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Abstract 

Data clustering is an unsupervised classification method aims at creating groups of 

objects, or clusters, in such a way that objects in the same cluster are very similar and 

objects in different clusters are quite distinct. Though k-means is very popular for general 

clustering, it suffers from some disadvantages such as (1) Its performance depends highly 

on initial cluster centers, (2) The number of clusters must be previously known and fixed, 

and (3) The algorithm contains the dead-unit problem which results in empty clusters. 

Random k-means initialization generally leads k-means to converge to local minima i.e. 

inacceptable clustering results are produced. In this thesis a method based on some rough 

set theory concepts and reverse nearest neighbor search is proposed to find the appropriate 

initial centers for the k-means clustering problem. The complexity of the proposed method 

is analyzed as well. Also, a method is described to determine the number of clusters in a 

dataset. Experimental results show the accuracy and effectiveness of the proposed methods.  

Keywords: data clustering, k-means, initialization, cohesion degree, RNN 
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Chapter 1:Introduction 

Machine learning is a subfield of artificial intelligence that is concerned with the 

design, analysis, implementation, and applications of programs that learn from experience. 

Machine learning is classified as supervised learning or unsupervised learning. In the 

former the set of training data is available, and a classification algorithm is designed by 

exploiting this a priori known information to classify the data points into pre-defined 

classes. In the latter, there is no a priori knowledge about the classes of the data points [1]. 

Data clustering (or just clustering), is an unsupervised classification method aims at 

creating groups of objects, or clusters, in such a way that objects in the same cluster are 

very similar and objects in different clusters are quite distinct [2].  

Cluster analysis has been widely used in numerous applications, including market 

research, pattern recognition, data analysis, and image processing. In business, clustering 

can help marketers discover interests of their customers based on purchasing patterns and 

characterize groups of the customers. In biology, it can be used to derive plant and animal 

taxonomies, categorize genes with similar functionality, and gain insight into structures 

inherent in populations. In geology, specialist can employ clustering to identify areas of 

similar lands, similar houses in a city and etc. data clustering can also be helpful in 

classifying documents on the Web for information discovery [3]. 

Data clustering, also called cluster analysis, is a challenging field of research in which 

applications pose their own special requirements. Data mining applications place the 

following special requirements on clustering techniques [3]:  
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- Scalability: Clustering applications may have a large database that contains millions 

of objects. So, highly scalable clustering algorithms are needed to successfully form the 

clusters. 

- Ability to deal with different types of attributes: data points may have different 

types such as numerical, ordinal, categorical, and binary [2]. Different applications may 

require clustering data of a one type of mixture of data types.  

- Arbitrary shape discovery: Some clustering algorithms determine clusters based on 

distance measurement such as Euclidean. These algorithms form spherical clusters. Other 

clustering algorithms are needed to find clusters of arbitrary shapes such as those based on 

density.  

- Insensitivity to noise: Clustering algorithms are needed to be insensitive to noise 

and outlier data to avoid the result of poor clustering. 

- High dimensionality: Many clustering algorithms can efficiently find clusters of low 

dimensional data. However, clustering in high dimensional space is a challenging task since 

distances between objects become very large and average density of points is likely to be 

quite low.  

In the literature, many clustering algorithms have been proposed. These algorithms differ 

from each other by the criteria considered which lead to different categories of clustering 

algorithms. Although it is difficult to find strict categorization of the clustering algorithms 

because the categories may overlap, the following categorization is helpful to discriminate 

the clustering algorithms [3]: 
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Partitioning methods: A partitioning method creates k partitions (or clusters) such 

that k ≤ n where n is the total number of objects. It creates an initial portioning and then 

iteratively moves the objects from one cluster to another to improve the partitioning. Good 

clustering is that the similarity between objects in the same cluster is high whereas the 

dissimilarity between objects in the different clusters is high. The k-means algorithm is a 

commonly used partitioning method [4]. 

Hierarchical methods: A hierarchical method creates a hierarchal structure of the 

data objects. Then a given number k of clusters determines how to cut the hierarchy. It can 

be either agglomerative or divisive. The agglomerative approach starts by considering each 

object as a separate cluster. Then it iteratively merges the most similar clusters until 

grouping all the objects in one cluster. The divisive approach starts by considering the 

entire objects as one cluster. Then it iteratively splits each cluster into smaller clusters until 

each objects forms its own cluster. AGNES and DIANA [5] are examples of hierarchical 

clustering. BIRCH [6] integrates hierarchical clustering with iterative (distance-based) 

relocation. 

Density-based methods: The idea behind these methods is to group dense objects 

into clusters. An object is dense if its neighborhood if a given clusters contains at least 

minimum number of objects. These methods have the advantage to find clusters with 

arbitrary shapes and they are insensitive to noise and outliers. DBSCAN [7] and OPTICS 

[8] are typical examples of density-based clustering. 

Grid-based methods: These methods divide the object space into a finite number of 

cells that form a grid structure. Therewith connected cells are grouped in a cluster. STING 



4 
 

[9] is an example of grid-based clustering. Some techniques such as CLIQUE [10] combine 

both density-based and grid-based approaches. The main advantages of these methods are 

fast processing and arbitrary-shape clusters foundation.  

Model-based methods: This approach creates a mathematical model for each of the 

clusters and finds the best fit of the data to the given model. A main advantage is that these 

methods automatically determine the number of clusters based on standard statistics. 

COBWEB [11] and self-organizing feature maps [12] are examples of model-based 

clustering. 

Methods for high-dimensional data: Distance- and Density-based methods are 

inefficient for clustering high-dimensional data since objects are increasingly sparse. 

Alternative approaches, such as subspace clustering methods and frequent pattern-based 

clustering, have been proposed.  Subspace clustering methods search for clusters in 

subspaces of the data, rather than over the entire data space. CLIQUE [10] and PROCLUS 

[13] are examples of subspace clustering methods. Frequent pattern-based clustering 

methods extract distinct frequent patterns among subsets of dimensions that occur 

frequently. pCluster [25] is an example of frequent pattern-based clustering that groups 

objects based on their pattern similarity. 

1.1   Clustering Vocabularies 

In this section, we introduce some basic concepts that are frequently encountered in the 

field of cluster analysis, i.e. objects and attributes, similarity and dissimilarity, dataset, and 

cluster centers. 
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1.1.1 Dataset 

A dataset is a collection of data items that have different characteristics. In clustering, 

these data items are grouped into clusters.  

1.1.2 Objects and Attributes 

An object is a single data item, i.e. a member in a dataset. It can also be referred to as 

data point, pattern case, observation, individual, item, tuple, record, or object. An attribute 

is value that specifies of a property of the object such as length, weight, etc. It can also be 

referred to as variable, or feature. 

Mathematically, a data set D with n objects, each of which is described by d attributes, 

is denoted by                 , where                   
  is a vector denoting the 

i
th

 object and     is a scalar denoting the j
th

 component or attribute of   . The number of 

attributes d is also called the dimensionality of the data set [2]. 

 

1.1.3 Data Types 

Data clustering algorithms are associated with types of data the attributes have [2]. An 

attribute can be Binary, Categorical, Ordinal, Interval-scaled, or Ratio-Scaled [3].  

 

- Binary attributes has only two states: 0 or 1, where 0 means that the variable is absent, 

and 1 means that it is present. 

- Categorical attributes, also referred to as nominal, are simply used as names, such as 

the brands of cars and names of bank branches. That is, a categorical attribute is a 

generalization of the binary variable; it can take on more than two states. 
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- Ordinal attributes resembles a categorical variable, except that the M states of the 

ordinal value are ordered in a meaningful sequence. For example, professional ranks are 

often enumerated in a sequential order, such as assistant, associate, and full for 

professors. 

- Interval-scaled attributes are continuous measurements of a linear scale such as 

weight, height and weather temperature.  

- Ratio-Scaled attributes make a positive measurement on a nonlinear scale. For 

example an exponential scale,     , and the volume of sales over time are ration-scaled 

attributes.  

 

1.1.4 Similarity and Dissimilarity 

In data clustering, similarity and dissimilarity measures are used to describe 

quantitatively the similarity or dissimilarity of two data points or two clusters. Similarity 

coefficients are used to describe quantitatively how similar two data points are or how 

similar two clusters are: the greater the similarity coefficient, the more similar are the two 

data points. Dissimilarity measure, such as distance, is the other way around: the greater the 

dissimilarity measure or distance, the more dissimilar are the two data points or the two 

clusters. For example, the Euclidean distance between two objects x and y is considered a 

dissimilarity measure. 

        (∑       
 

 

   

)

 
 

                   

The lower the distance between x and y, the more probability that x and y fall in the same 

cluster. 
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1.1.5 Cluster and Cluster Center 

In data clustering, a cluster is a group of objects that have common properties, show 

small dissimilarities, have relations with at least one object in the cluster, and are clearly 

distinguishable from the rest of objects in the dataset. A cluster center is a reference point in 

the cluster. That is, the center is the representative of the cluster. Figure 1.1 shows three 

well-separated clusters, each of them is represented by its center.  

 

Figure 1.1: Three well-separated clusters 

 

 

1.1.6 Hard Clustering and Fuzzy Clustering 

 In hard clustering, algorithms assign a class label li   {1, 2, . . . , k} to each object xi to 

identify its cluster class, where k is the number of clusters. In other words, in hard 

clustering, each object is assumed to belong to one and only one cluster. Mathematically, 

the result of hard clustering algorithms can be represented by a k×n matrix 



8 
 

   (

          

          

 
   

 
   

 
 

 
   

) 

where n denotes the number of records in the data set, k denotes the number of clusters, 

and uji satisfies 

                                         (a) 

∑    
 
                            (b) 

∑    
 
                          (c) 

Constraint (a) implies that each object either belongs to a cluster or not. Constraint (b) 

implies that each object belongs to only one cluster. Constraint (c) implies that each cluster 

contains at least one object, i.e., no empty clusters are allowed.  

In fuzzy clustering, the assumption is relaxed so that an object can belong to one or 

more clusters with probabilities. The result of fuzzy clustering algorithms can also be 

represented by a k × n matrix U defined above with the following relaxed constraints: 

      [   ]                              (a) 

∑    
 
                            (b) 

∑    
 
                          (c) 
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1.2   Background  

The k-means algorithm is the choice for many clustering tasks, especially with low 

dimension datasets. This algorithm is a partitional one. It takes the input parameter k, the 

number of clusters, and partitions a set of n objects into k clusters so that the resulting intra-

cluster similarity is high but the inter-cluster similarity is low. The algorithm attempts to 

find the cluster centers, (C1 …… Ck), such that the sum of the squared distances of each 

data point, xi , 1 ≤ i ≤ n ,to its nearest cluster center Cj, 1 ≤ j ≤ k, is minimized. First, the 

algorithm randomly selects the k objects, each of which initially represents a cluster mean 

or center. Then, each object xi in the data set is assigned to the nearest cluster center .i.e to 

the most similar center. The algorithm then computes the new mean for each cluster and 

reassigns each object to the nearest new center. This process iterates until no changes occur 

to the assignment of objects. The convergence results in minimizing the sum-of-squares 

error that is defined as the summation of the squared distances from each object to its 

cluster center as in formula (2) [4, 30].  

     ∑ ∑        
 

     

 

   

                       

where SSE is the sum-of-squares error for all objects in the data set; xi is an object; and mj 

is the mean of cluster Cj. The following procedure summarizes the k-means algorithms [3]:  

Algorithm: k-means. The k-means algorithm for partitioning, where each 

cluster’s center is represented by the mean value of the objects in the 

cluster. 

 

Input: 

k: the number of clusters, 

D: a data set containing n objects. 
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Output:  

A set of k clusters. 

 

Method: 

(1) randomly choose k objects from D as the initial cluster centers; 

(2) repeat 

(3)    (re)assign each object to the cluster to which the object is    

       the most similar, based on the mean value of the   

       objects in the cluster; 

(4)    update the cluster means, i.e., calculate the mean value of   

       the objects for each cluster; 

(5) until no change; 

The k-means partitioning algorithm 

Figure 1.2 illustrates the procedure. The figure shows a data set consists of three 

clusters blue, brown, and green. For more explanation the figure is divided into three parts. 

In part (a), the first iteration 1 is shown in which the three centers are selected randomly 

(represented as plus signs in the figure).  

 

Figure 1.2 part (a): k-means clustering example 

 

In part (b) iterations 2 to 5 are shown. In this phase the distances from each object to the 

selected centers are calculated and the each object is assigned to the nearest cluster center. 

This calculation and assignment is repeated in each iteration in this phase.  
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Figure 1.2 part (b): k-means clustering example 

 

In part (c) iteration 6 is shown. In this iteration the k-means clustering procedure 

converges. The convergence occurs when no change occur on the objects assignment 

compared to the previous iteration (iteration 5). 

 

Figure 1.2 part (c): k-means clustering example 
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1.3     Problem Statement  

Despite being used in a wide array of applications, the k-means algorithm is not exempt 

of drawbacks, mainly [19, 28]: 

- As many clustering methods, the k-means algorithm assumes that the number of 

clusters k in the database is known beforehand which, obviously, is not necessarily true 

in real-world applications. 

- As an iterative technique, the k-means algorithm is especially sensitive to initial centers 

selection. 

- The k-means algorithm may converge to local minima. 

The problem of initial starting conditions is not exclusive to the k-means algorithm but 

shared with many clustering algorithms. Figure 1.3 illustrates the problem. For more 

explanation the figure is divided into three parts. The figure shows a data set consist of 

three clusters blue, brown, and green. In part (a) the first iteration 1 is shown in which the 

three centers are selected randomly. 

 

Figure 1.3 part (a): Clustering problem example in k-means 
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In part (b) iterations 2 to 4 are shown. In this phase the distances from each object to the 

selected centers are calculated and the each object is assigned to the nearest cluster center. 

In each iteration, the assignments of objects to the nearest of center is recalculated. Centers 

are updated in each iteration. The new centers are computed by averaging the feature 

vectors of all objects assigned to each of them. This calculation and assignment is repeated 

in each iteration in this phase.  

 

Figure 1.3 part (b): Clustering problem example in k-means 
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In part (c) iteration 5 is shown. In this iteration the procedure converges since no 

changes occur compared to iteration 4. Good clustering should results in forming the 

clusters as in Figure 1.2 part (c). However, this is a bad chance. The randomly initialized 

centered converged in iteration 5 to local minimum which results in dividing the brown 

cluster into two clusters and merging the blue and green clusters. 

This problem occurs frequently since the chance of electing one center for each cluster 

is very small. Assume there are k clusters having the same number of objects n, the 

probability (P) of choosing one center for each cluster is [26]: 

   
                                                      

                                    
  

    

     
 

  

  
 

 

 

Figure 1.3 part (c): Clustering problem example in k-means 

 

Random initialization may result in dead point problem. This problem may occur when 

an outlier is randomly selected as initial center. In this case the outlier center never wins in 

the process of assigning a data point and an empty cluster will result in. Figure 1.4(a) shows 
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a dataset that contains two clusters. An outlier appears in the dataset. Figure 1.4(b) shows 

that an empty cluster results in when the outlier is selected as an initial center. 

In this thesis a novel initialization algorithm is proposed based on the rough set theory 

concepts and the reverse nearest neighbor (RNN) search. The algorithm defines and 

computes the cohesion degree and the reverse nearest neighbor degree for the objects in the 

dataset and employs them to determine the initial centers. This thesis also introduces a 

novel algorithm to determine the number of clusters based on the cohesion degree and the 

reverse nearest neighbor degree. The rest of this thesis is organized as follows. In chapter 2, 

the recent related work is overviewed. In chapter 3, the cohesion degree of the 

neighborhood of an object and the coupling degree between neighborhoods of objects are 

defined. Also, the proposed initialization algorithm and k-determination algorithm are 

introduced and the corresponding time complexity is analyzed. In chapter 4, the 

experimental results are viewed and analyzed. Then the conclusion is given in chapter 5. 

 
Figure 4: Dead point problem 
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Chapter 2: Related Work 

Fuyuan et.al. [20] have presented a method for initializing k-means. Based on Rough 

set Concepts [21] and neighborhood of objects, the method defines the cohesion degree of 

the neighborhood of an object and the coupling degree between neighborhoods of objects. 

Then the highest cohesion degree object is selected as the first center. After that, the 

coupling degree between the first center and the next highest degree object is computed and 

compared; if the coupling degree is less than some , the next highest degree object is 

selected as the new center. Then the steps are repeated till selecting k centers where k is the 

predefined number of clusters. The experiments are conducted on a PC with an Intel 

Pentium 4 processor (2.4 GHz) and 1G byte memory running the Windows XP SP3 

operating system. The K-Means algorithms with the three different initialization methods 

are coded in MATLAB 7.0 programming language. To evaluate the efficiency of clustering 

algorithms, three evaluation index accuracy (AC), precision (PR), and recall (RE) are 

employed in the following experiments. In order to define the three kinds of evaluation 

indexes, the following quantities were defined: 

k - the number of classes of the data, which is known, 

ai - the number of objects that are correctly assigned to the class Ci ,(1≤ i ≤ k) 

bi - the number of objects that are incorrectly assigned to the class Ci, 

ci - the number of objects that should be in, but are not correctly assigned to the class Ci 

The accuracy, precision and recall are defined as: 
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The algorithm shows acceptable clustering accuracy. Figure 2.1 shows the 

neighborhood model algorithm. 

 

Figure 2.1: Neighborhood Model Algorithm 
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Khan and Ahmad [15] have presented an algorithm (CCIA) for computing initial cluster 

centers for iterative clustering algorithm. CCIA procedure is based on the experimental fact 

that very similar data points form the core of clusters and their cluster membership remain 

the same. Hence these similar data points aid in finding initial cluster centers. Also, CCIA 

depends on the observation that individual attribute provides information in computing 

initial cluster centers. CCIA assumes that each of the attributes of the data points is 

normally distributed. For k clusters the normal curve is divided into k partitions such that 

the area under these partitions is equal. Then the midpoint of each interval is computed. The 

attribute values corresponding to these midpoints are computed using mean and standard 

deviation of the attribute. This will serve as seed point for the k-means clustering for this 

attribute. This process generates a sequence of m cluster labels. The process is repeated for 

all the attributes which generates k' sequences that correspond to k' clusters. If k' is equal to 

k, then centers of these k' clusters should be treated as the initial cluster centers for the k-

means algorithm. If k' is greater than the number of desired clusters k, similar clusters are 

merged to get k-clusters and centers of these k-clusters will become initial cluster centers 

for the k-means algorithm. Figure 2.2 shows the CCIA algorithm. 
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Part(a) 



20 
 

 

Part (b) 

Figure 2.2: CCIA Algorithm 
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Figure 2.3: IRNN Algorithm 

XU Junling et. al. have presented an initialization method for k-means clustering based 

on the reverse nearest neighbor (RNN) and reverse farthest neighbor (RFN) [17]. RNN 

search retrieves all points in a given data set whose nearest neighbor is a given query point. 

RFN search retrieves all points in a given data set whose farthest neighbor is a given query 

point. XU Junling et. al. initialization method (IRNN) first initializes a candidate set (CS) 
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with all data points, computes the RNNs of each point in CS, and ranks points according to 

the number of their RNNs in a descending order; then it selects the first point of the ranked 

list as a center candidate, and cascadingly deletes the selected point and its RNNs from the 

list. If the list is not empty, the process of selection and deletion is repeated. After each 

iteration, the method lets CS be the set of selected points and repeats the above process 

until |CS| is less than some given number U. Finally, k centers are selected according to the 

RFN criteria. Figure 2.3 shows the algorithm. The time complexity for the IRNN algorithm 

is exponential since the process of selection and deletion is repeated many times and in 

each iteration the RNN degrees, sorting, and deletion are repeated.  

J.F. Lu et. al. proposed a hierarchical initialization approach for the k-means 

initialization [14]. The proposed algorithm consists of four main procedures; they are 

preprocessing, bottom–up procedure, top–down procedure and post processing. The 

purpose of preprocessing is to transform the data into the form that is required by the 

algorithm. The bottom–up and top–down procedure is the core of the algorithm, carrying 

out both sampling and clustering. The post processing reverses the preprocessing operation 

by inverse coordinate transformation to obtain the cluster centers in the original data. In the 

sampling procedure the preprocessed data is sampled level by level by repetitively applying 

a sampling method till the resampled data amount is the minimal number that is greater 

than or equal to 20 * the number of clusters k. At the level that the sampling ends, iterative 

clustering is executed so as to get the cluster centers. For the choice of initial centers, data 

is sorted by weight value, and then the first k biggest instances are selected as the initial 

cluster centers for the iteration. 
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Stephen J. Redmond and Conor Heneghan motivated an initialization algorithm using 

kd-trees [27]. The kd-tree is a top-down hierarchical scheme for partitioning data. Consider 

a set of n points, (x1 . . . xn) occupying an m dimensional space [29]. Each point xi has 

associated with it m co-ordinates (xi1, xi2, . . . , xim). There exists a bounding box, or bucket, 

which contains all data points and whose extrema are defined by the maximum and 

minimum co-ordinate values of the data points in each dimension. The data is then 

partitioned into two sub-buckets by splitting the data along the longest dimension of the 

parent bucket, denoted by mmax. The kd-Density initialization starts by creating a kd-tree, 

stipulating that a leaf bucket is that which, arbitrarily, contains 20 points or less. The 

number of leaf buckets created as q. The volume, Vj, of each leaf bucket, Lj, is calculated 

and the number of points it bounds, Nj is counted. Then the density of each leaf bucket, Lj, 

is calculated to be qj, for j = 1,. . . ,q: ρj = Nj / Vj . 

To choose the initial seeds for the K-means algorithm, the kd-tree initialization uses this 

density information. The algorithm aims to choose K leaf bucket locations, mj, from q 

possibilities, that are separated by a reasonable distance and have a large density. The first 

seed, c1, is chosen to be the leaf bucket with highest density: c1 = m arg maxj(ρj). To choose 

the second seed, the algorithm calculates for every remaining leaf bucket centroid, mj, the 

value gj: gj is the distance of mj from the first seed location, c1 multiplied by the density of 

the leaf bucket, qj, as in equation:  gj = d(c1, mj).ρj. The second seed is then chosen as the 

point, mj, with the maximum value of g.  The idea is that the further away a leaf bucket is 

from an existing seed, and the larger its density, the more likely a candidate it is to be a 

seed location. The algorithm is shown in figure 2.4. 

 



24 
 

 

Figure 2.4: kd-tree Initialization Algorithm 

K. Zalik introduces k'-means algorithm that performs clustering without predetermining 

the correct cluster number. This was achieved by minimizing a suggested cost-function. 

The cost-function extends the mean-square-error cost-function of k-means. The algorithm 

consists of two separate steps. The first is a pre-processing procedure that performs initial 

clustering and assigns at least one seed point to each cluster. During the second step, the 

seed-points are adjusted to minimize the cost-function. The problem of the k’-means 

algorithm’s correct convergence is investigated via a cost-function approach. A special 

cost-function is suggested since the k-means cost-function cannot be used for determining 

the number of clusters, because it decreases monotonically with any increase in cluster 

number. K' means shows that, when the cost-function reduces into a global minimum, the 

correct number of cluster centers converges into an actual cluster center, while driving all 

other initial centers far away from the input dataset, and corresponding clusters can be 

neglected, because they are empty. Figure 2.5 shows the algorithm. 
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Figure 2.5: k'-means Algorithm 
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To our best knowledge, the above algorithms are the most recent in the k-means 

initialization problem. Although the algorithms show acceptable clustering accuracy, they 

suffer from some drawbacks:  

1. It takes high execution time to select initial centers, the time complexity for the 

IRNN algorithm [17] is exponential since the process of selection and deletion is repeated 

many times and in each iteration the RNN degrees, sorting, and deletion are repeated. The 

hierarchical initialization approach [14] inherits the same performance disadvantages of 

hierarchical clustering [2, 3]. The neighborhood method [20] requires the computation of 

cohesion degree for all objects which consumes high execution time. 

2.  The number of clusters must be previously known and fixed. In some cases the 

number of clusters is not known and a method is needed to determine k before clustering. 

k'-means algorithm determines k automatically but it suffers from random initialization. 
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Chapter 3: Enhanced k-means 

 

In this chapter, we first introduce some basic definitions used in clustering and then 

explain the basic idea of our initialization approach and enhancements of k-means 

clustering. 

 

3.1   Some basic definitions  

3.1.1 Cohesion degree 

 

Cohesion degree gives critical information about the position of an object in the cluster 

[20]; the greater the cohesion degree of an object x the less the boundary region of 

neighborhood of object x. Therefore, x is likely taken as an initial cluster center. In order to 

compute the cohesion degree for an object x the neighborhood of x and the lower and upper 

approximation of a neighborhood set of x should be computed. 

 

- Neighborhood of object 

Let D be a dataset of n objects x1,x2,….xn . The neighborhood of an object xi is the set of 

objects N(xi)  where: 

 N(xi)  = {any xj : d(xi, xj) <  , xj  D, i  j} 

 d(xi, xj) is the distance between objects xi and xj 

 (     )  √∑(       )
 

 

   

                where m is the num er of attri utes 

    is the average distance between all objects. 
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∑ ∑  (     )

 

     

   

   

 

- Lower approximation of a set 

Let D be a dataset of n objects x1,x2,….xn and S is a subset of D. The lower 

approximation of S (L(S)) is a set of objects whose neighborhood belongs to S with 

certainty. In other words, L(S) is the set of objects such that the set of neighbors for each 

object belongs to S. Mathematically: 

L(S) = { xi : N(xi)  S, xi  D} 

 

- Upper approximation of a set 

Let D be a dataset of n objects x1, x2… xn and S is a subset of D. The upper 

approximation of S, (U(S)), is a set of objects whose neighborhood possibly belongs to S. 

In other words, U(S) is the set of objects such that the set of neighbors for each object 

contains at least one object of S. Mathematically: 

U(S) = { xi : N(xi)  S  , xi  D} 

 

 

 

- Cohesion degree 

Let D be a dataset of n objects x1, x2… xn. Cohesion degree of an object xi is the number 

of objects in the lower approximation of the neighborhood of xi divided by the number of 

objects in the upper approximation of the neighborhood of xi. Mathematically: 
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3.1.2 Coupling degree 

The coupling degree measures the similarity between two objects. The greater the 

coupling degree between two objects the more similar are. So, if two objects are candidate 

to be a cluster center, we can reject one of them if the coupling degree between them is high 

because they are likely fall in the same cluster. Let D be a dataset of n objects x1, x2… xn. 

The coupling degree between neighborhoods of objects xi and xj is the number of objects in 

the intersection of the two neighborhoods divided by the number of objects in the union of 

the two neighborhoods. Mathematically: 

 
 

        (       (  ))  
|       (  )|

|       (  )|
   

 

          (       (  ))    

 

 

3.1.3 Reverse Nearest Neighbor (RNN) 

A reverse nearest neighbor (RNN) search retrieves all objects in a given dataset whose 

nearest neighbor is a given object. Figure 3.1 shows an example of 5 points x1 … x5. It is 

clear that the x1 is the nearest point to x2 and x3. So RNN(x1) = {x2, x3}. It is worth noting 

that the nearest neighbor (NN) to x1 is x4, i.e. RNN(xi) is not necessarily the same as NN(xi).  

 

 

Figure 3.1: RNN definition 
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The RNN degree of an object is the number of objects retrieved by RNN search. Some 

recent studies show that cluster center have high RNN degrees [17]. Let’s clarify this 

through figure 3.1. We can easily expect that either x1 or x2 is the cluster center. x1 is the 

nearest object to x2, x3, and x4, so  RNN degree of x1 is 3. Similarly, the RNN degrees of x2, 

x3, x4, and x5 are 0, 0, 2, and 1 respectively. Note that the candidate centers x1 and x4 have 

high RNN degrees. 

 

 

Figure 3.2: Example dataset 

 

3.1.4 Example 

An example dataset is shown in figure 3.2 and table 3.1. After calculating the Euclidean 

distance between the objects, shown in table 3.2, and  using formulas in section 3.1, we 

can calculate the cohesion and coupling degrees as follows: 

 =0.4404 

 

 Computing             : 

 

N(x1) = {x1, x2, x3, x5} 

x2: N(x2) = {x1, x2 , x4}   x2    L(N(x1)) ,  x2    U(N(x1)) 
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Table 3.1: Example Dataset 

Object x y Object x y 

x1 50 99 x8 210 94 

x2 69 147 x9 202 130 

x3 78 79 x10 255 77 

x4 102 133 x11 296 126 

x5 110 106 x12 259 153 

x6 162 65 x13 197 41 

x7 151 100 x14 161 139 

 

 

x3: N(x3) = {x1, x2 , x3}   x3    L(N(x1))  ,  x3     U(N(x1)) 

x5: N(x5) = {x1, x3, x4, x5, x7}  x5 L(N(x1)), x5  U(N(x1)) 

                             
 

 
        

 

 Computing             : 

 

N(x7) = {x7, x6, x8, x9, x10, x14} 

x 6: N(x6) = {x7, x13, x10} x6   L(N(x7)), x6   U(N(x7)) 

x 8: N(x8) = {x7, x9, x10}  x8    L(N(x7)), x8    U(N(x7)) 

x 9: N(x9) = {x7, x8, x14}  x9   L(N(x7)), x9   U(N(x7)) 

x 10: N(x10) = {x7, x8 }  x10  L(N(x7)),  x10    U(N(x7)) 

x 14: N(x14) = {x4, x7, x9} x14 L(N(x7)), x14   U(N(x7)) 

             
 

 
     

Since x7 is nearly in the center of the group, its cohesion degree is higher than x1 which is a 

border object.   
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 Computing          (           ) 

 

        (           )   
              

              
  

 

 
     

  



33 
 

 

Table 3.2: Distances between the Objects in Figure 3.2 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 

X1 0 51.624 34.409 62.129 60.407 117.05 101 160.08 155.13 206.18 247.48 215.86 158.03 117.99 

X2 51.624 0 68.593 35.847 57.983 123.99 94.515 150.63 134.08 198.74 227.97 190.09 166.19 92.347 

X3 34.409 68.593 0 59.093 41.869 85.159 75.961 132.85 134.08 177.01 223.01 195.54 124.92 102.42 

X4 62.129 35.847 59.093 0 28.16 90.686 59.076 114.83 100.04 162.93 194.13 158.27 132.25 59.304 

X5 60.407 57.983 41.869 28.16 0 66.219 41.437 100.72 95.079 147.87 187.07 156.24 108.6 60.745 

X6 117.05 123.99 85.159 90.686 66.219 0 36.688 56.08 76.322 93.771 147.23 130.97 42.438 74.007 

X7 101 94.515 75.961 59.076 41.437 36.688 0 59.304 59.169 106.51 147.31 120.3 74.813 40.262 

X8 160.08 150.63 132.85 114.83 100.72 56.08 59.304 0 36.878 48.104 91.761 76.694 54.571 66.528 

X9 155.13 134.08 134.08 100.04 95.079 76.322 59.169 36.878 0 74.953 94.085 61.465 89.14 41.976 

X10 206.18 198.74 177.01 162.93 147.87 93.771 106.51 48.104 74.953 0 63.891 76.105 68.264 112.61 

X11 247.48 227.97 223.01 194.13 187.07 147.23 147.31 91.761 94.085 63.891 0 45.804 130.48 135.62 

X12 215.86 190.09 195.54 158.27 156.24 130.97 120.3 76.694 61.465 76.105 45.804 0 128.02 98.995 

X13 158.03 166.19 124.92 132.25 108.6 42.438 74.813 54.571 89.14 68.264 130.48 128.02 0 104.4 

X14 117.99 92.347 102.42 59.304 60.745 74.007 40.262 66.528 41.976 112.61 135.62 98.995 104.4 0 
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3.2 An initialization method for the k-Means algorithm using neighborhood 

model 

In [20], Fuyuan et.al. have presented a method for initializing k-means based on a 

neighborhood model. The method defines the cohesion degree of the neighborhood of an 

object and the coupling degree between neighborhoods of objects. Then the highest 

cohesion degree object is selected as the first center. After that, the coupling degree 

between the first center and the next highest degree object is computed and compared; if the 

coupling degree is less than some , the next highest degree object is selected as the new 

center. Then the steps are repeated till selecting k centers where k is the predefined number 

of cluster. The following algorithm finds cluster centers that are passed to k-means 

algorithm to group the datasets into a predefined number of clusters, k. 

Input:   Dataset D, k 

Output:  k centers 

 

Step1: Compute the distances between objects in D. 

Step2: Compute the average distance between all objects . 

Step3: Find neighborhood of objects in D. 

Step4: Compute Cohesion(xi) for any xi  D.  

Step5: Find xi:  Cohesion(xi)  is maximum  the first center is found. 

Step6: Find the next highest cohesion object xj. 

Step7: If Coupling(N(xi),N(xj)):<,next center is found. 

Step8: If |centers| < k, go to step 6, otherwise go to step 9. 

Step9: End 

 

The time complexity of this algorithm is analyzed as follows. In Step 2, the time 

complexity for computing the size of neighborhood is O(n
2
) where n is the number of 

objects in D. Computation of the neighborhood of objects will take O(n
2
)  in Step 3. The 

operation on obtaining the most cohering object have a time complexity of O(n) in Step 4. 
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Computational cost of the rest of the steps is O(1) Therefore, the entire time complexity of 

the proposed algorithm is O(n
2
). 

The algorithm starts by calculating the distances between objects in the dataset D the 

threshold value ε. These values, distances and ε, are used to find the neighborhoods for the 

objects. In step 4, the algorithm finds the lower approximation and upper approximation for 

every object in dataset D and then calculates the cohesion degree for each object by 

dividing the length of the lower approximation by the length of the upper approximation for 

each object. In step 5, the algorithm finds the highest degree object and assigns it as the 

first initial cluster center. After that the algorithm finds the next center which should satisfy 

the two conditions: (1) it has the next highest cohesion degree and (2) it has low coupling 

with the selected initial center. Then the algorithm repeats  from step 6till finding k initial 

center. 

The algorithm shows acceptable clustering accuracy but it suffers from the following 

disadvantages: 

1- The algorithm computes the cohesion degree for all the objects in the dataset which 

consumes high execution time especially with large datasets. 

2- The number of clusters, k, must be input to the algorithm. 

 

3.3 Proposed Enhancements 

In this section, we motivate novel algorithms for k-means initialization, k-means 

clustering, and auto determination of the number of cluster k. The algorithms are based on 
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the rough set definitions and the RNN search described above in section 3.1. Section 3.3.1 

describes the initialization method. Section 3.3.2 shows how to enhance clustering by 

giving high weights to the important attributes. Section 3.3.3 shows the algorithm of 

determining k. 

 

3.3.1. Fast k-means Initialization method using Neighborhood and Reverse 

Nearest Neighborhood models 

In this section a novel initialization algorithm is introduced. The algorithm is built on 

the following criteria: 

- Clusters centers have high cohesion degrees compared to other objects. 

- Clusters centers have low coupling degrees with each other. 

- Clusters centers have high RNN degrees.  

Based on the above criteria the algorithm below finds appropriate cluster centers that 

are passed to k-means algorithm to group the datasets into a predefined number of clusters, 

k. The main idea in this algorithm is to combine the criteria of the centers to reduce the 

number of objects that the cohesion degree is computed for. We could achieve this by 

selecting the m*k objects that have the highest RNN degrees and put them in a set C, where 

m is a constant. Then the cohesion degree is computed only for these m*k objects which 

reduces the execution time of the algorithm and hence improves performance. This 

improvement is noticed clearly when the size of the dataset is large as the results show in 

the next chapter. After calculating the cohesion degrees for the objects in C, the highest 

cohesion degree object is selected as the first center. After that, the coupling degree 

between the first center and the next highest degree object is computed and compared; if the 
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coupling degree is less than some , the next highest degree object is selected as the new 

center. Then the steps are repeated till selecting k centers where k is the predefined number 

of cluster. We performed experiments to indicate the value of the constant m. We found 

that m=3 is a value to give the highest RNN degree objects. However, future work will 

concentrate on indicating m through optimizing some function. 

Since outlier objects have both low cohesion degree and RNN degree, an outlier will 

never be selected as an initial cluster center and the deed point problem is eliminated. 

 
Input:   Dataset D, k, m 

Output:  k centers 

 

Step1: Compute the distances between objects in D. 

Step2: Compute the average distance between all objects . 

Step3: Find neighborhood of objects in D. 

Step4: Find Reverse nearest neighborhood degree of objects in D.  

Step5: Find the set C: C contains the m*k highest RNN degree objects.  

Step6: Compute Cohesion(xi) for any xi  C.  

Step7: Find xi:  Cohesion(xi) is maximum  the first center is found. 

Step8: Find the next highest cohesion object xj. 

Step9: If Coupling(N(xi),N(xj)):<,next center is found. 

Step10: If |centers| < k, go to step 8, otherwise go to step 11. 

Step 11: End 

 

The algorithm starts by calculating the distances between objects in the dataset D the 

threshold value ε. These values, distances and ε, are used to find the neigh orhoods for the 

objects and the RNN degrees. In step 5, the algorithm finds the set C which contains the 

highest RNN degrees objects. Experimentally, we find that three times the number of 

cluster k is a sufficient size for C. In step 6, the algorithm finds the lower approximation 

and upper approximation for every object in set C and then calculates the cohesion degrees 
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for these objects by dividing the length of the lower approximation by the length of the 

upper approximation for each object in C. In step 7, the algorithm finds the highest degree 

object and assigns it as the first initial cluster center. After that the algorithm finds the next 

center which should satisfy the two conditions: (1) it has the next highest cohesion degree 

and (2) it has low coupling with the selected initial center. Then the algorithm repeats from 

step 8 till finding k initial center. 

The complexity of the algorithm is analyzed as follows. Steps from 1 to 5 have 

complexity of O(n
2
) each, where n is the size of dataset D. The complexity of steps 6 is 

O(k
2
). Steps 7 and 8 have complexity of O(k). Computational cost of the rest of the steps is 

O(1). So the overall computational complexity is O(n
2
).  

 

3.3.2. Auto-determining the number of clusters k using Neighborhood and 

Reverse Nearest Neighborhood model 

In this section, an algorithm is proposed to determine the number of clusters in a given 

dataset based on the following criteria: 

- Clusters centers have high cohesion degree compared to other objects. 

- Clusters centers have low coupling degree with each other. 

- Cluster centers have high RNN degree.  

 

The idea is to find a small subset of objects that fall nearly in the centers of the 

supposed clusters. Then this subset is divided into groups based on the coupling degree 

between these objects. Objects that have high coupling degree are likely to fall in the same 

group while those have low coupling degree fall in different groups. Since objects that fall 
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nearly in the cluster center have both high RNN degree and high cohesion degree, we need 

a new criteria that combines these two properties such that the new value of the new criteria 

is high when both RNN degree and cohesion degree are high, this criteria is simply the 

multiplication of RNN degree and cohesion degree. The values of RNN and cohesion 

degrees are multiplied form a new criterion RC. Since the RNN degree and cohesion 

degrees are absolute values for each object, objects that have high values of RC have both 

high RNN degree and high cohesion degree. Such objects are circles by dashed line in 

figure 3.3. Now, after choosing the highest RC objects, the coupling degrees between these 

objects are computed. Based on the coupling degrees, these objects are grouped into some 

number of groups k such that objects that have low coupling degree fall in different groups 

whereas those have high coupling degree fall in the same group. The result is k which is the 

number of clusters in the dataset.  

 
Figure 3.3: High RC objects 
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Based on the above concepts the algorithm finds the number of clusters k in a given dataset. 

 
Input:   Dataset D, α 

Output:  k  

Step1: Compute the distances between objects in D. 

Step2: Compute the average distance between all objects . 

Step3: Find neighborhood of objects in D. 

Step4: Find Reverse nearest neighborhood degree deg(xi) for any xi  D. 

objects in D.  

Step5: Compute Cohesion(xi) for any xi  D.  

Step6: Compute RC(xi) = deg(xi) * Cohesion(xi) 

Step7: Find the set A such that members of A are the α * |D| objects 

that have highest values of RC. 

Step8: Find Coupling degree between objects in A. 

Step9: Divide A into groups such that, For each xi,xj  A, If 

Coupling(xi,xj)<, xi,xj are in the same group else xi,xj are in two 

different groups.  

Step 10: Find the number of groups k in step 9.  

Step 11: End 

 

The algorithm starts by calculating the distances between objects in the dataset D the 

threshold value ε. These values, distances and ε, are used to find the neigh orhoods for the 

objects and the RNN degrees. In step 5, the algorithm finds the lower approximation and 

upper approximation for every object in dataset D and then calculates the cohesion degree 

for each object by dividing the length of the lower approximation by the length of the upper 

approximation for each object. In step 6, for each object, the algorithm multiplies the 

cohesion degree by the RNN degree to calculate the RC value for each object. As clarified 

above, objects that have high RC objects are candidate to be initial cluster centers; they 

most probably fall near the real cluster center. So, in step 7 the algorithm finds the set A 

that contains the objects that have the highest RC values. Experimentally, we find that the 

20% of the dataset D that have highest RC values are sufficient to apply some grouping 
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method on them to find k. After that, the algorithm finds the coupling degrees between 

objects in set A. In step 9, the objects in set A are grouped into groups such that objects 

have low coupling degrees fall in different groups while objects have high coupling degrees 

fall in the same group while objects. The algorithms outputs the number of groups k which 

is the number of clusters in dataset D. 

We performed experiments to indicate the value of the constant α. We found that α=0.2 

is a sufficient value to give the highest RNN degree objects. However, future work will 

concentrate on indicating α through optimizing some function. The complexity of the 

algorithm is analyzed as follows. Steps from 1 to 5 have complexity of O(n
2
) each, where n 

is the size of D. The complexity of steps 6 is O(n). Steps 7 has complexity of O(n) [23].  

Steps 8 and 9 have complexity of O((α|D|)
2
). Computational cost of the rest of the steps is 

O(1). So the overall computational complexity is O(n
2
).  
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Chapter 4: Experimental Results 

 

Now, let’s introduce the experiment environments and the results obtained from the 

proposed algorithms and the neighborhood model method [20]. The experiments are 

performed on a laptop with 1.83 GHz Intel core 2 processor and 1G byte memory running 

Windows XP operating systems. MATLAB 7.0 programming language is used to code the 

algorithms. 

4.1 Results of Initialization algorithms 

To compare the two initialization methods four datasets are used; three standard 

datasets and one test dataset. The three standard datasets are Iris, Wine, and Glass [22].  We 

performed experiments to indicate the value of the constant m. We found that m=3 is a 

sufficient value to give the highest RNN degree objects.  

To evaluate the performance of the two initialization methods three evaluation criteria 

are employed, accuracy (AC), execution time (exeTime), and the number of iterations that 

k-means needs to converge. AC is the ratio between the number of objects that are assigned 

correctly to their clusters and the size of the dataset. Execution time measures the 

performance of the algorithms. Low execution time means that the algorithm performs 

faster. The convergence iterations indicate the accuracy of the initialization method. Low 

number of convergence iterations indicates that the initial centers are selected accurately 

i.e. near the real centers.  

 Iris dataset: Iris dataset is a standard dataset. It contains three classes that represent three 

types of Iris flowers namely, Iris setosa, Iris versicolor and Iris virginica. Iris dataset 

contains 150 objects divided equally between the three classes. Each object is represented 
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by four attributes namely, viz sepal length, sepal width, petal length and petal width. 

Table 4.1 shows the experimental results on the Iris dataset.  

 Wine dataset: Wine dataset is a standard dataset. It contains three classes that represent 

chemical results on wines derived from three different cultivars. Wine dataset contains 

178 objects. There are 59, 71, 48 objects in class 1, class 2 and class 3 respectively. Each 

object is represented by 13 attributes. Table 4.2 shows the experimental results on the 

Wine dataset.  

 Glass dataset: Glass dataset is a standard dataset that contains seven classes namely, 

building windows, vehicle windows, building windows, vehicle windows, containers, 

tableware and headlamps. Glass dataset contains 214 objects. There are 70, 17, 76, 0, 13, 

9, 29 objects in classes 1 to 7 respectively. Each object is represented by 10 attributes. 

Table 4.3 shows the experimental results on the Glass dataset.  

 Test dataset: Test dataset is shown in figure 13. It contains three classes. This dataset 

contains 1500 objects divided equally between the three classes. Each object is 

represented by two attributes. Table 4.4 shows the experimental results on the Test 

dataset.  

 

Figure 4.1: Test dataset 
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Table 4.1: Results of experiments on Iris dataset 

 

Neighborhood 

initialization model 

RNN initialization 

method 
Proposed method. 

AC 0.9 0.9 0.89333 

exeTime 6.3438 sec. 26.8180 sec. 1.82802 sec. 

Convergence iterations 7 151 1 

 

Table 4.2: Results of experiments on Wine dataset 

 
Neighborhood model RNN initialization 

method 

Proposed method. 

AC 0.7653 0.7653 0.7597 

exeTime 10.8912 sec. 141.8130 sec. 3.62502 sec. 

Convergence iterations 5 215 4 

 

Table 4.3: Results of experiments on Glass dataset 

 
Neighborhood model RNN initialization 

method 

Proposed method 

AC 0.8037 0.8037 0.7990 

exeTime 17.0928 sec. 216.7460 sec. 5.29698 sec. 

Convergence iterations 4 179 2 

 

Table 4.4: Results of experiments on Test dataset 

 
Neighborhood model RNN initialization 

method 

Proposed method 

AC 1 1 1 

exeTime 23.9664 min. Inf. 4.2971 min. 

Convergence iterations 6 Inf. 4 

 

Results listed in tables 4.1-4.4 show that accuracy of the proposed method, RNN 

method and the Neighborhood model method are very close. Also, the number of 

convergence iterations for the proposed method is the least which means high initialization 

accuracy. These results mean that the initial cluster centers computed using the proposed 

algorithm are found to be very close to the desired cluster centers.  
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The proposed method outperforms the Neighborhood model method and RNN. The 

reason behind this improvement is that the proposed algorithm employs both the cohesion 

degree and RNN degree to compute the initial center. The computation of the cohesion 

degree is time consuming since it requires computing many values such as neighborhood, 

lower approximation and upper approximation for each object. The RNN degree limits the 

number of objects that we need to compute the cohesion degree for. 

 

4.2 Results of Auto-determining k 

In this section we introduce the results of applying the algorithm of auto-determination 

of k. The constant α in the algorithm was indicated experimentally α=0.2. The algorithm is 

applied on the following datasets: 

 Iris dataset: Iris dataset is a standard dataset. It contains three classes that represent three 

types of Iris flowers namely, Iris setosa, Iris versicolor and Iris virginica. Iris dataset 

contains 150 objects divided equally between the three classes. Each object is represented 

by four attributes namely, viz sepal length, sepal width, petal length and petal width [20].  

 

 s2: Synthetic 2-d data with 5000 vectors and 15 Gaussian clusters [24] 

 Teaching Assistant Evaluation dataset: The data consist of evaluations of teaching 

performance over three regular semesters and two summer semesters of 151 teaching 

assistant (TA) assignments at the Statistics Department of the University of Wisconsin-

Madison. The scores were divided into 3 roughly equal-sized categories. [22]  
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 Blood Transfusion Service Center dataset: Data taken from the Blood Transfusion 

Service Center in Hsin-Chu City in Taiwan. It contains two clusters, 748 objects, and 4 

attributes [22].  

 Haberman's Survival dataset: The dataset contains cases from a study that was 

conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on    

the survival of patients who had undergone surgery for breast cancer. It contains three 

clusters, 30 objects, and 4 attributes [22].  

 Wine dataset: Wine dataset is a standard dataset. It contains three classes that represent 

chemical results on wines derived from three different cultivars. Wine dataset contains 

178 objects. There are 59, 71, 48 objects in class 1, class 2 and class 3 respectively. Each 

object is represented by 13 attributes [20].  

 Glass dataset: Glass dataset is a standard dataset that contains seven classes namely, 

building windows, vehicle windows, building windows, vehicle windows, containers, 

tableware and headlamps. Glass dataset contains 214 objects. There are 70, 17, 76, 0, 13, 

9, 29 objects in classes 1 to 7 respectively. Each object is represented by 10 attributes 

[20].  

 

Table 4.5 lists the results of executing the k determination algorithm on the above 

datasets. The results show that the algorithm fails in case of high dimension datasets such 

as wine and glass datasets. Since k-means algorithm works well with low dimension 

datasets and not high dimension ones, the k determination algorithm can be helpful to be 

used with k- means.  
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Table 4.5: k Determination Results 

Dataset Actual number of 

clusters 

Determined 

number of clusters 

Success /Failure 

Iris 3 3 Success 

s2 15 15 Success 

Teaching Assistant 

Evaluation 
3 3 

Success 

Blood Transfusion Service 

Center dataset 
2 2 

Success 

Haberman's Survival dataset 3 3 
Success 

Wine dataset 3 6 
Failure 

Glass dataset 7 3 
Failure 
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Chapter 5: Conclusion and Future work 

The simplicity of k-means algorithm makes it the choice for many clustering tasks. 

However k-means suffers from the problems of random initialization, dead point problem, 

and the predetermined of number of clusters k. Based on some basic concepts of the rough 

set theory and the reverse nearest neighbor search method we introduced a novel 

initialization algorithm that performs well to find appropriate initial centers for the k-means 

clustering. The experimental results illustrate the advantages of the proposed initialization 

method which are (1) high clustering accuracy, (2) fast convergence and (3) fast execution. 

The proposed algorithm also eliminates dead point problem. Results show also that rough 

set theory concepts can be employed to determine the number of clusters k. 

Currently, two constants were indicated experimentally, m in the initialization 

enhancement and α in the k auto-determination algorithm. An extension of the work would 

be to come up with a formula for choosing the appropriate threshold values, a formula that 

would work for all dimensions, number of points and centers. Here we have only been able 

to experimentally see that an optimum threshold value exists, but not been able to come to 

the exact value. It is also likely that the thresholds depend on the type of data. More 

research is needed for deriving the formula. 
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