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Candida albicans is a polymorphic fungus that causes a range of disease in 

humans, from mucosal infections to systemic disease.  Its ability to cause disease is 

linked to conversion between yeast and filamentous forms of growth, and the first 

quorum-sensing molecule discovered in an eukaryote, farnesol, blocks this transition.  In 

C. albicans, farnesol also kills mating-competent opaque cells, inhibits biofilm formation, 

protects the cells from oxidative stress, and can be a virulence factor or protective agent 

in disseminated and mucosal mouse models of infection, respectively.  While much 

emphasis has been placed on determining its effect on C. albicans morphology, the 

molecular response to farnesol is not completely understood.  The overall theme for this 

dissertation was to better understand the C. albicans molecular response to farnesol under 

quorum sensing conditions.  Due to the duplicitous nature of the farnesol response in C. 

albicans, i.e., its ability to kill cells or simply alter morphology, we clearly defined the 

environmental conditions in which farnesol acts as a quorum sensing molecule or as a 

toxic agent towards C. albicans.  This clarification enabled a subsequent two-pronged 

approach to study the molecular response to farnesol during morphological regulation.  A 

direct approach was used to investigate the role of a likely candidate, Tup1, a negative 

regulator of hyphal development, in farnesol signaling.  Secondly, a screening approach 

was utilized to identify new farnesol resistant mutants that may participate in the farnesol 



 
 

 
 

response.  From the mutants identified, Czf1 (C. albicans zinc finger) was selected for 

further characterization and was shown to play a vital role in the morphological response 

to farnesol as well as farnesol tolerance.  Overall, this study identified two new factors 

involved in farnesol signaling, and highlights the power of farnesol as a tool with which 

to unravel the complex signaling networks present in C. albicans. 
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INTRODUCTION 

The discovery of E,E-farnesol as a quorum sensing molecule in Candida albicans 

(Hornby et al., 2001) demonstrated the existence of quorum sensing in a eukaryotic 

organism, a process once thought to be confined to bacteria.  The earlier work on the 

discovery and characterization of farnesol was reviewed by Nickerson et al (Nickerson et 

al., 2006).  C. albicans is a polymorphic fungus that is capable of growing in yeast, 

hyphal, pseudohyphal, opaque, and chlamydospore cell morphologies.  Farnesol is 

capable of blocking the yeast to hyphal/pseudohyphal (filaments) switch (Hornby et al., 

2001), a conversion that is the focus of intense study in C. albicans because of its role in 

virulence (Lo et al., 1997; Saville et al., 2003).  Another quorum sensing molecule 

(QSM) described in C. albicans is farnesoic acid (Oh et al., 2001).  Farnesoic acid, like 

farnesol, acts to block the yeast to filament transition (Oh et al., 2001), but it is far less 

active than farnesol (Shchepin et al., 2003) and is produced by only one known strain of 

C. albicans, 10231 (Hornby and Nickerson, 2004; Oh et al., 2001).  Additional possible 

quorum sensing molecules are reviewed by Kruppa (Kruppa, 2009).  Farnesol also blocks 

biofilm formation by C. albicans (Alem et al., 2006; Cao et al., 2005; Martins et al., 

2007; Ramage et al., 2002) in a manner consistent with its inhibition of the yeast to 

filament conversion.  The mating-competent form of C. albicans, opaque cells, can be 

adversely affected by farnesol; in aerobic conditions the cells die by necrosis (Dumitru et 

al., 2007) but remain unharmed in anaerobic conditions (Dumitru et al., 2004).  Lastly, 

the production of chlamydospores, a C. albicans cell morphology with unknown 

function, is increased in the presence of very high (10 mM) levels of farnesol (Martin et 

al., 2005).  Given that it may affect all five C. albicans growth morphologies, it has 
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become clear that farnesol plays an influential role in C. albicans physiology, and the 

search is underway to elucidate the molecular mechanism(s) of these effects. 

The Molecular Response to Farnesol in C. albicans 

 The first described function of farnesol was to block filamentation induced by a 

variety of environmental signals (Hornby et al., 2001; Mosel et al., 2005), and several 

factors involved in the filamentation process are known to play a role in the C. albicans 

farnesol response.  Ras1 of the cyclic AMP pathway, as discussed later, is a candidate for 

direct inhibition by farnesol (Davis-Hanna et al., 2008).  Repressors of filamentation, 

Tup1 and Nrg1, also play critical roles in the farnesol response, as tup1Δ/tup1Δ and 

nrg1Δ/nrg1Δ mutants are unable to respond to farnesol (Kebaara et al., 2008).  The 

presence of farnesol increases TUP1 expression and suppresses the haploinsufficient 

phenotype of a TUP1/tup1Δ mutant (Kebaara et al., 2008).  A two-component signal 

transduction pathway histidine kinase, Chk1 (Kruppa et al., 2004), and mitogen activated 

protein (MAP) kinase pathway components, Cph1 and Hst1 (Sato et al., 2004), may also 

be involved in the response to farnesol, but Cph1 might play a downstream role since a 

cph1Δ/cph1Δ mutant retains the ability to respond to farnesol (Davis-Hanna et al., 2008).  

Regulators of filamentation are not the only genes involved in the farnesol response.  

Microarray analyses have identified other categories of genes affected by farnesol 

treatment such as heat shock genes, drug resistance genes, cyclin and cell proliferation 

genes, histone genes, genes expressed at high cell density, phagocytosis response genes, 

and adhesion genes (Cao et al., 2005; Cho et al., 2007; Enjalbert and Whiteway, 2005; 

Uppuluri et al., 2007).  With all of the different pathways and responses induced by 

farnesol, it promotes the question:  Does farnesol have one or more specific target(s) in 
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the cell, or does it somehow elicit a more general and nonspecific response with 

pleomorphic consequences? 

 Are there farnesol receptors or farnesol binding proteins?  The morphological 

response to farnesol in C. albicans appears to be very sensitive to minor changes in the 

structure of farnesol, providing support for the specific target(s) model, rather than a 

scenario involving general membrane disruption.  For example, there are four isomers of 

farnesol but only E,E-farnesol is capable of blocking filamentation in C. albicans 

(Shchepin et al., 2003).  This conclusion is based on a comparison between pure (96%) 

E,E-farnesol and two commercial mixed isomers containing 56 and 36% E,E-farnesol.  

These three farnesol preparations reduced germ tube formation (early stage filaments) to 

50% at 1.2, 3.5, and 4.4 µM, respectively (Shchepin et al., 2003).  Thus, there was 

sufficient E,E-farnesol in the two samples with mixed isomers to account for all of their 

QSM activities.  Further, the 12-carbon backbone of farnesol appears to be critical for its 

ability to block filamentation because altering the chain length generally results in 

decreased filament inhibitory activity (Hogan et al., 2004; Kim et al., 2002; Shchepin et 

al., 2003; Shchepin et al., 2005).  Other farnesol analogs and related molecules from 

other organisms, such as 3-oxo-C12-homoserine lactone and dodecanol, are capable of 

blocking filamentation in C. albicans, suggesting some limited flexibility for the 

inhibitory action of farnesol-related molecules (Davis-Hanna et al., 2008; Hogan et al., 

2004; Kim et al., 2002; Shchepin et al., 2003; Shchepin et al., 2005).  One, but not the 

sole explanation for these results is the presence of a farnesol receptor(s) or farnesol 

binding protein(s) in C. albicans.  Fluorescent farnesol (Shchepin et al., 2005) and a 
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farnesol affinity column (Shchepin, 2006) were developed to help isolate farnesol binding 

proteins, so far with limited success.   

Farnesol and Ras1/cAMP Signaling 

Ras1 and the adenylyl cyclase-cAMP-protein kinase A (PKA)-Efg1 pathway (Fig. 

1) have been proposed as a potential direct target for farnesol inhibition (Davis-Hanna et 

al., 2008).  This idea is very reasonable and it is persuasive that farnesol was able to 

reverse filamentation in the dominant active (CAI4-RaslG13V) mutant of C. albicans and 

farnesol inhibition of filament formation was itself reversed by addition of dibutyryl-

cAMP (Davis-Hanna et al., 2008, discussed in more detail by Paula Sundstrom and 

Deborah Hogan in this issue).  It may be important that Ras1 is one of the few 

farnesylated proteins in C. albicans, and it has been estimated that the farnesylated, 

membrane-bound form of Ras1 is ca. 100 X more effective in activating adenylyl cyclase 

than is the cytoplasmic form (Kuroda et al., 1993).  Thus, there are several ways by 

which farnesol could inhibit the Ras1-cAMP-PKA-Efg1 pathway (Fig. 1).  A partial list 

includes:  blocking the farnesylation of Ras1, see review by Hancock et al (Hancock, 

2003), releasing farnesylated Ras1 from the membrane (Fig. 1A), binding directly to 

Ras1 (Fig. 1B), and binding directly to a downstream protein such as adenylyl cyclase 

(Fig. 1C).  It is unlikely that farnesylated Ras1 has the farnesyl tail removed because it is 

attached by a very stable thioether bond and, where measured, farnesylated Ras1 has a 

long half life.   

Having Ras1 as a direct target for farnesol can provide some unity for many of the 

filamentation genes involved in the farnesol response since it is a common regulator for 

the Hst7/Cph1 MAP kinase pathway and the cAMP pathway (Castilla et al., 1998; Feng 
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et al., 1999; Leberer et al., 2001).  While it is unknown what factors regulate Tup1/Nrg1 

and Chk1, it is possible that they are also under the control of Ras1.  A second possibility 

for farnesol signaling is the presence of multiple farnesol targets, each affecting different 

aspects of filamentation in response to different inducing stimuli, while a third possibility 

is that farnesol interacts with the cell membrane in a very specific manner to induce a 

pleiotropic signaling response in the rest of the cell.  Notice that Figure 1 has been drawn 

with both intracellular and extracellular farnesol.  This was done to emphasize that 

further research is warranted to determine the exact nature of the molecular response to 

farnesol during yeast to filament inhibition.  It is difficult to say whether farnesol acts 

from the outside or the inside because it can cross the cytoplasmic membrane by 

diffusion.  On the one occasion when cellular localization was attempted (Navarathna et 

al., 2005), the values for extracellular, intracellular, and membrane-associated farnesol 

were 0.115, 0.009, and 0.106 mg/g dry weight of cells, respectively (Navarathna et al., 

2005).  These values correspond to concentrations of ca. 4 µM extracellular (Nickerson et 

al., 2006) and 13.5 µM intracellular, with the intracellular calculation based on a yeast 

cytoplasmic volume of ca. 3 µl/mg dry weight.  Similarly, the membrane-associated 

farnesol would constitute 1-2% of the total extractable membrane lipids based on a value 

of 8.5 mg extractable lipid/g dry weight (Hitchcock et al., 1986). 

Possible Artifacts 

We have found several artifacts associated with the cellular response to farnesol.  

Caveats which must be considered include:  1) some auxotrophic mutants (his1Δ/his1Δ, 

arg4Δ/arg4Δ) produce germ tubes faster than their wild type, prototrophic counterparts 

and 2) as a consequence, when examining a mutant for its response to farnesol, it is 
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always safer to run a time course with and without farnesol until 90-100% germ tube 

formation has been achieved in the control lacking farnesol (our unpublished data).  This 

prevents a misinterpretation for lack of farnesol response rather than a faster rate of 

filamentation.  A third potential artifact is derived from farnesol’s lipophilic nature.  We 

previously pointed out how ca. 150x more farnesol was needed to block germ tube 

formation in the presence of 10% serum than in its absence (Mosel et al., 2005).  The 

farnesol concentration would be effectively reduced because of the lipid binding capacity 

of serum albumins.  A similar trap could occur when farnesol’s action in blocking germ 

tube formation or inhibiting growth is reversed by added diacylglycerol (DAG) or 1-

oleoyl–2-acetyl-sn-glycerol (OAG).  Machida et al (Machida et al., 1999), Voziyan et al 

(Voziyan et al., 1995) and Uppuluri et al (Uppuluri et al., 2007) attributed internal modes 

of action, i.e. protein kinase C activation (Voziyan et al., 1995) or interference with 

phosphatidylinositol signaling (Machida et al., 1999; Uppuluri et al., 2007), to this 

DAG/OAG reversal.  However, micelle forming detergents or lipids such as DAG and 

OAG could incorporate the farnesol and effectively reduce its concentration.  Thus, a 

simple way of distinguishing between reversal by an external “micelle trap” versus a 

more specific cytoplasmic mechanism is to find out whether equivalent amounts of 

detergents such as Triton X-100 and NP40 also reverse farnesol’s action.  This idea was 

recently tested for farnesol’s growth inhibition of Candida parapsilosis.  OAG and Triton 

X-100 showed equivalent reversal of farnesol’s growth inhibition (T. Rossignol and G. 

Butler, personal communication), and in this case, no conclusions could be drawn on 

farnesol’s intracellular mode of action.   

Farnesol Production by Candida Species 
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 Weber et al (Weber et al., 2008) recently compared the farnesol production levels 

from 56 strains of eight Candida species.  C. albicans had the highest production levels 

(35 + 16 µM) compared to the other Candida species tested:  C. dubliniensis, C. 

tropicalis, C. parapsilosis, C. guilliermondii, C. kefyr, C. krusei, and C. glabrata (Weber 

et al., 2008).  The closely related species C. dubliniensis produced 8.7 + 3.8 µM farnesol 

while the remaining Candida species all produced < 1 µM farnesol.  This value for C. 

albicans (35 µM) is substantially higher than our best estimates (Nickerson et al., 2006) 

of 2 to 4 µM farnesol at a yeast cell density of 108/ml, based on production of ~ 0.13 mg 

farnesol per g dry weight of fungus (Hornby and Nickerson, 2004).  Production levels for 

two laboratory and four clinical isolates were tightly clustered from 0.11 to 0.14 mg per g 

dry weight (Hornby and Nickerson, 2004) whereas the seven strains of C. albicans 

studied by Weber et al (Weber et al., 2008) varied from 13 to 58 µM farnesol.  This wide 

variance (Weber et al., 2008) might be resolved by normalizing the data on a per g dry 

weight basis.  Also, despite the different analytical procedures employed, GC/MS by 

Hornby and Nickerson (Hornby and Nickerson, 2004) and derivatization with 9-anthroyl 

nitrile followed by HPLC by Weber et al (Weber et al., 2008), the estimates of 35 µM vs. 

2-4 µM farnesol may be compatible.  If the cell densities achieved following 24 hrs 

growth in RPMI at 37°C (Weber et al., 2008) were ca. 109/ml, compared to only 108/ml 

in GPP at 30°C (Hornby and Nickerson, 2004), then the two data sets would be in 

remarkably close agreement.   

Careful consideration must also be given to the growth medium when measuring 

farnesol production levels.  For example, the addition of 10% fetal calf serum (FCS) 

lowered farnesol production ca. 18-fold (Weber et al., 2008) but the mechanism behind 
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this reduction remains unclear.  The nonspecific lipid binding capability of serum 

albumin was evident in the fact that 150-fold more farnesol was needed to block 

filamentation than in its absence (Mosel et al., 2005).  Similarly, industrial stratagems to 

maximize farnesol production (Muramatsu et al., 2008, 2009) commonly used an external 

lipid sink such as 5% soybean oil to shift the equilibrium toward production and 

excretion of farnesol.  Thus, 10% FCS should have increased farnesol production rather 

than decreased it (Weber et al., 2008).  Possibly the low levels of farnesol detected with 

10% FCS used an extraction protocol which did not fully denature the lipid-binding 

albumins.  The importance of a nearby lipid sink will be revisited in our discussion on the 

role of farnesol in pathogenicity.   

Manipulating the sterol biosynthetic pathway in C. albicans and other fungi with 

inhibitors such as fluconazole, terbinafine, SQAD, or zaragozic acid can result in 

increased farnesol production levels (Hornby et al., 2003; Hornby and Nickerson, 2004), 

and three genes have been identified in C. albicans thus far that regulate farnesol 

production:  DPP3, TUP1, and NRG1 (Kebaara et al., 2008; Navarathna et al., 2007a).  

C. albicans Dpp3 is an ortholog of the S. cerevisiae phosphatase Dpp1 (Toke et al., 

1998), and it presumably acts as a phosphatase to convert farnesyl pyrophosphate to 

farnesol (Navarathna et al., 2007a).  Deletion of the C. albicans DPP3 gene results in 

farnesol production levels that are six times lower than wild type and parental levels 

(Navarathna et al., 2007a).  Conversely, Tup1 and Nrg1 appear to play a negative role in 

farnesol production; tup1Δ/tup1Δ and nrg1Δ/nrg1Δ mutant strains produce 17 and 19-

fold higher farnesol, respectively, than their parents, but it is unclear whether this is a 

result of direct or indirect sterol biosynthesis regulation (Kebaara et al., 2008).  Further 



10 
 

 

research is required to fully understand the regulation of farnesol production in both C. 

albicans and other Candida species. 

Farnesol and Interspecies Communication 

A developing branch of research has focused on the effects of farnesol signaling 

on interspecies communication.  A brief summary of the effects of farnesol on other 

organisms is described in Table 1.  Filament and biofilm development are each blocked 

by farnesol in the closely related C. dubliniensis, similar to the C. albicans morphological 

response to farnesol (Henriques et al., 2007; Jabra-Rizk et al., 2006b; Martins et al., 

2007).  In contrast, C. parapsilosis, which normally produces very low levels of farnesol, 

appears to respond in a different manner; farnesol reduces C. parapsilosis biofilm 

formation independently from filament inhibition (Laffey and Butler, 2005; Rossignol et 

al., 2007).  The use of physiologically relevant farnesol concentrations to avoid 

unintended cytotoxic effects will determine whether farnesol blocks dimorphism and/or 

biofilm formation in other Candida species.  In other cell types, farnesol can be inhibitory 

or toxic, often accompanied by elevated reactive oxygen species (ROS) production.  

However, these reports encompass a huge range of farnesol concentrations, many of 

which are above the ca. 1 mM solubility limit for farnesol, increasing the likelihood that 

the responses observed are both specific and non-specific, or detergent-like.   

Given that the production of extracellular signaling molecules is certainly not 

unique to C. albicans, there has also been some recent work describing the converse 

situation in which the response of C. albicans to bacterial signaling molecules is 

examined (Table 2).  It is important to distinguish between general growth inhibition (an 

antifungal antibiotic) and specific inhibition of one type of growth, e.g. a QSM blocking 
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the yeast to filament transition in C. albicans.  For instance (Table 2), while Burkholderia 

diffusible signal factor (BDSF) at a 5 µM concentration inhibited 70% of germ tube 

formation for C. albicans cells, that same concentration also strongly inhibited growth 

(Boon et al., 2008).  It is intriguing how a similar molecule produced by Xanthomonas 

campestris, diffusible signal factor (DSF), can inhibit filamentation without any growth 

inhibition (Boon et al., 2008; Wang et al., 2004), even though the two molecules differ 

by only one methyl group.  Molecules that are not inhibitory for the general growth of C. 

albicans, yet induce a signaling response are legitimate candidates for cross-kingdom 

signaling molecules (Table 2). 

An interesting consideration to make when evaluating the variety of responses to 

QSMs such as farnesol in different organisms is the likelihood of the cells to interact with 

one another during the commensal state versus during an infection.  Similarly, one must 

also consider the location of the interaction within the host, as farnesol production by C. 

albicans results in different host responses depending on the site of infection.  For 

instance, it is likely important for C. albicans commensal life style in the gastrointestinal 

tract (Kumamoto and Vinces, 2005b) that farnesol production is turned off during 

anaerobic growth (Dumitru et al., 2004).  Lastly, farnesol must be used carefully and at 

the appropriate physiologically relevant concentrations in order to avoid artifactual 

observations, such as unintended cytotoxic effects. 

Farnesol-Mediated Cell Death in C. albicans 

 With regard to the possibility of farnesol-mediated cell death, the literature has 

conflicting reports on the appropriate levels of farnesol with which to treat C. albicans.  

Several groups have used 150-250 µM farnesol with no apparent cell death (Davis-Hanna 
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et al., 2008; Henriques et al., 2007; Hogan et al., 2004; Kruppa et al., 2004); one study 

by Jabra-Rizk et al (Jabra-Rizk et al., 2006b) concluded the minimum inhibitory 

concentration (MIC) for C. albicans was >250 µM while another study concluded that 40 

µM farnesol induced cell death (Shirtliff et al., 2009).  Conflicts have also emerged 

regarding the concentration of farnesol needed to block filamentation in C. albicans, with 

effective concentration reports ranging from 4 µM (Mosel et al., 2005), up to 250 µM 

(Kruppa et al., 2004).  Another important finding was that of Davis-Hanna et al (Davis-

Hanna et al., 2008) who noted that higher concentrations of farnesol were required to 

block filamentation in plastic microtiter plates compared to borosilicate glass tubes or 

flasks, suggesting a possible farnesol adsorption effect by plastic that might lower the 

effective concentration of farnesol.  Our summary view is that the appropriate level of 

farnesol to use for filament inhibition is ≤ 50 µM farnesol when using glassware; this 

corresponds to physiologically relevant concentrations of farnesol produced by 

stationary-phase C. albicans cultures (Weber et al., 2008).  While the plastic versus 

glassware variable may explain some discrepancies in the literature, additional variables 

need to be considered when evaluating farnesol-mediated cell death in C. albicans.  

Farnesol is clearly a bioactive molecule.  With the caveat that inappropriately high 

concentrations were often used, the recurrent theme in Table 1 is that farnesol is 

inhibitory or lethal to a great many other cell types.  Thus, a fundamental question is how 

C. albicans has evolved to withstand the farnesol which it produces in great abundance.  

This question is exactly analogous to an antibiotic producing strain being resistant to that 

antibiotic.  A corollary to this idea is that reports of farnesol mediated cell death be 
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viewed as circumstances where C. albicans has let down its guard, i.e. the molecular 

defense mechanisms are regulable rather than constant or intrinsic. 

 Farnesol has been reported to cause growth defects (Uppuluri et al., 2007), 

necrosis (Dumitru et al., 2007) and apoptosis (Shirtliff et al., 2009) in C. albicans, 

although the precise concentrations required are somewhat unclear, because different 

conditions were used to grow the cells and different methods were used to assess cell 

damage.  Work is underway in our laboratories to investigate farnesol tolerance by C. 

albicans, taking into account many environmental variables, in an effort to unify and 

validate existing data in the literature (Langford et al, data not shown).  Our conclusions 

so far are that four factors are significant.  First, only white cells of C. albicans are 

resistant.  Dumitru et al (Dumitru et al., 2007) observed that the opaque cells were very 

sensitive to farnesol, being lysed rapidly by ≥ 40 µM.  Following this line of thinking, in 

a saturated aerobically grown culture of predominantly white cells, the farnesol levels 

could possibly reach levels high enough to kill opaque cells.  Second, farnesol resistance 

is somewhat energy dependent.  The farnesol-induced death and apoptosis reported by 

Shirtliff et al (Shirtliff et al., 2009) was for cells which had been stored for 24h in PBS 

buffer with no exogenous energy sources.  Third, as was first pointed out by Uppuluri et 

al (Uppuluri et al., 2007), the starting growth phase of the inoculum is critical.  At 25°C, 

C. albicans log-phase cells were considerably more sensitive to growth inhibition by 

farnesol than were stationary-phase cells.  Stationary-phase inocula maintained similar 

growth rates and viability with 0-100 µM farnesol, while log-phase cells grew 

considerably slower with 40 µM farnesol and viability was only 18% with 100 µM 

farnesol added (Uppuluri et al., 2007).  Fourth, ROS are generated during farnesol 
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treatment of both white and opaque cells, and evidence supports mitochondrial 

perturbation when cytotoxic levels of farnesol are present (Dumitru et al., 2007; Shirtliff 

et al., 2009; Uppuluri et al., 2007).  The importance of ROS is also implicit in the 

findings of Dumitru et al (Dumitru et al., 2007); under anaerobic conditions C. albicans 

tolerated mM levels of farnesol.  Careful use of physiologically relevant farnesol 

concentrations combined with clear indications of the previously mentioned variables 

will hopefully prevent future confusion on this issue. 

 Is farnesol-mediated death in C. albicans induced in a specific or non-specific 

manner?  Evidence exists supporting both models.  Ras1/cyclic AMP signaling again 

becomes relevant as it is known that an activated Ras-cAMP-PKA pathway and cAMP-

stimulatory drugs promoted apoptotic cell death in C. albicans (Phillips et al., 2006).  

However, the connection of farnesol to apoptosis (Shirtliff et al., 2009) is less clear.  

Based on the findings of Phillips et al (Phillips et al., 2006), one would expect farnesol to 

lessen apoptosis rather than to promote it.  Additionally, the lysis of opaque cells by 

farnesol was not apoptotic (Dumitru et al., 2007).  Using the same procedures as had 

been used for showing apoptosis in A. nidulans (Semighini et al., 2006), including the 

definitive Annexin V test (Semighini et al., 2006), we were unable to demonstrate 

apoptosis in farnesol lysed opaque cells (Dumitru and Nickerson, unpublished data).  

Since farnesol is lipophilic, it has the ability to disrupt cell membranes, and this supports 

the nonspecific-mediated killing model.  Understanding how farnesol regulates C. 

albicans growth morphologies, growth rates, and even cell death, may be essential 

components for understanding the role of farnesol in the host. 

The Role of Farnesol In Vivo 
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Our final topic is the role of farnesol during infection.  At the time of its discovery 

as a QSM, two ideas were put forward regarding its in vivo importance (Hornby et al., 

2001).  One was that, due to its ability to block the yeast to filament transition, farnesol 

treatment would act as a therapeutic in a mouse model of infection.  The other was that 

farnesol would act as a virulence factor.  Research on the topic has shown that the role of 

farnesol in vivo is not so simplistic.  Navarathna et al (Navarathna et al., 2005; 

Navarathna et al., 2007a) showed that farnesol acts as a virulence factor in the mouse tail 

vein injection assay, leading to the question of just how much farnesol is produced by C. 

albicans in the mouse.  A definitive answer to this question will be difficult.  The in vitro 

production  estimates were for cells grown in glass flasks whereas in vivo production 

would be for cells growing in close proximity to mouse membranes of many types which 

could easily act as external lipid sinks, thus enhancing farnesol production.   

C. albicans is capable of evading part of the host immune system by escaping 

from macrophages through the production of filaments (Ghosh et al., 2009; Lorenz et al., 

2004).  While external farnesol reduces the viability of macrophages in vitro (Abe et al., 

2009), the interesting question remains whether farnesol levels naturally produced by C. 

albicans are high enough to affect macrophage function/viability and thus enable fungal 

survival and escape from the macrophage. Does farnesol production in the 

phagolysosome contribute to escape from the macrophage?  Experiments which add 

exogenous farnesol to the macrophage cannot answer this question.  Also, an unfortunate 

obstacle for answering this question directly with the dpp3Δ/dpp3Δ mutant currently 

available is twofold.  First, it is knocked out in only one of two genes which convert 

farnesyl pyrophosphate to farnesol and thus it still produces 15% as much farnesol as its 
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parent and, second, it is an arginine auxotroph (Navarathna et al., 2007a).  Ghosh et al 

(Ghosh et al., 2009) demonstrated the requirement of arginine biosynthesis by C. 

albicans to effectively penetrate and escape murine macrophages.  Briefly (Fig 1), Ghosh 

et al (Ghosh et al., 2009) showed that the rapid upregulation of arginine biosynthetic 

genes following macrophage ingestion, originally noted by Lorenz et al (Lorenz et al., 

2004), occurred so that the arginine could be degraded to urea and then to CO2, a known 

signal for hyphal switching (Bahn and Muhlschlegel, 2006) necessary for C. albicans to 

escape.  Therefore, the dpp3Δ/dpp3Δ  mutant and its parental strain SN152 are unable to 

escape from macrophages, regardless of the presence of DPP3.  New prototrophic 

mutants defective in farnesol production must be constructed before this question can be 

answered. 

Consistent with early hypotheses, Hisajima et al (Hisajima et al., 2008) recently 

published the finding that farnesol has a protective role against C. albicans in an oral 

model of murine infection.  This presents an intriguing conundrum: how does farnesol 

enhance infection for disseminated candidiasis (Navarathna et al., 2007a) while treating 

infection for mucosal (oral) candidiasis?  A similar conundrum is how farnesol can act 

externally to protect yeast cells from oxidative stress (Westwater et al., 2005) but also 

inhibit growth by enhancing ROS production by mitochondria (Machida et al., 1998b).  

This suggests other factors are at play other than or in addition to the effect of farnesol on 

C. albicans, potentially the host’s response to farnesol.   
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Figure legends 

Figure 1-1.  Farnesol impacts the cyclic AMP pathway in C. albicans.   Three possible 

points of inhibition by farnesol. 
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Figure 1-1 
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Table 1-1.  The effects of farnesol treatment in other cell types. 
 
 
 
Organism 

Farnesol 
Concentration(s) 
Used 

 
Summary of Farnesol Response 

C. dubliniensis 1.5 nM- 300 µM Filament inhibition, no effect on growth, 
(Henriques et al., 2007; Martins et al., 2007), 
biofilm inhibition, MIC = 200µM, lowered 
tolerance of fluconazole (Jabra-Rizk et al., 2006b) 

C. parapsilosis 1.5 nM-100 µM Biofilm inhibition (Laffey and Butler, 2005), 
growth arrest ≥50 µM, lipid metabolism, 
ribosome biogenesis, and amino acid biosynthesis 
genes affected, altered lipid polarization 
(Rossignol et al., 2007) 

Acinetobacter 
baumannii 

50 µM- 200 µM Growth inhibition (Peleg et al., 2008) 

Aspergillus 
fumigatus 

10 µM - 250 µM Growth inhibition, apoptosis (Semighini et al., 
2006) 

Aspergillus 
nidulans 

1 µM - 250 µM Apoptosis and ROS production (10 – 250 µM) 
(Semighini et al., 2006), hyphal inhibition (1-10 
µM) (Semighini et al., 2006), autophagy, lipid 
metabolism, amino acid response, transcription, 
and translation genes affected (10-100 µM) 
(Savoldi et al., 2008) 

Aspergillus 
niger 

100 µM- 10mM Inhibition of conidiation (Lorek et al., 2008) 

Fusarium 
graminearum 

100 µM - 300 
µM 

Apoptosis, altered spore germination and lysis 
(Semighini et al., 2008) 

Human gingival 
cells 

10 µM- 300 µM Reduced proliferation and adhesion (Saidi et al., 
2006) 

Human oral 
carcinoma cells 

10 µM - 60 µM Apoptosis (Scheper et al., 2008) 

Murine 
macrophages 

56 µM - 112 µM Apoptosis, ROS production, decreased phagocytic 
activity (Abe et al., 2009) 

Paracoccidiodes 
brasiliensis 

5 µM - 300 µM Inhibition of yeast to hyphal and hyphal to yeast 
growth at low concentrations, growth inhibition at 
high concentrations (Derengowski et al., 2009) 

Pseudomonas 
aeruginosa 

30 µM - 300 µM Inhibition of Pseudomonas quinolone signal 
(PQS) and pyocyanin production, decreased 
swarming motility,  (Cugini et al., 2007; 
McAlester et al., 2008) 

Saccharomyces 
cerevisiae 

5 µM- 5 mM Growth inhibition by cell cycle arrest, effect on 
mitochondria and increased reactive oxygen 
species (ROS) production (Machida et al., 1998a; 
Machida et al., 1999), cell death (Fairn et al., 
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2007) 
Staphylococcus 
aureus 

30 µM - 4.5 mM Cell death, membrane disruption, biofilm 
inhibition, lipase inhibition, increased sensitivity 
to antibiotics (Jabra-Rizk et al., 2006a; Kuroda et 
al., 2007; Togashi et al., 2008) 

Staphylococcus 
epidermidis 

100 µM -200 µM Cell death (Gomes et al., 2009) 

Streptococcus 
mutans 

250 µM - 5 mM Growth inhibition, biofilm inhibition, prevention 
of dental caries in rats when in combination with 
fluoride and apigenin (Koo et al., 2002a; Koo et 
al., 2002b; Koo et al., 2003; Koo et al., 2005) 

Tobacco 
(Nicotiana 
tabacum L. cv 
Bright Yellow-
2) 

5 µM -150 µM Cell death (Hemmerlin and Bach, 2000; 
Hemmerlin et al., 2006) 
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Table 1-2.  The effects of secreted bacterial molecules on C. albicans. 
 
 
Bacterium Secreted 

Molecule(s) 
Summary of C. albicans Response 

Acinetobacter 
baumannii 

Unknown, found in 
cell-free supernatant 

Filament inhibition, biofilm inhibition (Peleg 
et al., 2008) 

Burkholderia 
cenocepacia 

Cis-2-dodecenoic 
acid (Burkholderia 
diffusible signal 
factor, BDSF) 

Growth  inhibition and filament inhibition 
(Boon et al., 2008) 

P. aeruginosa 3-oxo-C12-
homoserine lactone, 
dodecanol, and C12-
acyl homoserine 
lactone 

Filament inhibition and reversion to yeast 
morphology (Davis-Hanna et al., 2008; Hogan 
et al., 2004) 

P. aeruginosa Phenazines Cell death (Gibson et al., 2009) 
Salmonella 
enterica 
serovar 
Typhimurium 

Unknown, found in 
cell-free supernatant 

Filament inhibition, biofilm inhibition, and 
reduced viability (Tampakakis et al., 2009) 

Streptococcus 
gordonii 

Unknown, found in 
cell-free supernatant 
and missing/reduced 
in ΔluxS mutant 

Induction of filamentous growth, suppression 
of farnesol-mediated filament inhibition  
(Bamford et al., 2009) 

Xanthomonas 
campestris 

Cis-11-methyl-2-
dodecenoic acid 
(diffusible signal 
factor, DSF) 

Filament inhibition (Boon et al., 2008; Wang 
et al., 2004) 
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CHAPTER 2 

Activity and toxicity of farnesol on Candida albicans is dependent on growth 

conditions 
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Langford, M.L., Hasim, S., Nickerson, K.W., and Atkin, A.L.  (2010)  Activity and 

toxicity of farnesol on Candida albicans is dependent on growth conditions.  Antimicrob. 
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Abstract 

 Farnesol interacts with Candida albicans as both a quorum sensing molecule and 

toxic agent, but confusion abounds regarding which conditions promote these distinct 

responses.   Farnesol sensitivity was measured when inoculum cell history and size, 

temperature, and media were altered.  Parameters for farnesol tolerance/sensitivity are 

defined, validating previous studies and identifying new variables, such as energy 

sources.  This study provides a clear understanding of what farnesol concentrations are 

lethal to C. albicans, based on environmental conditions. 
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Introduction         

Candida albicans is a dimorphic fungus of great medical importance.  It is also 

the model system for studying quorum sensing for fungal dimorphism (Hornby et al., 

2001).  C. albicans excretes a quorum sensing molecule (QSM) called farnesol and when 

extracellular levels exceed a threshold of 1-5 μM (Mosel et al., 2005), farnesol blocks the 

yeast-to-filament conversion.  One feature of farnesol’s action as a QSM was that 

exogenous farnesol up to 200-300 μM does not alter the growth rate; instead, the cells 

grow as yeasts rather than as filaments.  These results were quickly confirmed by 

Ramage et al (Ramage et al., 2002), Hogan et al (Hogan et al., 2004), and Kruppa et al 

(Kruppa et al., 2004).  Farnesol also impacts other aspects of C. albicans biology: it 

blocks biofilm formation (Ramage et al., 2002), acts as a virulence factor during systemic 

infection (Navarathna et al., 2007a), and is a protective factor during mucosal infection 

(Hisajima et al., 2008).  Farnesol production is regulated in that it is turned off in opaque 

cells (Dumitru et al., 2007) and during anaerobic growth (Dumitru et al., 2004) but 

elevated in some mutants which are altered in morphology (Jensen et al., 2006) or locked 

in the filamentous morphology (Kebaara et al., 2008).   Farnesol production also 

increases in the presence of sublethal levels of sterol biosynthesis inhibitors (Hornby and 

Nickerson, 2004; Navarathna et al., 2005). 

 Farnesol is a bioactive molecule with mild detergent-like properties.  At 

concentrations in the 20-50 μM range it has been reported to inhibit or induce cell death 

in Saccharomyces cerevisiae (Machida et al., 1998a; Machida et al., 1999), Aspergillus 

nidulans (Semighini et al., 2006), Fusarium graminearum (Semighini et al., 2008), 

Paracoccidioides brasiliensis (Derengowski et al., 2009), and C. albicans opaque cells 
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(Dumitru et al., 2007).  Similarly, farnesol has been reported to trigger cell death in 

several mammalian cell lines (Abe et al., 2009; Saidi et al., 2006; Scheper et al., 2008) 

and bacteria (Gomes et al., 2009; Jabra-Rizk et al., 2006a; Koo et al., 2003; Togashi et 

al., 2008), and it induces cytokine production, such as IL-6, by macrophages.  Thus, the 

view to this point was that C. albicans exhibited exceptional tolerance to farnesol, as a 

necessary corollary to its production as an antagonistic molecule.  This view was recently 

challenged by Shirtliff et al (Shirtliff et al., 2009) who reported that farnesol, at 

concentrations as low as 40 μM, killed C. albicans by inducing apoptosis.  Thus, in the 

spirit of constructive dialogue, we draw attention to the differences between the growth 

conditions used in our previous body of work under which farnesol would act as a 

signaling molecule, innocuous to growth, and the conditions under which Shirtliff et al 

(Shirtliff et al., 2009) observed cell death. 

Previous studies examining C. albicans sensitivity to farnesol (Dumitru et al., 

2007; Jabra-Rizk et al., 2006b; Shirtliff et al., 2009; Uppuluri et al., 2007) have used 

vastly different assay conditions (varying temperatures, media, inoculum sizes, and 

inoculum growth phases), adding to confusion on the matter of farnesol-induced cell 

death.  Critically, Shirtliff et al (Shirtliff et al., 2009) used cells that were grown 

overnight, washed and resuspended in PBS for farnesol sensitivity assays.  Since it is well 

known that detergent resistance in bacteria is an energy dependent process (Aspedon and 

Nickerson, 1993; Rajagopal et al., 2003), we were particularly interested whether 

farnesol resistance in C. albicans is similarly energy dependent.   
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Methods 

We examined farnesol sensitivity under a series of different growth conditions in 

plastic microtiter dishes.  Variables included temperature, cell density, growth medium 

(rich vs. minimal), and inoculum history.  We followed cell growth by means of optical 

density and cell death by methylene blue staining (Gibson et al., 2009).  C. albicans cells 

were grown to stationary phase (unbudding cells; cultures were inoculated to an OD600 

=0.1 and grown at 30°C for 16-18h) or mid-log phase (OD600 =0.5), washed three times 

in PBS, and inoculated at the indicated levels with variable concentrations of farnesol. 

We used 10 mM and 100 mM stocks of E, E-farnesol in methanol so that the final 

methanol concentration never exceeded 1%, and this level of methanol had no effect on 

cell growth or cell death (data not shown). 
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Results 

In rich growth medium (YPD), no cell death was observed at farnesol 

concentrations up to 300 μM and growth inhibition was only observed with 300 μM 

farnesol (data not shown).  When we switched to a defined glucose-proline (GPP pH6.8) 

(Kebaara et al., 2008)medium (Fig. 1), very similar growth curves were observed with all 

concentrations of farnesol up to 300 μM when starting with stationary phase inocula (Fig. 

1A).  The cell growth experiments (Fig. 1) were simultaneously examined for cell death 

by staining with methylene blue (Fig. 2B, 2D).  Minimal cell death occurred in GPP with 

a stationary phase inoculum, our standard growth conditions (Hornby et al., 2001; Mosel 

et al., 2005), and up to 300 μM farnesol (Fig. 2D) consistent with growth curves seen in 

Fig. 1A.  However, when we used inocula of exponentially growing cells, 40 μM farnesol 

partially inhibited growth and further inhibition correlated with increasing farnesol levels 

(Fig. 1B).  Log phase cells were killed by 100 and 300 μM farnesol in GPP (Fig. 2B), 

consistent with the delayed growth seen in Fig. 1B.  These results support the growth 

phase-dependent sensitivity described by Uppuluri et al (Uppuluri et al., 2007).  

Temperature does not play a prominent role in farnesol growth inhibition because we 

obtained similar growth curves at 25ºC, 30°C, and 37°C (data not shown). 

 To examine the effects of different media on farnesol sensitivity, cells were 

compared under both growth (GPP) and storage (PBS) conditions, using both exponential 

and stationary phase inocula (Fig. 2).  For exponential phase cells inoculated in PBS, 

even low levels of farnesol, i.e. 40 μM, caused cell death (Fig. 2A), consistent with the 

findings of Shirtliff et al (Shirtliff et al., 2009).  The cells in PBS were far more sensitive 

to farnesol when they had come from an exponential phase inoculum than a stationary 



41 
 

 

phase inoculum (Fig. 2A, 2C).  Interestingly, both exponential and stationary phase cells 

showed increased tolerance to farnesol when incubated in growth media (GPP or YPD), 

compared to PBS (Fig. 2).  As with growth rates, similar results for cell death were 

obtained at all 3 temperatures tested, 25°C, 30°C, and 37°C.  These observations suggest 

a role for energy source(s) in C. albicans farnesol tolerance.   

The previous experiments (Figs. 1 and 2) were conducted in 96 well plates with 

farnesol added at time zero to washed cells.  Because of a possible farnesol adsorption 

effect with plastic (Davis-Hanna et al., 2008), we confirmed the farnesol sensitivity of 

exponentially growing cells in glass flasks (Fig. 3).  We compared the farnesol sensitivity 

of C. albicans cells in exponential phase (OD600 = 0.5, Fig. 3A, 3B) and stationary phase 

(OD600 = 4.0, Fig. 3C, 3D) by adding farnesol directly to unwashed growing cultures.  

The results with glass flasks (Fig. 3) were consistent with those obtained with plastic 96 

well plates. 
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Discussion 

A distinct benefit of this controversy is to focus attention on the conditions in 

which C. albicans tolerates farnesol while so many other cell types are killed by it.  

Stationary phase C. albicans cells exhibit extreme farnesol tolerance, even at 100-300 

μM farnesol, and these levels are lethal to most other organisms tested.  Throughout, cell 

death was not accompanied by cell lysis because there was no drop in OD600 and the 

methylene blue positive cells remained intact.  Similarly, optical densities of cells in PBS 

were not significantly affected by the presence of farnesol (data not shown).  This lack of 

cell lysis with white cells of C. albicans is in marked contrast with opaque cells where ≥ 

40 µM farnesol caused rapid cell lysis (Dumitru et al., 2007).  The differences in 

susceptibility between white and opaque cells (Dumitru et al., 2007), aerobic and 

anaerobic cells (Dumitru et al., 2004), stationary and exponential cells [(Uppuluri et al., 

2007) and Figs. 1-3], and between cells in buffer alone versus minimal media suggest a 

physiological adaptation to farnesol, depending on environmental conditions.  Two places 

where this selective farnesol tolerance might be localized are the mitochondria, where 

farnesol stimulates ROS production in C. albicans and S. cerevisiae (Machida et al., 

1998a; Machida et al., 1999; Shirtliff et al., 2009), and the lipid portion of the 

cytoplasmic membrane.  Changes in fatty acid composition, sterol-rich domains (Alvarez 

et al., 2007), sphingolipids (Brown and London, 2000), and GPI-anchored proteins 

preferentially associated with lipid rafts (Brown and London, 2000) could be involved, as 

supported by the lipid domain alteration seen in C. parapsilosis after farnesol treatment 

(Rossignol et al., 2007).  Although the mechanisms(s) involved in farnesol tolerance 
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remain unclear, conditions in which C. albicans is either sensitive or resistant to farnesol 

have now been outlined.   

       In summary, stationary phase cells inoculated into minimal or rich media are ideal 

candidates for studying farnesol signaling, as these do not undergo cell death with high 

farnesol concentrations.  This generalization was true for all three commonly used 

temperatures (25°C, 30°C, 37°C) as well as for experiments with starting cell densities of 

OD600 = 0.05 or 0.10.  Conversely, optimal conditions to examine farnesol-mediated cell 

death include the use of log phase cells in PBS, under energy-starved conditions.  

Understanding these environmental parameters may unify many previous discrepancies 

in the literature and provide unambiguous conditions to induce each of farnesol’s unique 

effects on C. albicans. 
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Figure Legends 
 
Fig. 2-1.  Effect of farnesol on C. albicans cell growth.  A) stationary phase inoculum, B) 

exponential phase inoculum.  Cells were grown in duplicate on at least two separate 

occasions in defined GPP medium with indicated levels of farnesol (see legend in B) at 

30°C in 96-well plates, and OD600 values were recorded on an automated plate reader 

(Molecular Devices, Sunnyvale, CA).  Note the different y-axis scales in graphs A and B. 

 

Fig. 2-2.  Effect of farnesol on C. albicans cell death.  Percent death was determined by 

methylene blue staining (Gibson et al., 2009).  Cells were incubated in either PBS (A, C) 

or GPP (B, D) with the indicated levels of farnesol in 96-well plates at 30°C.  Incubations 

were initiated with either exponential (A, B) or stationary phase (C, D) inocula. 

 

Fig. 2-3.  Toxicity of farnesol to exponential cultures of C. albicans.  One culture (A, B) 

was subdivided (in six) when it had reached exponential phase (OD600 = 0.5) and the 

other (C, D) was subdivided when it had reached stationary phase (OD600 = 4.0).  

Cultures were not washed prior to subdivision and farnesol addition.  Cultures containing 

the indicated levels of farnesol were shaken at 30°C and 250 rpm for 4 hrs and at the 

indicated times cell growth (A, C) and % dead cells (B, D) were determined.  All cultures 

were in glass flasks in GPP both before and after subdivision.   
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Figure 2-1 
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Figure 2-2 
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Figure 2-3 
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CHAPTER 3 

Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-

growth induction 

 

Reference: 

Kebaara, B.W., Langford, M.L., Navarathna, D.H., Dumitru, R., Nickerson, K.W., 

and Atkin, A.L.  (2008)  Candida albicans Tup1 is involved in farnesol-mediated 

inhibition of filamentous-growth induction.  Eukaryot. Cell.  7: 980-7. 
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Abstract 

Candida albicans is a dimorphic fungus that can interconvert between yeast and 

filamentous forms.   Its ability to regulate morphogenesis is strongly correlated with 

virulence.  Tup1, a transcriptional repressor, and the signaling molecule farnesol are both 

capable of negatively regulating the yeast to filamentous conversion.  Based on this 

overlap in function, we tested the hypothesis that the cellular response to farnesol 

involves, in part, the activation of Tup1.  Tup1 functions with the DNA binding proteins 

Nrg1 and Rfg1 as a transcription regulator to repress expression of hyphal specific genes.  

The tup1/tup1 and nrg1/nrg1 mutants, but not the rfg1/rfg1 mutant, failed to respond to 

farnesol.  Treatment of C. albicans cells with farnesol caused a small but consistent 

increase in both TUP1 mRNA and protein levels.  Importantly, this increase corresponds 

with the commitment point, beyond which added farnesol no longer blocks germ tube 

formation, and it correlates with a strong decrease in the expression of two Tup1-

regulated, hyphal-specific genes, HWP1 and RBT1.  Tup1 probably plays a direct role in 

the response to farnesol because farnesol suppresses the haploinsufficient phenotype of a 

TUP1/tup1 heterozygote. Farnesol did not affect EFG1 (a transcription regulator of 

filament development), NRG1, or RFG1 mRNA levels, demonstrating specific gene 

regulation in response to farnesol. Further, the tup1/tup1 and nrg1/nrg1 mutants produced 

17- and 19-fold more farnesol, respectively, than the parental strain.  These levels of 

excess farnesol are sufficient to block filamentation in a wild-type strain. Our data are 

consistent with Tup1 being a crucial component of the response to farnesol in C. 

albicans.   
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Introduction 

 Candida albicans is the most commonly isolated opportunistic fungal pathogen in 

humans. C. albicans is part of the normal flora, and it resides in the gastrointestinal and 

genitourinary tracts, as well as on the skin.  However, C. albicans is capable of causing a 

wide range of disease, from mild mucosal infections to life-threatening systemic 

infections termed candidemia (Jarvis and Martone, 1992).  Vulnerable patients include 

AIDS patients, patients undergoing chemotherapy, and organ transplant patients (Jarvis 

and Martone, 1992).  The annual cost of treating candidiasis in the United States was 

estimated to be one billion dollars, and the mortality rates for patients with candidiasis 

are 30-50% even with antifungal treatment (Kullberg and Filler, 2002), indicating a need 

for new antifungal drugs. 

 The ability of C. albicans to cause disease has been strongly linked to its 

conversion between two distinct morphological forms:  yeast and filaments.  Recently, 

our research has focused on farnesol, the first quorum sensing molecule (QSM) 

discovered in a eukaryote (Hornby et al., 2001).  Farnesol is a virulence factor 

(Navarathna et al., 2007a) that is excreted continuously by C. albicans (Hornby et al., 

2001), and when it accumulates beyond a threshold level it blocks the yeast to filament 

conversion (Hornby et al., 2001). Stationary phase cultures of C. albicans have 

accumulated 2-4 µM farnesol (Hornby et al., 2001) and the IC50 value for blocking germ 

tube formation (GTF) in an N-acetylglucosamine stimulated assay is ca. 1-2 µM (E, E) 

farnesol (Hornby et al., 2001; Mosel et al., 2005; Shchepin et al., 2003) and, 

consequently, these farnesol production levels are physiologically relevant.  Other roles 

described for farnesol include biofilm inhibition (Ramage et al., 2002), protection from 
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oxidative stress (Deveau et al., 2010; Westwater et al., 2005), and induction of apoptosis 

in another fungus, Aspergillus nidulans (Semighini et al., 2006).   While many 

phenotypic effects produced by farnesol have been described, little is understood about 

farnesol’s mode of action. 

In addition to farnesol, C. albicans yeast and filamentous growth is controlled by 

an assortment of signaling pathways (Berman and Sudbery, 2002; Dhillon et al., 2003).  

The yeast to filamentous conversion is activated by many pathways, including:  

Components of the CEK1 MAP kinase pathway, Ras/cAMP-dependent pathway, 

Calcium/Calmodulin signaling pathway, Rim101-independent pathway, and Chk1 two-

component signal transduction pathway. Although each has been implicated in 

filamentation (Csank et al., 1998; Kruppa et al., 2004; Ramon et al., 1999), these 

pathways show some degree of specialization in that they respond to different 

environmental inducers. Activation and inhibition of filament development is largely 

accomplished through changes in gene expression mediated by transcription activators 

and repressors. Efg1 is a major transcription regulator of filamentous growth and is a 

central control point for many signaling pathways involved in filamentation (Eckert et al., 

2007).  Efg1 also regulates the expression of multiple genes including those involved in 

virulence (Eckert et al., 2007; Kumamoto and Vinces, 2005a).  Mechanisms have also 

been identified that block filament development with transcriptional repression by Tup1 

playing a key role (Braun and Johnson, 1997; Braun and Johnson, 2000). 

Farnesol is able to block filamentous growth induced by environmental signals for 

most, and possibly all of the signaling pathways activating filament development. These 

signals include: 10% serum, 10 mM L-proline, 2.5 mM N-acetylglucosamine, or the 
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combination of N-acetylglucosamine and L-proline, all at 37oC (Hornby et al., 2001).  

Thus, farnesol may individually block each of the morphogenic signaling pathways 

and/or act at a common control point in morphogenesis.  Tup1 repression of filament 

specific genes is an attractive candidate for a common control point that may be regulated 

by farnesol (Kadosh and Johnson, 2005).   

 The C. albicans Tup1 protein is a transcription regulator that plays two key roles 

in the cell: 1) regulation of phase switching, and 2) inhibition of filamentous growth.  

Tup1 interacts with either Ssn6 or Tcc1 corepressor proteins.  This complex functions 

with DNA binding proteins to repress gene expression (Kaneko et al., 2006; Sprague et 

al., 2000).  At least three DNA-binding proteins have been identified that function with 

Tup1:  Nrg1 (homologous to Saccharomyces cerevisiae Nrg1p), Rfg1 (homologous to S. 

cerevisiae Rox1p), and Mig1 (homologous to S. cerevisiae Mig1p). Homozygous tup1 

mutants are unable to grow as yeast and instead remain locked in the filamentous form in 

all media tested (Braun and Johnson, 1997).  Deletion of TUP1 results in the up-

regulation of approximately one-third of C. albicans genes (Murad et al., 2001a; Murad 

et al., 2001b) and these mutants are also avirulent in a murine model of infection. 

Activation of Tup1 transcription repressor complexes results in the repression of 

filament-specific gene expression (Braun and Johnson, 1997; Braun and Johnson, 2000; 

Murad et al., 2001a; Murad et al., 2001b).   

Here, we tested the hypothesis that the C. albicans response to farnesol involves 

Tup1. The morphological response to farnesol was tested in wild-type, tup1/tup1, 

tup1/TUP1, nrg1/nrg1, and rfg1/rfg1 strains to assess the requirement for these genes in 

the farnesol response. The gene expression pattern for MIG1 was not determined because 
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Mig1 protein does not play a role in filamentous growth of C. albicans (Murad et al., 

2001a).  The gene expression patterns of TUP1, NRG1, RFG1, and EFG1, as well as 

genes under their control were examined in the presence or absence of farnesol by 

quantitative northern and western analyses. Finally, we compared farnesol production 

levels in tup1, nrg1, and rfg1 homozygous mutants relative to wild type cells. 
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Methods 

Strains and media 

Candida albicans SC5314 is an independent clinical isolate and the reference 

strain for the Candida genome sequence. C. albicans strains CAF-2 

(ura3:imm434/URA3) and CAI-4 (ura3::imm434/ura3::imm434) are derived from 

SC5314 by gene replacement .  Strains BCa2-9 (tup1/tup1, in CAI-4; (Braun and 

Johnson, 1997), BCa2-10 (tup1/tup1, frameshift disruption fragment in CAI-4; (Braun 

and Johnson, 1997), DU152 (nrg1/nrg1, in CAI-4; (Braun and Johnson, 1997), DU129 

(rfg1/rfg1, in CAI-4; (Backen et al., 2000; Kadosh and Johnson, 2001), BCa05 that 

expresses TUP1 ectopically (tup1/tup1, MAL3:p455, in CAI-4; (Braun and Johnson, 

1997) and BCa2-3 (TUP1/tup1, in CAI-4; (Braun and Johnson, 1997) were obtained from 

Alexander Johnson, University of California, San Francisco, CA. Strain MEN was 

provided by Richard Cannon, University of Otago, Dunedin, New Zealand.   

Resting cells were obtained by growing cells in modified glucose salts biotin 

media (mGSB) overnight, washing three times with 50 mM phosphate pH 6.5, 

resuspended in 10 ml of 50 mM phosphate, and stored at 4°C to be used within a month.  

 The defined glucose-salts medium GPP pH 4.8 contained (per liter distilled 

water): glucose, 20g; L-proline, 1.15g; NaH2PO4, 3.2g; KH2PO4, 4g; MgSO4•7H20, 0.5g; 

CuSO4•5H20, 1mg; ZnSO4•7H20, 1mg; MnCl2, 1mg; FeSO4, 1 mg; biotin, 20 μg; 

pyridoxine•HCl, 200 μg; thiamine•HCl, 200 μg,.  The glucose (20% w/v) and L-proline 

(100 mM) were autoclaved separately and added aseptically, as were the filter-sterilized 

vitamins (Kulkarni and Nickerson, 1981).  Modified GPP (mGPP) also contained 2.5 mM 

N-acetylglucosamine (Hornby et al., 2001). GPP pH 6.8 contained 3.2g/L Na2HPO4 
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instead of NaH2PO4.   For maltose phosphate proline media (MPP), filter-sterilized 

maltose replaced the glucose.  Cornmeal agar (Difco, Detroit, MI) was also used.  Solid 

media included 1.5% (w/v) agar.  All media for CAI-4 included uridine at 40 μg/ml 

(Backen et al., 2000). 

Microscopy 

Differential interference contrast (DIC) images were photographed with an 

Olympus BX51 microscope and colony morphology images were photographed with an 

Olympus SZX12 microscope. 

Quantitative Northern blot analysis 

To measure mRNA accumulations, SC5314 resting cells were inoculated in 

mGPP to an OD600 of 0.5-0.6 and allowed to equilibrate at 37°C for 5 minutes whereupon 

20 μM farnesol was added to half of the flasks. Cells were grown at 37°C for 0, 20, 40, 

60, and 80 minutes until the cells were harvested and total RNA extracted by the hot 

phenol method (Backen et al., 2000; Kebaara et al., 2003).  Equal amounts of RNA 

(15μg) were resolved on 1.0 % agarose-formaldehyde gels and the RNA was transferred 

to GeneScreen Plus (NENTM Life Science Products, Inc., Boston, MA) using the capillary 

blot transfer protocol recommended by the manufacturer. The Northern blots were probed 

with radiolabeled DNA probes. The probe DNAs used for synthesis were prepared by 

PCR using MEN genomic DNA. The probes were labeled with 32P-dCTP (GE Health 

Sciences, Piscataway, NJ) using an oligolabeling kit, RadPrime DNA labeling system 

following the protocol recommended by the manufacturer (Invitrogen, Carlsbad, CA). 

Northern blots were PhosphorImaged using a Storm (Amersham Pharmacia Biotech Inc., 

Piscataway, NJ) and quantified using ImageQuant software (Molecular Dynamics version 
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5.0, Sunnyvale, CA). mRNA abundance measurements were done using a minimum of 

three independent Northern blots. 

Western blot analysis 

Western blots were prepared as previously described (Atkin et al., 1995) and 

Tup1 and Act1 proteins detected with the Supersignal® West Pico Chemiluminescent 

Substrate using the manufacturers protocol (Pierce, Rockford, IL) with the exception that 

blocking was done with 5% nonfat dry milk. Rabbit polyclonal antibodies against Tup1 

were previously described (Inglis and Johnson, 2002).  Mouse monoclonal Anti-Act1 

antibodies and horseradish peroxidase (HRP) labeled ant-rabbit IgG antibodies were from 

Amersham Pharmacia Biotech Inc. (Piscataway, NJ).  HRP labeled anti-mouse antibody 

was from Perkin-Elmer (Boston, MA). 

Analysis of farnesol levels 

Extracellular farnesol was extracted from cell free-supernatants of cultures grown 

in mGPP at 30o and  analyzed by GC/MS as described (Hornby et al., 2001). 
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Results 

tup1/tup1 and nrg1/nrg1 mutants lack a morphological response to farnesol while 

the rfg1/rfg1 mutant responds to farnesol 

 The juxtaposition of farnesol’s ability to inhibit differentiation, and the role of 

Tup1 as a transcription repressor for filamentation genes suggests that farnesol could 

function by activating Tup1 and/or one of its co-regulators, Nrg1 and Rfg1.  

Consequently, we examined the effect of farnesol on the morphology of null mutants 

lacking TUP1, NRG1, and RFG1.  As a control, the wild type C. albicans SC5314 in 

filament-inducing media grew as yeasts in the presence of 20 μM farnesol and as 

filaments in media lacking farnesol, demonstrating a positive response to farnesol (Fig. 

1). The rfg1/rfg1 mutant responded to 20 μM farnesol in a similar manner to SC5314 

(Fig. 1).  Unlike SC5314 and rfg1/rfg1, the tup1/tup1 and nrg1/nrg1 mutants lacked a 

detectable response to farnesol and remained filamentous in the presence of 20 μM 

farnesol (Fig. 1). The filamentous-only cell morphology is the expected phenotype for 

these known mutants (Braun and Johnson, 1997; Braun et al., 2001; Khalaf and Zitomer, 

2001; Murad et al., 2001a; Murad et al., 2001b).  However, in this regard, tup1/tup1 and 

nrg1/nrg1 mutants differ from the great majority of filamentous-only mutants recovered 

from a previous study, 96% of which reverted to a smooth colony (yeast) morphology on 

YM agar plates with 50 μM farnesol (Jensen et al., 2006).  For the tup1/tup1 mutant, the 

lack of response to farnesol was specific for loss of Tup1 because we found ectopic 

expression of TUP1 (Braun and Johnson, 1997) restores the ability to respond to farnesol 

(data not shown).  
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TUP1 mRNA levels increase in the presence of farnesol while RFG1 and NRG1 

mRNA levels were not affected by farnesol 

We analyzed the effect of farnesol on TUP1 mRNA levels over time in C. 

albicans SC5314 cells which had been induced to differentiate from yeasts to filaments 

by growth at 37°C in mGPP.  We previously showed (Mosel et al., 2005) that, in these 

conditions, the first germ tubes appeared at 30 min and the process was complete by 110 

min.  Further, farnesol no longer blocked germ tube formation when added 60-90 min 

after inoculation (Kulkarni and Nickerson, 1981).   Here our analysis was designed to 

evaluate changes in TUP1 mRNA just before germ tube formation when the cells were 

still responsive to farnesol.  Filamentation was induced by transferring resting cells into 

mGPP (pH 4.8) at 37°C in the presence and absence of 20 μM farnesol and mRNA levels 

were determined at 0, 20, 40, 60 and 80 min following induction.  In all experiments, the 

TUP1 mRNA levels decreased over the first 20 min and then increased (Fig. 2A). This 

pattern is consistent with the single time point results of Toyoda et al. (Toyoda et al., 

2004) who showed that TUP1 mRNA levels increased slightly at 180 minutes after 

induction of filamentation.  In the presence of farnesol, we found that TUP1 mRNA 

consistently increased 2.5±0.6 (n=4) fold from 20 to 60 min.  Importantly, this is the time 

period just prior to that at which the cells become committed and are no longer 

responsive to farnesol (Mosel et al., 2005).  In contrast, in the absence of farnesol, there 

was very little increase (1.4±0.3, n=4) in TUP1 mRNA levels from 20 to 60 min (Fig 

2A).  Thus, farnesol (20 µM) causes a consistent increase in TUP1 mRNA levels during 

the precise time period when it blocks differentiation from yeasts to filaments.  This 
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increase of 2.5-fold in TUP1 mRNA corresponded to an increase in SC5314 Tup1 protein 

levels at 60 min following induction (Fig.3).  Tup1 protein in SC5324 was increased in 

all three replicate experiments by an average of 2.5-fold. 

Since Tup1 functions with DNA binding proteins such as Rfg1 or Nrg1, and in C. 

albicans strain JCM9061 NRG1 mRNA levels decreased during filamentation (Toyoda et 

al., 2004), we tested the effect of farnesol on RFG1 and NRG1 mRNA levels during 

differentiation from yeasts to filaments.  Like TUP1, RFG1 mRNA levels initially 

decreased and then increased (data not shown).  However, unlike TUP1, the timing and 

magnitude of the changes were similar in the presence and absence of farnesol (Fig. 4, 

data not shown).  Under the same conditions, NRG1 mRNA levels did not change during 

development and they too were the same in the presence and absence of farnesol (Fig. 4).  

Thus, we conclude that farnesol does not affect RFG1 or NRG1 mRNA levels. 

 

Expression of the Tup1-regulated filamentous genes HWP1 and RBT1 is inhibited 

by farnesol 

To test whether the increased TUP1 expression in the presence of farnesol was 

biologically significant, we examined the expression of two Tup1-regulated genes, HWP1 

and RBT1 [Fig. 2B and C, (De Groot et al., 2003)].  In the absence of farnesol, the HWP1 

and RBT1 transcripts were undetectable at time 0 but they were strongly expressed from 

40 to 80 minutes (Fig. 2B and C).  Farnesol delays and dramatically reduces the 

magnitude of HWP1 and RBT1 mRNA expression (Fig. 2B and C).  At 80 minutes, 

HWP1 and RBT1 levels were 30- and 7.6-fold lower, respectively, in farnesol treated than 

untreated cells.  Similar results were observed by Davis-Hanna et al. (Davis-Hanna et al., 
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2008) for HWP1 mRNA 2 hours after treatment with 75 μM farnesol. Thus there is a 

strong correlation between elevated TUP1 expression in response to farnesol and the 

expression of Tup1-regulated genes. 

 

EFG1 mRNA levels remain unaffected by farnesol 

Efg1 is a transcription regulator for genes required for filamentation.  EFG1 

mRNA levels are down regulated at the initiation of filament development and then 

increase as filament formation progresses (Tebarth et al., 2003). HWP1 and RBT1 are 

activated by Efg1 during filamentation.  Therefore, we tested whether farnesol also 

affects EFG1 mRNA levels (Fig. 4).  The EFG1 mRNA levels were high at time 0, 

decreased to a minimum at 20 minutes, and then increased steadily throughout the 

remaining time (data not shown).  However, farnesol had no influence on EFG1 mRNA 

levels since the timing and magnitude of the changes were similar in the presence and 

absence of farnesol (Fig.4 and data not shown).   

 

Farnesol suppresses the haploinsufficient phenotype of a TUP1/tup1 heterozygote. 

Braun and Johnson (Braun and Johnson, 1997) showed that BCa2-3, a TUP1/tup1 

heterozygote, is haploinsufficient in that these cells develop a higher proportion of 

filaments compared to wild-type cells on most media (Braun and Johnson, 1997).  

Presumably these cells do not make enough Tup1 to compensate for the reduced gene 

copy number. We hypothesized that farnesol might suppress this phenotype because it 

increases TUP1 expression 2.5-fold in SC5314 and 4.2 fold in TUP1/tup1 (Fig. 3).  This 

increase should restore Tup1 to roughly wild type levels.  To test this hypothesis, we 
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examined the effect of farnesol on C. albicans BCa2-3 on cornmeal agar plus Tween 80 

under a coverslip for 25 hours at 25°C. In these conditions, the TUP1/tup1 mutant was 

more filamentous than wild-type colonies but less filamentous than the tup1/tup1 mutant 

(BCa2-10; 4 and Table 2).  As a control, we showed the TUP1/tup1 mutant responds to 

farnesol because, although it forms filamentous cells when grown in mGPP, the addition 

of 20 μM farnesol results in growth as yeasts (Fig. 1), and Tup1 protein levels were ca. 

4.2-fold higher in the TUP1/tup1 mutant treated with farnesol. In contrast to the 

haploinsufficient phenotype observed in the absence of farnesol, in the presence of 

farnesol the TUP1/tup1 mutant looked identical to wild type C. albicans (Table 2).  Thus 

farnesol suppresses the haploinsufficiency phenotype of the TUP1/tup1 heterozygote. 

 

tup1/tup1 and nrg1/nrg1 mutants produce excess farnesol. 

 Jensen et al (Jensen et al., 2006) tested the farnesol production levels for several 

filamentous-only mutants.  A subset of these mutants produced levels of farnesol 

significantly higher than wild type strains.  This overproduction suggests the ability to 

respond to farnesol may be linked to regulation of farnesol production.  Here we tested 

farnesol production levels in CAI-4, CAF-2, tup1/tup1, nrg1/nrg1, and rfg1/rfg1 strains.  

Farnesol production levels were dramatically increased in the tup1/tup1 and nrg1/nrg1 

mutants (Table 1) that were unable to respond to farnesol (Fig. 1).  The tup1/tup1 and 

nrg1/nrg1 mutants produced ca. 17- and 19-fold more farnesol, respectively, than did 

CAF-2 and CAI-4.  In contrast, the farnesol responsive rfg1/rfg1 mutant only produced 

ca. 2.6-fold more farnesol than the wild-type strains (Table 1).  Thus, the two mutants 
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that are unable to respond to farnesol (tup1/tup1 and nrg1/nrg1) produced much higher 

levels of farnesol than did strains that do respond to farnesol. 

 

tup1/tup1 overproduction of farnesol inhibits SC5314 filamentation. 

 We tested the biological significance of farnesol overproduction by sequentially 

plating tup1/tup1 and SC5314 next to one another and observing the resultant colony 

morphologies.  When SC5314 was plated and followed one day later by another streak 

with SC5314, a small area of filament inhibition was observed (Fig. 5A).  In contrast, 

when tup1/tup1 was plated first, followed by SC5314, a much larger area of filament 

inhibition was observed (Fig. 5B). These results are consistent with the tup1/tup1 

overproduction of farnesol.  As controls, whenever tup1/tup1 was plated second, no 

filament inhibition was observed (Fig. 5, C and D).  

 

 

 

 

 

 

 

 

 

 

 



68 
 

 

Discussion 

C. albicans responds to farnesol, in part, by changing gene expression (Cao et al., 

2005; Enjalbert and Whiteway, 2005).  We hypothesize that some of these changes are 

mediated by changes in the activity of the signaling pathways regulating morphogenesis.  

Here we show that the tup1/tup1 and nrg1/nrg1 null mutants are strictly filamentous and 

the cells remain filamentous in the presence of added farnesol (Fig. 1).  In these cases the 

total farnesol levels are actually much higher than the added farnesol because the mutants 

themselves produce elevated levels of farnesol (Table 1, see below).  Further, Tup1 

mRNA and protein levels increased in the presence of farnesol while two Tup1-regulated 

genes, HWP1 and RBT1 mRNA levels decrease (Fig. 2, and 3).  Importantly, the timing 

of this increase (40-60 min, Fig. 2) corresponds with the commitment point, beyond 

which added farnesol no longer blocks germ tube formation (Mosel et al., 2005).  Finally, 

we believe that Tup1 is part of the farnesol response pathway because farnesol suppresses 

the haploinsufficient phenotype of a TUP1/tup1 strain (Table 2). 

Cell synchrony, farnesol concentration, and timing were all important 

considerations for our experimental design.  Previous work examining farnesol-

dependent changes in the global transcription profiles of developing biofilms (Cao et al., 

2005; Enjalbert and Whiteway, 2005) and during resumption of growth following 

stationary phase (Enjalbert and Whiteway, 2005) were done with mixed cell populations 

that differed in their ability to respond to farnesol.  Further, the effect of farnesol addition 

on the global gene expression during biofilm formation was determined at a single time 

point, 24 hours after addition of farnesol (Cao et al., 2005).  This point is significant 

because such a study could only measure stable long-term farnesol-dependent changes in 
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gene expression.  Timing is also important because of the commitment phenomenon.  

This is the point at which a switch in the environmental stimulus no longer causes the 

expected switch in morphology (Chaffin and Wheeler, 1981; Mitchell and Soll, 1979; 

Mosel et al., 2005).  It is relevant to farnesol’s mode of action because, while farnesol 

blocks the yeast to filament switch, it does not block the elongation of preexisting 

filaments (Mosel et al., 2005).  Thus for our experiments, we added farnesol at time zero 

in order to avoid commitment to filamentous growth, and we harvested cells at 20 minute 

increments to observe changes in transcript levels during the early stages of the farnesol 

response (Mosel et al., 2005).  We also achieved a synchronous cell population by 

starting with resting cells and inoculating them in mGPP; in these conditions we routinely 

get 95-100% filaments within 3-4 hrs.   Exposing a synchronized cell population to 

farnesol allowed us to detect subtle and consistent changes in transcript abundance.   

Small changes in expression of a transcription regulator can have profound effects 

on the genes it regulates.  For example, we have shown that nonsense-mediated mRNA 

decay (NMD) in S. cerevisiae regulates accumulation of the mRNA for Adr1, a 

transcription regulator of the genes responsible for making acetyl CoA and NADH from 

nonfermentable substrates.  In particular, the respiratory impairment seen in NMD 

mutants is due, in part, to overexpression of Adr1 (Taylor et al., 2005).  The change in 

ADR1 mRNA levels is small (2.6-fold), but sufficient to affect expression of Adr1-

regulated genes.  Thus even though the change in Tup1 expression is relatively small it 

can have a profound effect on expression of the genes it regulates.   

Two Tup1 co-regulators, encoded by NRG1 and RFG1, were unaffected by 

farnesol at the mRNA level (Fig. 4).  In this regard, it is reasonable that farnesol regulates 
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only one part of the complex, i.e. that farnesol elevates TUP1 mRNA but not NRG1 or 

RFG1 mRNA.  By analogy, for Ca2+ and calmodulin where only the Ca2+-calmodulin 

complex is active (Soto et al., 2004a), fungi have the calmodulin in excess and regulate 

the activity of the complex by regulating the availability  of cytoplasmic Ca2+ 

(Muthukumar et al., 1987). 

Because the tup1/tup1 and nrg1/nrg1 mutants did not respond to farnesol, it 

suggests that farnesol acts through a pathway requiring Tup1 and Nrg1.  The rfg1/rfg1 

mutant responded to farnesol, indicating that the genes regulated by Rfg1 are not required 

for the response to farnesol.  Furthermore, the tup1/tup1 and nrg1/nrg1 mutants 

overproduced farnesol while the rfg1/rfg1 mutant produced only slightly elevated 

farnesol (Table 1). This tup1/tup1 mutant overproduction is biologically significant 

because the excess farnesol produced by the tup1/tup1 mutant inhibits filamentation of 

wild-type C. albicans grown on the same plate (Fig. 5). The juxtaposition between 

farnesol non-responsive mutants and the overproduction of farnesol implies that a 

farnesol-Tup1 feedback loop may exist, and that Nrg1 may work in concert with Tup1 to 

negatively regulate farnesol synthesis.  This regulation may be direct or indirect.  The 

enzyme responsible for ca. 90% of farnesol synthesis is Dpp3 (Navarathna et al., 2007a). 

DPP3 mRNA levels were not significantly elevated in the whole genome profiles of 

tup1/tup1 or nrg1/nrg1 mutants (Kadosh and Johnson, 2005); however, DPP3 does have 

a putative Nrg1 binding site in its promoter region.   

The increased TUP1 expression we observed for farnesol blockage of filament 

development (Fig. 2A) is smaller than that reported for farnesol blockage of biofilm 

development, ca 6.6-fold as determined with DNA arrays (Cao et al., 2005).  The 
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difference in the response intensity may reflect filamentous vs. biofilm growth conditions 

as well as the fact that Cao et al. (Cao et al., 2005) used one time point 24 hours after 

farnesol addition.   

Efg1 is a transcriptional factor that activates hyphal gene expression including 

HWP1 and RBT1.  EFG1 mRNA levels are regulated during filamentation, but they were 

not affected by farnesol since the timing and magnitude of the changes were similar in 

the presence and absence of farnesol (Fig. 4). These results are consistent with those of 

Soto et al (Soto et al., 2004b) who also found no change in EFG1 mRNA levels at a 

single time point with added farnesol (Soto et al., 2004b).  Together with our results, this 

suggests that farnesol does not regulate EFG1 mRNA levels but, at this time we can not 

exclude the possibility that post translational regulation of Efg1 is affected by farnesol. 

 Two other farnesol-related findings regarding filamentous growth can be 

accommodated in a Tup1-dependent model because they are downstream from Tup1.  

Soto et al (Soto et al., 2004b) suggested that farnesol acts by causing decreased CPH1 

and HST7 mRNA levels. CPH1 is a transcription factor that regulates filamentous growth 

and HST7 is a MAP kinase kinase involved in filamentous growth.  Both are down-

regulated by Tup1 and thus their downregulation by farnesol (Soto et al., 2004b) is 

consistent with a secondary effect of farnesol on Tup1.  Additionally, Chk1, a histidine 

kinase shown to be required for the farnesol response (Kruppa et al., 2004), is also a 

Tup1 repressed gene; CHK1 was elevated 6.5-fold in the tup1/tup1 mutant (Kadosh and 

Johnson, 2005).  Taken together, these findings indicate that Tup1 is involved in 

mediating the C. albicans response to farnesol. 
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Figure Legends 

Figure 3-1. Response to farnesol by C. albicans in conditions that promote germ tube 

formation and hyphal growth.  SC5314, CAI4, CAF2, rfg1/rfg (DU129), nrg1/nrg1 

(DU152), tup1/tup1(BCa2-9), tup1/tup1 (BCa2-10) and TUP1/tup1 (BCa2-3) resting 

cells were inoculated to mGPP (pH 4.8) medium at 37°C in the presence or absence of 20 

µM farnesol, and their cell morphology examined at 4 hours. Scale bar = 10µm 

 

Figure 3-2.  TUP1 mRNA levels increased, while two Tup1-regulated genes, HWP1 and 

RBT1 were downregulated in the presence of farnesol.  C. albicans SC5314 resting cells 

were inoculated into mGPP (pH 4.8) in the presence or absence of 20 μM farnesol and 

incubated at 37°C.  Cells were then harvested at 0, 20, 40, 60 and 80 minutes post 

inoculation.  Northern blots were prepared with total RNA from cells incubated both in 

the presence or absence of farnesol. Shown is a PhosphorImage of a representative 

Northern blot probed with radiolabeled TUP1 DNA (A), HWP1 DNA (B) and RBT1 

DNA (C), and a plot of average mRNA levels from a minimum of three independent 

experiments.  ACT1 mRNA levels were used as a loading control.   

 

Figure 3-3.  Tup1 protein levels are higher in the presence of farnesol.  Total protein 

extracts were prepared from SC5314 and TUP1/tup1 (BCa2-3) resting cells inoculated to 

mGPP (pH 4.8) medium at 37°C in the presence or absence of 20 µM farnesol and 

incubated at 37°C for 60 minutes.  The average fold Tup1 protein accumulation for 

farnesol treated cells relative to untreated cells is shown.  Act1 levels were used as a 

loading control. 
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Figure 3-4.  Farnesol does not affect expression of RFG1 or NRG1, which encode DNA 

binding proteins that function with Tup1, or EFG1, which encodes a transcription 

activator of hypal-specific genes.  Quantitative Northern blot analysis was used to 

measure TUP1, NRG1, RFG1, and EFG1 mRNA levels in SC5314 at 60 min after 

inoculation of resting cells into conditions that promote germ tube formation and hyphal 

growth in the presence and absence of 20μM farnesol. The results are an average of three 

independent experiments. 

 

Figure 3-5.  Overproduction of farnesol by the tup1/tup1 mutant inhibits SC5314 

filamentation.  Resting cells were grown at 37 °C for 24 hours on YPD agar plates to 

allow for farnesol accumulation in the agar (horizontal streak, C.albicans strain SC5314 

(B, C), or tup1/tup1 (BCa2-10, A, D)). Subsequently, either SC5314 (A, B) or 

tup1/tup1(C, D) resting cells was plated (vertical streak) and incubated at 37 °C for an 

additional 24 hours. Area above the two arrows (left panels A, B) are zones of filament 

inhibition (as evident by smooth morphology) resulting from the farnesol produced by the 

horizontally streaked strains. Filamentation gives the wrinkled colony morphology seen 

below the arrows. The pictures in the two white boxes have been magnified 2.5X so that 

the colony morphology can be seen more clearly (center panels A, B).  Micrographs of 

individual cells from the two bracketed regions are shown in the right panels (A, B; scale 

bar = 10μm).  The cells from the smooth regions are mainly yeasts, while there is a much 

larger proportion of filaments in the wrinkled region. 
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Figure 3-1 
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Figure 3-2 
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Figure 3-3 
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Figure 3-4 
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Figure 3-5 
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Table 3-1.  tup1/tup1 and nrg1/nrg1 null mutants do not respond to farnesol but overproduce 

farnesol. 

C. albicans strain Farnesol responsea/ Farnesol productionb/ Fold increase in farnesolc/ 

(CAI-4) Positive 1.6 ± 0.36   

(CAF-2) Positive 2.0 ± 1.30  

tup1/tup1(BCa2-10) Negative 30.6 ± 6.40 17 

nrg1/nrg1 (DU152) Negative 34.5 ± 12.2 19 

rfg1/rfg1 (DU129) Positive 4.8 ± 2.0 2.6 

 

a/ Farnesol responses on GPP agar with and without 20μM farnesol incubated at 37oC for 

48 hours.  A positive response to farnesol indicates smooth colony morphology (yeast 

cells) in the presence of farnesol and rough colony morphology (filamentous cells) 

without added farnesol.  A negative response to farnesol indicates rough colony 

morphology in the presence and absence of farnesol. 

b/ Farnesol production (μg/g dry weight of cells) was the average of three measurements 

c/ Values based on fold increase over 1.8, the average value for CAI-4 and CAF-2 strains. 
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Table 3-2. Farnesol suppresses the haploinsufficient phenotype of a TUP1/tup1 

heterozygote. Cells were plated on a cornmeal agar plus Tween 80 plate under a coverslip 

and grown at 25°C for 25 hours. 

Cell morphology at the colony periphery C. albicans Strain 

No Farnesola/ 20 μM Farnesol 

Wild type (SC5314) Yeasts + few filaments Yeast + few filaments 

TUP1/tup1 (BCa2-3) Yeasts + filaments Yeast + few filaments 

tup1/tup1 (BCa10) filaments filaments 

 

a/The phenotype for these strains grown on a cornmeal agar plus Tween 80 plate under a 

coverslip without farnesol was also previously reported (Braun and Johnson, 1997). 
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CHAPTER 4 

A novel role for Czf1 in farnesol tolerance and the morphological response to 

farnesol in Candida albicans 
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Abstract 

Candida albicans is the primary cause of hospital acquired fungal infections in 

the United States.  The quorum sensing phenomenon in Candida albicans is a process 

that inhibits the transition to filamentous growth and may be directly related to its ability 

to cause both mucosal and systemic disease.  The Ras1-cyclic AMP signal transduction 

pathway is a proposed target for farnesol inhibition, resulting in filamentous growth 

obstruction, but a clear understanding of the downstream effectors and signaling 

networks vital for the morphological farnesol response have yet to be unraveled.  To 

address this issue, we screened a mutant library for farnesol resistant mutants; among the 

resistant mutants was a czf1Δ/czf1Δ mutant.  Here, we demonstrate for the first time the 

capability of C. albicans to respond to farnesol in embedded conditions, and in these and 

liquid assays, Czf1 was required for a wild-type farnesol response.  The CZF1 mRNA 

transcript levels in response to farnesol, farnesol toxicity, and farnesol production levels 

were also examined.  Finally, CZF1 ectopic expression restored farnesol response in 

strains lacking Czf1, highlighting a new role for Czf1 as a critical downstream effector of 

the morphological response to farnesol in C. albicans. 
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Introduction 

Candida albicans is an opportunistic pathogen that is part of the normal flora but 

can cause mild to severe opportunistic infections in immunocompromised patients.  A 

polymorphic fungus, C. albicans can switch between yeast and filamentous forms of 

growth, and this transition is necessary for causing disease in a mouse model of infection 

(Lo et al., 1997; Saville et al., 2003).  Two additional growth morphologies in C. 

albicans include mating-competent opaque cells and structures with unknown function 

called chlamydospores.  All of these cell types are affected by the quorum sensing 

molecule, farnesol, highlighting its influential role in C. albicans morphology. 

Farnesol was the first eukaryotic quorum sensing molecule identified and was 

initially shown to block the transition from yeast to filaments (Hornby et al., 2001).  

Subsequent studies identified farnesol as having an inhibitory role in biofilm formation 

(Ramage et al., 2002) and a protective role against oxidative stress (Deveau et al., 2010; 

Westwater et al., 2005).  In addition, very high levels of farnesol can increase 

chlamydospore formation (Martin et al., 2005), and low levels of farnesol induces 

necrosis in opaque cells when oxygen is present, thereby regulating opaque cell stability 

(Dumitru et al., 2007).  White cells can also be killed by farnesol in the right 

environmental conditions; log phase cells that are energy-deprived are particularly 

sensitive, while stationary phase cells in growth medium are quite farnesol tolerant 

(Langford et al., 2010; Shirtliff et al., 2009; Uppuluri et al., 2007).  Given its important 

role in physiology, it comes as no surprise that in vivo studies provide physiological 

relevance for farnesol signaling during infection and suggest farnesol plays distinct roles 

at different sites of infection.  For example, farnesol is a virulence factor in a 
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disseminated mouse model of infection (Navarathna et al., 2007a), yet it protects mice 

from oral candidiasis (Hisajima et al., 2008).  These results highlight the need for a 

complete understanding of the signaling response induced by farnesol in C. albicans. 

Factors identified that play a role in the C. albicans farnesol response include 

Tup1/Nrg1 (Kebaara et al., 2008), Chk1 (Kruppa et al., 2004), the Hog1 MAP kinase 

pathway (Smith et al., 2004), the Cek1 MAP kinase pathway (Roman et al., 2009), and 

the Ras1-cyclic AMP (cAMP) signaling pathway (Davis-Hanna et al., 2008).  In this 

paper, we have identified Czf1 (C. albicans zinc finger) as an important factor in the 

response to farnesol by screening a mutant library for mutants with a defective farnesol 

response.  Known roles of Czf1 include induction of contact-induced filamentous growth 

(Brown et al., 1999), biofilm formation (Stichternoth and Ernst, 2009), and white to 

opaque cell switching (Vinces and Kumamoto, 2007).   It contains an unusually large 5’ 

untranslated region (UTR) of approximately 2 kb (Vinces et al., 2006), and can 

negatively regulate its own mRNA expression (Vinces et al., 2006).  Czf1 also has ties to 

the cAMP pathway, as a transcription factor downstream of cAMP signaling, Efg1, can 

bind the promoter of CZF1 and tightly regulate its expression, since no CZF1 mRNA was 

detected in an efg1Δ/ efg1Δ background (Vinces et al., 2006).  This positive regulation by 

Efg1 is intriguing because Czf1 and Efg1 appear to play opposing roles in the cell with 

respect to morphology (Giusani et al., 2002; Noffz et al., 2008).  Of note, regulation 

between Efg1 and Czf1 may also occur at the protein level as well since these two 

proteins interact during a yeast two hybrid assay (Giusani et al., 2002; Noffz et al., 2008). 

Here we have defined a new role for Czf1 in the quorum sensing response of C. 

albicans.   We show that Czf1 is not only necessary for a wild type morphological 
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response to farnesol in a variety of conditions, but in combination with Efg1, is required 

for farnesol tolerance as well.  Our data suggest a vital downstream role for Czf1 in the 

signaling cascade elicited by farnesol in C. albicans. 
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Methods 

Strains and media 

Candida albicans strains and plasmids are listed in Table 1.  The defined medium, 

modified glucose phosphate proline (mGPP) pH 6.8 was prepared as described in 

Kebaara et al (Kebaara et al., 2008) with 2.5 mM N-acetylglucosamine (GlcNAc) and 

uridine (40 µg/ml).  Yeast peptone dextrose (YPD) medium contained 1% yeast extract, 

0.5% peptone, and 2% dextrose, and solid medium included 2% agar.  Resting cells were 

prepared as in Kebaara et al (Kebaara et al., 2008) with modifications:  single colonies 

were grown in 25 mL YPD broth at 30°C (unless otherwise noted) for 22-24h to reach 

stationary  phase, washed three times with 50 mM potassium phosphate buffer (pH6.8), 

resuspended in potassium phosphate buffer, and stored at 4°C overnight before use.  For 

liquid farnesol response assays, resting cells were inoculated at 106 cells/mL in mGPP or 

mSPP (2% sucrose replacing glucose) broth with indicated farnesol concentrations.  Cells 

were then grown at 37ºC, shaking in glass flasks for the indicated times.  Trans-trans 

farnesol (Sigma, St. Louis, MO) was stored under nitrogen and freshly prepared as a 100 

mM stock solution in methanol for each experiment.   

Mutant library screen 

Mutants were obtained in 96-well plates and plated on mGPP (with 40 µg/ml uridine, 

arginine, and histidine added) agar plates containing 0, 10, or 50 µM farnesol.  Plates 

were incubated at 37°C for 2 days before colony morphology was assessed and compared 

to the parental strain, BWP17 for farnesol response.  Wrinkled/hairy colony 

morphologies were considered to be composed primarily of filaments and smooth colony 

morphologies were considered to be mostly yeast cells.  A positive response to farnesol 
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was viewed as filamentous colonies without farnesol and smooth colonies in the presence 

of farnesol.  Farnesol resistant mutants maintained a filamentous morphology, even in the 

presence of 50 µM farnesol.   

Embedded cell growth 

Embedded media were prepared by mixing 104 cells/mL in 30 ml GPP (no GlcNAc 

added) or SPP molten agar (cooled to 50°C) with appropriate concentrations of farnesol 

and plated.  Embedded plates were incubated at 37°C for 12 or 17 hours as indicated.  

Only colonies beneath the agar surface were examined. 

Microscopy and cell death determination 

Cellular morphology during the germ tube assays was determined using a Zeiss Stemi 

2000-C light microscope.  Embedded micrographs were taken using a custom MVI 

TDM400 tetrad dissecting microscope and Sony Cybershot camera.  DIC micrographs 

were taken using an Olympus BX51 microscope and a Photometrics CoolSnap HQ CCD 

camera.  Cell death was determined by methylene blue staining as described by Gibson et 

al (Gibson et al., 2009). 

DNA analysis and transformation 

To create strain AAC2, CKY283 was plated on 5-fluoroorotic acid (5-FOA) containing 

media to select for ura- mutants.  AAC2 was subsequently transformed with BsgI-

digested pDB212 to create strain AAC6.  Transformations were performed by the lithium 

acetate method and transformants were selected on media lacking uridine (Gietz and 

Woods, 2002).  Newly created strains were confirmed by PCR and Southern blot analysis 

(data not shown); restriction digestion and Southern blotting were performed as described 
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in the GeneScreen Plus Hybridization Transfer and Detection Protocols (DuPont NEN 

Research Products, Boston, MA).     

Quantitative real- time PCR 

Resting cells were inoculated into 75 mL mGPP broth at 5 x 106 cells/mL, and 0, 50, or 

100 µM farnesol was added to each flask.  Cells were incubated at 37°C and harvested at 

40, 60, or 80 minutes.  For harvesting cells, cultures were passed through glass fiber 

filters and cells were scraped off the filters to reduce the loss of filamentous cells during 

centrifugation.  Data shown are from a representative independent experiment performed 

in triplicate.  Extraction of mRNA was performed with the RiboPure Yeast Kit (Applied 

Biosystems, Foster City, CA), and mRNA integrity was assessed by measuring OD260/280 

ratios and by examining the appearance on agarose gels.  Reverse transcription and PCR 

amplification were performed according to manufacturer’s specifications using 

MultiScribe Reverse Transcriptase and Power SYBR Green PCR Master Mix (Applied 

Biosystems).  Real-time PCR reactions were carried out in an ABI Prism 7500 Real-Time 

PCR machine (Applied Biosystems).  ACT1 mRNA levels were used as controls.  

Primers used to amplify CZF1 and ACT1 and PCR efficiencies were as previously 

described (Bassilana et al., 2005). 

Farnesol Production Measurements 

Extracellular farnesol was extracted from cell-free supernatants of stationary phase 

cultures grown in GPP at 30ºC and analyzed by gas chromatography-mass spectrometry, 

as described by Hornby et al (Hornby et al., 2001). 
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Results 

Identification of new genes required for the response to farnesol 

 To identify important regulators of the farnesol response in C. albicans, a 

transposon insertion mutant library of approximately 560 mutants (Supp. Table 1) was 

screened for mutants defective in the morphological response to farnesol.  The majority 

of mutants in this collection are Tn7-UAU1 plasmid insertion mutants (Nobile et al., 

2006); therefore it is desirable to obtain knockout mutants for further characterization due 

to the possibility of partial loss-of-function mutations.  Mutants that were identified as 

farnesol resistant in the original screen were re-streaked on individual plates to rule out 

interference from neighboring mutant colonies and to confirm the farnesol resistant 

phenotype.  Eight mutants were confirmed as farnesol resistant, and they are summarized 

in Table 1.   Mutants that were unable to interconvert between yeast and filaments (at 30° 

and 37°, respectively) were not examined further in this study to rule out mutants that are 

merely defective in morphological switching and not the specific response to farnesol.  

No mutants were identified that were hypersensitive to farnesol, nor were any detected 

that demonstrated growth inhibition in the presence of farnesol. 

 

CZF1 is required for a wild type morphological response to farnesol in both liquid 

and embedded conditions 

 The czf1/czf1 mutant was identified as farnesol-resistant in the mutant library 

screen (Table 1) and selected for further characterization based on its known roles in 

morphogenesis, white/opaque cell switching, and its connection to the cAMP pathway.  

To test the role of Czf1 in the morphological response to farnesol, a double null 
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czf1Δ/czf1Δ mutant was compared with its parental strain (CKY101), a wild type clinical 

isolate (SC5314), the  heterozygous mutant, and the double null mutant ectopically 

expressing CZF1 under the control of the MAL2 promoter in a liquid farnesol response 

assay (Fig. 1).  In both glucose and sucrose-containing media, SC5314 and CKY101 

displayed the expected reduction of early stage filaments (germ tubes) when in the 

presence of farnesol.  However, the czf1Δ/czf1Δ mutant showed only a minimal reduction 

of germ tubes, even in the presence of 100 μM farnesol, and a haploinsufficient farnesol 

response phenotype was observed for the heterozygous mutant.  Results were similar 

whether glucose or sucrose was used as a carbon source.  Ectopic complementation of the 

czf1Δ/czf1Δ mutant was able to restore the farnesol response similar to that of the 

heterozygous mutant in pMAL2-inducing conditions (Fig. 1B; sucrose-containing media), 

while there was only a minimal farnesol response in non-inducing conditions, similar to 

that of the czf1Δ/czf1Δ mutant (Fig. 1A; glucose-containing media).  These results show 

that the presence of Czf1 is critical to the ability of C. albicans to respond to farnesol in 

liquid media.   

 Since the first described role for Czf1 was to promote filamentation in embedded 

conditions (Brown et al., 1999), we sought to determine whether:  1) C. albicans could 

respond to farnesol under such conditions and 2) Czf1 was needed for farnesol response 

when embedded in a matrix.  For consistency with our prior work studying farnesol 

signaling and physiological significance (plates were incubated at 37°C), we utilized 

defined GPP or SPP agar plates (lacking GlcNAc, see experimental procedures) in our 

embedded assays.  Although the growth media and incubation time and temperature used 

in this study are different from those initially used by Brown et al (Brown et al., 1999), 
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we still observed a strong filamentation response from C. albicans SC5314 and CKY101 

cells in response to growth embedded in a matrix (Fig. 2).  When SC5314 and CKY101 

cells were grown in embedded media containing 50 μM farnesol, filamentous colonies 

were not observed.  As with the liquid germ tube formation assays, using glucose versus 

sucrose as a carbon source made no difference in filamentation or farnesol response (Fig. 

2).  This demonstrates the capability of C. albicans to respond to farnesol in an embedded 

assay.   

As expected, the czf1Δ/czf1Δ mutant exhibited a defective growth pattern in 

embedded conditions; filamentation was still observed, but far fewer colonies were 

present compared with the wild type and parental strains and colony morphology 

appeared different as well (Fig. 2).  When the czf1Δ/czf1Δ mutant was grown in agar 

containing farnesol, only a moderate farnesol response was observed in that the hyphae 

appeared shorter than in untreated samples; however, colonies were still filamentous.  As 

with the liquid farnesol response assays, the czf1Δ/CZF1 heterozygote maintained a 

haploinsufficient phenotype in both farnesol treated and untreated samples:  in untreated 

samples, the overall level of growth was more similar to that of wild type strains, and in 

farnesol-treated samples, colonies were reduced in hyphal formation but still more 

filamentous than wild type colonies treated with farnesol.  Ectopic CZF1 

complementation of the czf1Δ/czf1Δ mutant produced positive farnesol responses similar 

to that of the heterozygote in both GPP and SPP, conditions which should turn off and on, 

respectively, the MAL2 promoter (Fig. 2).  This suggests unintended leaky promoter 

activation in GPP media, possibly resulting in the expression of CZF1 and 

complementation of the farnesol response in both GPP and SPP embedded media.  These 
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results indicate that Czf1 is required for farnesol response in at least two distinct 

environmental conditions:  liquid, aerobic growth media and embedded in a semi-solid 

matrix, new conditions in which to test C. albicans for a morphological farnesol 

response.   

 

CZF1 mRNA levels are decreased in the presence of farnesol 

 Since CZF1 is regulated at the mRNA level, we asked whether CZF1 mRNA 

levels are affected by the presence of farnesol.  A time-course experiment was performed 

to measure CZF1 expression levels in the presence of 0, 50 or 100 μM farnesol, and 40, 

60, and 80 minute time points were selected based on previous studies showing the 

importance of this time frame to the farnesol response (Kebaara et al., 2008).  As with 

TUP1 mRNA levels (Kebaara et al., 2008; Mosel et al., 2005), CZF1 levels were most 

dramatically affected 60 minutes after treatment with farnesol, showing a greater than 5-

fold decrease in expression relative to a sample lacking farnesol (Fig. 3B).  At all 3 time 

points tested, both 50 and 100 μM farnesol reduced CZF1 levels, relative to samples 

containing no farnesol (Fig. 3).  These data indicate that CZF1 mRNA levels are 

decreased in the presence of farnesol, during time points crucial to the farnesol response. 

 

An efg1Δ/ efg1Δ czf1Δ/ czf1Δ  double mutant exhibits decreased farnesol tolerance 

that is partially temperature dependent 

 Upon growth of the efg1Δ/efg1Δ czf1Δ/czf1Δ mutant in liquid media for 

preparation of resting cells, an unusual temperature-regulated phenotype was observed.  

Mutant cells grown in YPD broth at 30°C appeared small but elongated, reminiscent of 
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opaque cells (Fig. 4A), and when the efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant was grown 

in YPD broth at 37°C, cells appeared larger and more rounded (Fig. 4B).  When these 

efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant cells (pre-grown at 30°C) were tested for 

farnesol response in the previously described mGPP/mSPP liquid germ tube formation 

assays (experimental procedures), we observed what appeared to be cell death.  Given the 

importance of environmental conditions in the ability of C. albicans to survive and 

tolerate farnesol, methylene blue staining was performed during liquid germ tube assays 

to more accurately assess the level of cell death occurring in these conditions (Fig. 4C-F).  

For the cell death assays, resting cells were prepared as described in experimental 

procedures, except that cells were grown at either 30°C or 37°C in YPD broth until 

stationary phase was reached.  The parental strain CAI4 was used as a control in the 30°C 

resting cell group, and as observed for SC5314 in Langford et al (Langford et al., 2010), 

no significant cell death was observed in mGPP or in mSPP, even in the presence of 100 

μM farnesol.  The czf1Δ/czf1Δ and efg1Δ/efg1Δ mutants (Fig. 4C-F) were similarly 

resistant to farnesol-mediated killing in the liquid germ tube formation assays.  However, 

the czf1Δ/czf1Δ mutant could not be tested accurately with methylene blue in these 

assays, due to its rapid formation of germ tubes which stain inconsistently with this dye 

regardless of the strain used or the presence of farnesol.  The arguments for the viability 

of the czf1Δ/czf1Δ mutant in the presence of farnesol are twofold:  1) no growth 

inhibition was observed in the presence of farnesol on agar plates (data not shown) and 2) 

germ tube formation is a process that requires active protein synthesis (Imanishi et al., 

2004) and is unlikely to occur in a dead cell.  CAI4 could also not be used as a control at 

37°C for similar reasons; cells pre-grown at 37°C start as filaments.  On the other hand, 
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the efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant and the efg1Δ/efg1Δ czf1Δ/czf1Δ double 

mutant ectopically expressing CZF1 (from the 30°C resting cell group) showed extreme 

sensitivity to farnesol, regardless of the media used to induce CZF1 expression (Fig 4C, 

4E).  Conversely, when the efg1Δ/efg1Δ czf1Δ czf1Δ double mutant and the efg1Δ/efg1Δ 

czf1Δ/czf1Δ double mutant expressing CZF1 under the control of the MAL2 promoter 

from the 37°C resting cell group were tested for farnesol sensitivity, a general decrease in 

cell death was observed compared to the 30°C resting cell group (Fig. 4C-F).  Based on 

these results, Czf1, Efg1, and temperature appear to play important roles in farnesol 

tolerance, and both 30°C and 37°C double mutant resting cells were subsequently utilized 

for additional experiments in this study.   

 

Ectopically expressing CZF1 in an efg1Δ/ efg1Δ  czf1Δ/czf1Δ  double mutant 

partially restores filamentation and farnesol response in liquid and embedded 

conditions 

 Can ectopic expression of CZF1 restore filamentation and response in the efg1Δ/ 

efg1Δ czf1Δ/czf1Δ double mutant?  Liquid germ tube formation assays were performed 

on CAI4, efg1Δ/efg1Δ, the efg1Δ efg1Δ  czf1Δ/czf1Δ double mutant, and the efg1Δ/efg1Δ 

czf1Δ/czf1Δ double mutant ectopically expressing CZF1 under the control of the MAL2 

promoter, and only cells that did not stain with methylene blue were counted.  For the 

30°C resting cell group, only CAI4 was able to produce germ tubes and respond to 

farnesol, in both mGPP and mSPP (Fig. 5A, 5C).  For the 37°C resting cell group, the 

efg1Δ/efg1Δ and the efg1Δ/ efg1Δ czf1Δ/czf1Δ double mutant were capable of producing 

very low levels of germ tubes with a slight trend of reduction in the presence of farnesol.  
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In conditions which induce CZF1 expression in the efg1Δ/efg1Δ czf1Δ/czf1Δ double 

mutant, an increase in germ tube formation was observed when compared to non-

inducing conditions (Fig. 5B, 5D), and farnesol reduced germ tube formation when CZF1 

was expressed.   

 When CAI4 30°C resting cells were inoculated into the embedded farnesol 

response assays, results were similar to SC5314 and CKY101 (Fig. 6).  CAI4 produced 

filamentous colonies in the absence of farnesol in both GPP and SPP embedded media 

and the presence of farnesol resulted in decreased filamentation.  Note the smaller hyphae 

growing out from the CAI4 colonies treated with farnesol (Fig. 6); because farnesol 

delays filamentation rather than block it entirely, the time points selected for observation 

are critical.  Ideally CAI4 embedded plates should have been checked at 12 h post-

inoculation for farnesol response (as in Fig. 2) rather than at 17h as shown (no short 

filaments are observed in the farnesol-treated CAI4 samples at 12 h, data not shown), but 

the 17 h time point was selected in order to be consistent with the other slower-growing 

mutant strains being tested in Fig. 6.  The efg1Δ/efg1Δ mutant was capable of forming 

filamentous colonies under embedded conditions, and a very subtle shortening of 

filaments was observed in farnesol-treated samples.  An inoculum using 30°C resting 

cells for the efg1Δ/efg1Δ mutant is shown in Fig. 6, and similar results were obtained 

using an inoculum of 37°C resting efg1Δ/efg1Δ  cells.  The efg1Δ/efg1Δ czf1Δ/czf1Δ 

double mutant was capable of producing filamentous colonies in the absence of farnesol, 

regardless of the temperature used during resting cell preparation (Fig. 6).  The 

efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant and the efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant 

ectopically expressing CZF1 did not produce any colonies in the presence of farnesol 
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when 30°C resting cells were used (data not shown), suggesting these cells were killed by 

farnesol as they were in the liquid assays.  When 37°C resting cells were used for the 

efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant, farnesol reduced the number of colonies, but the 

colonies that grew were filamentous.  Unexpectedly, the filamentous colonies from 

farnesol-treated plates often grew in a different conformation from untreated samples.  

The efg1Δ/efg1Δ czf1Δ/czf1Δ  double mutant expressing CZF1 under the control of the 

MAL2 promoter behaved similarly to the efg1Δ/efg1Δ czf1Δ/ czf1Δ double mutant in non-

inducing conditions (Fig. 6A), and a subtle increase in colony size and filamentation was 

observed in inducing media (Fig. 6B).  In the presence of farnesol, these filaments were 

slightly shorter.  Taken together, both Czf1 and Efg1 are important for farnesol tolerance 

in embedded conditions as well, along with temperature.  When CZF1 is ectopically 

expressed in a strain lacking Czf1 and Efg1, the level of filamentation is partially restored 

in both liquid and embedded assays, and farnesol partially suppresses filamentation in 

both conditions. 

 

Overproduction of farnesol is not a general quality of farnesol-resistant mutants 

 Two of the factors known to play a role in the C. albicans morphological farnesol 

response, Tup1 and Nrg1, both produced 17 and 19-fold higher levels of farnesol than 

wild type and parental strains (Kebaara et al., 2008).  In order to determine whether 

farnesol overproduction is a general quality of farnesol-resistant mutants, we tested the 

farnesol production levels of the czf1Δ/czf1Δ mutant (Fig. 7).  Farnesol production levels 

were not significantly altered in the czf1Δ/czf1Δ mutant, suggesting a more specific 
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involvement of Tup1/Nrg1 in farnesol production that does not require the presence of 

Czf1.   
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Discussion 

 In this study, we identified new factors involved in the C. albicans response to 

farnesol and have shown that Czf1 in particular plays a prominent role in the 

morphological response to farnesol in both liquid aerobic conditions and embedded 

conditions; this adds a new function for Czf1 during the quorum sensing response.  

Furthermore, CZF1 mRNA levels are decreased in the presence of farnesol at critical 

time points during the farnesol response, and unlike another factor involved in farnesol 

signaling (Tup1), Czf1 does not appear to regulate farnesol production levels in the cell.  

Surprisingly, CZF1, along with EFG1, was also shown to play an important part in 

farnesol tolerance; these are the first specific genes identified that control the ability of C. 

albicans white a/α cells to survive in the presence of farnesol. 

 The Ras1-Cyr1-cAMP signaling pathway has been proposed to be the only direct 

target for farnesol in C. albicans (Davis-Hanna et al., 2008; Deveau et al., 2010).  This 

study provides additional evidence supporting a primary role of this pathway in farnesol 

signaling.  Here we showed that Czf1 is an important factor in the farnesol response.  It 

has a tight regulatory relationship with Efg1, which is consistent with the Ras1-cAMP 

signaling pathway as a central target for farnesol.  Further evidence for the significant 

role of cAMP signaling during the farnesol response is provided by the identification of 

one of the protein kinase A (PKA) isoforms in C. albicans, Tpk1, as farnesol resistant.  

The other PKA isoform, Tpk2, was not identified by the farnesol resistance screen as it 

was not present in this mutant library collection.  A recent study (Deveau et al., 2010) 

showed that an additional phenotype of the farnesol response in C. albicans, reactive 

oxygen species (ROS) protection, is also mediated by the Ras1-cAMP pathway.  The 
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Hog1 signaling pathway was shown to participate in ROS protection as well, but through 

an unknown connection between the two pathways (Deveau et al., 2010).  Three 

additional genes were identified that are potentially important for farnesol resistance: 

RLM1, YCK2, and HAP43, also function in different stress responses.  These mutants can 

possibly be used to fill in some of the gaps between these pathways. 

It is intriguing that farnesol can protect the cell from ROS stress, while it can also 

kill opaque cells and log-phase, energy-deprived white cells.  Since farnesol tolerance in 

C. albicans is potentially an active process (Langford et al., 2010), it is of interest to 

understand the key components that are involved.  This study provides a new 

understanding of farnesol tolerance, by identifying two factors that are required for 

survival in the presence of farnesol: Czf1 and Efg1.  We speculate that it is no 

coincidence that both of these factors also play critical roles in white/opaque cell 

switching (Ramirez-Zavala et al., 2008; Sonneborn et al., 1999; Srikantha et al., 2000; 

Vinces and Kumamoto, 2007; Zordan et al., 2007) since opaque cells are inherently more 

sensitive to farnesol killing than are white cells (Dumitru et al., 2007).  Farnesol killed 

efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant cells in liquid aerobic conditions, and it appeared 

to do the same in embedded media due to the lack of growth when using 30°C resting cell 

inocula.  It is unclear why single efg1Δ/efg1Δ and czf1Δ/czf1Δ mutants are resistant to 

farnesol killing, while the double mutant is overly sensitive.  Czf1 and Efg1 have a 

synthetic effect on farnesol resistance, as farnesol tolerance was only observed in the 

single mutants and not the double mutant.  The mere presence of CZF1 in the 

efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant (via expression of CZF1 by the MAL2 promoter) 

was not sufficient, however, to provide protection from farnesol induced cell death, 
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suggesting CZF1 may act upstream of EFG1 in this example.  It is also possible that the 

presence of Czf1’s native promoter is required for proper regulation in response to this 

particular stimulus when Efg1 is absent.  Another intriguing question raised by this study 

is the role of temperature in farnesol tolerance.  Why was the efg1Δ/efg1Δ czf1Δ/czf1Δ 

double mutant more tolerant of farnesol when grown at 37°C?  The answer may be tied to 

indirect farnesol production measurements suggesting that C. albicans produces slightly 

higher levels of farnesol at higher temperatures (Hornby et al., 2001).  Further, there is 

likely some additional factor(s) that plays a minor role in farnesol tolerance and is 

regulated by shifts in temperature.  Wor1/2 are potential candidates for such a role, in 

part due to their regulation of white/opaque switching (Huang et al., 2006; Zordan et al., 

2006; Zordan et al., 2007).   

 While Czf1 was shown to be part of a farnesol-resistance mechanism in C. 

albicans, it also strongly contributes to the morphological response to farnesol.  In cells 

lacking Czf1 (czf1Δ/czf1Δ mutants), farnesol was unable to suppress filamentation, and 

ectopic complementation of CZF1 in these cells restored the ability of farnesol to block 

germ tube formation in both liquid and embedded environmental conditions.  

Furthermore, in efg1Δ/efg1Δ czf1Δ/czf1Δ double mutants, CZF1 ectopic expression was 

able to partially restore filamentation and the morphological response to farnesol.  These 

results are consistent with Czf1 functioning downstream of Efg1 during the 

morphological farnesol response.  Through the course of testing farnesol response in 

conditions which either turn on or off the MAL2 promoter, we have shown that the use of 

glucose versus sucrose as a carbon source had no distinguishable effect on the ability of 

the cells to respond to farnesol.   
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 The many effects of farnesol on C. albicans appear to be relatively unique to the 

fungus, compared with other bacterial species and fungal genera [reviewed by Langford 

et al (Langford et al., 2009)].  The finding that Czf1 plays a central role in the unique 

morphological and tolerance responses in C. albicans is consistent with the observation 

that Saccharomyces cerevisiae (which does not respond to farnesol) and other closely 

related ascomycetes lack a Czf1 homolog (Vinces et al., 2006) while other Candida 

species contain CZF1 homologs.  As an example, the CZF1 gene in Candida 

dubliniensis, a Candida species that produces the second highest farnesol levels, is 

farnesol tolerant, and morphologically responds to farnesol (Henriques et al., 2007; 

Weber et al., 2008) has the highest homology to the C. albicans CZF1 gene with 81% 

identity at the nucleotide level (data not shown).  Furthermore, the unusually large 5’ 

upstream region of CZF1, the CZF1 gene itself, and neighboring genes at the CZF1 locus 

(Vinces et al., 2006) appear to be conserved to varying degrees in additional Candida 

species whose sequence information has been recently made available including:  

Candida tropicalis, Lodderomyces  elongisporius, Candida lusitaniae, and Candida 

guillermondii (data not shown). 

 In conclusion, we have identified new roles for Czf1 in mediating the C. albicans 

tolerance to farnesol as well as farnesol-mediated filament inhibition.  While the 

connection of Czf1 to other factors known to play a role in the C. albicans farnesol 

response, such as the cAMP pathway, is apparent, others links remain unclear.  For 

example, cross-regulation among many of the farnesol response pathways was recently 

summarized (Deveau et al., 2010), but little is known about the regulation of Tup1/Nrg1 

and how these factors fit into the farnesol signaling network.  Furthermore, other proteins 



110 
 

 

involved in Ras1-Cyr1-cAMP signaling such as Ras2, Cap1, and G-actin (Hall and 

Muhlschlegel, 2009; Zhu et al., 2009; Zou et al., 2009) have not been tested for possible 

roles in farnesol signaling and may yet prove to be involved.  This points to the fact that 

farnesol can be an extremely useful tool for studying signal transduction in C. albicans 

by demonstrating the presence of new connections between signaling pathways.   
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Figure Legends 

Figure 4-1.  Czf1 is required for the morphological response to farnesol in liquid 

conditions.  C. albicans resting cells were inoculated into glass flasks at 106 cells/mL in 

either mGPP (A) or mSPP (B) broth, and 0, 50, or 100 μM farnesol was added.  Cultures 

were incubated for 1 h at 37°C with shaking at 225 rpm and percentage of germ tube 

formation was subsequently determined (czf1Δ/ czf1Δ = CKY230, czf1Δ/CZF1= 

CKY116, czf1Δ/ czf1Δ pMAL2-CZF1 = CKY231).  Data shown are from independent 

experiments performed in triplicate; these were repeated with similar results on at least 

two separate occasions.   

Figure 4-2.  Czf1 is required for the morphological response to farnesol in embedded 

media.  C. albicans resting cells were mixed with either GPP (A) or SPP (B) molten agar 

and 0 or 50 μM farnesol as described in experimental procedures, and incubated at 37°C 

for 12 h.  Independent experiments were repeated in duplicate with similar results.   

Figure 4-3.  CZF1 mRNA expression is decreased in the presence of farnesol.     SC5314 

resting cells were inoculated into mGPP broth for 40, 60, or 80 minutes (A-C, 

respectively) with 0, 50, or 100 μM farnesol and subsequently harvested for RNA 

extraction.  Quantitative real-time PCR was used to measure relative CZF1 mRNA levels 

with ACT1 used as a reference gene.  CZF1 levels in the minus farnesol samples were set 

at zero and fold change in CZF1 levels for samples with farnesol added are shown.  Data 

are averages from three replicates. 

Figure 4-4.  Czf1, Efg1, and temperature play a role in farnesol tolerance.  The czf1Δ/ 

czf1Δ efg1Δ/ efg1Δ double mutant was grown in YPD broth at 30°C (A) or 37°C (B) for 

24 h and differences cell morphology was observed.  Scale bar = 10 μm.  Cells were 
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grown at either 30°C or 37°C in YPD broth until stationary phase was reached (24 h, 

except 48 h for CAI4 and efg1Δ/ efg1Δ strains) to prepare resting cells as described in 

experimental procedures.  106 cells/mL of these resting cells were inoculated into mGPP 

(C,D) or mSPP (E,F) broth and 0, 50, or 100 μM farnesol was added.  Cultures were 

incubated at 37°C with shaking at 225 rpm, and cell death by methylene blue staining 

was determined after 90 min (efg1Δ/ efg1Δ = HLC67; czf1Δ/czf1Δ efg1Δ/efg1Δ = 

CKY283; czf1Δ/czf1Δ efg1Δ/efg1Δ pMAL2-CZF1 = AAC6).  Data shown are from 

independent experiments performed in triplicate; these were repeated with similar results 

on at least two separate occasions.     

Figure 4-5.  Ectopic expression of CZF1 in a czf1Δ/czf1Δ efg1Δ/efg1Δ double mutant 

partially restores filamentation and farnesol response in liquid conditions.  Cells were 

grown at either 30°C or 37°C until stationary phase was reached to prepare resting cells.  

106 cells/mL of these resting cells were inoculated into mGPP (A,B) or mSPP (C,D) 

broth and 0, 50, or 100 μM farnesol was added.  Cultures were incubated at 37°C with 

shaking at 225 rpm, and percentage of germ tube formation was subsequently 

determined.  Data shown are from independent experiments performed in triplicate; these 

were repeated with similar results on at least two separate occasions.     

Figure 4-6.  Czf1 and Efg1 are both required for a wild type morphological response and 

tolerance to farnesol in embedded agar.  C. albicans resting cells (prepared at 30°C or 

37°C) were mixed with either GPP (A) or SPP (B) molten agar and 0 or 50 μM farnesol 

as described in experimental procedures, and incubated at 37°C for 17 h.  Colonies in 

figure were from 30°C resting cells unless otherwise noted.  Independent experiments 

were repeated in duplicate with similar results.   
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Figure 4-7.  A czf1Δ/czf1Δ mutant produces farnesol levels similar to that of wild type 

and parental strains.  Cells were grown in GPP broth at 30°C for 48 hours prior to 

farnesol extraction and quantification, as described in methods. 
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Figure 4-1. 
A. 
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Liquid Farnesol Response Assay; mSPP
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Figure 4-2 

 

 

 

 
 



124 
 

 

Figure 4-3 
A. 
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Figure 4-4 
A.            B. 
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Figure 4-4 
 
E. 

Cells grown at 30°C; mSPP
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Figure 4-5 
A.       B. 
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Figure 4-6 
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Figure 4-7 
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Table 4-1.  Summary of insertion mutants with an impaired farnesol response. 

Mutant S.  cerevisiae 
ortholog 

Predicted or known biological processes 

czf1/czf1 None Zinc finger transcription factor for filamentation 
under embedded conditions and positive regulator of 
white to opaque switching; binds Efg1 and expression 
controlled by Efg1 and Czf1 (Brown et al., 1999; 
Hornby et al., 2001; Ramirez-Zavala et al., 2008; 
Vinces et al., 2006; Vinces and Kumamoto, 2007; 
Zordan et al., 2007) 

tpk1/tpk1 Tpk2 Catalytic subunit of cAMP-dependent protein kinase 
A, regulator of morphogenesis; Tpk2 isoform; 
involved in multiple stress responses (Bockmuhl et 
al., 2001; Cloutier et al., 2003; Giacometti et al., 
2009; Maidan et al., 2005) 

rlm1/rlm1 Rlm1 Transcription factor for genes involved in cell wall 
organization and biogenesis and various stress 
responses (Bruno et al., 2006; Sampaio et al., 2009) 

stp2/stp2 Stp2 Transcription factor for amino acid permease genes 
(Martinez and Ljungdahl, 2005) 

hof1/hof1 Hof1 Role in cytokinesis (Li et al., 2006) 
yck2/yck2 Yck2 Maintenance of cell polarity, antimicrobial peptide 

resistance, contributes to epithelial cell damage (Park 
et al., 2009) 

zcf14/zcf14 Hap1 Putative transcription factor 
hap43/hap43 Yap3 Transcription factor, involved in iron limitation 

response (Baek et al., 2008) 
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Table 4-2.  Candida albicans strains and plasmids used in this study. 

 Parental 
strain 

Genotype/Description Source 

C. albicans 
strains 

   

SC5314 Clinical 
isolate 

Clinical isolate Alexander Johnson 
(Gillum et al., 1984) 

CAF2 CAI-4 Ura+ derivative of CAI-4 Alexander Johnson 
(Leberer et al., 2001) 

CAI-4 CAF2 ura3::imm434/ura3::imm434 Alexander Johnson 
(Fonzi and Irwin, 1993) 

BWP17 RM1000 ura3::imm434/ura3::imm434 
arg4::hisG/arg4::hisG 
his1::hisG/his1::hisG 

Aaron Mitchell (Nobile 
and Mitchell, 2005) 

HLC67 
(efg1Δ/ efg1Δ) 

CAI-4 ura3::imm434/ura3::imm434 
efg1::hisG/efg1::hisG 

Gerald Fink (Lo et al., 
1997) 

CKY101 CAI-4 ura3::imm434/ura3::imm434 
ade2::pDB152 

Carol Kumamoto 
(Brown et al., 1999) 

CKY230 
(czf1Δ/ czf1Δ) 

CAI-4 ura3::imm434/ura3::imm434 
czf1::hisG/czf1::hisG 
ade2::pMAL2-URA3 

Carol Kumamoto 
(Vinces et al., 2006) 

CKY116  
(czf1Δ/CZF1) 

CAI-4 ura3::imm434/ura3::imm434 
CZF1/czf1::hisG -URA3-hisG 

Carol Kumamoto 

CKY231 
(czf1Δ/ czf1Δ 
pMAL2-CZF1) 

CAI-4 ura3::imm434/ura3::imm434 
czf1::hisG/czf1::hisG 
ade2::pMAL2-CZF1-URA3 

Carol Kumamoto 
(Brown et al., 1999) 

CKY283 
(czf1Δ/ czf1Δ 
efg1Δ/ efg1Δ) 

CAI-4 ura3::imm434/ura3::imm434 
czf1::hisG/czf1::hisG-URA3-
hisG  efg1::hisG/efg1::hisG 

Carol Kumamoto 
(Giusani et al., 2002) 

AAC2 CKY283 ura3::imm434/ura3::imm434 
czf1::hisG/czf1::hisG  
efg1::hisG/efg1::hisG 

This study 

AAC6    
(czf1Δ/ czf1Δ 
efg1Δ/ efg1Δ 
pMAL2-CZF1) 

AAC2 ura3::imm434/ura3::imm434 
czf1::hisG/czf1::hisG  
efg1::hisG/efg1::hisG 
ade2::pMAL2-CZF1-URA3 

This study 

Plasmids    
pDB212  pMAL2-CZF1 URA3 ade2’ 

Ampr 
Carol Kumamoto 
(Brown et al., 1999) 
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Supplementary Table 4-1.  List of mutants screened in this study. 

Mutant ORF# 
orf19.1795 
orf19.7291 
orf19.6760 
orf19.4669 
orf19.5037 
orf19.11450 
orf19.9364 
orf19.6970 
orf19.10248 
orf19.9791 
orf19.6952 
orf19.9364 
orf19.4966 
orf19.7479 
orf19.7412 
orf19.5328 
orf19.1857 
orf19.8907 
orf19.14178 
orf19.4746 
orf19.5235 
orf19.3995 
orf19.8635 
orf19.3171 
orf19.2723 
orf19.768 
orf19.3208 
orf19.1409 
orf19.564 
orf19.856 
orf19.11598 
orf19.4284 
orf19.4369 
orf19.7389 
orf19.4668 
orf19.9508 
orf19.5011 
orf19.4658 
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orf19.1509 
orf19.1593 
orf19.695 
orf19.6036 
orf19.3014 
orf19.3701 
orf19.4763 
orf19.5495 
orf19.1805 
orf19.13950 
orf19.12265 
orf19.5571 
orf19.7614 
orf19.10359 
orf19.2990 
orf19.4257 
orf19.2237 
orf19.771 
orf19.6729 
orf19.3396 
orf19.2237 
orf19.3563 
orf19.2033 
orf19.11973 
orf19.3171 
orf19.769 
orf19.5251 
orf19.7381 
orf19.3202 
orf19.1825 
orf19.5571 
orf19.580 
orf19.3764 
orf19.9081 
orf19.5365 
orf19.3012 
orf19.12351 
orf19.5445 
orf19.6261 
orf19.3009 
orf19.10169 
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orf19.2763 
orf19.2392 
orf19.4893 
orf19.2348 
orf19.2653 
orf19.5292 
orf19.4457 
orf19.6194 
orf19.5094 
orf19.271 
orf19.1759 
orf19.12603 
orf19.6032 
orf19.7201 
orf19.9115 
orf19.1005 
orf19.4369 
orf19.7389 
orf19.4519 
orf19.2660 
orf19.4529 
orf19.7472 
orf19.6344 
orf19.4428 
orf19.1614 
orf19.4369 
orf19.3818 
orf19.8837 
orf19.11598 
orf19.3906 
orf19.7016 
orf19.7400 
orf19.9331 
orf19.6185 
orf19.3678 
orf19.4535 
orf19.7194 
orf19.5001 
orf19.4244 
orf19.658 
orf19.8326 
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orf19.3530 
orf19.6194 
orf19.6100 
orf19.1510 
orf19.4214 
orf19.4285 
orf19.3125 
orf19.7208 
orf19.5866 
orf19.2938 
orf19.9115 
orf19.12706 
orf19.6850 
orf19.1252 
orf19.5352 
orf19.7451 
orf19.7401 
orf19.271 
orf19.1394 
orf19.2901 
orf19.6737 
orf19.811 
orf19.2808 
orf19.769 
orf19.7207 
orf19.530 
orf19.4979 
orf19.7381 
orf19.7400 
orf19.6950 
orf19.14148 
orf19.4409 
orf19.4872 
orf19.4513 
orf19.6971 
orf19.2270 
orf19.3190 
orf19.7410 
orf19.4440 
orf19.13704 
orf19.6365 
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orf19.4116 
orf19.3678 
orf19.7381 
orf19.3844 
orf19.1331 
orf19.1276 
orf19.5761 
orf19.7576 
orf19.813 
orf19.1907 
orf19.4846 
orf19.4543 
orf19.4518 
orf19.4823 
orf19.7447 
orf19.7324 
orf19.2350 
orf19.10841 
orf19.5664 
orf19.7610 
orf19.248 
orf19.425 
orf19.4243 
orf19.1628 
orf19.3707 
orf19.829 
orf19.3254 
orf19.1291 
orf19.6365 
orf19.4969 
orf19.2061 
orf19.1793 
orf19.3122 
orf19.5887 
orf19.4188 
orf19.4139 
orf19.1795 
orf19.5100 
orf19.6267 
orf19.7583 
orf19.11659 
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orf19.7451 
orf19.4474 
orf19.3012 
orf19.6036 
orf19.4743 
orf19.6763 
orf19.4010 
orf19.7207 
orf19.2508 
orf19.5016 
orf19.5023 
orf19.998 
orf19.7355 
orf19.814 
orf19.411 
19.6817 
19.3809 
19.7247 
19.11410 
19.4433 
19.5908 
19.7150 
19.12215 
19.12786 
19.4972 
19.173 
19.4125 
19.4766 
19.3187 
19.3986 
19.6680 
19.5026 
19.4670 
19.4318 
19.7359 
19.723 
19.7518 
19.2745 
19.7583 
19.5729 
19.7570 
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19.3127 
19.4568 
19.1135 
19.1187 
19.5548 
19.3308 
19.2647 
19.6182 
19.431 
19.7318 
19.5380 
19.1497 
19.1255 
19.3305 
19.4573 
19.9191 
19.1007 
19.2280 
19.5338 
19.4767 
19.4776 
19.4778 
19.13396 
19.2356 
19.9326 
19.909 
19.2054 
19.2260 
19.798 
19.889 
19.2331 
19.2315 
19.1178 
19.2393 
19.2399 
19.2458 
19.3088 
19.2612 
19.2674 
19.1358 
19.1496 
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19.3193 
19.3300 
19.1589 
19.1565 
19.3405 
19.3407 
19.1694 
19.1729 
19.1826 
19.3683 
19.3753 
19.3835 
19.6781 
19.6845 
19.6850 
19.7025 
19.10266 
19.10478 
19.1227 
19.1822 
19.2064 
19.2077 
19.2432 
19.2623 
19.3390 
19.4649 
19.487 
19.567 
19.6985 
19.718 
19.735 
19.976 
orf19.3966 
orf19.3966 
orf19.299 
orf19.299 
orf19.4887 
orf19.4887 
orf19.2623 
orf19.2623 
orf19.1563 
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orf19.1563 
orf19.1563 
orf19.3010.1 
orf19.3010.1 
orf19.3010.1 
orf19.4884 
orf19.4884 
orf19.3434 
orf19.3434 
orf19.2613 
orf19.2613 
orf19.2613 
orf19.5412 
orf19.4981 
orf19.4981 
orf19.4981 
orf19.1277 
orf19.1277 
orf19.5867 
orf19.5867 
orf19.3869 
orf19.3869 
orf19.3869 
orf19.1490 
orf19.1490 
orf19.1490 
orf19.2476 
orf19.2476 
orf19.2476 
orf19.5674 
orf19.893 
orf19.532 
orf19.532 
orf19.1714 
orf19.3642 
orf19.7251 
orf19.3193 
orf19.7374 
orf19.166  
orf19.2647 
orf19.3188 
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orf19.1358 
orf19.1499 
orf19.6817 
orf19.681 
orf19.4662 
orf19.5848 
orf19.6407 
orf19.5975 
orf19.1032 
orf19.2356 
orf19.6985 
orf19.7371 
orf19.4766 
orf19.3012 
orf19.5133 
orf19.5917 
orf19.6203 
orf19.861 
orf19.6038 
orf19.5849 
orf19.4649 
orf19.3294 
orf19.2623 
orf19.2315 
orf19.1069 
orf19.3190 
orf19.6102 
orf19.723 
orf19.2540 
orf19.3434 
orf19.4961 
orf19.5953 
orf19.6124 
orf19.173 
orf19.6121 
orf19.217 
orf19.1035 
orf19.1718 
orf19.2423 
orf19.255 
orf19.2748 
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orf19.2753 
orf19.2808 
orf19.3252 
orf19.3405 
orf19.3876 
orf19.4145 
orf19.4166 
orf19.4225 
orf19.4288 
orf19.4450 
orf19.4524 
orf19.5924 
orf19.5940 
orf19.7372 
orf19.6227 
orf19.6713 
orf19.7319 
orf19.5995 
orf19.5759 
orf19.4979 
orf19.2395 
orf19.6626 
orf19.7523 
orf19.1813 
orf19.2217 
orf19.702 
orf19.7388 
orf19.7388 
orf19.896 
orf19.896 
orf19.7001 
orf19.7001 
orf19.4866 
orf19.4866 
orf19.5181 
orf19.5181 
orf19.4252 
orf19.4252 
orf19.4084 
orf19.4084 
orf19.469 
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orf19.469 
orf19.5350 
orf19.5350 
orf19.2605 
orf19.2605 
orf19.5224 
orf19.5224 
orf19.663 
orf19.663 
orf19.451 
orf19.451 
orf19.1874 
orf19.1874 
orf19.4242 
orf19.4242 
orf19.2395 
orf19.2395 
orf19.3047 
orf19.3047 
orf19.794 
orf19.794 
orf19.4892 
orf19.4892 
orf19.5408 
orf19.5408 
orf19.223 
orf19.223 
orf19.3256 
orf19.3256 
orf19.1196 
orf19.1196 
orf19.835 
orf19.835 
orf19.469 
orf19.469 
orf19.4084 
orf19.4084 
orf19.2341 
orf19.2341 
orf19.35 
orf19.35 
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orf19.4001 
orf19.4001 
orf19.4867 
orf19.4867 
orf19.7281 
orf19.7281 
orf19.3744 
orf19.6369 
orf19.4144 
orf19.4269 
orf19.4909 
orf19.4909 
orf19.4890 
orf19.4890 
orf19.4308 
orf19.4308 
orf19.4432 
orf19.4432 
orf19.3545 
orf19.3545 
orf19.7510 
orf19.7510 
orf19.2678 
orf19.6913 
orf19.6913 
orf19.5068 
orf19.5068 
orf19.3854 
orf19.3854 
orf19.5357 
orf19.4347 
orf19.4347 
orf19.7510 
orf19.7510 
orf19.5224 
orf19.5224 
orf19.3751 
orf19.3049 
orf19.7044 
orf19.7044 
orf19.5253 
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orf19.5253 
orf19.2277 
orf19.2277 
orf19.7451 
orf19.7451 
orf19.3530 
orf19.3530 
orf19.4297 
orf19.4297 
orf19.4518 
orf19.4518 
orf19.2268 
orf19.2102 
orf19.3256 
orf19.3256 
orf19.844 
orf19.844 
orf19.3841 
orf19.3841 
orf19.3049 
orf19.3049 
orf19.2436 
orf19.846 
orf19.846 
orf19.7355 
orf19.3720 
orf19.3720 
orf19.2910 
orf19.2910 
orf19.4002 
orf19.428 
orf19.428 
orf19.1341 
orf19.3415 
orf19.3415 
orf19.3415 
orf19.6243 
orf19.7523 
orf19.7523 
orf19.6889 
orf19.6889 
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orf19.5901 
orf19.5901 
orf19.1341 
orf19.1341 
orf19.130 
orf19.130 
orf19.2222 
orf19.1283 
orf19.1283 
orf19.1283 
orf19.1283 
orf19.7510 
orf19.7510 
orf19.5911 
orf19.5911 
orf19.7164 
orf19.7164 
orf19.5325 
orf19.5325 
orf19.895 
orf19.895 
orf19.5162 
orf19.5162 
orf19.7652 
orf19.7652 
orf19.460 
orf19.460  
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CHAPTER 5 

Summary and Future Directions 

With a brief excerpt from: 

Langford, M.L., Atkin, A.L., and Nickerson, K.W.  (2009)  Cellular Interactions of 

Farnesol, a Quorum Sensing Molecule Produced by Candida albicans.  Future Microbiol.  

4: 1353-62. 

 

 

 

 

 

 

 

 

 



148 
 

 

Summary 

Farnesol has effects on all eukaryotic cells tested, and for many cell types, a low 

level of farnesol is sufficient to inhibit growth or induce cell death.  In contrast, C. 

albicans has evolved mechanisms to produce and tolerate higher levels of farnesol and 

use it as a quorum sensing molecule.  A current challenge is to develop a unifying model 

for the mode of action for farnesol in eukaryotes and elucidate the mechanisms used by 

C. albicans to evade the adverse effects of farnesol and respond to farnesol as a signaling 

molecule.  In this study, we established environmental conditions in which C. albicans is 

able to resist farnesol-mediated cell death:  stationary phase cells provided with an energy 

source.  Conversely, we have defined conditions that stimulate sensitivity to farnesol in 

C. albicans:  energy-deprived, log phase cells (Chapter 2).  Using the aforementioned 

environmental conditions that allow C. albicans to tolerate farnesol and use it as a 

signaling molecule, two novel factors were identified that are involved in the 

morphological response to farnesol:  Tup1 and Czf1 (Chapters 3, 4).  It seems that 

farnesol suppression of filamentation during C. albicans quorum sensing works through 

both positive and negative regulators of filamentation (Czf1 and Tup1, respectively) to 

achieve the resulting change in morphology.   Czf1 also played a dual role in the farnesol 

response, as it was partially responsible for farnesol tolerance in quorum sensing 

conditions.  

 

Farnesol Tolerance and Sensitivity in C. albicans 

 The precise mechanism for C. albicans white cell farnesol tolerance during 

quorum sensing remains unclear.  Since the effects of farnesol on other organisms have 
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been studied in seventeen different species (summarized in Chapter 1), this is an 

important mechanism to understand in the field of interspecies communication.  

Furthermore, as exogenous farnesol has many effects in the mammalian host during 

infection such as preventing infection of mucosal surfaces, increasing virulence in a 

disseminated infection and interference of the host cytokine response [Chapter 1 and 

(Navarathna et al., 2007)], understanding the farnesol tolerance mechanism in C. 

albicans may prove useful therapeutically. 

 It is unknown how C. albicans white cells are resistant to the toxic effects of 

farnesol.  Do the cells have a type of passive resistance, such as changes in membrane 

composition, or do they undergo active resistance, such as conversion of farnesol into a 

non-toxic compound?  In order to look for genes that may be involved in farnesol 

tolerance, a screening approach was used (Chapter 4).  However, the screen was 

unsuccessful in identifying mutants that were growth-inhibited (sensitive) in the presence 

of farnesol, even at levels as low as 10 µM.  Even so, the mutant library collection used 

in this study is by no means a complete representation of the entire collection of C. 

albicans predicted open reading frames (ORFs); there are 6197 predicted ORFs in the 

genome, compared with the 560 mutants contained within the mutant library collection 

used, leaving plenty of room for future identification of farnesol tolerance factors as more 

mutants become available. 

 The identification of Czf1 and Efg1 as important players in farnesol survival is 

intriguing because a farnesol-sensitive phenotype was observed only when both genes 

were deleted.  Ectopic expression of CZF1 in the efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant 

could not provide complete protection from farnesol killing yet the single efg1Δ/efg1Δ 
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and czf1Δ/czf1Δ mutants were unharmed (Chapter 4).  Perhaps Czf1 functions upstream 

of Efg1 in this situation, or the normal regulation of CZF1 might be especially important 

in the absence of EFG1.  In the reverse situation, could ectopic expression of EFG1 in the 

double mutant restore partial or full farnesol resistance?  Czf1 and Efg1 likely regulate a 

redundant gene or set of genes for farnesol tolerance because the single mutants do not 

show a farnesol sensitive phenotype while the double mutant exhibits a synthetic farnesol 

sensitivity phenotype.  While changes in gene expression have been extensively studied 

in the efg1Δ/efg1Δ mutant compared to wild type/parental strains (Braun and Johnson, 

2000; Harcus et al., 2004; Sohn et al., 2003), there is no matching data for Czf1 

available.  Microarray analyses designed to complement existing data on Efg1 may reveal 

genes that are commonly regulated by Czf1 and Efg1, either directly or indirectly.  Genes 

whose expression was altered in cells lacking Czf1 and Efg1 could also be compared to 

existing microarray data comparing gene expression between white and opaque cells 

(Lan et al., 2002; Tsong et al., 2003; Zhao et al., 2005).  Genes that are differentially 

expressed in opaque cells, efg1Δ/efg1Δ, and czf1Δ/czf1Δ mutants would comprise a list of 

strong candidates for potential farnesol resistance factors.  One further step that may be 

taken would be to look at other farnesol-sensitive organisms to see if homologs to the 

candidate farnesol resistance genes are present in those species. 

 The role of temperature in farnesol tolerance (the efg1Δ/efg1Δ czf1Δ/czf1Δ double 

mutant was more sensitive at 30°C than at 37°C) may be correlated to evidence 

suggestive of slightly elevated farnesol production levels at higher temperatures (Hornby 

et al., 2001).  It would be informative to examine changes in gene expression and to 

measure farnesol production in the efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant at both 30°C 
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and 37°C, compared to wild type and parental strains.  Differentially regulated genes may 

be partly responsible for the cellular morphology and farnesol resistance changes 

observed at these two temperatures.  One would also predict that farnesol production may 

be significantly lowered at 30°C based on the degree of farnesol sensitivity for the double 

mutant cells grown at this temperature.  Analysis of the efg1Δ/efg1Δ single mutant would 

need to be included in this study; initial results using this mutant resulted in high 

variation between replicates (M.L. Langford, data not shown) and further replicates will 

need to be conducted to determine whether Efg1 plays a role in farnesol production.  

Furthermore, a possible role for Tup1 in farnesol resistance should not be ignored.  As 

tup1Δ/tup1Δ mutants produced 17-fold more farnesol compared to wild type and parental 

strains, these cells may have heightened abilities to tolerate farnesol.  However, it will be 

difficult to study higher tolerance to farnesol in these mutant cells since they are locked 

in the filamentous morphology (unless secondary mutations are introduced), unlike the 

efg1Δ/efg1Δ and czf1Δ/czf1Δ mutants.  Preliminary experiments must first be conducted 

to better understand the tup1Δ/tup1Δ farnesol resistance, such as a comparison of farnesol 

tolerance between yeast, pseudohyphal, and hyphal cells.  If the loss of Tup1 results in 

higher farnesol tolerance, would a triple efg1Δ/czf1Δ/tup1Δ mutant have restored 

resistance?  What would the farnesol production levels in that mutant be?  It is intriguing 

that all three of these factors play a prominent role in white-opaque switching, farnesol 

production and/or farnesol tolerance, as well as the morphological response to farnesol. 
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Signaling During the Morphological Response to Farnesol in C. albicans 

Because the presence of a single farnesol receptor has still not been identified, it 

remains a possibility that there may be multiple targets for farnesol in the cell.  Two 

models (network and central processor) have been proposed with regard to C. albicans 

signaling in general (Braun and Johnson, 2000) and are worth considering when 

examining the farnesol response.  That study suggested C. albicans follows the network 

signaling model, whereby many individual connections are formed between the different 

regulatory pathways in the cell.  This conclusion was reached when they observed that 

several hyphal-specific genes are not regulated in unison in different hyphal inducing 

conditions but in fact respond as individuals.  If network signaling is indeed occurring 

during the farnesol response, farnesol could help identify many of the different branches 

in these pathways. 

The Ras1-cAMP pathway has been identified as a critical, even a possible direct 

target for farnesol inhibition during yeast to filament inhibition by farnesol (Davis-Hanna 

et al., 2008; Deveau et al., 2010).  Although a recent study (Davis-Hanna et al., 2008) 

showed the inability of the ras1Δ/ras1Δ mutant to respond to farnesol in aerobic 

conditions, it remains undetermined if it is capable of responding to farnesol under 

different environmental conditions, specifically during embedded growth.  The 

ras1Δ/ras1Δ mutant is defective in filamentation under aerobic conditions and embedded 

in YPS (yeast extract, peptone, sucrose) agar (Maidan et al., 2005), but it has not been 

tested in our GPP embedded media.  If filamentation can be achieved in our embedded 

assay, the morphological response to farnesol can be tested; this would both complement 
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the existing aerobic data and determine the importance of Ras1 to the farnesol response in 

other environmental conditions.   

A recently characterized protein, Ras2 (Zhu et al., 2009), plays an antagonistic 

role with Ras1 regarding stationary phase entry, stress resistance, and cellular cAMP 

levels.  Although Ras2 shares poor sequence homology with Ras1 and phylogenetic 

analyses have suggested it belongs to a divergent group of fungal Ras proteins (Ras2 has 

a homolog with high sequence similarity to C. dubliniensis), it still has functional 

GTPase activity (Zhu et al., 2009).  More importantly, since Ras2 has an antagonistic 

effect on many of the physiological roles of Ras1, it may somehow be involved in 

farnesol signaling as well.  The ras2Δ/ras2Δ mutant maintains the ability to make 

filaments in aerobic and embedded conditions, making it an ideal candidate for testing the 

morphological response to farnesol.  Might Ras2 play an antagonistic response to Ras1 

during farnesol signaling as well? 

While one new factor involved in the morphological response to farnesol, Czf1, 

has a known connection to the Ras1-cAMP pathway in C. albicans, it remains unknown 

how another factor involved, Tup1, fits into this model (Chapters 3, 4).  Further studies 

using farnesol as a tool may decipher whether Tup1 is somehow connected to the cAMP 

pathway or is independently involved in the farnesol response.  Construction of a triple 

efg1Δ/czf1Δ/tup1Δ mutant may prove useful, not only to study farnesol tolerance as 

mentioned earlier, but to study farnesol signaling as well.  If this mutant is viable, what 

would its morphology be in different growth conditions?  Would this mutant be capable 

of responding to farnesol?  Vectors that can be used to delete EFG1, CZF1, and TUP1 

have already been constructed, as well as ectopic expression constructs for all three genes 
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(Bockmuhl and Ernst, 2001; Braun and Johnson, 1997; Brown et al., 1999; Lo et al., 

1997), a couple of which have already been obtained by the Atkin laboratory.  Therefore, 

all the necessary tools are available to create not only a triple mutant, but the remaining 

double mutant combinations (i.e. tup1Δ/czf1Δ, efg1Δ/tup1Δ) and ectopically express each 

gene in the desired mutant strains.  Construction and analysis of these strains can provide 

valuable insight into C. albicans morphological signaling networks.  For example, if 

TUP1 was ectopically expressed in the efg1Δ/efg1Δ czf1Δ/czf1Δ double mutant 

background and no differences in farnesol response were observed, Tup1 would most 

likely be acting upstream of these two factors.   

Other ways to test for a possible connection between Tup1 and the Ras1-cAMP 

pathway would be to determine whether Czf1 and/or Efg1 are responsible for the increase 

in TUP1 mRNA levels and/or Tup1 protein levels observed during the morphological 

response to farnesol.  For example, are the TUP1 mRNA levels in a czf1Δ/czf1Δ mutant 

background still increased during farnesol treatment?  If the mRNA levels do not increase 

in response to farnesol, it would suggest that Czf1 is either directly or indirectly 

responsible for the regulation of Tup1 during the farnesol response, and this information 

could potentially provide the first data regarding the regulation of Tup1 since regulatory 

factors upstream of Tup1 remain unknown.   

Regardless of whether Czf1 would specifically regulate TUP1 expression, follow-

up experiments designed to better understand which genes are controlled by Czf1 are 

desirable for the C. albicans research field.  While it has been shown to bind its own 

promoter and negatively regulate its expression, it is unknown what other genes are 

directly regulated by Czf1.  Moreover, because it controls so many processes in C. 
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albicans:  morphogenesis, white-opaque switching, farnesol tolerance, and the 

morphological response to farnesol, it is of considerable interest to identify genes that are 

directly regulated by this unique transcription factor, both without and in the presence of 

farnesol.  ChIP (chromatin immunoprecipitation)-Seq, would be an ideal procedure to 

determine direct targets of Czf1.  Prior to this experiment, however, Czf1 antibodies 

would ideally be raised (all protein work concerning Czf1 has utilized an HA-tagged 

Czf1 protein, which would have the potential to slightly alter the natural function of the 

protein).  The ChIP-Seq method would first cross-link DNA (chromatin)-protein 

complexes and shear the DNA into smaller pieces.  An antibody against Czf1 can be used 

to immunoprecipitate DNA bound with Czf1, and deep sequencing could subsequently be 

used to sequence the precipitated DNA.  Sequence analyses would finally provide the 

location of the Czf1 binding sites in the C. albicans genome.   

In addition to CZF1, the mutant screen from Chapter 4 identified 7 other genes 

that may play a role in the farnesol response.  Of note, identification of STP2 was a bit of 

a surprise, as it is the only gene identified with no direct ties to morphogenesis or stress 

responses.  Either the acquisition of amino acids plays a more important role during 

farnesol signaling than is currently appreciated, or Stp2 may participate in farnesol 

signaling in an undiscovered manner.  The RLM1 and YCK2 genes are both attractive 

candidates for further analysis, particularly when examining the farnesol survival 

mechanism, due to their known roles in stress resistance. 
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Final Thoughts 

 One common theme that can be discerned from studying the farnesol response in 

C. albicans is that farnesol affects a variety of regulatory factors within the polymorphic 

fungus.  This unique feature has allowed us to study the interrelatedness of some of the 

signaling networks in an effort to better understand the genetic pathways present in the 

opportunistic pathogen.  Farnesol can be used as an instrument to dissect the complicated 

and intertwined pathways present in C. albicans, including pathways yet to be fully 

understood, such as the regulation of Tup1, Hog1 signaling, and stress response 

signaling.  Although farnesol was initially discovered as a quorum sensing molecule that 

only regulates morphogenesis, the discovery of its many other functions will hopefully 

allow for a more complete understanding of C. albicans signaling as a whole.   
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