

Design and Implementation of a Data Warehouse
Using Dynamic Materialized Views Selection

Model: The Islamic University of Gaza as a Case
Study

لعملیة اختیار يدینامیكنموذج استخدامبتصمیم وبناء مستودع بیانات

ع: الجامعة الإسلامیة بغزة كدراسة حالة لمستودلالتركیبات المجسمّة

Belal W. Shbair

Supervised by

Dr. Wesam Ashour

Associate Professor at Islamic University of Gaza

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of

Computer Engineering

August/2017

غــزة –ة ــلامیــــــة الإســـــــــامعـلجا

 شئون البحث العلمي والدراسات العلیا

ة الھندسةلیــــــك

 ماجستیر ھندسة الحاسوب

The Islamic University–Gaza

Research and Postgraduate Affairs

Faculty of Engineering

Master of Computer Engineering

II

 إقــــــــــــــرار

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Design and Implementation of a Data Warehouse Using

Dynamic Materialized Views Selection Model: The Islamic

University of Gaza as a Case Study

تصميم وبناء مستودع بيانات واستخدام نموذج ديناميكي لعملية اختيار التركيبات
: الجامعة الإسلامية بغزة كدراسة حالةالمجسمّة للمستودع

شتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وأن هذه أقر بأن ما ا

لنيل درجة أو لقب علمي أو بحثي لدى أي مؤسسة تعليمية أو الاخرين الرسالة ككل أو أي جزء منها لم يقدم من قبل

 بحثية أخرى.

Declaration

I understand the nature of plagiarism, and I am aware of the University’s policy on this.

The work provided in this thesis, unless otherwise referenced, is the researcher's own work,

and has not been submitted by others elsewhere for any other degree or qualification.

 :Belal Waleed Shbair Student's name اسم الطالب:

 :Belal Shbair Signature التوقيع:

 :Date 8/2017/ 23 التاريخ:

IV

Abstract

Nowadays, business decision-making is moving towards advanced performance

evaluation process using standard methods such as Key Performance Indicator (KPI).

Performance evaluation process identifies a statistically significant connection between KPIs

and related information set. However, with the volume of transactional data stored in a

database in an Operational Data Store (ODS), traditional reporting process depending on

joining multiple tables and logical views cannot be efficiently used to extract related

information set for KPI due to high complexity and query cost. The major problem is how to

generate the related information set with quality, which abstracts the huge volume of raw data.

The scope of this thesis is to design an enterprise Data Warehouse (DW) for Islamic

University of Gaza to extract a related information set for its KPIs as a base for Business

Intelligence (BI) process. Additionally, we propose a novel and smart materialize views

selection model which handles data warehouse storage and performance issues. Our model

specifies, dynamically, which data marts and dimension tables should be materialized over

time in peak intervals of usage of the data warehouse. Finally, this model is tested over TPC-

H benchmark and that resulted high reduction of overall MVPP cost. Also we studied the

effect of using DW in IUG and the results show reduction in execution time over 90% for

most of views in DW, and it show additional reduction in execution time over 80% for most

of views while materializing them.

V

 الملخص

 بأسالیب في المؤسسات في الوقت الحاضر، تتحرك عملیة اتخاذ القرار في مجال الأعمال نحو عملیة تقییم الأداء

). تحدد عملیة تقییم الأداء وجود علاقة ذات دلالة KPIباستخدام أسالیب قیاسیة مثل مؤشر الأداء الرئیسي (متقدمة وذلك

بیانات المعاملات الیومیة التي الكبیر لحجم المع المعلومات ذات الصلة. و)KPIs(إحصائیة بین مؤشرات الأداء الرئیسیة

ربط على المعتمدة التقلیدیة استخراج التقاریر عملیة تعتبر)، ODSبیانات في مخزن البیانات التشغیلیة (القاعدة تخزّن في

لمؤشر الأداء الرئیسي المطلوبة معلومات متعددة لا یمكن استخدامھا بكفاءة لاستخراج ال)viewsو تركیبات (أ جداول

ضمان الجودة مؤشرات الأداء الرئیسیة مع كیفیة تولیدتكمن في المشكلة الرئیسیة .الاستعلاموكلفة الكبیربسبب التعقید

 . نطاق ھذه الأطروحة ھوفي الوقت والتكلفة العملیة في عملیة تلخیص المعلومات من البیانات الخام الضخمة المناسبة

ذكاء كأساس لمنظومة مؤشرات الأداء الرئیسیة لمعالجة وتخزین بیاناتتصمیم مستودع بیانات للجامعة الإسلامیة في غزة

ً یقدمّ ھذا البحث نموذج). بالإضافة إلى ذلك، BIالأعمال (ً دینامیكی ا لعملیة تجسیم البیانات في مستودع البیانات المصمم ا

التي یجب) viewsالتركیبات (باستكشاف وبشكل دینامیكي النموذج المقترحیقوم . ئھداأللجامعة الذي بدوره یحسّن من

مما نتج عنھ TPC-Hتجسیمھا في أوقات ذروة استخدامھا في مستودع البیانات. تم تجربة النموذج المقترح على مؤشر

تودع البیانات في الجامعة الإسلامیة كذلك تم استعراض تأثیر استخدام مس .لھ جمالیةالإ MVPP الـتخفیض ملحوظ في تكلفة

 مستودع% لمعظم التركیبات في 90من أكثرعلى الوقت والتكلفة العملیة لاستخراج التقاریر، نتج عنھ توفیر في الوقت

من %80فحص تأثیر تجسیم التركیبات في مستودع البیانات مما نتج عنھ توفیر أكثر من لى ذلك تم إالبیانات. بالإضافة

 لمعظم التركیبات. المستھلكالوقت

VI

Dedication

To my beloved father

To my beloved Mother

To my great brothers and sisters

To my wonderful country Palestine

VII

Acknowledgment

First of all, I thank Allah for guiding me and taking care of me all the time. My life is

so blessed because of his majesty.

I wish to express my thanks to my father Dr. Waleed Shbair for his support and

motivation in my entire life, and especially during my study. Also I’m thankful to my beloved

mother, for her prayers and motivation.

I would like to voice my sincere thanks and really appreciation to my advisor, Dr.

Wesam Ashour, for his kindness in providing valuable advice, support, encouragement and

guidance throughout the time to get this thesis in its current shape. I have been learned more

than study by his coaching with kindness and very nice attitude.

Special thanks to all my family members and friends for their love, support and prayers.

Finally, I would like to voice my appreciation to Interpal for funding and supporting

our project through its phases.

VIII

Table of Contents

Declaration ... II

Abstract ... IV

 V ... الملخص

Dedication .. VI

Acknowledgment ... VII

Table of Contents ... VIII

List of Tables ... X

List of Figures ... XI

List of Abbreviations ... XIII

Chapter 1 Introduction ... 2

1.1 Background ... 2

1.2 Scope and Objectives .. 5

1.3 Motivation ... 5

1.4 Thesis Contribution ... 6

1.5 Overview of Thesis ... 6

Chapter 2 Literature Review .. 8

2.1 Data Warehouse .. 8

2.2 OLAP vs OLTP .. 9

2.3 Data Warehouse Design Approaches ... 10

2.3.1 Bill Inmon Architecture .. 10

2.3.2 Ralph Kimball Architecture ... 12

2.3.3 Differences between Inmon and Kimball Approaches 14

2.3.4 Deciding Factors ... 15

2.4 Dimensional Model ... 16

2.5 Definitions .. 19

2.6 DW Case Studies for Higher Education Environments .. 21

2.7 Materialized View Selection Algorithms.. 22

Chapter 3 Design and Implementation .. 29

3.1 System Analysis .. 29

3.1.1 IUG Data .. 30

3.1.2 Functional Requirement ... 30

3.1.3 Non Functional Requirement ... 32

3.1.4 User Requirement ... 32

IX

3.1.5 System Requirement ... 32

3.2 System Design .. 33

3.2.1 Waterfall Model ... 33

3.2.2 Spiral Model ... 34

3.2.3 Logical Models ... 36

3.2.4 Facts and Dimensions Tables ... 36

3.3 System Implementation .. 64

3.3.1 Design of the Physical Database .. 65

3.3.2 Design of the ETL Process ... 66

3.4 System Verification and Maintenance .. 74

Chapter 4 Proposed Materialized View Selection Model .. 76

Chapter 5 Results and Discussion .. 86

5.1 TPC Benchmark™H (TPC-H) .. 86

5.2 Legacy System versus Data Warehouse versus DW Materialized Views 101

Chapter 6 Conclusion and Future Works ... 107

6.1 Conclusion .. 107

6.2 Future Works .. 108

References .. 110

Appendix 1: Legacy System Vs Data Warehouse Vs Materialized Views 114

A1.1 Students Admission Data Mart ... 114

A1.2 Geographical Location Data Mart .. 115

A1.3 Transfers between Colleges Data Mart .. 116

A1.4 Exam Conflicts Data Mart .. 117

A1.5 SFD Students Registration Data Mart .. 118

A1.6 Cash Grants Data Mart ... 119

A1.7 Deferred Grant Data Mart .. 120

A1.8 Student Fund Summary Data Mart ... 121

A1.9 Financial Collection Data Mart .. 122

Appendix 2: TPC-H Schema Queries and Relational Algebra Trees 123

X

List of Tables
Table (2.1): Differences between OLTP Database and OLAP Database 10
Table (3.1): Academic Years Dimension .. 37
Table (3.2): Academic Semesters Dimension ... 37
Table (3.3): Date Dimension ... 38
Table (3.4): Study Programs Dimension ... 39
Table (3.5): College Dimension .. 39
Table (3.6): Departments Dimension .. 40
Table (3.7): Courses Dimension .. 40
Table (3.8): High School Years Dimension .. 41
Table (3.9): High School Grades Dimension .. 41
Table (3.10): High School Sections Dimension .. 42
Table (3.11): Student States Dimension .. 42
Table (3.12): Student Levels Dimension ... 43
Table (3.13): Geographical Locations Dimension .. 43
Table (3.14): Students Dimension ... 44
Table (3.15): Grants Dimension .. 45
Table (3.16): Student Registration Hours Dimension ... 45
Table (4.1): Frequency Matrix of Last Five Years .. 78
Table (4.2): Detracted Frequency Matrix of Last Five Years ... 79
Table (4.3): Frequency Matrix of VIEW_5 Over Months .. 83
Table (4.4): Frequency Matrix of VIEW_5 Over Weeks .. 83
Table (5.1): The TPC-H Schema Table Size ... 87
Table (5.2): The Maintenance Cost of the Re-Optimized MVPP ... 92
Table (5.3): The Query Processing Cost of the Re-Optimized MVPP 93
Table (5.4): Usage Frequency Matrix of Queries Q1 through Q7 Over Financial Year’s

Quarter Weeks .. 95
Table (5.5): The Maintenance Cost of the MVPP in 1st Week of 1st Quarter 97
Table (5.6): The Query Processing Cost of the MVPP in 1st Week of 1st Quarter 97
Table (5.7): The Maintenance Cost of the MVPP in 2nd Week of 1st Quarter 98
Table (5.8): The Query Processing Cost of the MVPP in 2nd Week of 1st Quarter 99
Table (5.9): The Query Processing Cost, Maintenance Cost and Total Cost of 1st and 2nd

Weeks of 1st Quarter .. 99
Table (5.10): High School Results Experimental Results ... 101
Table (5.11): Students Registration - Experimental Results ... 103
Table (5.12): Summary of the Comparison between IUG Legacy System, Data Warehouse,

and Materialized Views .. 104
Table (A1.1): Students Admission - Experimental Results ... 114
Table (A1.2): Geographical Location- Experimental Results ... 115
Table (A1.3): Transfers between Colleges - Experimental Results 116
Table (A1.4): Exam Conflicts - Experimental Results .. 117
Table (A1.5): SFD Students Registration - Experimental Results 118
Table (A1.6): Cash Grants - Experimental Results ... 119
Table (A1.7): Deferred Grant - Experimental Results .. 120
Table (A1.8): Student Fund Summary - Experimental Results ... 121
Table (A1.9): Financial Collection - Experimental Results .. 122

XI

List of Figures
Figure (1.1): Concept of Business Intelligence ... 3
Figure (1.2): Difference between Logical View and Materialized View 4
Figure (2.1): Bill Inmon Approach of Data Warehousing ... 11
Figure (2.2): The Ralph Kimball Approach... 13
Figure (2.3): Example of Dimensional Model ... 17
Figure (2.4): Example of Hierarchy in Dimensional Model .. 18
Figure (2.5): Fact and Dimension Tables in a Dimensional Model 19
Figure (2.6): Factless Fact Table Example .. 20
Figure (3.1): Spiral Model of the Data Warehouse Life-cycle .. 34
Figure (3.2): High School Results Data Mart .. 46
Figure (3.3): Students Admission Data Mart ... 47
Figure (3.4): Students Admission Views ... 48
Figure (3.5): Students Registration Data Mart ... 49
Figure (3.6): Students Registration Views ... 50
Figure (3.7): Students Locations Data Mart .. 51
Figure (3.8): Students Locations Views .. 51
Figure (3.9): College Student GPA Data Mart .. 52
Figure (3.10): College Students GPA Views ... 53
Figure (3.11): College Transfers Data Mart .. 54
Figure (3.12): College Transfers Views .. 55
Figure (3.13): Exam Conflicts Data Mart .. 56
Figure (3.14): Exam Conflicts Views .. 57
Figure (3.15): Students Registration Data Mart (Student Fund) 58
Figure (3.16): Students Registration Views (Student Fund).. 59
Figure (3.17): Cash Grant Data Mart ... 60
Figure (3.18): Cash Grant Views ... 60
Figure (3.19): Deferred Grant Data Mart... 61
Figure (3.20): Deferred Grants View ... 61
Figure (3.21): Student Fund Totals Data Mart .. 62
Figure (3.22): Student Fund Totals Views... 62
Figure (3.23) Financial Collection Data Mart .. 63
Figure (3.24): Financial Collection Views .. 64
Figure (3.25): DDL Generator in Oracle SQL Developer Data Modeler 65
Figure (3.26): Example of Loading Staging Tables .. 67
Figure (3.27): SCD Type 1 Before Changing a Record .. 68
Figure (3.28): SCD Type 1 After Changing a Record ... 68
Figure (3.29): SCD Type 2 Record Before Update ... 69
Figure (3.30): SCD Type 2 After Updating a Record .. 69
Figure (3.31): SCD Type 3 Example ... 70
Figure (3.32): SCD Type 6 After Record Update .. 70
Figure (3.33): SCD Type 1 Implementation in Talend Open Studio................................. 71
Figure (3.34): SCD Type 1 Dimensions Load Process .. 71
Figure (3.35): Fact Table Loading Process .. 72
Figure (3.36): Example of a Staging Table.. 72
Figure (3.37): Data Mapper Lookups Example ... 73
Figure (3.38): Preparing Fact Table Data Using Data Mapper.. 74

XII

Figure (4.1): Usage Frequency Hierarchy ... 81
Figure (5.1): The TPC-H Schema .. 86
Figure (5.2): Relational Algebra Query Tree of Query Q1 ... 89
Figure (5.3): MVPP with Materialized View Nodes Selected by 2PO 91
Figure (5.4): TPC-H Usage Frequency Hierarchy ... 94
Figure (5.5): MVPP in 1st Week of 1st Quarter .. 96
Figure (5.6): MVPP in 2nd Week of 1st Quarter ... 100
Figure (5.7): High School Results - Legacy System Vs Data Warehouse 102
Figure (5.8): High School Results - Logical Vs Materialized ... 102
Figure (5.9): Students Registration - Legacy System Vs Data Warehouse 103
Figure (5.10): Students Registration - Logical Vs Materialized 104
Figure (A1.1): Students Admission - Legacy System Vs Data Warehouse 114
Figure (A1.2): Students Admission - Logical View Vs Materialized View 114
Figure (A1.3): Geographical Location- Legacy System Vs Data Warehouse 115
Figure (A1.4): Geographical Location- Logical View Vs Materialized View 115
Figure (A1.5): Transfers between Colleges - Legacy System Vs Data Warehouse 116
Figure (A1.6): Transfers between Colleges- Logical View Vs Materialized View 116
Figure (A1.7): SFD Exam Conflicts - Legacy System Vs Data Warehouse 117
Figure (A1.8): Exam Conflicts - Logical View Vs Materialized View 117
Figure (A1.9): SFD Students Registration - Legacy System Vs Data Warehouse 118
Figure (A1.10): SFD Students Registration - Logical View Vs Materialized View 118
Figure (A1.11): Cash Grants - Legacy System Vs Data Warehouse 119
Figure (A1.12): Cash Grants - Logical View Vs Materialized View 119
Figure (A1.13): Deferred Grant - Legacy System Vs Data Warehouse 120
Figure (A1.14): Deferred Grant - Logical View Vs Materialized View 120
Figure (A1.15): Student Fund Summary - Legacy System Vs Data Warehouse 121
Figure (A1.16): Student Fund Summary - Logical View Vs Materialized View 121
Figure (A1.17): Financial Collection - Legacy System Vs Data Warehouse 122
Figure (A1.18): Financial Collection - Logical View Vs Materialized View 122
Figure (A2.1): Relational Algebra Query Tree of Query Q2 .. 123
Figure (A2.2): Relational Algebra Query Tree of Query Q3 .. 124
Figure (A2.3): Relational Algebra Query Tree of Query Q4 .. 125
Figure (A2.4): Relational Algebra Query Tree of Query Q5 .. 126
Figure (A2.5): Relational Algebra Query Tree of Query Q6 .. 127
Figure (A2.6): Relational Algebra Query Tree of Query Q7 .. 128

XIII

List of Abbreviations
2PO Two-Phase Optimization
3NF Third Normal Form
BI Business Intelligence
CBDMVS Clustering-Based Dynamic Materialized View Selection
CBO Cost-Based Optimizer
CIF Corporate Information Factory
CRM Customer Relationship Management
DBMS Database Management Systems
DDL Data Description Language
DT Dimension Table
DW Data Warehouse
EMVSDIA Efficient Materialized View Selection Dynamic Improvement Algorithm
ER Entity Relationship
ERP Enterprise Resource Planning
ETL Extract-Transform-Load
FT Fact Table
GPA Grade Point Average
IDE Integrated Development Environment
IUG Islamic University of Gaza
KPI Key Performance Indicator
MV Materialized View
MVPP Multiple View Processing Plan
MVS Materialized View Selection
ODS Operational Data Store
OLAP On Line Analytical Processing
OLTP On Line Transaction Processing
PLSQL Procedural Language/Structured Query Language
SCD Slowly Changing Dimensions
SCM Supply Chain Management
SF Scale Factor
SQL Structured Query Language
TPC-H Transaction Processing Performance Council-H
UNM University of New Mexico
VRDS View Relevance Driven Selection

1

Chapter 1
Introduction

oashour
Rectangle

2

Chapter 1

Introduction

1.1 Background

Business Intelligence (BI) systems play major role in the organizations. It is

providing the ability to measure, manage, and optimize business processes. Moreover,

it support decision-making of organization’s managers and improve organizational

performance (Ramakrishnan, Jones, & Sidorova, 2012). BI facilitates the interaction

between different sections of the organization, such as human resources, marketing,

and finance, to help the business to extract metrics and measurements, and assist in

decision-making and knowledge extraction.

Data Warehouse (DW) is the main component of business intelligence since it

forms the central repository of BI (Devlin, 2010). Data warehousing strategies involve

gathering data from organization’s diverse source systems, typically from multiple

online transaction processing (OLTP) databases, then data manipulated for BI

purposes (Eckerson, 2003).

The Islamic University of Gaza (IUG) has more than 18,000 regular students in

each academic semester (Al-Kordi, 2017). It has more than 120 academic programs

which include about 1000 courses that are available for students (Shwedeh, 2017).

IUG manages the academic and administrative operations of the students and the

employees cooperating different departments in the campus such as finance, admission

and registration, student affairs, and student fund. However, the electronic services in

IUG was increased significantly over the years resulting huge amount of data in

operational database. So that it must be obvious how complex it is to handle this

volume of data that would have been accumulated over the years.

For the success of any organization, there must be some performance evaluation

indicators which can be used in steering organizational decisions (Moullin, 2007). In

IUG, there are different perspectives to define Key Performance Indicators (KPI)

which can be sorted shortly as employees, students, colleges, and environment, etc. In

this research, and because of time frame for our project, we focus on KPIs that will

3

help in decision-making for students’ affairs which will help them academically and

financially. We focus on students in this research since they are one of the main

components in IUG, other components will be addressed in future works.

Students’ success is associated with tracking their progress each semester, i.e.,

tracking if a student passed certain academic levels, meeting the academic needs of

students, establishing and accomplishing short-term and long-term goals. Currently,

only few questions like number of students served, or number of students receiving a

passing grade in a course and so on determine measures taken to ensure progress of

students, which are all based on data stored in transactional database. Such reports

however do not enable deeper understanding, for instance, growth of a student in a

given time period, comparing growth over years and factors contributing to this.

The key points of business intelligence (BI) or supporting decision-making

process are the proper understanding of business users’ and decision makers’

requirements, and the good design and modeling historical and new data (Vizgaitytė

& Skyrius, 2012). Figure 1.1 shows simplified overview of business intelligence. To

extract knowledge and insights from raw data of organization’s systems, business users

use specific technologies, processes, tools and rules.

Figure (1.1): Concept of Business Intelligence

Source: (Vizgaitytė & Skyrius, 2012)

4

There are three stages to the business intelligence process in which a business

gradually grows in analytical sophistication as business needs and demands (IBM

Business Analytics, 2011). First, is IT-centric that totally focused on data collection

and analytical tools selection. Second is to build a data model to support the reporting

requirements of users which will help them track progress and success. Last is to build

a predictive data model that will help the policy and decision makers by providing a

better vision for the purpose of decision making.

The Islamic University of Gaza currently depends on logical views to build

reports or to serve its applications that were developed for the academic or

administrative offices. But in practice, this concept is not efficient enough to support

analytics that need to be developed and to extract historical behavior of data change.

Reports that are built on top of logical views take a long time to run as views are

not physically populated in the database, thus the data is gathered and populated in the

time that report is requested.

For illustration, Figure 1.2 shows total time consumed to query total number of

registered students for each of the last three semesters by logical view compared with

total time consumed by materialized view (physically populated).

Figure (1.2): Difference between Logical View and Materialized View

5 S

0.6 S

0

1

2

3

4

5

6

Logical View Materialized View

Se
co

nd
s

Logical View Vs Materialized View

Time (s)

5

It is obvious from Figure 1.2 that the time needed to run the materialized view

is much less than that needed for logical view. The big difference in time was due to

nature of logical views which need to be queried and calculations need to be performed

on the fly. This process of querying an un-indexed view with hundreds of columns and

performing calculations while generating the report consumes an undesirable amount

of time.

1.2 Scope and Objectives

The scope of this thesis is to design and implement a robust and fast data

warehouse for the Islamic University of Gaza. In current phase, it will hold analytical

and historical data related to IUG departments that deal directly with students and help

them academically and financially. These departments are Admission and

Registration, Finance, and Student Fund departments. Other departments in IUG will

be considered in future phases of the project. Our objectives include:

• Analyze data provided by following departments: Admission &

Registration, Finance, and Student Fund.

• Design data warehouse for IUG that meets the requirements of

Admission & Registration, Finance, and Student Fund departments.

• Propose our model for Materialized View Selection in Data Warehouse.

• Implement the Data Warehouse using our Materialized View Selection

model.

• Test our proposed model on TPC benchmark™ H.

1.3 Motivation

The decision makers in IUG don’t have a unique repository for analytical and

historical data of the university. They are currently depending on analyzing data on

demand based on raw transactional data, which costs a lot of time and effort and may

not always be accurate since it is analyzed manually by individuals. Given the

importance of the information for the IUG, the decision makers were motivated to deal

with the problem of time loss and data inconsistency by implementing a data

warehouse and to ensure that data is available in the time it is needed. Therefore, there

http://www.cs.stir.ac.uk/%7Ekjt/research/conformed.html

6

is a need to design a database that supports reporting, analytical and decision-making

capabilities for executive offices at IUG.

1.4 Thesis Contribution

This thesis proposes a new Materialized View Selection (MVS) model

integrated with our approach of designing and implementation of data warehouse for

The Islamic University of Gaza. We used one of industry standard methods in order to

design the data warehouse which is Kimball method following the guides in (Kimball

& Ross, 2013).

Our model for view materialization depends on view usage frequency over time

to predict materialization probability. It studies the usage behavior of each view over

the academic/financial year, which is the academic year in our research. Then

according to usage behavior, our model detects either the view should be materialized

or not. The proposed model can be integrated with other materialized views selection

algorithms as will be discussed on Results and Discussion chapter.

1.5 Overview of Thesis

The rest of this thesis is organized as follows: Chapter 2 describes a literature

review on data warehouse and materialized views selection approaches. Chapter 3 will

be the design and implementation process. Chapter 4 describes the proposed selection

model in details. Chapter 5 presents the results of implementing our model over TPC-

H benchmark showing the effectiveness of our model, and we show the value of using

data warehouse in academic institutes. Chapter 6 concludes our work and provides

directions for future work.

7

Chapter 2
Literature Review

oashour
Rectangle

8

Chapter 2

Literature Review

In this chapter, we focus on providing the information and concepts of the data

warehouse and business intelligence that are relevant to our research.

2.1 Data Warehouse

Data warehouse is a repository that holds integrated data from different source

systems which is retrieved and collected periodically, this data is stored in dimensional

or normalized data store. Data warehouse usually stores historical data which can be

used for analytics or business intelligence and data mining processes. It is typically

refreshed in batches in defined intervals, so it is not required to be triggered for every

transaction occur in running transactional systems (Rainardi, 2008).

A data warehouse for an organization is a repository for keeping measurements

about the organization. Organizations, typically, have many systems to handle their

operations internally or with its customers, i.e. human resources, finance, customer

care, or sales. Each of these systems has its own operational data repository and it is

very complex to derive analytical results of all these repositories based on operational

data stores.

According to Bill Inmon, data warehousing is a set of procedures and processes

of collecting and manipulating data to be stored in a managed database. Data is

processed so that to be subject-oriented, integrated, time variant, and nonvolatile for

the support of decision-making (Inmon, 2002).

“Subject-oriented” means that a data warehouse focuses on the high-level

entities of the business, such as employees, courses, and accounts. This is in contrast

to transactional systems, which deal with processes such as student registration or

payment of invoices (Chan, 1999). “Integrated” means that the data are stored in

consistent formats, with consistent naming conventions, domain constraints, physical

attributes, and measurements. For example, an organization may have four or five

unique coding schemes for ethnicity. In a data warehouse, there is only one coding

9

scheme. “Time-variant” means that data are associated with a point in time, such as a

semester, financial year, or pay period. Finally, “nonvolatile” means that the data do

not change once they are entered into the warehouse.

2.2 OLAP vs OLTP

Data warehouse also can be referred as Online Analytical Processing (OLAP)

system since it helps decision makers in the data analysis scope. On the other hand,

operational systems can be referred as Online Transaction Processing (OLTP) systems

since they are handle daily organization’s transactions and processes. The difference

can be summarized as OLTP system’s goal is to get data into databases, whereas the

data warehouse is built to get information out of database.

In (Han, Kamber, & Pei, 2012) the researchers debate that OLTP system is

customer-oriented, in contrast a data warehouse is market-oriented. It is not a good

practice to combine both OLAP and OLTP tasks in one system, because OLAP

database is optimized for querying and OLTP database is optimized for real time

transactions. Data warehouse is based on dimensional design model which is much

more effective for data retrieval while OLTP systems is based on relational design

model. Furthermore, data warehouses may hold data from diverse of data sources with

heterogeneous data formats which is manipulated before it is loaded in data warehouse.

Organizations, typically, choose to separates OLTP and OLAP systems.

In (Poe, Klauer, & Brobst, 1996), the authors show that data in OLAP systems

is used to extract knowledge and information through comparisons or by detecting

patterns and trends. Such information cannot be easily discovered from OLTP system

due to complexity. Furthermore, they argue the idea of data warehouse should be based

on business requirements. Ralph Kimball (Kimball, 1996) agrees with that concept.

Inmon in (Inmon, 2002) has a different approach for data warehouse development. He

argues that despite OLTP systems are developed based on business requirements, data

warehouse system is developed, then data marts are designed to cater individual

business process needs. Inmon considers the data warehouse development lifecycle as

data-driven and OLTP are requirements driven. On the other hand, Kimball approach

10

considers data warehouse development lifecycle is requirements-driven as well. In the

next section, we discuss each approach in detail.

Santos and Ramos define data warehouse as a database that is managed

independently of an operational database (OLTP) (Santos & Ramos, 2009). Table 2.1

illustrates that both types of databases serve different purposes. The operational database

aims to handle near real time transactions (i.e. credit cards transactions) while the data

warehouse is more dedicated for analyzing a bugger volume of data. All these differences

must be taken into account in the process of selecting a new database.

Table (2.1): Differences between OLTP Database and OLAP Database

OLTP Database OLAP Warehouse

Operational Purposes Records history

Read/Write access Read-only access

Pre-defined transactions access Periodic reports and ad hoc access

Access to a small amount of records Access to a huge amount of records

Refresh of data near real time Scheduled data loads

Optimized structure for updates Optimized structure for processing
issues

Source: (Santos & Ramos, 2009)

2.3 Data Warehouse Design Approaches

Bill Inmon and Ralph Kimball are two pioneers that built two different

approaches for data warehousing. In this section, we explain each approach and we

show the differences between them.

2.3.1 Bill Inmon Architecture

Bill Inmon proposed a top-down approach for data warehousing shown in Figure

2.1, known as corporate information factory (CIF) (Inmon, 2002). The components of

a CIF include a data warehouse which is built in third normalized form and individual

de-normalized data marts which are populated from the data warehouse. These data

11

marts cater to individual business process needs. Reporting cubes are built as required

on top of the data marts.

Figure (2.1): Bill Inmon Approach of Data Warehousing

Source: (Zahra, 2015)

In Figure 2.1, feeding the data warehouse starts by Extract, Load, and Transform

(ETL) process from different sources. First, data is extracted and transformed in the

staging area. Next, after data had been ready it is loaded into centralized enterprise

data warehouse in 3rd normal form (3NF). Finally, once data is loaded, data marts are

designed according to business requirements. The data warehouse as defined by Bill

Inmon, contains enterprise data without any redundancy at the lowest level of detail

i.e., transactional data in 3NF.

(Rangarajan, 2016) summarizes the advantages and disadvantages of Inmon’s

approach as follows:

The key advantages of the Inmon approach are:

• The data warehouse truly serves as the single source of truth for the enterprise,

as it is the only source for the data marts and all the data in the data warehouse

is integrated.

• Data update anomalies are avoided because of very low redundancy. This

makes ETL process easier and less prone to failure.

12

• The business processes can be understood easily, as the logical model

represents the detailed business entities.

• Very flexible, as the business requirements change or source data changes, it

is easy to update the data warehouse as one thing is in only one place.

• Can handle varied reporting needs across the enterprise.

Here are some of the disadvantages of Inmon method:

• The model and implementation can become complex over time as it involves

more tables and joins.

• The need for resources who are experts in data modeling and of the business

itself. These type of resources can be hard to find and are often expensive.

• The initial set-up and delivery will take more time, and management needs to

be aware of this.

• More ETL work is needed as the data marts are built from the data warehouse.

• A fairly large team of specialists need to be around to successfully manage

the environment (Breslin, 2004).

2.3.2 Ralph Kimball Architecture

The second approach presented by Ralph Kimball (Kimball & Ross, 2013),

known as dimensional data warehouse architecture, considered a bottom-up design as

shown in Figure 2.2.

In this approach business users have a simple dimensional structure at first, and

when combined together it will create a broad Data Warehouse. The key factor of

dimensional modeling is the simplicity. Kimball and Ross in (Kimball & Ross, The

Data Warehouse Toolkit: The definitive guide to dimensional modeling, 2013) argue

that using dimensional modeling in data warehouse makes data easier to understand

even for business users not only for data warehouse experts.

13

Figure (2.2): The Ralph Kimball Approach

Source: (Zahra, 2015)

Since Kimball approach is bottom-up approach, data warehousing in Figure 2.2

starts by ETL process for one or more data marts of business procedures. Data first

extracted from different sources of organization systems, then it is transformed in the

staging area for each data mart separately. Next, it is loaded to corresponding

fact/dimension tables in the data mart. Finally, reports are designed to fetch data

directly from data marts.

The major idea of Kimball approach is to build the data warehouse incrementally

over time by combining data marts.

(Rangarajan, 2016) summarizes the advantages and disadvantages of Inmon’s

approach as follows:

Here are some of the advantages of the Kimball method:

• Quick to set-up and build, and the first phase of the data warehousing project

will be delivered quickly.

• The star schema can be easily understood by the business users and is easy to

use for reporting. Most BI tools work well with star schema.

14

• The foot print of the data warehousing environment is small; it occupies less

space in the database and it makes the management of the system fairly easier.

• The performance of the star schema model is very good. The database engine

will perform a ‘star join’ where a Cartesian product will be created using all

of the dimension values and the fact table will be queried finally for the

selective rows. This is known to be a very effective database operation.

• A small team of developers and architects is enough to keep the data

warehouse performing effectively (Breslin, 2004).

• Works really well for department-wise metrics and KPI tracking, as the data

marts are geared towards department-wise or business process-wise reporting.

• Drill-across, where a BI tool goes across multiple star schemas to generate a

report can be successfully accomplished using confirmed dimensions.

Here are some of the disadvantages of the Kimball method:

• The essence of the ‘one source of truth’ is lost, as data is not fully integrated

before serving reporting needs.

• Redundant data can cause data update anomalies over time.

• Adding columns to the fact table can cause performance issues. This is

because the fact tables are designed to be very deep. If new columns are to be

added, the size of the fact table becomes much larger and will not perform

well. This makes the dimensional model hard to change as the business

requirements change.

• Cannot handle all the enterprise reporting needs because the model is oriented

towards business processes rather than the enterprise as a whole.

• Integration of legacy data into the data warehouse can be a complex process.

2.3.3 Differences between Inmon and Kimball Approaches

Now in the case of Inmon's approach of data warehousing, the architecture

suggests that a 3NF data warehouse to be built as the first step, which would contain

all the data in the organization, and then build a data marts layer to support the

reporting layer based on data warehouse architecture.

15

In the case of Kimball's approach however, the idea is to build the data marts

layer right after the staging layer. These data marts cater to individual business

processes identified. All the data marts together then form the data warehouse as

defined by Kimball. The common dimensions between the business processes are

however shared between them, without building a separate version of it, to maintain a

single version of truth and make it simple to update. These are called conformed

dimensions. Using this approach, we do not need a second staging layer and since the

data marts are specific to a business process, reports can be generated out of it, without

waiting for rest of data marts to be designed and implemented.

2.3.4 Deciding Factors

Now that we have seen the pros and cons of the Kimball and Inmon approaches,

a question arises. Which approach should be used when? This question is faced by

data warehouse architects every time they start building a data warehouse. Here are

the deciding factors that can help an architect choose between the two:

Reporting Requirements – If the reporting requirements are strategic and

enterprise-wide and integrated reporting is needed, then Inmon works best. If the

reporting requirements are tactical and business process/team oriented, then Kimball

works best.

Project Urgency – If the organization has enough time to wait for the first

delivery of the data warehouse (for example, 4 to 9 months), then Inmon approach can

be followed. If there is very little time for the data warehouse to be up and running (for

example, 2 to 3 months) then the Kimball approach is best (Breslin, 2004).

Future Staffing Plan – If the company can afford to have a large sized team of

specialists to maintain the data warehouse, then the Inmon method can be pursued. If

the future plan for the team is to be small, then Kimball is more suited.

Frequency of Changes – If the reporting requirements are expected to change

more rapidly and the source systems are known to be volatile, then the Inmon approach

works better, as it is more flexible. If the requirements and source systems are

relatively stable, the Kimball method can be used.

16

Organization Culture – If the sponsors of the data warehouse and the managers

of the firm understand the value proposition of the data warehouse and are willing to

accept long-lasting value from the data warehouse investment, the Inmon approach is

better. If the sponsors do not care about the concepts but want a solution to get better

at reporting, then the Kimball approach is enough.

Design Approach for IUG

Considering reasons like reports in IUG are business oriented, time-frame of the

project is limited, stability of the requirements and the ability to deliver reports quickly

since IUG is established for 3 decades till now, it has been decided that the Kimball

methodology would be used for designing a data warehouse for IUG.

2.4 Dimensional Model

With the rapid growth in data and with high insistence to analyze and understand

it to derive some information out of it, the historical data must be stored in a form that

it can be analyzed quickly. It is also important to extract some important statistics and

various KPIs of the business. But this cannot be effectively implemented using the

entity relationship models of operational data sources (ODS). The data needs to be

reorganized into a dimensional model.

As defined in (Ballard, Farrell, Gupta, Mazuela, & Vohnik, 2006), the

dimensional modeling approach facilitates generating analytical reports by improving

its performance. Dimensional models provide remarkable better performance than

Entity Relationship (ER) models especially for large queries. Furthermore,

dimensional models are easier to understand since each model designed for a defined

subject. It formed by two main components, a fact table which holds the subject’s

measures, and a set of tables referred to the fact table which hold descriptive data about

the fact dimensions. Figure 2.3 visualize the concept. The FACT table in the center

contain foreign keys to other dimension tables which are PRODUCT, CUSTOMER,

REGION, and TIME and also it has Sales and Profit facts. Finally the fact table and

dimensions forms a star schema which is described in Section 2.3.4.

17

Figure (2.3): Example of Dimensional Model

Source: (Ballard, Farrell, Gupta, Mazuela, & Vohnik, 2006)

The benefits of dimensional modelling technique can be summarized as follow:

• Better data navigation and presentation: Data is modeled in a way that is

easy to understand even for business users. This enables them to easily design

their own reports.

• Easy and low-cost maintenance: The data is stored in the same way as it is

presented unlike in the case of relational databases where in most cases views

are built in order to build any reports. This increases the maintenance cost in

the case of relational databases or ODS.

• Better performance: Most reports require summarized data which results in

a slower performance due to on-the-fly calculations in the case of non-indexed

views in ODS. In the case of dimensional modeling, summarized tables are

built as required. It also allows the ability to store data history in a manner

that is easy to query and build reports on. Such a design delivers faster query

performance and to drill down and drill across hierarchies.

On the other hand, in ER model tables are normalized in a form where there is

no data redundancy called Third Normal Form (3NF). Tables in 3NF have attributes

where all are related to a primary key in the entity. A primary key can be just one

attribute or a composite key consisting of two or more attributes.

18

A third normal form ER model is good design to handle transactional data.

Examples for transactional data are courses taken by students in each term, students’

admission to IUG and so on. This design is good for performing quick transactions

such as inserts, updates and deletes because the tables usually have a small number of

fields with foreign keys to other tables. This design is inefficient for reporting purpose,

the reason behind this is that, to generate a simple report one would end up joining

scores of tables in a 3NF environment which ends up being very time and resource

(hardware) intensive. Apart from this, the model becomes very complex very quickly

as a result of which it becomes very difficult to understand and navigate the model

even for a developer let alone a business user.

Hierarchies

As reported by (Moody & Kortink, 2000), hierarchies are an extremely

important concept in dimensional modelling, and form the primary basis for deriving

dimensional models from ER models. Most dimension tables contain embedded

hierarchies. A hierarchy in an Entity Relationship model is any sequence of entities

joined together by one-to-many relationships, all aligned in the same direction. Figure

2.4 shows a hierarchy extracted from the example data model, with State at the top and

Sale Item at the bottom.

Figure (2.4): Example of Hierarchy in Dimensional Model

Source: (Moody & Kortink, 2000)

In hierarchical terminology, it is stated by (Moody & Kortink, 2000) as:

• State is the parent of Region

• Region is the child of State

19

• Sale Item, Sale, Location and Region are all “descendants” of State

• Sale, Location, Region and State are all “ancestors” of Sale Item

2.5 Definitions

In this section we explain common terms that are used in this thesis which related

to data warehousing as defined by Kimball in (Kimball & Ross, 2013) and (Kimball

& Ross, 2010):

A Fact Table is the container of subject’s measurements and it contain foreign

keys to the dimension tables in the schema as shown in Figure 2.5. Students Payment

Fact in the figure has three measurements which are total transactions number, students

count, and total payment amount. These measurements are calculated for each

academic semester, department, and teller which are the dimensions for the fact table.

Figure (2.5): Fact and Dimension Tables in a Dimensional Model

Dimension Tables are integral companions to a fact table. It usually has fewer

record than fact tables, but can be wide with many large text columns. Dimension

tables describe the “who, what, where, when, how, and why” associated with the facts

in fact table. Every dimension table has a single primary key column. This primary

key is embedded as a foreign key in any associated fact table.

Conformed Dimensions are standardized tables modeled once and shared

across multiple fact tables in the same schema or even a different data mart. The main

advantage of using conformed dimensions is to save storage space. It is also easier to

maintain and refresh one table versus multiple versions of the same table.

20

The Grain is the lowest level of detail in a fact or dimension table. For example,

a dimension such as Date (with Year and Quarter hierarchies) has a granularity at the

quarter level but does not have information for individual days or months. Alternately,

a Date dimension table (with Year, Quarter, and Month hierarchies) has granularity at

the Month level, but does not contain information at the day level (IBM Knowledge

Center, 2017).

A Factless Fact Table is a fact table which does not contain a measurement but

a set of dimensions’ references. Usually it is used to capture an event. For example,

Figure 2.6 illustrates a factless fact table about student’s attendance of an admission

event such as a high school visit, college fair, alumni interview or campus overnight.

Figure (2.6): Factless Fact Table Example

Source: (Kimball & Ross, 2013)

The Business Key or Natural Key identifies a business entity. Examples

include student_id, course_id and program_id.

The Primary Key uniquely identifies a record in a table. A primary key can

consist of a single field or multiple fields and cannot be a NULL value.

The Foreign Key is a single field or multiple fields which uniquely identifies a

record in another table.

The Surrogate Key uniquely identifies a record in a dimension table. It is

usually ETL generated and provides the means to maintain data warehouse

information when dimensions change. One simple way improve performance of

queries is to use surrogate keys. Surrogate keys can be derived from the existing

natural keys or it can be a simple integer. As an example, a surrogate key can be a

21

composite key, being the combination, student_id + academic_period or just an integer

value generated by the ETL program while a record is being inserted the table. Using

integer surrogate keys means a thinner fact table and the thinner the fact table, the

better the performance.

The Star Schema is a dimensional design for a relational database. In a star

schema, related dimensions are grouped as columns in dimension tables, and the facts

are stored as columns in a fact table. The star schema gets its name from its appearance:

when drawn with the fact table in the center, it looks like a star or asterisk.

The Snow Flake schema is a variation on the star schema. When principles of

normalization are applied to a dimension table, the result is called a snow flake schema.

The Multiple View Processing Plan (MVPP) is a directed acyclic graph which

presents the processing plan of a set of analytical queries

2.6 DW Case Studies for Higher Education Environments

In (Leonard, 2011), the researcher designed and implemented a small data

warehouse as proof of concept of using data warehouse in higher education

environment. He studied the components of a theoretical, small scale, and downsized

enterprise data warehouse within the context of higher education environment.

However, another thesis (Ganapavarapu, 2014) argues the need of data

warehouse for higher education institutes. The researcher adopted Kimball’s approach

to design small prototype of a data warehouse for University of New Mexico (UNM).

He started by designing DW phase, then go through implementation and ETL process.

Finally, he illustrated the effect of using DW in UNM by comparing the consumed

time of processing UNM reports in both ODS and DW databases.

(Ribeiro, 2016) analysis NOVA Information Management School academic

service’s data to design a data warehouse, the purpose of its DW is to discover

information from data. The researcher also adopted Kimball’s approach in his thesis

through designing process.

22

In (Suknović, Čupić, Martić, & Krulj, 2005), the authors designed simple data

warehouse for University of Belgrade students’ services. They did not define their

approach through designing process (Inmon/Kimball). The second part of their

research is about data mining and knowledge extraction

2.7 Materialized View Selection Algorithms

Materialized views (MVs) comprise pre computed and summarized information

with the aim of answering most queries posed on data warehouse thereby saving of

query processing time and storage. With the increase of attributes in each dimension

there is need of increase of pre calculation of MVs. In this regard there is the increase

of work load, needs to decrease the response time and storage. There are many view

selection algorithms proposed. On the other hand, continuous updating in the base

table have to be reflected in the dimension table. As the information in DW is in the

form of Facts, it is not possible to change whole DW instead changes to be

accommodated at only affected part of DW. For this updating many views

maintenance algorithms are proposed.

The Multiple View Processing Plan (MVPP) based algorithms are one of the

significant solutions to address the materialized view selection problem in data

warehouses. A heuristic algorithm has been designed based on MVPP in (Yang,

Karlapalem, & Li, 1997), which find a solution based on individual optimal query

plans. This approach depends on analyzing the queries to derive common intermediate

results which can be shared among the queries. The MVPP helped in this design to

select a set of views to materialize by reusing temporary results from the execution of

global queries.

Gupta proposed a theoretical framework for materialized view selection, and

illustrated the cost model of materialized view selection under the space constraints

using greedy algorithm. The cost model is designed to achieve minimum query

response time and minimum view maintenance cost (Gupta, 1997). It checks a small

part of the space, to make the views meet the space constraints and the time

requirements, but the performance of this method is bad.

23

(Himanshu & Mumick, 1998) developed algorithms to select a collection of

views in data warehouse to materialize so as to minimize the total query response time

under the constraint of a given total view maintenance time .

Another model for selecting views to materialize based on candidate selection

and enumeration techniques is presented in (Agrawal, Chaudhuri, & Narasayya, 2000)

by a team of Microsoft researchers. This approach selects materialized views and

indexes by searching over the reduced space of candidate materialized views at a

fraction of enumeration cost.

Another approach to handle materialized view selection is the use of

evolutionary algorithms that based on multiple global processing plans of queries. Lee

et al. proposed a solution based on genetic algorithm to solve maintenance-cost view

selection problem assuming unlimited amount of storage space (Lee, 2001). This

solution computes a near optimal set of views that used to search for a near optimal

solution. However, the performance of selection process is slow.

Zhang’ et al. show an evolutionary algorithm which combined with heuristic

algorithm to preserve gains of both methods and achieve better performance than each

of them individually (Zhang, Yao, & Yang, 2001). This approach shows that applying

an evolutionary algorithm, to either global processing plan optimization or

materialized view selection for a given global processing plan, can reduce the total

query and maintenance cost significantly.

(Valluri, Vadapalli, & Karlapalem , 2002) proposed the definition of view

correlation and view correlation matrix, and they also proposed the costs models and

algorithms of view correlation, which based on that one view selection may affect the

interests of other views, thereby affect the total query cost and maintenance cost.

Additionally, they designed View Relevance Driven Selection (VRDS) algorithm for

materialized view selection to minimize total processing cost including query

processing and view maintenance cost, this selection algorithm is based on AND-OR

Graph. This algorithm performed better than greedy algorithms and MVPP based

heuristic algorithms when there is space constraint and update frequency is high.

24

Panos Kalnis et al. in (Kalnis, Mamoulis, & Papadias, 2002) proposed the

application of randomized search heuristics. They adapted random sampling, iterative

improvement, simulated annealing and two-phase optimization to find fast a sub-

optimal set of views under space or maintenance cost constraints. The proposed

method provided near-optimal solutions in limited time, being robust to data and query

skew.

Yu et al. presented a new constrained evolutionary algorithm for the

maintenance-cost view-selection problem (Yu, Yao, Choi, & Gou, 2003). The

proposed algorithm is based on constraint handling technique which is stochastic

ranking procedure. They evaluated their algorithm against both heuristic and

evolutionary algorithm and showed that the proposed algorithm can significantly

provide better solution in term of minimization of query processing cost.

In (Wang & Zhang, 2005), they proposed a modified genetic algorithm for the

selection of a set of views for materialization so that the sum of query processing cost

and view maintenance cost is minimized.

A general AND-OR view graph was considered in (Gupta & Mumick, 2005).

They have presented greedy polynomial-time heuristics to minimize the total view

maintenance cost of selected views to be materialized under a disk space constraint.

Kamel Aouiche et al. proposed clustering based materialized selection solution.

This algorithm uses workload approach (Aouiche, Jouve, & Darmont, 2006). The

researchers exploit a query clustering involving similarity and dissimilarity measures

defined on the workload queries, in order to capture the relationships existing between

the candidate views derived from this workload. These candidate views are merged to

resolve multiple queries. This research was a proof on concept to show that the idea of

using data mining techniques for data warehouse auto-administration is a promising

approach.

In (Gou, Yu, & Lu, 2006) an efficient materialized view selection approach

under disk space constraint has been proposed, it uses A* algorithm to find better set

25

of views. Unfortunately, the proposed approach works great only when the space

constraint is low.

ASVMRT (Algorithm for Selection of Views to Materialize using Reduced

Table) was presented in (Yang & Chung, 2006). This approach use clustering method

to reduce tables in the data warehouse based on attribute-values density and considered

the combination of reduced tables as materialized views instead of a combination of

the original tables. As a result of this algorithm, a faster computation time, reduced

storage space, and better performance than former algorithms were reported. However,

maintenance cost of reduced table was not considered in this approach.

Jiratta Phuboon-ob and Raweewan Auepanwiriyakul in (Phuboon-ob &

Auepanwiriyakul, 2007) proposed a two phase optimization (2PO) method which was

a combination of simulated annealing and iterative improvement with the use of

MVPP. Their experiments show that 2PO outperform the original algorithms in terms

of query processing cost and view maintenance cost.

Simulated annealing is used in another study for materialized view selection

(Derakhshan, Stantic, Korn, & Dehne, 2008) in which MVPP is considered as input.

The researchers show that parallel simulated annealing has been resulted better quality

of the selected views set to be materialized and a significant improvement in query

processing cost and view maintenance cost. However, in some cases this approach

trapped in local minimum.

Gang Zhao proposed the CBDMVS algorithm (Clustering-Based Dynamic

Materialized View Selection Algorithm) which utilize clustering technique to

materialized views, then dynamically adjusts materialized view set (Gong & Zhao,

2008). In this approach, similarity function is used for clustering. Then these

materialized view clusters are dynamically adjusted. The algorithm selects the

materialized view set which has relatively higher frequency responses performance to

variety types of query. In this algorithm when updating is done only to the required

materialized views but not whole MV set, which greatly reduces the computational

cost.

26

A dynamic approach EMVSDIA (Efficient Materialized View Selection

Dynamic Improvement Algorithm) is proposed in (Lijuan, Xuebin, Linshuang, &

Qian, 2009). EMVSDIA is a two-phase algorithm which dynamically select a set of

views to materialize online. This approach has provided reduced search space and time

consumption.

Yogeshree D. Choudhari and Dr. S. K. Shrivastava proposed the cluster based

approach for selection of materialized views (Choudhari & Shrivastava, 2012). The

procedure uses the clustering of the views. This algorithm uses the record generator.

Then System finds set of all possible queries resolved on generated records. Then

based on the access frequency, set of queries are optimized. Further using the cluster

area and threshold, the MV’s are made. These are divided further into three types 1)

Single query to Multi table MV. 2) Single query to single table MV. 3) Multiple

queries to single table MV. This framework decreases the query response time.

Another dynamic approach to view selection has been proposed in (Suchyukorn,

2013) which have determined the existing materialized views that are affected by

adding new queries rather than all existing resources and so have re-optimized MVPP

and have improve the total query processing cost of it.

In (Suchyukorn & Auepanwiriyakul, 2013), the researchers have used merging

of incoming query as the global common sub-expressions of the previous merging to

avoid a huge search space which some combination would not be considered. Since

the global optimization is not acquired in this method, they rewrote some queries by

using common sub-expression among queries to gain more optimal query processing

cost.

From the above mentioned works, it is found that the research works have been

provided different approaches for the selection of views to materialize considering

view maintenance cost and storage space. There is lack in researches in selection of

views to be materialized based on dynamic threshold so far. Thus in this thesis, on

Chapter 4, we focus on designing a novel approach for dynamic selection of views to

be materialized based on views’ usage frequencies.

27

In the next chapter, we will show in detail the steps of designing and

implementing the data warehouse for the Islamic University of Gaza.

28

Chapter 3
Design and

Implementation

oashour
Rectangle

29

Chapter 3

Design and Implementation

This chapter focuses on the process of designing and implementing the data

warehouse for the Islamic University of Gaza. We explain the approach we have

followed in the process of building the data warehouse. The data warehousing process

will be based on four main phases of software development which are: system analysis,

system design, system development, and system verification and maintenance. This

chapter explains each phase in detail.

We used two types of data gathering methodologies to define business

requirements: Introspection and Interviews.

Introspection: we identified the common functionalities and requirements for

the project based on our experience and knowledge, these helped us to proceed to the

next level.

Interviews: we made many interviews with many directors and decision makers

in the IUG. In these interviews we discussed the derived business requirements from

our introspection. Additionally, we gathered the stakeholders’ specific requirements

to recognize their needs for better business intelligence experience, which will help

them in proper decision making.

3.1 System Analysis

Analysis is the process of studying a procedure in order to identify its goals and

purposes and to create systems and procedures that will achieve them in an efficient

way. In this phase, we analyzed IUG transactional data which has been accumulated

over the years. The overall goal of this phase is to understand the main modules of the

IUG platform and to identify all business users who need to access the data warehouse.

Also, the business analysis in this phase helps to understand the relations

between the users and the business operations. In this phase, data in which users are

currently uses is identified, and how they would like to use it. System analysis depends

30

on the feedback of business users which will resulting business entities, relationships

between the entities, and hierarchies.

In our case, analysis involved a detailed study of the current procedures of

reporting in IUG, leading to specifications of the new system. During the analysis, we

studied the procedures of admission & registration, student fund, and finance

departments to design its data marts for data warehouse. Interviews and Introspection

are the base tools used for system analysis.

The business requirements were gathered based on many interviews with the

different business users. Answers from these users will generate the requirements

needed for further development of the data warehouse.

3.1.1 IUG Data

The data available within the IUG is very huge since it was accumulated over

years. IUG need to make best use of this data to make fast and right decisions in right

time. In our research we focused on providing a data warehouse solution, which will

help mainly in decision-making process related to the students. Within the scope of

this project, we looked at developing data mart for some of the department that is core

for students. They are the Admission & Registration, Student Fund, and Finance

departments.

3.1.2 Functional Requirement

In general, requirements are partitioned into functional requirements and non-

functional requirements.

Functional requirements are associated with specific functions, tasks or

behaviors the system must support, it can be in any format but has to be in line with

the business requirements.

To determine the functional requirements for this project, we asked interviewees

to show us their current user experience of generating the reports. Additionally, we

noted their comments to get better user experience, performance, and finally business

intelligence. The identified functional requirements are stated below; the function

31

requirement can be reviewed at different stages of the project in order to cater for new

discoveries during the project design.

Admission & Registration Requirements

• The users need to be able to analyze high school students’ results according to the

succeeded students’ percentage in each section.

• The users need to be able to show high school students admission percentage in

each college.

• The users need to be able to query historical data about total succeeded high school

students each year compared with admitted students in IUG.

• The users need to be able to analyze students’ transfer transactions between colleges

and departments during their study.

• The users need to be able to analyze students’ registration process over semesters

and to be able to compare it.

• The users need to be able to show exams conflicts over the semesters and colleges.

• The users need to be able to analyze students’ performance over semesters in each

college.

Student Fund Requirements

• The users need to be able to analyze students’ registration according to their need

levels.

• The users need to be able to query total cash grants paid to students over semesters.

• The users need to be able to analyze grants that given to students according to its

type (External grants, Internal Grants, or Loans).

• The users need to be able to analyze deferred grants execution over semesters.

Finance Requirements

• The users need to be able to analyze student’s financial profile

• The users need to be able to query total financial collection for each teller in IUG.

• The users need to be able to analyze financial collection over semester days and

weeks for each college.

32

3.1.3 Non Functional Requirement

• The system should be integrated with current IUG platform

• The front end application should be web enabled and no installation is required on

users’ system

• User level permission is required in order to protect the integrity of the data and

restrict user’s accessibility to data

• The system should perform very well at all times and should be easy to recover after

system down time.

• The system should be able to keep up to-date information at all time.

3.1.4 User Requirement

• Ability to generate report with little effort

• Ability to get the aggregate report and drill down for further details

• Ability to export data in any format which let them able to manipulate it.

• System reliability at all time.

3.1.5 System Requirement

For the purpose of this project, we looked at using Microsoft Windows

Operating system. The main application, we will be using ORACLE 11g as a database

engine which is an object-relational database management system produced and

marketed by Oracle Corporation. The application has the relational database

management system that is capable of storing all the data required for the data

warehouse. The process of ETL is built using Talend Open Studio which is a software

integration vendor. Talend Open Studio was the first commercial open source software

vendor of data integration software.

The front end application for this project would be the BI Publisher from Oracle

Corporation. It can be used to design interactive reports according to user’s request

and can also design different gauges and dashboards. It has the capability to design

different charts and graphs. After designing reports, it can be easily integrated with

IUG platform using BI Publisher web services.

33

To run the above application, the operating system would be from Windows

2012 and above, minimum of 8 GB memory, including the data 100GB of hard drive

space is required. The speed of processor could be from 3.0 MHz duo core. The other

system unit components are required to support the operating system and the

application for this project.

3.2 System Design

In this phase, the purpose is to obtain the system specifications from user

requirements which are gathered from stakeholders. Some of data warehousing

components are built based on these specifications such as data extractor, data

transformation, and data integration tools. System specifications are based on logical

and physical design of data marts in the data warehouse.

As discussed previously in the literature review, there are two approaches for

data warehousing which are Bill Inmon and Ralph Kimball approaches. We have

adopted the Ralph Kimball approach. The requirements collected from each

department is translated to data marts, and the resulting data marts presents the final

version of data warehouse.

A Development Methodology describes the expected evolution and management

of the engineering system. One of the most important principles of Systems

Engineering is evaluating a system from a Life-Cycle perspective. Establishing a

methodology will also provide a strategy for the project manager and the project team

as they execute the data warehouse project throughout all phases of development

(Burton & Green, 2016).

3.2.1 Waterfall Model

The waterfall model is a linear sequence comprised of the following basic stages:

• Requirements Definition

• System Design

• Detailed Design

• Integration and Testing

34

• Operations and Maintenance

This model is used when the system requirements and objectives are known and

clearly specified.

3.2.2 Spiral Model

The Spiral model is a sequence of waterfall models which corresponds to a risk

oriented iterative enhancement, and it recognizes that requirements are not always

available and clear when the system is first implemented.

Since designing and building a data warehouse is an iterative process, the spiral

method is the best development methodology for our purpose. Figure 3.1 shows one

waterfall series in a recommended spiral model of a data warehouse life-cycle.

System Verification and
Maintainance

Sys

System Integration

System Design

System Analysis

Create ER
Diagram

Create
Metadata

Framework

Develop the
Data

Warehouse

Create OLAP
Applications

Update
Metadata

Begin Another Waterfall Iteration of the Spiral Model

Create Dataflow
Diagrams and

Process Models

Determine
what the

users need

Figure (3.1): Spiral Model of the Data Warehouse Life-cycle

Source: (Burton & Green, 2016)

35

We start our data mart design by specifying the measure, the measures are the

foundation and feedback information that the decision makers require. We reconcile

these requirements with what is available in the source system (OLTP). For the

purpose of this project, we used the star schema for the data warehouse design. The

star schema is a relational database schema used to hold measures and dimensions in

a data mart. The measures are stored in a fact table and the dimensions are stored in

dimension tables. For each data mart, there is only one fact table surrounded by the

dimension tables, hence the name star schema.

As mentioned in literature review Figure 2.3, the center of the star is formed by

the fact table. The fact table has a column or the measure and the column for each

dimension containing the foreign key for a member of that dimensions. The key for

this table is formed by concatenate all of the foreign key fields. The primary key for

the fact table is usually referred to as composite key. It contains the measures, hence

the name “Fact”

The dimensions are stored in dimension tables. The dimension table has a

column for the unique identifier of a member of the dimension, usually an integer of a

short character value. It has another column for a description.

One of the most important parts of the data warehouse is the extracting,

transforming and loading of data from the operational transactional databases to the

data warehouse itself to make best of use of the data. The main two processes of data

warehouse are data load and data access. The design of the system was very robust in

order for the aim to be achieved. The loading of the data warehouse was done through

the use of ETL process, Figure 2.2 show data warehouse architecture that chosen for

this project.

The design of the databases started with the principle and theories of database

design and the rule that support business need. We started the process of data

warehouse design with the logical design.

36

3.2.3 Logical Models

The logical model is a representation of the data in a way that can be presented

to the business to serve as a road map for the physical implementation. The main

elements of a logical model are entities, attributes, and relationships. We started the

design of the data marts through the fact and dimension tables. All database design

starts with logical design.

3.2.4 Facts and Dimensions Tables

Fact table contains the measurements associated with a specific business

process. A record in a fact table is a measurement, and a measurement event can always

produce a fact table record. These events usually have numeric measurements that

quantify the magnitude of the events. These numbers are called facts; they are also

referring to as measure in the analysis services.

Dimensions are the foundation of the dimensional model, describing the objects

of the business such as student, college, course and other dimension table to be used

in this design of the data mart.

According to Ralph Kimball the dimension serves as the nouns of the DW/BI

system. They describe the surrounding measurement events. The business processes

(facts) are the action of the business in which the dimension participates. Each

dimension table links to all the business processes in which it participates

Data marts represent a unit or departmental process within an organization. Data

mart is the collection of fact table and its dimension tables. Using the bottom up data

warehouse design, combination of the data mart would form the data warehouse.

According to our system analysis, the final data warehouse design has 11 fact

tables and 15 dimension tables. Many dimension tables are shared between different

fact tables. In this section we describe dimension table first, then we illustrate each of

data marts in data warehouse. In all following tables we show columns names, data

type of each column, and the description and purpose of each one.

37

Academic Years Dimension (ACD_ACADEMIC_YEAR_DIM)

This dimension contains simple data about all academic years of IUG, the

columns are described in Table 3.1. The number next to VARCHAR data type denotes

to the size of that column.

Table (3.1): Academic Years Dimension

Column Name Data Type Description

YEAR_NO NUMERIC
Academic year number formed of 4 digits,

example: 2017

YEAR_TITLE VARCHAR(60) Descriptive title of the academic year.

START_DATE DATE First day of the year

END_DATE DATE Last day of the year

Academic Semesters Dimension (ACD_ACADEMIC_SEMESTERS_DIM)

Academic semesters are loaded into ACD_ACADEMIC_SEMESTERS_DIM

dimension table. Table is described in Table 3.2.

Table (3.2): Academic Semesters Dimension

Column Name Data Type Description

SEMESTER_NO NUMERIC

Academic semester number as identified

by IUG legacy system. Contains 5

digits, first 4 digits represent academic

year and the last digit represent semester

no (1 for first, 2 for second, 3 for third)

SEMESTER_TITLE VARCHAR(100) Descriptive title of the semester

YEAR_NO NUMERIC
Academic year number formed of 4

digits, example: 2017

YEAR_TITLE VARCHAR(60) Descriptive title of the academic year.

START_DATE DATE First day of the semester

END_DATE DATE Last day of the semester

38

Date Dimension (GEN_DATE_DIM)

The date dimension provides extra data about a date. It includes information such

as the full date, day of week, day name, and month name and it is a general dimension

that should exist in every data warehouse. This dimension is provided by Kimball

group (The Microsoft Data Warehouse Toolkit, 2nd Edition, 2017) and described in

Table 3.3 below.

Table (3.3): Date Dimension

Column Name Data Type Description

DATE_KEY NUMERIC
Primary key which contains 8 digits in form

“yyyymmdd” of the date, example: 20170115

SEMESTER_NO NUMERIC Foreign key to Semesters Dimension

FULL_DATE DATE Full date as date object

DATE_NAME VARCHAR(11) Date in simple format

DAY_OF_WEEK NUMERIC

Day of the week. Below is the day that
corresponds to each day of week:
1 – Sunday
2 – Monday
3 – Tuesday
4 – Wednesday
5 – Thursday
6 – Friday
7 – Saturday

DAY_NAME_OF_WEEK VARCHAR(10)
Name of the day in week: i.e. “Saturday”,

“Friday”

DAY_OF_MONTH NUMERIC
Day of the month. May be a number between

1-31

DAY_OF_YEAR NUMERIC
Day of the month. May be a number between

1-366

WEEKDAY_WEEKEND VARCHAR(10)
Classifies the day as “Weekday” or

“Weekend”

WEEK_OF_YEAR NUMERIC Number of the week in a year

MONTH_NAME VARCHAR(10) Month name i.e. “January”

MONTH_OF_YEAR NUMERIC Number of the month in a year

IS_LAST_DAY_OF_MONTH NUMERIC
Classifies the day if it is the last day of the

month (“Y”) or not (“N”)

CALENDAR_QUARTER NUMERIC Quarter number in a year

39

CALENDAR_YEAR NUMERIC Year number

CALENDAR_YEAR_MONTH VARCHAR(10)
Year and month number separated by a “-”

(i.e. “1990-01”)

CALENDAR_YEAR_QTR VARCHAR(10)
Year number and quarter separated by a “-”

(i.e. “1990-Q1”)

ACADEMIC_MONTH_OF_S

EMESTER
NUMERIC Number of the academic month in a semester

ACADEMIC_WEEK_OF_SE

MESTER
NUMERIC Number of the academic week in a semester

ACADEMIC_DAY_OF_SEM

ESTER
NUMERIC Number of the academic day in a semester

Study Programs Dimension (ACD_STUDY_PROGRAM_DIM)

This dimension is very simple since it only store academic program key number

and its title as described in Table 3.4.

Table (3.4): Study Programs Dimension

Column Name Data Type Description

PROGRAM_NO VARCHAR(1)

Academic program primary key
‘B’: Bachelor
‘M’: Master
‘D’: doctorates

PROGRAM_NAME VARCHAR(60) Program title

Colleges Dimension (ACD_COLLEGE_DIM)

This dimension store college name, and for which academic program it is

related. Additionally, it has an attribute to indicate if the college is active or closed.

Table 3.5 shows the columns.

Table (3.5): College Dimension

Column Name Data Type Description

COLLEGE_NO NUMERIC Primary key
COLLEGE_AR_NAME VARCHAR(60) College name in Arabic language

COLLEGE_EN_NAME VARCHAR(60) College name in English language

40

IS_ACTIVE VARCHAR(1)
‘Y’ means it is active and ‘N’ in case

if the college is not available

Departments Dimension (ACD_DEPARTMENT_DIM)

This table contains department details. A department must be related to a college

as shown in Table 3.6.

Table (3.6): Departments Dimension

Column Name Data Type Description

DEPARTMENT_NO NUMERIC Primary key

DEPARTMENT_AR_NAME VARCHAR(60)
Department name in Arabic

language

DEPARTMENT_EN_NAME VARCHAR(60)
Department name in English

language

COLLEGE_NO NUMERIC Foreign key to College

IS_ACTIVE VARCHAR(1)

‘Y’ means it is active and ‘N’ in

case if the department is not

available

Courses Dimension (ACD_SUBJECT_DIM)

Table 3.7 shows the description of each column in Courses dimension table, this

table contains courses’ related information.

Table (3.7): Courses Dimension

Column Name Data Type Description

SUBJECT_NO NUMERIC Primary key

SUBJECT_CODE VARCHAR(10) Manually identified code for subject
contain 5 letters and 5 digits

SUBJECT_AR_NAME VARCHAR(60) Course name in Arabic language

SUBJECT_EN_NAME VARCHAR(60) Course name in English language

SUBJECT_TYPE NUMERIC
Identify if the subject is required or

optional

41

DEPARTMENT_NO NUMERIC Foreign key to Department

ACADEMIC_HOURS NUMERIC The academic hours in the plan

FINANCIAL_HOURS NUMERIC Financial hours to be paid for

SUBJECT_LANGUAGE VARCHAR(2)
Subject language: ‘AR’ for Arabic

and ‘EN’ for English

High School Years Dimension (ACD_HIGHSCHOOL_YEARS_DIM)

In this table, we define high school years. It contains key for each year in date

format “yyyy” and a descriptive title for this year as shown in Table 3.8.

Table (3.8): High School Years Dimension

Column Name Data Type Description

YEAR_NO NUMERIC Primary key which formed by 4 digits
of high school year

YEAR_NAME VARCHAR(60) Descriptive title of the year

High School Grades Dimension (ACD_HIGHSCHOOL_GRADE_DIM)

The high school grades table stores some extra information about grades range

of high school students. This dimension is described in detail in Table 3.9.

Table (3.9): High School Grades Dimension

Column Name Data Type Description

GRADE_NO VARCHAR(2)

Primary key which must be one of the
following:
‘A+’ for grades between 95 and 100
‘A’ for grades between 90 and 94.9
‘B+’ for grades between 85 and 89.9
‘B’ for grades between 80 and 84.9
‘C+’ for grades between 75 and 79.9
‘C’ for grades between 70 and 74.9
‘D+’ for grades between 65 and 69.9
‘D’ for grades between 60 and 64.9
‘E+’ for grades between 55 and 59.9
‘E’ for grades between 50 and 54.9
‘F’ for grades less than 50

GRADE_TITLE VARCHAR(60) Descriptive title of the grade

42

FROM_GRADE NUMERIC
Minimum grade as described in

GRADE_NO column

TO_GRADE NUMERIC
Maximum grade as described in

GRADE_NO column

High School Sections Dimension (ACD_HIGHSCHOOL_BRANCH_DIM)

This is a simple dimension table, Table 3.10, which store a serial key of

predefined high school section in IUG legacy system, and a descriptive title i.e.

“Scientific Section”.

Table (3.10): High School Sections Dimension

Column Name Data Type Description

BRANCH_NO NUMERIC Primary key / serial number of section
BRANCH_NAME VARCHAR(60) Descriptive title of the section

Student States Dimension (ACD_STUDENT_STATES_DIM)

In this dimension table, a unique status code and a name for the status are defined

as described in Table 3.11.

Table (3.11): Student States Dimension

Column Name Data Type Description

STATUS_CODE VARCHAR(1)
Primary key / a letter which represent
the student academic status i.e. ‘R’ for
Regular students

STATUS_NAME VARCHAR(60) Descriptive title of the status

Student Levels Dimension (ACD_STUDENT_LEVEL_DIM)

The table ACD_STUDENT_LEVEL_DIM, Table 3.12, contains details about

academic levels in IUG. A student in IUG starts his academic life in level 1, and if he

passed certain academic hours he moves to next level.

43

Table (3.12): Student Levels Dimension

Column Name Data Type Description

LEVEL_NO NUMERIC
Primary key and a number which
represent student’s academic level
sequence, i.e. 1 for first level, 2 for
second level and so on.

LEVEL_NAME VARCHAR(60) Descriptive title of the level

Geographical Locations Dimension (ACD_NEIGHBORHOOD_DIM)

ACD_NEIGHBORHOOD_DIM table as described in Table 3.13, it lists all

predefined neighborhoods in IUG system. Additionally, it links neighborhoods with

its cities and governorates as shown below.

Table (3.13): Geographical Locations Dimension

Column Name Data Type Description

NEIGHBORHOOD_ID NUMERIC
Primary key and a serial number
of predefined locations in IUG
legacy system

NEIGHBORHOOD_NAME VARCHAR(60) Neighborhood name

CITY_ID NUMERIC
City id in which this

neighborhood is related for

CITY_NAME VARCHAR(60) City name

GOVERNORATE_ID NUMERIC
Governorate id that identified in

IUG system

GOVERNORATE_NAME VARCHAR(60) Governorate name

Students Dimension (ACD_STUDENT_DIM)

In this dimension we store instance for each student in IUG since its

establishment, some metadata stored in this dimension and described in detail in Table

3.14.

44

Table (3.14): Students Dimension

Column Name Data Type Description

STUDENT_NO NUMERIC
Primary key and a number
which represent student’s
academic identifier. Contains 9
digits

STUDENT_AR_NAME VARCHAR(100)
Student’s full name in Arabic

language

STUDENT_EN_NAME VARCHAR(100)
Student’s full name in English

language

STUDENT_ID VARCHAR(30) Student’s national ID

RESPONDER_ID VARCHAR(30) Student responder national ID

GENDER VARCHAR(1)
Gender of the student: ‘M’ if

Male and ‘F’ for Female

NEIGHBORHOOD_ID NUMERIC
Student location, foreign key to

ACD_NEIGHBORHOOD_DIM

ADMISSION_SEMESTER NUMERIC
The semester when student was

admitted

ADMISSION_TYPE VARCHAR(1)

Admission type specify previous

study type in which student was

accepted at

STUDY_PROGRAM VARCHAR(1)

Academic program of the

student, foreign key to States

dimension

DEPARTMENT_NO NUMERIC Student’s department

ACADEMIC_STATUS VARCHAR(1)

Student status which specify for

example if he is Regular or

Graduated student

STUDENT_LEVEL NUMERIC
Academic level for student, a

value between 1 and 6

HIGHSCHOOL_SCORE NUMERIC Student score in high school

HIGHSCHOOL_BRANCH VARCHAR(2) Student’s high school section

45

IS_GRADUATED NUMERIC

A flag for graduation status of

student, 1: graduated, 0: not

graduated yet

GRADUATION_DATE DATE
Student’s graduation date if

exists

Grants Dimension (SFD_GRANT_DIM)

In this dimension, data warehouse store basic information about IUG grants

which are grant number, grant title, and its type as shown in Table 3.15. IUG grants is

one of its tools to help the students financially to complete their studies.

Table (3.15): Grants Dimension

Column Name Data Type Description

GRANT_NO NUMERIC Primary key and a number which
represent a Grant unique identifier

GRANT_NAME VARCHAR(60) Grant name as identified in IUG

GRANT_TYPE NUMERIC
Grant type one of the following: 1:

Internal Grant,2: External Grant,3: Loan

Student Registration Hours Dimension (ACD_REGISTRATION_HOURS_DIM)

Student Registration Hours dimension contains details about registration hours’

ranges, which used to classify students’ registration based on how many hours they

already registered in specific semester. This dimension table described in Table 3.16.

Table (3.16): Student Registration Hours Dimension

Column Name Data Type Description

SERIAL_NO NUMERIC Primary key

LABEL VARCHAR(60)
Descriptive label for hours range, i.e. “3-

6 Registration Hours”

MIN_VALUE NUMERIC
Meta data which represent minimum

registration hours value of this range

46

MAX_VALUE NUMERIC
Meta data which represent maximum

registration hours value of this range

In the following section, we describe data marts in our design of data warehouse.

As mentioned before data mart formed as a star schema of fact table and referred by

dimension tables. For each data mart, we extract all possible query structures in the

form of “logical view”. Thus, the end user can build his reports and metrics based on

these logical views. The purpose of these views is to optimize data warehouse

performance using our materialized view selection model that proposed in the next

chapter.

4.2.2.1 Admission and Registration Data Marts

In this section, we describe each data mart that designed to handle Admission

and Registration department business processes in IUG.

High School Results Data Mart

Figure 3.2 shows high school results fact table and its related dimensions as a

star schema. The fact table holds two measures in each year for each high school

section and divided to 9 grades that defined in Table 3.9, the two measures are students

count and their average GPA in high school. As shown in Figure 3.2, fact table has

three foreign keys to High School Years, High School Branch, and High School Grade

dimension tables which identifies its granularity.

Figure (3.2): High School Results Data Mart

47

Students Admission Data Mart

Students Admission Data Mart is designed to calculate two measures, which are

admitted students count and their average GPA in high school. The granularity of the

fact table identified as 1 row per year, per high school section, per high school grade,

per department as shown in Figure 3.3. The fact table is referred by Academic Year,

High School Section, High School Grade, and Department dimensions.

Figure (3.3): Students Admission Data Mart

This data mart used to calculate students count and average GPA in three cases:

• Total admitted students count and their average GPA calculated for each

Section and Grade.

• Total admitted students count and their average GPA calculated for each

Department.

• Total admitted students count and their average GPA calculated for each

College.

We predefined the calculation queries for these three cases in logical views as

shown in Figure 3.4. First we build a master view for this data mart titled

48

“V_ACD_ADMISSION_FACT”, this view joins fact table with all dimension tables

and its hierarchies. Next we build Section and Department views, named

“V_ACD_ADMISSION_BRANCH” and “V_ACD_ADMISSION_DEPARTMENT”

respectively, based on “V_ACD_ADMISSION_FACT”. Finally, College view is

build based on “V_ACD_ADMISSION_DEPARTMENT”.

Figure (3.4): Students Admission Views

49

Students Registration Data Mart

This data mart has one simple measure which is registered students count in a

semester. This measure divided over five dimensions listed as: Semester, Students

Status, Gender, Academic Program, and Registration Hours Range Dimensions as

shown in Figure 3.5 which identify the fact granularity.

Figure (3.5): Students Registration Data Mart

Based on business requirements, users need to calculate total registered students

count in academic semesters in two ways:

• Total registered students count for each Academic Program and for each

Gender, finally categorized based on available Registration Hours

Range.

• Total registered students count for each Academic Program and Gender.

Thus, according to business requirements we built logical views shown in Figure

3.6. “V_ACD_REGISTRATION_FACT” is the master view that joins the fact table

50

with all four dimension tables. Next, based on this master view we build

“V_ACD_REGISTRATION_HOURS” which address the first calculation required.

Then finally the “V_ACD_REGISTRATION_SEMESTERS” view calculates total

registered students in academic Semesters for each Academic Program and Gender.

Figure (3.6): Students Registration Views

Registered Students Geographical Location Data Mart

IUG need to investigate the location of students each semester to be able to

facilitate the transportation for students. So, this fact table holds total registered

students count in every semester for each college regarding their locations. The fact

table shown in Figure 3.7 has three foreign keys to Neighborhood, Semester, and

College dimensions.

51

Figure (3.7): Students Locations Data Mart

A master view that joins the fact table with dimension tables is build and

considered as a base for “V_ACD_NEIGHBORHOODS” logical view as shown in

Figure 3.8. This latter view calculates total registered students count regardless all

colleges. This view was the base to calculate total registered students count for each

city that presented in “V_ACD_CITY_REGISTRATION” view. Finally,

“V_ACD_GOVERNORATE_REGISTRATION” calculates total students count

registered categorized by Governorates in IUG. All these three views present a

hierarchy.

Figure (3.8): Students Locations Views

52

College Students GPA Data Mart

Each college in IUG use Students’ GPA as main indicator for its performance.

However, this data mart stores five measures which are students count, their average

GPA in the semester, their average success hours of the semester, average success

hours for all semesters, and finally average GPA for students as shown in Figure 3.9.

The fact table is referred by four dimensions which are Academic Year, Semester,

Department, and Academic Level. We use SUCCESS_HOURS and

SEMESTER_SUCCESS_HOURS measures to scale SEMESTER_GPA and GPA

measures in case of hierarchal calculations. We should note that academic level added

to this data mart just for future use, it is not considered as business requirement

currently.

Figure (3.9): College Student GPA Data Mart

53

From this data mart, we extracted four logical views which are calculated in

advance shown in Figure 3.10. These can be summarized as follow:

• “V_ACD_STUDENT_GPA_FACT” shows total students count and

their GPA for every Admission Year and Semester separated by

Departments.

• “V_ACD_GPA_COLLEGE” calculates total students count and their

GPA for each Semester and each College.

Figure (3.10): College Students GPA Views

Transfers between Colleges Data Mart

This data mart holds a fact table which calculate total transferred students count

between colleges and departments. The fact table shown in Figure 3.11 stores

transferred students’ count in each semester, for each academic level, for each

department, and for which department they are transfer for. This presents its

granularity. The figure below illustrates the relationship between the fact table and

dimension tables,

54

Figure (3.11): College Transfers Data Mart

Colleges and Academic Affairs in IUG need to study why students are transfer

from college/department to another during their study. Thus, they may use one of the

following logical views which are identified in Figure 3.12:

• “V_ACD_COLLEGE_TRANSFER_FACT” shows total transferred

students count in every semester for each level, and from which

department they were transferred and to which department they are

going.

• “V_ACD_CLG_TSFR_DEPARTMENT” calculates total transferred

students count in every year, and from which department they were

transferred and to which department they are going.

• “V_ACD_CLG_TSFR_COLLEGE” calculates total transferred students

count in every year, and from which college they were transferred and to

which college they are going.

55

Figure (3.12): College Transfers Views

Exam Conflicts Data Mart

Exam Conflicts data mart holds total conflicts count occurred in each course for

each semester. The fact table in Figure 3.13 has four foreign keys to Department,

Academic Semester, and Subject dimensions. The measure TOTAL_CONFLICTS

represents conflicts occurred between SUBJECT_NO and SUBJECT_NO2 in

SEMESTER_NO which represent fact table granularity.

56

Figure (3.13): Exam Conflicts Data Mart

The master view “V_ACD_EXAM_CONFLICT_FACT” shown in Figure 3.14

joins fact table with three dimension tables Department, Semester, and Subject. For

each row in fact table it represented by two records in this master view, the first row

is an image for SUBJECT_NO metadata and the second row is an image of

SUBJECT_NO_2 metadata. The total conflicts count is same for both records.

Additionally, conflicts count could be categorized by Subject Type, Department, or

College by using “V_ACD_EXM_CFLT_SUBJECT_TYPE”,

“V_ACD_EXM_CFLT_DEPARTMENT”, or “V_ACD_EXM_CFLT_COLLEGE”

respectively.

57

Figure (3.14): Exam Conflicts Views

4.2.2.2 Student Fund Data Marts

Student Fund has four data marts can be listed briefly as:

• Students Registration Data Mart

• Cash Grants Data Mart

• Deferred Grant Data Mart

• Student Fund Totals Data Mart

In this section, we address each data mart and describe it in detail.

58

Students Registration Data Mart (Student Fund)

Regardless Students Registration Data Mart for Admission and Registration

department which described in section 1, this data mart categorize students according

to their financial need level. Students in IUG may submit an application for grants to

either help them in their study fees, or to let them able to register specific amount of

study hours based on a Guarantee. After auditing students’ applications, each student

is classified to a need level from ‘A’ to ‘F’. Level ‘A’ means students are in critical

need for financial help, and ‘F’ means students can pay their fees by themselves.

The data mart in this case has a fact table with five measures as shown in Figure

3.15, the measures are total REGISTERED STUDENTS count, total REGULAR

STUDENTS count, total REMAINING FEES in students’ financial profile, total

GUARANTEED STUDENTS count, and total FEES of GUARANTEED

STUDENTS. The granularity of fact table identified as 1 row per registration day, per

semester, per department, per need level, per gender. That means this fact table

updated daily in each semester, and contains measures for each department and

academic level and gender. As shown in the figure below it referred by three dimension

which are Date, Semester, and Department dimensions.

Figure (3.15): Students Registration Data Mart (Student Fund)

59

Based on the described data mart we built the main view

“V_SFD_REGISTRATION__FACT” as shown in Figure 3.16. The view joins the fact

table with all dimensions in data mart which can be used to query date range. We

defined two other views:

• “V_SFD_REGISTRATION_COLLEGE” that used to calculate

measures for semester weeks for each college.

• “V_SFD_REGISTRATION_NEED” which used to calculate measures

for semester weeks for each need level between ‘A’ and ‘F’.

Figure (3.16): Students Registration Views (Student Fund)

Cash Grants Data Mart

Both Student Fund and Finance departments need to trace how many students

are get benefit of cash grants in daily basis. Also they need to query total cash grants

amount paid for students. For this, we designed Cash Grants Data Mart which it holds

60

two measures, total students count and total cash amount every day, and categorized

by semesters and grants as shown in Figure 3.17. The fact table has three foreign keys

for Date, Semester, and Grant dimension tables.

Figure (3.17): Cash Grant Data Mart

We build “V_SFD_CASH_GRANT_FACT” view by joining fact table

“SFD_CASH_GRANT_FACT” with all three dimension tables as illustrated in Figure

3.18. This view used to get measures in daily basis. Additionally, we designed

“V_SFD_CASH_GRANT_SEMESTER” view to summarize measures over

semesters.

Figure (3.18): Cash Grant Views

61

Deferred Grant Data Mart

Deferred Grants in IUG are loans granted in the beginning of the semester to

students which they must pay it later during the semester. Deferred Grant Data Mart

has a fact table of three measures as shown in Figure 3.19, total amount granted in a

semester, total amount paid back by students, and total amount must be paid. Rows in

the fact table are unique for each semester and grant which defines its granularity.

Figure (3.19): Deferred Grant Data Mart

This data mart has one simple view “V_SFD_DEFERRED_GRANT_FACT”

which join the fact table with all two dimension tables (Academic Semester and Grant)

as shown in Figure 3.20

Figure (3.20): Deferred Grants View

Student Fund Summary Data Mart

This data mart holds summary about student fund grants. Its fact table contain

total students count and their total grant amount that executed every day categorized

by grant no, semester, and academic program. Dimensions in this data mart are Grant,

Academic Program, Semester, and Date as shown in Figure 3.21.

62

Figure (3.21): Student Fund Totals Data Mart

Based on this data mart, user can query grant execution in daily basis or weekly

by using “V_SFD_STUDENT_FUND_FACT” view shown in Figure 3.22.

Depending on this view, we designed “V_SFD_STUDENT_FUND_SEMESTER”

which calculate granted students count and grants amount for each semester.

Figure (3.22): Student Fund Totals Views

4.2.2.3 Finance Department Data Marts

Finance department requirements about students are designed in one data mart

which is Financial Collection described below.

63

Financial Collection Data Mart

Financial Collection Data Mart contains details about daily fees collections from

students. It has three measures which are total students count paid their fees of

specified day, total amount collected from students, and total transactions count. The

granularity of this fact table identified as 1 row per day, per semester, per department

per teller. Thus, fact table has three foreign keys to Date, Academic Semester, and

Department dimension tables as shown in Figure 3.23.

Figure (3.23) Financial Collection Data Mart

Depending on requirement analysis of finance department, we designed logical

views shown in Figure 3.24. The base view “V_SFS_FIN_CLCT_FACT” joins the

fact table with all dimension tables. Then both “V_SFS_FIN_CLC_DATE_TELLER”

and “V_SFS_FIN_SEMESTER_DEPARTMENT” are designed based on the main

view. Next, “V_SFS_FIN_CLCT_SEMESTER_TELLER” and

“V_SFS_FIN_SEMESTER_COLLEGE” are designed based on

“V_SFS_FIN_CLCT_TELLER” and “V_SFS_FIN_SEMESTER_DEPARTMENT”

respectively. The purpose of each view is as follow:

• “V_SFS_FIN_CLCT_DATE_TELLER” calculates total fees collected

in specific date for each teller regardless department or college.

• “V_SFS_FIN_CLCT_SEMESTER_TELLER” calculates total fees

collected during a semester for each teller regardless department or

college.

64

• “V_SFS_FIN_SEMESTER_DEPARTMENT” calculates total fees

collected during a semester for each department.

• “V_SFS_FIN_SEMESTER_COLLEGE” calculates total fees collected

during a semester for each college.

Figure (3.24): Financial Collection Views

In this project, Data hierarchy was very important because of the relationship

business wise between the data. Hierarchies are meaningful, standard way to group the

data within a dimension so you can begin with the big picture and drill down to lower

levels to investigate anomalies. According to Kimball, hierarchies are the main paths

for summarizing the data. Data hierarchy is an arrangement of data consisting of sets

and subsets such that every subset of a set is of lower rank than the set. In the context

of the data warehouse, it can be used to provide paths that can be used to roll up and

drill down when analyzing the data. The data hierarchy is applicable to the dimension

table and it allows for organization of data.

3.3 System Implementation

The system development is the actual implementation of the analysis and design

carried out. In this phase of the project, we designed the data warehouse (Fact and

dimension tables), the ETL (Extract, Transform and Load) and the front end

application for the purpose of this project.

65

Validation process involved the confirmation by examination and provision of

objective that an information system has been implemented correctly and conforms to

the need of the user and intended use.

The main focus of this phase is developing procedures to validate the data that

has been extracted and moved data in a form that can then be loaded into the

warehouse. Finally, the data must be analyzed to determine whether or not certain

elements should be cleansed prior to putting it into the warehouse. (Burton & Green,

2016)

The system development stage can now be embarked upon after the actual

understanding of the expectation of the business users has been captured.

3.3.1 Design of the Physical Database

The models of IUG data warehouse is designed using Oracle SQL Developer

Data Modeler. Thus, we can easily generate the SQL scripts of any database engine as

shown in Figure 3.25. In our case, we have generated scripts for Oracle database

engine. Next, the actual design of the database is carried out by executing scripts on

data warehouse source using the Oracle SQL Developer IDE.

Figure (3.25): DDL Generator in Oracle SQL Developer Data Modeler

66

As a part of physical design of data warehouse, we created foreign keys between

fact tables and every dimension table related to fact table to guarantee the referential

integrity between tables. Referential integrity is a concept of establishing a parent-

child relationship between two tables, with the purpose of ensuring that every row in

the child table has a corresponding parent entry in the parent table.

For this project as mentioned earlier, we adopted Kimball approach of data

warehousing. So based on Figure 2.2, the staging phase is responsible of loading data

from different sources in IUG (i.e. OLTP database, flat files, or web services) to data

warehouse tables. This process is deployed on dedicated server on IUG. The physical

design of data warehouse tables was explained in 3.2.4.

3.3.2 Design of the ETL Process

ETL process is implemented after the logical and physical designs of the data

warehouse are completed.

As mentioned in the beginning of the project that the IUG has different OLTP

databases to extract from. ETL is the process of retrieving and transforming data from

the source system and putting it into the data warehouse. With the scope of this project,

we used Talend Open Studio to design the ETL process in order to load the data into

the data store.

The ETL process is based on the principles provided by Ralph Kimball in

(Kimball & Caserta, 2011). After the physical design is implemented on data

warehouse database, staging tables are designed. Staging tables are almost having the

same structure as source system’s tables. In these tables, the data is cleansed and

validated along with other quality checking and improvement processes.

In Figure 3.26, we show an example of loading staging tables in our

implementation using Talend Open Studio. In this example we extract Academic Years

data from source system, after then we map columns between source dataset and

destination source which is STG_ACADEMIC_YEARS. In the same way and after

the previous process completes (OnSubjobOk in Figure 3.26), we load Academic

67

Semesters and Dates. In Dates loading process, we join Kimball dates dataset (The

Microsoft Data Warehouse Toolkit, 2nd Edition, 2017) with semesters in staging area.

Similarly, we load all staging tables in the data warehouse which will be the base

for extracting data to dimension and fact tables.

Figure (3.26): Example of Loading Staging Tables

From the staging tables, data is loaded firstly into dimension tables, then facts

tables are loaded. Dimension tables are loaded first because of referential integrity that

was described in previous section.

The data in dimension tables increases and changes slowly. These changes of

data may or may not be tracked based on business requirements. There are different

methods to be adopted for each of dimension tables as known as Slowly Changing

Dimensions (SCD). These methods are based on Kimball's approach of Slowly

Changing Dimensions in a data warehouse and described below.

68

SCD Type 1: Overwrite existing record

In slowly changing dimension Type 1, no history of dimension changes is kept

in the database. The old dimension’s attribute value is simply overwritten be the new

one. This case is used when the business requirements state that no history of data is

required for any analysis.

Figure 3.27 and Figure 3.28 illustrate SCD Type 1 when changing a department

name in Departments dimension table.

Figure (3.27): SCD Type 1 Before Changing a Record

As shown in figure below, the department name in

DEPARTMENT_AR_NAME and DEPARTMENT_EN_NAME columns are totally

overwritten by the new value.

Figure (3.28): SCD Type 1 After Changing a Record

SCD Type 2: Create new additional record

In this methodology, a new row is added for every change on the specified

columns. Using SCD Type 2 methodology guarantee keeping track of dimension

changes history. This type could be implemented by using three additional columns

for dimension table, start_date, end_date, and is_active flag to indicate which record

is most recent.

This type of SCD, is the most commonly used and preferred for important data

because of its ability to store unlimited history as well as to store the time of that

change.

69

In Figure 3.29 we show a student record before moving from a neighborhood to

another. And after changing NEIGHBORHOOD_ID from 1 to 3, a new record is

created with the new value as shown in Figure 3.30.

Figure (3.29): SCD Type 2 Record Before Update

The SCD_END of the old column is set by the date of the update operation, and

ACTIVE flag is set to 0. Then the same date of update operation is used to be set for

SCD_START of the new record as shown in figure below.

Figure (3.30): SCD Type 2 After Updating a Record

The ACTIVE flag is used to easily select all active records instead of using

effective dates which may put some complexity for the query.

SCD Type 3: Add new column

In this type usually only the current and previous value of dimension is kept in

the database. This type of SCD is used when the business requirements state that only

limited history needs to be stored in the dimension table. This is the least commonly

needed technique, and it is not needed in our design for IUG according to business

requirements.

For illustration, Figure 3.31 shows sample record of a customer, the dimension

table in this case can store only current type and last type of the customer.

70

Figure (3.31): SCD Type 3 Example

Source: (Morzy, 2012)

SCD Type 6: a combination of SCD types 1, 2, and 3

In this type, a dimension has columns of Type 1 which will be overwritten by

the new value, and it has columns of Type 2 that will be traced over time, and finally

it has columns of Type 3 that have limited history.

In our design, we only have dimensions of SCD type 1, SCD type 2, and SCD

type 6 that is a combination of previous two types. For example, Student dimension in

Figure 3.29 has SCD type 2 for NEIGHBORHOOD_ID column and SCD type 1 for

STUDENT_EN_NAME column. When student name changes, it is overwritten by the

new value for last active record as shown in Figure 3.32.

Figure (3.32): SCD Type 6 After Record Update

Loading SCD tables of Type 1 in Talend Open Studio goes directly through data

mapper to destination tables as shown in Figure 3.33. The process starts by extracting

data from Academic Years Staging Table, then it is filtered in Data Mapper. Finally,

the data is prepared to be loaded in ACD_ACADEMIC_YEAR_DIM table. After

completing academic years loading process, academic semesters loading process

starts. Similarly, data is extracted from staging table, then it handled in Data Mapper,

then it is loaded to dimension table.

71

Figure (3.33): SCD Type 1 Implementation in Talend Open Studio

All SCD tables are handled in same way and can be summarized in Figure 3.34.

Note that data sources with green icons will start in parallel processes since there is no

direct relationship between the target dimensions’ tables. Other data sources need to

be triggered explicitly by the preceding loading process. For example, loading Subjects

dimension table need Department dimension to be up to date since there is foreign key

from Subject dimension table to Department dimension table. Similarly, Department

dimension table need College dimension table to be loaded first for same reason. On

the other hand, Grants dimension table i.e. do not need to wait any other loading

process to be finished, so loading Grants dimension table can be started in parallel with

other independent loading processes.

Figure (3.34): SCD Type 1 Dimensions Load Process

72

Fact tables are loaded after loading all dimension tables. To summarize loading

fact tables’ process, we demonstrate as an example loading colleges’ total GPA for

students over academic semesters in Figure 3.35. Loading other fact tables is almost

going through the same stages.

Figure (3.35): Fact Table Loading Process

Loading fact table starts by extracting staging data that is stored in staging area.

For this example, data in staging table is stored in the following format shown in Figure

3.36. According to the business requirements, staging table holds for each student,

stores his success hours for a semester and total success hours for entire academic life.

Also, it holds student’s GPA for the semester and average GPA for all semesters.

Figure (3.36): Example of a Staging Table

After extracting the records from staging area, we make data manipulation by

aggregating data over departments, semester, and academic levels. The next step is to

73

map aggregated data with dimension tables to obtain the surrogate keys of these

dimension tables. In Data Mapper, we join aggregated data key columns with

dimension tables to utilizing filters as shown in Figure 3.37, in this example we show

how to join Department dimension with aggregated data by specifying last active

records of departments SCD table, this operation known as “lookup” in Talend Open

Studio. Similarly, we join aggregated data set with Academic Level and Academic

Semester dimensions.

Figure (3.37): Data Mapper Lookups Example

After setting up lookup tables, the mapping process completes by specifying

measures from aggregated data set and surrogate keys in dimension tables as

demonstrated in Figure 3.38 below.

74

Figure (3.38): Preparing Fact Table Data Using Data Mapper

Finally, the last step of loading a fact table is to set the destination table, which

is in our case “ACD_STUDENT_GPA_FACT” table.

ETL process is scheduled to run in daily basis. Every day, at the lowest active

time of operational systems, ETL processes run for all jobs sequentially. It searches

for new transactions that occurred after last fetching time to be loaded in staging area

to be prepared for ETLs.

3.4 System Verification and Maintenance

The best method for verifying the data in the warehouse is to prepare reports on

the data in the warehouse and compare it to figures based on the data subsequent to

putting into the warehouse which are perceived to be correct. It is seldom believed that

users verify the data because they are quite familiar with the detailed type of data they

are after. Lastly, Maintenance is essential at each and every stage of the life-cycle.

Primarily this entails documentation of processes, applications and most significantly,

metadata.

75

Chapter 4
Proposed Materialized
View Selection Model

oashour
Rectangle

76

Chapter 4

Proposed Materialized View Selection Model

In this chapter, we discuss in detail our proposed dynamic Materialized View

Selection model.

As discussed in literature review, most of existing approaches for materialized

view selection problem are static. There are some dynamic approaches that handle

adding new views, removing existing views, and updating view base relations. There

is lack in studies that handle dynamic materialized view selection based on view usage

frequency.

For dynamic materialized view selection, we propose a model that detects view

usage frequency over identified number of historical years, and then we prioritize

materialization depending on view’s usage frequency. Our model is shown in

Algorithm 1.

Algorithm 1. The pseudo code of the proposed materialized view selection algorithm based on frequency
matrix.

Purpose: 1. To determine which view can be materialized according to its usage frequency over
academic/financial year, and total query processing and maintenance costs.

Input: 2. List of views, 𝑉𝑉, of size 𝑛𝑛,
Checking Day 𝑑𝑑,
Minimum View Materialization probability 𝛿𝛿,
Number of history years, ℎ, to be considered

Output: 3. Prioritized list of views, 𝑀𝑀𝑉𝑉, that can be materialized

Procedure: 4. (optional): exclude all views that are manually ignored by business users from 𝐿𝐿
5. Phase 1: for each view, calculate its usage for given history years ℎ

I. let 𝐹𝐹 = ∅
II. for 𝑖𝑖 = 1 to 𝑛𝑛 loop

III. for 𝑗𝑗 = ℎ to 1 loop
IV. let 𝑡𝑡 = last_year(𝑑𝑑) – (ℎ – 𝑗𝑗)
V. 𝑈𝑈 ← retrieve usage frequencies for view 𝑉𝑉𝑖𝑖 in year 𝑡𝑡

VI. for each value 𝑣𝑣 in 𝑈𝑈 loop
VII. set 𝑣𝑣 = 𝑣𝑣 ∗ (𝑗𝑗

ℎ
) (detracting value over years)

VIII. end loop
IX. add 𝑈𝑈 to 𝐹𝐹𝑖𝑖
X. end loop

XI. end loop
6. Phase 2: for each view, check the similarity between features in 𝐹𝐹𝑖𝑖 and features of day 𝑑𝑑

I. 𝑓𝑓𝑑𝑑 ← extract_features(𝑑𝑑)
II. for 𝑖𝑖 = 1 to 𝑛𝑛 loop

77

III. vc ← find_similarity(𝐹𝐹𝑖𝑖, 𝑓𝑓𝑑𝑑)
IV. if 𝑣𝑣𝑣𝑣 ≥ 𝛿𝛿
V. add 𝐿𝐿𝑖𝑖 to 𝑀𝑀𝑉𝑉

VI. Reorder output views list 𝑀𝑀𝑉𝑉 based on 𝑣𝑣𝑣𝑣
VII. end if

VIII. end loop
7. (optional): consider all views that are manually flagged to be materialized and add them

to 𝑀𝑀𝑉𝑉

In Algorithm 1, the program accepts the following inputs:

• List of views, 𝑉𝑉, of size 𝑛𝑛: this is the list of views to select subset of them to

be materialized using our model.

• A certain day, 𝑑𝑑: the proposed model is triggered in daily basis, so that it is

running in every day of the academic/financial year to check current list of

views, and select subset of views to be materialized according to historical

usage of each view in past days that are similar to day 𝑑𝑑.

• Minimum view materialization probability 𝛿𝛿: the proposed model is

configurable to accept the minimum similarity ratio between features of

input day, 𝑑𝑑, and historical usage over days of each view. In case 𝛿𝛿 = 1, it

means materialize any view if it has maximum execution trials in days

exactly similar to day 𝑑𝑑. In case 𝛿𝛿 = 0, it means materialize all input views.

The value of 𝛿𝛿 must be greater than 0 and it should be adjustable according

to materialization failure and success attempts.

• Number of history years, ℎ: usage data are recorded over years, but there

must be a limit for historical data to be considered. For example; usage data

of ten years ago may not be as important as past year. However, our model

limits usage data to considered of the past ℎ years only. This input is set

according to organization’s policy and vision.

The purpose of Algorithm 1 is to return a list of views to be materialized. This

list is ordered according to materialization priority.

78

 The proposed model formed by two phases, the first and last steps are optional

which are manually handled by the user. These two steps are designed to force

remove/add views from/to materialization as defined by user.

In phase 1, for each input view, we calculate its frequency matrix over identified

historical years. The values in the frequency matrix is calculated according to the

formula in line VII of Algorithm 1:

 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑑𝑑 ∗ �
𝑗𝑗
ℎ
� (4.1)

Where

 𝑣𝑣𝑜𝑜𝑜𝑜𝑑𝑑: the original value of usage frequency of view

 ℎ: number of historical years to be considered

 𝑗𝑗: value between ℎ and 1, which represent checking year’s distance

from current year

For example, assume the original frequencies of using VIEW_1, VIEW_2,

VIEW_3, and VIEW_4 for last 5 years (2016, 2015, 2014, 2013, and 2012) were as

shown in Table 4.1.

Table (4.1): Frequency Matrix of Last Five Years

View\Year 2016 2015 2014 2013 2012 Total

VIEW_1 9 7 15 13 18 62

VIEW_2 1 3 9 12 17 42

VIEW_3 12 10 1 1 0 24

VIEW_4 0 0 5 11 13 29

Applying formula (4.1) we get detracted frequency matrix over years as shown

in Table 4.2. As we go far away from current year, the usage frequency is being less

important in comparison of closer years.

79

Table (4.2): Detracted Frequency Matrix of Last Five Years

View\Year 2016 2015 2014 2013 2012 Total
VIEW_1 9 5.6 9 5.2 3.6 32.4

VIEW_2 1 2.4 5.4 4.8 3.4 17

VIEW_3 12 8 0.6 0.4 0 21

VIEW_4 0 0 3 4.4 2.6 10

The frequency of using all views in last year is not affected, but the usage

frequencies in 2015 was detracted by (4/5). The usage frequencies in 2014 was

detracted by (3/5) as well, and those for 2013 and 2012 were detracted by (2/5) and

(1/5) respectively.

The purpose of this step is to give higher importance for recent usage of views

than older usage records. In our example in Table 4.2, we can obviously note that

VIEW_3 got higher priority to be materialized than VIEW_2 and VIEW_4, since it

is getting higher usage frequencies in recent years compared to 2012, 2013 and 2014,

that while VIEW_2 and VIEW_4 is not highly used in recent years as shown in

Table 4.1. VIEW_1 still has highest priority for materialization that because its big

usage frequencies in years 2012, 2013, and 2014 compared to VIEW_3 usage

frequencies in same periods.

Finally, in phase 2 we find the similarity between features of day 𝑑𝑑 and

historical usage days’ features. In this thesis, we focus on academic day features

which are:

• Academic semester: any day in the academic year of the university

calendar is related to a specific semester. This feature will be one of the

following values: first semester, second semester, third semester.

• Month of the academic semester: first and second semesters are

typically last by four or five months, while third semester (summer

term) usually lasts after two months. Thus, MONTH_OF_SEMESTER

should be value between 1 and 5.

80

• Week of the academic semester: this feature is recorded since some

views are usually used in specific weeks during academic semester, so

that we would better to materialize these view on the specific week

rather than materializing it during the whole academic month of

semester.

These features are selected as the directors of Admission & Registration,

Finance, and Student Fund departments recommended, their recommendation was

based on daily report usage. All these features are extracted as in line I of phase 2 in

Algorithm 1, then it was passed to the similarity check algorithm. Some enterprises

may select other features for similarity check, such as: months of the year, weeks of

the year, weeks of the month, fiscal year quarter, or month of quarter. That can be

easily implemented using our model.

Our similarity check algorithm is shown in Algorithm 2.

Algorithm 2. The pseudo code of similarity check function.

Purpose: 1. To find the similarity ratio between given day features and detracted frequency matrix

Input: 2. Features of view 𝑖𝑖 usage over years, 𝐹𝐹𝑖𝑖,
Day features 𝑓𝑓𝑑𝑑

Output: 3. Similarity ratio of 𝑓𝑓𝑑𝑑 to 𝐹𝐹𝑖𝑖, value between 0 and 1

Procedure: I. let 𝑆𝑆 = 1
II. set 𝐿𝐿 = [𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, [𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀_𝑀𝑀𝐹𝐹_𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑊𝑊𝑆𝑆𝑆𝑆𝑊𝑊_𝑀𝑀𝐹𝐹_𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]]

III. for each level 𝑚𝑚 in 𝐿𝐿
IV. set 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 0
V. for each feature 𝑙𝑙 in ordered list 𝐿𝐿 of level 𝑚𝑚

VI. 𝑢𝑢 ← calculate total usage frequency of view 𝑖𝑖 where 𝑙𝑙 = 𝑓𝑓𝑑𝑑(𝑙𝑙)
VII. 𝑢𝑢𝑡𝑡𝑚𝑚𝑚𝑚← select maximum usage frequency of view 𝑖𝑖 for all 𝑙𝑙 possible values

VIII. 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 + 𝑢𝑢
u𝑚𝑚𝑚𝑚𝑚𝑚

IX. end foreach
X. 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡

𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑜𝑜𝑜𝑜 𝐿𝐿 𝑖𝑖𝑛𝑛 𝑜𝑜𝑛𝑛𝑙𝑙𝑛𝑛𝑜𝑜 𝑡𝑡

XI. If 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 0
XII. 𝑆𝑆 = 0

XIII. go to end
XIV. end if
XV. 𝑆𝑆 = 𝑆𝑆 ∗ 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡

XVI. end foreach end return S

Algorithm 2 accepts two inputs which are:

81

• Checking Day Features, 𝑓𝑓𝑑𝑑: formed a list of features of the input day

which are extracted in step I of phase 2. For example, the day of October

01, 2016 has the following features: {SEMESTER: 1,

MONTH_OF_SEMESTER: 2, WEEK_OF_SEMESTER: 5}.

• List of detracted usage frequency of view 𝑖𝑖, 𝐹𝐹𝑖𝑖: frequency matrix as

discussed before is designed for last ℎ years, the data in this matrix is

hierarchal as shown in Figure 4.1, which means SEMESTER is related

to ACADEMIC YEAR, and MONTH OF SEMESTER and WEEK OF

SEMESTER is related to SEMESTER. Frequency matrix is simply

formed by aggregation queries over historical usage records.

Year

Semester

Month of
Semester

Week of
Semester

Figure (4.1): Usage Frequency Hierarchy

In the first step of similarity check algorithm, we consider similarity ratio

between entry day and historical usage of view 𝑖𝑖 is 100% similar. Next we start

iterating over defined features list [Semester, Month of Semester, Week of Semester]

and calculate usage frequency for each feature. For any set of features in same level,

if there were not any historical usage records similar to input day’s feature, then we

set similarity ratio to zero. On the other hand, if there were some records, we calculate

the maximum usage frequency for all values of checking level by reserving parent

82

level value; for example, if we are checking the similarity for Month of Semester, we

calculate the maximum frequency usage over all five possible values [1, 2, 3, 4, and 5]

for selected Semester (parent level) as shown in step VIII of Algorithm 2. For features

in same level (MONTH_OF_SEMESTER and WEEK_OF_SEMESTER in our case),

we calculate the average similarity ratio of them (step X in Algorithm 2). Then, the

last step, we reduce similarity check by factor 𝑢𝑢
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

, where 𝑢𝑢 is total usage frequency

of view 𝑖𝑖 for selected feature, and 𝑢𝑢𝑡𝑡𝑚𝑚𝑚𝑚 is the maximum usage frequency for view 𝑖𝑖

over all possible values of the selected feature.

For illustration, assume frequency matrices for VIEW_5 is as shown in Table

4.3 and Table 4.4, and assume the feature of checking day was {SEMESTER: 1,

MONTH_OF_SEMESTER: 2, WEEK_OF_SEMESTER: 6}. We are going to

calculate the similarity for each feature in the features list. We will start by checking

the similarity of SEMESTER feature which is the parent in the hierarchy. Then we

will check the similarity for both MONTH_OF_SEMESTER and

WEEK_OF_SEMESTER features. Since these last two features are in same level (see

Figure 4.1), the similarity of this level is the average ratio of them. The result of this

level is multiplied with parent level (SEMESTER) to get final similarity ratio.

By running our similarity check algorithm, we start by checking SEMESTER’s

frequencies, which results:

𝑢𝑢 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢 𝑖𝑖𝑛𝑛 1𝑠𝑠𝑡𝑡 𝑢𝑢𝑢𝑢𝑚𝑚𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠 = 15 + 17 = 32

Then we calculate the maximum usage frequency over all semesters which is:

𝑢𝑢𝑡𝑡𝑚𝑚𝑚𝑚 = max(32,19,0) = 32

We got 𝑆𝑆 here not reduced for checking similarity between semesters since 𝑆𝑆 =

𝑆𝑆 ∗ 𝑢𝑢
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

= 1 ∗ 32
32

= 1.

Next, the algorithm goes deeper to next level by checking similarity between

month of semester, for this feature we get:

83

𝑢𝑢 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢 𝑖𝑖𝑛𝑛 2𝑛𝑛𝑑𝑑 𝑚𝑚𝑡𝑡𝑛𝑛𝑡𝑡ℎ 𝑡𝑡𝑓𝑓 1𝑠𝑠𝑡𝑡 𝑢𝑢𝑢𝑢𝑚𝑚𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠 = 15

Then we calculate the maximum usage frequency over all months of current

semester (1st Semester) which is:

𝑢𝑢𝑡𝑡𝑚𝑚𝑚𝑚 = max(17, 15) = 17

However, 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 become 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 + 𝑢𝑢
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

= 0 + 15
17

= 0.88.

Table (4.3): Frequency Matrix of VIEW_5 Over Months

 First Semester Second Semester Third Semester

1st month 17 0 0

2nd month 15 19 0

3rd month 0 0 0

4th month 0 0 0

5th month 0 0 0

Next, we check the similarity of week of the month based on Table 4.4:

𝑢𝑢 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢 𝑖𝑖𝑛𝑛 6𝑡𝑡ℎ 𝑤𝑤𝑢𝑢𝑢𝑢𝑤𝑤 𝑡𝑡𝑓𝑓 1𝑠𝑠𝑡𝑡 𝑢𝑢𝑢𝑢𝑚𝑚𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠 = 12

Then we calculate the maximum usage frequency over all week of current

semester (1st Semester) which is:

𝑢𝑢𝑡𝑡𝑚𝑚𝑚𝑚 = max(7,7,3,12,3) = 12

That makes 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 increases since view 𝑖𝑖 was being used most in 6th week of first

semester, 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 + 𝑢𝑢
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

= 0.88 + 12
12

= 1.88.

Table (4.4): Frequency Matrix of VIEW_5 Over Weeks

 First Semester Second Semester Third Semester

1st week 7 0 0

2nd week 0 0 0

3rd week 7 0 0

84

4th week 3 0 0

5th week 0 10 0

6th week 12 9 0

7th week 3 0 0

8th week 0 0 0

9th week 0 0 0

10th week 0 0 0

Finally, for current level we calculate the average by 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 =
𝑆𝑆𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡

𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑜𝑜𝑜𝑜 𝐿𝐿 𝑖𝑖𝑛𝑛 𝑜𝑜𝑛𝑛𝑙𝑙𝑛𝑛𝑜𝑜 𝑡𝑡
= 1.88

2
= 0.94. That makes 𝑆𝑆 = 𝑆𝑆 ∗ 𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 = 1 ∗ 0.94 = 0.94

In our example, VIEW_5 has 94% chance to be called on the checking day. The

final decision is based on the user’s input 𝛿𝛿 (minimum similarity ratio) as shown on

line IV in Algorithm 1.

After calculating similarity ratio, and if it passed the checking conditions on line

IV, then the view is considered to be materialized.

85

Chapter 5
Results and Discussion

oashour
Rectangle

86

Chapter 5

Results and Discussion

In this chapter, we test our model over TPC Benchmark H (TPC-H) showing

significant reduction in total MVPP cost in Section 5.1. Additionally, in Section 5.2

we show the effect of using the data warehouse in IUG environment and how

materializing its views can provide even better performance.

5.1 TPC Benchmark™H (TPC-H)

The component of TPC-H schema is defined to consist of eight tables (base

relation) including REGION, NATION, CUSTOMER, SUPPLIER, PART,

PARTSUPP, LINEITEM AND ORDERS. The relationships between these tables in

TPC-H schema are illustrated in Figure 5.1.

Figure (5.1): The TPC-H Schema

Source: (TPC Benchmark H, 2017)

87

The number below each table name represents the cardinality of the table. Some

tables are factored by Scale Factor (SF) to obtain the chosen database size. Scale

factors that used for the test database must be chosen from the set of fixed scale factors

defined as follows (TPC Benchmark H, 2017, p. 79):

1, 10, 30, 100, 1,000, 3,000, 10,000, 30,000, 100,000

We run TPC-H schema by Oracle11gR2 with database size defined with

reference to Scale Factor 1 (i.e., SF = 1; approximately 1 GB), the minimum required

for a test database. The size of the NATION and REGION tables are fixed to 25 and 5

rows respectively. The TPC-H Schema Table Sizes of each base relation are presented

in Table 5.1.

Table (5.1): The TPC-H Schema Table Size

Table Name
Relation Size
(in Tuples)

Record Size
(in bytes)

Table Size
(in MB)

SUPPLIER 10,000 159 2

PART 200,000 155 30

PARTSUPP 800,000 144 110

CUSTOMER 150,000 179 26

ORDERS 1,500,000 104 149

LINEITEM 6,000,000 112 641

NATION 25 128 <1

REGION 5 124 <1

Source: (Phuboon-ob, 2009)

Table 5.1 presents each table and its relation size (tuples or rows), and the size

of each row (in bytes). The size of tables is number of rows multiplied by size of each

row.

Query Set for Materialized View Selection over TPC-H

Query1 to Query7 were introduced by (Phuboon-ob, 2009) for static

materialized view selection problem using Two-Phase Optimization (2PO) algorithm

88

based on MVPP structure. However, in (Suchyukorn, 2013) the researcher improved

the query processing cost of the cheapest MVPP of Query1 to Query7 by her MVPP

re-optimization algorithm, and she used 2PO to select set of views to be materialized.

In this research and for TPC-H benchmark experiments, we based our effort on the re-

optimized MVPP generated by (Suchyukorn, 2013). The details of Query1 is discussed

in this section for illustration, while the other queries Query2 to Query7 are listed in

Appendix 2. The Query1 to Query7 are denoted as Q1, Q2, Q3, Q4, Q5, Q6 and Q7.

The notations used in relational algebra query tree are as follow:

• 𝜎𝜎𝑚𝑚 represents the select operation, where 𝑡𝑡 is a selection condition on

one or more attributes of a relation.

• 𝜋𝜋𝑏𝑏 represents the project operation, where 𝑏𝑏 is a list of one or more

attributes of a relation.

• ⋈ represents the inner join operation.

• 𝛾𝛾 represents an aggregation function.

The details of Query1 and its relational algebra query tree is described as

follows:

Query Q1 produces the minimum supply cost of each nation of suppliers in

specific region, ASIA. Its relational algebra tree is shown in Figure 5.2.

Query Q1:

SELECT n_name, Min(ps_supplycost)

FROM part, partsupp, supplier, nation, region

WHERE p_partkey = ps_partkey

 AND s_suppkey = ps_suppkey

 AND s_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = ‘asia’

GROUP BY n_name;

89

Figure (5.2): Relational Algebra Query Tree of Query Q1

Relational Algebra Query Tree is usually used to express the execution plans for

database management systems (DBMS), it is the base item to build the MVPP

structure.

The cost of an execution plan does not have a unit. “The value of this column

does not have any particular unit of measurement; it is merely a weighted value used

to compare costs of execution plans” (Oracle Corporation, 2014, p. 334).

The rest of queries Q2 through Q7 are listed in Appendix 2: TPC-H Schema

Queries and Relational Algebra Trees for reference.

Depending on relational algebra trees of queries Q1 to Q7 and the cost (relation

size) of each query, the researchers generated their re-optimized MVPP. Then they

executed 2PO to select list of views to be materialized that resulting minimum query

90

processing and maintenance costs. Figure 5.3 shows the resulted re-optimized MVPP

and selected nodes to be materialized by 2PO algorithm. The cost for each operation

node is labeled at the right side of the node, the number of rows produced by this

operation is labeled at the left side of the node.

91

Figure (5.3): M
V

PP w
ith M

aterialized V
iew

 N
odes Selected by 2PO

92

To calculate the total cost of MVPP in Figure 5.5 and Figure 5.6, we return to

Maintenance and Query Processing Costs of Re-Optimized MVPP that are calculated

in (Suchyukorn, 2013), which are illustrated in Tables 5.2, and 5.3.

Table (5.2): The Maintenance Cost of the Re-Optimized MVPP

Materialized
View

Number of
Base Relations

Constructed from Nodes Maintenance Cost

Tmp6 3
Tmp1, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6 180,168

Tmp11 5
Tmp1, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, Tm10, Tmp11

1,426,977,515,570

Tmp15 5
Tmp1, Tmp2, Tmp3, Tmp4,
Tmp12, Tmp13, Tmp9, Tmp10,
Tmp14, Tmp7, Tmp15

1,414,630,939,520

Tmp21 2 Tmp16, Tmp18, Tmp20, Tmp21 14,512,800,000

Tmp24 2 Tmp7, Tmp9, Tmp10, Tmp24 2,731,179,455,194

Total Maintenance Cost 5,587,300,890,452

Source: (Suchyukorn, 2013, p. 77)

Table 5.2 shows the maintenance cost of each materialized node of re-optimized

MVPP in Figure 5.3 that are (tmp6, tmp11, tmp15, tmp21, and tmp24). However, it

also shows the number of base relations that could affect the materialized node. For

example, node Tmp6 has three base relations which are Region, Nation, and Supplier.

The total of MVPP Maintenance Cost was introduced by (Yang, Karlapalem, & Li,

1997) and is calculated by the formula:

𝐶𝐶𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = ∑ 𝑓𝑓𝑢𝑢𝐶𝐶𝑡𝑡(𝑣𝑣)𝑙𝑙∈𝑀𝑀 (5.1)

Where:

𝑀𝑀 is the set of materialized views,
𝑓𝑓𝑢𝑢 is the frequency of updating base relations,
𝐶𝐶𝑡𝑡(𝑣𝑣) is the cost of maintenance when 𝑣𝑣 is materialized.

93

For Tmp6, 𝐶𝐶𝑡𝑡(𝑆𝑆𝑚𝑚𝑇𝑇6), it is constructed on three base relations, and accesses

nodes Tmp1, Tmp2, Tmp3, Tmp4, Tmp5 and the node itself. The cost of each node is

5, 1, 25, 25, 10000 and 50000, respectively as shown in Figure 5.3. Thus, the

materialized view maintenance cost of Tmp6 is 3*(5 + 1 + 25 + 25 + 10000 + 50000)

that is 180,168. Other materialized nodes costs calculated similarly.

Table (5.3): The Query Processing Cost of the Re-Optimized MVPP

Query Access from Node Query Processing Cost

Query number 1 (Q1) Tmp6, Tmp16, Tmp17, Tmp18,
Tmp19, result1 67,303,124,486

Query number 2 (Q2) Tmp15, result2 2,208,984

Query number 3 (Q3) Tmp11, result3 2,550,562

Query number 4 (Q4) Tmp6, Tmp16, Tmp17, Tmp12,
Tmp23, result4 53,213,742,566

Query number 5 (Q5) Tmp21, result5 362,760

Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968

Query number 7 (Q7) Tmp24, Tmp12, Tmp25, result7 409,739,463,114

Total Query Processing Cost 533,527,035,440

Source: (Suchyukorn, 2013, p. 77)

On the other hand, the Query Processing Cost is calculated by:

𝐶𝐶𝑞𝑞𝑢𝑢𝑛𝑛𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑜𝑜𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑞𝑞 = ∑ 𝑓𝑓𝑞𝑞𝐶𝐶𝑞𝑞(𝑀𝑀)𝑞𝑞∈𝑄𝑄 (5.2)

Where:

𝑀𝑀 is the set of materialized views,
𝑄𝑄 is the set of queries,
𝑓𝑓𝑞𝑞 is the frequency of executing queries,
𝐶𝐶𝑞𝑞(𝑀𝑀) is the cost to compute 𝑞𝑞 from the set of materialized views 𝑀𝑀.

For Query Q1 in Table 5.3, its total frequency of executing the query is 2, Q1

accesses the nodes named Tmp6, Tmp16, Tmp17, Tmp18, Tmp19, and result1. The

cost of each node is 2003, 800000, 1602400000, 200000, 32048000000, and 160240,

respectively. So, the query processing cost of query Q1, 𝐶𝐶𝑞𝑞(𝑄𝑄1) is (2)*(2003 + 800000

94

+ 1602400000 + 200000 + 32048000000 + 160240) = 67303124486. The cost of Tmp6

is the number of resulting rows because it is a materialized node. Similarly, other costs

are calculated and listed in Table 5.3.

The total cost of the MVPP is calculated by (Yang, Karlapalem, & Li, 1997):

𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑜𝑜 = ∑ 𝑓𝑓𝑞𝑞𝐶𝐶𝑞𝑞(𝑀𝑀)𝑞𝑞∈𝑄𝑄 + ∑ 𝑓𝑓𝑢𝑢𝐶𝐶𝑡𝑡(𝑣𝑣)𝑙𝑙∈𝑀𝑀 (5.3)

That is the total cost of the re-optimized MVPP by Suchyukorn, (Suchyukorn,

2013), is:

𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑜𝑜 = 𝐶𝐶𝑞𝑞𝑢𝑢𝑛𝑛𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑜𝑜𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑞𝑞 + 𝐶𝐶𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛

= 533,527,035,440 + 5,587,300,890,452 = 6,120,827,925,892

To show the effect of our proposed model on the total cost of resulted MVPP,

we need to design the usage frequency matrix of queries, Q1 to Q7. Assuming these 7

queries are executed over a fiscal year, and the features needed to be selected are

[QUARTER, MONTH_OF_QUARTER, WEEK_OF_QUARTER] as shown in

Figure 5.4.

Year

Quarter

Month of
Quarter

Week of
Quarter

Figure (5.4): TPC-H Usage Frequency Hierarchy

95

Considering the usage frequencies are as listed in Table 5.4. Each query in the

table have total number of executions over the years after detracting values according

to our model.

Table (5.4): Usage Frequency Matrix of Queries Q1 through Q7 Over Financial
Year’s Quarter Weeks

 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter

1st week Q2(6), Q3(7), Q7(3) Q5(5), Q6(9) Q1(2) Q2(6)

2nd week Q1(2), Q6(9) Q4(2) Q7(3) Q6(9) Q5(5), Q3(3)

3rd week … … …

… … … …

14th week … … …

In those days with features similar to 1st week of 1st quarter in fiscal year, the list

of views selected to be materialized in the re-optimized MVPP will be changed. Thus,

views that flagged to be materialized in the trees of queries other than Q2, Q3, and Q7

will be canceled. In this case, tmp21 in Figure 5.3 will be unflagged as being

materialized view. The resulted MVPP will be as shown in Figure 5.5.

96

Figure (5.5): M
V

PP in 1st W
eek of 1st Q

uarter

97

The total maintenance cost of MVPP in Figure 5.5 is calculated in same way of

the re-optimized MVPP in Table 5.2.

Table 5.5 illustrates the maintenance costs of 5 materialized nodes shown in

Figure 5.5. Total Maintenance Cost, 𝐶𝐶𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛, is 5,572,788,090,452.

Table (5.5): The Maintenance Cost of the MVPP in 1st Week of 1st Quarter

Materialized
View

Number of
Base Relations

Constructed from Nodes Maintenance Cost

Tmp6 3 Tmp1, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6

180,168

Tmp11 5
Tmp1, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6, Tmp7, Tmp8,
Tmp9, Tm10, Tmp11

1,426,977,515,570

Tmp15 5
Tmp1, Tmp2, Tmp3, Tmp4,
Tmp12, Tmp13, Tmp9, Tmp10,
Tmp14, Tmp7, Tmp15

1,414,630,939,520

Tmp24 2 Tmp7, Tmp9, Tmp10, Tmp24 2,731,179,455,194

Total Maintenance Cost 5,572,788,090,452

Since the usage frequency of queries Q1, Q4, Q5, and Q6 is zero in 1st week of

1st quarter (checking days), then the query processing cost for those queries is 0. Table

5.6 shows the query processing cost of Queries Q1 to Q7. The total query processing

cost, 𝐶𝐶𝑞𝑞𝑢𝑢𝑛𝑛𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑜𝑜𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑞𝑞, of this MVPP is 409,744,222,660.

Table (5.6): The Query Processing Cost of the MVPP in 1st Week of 1st Quarter

Query Access from Node Query Processing Cost

Query number 1 (Q1) Tmp6, Tmp16, Tmp17, Tmp18,
Tmp19, result1 0

Query number 2 (Q2) Tmp15, result2 2,208,984

Query number 3 (Q3) Tmp11, result3 2,550,562

Query number 4 (Q4) Tmp6, Tmp16, Tmp17, Tmp12,
Tmp23, result4 0

98

Query number 5 (Q5) Tmp21, Tmp20, Tmp18, Tmp16,
result5 0

Query number 6 (Q6) Tmp21, Tmp20, Tmp18, Tmp16,
Tmp5, Tmp22, result6 0

Query number 7 (Q7) Tmp24, Tmp12, Tmp25, result7 409,739,463,114

Total Query Processing Cost 409,744,222,660

From above discussion, we can summarize the total cost of the MVPP in 1st week

of 1st quarter is:

𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑜𝑜 = 𝐶𝐶𝑞𝑞𝑢𝑢𝑛𝑛𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑜𝑜𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑞𝑞 + 𝐶𝐶𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛

= 409,744,222,660 + 5,572,788,090,452 = 5,982,532,313,112

To calculate the total cost of the MVPP in 2nd week of the 1st quarter, Figure 5.6

illustrates the nodes which should be materialized. Nodes Tmp6 and Tmp21 are

selected to be materialized according to our usage frequency matrix. The total

maintenance cost of these two nodes is 180,168 + 14,512,800,000 = 14,512,980,168.

Table (5.7): The Maintenance Cost of the MVPP in 2nd Week of 1st Quarter

Materialized
View

Number of
Base Relations

Constructed from Nodes Maintenance Cost

Tmp6 3
Tmp1, Tmp2, Tmp3, Tmp4,
Tmp5, Tmp6

180,168

Tmp21 2 Tmp16, Tmp18, Tmp20, Tmp21 14,512,800,000

Total Maintenance Cost 14,512,980,168

Similar to previous steps of Table 5.6, the total query processing cost of the

MVPP in 2nd week of 1st quarter is the query processing costs of Q1 and Q6.

𝐶𝐶𝑞𝑞𝑢𝑢𝑛𝑛𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑜𝑜𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑞𝑞 = 67,303,124,486 + 3,265,582,968 = 600,830,159,926

99

Table (5.8): The Query Processing Cost of the MVPP in 2nd Week of 1st Quarter

Query Access from Node Query Processing Cost

Query number 1 (Q1) Tmp6, Tmp16, Tmp17, Tmp18,
Tmp19, result1 67,303,124,486

Query number 2 (Q2)
Tmp15, Tmp7, Tmp14, Tmp10,
Tmp9, Tmp13, Tmp4, Tmp3,
Tmp2, Tmp1, Tmp12, result2

0

Query number 3 (Q3) Tmp11, Tmp10, Tmp9, Tmp8,
Tmp7, Tmp6, result3 0

Query number 4 (Q4) Tmp6, Tmp16, Tmp17, Tmp12,
Tmp23, result4 0

Query number 5 (Q5) Tmp21, result5 0

Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968

Query number 7 (Q7) Tmp24, Tmp10, Tmp9, Tmp7,
Tmp12, Tmp25, result7 0

Total Query Processing Cost 600,830,159,926

From the above discussion, we can summarize the total cost of the MVPP in 2nd

week of 1st quarter as:

𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑜𝑜 = 𝐶𝐶𝑞𝑞𝑢𝑢𝑛𝑛𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑜𝑜𝑚𝑚𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑞𝑞 + 𝐶𝐶𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 = 600,830,159,926 + 14,512,980,168

= 615,343,140,094

Table (5.9): The Query Processing Cost, Maintenance Cost and Total Cost of 1st and
2nd Weeks of 1st Quarter

 Cost of Query
Processing

Cost of
Maintenance Total Cost

All-Virtual Views 8,427,206,080,471 0 8,427,206,080,471

All-Materialized Views 1,940,978,234 7,686,779,440,303 7,688,720,418,537

2PO 533,527,035,440 5,587,300,890,452 6,120,827,925,892

1st week of 1st quarter 409,744,222,660 5,572,788,090,452 600,830,159,926

2nd week of 1st quarter 600,830,159,926 14,512,980,168 615,343,140,094

100

Figure (5.6): M
V

PP in 2nd W
eek of 1st Q

uarter

101

5.2 Legacy System versus Data Warehouse versus DW Materialized
Views

In this section, we compare IUG database’s performance before and after

implementing the data warehouse. We show the time consumed and total query cost

for each data mart using legacy system, then we show how the data warehouse

optimized it. Additionally, we show the effect of materializing data warehouse’s views

on the database performance for each data mart.

The time is recorded while executing each query, it is calculated by Oracle

Optimizer. The cost of queries is also calculated by the Oracle’s optimizer, Cost-Based

Optimizer CBO, which is a function of the CPU_COST and IO_COST as discussed in

(Oracle Corporation, 2014) and (Hellström, 2017), it represents units of work or

resource used in an operation. The optimizer uses disk I/O, CPU usage, and memory

usage as units of work.

• High School Results Data Mart

For high school results data mart, we executed the query for last year, last three

years, last ten years, and all years (empty filter). The results are shown in Table 5.10.

Table (5.10): High School Results Experimental Results

Filters Records

Legacy
System

Data Warehouse
- Logical

Data Warehouse
- Materialized

time
(s) cost time

(s) cost time
(s) cost

last year 20305 0.322 2811 0.085 58 0.030 6

last three years 60457 0.511 6344 0.111 162 0.051 6

last ten years (max) 247075 1.198 10112 0.245 273 0.081 7

From the results above, data warehouse returns the results four to five times

faster than legacy system. Data warehouse gives even better performance as data

grows as shown in Figure 5.7.

102

Figure (5.7): High School Results - Legacy System Vs Data Warehouse

On the other hand, materializing the data warehouse’s views gives the system

better performance. For high school results data mart, materializing its views would

save up to 67% of the execution time over data warehouse’s tables. As shown in Figure

5.8, it may give even better performance as data grows.

Figure (5.8): High School Results - Logical Vs Materialized

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

L A S T Y E A R L A S T T H R E E Y E A R S L A S T T E N Y E A R S

Legacy Data Warehouse - Logical

0.000

0.050

0.100

0.150

0.200

0.250

0.300

L A S T Y E A R L A S T T H R E E Y E A R S L A S T T E N Y E A R S

Data Warehouse - Logical Data Warehouse - Materialized

103

• Students Registration Data Mart

We’ve executed students’ registration query over last semester, last three

semesters, and last five years as shown in Table 5.11.

Table (5.11): Students Registration - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 93 14.768 2984 0.018 9 0.008 9

last three semesters 360 46.907 6119 0.035 15 0.019 9

last five years 1208 217.147 10944 0.093 15 0.058 9

From the results above, data warehouse returns the results about 2000 times

faster than legacy system, this is due to the complex PLSQL functions that used to

calculate students’ registration hours in legacy system, while in the data warehouse the

data is prepared and saved instantly into data warehouse after semester starts. Figure

5.9 compares time consumed in legacy system with time consumed in the data

warehouse to return students’ registration data.

Figure (5.9): Students Registration - Legacy System Vs Data Warehouse

On the other hand, materializing the data warehouse’s views gives the system

better performance. For students’ registration data mart, materializing its views would

save up to 56% of the execution time over data warehouse’s tables. As shown in Figure

5.10, it may give even better performance as data grows.

0.000

50.000

100.000

150.000

200.000

250.000

L A S T S E M E S T E R L A S T T H R E E S E M E S T E R S L A S T F I V E Y E A R S

Legacy Data Warehouse

104

Figure (5.10): Students Registration - Logical Vs Materialized

The rest of experimental results about other data marts are listed in Appendix 1:

Legacy System Vs Data Warehouse Vs Materialized Views. In Table 5.12 we

summarize the performance improvement of each data mart in two cases:

• Legacy System Vs Data Warehouse: the effectiveness of using data warehouse.

• Data Warehouse Logical Views Vs Data Warehouse Materialized Views: we

show how materializing data warehouse’s views can give even better

performance.

Table (5.12): Summary of the Comparison between IUG Legacy System, Data
Warehouse, and Materialized Views

Fact
Legacy vs DW DW Logical vs

Materialized
Faster

(× times)
Saved Time

(%)
Faster

(× times)
Saved Time

(%)

High School Results 4.89 79.54 3.04 67.07

Students Admission 36.30 97.25 6.56 84.75

Students Registration 2334.91 99.96 2.30 56.60

Registered Students
Geographical Location 40.29 97.52 16.67 94.00

Transfers between Colleges 9.69 89.68 5.15 80.57

Exam Conflicts 22.78 95.61 6.30 84.13

SFD Students Registration 211.74 99.53 1.72 41.71

Cash Grants 84.75 98.82 5.75 82.61

Deferred Grant 27.11 96.31 1.75 42.86

Student Fund Summary 14.72 93.21 18.50 94.59

0.000

0.020

0.040

0.060

0.080

0.100

L A S T S E M E S T E R L A S T T H R E E S E M E S T E R S L A S T F I V E Y E A R S

Data Warehouse Data Warehouse - Optimized

105

Financial Collection 69.77 98.57 17.55 94.30

From Table 5.12 we can conclude that, using data warehouse in IUG saves more

than 90% of total time used in legacy system for most of data marts. On the other hand,

materializing these data marts can save even more than 80% of total time consumed

while using the data warehouse in IUG for most of data marts.

106

Chapter 6
Conclusion and Future

Works

oashour
Rectangle

107

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we discussed the importance of data warehouse for organizations

and companies. We highlighted two of industry approaches for designing DW which

are top-down and bottom-up approaches, and we showed the advantages and

disadvantages of each approach. For IUG, we adopted bottom-up (Ralph Kimball)

approach. Also, we discussed case studies of implementing DW in higher education

environments and their approaches of the implementation.

This research, in current phase, focuses on designing and implementing data

warehouse which will help mainly in decision-making process that is related to the

students. We developed data marts for some of the departments that are core for

students, which are Admission and Registration, Student Affairs, and Finance

departments. Other departments in IUG will be considered in future phases.

Additionally, we argue number of materialized view selection algorithms. We

found that most of works in this field have been provided different approaches for the

selection of views to materialize considering view maintenance cost and storage space.

There is lack in researches in selection of views to be materialized based on dynamic

thresholds such as view’s usage frequency. Thus, we designed a model for materialized

view selection based on view’s usage frequency in different periods over

academic/financial year.

Our experiments show that the proposed model can be integrated with existing

materialized view selection algorithms to give better materialization decisions, and

even better database’s performance since it restrict the set of views before

materialization process.

Finally, we discussed the effect of the data warehouse on the IUG database’s

performance and query processing time. When comparing the results of running the

queries, it is clear in every instance that the data return dramatically quicker from the

organized star schema in the data warehouse than from the transactional database.

108

Adding to that, materializing data warehouse’s views will give even better

performance of overall data warehouse system.

6.2 Future Works

In the current phase and due to limited time frame of this research, we designed

and implemented a data warehouse for three departments only in IUG. They are

Admission and Registration, Students Affairs, and Finance departments. In the future,

we will complete the design and the implementation of the data warehouse for other

departments in IUG.

Additionally, for our dynamic materialized view selection model, we would like

to design an algorithm to calibrate the similarity ratio, value of 𝛿𝛿, in Algorithm 1

dynamically. This algorithm would be based on correct and wrong decisions about

views materialization.

Moreover, since the current model is running in daily basis to check for views’

materialization, we would like to design a dynamic model to detect the appropriate

time intervals for this process.

Finally, the proposed model accepts list of features for the similarity check

algorithm. This list of features is static for all views. We are planning to make this list

of features to be related for each view.

109

The Reference List

110

References

Agrawal, S., Chaudhuri, S., & Narasayya, V. (2000). Automated Selection of
Materialized Views and Indexes for SQL Databases. 26th International
Conference on Very Large Databases (pp. 496-505). Cairo: Morgan Kaufmann.

Al-Kordi, Z. (2017, January 1). Admission and Registration acting manager. (B.
Shbair, Interviewer)

Aouiche, K., Jouve, P.-E., & Darmont, J. (2006). Clustering-Based Materialized View
Selection in Data Warehouses. ADBIS'06 Proceedings of the 10th East European
conference on Advances in Databases and Information Systems (pp. 81-95).
Thessaloniki: Springer.

Ballard, C., Farrell, D. M., Gupta, A., Mazuela, C., & Vohnik, S. (2006). Dimensional
Modeling: In a Business Intelligence Environment. IBM Redbooks.

Breslin, M. (2004). Data Warehousing Battle of the Giants: Comparing the Basics of
the Kimball and Inmon Models. Business Intelligence Journal.

Burton, P., & Green, S. (2016, December 12). Meta Data: The Key To Data
Warehouse Design. Retrieved from Institute for Systems Research:
http://www.isr.umd.edu/Courses/ENSE623/DataWarehouse

Chan, S. S. (1999). The Impact of Technology on Users and the Workplace. New
Directions for Institutional Research, 3-21.

Choudhari, Y. D., & Shrivastava, S. K. (2012). Cluster Based Approach for Selection
of Materialized Views. International Journal of Advanced Research in Computer
Science and Software Engineering, 2(7), 315-318.

Derakhshan, R., Stantic, B., Korn, O., & Dehne, F. (2008). Parallel Simulated
Annealing for Materialized View Selection in Data Warehousing Environments.
ICA3PP 2008: Algorithms and Architectures for Parallel Processing, 121-132.

Devlin, B. (2010). Beyond business intelligence. Business Intelligence Journal.
Eckerson, W. (2003). Smart Companies in the 21st Century: The Secrets of Creating

Successful Business Intelligence Solutions. Seattle: A 101communications
Publication.

Ganapavarapu, V. B. (2014). Designing and Implementing a Data Warehouse using
Dimensional Modeling. Albuquerque: The University of New Mexico.

Gong, A., & Zhao, W. (2008). Clustering-based Dynamic Materialized View Selection
Algorithm. Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth
International Conference (pp. 391-395). Shandong, China: IEEE.

Gou, G., Yu, J. X., & Lu, H. (2006, May). A* search: an efficient and flexible
approach to materialized view selection. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 36(3), 411-425.

Gupta, H. (1997). Selection of views to materialize in a data warehouse. Database
Theory - ICDT '97, 1186, 98-112.

Gupta, H., & Mumick, I. S. (2005, January). Selection of Views to Materialize in a
Data Warehouse. IEEE Transactions on Knowledge and Data Engineering, 17(1),
24-43.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques.
Waltham: Elsevier.

Hellström, I. (2017, March 08). Oracle SQL & PL/SQL Optimization for Developers
Documentation. Retrieved from Read the Docs:
https://media.readthedocs.org/pdf/oracle/latest/oracle.pdf

111

Himanshu, G., & Mumick, I. S. (1998). Selection of Views to Materialize Under a
Maintenance Cost Constraint. Database Theory - ICDT'99 - 7th International
Conference (pp. 453-470). Jerusalem: Springer .

IBM Business Analytics. (2011). A Step-by-Step Approach to Successful Business
Intelligence. Retrieved from IDG Enterprise:
http://resources.idgenterprise.com/original/AST-0066459_YTW03194CAEN.pdf

IBM Knowledge Center. (2017, January 24). Retrieved from IBM Knowledge Center:
https://www.ibm.com/support/knowledgecenter/SS9UM9_9.1.0/com.ibm.datatoo
ls.dimensional.ui.doc/topics/c_dm_design_cycle_2_idgrain.html

Inmon, W. H. (2002). Building the Data Warehouse. New York: Wiley.
Kalnis, P., Mamoulis, N., & Papadias, D. (2002). View selection using randomized

search. Data & Knowledge Engineering, 89-111.
Kimball, R. (1996). The Data Warehouse Toolkit.
Kimball, R., & Caserta, J. (2011). The Data Warehouse ETL Toolkit. John Wiley &

Sons.
Kimball, R., & Ross, M. (2010). The Kimball Group Reader; Relentlessly Practical

Tools for Data Warehousing and Business Intelligence. Indianapolis: Wiley.
Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The definitive guide to

dimensional modeling. Indianapolis: Wiley.
Lee, M. (2001). Speeding Up Materialized View Selection In Data Warehouses Using

a Randomized Algorithm. International Journal of Cooperative Information
Systems, 10(3), 327-353.

Leonard, E. M. (2011). Design and Implementation of an Enterprise Data Warehouse.
Wisconsin: Marquette University.

Lijuan, Z., Xuebin, G., Linshuang, W., & Qian, S. (2009). Efficient Materialized View
Selection Dynamic Improvement Algorithm. Fuzzy Systems and Knowledge
Discovery, 2009. FSKD '09. Sixth International Conference (pp. 294-297). Tianjin,
China: IEEE.

Moody, D. L., & Kortink, M. A. (2000). From Enterprise Models to Dimensional
Models: A Methodology for Data Warehouse and Data Mart Design.

Morzy, T. (2012, January 1). Slowly Changing Dimension. Retrieved from
Technologie Przetwarzania Danych:
http://tpd.cs.put.poznan.pl/accounts/pdf/SPHD/ModelowanieHD/Slowly_Changi
ng_Dimensions.pdf

Moullin, M. (2007). Performance measurement definitions. International Journal of
Health Care Quality Assurance, 3(20), 181-183.

Oracle Corporation. (2014, June). Oracle Database Performance Tuning Guide.
Oracle.

Phuboon-ob, J. (2009). Materialized View Selection Based on Two-Phase
Optimization. National Institute of Development Administration.

Phuboon-ob, J., & Auepanwiriyakul, R. (2007). Two-Phase Optimization for Selecting
Materialized Views in a Data Warehouse. International Journal of Computer,
Electrical, Automation, Control and Information Engineering, 1(1), 119-123.

Poe, V., Klauer, P., & Brobst, S. (1996). Building a Data Warehouse for Decision
Support. Prentice Hall.

Rainardi, V. (2008). Building a Data Warehouse: With Examples in SQL Server.
Apress.

112

Ramakrishnan, T., Jones, M. C., & Sidorova, A. (2012). Factors influencing business
intelligence (BI) data collection strategies: An empirical investigation. Decision
Support Systems, 486–496.

Rangarajan, S. (2016, September 1). Data Warehouse Design – Inmon versus Kimball.
Retrieved from The Data Administration Newsletter: http://tdan.com/data-
warehouse-design-inmon-versus-kimball/20300

Ribeiro, J. S. (2016). Business Intelligence to support NOVA IMS Academic Services
BI System. Lisbon: Universidade Nova de Lisboa.

Santos, M. Y., & Ramos, I. (2009). Business Intelligence - Tecnologias da Informação
na Gestão do Conhecimento. Lisbon: Editora de Informática.

Shwedeh, K. (2017, January 1). Director of Academic Affairs. (B. Shbair, Interviewer)
Suchyukorn, B. (2013). Dynamic materialized view selection based on two-phase

optimization. Bangkok: National Institute of Development Administration.
Suchyukorn, B., & Auepanwiriyakul, R. (2013). Re-Optimization MVPP Using

Common Subexpression for Materialized View Selection. International Journal of
Mathematical, Computational, Physical, Electrical and Computer Engineering,
7(7), 1152-1159.

Suknović, M., Čupić, M., Martić, M., & Krulj, D. (2005). Data Warehousing and Data
Mining - A Case Study. Yugoslav Journal of Operations Research, 125-145.

The Microsoft Data Warehouse Toolkit, 2nd Edition. (2017, January 27). Retrieved
from The Kimball Group: http://www.kimballgroup.com/data-warehouse-
business-intelligence-resources/books/microsoft-data-warehouse-dw-toolkit/

TPC Benchmark H. (2017, May 15). Retrieved from Transaction Processing
Performance Council (TPC):
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v2.17.2.pdf

Valluri, S. R., Vadapalli, S., & Karlapalem , K. (2002, February). View Relevance
Driven Materialized View Selection in Data Warehousing Environment.
Australian Computer Science Communications, 24(2), 187 - 196.

Vizgaitytė, G., & Skyrius, R. (2012). Business Intelligence in the Process of Decision
Making: Changes and Trends. EKONOMIKA, 147-157.

Wang, Z., & Zhang, D. (2005). Optimal Genetic View Selection Algorithm Under
Space Constraint. International Journal of Information Technology, 11(5), 44-51.

Yang, J., Karlapalem, K., & Li, Q. (1997). Algorithms for Materialized View Design
in Data Warehousing Environment.

Yang, J.-H., & Chung, I.-J. (2006, June). ASVMRT: Materialized View Selection
Algorithm in Data Warehouse. International Journal of Information Processing
Systems, 2(2), 67-75.

Yu, J. X., Yao, X., Choi, C.-H., & Gou, G. (2003, November). Materialized View
Selection as Constrained Evolutionary Optimization. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 33(4).

Zahra, K. (2015, June 20). Inmon or Kimball? The debate of the century. Retrieved
from Kurt Zahra: https://kurtzahra.com/2015/06/20/inmon-or-kimball-the-debate-
of-the-century/

Zhang, C., Yao, X., & Yang, J. (2001, August). An evolutionary approach to
materialized views selection in a Data Warehouse Environment. IEEE
Transactions On Systems, Man, And Cybernetics—part C, 31(3), 282-294.

113

Appendices

oashour
Rectangle

114

Appendix 1: Legacy System Vs Data Warehouse Vs Materialized

Views

A1.1 Students Admission Data Mart

Table (A1.1): Students Admission - Experimental Results

Filters Records

Legacy
System

Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last year 432 0.178 536 0.006 41 0.001 5

last three years 1895 0.564 1059 0.020 45 0.003 5

last ten years 8804 1.283 2175 0.035 47 0.009 5

ALL 23982 1.893 2175 0.082 50 0.031 5

Figure (A1.1): Students Admission - Legacy System Vs Data Warehouse

Figure (A1.2): Students Admission - Logical View Vs Materialized View

0.000

0.500

1.000

1.500

2.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.020

0.040

0.060

0.080

0.100

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

115

A1.2 Geographical Location Data Mart

Table (A1.2): Geographical Location- Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 1809 0.355 2738 0.017 80 0.001 4

last three semesters 5419 1.067 5144 0.028 87 0.002 4

last five years 17685 2.283 9239 0.057 304 0.004 4

all records 77706 8.174 21771 0.220 2294 0.025 4

Figure (A1.3): Geographical Location- Legacy System Vs Data Warehouse

Figure (A1.4): Geographical Location- Logical View Vs Materialized View

0.000

5.000

10.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.100

0.200

0.300

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

116

A1.3 Transfers between Colleges Data Mart

Table (A1.3): Transfers between Colleges - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last year 224 0.110 617 0.011 33 0.005 5

last three years 735 0.132 622 0.024 34 0.012 5

last ten years 3052 0.303 1372 0.065 239 0.035 5

ALL 11480 1.111 1391 0.290 538 0.056 5

Figure (A1.5): Transfers between Colleges - Legacy System Vs Data Warehouse

Figure (A1.6): Transfers between Colleges- Logical View Vs Materialized View

0.000

0.500

1.000

1.500

L A S T Y E A R L A S T T H R E E Y E A R S L A S T T E N Y E A R S A L L

Legacy Data Warehouse

0.000

0.100

0.200

0.300

0.400

L A S T Y E A R L A S T T H R E E Y E A R S L A S T T E N Y E A R S A L L

Data Warehouse Data Warehouse - Optimized

117

A1.4 Exam Conflicts Data Mart

Table (A1.4): Exam Conflicts - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 1016 0.232 1677 0.014 56 0.003 5

last three semesters 3077 0.600 2883 0.026 60 0.007 5

last five years 10368 1.293 5305 0.061 271.5 0.019 5

ALL 44593 4.643 11581 0.255 1416 0.041 5

Figure (A1.7): SFD Exam Conflicts - Legacy System Vs Data Warehouse

Figure (A1.8): Exam Conflicts - Logical View Vs Materialized View

0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.050

0.100

0.150

0.200

0.250

0.300

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

118

A1.5 SFD Students Registration Data Mart

Table (A1.5): SFD Students Registration - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 23338 10.067 2984 0.048 6 0.028 6

last three semesters 65860 18.022 6119 0.088 15 0.051 15

last five years 231172 46.347 10944 1.094 21 0.638 21

ALL 845925 115.930 38251 1.773 35 1.033 35

Figure (A1.9): SFD Students Registration - Legacy System Vs Data Warehouse

Figure (A1.10): SFD Students Registration - Logical View Vs Materialized View

0.000

50.000

100.000

150.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.500

1.000

1.500

2.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

119

A1.6 Cash Grants Data Mart

Table (A1.6): Cash Grants - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 287 0.226 870 0.003 4 0.001 3

last three semesters 861 0.296 1107 0.008 3 0.002 3

last five years 1954 0.342 1550 0.015 3 0.003 3

ALL 2533 0.358 1644 0.017 3 0.003 3

Figure (A1.11): Cash Grants - Legacy System Vs Data Warehouse

Figure (A1.12): Cash Grants - Logical View Vs Materialized View

0.000

0.100

0.200

0.300

0.400

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.005

0.010

0.015

0.020

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

120

A1.7 Deferred Grant Data Mart

Table (A1.7): Deferred Grant - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 2 0.043 311 0.002 4 0.001 4

last three semesters 6 0.067 320 0.003 3 0.002 3

last five years 16 0.081 334 0.003 3 0.002 3

ALL 27 0.093 335 0.004 3 0.003 3

Figure (A1.13): Deferred Grant - Legacy System Vs Data Warehouse

Figure (A1.14): Deferred Grant - Logical View Vs Materialized View

0.000

0.020

0.040

0.060

0.080

0.100

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.001

0.002

0.003

0.004

0.005

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

121

A1.8 Student Fund Summary Data Mart

Table (A1.8): Student Fund Summary - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 4191 4.024 41722 0.273 124 0.032 6

last three semesters 14379 4.465 46446 0.931 309 0.087 7

last five years 62343 9.018 60797 1.875 522 0.101 7

ALL 84432 11.618 81211 2.238 684 0.210 9

Figure (A1.15): Student Fund Summary - Legacy System Vs Data Warehouse

Figure (A1.16): Student Fund Summary - Logical View Vs Materialized View

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000

0.500

1.000

1.500

2.000

2.500

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

122

A1.9 Financial Collection Data Mart

Table (A1.9): Financial Collection - Experimental Results

Filters Records

Legacy System Data Warehouse
- Logical

Data Warehouse
- Materialized

time cost time cost time cost

last semester 12462 0.912 12568 0.033 152 0.002 5

last three semesters 31540 2.553 19386 0.064 643 0.004 5

last five years 110651 6.533 25470 0.159 643 0.010 5

ALL 442283 27.629 41529 0.396 646 0.034 5

Figure (A1.17): Financial Collection - Legacy System Vs Data Warehouse

Figure (A1.18): Financial Collection - Logical View Vs Materialized View

0.000

10.000

20.000

30.000

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Legacy Data Warehouse

0.000
0.100
0.200
0.300
0.400
0.500

L A S T S E M E S T E R L A S T T H R E E
S E M E S T E R S

L A S T F I V E Y E A R S A L L R E C O R D S

Data Warehouse Data Warehouse - Optimized

123

Appendix 2: TPC-H Schema Queries and Relational Algebra Trees

A2.1 Query Q2:

SELECT n_name, COUNT(l_orderkey)

FROM customer, orders, lineitem, nation, region

WHERE c_custkey = o_custkey

 AND o_orderkey = l_orderkey

 AND c_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = ‘asia’

 AND o_orderdate >= ‘1994-01-01’

 AND o_orderdate < ‘1995-01-01’

GROUP BY n_name;

Figure (A2.1): Relational Algebra Query Tree of Query Q2

124

A2.2 Query Q3:

SELECT n_name, Sum(l_quantity)

FROM orders, lineitem, supplier, nation, region

WHERE o_orderkey = l_orderkey

 AND l_suppkey = s_suppkey

 AND s_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = ‘asia’

 AND o_orderdate >= ‘1994-01-01’

 AND o_orderdate < ‘1995-01-01’

GROUP BY n_name;

Figure (A2.2): Relational Algebra Query Tree of Query Q3

125

A2.3 Query Q4:

SELECT s_name, Sum(ps_supplycost)

FROM partsupp, supplier, customer, nation, region

WHERE ps_suppkey = s_suppkey

 AND c_nationkey = s_nationkey

 AND s_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = ‘asia’

GROUP BY s_name;

Figure (A2.3): Relational Algebra Query Tree of Query Q4

126

A2.4 Query Q5:

SELECT Count(ps_suppkey)

FROM partsupp, part

WHERE p_partkey = ps_partkey

 AND p_brand <> ‘brand#45’

 AND NOT p_type LIKE ‘%brass%’

 AND p_size IN (9, 19, 49);

Figure (A2.4): Relational Algebra Query Tree of Query Q5

127

A2.5 Query Q6:

SELECT s_name, Sum(ps_supplycost)

FROM supplier, partsupp, part

WHERE s_suppkey = ps_suppkey

 AND p_partkey = ps_partkey

 AND p_brand <> ‘brand#45’

 AND NOT p_type LIKE ‘%brass%’

 AND p_size IN (9, 19, 49)

GROUP BY s_name;

Figure (A2.5): Relational Algebra Query Tree of Query Q6

128

A2.6 Query Q7:

SELECT c_mktsegment, Sum(l_discount)

FROM customer, orders, lineitem

WHERE c_custkey = o_custkey

 AND o_orderkey = l_orderkey

 AND o_orderdate >= ‘1994-01-01’

 AND o_orderdate < ‘1995-01-01’

GROUP BY c_mktsegment;

Figure (A2.6): Relational Algebra Query Tree of Query Q7

	Declaration
	Abstract
	الملخص
	Dedication
	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Background
	1.2 Scope and Objectives
	1.3 Motivation
	1.4 Thesis Contribution
	1.5 Overview of Thesis

	Chapter 2 Literature Review
	2.
	2.1 Data Warehouse
	2.2 OLAP vs OLTP
	2.3 Data Warehouse Design Approaches
	2.3.1 Bill Inmon Architecture
	2.3.2 Ralph Kimball Architecture
	2.3.3 Differences between Inmon and Kimball Approaches
	2.3.4 Deciding Factors

	2.4 Dimensional Model
	2.5 Definitions
	2.6 DW Case Studies for Higher Education Environments
	2.7 Materialized View Selection Algorithms

	Chapter 3 Design and Implementation
	3.1 System Analysis
	3.1.1 IUG Data
	3.1.2 Functional Requirement
	3.1.3 Non Functional Requirement
	3.1.4 User Requirement
	3.1.5 System Requirement

	3.2 System Design
	3.2.1 Waterfall Model
	3.2.2 Spiral Model
	3.2.3 Logical Models
	3.2.4 Facts and Dimensions Tables
	1
	2
	3
	4
	4.1
	4.2
	4.2.1
	4.2.2
	4.2.2.1 Admission and Registration Data Marts
	4.2.2.2 Student Fund Data Marts
	4.2.2.3 Finance Department Data Marts

	3.3 System Implementation
	3.3.1 Design of the Physical Database
	3.3.2 Design of the ETL Process

	3.4 System Verification and Maintenance

	Chapter 4 Proposed Materialized View Selection Model
	Chapter 5 Results and Discussion
	5.1 TPC Benchmark™H (TPC-H)
	5.2 Legacy System versus Data Warehouse versus DW Materialized Views

	Chapter 6 Conclusion and Future Works
	6.1 Conclusion
	6.2 Future Works

	References
	Appendix 1: Legacy System Vs Data Warehouse Vs Materialized Views
	A1.1 Students Admission Data Mart
	A1.2 Geographical Location Data Mart
	A1.3 Transfers between Colleges Data Mart
	A1.4 Exam Conflicts Data Mart
	A1.5 SFD Students Registration Data Mart
	A1.6 Cash Grants Data Mart
	A1.7 Deferred Grant Data Mart
	A1.8 Student Fund Summary Data Mart
	A1.9 Financial Collection Data Mart

	Appendix 2: TPC-H Schema Queries and Relational Algebra Trees

