plastic pestles and then centrifuged for 3 

minutes. Triolein (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 and 3.0 mg/ml) solutions in 2:1 

chloroform: methanol were used for standards. The sample supernatants and standards 

were transferred into glass tubes and put into an 85-90°C water bath for 5 minutes. This 

step was conducted to evaporate the solvent before addition of sulfuric acid, which was 

followed by an additional incubation in an 85-90ºC water bath for 10 minutes. The tubes 

were removed and allowed to cool to room temperature before addition of 1 ml of 

vanillin-phosphoric acid reagent, which was followed by a gentle vortex. Two hundred 
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and fifty µl of each sample or standard was transferred to a well in a 96-well plate and 

read in a spectrophotometer at 525 nm. 

 

Triglyceride Assays 

Three flies for each treatment or line were homogenized in 1 ml 

Chloroform/Methanol (2:1) solution. Next, 250μl of a 0.88% KCl solution was added, to 

extract lipids from the solvent, and then the mixture was centrifuged for 5 minutes at 

7000 rpm. The supernatant was removed into columns suspended in glass tubes and 2 ml 

of a Hexane/Ethyl Ether (80% / 20%) solution was added to the columns to extract 

triglycerides in the flow-through liquid. Triolein (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 and 3.0 

mg/ml) solutions in 2:1 chloroform:methanol were used as standards. The following steps 

of this assay from here on are the same as those of total lipid assay. Briefly, 

vanillin-phosphoric acid reagent was added to all samples and standards and 

concentration data was read by spectrophotometer set to read at 525nm. 

 

Statistics 

All data were analyzed using SAS statistical software (SAS Institute Inc. 2003). 

Differences among the lines were tested using a regression model on the selection 

response with line and sex as independent factors. Data for dry weight, soluble protein 

abundance, fecundity, total lipids and triglycerides and oocyte distribution were analyzed 

using two-way ANOVA or PROC GLM unless indicated otherwise.  
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Results 

 

Starvation Response and Longevity after selection 

Selection for starvation resistance (ST) had an increased resistance response in both 

sexes (Fig. 1a). After 17 generations of selection, ST lines survived starvation 

approximately 106.8 ±8.4 hours and 124.4 ± 11.7 hours in males and females respectively 

which was significantly longer than the survival window of SC lines (F 3, 55= 53.46, 

P<0.0001). The average length of starvation survival in SC males and females were 73.4 

± 9.1 hours and 88.0 ± 15.6 hours respectively. By generation 20, flies subjected to 

starvation selection could survive up to 127.5 ± 10.3 hours and 158.4 ± 9.3 hours in ST 

males and females respectively. 

 

The starvation resistance response in selected females is stronger than in males. 

Starvation resistance of ST males increased 70% while ST females’ ability to resist 

starvation increased 80%. However, the longevity results weren’t consistent (Figure 1b). 

SC female were shorter lived than SC males or ST males and females (F3, 30= 3.56, P= 

0.0257). This may indicate that reproduction squanders energy and reduces the longevity 

of these SC females. Also, both SC and ST males lived longer than females, which 

further suggests that reproduction is one of the main factors in the reduction of longevity. 

Although SC and ST females had shorter life spans than males, most likely due to 

reproduction costs, as expected ST females had greater longevity than SC females (F1, 15= 

6.61, P= 0.0213) This seems to signify that increased starvation resistance can also 

increase lifespan in females. There was no significant difference between ST and SC 

males with respect to lifespan (F1, 15= 0.02, P= 0.9033).   

 

Dry Weight and Protein Content 

 

Weight is the simplest index with which to estimate energy storage, and an increase 

in weight may correlate with high starvation resistance. The average dry weight of three 

independent control male lines was 0.276±0.004 mg while female lines weighed 

0.524±0.001 mg; selected male lines weighed 0.283±0.006 mg and selected female lines 
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weighed 0.571±0.004 mg (table 1a). There were statistical differences between lines and 

sexes (table 1b). Selection showed significant effects versus control female lines (F1, 118= 

44.36, P< 0.0001). Starvation selected males were not heavier than control males though 

(F1, 117= 2.56, P= 0.1211), but they did survive starvation longer. In females, an increase 

in body weight was correlated with have high starvation resistance but this was not the 

case for males. Therefore, we speculated that weight is not the sole factor influencing 

starvation tolerance.  

 

Proteins are the preliminary products of gene translation and a great deal of body 

tissues are composed largely of proteins. Therefore, protein content is presumably a fairly 

good representative measurement of body mass. Our results showed that soluble protein 

was slightly higher in starvation selected lines but there was no statistical significance to 

these data (table 1a). Although ST females were heavier than SC females, there was no 

difference at the protein level (table 1c).    

 

Fecundity 

Fecundity was measured by the sexual production of single pairs of flies upon 4 

hours of enclosure and isolation. Figure 2, shows the daily pattern of accumulated 

fecundity or egg production (day 1 through day 14) for control and selected females. ST 

lines had lower fecundity than SC lines (F1, 52= 6.02, P= 0.0176). Because ST females had 

longer life spans and higher famine tolerance, all available evidence showed that 

increased starvation resistance decreases early fecundity. It appears that there exists a life 

history trade-off between longevity/starvation resistance and reproduction cost.  

Oocyte distribution (stage-10 to stage-14) 

Many research examples have demonstrated that starvation resistant flies have lower 

fecundity, and due to this effect, another interesting subject to explore is the 

developmental distribution of oocytes. Our fecundity data (Fig. 3a) also agreed that 

starvation control female lines produced more eggs early (early fecundity) than selected 

female lines. In Figure 3b, we found that starvation selected females had more oocytes 

(stage-10 to stage-14) in their ovaries than control females before and after starvation 

(F3,89=5.91 , P=0.001 ) as well as stage-14 only oocytes (F3,89=48.54 , P<0.001). This 
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result is contradictory to our fecundity results in which SC females laid more eggs.  

 SC and ST females both had increased numbers of stage-14 oocytes, matured from 

stages 10-13, after 36 hours of starvation. When flies were submitted to starvation, there 

was inadequate substrate or energy with which to lay eggs. They could only hold all the 

mature (stage-14) oocytes. The total number of egg chambers at stage-13 to stage-10 

before starvation is closed to the increased number of stage 14 oocytes after starvation. 

Meanwhile, there were very few stage-10 to stage-13 egg chambers presented in the 

female ovaries after starvation.   

 

Lipid Dynamic- Total lipid & Triglycerides 

We wanted to know how starvation selected flies gain lipids after eclosion and how 

they consume lipids upon starvation. Total lipid content of female flies was measured at 

three different stages: within, 7-days after eclosion and after 36 hours of starvation. The 

dynamics of total lipid content is showed in Figure 4. Both ST and SC females had 

similar lipid increase and declining rates from eclosion to 7 days and after 36 hours of 

starvation (F1,10=0.90, P=0.3655). After 1 hour past eclosion, selected females did not 

have significantly higher lipid content than control females (P=0.3571). This result may 

indicate that our selected flies didn’t store much lipid during the larval stage but relied on 

food consumption at the adult stage to increase their lipid level. This result was contrary 

to Chippindale et al. (1996) found. They found that larval lipid acquisition played a major 

role in adult starvation resistance. If starvation resistant flies store more lipids at the 

larval stage, we should have seen more lipids immediately after eclosion.   

Starvation selected females had more lipid content relative to control females at 7 

days post eclosion and after 36 hours of starvation (F3, 20= 6.02, P=0.0006). However, the 

declination of lipid content caused by food deprivation was similar (ST lipid levels 

lowered about 32% and SC lipid levels lowered about 38% after the starvation period). 

Overall, shortage of food may require that both ST and SC lines use similar amounts of 

lipid to survive.  

Based on the utilization rate of total lipid content after 36 hours of starvation, we 

only know that lipid demand between SC and ST lines was similar, but lipids are diverse 

and we did not know if there was differential lipid utilization in these Drosophila lines 
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when exposed to famine. Therefore, we measured the triglyceride content of SC and ST 

females at different starvation time points to see how triglycerides were used in response 

to starvation. Starvation resistant females had stable triglyceride levels after having been 

starved for 0 hr, 8 hr, 16 hr, 24 hr, 32 hr and 36 hr(F5,27=0.46 , P=0.8055); conversely, 

control line females showed decreased triglyceride levels after 36 hours of starvation. 

Overall, selected females had higher and more stable levels of triglycerides during 36 

hours of starvation compared to control female lines (F11,54=4.28 , P=0.0001).   

 

Lipid content of mature oocytes (stage-14) 

While trade-off seems to exists between early fecundity and starvation resistance, 

we further tested how starvation selected females distributed their energy between the 

soma or reproductive tissues. If starvation resistance burns more resources from a limited 

energy pool, then energy available for reproductive expense should be less. Twenty 

stage-14 oocytes were collected from SC and ST females before or after 36 hours of 

starvation. Total lipid was measured and the result is shown in Figure 5. Starvation 

resistant females had higher lipid level in their eggs relative to control females before 

starvation (F1,57=9.2, P=0.0036) but the lipid content of their eggs didn’t show any 

difference after starvation (F1,21=0.06, P=0.8022). This result suggested that starvation 

resistant females allocated more energy to their eggs but lost some proportion of these 

lipids to the soma during starvation.   
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Discussion 

 

Starvation resistance and life history traits 

Selection for starvation resistance over 20 generations showed a significant response 

in the present study. Chippindale et al. (1996) found that increased starvation resistance 

can also have an indirect response on larval development time, and can cause higher adult 

lipid content and larger body size. In our selection lines, we also found that resistant 

female flies had a higher lipid content (7 days post eclosion), higher early fecundity, and 

higher dry weight, all of which are consistent with the findings of the aforementioned 

study. However, the selected male flies did not show significant differences in body size, 

protein content or even triglyceride level, but they did have higher starvation resistance. 

It will be an interesting topic for further research to explore why these males can survive 

under famine without extra energy stores. In our selection regime, we selected both males 

and females. Resistant females had more lipids and lowered their reproduction cost to 

extend their lifespan and survive during starvation, but none of these observations were 

made in males. What kind of physiological mechanism did resistant males use to survive 

starvation? From figure 1b, there was no difference between ST and SC males in their 

longevity. It could be that ST males might reduce their mating frequency or courtship 

costs to conserve energy and resist starvation. They may have behavioral adaptations or 

other modified physiological mechanisms that enable starvation resistance. To verify the 

behavioral adaptation hypothesis, mating frequencies could be monitored sometime in the 

future. 

Increased body weight has been associated with starvation resistance in some studies 

(Chippindale et al, 1996; Hoffman and Harshman, 1999), and body weight may reflect 

the total reserves of energy storage compounds such as lipids, carried by organisms 

(Djawdan et al., 1998). Chippindale et al (1996) showed that the progeny of starvation 

resistant flies had higher lipid levels 3 hours after eclosion than controls but we did not 

observe the same thing when measurements were taken within one hour after eclosion. 

The different outcomes of our experiments might have arisen from discrepancies in lipid 

content measurements or selection regimes.  

Approximately 25% of the transcriptome was affected in response to starvation 
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stress, including genes involved in growth, maintenance and protein biosynthesis 

(Harbison et al. 2005). They reasoned that increased protein biosynthesis and hydrolase 

activity could enhance nourishment as substantial protein and organelle degradation 

could be then conducted to feed starving cells. In our results, however, ST females had a 

slightly elevated protein level but it was not statically significant when compared to SC 

females. For males, ST individuals had similar amounts of soluble protein as compared to 

SC males. Again, males under our selection regime must have had a different mechanism 

with which to resist starvation.   

 

Oocyte distribution between SC and ST females 

During oogenesis in Drosophila, the egg chambers are matured along the ovariole 

and increase in size due to yolk proteins (YP) consumption by oocytes. YP synthesis 

( Vitellogenesis ) and consumption by growing oocytes proceeds during stages 8–10 of 

oocyte development. During stages 1–7, the egg chambers contain only previtellogenic 

oocytes. In the last (14th) stage, egg chambers contain mature eggs (Bownes, 1986; 

Spradling, 1993). According to our fecundity results, starvation resistant females laid 

fewer eggs compared to the control females. This makes sense as it would be reasonable 

for resistant females to maintain and produce fewer oocytes within their ovaries. 

Unfortunately, this finding did not correlate with results derived from a closer look at 

oocyte development and quantity. We dissected females that had mated 7 days earlier 

from both populations and recorded their oocytes numbers, especially those that had 

reached stages 10-14. This inspection showed that ST females had higher numbers of 

oocytes for each developmental stage. This result is contradictory to our fecundity data, 

as mentioned above. The appropriate explanation for this phenomenon could be that ST 

females slow down their egg laying rate so they just accumulated more stage-10 to 

stage-14 occytes in ovaries.  

After 36 hours of starvation treatment, both ST and SC females had stage-14 oocyte 

accumulation and most of oocytes at stage10 to stage 13 had disappeared. When we 

compared the sum of oocytes from stage-10 to stage-14 before starvation and after 

starvation, we found that the numbers didn’t show any difference between SC and ST 

females. This further shows that Drosophila females mature more eggs, especially from 
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stage 10, 11, 12 and 13 to stage 14, while they were exposed to a stressful environment: 

starvation. This is a beneficial physiological change in evolution because females can lay 

eggs quickly right after food becomes available again. Also important to note is that it 

didn’t take much time or nutritional investment for oocytes to progress from stage-10 to 

stage-14. 

  

Total lipid declination under starvation 

SC and ST females didn’t show much divergence in their lipid content soon after 

eclosion. Not until 7 days after eclosion on regular fly food did ST females have higher 

lipid content than SC females. This result revealed that resistant females gained more 

weight after eclosion. One possible explanation is that ST females had more efficient 

feeding strategies during their adult stage but this notion needs to be experimentally 

confirmed. Higher feeding rates would also be a correlated response to starvation 

resistance, but this hypothesis has not been tested (Rion and Kawecki, 2007). In relation 

to energy distribution between reproduction and survival, it is also possible that SC 

females allocate more lipids to reproduction. Overall, the resistant females in this study 

did have higher levels of lipids, a finding which is corroborated by other studies. Athough, 

these previous findings do not contain any lipid level data at eclosion. We think that 

resistant females don’t have more lipids stored during larval stage (there was no lipid 

difference when SC and ST flies were eclosed) or they may use other forms of energy for 

storage, such as carbohydrates. ST females also had an altered biosynthesis or 

metabolism that increased body weight as well as lipid content after eclosion. 

When we starved 7 day old ST or SC females for another 36 hours, we found that 

the lipid content of both lines declined. The rate of this decrease seemed similar between 

the ST and SC females, but ST females still had more lipids in their bodies. These results 

can only tell us that starvation resistance is highly associated with lipid content, which is 

not surprising. Meanwhile, the utilization rate of lipids under starvation in both 

populations also reflected that ST females didn’t have a slower metabolism rate 

(Harshman and Schmid, 1998) because SC and SC females had a similar rate of decrease 

in lipid content. 
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Triglycerides don’t decline during starvation 

     Although there was no difference in the total lipid decline, we used the same idea 

to test if there was a change in triglycerides at different starvation time points. We 

showed that SC females reduced their lipid contents but that ST females could maintain 

stable levels of triglycerides in their bodies after 36 hours of starvation. This outcome 

was contradictory to the total lipid result. How did resistant flies decrease their lipid but 

not their triglycerides levels? Theoretically, since triglycerides are important storage 

lipids in Drosophila, resistant flies would have to burn triglycerides as an energy source 

under starvation. Did resistant flies gain triglycerides or convert other lipids or resources 

into triglycerides from some place else in the body? Or is it possible that ST females had 

stable triglycerides not because they didn’t use any of them but because they were able to 

replenish them? 

 In insects, the lipid trade-off between somatic tissues and reproductive tissues is 

also the trade-off between triglycerides and phospholipids. For example, long-wing 

crickets have more triglycerides in their bodies and lower phospholipids in their ovaries 

while short-wing crickets have less triglyceride in the body and more phospholipids in 

their ovaries (Zhao and Zera, 2002). We speculated that ST females might retrieve lipids 

from ovaries to maintain their level of triglycerides. To verify our hypothesis, the 

distribution of triglycerides and phospholipids in the soma and ovaries was measured 

next.  

 

Replenishment of Triglycerides using ovary lipids 

Resistant female flies can maintain stable triglyceride concentrations after 36 hours 

of starvation which means they may be replenishing as much as they use. Furthermore, 

the source of this replenishment must be from somewhere in their bodies. When we 

measured the lipid level of stage-14 oocytes in SC and ST females, we found that ST 

individuals had more lipids stored in their stage-14 oocytes. However, the lipid level of 

mature eggs in ST flies decreased after 36 hours of starvation. After starvation, SC and 

ST had no difference in their lipid content in their stage-14 oocytes. SC females displayed 

a quite consistent oocyte lipid level before or after starvation and they had a decrease of 

triglycerides or total lipids after starvation. On the other hand, ST females had a decrease 
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of lipids in stage-14 oocytes but not triglycerides after starvation, but they did decrease 

their overall lipid level. This evidence leads us to reason that ST females might 

preferentially scavenge energy from their ovaries for somatic use when exposed to 

starvation. Under normal environmental conditions, ecdysteroids and juvenile hormone 

(JH) induce yolk protein (YP) synthesis in the fat body and follicular cells immediately 

after the eclosion, maintain this synthesis at a specific level after fertilization, and 

regulate YP consumption by oocytes (Postlethwait and Shirk, 1981; Richard et al., 1998; 

Soller et al., 1999; Rauschenbach et al, 2004; Rauschenbach et al, 2007). Therefore, the 

hormone changes induced by starvation may contribute to the loss of lipid from stage-14 

eggs in ST females. 

 In the future, our core interest is to figure out the physiological mechanism 

governing how starvation resistant females retrieve lipids from oocytes for somatic usage 

and how this is upregulated in flies selected for starvation resistance. If we could find the 

physiological mechanism of energy relocation after starvation, it may help to explain the 

evolution of increasing fitness for starvation resistance in females.  

    

In this study, the evolution of starvation resistance by using laboratory selection has 

helped us explore physiological responses in flies. We have shown that in starvation 

resistance there may be more than one solution for D. melanogaster to choose from. 

These flies can either increase lipid content, reduce early fecundity, or maintain stable 

triglycerides, all of which are strategies that appeared helpful during life in this harsh 

environment. A novel insight provided by this study is that starvation resistant females 

may break down some of their ovary lipids for somatic use under starvation. The 

differential lipid allocation between the soma and the reproductive tissues can explain 

how starvation selected lines resist famine. Moreover, using energy more efficiently can 

also elevate competitive ability and fitness when food is scarce.  
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Table 1 
 
(a) The average weight (±SE) and soluble protein (±SE) of starvation control and 
starvation selection lines in both sexes  
 
(b)Analysis of variance for dry weight to SC and ST in both sexes.  
 

(c) Analysis of variance for soluble protein to SC and ST in both sexes 

 

SC: starvation control lines; ST: starvation selected lines 
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(a) 
 
Line Weight (mg) Soluble Protein (mg/ml) 
SC male 0.2765 ± 0.0044 (a) 0.74 ± 0.05 (a) 
SC female 0.5236 ± 0.0009 (b) 1.54 ± 0.09 (b) 
ST male 0.2816 ± 0.0061 (a) 0.69 ± 0.05 (a) 
ST female 0.5706 ± 0.0044 (c) 1.83 ± 0.23 (b) 
*Different letters shows P < 0.05 
(b) 
 
Source DF F Value Pr > F 
line 1 46.30 <.0001 
Sex 1 4188.18 <.0001 
line*Sex 1 19.95 <.0001 
 
(c) 
 
Source DF F Value Pr > F 
line 1 1.33 0.2821 
Sex 1 86.19 <.0001 
line*Sex 1 2.58 0.1467 
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Figure 1 

(a) Survival curves for control lines and starvation selected lines subjected to starvation 

stress. Each point on the survival curve is the mean percent survival rate ±SE of 

replicate vials. All flies were allowed to mate for 3 days and seven-day old flies in 

both sexes were used in starvation stress assay. (n=54) 

(b) Survival curves for control lines and starvation selected lines. Each point on the 

survival curves is the mean percent survival rate ±SE of replicate vials. All flies 

were seven-day old when we did the longevity cages assay. (n=36) 
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Figure 2 

The accumulated fecundity of control females and starvation selected females. Each point 

represents the mean (±SE) accumulated egg numbers of single female of replicate vials. 

White square is control females and gray square is selected females. (n=54) 
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Figure 3 

(a) Stage-10 to stage-14 oocyte distribution for control and selected lines at different 

starvation time points (0 hour or 36 hours). Each bar represents the mean ±SE of 

specific oocyte stage from single female. (n=48) 

(b) The total number of stage-14 oocytes in control and selected females at different 

starvation time points (0 hour or 36 hours). Each bar represents the mean ±SE of total 

stage-14 oocytes from single female. (n=48) 

   An asterisk (*) indicates a significant difference 
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Figure 4 

(a) Total lipid contents at three different stages. Flies that had been emerged for one hour. 

seven day old flies, seven day old flies with another 36 hours of starvation. Each 

point is the mean ±SE of total lipids of single females. (The total lipid protocol 

measured 3 flies and this figure is modified to show the lipid content of single flies) 

(n=36) 

(b) Triglyceride levels at different starvation time points. Females from control and 

selected lines were starved for 0 hour, 8 hours, 16 hours, 24 hours or 32 hours. Each 

point is the mean ±SE of triglycerides of single female. (The triglyceride protocol 

measured 5 flies and this figure is modified to show the triglyceride content of single 

flies) (n=54) 

(c) Triglyceride abundance of males from SC or ST population. (n=12) 

 

SC: starvation control lines; ST: starvation selected lines 

An asterisk (*) indicates significant difference  
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Figure 5 
Total lipid contents of stage-14 oocytes. The mean ±SE of lipids of twenty stage-14 

oocytes from control or selected females were measured at different starvation points: 0 

hour or 36 hours. (SC: starvation control, ST: starvation selected) (n=48)  

An asterisk (*) indicates significant difference 
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Introduction 

 

The increase of stress resistance is correlated with lower fecundity from the 

perspective of the evolution of life history. Increased stress resistance is typically 

associated with elevated accumulation of energy reserves, for example lipids or glycogen 

(Zera and Harshman, 2001; Zera and Zhao, 2003). Especially in insects, lipid reserves 

play an essential role in starvation survival and longevity. Varying abundance of lipid 

types is also associated with different life-history traits. Among all the different classes of 

lipids, triglycerides and phospholipids are the most abundance in insects. Triglycerides 

are preferentially allocated to somatic tissue for longer lifespan or starvation resistance 

and phospholipids, which are mostly allocated to ovaries, are important in egg 

development (Zhao and Zera, 2002).  

In Drosophila melanogaster, higher starvation resistance is correlated with early 

fecundity. Higher starvation resistance is also found with high levels of lipids or 

triglycerides. Fecundity can be measured by egg or offspring numbers, but there have 

been few physiological studies conducted concerning fecundity. Also, there have been no 

studies done investigating phospholipid abundance for starvation resistance in fruit flies. 

Flight-capable Morph Crickets contain a substantially greater amount of total lipid and 

triglyceride, the main flight fuel of this species (Zera et al, 1999), than the flightless 

morph, whereas the reproductive morph contains a greater amount of phospholipids, a 

lipid class that is an important component of eggs (Grapes et al, 1989; Zhao and Zera, 

2002). If there is existing trade-off between starvation resistance and early fecundity, it is 

possible to detect the trade-off between triglycerides and phospholipids in starvation 

resistant and non-starvation resistant flies.  

Another valuable way to study trade-off between starvation resistance and 

reproduction cost is to use some females without any reproduction cost. Partridge (1989) 

identified Drosophila melanogaster costs of reproduction associated with egg production 

and with mating. Mutations in the orb gene (Lantz et al. 1992) are characterized by 

female sterility resulting from a failure of oocyte maturation at a previtellogenic oocyte 

stage. The sterile Orb female is a control because they can be exposed to agents that 

stimulate egg production, but they do not produce eggs (Salmon et al, 2001). 
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Most studies looking at trade-off between stress resistance and reproduction are 

static. For example, most of the literature concerning this topic has mostly been focused 

soley on phenotypic correlation of enhanced starvation resistance with other life-history 

traits but did not investigate extensively the reasons for these correlations. However, the 

physiological status of the fruit fly is dynamic. In other words, natural selection should 

favor genotypes capable of shifting their physiology towards greater starvation resistance. 

More starvation resistant flies are expected to have some degree of adaptive phenotypic 

plasticity. Harshman et al. (1999) found that starvation resistant flies were selected by 

prior exposure to lemon and this plastic response was absent in unselected controls. The 

starvation selection lines not only became more resistant to starvation, but also evolved a 

novel induced response.  

Therefore, the more flexible physiological change appears to be advantageous when 

starvation resistant flies become more resistant. There has been no study conducted 

showing how starvation resistant flies’ physiological traits are different from controls 

after a period of starvation. By comparing two different starvation conditions (nonstarved 

and starved), we can clearly observe if resistant flies show any plasticity at physiological 

levels. In this study, we are the first to compare the differential lipid distribution in 

somatic tissues and reproductive tissues in unstarved or starved populations.     

The ‘Y’ model of resource allocation in life-history physiology reveals that the 

differential allocation of limited internal resources plays a central role in the cost of 

reproduction and other life-history tradeoffs (Townsend and Calow, 1981; Rose and 

Bradley, 1998; Zera and Harshman, 2001; Harshman and Zera, 2007). Food input is 

shown at the base of the ‘Y’ and energy resources are allocated to reproduction versus the 

rest of the somatic tissues. We use differential lipids (triglycerides and phospholipids) to 

examine the Y model or trade-off in starvation selected lines and control lines. The goal 

of this study is to identify the physiological and genetic causes of life-history variation 

and trade-off in starvation resistance and cost of reproduction in D. melanogaster. In 

order to demonstrate the trade-off of starvation resistance and reproduction by using 

differential lipid allocation, we are asking the following listed questions. Meanwhile, we 

want to study lipid dynamics to examine plasticity under two circumstances: lack of 

starvation or 36 hours of starvation.       
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(1) Does any trade-off occur between triglycerides and phospholipids in starvation 

selected females and is there a difference in control females? 

(2) Do starvation selected females and control females have different ways of adjusting 

triglycerides and phospholipids levels before and after starvation? 

(3) If trade-off of differential lipids in starvation resistant flies and control flies in their 

soma functions and reproduction, will Orb mutants (no reproduction cost) support 

this proposition?  

(4) If control and selected lines have different lipid abundance and distribution, how does 

the activity of the lipid synthesis enzymes correspond to the changes? 
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Materials and Methods 

 

Starvation selection stock 

For laboratory selection, we established three selected and three control populations. 

All experimental lines (three independent control lines and three independent selection 

lines) were derived from a mass culture simultaneously. About 500 individuals (250 

males and 250 females) were used as initiating stocks for each generation for each control 

line or selection line and the initial populations of adult flies were randomly sampled 

from a wild population cage. The control lines are designated SC (starvation control) and 

the selection lines are designated ST (starvation selection). Flies were reared at 25 °C 

under constant illumination. All flies were only cultured on a standard cornmeal, yeast, 

sugar, agar Drosophila medium in this study. This study was conducted from generations 

1 to 23 of laboratory selection for starvation resistance in both sexes. 

The regime of selection was based on differential survival of adult males and 

females in the absence of food. About 500 flies (males or females) were placed in two 

empty bottles per selection line. The cotton plug for each bottle was saturated with water 

and thus flies were held in a high-humidity environment in constant proximity to 

moisture. The plugs were inspected every 12 hours to ensure that they remained wet. 

After approximately 50% mortality, the survivors were transferred to laboratory medium 

to produce the next generation. The survivors included females and males.  

After one round of starvation selection, selected flies or control flies were 

transferred to fresh food in bottles, where they laid eggs overnight. We used the same 

number of flies for generations ST1 and SC1, ST2 and SC2 and ST3 and SC3. For 

example, if there were 200 ST1 females that survived from selection, exactly the same 

number of flies from SC1 would be transferred to bottles for egg production and 

collection. Approximately 100 eggs were collected from each vial. Overall, 10 vials 

seeded with eggs were obtained from each selected and control line. These vials were 

placed at 25 °C in a 12h: 12h light and darkness incubator. Within 2-3 days after eclosion, 

flies were approximately 15 females and 15 males were collected and put into vials with 

fresh food for 2 days, providing sufficient time for sexual maturation, and then 

transferred to another vial containing fresh fly media for another 2 days.   
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Different sexes of flies were then separated under ether anesthesia and held for at 

least 24 hours on medium before being held in conducting the following experiments.   

 

Body & Ovary Dissection 

     Ovaries were dissected in Ringer’s solution (130 mM NaCl, 5 mM KCl, 2 mM 

CaCl2, 50 mM Na2HPO4, pH 7.0). Each female was dissected into two parts: 

body-no-ovary and ovary. For lipid assays, five body-no-ovaries or 10 pairs of ovaries 

were collected in 1 ml Chloroform/Methanol (2:1) Solution. Five body-no-ovaries or 10 

pairs of ovaries from each line were collected in 250 µl of Tris-HCL pH 8.0 for soluble 

protein assay. All the samples were kept in a -20 °C freezer before triglyceride and 

phospholipids assays or protein assays.  

 

Starvation treatment and survival assay 

For starvation treatment, ten 7-days-old female flies were put into plastic vials 

without food but the cotton plug for each vial was saturated with water and thus flies 

were held in a high-humidity environment. After 36 hours of starvation, flies were 

transfered into 1.5 ml tubes and stored in a -20 °C or -80 °C freezer (enzyme assay).   

For the starvation survival assay, ten flies of the same sex were placed in an empty 

plastic vial capped with a water-saturated cotton plug. The number of dead flies was 

determined every 12 hours until the time at which no flies remained alive. 

 

Triglyceride and Phospholipids assay 

Homogenized samples for each treatment or line were dissolved in 1 ml 

Chloroform/Methanol (2:1) solution. Next, 250μl 0.88% KCl solution was added to 

extract lipid from the solvent and the solution was centrifuged for 5 minutes at 7000 rpm. 

The supernatant was removed and put into selective filtering columns contained in glass 

tubes followed by 2 ml of aHexane/Ethyl Ether (80% / 20%) solution. The purpose of this 

solution is to wash triglycerides through the column leaving behind other unwanted lipids 

such as phospholipids. Next the column was moved to a new glass tube and 2 ml of 

Chloroform/Methanol (65%/30%) was added to each column to extract phospholipids. 

Triolein (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 and 3.0 mg/ml) in 2:1 chloroform: methanol was 
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used for standards. The triglyceride and phospholipids samples and standards were heated 

in a 85-90°C water bath for 15 minutes to evaporate the solvent before addition of 

sulfuric acid. Following this was an additional incubation in the 85-90ºC water bath for 

10 minutes. The tubes were removed and allowed to cool to room temperature before 

addition 1 ml of vanillin-phosphoric acid reagent followed by gentle vortexing. Two 

hundred and fifty µl of each sample or standard was transferred to a well in a 96-well 

plate and read in a spectrophotometer at 525 nm. 

 

Protein assay 

Soluble protein was measured using the BCA Protein Assay Kit (Pierce Company, 

Rockford Illinois). Samples from different lines or treatments were homogenized in 250 

µl of Tris-HCL pH 8.0. The homogenate was duplicated 1:3 in homogenizing buffer and 

10 µl was added to each well (96-well plate) for The Microplate Assay Procedure. The 

following standard concentrations of protein were employed: 2 mg/ml, 1 mg/ml, 0.5 

mg/ml, 0.25 mg/ml, and 0.125 mg/ml. The BCA reagents were added and after a 

30-minute incubation at 37°C, the plate was read in a spectrophotometer at 562 nm. 

 

Orb mutant cross procedure 

Mutations in the orb gene (Lantz et al. 1992) are characterized by female sterility 

resulting from a failure in oocyte maturation at a previtellogenic oocyte stage. Female 

heterozygous orb/TM3 virgins from orb stock lines were crossed to wild type males 

which were from a base population from 20 inbred lines of D. melanogaster that had 

been maintained in the lab for approximately 2 years. These inbred lines were derived 

from individually inseminated females collected in the field (Wolfskill Orchards 

maintained by the University of California at Davis, Yolo County, CA, USA). The F1 

females with orb/+ were then crossed to F1 males with genotype +/TM3. After the F2 

hatched, we collected virgins with short-hair for both sexes. When the virgin status was 

confirmed, we did single pair matings (one female and one male) by using short-hair 

males and females. We did at least 40-50 single pairs matings. This procedure was done 

to find out the orb/TM3 female crossed to orb/TM3 male. The way to determine orb/TM3 

female crossing to orb/TM3 male is to dissect their female progeny with long-hair (+/+, 
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orb/+, or orb/orb but orb/orb individuals can be produced only if both parents were 

orb/TM3). If dissected females carried degenerated ovaries, we could confirm that the 

female was orb homozygous. At least five females were dissected from each vial. If the 

five females all had degenerated ovaries, we knew that their parent’s genotypes were both 

orb/TM3. We then collected virgins from these vials to start more crosses. We considered 

these crosses to be one round of crossing. The flies subjected to this study were derived 

from Round 6 and Round 9 crosses.       

 

NADP+ -isocitrate dehydrogenase (IDH) & glucose-6-phosphate dehydrogenase 

(G-6PDH) enzymes assay 

Specific activities of IDH (E.C. 1.1.1.42) and G-6PDH (E.C. 1.1.1.49) involved in 

lipid metabolism were quantified in homogenates of 30 female flies. The assay protocols 

and methods were modified from Zhao and Zera (2002). These two enzymes play a role 

in triglyceride synthesis. Their activities may be notable because an increase in lipid 

content can confer starvation resistance (Chippindale et al., 1996; Harshman and Schmid, 

1998; Hoffmann and Harshman, 1999) and their activities may change under starvation. 

Enzymes were assayed using SC and ST females that were not starved or that were 

starved for 36 hours, which is the maximum length of starvation exposure reachable 

without significant mortality in controls. 



 100

Results 

 

(1) Triglyceride & Phospholipids 

Triglycerides are the main resource utilized upon starvation resistance and longevity 

and phospholipids are abundant in organisms with higher fecundity. Starvation selected 

females are found to have higher starvation survival and lower early fecundity. Did 

starvation selected females have more triglycerides in somal cells and less phospholipids 

in germ line cells? Female flies were dissected into two parts: body (no ovaries) and 

ovaries. In Figure 1a, starvation selected females had more triglycerides in their body 

compared to control females (F1, 20=20.35, P<0.001). In addition, selected females had 

more triglycerides in their body and ovaries after 36 hours of starvation. On the contrary, 

SC females had more phospholipids in their bodies (Fig. 1b, P<0.0001). There was no 

phospholipid difference in ovaries or body cells even after 36 hours of starvation. Our 

results showed that starvation selected females had more triglycerides in their bodies 

before and after starvation compared to control females. Also, the ST females didn’t even 

show a decrease in their triglycerides after starvation. SC females had lower triglycerides 

contrasted to ST individuals in soma and triglycerides in SC decreased after 36 hours of 

starvation. ST females had more triglycerides in their ovaries after 36 hours of starvation. 

Starvation resistant flies had more triglycerides in somatic tissues which seems to confer 

or contribute to some level of resist to famine.  

SC females had more phospholipids in their bodies but not in their ovaries. However, 

ST females didn’t demonstrate lower phospholipids in their ovaries. After starvation, both 

SC and ST females’ phospholipid levels had decreased in their somatic tissues.     

 

(2) Soluble Protein 

A higher proportion of triglycerides might be correlated to weight in affected flies. 

High levels of triglycerides in ST females may be affecting their body weight because ST 

females are heavier than SC females. Therefore, we measured protein levels in order to 

examine how protein content compares to lipid content. For both SC and ST females, we 

used the exact same treatment (body-no-ovary and ovary; unstarved or after 36 hours of 
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starvation), as in the triglyceride and phospholipids assay, to extract proteins for 

determination of protein levels. 

We measured these individuals’ soluble protein mass to see if it positively correlated 

with triglyceride levels. The protein content was also measured from two different tissue 

sections: body with no ovaries and ovaries. In figure 2 that data shows that we didn’t 

observe any difference between SC and ST females with respect to body or ovary protein 

levels (P= 0.1693). However, there was higher protein content in body tissues compared 

to ovaries in both populations (F1, 28=28.47, P<0.001). ST females having a higher 

proportion of triglycerides did not have correlating protein levels. This leads to the idea 

that a higher concentration of triglycerides in ST females might not be affected by weight 

alone.    

 

(3) Orb mutant evaluation 

Another idea to consider is that reproduction cost may decrease starvation resistance 

or longevity in these flies. The cost of reproduction in D. melanogaster is associated with 

egg production. Mutations in the orb gene (Lantz et al. 1992) are characterized by female 

sterility resulting from a failure in oocyte maturation at a previtellogenic oocyte stage. 

Orb mutants have been found to have higher starvation resistance (Salmon et al., 2001), 

but they can not eliminate the inbreeding depression. We hypothesized that orb mutants 

have more triglycerides and less phospholipids relative to TM3/Orb individuals. If 

reproduction cost expends a significant amount of energy from females, it would be 

valuable to test the stress resistance and differential lipid distribution by using female 

mutants without ovaries. The Orb line in this study has been backcrossed to wild type for 

9 generations to eliminate or reduce the inbreeding depression. The ovaries in TM3/Orb 

females were removed and compared to those of the Orb female mutants. Table 1 shows 

the average starvation survival time. The Orb mutant females were found to live longer 

under starvation compared to TM3/Orb individuals. This result supported the idea that 

decreasing the reproduction cost can extend starvation resistance. We also measured and 

compared the levels of triglyceride and phospholipids between Orb mutants and TM3/ 

Orb individuals (the ovaries of TM3/Orb female were also removed). In figure 3, our 

results showed that Orb mutant females had more triglycerides than TM3/Orb females 
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(F1, 16=8.62, P=0.0188). This confirmed the notion that triglyceride abundance play an 

important role in starvation resistance. We didn’t see any enhanced phospholipid 

abundance in TM3/Orb flies (F1, 13=0.96, P=0.3461), but it may just be that the ovaries of 

TM3/Orb females were removed.   

 

(4) Enzyme activity 

IDH did not show any difference in enzymatic activity without starvation and with 

36 hours of starvation, but ST females had lower G-6P activity after 36 hours of 

starvation. Enzyme activities strongly paralleled profiles of triglyceride accumulation 

during adulthood. If ST females had more triglycerides, they might have relatively high 

enzyme activities or they might be reduced when flies are exposed to starvation. IDH and 

G-6-PDH activities were measured in SC and ST females that had not been starved or 

after 36 hours of starvation. There was no difference for IDH (F3, 20=0.64, P=0.6003) but 

ST females had increased G-6-PDH activity after exposure to 36 hours of starvation (F1, 

7=3.98, P=0.05) (Fig. 5 a & b).     
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Discussion 

 

(1) Physiology of starvation resistance: theoretical prediction and empirical 

evidence 

 

In this study, the triglyceride concentration was observed to be higher in the somatic 

tissue of starvation selected females. Even after 36 hours of starvation, ST females didn’t 

show any decrease in triglycerides. However, SC females showed decreased triglycerides 

in somatic cells after starvation. This result was similar to those of Wang et al (2007) who 

used whole fly extracts and demonstrated that ST flies didn’t show decreased 

triglycerides after starvation but SC females did have lower amounts of triglycerides. In 

our study, we found that the decrease in triglycerides in control lines was from somatic 

tissues.  

. Rion and Kawecki (2007) proposed three ways by which starvation resistant flies 

can survive famine: (1) increasing lipids reserves; (2) reducing the rate at which the 

reserves are used under starvation conditions; (3) lowering the minimal level of body 

energy content which allows survival. Our data suggested fairly robustly that the 

adaptations of ST females matched those laid out in the first two conditions mentioned 

above. In contrast, controls had less triglyceride reserves in somatic cells and consumed 

lipids faster than resistant flies. Our results helped explain the physiological mechanisms 

for starvation resistance in flies. 

    

(2) Does trade-off between triglyceride and phospholipids accumulation in 

starvation selected lines and control lines occur 

 

We hypothesized that ST females might have higher triglycerides and lower 

phospholipids (related to egg development) since starvation resistant females have greater 

stored energy and lower early fecundity. Looking back to the triglyceride and 

phospholipid results in somatic tissues and ovaries, ST females had higher triglycerides 

and lower phospholipids in somatic cells while SC females had less triglycerides and 

higher phospholipids in somatic cells. This indicates that there is trade-off between 
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triglyceride and phospholipid accumulation in starvation resistance. We didn’t observe 

that ST females had less phospholipids relative to SC females. In fact, this result is not 

contradictory to lower early fecundity. In Wang et al. (2007), ST females were found to 

have lower early fecundity but they had more oocytes in their ovaries. In addition to ST 

females holding more oocytes, they do not lay them in their early life. This may explain 

why there is no difference in phospholipids in ovaries between ST and SC females. On 

the contrary, phospholipids were more abundant in somatic cells in SC females. 

Phospholipids are mainly found in cell membranes and lipoproteins, so SC females might 

have more phospholipid metabolism in somatic tissues.  

After 36 hours of starvation, phospholipids in the soma in both SC and ST females 

decrease. Phospholipids have two fatty acids covalently bound to a glycerol or 

sphingosine backbone plus a phosphodiester bond linking a polar group to the molecule. 

Essentially, a phosphate group has replaced one fatty acid of a triglyceride. Triglycerides 

have three fatty acids hooked to a glycerol molecule. Energy is densely packed into these 

molecules due to their structure and hydrophobicity making them ideal for energy storage. 

Under starvation conditions, phospholipids in the soma might be the first resources 

broken down in surviving flies. However, lipid metabolism under starvation may be more 

complex than we think.    

 

(3) Insights derived from the investigation of lipid synthesizing enzyme activities  

 

A reduction in respiration rate might be a correlated response to selection for female 

starvation resistance. However, the laboratory selection experiment evidence for an 

association between reduced metabolic rate and stress resistance is not consistent. 

Hoffmann and Parson (1989) found that desiccation resistance was correlated with 

reduced metabolic rate independent of body size. Harshman and Schmid (1998) found 

that there was no association between starvation resistance and respiration rate, but they 

found that metabolism enzyme activities decreased in response to starvation in control 

line females. Harshman et al. (1999) found that the specific metabolic rate was lower in 

starvation selected lines and enzyme activities changed in response to selection.     

The association between genetic variation for metabolic enzyme activity and lipid 
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storage in D. melanogaster has been found in some studies. The second chromosome 

replacement lines from Pennsylvania and California populations revealed an association 

between triacylgycerol abundance and G-6PDH (Clark and Keith, 1988; Clark, 1989). 

G-6PDH exists in various pathways involved in the production of NADPH, a cofactor 

required for reductive biosynthesis of fatty acids. 

The ST females in this study were found to maintain stable triglycerides in somal 

cells after 36 hours of starvation. We further compared the triglyceride synthesis enzyme 

activity under unstarved and starved conditions. The activity of glucose-6-phosphate 

dehydrogenase (G-6PDH) was found to be lower in ST females after 36 hours of 

starvation while SC females still had similar activity. This implied that ST females may 

slow down their lipid metabolism under stressful environmental conditions which 

corresponds to the stable triglyceride levels in ST females after 36 hours of starvation. 

However, the details of the biochemical pathways leading to this adaptation are still 

unknown.       

      

(4) The relationship between avoiding reproduction cost and increasing starvation 

resistance 

Physiological reproduction costs are a particularly interesting area for study because 

the costs can be quantified and compared between disparate activities and functions 

(Sibly and Calow 1989; Rose and Bradley, 1998). It is a corollary of the cost of 

reproduction hypothesis that reproduction should be decreased with selection for 

increased adult survival. This result is indeed often observed (e.g. Luckinbill et al. 1984; 

Rose and Bradley1998), but not always (Partridge and Fowler 1992; Leroi et al. 1994). 

Our main goal here is to use the Drosophila system in which increased adult 

survival is associated with decreased early reproduction under the evolutionarily 

appropriate conditions. We found that Orb female mutants had higher average starvation 

resistance than heterozygous orb females (TM3/Orb). It is undoubtedly suggested that 

reduced reproduction can raise starvation survival. In addition, Orb females mutants had 

more triglycerides in their bodies and similar amounts of phospholipids compared to 

TM3/Orb females whose ovaries were removed. Although, we didn’t find any difference 

in phospholipid abundance in SC and ST ovaries, the Orb mutants and TM3/Orb females 
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somehow indirectly showed that phospholipids are more abundance during active 

reproduction.   

The differential lipid distribution conforms to the Y model of resource allocation in 

either survival or reproduction. When flies were selected in starvation resistance, female 

flies responded by reducing early age reproduction in favor of survival under starvation 

conditions. Starvation selected females store more triglycerides and lower phospholipids 

levels in their bodies relative to control females. The plausible explanation is that 

starvation resistant females convert fatty acids into triglycerides instead of phospholipids 

since triglycerides are main storage lipids.  

 

Harbison et al. (2004) identified 13 significantl loci contributing to starvation 

resistance. These loci included genes involved in oogenesis, metabolism and feeding 

behavior. This indicates that changes in metabolism, reproduction feeding behavior and 

resource allocation all contribute to improved starvation resistance. A recent study 

(Nuzhdin et al., 2007) contributed to the understanding of the genetics of direct and 

indirect starvation selection responses. The group estimated that there are approximate 

allele frequency differences of up to 40% between selected and control lines contributed 

to the selection response. Those candidate genes include some that are involved in 

metabolism, heat shock protein genes, and insulin-like growth factors. This study has 

proven that physiological evidence also supports the effects of associated genes on 

starvation resistance. Drosophila offers a unique opportunity for a comprehensive 

understanding and integration of the variety of aspects of functional and evolutionary 

response to starvation stress. In the future, the increase in reliability and number of 

molecular tools can help us to expand the studies of nutritional stress. Also, information 

garnered from Drosophila studies may help elucidate similar conserved physiological and 

cellular processes in other organisms, such as yeast, nematodes and mammals.  
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Table 1 
 
The average of starvation survival time (±SEM) in Orb female mutants and TM3/Orb 
females. 
 
Genotype Starvation survival time (hours) 
Orb/Orb 100.2±1.85  
TM3/Orb 61.02±5.84 
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Figure 1  

 

(a) Mean (±SEM) triglycerides per female of SC and ST lines in body-no-ovary and 

ovary in unstarved or 36 hours starved flies. 

 

(b) Mean (±SEM) phospholipids per female of SC and ST lines in body-no-ovary and 

ovary in unstarved or 36 hours starved flies. 

   

SC-Starvation control; ST-starvation selection 

An asterisk (*) indicates significant difference 
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Figure 2 

Mean (±SEM) soluble protein per female of SC and ST lines in body-no-ovary and ovary 

at unstarved or 36 hours starved stages. 

   

SC-Starvation control; ST-starvation selection 
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Figure 3 

The average (±SEM) of Triglyceride and phospholipids concentrations in TM3/Orb 

females and Orb mutant females. The ovaries of TM3/Orb females were removed. Orb 

mutants had more triglycerides and there was no different in their phospholipids.    

 

An asterisk (*) indicates a significant difference 
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Figure 4 

 

(a) The average (±SEM) activity of NADP+ -isocitrate dehydrogenase (IDH) in SC and 

ST lines at unstarved or 36 hours starved stages.  

 

(b) The average (±SEM) activity of glucose-6-phosphate dehydrogenase (G-6PDH) in 

SC and ST lines at unstarved or 36 hours starved stages. 

 

An asterisk (*) indicates a significant difference 
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