
Peer to Peer Overlay Network for Sensor
Networks

Master Thesis

Submitted to
Institute of Operating Systems and Computer Networks

Technical University Braunschweig

by

Husam Alzaq

7. February 2007

1.Referent: Prof. Dipl.-Ing. Michael Beigl
2. Referent: Prof. Dipl.-Ing. Lars Wolf

Erklärung

Ich versichere, die vorliegende Masterarbeit selbstständig und nur unter Benutzung
der angegebenen Hilfsmittel angefertigt zu haben.

Ort, Datum Unterschrift

i

ii

Acknowledgment

This Master of Science Thesis was written during winter 2006 at the Institute of
Operating Systems and Computer Networks at the University of Braunschweig. I
want to thank Prof. Dr.-Ing. Michael Beigl and Dr. Christian Decker for the support
and guidance given during the writing of this thesis. I want to thank also Mr. Frank
Strauss, IBR network and systems administration, for his technical support in Linux.
I would like to thank Jxta Community for their valuable support. Finally, I would
like to express my deepest gratitude to my family for their endless love and support
during my study at the Technical University of Braunschweig.

iii

iv

Abstract

With the advent of smart sensors, it is now possible to monitor and observe the world
at unprecedented levels of granularity. These sensors form a wireless sensor network
of tens or hundreds of nodes that are deployed in a remote location. Such sensor
networks require a significant approach for the data management. Based on Peer
to Peer System, we proposed a new middleware layer for these concealed ubiquitous
devices. The flexible architecture of Peer to Peer enables wireless sensor network to
be connected to the Internet through a dedicated gateway. Jxta is preferred among
other Peer to Peer systems since it allows any connected device on the network to
communicate and collaborate. The main function of this middleware is to enable
users to discover service advertisements and then to communicate with the sensor
gateway. Users can obtain sensor data with simple declarative query that is distribu-
tively processed.

v

vi

Zusammenfassung

Mit dem Erscheinen der intelligenten Sensoren ist es jetzt möglich, die Welt auf einem
noch nie da gewesenem Niveau von Granularität zu überwachen und zu beobachten.
Diese Sensoren bilden ein drahtloses Sensor-Netz von zehn oder hunderten von Knoten,
die an entfernten Stellen eingesetzt werden. Solche Sensor-Netze erfordern einen
besonderen Ansatz für die Datenverwaltung. Basierend auf Peer-to-Peer-System
schlagen wir eine neue Middleware-Schicht vor für solche Universal-Anlagen mit ver-
borgenen Sensoren. Die flexible Architektur des Peer-to-Peer-Systems ermöglicht
den Anschluss des drahtlosen Sensornetzes an das Internet über einen zugewiese-
nen Gateway. Jxta wird vor anderen Peer-to-Peer-Systemen bevorzugt, da es alle
möglichen verbundenen Geräte im Netz zusammenarbeiten und kommunizieren lässt.
Die Hauptfunktion dieser Middleware ist es, den Gateway Dienst zu erkennen und
mit diesem zu kommunizieren. Sie erlaubt dem Benutzer, Daten von den Sensoren
durch eine einfache erklärende Anfrage zu erhalten, die über einen Verteilungsprozess
verarbeitet wird.

vii

viii

Contents

Abbreviations xiii

List of Figures xv

List of Tables xvii

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Definition . 2
1.3. Objective . 2
1.4. Research Question . 2
1.5. Thesis Organization . 3

2. Background on Peer to Peer Systems 5
2.1. Overview . 6
2.2. Basic Definition . 7
2.3. Peer to Peer Classification . 8
2.4. Peer to Peer Search Methods . 10

2.4.1. Searching in Unstructured Peer-to-Peer Networks 10
2.4.2. Searching in Structured Peer-to-Peer Networks 11

2.5. Peer to Peer Applications . 11
2.6. Peer to Peer Characteristics . 13
2.7. Examples of well known Peer to Peer Systems 15

2.7.1. Napster . 15
2.7.2. Gnutella . 15
2.7.3. FreeNet . 16
2.7.4. Search for Extra-terrestrial Intelligence (SETI@home) 16
2.7.5. Groove . 16
2.7.6. JXTA . 17
2.7.7. Chord . 18
2.7.8. Content Addressable Network (CAN) 19

2.8. Discussion . 19

ix

Contents

2.9. Summary . 21

3. State of the Art 23
3.1. Sensor Data Management . 23

3.1.1. Sensor Network Architecture Aspects 24
3.1.2. Routing Approaches in Wireless Sensor Networks 24

3.1.2.1. Data-Centric Routing Approaches 25
3.1.2.2. Rendezvous Routing approaches 25

3.1.3. Sensor Database Approaches 26
3.1.3.1. Cougar . 26
3.1.3.2. TinyDB . 26

3.1.4. Query Processing in Sensor Networks 27
3.2. Service Discovery Protocols . 28

3.2.1. Service Directory Consistency 28
3.2.2. Examples of Service Discovery Protocol 29

3.2.2.1. Salutation . 29
3.2.2.2. Service Location Protocol, SLP 30
3.2.2.3. Intentional Naming System (INS) 30
3.2.2.4. INS/Twine . 31

3.2.3. Comparison between Jxta and Service Discovery Protocols . . 32
3.3. Summary . 34

4. Conceptual Design 35
4.1. System Overview . 35
4.2. Analysis . 36

4.2.1. Defining the Use Case Model 37
4.2.1.1. Use Case 1 . 37
4.2.1.2. Use Case 2 . 37
4.2.1.3. Use Case Model . 38

4.2.2. Requirements . 39
4.3. System Design . 40

4.3.1. System Architecture Overview 40
4.3.1.1. Sensor Gateway Layers 41
4.3.1.2. User Agent Layers 41
4.3.1.3. Jxta Layer . 42

4.4. Block Diagram . 42
4.5. Description of Components . 43

4.5.1. User and Gateway Organizer 43
4.5.2. Sensor Manager . 43
4.5.3. Advertisements Publisher . 44
4.5.4. Advertisements Discovery . 44
4.5.5. Filtering Data . 44

x

Contents

4.5.5.1. Filtering Mechanism 45

4.5.5.2. Filter Data Model 45

4.5.5.3. Filtering Algorithm 46

4.5.5.4. Filtering process cycle 47

4.5.6. WSNMessenger . 47

4.5.6.1. Query Analyzer . 48

4.5.6.2. Result Collector . 50

4.5.7. Message Handler . 50

4.6. Summary . 50

5. Implementation 51
5.1. Sensor Gateway Application . 51

5.1.1. Technologies Used . 51

5.1.2. Implementation of Sensor Gateway 52

5.1.2.1. Gateway Organizer 53

5.1.2.2. Sensor Manager . 54

5.1.2.3. Advertisements Publisher 54

5.1.2.4. Message Handler . 57

5.1.2.5. Data Filter . 58

5.2. User Agent Application . 60

5.2.1. Technologies Used . 60

5.2.2. Implementation of User Agent 60

5.2.2.1. WSNGroupManager class 61

5.2.2.2. QueryAnalyizer class 61

5.2.2.3. WSNMessenger class 62

5.2.3. User Agent Processes . 63

5.2.4. User Agent Interface (GUI) 66

5.3. Summary . 66

6. Results 69
6.1. Functionality and implementation testing 69

6.1.1. Test specification and results 70

6.2. Sensor Gateway: Testing on PCs . 71

6.2.1. Test-bed Equipment . 71

6.2.2. WSN Advertisements Discovery Performance 71

6.2.3. Messages and Pipes Overhead 72

6.2.4. The Overall Filtering Overhead 74

6.2.5. Memory Overhead . 75

6.3. Sensor Gateway: Testing on Embedded System 75

6.4. summary . 76

xi

Contents

7. Summary and Future Work 77
7.1. Conclusions . 77
7.2. Future Works . 78

Bibliography 79

Appendices 85

A. BNF for JMSN Query 85

B. Installing Jxta on Asus Router 87

xii

Abbreviations

AVTree Attribute-Value-Tree

BNF Backus-Naur Form

BOINC Berkeley Open Infrastructure for Network Computing

DA Directory Agent

DHT Distributed Hash Table

DLS Distributed Lookup Service

IETF Internet Engineering Task Force

INR Intentional Naming Resolver

INS Intentional Naming System

NAT Network Address Translator

PDA Personal Digital Assistant

RMI Remote Method Invocation

SETI@home Search for Extra-Terrestrial Intelligence

SA Service Agent

SD Service Discovery

SDP Service Discovery Protocol

xiii

Abbreviations

SLP Sservice Location Protocol

SRDI Shared Resource Distributed Index

SSTP Simple Symmetrical Transmission Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

UA User Agent

UDP User Datagram Packets

UDDI Universal Description, Discovery and Integration Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUCP Unix to Unic Copy Protocol

UPnP Universal Plug-and-Play

WSN Wireless Sensor Netwotk

XML Extensible Markup Language

xiv

List of Figures

2.1. Types of Computer System. 6
2.2. Client-Server Model vs. different Peer to Peer Models. 9
2.3. Peer to Peer Traffic of Overall Traffic in Germany at the 2nd quarter

of 2006. 12
2.4. Distribution of Peer to Peer Protocols in Germany during October 2006 13

3.1. Salutation Architecture. 29
3.2. SLP agents, registration and discovering services. 31

4.1. A scenario of communication between Sensor Gateway and User Agent. 36
4.2. Use Case 1: Common interaction of user. 37
4.3. Use Case 2: Common interaction of Sensor Gateway. 38
4.4. The Use Case Model of the proposed System. 38
4.5. System Architecture. 41
4.6. JMSN: System Block Diagram. 42
4.7. Filter States. 47

5.1. Structural Units of Sensor Information Manager. 55
5.2. Sequence Diagram for Receiving a tuple from Sensor Network. 56
5.3. Sequence Diagram for handling SENDING QUERY message. 58
5.4. Detailed Class Diagram for QueryAnalyzer. 61
5.5. Detailed Class Diagram for QMessage. 62
5.6. Detailed Class Diagram for WSNMessenger. 63
5.7. Sequence Diagram for WSNAdvertisements Discovery Process. 64
5.8. Sequence Diagram for Connecting Process. 64
5.9. Sequence Diagram for Sending Query. 65
5.10. Sequence Diagram for Ceaseing Query Processing. 65
5.11. Sequence Diagram for Handling Received Messages. 66
5.12. Sequence Diagram for Disconnecting. 67
5.13. JMSN: Screen Shots. 67

6.1. Average Discovery Time of Finding Network Recourses. 72
6.2. RTT VS Message Size. 73

xv

List of Figures

6.3. Message Parsing Time. 73
6.4. Filter Overhead on JMSN. 74

xvi

List of Tables

2.1. Comparison between Peer to Peer systems 20
2.2. Comparison of Characteristics of different Peer to Peer systems . . . 21

3.1. Comparison between different Service Discovery Protocols and Jxta . 32
3.2. Comparison between different Service Discovery Protocols and Jxta,

cont. 33

5.1. Message types . 58

6.1. Test specifications and results for main functionality of JMSN. 70
6.2. Summary of memory consumption tests. 75

xvii

List of Tables

xviii

Chapter 1
Introduction

1.1. Motivation

Information technology becomes increasingly widespread and technologies disappear
into the environment. These technologies will become more interactive and attractive
when they are user friendly. Internet will facilitate accessing their information from
any place; however, most of these technologies rely on PC system, where data should
be transferred to dedicated PC.

The basic units in Ubiquitous Computing are Wireless Sensor Nodes, small electronic
components capable of sensing many types of information from the environment.
They are equipped with a certain amount of computational power, communication,
storage and often actuation resources.

Wireless Sensor Nodes can be found in each device, in each room, in Small Of-
fice/Home Office (SOHO) or even in our dresses. In Wireless Body Area Sensor Net-
work, a wearable health monitoring system, is built for observing patients situation.
It requires a cheap way to convey patients data regardless of their place of residence.
A smart home is another example, which requires ubiquitous and location-context-
aware computing to allow the environment to process information as if computational
devices are everywhere, rather than actually embedding devices everywhere.

Coordinating the communication across many nodes is complex. Communication is
based on topology of network, network connectivity and mobility of node. Moreover,
end user want to discover and interact with sensors without concerning on their
location.

1

1. Introduction

Access Point(AP) may provide a better solution because it manages the commu-
nication between the users and the sensor networks. It is supplied with efficient
middleware that hides system complexities in order to enhance the living style of
people.

1.2. Problem Definition

Wireless Sensor Networks (WSNs) that are deployed in wide area are not able to
exchange information directly. The problem will be aggravated worse when different
WSNs are required to communicate with each other since a middleware layer that is
able to connect these different WSNs is essential. Another hindrance is that distribut-
ing information about all objects in the WSN does not scale well as the number of
sensors in the network increase. Moreover, sensors generate a bulk of data, in which
users are not interested.

1.3. Objective

The objective of this thesis is to design a new scalable and robust approach for bring-
ing sensor’s information to end user over Internet, which should hide the complexity
of sensor network. It must cope with dynamic change of both peers and wireless
sensor.

1.4. Research Question

At the end of this theses, we will have answers for the following questions,

1. What is the best peer to peer system that can be used for constructing a
middleware for sensor network?

2. How should the network architecture look like?

3. How can a distributed query processing for sensor network be achieved?

2

1.5. Thesis Organization

4. How does the network deal with the dynamic change of sensor nodes and the
increasing number of user?

1.5. Thesis Organization

The organization of this thesis is as follows:

Chapter 2 provides an overview of the Peer to Peer System. It presents their clas-
sification and characteristics. A brief description of many well known Peer to Peer
systems is also given as an example in this chapter.

Chapter 3 introduces the state of art in querying wireless sensor network. It presents
the middleware and database approaches that are used in the sensor networks. It
also describes different service directory protocols that are used to discover network
resources.

Chapter 4 contains a thorough analysis of our proposed system through use cases
and explains the functional as well as non-functional requirements for the system
identified by us. In this chapter, the architecture and the system design is also
described.

Chapter 5 explains some implementation details. First we describe the sensor gateway
implementation. Then we describe the user agent classes.

Chapter 6 describes the evaluation of the system and presents our preliminary results.
Various test criteria were defined in order to verify the proposed architecture.

In Chapter 7 the future extensions are outlined and enhancements of the current
implementation in respect of practical issues.

3

1. Introduction

4

Chapter 2
Background on Peer to Peer Systems

In the recent years, researches on Peer to Peer system have grown significantly and
a lot of applications turned on this technology to benefit from its advantages. The
goal of this chapter is to present a short introduction to Peer to Peer Systems, which
serves as an essential background for this thesis. It helps us to select the best system
that fulfill the requirements of designing and implementing a Middleware Layer for
Wireless Sensor.

Based on the classification of Peer to Peer Systems, we will take one or more cases
from each category and study them. There are three reasons to perform this com-
parison. First we are going on design an application that will merge Wireless Sensor
Application and Peer to Peer System, and this comparative analysis will greatly help
us. Second, the selected Peer to Peer System should cope with the interoperability
between heterogeneous platform and hardware. Third, embedded devices will gain
much by using Peer to Peer overlay network, since they can form their own network
independent on the Internet architectures limitations.

The first section gives a short overview on Peer to Peer Systems. After that, Peer
to Peer Classification is presented in Section 2.3. Search methods that are used in
Peer to Peer overlay network are introduced in Section 2.4. Section 2.6 presents the
characteristics of the Peer to Peer Systems. Finally, Section 2.7 shows some of well
known Peer to Peer systems followed by a detailed comparison between them.

5

2. Background on Peer to Peer Systems

2.1. Overview

All known Computer Systems are either Distributed or Centralized Systems as de-
picted in Figure 2.1. Distributed Systems are classified into two paradigms i.e. Client-
Server Paradigm or Peer to Peer Paradigm. In Client-Server Paradigm, clients access
the main server, such as web server or FTP server, to get data according to specific
protocol governing the communication. Scalability and Fault-tolerance are the fun-
damental problems in Client-Server Paradigm, which motivate researchers to develop
Peer to Peer Paradigm as an alternative technique.

Figure 2.1.: Types of Computer System.

Authors in [1] define the Peer to Peer system as “a class of systems and applications
that employ distributed resources to perform a critical function in a decentralized
manner. The resources encompass computing power, data (storage and content),
network bandwidth, and presence (computers, human, and other resources). The
critical function can be distributed computing, data/content sharing, communication
and collaboration, or platform services.”

Practically, Peer to Peer Systems are not new. USENET was the first Peer to Peer sys-
tem that provides newsgroup-service in a distributed manner. USENET was based
on Unix to Unix Copy Protocol (UUCP) to allow one Unix machine peer to dial
another peer, exchange files,emails or other messages with it, and finally discon-
nect. USENET uses Network News Transfer Protocol (NNTP), which allows peers
on Usenet network to discover new newsgroups efficiently and exchange new messages
in each group [2].

Peer to Peer systems have many advantages over centralized systems. Resources

6

2.2. Basic Definition

of many users and computers can be brought together to produce large pools of
distributed information. The computing power of the system is also significantly
increased when peers co-operate in solving scientific problems and the overall cost is
reduced. Furthermore, the network bandwidth of the system is better utilized because
computers communicate directly with their peers instead of centralized node.

Nowadays, Peer to Peer applications, particularly file sharing applications, attract
Internet users. Studies in Germany, for example, have shown that from 30% (day-
time) to 70% (night-time) of Germany’s Internet traffic is produced by these kinds of
applications [3]. Peer to Peer systems also permeate science life and many academic
fields in order to use all available PC resources. Moreover, embedded devices and
sensor networks are planed to benefit from Peer to Peer systems in order to allow all
Internet users to access their real time data.

2.2. Basic Definition

This section introduces some of basic terminologies that are used in literatures of
Peer to Peer system.

An Overlay Network is a virtual network that is built on top of existing network.
This type of virtual network has the ability to route messages to any node whose
IP address is unknown. The goal of such network is to offer new network services
that are not available in the existing network without changing any old software or
hardware.

Distributed hash tables (DHTs) are a class of decentralized distributed systems that
perform the functions of a hash table. Data Keys that are used to locate data, are
divided among participating nodes.

In this context, it is important to explain the difference between Peer to Peer net-
works, applications and protocols. Many applications carry its protocol name e.g.
BitTorrent [4] is a protocol and an application name. Peer to Peer protocol is just
specifications that describe how peers are communicated. Any implementation im-
plements this protocol is called a Peer to Peer application. Peer to Peer Network is a
collection of many nodes that run the same protocol by way of same or different ap-
plications. However, many well-known applications implement one or more protocol
specifications and they are called Multi-network applications. BitTorrent is a Peer
to Peer protocol that is implemented by G3 Torrent [5] and Shareaza [6]. Shareaza
is a Multi-network application since it implements BitTorrent, eDonkey [7], Gnutella

7

2. Background on Peer to Peer Systems

[8] specifications.

2.3. Peer to Peer Classification

Based on the architecture of distributed nodes, Peer to Peer Systems are classified into
structured and unstructured. Unstructured Peer to Peer networks have no coupling
between topology and where to store data. Nodes in these networks don’t manage
any kind of other peers resources, i.e. index information of resource k ∈ K(p) is
managed only by Peer p itself and p doesn’t control any information of its neighbors
N(p) [9]. This simple scheme has no single point failure, but leads to complex search
operations. Unstructured Peer to Peer systems employ a blind search technique,
which inundates all peers with a request before resolving it. Gnutella[8] is a typical
example of this class.

Structured Peer to Peer networks have a set of tightly controlled nodes. In these
networks files are not randomly stored at any node [10]. However, additional expen-
diture for managing this information becomes necessary, such as maintaining routing
table. The structured topology of these networks is usually constructed by using Dis-
tributed Hash Table (DHT), which makes searching operations more effective than
unstructured one [11]. Examples of this class include Chord [12], CAN [13] and
Kademlia [14].

Another classification, which is based on degree of coupling, classified them into tight
and loosely coupled system. In tight systems there exist one group at each time, which
participant can join and/or leave it. For each joined peer, a new unique, static and
logic identification is assigned to them. This identifier assists other peers within the
group in storing and retrieving data since there is a uniqe mapping function. Routing
query to destined peer is more efficient than joining and leaving an overlay network
because of overhead that is needed to maintain the network structure. On the other
hand, loosely coupled systems overcome tightly coupled limitation that constrains
the “Peer population” [9]. Chord [12] and CAN [13] are two examples for the first
class whereas Freenet [15] and Gnutella are two examples of the second one.

Peer to Peer systems are also classified into three models i.e. decentralized model,
hybrid model or super-peer model (Figure 2.2). In fully decentralized model (also
known as pure model), all participants are equal and they have equivalent capabilities
and responsibilities, such as Freenet [15]. In hybrid model, there is an intermediate
node, which works as a central server or directory to facilitate peers interaction.
Napster [16] and Softwax [17] are two examples of hybrid model. These systems are

8

2.3. Peer to Peer Classification

considered as a hybrid model because they combine pure Peer to Peer system and
client/server paradigm.

Super-peer model is a compromise solution between decentralized model and hybrid
model. It constitutes of super-nodes with higher capabilities than other normal nodes.
These super-nodes are known also as search hub, which maintains the directory of
resources in order to efficiently resolve user’s queries. KaZaa (implements FastTrack
protocol) [18] and Jxta [19] are two examples that employ the super-peer model.

(a) client-Server Paradigm (b) Pure Peer to Peer

(c) Hybrid Peer to Peer (d) Super-node Peer to Peer

Figure 2.2.: Client-Server Model vs. different Peer to Peer Models.

Note:
Other literatures, [20], refer to super-peer model as a hybrid model since peers are not

9

2. Background on Peer to Peer Systems

equal in their role. They also refer to the hybrid model as a decentralized model.

2.4. Peer to Peer Search Methods

2.4.1. Searching in Unstructured Peer-to-Peer Networks

The main challenges in unstructured Peer to Peer System are discovering peers and
searching for data location in overlay networks. Several methods have treated these
difficulties. Search methods are classified into three categories [21], Centralized Di-
rectory methods, Blind Search methods and Informed Search methods.

Centralized Directory Method. Centralized Directory method is used in hybrid
Peer to Peer system where all peers are connected to a central server that handles
all requests. Peers need to know the address of the central server to join and upon
leaving the server should only inform. This model attacks the scalability issues and
the server becomes a single point of failure. However, search within this central
directory is very efficient. All peers forward their requests to central node that also
supports complex requests.

Blind Search Methods. In Blind Search methods, peers try to broadcast their
requests to all reachable peers. Old pure Peer to Peer Systems relied on Flooded Re-
quests method since peers don’t keep information about other peers. In this model,
requests are broadcasted and any peer can receive them multiple times, which con-
sumes network bandwidth.

New Peer to Peer Systems have adopted this method. For example, Gnutella uses
TTL-based flooding, also known as breadth-first search (BFS) with depth Time To
Live (TTL), to search for data while Freenet uses a depth-first search (DFS) with a
specified depth. Random walker sends out k query messages, the walker, to an equal
number of randomly chosen neighbors [21].

Informed Search Methods. In Informed Search methods a distributed directory
service contributes in discovering document location. Super-peer model shows a bet-
ter scalability since it restricts broadcasting within the overlay network (Figure 2.2).
However, in-advance information is required to join this network and leaving it don’t

10

2.5. Peer to Peer Applications

need extra notification messages. An important issue in this approach is to keep a
high number of leafs per super-peer node in order to reduce broadcasting within the
overlay network and to increase the hit ratio.

2.4.2. Searching in Structured Peer-to-Peer Networks

Searching in structured Peer to Peer overlay networks becomes more efficient than
searching in unstructured networks since data are placed in determined peer thanks
to DHT. Each peer in the overlay network is assigned with a unique random identifi-
cation and maintains in its own storage its neighbor’s identification. Based on map-
ping function, each published document carries an identification, which is mapped to
one peer in the overlay network. For example, pSearch [22] is built on top of CAN
(Section 2.7.8).

Jxta employs a loosely consistent DHT walker approach to overcome the inconsistency
problem of DHT within the dynamic network. This approach is a hybrid approach
that combines the use of DHT to index and locate advertisements with a limited
range walker. This approach is very robust because it does not require to maintaining
consistency across the rendezvous network, a stable super-peer infrastructure is well
adapted for mobile networks with high peer churn rate [23].

2.5. Peer to Peer Applications

• Content Sharing
Nowadays, the popularity of file sharing applications are significantly increased
and most of the current Peer to Peer systems fall within this category. These
applications allow people to search for and share any digital file between users.
According to the IPOQUE survey, between 30% (day-time) and 70% (night-
time) of Germany’s Internet traffic in October are produced by file sharing
applications (Figure 2.3). Moreover, BitTorrent and eDonkey are dominant
over other file sharing applications since they together was produced 95% of all
Peer to Peer traffic and they have nearly displaced previously popular networks
such as Kazaa’s FastTrack [3] (Figure 2.4).

These protocols are implemented with free-license applications that enable all
users to share any documents. Moreover, the ease of using such applications,

11

2. Background on Peer to Peer Systems

Figure 2.3.: Peer to Peer Traffic of Overall Traffic in Germany at the 2nd quarter of 2006.
Source: http://www.ipoque.com/en/p2p_filter.html.

fast Internet connection and efficient search are the main factors for popularity
of file sharing applications.

• Distributed Computing:
Peer to Peer applications have attracted a great deal of attention in all fields
that need long time to compute results. Distributed computing is defined as
a technique, in which peers collaborate in solving a computational problem
[24]. They aim to replace parallel computers with many networked computers,
which have plenty of unused resources. It was reported in December, 2006,
that SETI@home was able to compute over 274.0 TFLOPS [25](1 TFLOPS is
equal to 1012 FLOPS) while the fastest supercomputer was able to compute
280 TFLOPS.

• Collaborative Systems:
This class of application allows collaboration between different peers. Collab-
orative Systems include collaborative on-line games, instance messaging pro-
grams such as AOL and MSN Messenger, audio and video chat programs such
as Skype [26].

• Platforms:
They are not real application by itself but they form an underlaying architec-
ture for other applications. Any File sharing or collaborative application can

12

http://www.ipoque.com/en/p2p_filter.html

2.6. Peer to Peer Characteristics

Figure 2.4.: Distribution of Peer to Peer Protocols in Germany during October 2006
Source: http://www.ipoque.com/en/p2p_filter.html.

be implemented over Peer to Peer platform. They support the main Peer to
Peer components, i.e. naming, peer discovery, communication, security, and re-
source aggregation. Furthermore, they allow interoperability between different
platforms. Jxta and .Net are two examples of Peer to Peer platform.

2.6. Peer to Peer Characteristics

This section addresses issues in Peer to Peer systems. These issues have a major in-
fluence on the effectiveness and deployment of Peer to Peer systems and applications.
They will help us in selecting the best system that can cope with Wireless Sensor
Networks requirements.

1. Symmetry
Symmetry is the ability to work as client and server. It distinguishes Peer
to Peer Systems from many conventional distributed system architectures that
are based on client/server model. Thus, Nodes, which act as a server for other
nodes, can act as a client at the same time. Symmetry aspect paves the way
for Peer to Peer System to work in decentralize manner.

2. Decentralization
One of the major characteristics of Peer to Peer Systems is decentralization as-
pect, because it removes the boundaries between clients and server. Therefore,

13

http://www.ipoque.com/en/p2p_filter.html

2. Background on Peer to Peer Systems

peers interact with each other without referring to a central node. The main
advantages of this aspect are an increased extensibility, resilience to faults and
higher system availability [27].

3. Scalability
Scalability is defined as the ability of system to graceful extended as a new
peer join it, without affecting the system performance. Millions of nodes can
interact with each other and the performance of the network would not change
since there is no central directory or servers.

4. Fault tolerant
Fault tolerant is insured in Peer to Peer systems because the impact of a central
node failure and too much load on nodes is disappeared. A central node failure
and too much load on nodes decrease the overall performance of the network
and may break down the whole network. Pure and Super-peer model can easily
compensate the loss of a peer or even a number of peers [27], which is another
advantage.

5. Self-Organization
Self-Organization is an attractive aspect of Peer to Peer system because it
control the system behavior and grants the system many feathers, such as self-
maintenance, adaptability, rearrangement, . . . etc. [28]. Self-Organization is
opposite to managed client-server architecture. Peer to Peer networks shift the
management to their peer. Also, this aspect allows the network of different
connected devices to be built on the fly, without any central control point as
well as it automatically adapts to the arrival, departure and failure of nodes.

Self-Organization is critical issue for Peer to Peer systems because nodes can
spontaneously join the system and leave it after a while. J. Ledlie et.al. in
[29] observed that about 80% of the nodes exist in a Peer to Peer system for
less than one hour. Also number of users and system load is unpredictable,
which increases the probability of system failures. Therefore, managing such a
fluctuating environment is too hard and too expensive.

6. Resources Sharing
Resources such as computing power, data (storage and content), network band-
width, and currently, sensor information are shared and public to user through
new applications and services. File sharing applications enable user to share
all kinds of file. Participants in Grid computing Peer to Peer network increase
the computing power capability of the network. This thesis presents a way to
publish sensor information by means of a Peer to Peer System.

14

2.7. Examples of well known Peer to Peer Systems

7. Fast Resource Location to determine where to find the resource
In client/server paradigm clients know the server address, and hence requests
are directed to. Peer to Peer systems establish overlay networks that efficiently
route requests to any node. Be means of searching methods, peers can discover
and locate any resources (Section 2.4). For example, Chord can find data using
only O(log(N)) messages, where N is the number of nodes in the network.

2.7. Examples of well known Peer to Peer Systems

2.7.1. Napster

In 1999, Napster [16] was launched as the first Peer to Peer file sharing services.
Napster has a central directory peer, which contains all required information that are
required to search for any file. This peer is the only bootstrap node that admits every
node to participate in the netwotk. As a result searching is effectively executed. How-
ever, overload and Denial-of-service (DoS) attack the system performance because of
a single point of failure.

2.7.2. Gnutella

Gnutella [1, 8] is one of the popular file sharing protocol witch provides a simple reli-
able distributed system. While Gnutella (V.4) employs a query flooding method for
searching, current version of Gnutella (V.6 or Gnutella2) improves searching through
employing the concept of super-peer model.

Gnutella is a pure Peer to Peer system and it demonstrates high self organization
since peers are not controlled. It is obvious that flood routing method affects Gnutella
network and limits scalability to thousands of peers. However, Gnutella2 adapts this
shortcoming by designing a super-peer model, in which many nodes are connected to
one or more search hubs.

15

2. Background on Peer to Peer Systems

2.7.3. FreeNet

FreeNet [15, 1] is a pure Peer to Peer network for distributed anonymous information
storage and retrieval system. To keep the decentralized manner, Freenet develops a
heuristic Document Routing Model, also known as Key Based Routing (KBR), as a
lookup method to find the closest peer that host data. KBR accomplishes routing by
using a steepest-ascent hill-climbing search, where each node forwards queries to the
node that it thinks is closest to the target. Each file is characterized by key, which is
typically generated by SHA1 algorithm, to assist the routing function.

Freenet demonstrates good scalability because it has no central node. Freenet shows
self organized since nodes are not controlled and allow to share what they want.

2.7.4. Search for Extra-terrestrial Intelligence (SETI@home)

SETI@home [30] is one of the oldest and largest distributed computing project that
connects thousands Internet computer to long-time independent equations in a dis-
tributed manner. From the med of December 2005, SETI@home uses a new dis-
tributed computing platform called BOINC, which supports wide range of applica-
tions from different science area such as Biology, Climate modeling and astronomy,
. . . etc.

BOINC architecture is based on client-server paradigm that consists of a server system
and client software that mainly communicate with each other to distribute, process,
and return work units. However, a misconception or conflict between client-server
and Peer to Peer appears because there is no direct communication between peers.
This kind of computing is considered as Peer to Peer paradigm because it involves
shifting resource-intensive functions from central servers to workstations and desktop
PCs.

2.7.5. Groove

“Groove Virtual Office, the fastest way to get everybody working on the same page”
and “Take your project with you wherever you go” identify what Groove is! [31].
Groove is a desktop windows based collaborative and instant messaging Peer to Peer
application targeted to Internet users. Groove is hybrid model, where a centralized
server is used to support resource management and centralized services.

16

2.7. Examples of well known Peer to Peer Systems

2.7.6. JXTA

The open source project Jxta [19, 32] is a generic overlay network used to create
decentralized Peer to Peer network. It supports a wide range of distributed computing
applications and enables them to run on multiple devices ranged from cellular phones
and Personal Digital Assistant (PDA) to Oersonal Computers (PCs).

Network independent is the main aspect of Jxta, since it is only a network protocol
specification that is layered on top of network protocol. Jxta provides a “general-
purpose” network programming and computing infrastructure. Its goals comprise:

1. Interoperability: On different platform, system or medium, peers are able to
communicate and exchange advertisements and messages.

2. Platform Independence: it is not restricted to specific platform, programming
language or operating system.

3. Ubiquity: Jxta is intended to run on small devices such as PDAs and cellular
phone as well as routers and servers.

Jxta peers form an overlay network, in which each peer has a unique identification.
To increase network scalability, Jxta employs the super-peer architecture and defines
two different types of Jxta peers, edge peers and super-peers. Super-peers can be
further divided into relay and rendezvous peers. These peers are self-organized into
Peergroups that represents a dynamic set of peers and share a common set of interests.
While edge peers are the most transient player in the overlay network, rendezvous
peers are the most stable one that form rendezvous super-peer network in order
to maintain a loosely consistent Distributed Hash Table (DHT). In contrast to the
rendezvous peers that processes queries from other peers, the relay peer allows the
peers that are behind firewalls or Network Address Translator (NAT) systems to take
part in the Jxta network.

To join Jxta overlay network, edge peers only need to know an address of at least one
rendezvous peer. After that, peers exchange Jxta advertisements in order to discover
the environment. All resources are represented by advertisements and encoded as
Extensible Markup Language (XML) documents. Using advertisement ID or name,
advertisements are indexed by Shared Resource Distributed Index (SRDI) service.
Only the indices of the advertisement are pushed to the rendezvous peers by SRDI
to minimize the amount of data that needs to be stored on the rendezvous [32].

Advertisement are published with a lifetime that specifies the availability of its as-

17

2. Background on Peer to Peer Systems

sociated resource. Resources are deleted from rendezvous peers after time expiration
without requiring any centralized control. If the advertisement is republished before
the original advertisement expires, then the lifetime of a resource will be extended
[32].

Unlike file sharing protocols that restrict access between peers to download files, Jxta
peers can directly communicate over Jxta pipe, a virtual communication channel
that allows peers to exchange asynchronous, unreliable and unidirectional messages
even when some of them are behind firewalls or NAT. Pipe offers two modes of
communication [33]:

1. Point-to-point pipes connect only two peers with each other as a unicast con-
nection.

2. Propagate pipes connects one peer to multiple destination peers as a multicast
connection.

Messages are the basic unit of data that are exchanged between peers over pipes.
Users data can be encapsulated in either XML-based messages or in binary messages.
In XML-based messages, each message consists of elements that contains a payload
of data formatted to follow XML standards.

2.7.7. Chord

Chord [34, 35, 12] is a structured overlay network that is based on DHT lookup prim-
itive. It is also fully decentralized system that can find data using only O(log(N))
messages, where N is the number of nodes in the system. The most cost opera-
tion in chord overlay network are joining and leaving, i.e. they need O((log(N))2)
messages.

To find data in O(log(N)), nodes in Chord network are arranged in a ring of 2m where
m is an integer constant. Each node maintains information about its successor and
predecessor on the circle as well as information about (at most) m other neighbors
in a table called finger table. Nodes are identified by a unique key from 0 to 2m − 1
and data elements are mapped to nodes based on their keys. If the target node is
not found, the request will forward to the next available node.

18

2.8. Discussion

2.7.8. Content Addressable Network (CAN)

CAN [35, 13] is a decentralized Peer to Peer System that provides a DHT functionality
as an algorithm implemented for the document routing model. CAN organizes nodes
in a d-dimensional toroidal space (a virtual multi-dimensional Cartesian coordinate
space). Each node in CAN is associated with a hypercube zone and its neighbors are
the nodes that “own” the adjacent hyper-cubes. In CAN algorithm, each data element
is deterministically mapped to a point in this coordinate space using a uniform hash
function. The data element is stored at the node that owns the zone in which the
point lies. Using a simple greedy forwarding scheme, CAN routes a message to the
neighbor peer that is closest to the destination coordinates in O(d.N1/d) where N is
the number of nodes in the overlay network and d is number of dimensions.

The cost of joining the overlay network is O(d) since each zone is equally split between
the new node and the old one that was responsible for it. In case of node failures, CAN
algorithm reassigns zones to ensure that the structure of the overlay is maintained.

2.8. Discussion

This section attempts to find one or more Peer to Peer systems that are capable
of interacting with Wireless Sensor Network (WSN). Based on their classification,
we found that WSN is not an area for distributed computation. It is neither file
sharing nor collaborative system. Although, file sharing systems have very primitive
data model, WSN carries many aspects from both systems. Sensor information is
intended to be shared with all users and they should collaborate with the sources
of this data. Platform Peer to Peer systems hide network complexity and provide a
clear interface.

By aggregating computation resources at hundreds or thousands of nodes, distributed
computing systems are able to perform complex operation and reduce the time of
computing. Peer to Peer systems that are used for distributed computing are not
suitable for the purpose of embedded system for two reasons. First they have a central
peer, which manages and controls all interactions. Second peers communicate only
with the central peer and they are not allowed to interact with each other.

File sharing systems aggregate resources and provide an efficient method to locate
shared files. Peers in WSN don’t exchange files with other peers. In particular, the
main resource in wireless sensor applications is sensors and sensor data should be

19

2. Background on Peer to Peer Systems

System System Class Lookup Method Architecture Platform
Napster Content Centralized Peers connected to Windows

Distribution Directory Model centralized server & All POSIX
Gnutella Content Flooded Requests Unstructured P2P All common

Distribution Model (BFS) OS(s)
Freenet Content Flooded Requests Loosely P2P OS support

Distribution Model (DFS) JVM
Groove Collaboration Centralized Peers connected to MS Windows

Directory Model centralized server
BONIC Distributed Centralized Peers connected to All common

Computing Directory Model centralized server OS(s)
Jxta Platform Using search hub Super-Peer based All common

(Rendezvous Peer) Loosely Consistent OS
DHT

Chord DHT Hash function Structured P2P All POSIX
CAN DHT Hash function Structured P2P OS support

JVM
Table 2.1.:

Comparison between Peer to Peer systems based on their classification

public and shard with others.

In contrast to most Peer to Peer systems, Jxta is not a specific purpose Peer to Peer
system, but any Peer to Peer application can be implemented on Jxta platform, such
as file sharing or collaborative application. Because of its advantages, many projects
use Jxta. It is reported on 31. December 2006 that 124 projects are resisted [19]. Jxta
is not only available as a Java implementation, but also as a Java2 Micro Edition and
C implementation. For these reasons, Jxta would serve as a good way to implement
sensor application. Furthermore, Jxta search occupies a middle ground between the
blind and centralized search methods. Table 2.1 and Table 2.2 compares between
Jxta and other systems.

Table 2.1 shows unstructured Peer to Peer systems. Napster and Groove, are not
scalable since the central node is the bottleneck one in the system. Gnutella and
Jxta are examples for pure Peer to Peer system and super peers respectively. While
Gnutella employs a blind search approach, Jxta restricts search for super nodes.

Table 2.2 shows characteristics comparison between different Peer to Peer systems.
The comparison is based on the characteristics that has mentioned in Section 2.6.
Peer to Peer architecture reflects system scalability, Hybrid systems such as Napster

20

2.9. Summary

System Decentralization Scalability Self
Organization

Napster Hybrid Not Scalable N/A
well

Gnutella Fully Thousands High
decentralized of peers

Freenet Fully Theoretical High
decentralized Scalable(log(N))

Groove Hybrid Not Scalable High
well

SETI@home Hybrid Millions Low
BONIC (Master-Slave) of peers

Jxta Super-Peer Scalable Medium

Chord Fully decentralized Scalable High
CAN Fully decentralized Scalable High

Table 2.2.:
Comparison of Characteristics of different Peer to Peer systems

and Groove do not scale well enough to support a population of more than thousands
of peers while SETI@home is a hybrid system that is scalable to millions of peers.
Freenet, Gnutella and Jxta are scalable system.

Final word, Jxta is a generic overlay network system that connects devices on the
network ranging from embedded system and cellular phones to PCs and servers. It
employs a hybrid Informed Search method. Although structured Peer to Peer sys-
tems benefit from Distributed Hash Tables (DHTs) in searching and locating objects;
however, DHT does not compatible with wireless sensor applications on embedded
devices since peers are tightly connected to each other and DHT maintains a con-
sistency of data on each peers. In addition, they keep a large amount of fluctuating
data on each peer. For massively scalable, high performance, and reliable Peer to
Peer network, Jxta is an important step towards a middleware for sensor network.

2.9. Summary

This chapter has presented a background on Peer to Peer systems. It describes
their architecture and classified them according to their architecture and degree of
coupling. Search methods that are used in structured and unstructured Peer to Peer
systems was also presented. Many characteristics of Peer to Peer systems such as

21

2. Background on Peer to Peer Systems

scalability and self-organization are also highlighted .

Finally, many systems are studied in order to select the best one that can cope
with Wireless Sensor Network. Thus, we appreciate Jxta as a system that can be a
fundamental layer for the proposed architecture.

22

Chapter 3
State of the Art

With large and mobile environments comes the challenge of scalable resource discov-
ery. Chapter 2 has presented a decentralized architecture that employs wide range of
different searching techniques. Besides presenting sensor information management,
this chapter aims to explain Service Discovery Approaches for two reasons. First,
discovering sensors that are deployed in a building or campus is essential part of this
thesis. Second, service discovery can give an advantage for pervasive computing envi-
ronments, where numerous computing elements and sensors often interact to achieve
the desired functionality and intelligence [36].

The first section presents approaches in the sensor data management and the main
aspects of sensor networks. Section 3.2 presents the concept of Service Discovery
Protocols. It is supported with different well-known service discovery systems.

3.1. Sensor Data Management

A Wireless Sensor Network (WSN) consists of a large number of sensor nodes that
are randomly and densely deployed. Retrieving sensor data is the most important
operation in WSN that requires query dissemination and data aggregation. This
thesis addresses the problem of data dissemination through handling users queries.
Sensor nodes does not process any query, but a dedicated gateway interacts between
sensor nodes and users.

23

3. State of the Art

3.1.1. Sensor Network Architecture Aspects

Sensor network architecture aspects are categorized into hardware, software and mid-
dleware aspects. hardware aspects limits the capability of Sensor Nodes. Sensor
Nodes are resource-constrained by their size and by available energy sources, usually
batteries. They also have limited processing speeds, storage capacities and commu-
nication bandwidths. They must be inexpensive to produce, deploy and maintain.
As applications quickly involve very large numbers of sensors, scalability is a major
issue as well, leading to the use of self-organization principles.

In the software domain, there is a necessity for ultra aggressive low power manage-
ment due to energy constraints and a need for comprehensive resource accounting
due to demand for privacy and security, in a number of cases also support mobility
function (e.g. location discovery)[37]. The network protocol is responsible for finding
routes, establishing connection and accomplishing communication between sensors
nodes as well as the sensor nodes and the Access Point(s). The performance is highly
influenced by the network dynamics, as well as by the specific data delivery model
employed [38].

The main purpose of a middleware for sensor networks is to support the development,
maintenance, deployment, and execution of sensing-based applications [39]. There-
fore, the middleware plays a vital role in Wireless Sensor Networks because it glues
between the low level of communication and the requirements of high level. Different
aspects can be considered, tasks such as sensor data filtering, compression, sensor
data fusion, sensor data searching and profiling, exposure coverage and tracking will
be ubiquitous [37].

WSN middleware approaches are mainly classified into three approaches[40]. The
first approach treats Sensor Nodes (SNs) as a distributed database and users can
issue SQL-like queries to access sensor data (Section 3.1.3). The second approach is
inspired by mobile code and mobile agents, in which a program is injected into a SN
and this program collects local data before migrate itself to other nodes. The last
approach is event based, in which an application registers itself in a SN for a future
event. When the specified event occurs, the SN notifies the application.

3.1.2. Routing Approaches in Wireless Sensor Networks

Routing is an essential part in wireless sensor network because a user can issue a query
to retrieve sensor data and data should be routed to the user. An efficient routing

24

3.1. Sensor Data Management

algorithm saves nodes energy because they don’t broadcast their data. Therefore,
different approaches in ubiquitous sensor network focus on the routing problem and
a wide range of routing protocols and techniques have been proposed.

3.1.2.1. Data-Centric Routing Approaches

Data-centric routing approaches [41] convey data to destination by flooding the initial
query to the entire WSN. In these approaches, event information is stored locally at
a sensor node upon detection, queries are flooded to all nodes to detect an event, and
nodes with relevant information respond.

Directed diffusion approaches [42] build a high quality paths, but requires an initial
flood of the query for exploration. While it is appropriate to applications with a
relatively small number of data receivers, its overhead becomes high when many
nodes become interested in data since each one sends its interests throughout the
network, and since receivers also send exploratory data throughout the network.

Tiny AGgregation [43] has a distribution phase, in which aggregated queries are
pushed down into the sensor network, and a collection phase, where the aggregate
values are continually routed up from children to parents. In this approach each node
is required to transmit only a single message per epoch regardless of its depth in the
routing tree.

GEAR [44] is a Geographically Targeted Queries approach, in which it assumes that
the event location is known and the resulted data is locally stored. Instead of flooding
packets, GEAR protocol uses energy aware and geographically informed neighbor
selection to route a packet towards the target region and the Recursive Geographic
Forwarding to disseminate the packet inside the destination region.

3.1.2.2. Rendezvous Routing approaches

Approaches that are based on broadcast or diffusion show a worst performance when
any system has too many active sources and active sinks that periodically flood the
core with data. Rendezvous protocols adopt this issue by arranging for sources and
sinks to meet in some predetermined way.

Data-centric storage (DSC) approach [41] does not require queries flooding; but data
is named and stored at a node itself or at other nodes according to the given name

25

3. State of the Art

to efficiently direct queries to the node that stores events of that name. The com-
munication cost to store the data and querying them take on average

√
n where n

is the number of nodes. Geographical Hash Table (GHT) is a DSC implementation,
in which it hashes a key k into a geographic location where data is stored at a node
of that location. The problem is that the location defined by a GHT function can
be quite far from the source and fundamentally requires that node knows its own
geographic position.

3.1.3. Sensor Database Approaches

In these approaches, WSNs are considered as a distributed database. Sensor data
is viewed as a single table with one column per sensor type. “The advantage of the
database approach is that it provides a separation between the logical view (naming,
access, operations) of the data held by the sensor network and the actual implemen-
tation of these operations on the physical network.” [45].

3.1.3.1. Cougar

Cougar adopts a database approach where sensor readings are treated like “virtual”
relational database tables. Based on user’s query, a query optimizer produces an
efficient query plan for in-network processing to reduce resource usage [46], so user
issues tasks to the WSN with an SQL-like query language and distributed query
processing is performed in sensor data aggregation, each sensor returns the data that
satisfied user condition.

In Cougar database, each type of sensor in a network is represented as an abstract
data type (ADT) whereas an ADT object corresponds to a real sensor. Because
measurement are discretized and due to network delays, Cougar introduces virtual
relations, in which a new record is inserted into the virtual relation in an append-only
manner instead of updating the old one [45].

3.1.3.2. TinyDB

TinyDB [47] is a query processing system for extracting information from a network
that made of motes [48], sensors developed in Berkeley Lab. Instead of programming
each motes, TinyDB provides a simple, SQL-like interface to specify the data you

26

3.1. Sensor Data Management

want to extract data from WSN. Then TinyDB collects that data from motes in the
environment, filters it and finally aggregates it together before returning them to the
user. The only requirement for TinyDB is that, it needs to install a special operating
system on each mote, known as TinyOS.

3.1.4. Query Processing in Sensor Networks

As in Database Management System (DBMS),interacting with a sensor network is
preferred by means of declarative queries [49]. This enables users to issue queries
without reprogramming the sensor node. However, the main differences between
sensor based data sources and standard DBMS are sensors typically deliver data in
streams and data is delivered at unreliable rate.

S. Madden and J. Gehrke in [50] have designed a Query Processing Architecture
that consists of a base station and a software running on the sensor nodes where
users input queries in SQL-like language from the base station. Query is performed
through query optimization— selecting the best possible plan, query dissemination by
establishing a tree-based routing rooted at either the base station or a storage point.
Finally, query processing begins processing in each. The query processing has a simple
loop: once per epoch, a special acquisition operator at each node acquires samples,
from sensors corresponding to the fields or attributes referenced in the query.

User requests are expressed in a SQL query as ANSI SQL to avoid reprogramming sen-
sor nodes each time; however, SQL for sensor networks has other clauses that aren’t
used in ANSI SQL such as DURATION and EVERY [49]. Moreover, each clause
has a distinct meaning, the SELECT clause specifies attributes and aggregates from
sensor records and the FROM clause specifies the distributed relation of sensor type.
Filtering sensor records by a predicate is specified by WHERE clause. To arrange
sensor records into different segment according to some attributes the GROUP BY
clause is used while the HAVING clause eliminates groups by a predicate.

Query processing can be enhanced by a filtering process because filters or operations
are able to reduce the amount of data routed through the network. Authors in [49]
employ a set of filters, and each new packet must pass through a set of registered
functions that can modify (and possibly delete) it. Directed diffusion [51] focuses on
application-specific solutions that are not based on declarative query. They don’t offer
a particularly simple interface, flexible naming system, or any generic aggregation and
join operators. Because this operations are viewed as a application-specific operators,
they must be coded in a low-level language.

27

3. State of the Art

3.2. Service Discovery Protocols

A service is a software entity that can be used by a person, a program, or another
service [52]. A service may be a computation, storage, a communication channel to
another user, a software filter, a hardware device. For example, printing service may
provide a user with the capability to locate and access a color or high resolution
printer.

Location Service is a way to locate a specific sensor within few or thousands sen-
sors in efficient and scalable way without using Global Positioning System (GPS)
techniques. Usually sensors are attached to other objects or items and these objects
need to be located. Service Discovery Protocols (SDPs) are used to enable clients
within a network to find services that match their needs by hiding the complexity
of administration and configuration from the users. Devices is able to discover their
environment, detect and adapt to topology changes, establish communication with
each other and share services [53]. They advertise their services, supply details about
their characteristics and provide an access interface.

Service Discovery Protocols have many aspects, which make them distinct from other
protocols. These protocols are able to determine whether user’s service request match
a discovered service or not. Since devices and users unexpectedly appear and disap-
pear, Service Discovery Protocols include techniques to detect changes in component
availability, and to maintain, within some time bounds, a consistent view of compo-
nents in a network [54].

Service Discovery Protocols have two components, i.e. manager and user. Man-
ager provides services to users. Each service has a Service Description (SD), which
describes the service in terms of device type, service type and a set of attributes.
Registry is an optional component, which maintains a service directory for the bene-
fit of users. This optional component determines the discovery architecture of service
directory. The Discovery architecture is either registry-based, which involves a reg-
istry that acts as a broker between manager and user, or Peer to Peer based, which
has no registry and the system acts as an ad hoc network [53].

3.2.1. Service Directory Consistency

In Discovery Protocols architecture, advertisements may lost if they are not stored
in a safe place such as a registry. Also user agent may retrieve a false advertisement
or service address after the provider stopped working. These are two issues must

28

3.2. Service Discovery Protocols

be handled to maintain a service consistency. Three techniques are adopted for the
directory service consistency maintenance; i.e. Hard-state, Soft-state and Hybrid
registration.

To reduce the network traffic, Hard-state registration resources are not updated
and entries never expire until explicitly deleted. However, it provides lower fault-
tolerance. In contrast, soft-state registration requires recourses in service directory
to refresh their information periodically, which provides higher tolerance to service
failures. Soft-state registration increases the network traffic. The hybrid method is
a combination of both hard- and soft-state registration.

3.2.2. Examples of Service Discovery Protocol

3.2.2.1. Salutation

Salutation [55, 56] was being developed by consortium of industrial companies, known
as Salutation Consortium in order to solve the problems of service discovery and
utilization of software with ambient networked devices. The Salutation architecture
consists of two components (Figure 3.1), Salutation Managers (SLMs) and Transport
Managers (TM). SLM, the core of the architecture, acts as a broker between service
provider and clients. Similar to Directory Agent role in SLP (Section 3.2.2.2), service
provider registers its service information with the local or nearest SLM while clients
can lookup for a required services within the local or nearest SLM. However, each
client has its own SLM and the client initially requests a service from the local or
nearest SLM, which in turn may redirect the search to all other SLMs in the network.

Figure 3.1.: Salutation Architecture.

29

3. State of the Art

Salutation supposes various ways to discover SLM, either statically by using a static
table that stores the remote SLM address, or directly by specifying the remote address
of SLM or by sending a broadcast discovery query. Another way, which is dependent
on SLP via inquiring a central server is also possible [57].

3.2.2.2. Service Location Protocol, SLP

SLP [58, 55, 59] is an Internet Engineering Task Force (IETF) standard to enable
network based applications to locate a desired service. It is an open source and
platform independent protocol. SLP architecture consists mainly of three agents,

• User Agents (UA) perform service discovery on behalf of client application.

• Service Agents (SA) advertises the location and attributes on behalf of services.

• Directory Agents (DA) collect service information from SAs in order to respond
to UA’s requests.

SLP supports both two- and three-agent-architecture. While three-agent architecture
involves all agents, two-agent-architecture involves only UAs and SAs. Figure 3.2
depicts three-agent architecture and shows the interaction between agents. Prior
communication, both SAs and UAs must discover DAs via static, active or passive
discovers method. In static method, they obtain the DAs through Dynamic Host
Configuration Protocol (DHCP) server. In active discovery, they send service re-
quests to the SLP multicast group address where DAs respond to this request via
unicast connection with the caller. In the last method, DAs announce periodically
an advertisement that carries a complete information for their service [55].

After getting the full address of DA, SA registers its service (step 1 in Figure 3.2) and
receives an acknowledgment from DA (step 2) upon success. UA, in turn, sends a
request for printer of fax from DA (step 3), which replays with the Uniform Resource
Locator (URL) of the match service (step 4).

3.2.2.3. Intentional Naming System (INS)

INS [60] is a resource discovery and service system for dynamic and mobile networks
based on effective naming system. Besides Intentional Naming Resolver (INR), which
is responsible to route clients requests, INS has two types of agents; service and

30

3.2. Service Discovery Protocols

Figure 3.2.: SLP agents, registration and discovering services.

client agent. These decentralized resolver in INS form an application-level overlay
network.

Application just describes what they are looking for by a simple language that express
names into a hierarchy based schema of attribute and value (av-pair). INS service
model supports three types of resolution. The first one is early binding, where an
application can obtain a list of IP addresses corresponding to a name without mes-
sage forwarding. The second type is late binding, an intentional multicast, where
a message is forwarded to all resources that satisfy the given query, and intentional
anycast, where a message is forwarded to the best resource that satisfy the query
condition [60].

3.2.2.4. INS/Twine

INS/Twine [61, 62] is a resource discovery system based on INS. M. Balazinska et
al. construct a directory service (called resolver) using Chord as a Distributed Hash
Table (DHT) in order to partition resources description amongst a set of symmetric
peer resolvers [61]. In this approach, source description is converted to the Attribute-
Value Tree (AVTree) to ease storing source description and query resolving.

31

3. State of the Art

3.2.3. Comparison between Jxta and Service Discovery
Protocols

Jxta is considered as a discovery approach, in which resources can be discovered
through searching for advertisements. Table 3.1 shows a comparison between different
examples of Service Discovery Protocols and Jxta.

SDP Type of Architecture Storage of Search
network service methods

information
Jini Enterprise Centralized On Lookup Active and Passive

Network Services Discovery
UPnP Enterprise Peer to Peer On every Active and Passive

Network control point Discovery
SLP Enterprise 1.Centralized 1. On DA 1.Active and

Network (with DA) Passive Discovery
2. Peer to Peer 2. On UA 2.Active Discovery
(without DA) and SA of services

Salutation Any Flexible Service Salutation Manager
Network (Centralized Registry Protocol between

OR P2P) on every SM two SLMs
INS Dynamic Spanning Overlay -Domain Space Resover

and Mobile Tree network for INR discovery.
Network overlay formed -Passive service discovery

network by INRs -Early and latebinding.
INS/ Large and Overlay net- Each resolver Service discovery
Twine dynamic work of res- holds a range messages are routed

environments olvers fo- of keys and in O(logN) hops
handle O(108) rming a DHT their values

Jxta Wide-area Virtual Net- Rendezvous Loosely consistent
P2P work overlay peers DHT Walker

Table 3.1.: Comparison between different Service Discovery Protocols and Jxta

Source: Adopted from Marin-Perianu et al. (2005) [63].

Jini [52] and SLP employ the centralized directory of service descriptions. Salutation,
SLP without DA and Universal Plug-and-Play (UPnP) [64], have no central node
and act in ad hoc manner. Each device on the network can be queried about services
that it offers. All these protocols are adopted for LAN (Enterprise Network). On
the other hand, Service discovery protocols such as INS/Twine, INS and Jxta, are
adopted for large and mobile network. INS/Twine is built on top of chord where

32

3.2. Service Discovery Protocols

resolvers hold a set of a keys and values while INRs form an application-level overlay
network. Jxta employs a super-peer model to build a Wide Area Network (WAN)
with a rendezvous peers connected to each other in an overlay network. In the later
three system, special nodes used to store services/resources known as resolver, INR
and rendezvous respectively.

SDP Service Service Service Handler* Expiry Time
Identity description

Jini Globally List of Proxy stub Soft State
Unique ID attr. and val.

UPnP Globally XML based on UPnP -URL -
Unique ID template language -Description (XML)

SLP URL/URI Service template URL Soft State
Salutation Globally Service ID Service ID Hard State

Unique ID records
INS Locally Name specifiers, Network Address Soft State

Unique ID consisting of
+ IP:Port attr. and val.

INS/ Locally Hierarchies of Network Address Hybrid
Twine Unique ID attr. and val.

+ IP:Port XML Based
Jxta Globally XML Based -URL Soft State

Unique ID messages -Description (XML)

Table 3.2.: Comparison between different Service Discovery Protocols and Jxta, cont.

*Service Handler is a reference to the service outcome from lookup process.

Services, which are stored in directory, have different properties in terms of Service
Identity, Service Description, Service Handle and Expiry Time. Table 3.2 compares
between these aspects of the available service. All Service Discovery Protocols use
either globally unique ID or locally unique ID with the full service address (IP address
and port number) except SLP, which uses Uniform Resource Locator (URL). SLP,
Jini, Salutation and UPnP store attribute-value pairs as lists and they do not relate
attributes with each other, while INS and Twine store the attribute-value pairs as
a tree hierarchy. Jxta, INS/Twine and UPnP represent data in XML format. Each
discovery protocol uses a distinct service handle.

Finally, None of traditional Service Discovery Protocols are really suited for wireless
sensor networks environment because they are either based on collecting information
into central directories, which impose single points of failure or on maintaining a
network wide multicast tree that is used for periodic service advertisements [65]. Jxta

33

3. State of the Art

is a compromise solution between both approaches since it employs the super-peer
architecture.

3.3. Summary

This chapter was divided into two sections. The first section has presented the
sensor information management and sensor network aspects. Proceeding from the
middleware aspects, we highlighted the queries processing in WSN. Also data and
query routing algorithms are presented. In the second section, Service Discovery
Protocols are described. Several examples are also studied and compared to Jxta in
order to give an overview on resource locating that are currently is use.

Database approaches was worthy studied in many literatures. They have a simple
interface and users can issue SQL-like query without writing a new program. How-
ever, these approaches are suitable for set of ubiquitous devices with high capabilities
and resources, such as motes, to efficiently handle the injected query. Other sensors,
such as Particles and µParts, have limited resources and employing these approaches
directly are not useful. Next chapter presents a new architecture for these limited-
resources sensors.

34

Chapter 4
Conceptual Design

The aim of this thesis is to design and implement a decentralized Peer to Peer system
for sensor network that exposes sensors. This design would serve as a basis for
an ultimate goal, implementation on embedded Linux systems where resources are
restricted.

The main advantages of building a Peer to Peer application on existing Wireless
Sensor Network (WSN) are significantly important. First, it hides the complexity of
accessing different sensor nodes. For example, users are not interested how Particles
or µParts access the USB Bridge or vice verse ([66]). Second, this system offers
many services to users. Sensor node discovery and obtaining sensor data are good
examples for services that are offered. The last advantage for such an application is
that many distributed Wireless Sensor Networks (WSNs) can be absolutely discovered
and observed.

This chapter provides an overview of the main concepts and salient features of a new
system named as Jxta Middleware for Sensor Network (JMSN), which was devel-
oped during this project. In the first section, the system environment is described.
Section 4.2 provides a detailed analysis of the problem. Section 4.3 outlines the archi-
tecture of the proposed system and the basic system blocks. The last section explains
the structural components of the system in details.

4.1. System Overview

Sensor nodes, such as µPart from Teco [66], exchange data through a USB-bridge
within small area. User, who has an attached USB bridge to his PC, is able to access

35

4. Conceptual Design

sensed data.

Figure 4.1.: A scenario of communication between Sensor Gateway and User Agent.

Figure 4.1 depicts the main components of the proposed system, sensor gateway and
user agents. Sensor gateway gathers sensor data from nearby sensors. Any user agent
can receive these sensed data after issuing a request. For example, in Figure 4.1, two
users located in Berlin and Paris receive the sensed data from sensor gateway located
in Braunschweig not only from the same gateway, but also from different gateways
located in different rooms.

Sensor gateway in Figure 4.1 consists of three parts, i.e. sensor nodes, a USB-Bridge
and a gateway. The sensor nodes itself, µPart [66], form the wireless sensor network.
The USB-Bridge 1/90 ([66]) is attached to any device such as PC or router, which is
connected to Internet.

4.2. Analysis

This section analyzes “Peer to Peer Overlay Network for Sensor Network” using Use
Case Model to identify the system requirements. The Use Case Model “defines the
behavior of the system and its interaction with the involved actors” [67]. The use case
model consists of Use Cases. Each Use Case describes the functionality to be built
in the proposed system.

36

4.2. Analysis

4.2.1. Defining the Use Case Model

4.2.1.1. Use Case 1

Figure 4.2 illustrates how user can interact with the proposed system. The user can
join a special group, which is established to gather all interested users sensor data.
In order to access a gateway, a searching process is required to discover any gateway.
After discovering any one, user can view all details of available services that are
provided by this gateway. Even more, user can issue a SQL-like query to retrieve a
special set of sensed data.

Figure 4.2.: Use Case 1: Common interaction of user.

4.2.1.2. Use Case 2

Sensor gateway acts as broker or mediator between sensor nodes and user agents
since it manages the flow of sensor data from sensor nodes to user agents. Figure 4.3
illustrates how the gateway would interact with both of them. Sensor gateway should
be able to discover advertisements and join a predefine group in order to meet users.
The gateway records all surrounded sensors and publishes related advertisements.
From user agent view, the gateway should be able to record any received filter query,
remove a filter and apply these filters on received sensed data before directing it to
the caller.

37

4. Conceptual Design

Figure 4.3.: Use Case 2: Common interaction of Sensor Gateway.

4.2.1.3. Use Case Model

Figure 4.4 depicts the Use Case model. The Use Case model combines all use cases
into one case digram, in order to give an overall visual picture of what the system
looks like. It illustrates how a user can interact with the system as well as how a
sensor gateway interacts with the proposed system and the environment.

Figure 4.4.: The Use Case Model of the proposed System.

38

4.2. Analysis

4.2.2. Requirements

In the previous section, use cases and the use case model for the proposed system are
presented to identify the properties, which are important in the system. The findings
from applying the use case model lead to properties that are considered as require-
ments for the proposed architecture. These requirements define a service, which the
system should provide to end users and the constraints under which the system must
operate [67]. They are classified into functional and non-functional requirements.
Functional requirements describe the behavior of the system that should offer, while
non-functional requirements specify properties or constraints on the system.

The main functional requirements or the application requirements are summarized
in the following list,

1. Both sensor gateway and user agent should join the same group.

2. Both sensor gateways and user agents should log in with unique ID.

3. Sensor gateway should be able to publish advertisements that composed of
information about its location and a meta-data on surrounded sensors and
their capabilities in order to inform users about them.

4. The user agent should be able to discover gateway advertisements and show
them in front of user.

5. The user agents must have the capability to express user requests in an easy
way such as SQL language.

6. The user agent should be able to forward user requests to sensor gateway.

7. The user should be able to stop query processing at any time.

8. The sensor gateway must filter the sensed data before returning them to user
agent according to user specification.

9. The user agent should be able to present or store the query result.

From the above functional requirements list, service discovery and data filtering are
the most important services because it is obvious that not all data in the sensor net-
work are worthwhile to user. For example, a user may want to know the temperature
value at specific time or when it exceeds some limits in his house but not all raw

39

4. Conceptual Design

data. Moreover, the application should facilitate searching and discovering all sensor
gateway.

The non-functional requirements specify properties or constraints on the system.
They are also known as technical requirements. In the following, the non-functional
requirements are listed.

1. Sensor gateway should be implemented in C, since the ultimate goal aims to
run the system on embedded Linux system, where resources are scarce to run
heavy applications.

2. Interoperability. Users on different devices ranged from Personal Digital Assis-
tants (PDAs) and cellular phones to Personal Computer (PCs) should be able
to run the new system.

3. Usability. The proposed system should be easy to learn and use.

4. Scalability. The system must be scalable in terms of user agents, sensor gateway
and sensor nodes.

5. Availability. The user should be able to search and discover gateways in the
predefine group and connect to them without failure.

4.3. System Design

4.3.1. System Architecture Overview

The new system is suggested to be built atop Jxta, not only to gain many charac-
teristics of Peer to Peer systems, but also many non-functional requirements can be
achieved through Jxta. It is obvious that Jxta is a generic overlay network consisting
of a set of protocols that are language, platform and network independent. Scalability
and interoperability are also insured by Jxta (Section 2.7.6). Figure 4.5 illustrates
the architecture of the new system. This system carries Jxta Middleware for Sensor
Network (JMSN) as a name because it hides the sensor nodes from the user by means
of Jxta and all communication is carried out by Jxta Layer.

40

4.3. System Design

Figure 4.5.: System Architecture.

4.3.1.1. Sensor Gateway Layers

Sensor Application Layer. The manager of all interactions between user and sensor
nodes is the Sensor Application Layer. It manages sensor data that are received from
sensor nodes and all requests that are received by Jxta Layer. Moreover, it has the
functionality to filter any sensor data and send out the results to the user agent.

Sensor Network Interface Layer. Sensor Network Interface Layer reads UDP pack-
ets from the sensor network, which encapsulates a tuple of data read by the USB
Bridge. This layer is able to extract data from this packet and hands it to Sensor
Application layer. USB Bridge and RF Layer are two sub-layers that are provided
from Telecooperation Office (TecO) [66] to interact with µPart sensors.

4.3.1.2. User Agent Layers

User Agent Layer consists of two sub Layers, i.e. User Interface Layer and WSNAp-
plication Layer. The purpose of User Interface layer is to interact with user through
GUI. WSNApplication layer interacts with a gateway through message exchanging.
It takes user data from the above layer, encapsulate them in a message and then
forward it to the gateway. It also extracts all data from any received messages and
hands them to the user Interface layer.

41

4. Conceptual Design

4.3.1.3. Jxta Layer

Jxta Layer governs the connection between the gateway and user agents, and the
overlay network. This layer ensures the interoperability between the gateway and user
agents. The Sensor Application Layer and WSN Application Layer interact with Jxta
Layer through clear interface. For example, Jxta Layer enables Sensor Application
Layer to announce advertisements and forward sensor data to user agent.

4.4. Block Diagram

The previous architecture is realized with a block diagram (Figure 4.6), which shows
the interaction between system components. The right part of Figure 4.6 are mapped
to Sensor Gateway Layers. Sensor Application Layer and Sensor Network Interface
Layer (Figure 4.5) are represented by filter and sensor manager components. Gateway
organizer, advertisements publisher and message handler represents an interface to
Jxta Layer to handle peer operations. From the user agent’s view, the graphical user
interface represents the first layer of User Agent Layers. WSN Application Layer
is represented by query analyzer and result collector components. User organizer,
advertisements discovery and WSNMessanger are interfaces for Jxta Layer.

Figure 4.6.: JMSN: System Block Diagram.

42

4.5. Description of Components

Peers in JMSN. JMSN design imposes two different types of Jxta peers, i.e. Ren-
dezvous peers and Edge peers. In Section 2.7.6, Rendezvous peer was defined as a
powerful peer that processes search queries from other peers since they are super
nodes while the edge peer forms the most peers in the overlay network that has a
transient state of joining and leaving the network. Sensor gateway and user agent
are considered as edge peers. The reason for that is, sensor gateway would be im-
plemented on devices that have scarce resources. User agents must be edge peers
because if they disappear, all resources and advertisements that they have will also
disappear from Jxta overlay network unless they are replicated.

Types of Communication in JMSN. Figure 4.6 depicts also the communication
process between user agent and sensor gateway. Here there are only two ways for com-
munication between edge peers — direct and indirect communication. In the direct
communication, user agent and sensor gateway exchange XML-based messages via
Jxta Pipes without passing onto rendezvous peers. On the other hand, the indirect
communication requires the interaction from both of them with the Jxta overlay net-
work via publishing and discovering advertisements. For the purpose of illustration,
the direct communication is shown outside of Jxta overlay virtual network.

4.5. Description of Components

4.5.1. User and Gateway Organizer

Organizer components are responsible for initializing JMSN and performing all peer
operations. This ensures that all edge peers join the same group. Organizer starts
with bootstrapping, an important step in Jxta. “Bootstrapping specifies how users
and services establish contact with the discovery system” [68]. It helps both to join a
peer to peer network with prior knowledge or pre-configuration on the network.

4.5.2. Sensor Manager

Sensor Manager is an interface between Jxta Layer and Sensor Network Interface
Layer (Figure 4.5). It receives sensor packets and stores meta-data about surrounding
sensors in a special warehouse. As shown in Figure 4.6, Sensor Manager activates
Advertisements Publisher component in two cases, when new sensor is discovered

43

4. Conceptual Design

or when data in the warehouse become too old. It activates also the filter component
to process the received packet.

4.5.3. Advertisements Publisher

The gateway announces sensors to interested users through publishing advertise-
ments. Publishing advertisements is a process, in which sensor gateway publishes its
location and a meta-data about surrounding sensors and their capabilities.

4.5.4. Advertisements Discovery

Discovery process is a process to find an advertisement for sensor gateway. These
advertisements include a set of properties that describe the sensor gateway and a
set of attributes that are provided by each sensor node. The set of properties that
describes the sensor gateway includes the name of gateway (GatewayName), the
location of gateway (GatewayLocation) and the identification address of a sensor
(SensorID(s)). The other set includes types of data that the specified sensor can
measure i.e. temperature, light . . . etc. and their units.

Advertisements are important because they help users to establish a connection with
the gateway. Furthermore, without these advertisements, user does not aware of any
services provided by the sensor gateway.

4.5.5. Filtering Data

Filtering is defined as a way to suppress sensor sensor’s tuples from randomly prop-
agation and hand them in graceful manner to all interested users. It should able to
answer “to which user should I send this sensed data”. Practically, sensor gateway
receives many tuples from distinct sensor nodes that are not important to all users.
Filter model forwards only a subset of these tuples. Therefore, we consider it as a
main part of sensor gateway.

44

4.5. Description of Components

4.5.5.1. Filtering Mechanism

Filter considers sensor data tuple as a raw of data, which is composed of set of values
that are required for Filter mechanism. These tuples are discrete data since they are
generated by sensors at discrete time, and they are not stored in a data warehouse.

Filter mechanism is based on attributes, which are described by key-value-operator.
Key indicates the semantics of the attribute [69](temperature, light, . . . etc.). Oper-
ator describes how attributes will match when two attributes are compared. Typical
attributes are sensor reading, meta-data and internal state. Sensor reading includes,
temperature, voltage, light, movement and acceleration. Meta-data encompasses gen-
eral information about sensor node such as sensor ID. Internal state is any information
that is not related to sensor reading, such as timestamps.

4.5.5.2. Filter Data Model

Since users send their requests in different format than sensor data, the design of
Filter imposes a model for data that should be handled. Data Model is an abstract
model that describes how data is represented and used [67]. Listing 4.1 describes the
filter data model.

In this model, creatorName represents a user, who creates the filter and who should
receive the results. QeuryID is an attribute that distinguishes between user’s query.
Each filter has a key, which specifies the type of filter, e.g. is it a temperature or
light filter. Moreover, It requires also two values that indicate the arguments of
operation. These values are necessary for filter operation op because this operation
determines the type of comparison between them and the sensor’s values. Finally,
duration specifies the life time of the filter process.

Listing 4.1: Filter Data Model

1 creatorName /*Specify a user, who creates the filter*/

2 qeuryID /*Specify the ID of user query */

3 key /*Type of the type of filter, Temperature*/

4 v1 /* First operator*/

5 v2 /* Second operator*/

6 op /*Operation*/

7 duration /*Specify the life time*/

8 next /*pointer to the next element*/

45

4. Conceptual Design

4.5.5.3. Filtering Algorithm

Algorithm 1 presents the filtering mechanism that processes any received tuple. This
algorithm has two inputs — the set of all filters and the received tuple. The output
is sending this tuple for each user, if it matches his condition.

This algorithm is controlled by a while loop, which goes through all filters. Based on
each filter key, a compare() procedure is called with the corresponding sensor value,
filter operation and two operators. For successful operations, send() procedure is
called to send out this tuple and user is not notified for unsuccessful operations.

input : F is a pointer to non-empty list of Filters
input : t is a Tuple of sensor data
Result: for each successful comparison, send t to F.creatorName

/*check for end of list*/1

while F.next 6= null do2

if F.key = ’Any’ then3

send(F.creatorName,F.QeuryID ,t)4

end5

if F.key = ’Temperature’ then6

if compare(t.Temperature,F.op,F.v1,F.v2) = True then7

send(F.creatorName,F.QeuryID ,t)
end8

if F.key = ’Light’ then9

if compare(t.Light,F.op,F.v1,F.v2) = True then10

send(F.creatorName,F.QeuryID ,t)
end11

if F.key = ’Voltage’ then12

if compare(t.Voltage ,F.op,F.v1,F.v2) = True then13

send(F.creatorName,F.QeuryID ,t)
end14

if F.key = ’Movement’ then15

if compare(t.Movement ,F.op,F.v1,F.v2) = True then16

send(F.creatorName,F.QeuryID ,t)
end17

F ← F.next /*get the next element*/18

end19

Algorithm 1: Filtering Algorithm

46

4.5. Description of Components

4.5.5.4. Filtering process cycle

Filtering process passes through five states, i.e. creation, deactivation, activation,
send and finally ends with the filter deletion. Figure 4.7 depicts these states. Filter

Figure 4.7.: Filter States.

process cycle is initiated by filter creation. User query is the only source for creating
new filter component. Any QueryMessage received by Message Handler is saved.
QueryMessage includes fields that are required for filter processing. These fields are
explained in Query Data Model, Section 4.5.6.1.

In the deactivation state, Filter is waiting for an activation signal. When any sensor
tuple is detected, Filter is activated. In the activation state, filter processes this
tuple, which can activate the send state.

Filtering process is terminated by filter deletion. There are two sources to remove the
filter from the warehouse, either user issues a remove message or filter time is ended.
In the last method, the duration field is compared each time against the time.

4.5.6. WSNMessenger

WSNMessenger is a user agent component that specialized to carry out all com-
munication necessary with the sensor gateway. It is dedicated to relay user queries
to gateways and to collect results that are received. Communication with sensor
gateway is performed over Jxta Pipe, in which XML messages are exchanged.

47

4. Conceptual Design

4.5.6.1. Query Analyzer

JMSN is characterized by a Query Analyzer, which is used to process user declar-
ative query. It allows user to write a SQL-like query to retrieve sensor data and
encapsulates it in a message, which is sent to the gateway.

Query Syntax. JMSN employs a simple query format that has clear semantics.
Listing 4.2 illustrates the syntax of user query. In this syntax, SELECT clause
specifies attributes in which user is interested in. The FROM clause specifies the
name of the sensor gateway. The WHERE clause filters sensor records by a predicate.
The DURATION clause, which is illustrated in the next listing, is a period of time,
which specifies how long the query should be run before terminated and removed
from the filter list of both agents.

Listing 4.2: Query Syntax

1 SELECT {attributes}
2 FROM {Sensor_Gateway S}
3 WHERE {predicate}
4 DURATION {time interval in seconds}

Query Data Model. After parsing the user query, query is stored for later process.
Query data model contains selectPart, fromPart and wherePart which correspond
to SELECT, FROM and WHERE of user query respectively. The wherePart can
be further separated into key, operation and values. The key is identical to a name
of attribute. The operation is a comparison function e.g. = represents an equal
operation. Finally, values represent arguments of the operation function.

Messages. There are mainly three messages that user can sent, i.e. RemoveMes-
sageWithID , RemoveMessageWithUserName and QueryMessage. RemoveMessage-
WithID is sent out to terminate the filter processing while RemoveMessageWithUser-
Name terminates all user’s query at the destination gateway. Both messages have
the structure, which is illustrated by Listing 4.3.

Listing 4.3: Remove Messages Format

1 creatorName /*Specify a user name*/

2 qeuryID /*Specify the ID of user query */

3 messageType /* Type of message either RemoveMessageWithID*/

48

4.5. Description of Components

4 /* or RemoveMessageWithUserName*/

Query Message includes the same fields as the filter data model except messageType,
which represents the type of message. Listing 4.3 illustrates the query data struc-
ture.

Listing 4.4: Query Message Format

1 creatorName /*Specify a user name*/

2 qeuryID /*Specify the ID of user query */

3 messageType /* Type of message*/

4 key /*Type of the type of filter, e.g. Temperature*/

5 OperandValue_1 /* First operator*/

6 OperandValue_2 /* Second operator*/

7 Operation /*Operation*/

8 duration /*Specify the life time*/

Distributed Query Process. From user’s view, all gateways are considered as dis-
tributed tables without any relation among them. The common characteristics among
these tables are that they possess the same structure and data model. User learns
about sensor gateways from advertisements discovery process. Therefore, query can’t
handled locally. In this design, query is distributively processed between the gateway
and the user agent.

Query is distributively processed as follows:

1. The gateway name is extracted from the user query (specified in FROM) in
order to establish a connection with the gateway.

2. The WHERE clause is encapsulated in a Query XML-based message.

3. Then, the Query message is sent out to the gateway.

4. After that, the received results are displayed according to SELECT.

5. Finally, query is terminated either by user or by gateway.

49

4. Conceptual Design

4.5.6.2. Result Collector

Result Collector is asynchronous section of WSNMessenger because it receives results
in a discrete time. It presents any received results in response to user query by
carrying out the projection part of query, defined by SELECT. This section can be
used to save results on external file.

4.5.7. Message Handler

Message Handler is an interface component between Jxta Layer and Sensor Appli-
cation Layer. It manages the connection between sensor gateway and all connected
agents through exchanging XML-based messages over Jxta Pipe. This model is di-
vided into two parts i.e. incoming- and outgoingMessageHandler.

The first one handles all incoming messages from user agents. According to the user
message, it adds new filter entry or remove a specific filter entry. The second part
is specialized to handle all messages that should be sent. It encloses any result of
Filter component in a message and sent it out to user.

4.6. Summary

In this chapter, a detailed analysis of the application requirements are presented.
The proposed Architecture and the basic components of its, which were built on top
of Jxta and Bridge libraries, are also explained.

Discovery process and filtering process are the most important processes in the sys-
tem. Sensor Manager handles the received sensor data and publishes them. User
can discover advertisements through Advertisements discovery block. WSN-
Messenger introduces new Query interface that allows user to write SQL-Query.
Finally, If any filter entry was stored in the warehouse, Filter is activated for each
new sensor data in order to send out any tuple that matches filter-condition. Chap-
ter 5 discusses the implementation of the proposed system components.

50

Chapter 5
Implementation

The prototype for a sensor network over Peer to Peer, which is name as Jxta Mid-
delware for Sensor Network (JMSN), has been developed during this project, and
consists of two parts:

Sensor Gateway implements the basic functionality of the sensor agent, which
controls interaction between sensor nodes and user agents.

User Agent prototype implements a user interface for JMSN, which is able to dis-
cover advertisements and access any available sensor network. It is enhanced with a
simple query analyzer to handle users requests.

This chapter describes the implementation of JMSN, which was proposed in Chap-
ter 4. Only the most important implementation decisions and rationale are intro-
duced. The first section describes the implementation of the sensor gateway. Sec-
tion 5.2 gives full details on the implementation issues of user agent.

5.1. Sensor Gateway Application

5.1.1. Technologies Used

The implementation of the sensor gateway is based on Jxta-C (version 2.5); an open
source cross-platform C implementation of the Jxta platform. Jxta-C requires the
following open source libraries,

51

5. Implementation

• Apache Portable Runtime (APR) provides a library of routines that simplify
writing a portable program (write once and compile it anywhere).

• Apache Portable Runtime Utility (APR-Util) adds package to APR containing
non-core useful features.

• SQLite3 provides a view of database.

• LibXml2 provides a library of routines that support XML

• OpenSSL provides an implementation of the SSL and TLS protocols.

• zlib is a format for data that has been compressed using deflate-style compres-
sion.

5.1.2. Implementation of Sensor Gateway

At the most abstract level, the sensor gateway consists of five components i.e. Gate-
way Organizer, Advertisements Publisher, Sensor Manager, Filter and Message Han-
dler. These components are implemented in JMSN in order to define the most fun-
damental methods for accessing the system.

A Application organizer.c implements the Gateway Organizer. A SensorMan-
ager.c is an implementation of the Sensor Manager, which includes many functions
such as sensorApplication() to control the application processes and addNewSensor()
to manage sensor data. A Publish.c is the Advertisements Publisher and includes
one function, which publishes a WSNAdvertisement (WSNAdvertisement.c). A
MessageHandler Outgoing.c and a MessageHandler Incoming.c implement
the Message Handler.

Finally, the sensorLib package contains an implementation of the Filter component
and other helper functions. A Filter.c includes addNewFilter() and removeFilter()
functions to handle all filter elements and checkData() to perform the filter operation.
A User.c handles all connected users. A Parser.c provides an interface to parse all
µPart packets.

52

5.1. Sensor Gateway Application

5.1.2.1. Gateway Organizer

The gateway organizer is responsible for gateway initialization. It is a significant pro-
cess in JMSN, because it connects the sensor gateway to the Jxta overlay network.
Initialization is carried out in two phases, manual and dynamic phases. The manual
phase is done only once by editing a PlatformConfig file. Running any Jxta applica-
tion creates the PlatformConfig, which is a generic configuration in XML format for
any Jxta peer. Within the PlatformConfig file, a seeds tag should indicate to at least
one rendezvous peer (IP Address) in order to fast locate the rendezvous peers.

When the gateway is launched, the dynamic phase is always performed. In this
phase, bootstrapping is achieved with the help of PlatformConfig. Then, control is
given to application organizer.c in order to perform peer operations. It includes
functions such as find any() to discover any Peergroup advertisements and join() to
join a predefined group named as WSNGroup. After that, a new input pipe is
created to handle all incoming messages from users. Finally, Sensor Manger gains
the application control.

WSNGroup. WSNGroup represents a place where sensor gateway and user agent
can meet each other and discover advertisements. Although it is possible to create
dynamic groups, it is preferred to create a static group with a known ID and a name
because it restricts the scope of advertisement searching. creating many groups can
produce islands of groups, which enforces the user application to join all of them to
be able to discover their advertisements.

Naming the sensor gateway is an important issue, because a suitable name defiantly
improves searching process. For instance, suppose two sensor gateways are placed
in two computer labs. They are given Lab145 and Lab146 as an identifier name.
When users discover these names via advertisements discovery process, they may
assume that these labs are adjacent. Furthermore, having a unique name is another
important issues. What happens if two sensor gateways have the same names? JMSN
does not impose any restriction on naming or naming conveniences and it is the
responsibility of the sensor gateway operator. It is suggested to use hierarchy names
as Internet naming to facilitate user searching process e.g. lab145.dus.ibr.cs.tu-bs.de
and lab146.ubi.mit.edu.

53

5. Implementation

5.1.2.2. Sensor Manager

Sensor Information Management is the core part in JMSN because it implements four
components of sensor gateway (Figure 4.6). It implements Sensor Manger, Adver-
tisement Publisher, Filter and Message Handler components. Figure 5.1 depicts the
structural units of Sensor Information Manager.

SensorManager class represents the main class of Sensor Information Manager. It
receives sensor data as a p packet with help of libparticle library. Figure 5.2 depicts
sequence diagram of detecting a new tuple. SensorManager calls parse() to extract
sensor data. In case of detecting a new sensor, SensorManager stores it in a Sen-
sors List via calling addNewSensor() and publishes it via calling create WSNAdv().
The importance of the Sensors List is to keep a consistent view of nearby sensors, in
which old sensors information must be deleted if not refreshed within a specific time
(by default it is 240 seconds). Listing 5.1 shows the structure of the Sensors List.

Sensor Manager is also responsible for activating filter process for each received
tuple, which is discussed in Section 5.1.2.5.

Listing 5.1: sensors structure code

1 struct sensors{
2 char nodeID; /*Sensor ID*/

3 int locX; /*The X Location of the gateway*/

4 int locY; /*The Y Location of the gateway*/

5 int locZ; /*The Z Location of the gateway*/

6 int time; /*The time left to refresh*/

7 sensors *next; /*a pointer to the next sensor*/

8 };

5.1.2.3. Advertisements Publisher

Publish class is responsible for announcing sensor information through advertise-
ments. It has only one function, create WSNAdv().

One important issue in JMSN is, how sensor gateway should publish their sensed
sensor information. It implies that, should the sensor gateway publish each tuples of
sensed sensor data on Internet or not?

54

5.1. Sensor Gateway Application

Figure 5.1.: Structural Units of Sensor Information Manager.

55

5. Implementation

Figure 5.2.: Sequence Diagram for Receiving a tuple from Sensor Network.

Advertisement Method. There are three ways that can be implemented over Jxta
overlay to deliver sensed sensor data. They are identical to data delivery model,
i.e. broadcast, multicast and unicast models. In the broadcasting or flooding model,
advertisements that contain the sensor data, are transmitted by the gateway to Jxta
overlay network, in which they are indexed each time in different rendezvous peers.
In this way, Jxta overlay network suffers from a bulk of advertisements and keeps all
user agents in waking state by forcing them to send a periodic searching query, which
does not guarantee that all advertisements are read.

The multicast model employs propagate pipes which are UDP based pipes. The
shortcoming in this model is that all registered users receive sensed data whether they
are interested in or not. As a consequence, data filtering can’t be implemented.

The unicast model employs point to point pipes, which are TCP based reliable pipes.
JMSN implements the unicast model to ensure that all packets reach the destination
since it is TCP based.

Advertisements. WSNAdvertisement.c implements a gateway advertisement,
which is used to carry information on the gateway. Publish.c creates a WSNAdver-
tisement, (Listing 5.2), which is based on sensor data that are given as arguments to

56

5.1. Sensor Gateway Application

create WSNAdv(). This advertisement contains the name of the gateway (included in
<Name>), that should all user agents forward their queries to. From the gateway’s
view, it is a name for an input pipe. From user agent’s view, it represents a table of
sensors data. Moreover, it contains information on what the sensor can sense, e.g.
temperature, light, . . . etc., and it includes other attributes such as units.

Listing 5.2: WSNAdvertisement XML code

1 <?xml version=\"1.0\"?>
2 <!DOCTYPE jxta:WSNAdvertisement>
3 <jxta:WSNAdvertisement xmlns:jxta=\"http://jxta.org\">
4 <ID>
5 urn:jxta:uuid-59616261646162614E504720503250338B2EEA5F3D3E4A1
6 BBFB68517F6AF055A04
7 </ID>
8 <Type> 1 </Type>
9 <Name>WSNAdvertisement.lab145.ibr.cs.tu-bs.de </Name>

10 <Desc>
11 If you are Interested in sensor reading, just use my ID to
12 reach me in order to obtain a dynamic set of them.
13 </Desc>
14 <ShortDescription>
15 Wireless Sensor Adv. Created by alzaq Gateway.
16 </ShortDescription>
17 <Temperature unit=‘‘Celsius’’> True </Temperature>
18 <Light unit=‘‘candle’’> True </Light>
19 <Voltage unit=‘‘volts’’> True </Voltage>
20 <Movement> True </Movement>
21 <Location> (1,2,3) </Location>
22 <NodeID> 1.2.3.4.0.4.0.59 </NodeID>
23 </jxta:WSNAdvertisement>

5.1.2.4. Message Handler

Message Handler is implemented in JMSN by MessageHandler Outgoing.c
and MessageHandler Incoming.c. MessageHandler Outgoing.c manages all
sending messages. Table 5.1 presents these messages. Connect to user(), which calls
send() or send remove message() are the main functions to send messages.

MessageHandler Incoming.c manages all received messages from a user agent. It
creates a PipeAdvertisement through calling registerPipeAdv() and publishes it. In
addition, it constructs a message listener that handles all received messages through
calling Create message listener(). Table 5.1 shows three different user-messages that

57

5. Implementation

can be handled by ProcessIncomingMessage(). (PipeAdvertisement, which is an ad-
vertisement for a recourse of type pipe, is an essential part to establish a connection
with the pipe’s creator either the sensor gateway or the user agent).

Message Type Meaning Source
SENDING QUERY Query message User Agent

REMOVE FILTER BY ID Remove a filter User Agent
indicated by ID

REMOVE FILTER BY USERID Remove all user queries User Agent

QUERY RESULT A resulted message from Sensor Gateway
testing purpose

TIME IS UP Execution is finished Sensor Gateway
SERVER IS CLOSED Server will close Sensor Gateway

Table 5.1.:
Types of messages that are exchanged between a sensor gateway and a user agent

5.1.2.5. Data Filter

After receiving SENDING QUERY message from a user agent, processIncom-
ingMessage() creates a new filter entry and appends it to the filter list via call-
ing createFilterWithDuration(). The sequence diagram for handling this message is
shown in Figure 5.3.

Figure 5.3.: Sequence Diagram for handling SENDING QUERY message.

Listing 5.3: Filter structure code

1 struct filter_struct{

58

5.1. Sensor Gateway Application

2 char *creatorName; /* The user name, who creates the filter*/

3 int qeuryID;/* User Query ID*/

4 int FType; /* Type of the filter, Temperature or Light or ...*/

5 double v1; /* First operator*/

6 double v2; /* Second operator*/

7 int op; /* Operation*/

8 time_t creationTime;
9 long duration;/* in seconds*/

10 filter_struct *next;
11 };

Listing 5.3 shows the structure of a filter element. Each filter element has a creater-
Name, which represents the the name of the user, and a qeuryID, which specify an
identification for the user query. It has also a filter type (FType), an operator (op)
and operands of the filter (v1 and v2). The type of the filter and the operator are
indicted by an integer value instead of string to reduce the size of occupying memory
as shown in Listing 5.4 and Listing 5.5.

Listing 5.4: Types of Filter

1 #define NO_FILTER_TYPE 0
2 #define TEMPERATURE_TYPE 1
3 #define LIGHT_TYPE 2
4 #define MOVEMENT_TYPE 3
5 #define ACCELRATION_TYPE 4
6 #define VOLTAGE_TYPE 5

Listing 5.5: Query Operation

1 /* No Operator */

2 #define EQ_ANY 0 //No condition operator that accept any value

3 // Singleton Operators

4 #define EQ 1 //Equal operator

5 #define NEQ -1 //Not equal operator

6 #define GT 2 //Greater than operator

7 #define GEQ -2 //Greater than or equal operator

8 #define LT 3 //Less than operator

9 #define LEQ -3 //Less than or equal operator

10 #define IS 4 //IS operator

11 // Logical Operators

12 #define NOT 10 // Logical NOT operator

13 #define OR 11 // Logical OR operator

14 #define AND 12 // Logical AND operator

15 #define XOR 13 // Logical XOR operator

16 // Range Operators

17 #define BW 5 // Between (Inclusive)

59

5. Implementation

18 #define NBW -5 // Not Between (Inclusive)

19 #define BWX 6 // Between (Exclusive)

20 #define NBWX -6 // Not Between (Exclusive)

The first operand and the second operand are used in comparison against the sensed
value. The filter type, the operator and the first operand are always required for
filtering process and only the range operators require the second operand such as the
between operation.

Function sensorApplication() in SensorManager (Figure 5.2) activates the filter
process by calling checkData(). This function implements Algorithm 1. For each
success operation, a new message is sent out to user agent. Upon any failure to
send message or user PipeAdvertisement does not exist, the number of iterations is
increased till five before deleting the filter. In each activation, the filter process tries
to send the result message only one time and after five trials, it assumes that the user
agent does not exist. This is the only way to identify that the user leaves without
removing its filters.

5.2. User Agent Application

5.2.1. Technologies Used

The user agent is built on top of Jxta (version 2.4). In contrast to the sensor gateway,
the user agent is developed in Java to take the advantage of platform independent.
It requires Java 2, Standard Edition 1.4 runtime. JBuilder 2006, an integrated de-
velopment environment for Java, has been used to assist the development.

5.2.2. Implementation of User Agent

In addition to a graphical user interface, user agent implements the user organizer,
the advertisements discovery, the query analyzer, the result collector and the WS-
NMessanger components (Figure 4.6). The implementation provides the user with
all methods to interact with a sensor gateway through a set of classes. The User-
GUI class implements the graphical user interface. The WSNGroupManager
implements the user organizer component, while JxtaClientServices class is im-
plemented to handle the advertisement discovery process. Filter, Qmessage and

60

5.2. User Agent Application

QueryAnalyizer are the main classes that implement the query analyzer compo-
nent. The current design of the result collector is included in WSNMessanger class,
which also is an interface for Jxta messaging.

5.2.2.1. WSNGroupManager class

Initialization is performed in two phases as in the sensor gateway i.e. manual phase
and dynamic phase. Since they should join the same group, class WSNGroupMan-
ager is in charge of joining group.

5.2.2.2. QueryAnalyizer class

A crucial part of JMSN is the Query Analyizer component because it parses a
user query into its main parts, validates the syntax and processes the execution in
a distributed manner. JMSN employs a simple query processor, which is described
by a Backus-Naur Form (BNF) grammar (Appendix A presents the BNF for JMSN
Query Language). The QueryAnalyzer class implements a simple parser that was
based on the BNF grammar. However, users are not allowed to write a complex
query. Only query with SELECT, FROM, WHERE and DURATION are allowed.
Moreover, WHERE clause enforce a simple condition to be used e.g. (Temperature
¿ 22) .

Figure 5.4.: Detailed Class Diagram for QueryAnalyzer.

The class diagram for QueryAnalyzer is presented in Figure 5.4 which contains a
startQueryAnalyzer() to parse the user query. The result is encapsulated in QMes-

61

5. Implementation

sage object (Figure 5.5). A QueryAnalyzerException is thrown in the case of
miss syntax.

Figure 5.5.: Detailed Class Diagram for QMessage.

5.2.2.3. WSNMessenger class

The output of paring a query is an object that is handed to the WSNMessenger
object. Before sending the query, this class discovers a PipeAdvertisement for the
destination, and encapsulates the WHERE clause in a Jxta message. Then it forwards
the message to the destination, whose name is specified within the FROM clause.
Furthermore, this class presents any received results via calling presentQueryResult(),
which performs a projection to all parts that doesn’t match the SELECT clause.

The WSNMessenger class is not dedicated for handling queries, but it is the com-
munication part of the user agent. It has the responsibility for handling all sent and
received messages that are exchanged between the user agent and the sensor gateway.
These messages are shown in Table 5.1. The class diagram of WSNMessenger with
all the public, private and protected methods and some of the variables is shown in
Figure 5.6

62

5.2. User Agent Application

Figure 5.6.: Detailed Class Diagram for WSNMessenger.

5.2.3. User Agent Processes

The Discovery Process for WSNAdvertisements. Figure 5.7 depicts the sequence
diagram of the discovery process. This process is initiated when a user issues a find
service (from the user graphical interface), which searches for WSNAdvertisements
in all connected Rendezvous Peers. After that, they asynchronously responds with the
advertisements that they have. Finally, the contents of the WSNAdvertisements
are displayed in front of the user.

Connecting Process. To send any query to a discovered sensor gateway, a user
should connect to the system in order to create a unique input pipe and a listener for
all received messages. It insures that the user connects with a unique name through
concatenating the current time (in milliseconds), the IP address of his machine and
the user name. Figure 5.8 depicts the sequence diagram of connecting process.

63

5. Implementation

Figure 5.7.: Sequence Diagram for WSNAdvertisements Discovery Process.

Figure 5.8.: Sequence Diagram for Connecting Process.

Sending Query Process. Figure 5.9 shows the sequence diagram for sending query.
It illustrates that a query must be checked two times. The QueryAnalyzer class
checks the syntax of the query through parsing it into the main three parts (SELECT,
FROM and WHERE clauses). Before sending the query, the WSNMessenger class
checks the query again against suitable attributes that match the given attributes in
the destination gateway’s advertisements. The processing will stop if any mistake oc-
curs, otherwise the query will send to the destination gateway over an OutputPipe.

Sending Remove Message Process. To cease the query processing, a user can
delete his query. The user agent takes the right QueryID and sends it to the gateway
inside a REMOVE FILTER BY ID message. This is illustrated in Figure 5.10.

64

5.2. User Agent Application

Figure 5.9.: Sequence Diagram for Sending Query.

Figure 5.10.: Sequence Diagram for Ceaseing Query Processing.

Handling Received Message Process. Table 5.1 shows that a user agents can
receive three different messages from a sensor gateway through an InputPipe class.
In Figure 5.11, all these messages are tested against their types and handled with
different methods.

Disconnect Process. Connection is closed only when the user want to disconnect
from the system, which means that user can’t send further queries or receive results.
The sequence diagram of disconnect process is shown in Figure 5.12. This process
ceases all query’s processing by sending SendRemoveMessage() to all gateways. This
message contains REMOVE FILTER BY USERID as a message type. Then, a lo-
gout() is called to close the inputPipe and the message listener. Finally, the user logs
out from the system.

65

5. Implementation

Figure 5.11.: Sequence Diagram for Handling Received Messages.

5.2.4. User Agent Interface (GUI)

A few screen shots of the running system are shown in Figure 5.13. The main panel
on the left side allows a user to connect/disconnect, find services, send query. The
lower right corner presents the result of discovering process, which aggregates all
gateways and their advertisements in a tree form as shown in the left figure. A User
writes his query in the query text area. Any query, which is successfully sent, are
shown in the upper right corner as filter with a unique ID. In the middle right panel,
the results of query processing are displayed.

5.3. Summary

This chapter has introduced the implementation part of JMSN. While sensor gate-
way has been developed in C, the user agent has been developed in Java. Some
implementation issues were discussed. In the next chapter, an evaluation of JMSN is
presented to give an impression on overall performance.

66

5.3. Summary

Figure 5.12.: Sequence Diagram for Disconnecting.

(a) Discovering Node (b) Presenting the result of Query Processing

Figure 5.13.: JMSN: Screen Shots.

67

5. Implementation

68

Chapter 6
Results

In this chapter, we present the evaluation and the preliminary empirical results for
the performance of JMSN. We have performed experiments to evaluate the system on
normal PCs as well as embedded devices by carrying on a set of experimental tests.
They have been devoted to determine the reliability degree of the system in terms
of continuous run to investigate stability against memory leakages, to examine Jxta
pipes and messages overhead and to identify discovery time for sensor resources.

The first section presents the results of functionality and implementation tests. The
second section describes test specifications that are performed on PCs. These tests
are, effect of discovery process (Section 6.2.2), effect of message size and overhead of
filtering process on querying and filtering process (Section 6.2.3 and Section 6.2.4)
and the impact of memory overhead on the system performance (Section 6.2.5).
Section 6.3 explains the behavior of JMSN when it run on embedded devices.

6.1. Functionality and implementation testing

The functional testing should verify the application design against the functional
requirements that are specified in Chapter 4 and validate the functional design against
the user’s need [67]. It should detect possible internal incompatibility and errors in
the application design. As a consequence, the design can be improved. On the other
hand, implementation testing can be performed by comparing the implementation
with the application design, and by testing the non-functional requirements, so the
implementation can be further improved [70].

69

6. Results

6.1.1. Test specification and results

A test plan for the main functionality of JMSN was performed with test cases and the
desired results. This test is common for both sensor gateway and user agent because
of the integration functionality between them. For instance, if the user issues a query,
the sensor gateway will filter the data and return the results. Another example is
publishing and discovering advertisements.

The testing was divided in five parts according to the main functionality of the JMSN.
1. Login.
2. Join.
3. Publish and Discover Advertisements.
4. Process queries.
5. Handle messages.

From user agent interface, the following test cases that are indicated in Table 6.1 are
performed.

No. Test Case Desired result Result
Test 1.1 Log in Connect to the system OK

and test input pipe creation
Test 2.1 Join predefine Search for and join OK

group WSNGroup
Test 3.1 Discovering Search for any WSN OK

WSNAdvertisements Advertisements in WSNGroup
Test 3.2 Presenting View all WSN OK

Advertisement Advertisements in a tree
grouped by gateway name

Test 4.1 Issuing Query Test filter operation OK
without where clause with type EQ ANY

Test 4.2 Issuing Query Test filter operation OK
with where clause with all filter operation

Test 4.3 Presenting Query Result View Query Results OK
Test 5.1 Remove Query By ID Stop query processing Not OK
Test 5.2 Remove Query By Disconnect from the system OK

user Name and notify all gateways
Table 6.1.: Test specifications and results for main functionality of JMSN.

Only Test 5.1 was not passed since the user agent hangs after issuing remove message.

70

6.2. Sensor Gateway: Testing on PCs

User agent suspends and can’t give any response. This is an implementation problem
due to failure in creating OutputPipe.

6.2. Sensor Gateway: Testing on PCs

6.2.1. Test-bed Equipment

The test has been performed at the Workstation pool of IBR, where twelve machines
of identical hardware are used. They are equipped with Intel Pentium(r) D CPU
3.2GHz, 2.00 GB of RAM and fast Ethernet card. Half of them run Windows XP
and the other run Debian GNU/Linux distribution.

6.2.2. WSN Advertisements Discovery Performance

JMSN directs its sensor advertisements to Rendezvous (RDV) peers, which form the
Jxta overlay network. User should discover these advertisements in a reasonable
time. Average discovery time measures the time that is required by the user agent
to discover the gateways sensor advertisement.

The test setup was made up of one sensor gateway and several user agents, which
were running on Windows and Linux environment. Both the sensor gateway and user
agents have connected to random number of rendezvous peers. The tests have been
performed 75 times and the results were averaged.

To draw a comparison, Figure 6.1 shows the resource discovery time in JMSN and
Intentional Naming System (INS) (Section 3.2.2.3) as a function of n, the number
of rendezvous peers or Intentional Naming Resolver (INR) in the second case. The
discovery time is given in seconds.

While the impact of increasing number of nodes is slightly small on the case of INS,
which is less than 100 ms, the average discovery time is increased in JMSN. By
maintaining one rendezvous peer, the average discovery time is less than 500 ms and
it will be doubled four times in the case of ten connected rendezvous peers within
the overlay network.

71

6. Results

Figure 6.1.: Average Discovery Time of Finding Network Recourses.

6.2.3. Messages and Pipes Overhead

Distributed Query Processing depends on the performance of filter results that is
composed of a fixed size message (approximately 100 Bytes). Since the most impor-
tant way to directly exchange data between sensor gateway and user agents is Jxta
Pipe, it is significant to study their performance. The basic metrics used to eval-
uate them are message Round-Trip Time (RTT) [71]. Parsing time is also another
important factor that reflects the overhead of parsing user messages.

The test was initiated by a sensor gateway (running on Debian platform), which
sent a test message to each connected user, then they returned the same message.
The tests were repeated 100 times with different message size, in order to identify
the average RTT, (application) throughput and the average parsing time. RTT is a
measure of the time it takes for a fixed size message to travel from the gateway to
the user agent and return it back again to the gateway. Throughput is the number of
bits transmitted in a given time interval through a system. The following equation
illustrates how to calculate the (application) throughput in terms of average RTT.

Throughput = 2∗Message Size∗8
RTT

Where Message Size is in bytes and RTT in seconds. The previous equation was
multiplied by factor of two because RTT is two way time and it shows that the
throughput inversely proportional to RTT. Parsing time is defined as the time requires
to parse all messages elements.

72

6.2. Sensor Gateway: Testing on PCs

Figure 6.2 depicts the impact of message size on the RTT in two scenarios, in which
RTT is given in milliseconds. It shows that the RTT is partially changed by increasing

Figure 6.2.: RTT VS Message Size.

the message size. It also illustrates the increasing number of users will add small
overhead on the average RTT. Since throughput is inversely proportional to RTT for
constant message size, the throughput grows with increasing the message size.

Each time the gateway receives a message, JMSN parses it to exclude the basic
elements of it. Figure 6.3 depicts the effect of message size on parsing time with
different connected users.

Figure 6.3.: Message Parsing Time.

73

6. Results

In all shown scenarios, the parsing time slightly increases with the growing message
size. It is ranged from 42 µs to less than 73 µs. With three connected users, the
parsing time is partially changed.

6.2.4. The Overall Filtering Overhead

We are interested in the overall filtering time because it gives an indication on the
performance of the system with increasing number of filters. For that purpose, a
primary test is performed, in which one user agent sent out a query message to the
sensor gateway. Then the time that was needed to process all filters per tuple was
recorded. The test was performed with 1,3,6 and 10 filters for one user and the
average time of 100 operations was plotted.

With constant message size (approximately 100 Bytes) Figure 6.4 illustrates the
overhead of filter operation and sending message. It shows that the time is indeed
linear in n with a slope of 210.4 ms/filter operation.

Figure 6.4.: Filter Overhead on JMSN.

The overhead of each filter process includes the time to process the filter, searching for
user PipeAdvertisement, establishing a connection and finally sending the message.
It appears that searching for user PipeAdvertisement is the most costly operation
because a search query for the user will be sent out to the rendezvous peers in the
case where no such one was found in the local database of the gateway.

74

6.3. Sensor Gateway: Testing on Embedded System

6.2.5. Memory Overhead

In Table 6.2 a summary of the tested conditions and the achieved results is shown
for two cases with different stack size. The results are in megabyte. The first part

Running Scenario approx. memory usage (MB)
Stack size Stack size

8 MB 2 MB
Gateway after discovering RDV 54,4 18,4
Gateway with 3 discovers sensors 62,8 22,7
Gateway with 1 filter 70,8 23,7
Gateway with 3 filters 79,0 29,8
Gateway with 5 filters 95,3 30,2
Gateway with 10 filters 137,6 32,5
Gateway with 15 filters 139 32,7
(from 10 connected users)

Table 6.2.:
Summary of memory consumption tests.

of Table 6.2 shows that the memory overhead of running JMSN over Jxta-C after
bootstrapping and creating an input pipe is relatively high in both cases. The sec-
ond part reveals that with the increasing number of connected users and filters, the
consumed memory size is also increased. Because of large stack size (8 MB), the
consumed memory with 10 connections reaches approximately 139 MB, whereas it is
approximately 33 MB for 2 MB stack size.

This memory footprint is mainly due to the Apache Runtime (APR), which is embed-
ded in the Jxta-C implementation in responsible for creating and managing threads.

6.3. Sensor Gateway: Testing on Embedded System

The sensor gateway application was also tested on both ASUS WL-500G Deluxe V
and WL-500gP. Both of them are equipped with OpenWRT Whiterussian RC5 [72]
and WBridge, a Linux distribution for embedded devices. Appendix B shows how to
install JMSN on Asus router.

The test has started well; but after a while an unexpected failure has occurred. The
problem is located as a segmentation fault breaks down the application. All Jxta-C

75

6. Results

tests were also checked out but they were failed with same problem. The reasons
behind this are unknown. The same problem also appeared in the gateway that
is running on Debian when the internal database is locked. In other words, if the
gateway fails to create this database or access it, the application will fail. However,
this problem was probably due to the memory overhead, as we identified with the
help of ddd debugger, eight threads are usually created during the bootstrapping
phase.

6.4. summary

The first part of this chapter has presented the test specifications and the test results
to check out the functionality and implementation of the current implementation of
JMSN. The second parts has described test specifications to test the performance of
JMSN.

We observed that the discovery time in JMSN was small, although it is higher than
INS due to a fixed wait state required by JMAN. Communication over LAN, different
platforms (Java and C) and different environments (windows and Debian), all intro-
duce an overhead that had an influence on RTT. Moreover, this also had an effect on
the filtering process, which is also affected by discovering pipe advertisements. The
large impact on JMSN is due to memory consumption.

76

Chapter 7
Summary and Future Work

In this thesis we have presented the JMSN architecture for discovering sensor gateway
and executing a declarative queries over sensor networks. Only a small subset of
sensor nodes need to participate in answering the user query without flooding the
query. Many applications in the field of ubiquitous and pervasive computing can take
the advantage of JMSN specially control and observing systems.

7.1. Conclusions

This thesis studied how service discovery could be implemented in favor of sensor
network based on Peer to Peer paradigm. Peer to Peer Systems provide a decen-
tralized approach that does not require any costly infrastructure. Jxta was selected
among other systems since it is a generic overlay network that connects devices on
the network. Jxta is massively scalable since it employs the super-peer concept. Jxta
implements a loosely-coupled consistent DHT rendezvous walker approach to over-
come inconsistency problem of the DHT within the dynamic rendezvous network in
order to efficiently discover service.

Our preliminary implementation of the specialization techniques illustrated that
JMSN combines a peer service discovery with a distributed query processing. The
current implementation enables users to discover WSNAdvertisements that carry in-
formation about a sensor network to allow them to forward their query to the right
sensor gateway over Jxta Point-to-Point Pipe.

JMSN is similar to database approaches; however, the main difference between JMSN
and these approaches is that query processing is neither accomplished by sensor nodes

77

7. Summary and Future Work

nor programmed in sensor nodes. Processing is divided between users and a gateway.
The gateway is responsible to filter sensor data that sensors regularly send them.
Results will be sent out to user if they meet his condition. Then, user completes the
processing by presenting or storing the results based on query attributes.

JMSN design does not come without cost. Our preliminary results showed that
the current implementation of Jxta-C consumes memory, which is not efficient for
embedded system with limited memory. It also showed that use of Jxta Point-to-
Point Pipes is inefficient for carrying messages. This means, Jxta-C is not bad, rather
its urgent needs to improve its memory pool.

7.2. Future Works

A number of issues have not been discussed further in this thesis. This work opens a
plethora of new research directions at the boundary of Peer to Peer Systems, database
systems and wireless network. First, we would like to improve the functionality of
JMSN. It is necessary to enhance the system with complex query that can benefit
from Peer to Peer System in searching. This includes searching by partial names
and attributes such as Location. Aggregate function such as Average, Max, Count
. . . etc., should be implemented in order to cope with all statistical operations.

Second, the simple design of our filter algorithm can be improved in three directions.
In the first one, similar sensor data should not be sent out. They can be aggregated
and compressed before returning them to the user. In the second direction filter
processing can be optimized by gathering similar filter and by using anticipated
methods that are used for example in the artificial intelligent. Instead of using TCP
based pipe, UDP based pipe (propagate pipe) can be used as a third way to improve
the overall system performance.

Third, as a Jxta Micro Peer, we would like to extend the current version of Jxta-C
implementation to cope with the limited memory devices. The basic functionality of
Jxta with the fundamental services are only required. This option is not an alternative
solution, but it is an option for these kinds of devices.

Summing up, this work provides a solution to existing problems motivated by using
the Peer to Peer paradigm in ubiquitous and pervasive computing systems. Our
results have presented that current implementation of JMSN over Jxta-C wouldn’t
be accepted as a middleware for embedded system without improving it.

78

Bibliography

[1] Dejan S Milojicic and Vana Kalogeraki and Rajan Lukose and Kiran Nagaraja
and Jim Pruyne and Bruno Richard and Sami Rollins and Zhichen Xu . Peer-
to-Peer Computing. HP Laboratories Palo Alto; 2002.

[2] Oram A. Peer-To-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly; 2001.

[3] IPOQUE;. Available from: http://www.ipoque.com/en/p2p_filter.html

[4] BitTorrent;. Available from: http://www.bittorrent.com/

[5] G3 Torrent;. Available from: http://g3torrent.sourceforge.net/

[6] Shareaza;. Available from: http://www.shareaza.com/

[7] Kulbak Y, Bickson D. The emule protocol specification; 2005. Available from:
citeseer.ist.psu.edu/kulbak05emule.html

[8] Hughes D, Coulson G, Walkerdine J. Free Riding on Gnutella Revisited: The
Bell Tolls? IEEE Distributed Systems Online 2005;6(6):1.

[9] Hauswirth M, Dustdar S. Peer-to-Peer: Grundlagen und Architektur.
Datenbank-Spektrum 2005;5(13):5–13.

[10] Cohen E, Shenker S. Replication strategies in unstructured peer-to-peer net-
works; 2002. In The ACM SIGCOMM’02 Conference, August 2002. Available
from: citeseer.ist.psu.edu/cohen02replication.html

[11] Bo CW. Peer-to-Peer Overlay Networks: A Survey; 2003. Available from:
citeseer.ist.psu.edu/706822.html

79

http://www.ipoque.com/en/p2p_filter.html
http://www.bittorrent.com/
http://g3torrent.sourceforge.net/
http://www.shareaza.com/
citeseer.ist.psu.edu/kulbak05emule.html
citeseer.ist.psu.edu/cohen02replication.html
citeseer.ist.psu.edu/706822.html

Bibliography

[12] Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: Proceedings of the
ACM SIGCOMM ’01 Conference. San Diego, California; 2001. 149–160.

[13] Ratnasamy S, Francis P, Handley M, Karp R, Shenker S. A Scalable Content
Addressable Network. In: Proceedings of ACM SIGCOMM; 2001. .

[14] Maymounkov P, Mazieres D. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In: Proc. 1st International Workshop on Peer-to-Peer
Systems; 2002. http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf.

[15] Freenet Website.;. Available from: http://freenetproject.org/

[16] Napster;. Available from: http://www.napster.com/

[17] Softwax;. Available from: http://www.softwax.com/

[18] KaZaa Website.;. Available from: http://www.kazaa.com/us/index.htm

[19] JXTA;. Available from: http://www.jxta.org/

[20] Peer-to-Peer: Content Distribution.;. Available from: http://www.intel.com/

it/pdf/peer-peer-content-distribution.pdf

[21] Tsoumakos D, Roussopoulos N. Analysis and comparison of P2P search methods.
In: InfoScale ’06: Proceedings of the 1st international conference on Scalable
information systems. New York, NY, USA: ACM Press; 2006. P. 25.

[22] Tang C, Xu Z, Dwarkadas S. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In: SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for
computer communications. New York, NY, USA: ACM Press; 2003. 175–186.

[23] Traversat B, Abdelaziz M, Pouyoul E. A Loosely-Consistent DHT Rendezvous
Walker. Sun Microsystems, Inc; 2003.

[24] Barkai D. A New Computing Model for the Internet.; 2005. Available from:
http://www.intel.com/intelpress/chapter-peer.pdf

[25] BOINCstats - BOINC Statistics.;. Available from: http://www.boincstats.

com/stats/project_graph.php?pr=sah

80

http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf
http://freenetproject.org/
http://www.napster.com/
http://www.softwax.com/
http://www.kazaa.com/us/index.htm
http://www.jxta.org/
http://www.intel.com/it/pdf/peer-peer-content-distribution.pdf
http://www.intel.com/it/pdf/peer-peer-content-distribution.pdf
http://www.intel.com/intelpress/chapter-peer.pdf
http://www.boincstats.com/stats/project_graph.php?pr=sah
http://www.boincstats.com/stats/project_graph.php?pr=sah

Bibliography

[26] Skype;. Available from: http://www.skype.com/

[27] Mauthe A, Hutchison D. Peer-to-Peer Computing: Systems, Concepts and Char-
acteristics. Praxis in der Informationsverarbeitung & Kommunikation (PIK), K
G Sauer Verlag, Special Issue on Peer-to-Peer 2003;26(03/03).

[28] Steinmetz R, Wehrle K. Peer-to-Peer Systems and Applications. Lecture Notes
in Computer Science. Springer; 2005.

[29] Ledlie J, Taylor J, Serban L, Seltzer M. Self-organization in peer-
to-peer systems; 2002. Available from: citeseer.ist.psu.edu/article/

ledlie02selforganization.html

[30] SETI@HOME;. Available from: http://setiathome.ssl.berkeley.edu/

[31] Groove Virtual Office;. Available from: http://www.groove.net/home/index.
cfm

[32] Microsystems S. JXTA v2.3.x: Java Programmer’s Guide. Sun Microsystems,
Inc; 2005.

[33] Brookshier D, Govoni D, Krishnan N, Soto JC. Enterprise Modeling and Com-
puting with UML. Sams Publishing; 2002.

[34] Chord;. Available from: http://pdos.csail.mit.edu/chord/

[35] Subramanian R, Goodman B. Idea Group Publisher, Hershey, PA, USA; 2005.

[36] Helal S. Standards for Service Discovery and Delivery. IEEE Pervasive Comput-
ing 2002;1(3):95–100.

[37] Feng J, Koushanfar F, Potkonjak M. System Architecture for Sensor Network
Issues, Alternatives, and Directions. In: IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors(ICDD’02); 2002. .

[38] Tilak S, Abu-Ghazaleh NB, Heinzelman W. A taxonomy of wireless micro-sensor
network models. SIGMOBILE Mob Comput Commun Rev 2002;6(2):28–36.

[39] Römer K, Kasten O, Mattern F. Middleware challenges for wireless sensor net-
works. SIGMOBILE Mob Comput Commun Rev 2002;6(4):59–61.

81

http://www.skype.com/
citeseer.ist.psu.edu/article/ledlie02selforganization.html
citeseer.ist.psu.edu/article/ledlie02selforganization.html
http://setiathome.ssl.berkeley.edu/
http://www.groove.net/home/index.cfm
http://www.groove.net/home/index.cfm
http://pdos.csail.mit.edu/chord/

Bibliography

[40] Römer K. Programming Paradigms and Middleware for Sensor Networks.
GI/ITG Fachgespräch Sensornetze, Karlsruhe 2004;.

[41] Shenker S, Ratnasamy S, Karp B, Govindan R, Estrin D. Data-centric storage
in sensornets. ACM SIGCOMM Computer Communication Review 2003;33(1):
137–142.

[42] Heidemann J, Silva F, Estrin D. Matching Data Dissemination Algorithms to
Application Requirements. In: Proc. 1st Intl. Conf. on Embedded Networked
Sensor Systems (SenSys). Los Angeles, CA: ACM; 2003. 218–230.

[43] Madden S, Franklin MJ, Hellerstein JM, Hong W. TAG: A Tiny Aggregation
Service for ad hoc Sensor Networks. In: OSDI; 2002. .

[44] Yu Y, Govindan R, Estrin D. Geographical and Energy Aware Routing: A
recursive data dissemination protocol for wireless sensor networks. University of
California at Los Angeles; 2001.

[45] Zhao F, Guibas L. Wireless Sensor Networks – An Information Processing Ap-
proach. Amsterdam: Elsevier / Morgan-Kaufman; 2004.

[46] Yao Y, Gehrke J. The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec 2002;31(3):9–18.

[47] TinyDB;. Available from: http://telegraph.cs.berkeley.edu/tinydb

[48] Hill J, Culler D. A wireless embedded sensor architecture for system-level op-
timization; 2001. Available from: citeseer.ist.psu.edu/hill01wireless.

html

[49] Yao Y, Gehrke J. Query Processing for Sensor Networks. In: First Biennial
Conference on Innovative Data Systems Research(CIDR 2003); 2003. .

[50] Gehrke J, Madden S. Query Processing in Sensor Networks. IEEE PERVASIVE
Computing 2004;.

[51] C Intanagonwiwat RG, Estrin D. Directed diffusion: a scalable and robust com-
munication paradigm for sensor networks. In: Proceedings of the sixth annual in-
ternational conference on Mobile computing and networking. Boston, MA USA;
2000. 56–67.

82

http://telegraph.cs.berkeley.edu/tinydb
citeseer.ist.psu.edu/hill01wireless.html
citeseer.ist.psu.edu/hill01wireless.html

Bibliography

[52] Sun Microsystems. Jini Community Resources: Jini Technology Architectural
Overview; 1999.

[53] Sundramoorthy V, Hartel PH, Scholten J. On Consistency Maintenance In Ser-
vice Discovery. In: 20th IEEE Int. Parallel & Distributed Processing Symp.
(IPDPS). Rhodos Island, Greece: IEEE Computer Society Press, Los Alamitos,
California; 2006. .

[54] Dabrowski C, Mills K. Analyzing Properties and Behavior of Service Discov-
ery Protocols Using an Architecture-Based Approach; 2001. Available from:
citeseer.ist.psu.edu/dabrowski01analyzing.html

[55] Bettstetter C, Renner C. A Comparison of Service Discovery Protocols and Im-
plementation of the Service Location Protocol. In: EUNICE 2000, Sixth EU-
NICE Open European Summer School. Twente, Netherlands; 2000. .

[56] Lee C, Helal S. Protocols for Service Discovery in Dynamic and Mobile Networks.
In: International Journal of Computer Research.; 2002. .

[57] Service Discovery in the Future for Mobile Commerce; 2003. Available from:
http://www.acm.org/crossroads/xrds7-2/service.html

[58] Guttman E, Perkins C, Veizades J, Day M. Service Location Protocol, Version
2. RFC 2608 (Proposed Standard); 1999. Updated by RFC 3224. Available
from: http://www.ietf.org/rfc/rfc2608.txt

[59] Guttman E. Current Solutions for Web Service Composition. IEEE Internet
Computing 1999;3(4):71–80.

[60] Adjie-Winoto W, Schwartz E, Balakrishnan H, Lilley J. The design and imple-
mentation of an intentional naming system. In: SOSP ’99: Proceedings of the
seventeenth ACM symposium on Operating systems principles. New York, NY,
USA: ACM Press; 1999. 186–201.

[61] Balazinska M, Balakrishnan H, Karger D. INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In: International Conference
on Pervasive Computing. Zurich, Switzerland; 2002. .

[62] Twine: Scalable Intentional Resource Discovery for Pervasive Computing En-
vironments; 2003. Available from: http://nms.csail.mit.edu/projects/

twine/

83

citeseer.ist.psu.edu/dabrowski01analyzing.html
http://www.acm.org/crossroads/xrds7-2/service.html
http://www.ietf.org/rfc/rfc2608.txt
http://nms.csail.mit.edu/projects/twine/
http://nms.csail.mit.edu/projects/twine/

Bibliography

[63] Marin-Perianu R, Scholten J, Havinga PJM. CODE: Description Language for
Wireless Collaborating Objects. Centre for Telematics and Information Tech-
nology, Univ. of Twente, The Netherlands; 2005.

[64] Microsoft Co. Understanding Universal Plug and Play: White Paper; 2000.

[65] Frank C, Handziski V, Karl H. Service Discovery in Wireless Sensor Networks;
2004.

[66] Teco, Particle Wib Site;. Available from: http://particle.teco.edu/

[67] Baekgaard L. Enterprise Modeling and Computing with UML. Idea Group;
2006. In press.

[68] Ahmed R, Boutaba R, Cuervo F, Iraqi Y,Li T, Limam N, Xiao J,Ziembicki
J. Service Discovery Protocols: A Comparative Study. In: Proceeding of
the IFIP/IEEE International Symposium on Integrated Network Management
(IM’2005); 2005. To appear.

[69] Silva F, Heidemann J, Govindan R. Network Routing Application Programmer’s
Interface; 2002. Available from: citeseer.ist.psu.edu/silva02network.

html

[70] Lyngstad BPS. Network technologies for Java-enabled, mobile devices. Master
thesis; 2001.

[71] Halepovic E, Deters R. The Costs of Using JXTA. In: P2P ’03: Proceedings of
the 3rd International Conference on Peer-to-Peer Computing. Washington, DC,
USA: IEEE Computer Society; 2003. P. 160.

[72] OpenWRT;. Available from: http://www.openwrt.org

84

http://particle.teco.edu/
citeseer.ist.psu.edu/silva02network.html
citeseer.ist.psu.edu/silva02network.html
http://www.openwrt.org

Appendix A
BNF for JMSN Query

Input ::= select statement

select statement ::= select expression

select expression ::= <SELECT> <ALL> | select list <FROM> from location list
(<WHERE> cond exp)? <DURATION> time interval

time interval ::= <INTEGER LITERAL>

from location list ::= <IDENTIFIER>

select list ::= attribute (<COMMA> attribute)*

attribute ::= <IDENTIFIER>

cond exp ::= cond factor

cond factor ::= (<NOT>)? cond test

cond test ::= cond primary

cond primary ::= simple cond

simple cond ::= between cond | comparison cond

comparison cond ::= row constructor comparison operator row constructor

between cond ::= row constructor (<NOT>)? <BETWEEN> row constructor

85

BNF for JMSN Query

<AND> row constructor | row constructor (<NOT>)? <BETWEENX> row constructor
<AND> row constructor

row constructor ::= expression

comparison operator ::= <LESSEQUAL> |<GREATEREQUAL> |<NOTEQUAL>
| <EQUAL> | <LESS> | <GREATER>

expression ::= <INTEGER LITERAL> | <FLOATING POINT LITERAL>

86

Appendix B
Installing Jxta on Asus Router

To install JMSN on Asus Router that is equipped with OpenWRT (RC 5) the fol-
lowing standard libraries are necessary,

1. libopenssl: (ipkg install libopenssl 0.9.8d-1 mipsel.ipk)

2. libsqlite3: (ipkg install libsqlite 3.3.8-1 mipsel.ipk)

3. libexpat: (ipkg install libexpat 2.0.0-1 mipsel.ipk)

4. libpthread: (ipkg install libpthread 0.9.27-1 mipsel.ipk)

5. zlib: (ipkg install zlib 1.2.3-3 mipsel.ipk)

Besides the previous libraries, the following libraries are required,

1. libxml2: (ipkg install libxml2 2.6.20-1 mipsel.ipk)

2. libapr: (ipkg install libapr 1.2.7-1 mipsel.ipk)

3. apr-util: (ipkg install apr-util 1.2.7-1 mipsel.ipk)

Now it is possible to install JMSN. This package, jmsn 1.1-beta-1 mipsel.ipk, includes
Jxta libraries as well as JMSN
(ipkg install jmsn 1.1-beta-1 mipsel.ipk)

It includes all test files that are shipped with jxta-c besides our prototype JMSN,
the sensor Application. There are also four tutorials can be tested to make sure that
Jxta-C works probably.

87

Installing Jxta on Asus Router

To run the application just type sensorApplication (or sensorApplication [name AsusUser-
Name]) If the application success, it will create a file called Platformconfig and a
hidden folder named as .cm to store a SQLite database.

Notes

• To ensure the router exposes the sensor network, use sensorManager as a test
tool. You can use the following package sensorTest 1-1 mipsel.ipk (ipkg install
sensorTest 1-1 mipsel.ipk) to install it. It lists are sensors in the environments.

• Asus WL-500g Deluxe has approximately 1.6M of 3.2M of file system available
and an external USB stick is required. Asus WL-500gP has enough file system,
more than 5MB of 7.2 MB is available.

88

	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Definition
	Objective
	Research Question
	Thesis Organization

	Background on Peer to Peer Systems
	Overview
	Basic Definition
	Peer to Peer Classification
	Peer to Peer Search Methods
	Searching in Unstructured Peer-to-Peer Networks
	Searching in Structured Peer-to-Peer Networks

	Peer to Peer Applications
	Peer to Peer Characteristics
	Examples of well known Peer to Peer Systems
	Napster
	Gnutella
	FreeNet
	Search for Extra-terrestrial Intelligence (SETI@home)
	Groove
	JXTA
	Chord
	Content Addressable Network (CAN)

	Discussion
	Summary

	State of the Art
	Sensor Data Management
	Sensor Network Architecture Aspects
	Routing Approaches in Wireless Sensor Networks
	Data-Centric Routing Approaches
	Rendezvous Routing approaches

	Sensor Database Approaches
	Cougar
	TinyDB

	Query Processing in Sensor Networks

	Service Discovery Protocols
	Service Directory Consistency
	Examples of Service Discovery Protocol
	Salutation
	Service Location Protocol, SLP
	Intentional Naming System (INS)
	INS/Twine

	Comparison between Jxta and Service Discovery Protocols

	Summary

	Conceptual Design
	System Overview
	Analysis
	Defining the Use Case Model
	Use Case 1
	Use Case 2
	Use Case Model

	Requirements

	System Design
	System Architecture Overview
	Sensor Gateway Layers
	User Agent Layers
	Jxta Layer

	Block Diagram
	Description of Components
	User and Gateway Organizer
	Sensor Manager
	Advertisements Publisher
	Advertisements Discovery
	Filtering Data
	Filtering Mechanism
	Filter Data Model
	Filtering Algorithm
	Filtering process cycle

	WSNMessenger
	Query Analyzer
	Result Collector

	Message Handler

	Summary

	Implementation
	Sensor Gateway Application
	Technologies Used
	Implementation of Sensor Gateway
	Gateway Organizer
	Sensor Manager
	Advertisements Publisher
	Message Handler
	Data Filter

	User Agent Application
	Technologies Used
	Implementation of User Agent
	WSNGroupManager class
	QueryAnalyizer class
	WSNMessenger class

	User Agent Processes
	User Agent Interface (GUI)

	Summary

	Results
	Functionality and implementation testing
	Test specification and results

	Sensor Gateway: Testing on PCs
	Test-bed Equipment
	WSN Advertisements Discovery Performance
	Messages and Pipes Overhead
	The Overall Filtering Overhead
	Memory Overhead

	Sensor Gateway: Testing on Embedded System
	summary

	Summary and Future Work
	Conclusions
	Future Works

	Bibliography
	Appendices
	BNF for JMSN Query
	Installing Jxta on Asus Router

