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 Human immunodeficiency virus type 1 (HIV-1) clade C strain is the fastest 

spreading HIV-1 strain globally, especially in Africa. It has been decades since the 

acquired immune deficiency syndrome (AIDS) pandemic first started. However, an 

effective anti-HIV-1 vaccine is not yet available, which is partly due to the highly 

variable nature of HIV-1 envelope gene and the absence of a suitable animal model. 

Strengthening of the understanding of envelope evolution during disease progression will 

contribute significantly towards future anti-HIV-1 treatment and preventions.      

Non-human primates have been an essential animal model for many biomedical 

research areas. Using simian-human immunodeficiency virus (SHIV) expressing the 

HIV-1 clade C V1-V5 envelope regions from Zambia and infecting rhesus macaque, we 

demonstrated close genetic evolution of the HIV-1 envelope in both non-human primates 

and patient during disease progression. Utilizing this animal system, we further examined 

the evolution of the biological properties of HIV-1 envelope and its association with 

disease progression. In addition, we applied next generation sequencing technology to 

analyze the genetic evolution of HIV-1 envelope in a different non-human primate, 

pigtailed macaque, which was infected with a closely related SHIV strain. Our analysis 



 

 

showed that HIV-1 envelope underwent similar genetic evolution through the disease 

course in three different primate species; the human host and two non-human primate 

species.        

In summary, our studies have validated the relevance of SHIV infected non-

human primates as the ideal animal model for HIV-1 research. In addition, we have also 

chronicled the changes in biological characteristics of the HIV-1 envelope through 

disease progression. Thus, our results underscore the dynamic evolutionary relationships 

between the intrinsic properties of the HIV-1 envelopes, their evolution and host immune 

response. Findings from this study may contribute to the eventual resolution of the AIDS 

pandemic and our knowledge of the roles that HIV-1 envelope plays during disease 

progression.   
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Chapter 1 

Introduction  

A better understanding of the human immunodeficiency virus type 1 (HIV-1) 

envelope evolution during disease progression is critical to the development of effective 

anti-HIV-1 vaccines and treatments. However, the lack of suitable animal models and 

variation in methodologies has been the major hindrance to achieving this goal. The aim 

of this dissertation is to address these issues by focusing on the evolution of HIV-1 clade 

C V1-V5 envelope regions during disease progression. We studied the simian-human 

immunodeficiency virus (SHIV) infection of non-human primates as the animal model, in 

order to focus on the genetic and biological functions variations of the HIV-1 envelope 

through the development of acquired immune deficiency syndrome (AIDS). 

This dissertation is separated into five chapters. Chapter one includes the 

literature review that is categorized into five sections. These sections will provide 

fundamental information ranging from the history and epidemiology of HIV-1 to the 

various non-human primate models currently available for HIV-1 research. Through 

these reviews, the readers will be able to better comprehend the concept of our studies. 

From chapter two to four, the research data and results of this dissertation will be 

presented as published in their respective journals. In chapter two, we will show the 

similarities in the genetic evolution of HIV-1 envelope in an SHIV infected rhesus 

macaque with HIV-1 infected patient using bioinformatics analysis. Thereby, it will 

demonstrate the relevance of our animal model for HIV-1 research. In chapter three, we 

will examine and chronicle the changes in the biological characteristics of HIV-1 
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envelope during disease progression by using the same animal model as in chapter two. 

We will establish the association of various biological functions of HIV-1 envelope 

within the context of disease progression. In chapter four, we further substantiate our 

previous findings by analyzing the genetic evolution of HIV-1 envelope in a different 

non-human primate species (pigtailed macaque) infected with a closely related SHIV. 

This dissertation will be completed with the concluding remarks of our studies in chapter 

five.   

Literature review 

History and epidemiology of HIV-1 

 In 1981, there was a sudden increase in reports of rare opportunistic infections 

such as Pneumocystis carinii pneumonia (PCP) and the AIDS-associated malignancy 

Kaposi’s sarcoma (KS) among young homosexual patients in California and New York 

(4, 179). Within the next few years, similar cases were also increasingly observed among 

other groups such as the intravenous drug users, heterosexual women and possibly the 

first recorded case of vertical transmission of HIV-1 from mother to child (1, 5, 252). 

These observations were not unique to the United States, but were reported around the 

world at a similar time (101, 319). Although the patients came from diverse backgrounds, 

they were all suffering from immune deficiency symptoms that seemed to be acquired 

rather than congenital. Hence, it gave rise to the term Acquired Immune Deficiency 

Syndrome (AIDS). Based on the information gathered from various cases, the scientific 

community at that time began to suspect that an unknown agent was behind the AIDS 

epidemic. More importantly, they realized that this unidentified agent is infectious and 
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blood or sexual contact with an AIDS patient was recognized as possible routes of 

transmission. 

 The first major milestone in HIV-1 research occurred in 1983. Dr Luc Montagnier 

and colleagues at the Institute Pasteur in France successfully isolated a new human 

retrovirus, lymphadenopathy-associated virus (LAV), from a homosexual patient with 

multiple lymphadenopathies (23, 263). Shortly thereafter, a new type of human T-

lymphotropic viruses (HTLV), HTLV-IIIB, was discovered by Dr Robert C. Gallo and 

his colleagues using the samples obtained from Dr Montagnier’s group (120, 122). It was 

later determined that both LAV and HTLV-IIIB are in fact HIV-1. More importantly, Dr 

Gallo’s group first proposed and demonstrated HIV-1 as the causative agent for AIDS 

(121, 300, 321, 331, 341). These discoveries set the stage for the first commercially 

available diagnostic blood test for HIV-1 in 1984, which was credited for preventing 

HIV-1 transmission through blood donations. This was closely followed by other 

breakthroughs such as the cloning and sequencing of the full length HIV-1 genome (306, 

402).  

Towards the end of 1980s, azidothymidine (AZT) clearly demonstrated its 

effectiveness to increase the survival rate of AIDS patients in a double-blind clinical trial, 

and became the first Food and Drug Administration (FDA) approved antiretroviral drug 

available (110). Since then, many new drugs targeting various parts of the HIV-1 life 

cycle have been developed. Nonetheless, the severe toxic side effects, high cost of these 

drugs and the development of drug resistant viruses necessitate the development of anti-

HIV-1 vaccine. However, an efficacious anti-HIV-1 vaccine has proven to be more 

difficult to achieve despite decades of research. Concurrently, human immunodeficiency 
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virus type 2 (HIV-2) and simian immunodeficiency virus (SIV) were discovered in 

African AIDS patients and macaque, respectively (75, 82). All these milestones 

established the foundation for the current HIV-1 research in general and this dissertation 

in particular.  

HIV-1 is divided into several subgroups (M, N, O and P) based on phylogenetic 

analysis of the complete viral genome, with group M representing the major pandemic 

strain. The origin of HIV-1 remained uncertain for years until recent studies showed that 

HIV-1 were most likely derived from SIV of chimpanzees (SIVcpz) and possibly gorillas 

(SIVgor) (126, 393). However, the source of these SIVs is still controversial. Sequence 

analysis of SIVcpz revealed that it is comprised of several other SIVs (19). This suggests 

that chimpanzees might have come in contact and been infected with multiple SIVs in the 

past, potentially during the hunting of monkeys (19, 372). Similar to HIV-1, HIV-2 was 

reported to have originated from SIV found in sooty mangabeys (SIVsmm) (223). 

However, due to its relatively low pathogenicity, HIV-2 plays a minor role in this AIDS 

pandemic and infections are confined mainly to West Africa (88, 318).       

The question of how this cross-species transmission of SIV into human occurs has 

fueled numerous theories. However, it is widely accepted that traditional hunting of non-

human primates in Africa may have initiated the first zoonotic infection of SIVcpz in 

humans. Subsequently, viral adaption and evolution over time in the human host resulted 

in the birth of modern HIV-1. The urbanization of Africa and rapid globalization over the 

past 100 years may have propelled the spread of HIV-1 around the world and started the 

modern AIDS pandemic (68). By 2011, there were more than 33 million people living 

with HIV-1 worldwide according to UNAIDS (3). Sadly, 330 000 children were newly 
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infected with HIV-1 in 2011 alone. Nearly 70% of the HIV-1 patients lived in sub-

Saharan Africa regions. Some countries such as Botswana, Lesotho and Swaziland have a 

HIV-1 prevalence rate of ~25% among their adults (3). This high HIV-1 prevalence rate 

created not only economic issues for these countries, but also a tremendous impact on 

their social structure with ~15 million orphans due to parents being lost to AIDS (2). 

Through monumental efforts invested in education, behavioral changes, availability of 

condoms and antiretroviral drugs, the number of AIDS-related deaths each year has been 

kept stable at around 2 million (3). Critically, increased accessibility of antiretroviral 

drugs for pregnant women have helped to decrease mother to child transmissions (3). 

Despite all these efforts, there are still over 2.5 million new HIV-1 infection cases each 

year (3). A practical and efficacious anti-HIV-1 vaccine is sorely needed to control this 

AIDS pandemic.    

HIV-1 genome and structure  

HIV-1 is a lentivirus member of the retroviridae family. It is a near spherical 

enveloped virus packaged with two single-stranded positive sense viral RNA (vRNA). 

The HIV-1 genome is ~9.5 kb nucleotides in length, with overlapping reading frames 

encoding multiple viral proteins (Fig 1A). The majority of the HIV-1 genome encodes its 

structural proteins group-specific antigen (Gag), envelope (Env), as well as polymerase 

(Pol) which encompasses three critical viral enzymes; protease (PR), reverse transcriptase 

(RT) and integrase (IN). Some of these proteins are expressed as precursor polypeptides 

before processing by PR into mature proteins. The viral genome also encodes several 

accessory proteins such as the viral infectivity factor (Vif), viral protein R (Vpr), viral 

protein U (Vpu) and negative factor (Nef) (Fig 1A). Although the accessory proteins are 
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considered non-essential for in-vitro cultures, they play an important role for in-vivo 

pathogenesis. The 5’ and 3’ ends of viral genome are flanked by identical non-coding 

long terminal repeats (LTR) (Fig 1A). The LTR contains regulatory elements such as 

transcription factors binding sites (TFBS), TATAA box and trans-activation response 

element (TAR) that are crucial for viral replication and transcription. Mutations within 

the TFBS can affect the viral replicative fitness in different cell types (55, 290, 395). 

Also, interaction of the viral transcriptional transactivator (Tat) with the secondary RNA 

structure formed by TAR is essential for replication and enhancing viral gene 

transcriptions (14, 346).  

 HIV-1 virions are approximately ~145 nm in diameter with an outer membrane 

consist of the host cell phospholipid bilayer derived during viral budding (39). The virion 

surface is embedded with the viral envelope (Env) spikes. Each spike is composed with 

homotrimers of the envelope surface subunit gp120 (SU) and transmembrane domain 

gp41 (TM) linked by non-covalent bonds (132, 246). The SU is exposed on the virion 

surface, while TM spans the phospholipid bilayer to form a stalk that connects the SU to 

the virion. Studies have shown that there are between 7 to 14 envelope spikes on the 

virion surface (66, 444). However, data from a portion of this dissertation suggests that 

the level of virus-associated SU content changes depending on disease progression and 

might exceed the maximum level proposed above. In addition to the viral envelope, many 

host cell surface proteins are also incorporated onto the virion surface during viral 

budding (67, 281).  

Beneath the phospholipid bilayer lays the core shell, composed of the matrix 

protein (MA) (432). Located at the center of this core shell is the cone shaped 
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nucleocapsid formed by the capsid protein (CA). Importantly, HIV-1 virion buds from 

the host cell with an immature spherical core, only after maturation does it develop a 

cone shaped nucleocapsid (87). Assembled within this nucleocapsid are the two single-

stranded positive sense vRNA that are tightly bound by the nucleocapsid protein (NC). 

Near the 5’ end of these vRNA are transfer RNA lysine (tRNA
lys

) molecules, derived 

from the host cell, acting as the primer for reverse transcription (306). Several viral 

proteins such as Vpr, reverse transcriptase (RT) and integrase (IN) are also located in the 

nucleocapsid. Moreover, a number of studies have demonstrated that host cellular 

proteins can also be packaged into the virion during the viral assembly process (67, 406). 

 Similar to HIV-1, SIV is also a lentivirus member of the retroviridae family. SIV 

shares similar genomic and virion structures as HIV-1 with a few exceptions (Fig 1B). 

One of these differences lies within the LTR. SIV contains an average of one nuclear 

factor kappa beta (NF-kB) and four specificity protein 1 (Sp1) TFBS, while HIV-1 has on 

average two NF-kB and three Sp1 TFBS. Variations in the number of TFBS were 

reported to affect viral pathogenesis (94, 107). More importantly, SIV encodes the viral 

protein X (Vpx) instead of Vpu that is unique to HIV-1 (Fig 1B). While HIV-1 and SIV 

have evolved naturally, SHIV is a laboratory-generated chimeric virus between SIV and 

HIV-1. To generate SHIV, the HIV-1 genes tat, regulator of expression of viral genes 

(rev), vpu and env are inserted into the pathogenic molecular clone, such as SIVmac239, 

to replace their counterparts (Fig 1C). The resulted SHIV virions are fully functional and 

infectious in non-human primate animal models (240).  

HIV-1 proteins and functions  
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Gag (MA, CA, NC, p2, p1 and p6) 

 The gag gene (Pr55
Gag

) is expressed as a ~55kDa polypeptide precursor that 

consists of the viral proteins MA (p17), CA (p24), p2, NC (p7), p1 and p6. Its main 

function is assembly of the virions. Gag alone can form virus like particles (VLP) in the 

absence of any other viral proteins (91). During maturation shortly after viral budding, 

Gag undergoes proteolytic cleavage by PR into individual proteins. This step was 

reported to occur in a specific order and at different rates for each protein (191, 291). 

Variations in these cleavage events could have detrimental consequences on virus 

infectivity (78, 270). The virion core shell is formed by the MA, which serves multiple 

functions. After translation, MA is myristylated by the host cell enzyme N-myristyl 

transferase and directs the gag polypeptide towards the plasma membrane via its 

membrane binding-domain (M-domain) (41, 287, 340). Several studies have also 

demonstrated that MA interacts with gp41 of the viral envelope to facilitate Env 

incorporation into the virion (168, 426). However, it has no effect on the incorporation of 

Env with short cytoplasmic tails (113). Additionally, MA contains nuclear localization 

signals, suggesting that it may be involved in the import of the viral pre-integration 

complex (PIC) into the nucleus and export of viral RNA out of the nucleus (43, 103).  

The cleavage of the MA-p2 polypeptide by PR releases the CA, which is the main 

component of the nucleocapsid. CA mainly functions in Gag-Gag interaction as well as 

incorporation of the cellular protein cyclophilin A, which is necessary for viral 

replication (35, 124, 125). Similar to CA, NC also participates in Gag-Gag interaction 

and virus assembly through its interaction domain (I-domain) (287). NC is a hydrophilic 

protein that is indispensable for packaging of vRNA into the virion. It binds to the 
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packaging sequence (Ψ site) within the vRNA, located between the 5’ LTR and gag start 

codon, via its zinc-finger domain (193, 325, 342). NC also promotes the binding of 

tRNA
Lys

 to the primer binding site (PBS) of the vRNA and enhances the reverse 

transcription process (229).  

Lastly, the budding of virion from the host cell occurred through p6 via the 

endosomal sorting complex required for transport (ESCRT) pathway (171, 390, 413). In 

addition, p6 is required for the incorporation of Vpr into the virion (202). Unlike other 

proteins within the Gag polypeptide, the function of the smaller peptides p2 and p1 are 

not well understood, but may be involved in the regulation of Gag polypeptide cleavage 

by PR (409). 

Pol (PR, RT and IN) 

 The pol gene encodes three pivotal viral enzymes as described earlier. The Pol 

proteins are first translated as Gag-Pol precursor polypeptides via a reading frame shift at 

the C-terminus of gag (184). It was suggested that this Gag-Pol polypeptide dimerized to 

form homo-dimeric PR, which was then released by autolytic cleavage (90, 415). The 

function of PR is solely to cleave the Gag and Gag-Pol polypeptides into their 

corresponding individual viral proteins. This cleavage step is critical for maturation and 

functionality of the virion. PR can recognize several cleavage sites and its specificity can 

be affected by the primary sequence as well as structure of the substrate (292). The 

detailed structure of PR has been resolved and describe elsewhere (273, 352).  

One of the viral proteins released after cleavage of Gag-Pol polypeptide is RT, 

which is a hallmark of retroviruses. RT functions as the RNA-dependent DNA 
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polymerase and RNAse H. Its RNA-dependent DNA polymerase activity is responsible 

for the transcription of vRNA into double-stranded linear viral DNA (vDNA) upon viral 

entry into the cytoplasm (21, 330, 374). Whereas, it’s RNAse H activity degrades the 

vRNA template immediately after transcription (336). This entire process of copying 

vRNA into vDNA is known as reverse transcription (77). Briefly, RT utilizes the tRNA
lys

 

bound to the PBS of vRNA as a primer to reverse transcript the viral 5’ LTR into a short 

minus-strand vDNA. Simultaneously, the RNAse activity of RT degrades the transcribed 

vRNA. Together with the RT complex, this short minus-strand vDNA was transferred to 

the 3’ LTR of vRNA for continuation of the reverse transcription. Almost the entire 

vRNA is degraded after the full minus-strand vDNA is synthesized, except for the 

polypurine tract (PPT) within the 3’ LTR that are resistant to RNAse H activities. RT 

utilizes the PPT as a primer for synthesis of the second plus-strand vDNA to complete the 

reverse transcription process. RT was first produced as a homodimer with two p66 

subunits. However, PR cleaved one of these subunits into p51, generating a heterodimer 

RT with p66 and p51 subunits. The enzymatic activities of RT are possessed by p66, 

while p51 is believed to have a structural role only (167). Detailed RT structure has been 

resolved and described (185). Importantly, the lack of proofreading ability in RT resulted 

in its low fidelity. It has been estimated that 1 in 1700 to 4000 nucleotide was 

misincorporated into the vDNA during reverse transcription (301, 314). Surprisingly, this 

high error rate actually benefits the virus by increasing its genetic diversity, contributing 

to the viral escape from the host immune surveillance (227).  

The pol gene also encodes IN which functions to insert the double stranded linear 

vDNA into the host genome (139). This was accomplished by the DNA cleavage and 
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strand-transfect abilities of IN in the PIC (139). The detailed steps of integration have 

been reviewed (76). Briefly, IN cleaves two bases from the 3’ terminus of vDNA that 

serve as the attachment site for host genome. After entry into the cell nucleus, IN 

facilitates the strand transfer of cleaved vDNA into the target host chromosome. 

Although the integration sites within the host chromosome are believed to be randomly 

selected, some studies suggest that it might occur at a higher frequency in regions with 

open chromatin structure (79). The structure of IN has been resolved and it exists as a 

homodimer with Z-finger domains (46, 105).  

Due to their important roles in the virus life cycle, PR, RT and IN are targets for 

many antiretroviral drugs. For example, ritonavir inhibits the PR, non-nucleoside reverse 

transcriptase inhibitor (NNRTI) and nucleoside reverse transcriptase inhibitor (NRTI) 

inhibits the RT activities. A new class of drug, raltegravir, was recently developed to 

inhibit IN. Different combinations of these drugs constitute the highly active anti-

retroviral therapy (HAART) for AIDS patients. Unfortunately, drug resistant mutants are 

rapidly rising in treated individuals, creating a major issue for anti-HIV-1 therapies (360).    

Accessory proteins (Vif, Vpr/Vpx, Vpu, Nef) 

 HIV-1 encodes several accessory proteins, Vif, Vpu, Vpr and Nef. These proteins 

were once thought to be non-essential for in-vitro viral growth. However, recent studies 

have shown that they are critical for in-vivo viral replication and disease pathogenesis. 

Vif is a small ~23 kDa protein that accumulates within the host cytoplasm after 

translation (141). Several studies have demonstrated that Vif can also be incorporated, 

resulting in an estimated 60 to 100 molecules in the virion during viral assembly (235). It 
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was established that Vif is necessary for viral replication in primary T-cell but not in cell 

lines such as SupT1 (119). Later, it was discovered that the cellular protein, 

apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) can 

inhibit HIV-1 replication in the absence of Vif (351). APOBEC3G is a cytidine 

deaminase with an unclear normal cellular function, but was reported to have a regulatory 

role in microRNAs (170). Alternatively, APOBEC3G could have evolved as a 

specialized cellular anti-viral defense. APOBEC3G restricts the HIV-1 replication by 

deamination of cytidine to uridine in the minus-strand vDNA, causing hypermutations 

within the viral genome. It is the function of Vif to effectively antagonize this negative 

effect of APOBEC3G, by binding and inducing the degradation of APOBEC3G via the 

ubiquitin-proteasome pathway (248, 249, 257, 351). Importantly, the inhibition of 

APOBEC3G by Vif is highly species dependent, such that APOBEC3G from non-human 

primate can only be inhibited by SIV Vif and vice versa for HIV-1 (33). Other members 

of the APOBEC family, such as APOBEC3F, may have similar functions as APOBEC3G 

and can also be inhibited by Vif (234). 

 Vpr is a ~15 kDa protein that is expressed by all HIV-1 and SIV. However, a 

closely related protein, Vpx is only expressed in HIV-2 and certain SIV lineages (Fig 1) 

(117). Vpr/Vpx bears multiple functions and is important for in-vivo pathogenesis. It was 

shown that Vpx is required for disease progression and deletion mutants of Vpr/Vpx 

displayed significantly delayed onset of AIDS (135, 160). One of the functions of Vpr is 

localization of the viral PIC into the nucleus of non-dividing cells such as macrophages 

(299). This ability vastly expands the number of permissive cell types for the virus to 

infect. Vpr was also shown to induce G2 cell cycle arrest by an unknown mechanism 
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(95). Another function of Vpr is inducing T-cell apoptosis, resulting in by-stander T-cell 

death that might contribute to the decrease of CD4
+
 T-cell counts in AIDS patients (37). 

Moreover, a study had linked Vpr to the reduction of antigen presentation by affecting 

the infected dendritic cells maturation and cytokine production (242). Although Vpx 

shares similar functions as Vpr, there are some differences between the two proteins. For 

instance, Vpx cannot induce G2 cell cycle arrest but virus expressing Vpx can establish 

infection of macrophages by overcoming a restriction in reverse transcription (349). A 

study had demonstrated that Vpx can inhibit the anti-viral effect of restriction factor, 

APOBEC3A, in myeloid cells (26). Importantly, a recently discovered dendritic and 

myeloid cell specific HIV-1 restriction factor, SAMHD1, can be antagonized by Vpx 

(217, 218). Given the important role that dendritic cells have as antigen presenting cells, 

overcoming the SAMHD1 restriction allows productive infection by virus expressing 

Vpx and may increase the viral pathogenesis (48).     

 Vpu is a 16 kDa protein unique to HIV-1 and SIVcpz (Fig 1) (210). Vpu is an 

oligomeric type-1 integral membrane protein that is present in the ER, Golgi and plasma 

membranes (282, 398). It has an N-terminus transmembrane domain that was reported to 

form ion-channel on the cell membranes (109). Function of this ion-channel is not clear 

but might be involved in virus release (339). It is known that interferon-α activates 

various antiviral genes in the infected cells, some resulting in the retention of virus 

particle on the cell surface (274). It was discovered that an interferon-α induced protein, 

B cell stromal factor 2 (BST-2), is responsible for this virus retention property (275). 

BST-2 is also known as CD317 or tetherin. Importantly, Vpu can bind and target BST-2 

for degradation, thereby annulling the inhibitory effect of tetherin (182, 275). Vpu can 
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also mediates the down regulation of cell receptor CD4 in the ER (411). This was 

achieved with help from the human beta-transducine repeat containing protein (βTrCP), 

which act as the connector protein between Vpu and the cytoplasmic domain of CD4 

(247). Binding of Vpu to βTrCP and CD4 eventually caused the degradation of CD4 in 

the cytosolic proteasome (28). Some studies also suggest that Vpu might down regulate 

the presentation of major histocompatibility complex class I (MHC-I) and II (MHC-II) 

(175, 197). 

 Nef is a 27 kDa myristolyated protein expressed by all HIV-1 and SIV. Its 

importance in viral pathogenesis was clearly demonstrated when patients infected with 

Nef defective HIV-1, did not progress to AIDS rapidly (89). Nef is known to down 

regulate the expression level of cellular receptor CD4. This occurs through binding to the 

cytoplasmic tail of CD4, internalization via the clathrin coated pits and redirecting them 

to lysosome for degradation (62, 410). There is evidence to suggest that Nef may have a 

similar effect on CCR5 and CXCR4 expression as well (169, 260). By reducing the 

expression level of these cellular receptors, Nef can prevent multiple HIV-1 virions from 

infecting the same cell, which could affect viral replication (198). Additionally, Nef 

decreases the MHC-I expression level on cell surface by redirecting the newly 

synthesized MHC-I to the trans-Golgi network and eventual degradation in the lysosome 

(343). A study has suggested that Nef may have similar effect on MHC-II but the 

mechanism is not clear (337). These down regulations may result in less viral antigen 

presentation to the immune cells, such as CD8
+
 T-cell, thereby protecting the infected 

cells from immune surveillance. However, the detection of escape mutants from CTL 

responses implies that the down regulation of MHC-I or II may not be efficient (144). 
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Interestingly, some studies had implicated Nef in blocking the tetherin activity in a 

species-specific manner. They reported that SIV Nef has the ability to antagonize tetherin 

in non-human primates but not in human. On the other hand, HIV-1 Nef has no such 

functions and human tetherin can only be inhibited by HIV-1 Vpu (187, 437).  

Tat and Rev 

Tat is a ~15 kDa transactivator protein that is synthesized after the mRNA 

splicing of its two exons, located upstream and overlaps with the envelope gene. Tat 

contains two domains that bind to the TAR in vRNA and recruit cellular transcriptional 

machinery (177). Surprisingly, these domains are situated within the exon 1, making 

exon 2 essentially non-functional (213). Moreover, the presence of a nuclear localization 

signal within Tat allows its accumulation within the cell nucleus (155). The main 

function of Tat is to bind to the RNA stem-loop structure of TAR for transcription 

initiation and elongation of the viral transcripts. In the absence of Tat, viral transcripts 

tend to terminate prematurely (190). Also, Tat was reported to affect the expression of 

several cellular genes such as cytokines and MHC (253, 334). Moreover, a number of 

studies have suggested that Tat can be secreted from the infected cell and entered 

adjacent naïve cells, resulting in the induction of apoptosis and cell death (58, 134). 

Together, these functions of Tat may contribute to viral pathogenesis.   

 Rev is a ~19 kDa protein that is encoded by two exons positioned upstream and 

within the envelope gene. Rev primarily served to export the unspliced and singly spiced 

vRNA from the nucleus into cytoplasm. It achieved this function by binding to the Rev 

response element (RRE), located within the envelope gene, which is carried by all 
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unspliced and singly spliced vRNA (243, 245). The interaction domain with RRE has 

been identified as an arginine-rich RNA binding motif positioned in the exon 2 of Rev. 

This RNA binding motif also double as the nuclear localization signal that allows Rev 

entry into the nucleus (386). The C-terminus of Rev also contains a leucine-rich motif 

that functions as the nuclear export signal, allowing export of the Rev-RRE complexes 

(407). Multimerizatiion of Rev onto the RRE is required for activation of this nuclear 

export ability (183, 380). This ability of Rev to nuclear export the unspliced vRNA 

allows the incorporation of full-length viral genome into the nucleocapsid during virion 

assembly. A detailed crystal structure of Rev has been recently resolved (83, 97).  

Envelope 

 Envelope is notably the most studied among all the HIV-1 proteins, due to its 

indispensable functions in multiple aspects of the viral life cycle and in vivo survival. The 

env is translated in the ER as a ~160 kDa precursor glycoprotein known as gp160. During 

its synthesis process, the gp160 is glycosylated, trimerized and later cleaved into gp120 

and gp41 by the cellular enzyme furin (129, 268). As described earlier, gp120 and gp41 

are also designated as the surface (SU) and transmembrane subunit (TM) of the envelope, 

respectively. The SU encompasses the receptor binding domains, while the TM promotes 

viral envelope fusion with the target cell membrane after receptors binding via its fusion 

domain, as well as envelope incorporation into the virion via its cytoplasmic tail as 

described earlier (25, 123, 296, 424). Detailed structure of the HIV-1 envelope has been 

published (246). This review will center on the SU given its dominant role in viral 

pathogenesis and it is the focus of this dissertation.  
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 SU has the greatest genetic diversity amid various HIV-1 strains, whereas TM is 

highly conserved. Based on studies with clade B HIV-1, the distribution of this genetic 

diversity is not uniform in the SU, but is located mainly within its five hyper-variable 

domains, V1 to 5, which are interspersed by five constant regions, C1 to 5. However, data 

from this dissertation suggests that for clade C HIV-1, certain portion of the constant 

regions, such as the N-terminus of C3, might also accommodate higher genetic diversity 

than generally anticipated. Among the variable domains, V1-V2 is the most polymorphic 

and can tolerate extensive deletions, insertions as well as various patterns of N-

glycoslyation sites (211). Studies have demonstrated that V1-V2 can influence viral 

tropism and shield the neutralization sensitive epitopes that lie within the V3 loop from 

host humoral responses (206, 207, 215, 293, 423). Moreover, a study on SIV has shown 

that V1-V2 will undergo structural changes to facilitate the formation of co-receptor 

binding sites for CCR5 or CXCR4, after the viral envelope binds to its primary receptor 

CD4 (61). Others have documented the V3 loop as the main determining factor in viral 

co-receptor usage (178). For instance, mutations in charged residues within V3 are 

associated with switching co-receptor usage (86, 163, 181, 355). Similarly, insertions or 

deletions within V3 can also influence the viral co-receptor usage (441). Together, these 

studies underscored the importance of V1, V2 and V3 on the viral co-receptor usage. 

Additionally, mutations within V2 and V3 can impact the membrane fusion process as 

well (114, 150, 283). Despite the importance of V1, V2 and V3 in co-receptor usage, 

deletion analyses have demonstrated that truncated SU lacking these regions can still bind 

to the primary receptor CD4 (297, 425). Unlike these variable regions, which do not play 

a direct role in CD4 binding, some constant regions within the SU were identified as 
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participating directly in the binding of CD4 (215). Surprisingly, the functions of V4 and 

V5 are relatively less established. Although these two variable regions are not implicated 

in receptor or co-receptor binding, their presence may preserve the structural integrity of 

the envelope, since deletion of V4 may influence processing of the envelope (425).  

 In addition to determining the viral tropism, SU functions as the principal viral 

defense mechanism against the potent host humoral responses. SU achieved this ability 

through masking of its potential neutralization sensitive epitopes from the host immune 

surveillance by camouflaging itself extensively with carbohydrates derived from the 

infected cell. This resulted in a heavily glycosylated envelope protein, with over 50% of 

its molecular weight derived from carbohydrates (133). The addition of carbohydrates to 

protein is known as glycosylation. The HIV-1 envelope is N-glycosylated at the 

consensus sequences NXS or NXT as it traffics through the Golgi apparatus to the cell 

membrane. Amino acid residues that are N-glycosylated are known as potential N-

glycosylation sites (PNGS) and the majority of them are located within the SU. Just like 

the genetic diversity, PNGS are unevenly distributed within the SU and highly variable 

within the V1-V5 region. The hyper-variable nature of the V1-V5 region provided 

additional capital for the envelope to maintain a constantly changing number and pattern 

of PNGS on the virus surface. This pattern of PNGS was proposed to function as a 

“glycan shield” that evolves in response to the host immune surveillance and shields the 

neutralization sensitive epitopes of the envelope from host humoral response (405). 

Evidence supporting this glycan shield theory came from SIV mutants lacking certain 

PNGS in its envelope elicited higher antibody neutralization activity in the infected 

monkeys (309). Moreover, it is well established that changes in the PNGS pattern on the 
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HIV-1 envelope will influence the neutralization susceptibility of the virus (18, 128, 

145). PNGS is also implicated in the conformation and structural integrity of the HIV-1 

envelope (224, 422).  

Lastly, the HIV-1 envelope has been shown to down regulate the CD4 expression 

level by binding to and retaining newly synthesized CD4 in the ER (220). Envelope may 

also induce cytotoxicity in infected cells by inducing cytokine production (431). 

Importantly, HIV-1 envelope can also induce apoptosis of infected CD4
+
 T cells (222). 

This may contribute to by-stander T cell death and overall decline of CD4
+
 T-cell counts 

in AIDS patients. Given all these critical roles, tremendous effort has been invested in 

vaccine as well as therapeutic strategies targeting the HIV-1 envelope. There are 

currently only two classes of drugs available against the HIV-1 envelope; maraviroc that 

antagonizes the co-receptor CCR5 and enfuvirtide that inhibits the viral envelope from 

fusing to the cell membrane (99, 216).     

Pathogenesis of HIV-1 

Life cycle of HIV-1 

 In order to better understand HIV-1 pathogenesis, it is important to briefly review 

the HIV-1 replicative cycle, which is separated into several steps. The first step is the 

binding of viral Env to their primary receptor, CD4 molecules, expressed on the host cell 

surface. Binding of primary receptor triggers a conformational change to the SU and 

exposes the viral co-receptor binding sites (140). The binding of viral Env to its co-

receptor, either the CCR5 or CXCR4 chemokine receptor depending on the tropism of the 

respective virus strain, activates additional conformational changes in the TM that 
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permits fusion of the virus-host cell membrane and releases the viral core into the 

cytoplasm (258). Subsequently, the vRNA will undergo reverse transcription to complete 

the synthesis of the double stranded viral DNA and follow by the uncoating of viral core. 

Formation of the PIC will transport the newly synthesized vDNA into the nucleus, which 

will then integrate into the host chromosome to form the provirus. This process can be 

completed within 36-48 hrs post-infection (400). Many host proteins are involved in 

these early replication steps (115). For example, cyclophilin A is necessary for the 

uncoating of viral core (231).   

  The generation of new virions begins with transcription of the provirus and 

translation of viral genes using the host cellular machineries. The Tat protein enhances 

the transcription of viral genes by binding to TAR as described earlier. This process yield 

full-length viral transcripts, some are alternatively spliced by the cellular mRNA splicing 

machineries into smaller viral transcripts. As described earlier, some viral proteins are 

encoded in separate exons. The viral proteins Tat, Rev and Nef are translated from 

doubly spliced viral mRNA; while Vpu, Vpr, Vif and Env are translated from singly 

spliced viral mRNA. The major structural protein Gag-Pol is translated directly from the 

unspliced full-length viral transcript. Since the splice sites of HIV-1 are not efficiently 

utilized, some full-length unspliced viral mRNA will be retained and serve as the new 

viral template. The unspliced and multiply spliced viral mRNA are then transported by 

Rev into the cytoplasm for translation. The viral structural proteins, such as the Gag-Pol 

precursor polypeptide, are produced first and are the most abundant. These structural 

proteins are trafficked to the site of assembly, namely the plasma membrane, and initiate 

virion assembly (280). The new viral templates are incorporated into the nucleocapsid. 
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Finally, the fully assembled virion buds from the host cell as an immature and 

noninfectious virion via the ESCRT pathway as described earlier (390). The subsequent 

proteolytic cleavage of Gag by PR triggers the morphological maturation of the HIV-1 

and form the infectious virion.   

Transmission  

 Transmission is the first step in HIV-1 pathogenesis and can occur by multiple 

routes. HIV-1 can be transmitted by exposure to blood or blood-related products from 

infected individuals. Intravenous drug users have the highest risk for infection by this 

transmission route. Over 50% of intravenous drug users are infected with HIV-1 in 

developing countries, for example Estonia and Mauritius. Even in developed countries, 

Canada for example, HIV-1 prevalence rate is near 6% among intravenous drug users (3). 

Nearly 80% of HIV-1 transmissions in adults are due to unprotected sexual contact with 

infected individuals via mucosal routes, such as rectal or vagina (2). The mucosal route is 

the most common among homosexual and heterosexual couples. It was estimated that 

homosexual couples have 10 fold higher infections risk than heterosexual couples, which 

could be due to physiological differences between the rectum and vagina (375). Since 

these two routes involve transmission of the virus between non-mother-child relationship 

individuals, they are classified as horizontal transmission. HIV-1 can also be transmitted 

vertically from the mother to her child, which can occur during pregnancy, delivery or 

breast-feeding. Nearly 0.4 million children were infected by HIV-1 through mother-to-

child transmission in 2009 (2). Although the exact mechanism is unclear, the fetus 

appears to be infected by the virus that crosses the placenta barrier in-utero or the 

newborn may come in contact with infected maternal blood during delivery or via breast 
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milk after delivery. It is known that HIV-1 infected cells and cell-free viruses are present 

in breast milk with vRNA concentrations ranging from 240 to over 900 copies per ml 

(228). This highlights the importance to stop breast-feeding in HIV-1 positive mothers. 

The use of formula for newborns together with administration of antiretroviral therapy 

drugs to HIV-1 infected pregnant women is highly effective in preventing perinatal 

transmission; optimistically, it is anticipated that mother-to-child transmission might be 

eliminated in the near future (3, 60, 368).  

Despite these various transmission routes, HIV-1 has low transmissibility. For 

example, successful heterosexual transmission only occurs after numerous extensive 

exposures to the virus, as shown by studies on commercial sex workers (100, 112, 404). 

Also, only an estimated 30% of the children born to HIV-1 positive mothers are infected 

in the absence of antiretroviral therapy (10, 85). Some data even implies that exposure to 

infected blood products may not result in HIV-1 infection (209). Together, these reports 

suggest that HIV-1 has a low efficiency in establishing infection during transmission. 

Many factors such as the virus concentration of the donor, integrity of the mucosal 

membrane, chronic inflammation, defective viral genes and other host genetic factors 

could all determine the transmissibility of HIV-1. Studies show that individuals with a 

homozygous 32 nucleotide deletion in their CCR5 gene display remarkable resistance to 

HIV-1 infection (236). The importance of this gene mutation in HIV-1 transmissibility is 

best demonstrated when a HIV-1 patient, who has high viral load during chemotherapy, 

maintained an undetectable viral load without antiretroviral therapy after receiving stem-

cell transplant from a CCR5-delta-32 donor (176). This mutation is present in 

approxmiately 15% of the Caucasian population but rare in Africans and Asians (328).  
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Even after the initial transmission event, HIV-1 still has a number of significant 

barriers towards establishing an infection. Following an initial infection, mucosal 

transmission is usually established by a small founder population, which suggests a 

bottleneck exists for the invading HIV-1 (6, 143, 196, 326). Moreover, viruses with 

certain phenotypes, such as fewer PNGS and neutralization resistance towards the 

maternal antibodies are preferentially selected to cross this bottleneck (93, 417, 420). 

Importantly, this genetic bottleneck also occurs during SIV mucosal transmission models 

and is correlated with low-dose, but not high-dose inoculum, which mimics transmission 

in humans (262, 350, 364). The fact that this bottleneck was not observed in blood-borne 

transmission suggests the mucosal components, such as cell types and membranes, may 

be accountable for the genetic bottleneck (22). There are still controversies surrounding 

the transmitted virus phenotypes with no definitive conclusions. Many groups, including 

our own, are actively investigating this issue.  

Infection 

After the transmission event, viruses that had overcome the mucosal barriers will 

come in contact with their target cells and commence the infection cycle. Importantly, 

regardless of the transmission route, HIV-1 tends to converge on the gut-associated 

lymphoid tissues (GALT) of the gastrointestinal tract as it contains the majority of the 

CD4
+
 lymphocyte that are susceptible to HIV-1 infection (269). Targeting the gut tissue 

was reportedly due to the specific affinity of HIV-1 gp120 for the gut homing receptor 

α4β7, which are expressed on gut associated CD4
+
 T cells (73). Although dendritic cells 

cannot be productively infected by HIV-1 due to the host restriction factor SAMHD-1, 

Langerhans’ cells in these tissues can facilitate the spread of HIV-1 by transporting the 
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virus to uninfected T-cells (20, 218). As mentioned earlier, CD4 is the primary receptor 

for HIV-1 and can be found on T-lymphocytes, macrophages and certain populations of 

dendritic cells. However, it is not indispensable as some HIV-1 isolates are CD4-

independent or use CD8 as their primary receptor, but those are rare exceptions (323, 

324, 435, 436). HIV-1 infection also requires the presence of co-receptors CCR5 or 

CXCR4, which can be found on macrophages and T-lymphocytes. Virus isolates that use 

CXCR4 are exclusively T-lymphocytes tropic and form syncytium, while those that use 

CCR5 can infect macrophages as well as T-lymphocytes and non-syncytium inducing. 

Primary viral isolates from early transmission are predominantly CCR5 tropic (236). On 

the contrary, the emergence of CXCR4 tropic and CXCR4/CCR5 dual tropic viruses are 

associated with an advanced course of disease and faster progression to AIDS (49, 200, 

214). Additionally, CXCR4 tropic viruses replicate faster than CCR5 tropic variants in 

culture (16, 64, 376, 391). It is still not fully understood why the virus switches its co-

receptor tropism from CCR5 during early infection to CXCR4 during late infection. 

Presumably, the availability of CCR5 target cells decreases at the late course of disease 

and hence selects for the expansion of CXCR4 tropic viruses. It has been suggested that 

gp120 may evolve into a more open structure, which could accommodate the CXCR4 

structure upon disease progression.  

After locating the target cell, the virus binds and enters host cells, as described 

earlier, and eventually is integrated into the host chromosomes. Once integrated, the virus 

can undergo replication or remain latent. Latency is the most critical issue for all HIV-1 

therapies. During latency, very little or no viral proteins are expressed. This provides a 

vital advantage for the virus by allowing it to remain undetectable by the host immune 
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surveillance. Latent HIV-1 can be found in resting memory CD4
+
 T cells as well as 

hematopoietic progenitor cells (HPCs). However, data on HPCs is still controversial (52, 

72). These latent HIV-1 reservoirs can remain stable for extended period of time, making 

the eradication of HIV-1 impossible with current treatment strategies (356, 365). 

Moreover, viruses with drug resistance mutations that evolved in patients on HAART 

might enter latency and reactivate during therapy interruption, contributing to the spread 

of drug resistant HIV-1 strains (188). The exact mechanism that regulates HIV-1 latency 

is still unclear. Given that HIV-1 is integrated into the host genome, it is subjected to the 

same regulatory mechanisms, such as DNA methylation and histone acetylation, as the 

host. Recent studies also suggest that additional TFBS within the HIV-1 LTR promoter 

region enhance the establishment of latency (104). Since the current antiretroviral drugs 

cannot eradicate latent HIV-1, new classes of drugs are being actively pursued to purge 

the latent reservoirs in order to achieve a cure of HIV-1 infection. For example, prostratin 

can reactivate latent HIV-1 in the presence of HAART (212). However, drug toxicity and 

reactivation of other latent viruses, such as herpesviruses, remain the major obstacles for 

the development of these drugs (40).  

Disease progression 

 Following the infection of GALT, viruses that did not enter latency begin 

replication and produce localized infections involving relatively small number of cells. 

Studies from the SIV model demonstrated this process occurs near the site of entry within 

3 days of initial infection (262). This stage is known as the eclipse phase of disease 

progression and might last for an average of 10 days (Fig 2A) (233). During this stage, 

the viral load is usually below the detection limit and has no detectable HIV-1 specific 
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host immune responses. Without any host immune constraints, viral replication continues 

to generate new virions at these localized infection sites, resulting in massive losses of 

gut-associated CD4
+
 T cell (399). Eventually, the HIV-1 infected cells and virions begin 

to migrate towards the lymph nodes, possibly with assistance from dendritic cells as 

mentioned earlier.  

Through the lymphatic network, HIV-1 disseminates systematically and the viral 

replication increases exponentially as it gains access to other CD4
+
 T cells in the body. 

This resulted in detectable viral load in the peripheral blood and the start of the acute 

phase of infection. This acute phase takes place ~30 days post-infection and is marked by 

a peak viremia of ~10
6
 copies/ml of vRNA from blood (Fig 2A). It is also accompanied 

by decreasing (but still within the normal range) of CD4
+
 T-cell counts (Fig 2B). The 

viral load and CD4
+
 T-cell counts are the standard benchmarks for determining disease 

progression in HIV-1 infections. When the CD4
+
 T-cell count falls to <200 cells/ul, the 

patient is considered to have AIDS as defined by the CDC (338). The high viremia during 

the acute phase also elicits host immune responses. Acute phase often coincide with the 

surge of inflammatory cytokines such as interferon-α (359). In addition, natural-killer 

(NK) cells are also activated (9). Simultaneously, activation of CD8
+
 T cells denotes the 

beginning of cytotoxic T-lymphocyte (CTL) responses (142). However, the effectiveness 

of CTL responses is dependent on the human leukocyte antigen (HLA) type of the 

infected individual. Some HLA types, such as HLA-B*27 and 57, are associated with 

protection against HIV-1, whereas others such as HLA-B*35 and 51 are associated with 

disease progression (50, 51, 194). The increase in viral antigens also elicits the host 

humoral responses. However, the antibodies produced at this stage are usually non-
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neutralizing (382). Due to immune activation, some infected individuals might 

experience flu-like symptoms or others such as body rashes and headache. These 

symptoms are usually short lived and resolved within a few weeks.  

The activated immune system reduces the viral load to a significantly lower level 

and keeps it stable over extended periods of time. This establishes the viral set point and 

starts the chronic phase of infection (Fig 2A). Studies have also correlated a higher viral 

set point with rapid disease progression (259). The chronic phase of infection can last for 

years without any significant disease symptoms. It is during this period that the host 

immune system goes into over drive, as it continuously tries to detect and eliminate cell-

free viruses or HIV-1 infected cells. The host humoral response produces abundant non-

neutralizing antibodies against HIV-1. However, some studies suggest that non-

neutralizing antibodies might still exert significant pressure on the virus by inducing 

antibody-dependent cell-mediated cytotoxicity (ADCC) (166, 388). Importantly, HIV-1 

specific neutralizing antibodies first appear after chronic exposure to viral antigens (98, 

332). This is due to the time between antigen recognition and antibody affinity 

maturation. Neutralizing antibodies primarily target the HIV-1 envelope and are 

predominantly IgGs (30). It is difficult to elicit high level of broadly neutralizing 

antibodies that recognize various HIV-1 strains and are found in ~1% of infected 

individuals (357). In response to the humoral response, the viral envelope evolves 

mutations, for example changes in PNGS or length of their variable loops, to escape 

neutralization. Recently, a tier system was proposed to classify the neutralization 

sensitivity of HIV-1 envelopes, with tier 1 being the most neutralization sensitive (344). 

Beside the humoral response, CTL is also active during the chronic stage and contributes 
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significantly towards maintaining a stable viral load, as shown by SIV experiments with 

depleted CD8
+
 T cells (116). 

Despite the various immune responses, CD4
+
 T-cell counts continue to decline 

throughout the chronic phase and the patient enters the AIDS phase as they fall to <200 

cells/ul (Fig 2A). At this point, chronic immune activation has exhausted most of the 

CD4
+
 T cell populations. Consequently, viremia rebounds sharply and the collapse of the 

immune system occurs. Furthermore, opportunistic infections, such as PCP, begin to 

develop in these patients. In rare cases, infected patients do not progress to AIDS for over 

10 years. These patients have low to undetectable viral load and remain healthy without 

any antiretroviral treatments. These individuals are known as long-term non-progressors 

(LTNP) or elite controllers, opposed to rapid progressors who progressed to AIDS. Host 

genetic factors, such as HLA type and CCR5-delta-32, are believed to be critical in these 

cases. Detailed functional changes to the HIV-1 envelope during the entire disease 

progression are not well established in general. Most studies only focused on the acute 

phase or the neutralizing characteristics of the envelopes. Data from this dissertation will 

contribute towards our understanding of this issue.      

Non-human primate models  

SIV and SHIV models 

 Non-human primate models are an invaluable resource for many biomedical 

studies. It has broadened our understanding of numerous infectious diseases and 

facilitated the developments of life-saving vaccines, drugs and therapeutic procedures. 

Since the discovery of SIV infection in macaques, non-human primates have been an 
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important model for modeling HIV-1 disease progression. Among the various non-human 

primate species, rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca 

fascicularis) and pigtailed macaques (Macaca nemestrina) are most commonly used. 

They share similar physiology, anatomy, genes and immune system as human. 

Macaque’s close phylogenetic relationships with humans also made them an ideal human 

surrogate. Although HIV-1 is derived from chimpanzee, it is a highly endangered species 

and not a viable research model. On the other hand, macaques are readily available as 

they can be bred in captivity for research purposes. Macaque’s relatively short life span, 

compared to human, allows studying of disease progression in a reasonable time frame, 

which might otherwise takes years or decades to develop. Because of its vital role in 

research, tremendous resources were invested to sequence the complete genome of rhesus 

macaques, which is now available for researchers (136). 

    Non-human primates are the natural host of SIV. Surprisingly, most naturally 

infected monkeys do not progress to AIDS despite high plasma viral load (11, 312). The 

abilities for naturally infected monkeys to rapidly control their immune activation after 

infection, reduces the chronic immune activation and preservation of immune cells, 

marks some of its differences from animals experimentally infected with SIV from other 

species (36, 186). The precise factors involved are not fully understood, but many 

hypotheses have been proposed (57). Macaques will only progress to AIDS after 

infection by SIV from another species (225). Importantly, the infected monkeys 

experience massive loss of CD4
+
 T cells, high viral load, susceptible to opportunistic 

infections and eventual progression to AIDS; comparable to the HIV-1 disease 

progression in human (232, 399, 403). Similar to human, some macaques have monkey 
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leukocyte antigen (MLA) types, such as Mamu-A*01, Mamu-B*08 and 17, that are 

associated with slower disease progression (159, 237). SIV shares similar genomic 

structure, viral proteins, and functions when compare to HIV-1. Moreover, SIV are 

predominantly CCR5 usage, as with the majority of primary HIV-1 isolates, and target 

the same susceptible cell populations as HIV-1 (63, 199, 443). To avoid host immune 

suppressions, SIV utilizes the same evasion mechanisms as HIV-1, such as the 

modification of envelope PNGS pattern and mutations of Gag CTL epitopes (56, 144). 

These similarities make SIV an ideal model for understanding disease progression in 

HIV-1 infected patients. Furthermore, homogenous SIV population can be used to infect 

the macaques under a controlled environment via any choice of transmission routes and 

dosages. The infected animals can be monitored closely and samples collected frequently. 

All these variable experimental conditions and procedures are impossible to perform on 

humans. By using this animal model, we have expanded our knowledge of HIV-1 from 

the viral protein functions to disease transmission and progression (255, 261, 288, 408). 

For example, the SIV infection model has contributed the most towards our 

understanding of viral escape from neutralizing antibodies and CTL responses during 

infection (106, 144, 418). Additionally, this animal model has broad applications with 

respect to developing an effective HIV-1 vaccine (284, 285). Recently, the SIV infection 

model was used to mimic the RV-44 Thai HIV vaccine trial study, in hopes of 

understanding the limited protective results observed in that clinical trial (289). 

 Regardless of the close similarities between HIV-1 and SIV, their envelopes 

possess several important conformational differences (286). This is supported by reports 

showing that neutralizing antibodies against HIV-1 cannot cross-neutralize SIV (434). To 
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overcome these issues, the tat, rev, vpu and env genes of HIV-1 were inserted into the 

molecular clone SIVmac239 to create the chimeric virus, SHIV (353). Unfortunately, the 

early versions of SHIV are non-pathogenic in animals (226, 308). The first pathogenic 

SHIV, SHIV-89.6P, which causes AIDS in the infected animals, was achieved after in-

vivo passages in several macaques (307). Using this SHIV model, the protective effect of 

passively transferred antibodies against HIV-1 was first demonstrated (429). It provides 

evidence that humoral responses can be used to develop an anti-HIV-1 vaccine. Others 

have utilized this model to examine the HIV-1 envelope evolution during disease 

progression (31). Despite the success of these SHIVs, there were concerns that the rapid 

course of disease after infection may not represent the normal HIV-1 disease progression 

in human (307). Moreover, these SHIVs were generated with lab-adapted HIV-1 strains, 

which are clade B CXCR4 tropic and do not reflect the CCR5 tropic primary isolates 

(307). To this end, new SHIVs that express clade B CCR5 tropic envelopes were 

generated (152, 276). To further improve the existing model, our collaborators generated 

a R5 SHIV-C that expresses a CCR5 tropic clade C primary isolate envelope from a 

Zambian infant (172, 358). This SHIV-C model is the first clade C SHIV that was 

pathogenic in monkeys and infected animals progressed to AIDS. These new and 

improved SHIV models are now employed in various vaccines and mucosal 

transmissions studies (131, 219, 272). 

Simian-tropic human immunodeficiency virus type 1 (stHIV-1) model 

      SIV and SHIV infections of non-human primates are beneficial models for 

HIV-1 research. However, the lack of important HIV-1 genes, such as gag and pol, 

created some intrinsic disadvantages for these models. The lack of HIV-1 gag gene 
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renders these models unsuitable for testing anti-HIV-1 vaccines that elicit CTL responses, 

which mainly target the Gag protein. In addition, certain antiretroviral drugs, such as 

NNRTI, have no effect on the SIV RT (84). A new animal model utilizing the simian-

tropic HIV-1 (stHIV-1) infection of pigtailed macaques was proposed to address these 

issues (153, 189). Unlike SHIV, stHIV-1 maintains the majority of HIV-1 genes with the 

exception of vif, which is replaced by its SIV equivalent. 

 HIV-1 is non-pathogenic in non-human primates due to the host restriction 

factors, APOBEC3G and TRIM5α, present in the monkeys (127). Both factors must be 

overcome for successful infection of monkeys by the stHIV-1 (244, 366). As described 

earlier, the activities of APOBEC3G is highly species specific, where the monkey 

APOBEC3G can only be inhibited by the SIV Vif (33). Thus, the replacement of HIV-1 

Vif by SIV Vif is needed to overcome the monkey APOBEC3G restriction and allow 

stHIV-1 infection of monkey cell lines (154, 180). TRIM5α is a member of the tripartite 

motif (TRIM) family of proteins that consists of the RING, B-Box, Coiled-Coil and 

SPRY domains. Although its normal cellular function is unclear, TRIM5α was implicated 

in the regulation of cell cycle as well as apoptosis (201, 389). Additionally, evidence 

suggest that the primary function of TRIM5α is mounting antiviral responses, as its 

expression level is interferon inducible (15). Importantly, the restriction effect of 

TRIM5α is also species-specific as the monkey TRIM5α inhibits HIV-1 but not SIV and 

vice versa in human (195, 366). TRIM5α may inhibit viral infection by accelerating the 

uncoating of the viral core in the cytoplasm (367), thereby, disrupting the reverse 

transcription process and preventing the formation of vDNA. Interestingly, pigtailed 

macaques express two non-functional TRIM5α isoforms that render it susceptible to 
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HIV-1 infection (38). Hence, stHIV-1 overcomes the APOBEC3G and TRIM5α 

restrictions by using the pigtailed macaques as its host animal. Evidence from in-vitro 

studies showed that stHIV-1 can infect pigtailed macaque PBMC and maintain similar 

replication kinetics as SIV (377). 

 Unfortunately, the success of in-vitro stHIV-1 infection was not translated into 

disease progression in-vivo (153, 377). Despite the detection of viral DNA in the PBMC, 

the infected animals displayed no significant decrease in CD4
+
 T-cell count and co-

culture with uninfected donor macaque PBMC was unable to rescue any viable viruses 

(377). These observations confirmed the establishment of infection by stHIV-1, but 

underscored its inability to induce AIDS in pigtailed macaques. These discrepancies 

between the in-vitro and in-vivo data suggest that certain HIV proteins, such as Nef, may 

not be adequate to maintain pathogenicity in monkeys and needs to be replaced by their 

SIV counterpart. More research will be needed to explain this low pathogenicity of 

stHIV-1, and stHIV-1 needs to be optimized before it can be used as an animal model for 

HIV-1 infection of human.  

Research aims 

The HIV-1 envelope is the major target for developing an anti-HIV-1 vaccine. 

However, the high viral diversity presents a major problem for designing an effective 

vaccine. An effective vaccine must stimulate immune responses against a broad range of 

viral populations, including viruses that will evolve during disease progression. 

Therefore, a better understanding of how the HIV-1 envelope V1-V5 region evolved 

during disease progression is critical. Unfortunately, it is nearly impossible to study this 
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issue in humans due to numerous logistical and ethical constraints. Hence, an animal 

model that closely mirrors HIV-1 disease progression in humans is needed. Additionally, 

this animal model needs to allow the infection to be established by a homologous virus 

population under a controlled environment and infected animals must be monitored over 

the entire disease course. Moreover, HIV-1 clade C is the predominant strain in sub-

Saharan Africa where over 70% of the HIV-1 infected patients reside. Thus, it will be 

important to study and characterize the HIV-1 clade C envelope.  

The main objective of this dissertation was to investigate the evolution of HIV-1 

clade C envelope V1-V5 region during disease progression. Our approach was to infect 

non-human primates with SHIV, which expresses the gp120 of a HIV-1 clade C primary 

isolate derived from the infected Zambia infant 1157i, and monitor the infected animals 

throughout the course of disease.  

Specific aim one was to establish the validity of this non-human primate model by 

comparing the longitudinal genetic variations of the envelope clones, V1-V5 region, 

derived from the infected animals and patient over the disease course, and correlate the 

observed genetic mutations with disease progression. Specific aim two was to determine 

the longitudinal changes in the biological functions of these envelope clones at various 

disease stages and correlation with disease progression. 

We hypothesized that the infection of non-human primate with SHIV-C would 

resemble the HIV-1 disease progression in patient. The genetic evolution of the envelope 

V1-V5 region that occurs in the infected animals may mirror those observed in patient 

and correlate with disease progression. In addition, the envelope clones derived from the 
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later stages of disease may possess different biological characteristics, such as faster 

kinetics or better fusion capability, compared to those present at earlier disease stages. 
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Figures and Figure legends 

Figure 1. 
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Figure 1. Schematics of the genomic structure of (A) HIV-1 (B) SIV and (C) SHIV. Each 

rectangular bar represents an encoded protein, with the exception of 5’ and 3’ LTR which 

are non-coding regulatory regions. Yellow indicate genes derived from HIV-1. Diagrams 

are not drawn to scale. The entire genome is generally ~9.5 kb nucleotide in length.     
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Figure 2. 
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Figure 2. Different disease stages of HIV-1 infection. (A) Plasma viral RNA load (B) 

CD4
+
 T-cell count. The days or years post-infection presented are estimates.  
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Abstract 

Objective: To evaluate whether HIV-1 clade C (HIV-C) envelope variations that arise 

during disease progression in rhesus macaque model reflect changes that occur naturally 

in human infection. 

Design: An infant macaque was infected with SHIV-1157i, an R5 tropic clade C SHIV, 

that expresses a primary HIV-C envelope derived from an infected human infant and 

monitored over a 5-year period. Genetic variation of the V1–V5 envelope region, which 

is the main target for humoral immune responses, derived from the infected macaque and 

infant was examined. 

Methods: The V1–V5 envelope region was cloned and sequenced from longitudinal 

peripheral blood mononuclear cell samples collected from the infected macaque and 

infant. Phylogenetic analysis [phylogenetic tree, diversity, divergence, ratio of 

nonsynonymous (dN) and synonymous substitution (dS) and dN distribution] was 

performed. Plasma RNA viral load, CD4
+
 T-cell count, changes in the length of V1–V5 

region, putative N-linked glycosylation site number and distribution were also measured. 

Results: Phylogenetic analysis revealed that changes in the macaque closely reflected 

those of the infant during disease progression. Similar distribution patterns of dN and hot 

spots were observed between the macaque and infant. Analysis of putative N-linked 

glycosylation sites revealed several common variations between the virus populations in 

the two host species. These variations correlate with decline of CD4 T-cell count in the 

macaque and might be linked with disease progression. 
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Conclusion: SHIV-C infection of macaque is a relevant animal model for studying 

variation of primary HIV-C envelope during disease progression and could be used to 

analyze the selection pressures that are associated with those changes. 
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Introduction 

 The V1–V5 region of HIV-1 envelope glycoprotein is the focus of numerous 

studies because of its critical role in viral pathogenesis and immune evasion (130, 133, 

322, 333, 362, 379, 405). Because of its hypervariable nature, the majority of the 

potential vaccines targeting the envelope have thus far failed to elicit sterilizing immunity 

against heterologous viral challenge in animal studies and human clinical trials (111, 137, 

147, 251, 294, 305, 428). Thus, it is important to better understand the changes of the 

V1–V5 region that occur during the course of disease and the factors that contribute to 

these changes. 

 Non-human primate models that utilize SHIV (156, 192, 240, 308, 354, 401) had 

been used to study clade B and laboratory-adapted strain envelope variants during the 

course of disease (31, 165, 208). It has been suggested that there is a close similarity in 

the envelope evolution during SHIV infection of nonhuman primates and HIV-1 infection 

of humans; similar envelope mutations were observed over time in a laboratory worker 

accidentally infected with HIV-1 IIIB and a macaque experimentally infected with a 

SHIV expressing the identical envelope (24, 165). However, HIV-1 IIIB is an X4 

laboratory-adapted clade B virus whose envelope evolution may not be representative of 

that of R5 tropic primary isolates, and only a small number of sequences from both the 

macaque and human were analyzed. Several studies have also indicated that the env of 

different HIV-1 clades can evolve differently under selective pressure (71, 130, 203). To 

adequately determine if SHIV infection of macaques is a viable model for assessing 

envelope evolution, SHIV constructs using env from recently transmitted and 
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biologically relevant primary HIV-1 isolates must be tested. The evolutionary biology of 

the R5 SHIV-C in this current study, SHIV-1157i, represents such a virus. 

 We have been following a cohort of mostly HIV-C infected mother/infant pairs in 

Lusaka, Zambia. Among them, infant 1157i, a slow progressor, was followed 

prospectively, and viruses derived longitudinally from the infant have been extensively 

characterized (438). SHIV-1157i was generated with an R5 tropic env derived from 

infant 1157i at the age of 6 months. An infant macaque was infected with SHIV-1157i 

and monitored through disease progression until it died from AIDS after approximately 5 

years (172, 358). Over this period, we tracked the changes of the V1–V5 region from the 

time of inoculation to euthanasia of the infected macaque. Together with data previously 

gathered for infant 1157i, we were able to compare the genetic variation of the V1–V5 

region of this particular primary clade C isolate during disease progression in both 

species (438).  

 As our study utilized a clade C primary R5 tropic env instead of an X4 laboratory-

adapted clade B strain and we analyzed over 300 viral envelope sequences, our 

investigation represents a more in-depth comparison of viral evolution during disease 

progression. This study has provided a unique opportunity to identify potential envelope 

mutations in the infected macaque, which may associate with and predict future disease 

progression in the infected infant. 

 

 

 



45 
 

 

Materials and methods 

Construction of SHIV-1157i 

SHIV-1157i contains env of a primary HIV-C isolate from a 6-month-old 

Zambian infant 1157i. PuvI (P) was introduced into the 3’ half of SHIV-vpu
+
 proviral 

DNA. The 2.0-kb KpnI (K)-PuvI fragment of HIV1157i was amplified to replace the 

corresponding region of SHIV-vpu
+
 env. The modified 3’ half was ligated with the 5’ 

half of SHIV-vpu
+
 proviral DNA to form full-length SHIV-1157i (Fig. 1a) (172, 358).  

Animals and animal care 

 An infant Indian rhesus macaque (Macaca mulatta), RPn-8, was inoculated 

intravenously with 6 ml cell-free supernatant from 293T cells transfected with the 

infectious molecular clone, SHIV-1157i, and followed prospectively with complete blood 

counts, T-cell subset analyses, viral RNA load determinations, and clinical exams (172). 

This animal was kept according to National Institutes of Health guidelines on the care 

and use of laboratory animals at the Yerkes National Primate Research Center (YNPRC). 

The facility is fully accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care International. All experiments were approved by the Animal 

Care and Use Committees of the YNPRC and the Dana-Farber Cancer Institute. 

Plasma viral RNA load 

 RNA was isolated from plasma using QiaAmp Viral Mini Kit (Qiagen, Valencia, 

California, USA), and vRNA loads were measured by quantitative reverse transcriptase 
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PCR for SIV gag sequences (164). The detection limit was 50 viral RNA copies/ml 

plasma (172). 

PCR, cloning and sequencing 

 Sample collection, cloning and sequencing of infant 1157i V1–V5 env region 

have been described previously (438, 439). Genomic DNA of infected macaque 

peripheral blood mononuclear cells (PBMC) was extracted from 6, 20, 37, 50 and 64 

month postinoculation samples using Genomic DNA Purification Kit (Gentra Systems, 

Valencia, California, USA). Nested PCR was used to amplify a 1.1 kb fragment spanning 

the V1–V5 env region. First-round PCR was performed with the primers ENF1 (5’ 

GATGCATGAGGATATAATCAGTTTATGGGA 3’) and ENR1 (5’ 

ATTGATGCTGCGCCCATAGTGCT 3’). Second-round PCR was performed with the 

primers 1157i-DraIII (5’ TTGACTCCACTCTGTGTCACTTTAAAG 3’) and 1157i-

AvrII-AS (5’ TGCTATTCCTAGGGGCTTGATTTCTAC 3’). To minimize PCR bias, 

first-round PCR products were generated in duplicate and combined to be used as 

templates for the second-round PCR. Amplified fragments were cloned into pSP72 NL4-

3 AS-Av after digestion with DraIII and AvrII and sequenced with dideoxy terminators 

(ABI BigDye Kit). 

Sequence analysis 

 Sequence alignment was carried out on the translated amino-acid sequence in 

ClustalW (378), as implemented in BioEdit 7.0.9.0. Neighbor-joining phylogenetic 

analyses were done in MEGA (Molecular Evolutionary Genetics Analysis) using the 

Kimura 2-parameter distance to explore genealogical relationships among infant 1157i 
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and macaque RPn-8 V1–V5 sequences, and support for the nodes was evaluated with 

bootstrap. 

 Variations in genetic diversity, genetic divergence, the number and location of 

putative N-linked glycosylation sites (PNGSs) and the length of the V1–V5 fragment 

were analyzed. Viral genetic diversity was estimated as the average nucleotide difference 

between sequences within a contemporaneous set, and genetic divergence was calculated 

as the average genetic distance to the earliest viral population collected for the human or 

macaque. The number and location of PNGSs were estimated using N-GlycoSite from 

the Los Alamos National Laboratory. 

 The instantaneous rates of nonsynonymous (dN) and synonymous substitutions 

(dS) were compared to evaluate the role of natural selection. Estimates of dN, dS, and 

dN/dS for each time point were obtained in Datamonkey using the Fixed Effects 

Likelihood procedure (204).  
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Results 

HIV1157i and SHIV-1157i infection courses 

 The HIV-C V1–V5 region used to construct SHIV-1157i was derived from a 

cloned viral isolate of infant 1157i obtained at 6 months. This child was infected in utero, 

delivered naturally with normal birth weight and breast-fed till 20 months old. Both the 

child and his mother were antiretroviral drug naive. Infant 1157i is designated as a slow 

progressor as he remained clinically asymptomatic throughout the study period, with a 

CD4
+
 T-cell count of 811 cells/ul at approximately 8 years. Analyses of viral isolates 

from this infant have been published previously (438), and the viral sequences are 

included here for comparison. 

 SHIV-1157i was constructed as described (Fig. 1a) (358) and inoculated 

intravenously into the infant macaque RPn-8. Systemic infection was achieved after 

inoculation with a plasma viral RNA load of approximately 3.7 x 10
4
 copies/ml detected 

at 2 weeks postinoculation and remained at approximately 1.0 x 10
4
 copies/ml or higher 

for most of the study period (Fig. 1b). CD4
+
 T cells steadily declined over time, reaching 

less than 200 cells/ul at approximately 28 months postinoculation (Fig. 1c) and remained 

low till euthanasia at 64 months postinoculation because of AIDS, as characterized by 

opportunistic infections (172). PBMCs were collected longitudinally throughout the 

study, and samples from 6, 20, 37, 50 and 64 months postinoculation were selected for 

analysis. The V1–V5 region was cloned and sequenced. A total of 161 V1–V5 env clones 

were obtained from all time points, approximately 32 clones per time point. 

Phylogenetic relationship among V1–V5 sequences from macaque and human 
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 The neighbor-joining phylogeny clustered all envelope sequences derived from 

the infected macaque in a monophyletic clade (Fig. 2), consistent with the fact that they 

all derived from a single infectious molecular clone, SHIV-1157i. Both the macaque and 

infant portions of the tree resemble the idealized trees expected for viruses evolving 

under continuous immune pressure (148). Sequences collected at later time points 

concentrated on the longer branches of the tree. The distribution of sequences from later 

time points indicates that the phylogenetic structure of the tree is more complicated in the 

infant than in the macaque. Infant sequences from the 67-month time point are scattered 

throughout the tree, with some sequences clustered with earlier lineages. In contrast, all 

macaque sequences from the last time point were found in a monophyletic clade. 

Longitudinal variation in diversity and divergence 

 Constraints within the viral env may hamper certain amino acid changes, 

regardless of any unique selective pressure by the individual host species, because of the 

cost to replicative fitness of the virus. As such, env changes we observed in infant 1157i 

during viral evolution may be similarly reflected in the macaque. To determine whether 

longitudinal variations of the V1–V5 region in isolates from RPn-8 and 1157i have 

similarities, we compared changes in the diversity and divergence of all viral populations 

sampled from each host. Viral genetic diversity measures the level of polymorphism 

found within a viral population at the nucleotide level, whereas divergence measures the 

differentiation of a population relative to the original strain. In the case of macaque, 

divergence was calculated relative to the sequence of the single clone inoculated 

experimentally, whereas in the infant, divergence was calculated as the average genetic 
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distance between all sequences within the viral population at a given time point and all 

sequences from the viral population at birth. 

 Our results indicate that diversity and divergence followed similar trajectories in 

both the macaque and infant at early time points but differ at later time points (Fig. 3a 

and b). In the case of the infant, diversity increased quasimonotonically over time, 

reaching an average pair-wise distance of 4.3% at 67 months after birth. Diversity in the 

macaque increased in parallel with the infant for the first 20 months. Thereafter, diversity 

gradually leveled off, reached its peak of an average genetic distance of 2.8% in the 

population collected 50 months postinoculation and decreased slightly at the time of 

euthanasia (Fig. 3a). 

 Sequence divergence in the infant increased in parallel with its diversity until it 

reached its maximum of 3.6% at 48 months. This was ensued by a noticeable decrease to 

2.7% at 67 months. This decrease in divergence coincided with the reemergence of viral 

lineages derived from earlier sequences shown by our phylogenetic results. Interestingly, 

divergence in the macaque increased monotonically throughout the study and reached 

3.7% by 64 months postinoculation (Fig. 3b). 

Synonymous and nonsynonymous changes in macaque and human 

 To evaluate the role played by natural selection, we compared the ratio of dN/dS 

(Fig. 3c). Briefly, dN/dS ratios are expected to be approximately 0 under strong purifying 

selection, approximately 1 under neutrality and more than 1 in cases in which positive 

Darwinian selection is the major evolutionary force driving variation in the gene studied. 

In the infant, the dN/dS ratio was more than 1 in the majority of the populations sampled, 
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ranging from 0.97 at 6 months to 1.44 at 67 months of age. In contrast, the dN/dS ratio in 

the macaque remained less than 1 till 50 months postinoculation during which it declined 

to 0.52. These data suggest that selective pressure was stronger in the infant than in the 

macaque. We then compared the distribution of these changes in the viral populations 

from the infant and macaque by plotting the number of observed dN per codon per time 

point (Fig. 3d). The comparison shows that despite the differences in the number of 

changes and selective pattern, amino-acid replacements accumulated in similar regions in 

the infant and macaque. These regions include the variable loops as well as the 

supposedly conserved C3 and C4 regions. 

Longitudinal changes in the number of N-linked glycosylation sites in V1–V5 

 It has been suggested that lengthening of the V1–V5 region and an increase in 

PNGSs correlate with slower disease progression (31, 322). To see if this held true in our 

study, we examined the change in number of PNGSs in RPn-8 and found that it declined 

over time from 26 PNGSs present in the inoculum to a mean of 21 PNGSs by 37 months 

postinoculation (Table 1). This was followed by a gradual recovery to a mean of 25 

PNGSs by 64 months postinoculation. The V1–V5 length in RPn-8 followed a similar 

trend (Table 1). In contrast to the macaque, variation in PNGSs and V1–V5 length in the 

infant showed no directional pattern. 

 In both the macaque and the infant, the majority of the PNGSs were distributed in 

identical regions, with 17 PNGSs in RPn-8 and 14 PNGSs in 1157i that were relatively 

conserved throughout the infection (Fig. 4a). These conserved PNGSs may have 

important roles in the structural integrity or receptor binding capability of envelope. 
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However, differences in PNGS do exist between the macaque and infant. The macaque 

had only nine PNGSs that were variable throughout the infection, compared with 12 

PNGSs in the infant. Interestingly, six of these variable sites (N56, 100, 165, 208, 324 

and 327) were identical between the macaque and infant. 

 The temporal dynamics of the variations in PNGSs was similar for both the infant 

and macaque. For instance, sites N100, 208, 324 and 327 fluctuated in both 1157i and 

RPn-8 over time. For site N56, changes in the infant were observed starting from 6 

months. In comparison with the macaque, the identical PNGS was ablated at 37 months 

but gradually reemerged by 64 months postinoculation. Another site with similar changes 

between 1157i and RPn-8 is N165. Prevalence of the PNGS at N165 reached its lowest 

level by 36 months in the infant before remerging. Likewise, this site was reduced in the 

macaque at 20 months, but in contrast with the infant, this PNGS was completely ablated 

by 37 months postinoculation and never reemerged at later time points in the macaque. 

We also noticed a pattern unique to the macaque, in which the prevalence of several 

PNGSs, including N56, was reduced near 37-month postinoculation but gradually 

reemerged at later time points. 
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Discussion 

 In the present study, we compared changes in the V1–V5 envelope region in viral 

populations sampled longitudinally from an R5 SHIV-C-infected macaque with those 

from a Zambian infant. Longitudinal variation in sequence diversity and divergence in 

HIV-1 infection in humans has been intensely studied, and we found that SHIV infection 

in this macaque followed the general pattern described for HIV-1 infection in humans 

(347): an initial phase in which both diversity and divergence increased linearly up to the 

20-month sampling interval; an intermediate phase in which diversity stabilized but 

divergence continued to increase up to the 50-month sampling interval; a late phase in 

which divergence and diversity decreased or stabilized from the 50-month sample 

onwards. Our sampling intervals did not allow us to precisely determine the time 

transitions between the different phases. 

 In humans naturally infected with HIV-1, differential rates of disease progression 

have been linked with viral genetic diversity and dN/dS ratios. In particular, higher 

dN/dS estimates appear to correlate with slower rates of disease progression, as is the 

case for having a higher number of sites inferred to be evolving under positive Darwinian 

selection or having high adaptation rates (317, 414). Estimates of genetic diversity and 

dN/dS were all higher in the infant, a slow progressor, which is in agreement with 

previous observations (250, 327, 385). These data suggest that ablation of the macaque’s 

immune responses at later time points resulted in a drastic reduction of selective pressure 

on the viral populations. In comparison, the infant’s immune status appears to be healthy 

and exert a significant selective pressure on the viral populations; in fact, the child 

remains asymptomatic at age 10 years. 
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 The distribution of dN along the V1–V5 region for the infant and macaque was 

located primarily within the variable loops. But our analysis also indicated an unexpected 

variable domain located in the α2-helix of C3 in the infant and macaque viruses. 

Alterations within this domain correlate with low CD4 T-cell counts in the macaque, 

suggesting that it may contain an immune epitope and could affect the biological 

properties of the virus (264, 267, 316, 329, 335). This phenomenon could be clade 

specific, as the homologous region is reported to be more conserved in clade B (71, 130, 

138, 264). As reported by other groups, emergence of deletions within V4 was also 

observed in the infant and macaque in this study (Fig. 4b) (24, 42, 165). 

 N-Glycosylation plays a critical role in immune evasion, and increases in the 

number of PNGSs have been linked with immune resistance (70, 93, 133, 405). Although 

we found no clear pattern of change for the number of PNGSs in the infant, we did 

observe an interesting pattern of decreasing PNGSs after inoculation and a gradual 

recovery at later time points in the macaque. Reductions of PNGS number in the 

macaque between 6 and 37 months postinoculation coincide with its rapid decline in CD4 

T-cell count and the onset of AIDS. Whether the eventual recovery of PNGSs at the last 

time point is because of immune escape or increase in replication fitness is unclear (151, 

278, 412, 421). 

 Besides sharing similar PNGS distribution patterns and hot spots, we observed 

several similar PNGS variations within viral populations of the infant and macaque. In 

particular, N56 that locates at the C-terminal of V2 and N165 that locates within C2. 

Alteration of PNGS at the C-terminal of V2 has been reported in animals infected by 

clade B SHIV (31, 165, 239). A recent study also demonstrated that removal of PNGS at 
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this position increases HIV-1 89.6 sensitivity to neutralizing antibodies (230), thus 

suggesting that N56 could be a common immunological epitope for both clade B and C 

viruses (118, 369). It is surprising to find a variable PNGS, N165, within a constant 

region in the infant and macaque. Changes at this site coincide with the macaque’s 

persistently low CD4 T-cell counts and were shown by others to affect the virus 

sensitivity to monoclonal antibodies (254, 358). Ablation of a similar site has also been 

reported in patients (405). It is possible that N165 is an immune epitope, and ablation of 

it might enhance the infectivity or kinetics of the escape viruses. 

 In order to eliminate the possibility that any of the clones were the result of in-

vitro PCR recombination, phylogenetic analyses were performed to distinguish between 

PCR recombination and actual in-vivo recombination events. Briefly, with in-vivo 

recombination, one would observe an accumulation of mutations after a recombination 

event on a given branch within an estimated phylogeny. However, with PCR 

recombination, there would be no such additional substitutions on the recombinant 

branch, and therefore the clones would be nonunique and identical to parental clones. 

Application of this test revealed that a negligible number of clones were indeed generated 

by PCR recombination. In fact, only two and four clones were identified for the macaque 

and infant, respectively, that showed no additional substitutions along a branch in the 

estimated phylogeny (data not shown). Thus, PCR recombination occurred on a minor 

scale and did not adversely affect our analyses. Limiting dilution PCR (LDPCR) was not 

feasible in this study due to insufficient materials for most of the time points analyzed. 

Nevertheless, LDPCR was carried out on the last time point sampled of the macaque and 

revealed clones with similar phylogenetic distributions that were consistent with those 
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obtained by the regular PCR approach. No inherent differences were observed between 

the two procedures. 

 Taken together, our data suggest that genetic evolution of an R5 SHIV generated 

from the envelope of a primary isolate reflects changes that occur in HIV-1 during 

disease progression in the infected infant. The infected macaque has a relatively faster 

disease progression in comparison with the infant but a much slower disease progression 

compared with other SHIVs such as SHIV89.6P. This could be due to the differences in 

selection forces between the two species. Our data also imply that these changes occur in 

a compressed time frame since the infected macaque progressed to AIDS while the child 

has remained asymptomatic. Although there is no identical individual amino-acid 

mutation comparable with previously reported clade B studies, mutations do seem to 

occur in similar regions. In addition, even though it is difficult to make a direct 

comparison of the time course between human and macaque in disease progression, 

mutations observed in our infected macaque at later time points could be indicators of 

future disease progression in the child. A further understanding of factors that caused 

these genetic changes could provide beneficial insights for future HIV-1 vaccine designs, 

and the significance of these changes on the biological function of the envelope is 

currently under investigation. The caveat for our study is the small sample size, and the 

observation may be limited to this human and macaque pair. Nevertheless, this is a 

prospective study and the first study to our knowledge demonstrating the evolutionary 

similarity of a primary clade C envelope between a naturally infected human with an 

experimentally infected macaque. This study also reinforces the previous observation that 
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HIV-1 envelope undergoes similar changes in human and monkey during disease 

progression (165). 
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Figure 1. (a) Pvu I (P) was introduced into the 3’ half of SHIV-vpu
+ 

(172) proviral DNA.
 

The 2.0 kb KpnI-PvuI fragment of HIV1157i [spanning most of gp120 as well as the 

entire gp41 extracellular domain and the transmembrane region (TM)] was amplified to 

replace the corresponding region in the SHIV-vpu
+
 envelope. The modified 3’ half of 

SHIV-vpu
+
 was ligated with the 5’ half of SHIV-vpu

+
 proviral DNA to form the full-

length SHIV-1157i (172, 358). (b) Plasma viral RNA load and (c) absolute CD4
+
 T-cell 

counts in animal RPn-8 after viral inoculation. 
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Figure 2. 
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Figure 2. Consensus tree from a neighbor-joining bootstrap analysis showing 

phylogenetic relationships among viral samples derived from the longitudinal follow-up 

of the macaque (RPn-8, solid lines) and infant (1157i, dashed lines) in this study. Labels 

indicate the source and time of sample collection. For example, RPn-8 20M corresponds 

to viral sequences coming from the macaque and collected 20 months after inoculation. 

Cut-off value for the condensed tree was set at 75%. 
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Figure 3. 
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Figure 3. Changes in (a) genetic diversity and (b) divergence over time for infant 1157i 

and macaque RPn-8. Genetic diversity is calculated from the average number of 

nucleotide differences within a given time point. Genetic divergence is calculated from 

the average number of changes between each time point and the initial population. (c) 

nonsynonymous and synonymous (dN/dS) ratio over time for infant 1157i and macaque 

RPn-8. (d) Estimated number of observed nonsynonymous substitutions per codon within 

V1–V5 region in infant 1157i and macaque RPn-8. Results represented are cumulative of 

all time points for human or macaque. M represents either months of age in the human 

infant or months after inoculation in the macaque. Numbers on the horizontal axis 

correspond to amino-acid position within the sequence alignment. All variable loops and 

constant regions within the alignment are labeled. 
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Figure 4. 
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Figure 4. (a) V1–V5 consensus sequence of infant 1157i at 0 month of age, and 

inoculation strain SHIV-1157i is shown. PNGSs within sequences from all time points 

were located as described. n represents relatively conserved PNGSs in macaque or human 

over time. N represents variable PNGSs in macaque or human over time. Common 

variable PNGSs between macaque and human are circled. Variable regions and constant 

regions are shown along the bottom of the sequences. (b) Sequence alignment of V4 in 

infant 1157i and macaque RPn-8 at different time points. Sequences were aligned using 

Bioedit 7.0.9.0. Sequences represented here are examples from each time points. These 

are not consensus sequences and do not represent all observed variations within V4. 
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Table 1. Putative N-glycosylation site numbers and length of V1-V5 region. 
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Abstract     

Objectives: To examine how the biological functions of HIV-1 clade C (HIV-C) 

envelopes from a SHIV-infected rhesus macaque evolve with disease progression.   

 

Design: The V1-V5 envelope regions were cloned from a rhesus macaque infected with 

SHIV-1157i, an infectious molecular clone that expresses a recently transmitted HIV-C 

envelope from Zambia. Envelope clones from various disease stages were examined for 

biological properties and their association with disease progression.   

 

Methods: We assessed envelope charges by bioinformatics analysis, envelope 

neutralization sensitivity and replicative fitness by infection of PBMC with provirus 

expressing different V1-V5 clones. Cell surface-associated envelope and gp120 content 

on virion were quantified by cell-surface biotinylation of producer cells and gp120 

ELISA of purified virions, respectively. We also assessed envelope fusion capacity and 

CD4 binding affinity. 

 

Results: Envelopes from early infection tended to be more positively charged and 

neutralization sensitive, but the net charge decreased and Env became neutralization 

resistant with time. Early envelopes also exhibited better cleavage, higher gp120 content 

on virion, superior fusion capacity and faster replication kinetics compared with 

envelopes from later time points. Lastly, CD4 binding tended to improve as disease 

progressed, but reverted to early infection level after the onset of AIDS.     

 



70 
 

 

Conclusion: Envelope gained distinctive biological characteristics as disease progressed. 

Potentially beneficiary functions could have arisen during early infection for better in-

vivo viral fitness. However, some Env properties reverted to pre-AIDS levels in the 

absence of immune pressure.    
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Introduction 

 Despite years of efforts, there is no efficacious vaccine against HIV-1. This 

impasse is partly due to the highly variable nature of the HIV-1 envelope gene, which 

enables viral escape from immune surveillance (326). Most of the envelope diversity is 

within the V1-V5 region, which encompasses multiple crucial functions, such as binding 

to receptor and co-receptors, and can influence envelope fusion to the cell membrane 

(108, 205, 383, 419). Being the major surface component of HIV-1 envelope, V1-V5 is 

also constantly targeted by host humoral responses (322, 405). Given these important 

roles, the V1-V5 region is frequently targeted for diverse anti-HIV-1 strategies. 

Understanding the changes of HIV-1 envelopes in vivo will be of tremendous 

importance. The first step towards achieving this goal is to examine how the biological 

functions of HIV-1 V1-V5 region evolve during disease progression. Unfortunately, there 

is no consensus as to what these changes might be, due to the difficulties in following 

individuals from initial HIV-1 infection throughout disease progression. 

 To address this question, we have previously shown a strikingly similar molecular 

evolution of the HIV-1 clade C (HIV-C) envelope during infection in a Zambian infant 

(1157i) and an infant rhesus macaque (RPn-8) infected by SHIV-1157i, a SHIV 

expressing the recently transmitted HIV-C envelope of 1157i (387). This finding 

validated our macaque model for studying envelope evolution during disease progression. 

Importantly, our macaque model allows studying the longitudinal changes of the 

biological functions of the V1-V5 region from an infectious molecular clone inoculum 

over the entire disease course. Moreover, significant mutations were observed within the 

HIV-C envelope sequences from different disease stages in the infected macaque RPn-8 
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(387). However, whether these envelope mutations translate into different biological 

functions remains unanswered. Here, we addressed this question by characterizing the 

biological properties of the V1-V5 region cloned from RPn-8 during disease progression. 

Our hypothesis is that envelopes from various disease stages have different biological 

characteristics, which might confer fitness advantages for the virus. 

 This study will be of substantial importance since it is the first reported clade C 

SHIV (SHIV-C) model that documented progression to AIDS. Moreover, the recently 

transmitted Zambian HIV-C primary isolate we utilized is CCR5 tropic and represents the 

dominant clade of HIV-1 infection worldwide (69, 92, 158, 298). The observed changes 

in biological functions in this setting should reflect those occurring during natural disease 

progression.     
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Materials and methods 

Animal and animal care 

 Details of animal care and procedures were described (172, 387). Briefly, an 

infant Indian rhesus macaque (RPn-8) was intravenously inoculated with SHIV-1157i, a 

SHIV-C expressing the envelope of a recently transmitted Zambian pediatric HIV-C. The 

infected animal was monitored from inoculation until euthanasia due to AIDS (~5 years). 

The animal was housed and cared for according to the National Institutes of Health 

Guidelines on the Care and Use of Laboratory Animals at the Yerkes National Primate 

Research Center (YNPRC), which is fully accredited by the Association for Assessment 

and Accreditation of Laboratory Animal Care International. All animal procedures were 

approved by the Animal Care and Use Committees of the YNPRC and the Dana-Farber 

Cancer Institute. 

Construction and preparation of viruses 

 The SHIV-1157i inoculum was prepared as described (172, 358). Genomic DNA 

was extracted from PBMC samples of RPn-8 collected at 6, 20, 37, 50 and 64 months 

post-infection (mpi). The V1-V5 region was amplified from genomic DNA and cloned 

into the envelope expression (pSRH NLA/S/Av) and provirus (pNL4-3 A/S/Av) plasmids 

as described (387, 440, 441). Thus, both types of plasmids bear a chimeric HIV-1 NL4-3 

envelope with its V1-V5 region derived from RPn-8. Infectious virus was generated by 

transfection of 293T cells with the proviral plasmids, supernatant was collected and 

filtered at 48 hrs post-transfection (pt). For purified virus, the filtered supernatant was 
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concentrated by ultracentrifuge and the resulting virus pellet was re-suspended in their 

respective assay medium.   

Envelope Charge analysis 

 V1-V5 region sequences were obtained from the previous study (387). Charged 

residues of the envelope were computed using AminoTrack
TM

 (241). The value of +1 was 

assigned to positively charged arginine and lysine. The value of -1 was assigned to 

negatively charged aspartic acid and glutamic acid. GraphPad Prism 5 (GraphPad 

Software) was used for statistical analysis. 

Neutralization assay 

 Pseudotyped viruses were generated by co-transfection of COS-1 cells with the 

envelope expression and backbone pNL4-3-deltaE-GFP plasmids, supernatants were 

collected and filtered at 48 hrs pt. Pseudotyped virus encoding NL4-3 and SV-A-MLV 

envelopes served as controls. Next, 1x10
4
 TZM-bl cells/well were seeded into 96-well 

plates 24 hrs before the assay. Heat-inactivated plasma samples of RPn-8 were 3-fold 

serially diluted starting from 1:20. Pooled monoclonal antibodies (mAbs) were prepared 

by mixing equal concentrations of the mAbs 2F5, 4E10, 2G12 and b12, followed by 3-

fold serially dilutions starting from 80 ug/ml (total concentration of all mAbs in the 

mixture). An inoculum of 300 50% tissue culture infectious doses (TCID50)/ml of 

pseudotyped viruses was supplemented with 80 ug/ml DEAE-dextran and mixed with an 

equal volume of either the serially diluted heat-inactivated plasma or pooled mAbs. The 

mixture was incubated for 1 hr at 37 °C before addition to TZM-bl cells in triplicates. 

After 48 hrs incubation at 37 °C, the cells were washed, lysed with Luciferase Assay 
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System reagents (Promega) and its luciferase activity measured by luminometer. The 

50% inhibitory concentration (IC50) in ug/ml and reciprocal IC50 were calculated using 

GraphPad Prism 5. 

Viral replication kinetics 

 Infectious viruses bearing the V1-V5 region of RPn-8 were used to infect PBMC 

from HIV-1-seronegative donors. PHA-stimulated PBMC (3.5x10
5
 cells) were infected at 

a multiplicity of infection (MOI) of 0.05 overnight at 37 °C in duplicates. The next day, 

the infected cells were washed and resuspended in RPMI growth medium containing 

human interleukin-2 (hIL-2) (Roche Applied Science). Cell-free supernatants were 

collected every 3 days. The level of reverse transcriptase (RT) activity in 10 µl of 

collected supernatants was determined in triplicates by the standard RT activity assay and 

expressed in counts-per-minute (CPM) (162). The experiment was repeated using a 

different HIV-1-seronegative donor PBMC. 

Quantification of virus-associated gp120 

 The amount of virus-associated HIV-1 surface glycoprotein was measured using 

ELISA as described (29). Briefly, 96-well plates were coated overnight with anti-gp120 

antibody D7324 (Aalto Bio Reagents Ltd), followed by washing with Tris-buffered saline 

(TBS) and blocked with nonfat-milk solution. Purified virus (100 ng/ml p24 equivalents) 

was lysed and added to the plates in triplicates for 5 hrs incubation at 37 °C. Unbound 

proteins were removed by extensive washes. For detecting captured gp120, mAb T43 

(NIH) was added at room temperature. Importantly, the mAb T43 epitope lies within the 

envelope C1 region, which is identical among all our samples. The plates were washed 
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and captured gp120 was detected by addition of goat anti-mouse horseradish peroxidase 

(Jackson ImmunoResearch Laboratories) with 1-Step Ultra-TMB-ELISA substrate 

(Pierce). Gp120 quantity was measured by microplate reader and calculated by 

comparison with a standard curve generated using serial dilutions of purified HIV-C 

1157ip gp120 with a known concentration. 

Quantification of cell surface-associated envelope 

 Labeling of cell-surface proteins with biotin was described (7). Briefly, 293T cells 

transfected with proviral plasmids were harvested at 48 hrs pt, washed and incubated with 

1 mg/ml of EZ-Link Sulfo-NHS-LC-biotin (Thermo Scientific) for 30 min on ice, 

followed by extensive washes and addition of  lysis buffer containing proteinase inhibitor 

cocktail. Cellular debris was removed and the total protein concentration in the cleared 

lysates was measured using a Pierce BCA protein assay kit (Pierce). Equal amounts of 

total protein were used for HIV-1 envelope immunoprecipitation with HIV-IG (NIH) 

overnight at 4 °C. The immune complexes were pulled down with Protein A/G Ultra-

Link Resin (Thermo Scientific), washed and boiled in 2X SDS-PAGE sample buffers. 

Resin-free supernatant containing the immunoprecipitated proteins was resolved by 

Western blot. Biotinylated proteins were detected using streptavidin-conjugated-680 

secondary antibody (Li-Cor Biosciences) and visualized by Odyssey infrared imager (Li-

Cor Biosciences). Respective band intensity of the cell surface-associated HIV-1 

envelope was analyzed using Odyssey application software version 3.0. 

In-vitro CD4 binding 
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 Envelope CD4 binding capability was determined by ELISA. Briefly, purified 

virus (10 ng/ml gp120 equivalents) was lysed and captured with D7324-coated plates in 

triplicates. Serial dilutions of CD4-IgG2 with known concentrations were added and 

incubated overnight at room temperature. Unbound CD4-IgG2 was removed by extensive 

washes. CD4-IgG2 bound to gp120 was detected by addition of goat-anti-human 

horseradish peroxidase (Santa Cruz Biotechnology) with 1-Step Ultra-TMB-ELISA 

substrate (Pierce) and measured by microplate reader. Half-maximal binding 

concentration (ng/ml) of CD4-IgG2 was calculated for each sample. 

FRET-based virus-to-cell fusion 

 The fluorescent resonance energy transfer (FRET)-based virus-to-cell fusion 

assay was described (53, 54). Briefly, infectious viruses bearing the V1-V5 region of 

RPn-8 and the β-lactamase HIV-1 Vpr fusion protein (BlaM-Vpr) were generated by co-

transfection of 293T cells with the provirus, pAdVantage (Promega) and pMM310 

plasmids (NIH). Supernatants were collected at 48 hrs pt and purified as described 

earlier. The p24 concentration of purified viruses were measured with HIV-1 p24 ELISA 

(Perkin-Elmer). Then, 2.5x10
5
 SupT1/CCR5 cells (256) were incubated with 50 ng of 

p24 of the purified viruses for 2 hrs at 37 °C in 96-well plates in triplicates. The infected 

cells were washed and resuspended in the CCF2-AM loading solution from GeneBLAzer 

Detection Kits (Invitrogen) for 1 hr at room temperature in the dark. The CCF2-AM-

loaded cells were washed, resuspended in 10% FBS medium with probenecid and 

incubated overnight at room temperature in the dark. The next day, CCF2-AM-loaded 

cells were washed and fixed for flow cytometry. Once the BlaM-Vpr viruses fused with 

the target cell, β-lactamase will cleave the CCF2-AM dye and alter its fluorescence 
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emission spectrum from 520 nm (green) to 447 nm (blue). This change in fluorescence 

emission was detected by Cytek DxP10 (Cytek Development) and analyzed using FlowJo 

software v7.9 (TreeStar). GraphPad Prism 5 was used for statistical analysis. 
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Results 

Charged residues of the HIV-C V1-V5 region 

 Charged residues play an important role in protein-protein interactions by 

affecting the physiological interactions between molecules, and might influence HIV-1 

envelope-antibody interaction, receptor binding as well as disease progression (34, 266, 

311, 345). Therefore, it was interesting to determine whether the charges of V1-V5 

region varied with disease progression in monkey RPn-8.   

 As shown previously, RPn-8 maintained a high viral load (>1x10
4
 copies/ml) 

throughout the disease course (387) and the CD4
+
 T-cell counts gradually declined to 

<200 cells/ul from ~28 mpi onwards. The animal was euthanized at 64 mpi due to severe 

opportunistic infections (387). Using ~160 sequences collected previously across the 

entire disease course (387), we analyzed the charged residue distribution within the V1-

V5 region. Our analysis showed a significant increase in the net charge of V1-V5 region 

during early infection (6 mpi) compared to the inoculum (Fig 1A). However, the net 

charge decreased substantially by 37 mpi when the CD4
+
 T-cell counts fell to <200 

cells/ul. Surprisingly, as RPn-8 had advanced AIDS, the net charge of the V1-V5 region 

recovered to pre-AIDS levels. 

 This pattern of change was mainly caused by the V1-V3 region. For example, C2 

charges reached the lowest levels by 37 mpi but rebounded later (Fig 1B). Other regions, 

such as V5, contributed towards the recovery of envelope charges during advanced AIDS 

(Fig 1C). 

Neutralization characteristics 
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 To determine the neutralization characteristics of the V1-V5 region, selected 

envelope clones were tested against naïve, contemporaneous and non-contemporaneous 

plasma from RPn-8. Envelope selection was based upon fusion capacity and position in 

the phylogenetic tree to maximize the representation of various branches. About five 

functional envelope clones per time point were selected for further analysis (387). 

 We found that neither the naïve nor the contemporaneous plasma could neutralize 

any of the envelopes tested (data not shown). However, non-contemporaneous plasma 

was able to neutralize envelopes from earlier time points, but this capability tended to 

decrease with disease progression (Fig 2A). This was further confirmed by the 

examination of 6 mpi envelopes against plasma samples from all later time points, where 

the 64 mpi plasma had the weakest neutralizing ability (Fig 2B). 

 Since plasma from RPn-8 might contain different neutralizing antibodies, 

depending on the time points, a reference panel that consisted of pooled mAbs was used 

to examine the relative neutralization sensitivity among the envelopes. Our data show 

that envelopes from 6 mpi were mostly sensitive to mAbs (Fig 2C). However, the 

majority of the envelopes displayed increased mAbs resistance by 37 mpi. Surprisingly, 

mAbs-sensitive envelopes re-emerged at 64 mpi. 

Replication kinetics 

 To determine if envelopes derived from different disease stages could affect the 

viral replicative fitness and its relationship with neutralization sensitivity, we examined 

the replication kinetics of viruses expressing various envelope clones in PBMC. Nine 

envelope clones were selected from 6 (early infection), 37 (early AIDS) and 64 
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(advanced AIDS) mpi. Envelope selection was based on the mAbs neutralization results 

to maximize representation of different neutralization characteristics. As shown in Table 

1, viruses with 6 month envelopes (clones #26 and #37) displayed distinctively faster ex-

vivo replication (P = 0.0008) than those with 64 mpi envelopes, averaging ~7 days to 

reach half-maximal viral replication using PBMC from two human donors. In contrast, 

viruses bearing envelopes from later time points showed slightly slower ex-vivo 

replication compared to the inoculum over time. 

Quantity of envelope on cell surfaces and gp120 on virions 

 To further examine the possible reasons for faster ex-vivo replication of the 

viruses with early envelopes, we first evaluated the incorporation of envelopes into 

virions. By measuring the gp120 content on virions using ELISA, we showed that the 

quantity of surface glycoprotein on virions tended to decline with disease progression. 

Viruses with 64 mpi envelopes only contained an average ~25% (P < 0.0001) of gp120 

content compared with the inoculum SHIV-1157i (Fig 3A). 

 This decreased level of virion-associated gp120 could be caused by differences in 

the expression or cleavage of envelope. To eliminate these possibilities, 293T cell 

surfaces were labeled with biotin, and the quantity of cell surface-associated gp160 and 

120 was measured by Western blot. Our data indicated no significant differences in 

gp160 expression levels between all envelopes (Fig 3B); thereby excluding differences in 

gp160 expression on cell surfaces as a plausible cause. However, we did observe a 

decrease in cell surface-associated gp120 levels, which positively correlated with the 

decline of gp120 content on virions over time (Spearman r = 0.7295, P = 0.0202) (Fig 
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3C). Therefore, the decreased recruitment of surface glycoprotein onto virions may have 

been a consequence of having less cell surface-associated gp120, which subsequently 

caused an increase of the cell surface gp160 to 120 ratio over time (Fig 3D). This was 

further supported by the negative correlation (Spearman r = -0.8909, P = 0.0011) between 

the cell surface gp160 to 120 ratio and gp120 quantity on virions (Fig 3D). Together, our 

data strongly suggest a deficiency in cleavage or trafficking of cleaved envelope to cell 

surfaces with disease progression. 

Envelope binding to CD4 

 Another possible factor that can influence ex-vivo replication is divergence in the 

envelope-CD4 binding capacity. To this end, our in-vitro CD4 binding assay showed that 

the CD4 binding proficiency of envelope improved with disease progression. At 37 mpi, 

the envelopes had significantly enhanced binding to CD4 compared with the inoculum 

(Fig 4A). Surprisingly, this enhanced CD4 binding capability was not maintained and 

reverted to pre-AIDS levels during advanced AIDS. 

Envelope fusion to target cell 

 Fusion of viral envelope to target cell is a critical rate-limiting step that could 

affect ex-vivo replication. A FRET-based virus-to-cell fusion assay was used to examine 

the fusion efficiency of envelopes from various time points. Our result showed that 

viruses with 6 mpi envelopes, except #5, had significantly enhanced fusion abilities 

compared with the inoculum (P = < 0.0001) (Fig 4B). Envelopes isolated from 37 mpi 

displayed a diverse fusion capability, with 37 month #1 having fusion ability close to the 

6 mpi and the rest having lower fusion ability compared to the inoculum (Fig 4B). 



83 
 

 

Additionally, this weak fusion phenotype dominated among envelopes isolates from 

advanced AIDS (Fig 4B). This suggests that envelope fusion ability increased during 

early infection, but gradually declined with disease progression. 
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Discussion 

 This study showed that the V1-V5 regions of HIV-C envelope underwent 

significant changes in their biological characteristics throughout disease progression. 

Envelopes from early infection were more positively charged, neutralization sensitive and 

had faster ex-vivo replication and enhanced fusion capability. During early AIDS, the 

envelopes became more negatively charged with diminished functional capabilities 

ranging from ex-vivo replication to incorporation into virions. However, these envelopes 

did have significantly improved CD4 binding ability and were more neutralization 

resistant. Interestingly, the envelopes showed multiple reversions in their biological 

properties during advanced AIDS. For example, their charge, neutralization sensitivity 

and CD4 binding efficiency had all reverted to pre-AIDS levels. However, other 

functions remained relatively poor. 

 Our results are surprising given the current belief that viral fitness increases over 

time due to envelope evolution (310, 385). It is possible that the previous studies were 

unable to capture the early infection in adult HIV-1 patients and used PBMC co-cultured 

viral quasi-species for biological analysis. Our study represents envelope isolates 

throughout the disease spectrum, focusing on V1-V5 region changes. At the early 

infection of 6 mpi, monkey infant RPn-8 had an unambiguously higher CD4
+
 T-cell 

counts of >2000 cells/ul, which was age-appropriate, and high viral loads compared to 

reports of other investigators, reflecting acute infection (387). Moreover, having an 

isogenic backbone allowed us to focus on the V1-V5 region without the influences from 

other viral genes. Our use of PBMC for ex-vivo replication also better represents the in-

vivo scenario than the cell lines used in previous study (108). Alternatively, the different 
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maturation state of the immune system between adults and infants during the initial 

infection might affect the evolutionary pressure placed on the virus.    

 Our study suggests that during early infection, the host immune system is intact 

and exerts selective pressures on the viruses, as the relatively early plasma can easily 

neutralized the early envelopes. To counter this host constraint, the envelope evolved 

compensatory mutations that resulted in more efficient fusion and faster replication 

kinetics, increasing the likelihood for the virus to infect new cells before being 

neutralized by the immune system. This possibility that early envelopes might have better 

fitness was mathematically predicted previously and observed recently in HIV-1 patients 

(13, 416). Although the exact mechanism of this outcome is still controversial, the “Red 

Queen” hypothesis was proposed as a possible explanation, where beneficiary mutations 

evolved in responses to immune selection resulting in increased fitness of the early 

envelopes (13, 74, 396).  

 During early AIDS, some immune pressure persisted as evident by the presence 

of neutralization-resistant envelopes and was also reported by others (34, 45). 

Importantly, the appearance of neutralization-resistant phenotypes coincided with a 

significant drop in the net charges of V1-V5 region. This strongly suggests that variations 

in net charges could be an escape mechanism employed by the envelope to evade 

humoral responses beside its glycan shield (405). The high CD4 binding ability of the 

envelopes at this stage could be another compensatory mutation for more efficient 

infection in an environment with limited availability of CD4
+
 T cells. 
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 Another unexpected finding from our study is that viral fitness linked to the V1-

V5 region, as defined by the ex-vivo replication of isogenic viruses differing only in their 

V1-V5 regions, did not improve despite reversion of several envelope properties during 

advanced AIDS. Importantly, the gp120 content on cell surface and on virion gradually 

decreased as disease progressed. Additionally, with the exception of the CD4 binding site 

mutant 6 month #5, decreased levels of gp120 on virion correlated with the decline in 

fusion ability from early infection to advanced AIDS (Spearman r = 0.7667, P = 0.0214) 

(graph not shown). These changes could be evasive responses toward immune 

surveillance and ultimately affected the neutralization sensitivity as suggested earlier 

(32). The severe depletion of CD4
+
 T cells and absence of immune selection might 

facilitate the accumulation of deleterious mutations, possibly yielding envelopes with 

lower fitness reminiscent to the effect of “Muller’s ratchet” hypothesis (59, 102, 271, 

433).  

 Despite our analysis of only one animal longitudinally, this is the first study of a 

SHIV-C-infected macaque that progressed to AIDS. To our knowledge, this is also the 

first study that demonstrated a decrease of gp120 content on virion with disease 

progression. Although gp120 shedding might reduce the gp120 content on virion, it was 

unlikely in our case as suggested by other investigators (66). By focusing on the V1-V5 

region, we cannot eliminate the role of other viral genes or envelope regions, such as the 

signal peptide and gp41, in the overall viral fitness (17). However, our data strongly 

suggest that V1-V5 region plays a major role in disease progression (214, 238). Also, the 

presence of mixed population at any time points due to reactivation of latent viral 

reservoirs cannot be excluded. 
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 Our findings underscore the dynamic interaction between host immune selection 

and HIV-1 envelope evolution. Our emphasis on the V1-V5 region had shed light on the 

evolution of its unique properties during disease progression. Moreover, variations in the 

envelope CD4 binding and fusion ability might suggest some corresponding structural 

changes with disease progression, which could have substantial implications for the 

development of vaccines and small molecule inhibitors. 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

 

Ackonwledgments 

 This work was supported by Public Health Service grants, CA75903, TW001429 

and the National Institute of Medical Sciences, Center for Biomedical Research 

Excellence grant P30 GM103509 to C.W; R01 AI076170 to S.L.H; P01 AI48240 to 

R.M.R., S.L.H and C.W.; American Recovery and Reinvestment Act funding 3P01 

AI048240-08S1 to R.M.R., C.W. 

 Authors’ contributions: F.Y.T and L.A. performed experiments and analyzed data. 

F.Y.T wrote the manuscript. S.L.H. provided reagent and discussions. R.M.R. and C.W. 

oversaw all aspects of this project. All authors provided critical input on the manuscript. 

 The following reagent was obtained through the NIH AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH: pMM310 from Dr. 

Michael Miller (53, 381); pNL4-3-deltaE-EGFP from Drs. Haili Zhang, Yan Zhou, and 

Robert Siliciano (442); TZM-bl cells from Drs. John C. Kappes, Xiaoyun Wu and 

Tranzyme Inc (295); SV-A-MLV-env from Drs. Nathaniel Landau and Dan Littman 

(221); HIV-1 gp41 mAbs (2F5, 4E10) and gp120 mAb (2G12) from Dr. Hermann 

Katinger (302, 363, 384); HIV-1 gp120 mAb (IgG1 b12) from Drs. Dennis Burton and 

Carlos Barbas (313); HIV-IG from NABI and NHLBI. We would like to thank Dr. James 

A. Hoxie for SupT1/CCR5 cells (256), Drs. Earl Patricia and Bernie Moss for mAb T43. 

We thank Dr Marielle Cavrois for her advice with the FRET-based virus to cell fusion 

assay and Dr Francois Villinger for his assistance in manuscript preparation. 

Conflicts of interest 

There are no conflicts of interest. 



89 
 

 

Figures and Figure Legends 

Figure 1. 
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Figure 1. Distribution of charged residues within the V1-V5 envelope region. Each 

symbol represents one V1-V5 sequence. SHIV-1157i is the inoculum envelope, followed 

by envelopes from 6, 20, 37, 50 and 64 months pi. (A) Net charge of the V1-V5 region.  

(B) Charge distribution within the C2 and V5 region respectively. 
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Figure 2. 
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Figure 2. Envelope neutralization characteristics. (A) Pseudotyped viruses with envelopes 

from 20 months pi were tested against non-contemporaneous plasma from 37 months pi, 

37 months pi envelope clones against 50 months pi plasma and 50 months pi envelope 

clones against 64 months pi plasma. Each symbol represents a pseudotyped virus 

encoding an individual envelope clone from that particular time point. (B) Pseudotyped 

viruses with envelopes from 6 month pi were tested against plasma of 20, 37, 50 and 64 

months pi. (C) Pseudotyped viruses with envelopes from various time points were tested 

against pooled mAbs. Envelopes from the infectious molecular clone inoculum (SHIV-

1157i), murine leukemia virus (MLV) and NL4-3 served as controls. Each symbol 

represents a pseudotyped virus encoding an individual envelope clone from that 

particular time point. 
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Figure 3. 
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Figure 3. Quantity of envelope on cell surfaces and gp120 on virions. (A) Quantities of 

gp120 on virions expressing selected V1-V5 region from each time point. (B) Relative 

levels of 293T cell surface-associated gp160. (C) Correlation between the levels of 

virion-associated gp120 (black bars) and 293T cell surface-associated gp120 (red dots). 

(D) Correlation between the levels of virion-associated gp120 (black bars) and the ratio 

of 293T cell surface-associated gp160-120 (red dots).       
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Figure 4. 

 



96 
 

 

Figure 4. Envelope binding to CD4 and virus fusion with target cells. (A) Purified 

viruses, expressing selected V1-V5 regions from each time point, were tested with in-

vitro CD4 binding assay to determine their half maximum binding to CD4-IgG2. Each 

symbol for individual envelope clones represents an independent experiment. “*” 

represent statistical significant compare to the inoculum, SHIV-1157i. The value of 6 

month #5 may not reflect the actual data since it falls beyond the maximum range of our 

assay. (B) Envelope fusion with target cells was measured using FRET-based virus-to-

cell fusion assay. An example for the detection of fluoresce emission shift from green 

(fusion negative) to blue (fusion positive) by flow cytometry was shown above the graph. 

The graph shows percentage of fusion-positive cells for individual envelope clones from 

each time point relative to the inoculum, SHIV-1157i. All differences were statistically 

significant compared to the inoculum. 
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Table 1: Ex-vivo replication of infectious viruses, expressing varies V1-V5 region, in 

PBMC. 
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Abstract 

 Understanding the evolution of the human immunodeficiency virus type 1 (HIV-

1) envelope during disease progression can provide tremendous insights for vaccine 

development, and simian-human immunodeficiency virus (SHIV) infection of nonhuman 

primate provides an ideal platform for such studies. A newly developed clade C SHIV, 

SHIV-1157ipd3N4, which was able to infect rhesus macaques, closely resembled primary 

HIV-1 in transmission and pathogenesis, was used to infect several pig-tailed macaques. 

One of the infected animals subsequently progressed to AIDS, whereas one remained a 

nonprogressor. The viral envelope evolution in the infected animals during disease 

progression was analyzed by a bioinformatics approach using ultra-deep pyrosequencing. 

Our results showed substantial envelope variations emerging in the progressor animal 

after the onset of AIDS. These envelope variations impacted the length of the variable 

loops and charges of different envelope regions. Additionally, multiple mutations were 

located at the CD4 and CCR5 binding sites, potentially affecting receptor binding 

affinity, viral fitness and they might be selected at late stages of disease. More 

importantly, these envelope mutations are not random since they had repeatedly been 

observed in a rhesus macaque and a human infant infected by either SHIV or HIV-1, 

respectively, carrying the parental envelope of the infectious molecular clone SHIV-

1157ipd3N4. Moreover, similar mutations were also observed from other studies on 

different clades of envelopes regardless of the host species. These recurring mutations in 

different envelopes suggest that there may be a common evolutionary pattern and 

selection pathway for the HIV-1 envelope during disease progression. 
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Introduction 

 The envelope gene of human immunodeficiency virus type 1 (HIV-1) is the most 

genetically diverse among all HIV-1 genes. The vital role of HIV-1 envelope in 

determining cell tropism of the virus and escape from host immune surveillance made it a 

logical choice as the main focus for vaccine development. Thus, a better understanding of 

how the envelope evolves during disease progression could aid in designing better 

vaccines. Several envelope mutations, such as increases in the length of V1V2 variable 

loops and number of potential N-glycosylation sites (PNGS), have been linked with 

disease progression in humans (44, 80, 322). Since these mutations were observed in 

envelopes from different clades, it would suggest that the envelope might tend to follow a 

certain evolutionary pattern during disease progression. Infection of non-human primates 

with simian-human immunodeficiency virus (SHIV) would be an ideal platform for 

investigating such HIV-1 envelope evolution during disease progression. 

 SHIV strains have been a significant tool in studying the role of HIV-1 envelope 

in pathogenesis and the development of AIDS vaccines for over a decade. Since their 

inception, SHIV constructs have undergone dramatic improvements to recapitulate many 

of the features of primary HIV-1 infection when used to infect rhesus macaques. One 

such design, SHIV-1157ipd3N4, expresses an R5 tropic HIV-1 clade C envelope isolated 

from a Zambian infant (358). In addition, SHIV-1157ipd3N4 is pathogenic and fully 

capable of mucosal transmission through multiple routes (65, 358). These properties 

closely resemble those of recently transmitted HIV-1 isolates, which are mostly R5 tropic 

and transmitted via mucosal routes (69, 92, 279, 298). The fact that SHIV-1157ipd3N4 

carries an HIV-1 clade C envelope makes this SHIV an important model to study 
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transmission and pathogenesis of HIV-1 infection in humans: because more than fifty 

percent of all HIV-1 infections worldwide are caused by HIV-1 clade C (158, 315). 

 Until recently, SHIV-1157ipd3N4 had only been utilized to infect rhesus 

macaques (Macaca mulatta), a popular animal model for studying HIV pathogenesis and 

AIDS vaccine development. However, there is now a heightened interest in the pig-tailed 

macaque (Macaca nemestrina) model. In comparison to rhesus macaques, pig-tailed 

macaques are unique as they express a defective host restriction factor TRIM5α and 

hence are susceptible to infection by simian-tropic HIV-1 strains (38, 153, 173, 377). 

Given this recent focus on the pig-tailed macaque animal model, it will be important to 

examine the relationship between disease progression and envelope evolution in pig-

tailed macaques infected by SHIV-1157ipd3N4. Moreover, this study will help to 

determine whether envelope changes observed in a human and in a rhesus macaque 

during disease progression are present in this pig-tailed model. In an earlier report, Ho et 

al. demonstrated that SHIV-1157ipd3N4 was able to infect pig-tailed macaques by 

intrarectal inoculation and to cause AIDS in the infected animal (161). We procured 

samples from these infected pig-tailed macaques and employed 454 ultra-deep 

pyrosequencing (UDPS) to characterize the HIV-1 clade C envelope changes as the 

infected animal progressed to AIDS. 

 UDPS is a high-throughput sequencing technology that can rapidly generate a 

vast amount of sequencing data in a costeffective manner. The high sensitivity of this 

technology in detecting minor populations makes it an ideal approach for our study. 

UDPS has been used by several groups to study minor drug resistance mutations, 

cytotoxic T-lymphocytes (CTL) escape pathways and small envelope region such as V3 
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(12, 27, 47, 81, 157, 320). To our knowledge, this is the first study to use UDPS to 

resolve HIV-1 clade C envelope evolution in infected pig-tailed macaques during disease 

progression which is marked by a consistent decline in CD4
+
 T-cell count and the present 

of high plasma viral load. AIDS is established when the CD4
+
 T-cell count falls to <200 

cells/ul. By using UDPS, we were able to quantitatively assess the emergence and 

outgrowth of minor variants in the infected animals as the disease progressed and provide 

a detailed genetic analysis of such variants. Interestingly, we found several gp120 

mutations that evolved in parallel with disease progression. In addition, we compared the 

mutations observed in the pig-tailed macaque with published data on the evolution of the 

precursor envelope of SHIV-1157ipd3N4 in a rhesus macaque and the Zambian infant, 

from whom the viral envelope was originally isolated (387, 438). Our analysis showed 

that several shared gp120 mutations were prevalent in the infected human, rhesus and 

pig-tailed macaques throughout disease progression. This study suggests that the HIV-1 

clade C envelope may follow a comparable evolutionary pattern and host selective 

pressure during disease progression in infected hosts, regardless of the host species. 
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Materials and methods 

Animals and viral stocks 

 All animals used in this study were housed and cared for according to the Guide 

for the Care and Use of Laboratory Animals at the Washington National Primate 

Research Center (WaNPRC), an Association for Assessment and Accreditation of 

Laboratory Animal Care International accredited institution. The animal quarters are 

maintained at 75–78°F with controlled air humidity and quality. The home cages of the 

animals are steam cleaned bimonthly and the waste pans are cleaned daily. Commercial 

monkey chow is fed to the animals once daily and drinking water is available at all times. 

Daily examination and any medical care of the animals are provided by the veterinary 

staff of WaNPRC in consultation with the clinical veterinarian. The experimental 

procedures were approved by the Institutional Animal Care and Use Committee (2370-

20) at the University of Washington and conducted in compliance with the Public Health 

Services Policy on Humane Care and Use of Laboratory Animals 

(http://grants.nih.gov/grants/olaw/references/PHSPolicyLabAnimals.pdf). The animals 

were kept under deep sedation during all procedures with ketamine HCl at the dose of 

10–15 mg/kg intramuscularly to alleviate any pain and discomfort. The animals were 

monitored by the Animal Technician or Veterinary Technologist while under sedation. 

 The construction of the infectious molecular clone, SHIV-1157ipd3N4, and the 

preparation of the viral stock were described previously (358). All animal procedures and 

immunological analysis have also been published (161). Briefly, four juvenile pig-tailed 

macaques were inoculated with SHIV-1157ipd3N4 intrarectally. Infected animals were 
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monitored over a period of 84 weeks postinoculation. Peripheral blood mononuclear cell 

(PBMC) and tissue samples were collected from the infected animals periodically. 

PCR amplification and amplicon library preparation for UDPS 

 Genomic DNA from PBMC and gut tissue samples was extracted following 

standard protocols. For amplicon library preparation, the full envelope was amplified 

from the samples with first round PCR primers positioned outside the envelope gene. The 

envelope from each sample was further amplified into 6 amplicons with six pairs of 

primers during the second round PCR. The envelope regions amplified by these primer 

pairs were V1V2C2 by primers env1, C2V3C3 by primers env2, V3C3V4C4 by primers 

env3, C4V5C5-gp41 by primers env4, C5-gp41 by primers env5 and gp41 by primers 

env6. Each sample was barcoded with a specific 10-nucleotides multiplex identifier 

(MID) and only primers containing the forward adaptor sequences were barcoded (Table 

3). Two additional primers, env3_F_control and env3_R_control, were designed to 

amplify the envelope of an infectious HIV-1 clade C construct (1084ic) which served as a 

control (149). Primer env1_F was modified to env1_F_a for amplifying the 65 and 84 

weeks post-inoculation samples from J02185. Sequences of these primers are presented 

in Table 3. The PCR conditions used for amplicon amplification were 1 cycle of 95°C for 

2 min, 35 cycles of 95°C for 30 sec, 60°C for 30 sec and 72°C for 30 sec and a final 

extension of 72°C for 4 min. All PCR was carried out with the FastStart High Fidelity 

PCR system (Roche, Indianapolis, IN). PCR products were isolated with the E.Z.N.A. 

Gel Extraction Kit (Omega Bio-Tech, Norcross, GA) and purified by the Agencourt 

AMPure magnetic beads (Beckman Coulter Genomics, Danvers, MA) following the 

conditions recommended for the Titanium amplicon library preparation (Roche/454 Life 
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Sciences, Branford, CT). Purified amplicons were quantitated using the Quant-iT 

PicoGreen assay kit (Invitrogen, Carlsbad, CA) and pooled in equimolar concentration 

according to the manufacturer’s recommendations. The pooled amplicons were then 

processed and sequenced on a Genome Sequencer FLX (Roche/454 Life Sciences, 

Branford, CT) at the Environmental Genomics Core facility (Engencore), Innovista 

Research District, University of South Carolina, Columbia, SC. 

UDPS bioinformatics analysis 

 The initial sequence reactions yielding 574,225 reads that were processed to 

ensure high quality reads to reduce the typical sequencing errors from 454/Roche 

pyrosequencing. The data were cleaned by a set of scripts including the following 

criteria: (i) a perfect match to both the barcode and forward primer, (ii) >100 bases in 

length, and (iii) no undetermined bases (N). The 454 reads were then separated into 

samples by amplicons. The flowgrams corresponding to these reads were extracted, 

truncated at the first noisy signal (174), and then filtered to remove any read where this 

occurred in the first half of the flowgram. We then applied the AmpliconNoise pipeline to 

these samples separately using default parameters for GSFLX Titanium data (304). The 

flowgrams were clustered with the PyroNoise program to remove 454 sequencing errors 

(303). The forward primer and barcodes were removed from the resulting sequences, 

prior to their truncation to 400 bp. These were clustered with the SeqNoise program to 

remove PCR errors (304). Finally, the Perseus de novo chimera classifier was applied to 

screen the sequences for chimeric PCR products which were then removed, giving 

denoised chimera checked sequences that were used in the following analysis. 

Alignments were generated and manually inspected to ensure any remaining variants 
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with frameshifts or stop codons were removed. After the automated cleanup, a small 

number of problematic sequences remained that were associated with indels in 

homopolymer tracts. We modified these errors by deleting the extra base or adding a 

missing base relative to the inoculum sequence. As a control for 454 sequencing errors, a 

plasmid containing a subtype C envelope, 1084ic, was amplified and processed in parallel 

to the samples. 

Sequence diversity and divergence of intra-host virus populations 

 Diversity of viral sequences for each time point within each monkey was 

calculated using the Shannon Diversity Index. As follows 

    ∑         

 

   

 

where H’ is the Shannon Diversity Index, R is the total number of species encountered 

and Pi represents the fraction of the entire population made up of species i (348). 

Divergence of viral sequences for each time point within each monkey was calculated as 

the genetic distance between each sequence and the inoculum strain as calculated in 

MEGA v5.0 (373). 

Envelope charge analysis 

 The charge of the envelope was calculated with AminoTrack
TM

 (241). Briefly, 

arginine and lysine have a charge of +1, while aspartic acid and glutamic acid have a 

charge of -1. Statistical analysis was calculated using GraphPad Prism 5 (GraphPad 

Software, Inc., San Diego, CA). 
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Results 

Infection of pig-tailed macaques with SHIV-1157ipd3N4 

 Detailed examination of the immunological responses of the infected pig-tailed 

macaques has been conducted previously (161). Briefly, after intrarectal inoculation of 

SHIV-1157ipd3N4, systemic infection was achieved in all four juvenile pig-tailed 

macaques with an average peak plasma viral RNA load >7x10
6
 copies/ml by 2 weeks 

post-inoculation (Fig. 1B). However, two infected animals (M04123 and L03165) died 

due to unrelated causes during sampling procedures at 2 and 48 weeks post-inoculation, 

respectively (data not shown). The remaining animals (K03135 and J02185) were 

monitored over a period of 84 weeks. The plasma viral loads of macaque K03135 

increased while its CD4
+
 T-cell counts declined as disease progressed (Fig. 1A and B). 

Macaque K03135 developed AIDS with a CD4
+
 T-cell count consistently <200 cells/ul 

from 20 weeks post-inoculation onwards. Therefore, macaque K03135 was classified as a 

progressor. Meanwhile, macaque J02185 had normal CD4
+
 T-cell counts over the entire 

study period (Fig. 1A). Plasma viral loads of macaque J02185 fell below the detection 

limit at 2 weeks after peak viremia and remained low over the next 82 weeks (Fig. 1B). 

Macaque J02185 was still healthy at the end of the study and was classified as a non-

progressor. Both animals maintained a detectable but gradually declining PBMC proviral 

DNA load throughout the course of the disease (Fig. 1C). 

Macaque sample selection and ultra-deep pyrosequencing of viral envelope 

 In order to gain a better picture of the envelope changes throughout disease 

progression, only animals that underwent a full 84 week course of observation were 
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included for UDPS. For this purpose, PBMC samples from 5 time points of the 

progressor macaque K03135 (2, 16, 44, 64 and 83 weeks post-inoculation) and non-

progressor macaque J02185 (2, 16, 44, 65 and 84 weeks post-inoculation) were selected 

for UDPS. In addition, it was reported previously that there was an unexpected peak of 

viral load in the duodenum sample from K03135 at 16 weeks postinoculation (161). The 

cause for this sudden elevated viral load in the gut tissue was unclear. To investigate if 

there was any unique viral population residing within the gut tissue at this time point, 

additional gut tissue samples from both animals at 16 weeks postinoculation were also 

included for UDPS. Lastly, the two animals (M04123 and L03165) that died due to 

unrelated causes during sampling procedures were excluded for analysis as it would be 

impossible to extrapolate the data from these animals to disease progression. 

 The current read length on the GS FLX Titanium series is approximately 400 bp. 

In order to cover the regions of interest in our study, we designed six overlapping PCR 

amplicons to capture the viral envelope regions (Fig. 2). Using this approach, we were 

able to sequence almost the entire gp120 and through the transmembrane domain of 

gp41. From the UDPS, we obtained a total of 574,225 reads with a median of 43,601 

(range 13,964 to 81,666) reads from each sample. The UDPS data were cleaned to 

remove reads with PCR and UDPS artifacts while attempting to retain as many high-

quality sequences as possible (see Materials and Methods). During the initial procedure, a 

median of 26% (range 23%–30%) reads were discarded from each sample. However, 

after the application of the AmpliconNoise algorithm, this number increased to a median 

of 43% (range 34%–47%). While this number may seem excessively high, there were 
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still on average 18,000 reads per sample, ensuring sufficiently high coverage across the 

envelope to detect minor variants. 

Sequence diversity and divergence of intra-host viral populations 

 Selective pressures imposed by the host immune system are the main driving 

forces shaping the evolutionary dynamics of the viral envelope. To examine the effect of 

immune selection on envelope evolution, we quantified the levels of diversity and 

divergence for each amplicon over time in both animals. The non-progressor macaque 

J02185 had a relatively low level of diversity in the entire envelope throughout the course 

of observation, with a maximum Shannon diversity index of only 0.72 in amplicon 5 

beginning at 16 weeks post-inoculation (Fig. 3A). On the contrary, diversity for the 

progressor macaque K03135 began to increase at 44 weeks post-inoculation. It reached a 

peak of 2.05 in amplicon 1 and 2.71 in amplicon 3 by 64 weeks post-inoculation (Fig. 

3A). The amplicons that showed a high level of diversity mainly comprised gp120. A 

relatively low level of diversity occurred within the gp41 in both animals. Similar to the 

levels of diversity, the nonprogressor macaque J02185 had low divergence, showing that 

its viral populations did not deviate significantly from the inoculum strain over time, with 

a highest p-distance of only 0.007 in amplicon 1 at 65 weeks post-inoculation (Fig. 3B). 

The divergence of progressor macaque K03135 had a pattern similar to its diversity, with 

a progressively elevated p-distance from 44 weeks post-inoculation onwards. Amplicons 

1 and 3 of the progressor macaque K03135 showed a high level of deviation from the 

inoculum strain, reaching a p-distance of 0.034 and 0.025, respectively, by 84 weeks 

post-inoculation (Fig. 3B). Additionally, the gp41 of K03135 developed a slightly higher 

divergence than the other envelope regions at 44 weeks post-inoculation (Fig. 3B). 
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Mutations in this region might have evolved in response to the host immune pressure or 

selection of viral fitness, but there is no evidence or literature to support these 

possibilities. Lastly, the accumulation of minor mutations in gp41 of K03135 did increase 

its divergence despite a rather homogenous population over time as shown in the 

diversity. For the plasmid control, each of the six amplicons showed no diversity and a 

single population was present. 

Envelope evolution through disease progression 

 In order to further demonstrate the progressive nature of the diversification of 

envelope throughout disease progression, we aligned the amplicons from different time 

points with their corresponding reference sequence of the inoculum envelope. 

Furthermore, to highlight the similarities of some mutations observed in the infected pig-

tailed macaque with other species, we included previous sequence data from a study 

involving the infected human and rhesus macaque for comparison (387). In agreement 

with the diversity and divergence analysis, alignment of the amplicons from non-

progressor macaque J02185 revealed extremely low variations within each time point and 

from the inoculum envelope (Fig. S1). 

C1 region 

 Contrary to J02185, substantially more mutations were observed in the progressor 

macaque K03135 as this animal progressed to AIDS. Among the mutations in K03135 

was S124P, which evolved from being the minor population at 44 weeks postinoculation 

to becoming the majority variant by 64 weeks postinoculation (Fig. 4A). S124P is 

adjacent to the CD4 binding site and a proline mutation at this position might affect the 
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CD4 binding site structure. Interestingly, the parental envelope of SHIV-1157ipd3N4 

also contains a proline at position 124 (172). Besides S124P, we also observed the 

emergence of K130N from 64 weeks post-inoculation onwards (Fig. 4A). K130N 

resulted in an additional PNGS and its appearance in the main viral population coincided 

with a consistently low CD4 count and the development of AIDS. More importantly, this 

identical mutation was also observed in the human and rhesus macaque during disease 

progression (Fig. 5A and Table 1) (387). In addition, the same mutation also developed 

during disease progression in a rhesus macaque infected with a clade B SHIV (165). 

V1V2 loops 

 14% and 6.2% of the viral populations contained deletions and insertions in the 

V1 loop, respectively, at 64 weeks postinoculation (Fig. 4A). By 83 weeks, >80% of the 

viral populations contained an insertion in V1 but only 18.3% contained deletions. 

Deletions and insertions in the V1 loop are also common in human and rhesus macaque 

(Fig. 5A and Table 1) (387). While insertions in the V1 loop usually involved PNGS, 

many of the mutations in the V1V2 region comprised of charged amino acids. The net 

charge of the V1V2 region for K03135 decreased significantly over time (P<0.0001) and 

was strikingly similar to those observed in the rhesus macaque (Fig. 6A). This charge 

reduction in V1V2 region was only observed as the animals progressed to AIDS. 

C2 region 

 Unlike the highly variable V1V2 region, only 3 non-transient mutations evolved 

within C2 region of Env. Among these mutations, G262E and D273N represent merely 

0.9% of the viral populations at 44 weeks post-inoculation, but subsequently emerged as 
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the dominant viral population by 64 weeks postinoculation (Fig. 4B). These two 

mutations had also been observed in the rhesus macaque during disease progression (Fig. 

5B, Table 1). Interestingly, D273N locates within the CD4 binding site and mutation at 

this position may affect envelope binding to CD4. More importantly, these mutations 

occurred only after the onset of AIDS in both the pig-tailed and rhesus macaques. 

V3 loop 

 The V3 loop of Env was relatively conserved in K03135, except for S302H that 

emerged at 44 weeks post-inoculation (Fig. 4B). Histidine at this position is extremely 

rare, 0 out of 756 sequences, in HIV-1 clade C envelope in the HIV sequence database. It 

is more commonly found in envelopes from other clades, such as A, B and D. So far, we 

had only observed 1 out of 18 HIV-1 clade C infected patients from a Zambian cohort 

with histidine at this position (unpublished data). Since small changes in this region of the 

V3 loop could disturb the stability of the envelope trimeric structure of and affect CCR5 

binding, mutations at this position could be important (371, 427). Surprisingly, we 

detected a minor population of 7.4% in the gut tissue of K03135 at 16 weeks 

postinoculation that contained a large deletion comprising the regions of C2V3C3 (Fig. 

4B). It was determined that this was not as result of PCR or UDPS, given that it has 

passed our strict quality control procedure and contained an intact open reading frame. At 

this point, it is not clear whether this viral population is functional. However, it was 

reported previously that an envelope with truncation in V3 can still be functional (8, 277). 

In addition, given that this population was unique to the gut tissue, it might serve as 

another example of HIV-1 compartmentalization (394).  
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C3 region 

 The high degree of genetic polymorphism in the α2-helix of C3 had been noted 

previously in several studies involving human and rhesus macaque (Fig. 5C) (264, 387, 

430). The identical region is also highly variable in K03135 from 64 weeks post-

inoculation onwards (Fig. 4C). Similar to the V1V2 region, mutations in this region 

frequently involved charged amino acids. A comparison of the net charge of C3 revealed 

a close similarity between the pigtailed and rhesus macaques, with a significant 

(P<0.0001) decrease in the C3 charge occurring near the late stage of disease (Fig. 6B). 

V4 loop 

 85% of the viral populations carried deletions in V4 by 64 weeks post-inoculation 

(Fig. 4C). Deletions in V4 had been reported in pig-tailed macaque infected with a 

different SHIV (361). In our study, the V4 deletions focused on the methionine located at 

the tip of V4, which was also progressively eliminated over time in the precursor 

envelope sequences of SHIV-1157ipd3N4 (Fig. 5C, Table 2) (387). Surprisingly, 

deletions in V4 were presented at 16.5% of the viral populations from the non-progressor 

macaque J02185 at 65 weeks post-inoculation (Fig. S1). 

C4 region 

 Despite a high sequence homology in the C4 region of Env, E415Q and E426A in 

K03135 emerged from 64 weeks postinoculation onwards (Fig. 4C). E415Q is a 

significant mutation since this position is involved in CD4 binding. Surprisingly, the 

identical position was also mutated to glutamine over time in rhesus macaque infected 

with another SHIV (165). Similarly, E426A, a CCR5 binding site, was observed in pig-
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tailed macaques, rhesus macaques and human as the disease progressed (Fig. 5C, Table 

2). Since glutamic acid is a negatively charged amino acid, mutations at these two 

positions increased the overall charge of C4 (P<0.0001) as the disease progressed in 

K03135 (Fig. 6C). In addition, this pattern of increasing the charge of C4 resembled that 

observed in rhesus macaque during disease progression (Fig. 6C). 

V5 loop and gp41 region 

 91.6% of the viral populations in K03135 contained deletions in V5 at 83 weeks 

post-inoculation (Fig. 7A). Similar deletions were also observed in rhesus macaque and 

human over time (Fig. 5D, Table 2). Lastly, the genetic variability of the envelope 

decreased sharply after the V5 loop. We did not find any mutations in the C5 region of 

the envelope and only few mutations were detected in gp41 (Fig. 7B and C). However, 

1.2% of the viral populations in the gut tissue of K03135 contained deletions in the 

heptad repeat 1 of gp41 (Fig. 7C). Given that this deletion happened at such low 

frequency and localized in the gut tissue only, the impact of this mutation had on the 

overall disease progression could be minimal. 
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Discussion 

 In this study, we provided a comprehensive view of the HIV-1 clade C envelope 

diversifications during disease progression between progressor and non-progressor pig-

tailed macaques. Despite an extremely low level of diversity and divergence from the 

inoculum, we were still able to detect minor envelope variants in the non-progressor 

macaque J02185 over time, demonstrating the value of UDPS. However, there was 

clearly a mechanism by which J02185 was able to keep its infection well controlled. The 

fact that J02185 had envelope binding antibodies but no neutralizing antibodies against 

SHIV-1157ipd3N4, as reported in the previous study, indicated that neutralizing antibody 

responses are not the main mechanism behind its control over the virus (161). In addition, 

the gradual reduction of PBMC proviral load occurred in J02185 without any significant 

decreases in its CD4
+
 T-cell counts, suggesting that this reduction was not due to a lack 

of target cells. This differs from the observation in the progressor macaque K03135, 

whose reduction of PBMC proviral load coincided with low CD4
+
 T-cell counts. 

Together, the data strongly suggests that cell-mediated immunity, such as cytotoxic T 

lymphocyte (CTL) responses, may be responsible for suppressing viral replication in 

J02185. However, due to a lack of information on the MHC class and CTL response 

analysis of J02185, we can only postulate that this was the main mechanism for viral 

control in this animal, which led to a reduction in virus production and the number of 

infected cells. Since mutations occur more frequently during viral replication, a 

diminished virus production will minimize the level of viral genetic variation, thus 

explaining the lack of envelope diversity and divergence in J02185 during the course of 

observation. 
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 On the contrary, our data showed a very different picture for the progressor 

macaque K03135. The high plasma viral RNA load, PBMC proviral DNA load and 

decreasing CD4
+
 T-cell counts before the development of AIDS, indicated a lack of viral 

control by K03135 host responses. Similar to J02185, there were envelope binding 

antibodies but no neutralizing antibodies against SHIV-1157ipd3N4 present in K03135 

(161). Given this lack of neutralizing antibody responses, there may have been a lack of 

selective pressure resulting in rapid envelope evolution during the early phase of 

infection, thus explaining the low level of envelope diversity and divergence in K03135 

before the development of AIDS. At the late stage of the disease, perhaps due to the 

combined effects of an ablated cellular immune system and natural selection for viral 

fitness, there was then a sharp increase in the envelope diversity and divergence in 

K03135. The notion that viral fitness was the main component for natural selection at the 

late stage of disease is supported by our observation that the distribution of envelope 

variations is not random; with mutations frequently occurring at specific regions or 

hotspots throughout the envelope that are proximal to important receptor binding sites 

over time, suggesting the presence of an active selection process. 

 In our study, we also observed that the envelope tended to follow a certain 

evolutionary pattern that correlated with disease progression. The majority of the 

envelope mutations were observed after the onset of AIDS. The most common mutations 

involved the addition of PNGS, which usually takes place in highly variable regions such 

as V1V2, α2-helix of C3, V4 and V5, and PNGS have been shown to play an important 

role in immune evasion (70, 405). However, since the infected animals in our study had 

no neutralizing antibodies against the homologous virus, we believe these mutations 
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evolved in response to the presence of high levels of non-neutralizing antibodies (161). 

Although non-neutralizing antibodies cannot inhibit viral infection directly, they might 

still exert a selective pressure on the viral envelope through antibody-dependent cell-

mediated cytotoxicity (ADCC), as suggested recently during SIV infection (370). 

 Changes in the length of envelope had been associated with immune escape and 

disease progression (80, 392). Our data show that V1 accounted for the largest increase in 

length over time, and coincided with late stages of disease in the infected animals. There 

is a close relationship between the higher percentages of viral populations containing 

deletions in V4 and V5 with late stages of disease as well. Furthermore, our study 

observed a close association of changes in the envelope charges with disease progression. 

For example, the net charge in V1V2 and C3 tended to increase, while there was a 

decrease in C4 charges as the disease progressed. Variations in the charge of envelope 

had been suggested to affect viral fitness and were associated with disease progression 

(311). The high number of charged amino acids in the α2-helix of C3 and its close 

proximity to the V4 loop suggest that it could be under heavy selective pressure from the 

non-neutralizing antibodies (146, 264, 265). More importantly, charged amino acid 

mutations such as D273N, E415Q and E426A might affect the receptors binding ability 

of the envelope. Interestingly, similar mutations had been observed with clade A 

envelope as well (96). 

 In our study, we have demonstrated that the use of SHIV-1157ipd3N4 in pig-

tailed macaque model can mimic the primary HIV-1 infection and disease progression in 

the human. Due to samples availability, we only analyzed PBMC vDNA. While plasma 

vRNA is derived from actively replicating virus population, infected PBMC contain 
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incoming or newly synthesized vRNA in addition to integrated and unintegrated vDNA. 

Thus, studying PBMC allows us to document the complete HIV quasispecies repertoire 

which consists of actively replicating and archived viruses. Moreover, the use of UDPS 

in this study allowed us to detect and quantify minority variants that would have gone 

unnoticed using conventional sequencing technology. However, a major challenge with 

UDPS is its inherent errors that arise during the pyrosequencing process and those 

introduced by PCR amplification. Such errors are typically localized to homopolymers 

(397). Therefore, careful filtering and control is essential to minimize the possibility of 

erroneous sequences. We implemented a carefully designed clean-up strategy to 

minimize the impact of 454 sequencing errors on interpreting our data. Our denoising 

approach removed most pyrosequencing errors due to sporadic base changes introduced 

during PCR while attempting to retain true biological sequence variation. The success of 

this approach is measured by our control plasmid amplicons as they were reduced to a 

single variant population. 

 In summary, UDPS has shown a strong association between the mutational 

dynamics of envelope and disease progression in the infected animals. In addition, we 

found a temporal relationship between the numbers of mutations occurring with little 

genetic variation before AIDS and more genetic variation afterwards. Such changes are 

likely due to a lack of immune surveillance in the early phase and selection for better 

viral fitness at the late stage of disease. Additionally, our data suggest that although 

nonneutralizing antibodies cannot inhibit the virus directly, they might still contribute to 

the evolution of envelope. More importantly, a majority of the mutations and 

evolutionary patterns of the envelope witnessed in SHIV-1157ipd3N4-infected pig-tailed 
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macaques were also common in infected rhesus macaques and human, thus, suggesting a 

common selection pathway for the virus irrespective of the species studied. 
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Figures and Figure Legends 

Figure 1. 
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Figure 1. CD4
+
 T-cell counts, plasma and PBMC viral loads from infected pig-tailed 

macaques. (A) Total CD4
+
 T-cell counts (B) viral RNA loads in plasma and (C) proviral 

cDNA loads in PBMC. A scale break (//) representing 8 weeks post-inoculation was 

insert into the x-axis to show the early stage of infection. A cross (+) represents death of 

the animal due to AIDS. 
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Figure 2. 
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Figure 2. Schematic representation of the envelope regions covered by each amplicon (in 

reference to Env of the infectious molecular clone, SHIV-1157ipd3N4). 
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Figure 3. 
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Figure 3. Phylogenetic analysis. (A) Shannon diversity. Longitudinal trends in sequence 

diversity analyzed using the Shannon Index. Time post-inoculation is shown on the x-

axis and Shannon Diversity Index values are shown on the y-axis. All data shown are for 

AmpliconNoise processed amplicons. (B) Divergence. Longitudinal trends in sequence 

divergence from the time of inoculation. For direct comparison of sequences the mean 

Hamming distance at each time point was measured. Divergence was based on the 

Hamming distances to the SHIV-1157ipd3N4 inoculum for each amplicon. Time post-

inoculation is shown on the x-axis and Hamming distance values are shown on the y-axis. 

Data for each amplicon are shown separately with macaque J02185 in red and macaque 

K03135 in blue, respectively. 
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Figure 4. 
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Figure 4. Amino acid alignments of the envelope from infected pig-tailed macaque 

K03135 as represented by ‘‘K’’. (A) Amplicon 1, (B) Amplicon 2 and (C) Amplicon 3. 

Weeks post-inoculation is represented by ‘‘wks’’. The value after ‘‘_’’ shows the 

population number. Deletions in the alignments are shown as ‘‘-’’. The amount of the 

particular viral population at that time point is represented as percentage. Point mutations 

described in the text are highlighted by red color box. 
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Figure 5. 
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Figure 5. Amino acid alignments of the envelope from infected human (1157i) and rhesus 

macaque (RPn-8). 1157i and RPn-8 examples for (A) Amplicon 1, (B) Amplicon 2, (C) 

Amplicon 3 and (D) V5 loop. The inoculum for RPn-8 was SHIV-1157i (the initial 

infectious molecular clone). Weeks post-inoculation or infection is represented by 

‘‘wks’’. Sequences presented here are examples from each time point. These are not 

consensus sequences and do not represent all the sequence data from both the infected 

human and rhesus macaque. Point mutations described in the text are highlighted by red 

color box. 
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Figure 6. 
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Figure 6. Comparison of envelope charges between the infected pig-tailed macaque 

(K03135) and rhesus macaque (RPn-8). (A) V1V2 regions, (B) C3 region and (C) C4 

region. Time points are represented in weeks post-inoculation (wpi). The inoculum SHIV 

strain for K03135 was SHIV-1157ipd3N4 and SHIV-1157i for RPn-8. Each icon 

represents one envelope sequence. 
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Figure 7.  
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Figure 7. Amino acid alignments of the envelope from infected pig-tailed macaque 

K03135 as represented by ‘‘K’’. (A) Amplicon 4, (B) Amplicon 5 and (C) Amplicon 6. 

Weeks post-inoculation is represented by ‘‘wks’’. The value after ‘‘_’’ shows the 

population number. Deletions in the alignments are shown as ‘‘-’’. The amount of the 

particular viral population at that time point is represented as percentage. 
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Table 1: Comparison of HIV-1 clade C Env mutations between infected pig-tailed 

(K03135), rhesus macaque (RPn-8) and human (1157i). 
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Table 2. Comparison of HIV-1 clade C Env mutations between infected pig-tailed 

(K03135), rhesus macaque (RPn-8) and human (1157i).  

 



140 
 

 

Table 3. Primers used for ultradeep-pyrosequencing library preparation. 
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Supporting Figure 1. 
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Supporting Figure 1. Amino acid alignments of the envelope from infected pig-tailed 

macaque J02185 as represented by “J”. (A) Amplicon 1, (B) Amplicon 2, (C) Amplicon 

3, (D) Amplicon 4, (E) Amplicon 5 and (F) Amplicon 6. Weeks post-inoculation is 

represented by “wks”. The value after “_” shows the population number. Deletions in the 

alignments are shown as “-”. The amount of the particular viral population at that time 

point is represented as percentage. 
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Chapter 5 

Concluding remarks  

 In summary, our studies have validated the experimental infection of macaques 

with SHIV-C as a useful and valid animal model for studying HIV-1 envelope evolution 

during disease progression. This is supported by our data in chapter two, which has 

demonstrated that the genetic evolution of HIV-1 envelope V1-V5 region and its disease 

progression in the SHIV-C infected animal are comparable to those of the HIV-1 infected 

patient. To further support this conclusion, evidence from chapter four showed similar 

envelope mutations and evolution in the pig-tailed macaque infected by a closely related 

SHIV-C. Together, these studies suggest that the HIV-1 envelope V1-V5 region follows a 

similar evolutionay pattern during disease progression in three different host species.  

 Although we had observed numerous envelope mutations in chapters two and four 

based on sequence analysis, the question of whether these mutations had actually affected 

the envelope functions remained unclear. To address this issue, we examined changes in 

biological functions of the HIV-1 envelope during disease progression in chapter three. 

By using the SHIV-C model, we have demonstrated the close relationship between 

changes in the envelope functions and disease progression. Importantly, we believe are 

the first to report the occurrence of a reduction in the virion-associated gp120 content as 

the disease progresses. Moreover, our data also underscored the emergence of mAb 

neutralization resistance phenotypes with variations in charged residues of the HIV-1 

envelope over the disease course. These observations might represent another facet of the 

viral escape mechanisms aside from the previously proposed glycan shield theory (405). 
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In addition, data from chapter three suggests that the current notion that the late virus 

might have a higher fitness in comparison to the early viruses may not necessarily be 

occurring in all cases during disease progression (310, 385). In contrast with other 

studies, our results suggest that viruses encoding envelopes from the late disease course 

could also have relatively lower replicative fitness compare to those viruses with early 

envelopes. This could be a result of accumulated mutations during disease progression, 

which may have provided some in-vivo survival advantages but at the cost of viral fitness 

in the late envelopes. 

Further studies are warranted to confirm these observations using SHIV encoding 

other HIV-1 envelope strains. It will be ideal to study these envelope functional changes 

in HIV-1 patients during disease progression. However, it is infeasible to follow HIV-1 

patients over extended period of time from the establishment of infection to the 

development of AIDS. The current antiretroviral drugs are effective in preventing the 

disease progression and improving the quality of life in most HIV-1 infected individuals. 

However, the availability of HAART also presented a major challenge for enrolling drug-

treatment naïve patients. These issues represent some of the difficulties in conducting 

such studies in patients and underscored the importance of non-human primate models 

for HIV-1 research.  

As mentioned in the literature review, there are other envelope functions that we 

have not investigated. These functions, such as the cytotoxicity and by-stander killing 

effects, will be interesting to investigate since they might affect the viral pathogenesis. 

Also, future studies should consider examining the full HIV-1 gp160 instead of only the 

V1-V5 region, since other envelope regions, such as the signal peptide and gp41, as well 
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as other viral structural and regulatory gene products might influence the viral fitness and 

disease progression (17).  

Additionally, it is important to note that we cannot exclude the possibility that our 

observed changes in the HIV-1 envelope over time as an adaptational consequence of 

infecting non-human primates. A recent study had indeed reported mutations of the HIV-

1 clade A envelope that are associated with adaptation during infection of monkey cell 

lines (173). Lastly, the age of the host during establishment of infection might impact 

viral evolution as well. The immature immune system of the infants might had exerted 

less selective pressure during the establishment of infection, in comparison to the adults 

with mature immune system, resulting in different outcome of selection.  

In conclusion, our findings have provided strong evidence that the HIV-1 

envelope V1-V5 region follows a similar evolutionary pattern in two different non-

human primate species and is closely associated with disease progression in the infected 

patient, contributing to a better overall understanding of HIV-1 envelope evolution during 

disease progression.   
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