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Abstract

Nowadays, business decision-making is moving towards advanced performance
evaluation process using standard methods such as Key Performance Indicator (KPI).
Performance evaluation process identifies a statistically significant connection between KPIs
and related information set. However, with the volume of transactional data stored in a
database in an Operational Data Store (ODS), traditional reporting process depending on
joining multiple tables and logical views cannot be efficiently used to extract related
information set for KPI due to high complexity and query cost. The major problem is how to
generate the related information set with quality, which abstracts the huge volume of raw data.
The scope of this thesis is to design an enterprise Data Warehouse (DW) for Islamic
University of Gaza to extract a related information set for its KPIs as a base for Business
Intelligence (BI) process. Additionally, we propose a novel and smart materialize views
selection model which handles data warehouse storage and performance issues. Our model
specifies, dynamically, which data marts and dimension tables should be materialized over
time in peak intervals of usage of the data warehouse. Finally, this model is tested over TPC-
H benchmark and that resulted high reduction of overall MVPP cost. Also we studied the
effect of using DW in IUG and the results show reduction in execution time over 90% for
most of views in DW, and it show additional reduction in execution time over 80% for most

of views while materializing them.
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Chapter 1

Introduction

1.1 Background

Business Intelligence (BI) systems play major role in the organizations. It is
providing the ability to measure, manage, and optimize business processes. Moreover,
it support decision-making of organization’s managers and improve organizational
performance (Ramakrishnan, Jones, & Sidorova, 2012). Bl facilitates the interaction
between different sections of the organization, such as human resources, marketing,
and finance, to help the business to extract metrics and measurements, and assist in

decision-making and knowledge extraction.

Data Warehouse (DW) is the main component of business intelligence since it
forms the central repository of Bl (Devlin, 2010 ). Data warehousing strategies involve
gathering data from organization’s diverse source systems, typically from multiple
online transaction processing (OLTP) databases, then data manipulated for Bl

purposes (Eckerson, 2003).

The Islamic University of Gaza (IUG) has more than 18,000 regular students in
each academic semester (Al-Kordi, 2017). It has more than 120 academic programs
which include about 1000 courses that are available for students (Shwedeh, 2017).
IUG manages the academic and administrative operations of the students and the
employees cooperating different departments in the campus such as finance, admission
and registration, student affairs, and student fund. However, the electronic services in
IUG was increased significantly over the years resulting huge amount of data in
operational database. So that it must be obvious how complex it is to handle this

volume of data that would have been accumulated over the years.

For the success of any organization, there must be some performance evaluation
indicators which can be used in steering organizational decisions (Moullin, 2007). In
IUG, there are different perspectives to define Key Performance Indicators (KPI)
which can be sorted shortly as employees, students, colleges, and environment, etc. In
this research, and because of time frame for our project, we focus on KPIs that will



help in decision-making for students’ affairs which will help them academically and
financially. We focus on students in this research since they are one of the main

components in IUG, other components will be addressed in future works.

Students’ success is associated with tracking their progress each semester, i.e.,
tracking if a student passed certain academic levels, meeting the academic needs of
students, establishing and accomplishing short-term and long-term goals. Currently,
only few questions like number of students served, or number of students receiving a
passing grade in a course and so on determine measures taken to ensure progress of
students, which are all based on data stored in transactional database. Such reports
however do not enable deeper understanding, for instance, growth of a student in a

given time period, comparing growth over years and factors contributing to this.

The key points of business intelligence (BI) or supporting decision-making
process are the proper understanding of business users’ and decision makers’
requirements, and the good design and modeling historical and new data (Vizgaityté
& Skyrius, 2012). Figure 1.1 shows simplified overview of business intelligence. To
extract knowledge and insights from raw data of organization’s systems, business users

use specific technologies, processes, tools and rules.

Business

Data Intelligence Knowledge &

Decisions

People

Technologies
Tools
Processes
Rules

Figure (1.1): Concept of Business Intelligence

Source: (Vizgaityté & Skyrius, 2012)



There are three stages to the business intelligence process in which a business
gradually grows in analytical sophistication as business needs and demands (IBM
Business Analytics, 2011). First, is IT-centric that totally focused on data collection
and analytical tools selection. Second is to build a data model to support the reporting
requirements of users which will help them track progress and success. Last is to build
a predictive data model that will help the policy and decision makers by providing a

better vision for the purpose of decision making.

The Islamic University of Gaza currently depends on logical views to build
reports or to serve its applications that were developed for the academic or
administrative offices. But in practice, this concept is not efficient enough to support

analytics that need to be developed and to extract historical behavior of data change.

Reports that are built on top of logical views take a long time to run as views are
not physically populated in the database, thus the data is gathered and populated in the

time that report is requested.

For illustration, Figure 1.2 shows total time consumed to query total number of
registered students for each of the last three semesters by logical view compared with

total time consumed by materialized view (physically populated).

Logical View Vs Materialized View

Seconds
w

0.6S

Logical View Materialized View

H Time (s)

Figure (1.2): Difference between Logical View and Materialized View



It is obvious from Figure 1.2 that the time needed to run the materialized view
is much less than that needed for logical view. The big difference in time was due to
nature of logical views which need to be queried and calculations need to be performed
on the fly. This process of querying an un-indexed view with hundreds of columns and
performing calculations while generating the report consumes an undesirable amount

of time.

1.2 Scope and Objectives

The scope of this thesis is to design and implement a robust and fast data
warehouse for the Islamic University of Gaza. In current phase, it will hold analytical
and historical data related to UG departments that deal directly with students and help
them academically and financially. These departments are Admission and
Registration, Finance, and Student Fund departments. Other departments in UG will

be considered in future phases of the project. Our objectives include:

e Analyze data provided by following departments: Admission &
Registration, Finance, and Student Fund.

e Design data warehouse for IUG that meets the requirements of
Admission & Registration, Finance, and Student Fund departments.

e Propose our model for Materialized View Selection in Data Warehouse.

e Implement the Data Warehouse using our Materialized View Selection
model.

e Test our proposed model on TPC benchmark™ H.

1.3 Motivation

The decision makers in IUG don’t have a unique repository for analytical and
historical data of the university. They are currently depending on analyzing data on
demand based on raw transactional data, which costs a lot of time and effort and may
not always be accurate since it is analyzed manually by individuals. Given the
importance of the information for the IUG, the decision makers were motivated to deal
with the problem of time loss and data inconsistency by implementing a data

warehouse and to ensure that data is available in the time it is needed. Therefore, there


http://www.cs.stir.ac.uk/%7Ekjt/research/conformed.html

is a need to design a database that supports reporting, analytical and decision-making
capabilities for executive offices at IUG.

1.4 Thesis Contribution

This thesis proposes a new Materialized View Selection (MVS) model
integrated with our approach of designing and implementation of data warehouse for
The Islamic University of Gaza. We used one of industry standard methods in order to
design the data warehouse which is Kimball method following the guides in (Kimball
& Ross, 2013).

Our model for view materialization depends on view usage frequency over time
to predict materialization probability. It studies the usage behavior of each view over
the academic/financial year, which is the academic year in our research. Then
according to usage behavior, our model detects either the view should be materialized
or not. The proposed model can be integrated with other materialized views selection
algorithms as will be discussed on Results and Discussion chapter.

1.5 Overview of Thesis

The rest of this thesis is organized as follows: Chapter 2 describes a literature
review on data warehouse and materialized views selection approaches. Chapter 3 will
be the design and implementation process. Chapter 4 describes the proposed selection
model in details. Chapter 5 presents the results of implementing our model over TPC-
H benchmark showing the effectiveness of our model, and we show the value of using
data warehouse in academic institutes. Chapter 6 concludes our work and provides

directions for future work.
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Chapter 2

Literature Review

In this chapter, we focus on providing the information and concepts of the data

warehouse and business intelligence that are relevant to our research.

2.1 Data Warehouse

Data warehouse is a repository that holds integrated data from different source
systems which is retrieved and collected periodically, this data is stored in dimensional
or normalized data store. Data warehouse usually stores historical data which can be
used for analytics or business intelligence and data mining processes. It is typically
refreshed in batches in defined intervals, so it is not required to be triggered for every
transaction occur in running transactional systems (Rainardi, 2008).

A data warehouse for an organization is a repository for keeping measurements
about the organization. Organizations, typically, have many systems to handle their
operations internally or with its customers, i.e. human resources, finance, customer
care, or sales. Each of these systems has its own operational data repository and it is
very complex to derive analytical results of all these repositories based on operational

data stores.

According to Bill Inmon, data warehousing is a set of procedures and processes
of collecting and manipulating data to be stored in a managed database. Data is
processed so that to be subject-oriented, integrated, time variant, and nonvolatile for
the support of decision-making (Inmon, 2002).

“Subject-oriented” means that a data warehouse focuses on the high-level
entities of the business, such as employees, courses, and accounts. This is in contrast
to transactional systems, which deal with processes such as student registration or
payment of invoices (Chan, 1999). “Integrated” means that the data are stored in
consistent formats, with consistent naming conventions, domain constraints, physical
attributes, and measurements. For example, an organization may have four or five

unique coding schemes for ethnicity. In a data warehouse, there is only one coding



scheme. “Time-variant” means that data are associated with a point in time, such as a
semester, financial year, or pay period. Finally, “nonvolatile” means that the data do

not change once they are entered into the warehouse.

2.2 OLAPvsOLTP

Data warehouse also can be referred as Online Analytical Processing (OLAP)
system since it helps decision makers in the data analysis scope. On the other hand,
operational systems can be referred as Online Transaction Processing (OLTP) systems
since they are handle daily organization’s transactions and processes. The difference
can be summarized as OLTP system’s goal is to get data into databases, whereas the

data warehouse is built to get information out of database.

In (Han, Kamber, & Pei, 2012) the researchers debate that OLTP system is
customer-oriented, in contrast a data warehouse is market-oriented. It is not a good
practice to combine both OLAP and OLTP tasks in one system, because OLAP
database is optimized for querying and OLTP database is optimized for real time
transactions. Data warehouse is based on dimensional design model which is much
more effective for data retrieval while OLTP systems is based on relational design
model. Furthermore, data warehouses may hold data from diverse of data sources with
heterogeneous data formats which is manipulated before it is loaded in data warehouse.

Organizations, typically, choose to separates OLTP and OLAP systems.

In (Poe, Klauer, & Brobst, 1996), the authors show that data in OLAP systems
is used to extract knowledge and information through comparisons or by detecting
patterns and trends. Such information cannot be easily discovered from OLTP system
due to complexity. Furthermore, they argue the idea of data warehouse should be based
on business requirements. Ralph Kimball (Kimball, 1996) agrees with that concept.
Inmon in (Inmon, 2002) has a different approach for data warehouse development. He
argues that despite OLTP systems are developed based on business requirements, data
warehouse system is developed, then data marts are designed to cater individual
business process needs. Inmon considers the data warehouse development lifecycle as
data-driven and OLTP are requirements driven. On the other hand, Kimball approach



considers data warehouse development lifecycle is requirements-driven as well. In the

next section, we discuss each approach in detail.

Santos and Ramos define data warehouse as a database that is managed
independently of an operational database (OLTP) (Santos & Ramos, 2009). Table 2.1
illustrates that both types of databases serve different purposes. The operational database
aims to handle near real time transactions (i.e. credit cards transactions) while the data
warehouse is more dedicated for analyzing a bugger volume of data. All these differences

must be taken into account in the process of selecting a new database.

Table (2.1): Differences between OLTP Database and OLAP Database

OLTP Database OLAP Warehouse
Operational Purposes Records history
Read/Write access Read-only access
Pre-defined transactions access Periodic reports and ad hoc access
Access to a small amount of records Access to a huge amount of records
Refresh of data near real time Scheduled data loads
Optimized structure for updates Optimized struics:gir;for processing

Source: (Santos & Ramos, 2009)

2.3 Data Warehouse Design Approaches

Bill Inmon and Ralph Kimball are two pioneers that built two different
approaches for data warehousing. In this section, we explain each approach and we

show the differences between them.

2.3.1 Bill Inmon Architecture

Bill Inmon proposed a top-down approach for data warehousing shown in Figure
2.1, known as corporate information factory (CIF) (Inmon, 2002). The components of
a CIF include a data warehouse which is built in third normalized form and individual

de-normalized data marts which are populated from the data warehouse. These data
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marts cater to individual business process needs. Reporting cubes are built as required
on top of the data marts.

Data Sources | ‘ Staging ‘ ’Tnterprlse g | Data Marts ‘ ‘ Data Access

Warehouse
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Figure (2.1): Bill Inmon Approach of Data Warehousing

Source: (Zahra, 2015)

In Figure 2.1, feeding the data warehouse starts by Extract, Load, and Transform
(ETL) process from different sources. First, data is extracted and transformed in the
staging area. Next, after data had been ready it is loaded into centralized enterprise
data warehouse in 3rd normal form (3NF). Finally, once data is loaded, data marts are
designed according to business requirements. The data warehouse as defined by Bill
Inmon, contains enterprise data without any redundancy at the lowest level of detail

i.e., transactional data in 3NF.

(Rangarajan, 2016) summarizes the advantages and disadvantages of Inmon’s
approach as follows:

The key advantages of the Inmon approach are:

e The data warehouse truly serves as the single source of truth for the enterprise,
as it is the only source for the data marts and all the data in the data warehouse
is integrated.

e Data update anomalies are avoided because of very low redundancy. This

makes ETL process easier and less prone to failure.
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e The business processes can be understood easily, as the logical model
represents the detailed business entities.

e Very flexible, as the business requirements change or source data changes, it
Is easy to update the data warehouse as one thing is in only one place.

e Can handle varied reporting needs across the enterprise.
Here are some of the disadvantages of Inmon method:

e The model and implementation can become complex over time as it involves
more tables and joins.

e The need for resources who are experts in data modeling and of the business
itself. These type of resources can be hard to find and are often expensive.

e The initial set-up and delivery will take more time, and management needs to
be aware of this.

e More ETL work is needed as the data marts are built from the data warehouse.

e A fairly large team of specialists need to be around to successfully manage

the environment (Breslin, 2004).

2.3.2 Ralph Kimball Architecture

The second approach presented by Ralph Kimball (Kimball & Ross, 2013),
known as dimensional data warehouse architecture, considered a bottom-up design as

shown in Figure 2.2.

In this approach business users have a simple dimensional structure at first, and
when combined together it will create a broad Data Warehouse. The key factor of
dimensional modeling is the simplicity. Kimball and Ross in (Kimball & Ross, The
Data Warehouse Toolkit: The definitive guide to dimensional modeling, 2013) argue
that using dimensional modeling in data warehouse makes data easier to understand

even for business users not only for data warehouse experts.
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Figure (2.2): The Ralph Kimball Approach

Source: (Zahra, 2015)

Since Kimball approach is bottom-up approach, data warehousing in Figure 2.2
starts by ETL process for one or more data marts of business procedures. Data first
extracted from different sources of organization systems, then it is transformed in the
staging area for each data mart separately. Next, it is loaded to corresponding
fact/dimension tables in the data mart. Finally, reports are designed to fetch data
directly from data marts.

The major idea of Kimball approach is to build the data warehouse incrementally

over time by combining data marts.

(Rangarajan, 2016) summarizes the advantages and disadvantages of Inmon’s

approach as follows:

Here are some of the advantages of the Kimball method:

e Quick to set-up and build, and the first phase of the data warehousing project
will be delivered quickly.
e The star schema can be easily understood by the business users and is easy to

use for reporting. Most Bl tools work well with star schema.
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e The foot print of the data warehousing environment is small; it occupies less
space in the database and it makes the management of the system fairly easier.

e The performance of the star schema model is very good. The database engine
will perform a “star join” where a Cartesian product will be created using all
of the dimension values and the fact table will be queried finally for the
selective rows. This is known to be a very effective database operation.

o A small team of developers and architects is enough to keep the data
warehouse performing effectively (Breslin, 2004).

o Works really well for department-wise metrics and KPI tracking, as the data
marts are geared towards department-wise or business process-wise reporting.

o Drill-across, where a Bl tool goes across multiple star schemas to generate a

report can be successfully accomplished using confirmed dimensions.
Here are some of the disadvantages of the Kimball method:

e The essence of the ‘one source of truth’ is lost, as data is not fully integrated
before serving reporting needs.

¢ Redundant data can cause data update anomalies over time.

e Adding columns to the fact table can cause performance issues. This is
because the fact tables are designed to be very deep. If new columns are to be
added, the size of the fact table becomes much larger and will not perform
well. This makes the dimensional model hard to change as the business
requirements change.

e Cannot handle all the enterprise reporting needs because the model is oriented
towards business processes rather than the enterprise as a whole.

¢ Integration of legacy data into the data warehouse can be a complex process.

2.3.3 Differences between Inmon and Kimball Approaches

Now in the case of Inmon's approach of data warehousing, the architecture
suggests that a 3NF data warehouse to be built as the first step, which would contain
all the data in the organization, and then build a data marts layer to support the
reporting layer based on data warehouse architecture.
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In the case of Kimball's approach however, the idea is to build the data marts
layer right after the staging layer. These data marts cater to individual business
processes identified. All the data marts together then form the data warehouse as
defined by Kimball. The common dimensions between the business processes are
however shared between them, without building a separate version of it, to maintain a
single version of truth and make it simple to update. These are called conformed
dimensions. Using this approach, we do not need a second staging layer and since the
data marts are specific to a business process, reports can be generated out of it, without

waiting for rest of data marts to be designed and implemented.

2.3.4 Deciding Factors

Now that we have seen the pros and cons of the Kimball and Inmon approaches,
a question arises. Which approach should be used when? This question is faced by
data warehouse architects every time they start building a data warehouse. Here are

the deciding factors that can help an architect choose between the two:

Reporting Requirements — If the reporting requirements are strategic and
enterprise-wide and integrated reporting is needed, then Inmon works best. If the
reporting requirements are tactical and business process/team oriented, then Kimball

works best.

Project Urgency — If the organization has enough time to wait for the first
delivery of the data warehouse (for example, 4 to 9 months), then Inmon approach can
be followed. If there is very little time for the data warehouse to be up and running (for

example, 2 to 3 months) then the Kimball approach is best (Breslin, 2004).

Future Staffing Plan — If the company can afford to have a large sized team of
specialists to maintain the data warehouse, then the Inmon method can be pursued. If

the future plan for the team is to be small, then Kimball is more suited.

Frequency of Changes — If the reporting requirements are expected to change
more rapidly and the source systems are known to be volatile, then the Inmon approach
works better, as it is more flexible. If the requirements and source systems are

relatively stable, the Kimball method can be used.
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Organization Culture - If the sponsors of the data warehouse and the managers
of the firm understand the value proposition of the data warehouse and are willing to
accept long-lasting value from the data warehouse investment, the Inmon approach is
better. If the sponsors do not care about the concepts but want a solution to get better

at reporting, then the Kimball approach is enough.

Design Approach for lUG

Considering reasons like reports in IUG are business oriented, time-frame of the
project is limited, stability of the requirements and the ability to deliver reports quickly
since 1UG is established for 3 decades till now, it has been decided that the Kimball

methodology would be used for designing a data warehouse for 1UG.

2.4 Dimensional Model

With the rapid growth in data and with high insistence to analyze and understand
it to derive some information out of it, the historical data must be stored in a form that
it can be analyzed quickly. It is also important to extract some important statistics and
various KPIs of the business. But this cannot be effectively implemented using the
entity relationship models of operational data sources (ODS). The data needs to be

reorganized into a dimensional model.

As defined in (Ballard, Farrell, Gupta, Mazuela, & Vohnik, 2006), the
dimensional modeling approach facilitates generating analytical reports by improving
its performance. Dimensional models provide remarkable better performance than
Entity Relationship (ER) models especially for large queries. Furthermore,
dimensional models are easier to understand since each model designed for a defined
subject. It formed by two main components, a fact table which holds the subject’s
measures, and a set of tables referred to the fact table which hold descriptive data about
the fact dimensions. Figure 2.3 visualize the concept. The FACT table in the center
contain foreign keys to other dimension tables which are PRODUCT, CUSTOMER,
REGION, and TIME and also it has Sales and Profit facts. Finally the fact table and
dimensions forms a star schema which is described in Section 2.3.4.
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PRODUCT CUSTOMER
Customer_ID
gﬂ:ﬁ:‘ﬁsc Customer_NMAME
- Customer_Desc
FACT

Product_ID

Customer_ID

Region_ID

Year_ID

Maonith_ID
REGION Sales TIME

Region_ID Profit Year ID
Country Month_ID
State Week_ID
City Day_ID

Figure (2.3): Example of Dimensional Model

Source: (Ballard, Farrell, Gupta, Mazuela, & Vohnik, 2006)
The benefits of dimensional modelling technique can be summarized as follow:

¢ Better data navigation and presentation: Data is modeled in a way that is
easy to understand even for business users. This enables them to easily design
their own reports.

e Easy and low-cost maintenance: The data is stored in the same way as it is
presented unlike in the case of relational databases where in most cases views
are built in order to build any reports. This increases the maintenance cost in
the case of relational databases or ODS.

e Better performance: Most reports require summarized data which results in
a slower performance due to on-the-fly calculations in the case of non-indexed
views in ODS. In the case of dimensional modeling, summarized tables are
built as required. It also allows the ability to store data history in a manner
that is easy to query and build reports on. Such a design delivers faster query
performance and to drill down and drill across hierarchies.

On the other hand, in ER model tables are normalized in a form where there is
no data redundancy called Third Normal Form (3NF). Tables in 3NF have attributes
where all are related to a primary key in the entity. A primary key can be just one

attribute or a composite key consisting of two or more attributes.
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A third normal form ER model is good design to handle transactional data.
Examples for transactional data are courses taken by students in each term, students’
admission to IUG and so on. This design is good for performing quick transactions
such as inserts, updates and deletes because the tables usually have a small number of
fields with foreign keys to other tables. This design is inefficient for reporting purpose,
the reason behind this is that, to generate a simple report one would end up joining
scores of tables in a 3NF environment which ends up being very time and resource
(hardware) intensive. Apart from this, the model becomes very complex very quickly
as a result of which it becomes very difficult to understand and navigate the model

even for a developer let alone a business user.
Hierarchies

As reported by (Moody & Kortink, 2000), hierarchies are an extremely
important concept in dimensional modelling, and form the primary basis for deriving
dimensional models from ER models. Most dimension tables contain embedded
hierarchies. A hierarchy in an Entity Relationship model is any sequence of entities
joined together by one-to-many relationships, all aligned in the same direction. Figure
2.4 shows a hierarchy extracted from the example data model, with State at the top and

Sale Item at the bottom.

Sale
Item
Sale Id

Sale

Location

PO—+hH

Region

State

Sale Id

Loc Id

Regn_Id

State_Id

Prod_Id

Sale_Date

Loc_Name

Regn_Name

State_Name

Qty

Posted Date

Regn_Id

State_Id

Unit Price

Cust_ld

Loc_Type_Id

Loc_Id

Discount_Amt

Figure (2.4): Example of Hierarchy in Dimensional Model

Source: (Moody & Kortink, 2000)

In hierarchical terminology, it is stated by (Moody & Kortink, 2000) as:

e State is the parent of Region

e Region is the child of State
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e Sale Item, Sale, Location and Region are all “descendants” of State

e Sale, Location, Region and State are all “ancestors” of Sale Item

2.5 Definitions

In this section we explain common terms that are used in this thesis which related
to data warehousing as defined by Kimball in (Kimball & Ross, 2013) and (Kimball
& Ross, 2010):

A Fact Table is the container of subject’s measurements and it contain foreign
keys to the dimension tables in the schema as shown in Figure 2.5. Students Payment
Fact in the figure has three measurements which are total transactions number, students
count, and total payment amount. These measurements are calculated for each

academic semester, department, and teller which are the dimensions for the fact table.

Students Payment Fact

Semester Dimension Semester Key (FK)

Department Key (FK)

Department Dimension

Teller Dimension Teller Key (FK)

Transactions #
Students Count

Total Payment

Figure (2.5): Fact and Dimension Tables in a Dimensional Model

Dimension Tables are integral companions to a fact table. It usually has fewer
record than fact tables, but can be wide with many large text columns. Dimension
tables describe the “who, what, where, when, how, and why” associated with the facts
in fact table. Every dimension table has a single primary key column. This primary

key is embedded as a foreign key in any associated fact table.

Conformed Dimensions are standardized tables modeled once and shared
across multiple fact tables in the same schema or even a different data mart. The main
advantage of using conformed dimensions is to save storage space. It is also easier to

maintain and refresh one table versus multiple versions of the same table.
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The Grain is the lowest level of detail in a fact or dimension table. For example,
a dimension such as Date (with Year and Quarter hierarchies) has a granularity at the
quarter level but does not have information for individual days or months. Alternately,
a Date dimension table (with Year, Quarter, and Month hierarchies) has granularity at
the Month level, but does not contain information at the day level (IBM Knowledge
Center, 2017).

A Factless Fact Table is a fact table which does not contain a measurement but
a set of dimensions’ references. Usually it is used to capture an event. For example,
Figure 2.6 illustrates a factless fact table about student’s attendance of an admission

event such as a high school visit, college fair, alumni interview or campus overnight.

Admissions Event Attendance Fact
| Admizgions Event Date Dimension |— Admissions Event Date Key (FK)

Planned Enroll Term Key (FK) —| Planned Enroll Term Dimension |
| Applicant Dimension — Applicant Key (FK)

Applicant Status Key (FK) —| Application Status Dimension |
| Admissions Officer Dimension |— Admissions Officer Key (FK)

Admission Event Key (FK) —  Admission Event Dimension |

Admissions Event Attendance Count {=1)

Figure (2.6): Factless Fact Table Example

Source: (Kimball & Ross, 2013)

The Business Key or Natural Key identifies a business entity. Examples

include student_id, course_id and program_id.

The Primary Key uniquely identifies a record in a table. A primary key can

consist of a single field or multiple fields and cannot be a NULL value.

The Foreign Key is a single field or multiple fields which uniquely identifies a

record in another table.

The Surrogate Key uniquely identifies a record in a dimension table. It is
usually ETL generated and provides the means to maintain data warehouse
information when dimensions change. One simple way improve performance of
queries is to use surrogate keys. Surrogate keys can be derived from the existing

natural keys or it can be a simple integer. As an example, a surrogate key can be a
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composite key, being the combination, student_id + academic_period or just an integer
value generated by the ETL program while a record is being inserted the table. Using
integer surrogate keys means a thinner fact table and the thinner the fact table, the

better the performance.

The Star Schema is a dimensional design for a relational database. In a star
schema, related dimensions are grouped as columns in dimension tables, and the facts
are stored as columns in a fact table. The star schema gets its name from its appearance:

when drawn with the fact table in the center, it looks like a star or asterisk.

The Snow Flake schema is a variation on the star schema. When principles of

normalization are applied to a dimension table, the result is called a snow flake schema.

The Multiple View Processing Plan (MVPP) is a directed acyclic graph which

presents the processing plan of a set of analytical queries

2.6 DW Case Studies for Higher Education Environments

In (Leonard, 2011), the researcher designed and implemented a small data
warehouse as proof of concept of using data warehouse in higher education
environment. He studied the components of a theoretical, small scale, and downsized

enterprise data warehouse within the context of higher education environment.

However, another thesis (Ganapavarapu, 2014) argues the need of data
warehouse for higher education institutes. The researcher adopted Kimball’s approach
to design small prototype of a data warehouse for University of New Mexico (UNM).
He started by designing DW phase, then go through implementation and ETL process.
Finally, he illustrated the effect of using DW in UNM by comparing the consumed
time of processing UNM reports in both ODS and DW databases.

(Ribeiro, 2016) analysis NOVA Information Management School academic
service’s data to design a data warehouse, the purpose of its DW is to discover
information from data. The researcher also adopted Kimball’s approach in his thesis

through designing process.
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In (Suknovié, Cupié, Marti¢, & Krulj, 2005), the authors designed simple data
warehouse for University of Belgrade students’ services. They did not define their
approach through designing process (Inmon/Kimball). The second part of their

research is about data mining and knowledge extraction

2.7 Materialized View Selection Algorithms

Materialized views (MVs) comprise pre computed and summarized information
with the aim of answering most queries posed on data warehouse thereby saving of
query processing time and storage. With the increase of attributes in each dimension
there is need of increase of pre calculation of MVs. In this regard there is the increase
of work load, needs to decrease the response time and storage. There are many view
selection algorithms proposed. On the other hand, continuous updating in the base
table have to be reflected in the dimension table. As the information in DW is in the
form of Facts, it is not possible to change whole DW instead changes to be
accommodated at only affected part of DW. For this updating many views

maintenance algorithms are proposed.

The Multiple View Processing Plan (MVPP) based algorithms are one of the
significant solutions to address the materialized view selection problem in data
warehouses. A heuristic algorithm has been designed based on MVPP in (Yang,
Karlapalem, & Li, 1997), which find a solution based on individual optimal query
plans. This approach depends on analyzing the queries to derive common intermediate
results which can be shared among the queries. The MVPP helped in this design to
select a set of views to materialize by reusing temporary results from the execution of

global queries.

Gupta proposed a theoretical framework for materialized view selection, and
illustrated the cost model of materialized view selection under the space constraints
using greedy algorithm. The cost model is designed to achieve minimum query
response time and minimum view maintenance cost (Gupta, 1997). It checks a small
part of the space, to make the views meet the space constraints and the time
requirements, but the performance of this method is bad.
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(Himanshu & Mumick, 1998) developed algorithms to select a collection of
views in data warehouse to materialize so as to minimize the total query response time

under the constraint of a given total view maintenance time .

Another model for selecting views to materialize based on candidate selection
and enumeration techniques is presented in (Agrawal, Chaudhuri, & Narasayya, 2000)
by a team of Microsoft researchers. This approach selects materialized views and
indexes by searching over the reduced space of candidate materialized views at a

fraction of enumeration cost.

Another approach to handle materialized view selection is the use of
evolutionary algorithms that based on multiple global processing plans of queries. Lee
et al. proposed a solution based on genetic algorithm to solve maintenance-cost view
selection problem assuming unlimited amount of storage space (Lee, 2001). This
solution computes a near optimal set of views that used to search for a near optimal

solution. However, the performance of selection process is slow.

Zhang’ et al. show an evolutionary algorithm which combined with heuristic
algorithm to preserve gains of both methods and achieve better performance than each
of them individually (Zhang, Yao, & Yang, 2001). This approach shows that applying
an evolutionary algorithm, to either global processing plan optimization or
materialized view selection for a given global processing plan, can reduce the total

query and maintenance cost significantly.

(Valluri, Vadapalli, & Karlapalem , 2002) proposed the definition of view
correlation and view correlation matrix, and they also proposed the costs models and
algorithms of view correlation, which based on that one view selection may affect the
interests of other views, thereby affect the total query cost and maintenance cost.
Additionally, they designed View Relevance Driven Selection (VRDS) algorithm for
materialized view selection to minimize total processing cost including query
processing and view maintenance cost, this selection algorithm is based on AND-OR
Graph. This algorithm performed better than greedy algorithms and MVPP based

heuristic algorithms when there is space constraint and update frequency is high.
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Panos Kalnis et al. in (Kalnis, Mamoulis, & Papadias, 2002) proposed the
application of randomized search heuristics. They adapted random sampling, iterative
improvement, simulated annealing and two-phase optimization to find fast a sub-
optimal set of views under space or maintenance cost constraints. The proposed
method provided near-optimal solutions in limited time, being robust to data and query

skew.

Yu et al. presented a new constrained evolutionary algorithm for the
maintenance-cost view-selection problem (Yu, Yao, Choi, & Gou, 2003). The
proposed algorithm is based on constraint handling technique which is stochastic
ranking procedure. They evaluated their algorithm against both heuristic and
evolutionary algorithm and showed that the proposed algorithm can significantly

provide better solution in term of minimization of query processing cost.

In (Wang & Zhang, 2005), they proposed a modified genetic algorithm for the
selection of a set of views for materialization so that the sum of query processing cost

and view maintenance cost is minimized.

A general AND-OR view graph was considered in (Gupta & Mumick, 2005).
They have presented greedy polynomial-time heuristics to minimize the total view

maintenance cost of selected views to be materialized under a disk space constraint.

Kamel Aouiche et al. proposed clustering based materialized selection solution.
This algorithm uses workload approach (Aouiche, Jouve, & Darmont, 2006). The
researchers exploit a query clustering involving similarity and dissimilarity measures
defined on the workload queries, in order to capture the relationships existing between
the candidate views derived from this workload. These candidate views are merged to
resolve multiple queries. This research was a proof on concept to show that the idea of
using data mining techniques for data warehouse auto-administration is a promising

approach.

In (Gou, Yu, & Lu, 2006) an efficient materialized view selection approach
under disk space constraint has been proposed, it uses A* algorithm to find better set
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of views. Unfortunately, the proposed approach works great only when the space

constraint is low.

ASVMRT (Algorithm for Selection of Views to Materialize using Reduced
Table) was presented in (Yang & Chung, 2006). This approach use clustering method
to reduce tables in the data warehouse based on attribute-values density and considered
the combination of reduced tables as materialized views instead of a combination of
the original tables. As a result of this algorithm, a faster computation time, reduced
storage space, and better performance than former algorithms were reported. However,
maintenance cost of reduced table was not considered in this approach.

Jiratta Phuboon-ob and Raweewan Auepanwiriyakul in (Phuboon-ob &
Auepanwiriyakul, 2007) proposed a two phase optimization (2PO) method which was
a combination of simulated annealing and iterative improvement with the use of
MVPP. Their experiments show that 2PO outperform the original algorithms in terms

of query processing cost and view maintenance cost.

Simulated annealing is used in another study for materialized view selection
(Derakhshan, Stantic, Korn, & Dehne, 2008) in which MVPP is considered as input.
The researchers show that parallel simulated annealing has been resulted better quality
of the selected views set to be materialized and a significant improvement in query
processing cost and view maintenance cost. However, in some cases this approach

trapped in local minimum.

Gang Zhao proposed the CBDMVS algorithm (Clustering-Based Dynamic
Materialized View Selection Algorithm) which utilize clustering technique to
materialized views, then dynamically adjusts materialized view set (Gong & Zhao,
2008). In this approach, similarity function is used for clustering. Then these
materialized view clusters are dynamically adjusted. The algorithm selects the
materialized view set which has relatively higher frequency responses performance to
variety types of query. In this algorithm when updating is done only to the required
materialized views but not whole MV set, which greatly reduces the computational
cost.
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A dynamic approach EMVSDIA (Efficient Materialized View Selection
Dynamic Improvement Algorithm) is proposed in (Lijuan, Xuebin, Linshuang, &
Qian, 2009). EMVSDIA is a two-phase algorithm which dynamically select a set of
views to materialize online. This approach has provided reduced search space and time

consumption.

Yogeshree D. Choudhari and Dr. S. K. Shrivastava proposed the cluster based
approach for selection of materialized views (Choudhari & Shrivastava, 2012). The
procedure uses the clustering of the views. This algorithm uses the record generator.
Then System finds set of all possible queries resolved on generated records. Then
based on the access frequency, set of queries are optimized. Further using the cluster
area and threshold, the MV’s are made. These are divided further into three types 1)
Single query to Multi table MV. 2) Single query to single table MV. 3) Multiple
queries to single table MV. This framework decreases the query response time.

Another dynamic approach to view selection has been proposed in (Suchyukorn,
2013) which have determined the existing materialized views that are affected by
adding new queries rather than all existing resources and so have re-optimized MVPP

and have improve the total query processing cost of it.

In (Suchyukorn & Auepanwiriyakul, 2013), the researchers have used merging
of incoming query as the global common sub-expressions of the previous merging to
avoid a huge search space which some combination would not be considered. Since
the global optimization is not acquired in this method, they rewrote some queries by
using common sub-expression among queries to gain more optimal query processing

cost.

From the above mentioned works, it is found that the research works have been
provided different approaches for the selection of views to materialize considering
view maintenance cost and storage space. There is lack in researches in selection of
views to be materialized based on dynamic threshold so far. Thus in this thesis, on
Chapter 4, we focus on designing a novel approach for dynamic selection of views to

be materialized based on views’ usage frequencies.
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In the next chapter, we will show in detail the steps of designing and
implementing the data warehouse for the Islamic University of Gaza.
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Chapter 3

Design and Implementation

This chapter focuses on the process of designing and implementing the data
warehouse for the Islamic University of Gaza. We explain the approach we have
followed in the process of building the data warehouse. The data warehousing process
will be based on four main phases of software development which are: system analysis,
system design, system development, and system verification and maintenance. This

chapter explains each phase in detail.

We used two types of data gathering methodologies to define business

requirements: Introspection and Interviews.

Introspection: we identified the common functionalities and requirements for
the project based on our experience and knowledge, these helped us to proceed to the

next level.

Interviews: we made many interviews with many directors and decision makers
in the IUG. In these interviews we discussed the derived business requirements from
our introspection. Additionally, we gathered the stakeholders’ specific requirements
to recognize their needs for better business intelligence experience, which will help
them in proper decision making.

3.1 System Analysis

Analysis is the process of studying a procedure in order to identify its goals and
purposes and to create systems and procedures that will achieve them in an efficient
way. In this phase, we analyzed IUG transactional data which has been accumulated
over the years. The overall goal of this phase is to understand the main modules of the
IUG platform and to identify all business users who need to access the data warehouse.

Also, the business analysis in this phase helps to understand the relations
between the users and the business operations. In this phase, data in which users are

currently uses is identified, and how they would like to use it. System analysis depends
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on the feedback of business users which will resulting business entities, relationships
between the entities, and hierarchies.

In our case, analysis involved a detailed study of the current procedures of
reporting in IUG, leading to specifications of the new system. During the analysis, we
studied the procedures of admission & registration, student fund, and finance
departments to design its data marts for data warehouse. Interviews and Introspection

are the base tools used for system analysis.

The business requirements were gathered based on many interviews with the
different business users. Answers from these users will generate the requirements

needed for further development of the data warehouse.

3.1.1 1UG Data

The data available within the IUG is very huge since it was accumulated over
years. IUG need to make best use of this data to make fast and right decisions in right
time. In our research we focused on providing a data warehouse solution, which will
help mainly in decision-making process related to the students. Within the scope of
this project, we looked at developing data mart for some of the department that is core
for students. They are the Admission & Registration, Student Fund, and Finance

departments.

3.1.2 Functional Requirement

In general, requirements are partitioned into functional requirements and non-

functional requirements.

Functional requirements are associated with specific functions, tasks or
behaviors the system must support, it can be in any format but has to be in line with

the business requirements.

To determine the functional requirements for this project, we asked interviewees
to show us their current user experience of generating the reports. Additionally, we
noted their comments to get better user experience, performance, and finally business

intelligence. The identified functional requirements are stated below; the function
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requirement can be reviewed at different stages of the project in order to cater for new
discoveries during the project design.

Admission & Registration Requirements

» The users need to be able to analyze high school students’ results according to the
succeeded students’ percentage in each section.

e The users need to be able to show high school students admission percentage in
each college.

« The users need to be able to query historical data about total succeeded high school
students each year compared with admitted students in IUG.

» The users need to be able to analyze students’ transfer transactions between colleges
and departments during their study.

» The users need to be able to analyze students’ registration process over semesters
and to be able to compare it.

» The users need to be able to show exams conflicts over the semesters and colleges.

e The users need to be able to analyze students’ performance over semesters in each

college.

Student Fund Requirements

» The users need to be able to analyze students’ registration according to their need
levels.

« The users need to be able to query total cash grants paid to students over semesters.

» The users need to be able to analyze grants that given to students according to its
type (External grants, Internal Grants, or Loans).

» The users need to be able to analyze deferred grants execution over semesters.

Finance Requirements

» The users need to be able to analyze student’s financial profile
» The users need to be able to query total financial collection for each teller in IUG.
e The users need to be able to analyze financial collection over semester days and

weeks for each college.
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3.1.3 Non Functional Requirement

» The system should be integrated with current IUG platform

» The front end application should be web enabled and no installation is required on
users’ system

» User level permission is required in order to protect the integrity of the data and
restrict user’s accessibility to data

» The system should perform very well at all times and should be easy to recover after
system down time.

» The system should be able to keep up to-date information at all time.

3.1.4 User Requirement

Ability to generate report with little effort

Ability to get the aggregate report and drill down for further details

Ability to export data in any format which let them able to manipulate it.

System reliability at all time.

3.1.5 System Requirement

For the purpose of this project, we looked at using Microsoft Windows
Operating system. The main application, we will be using ORACLE 119 as a database
engine which is an object-relational database management system produced and
marketed by Oracle Corporation. The application has the relational database
management system that is capable of storing all the data required for the data
warehouse. The process of ETL is built using Talend Open Studio which is a software
integration vendor. Talend Open Studio was the first commercial open source software

vendor of data integration software.

The front end application for this project would be the Bl Publisher from Oracle
Corporation. It can be used to design interactive reports according to user’s request
and can also design different gauges and dashboards. It has the capability to design
different charts and graphs. After designing reports, it can be easily integrated with
IUG platform using BI Publisher web services.
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To run the above application, the operating system would be from Windows
2012 and above, minimum of 8 GB memory, including the data 100GB of hard drive
space is required. The speed of processor could be from 3.0 MHz duo core. The other
system unit components are required to support the operating system and the

application for this project.

3.2 System Design

In this phase, the purpose is to obtain the system specifications from user
requirements which are gathered from stakeholders. Some of data warehousing
components are built based on these specifications such as data extractor, data
transformation, and data integration tools. System specifications are based on logical
and physical design of data marts in the data warehouse.

As discussed previously in the literature review, there are two approaches for
data warehousing which are Bill Inmon and Ralph Kimball approaches. We have
adopted the Ralph Kimball approach. The requirements collected from each
department is translated to data marts, and the resulting data marts presents the final

version of data warehouse.

A Development Methodology describes the expected evolution and management
of the engineering system. One of the most important principles of Systems
Engineering is evaluating a system from a Life-Cycle perspective. Establishing a
methodology will also provide a strategy for the project manager and the project team
as they execute the data warehouse project throughout all phases of development
(Burton & Green, 2016).

3.2.1 Waterfall Model
The waterfall model is a linear sequence comprised of the following basic stages:
¢ Requirements Definition
e System Design

e Detailed Design

e Integration and Testing
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e Operations and Maintenance

This model is used when the system requirements and objectives are known and

clearly specified.

3.2.2 Spiral Model

The Spiral model is a sequence of waterfall models which corresponds to a risk
oriented iterative enhancement, and it recognizes that requirements are not always

available and clear when the system is first implemented.

Since designing and building a data warehouse is an iterative process, the spiral
method is the best development methodology for our purpose. Figure 3.1 shows one
waterfall series in a recommended spiral model of a data warehouse life-cycle.
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Figure (3.1): Spiral Model of the Data Warehouse Life-cycle

Source: (Burton & Green, 2016)
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We start our data mart design by specifying the measure, the measures are the
foundation and feedback information that the decision makers require. We reconcile
these requirements with what is available in the source system (OLTP). For the
purpose of this project, we used the star schema for the data warehouse design. The
star schema is a relational database schema used to hold measures and dimensions in
a data mart. The measures are stored in a fact table and the dimensions are stored in
dimension tables. For each data mart, there is only one fact table surrounded by the

dimension tables, hence the name star schema.

As mentioned in literature review Figure 2.3, the center of the star is formed by
the fact table. The fact table has a column or the measure and the column for each
dimension containing the foreign key for a member of that dimensions. The key for
this table is formed by concatenate all of the foreign key fields. The primary key for
the fact table is usually referred to as composite key. It contains the measures, hence

the name “Fact”

The dimensions are stored in dimension tables. The dimension table has a
column for the unique identifier of a member of the dimension, usually an integer of a

short character value. It has another column for a description.

One of the most important parts of the data warehouse is the extracting,
transforming and loading of data from the operational transactional databases to the
data warehouse itself to make best of use of the data. The main two processes of data
warehouse are data load and data access. The design of the system was very robust in
order for the aim to be achieved. The loading of the data warehouse was done through
the use of ETL process, Figure 2.2 show data warehouse architecture that chosen for
this project.

The design of the databases started with the principle and theories of database
design and the rule that support business need. We started the process of data

warehouse design with the logical design.
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3.2.3 Logical Models

The logical model is a representation of the data in a way that can be presented
to the business to serve as a road map for the physical implementation. The main
elements of a logical model are entities, attributes, and relationships. We started the
design of the data marts through the fact and dimension tables. All database design

starts with logical design.

3.2.4 Facts and Dimensions Tables

Fact table contains the measurements associated with a specific business
process. A record in a fact table is a measurement, and a measurement event can always
produce a fact table record. These events usually have numeric measurements that
quantify the magnitude of the events. These numbers are called facts; they are also

referring to as measure in the analysis services.

Dimensions are the foundation of the dimensional model, describing the objects
of the business such as student, college, course and other dimension table to be used
in this design of the data mart.

According to Ralph Kimball the dimension serves as the nouns of the DW/BI
system. They describe the surrounding measurement events. The business processes
(facts) are the action of the business in which the dimension participates. Each

dimension table links to all the business processes in which it participates

Data marts represent a unit or departmental process within an organization. Data
mart is the collection of fact table and its dimension tables. Using the bottom up data

warehouse design, combination of the data mart would form the data warehouse.

According to our system analysis, the final data warehouse design has 11 fact
tables and 15 dimension tables. Many dimension tables are shared between different
fact tables. In this section we describe dimension table first, then we illustrate each of
data marts in data warehouse. In all following tables we show columns names, data

type of each column, and the description and purpose of each one.
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Academic Years Dimension (ACD_ACADEMIC_YEAR_DIM)

This dimension contains simple data about all academic years of IUG, the
columns are described in Table 3.1. The number next to VARCHAR data type denotes
to the size of that column.

Table (3.1): Academic Years Dimension

Column Name | Data Type Description

Academic year number formed of 4 digits,
YEAR_NO NUMERIC
example: 2017

YEAR_TITLE | VARCHAR(60) | Descriptive title of the academic year.
START_DATE | DATE First day of the year

END_DATE DATE Last day of the year

Academic Semesters Dimension (ACD_ACADEMIC_SEMESTERS_DIM)

Academic semesters are loaded into ACD_ACADEMIC _SEMESTERS DIM
dimension table. Table is described in Table 3.2.

Table (3.2): Academic Semesters Dimension

Column Name Data Type Description

Academic semester number as identified
by 1UG legacy system. Contains 5
SEMESTER_NO NUMERIC digits, first 4 digits represent academic
year and the last digit represent semester
no (1 for first, 2 for second, 3 for third)
SEMESTER_TITLE | VARCHAR(100) | Descriptive title of the semester

Academic year number formed of 4

YEAR_NO NUMERIC
digits, example: 2017
YEAR_TITLE VARCHAR(60) | Descriptive title of the academic year.
START_DATE DATE First day of the semester
END DATE DATE Last day of the semester
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Date Dimension (GEN_DATE_DIM)

The date dimension provides extra data about a date. It includes information such
as the full date, day of week, day name, and month name and it is a general dimension
that should exist in every data warehouse. This dimension is provided by Kimball
group (The Microsoft Data Warehouse Toolkit, 2nd Edition, 2017) and described in
Table 3.3 below.

Table (3.3): Date Dimension

Column Name Data Type Description

Primary key which contains 8 digits in form
DATE_KEY NUMERIC

“yyyymmdd” of the date, example: 20170115
SEMESTER_NO NUMERIC Foreign key to Semesters Dimension
FULL_DATE DATE Full date as date object
DATE_NAME VARCHAR(11) | Date in simple format

Day of the week. Below is the day that

corresponds to each day of week:

1 - Sunday

2 — Monday
DAY_OF WEEK NUMERIC 3 — Tuesday

4 — Wednesday

5 — Thursday

6 — Friday

7 — Saturday

Name of the day in week: i.e. “Saturday”,
DAY_NAME_OF _WEEK VARCHAR(10) .

“Friday”

Day of the month. May be a number between
DAY_OF_MONTH NUMERIC

1-31

Day of the month. May be a number between
DAY_OF_YEAR NUMERIC

1-366

Classifies the day as “Weekday” or
WEEKDAY_WEEKEND VARCHAR(10)

“Weekend”
WEEK_OF YEAR NUMERIC Number of the week in a year
MONTH_NAME VARCHAR(10) | Month name i.e. “January”
MONTH_OF_YEAR NUMERIC Number of the month in a year

Classifies the day if it is the last day of the
IS_LAST_DAY_OF_MONTH | NUMERIC

month (“Y”) or not (“N”)
CALENDAR_QUARTER NUMERIC Quarter number in a year
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CALENDAR_YEAR NUMERIC Year number
Year and month number separated by a “-”
CALENDAR_YEAR_MONTH | VARCHAR(10) | .
(i.e. “1990-01)
Year number and quarter separated by a “-”
CALENDAR_YEAR_QTR VARCHAR(10) | .
(i.e. *1990-Q1”)
ACADEMIC_MONTH_OF_S . .
NUMERIC Number of the academic month in a semester
EMESTER
ACADEMIC_WEEK_OF_SE . .
NUMERIC Number of the academic week in a semester
MESTER
ACADEMIC_DAY_OF_SEM ] .
ESTER NUMERIC Number of the academic day in a semester

Study Programs Dimension (ACD_STUDY_PROGRAM_DIM)

This dimension is very simple since it only store academic program key number

and its title as described

in Table 3.4.

Table (3.4): Study Programs Dimension

Column Name Data Type Description

Academic program primary key
PROGRAM_NO VARCHAR(1) | ‘B’:Bachelor

‘M’: Master

‘D’: doctorates
PROGRAM_NAME | VARCHAR(60) | Program title

Colleges Dimension (ACD_COLLEGE_DIM)

This dimension store college name, and for which academic program it is

related. Additionally, it has an attribute to indicate if the college is active or closed.

Table 3.5 shows the columns.

Table (3.5): College Dimension

Column Name

Data Type

Description

COLLEGE_NO

NUMERIC

Primary key

COLLEGE_AR_NAM

E | VARCHAR(60) | College name in Arabic language

COLLEGE_EN_NAM

E | VARCHAR(60) | College name in English language
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“Y” means it is active and ‘N’ in case
IS_ACTIVE VARCHAR(1) | _ _
if the college is not available

Departments Dimension (ACD_DEPARTMENT_DIM)

This table contains department details. A department must be related to a college

as shown in Table 3.6.

Table (3.6): Departments Dimension

Column Name Data Type Description
Department name in Arabic

DEPARTMENT_AR_NAME | VARCHAR(60)
language

Department name in English
DEPARTMENT_EN_NAME | VARCHAR(60)

language
COLLEGE_NO NUMERIC Foreign key to College
‘Y’ means itisactiveand ‘N’ in
IS_ACTIVE VARCHAR(1) | case if the department is not
available

Courses Dimension (ACD_SUBJECT_DIM)

Table 3.7 shows the description of each column in Courses dimension table, this

table contains courses’ related information.

Table (3.7): Courses Dimension

Column Name Data Type Description
SUBJECT CODE VARCHAR(10) Manually identified code for subject

contain 5 letters and 5 digits
SUBJECT_AR_NAME | VARCHAR(60) | Course name in Arabic language

SUBJECT_EN_NAME | VARCHAR(60) | Course name in English language
Identify if the subject is required or

SUBJECT_TYPE NUMERIC )
optional
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DEPARTMENT_NO NUMERIC Foreign key to Department
ACADEMIC_HOURS NUMERIC The academic hours in the plan
FINANCIAL_HOURS NUMERIC Financial hours to be paid for

Subject language: ‘AR’ for Arabic

SUBJECT_LANGUAGE | VARCHAR(2) )
and ‘EN’ for English

High School Years Dimension (ACD_HIGHSCHOOL_YEARS_DIM)

In this table, we define high school years. It contains key for each year in date

format *“yyyy” and a descriptive title for this year as shown in Table 3.8.

Table (3.8): High School Years Dimension

Column Name Data Type Description

YEAR NO NUMERIC Primary key which formed by 4 digits
B of high school year

YEAR_NAME VARCHAR(60) | Descriptive title of the year

High School Grades Dimension (ACD_HIGHSCHOOL_GRADE_DIM)

The high school grades table stores some extra information about grades range

of high school students. This dimension is described in detail in Table 3.9.

Table (3.9): High School Grades Dimension

Column Name Data Type Description

Primary key which must be one of the
following:

‘A+’ for grades between 95 and 100
‘A’ for grades between 90 and 94.9
‘B+’ for grades between 85 and 89.9
‘B’ for grades between 80 and 84.9
GRADE_NO VARCHAR(2) ‘C+’ for grades between 75 and 79.9
‘C’ for grades between 70 and 74.9
‘D+’ for grades between 65 and 69.9
‘D’ for grades between 60 and 64.9
‘E+’ for grades between 55 and 59.9
‘E’ for grades between 50 and 54.9
‘F’ for grades less than 50

GRADE_TITLE VARCHAR(60) | Descriptive title of the grade
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Minimum grade as described in

FROM_GRADE NUMERIC
GRADE_NO column

Maximum grade as described in

TO_GRADE NUMERIC
GRADE_NO column

High School Sections Dimension (ACD_HIGHSCHOOL_BRANCH_DIM)

This is a simple dimension table, Table 3.10, which store a serial key of
predefined high school section in UG legacy system, and a descriptive title i.e.

“Scientific Section”.

Table (3.10): High School Sections Dimension

Column Name Data Type Description

BRANCH_NO NUMERIC Primary key / serial number of section
BRANCH_NAME | VARCHAR(60) | Descriptive title of the section

Student States Dimension (ACD_STUDENT_STATES_DIM)

In this dimension table, a unique status code and a name for the status are defined
as described in Table 3.11.

Table (3.11): Student States Dimension

Column Name Data Type Description

Primary key / a letter which represent
STATUS_CODE | VARCHAR(1) | the student academic status i.e. ‘R’ for

Regular students
STATUS_NAME VARCHAR(60) | Descriptive title of the status

Student Levels Dimension (ACD_STUDENT_LEVEL_DIM)

The table ACD_STUDENT LEVEL_DIM, Table 3.12, contains details about
academic levels in IUG. A student in IUG starts his academic life in level 1, and if he

passed certain academic hours he moves to next level.
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Table (3.12): Student Levels Dimension

Column Name Data Type Description
Primary key and a number which
LEVEL NO NUMERIC represent student’s academic level
- sequence, i.e. 1 for first level, 2 for
second level and so on.
LEVEL_NAME VARCHAR(60) | Descriptive title of the level

Geographical Locations Dimension (ACD_NEIGHBORHOOD_DIM)

ACD_NEIGHBORHOOD DIM table as described in Table 3.13, it lists all
predefined neighborhoods in IUG system. Additionally, it links neighborhoods with

its cities and governorates as shown below.

Table (3.13): Geographical Locations Dimension

Column Name Data Type Description

Primary key and a serial number
NEIGHBORHOOD_ID NUMERIC of predefined locations in UG

legacy system
NEIGHBORHOOD NAME | VARCHAR(60) | Neighborhood name

City id in which this
CITY_ID NUMERIC _ _

neighborhood is related for
CITY_NAME VARCHAR(60) | City name

GOVERNORATE_ID

NUMERIC

IUG system

Governorate id that identified in

GOVERNORATE_NAME

VARCHAR(60) | Governorate name

Students Dimension (ACD_STUDENT_DIM)

In this dimension we store instance for each student in IUG since its

establishment, some metadata stored in this dimension and described in detail in Table

3.14.
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Table (3.14): Students Dimension

Column Name Data Type Description

Primary key and a number
STUDENT NO NUMERIC which represent student’s

- academic identifier. Contains 9

digits

Student’s full name in Arabic
STUDENT_AR_NAME VARCHAR(100)

language

Student’s full name in English
STUDENT_EN_NAME VARCHAR(100)

language
STUDENT_ID VARCHAR(30) | Student’s national ID
RESPONDER_ID VARCHAR(30) | Student responder national ID

Gender of the student: ‘M’ if
GENDER VARCHAR(1)

Male and ‘F’ for Female

Student location, foreign key to
NEIGHBORHOOD_ID NUMERIC

ACD_NEIGHBORHOOD_ DIM

The semester when student was
ADMISSION_SEMESTER | NUMERIC _

admitted

Admission type specify previous
ADMISSION_TYPE VARCHAR(1) study type in which student was

accepted at

Academic program of the
STUDY_PROGRAM VARCHAR(1) student, foreign key to States

dimension
DEPARTMENT_NO NUMERIC Student’s department

Student status which specify for
ACADEMIC_STATUS VARCHAR(1) example if he is Regular or

Graduated student

Academic level for student, a
STUDENT_LEVEL NUMERIC

value between 1 and 6
HIGHSCHOOL_SCORE NUMERIC Student score in high school
HIGHSCHOOL_BRANCH | VARCHAR(2) Student’s high school section
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IS_GRADUATED

NUMERIC

A flag for graduation status of
student, 1. graduated, 0: not
graduated yet

GRADUATION_DATE DATE

Student’s graduation date if

exists

Grants Dimension (SFD_GRANT_DIM)

In this dimension, data warehouse store basic information about IUG grants

which are grant number, grant title, and its type as shown in Table 3.15. IUG grants is

one of its tools to help the students financially to complete their studies.

Table (3.15): Grants Dimension

Column Name Data Type Description
GRANT NO NUMERIC Primary key and a number which
- represent a Grant unique identifier
GRANT_NAME VARCHAR(60) | Grant name as identified in IUG
Grant type one of the following: 1:
GRANT_TYPE NUMERIC

Internal Grant,2: External Grant,3: Loan

Student Registration Hours Dimension (ACD_REGISTRATION_HOURS_DIM)

Student Registration Hours dimension contains details about registration hours’

ranges, which used to classify students’ registration based on how many hours they

already registered in specific semester. This dimension table described in Table 3.16.

Table (3.16): Student Registration Hours Dimension

Column Name Data Type Description

Descriptive label for hours range, i.e. “3-
LABEL VARCHAR(60) S

6 Registration Hours”

Meta data which represent minimum
MIN_VALUE NUMERIC

registration hours value of this range
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Meta data which represent maximum
MAX_VALUE NUMERIC o )
registration hours value of this range

In the following section, we describe data marts in our design of data warehouse.
As mentioned before data mart formed as a star schema of fact table and referred by
dimension tables. For each data mart, we extract all possible query structures in the
form of “logical view”. Thus, the end user can build his reports and metrics based on
these logical views. The purpose of these views is to optimize data warehouse
performance using our materialized view selection model that proposed in the next

chapter.

4.2.2.1 Admission and Registration Data Marts

In this section, we describe each data mart that designed to handle Admission

and Registration department business processes in IUG.
High School Results Data Mart

Figure 3.2 shows high school results fact table and its related dimensions as a
star schema. The fact table holds two measures in each year for each high school
section and divided to 9 grades that defined in Table 3.9, the two measures are students
count and their average GPA in high school. As shown in Figure 3.2, fact table has
three foreign keys to High School Years, High School Branch, and High School Grade

dimension tables which identifies its granularity.

¥ ACD_HIGHSCHOOL_BRANCH_DIM

P * BRANCH_NO NUMBER
BRANCH_NAME WARCHARZ (B0)

@ ACD_HIGHSCHOOL_BRANCH_DIM_PK

A

& ACD_HIGHSCHOOL_RESULTS_FACT

# ACD_HIGHSCHOOL_YEARS_DIM P " HIGHSCHOOL_YEAR NUMEER 7
= = = - ' ACD_HIGHSCHOOL_GRADE_DIM
YEAR_TITLE  WARCHAR2 (50) GGG () S|
= STUDENTS_COUNT NUMEER ey GRADE_TITLE
= ACD_HIGHSCHOOL_YEARS_DIM_FK ¢ } STUDENTS_AVERAGE NUMBER = FROM_GRADE  NUMBER

= ACD_HIGHSCHOOL_RESULTS_FACT_PK(H e S RUMIER

(53 ACD_HIGHSCHOOL_RESULTS_FACT_ACD_| [= el bl e, (iS5 (LS

=8 ACD_HIGHSCHOOL_RESULTS_FACT_ACD_|
=8 ACD_HIGHSCHOOL_RESULTS_FACT_ACD_|

Figure (3.2): High School Results Data Mart
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Students Admission Data Mart

Students Admission Data Mart is designed to calculate two measures, which are

admitted students count and their average GPA in high school. The granularity of the

fact table identified as 1 row per year, per high school section, per high school grade,

per department as shown in Figure 3.3. The fact table is referred by Academic Year,

High School Section, High School Grade, and Department dimensions.

& ACD_ACADEMIC_YEAR_DIM

F " YEAR_NO NUMEER
YEAR_TITLE WVARCHARZ (B(

¥ ACD_HIGHSCHOOL_BRANCH_DIM

P " BRANCH_NO MUMBER
BRANCH_NAME WARCHARZ (B0)

&= ACD_HIGHSCHOOL_BRANCH_DIM_PK

F 3

#  ACD_STUDENT_ADMISSION_FACT

START_DATE DATE

¥ ACD_HIGHSCHOOL_GRADE_DIM

P " ¥EAR_NO NUMEBER

F " DEPARTMENT_MNOQ NUMEER

F " HIGHECHOOL_GRADE WARCHARZ (2)

P " HIGHSCHOOL_BRANCH NUMEBER
STUDENTS_COUNT NUMEBER
STUDENT_AVERAGE NUWMEER

END_DATE DATE

@ ACD_STUDENT_ADMISSION_FACT_PK (YE

F " GRADE_NO WARCHARZ (2)
GRADE_TITLE WARCHARZ (B0)
FROM_GRADE NUMBER
TO_GRADE NUMEER

= ACD_ACADEMIC_YEAR_DIM_PK

©8 ACD_STUDENT_ADMISSION_FACT_ACD_H
E8 ACD_STUDENT_ADMISSION_FACT_ACD_H
E8 ACD_STUDENT_ADMISSION_FACT_ACD_D
58 ACD_STUDENT_ADMISSION_FACT_ACD_A

&= ACD_HIGHSCHOOL_GRADE_DIM_PK

¥ N

# ACD_DEPARTMENT_DIM

p -

DEPARTMENT_NO
DEPARTMENT_AR_NAME

DEPARTMENT_EN_NAME W AR2 (B0)
" COLLEGE_NO MUMBER

IS_ACTIVE W) ARZ (1)

IS_GENERAL WARCHARZ (1)

3= ACD_DEPARTMENT_DIM_PK (DEPARTMENT_NO)

Figure (3.3): Students Admission Data Mart

This data mart used to calculate students count and average GPA in three cases:

e Total admitted students count and their average GPA calculated for each

Section and Grade.

e Total admitted students count and their average GPA calculated for each

Department.

e Total admitted students count and their average GPA calculated for each

College.

We predefined the calculation queries for these three cases in logical views as

shown in Figure 3.4. First we build a master view for this data mart titled
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“V_ACD_ADMISSION_FACT?, this view joins fact table with all dimension tables
and its hierarchies. Next we build Section and Department views, named
“V_ACD_ADMISSION_BRANCH” “V_ACD_ADMISSION_DEPARTMENT”
respectively, based on “V_ACD_ADMISSION_FACT”. Finally, College view is
build based on “V_ACD_ADMISSION_DEPARTMENT".

and

W_ACD_ADMISSION_FACT

YEAR_NO

YEAR_TITLE
FROGRAM_NO
PROGRAN_NAME
COLLEGE_NO
COLLEGE_AR_NAME
COLLEGE_EN_NAME
DEPARTMENT_NO
DEFPARTMENT_AR_NAME
DEFPARTMENT_EN_NAME
BRANCH_ND
BRANCH_NAME
GRADE_NO
GRADE_TITLE

_"\
NUMEBER

WARCHARZ (B0)
WVARCHARZ (1)
VARCHARZ (BO)
NUMEER
WARCHARZ (B0)
VARCHARZ (B0}
NUMEBER
WARCHARZ (B0)
WARCHARZ (B0)
NUMEER
VARCHARZ (BO)
WARCHARZ (2)
VARCHARZ (BO)

STUDENTS_COUNT NUMEER DEPARTMENT_EMN_MAME WARCHARZ (B0)
STUDENT_AVERAGE NUMEER STUDENTS_COUNT NUMEER
STUDENT_AVERAGE HNUMEER

W_ACD_ADMISSION_BRAMNCH

~

YEAR_ND
YEAR_TITLE
BRANCH_NO
BRANCH_NAME
GRADE_NO
GRADE_TITLE
STUDENTS_COUNT
STUDENT_AVERAGE

MUMBER
VARCHARZ (B0)
MUMEER
VARCHARZ (50)
VARCHARZ (2)
VARCHARZ (B0)
LIMKNDWN
LIMKNOWN

\V_ACD_ADMISSION_FACT

/

W_ACD_ADMISSION_DEPARTMENT

YEAR_ND
YEAR_TITLE
PROGRAM_NO
PROGRAM_NAME
COLLEGE_NO
DEPARTMENT_NO
COLLEGE_AR_NAME
COLLEGE_EN_NAME

DEFARTMENT_AR_NAME

_"\.\"
MUMEER
VARCHARZ (B0)
VARCHARZ (1)
VARCHARZ (50)
MUMEER
MUMBER
VARCHARZ (B0)
VARCHARZ (50)
VARCHARZ (B0)

ACD_ACADEMIC_YEAR_DIM
ACD_STUDY_PROGRAM_DIM
ACD_COLLEGE_DIM
ACD_DEPARTMENT_DIM
ACD_HIGHSCHOOL BRANCH_DIM
ACD_HIGHSCHOOL _GRADE_DIM

\ ACD_STUDENT_ADMISSION_FACT

l\"f_AL’: D_ADMISSION_FACT

/
~

V_ACD_ADMISSION_COLLEGE

YEAR_MNO NUMEER
YEAR_TITLE WARCHARZ (B0)
PROGRANM_NO WARCHARZ (1)

/

PROGRAM_NAME
COLLEGE_NO
COLLEGE_AR_NAME
COLLEGE_EN_NAME
STUDENTS_COUNT
STUDENT_AVERAGE

VARCHARZ (BO)
NUMEER
WARGCHARZ (B0)
WARCHARZ (BO)
UNKNOWN
UMKNOWH

l\‘::_"_AL':D_ADMISSIDN_DEF'AHTMENT

/

Figure (3.4): Students Admission Views
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Students Registration Data Mart

This data mart has one simple measure which is registered students count in a
semester. This measure divided over five dimensions listed as: Semester, Students
Status, Gender, Academic Program, and Registration Hours Range Dimensions as

shown in Figure 3.5 which identify the fact granularity.

& ACD_ACADEMIC_SEMESTERS_DIM
P " SEMESTER_NO NUMBER
SEMESTER_TITLE  WARCHARZ (200)
" YEAR_NO NUMBER
START_DATE DATE
END_DATE DATE

G ACD_ACADEMIC_SEMESTERS_DIM_PK (SEMES

Fd ACD_REGISTRATION_FACT
#  ACD_STUDY_PROGRAM_DIM - N
= = P = EEIE ST MUMBER #  ACD_STUDENT_STATES_DIM
P * PROGRAM_NO HARZ (17 P " STUDENT_STATUS VARCHARZ (1) 2
PROGRAM NAME  VARCHAR w0 le—i<lp * sTUDY_PROGRAM ) P * STATUS_CODE  VARGHARZ (1)
= F " GENDER VARCHARZ (1) STATUS_NAME WVARCHARZ (30)
e LA R BRANED RSB P " REGISTRATION_HOURS_RANGE  NUMEER Pt ACD_STUDENT_STATES_DIM_PK(S
STUDENTS_COUNT NUMBER

(= ACD_REGISTRATION_FACT_PK(SEMESTER_NO, ST

%ACD_REGISTRATION FACT_ACD_ACADEMIC_SEME
%ACD_REGISTR.&TION FACT_ACD_STUDENT_STATE

:!ﬁﬁCD REGISTRATION_FACT_ACD_STUDY_PROGRANM
%ACD REGISTRATION_FACT_ACD_REGISTRATION_H

/

[

¥ ACD_REGISTRATION_HOURS_DIM
P * SERIAL_NO  NUMBER
LABEL VARCHARZ (50)
MIN_VALUE  NUMBER
MAX_VALUE  NUMBER

= AGD_REGISTRATION_HOURS_DIM)

Figure (3.5): Students Registration Data Mart

Based on business requirements, users need to calculate total registered students

count in academic semesters in two ways:

e Total registered students count for each Academic Program and for each
Gender, finally categorized based on available Registration Hours
Range.

e Total registered students count for each Academic Program and Gender.

Thus, according to business requirements we built logical views shown in Figure
3.6. “V_ACD_REGISTRATION_FACT” is the master view that joins the fact table
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with all four dimension tables. Next, based on this master view we build
“V_ACD_REGISTRATION_HOURS” which address the first calculation required.
Then finally the “V_ACD_REGISTRATION_SEMESTERS” view calculates total

registered students in academic Semesters for each Academic Program and Gender.

W_ACD_REGISTRATION_HOURS T,

W_ACD_REGISTRATION_FACT Ry

STATUS_CODE
STATUS_NAME
PROGRARM_MND
PROGRAM_MNAME

VARGHARZ (1)
WARGCHARZ (30)
VARCHARZ (1)
WARGCHARZ (B0)

PROGRAM_ND
PROGRAM_NAME

YEAR_NO

SEMESTER_ND
SEMESTER_TITLE
GENDER

VARCHARZ (1)
WVARCHARZ (B0)
NUMBER
NUMBER
WVARCHARZ (200)
WARCHARZ (1)

REGISTRATION_HOURS_RANGE  MUMBER
REGISTRATION_HOURS_RANGE ~ NUWMBER REGISTRATION_HOURS_LABEL  WARCHARZ (BO)
REGISTRATION_HOURS_LABEL  WARCHARZ (B0) SRS ST T —
YEAR_NOD MUMBER =
SEMESTER_NO HNUMBER KQFﬁGD_HEGETHAﬂDN_FAGT J/
SEMESTER_TITLE WARCHARZ (200)

e VARCHARZ (1) W_ACD_REGISTRATION_SEMESTER N
STUDENTS_COUNT HNUKMEER PROGRAM_NG WARCHARZ (1)
PROGRAM_NAME WARCHARZ (BO)
ACD_STUDENT_STATES_DIM YEAR NO NUMBER
ACD_STUDY_PROGRANM_DIM el A ——
ACD_REGISTRATION_FACT SEMESTER_TITLE  WARCHARZ (200)
ACD_REGISTRATION_HOURS_DIM e — VARCHARZ (1)

\fcD_AGADEMW_SEMESTEHS_WM ,f STUDENTS COUNT  UNKNOWN

k:?ADD_HEGETHAﬂDN_HDUHS ,/

Figure (3.6): Students Registration Views

Registered Students Geographical Location Data Mart

IUG need to investigate the location of students each semester to be able to

facilitate the transportation for students. So, this fact table holds total registered

students count in every semester for each college regarding their locations. The fact

table shown in Figure 3.7 has three foreign keys to Neighborhood, Semester, and

College dimensions.
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¥’ ACD_ACADEMIC_SEMESTERS_DIM
P " SEMESTER_NO NUMBER

SEMESTER_TITLE /ARCHARZ (200)
" YEAR_NO NUMEER

START_DATE DATE

END_DATE DATE

&= ACD_ACADEMIC_SEMESTERS_DIM_FK (|
[y

& ACD_NEIGHEORHOOD_DIM 7
F " MEIGHEORHOOD_ID NUMBER AEORSTANENTSEOCATIONEGACT] 7 =
NEIGHBORHOOD_NAME  VARCHARZ (50) F " SEMESTER_NO NUMEER ACD_COLLEGE_DIM
CITY_ID NUMBER F " NEIGHEORHOOD_ID NUMEBER P " COLLEGE_NO NUMBER
CITY_NAME VARCHARZ (50)« j]P " COLLEGE_NO NUMBER COLLEGE_AR_NAME
GOVERNORATE_ID NUMBER REGISTERED_STUDENTS_COUNT ~ NUMBER = COLLEGE_EMN_NAME
GOVERNORATE_NAME  VARCHARZ (50) |5= ACD_STUDENT_LOCATION_FAGT_PK (SEMESTE " PROGRAM
= I5_ACTIVE :
&= ACD_NEIGHBORHOOD_DIM_PK (NEIGHBORH B8 ACD_SLF_AN_DIM_FK (NEIGHEORHOOD_ID)
[ TABLE_27_AC_DIM_FK (COLLEGE_NO) = ACD_COLLEGE_DIM_PK (COLLEGE_NO)

8 TABLE_27_AAS_DIM_FK (SEMESTER_NO)

Figure (3.7): Students Locations Data Mart

A master view that joins the fact table with dimension tables is build and
considered as a base for “V_ACD_NEIGHBORHOODS” logical view as shown in
Figure 3.8. This latter view calculates total registered students count regardless all
colleges. This view was the base to calculate total registered students count for each
city that “V_ACD_CITY_REGISTRATION”
“V_ACD_GOVERNORATE_REGISTRATION” calculates total students count

registered categorized by Governorates in IUG. All these three views present a

presented in view. Finally,

hierarchy.

W_ACD_NEIGHBORHOODS

SEMESTER_NO HUMBER
SEMESTER_TITLE VARCHARZ (200)
NEIGHEORHOOD_ID HUMBER
NEIGHEORHOOD_NAME WARCHARZ (G0}
CITY_ID NUMBER
CITY_NAME WVARCHARZ (B0}
GOVERNORATE_ID HUMBER
W_ACD_MNEIGHBORHOOD_FACT GOVERNORATE_NAME WVARCHARZ (50)
SEMESTER_NO NUMBER REGISTERED_STUDENTS_COUNT  UNKNOWN
SEMESTER_TITLE WARCHARZ (200) 's\\f_ﬁ[:D_NEIGHEIOF!HOOD_FACT Y,
COLLEGE_NO NUMEER

COLLEGE_AR_NAME
COLLEGE_EN_NAME
NEIGHEORHOOD_ID
NEIGHEORHOOD_NAME

CITY_ID

CITY_NAME

GOVERNORATE_ID
GOVERNORATE_NAME
REGISTERED_STUDENTS_COUNT

WARCHARZ (80)
WARCHARZ (80)
NUMEER
WARCHARZ (80)
NUMEER
WARCHARZ (80)
NUMEER
WARCHARZ (80)
UNKNOWN

ACD_ACADEMIC_SEMESTERS_DIM
ACD_COLLEGE_DIM
ACD_NEIGHEORHOOD_DIM
\\AcD_STUDENT_LocATmN_FAcT

V_ACD_CITY_REGISTRATION

SEMESTER_NO NUMEER
SEMESTER_TITLE VARCHARZ (200)
CITY_ID NUMBER
CITY_MNAME VARCHARZ (G0)
GOVERNORATE_ID NUMEER
GOWVERNORATE_NAME VARCHARZ (G0)
REGISTERED_STUDENTS_COUNT LINKNOWN

'\\\I_AGD_NEIGHEIORHOODS

/

V_ACD_GOVERNORATE_REGISTRATION

SEMESTER_ND NUMBER
SEMESTER_TITLE VARCHARZ (2007
GOVERNORATE_ID NUMEER
GOWVERNORATE_NAME VARCHARZ (G0)
REGISTERED_STUDENTS_COUNT LINKNOWN

I\QI_AGD_GITY_REGISTHATION

/

Figure (3.8): Students Locations Views
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College Students GPA Data Mart

Each college in IUG use Students” GPA as main indicator for its performance.
However, this data mart stores five measures which are students count, their average
GPA in the semester, their average success hours of the semester, average success
hours for all semesters, and finally average GPA for students as shown in Figure 3.9.
The fact table is referred by four dimensions which are Academic Year, Semester,
Department, and Academic Level. We use SUCCESS HOURS and
SEMESTER_SUCCESS _HOURS measures to scale SEMESTER_GPA and GPA
measures in case of hierarchal calculations. We should note that academic level added

to this data mart just for future use, it is not considered as business requirement

currently.
& ACD_DEPARTMENT_DIM
I ACD_COLLEGE_DIM
P * DEPARTMENT_NO NUMBER
DEPARTMENT_AR_MAME  VARCHARZ (50) P = HEUU=E (19 WIEE S
DEPARTMENT_EN_NAME 12 (50) COLLEGE_AR_NAME W ARZ (B0)
- EELECE [ o~ COLLEGE_EN_NAME
IS_ACTIVE 2 (1) " PROGRAM (1
I SR e IS_ACTIVE WARCHARZ (1)
&= ACD_DEPARTMENT_DIM_PK (DEPARTMENT_NO) = G [HELLS A, R AL LS E )
3 ACD_DEPARTMENT_DIM_ACD_COLLEGE_DIM_F
&
@ ACD_STUDENT_LEVEL_DIM
#  ACD_ACADEMIC_YEAR_DIM 4 ACD_STUDENT_GPA_FACT = = =
= - = : P " LEVEL_NO NUMEBER
P " YEAR_NO NUMBER P 7 GEAEER R LEVEL_NAME  VARCHARZ (30)
YEAR_TITLE VARCHARZ (50 F " SEMESTER_NO NUMEER},
START_DATE DATE —}<F " DEPARTMENT_NO WUMBER[=T © &= ACD_STUDENT_LEVEL DIM_PHK (L
END_DATE DATE P " ACADEMIC_LEVEL NUMBER
STUBENTS_COUNT NUMBER
5= ACD_ACADEMIC_YEAR_DINM_PK -
— - SEMESTER_GPA NUMBER,
i GPA NUMBER
SEMESTER_SUCCESS_HOURS  NUMBER
SUCCESS_HOURS NUMBER,

G ACD_STUDENT_GPA_FACT_PK (ADMISSION_|

58 ACD_STUDENT_GPA_FACT_ACD_ACADEMIC
=% ACD_STUDENT_GPA_FACT_ACD_DEPARTME
=8 ACD_STUDENT_GPA_FACT_ACD_STUDENT_

58 ACD_SGF_AAS_DIM_FK(SEMESTER_NO)
#  ACD_ACADEMIC_SEMESTERS_DIM
P " SEMESTER_NO NUMEER
SEMESTER_TITLE  WARCHARZ (200)
F " YEAR_NO NUMEER
START_DATE DATE
END_DATE DATE

G ACD_ACADEMIC_SEMESTERS_DIM_PK (

B8 ACD_ASD_AAY_DIM_FK (YEAR_NO)

Figure (3.9): College Student GPA Data Mart
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From this data mart, we extracted four logical views which are calculated in

advance shown in Figure 3.10. These can be summarized as follow:

e “V_ACD _STUDENT_GPA FACT” shows total students count and
their GPA for every Admission Year and Semester separated by
Departments.

e “V_ACD GPA COLLEGE” calculates total students count and their
GPA for each Semester and each College.

W_ACD_STUDENT_GPA_FACT N V_ACD_GPA_COLLEGE ™
YEAR_NOC MUMEER WEAR_NO NUMBER
YEAR_TITLE WVARCHARS (BO) YEAR_TITLE WVARCHARZ (B0}
LEVEL_NO MUMBER LEVEL_NO NUMBER
LEWEL_NAME WARCGHARZ (30) LEVEL_NAME WARCHARZ (30)
COLLEGE_NO MUMBER COLLEGE_NO NUMEER

COLLEGE_AR_MNAME
COLLEGE_EN_MNAME
DEPARTMENT_NO
DEPARTMENT_AR_MAME
DEPARTMENT_EN_MAME
STUDENMTS_COUNT

GPA

VARCHARZ (B0)
VARCHARZ (B0)
MUMEER
VARCHARZ (50)
VARCHARZ (B0)
MUMBER
MUMEER

COLLEGE_AR_NAME
COLLEGE_EN_NAME
STUDENTS_COUNT
GPA

WARCHARZ (BO)
WARCHARZ (B0)
UMKNOWH
UNKNOWH

\V_ACD_STUDENT_GPA_FACT

/’

ACD_ACADEMIC_YEAR_DIM
ACD_STUDENT_LEVEL_DIM
ACD_COLLEGE_DIM
ACD_DEPARTMENT_DIN

\fGD_STUDENT_GPA_FAGT

/

Figure (3.10): College Students GPA Views

Transfers between Colleges Data Mart

This data mart holds a fact table which calculate total transferred students count
between colleges and departments. The fact table shown in Figure 3.11 stores
transferred students’ count in each semester, for each academic level, for each
department, and for which department they are transfer for. This presents its
granularity. The figure below illustrates the relationship between the fact table and

dimension tables,

53



4 ACD_DEPARTMENT_DIM

F " DEPARTMENT_NO
DEPARTMENT_AR_NAME
DEPARTMENT_EM_NAME

* COLLEGE_NO
IS_ACTIVE
IS_GENERAL

&= ACD_DEPARTMENT_DIM_PK (DEPARTMENT_NO)

FvYy
I/
#  ACD_ACADEMIC_SEMESTERS_DIM # _ ACD_COLLEGE_TRANSFER_FACT #  ACD_STUDENT LEVEL_DIM
P " SEMESTER_NQ NUMBER " FROM_DEPARTMENT_NGQ  NUMBER P " LEVEL_NO NUMBER
SEMESTER_TITLE  WARCHARZ (200) TO_DEFARTMENT_NGO LA (ol | LEVEL_NAME  VARCHARZ (30)
- YR O e —— " ) " SEMESTER_NO NUMBER
START DATE BATE * T " ACADEMIC_LEVEL NUMBER &= ACD_STUDENT_LEVEL_DIM_PHK (|
2T e R STUDENTS_COUNT NUMBER
= ACD_ACADEMIC_SEMESTERS_DIM_PK ( "3 TABLE_23_ACD_DEPARTMENT_DIM_FK
% TABLE_23_ACD_DEPARTMENT_DIN_FKy]
=3 TABLE_23_ACD_ACADEMIC_SEMESTER
3 TABLE_23_ACD_STUDENT_LEVEL_DIM_|

Figure (3.11): College Transfers Data Mart

Colleges and Academic Affairs in IUG need to study why students are transfer
from college/department to another during their study. Thus, they may use one of the

following logical views which are identified in Figure 3.12:

e “V_ACD_COLLEGE_TRANSFER_FACT” shows total transferred
students count in every semester for each level, and from which
department they were transferred and to which department they are
going.

e “V_ACD CLG TSFR_DEPARTMENT” calculates total transferred
students count in every year, and from which department they were
transferred and to which department they are going.

e “V_ACD_CLG_TSFR_COLLEGE?” calculates total transferred students

count in every year, and from which college they were transferred and to

which college they are going.
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W_ACD_COLLEGE_TRANSFER_FACT

W_ACD_CLG_TSFR_DEPARTMENT ™

~,

FROM_DEPARTMENT_NO
FROM_DEPARTMENT_AR_NAME
FROM_DEPARTMENT_EN_NAME
FROM_COLLEGE_NO
FROM_COLLEGE_AR_NAME
FROM_COLLEGE_EN_NAME
TO_DEPARTMENT_NO
TO_DEPARTMENT_AR_NAME
TO_DEPARTMENT_EN_NAME
TO_COLLEGE_NO
TO_COLLEGE_AR_NAME

NUMEER
VARGHARZ (G0)
VARGCHAR2 (50)
NUMEBER

VARGHARZ (G0)
VARGHARZ (60)
NUMEBER

VARCHAR2 (80)
VARGHARZ (G0)
NUMBER

VARGHARZ (60)

FROM_DEPARTMENT_NO
FROM_DEFARTMENT_AR_NAME
FROM_DEFPARTMENT_EN_NAME
FROM_COLLEGE_NO
FROM_COLLEGE_AR_NAME
FROM_COLLEGE_EN_NAME
TO_DEFARTMENT_NO
TO_DEPARTMENT_AR_NAME
TO_DEFARTMENT_EMN_NAME
TO_COLLEGE_NO
TO_COLLEGE_AR_NAME
TO_COLLEGE_EN_NAME

NUMBER
WARCHARZ (B0)
WARCHARZ (80)
NUMBER

WARCHARZ (80)
WARCHARZ (B0)
NUMBER

WARCHARZ (B0}
WARCHARZ (B0)
NUMBER

WARCHARZ (B0)
WARCHARZ (80)

YEAR_NO NUMEER
TO_COLLEGE_EN_NAME VARCHARZ (60) STUDENTS COUNT .
YEAR_NO NUMBER = -
SEMESTER_NO NUWMEBER \V_ACD_COLLEGE_TRANSFER_FACT J
SEMESTER_TITLE VARCHARZ (200)

LEVEL NO NUMBER W_ACD_CLG_TSFR_COLLEGE ™,
LEWEL_NAME VARCHARZ (30) FROM_COLLEGE_ND NUMEER
STUDENTS. COUNT TR FROM_COLLEGE_AR_NAME  WARCHARZ (80)
FROM_COLLEGE_EN_NAME  WARCHARZ (30)
ACD_COLLEGE_TRANSFER_FACT 10 COLLEGE NO NUMBER
ACD_DEPARTMENT_DIM TO_COLLEGE_AR_NAME VARCHARZ (50}
(LR =E (L TO_GOLLEGE_EN_MAME VARCHARZ (507
ACD_ACADEMIC_SEMESTERS_DIM YEAR NO NUMBER
\ACD_STUDENT_LEVEL_DIM / STUDENTS_COUNT UNKNOWN
\V_ACD_CLG_TSFR_DEPARTMENT J/

Figure (3.12): College Transfers Views

Exam Conflicts Data Mart

Exam Conflicts data mart holds total conflicts count occurred in each course for
each semester. The fact table in Figure 3.13 has four foreign keys to Department,
Academic Semester, and Subject dimensions. The measure TOTAL_CONFLICTS
represents conflicts occurred between SUBJECT_NO and SUBJECT_NO2 in
SEMESTER_NO which represent fact table granularity.
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ACD_DEPARTMENT_DIM

F " DEPARTMENT_NO NUMEBER
DEPARTMENT_AR_NAME WARCHARZ (B0)
DEPARTMENT_EN_NAME WARCHARZ (B0}

" COLLEGE_NO NUMEBER
I15_ACTIVE WARCHARZ (1)
15_GEMERAL WARCHARZ (1)

I ACD_COLLEGE_DIM
P ° COLLEGE_ND NUMBER
COLLEGE_AR_NAME  VARCHARZ (B0)
COLLEGE_EN_NAME  VARCHARZ (80)
" PROGRAM VARCHARZ (1)
I5_ACTIVE VARCHARZ (1)

= ACD_DEPARTMENT_DIM_PK (DEPARTMENT_MN

=% ACD_DEPARTMENT_DIM_ACD_COLLEGE_DIM |

:

5

@@ ACD_COLLEGE_DIM_PK (COLLEGE_ND)

4
@ ACD_EXAM_CONFLICT_FACT ACD_SUBJECT_DIM
P " SEMESTER_NO NUMBER F gﬂgjggl—gg% __”__';”;fffpz_m_
F * DEPARTMENT_NO MUMEER = amnans L T
P SUBJECT NO NUMBER SUBJECT_AR_NAME VARCHARZ (80)
P SUBJECT NO 2 NUMBER SUBJECT_EN_NAME VARCHARZ (60)
TOTAL_CONFLICTS  NumBer [T SUBJECT_TYPE NUMBER
F " DEPARTMENT_NO NUMBER
G ACD_EXAM_CONFLICT_FACT_PK (3 ACADEMIC_HOURS NUMBER
=% TABLE_25_ACD_DEPARTMENT_DIN Pl el LELHE IS
£5 TABLE_25_ACD_ACADEMIC_SEME DEFAULT_SUBJECT_SEMESTER  NUMEBER
=3 TABLE_25_ACD_SUBJECT_DIM_FK RIS WIS
SUBJECT_LANGUAGE VARCHARZ (2)
% G= ACD_SUBJECT_DIM_PK (SUBJECT_NO)
# ACD_ACADEMIC_SEMESTERS_DIM 3 ACD_SUBJECT_DIM_ACD_DEPARTMENT_DIM_FK (DE

F * SEMESTER_MNO NUMEER
SEMESTER_TITLE WARCHARZ (200}
" WEAR_NO NUMEER
START_DATE DATE
END_DATE DATE

= ACD_ACADEMIC_SEMESTERS_DIN_PK |

Figure (3.13): Exam Conflicts Data Mart

The master view “V_ACD_EXAM_CONFLICT_FACT” shown in Figure 3.14

joins fact table with three dimension tables Department, Semester, and Subject. For

each row in fact table it represented by two records in this master view, the first row

is an image for SUBJECT _NO metadata and the second row is an image of
SUBJECT _NO_ 2 metadata. The total conflicts count is same for both records.

Additionally, conflicts count could be categorized by Subject Type, Department, or
“V_ACD_EXM_CFLT _SUBJECT_TYPE”,
“V_ACD_EXM_CFLT_DEPARTMENT”, or “V_ACD_EXM_CFLT_COLLEGE”

College by using

respectively.
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_ACD_EXM_CFLT_SUBJECT TYPE

~,

YEAR_NO
SEMESTER_NO
SEMESTER_TITLE
DEPARTMENT_NO
DEPARTMENT_AR_NAME
DEPARTMENT_EM_NAME

NUMBER
NUMBER
WARCHARZ (200)
NUMBER
WARCHARZ (B0)
WARCHARZ (50)

W_ACD_EXAM_CONFLICT_FACT

NUMBER
WARCHARZ (B0)
WARCHARZ (80)
WARGCHARZ (1)

COLLEGE_NO
COLLEGE_AR_MAME
COLLEGE_EN_MNAME
PROGRAM

YEAR_NO
SEMESTER_NO
SEMESTER_TITLE
DEPARTMENT_NO
DEPARTMENT_AR_NAME
DEPARTMENT_EN_NAME
COLLEGE_NO
COLLEGE_AR_NAME
COLLEGE_EN_NAME
PROGRAM

SUBJECT_NO
SUBJECT_CODE
SUBJECT_AR_NAME
SUBJECGT_EN_NAME
SUBJECT_TYPE
TOTAL_CONFLICTS

N SUBJECT_TYPE NUMBER

NUMEBER TOTAL_CONFLICTS UNKN OWN
NUMBER

VARCHAR2 200y | \V—ACP_EXAN_CONFLICT_FACT J
NUMEBER V_ACD_EXM_CFLT_DEPARTMENT ™
VARCHARZ (50) YEAR_NOD NUMBER
VARCHARZ (50) SEMESTER_NO NUMBER
NUMBER SEMESTER_TITLE VARCHARZ (200)
VARCHARZ (50) COLLEGE_NO NUMEER

VARCHARZ (50)
VARCHARZ (1)
MUMBER
VARCHARZ (10)
VARCHARZ (50)
VARCHARZ (50)
MUMBER
MUMEER

COLLEGE_AR_MNAME
COLLEGE_EN_MNAME
DEPARTMENT_NO
DEPARTMENT_AR_MAME
DEPARTMENT_EMN_MAME
PROGRAM
TOTAL_CONFLICTS

VARCHARZ (B0)
VARCHARZ (B0)
MUMEER
VARCHARZ (50)
VARCHARZ (B0)
VARCHARZ (1)
LIMKNDWN

ACD_ACADEMIC_SEMESTERS_DIM
ACD_DEPARTMENT_DIM
ACD_COLLEGE_DIN
ACD_SUBJECT_DIM
\éGD_EXAM_GDNFUDT_FAGT

k:?ﬁDD_EXM_EFLT_SUEJEET_TYFE

/
<

W_ACD_EXM_CFLT_COLLEGE

YEAR_MO NUKMEER
SEMESTER_NO NUMEER
SEMESTER_TITLE VARCHARZ (200)
COLLEGE_NO NUMEER

COLLEGE_AR_MNAME
COLLEGSE_EN_NAME
PROGRAM
TOTAL_CONFLICTS

W_ACD_EXM_CFLT_DEPARTMENT

NS

WARCHARZ (50)
WARCHARZ (50)
VARCHARZ (1)
UNKNOWN

Figure (3.14): Exam Conflicts Views

4.2.2.2 Student Fund Data Marts

Student Fund has four data marts can be listed briefly as:

e Students Registration Data Mart

e Cash Grants Data Mart
e Deferred Grant Data Mart

e Student Fund Totals Data Mart

In this section, we address each data mart and describe it in detail.
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Students Registration Data Mart (Student Fund)

Regardless Students Registration Data Mart for Admission and Registration
department which described in section 1, this data mart categorize students according
to their financial need level. Students in IUG may submit an application for grants to
either help them in their study fees, or to let them able to register specific amount of
study hours based on a Guarantee. After auditing students’ applications, each student
is classified to a need level from ‘A’ to ‘F’. Level ‘A’ means students are in critical

need for financial help, and ‘F’ means students can pay their fees by themselves.

The data mart in this case has a fact table with five measures as shown in Figure
3.15, the measures are total REGISTERED STUDENTS count, total REGULAR
STUDENTS count, total REMAINING FEES in students’ financial profile, total
GUARANTEED STUDENTS count, and total FEES of GUARANTEED
STUDENTS. The granularity of fact table identified as 1 row per registration day, per
semester, per department, per need level, per gender. That means this fact table
updated daily in each semester, and contains measures for each department and
academic level and gender. As shown in the figure below it referred by three dimension

which are Date, Semester, and Department dimensions.

# ACD_ACADEMIC_SEMESTERS_DIM
7 = P * SEMESTER_NO NUMBER
GENSORTEREIM SEMESTER_TITLE  VARCHARZ (200)
P " DATE_KEY NUMEBER " YEAR_NO NUMBER 7
i = ACD_COLLEGE_DIM
" SEMESTER_NO NUMBER START_DATE DATE = ==
FULL_DATE DATE L END_DATE DATE [ = EEHEGE [19 LM BRE
DATE_NAME VARCHARZ (11) COLLEGE_AR_NAME
P77 S NUMBER G» ACD_ACADEMIC_SEMESTERS_DIM_PK (SEMES COLLEGE_EN_NAME
DAY_NAME_OF_WEEK VARCHAR2 (10) " PROGRAM
DAY_OF_MONTH MUMBER I1S_ACTIVE
DAY_OF_YEAR NUMBER 5= ACD_COLLEGE_DIN_PK (COLLEGE_NO)
WEEKDAY_WEEKEND VARG (10 &
WEEK_OF_YEAR NUMBER A
MIONTH_NAME VARCHARZ (10)
MONTH_OF_YEAR NUMBER £
1S_LAST_DAY_OF_MONTH MUMBER N
CALENDAR_QUARTER NUMEBER # SFD_REGISTRATION_FACT 3 ACD DEPARTMENT DM
L BT HUMBER s e (MLAEER P " DEPARTMENT_NO NUMBER
CALENDAR_VEAR_MONTH VAl 10} SC M ESTIERTND (MLAEER DEPARTMENT_AR_NAME  VARCHARZ (80)
CALENDAR_YEAR_GTR VARCHARZ (10) " DEPARTMENT_NO NUMEER e e e s
ACADEMIC_MONTH_OF_SEMESTER  NUWMBER NEED_LEVEL WARCHARZ (1) MR
ACADEMIC_WEEK_OF_SEMESTER NUMBER «— GENDER WARCHARZ (1) [ ]
ACADEMIC_DAY_OF_SEMESTER NUMEBER REGISTERED_STUDENTS NUMEER 15 GENERAL
INSERT_AUDRIT_KEY NUMBER REGULAR_STUDENTS NUMBER =
UPDATE_AUDIT_KEY NUMBER REMAINING_FEES NUMBER i= ACD_DEPARTMENT_DIM_PK (DEPARTMENT_N
= GEN_DATE_DIM_FK (DATE_KEY) GUARANTEED_STUDENTS NUMEER ©% ACD_DEPARTMENT_DIM_ACD_COLLEGE_DIM |
= GUARANTEED_STUDENTS_FEES  NUMBER
¥3 GEN_DATE_DIM_ACD_ACADEMIC_SEMESTERS_DIM_FK —
©% SFD_REGISTRATION_FACT_ACD_DEPARTMENT_DIN |
“3 SFD_REGISTRATION_FACT_GEN_DATE_DIM_FK (DAT
“3 SFD_REGISTRATION_FACT_ACD_ACADEMIC_SEMES

Figure (3.15): Students Registration Data Mart (Student Fund)
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Based on the

described data

mart we built the

main  view

“V_SFD_REGISTRATION__FACT” as shown in Figure 3.16. The view joins the fact

table with all dimensions in data mart which can be used to query date range. We

defined two other views:

e “V_SFD_REGISTRATION_COLLEGE”

that used

measures for semester weeks for each college.
e “V_SFD_REGISTRATION_NEED” which used to calculate measures

to calculate

for semester weeks for each need level between ‘A’ and ‘F’.

W_SFO_REGISTRATION_FACT ™,
DATE_KEY MUMEER
ACADEMIC_WEEK_OF_SEMESTER  NUMEER
FULL_DATE DATE
DATE_NAME WARCHARZ (11)
SEMESTER_NO MUMEBER
SEMESTER_TITLE WARCHARZ (200
YEAR_NO MUMEBER
DEPARTMENT_NO MUMEER

DEFPARTMENT_AR_MNAME
DEPARTMENT_EN_MNAME
COLLEGE_NO
COLLEGE_AR_MAME
COLLEGE_EN_MAME
NEED_LEWVEL
REGISTERED_STUDENTS
REGULAR_STUDENTS
REMAINING_FEES
GUARANTEED_STUDENTS
GUARANTEED_STUDEMTS_FEES

VARCHARZ (50)
VARCHARZ (50)
NUMBER
VARCHARZ (50
VARCHARZ (B0)
WARCHARZ (1)
MUMBER
MUMBEER
MUMBER
NUMBER
MUMBER

GEN_DATE_DIM
ACD_ACADEMIC_SEMESTERS_DIM
ACD_DEPARTMENT_DIM
ACD_COLLEGE_DIM

\ SFD_REGISTRATION_FACT

J

Figure (3.16): Students Registration Views (Student Fund)

Cash Grants Data Mart

W_SFO_REGISTRATION_COLLEGE ™
ACADEMIC_WEEK_OF_SEMESTER  NUMEER
FULL_DATE DATE
DATE_NAME WARCHARZ (11)
SEMESTER_NGO NUMBER
SEMESTER_TITLE WARCHARZ (200)
YEAR_NO MUMBER
COLLEGE_NO MUMBER
COLLEGE_AR_NAME WARCHARZ (B0)
COLLEGE_EN_NAME WARCHARZ (60)
NEED_LEVEL VARCHARZ (1)
REGISTERED_STUDENTS LINKN OWN
REGULAR_STUDENTS LINKN CN
REMAINING _FEES LININ OWN
GUARANTEED_STUDENTS LINKN OWN
GUARANTEED_STUDENTS_FEES LINKN WM

Q_SFD_HEGISTHATIDN_FADT Y,

W_SFO_REGISTRATION_NEED ™

ACADEMIC_WEEK_OF_SEMESTER  NUMEER
FULL_DATE DATE
DATE_NAME WARCHARZ (11)
SEMESTER_NO NUMBER
SEMESTER_TITLE WARCHARZ (200)
YEAR_NG HUMBER
NEED_LEVEL WVARCHARZ (1)
REGISTERED_STUDENTS LINKN OWN
REGULAR_STUDENTS LINKN OWN
REMAINING_FEES LINKN OWN
GUARANTEED_STUDENTS LINKN WM
GUARANTEED_STUDENTS_FEES UNKNCWN

\E;SFD_HEGISTHATIDN_GULLEGE

Both Student Fund and Finance departments need to trace how many students

are get benefit of cash grants in daily basis. Also they need to query total cash grants

amount paid for students. For this, we designed Cash Grants Data Mart which it holds
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two measures, total students count and total cash amount every day, and categorized
by semesters and grants as shown in Figure 3.17. The fact table has three foreign keys

for Date, Semester, and Grant dimension tables.

# ol & ACD_ACADEMIC_SEMESTERS_DIM
P DATE_KEY NUMBER P * SEMESTER_NO NUMBER
F * SEMESTER_NO NUMBER SEMESTER_TITLE  WARCHARZ (200)
FULL_DATE o~ " YEAR_NO NUMBER
DATE_NAME f HARZ (11} START_DATE DATE
DAY_OF_WEEK NUMEER END_DATE DATE
DAY_NAME_OF_WEEK VARCHARZ (10} G» ACD_ACADEMIC_SEMESTERS_DIM_PK (|
DAY_OF_MONTH NUMBER
DAY_OF_YEAR NUMBER 4
WEEKDAY_WEEKEND VARCHARZ (10) €
WEEK_OF_YEAR NUMBER
WMONTH_NAME VARCHARZ (10) #  SFD_CASH_GRANT_FACT # SFD_GRANT_DIM
T, {s]7 o2 LA 35 F " DATE_KEY NUMBER P " GRANT_NO NUMBER
IS_LAST_DAY_OF_MONTH  NUMEBER F " GRANT_NO NUMBER GRANT_MAME  WARCHARZ (100)
E:EE:E:E-\‘:E’::TER :E::E:E F " SEMESTER_NO NUMBER[ GRANT_TYPE  NUMBER
CALENDAR_YEAR_MONTH  VARCHARZ (10) - iLLéDUENNTTS‘COUNT :jﬂ:gig &= SFD_GRANT_DIM_PK (GRANT_NO)
CALENDAR_YEAR_QTR VARCHARZ (10) =
FISCAL_MONTH_OF_YEAR  NUMBER "8 SFD_CASH_GRANT_FACT_GEN_D|
FISCAL_QUARTER NUMBER “9 SFD_CASH_GRANT_FACT_SFD_G
FISCAL_VEAR NUMBER o 3 SFD_CASH_GRANT_FACT_ACD_A|

Figure (3.17): Cash Grant Data Mart

We build “V_SFD_CASH_GRANT_FACT” view by joining fact table
“SFD_CASH_GRANT_FACT” with all three dimension tables as illustrated in Figure
3.18. This view used to get measures in daily basis. Additionally, we designed

“V_SFD_CASH_GRANT_SEMESTER” view to summarize measures over

semesters.

W_SFD_CASH_GRANT_FACT T W_SFD_CASH_GRANT_SEMESTER ™
DATE_KEY NUMEER SEMESTER_NO NUMBEER
DATE_NAME VARCHARZ (11) SEMESTER_TITLE  WARCHARZ (200)
SEMESTER_NC NUMEER. YEAR_ND NUMEBER
SEMESTER_TITLE  WARCHARZ (200) GRANT_NO NUMEER
YEAR_NO NUMEER GRANT_NAME WARCHARZ (100)
GRANT_NO NUMEER STUDENTS_COUNT  UNKNOWN
GRANT_NAME VARCHARZ (100) AMOUNT UM KN O
GRANT_TYPE NUMBEER

= V_SFD_CASH_GRANT_FACT
STUDENTS_COUNT  UNKNOWN \YSFB - - i
AMOUNT UNKNOWN
GEN_DATE_DIM
ACD_ACADEMIC_SEMESTERS_DINM
SFD_GRANT_DIM

'.\EFD_E:ASH_GHANT_FMT

/

Figure (3.18): Cash Grant Views
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Deferred Grant Data Mart

Deferred Grants in IUG are loans granted in the beginning of the semester to
students which they must pay it later during the semester. Deferred Grant Data Mart
has a fact table of three measures as shown in Figure 3.19, total amount granted in a
semester, total amount paid back by students, and total amount must be paid. Rows in

the fact table are unique for each semester and grant which defines its granularity.

#  ACD_ACADEMIC_SEMESTERS_DIM 4 SROSICGERRE NEERRNISEEET) 3 SFD_GRANT_DIM
P " SEMESTER_NO HUMEER . g:ﬁ:ﬂi o I:EHEEg P * GRANT_NO NUMBER
SEMESTER_TITLE WARCHARZ (200)| AN AMEUNT r]|_|r¥1BEF; GRANT_MAME VARCHAR:
YEAR_NO NUMBER ‘] B BRIy GRANT_TYFE  NUMBER
START_DATE DATE PAYED_AMOUNT NUWMEER
END_DATE DATE MUST_BE_FAYED_AMOUNT NUMBER = SFD_GRANT_DIM_PK (GRANT
= ACD_ACADEMIC_SEMESTERS_DIM_PK( ‘13' SFD_DEFERRED_GRANT_FACT_SFD_GRAN
E3 SFD_DEFERRED_GRANT_FACT_ACD_ACAD

Figure (3.19): Deferred Grant Data Mart

This data mart has one simple view “V_SFD_DEFERRED_GRANT_FACT”

which join the fact table with all two dimension tables (Academic Semester and Grant)
as shown in Figure 3.20

V_SFD_DEFERRED_GRANT_FACT Y
SEMESTER_NG MUMEER
SEMESTER_TITLE VARCHARZ (200}
YEAR_ND MUMEER
GRANT_NO MUMEER
GRANT_NAME VARCHARZ (100)
GRANT_AMOUNT LINKN DN
PAYED_AMOUNT LMK SN
MUST_BE_PAYED_AMOUNT  UNKNOUWN

ACD_ACADEMIC_SEMESTERS_DIM
SFD_GRANT_DIM

'-\EFD_DEFEHHED_GH.&NT_F.&BT _/.-'

Figure (3.20): Deferred Grants View

Student Fund Summary Data Mart

This data mart holds summary about student fund grants. Its fact table contain
total students count and their total grant amount that executed every day categorized
by grant no, semester, and academic program. Dimensions in this data mart are Grant,
Academic Program, Semester, and Date as shown in Figure 3.21.
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¥ AcD_ACADEMIC_SEMESTERS_DIM 2 GEN_DATE_DIM
P " SEMESTER_NO NUWMBER P " DATE_KEY NUMBER
SEMESTER_TITLE ARCHARZ (200) F " SEMESTER_NO NUMBER
" YEAR_NO NUWBER — FULL_DATE ATE
START_DATE DATE DATE_NAME VARCHARZ (11)
END_DATE DATE DAY_OF_WEEK NUMEBER
I o) A o e e, LG DAY_NAME_OF _WEEK VARCHARZ (10)
DAY_OF_MONTH NUMBER
[ DAY_OF_YEAR NUMBER
1 WEEKDAY_WEEKEND VARCHARZ (10)
WEEK_OF_YEAR NUMEBER
#  SFD_STUDENT_FUND_FACT MONTH_NAME VARGCHARZ (10)
ALY NUMBER MONTH_OF _YEAR NUMBER
_ -+ PR R — IS_LAST_DAY_OF_MONTH NUMEBER
SFD_GRANT_DIM ) R [9 R — CALENDAR_QUARTER NUMEBER
P " GRANT_NO NUMBER " STUDY_PROGRAM  VARCHARZ (1) TS NUMBER
GRANT_NAME  VARCHAR2 (100)|gfe] ~ STUDENTS_COUNT  NUMBER [ LTI AL AT ShE(D
GRANT_TYPE  NUMBER AMOUNT NUWMBER CALENDAR_YEAR_QTR ARCHAR2 (10)
= ACADEMIC_MONTH_OF_SEMESTER  NUMBER
(s HURG RAN DECIMERH(C AN IEHE) "3 SFD_STUDENT_FUND_FACT_ACD_ACAI ACADEMIC_WEEK_OF_SEMESTER NUMBER
"8 SFD_STUDENT_FUND_FACT_SFD_GRAI ACADEMIC_DAY_OF_SEMESTER NUMBER
53 SFD_STUDENT_FUND_FACT_ACD_STU TEELR VDD T ERE
53 SFD_STUDENT_FUND_FACT_GEN_DAT TR, AUEE. Dy VLR
Vi G= GEN_DATE_DIM_PK (DATE_KEY)
E% GEN_DATE_DIM_ACD_ACADEMIC_SEMESTERS_DIM_FK
¥ ACD_STUDY_PROGRAM_DIM
P " PROGRAM_NO VARCHARZ (1)

FROGRAM_NAME WARCHARZ (B0)

G ACD_STUDY_PROGRAM_DIM_PK (PRO|

Figure (3.21): Student Fund Totals Data Mart

Based on this data mart, user can query grant execution in daily basis or weekly
by using “V_SFD _STUDENT_FUND_FACT” view shown in Figure 3.22.
Depending on this view, we designed “V_SFD_STUDENT_FUND_SEMESTER”

which calculate granted students count and grants amount for each semester.

%_SFD_STUDENT_FUND_FACT N _SFD_STUDENT_FUND_SEMESTER ™,

DATE_KEY NUMEBER SEMESTER_NO NUMBER
FULL_DATE DATE SEMESTER_TITLE  VARCHARZ (200}
DATE_NAME WARCHARZ (113 YEAR_NO NUMEBER
SEMESTER_NO NUMEER PROGRAN_NC WARGHARZ (1)
SEMESTER_TITLE  WARCHARZ (200) PROGRAM_NAME  WVARCHARZ (50)
YEAR_NO NUMEBER STUDENTS_COUNT  UNKNOWH
PROGRAM_NO WVARCHARZ (1) AMOUNT UNKNOWN

PROGRAM_NAME WARCHARZ (B0)
STUDENTS_COUNT MUMEER
AMOUNT LINKMOWMN

\.\"‘L_F_SFD_STUDENT_FUND_FAGT J

GEN_DATE_DINM
ACD_ACADEMIC_SEMESTERS_DIM
ACD_STUDY_PROGRAM_DIM
SFO_STUDENT_FUND_FAGCT

\EFD_GHANT_DIM /

Figure (3.22): Student Fund Totals Views

4.2.2.3 Finance Department Data Marts

Finance department requirements about students are designed in one data mart
which is Financial Collection described below.
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Financial Collection Data Mart

Financial Collection Data Mart contains details about daily fees collections from
students. It has three measures which are total students count paid their fees of
specified day, total amount collected from students, and total transactions count. The
granularity of this fact table identified as 1 row per day, per semester, per department
per teller. Thus, fact table has three foreign keys to Date, Academic Semester, and

Department dimension tables as shown in Figure 3.23.

& s
GEN_DATE_DIM J ACD_ACADEMIC_SEMESTERS_DIM g ACD_COLLEGE_DIM
== EELEE—;?; "o :jmg:i F " SEMESTER_NO NUMBER I P " COLLEGE_NO NUMBER
SEMESTER | NUVEER L | SEMESTER_TITLE  VARCHARZ (200) A SRS
FULL_DATE PATE o B VEAR_ND NULIBER FEEE [ (R E
Dy TG, START_DATE DATE . PROGRAL
DAY_NAME_OF_WEEK VARCHARZ (10) S = SAINE L
S [ wouser 5= ACD_ACADEMIC_SEMESTERS_DIM_PK (SE = ACD_COLLEGE_DIM_PK (COLLEGE_ND
DAY_OF_YEAR NUMEER L3 'y
WEEKDAY_WEEKEND WARGHARZ (10
WEEK_OF_YEAR NUMBER N 1
VARCHARZ (10)
DL ARCLAT D) #  sFs_Financial_coliecTion_fact
MONTH_OF_VEAR NUMBER P e # ACD_DEPARTMENT_DIM
IS_LAST_DAY_OF_MONTH NUMBER P B e P ° DTS E TWBER
CALENDAR_QUARTER NUMBER = & . R
P " DEPARTMENT_NO NUMBER DEPARTMENT_AR_NAME  WARCHARZ (80)
CALENDAR_YEAR NUMBER 2 i CEECET S ol T )
CALENDAR_YEAR_MONTH TR AT P " TELLER_USERNAME VARCHARZ (20) T T (
CALENDAR_YEAR_QTR VARCHARZ (1) | SN SRR LND) (R ER B>t ]
ACADEMIC_MONTH_OF_SEMESTER  NUMEER - TRANSACTIONS_COUNT  NUMBER Bl L
ACADEMIC_WEEK_OF_SEMESTER NUMBER AMOUNT NUMBER =
ACADEMIC_DAY_OF_SEMESTER NUMBER = SFS_FINANCIAL_COLLECTION_FACT_PK (DAT] &= ACD_DEPARTMENT_DIM_FK (DEPARTMENT_NQ
INSERT_AUDIT_KEY NUMBER =
_ _ - ACD_DEPARTMENT_DIM_ACD_COLLEGE_DIM_F|
UPDATE_AUDIT_KEY NUMBER :Q TABLE_31_GEN_DATE_DIM_FK (DATE_KEY) 2 - = - - = -
%3 SFS_FINANCIAL_COLLECTION_FACT_ACD_DE
= GEN_DATE_DIM_PK (DATE_KEY) 52 SFS_FINANCIAL_COLLECTION_FACT_ACD_AQ
%5 GEN_DATE_DIM_ACD_ACADEMIC_SEMESTERS_DIM_FK {

Figure (3.23) Financial Collection Data Mart

Depending on requirement analysis of finance department, we designed logical
views shown in Figure 3.24. The base view “V_SFS_FIN_CLCT_FACT” joins the
fact table with all dimension tables. Then both “V_SFS_FIN_CLC_DATE_TELLER”
and “V_SFS_FIN_SEMESTER_DEPARTMENT” are designed based on the main
view. Next, “V_SFS_FIN_CLCT_SEMESTER_TELLER” and
“V_SFS FIN_SEMESTER_COLLEGE” are designed based on
“V_SFS FIN CLCT TELLER” and “V_SFS FIN_SEMESTER_DEPARTMENT”

respectively. The purpose of each view is as follow:

e “V_SFS FIN CLCT DATE_TELLER” calculates total fees collected
in specific date for each teller regardless department or college.

e “V_SFS FIN CLCT SEMESTER TELLER” calculates total fees
collected during a semester for each teller regardless department or

college.
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e “V_SFS FIN SEMESTER _DEPARTMENT” calculates total fees
collected during a semester for each department.

e “V_SFS FIN SEMESTER_COLLEGE” calculates total fees collected
during a semester for each college.

W_SFS_FIN_CLCT_FACT V_SFS_FIN_CLCT_DATE_TELLER %_SFS_FIN_SEMESTER_DEPARTMENT
DATE_KEY NUMBER DATE_KEY NUMBER SEMESTER_NO HUMBER
FULL_DATE DATE FULL_DATE DATE SEMESTER_TITLE VARCHARZ (200)
DATE_NAME WARCHARZ (11) DATE_NAME WARCHARZ (11) YEAR_NO HUMBER
SEMESTER_NO NUMEER SEMESTER_NC NUMBER DEPARTMENT_NO WUMBER
SEMESTER_TITLE WARCHARZ (200) SEMESTER_TITLE WARCHARZ (200) DEPARTMENT_AR_NAME  WARCHARZ (50)
YEAR_NO NUMBER YEAR_NO NUMEER DEPARTMENT_EN_NAME  WARCHARZ (B0)
DEPARTMENT_NO NUMEER TELLER_USERNAME WARCHARZ (20) COLLEGE_NO WUMBER
DEPARTMENT_AR_NAME  WARCHARZ (BO) STUDENTS_COUNT UNKNDWN COLLEGE_AR_NAME WARCHARZ (50}
DEPARTMENT_EN_NAME  WARCHARZ (80) TRANSACTIONS_COUNT  LINKNOWN COLLEGE_EN_N&ME WVARCHARZ (80}
COLLEGE_NO NUMEER AMOUNT UNKNOWN STUDENTS_COUNT UNKNOWN
COLLEGE_&R_N&ME WARCHARZ (80) TRANSACTIONS_COUNT UNKNOWH
GOLLEGE_EN_NAME WARCHARZ (80) Q’—SFS—F'N—GLCT—FMT / AMOUNT - UNKNOWH
TELLER_USERNAME WARCHARZ (20} V_SFS_FIN_SEMESTER_COLLEGE
STUDENTS_COUNT NUMBER SEMESTER_NO WUMEER Q—SFS—FIN—CLCT—MCT /
TRANSACTIONS_COUNT NUMEER SEMESTER_TITLE VARCHARZ (200) % _SFS_FIN_CLCT_SEMESTER_TELLER
AMOUNT LA YEAR_NO NUMBEER SEMESTER_NO NUMBER

GEN_DATE_DIM COLLEGE_NO NUMEER SEMESTER_TITLE WARCHARZ (200)
ACD_ACADEMIC_SEMESTERS_DIM COLLEGE_AR_NAME WARCHARZ (80) YEAR_NO NUMBER
ACD_DEPARTMENT_DIM COLLEGE_EN_NAME WARCHARZ (50) TELLER_USERMNAME WARCHARZ (20)
ACD_COLLEGE_DIM STUDENTS_COUNT UNKNOWH STUDENTS_COUNT UNKNOWN

\EFS_FINANCIAL_COLLECTION_F.&CT / TRANSACTIONS_COUNT  UNKNOWN TRANSACTIONS_COUNT  UINKNOWN

AMOUNT UNKNOWN AMOUNT UNKHOWHN
\l{_SFS_FIN_SEMESTEH_DEP.&HTMENT _/ \l{_SFS_FIN_CLCT_DATE_TELLEH j

Figure (3.24): Financial Collection Views

In this project, Data hierarchy was very important because of the relationship
business wise between the data. Hierarchies are meaningful, standard way to group the
data within a dimension so you can begin with the big picture and drill down to lower
levels to investigate anomalies. According to Kimball, hierarchies are the main paths
for summarizing the data. Data hierarchy is an arrangement of data consisting of sets
and subsets such that every subset of a set is of lower rank than the set. In the context
of the data warehouse, it can be used to provide paths that can be used to roll up and
drill down when analyzing the data. The data hierarchy is applicable to the dimension

table and it allows for organization of data.

3.3 System Implementation

The system development is the actual implementation of the analysis and design
carried out. In this phase of the project, we designed the data warehouse (Fact and
dimension tables), the ETL (Extract, Transform and Load) and the front end

application for the purpose of this project.
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Validation process involved the confirmation by examination and provision of
objective that an information system has been implemented correctly and conforms to

the need of the user and intended use.

The main focus of this phase is developing procedures to validate the data that
has been extracted and moved data in a form that can then be loaded into the
warehouse. Finally, the data must be analyzed to determine whether or not certain
elements should be cleansed prior to putting it into the warehouse. (Burton & Green,
2016)

The system development stage can now be embarked upon after the actual

understanding of the expectation of the business users has been captured.

3.3.1 Design of the Physical Database

The models of IUG data warehouse is designed using Oracle SQL Developer
Data Modeler. Thus, we can easily generate the SQL scripts of any database engine as
shown in Figure 3.25. In our case, we have generated scripts for Oracle database
engine. Next, the actual design of the database is carried out by executing scripts on
data warehouse source using the Oracle SQL Developer IDE.

b DDL File Editor - Oracle Database 11g — O X

Orade Database 11g '| |DW Model - Generate Clear

SRRl
BoHoo

9 |ECREATE TABLE ACD ACADEMIC SEMESTERS_DIM
10 {
11 SEMESTER_NO NUMBER WOT WULL ,

12 SEMESTER_TITLE VARCHAR2 (200} ,
13 YEAR_NO NUMBER NOT NULL ,
14 START_DATE DATE ,

15 END_DATE DATE

16 Vs

17| (COMMENT ON TABLE ACD ACRADEMIC SEMESTERS_ DIM

18 Is

15 TEaaledl F AaaalS¥l Jeaall Jgap' ;7

20| 'ALTER TABLE ACD ACADEMIC SEMESTERS DIM ADD CONSTRAINT ACD ACADFMIC SEMESTERS DIM PK PRIMARY EEY ( SEM

23|E/CREATE TABLE ACD_LCADEMIC_YEAR DIM
24 {

25 YEAR_NO NUMBER NOT NULL ,
26 YEAR_TITLE VARCHAR2 (&0) ,
27 START_DRIE DATE ,

28 END DATE DATE

Save Eind Close Help

Figure (3.25): DDL Generator in Oracle SQL Developer Data Modeler
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As a part of physical design of data warehouse, we created foreign keys between
fact tables and every dimension table related to fact table to guarantee the referential
integrity between tables. Referential integrity is a concept of establishing a parent-
child relationship between two tables, with the purpose of ensuring that every row in

the child table has a corresponding parent entry in the parent table.

For this project as mentioned earlier, we adopted Kimball approach of data
warehousing. So based on Figure 2.2, the staging phase is responsible of loading data
from different sources in IUG (i.e. OLTP database, flat files, or web services) to data
warehouse tables. This process is deployed on dedicated server on IUG. The physical

design of data warehouse tables was explained in 3.2.4.

3.3.2 Design of the ETL Process

ETL process is implemented after the logical and physical designs of the data

warehouse are completed.

As mentioned in the beginning of the project that the IUG has different OLTP
databases to extract from. ETL is the process of retrieving and transforming data from
the source system and putting it into the data warehouse. With the scope of this project,
we used Talend Open Studio to design the ETL process in order to load the data into

the data store.

The ETL process is based on the principles provided by Ralph Kimball in
(Kimball & Caserta, 2011). After the physical design is implemented on data
warehouse database, staging tables are designed. Staging tables are almost having the
same structure as source system’s tables. In these tables, the data is cleansed and
validated along with other quality checking and improvement processes.

In Figure 3.26, we show an example of loading staging tables in our
implementation using Talend Open Studio. In this example we extract Academic Years
data from source system, after then we map columns between source dataset and
destination source which is STG_ACADEMIC_YEARS. In the same way and after

the previous process completes (OnSubjobOk in Figure 3.26), we load Academic
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Semesters

and Dates. In Dates loading process, we join Kimball dates dataset (The

Microsoft Data Warehouse Toolkit, 2nd Edition, 2017) with semesters in staging area.

Similarly, we load all staging tables in the data warehouse which will be the base

for extracti

ng data to dimension and fact tables.

= Load Academic Years Staging Table

- - P
EE' row 1 (Main] E’%E STG_ACADEMIC_YEARS (Main] D """':
Academic {Tkrs Source Data Mapper Academic Years Staging Table
OnSulfjobOk
= Load A mic Semesters Staging Table
- A T
E:QE' Tow2 (Main) E%E STG_ACADEMIC _SEMESTER (Main) E‘-—-‘:
Academic SedTlsters Source Data Mapper Academic Semseters Staging Table
= Load Date Staging Table
OnSubfjobCk

i :% =,

e
-——
=

cademic Ser@sters Staging Table

Data Mapper

.[ﬂ row.3 {(Lookup) [ rov Main STG_DATE )
)
ﬂ o — {1} o *-—'
e e DY SND) =
KIMBALL_DATE tlaoin_2 Dates Staging Table

From

Figure (3.26): Example of Loading Staging Tables

the staging tables, data is loaded firstly into dimension tables, then facts

tables are loaded. Dimension tables are loaded first because of referential integrity that

was described in previous section.

The data in dimension tables increases and changes slowly. These changes of

data may or may not be tracked based on business requirements. There are different

methods to

be adopted for each of dimension tables as known as Slowly Changing

Dimensions (SCD). These methods are based on Kimball's approach of Slowly

Changing Dimensions in a data warehouse and described below.
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SCD Type 1: Overwrite existing record

In slowly changing dimension Type 1, no history of dimension changes is kept
in the database. The old dimension’s attribute value is simply overwritten be the new
one. This case is used when the business requirements state that no history of data is
required for any analysis.

Figure 3.27 and Figure 3.28 illustrate SCD Type 1 when changing a department

name in Departments dimension table.

|} DEPARTMENT_NO | |} DEPARTMENT _AR_MAME | {} DEPARTMENT_EN_NAME | |} COLLEGE_ND | I} 1S_ACTIVE | i} IS_GENERAL

B05 olazaps Il dwain Joftware Engineering g1 1

Figure (3.27): SCD Type 1 Before Changing a Record

As shown in  figure below, the department name in
DEPARTMENT_AR_NAME and DEPARTMENT_EN_NAME columns are totally

overwritten by the new value.

{} DEPARTMENT _NO |{} DEPARTMENT _AR_NAME |} DEPARTMENT_BN_NAME |{} COLLEGE N0 |{} Is_ACTIVE | {} 15_GEnERAL

805 wipwlell Zoais Computer Engineering g1 1

Figure (3.28): SCD Type 1 After Changing a Record

SCD Type 2: Create new additional record

In this methodology, a new row is added for every change on the specified
columns. Using SCD Type 2 methodology guarantee keeping track of dimension
changes history. This type could be implemented by using three additional columns
for dimension table, start_date, end_date, and is_active flag to indicate which record

is most recent.

This type of SCD, is the most commonly used and preferred for important data
because of its ability to store unlimited history as well as to store the time of that

change.
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In Figure 3.29 we show a student record before moving from a neighborhood to
another. And after changing NEIGHBORHOOD _ID from 1 to 3, a new record is

created with the new value as shown in Figure 3.30.

{} STUDENT_NO |4} STUDENT_EN_NAME |{} NEIGHBORHOOD_ID | {} SCD_START |{} SCO_END |{} ACTIVE
120140001 Belal Shhair 113-APR-14 (null) 1

Figure (3.29): SCD Type 2 Record Before Update

The SCD_END of the old column is set by the date of the update operation, and
ACTIVE flag is set to 0. Then the same date of update operation is used to be set for
SCD_START of the new record as shown in figure below.

{ STUDENT_NO [{} STUDENT_EN_NAME |{; NETGHBORHOOD_ID |} SCD_START |{} SCD_END |{} ACTIVE

120140001 Belal Sheair Wi13-APR-14 21-0CT-15 a
120140001 Belal Shbair J21-0CT-15 (null) 1

Figure (3.30): SCD Type 2 After Updating a Record

The ACTIVE flag is used to easily select all active records instead of using

effective dates which may put some complexity for the query.
SCD Type 3: Add new column

In this type usually only the current and previous value of dimension is kept in
the database. This type of SCD is used when the business requirements state that only
limited history needs to be stored in the dimension table. This is the least commonly
needed technique, and it is not needed in our design for IUG according to business

requirements.

For illustration, Figure 3.31 shows sample record of a customer, the dimension
table in this case can store only current type and last type of the customer.
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Before the change:
|{:u5tﬂmer_l D||{:ustﬂmer_hla rne||{:urrent_T\rpe||Previﬂu5_Tvpe|
|1 ||Cu5t_1 ||Cnl'pn|'ate ||Cnl'pn|'ate |

After the change:
|{:u5tﬂmer_l D||{:u5tﬂmer_l"-la me||{:urrent_T\rpe||Previﬂu5_Tvpe|
[1 lcust_1 |[Retail [corporate |

Figure (3.31): SCD Type 3 Example

Source: (Morzy, 2012)

SCD Type 6: a combination of SCD types 1, 2, and 3

In this type, a dimension has columns of Type 1 which will be overwritten by
the new value, and it has columns of Type 2 that will be traced over time, and finally
it has columns of Type 3 that have limited history.

In our design, we only have dimensions of SCD type 1, SCD type 2, and SCD
type 6 that is a combination of previous two types. For example, Student dimension in
Figure 3.29 has SCD type 2 for NEIGHBORHOOD_ID column and SCD type 1 for
STUDENT_EN_NAME column. When student name changes, it is overwritten by the

new value for last active record as shown in Figure 3.32.

|t STUDENT_NO |{} STUDENT_EN_MAME |{} NEIGHBORHOOD _ID | + SCD_START | |t SCD_END | |} ACTIVE
120140001[Belal Shbair 113-AFR-14 21-0CT-15 i
120140001[Belal W. Shbair 321-0CT-15 (null) 1

Figure (3.32): SCD Type 6 After Record Update

Loading SCD tables of Type 1 in Talend Open Studio goes directly through data
mapper to destination tables as shown in Figure 3.33. The process starts by extracting
data from Academic Years Staging Table, then it is filtered in Data Mapper. Finally,
the data is prepared to be loaded in ACD_ACADEMIC_YEAR_DIM table. After
completing academic years loading process, academic semesters loading process
starts. Similarly, data is extracted from staging table, then it handled in Data Mapper,
then it is loaded to dimension table.
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39 rowes in 0, 1s
E = __JJJ.J;'js : ;_;.ﬁ_
-\.'I. - .'..... i a1 LI* b - “
Academic YealT IStaging Tab Data Mapper Academic Years Dimension Table
OnSuljobok
=
[z 02 rows in 0,125 J2rowsin 0
-  O55 IFrownss - | -]
- A ~ h'MC TR T — :_:-E
_— ow 2 (M | ACD ACADEMIC SEMESTERS_D 3 —
Academic Semesters Stagng Table Data Mapper Academic Years Dimersion Table

Figure (3.33): SCD Type 1 Implementation in Talend Open Studio

All SCD tables are handled in same way and can be summarized in Figure 3.34.
Note that data sources with green icons will start in parallel processes since there is no
direct relationship between the target dimensions’ tables. Other data sources need to
be triggered explicitly by the preceding loading process. For example, loading Subjects
dimension table need Department dimension to be up to date since there is foreign key
from Subject dimension table to Department dimension table. Similarly, Department
dimension table need College dimension table to be loaded first for same reason. On
the other hand, Grants dimension table i.e. do not need to wait any other loading
process to be finished, so loading Grants dimension table can be started in parallel with

other independent loading processes.

i i &
ok
- - -
Ey Onebiob0k B}, (RIS DIE
— —
Academic Years Staging Table Academic Semesters Staging Table Dates Staging Table
A ar ¢ T
-_— — o, —
o OnEbjobOk 3 OrsLbjoE0k DED OnELbjobOk DEEp
Academic Study Flans Staging Table Colleges Staging Table Departments Staging Table Subjects Staging Table
] dh o &
- - -—
§P OrebjoboR DSEpT TriSubjobOK T OreubjoboR CSsy
Student States Staging Table Academic Levels Staging Table Neighborhoods Staging Table Students Staging Table
kE P i i
Highschool Branches Staging Table Highschool Years Staging Table Grants Stagng Table Highschool Grades Staging Table

Figure (3.34): SCD Type 1 Dimensions Load Process

71



Fact tables are loaded after loading all dimension tables. To summarize loading
fact tables’” process, we demonstrate as an example loading colleges’ total GPA for
students over academic semesters in Figure 3.35. Loading other fact tables is almost

going through the same stages.
= Load College Students GPA Fact Table

—
ACD_ACADEMIGSIEMESTERS_DIM

(o — :EF%F: v

197 = = L=

=
STy R - 00 =
Students Semester GPA Staging Table Aggregate Data

ACD_STUDENT GPA_FACT (Main )

=
College Students GPA Fact Table

o
I

*" Academid evels1 (Lockup) epartments1 {Lookup,

1
- -
S =
ACD_STUDENT _LEVEL_DIM ACD_DEPARTMENT_DIM

Figure (3.35): Fact Table Loading Process

Loading fact table starts by extracting staging data that is stored in staging area.
For this example, data in staging table is stored in the following format shown in Figure
3.36. According to the business requirements, staging table holds for each student,
stores his success hours for a semester and total success hours for entire academic life.

Also, it holds student’s GPA for the semester and average GPA for all semesters.

{t} schema ofstudents Semester GPA Staging Table x|
Students Semester GPA Staging Table

| Column | Db Column | Key | Type | DB Type
STUDENT_NO STUDENT_NO [T Integer INT
SEMESTER_NO SEMESTER_NO [T Integer INT
DEPARTMEMT _MNO DEPARTMEMT _MNO r Integer INT
STUDENT _ACADEMIC_|EVEL STUDENT _ACADEMIC_|EVEL [T Integer INT
STUDENT_SEMESTER_GPA STUDEMT_SEMESTER_GPA I_ Daouble DOLIBLE
STUDENT _SEMESTER_SUCCESS_HOWURS  STUDENT_SEMESTER_SUCCESS _HOURS I_ Integer INT
STUDENT TOTAL_GPA STUDENT TOTAL_GPA [T Double DOUBLE
STUDENT _TOTAL_SUCCESS_HOURS STUDENT_TOTAL_SUCCESSI_HOURS [T Integer INT o

»

1
| %] o] o] e] 5 s @] 3] 6
o | ol |

Figure (3.36): Example of a Staging Table

After extracting the records from staging area, we make data manipulation by

aggregating data over departments, semester, and academic levels. The next step is to

72



map aggregated data with dimension tables to obtain the surrogate keys of these
dimension tables. In Data Mapper, we join aggregated data key columns with
dimension tables to utilizing filters as shown in Figure 3.37, in this example we show
how to join Department dimension with aggregated data by specifying last active
records of departments SCD table, this operation known as “lookup” in Talend Open
Studio. Similarly, we join aggregated data set with Academic Level and Academic

Semester dimensions.

AggregatedStagingDatal & | &

Column |
SEMESTER._MO
DEFPARTMENT _MO
STUDENT_ACADEMIC_LEVEL
STUDEMNT_SEMESTER_GPA
STUDEMT_SEMESTER._SUCCESS _HOURS
STUDENT TOTAL_GFA
STUDENT_TOTAL_SUCCESS _HOURS

STUDENT_MNO
Academiclevels1 & ..' | L]
Departments1 Sl | &
Expr. key | Column |
SKEY
M, sggregatedStagingData 1.DEPARTMEN. . DEPARTMENT _NO

DEPARTMENT _AR_NAME
DEPARTMENT_EM_MAME
COLLEGE_NO
IS_ACTIVE

IS_GEMERAL

SCD_ACTIVE=1 =1 |
-

Figure (3.37): Data Mapper Lookups Example

After setting up lookup tables, the mapping process completes by specifying
measures from aggregated data set and surrogate keys in dimension tables as

demonstrated in Figure 3.38 below.
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B§ Talend Open Studio for Data Integration - tHMap - tMap_1 =12 x|

[ == Pd:[ 4G G R 0| 5| Automap
. 0 =
Lol T il | = IV-‘" EE TR =] ACD_STUDENT_GPA_FACT =]
Column |
SEMESTER_NO Expression | column |
DEPARTMENT_NG AcademicSemesters LYEAR_NO YEAR_NO
STUDENT_ACADEMIC_LEVEL = SEMESTER_NO
STUDENT_SEMESTER_GPA DEPARTMENT_NO
STUDENT_SEMESTER_SUCCESS_HOLRS ACADEMIC_LEVEL
STUDENT_TOTAL_GPA STUDENTS_COUNT
STUDENT_TOTAL_SUCCESS_HOURS AgaregatedStagingData 1. STUDENT_SEMESTER _. SEMESTER_GPA
STUDENT NO AggregatedstagingData1. STUDENT_TGTAL_GPA oA
- AgaregatedStagingDatal STUDENT_SEMESTER_...  SEMESTER_SUCCESS_HOLRS
AgaregatedStagingDatal STUDENT_TOTAL SUC...  SUCCESS_HOLRS
AcademicLevels1 F | 2
Departments1 Pl 2
Expr. key | column |
SKEY
M, AgaregatedstagingData L DEPARTMEN.. DEPARTMENT_NO
DEPARTMENT _AR_MNAME
DEPARTMENT_EN_NAME
COLLEGE_NO
I5_ACTIVE
IS_GENERAL
|m =1 ﬂ _I
|mdem’usemstersl F | 2 =

Figure (3.38): Preparing Fact Table Data Using Data Mapper

Finally, the last step of loading a fact table is to set the destination table, which
is in our case “ACD_STUDENT_GPA_FACT” table.

ETL process is scheduled to run in daily basis. Every day, at the lowest active
time of operational systems, ETL processes run for all jobs sequentially. It searches
for new transactions that occurred after last fetching time to be loaded in staging area
to be prepared for ETLSs.

3.4 System Verification and Maintenance

The best method for verifying the data in the warehouse is to prepare reports on
the data in the warehouse and compare it to figures based on the data subsequent to
putting into the warehouse which are perceived to be correct. It is seldom believed that
users verify the data because they are quite familiar with the detailed type of data they
are after. Lastly, Maintenance is essential at each and every stage of the life-cycle.
Primarily this entails documentation of processes, applications and most significantly,
metadata.
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Chapter 4
Proposed Materialized View Selection Model

In this chapter, we discuss in detail our proposed dynamic Materialized View

Selection model.

As discussed in literature review, most of existing approaches for materialized
view selection problem are static. There are some dynamic approaches that handle
adding new views, removing existing views, and updating view base relations. There
is lack in studies that handle dynamic materialized view selection based on view usage

frequency.

For dynamic materialized view selection, we propose a model that detects view
usage frequency over identified number of historical years, and then we prioritize
materialization depending on view’s usage frequency. Our model is shown in
Algorithm 1.

Algorithm 1. The pseudo code of the proposed materialized view selection algorithm based on frequency
matrix.

Purpose: 1. To determine which view can be materialized according to its usage frequency over
academic/financial year, and total query processing and maintenance costs.
Input: 2. List of views, V, of size n,

Checking Day d,
Minimum View Materialization probability &,
Number of history years, h, to be considered

Output: 3. Prioritized list of views, MV, that can be materialized

Procedure: | 4. (optional): exclude all views that are manually ignored by business users from L

5. Phase 1: for each view, calculate its usage for given history years h
I. letF = ¢
Il. fori=1ton = loop
. forj=htol -2 loop

V. let t = last_year(d) — (h —j)
V. U « retrieve usage frequencies for view V; in year t
VI. for each value v in U 2 loop
VII. setv =v * (ﬁ) (detracting value over years)
VIII. end loop
IX. add U to F;
X.  end loop
XI. end loop

6. Phase 2: for each view, check the similarity between features in F; and features of day d
I.  f4 < extract_features(d)
Il. fori=1tonloop
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1. VC « find_similarity(F;, fy)
Iv. if ve 2 6
V. add L; to MV
VL. Reorder output views list MV based on vc
VII. end if
VIII.  end loop
7. (optional): consider all views that are manually flagged to be materialized and add them
to MV

In Algorithm 1, the program accepts the following inputs:

e Listof views, I/, of size n: this is the list of views to select subset of them to
be materialized using our model.

e A certain day, d: the proposed model is triggered in daily basis, so that it is
running in every day of the academic/financial year to check current list of
views, and select subset of views to be materialized according to historical
usage of each view in past days that are similar to day d.

e Minimum view materialization probability &: the proposed model is
configurable to accept the minimum similarity ratio between features of
input day, d, and historical usage over days of each view. In case § = 1, it
means materialize any view if it has maximum execution trials in days
exactly similar to day d. In case § = 0, it means materialize all input views.
The value of § must be greater than 0 and it should be adjustable according
to materialization failure and success attempts.

e Number of history years, h: usage data are recorded over years, but there
must be a limit for historical data to be considered. For example; usage data
of ten years ago may not be as important as past year. However, our model
limits usage data to considered of the past h years only. This input is set

according to organization’s policy and vision.

The purpose of Algorithm 1 is to return a list of views to be materialized. This

list is ordered according to materialization priority.
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The proposed model formed by two phases, the first and last steps are optional
which are manually handled by the user. These two steps are designed to force

remove/add views from/to materialization as defined by user.

In phase 1, for each input view, we calculate its frequency matrix over identified
historical years. The values in the frequency matrix is calculated according to the

formula in line VI of Algorithm 1:

Unew = Vola * (JE) (4-1)

Where
vo1q- the original value of usage frequency of view
h: number of historical years to be considered
j: value between h and 1, which represent checking year’s distance

from current year

For example, assume the original frequencies of using VIEW _1, VIEW _2,
VIEW_3, and VIEW_4 for last 5 years (2016, 2015, 2014, 2013, and 2012) were as
shown in Table 4.1.

Table (4.1): Frequency Matrix of Last Five Years

View\Year 2016 | 2015 |2014 |2013 | 2012 | Total
VIEW 1 9 7 15 13 18 62
VIEW_2 1 3 9 12 17 42
VIEW_3 12 10 1 1 0 24
VIEW 4 0 0 5 11 13 29

Applying formula (4.1) we get detracted frequency matrix over years as shown
in Table 4.2. As we go far away from current year, the usage frequency is being less
important in comparison of closer years.
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Table (4.2): Detracted Frequency Matrix of Last Five Years

View\Year 2016 | 2015 |2014 |2013 | 2012 | Total
VIEW_1 9 5.6 9 5.2 3.6 32.4
VIEW 2 1 2.4 5.4 4.8 3.4 17
VIEW_3 12 8 0.6 0.4 0 21
VIEW_4 0 0 3 4.4 2.6 10

The frequency of using all views in last year is not affected, but the usage
frequencies in 2015 was detracted by (4/5). The usage frequencies in 2014 was
detracted by (3/5) as well, and those for 2013 and 2012 were detracted by (2/5) and
(1/5) respectively.

The purpose of this step is to give higher importance for recent usage of views
than older usage records. In our example in Table 4.2, we can obviously note that
VIEW _3 got higher priority to be materialized than VIEW_2 and VIEW _4, since it
is getting higher usage frequencies in recent years compared to 2012, 2013 and 2014,
that while VIEW _2 and VIEW _4 is not highly used in recent years as shown in
Table 4.1. VIEW_1 still has highest priority for materialization that because its big
usage frequencies in years 2012, 2013, and 2014 compared to VIEW _3 usage

frequencies in same periods.

Finally, in phase 2 we find the similarity between features of day d and
historical usage days’ features. In this thesis, we focus on academic day features

which are:

e Academic semester: any day in the academic year of the university
calendar is related to a specific semester. This feature will be one of the
following values: first semester, second semester, third semester.

e Month of the academic semester: first and second semesters are
typically last by four or five months, while third semester (summer
term) usually lasts after two months. Thus, MONTH_OF_SEMESTER
should be value between 1 and 5.
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e Week of the academic semester: this feature is recorded since some
views are usually used in specific weeks during academic semester, so
that we would better to materialize these view on the specific week
rather than materializing it during the whole academic month of

semester.

These features are selected as the directors of Admission & Registration,
Finance, and Student Fund departments recommended, their recommendation was
based on daily report usage. All these features are extracted as in line | of phase 2 in
Algorithm 1, then it was passed to the similarity check algorithm. Some enterprises
may select other features for similarity check, such as: months of the year, weeks of
the year, weeks of the month, fiscal year quarter, or month of quarter. That can be

easily implemented using our model.

Our similarity check algorithm is shown in Algorithm 2.

Algorithm 2. The pseudo code of similarity check function.

Purpose: 1. Tofind the similarity ratio between given day features and detracted frequency matrix
Input: 2. Features of view i usage over years, F;,
Day features f,
Output: 3. Similarity ratio of f,; to F;, value between 0 and 1
Procedure: | letS =1

Il. setL = [SEMESTER,[MONTH_OF_SEMESTER, WEEK_OF _SEMESTER]]
I1l. for each level min L

IV.  setSiemp =0

V.  for each feature [ in ordered list L of level m

VI. u « calculate total usage frequency of view i where [ = f; (1)
VIL. Umax < Select maximum usage frequency of view i for all [ possible values
VIIL. Stemp = Stemp + ﬁ

IX. end foreach

_ Stemp

X. Stemp ~ size of Linlevel m

XL IfSeemp =0
XIl. S=0
XII1. go to end
XIV. endif

XV.  S=5%Siemp
XVI. end foreach end = return S

Algorithm 2 accepts two inputs which are:
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Checking Day Features, f,: formed a list of features of the input day
which are extracted in step | of phase 2. For example, the day of October
01, 2016 has the following features: {SEMESTER: 1,
MONTH_OF_SEMESTER: 2, WEEK_OF SEMESTER: 5}.

List of detracted usage frequency of view i, F;: frequency matrix as
discussed before is designed for last h years, the data in this matrix is
hierarchal as shown in Figure 4.1, which means SEMESTER is related
to ACADEMIC YEAR, and MONTH OF SEMESTER and WEEK OF
SEMESTER is related to SEMESTER. Frequency matrix is simply
formed by aggregation queries over historical usage records.

Year
Y
Semester
Y Y
Month of Week of
Semester Semester

Figure (4.1): Usage Frequency Hierarchy

In the first step of similarity check algorithm, we consider similarity ratio
between entry day and historical usage of view i is 100% similar. Next we start
iterating over defined features list [Semester, Month of Semester, Week of Semester]
and calculate usage frequency for each feature. For any set of features in same level,
if there were not any historical usage records similar to input day’s feature, then we
set similarity ratio to zero. On the other hand, if there were some records, we calculate

the maximum usage frequency for all values of checking level by reserving parent
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level value; for example, if we are checking the similarity for Month of Semester, we
calculate the maximum frequency usage over all five possible values [1, 2, 3, 4, and 5]
for selected Semester (parent level) as shown in step V111 of Algorithm 2. For features
in same level (MONTH_OF_SEMESTER and WEEK_OF _SEMESTER in our case),

we calculate the average similarity ratio of them (step X in Algorithm 2). Then, the

u

last step, we reduce similarity check by factor , Where u is total usage frequency

Umax

of view i for selected feature, and u,,,, is the maximum usage frequency for view i

over all possible values of the selected feature.

For illustration, assume frequency matrices for VIEW_5 is as shown in Table
4.3 and Table 4.4, and assume the feature of checking day was {SEMESTER: 1,
MONTH_OF_SEMESTER: 2, WEEK_OF SEMESTER: 6}. We are going to
calculate the similarity for each feature in the features list. We will start by checking
the similarity of SEMESTER feature which is the parent in the hierarchy. Then we
will  check the similarity for both MONTH _OF SEMESTER and
WEEK_OF _SEMESTER features. Since these last two features are in same level (see
Figure 4.1), the similarity of this level is the average ratio of them. The result of this

level is multiplied with parent level (SEMESTER) to get final similarity ratio.

By running our similarity check algorithm, we start by checking SEMESTER’s

frequencies, which results:
u = total usage in 15* semester = 15 + 17 = 32
Then we calculate the maximum usage frequency over all semesters which is:
Umax = Max(32,19,0) = 32

We got S here not reduced for checking similarity between semesters since S =

Next, the algorithm goes deeper to next level by checking similarity between

month of semester, for this feature we get:
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u = total usage in 2™ month of 15¢ semester = 15

Then we calculate the maximum usage frequency over all months of current

semester (1% Semester) which is:

Umar = Max(17,15) = 17

u 15
However, Siemp bECOMe Seemp = Stemp + —= 0+ o= 0.88.

max

Table (4.3): Frequency Matrix of VIEW_5 Over Months

First Semester Second Semester | Third Semester
1%t month 17 0 0
2"4 month 15 19 0
3" month 0 0 0
4™ month 0 0 0
5™ month 0 0 0

Next, we check the similarity of week of the month based on Table 4.4:

u = total usage in 6" week of 15t semester = 12

Then we calculate the maximum usage frequency over all week of current

semester (1% Semester) which is:

Umax = Max(7,7,3,12,3) = 12

That makes Sy, increases since view i was being used most in 6™ week of first

SEMESter, Seemp = Stemp + —— = 0.88 + = = 1.8,

max

Table (4.4): Frequency Matrix of VIEW_5 Over Weeks

First Semester Second Semester | Third Semester
1% week 7 0 0
2" week 0 0 0
3" week 7 0 0
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4™ week 3 0 0
5™ week 0 10 0
6" week 12 9 0
7" week 3 0 0
8" week 0 0 0
9™ week 0 0 0
10" week 0 0 0

Finally, for current level we calculate the average by Siemp =

Stemp __1.88

=== 0.94. That makes S = S * Seemp = 1 0.94 = 0.94

size of Lin level m -

In our example, VIEW _5 has 94% chance to be called on the checking day. The
final decision is based on the user’s input § (minimum similarity ratio) as shown on
line IV in Algorithm 1.

After calculating similarity ratio, and if it passed the checking conditions on line

IV, then the view is considered to be materialized.
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Chapter 5

Results and Discussion

In this chapter, we test our model over TPC Benchmark H (TPC-H) showing
significant reduction in total MVPP cost in Section5.1. Additionally, in Section5.2
we show the effect of using the data warehouse in IUG environment and how

materializing its views can provide even better performance.

5.1 TPC Benchmark™H (TPC-H)

The component of TPC-H schema is defined to consist of eight tables (base
relation) including REGION, NATION, CUSTOMER, SUPPLIER, PART,
PARTSUPP, LINEITEM AND ORDERS. The relationships between these tables in
TPC-H schema are illustrated in Figure 5.1.

PART (P_) PARTSUPP (PS_) LINEITEM (L_) ORDERS (0 )
SF*200,000 SF*800,000 SF*6,000,000 SF*1,500,000
PARTKEY PARTKEY ORDERKEY ~———| ORDERKEY
NAME SUPPKEY ]_l_[: PARTKEY CUSTKEY
MFGR AVAILQTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT QUANTITY ORDERDATE
SIZE EXTENDEDPRICH ORDER-
CUSTOMER (C_) PRIORITY
CONTAINER SF7150,000 DISCOUNT CLERK
CUSTKEY
RETAILPRICE - TAX SHIP-
COMMENT RETURNFLAG PRIORITY
ADDRESS
LINESTATUS COMMENT
SUPPLIER (S_) NATIONKEY
SF*10,000 SHIPDATE
| PHONE
SUPPKEY COMMITDATE
ACCTBAL
NAME RECEIPTDATE
MKTSEGMENT
ADDRESS SHIPINSTRUCT
NATIONKEY [~ COMMENT SHIPMODE
PHONE NATION (N_) COMMENT
25
ACCTBAL
L | NATIONKEY REGION (R_)
COMMENT 5
NAME — | REGIONKEY
—g—
REGIONKEY NAVE
COMMENT
COMMENT

Figure (5.1): The TPC-H Schema
Source: (TPC Benchmark H, 2017)
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The number below each table name represents the cardinality of the table. Some
tables are factored by Scale Factor (SF) to obtain the chosen database size. Scale
factors that used for the test database must be chosen from the set of fixed scale factors
defined as follows (TPC Benchmark H, 2017, p. 79):

1, 10, 30, 100, 1,000, 3,000, 10,000, 30,000, 100,000

We run TPC-H schema by OraclellgR2 with database size defined with
reference to Scale Factor 1 (i.e., SF = 1; approximately 1 GB), the minimum required
for a test database. The size of the NATION and REGION tables are fixed to 25 and 5
rows respectively. The TPC-H Schema Table Sizes of each base relation are presented
in Table 5.1.

Table (5.1): The TPC-H Schema Table Size

Table Name R_’elation Size Record Size Table Size
(in Tuples) (in bytes) (in MB)
SUPPLIER 10,000 159 2
PART 200,000 155 30
PARTSUPP 800,000 144 110
CUSTOMER 150,000 179 26
ORDERS 1,500,000 104 149
LINEITEM 6,000,000 112 641
NATION 25 128 <1
REGION 5 124 <1

Source: (Phuboon-ob, 2009)

Table 5.1 presents each table and its relation size (tuples or rows), and the size
of each row (in bytes). The size of tables is number of rows multiplied by size of each

row.

Query Set for Materialized View Selection over TPC-H

Queryl to Query7 were introduced by (Phuboon-ob, 2009) for static

materialized view selection problem using Two-Phase Optimization (2PO) algorithm
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based on MVPP structure. However, in (Suchyukorn, 2013) the researcher improved
the query processing cost of the cheapest MVPP of Queryl to Query7 by her MVPP
re-optimization algorithm, and she used 2PO to select set of views to be materialized.
In this research and for TPC-H benchmark experiments, we based our effort on the re-
optimized MVPP generated by (Suchyukorn, 2013). The details of Queryl is discussed
in this section for illustration, while the other queries Query2 to Query?7 are listed in
Appendix 2. The Queryl to Query7 are denoted as Q1, Q2, Q3, Q4, Q5, Q6 and Q7.

The notations used in relational algebra query tree are as follow:

e g, represents the select operation, where a is a selection condition on
one or more attributes of a relation.

e 1, represents the project operation, where b is a list of one or more
attributes of a relation.

e X represents the inner join operation.

e y represents an aggregation function.

The details of Queryl and its relational algebra query tree is described as

follows:

Query Q1 produces the minimum supply cost of each nation of suppliers in
specific region, ASIA. Its relational algebra tree is shown in Figure 5.2.

Query Q1:

SELECT n_name. Min(ps_supplycost)
FROM part. partsupp. supplier. nation. region
WHERE p_partkey - ps_partkey
AND s_suppkey ps_suppkey
AND s_nationkey n_nationkey
AND n_regionkey r_regionkey
AND r_name “‘asia’
GROUP BY n_name
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region nation supplier partsupp part

Figure (5.2): Relational Algebra Query Tree of Query Q1

Relational Algebra Query Tree is usually used to express the execution plans for
database management systems (DBMS), it is the base item to build the MVPP

structure.

The cost of an execution plan does not have a unit. “The value of this column

does not have any particular unit of measurement; it is merely a weighted value used

to compare costs of execution plans” (Oracle Corporation, 2014, p. 334).

The rest of queries Q2 through Q7 are listed in Appendix 2: TPC-H Schema

Queries and Relational Algebra Trees for reference.

Depending on relational algebra trees of queries Q1 to Q7 and the cost (relation
size) of each query, the researchers generated their re-optimized MVPP. Then they

executed 2PO to select list of views to be materialized that resulting minimum query
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processing and maintenance costs. Figure 5.3 shows the resulted re-optimized MVVPP
and selected nodes to be materialized by 2PO algorithm. The cost for each operation
node is labeled at the right side of the node, the number of rows produced by this

operation is labeled at the left side of the node.
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Figure (5.3): MVPP with Materialized View Nodes Selected by 2PO

91



To calculate the total cost of MVVPP in Figure 5.5 and Figure 5.6, we return to
Maintenance and Query Processing Costs of Re-Optimized MVPP that are calculated
in (Suchyukorn, 2013), which are illustrated in Tables 5.2, and 5.3.

Table (5.2): The Maintenance Cost of the Re-Optimized MVVPP

iali Number of
Materlallzed ) Constructed from Nodes Maintenance Cost
View Base Relations

Tmpl, Tmp2, Tmp3, Tmp4,

Tmp6 3 TmpS, Tmpé 180,168
Tmpl, Tmp2, Tmp3, Tmp4,

Tmpll 5 Tmp5, Tmp6, Tmp7, Tmp8, 1,426,977,515,570
Tmp9, Tm10, Tmp1l
Tmpl, Tmp2, Tmp3, Tmp4,

Tmpl5 5 Tmpl2, Tmpl3, Tmp9, Tmpl0, 1,414,630,939,520
Tmpl4, Tmp7, Tmpl5

Tmp21 2 Tmpl6, Tmpl8, Tmp20, Tmp21 14,512,800,000

Tmp24 2 Tmp7, Tmp9, Tmpl0, Tmp24 2,731,179,455,194

Total Maintenance Cost 5,587,300,890,452

Source: (Suchyukorn, 2013, p. 77)

Table 5.2 shows the maintenance cost of each materialized node of re-optimized
MVPP in Figure 5.3 that are (tmp6, tmpl1, tmpl5, tmp21, and tmp24). However, it
also shows the number of base relations that could affect the materialized node. For
example, node Tmp6 has three base relations which are Region, Nation, and Supplier.
The total of MVVPP Maintenance Cost was introduced by (Yang, Karlapalem, & Li,
1997) and is calculated by the formula:

Crnaintenance = ZUEM fqu(U) (5-1)
Where:

M is the set of materialized views,
f.. 1s the frequency of updating base relations,
Cn (V) is the cost of maintenance when v is materialized.
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For Tmp6, C,,(Tmp6), it is constructed on three base relations, and accesses
nodes Tmpl, Tmp2, Tmp3, Tmp4, Tmp5 and the node itself. The cost of each node is
5, 1, 25, 25, 10000 and 50000, respectively as shown in Figure 5.3. Thus, the
materialized view maintenance cost of Tmp6 is 3*(5 + 1 + 25 + 25 + 10000 + 50000)

that is 180,168. Other materialized nodes costs calculated similarly.

Table (5.3): The Query Processing Cost of the Re-Optimized MVPP

Query Access from Node Query Processing Cost
Tmp6, Tmpl6, Tmpl7, Tmpl8,
Query number 1 (Q1) Tmp19, resultl 67,303,124,486
Query number 2 (Q2) Tmp15, result2 2,208,984
Query number 3 (Q3) Tmpll, result3 2,550,562
Tmp6, Tmpl6, Tmpl7, Tmpl2,
Query number 4 (Q4) Tmp23, result4 53,213,742,566
Query number 5 (Q5) Tmp21, results 362,760
Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968
Query number 7 (Q7) Tmp24, Tmpl12, Tmp25, result? 409,739,463,114
Total Query Processing Cost 533,527,035,440
Source: (Suchyukorn, 2013, p. 77)
On the other hand, the Query Processing Cost is calculated by:
Cqueryprocessing = ZqEQ fq Cq (M) ( 5-2)

Where:

M is the set of materialized views,

Q is the set of queries,

fq is the frequency of executing queries,

Cq(M) is the cost to compute g from the set of materialized views M.

For Query Q1 in Table 5.3, its total frequency of executing the query is 2, Q1
accesses the nodes named Tmp6, Tmpl6, Tmpl7, Tmpl8, Tmpl9, and resultl. The
cost of each node is 2003, 800000, 1602400000, 200000, 32048000000, and 160240,
respectively. So, the query processing cost of query Q1, C,(Q1) is (2)*(2003 + 800000
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+ 1602400000 + 200000 + 32048000000 + 160240) = 67303124486. The cost of Tmp6
is the number of resulting rows because it is a materialized node. Similarly, other costs

are calculated and listed in Table 5.3.

The total cost of the MVPP is calculated by (Yang, Karlapalem, & Li, 1997):

Crotar = ZqEQ quq(M) + Yvem fuCm(v) (5.3)

That is the total cost of the re-optimized MVPP by Suchyukorn, (Suchyukorn,
2013), is:

Ctotal = Cqueryprocessing + Cmaintenance

= 533,527,035,440 + 5,587,300,890,452 = 6,120,827,925,892

To show the effect of our proposed model on the total cost of resulted MVPP,
we need to design the usage frequency matrix of queries, Q1 to Q7. Assuming these 7
queries are executed over a fiscal year, and the features needed to be selected are
[QUARTER, MONTH_OF QUARTER, WEEK_OF QUARTER] as shown in
Figure 5.4.

Year

A

Quarter

A 4 A 4

Month of Week of
Quarter Quarter

Figure (5.4): TPC-H Usage Frequency Hierarchy
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Considering the usage frequencies are as listed in Table 5.4. Each query in the
table have total number of executions over the years after detracting values according

to our model.

Table (5.4): Usage Frequency Matrix of Queries Q1 through Q7 Over Financial
Year’s Quarter Weeks

1t Quarter 2"d Quarter | 3" Quarter | 4™ Quarter
1 week | Q2(6), Q3(7), Q7(3) | Q5(5), Q6(9) | QL(2) Q2(6)
2" week | Q1(2), Q6(9) Q4(2) Q7(3) | Q6(9) Q5(5), Q3(3)
3 week
14™ week

In those days with features similar to 1% week of 1% quarter in fiscal year, the list
of views selected to be materialized in the re-optimized MVPP will be changed. Thus,
views that flagged to be materialized in the trees of queries other than Q2, Q3, and Q7
will be canceled. In this case, tmp21 in Figure 5.3 will be unflagged as being

materialized view. The resulted MVPP will be as shown in Figure 5.5.
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Figure (5.5): MVPP in 1st Week of 1st Quarter
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The total maintenance cost of MVPP in Figure 5.5 is calculated in same way of
the re-optimized MVPP in Table 5.2.

Table 5.5 illustrates the maintenance costs of 5 materialized nodes shown in
Figure 5.5. Total Maintenance Cost, Cp,gintenance, 1S 9,572,788,090,452.

Table (5.5): The Maintenance Cost of the MVPP in 1st Week of 1st Quarter

iali Number of
Materlallzed ) Constructed from Nodes Maintenance Cost
View Base Relations

Tmpl, Tmp2, Tmp3, Tmp4,

Tmp6 3 Tmp5, Tmp6 180,168
Tmpl, Tmp2, Tmp3, Tmp4,

Tmpll 5 Tmp5, Tmp6, Tmp7, Tmp8, 1,426,977,515,570
Tmp9, Tm10, Tmpll
Tmpl, Tmp2, Tmp3, Tmp4,

Tmpl5 5 Tmpl2, Tmpl3, Tmp9, Tmp10, 1,414,630,939,520
Tmpl4, Tmp7, Tmpl5

Tmp24 2 Tmp7, Tmp9, Tmpl0, Tmp24 2,731,179,455,194

Total Maintenance Cost 5,572,788,090,452

Since the usage frequency of queries Q1, Q4, Q5, and Q6 is zero in 1% week of

1% quarter (checking days), then the query processing cost for those queries is 0. Table

5.6 shows the query processing cost of Queries Q1 to Q7. The total query processing
cost, Cqueryprocessing, Of this MVPP is 409,744,222,660.

Table (5.6): The Query Processing Cost of the MVPP in 1st Week of 1st Quarter

Tmp23, result4

Query Access from Node Query Processing Cost

Tmp6, Tmpl6, Tmpl7, Tmpl8,
Query number 1 (Q1) Tmp19, resultl 0
Query number 2 (Q2) Tmpl5, result2 2,208,984
Query number 3 (Q3) Tmpll, result3 2,550,562
Query number 4 (Q4) Tmp6, Tmpl6, Tmpl7, Tmpl2, 0
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Tmp21, Tmp20, Tmpl8, Tmpl6,
Query number 5 (Q5) results 0
Tmp21, Tmp20, Tmp18, Tmpl6,
Query number 6 (Q6) Tmp5, Tmp22, resulté 0
Query number 7 (Q7) Tmp24, Tmpl2, Tmp25, result? 409,739,463,114
Total Query Processing Cost 409,744,222,660

From above discussion, we can summarize the total cost of the MVPP in 15t week

of 1%t quarter is:

Ctotal = Cqueryprocessing + Cmaintenance

= 409,744,222,660 + 5,572,788,090,452 = 5,982,532,313,112

To calculate the total cost of the MVPP in 2" week of the 1% quarter, Figure 5.6
illustrates the nodes which should be materialized. Nodes Tmp6 and Tmp21 are
selected to be materialized according to our usage frequency matrix. The total
maintenance cost of these two nodes is 180,168 + 14,512,800,000 = 14,512,980,168.

Table (5.7): The Maintenance Cost of the MVPP in 2nd Week of 1st Quarter

iali Number of
Materlahzed ) Constructed from Nodes Maintenance Cost
View Base Relations
Tmpl, Tmp2, Tmp3, Tmp4,
Tmp6 3 Tmp5, Tmp6 180,168
Tmp21 2 Tmpl6, Tmpl8, Tmp20, Tmp21 14,512,800,000
Total Maintenance Cost 14,512,980,168

Similar to previous steps of Table 5.6, the total query processing cost of the
MVPP in 2" week of 1% quarter is the query processing costs of Q1 and Q6.

Caueryprocessing = 67,303,124,486 + 3,265,582,968 = 600,830,159,926
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Table (5.8): The Query Processing Cost of the MVPP in 2nd Week of 1st Quarter

Query Access from Node Query Processing Cost
Tmp6, Tmpl6, Tmpl7, Tmpl8,
Query number 1 (Q1) Tmp19, resultl 67,303,124,486
Tmpl5, Tmp7, Tmpl4, TmplO,
Query number 2 (Q2) Tmp9, Tmpl3, Tmp4, Tmp3, 0
Tmp2, Tmpl, Tmpl2, result2
Tmpll, Tmpl0, Tmp9, Tmp8§,
Query number 3 (Q3) Tmp7, Tmp6, result3 0
Tmp6, Tmpl6, Tmpl7, Tmpl2,
Query number 4 (Q4) Tmp23, result4 0
Query number 5 (Q5) Tmp21, result5 0
Query number 6 (Q6) Tmp21, Tmp5, Tmp22, result6 3,265,582,968
Tmp24, Tmpl0, Tmp9, Tmp7,
Query number 7 (Q7) Tmp12, Tmp25, result? 0
Total Query Processing Cost 600,830,159,926

From the above discussion, we can summarize the total cost of the MVVPP in 2™

week of 1% quarter as:

Ctotal = Cqueryprocessing + Caintenance =

= 615,343,140,094

600,830,159,926 + 14,512,980,168

Table (5.9): The Query Processing Cost, Maintenance Cost and Total Cost of 1st and

2nd Weeks of 1st Quarter
Cost of Q_uery C_:ost of Total Cost
Processing Maintenance

All-Virtual Views 8,427,206,080,471 0| 8,427,206,080,471
All-Materialized Views 1,940,978,234 | 7,686,779,440,303 | 7,688,720,418,537
2PO 533,527,035,440 | 5,587,300,890,452 | 6,120,827,925,892
1% week of 1 quarter 409,744,222,660 | 5,572,788,090,452 | 600,830,159,926
2" week of 1% quarter 600,830,159,926 14,512,980,168 | 615,343,140,094
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Figure (5.6): MVPP in 2nd Week of 1st Quarter

100



5.2 Legacy System versus Data Warehouse versus DW Materialized
Views
In this section, we compare IUG database’s performance before and after
implementing the data warehouse. We show the time consumed and total query cost
for each data mart using legacy system, then we show how the data warehouse
optimized it. Additionally, we show the effect of materializing data warehouse’s views

on the database performance for each data mart.

The time is recorded while executing each query, it is calculated by Oracle
Optimizer. The cost of queries is also calculated by the Oracle’s optimizer, Cost-Based
Optimizer CBO, which is a function of the CPU_COST and I0_COST as discussed in
(Oracle Corporation, 2014) and (Hellstrom, 2017), it represents units of work or
resource used in an operation. The optimizer uses disk 1/O, CPU usage, and memory

usage as units of work.
e High School Results Data Mart

For high school results data mart, we executed the query for last year, last three

years, last ten years, and all years (empty filter). The results are shown in Table 5.10.

Table (5.10): High School Results Experimental Results

Legacy Data Warehouse | Data Warehouse
System - Logical - Materialized
Filters Records ; ; -
ime ime ime
cost cost cost
(s) (s) (s)
last year 20305 | 0.322 | 2811 | 0.085 58 | 0.030 6
last three years 60457 | 0.511| 6344 | 0.111 162 | 0.051 6
last ten years (max) | 247075 | 1.198 | 10112 | 0.245 273 | 0.081 7

From the results above, data warehouse returns the results four to five times
faster than legacy system. Data warehouse gives even better performance as data

grows as shown in Figure 5.7.
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Figure (5.7): High School Results - Legacy System Vs Data Warehouse

On the other hand, materializing the data warehouse’s views gives the system
better performance. For high school results data mart, materializing its views would
save up to 67% of the execution time over data warehouse’s tables. As shown in Figure

5.8, it may give even better performance as data grows.

—fll— Data Warehouse - Logical Data Warehouse - Materialized

0.300
0.250
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0.150

0.100
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0.000
LAST YEAR LAST THREE YEARS LAST TEN YEARS

Figure (5.8): High School Results - Logical Vs Materialized
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e Students Registration Data Mart

We’ve executed students’ registration query over last semester, last three

semesters, and last five years as shown in Table 5.11.

Table (5.11): Students Registration - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse
gacy sy - Logical - Materialized
Filters Records
time cost time cost time cost
last semester 93 | 14.768 | 2984 0.018 9 0.008 9
last three semesters 360 | 46.907 | 6119 0.035 15 0.019 9
last five years 1208 | 217.147 | 10944 0.093 15| 0.058 9

From the results above, data warehouse returns the results about 2000 times
faster than legacy system, this is due to the complex PLSQL functions that used to
calculate students’ registration hours in legacy system, while in the data warehouse the
data is prepared and saved instantly into data warehouse after semester starts. Figure
5.9 compares time consumed in legacy system with time consumed in the data

warehouse to return students’ registration data.

—4@—|egacy —ill—Data Warehouse

250.000
200.000
150.000
100.000

50.000

0.000 ‘ L |

LAST SEMESTER LAST THREE SEMESTERS LAST FIVE YEARS

Figure (5.9): Students Registration - Legacy System Vs Data Warehouse

On the other hand, materializing the data warehouse’s views gives the system
better performance. For students’ registration data mart, materializing its views would
save up to 56% of the execution time over data warehouse’s tables. As shown in Figure
5.10, it may give even better performance as data grows.
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Figure (5.10): Students Registration - Logical Vs Materialized

The rest of experimental results about other data marts are listed in Appendix 1:
Legacy System Vs Data Warehouse Vs Materialized Views. In Table 5.12 we

summarize the performance improvement of each data mart in two cases:

e Legacy System Vs Data Warehouse: the effectiveness of using data warehouse.
e Data Warehouse Logical Views Vs Data Warehouse Materialized Views: we
show how materializing data warehouse’s views can give even better

performance.

Table (5.12): Summary of the Comparison between IUG Legacy System, Data
Warehouse, and Materialized Views

DW Logical vs
Legacy vs DW Materialized
Fact - -
Faster | Saved Time | Faster | Saved Time

(x times) (%) (x times) (%)

High School Results 4.89 79.54 3.04 67.07
Students Admission 36.30 97.25 6.56 84.75
Students Registration 2334.91 99.96 2.30 56.60
eI SUEEn S 40.29 97.52 16.67 94.00

Geographical Location

Transfers between Colleges 9.69 89.68 5.15 80.57
Exam Conflicts 22.78 95.61 6.30 84.13

SFD Students Registration 211.74 99.53 1.72 41.71
Cash Grants 84.75 98.82 5.75 82.61
Deferred Grant 27.11 96.31 1.75 42.86
Student Fund Summary 14.72 93.21 18.50 94.59
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Financial Collection 69.77 98.57 17.55 94.30

From Table 5.12 we can conclude that, using data warehouse in lUG saves more
than 90% of total time used in legacy system for most of data marts. On the other hand,
materializing these data marts can save even more than 80% of total time consumed

while using the data warehouse in IUG for most of data marts.

105



Chapter 6
Conclusion and Future
Works


oashour
Rectangle


Chapter 6
Conclusion and Future Works

6.1 Conclusion

In this thesis, we discussed the importance of data warehouse for organizations
and companies. We highlighted two of industry approaches for designing DW which
are top-down and bottom-up approaches, and we showed the advantages and
disadvantages of each approach. For UG, we adopted bottom-up (Ralph Kimball)
approach. Also, we discussed case studies of implementing DW in higher education

environments and their approaches of the implementation.

This research, in current phase, focuses on designing and implementing data
warehouse which will help mainly in decision-making process that is related to the
students. We developed data marts for some of the departments that are core for
students, which are Admission and Registration, Student Affairs, and Finance

departments. Other departments in IUG will be considered in future phases.

Additionally, we argue number of materialized view selection algorithms. We
found that most of works in this field have been provided different approaches for the
selection of views to materialize considering view maintenance cost and storage space.
There is lack in researches in selection of views to be materialized based on dynamic
thresholds such as view’s usage frequency. Thus, we designed a model for materialized
view selection based on view’s usage frequency in different periods over

academic/financial year.

Our experiments show that the proposed model can be integrated with existing
materialized view selection algorithms to give better materialization decisions, and
even better database’s performance since it restrict the set of views before

materialization process.

Finally, we discussed the effect of the data warehouse on the IUG database’s
performance and query processing time. When comparing the results of running the
queries, it is clear in every instance that the data return dramatically quicker from the
organized star schema in the data warehouse than from the transactional database.
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Adding to that, materializing data warehouse’s views will give even better

performance of overall data warehouse system.

6.2 Future Works

In the current phase and due to limited time frame of this research, we designed
and implemented a data warehouse for three departments only in IUG. They are
Admission and Registration, Students Affairs, and Finance departments. In the future,
we will complete the design and the implementation of the data warehouse for other
departments in IUG.

Additionally, for our dynamic materialized view selection model, we would like
to design an algorithm to calibrate the similarity ratio, value of &, in Algorithm 1
dynamically. This algorithm would be based on correct and wrong decisions about

views materialization.

Moreover, since the current model is running in daily basis to check for views’
materialization, we would like to design a dynamic model to detect the appropriate

time intervals for this process.

Finally, the proposed model accepts list of features for the similarity check
algorithm. This list of features is static for all views. We are planning to make this list

of features to be related for each view.
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Appendix 1: Legacy System Vs Data Warehouse Vs Materialized

Views

Al.1 Students Admission Data Mart

Table (Al.1): Students Admission - Experimental Results

Legacy Data Warehouse | Data Warehouse
System - Logical - Materialized
Filters Records
time | cost | time cost time cost
last year 432 | 0.178 536 | 0.006 41 | 0.001 5
last three years 1895 | 0.564 | 1059 | 0.020 45| 0.003 5
last ten years 8804 | 1.283| 2175 | 0.035 47 | 0.009 5
ALL 23982 | 1.893 | 2175 | 0.082 50 | 0.031 5
—4—legacy == Data Warehouse
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Figure (Al.1): Students Admission - Legacy System Vs Data Warehouse
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Figure (A1.2): Students Admission - Logical View Vs Materialized View
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Al.2 Geographical Location Data Mart

Table (Al.2): Geographical Location- Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse

gacy oy - Logical - Materialized

Filters Records

time cost time cost time cost
last semester 1809 0.355 | 2738 0.017 80 0.001 4
last three semesters 5419 1.067 | 5144 0.028 87 0.002 4
last five years 17685 2.283 | 9239 0.057 304 0.004 4
all records 77706 8.174 | 21771 0.220 2294 0.025 4

—&—Legacy —ill—Data Warehouse
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Figure (A1.3): Geographical Location- Legacy System Vs Data Warehouse
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Figure (A1.4): Geographical Location- Logical View Vs Materialized View
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Al.3 Transfers between Colleges Data Mart

Table (Al.3): Transfers between Colleges - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse

gacy oy - Logical - Materialized

Filters Records

time cost time cost time cost
last year 224 0.110 617 0.011 33| 0.005 5
last three years 735 0.132 622 0.024 34| 0.012 5
last ten years 3052 0.303 | 1372 0.065 239 0.035 5
ALL 11480 1.111 | 1391 0.290 538 0.056 5
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Figure (A1.5): Transfers between Colleges - Legacy System Vs Data Warehouse
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Figure (A1.6): Transfers between Colleges- Logical View Vs Materialized View
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Al.4 Exam Conflicts Data Mart

Table (Al.4): Exam Conflicts - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse
gacy oy - Logical - Materialized
Filters Records
time cost time cost time cost
last semester 1016 0.232 | 1677 0.014 56 0.003 5
last three semesters 3077 0.600 | 2883 0.026 60 0.007 5
last five years 10368 1.293 | 5305 0.061 | 2715 0.019 5
ALL 44593 4,643 | 11581 0.255 1416 0.041 5
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Figure (A1.7): SFD Exam Conflicts - Legacy System Vs Data Warehouse
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Al1.5 SFD Students Registration Data Mart

Table (Al1.5): SFD Students Registration - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse
gacy sy - Logical - Materialized
Filters Records
time cost time cost time cost
last semester 23338 | 10.067 | 2984 0.048 6 0.028 6
last three semesters 65860 | 18.022 | 6119 0.088 15 0.051 15
last five years 231172 | 46.347 | 10944 1.094 21 0.638 21
ALL 845925 | 115.930 | 38251 1.773 35 1.033 35
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Figure (A1.9): SFD Students Registration - Legacy System Vs Data Warehouse
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Figure (A1.10): SFD Students Registration - Logical View Vs Materialized View
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Al.6 Cash Grants Data Mart

Table (Al1.6): Cash Grants - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse
gacy sy - Logical - Materialized
Filters Records
time cost time cost time cost
last semester 287 0.226 870 0.003 4 0.001 3
last three semesters 861 0.296 | 1107 0.008 3 0.002 3
last five years 1954 0.342 | 1550 0.015 3 0.003 3
ALL 2533 0.358 | 1644 0.017 3 0.003 3
—@—|egacy == Data Warehouse
0.400 R
0.300 * - -
0.100
0.000 O— —— = il
LAST SEMESTER LAST THREE LAST FIVE YEARS ALL RECORDS
SEMESTERS

Figure (Al1.11): Cash Grants - Legacy System Vs Data Warehouse
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Figure (A1.12): Cash Grants - Logical View Vs Materialized View
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Al.7 Deferred Grant Data Mart

Table (AL1.7): Deferred Grant - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse

gacy sy - Logical - Materialized

Filters Records

time cost time cost time cost
last semester 2 0.043 311 0.002 4 0.001 4
last three semesters 6 0.067 320 0.003 3 0.002 3
last five years 16 0.081 334 0.003 3 0.002 3
ALL 27 0.093 335 0.004 3 0.003 3
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Figure (A1.13): Deferred Grant - Legacy System Vs Data Warehouse
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Figure (Al1.14): Deferred Grant - Logical View Vs Materialized View
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Al1.8 Student Fund Summary Data Mart

Table (A1.8): Student Fund Summary - Experimental Results

Legacy Svstem Data Warehouse | Data Warehouse
gacy sy - Logical - Materialized
Filters Records
time cost time cost time cost
last semester 4191 4,024 | 41722 0.273 124 0.032 6
last three semesters 14379 4.465 | 46446 0.931 309 0.087 7
last five years 62343 9.018 | 60797 1.875 522 0.101 7
ALL 84432 | 11.618 | 81211 2.238 684 0.210 9
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Figure (A1.15): Student Fund Summary - Legacy System Vs Data Warehouse
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Figure (A1.16): Student Fund Summary - Logical View Vs Materialized View
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A1.9 Financial Collection Data Mart

Table (A1.9): Financial Collection - Experimental Results

Legacy System Data Wal_’ehouse Data Wa!’eljouse
- Logical - Materialized
Filters Records
time cost time cost time cost
last semester 12462 0.912 | 12568 0.033 152 | 0.002 5
last three semesters 31540 2.553 | 19386 0.064 643 | 0.004 5
last five years 110651 6.533 | 25470 0.159 643 0.010 5
ALL 442283 | 27.629 | 41529 0.396 646 | 0.034 5
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Figure (A1.17): Financial Collection - Legacy System Vs Data Warehouse
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Figure (A1.18): Financial Collection - Logical View Vs Materialized View
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Appendix 2: TPC-H Schema Queries and Relational Algebra Trees

A2.1 Query Q2:

SELECT n_name. COUNT(I_orderkey)
FROM customer ., orders., lineitem, nation, region
WHERE c_custkey - o_custkey
AND o_orderkey 1_orderkey
AND c_nationkey — n_nationkey
AND n_regionkey r_regionkey
AND r_name “‘asia’
AND o_orderdate ©1994-01-01"
AND o_orderdate “1995-01-01"
GROUP BY n_name

6
L@

remlgj[ls:ms"]
I name
cm.mr{l |_ordetkey)
[1340321 [276048000000]

quq“"““~Qf£]_£:a1':dJE.~I]L-.|=_'j,
Tmp?
[46008] qrigsﬁgjﬁﬂ_,l] [ﬁﬂﬂﬂﬂﬂﬂiijj[ﬁﬂﬂﬂﬂﬂﬂﬂ]
P custhey 4+ Tmpl0
Tmpé Tmp8
[30183] [750000] [227597 [227597]
Tempd - Nnaﬁnnl;ey 4+ TC1_ordetkey
[5] 1251 To_custkery
AL (1500001 ) [150000] o_orderkey
Trp2 [=] regionkey Jkl_mp‘ cu_turalpnce
[ i mp3 [227597] | TmpT
B3] [1500000]
Tlr_recionkey Tlc_nationkey
Tmpl - - : c cu:tLEj, i
(110 5 Go_orderdate=="1994-01-1'
Or_name Tln_regionkey o_orderdate="1995-01-01
— ASIA n nafionkey
[5] [25] [ Jusoooo) [ ]r1500000] [ ] 160000000]
region nation customer orders lineitem

Figure (A2.1): Relational Algebra Query Tree of Query Q2
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A2.2 Query Q3:

SELECT n_name. Sum(l_quantity)
FROM orders., lineitem, supplier. nation. region
WHERE o_orderkey 1 _orderkey

AND 1_suppkey = s_suppkey

AND s_nationkey n_nationkey

AND n_regionkey r_regionkey

AND r_name “asia’

AND o_orderdate ©1994-01-01"

AND o_orderdate ©1995-01-01"
GROUP BY n_name

,
1@

resultT,\[lBElES]

Vn_name
! sum(l_quantity)

Tmpl1

[182183] [273360713461]

P4 orderk ey
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Tmpt suppkey 1 Tmp10
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1] 25 2275971 (_J[1500000]
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e Ol Ta tesionker LSy Go_orderdate=="1994-01.01'
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="ASIA
[5] [25] [ ] 110000] [ Jisoooooo] [ ] r1500000]
region nation supplier lineitem orders

Figure (A2.2): Relational Algebra Query Tree of Query Q3
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A2.3 Query Q4:

SELECT s_name
FROM

WHERE ps_suppkey
AND c_nationkey
AND s_nationkey

AND n_regionkey

AND r_name

Sum(ps_supplycost)

partsupp. supplier

‘asia’

GROUP BY s_name

customer nation. region

s_suppkey
s_nationkey
n_nationkey

r_regionkey

2
1@

[967519280]

result

ﬂ'S]:I.EIIlE‘
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Figure (A2.3): Relational Algebra Query Tree of Query Q4
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A2.4 Query Q5:

SELECT Count(ps_suppkey)

FROM partsupp. part

WHERE p_partkey - ps_partkey
AND p_brand “brand#45~

AND NOT p_type LIKE ““brass"”
AND p_size IN ( 9. 19, 49 )

5
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result.g) [36276]

"'{ count(ps_suppkey)

Tmp4

[36276](_} [7255200000]

Tmp Tmp3

(906911} [9069] [800000]{_) [800000]
s
TMp partkey
Trpl PP Eﬂg_ean]f‘-
[9069](__} [200000] —SUppLey
Op_brand—-"BRANDH4S
not p_type like ‘%BRASSY
p_size in (9.19.49)
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Figure (A2.4): Relational Algebra Query Tree of Query Q5
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A2.5 Query Q6:

SELECT s _name. Sum(ps_supplycost)
FROM supplier. partsupp. part
WHERE s_suppkey - ps_suppkey

AND p_partkey - ps_partkey
AND p_brand “brand#45~
AND NOT p_type LIKE ““brass"”

AND p_size IN ( 9. 19, 49 )
GROUP BY s_name

9
Q6

result [36276]

Y
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Figure (A2.5): Relational Algebra Query Tree of Query Q6
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A2.6 Query Q7:

SELECT c_mktsegment. Sum(l_discount)
FROM customer. orders. lineitem
WHERE c_custkey - o_custkey

AND o_orderkey 1_orderkey
AND o_orderdate ©1994-01-01"

AND o_orderdate ©1995-01-01"
GROUP BY c_mktsegment
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Figure (A2.6): Relational Algebra Query Tree of Query Q7
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