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لأبحبد َ صذا , ٕ٘بن اٌىزٍش ِٓ إِٙب ٌؼخبش ِحٛس بحذ ٘ب حطبٍمبث أٔظّت الأٔذسٌٚذ ٚوشف اٌخبٍذ   أوٛادححًٍٍ 

ىٕٙب فً ِضٍّٙب حشوز ػٍى اٌىشف ػٓ اٌبشِضٍبث اٌخبٍزت فً ٚلج اٌفحض ٌ فً ٘زا اٌّضبي اٌّخٕٛػتضذٌذة ٚاٌطشق ٚاٌ

(ScanTime)   ِب لبً اٌخٕفٍز ٚرٌه ػٓ طشٌك ِمبسٔت اٌخشببٗ بٍٓ اٌضذٌذ اٌغٍش ِىخشف ِٕٙب ببٌمذٌُ اٌّىخشف ٚاٌّفٙشس

ػذد ٘زٖ  بطشق ِخخٍفت ِٚخؼذدة , (VirusTotal) زت ٚاٌفحض اٌشٍٙشة ِزً ِٛلغ فً ِٛالغ لٛاػذ بٍبٔبث اٌبشِضٍبث اٌخبٍ

 الأبحبد ٌّٕٛ بضشػت وبٍشة ٚرٌه ٌخزاٌذ ػذد حطبٍمبث أظّت الأٔذسٌٚذ بشىً ضخُ ٚوبٍش .

اٌبشِضٍبث بٍٓ صخخذاَ  طشٌمت ِبخىشة ٚحذٌزت ٌخٍّز ا٘زٖ الأطشٚحت ححبٚي أْ حضبُ٘ فً حً ٘زٖ اٌّشىٍت ػٓ طشٌك 

حمَٛ بخخبغ ٚحضضًٍ حضشة اٌبٍبٔبث راث ِٚٓ رُ   (RunTime) اٌخٕفٍز أرٕبءاٌخبٍزت حٍذ حمَٛ بخحًٍٍ الأوٛاد اٌضٍٍّت ٚ

ت اٌلاصٍىً أٚ اي ِٕفز آخش ٌمَٛ ببلاحظبي بضٙت ىٚاٌضشٌت ػبش الأخشٔج اٚ وشث اٌشب  (Privacy Data)اٌطببغ اٌخبص 

( ٚحمٍٕبث اٌزوبء Dynamic Taint Analysisخحًٍٍ اٌذٌٕبِىً اٌّضّى )خبسصٍت وبٌبٍٛحٛد ٚرٌه ػٓ طشٌك اصخخذاَ اٌ

 .الاططٕبػً ٚحؼٍٍُ اٌَت

ِٓ طلاحٍت  ضذ اٌبشِضٍبث اٌخبٍزت وّب ٚحُ اٌخأوذحّبٌت اٌ ٔظبَبخطبٍك ٘زٖ اٌّفبٍُ٘ وضزء ِٓ  لبِج ٘زٖ الأطشٚحت 

 ,إٌخبئشٍٕبث روبء اططٕبػً ٌٍحظٛي ػٍى أفضً ٚأدق ػذة حم ٚاٌّفبضٍت بٍٓ اٌبشِضٍبثاٌفىشة ٚحُ ِمبسٔت إٌخبئش ٌخحًٍٍ 

ٚحٕفٍزُ٘ ػٍى ِٕظِٛت فحض حُ اػذاد٘ب حطبٍك  05اٌخبٍزت  حخىْٛ  ِٓ  اٌضٍٍّت ٚحٍذ حُ اصخخذاَ ػٍٕت ِٓ اٌبشِضٍبث 

ٚلذ حُ أخمبء ِشالبت ٚحضضًٍ حضشة اٌبٍبٔبث ِٚٓ رُ ححًٍٍ اٌبٍبٔبث اٌّضشبت ببصخخذاَ اٌزوبء الاططٕبػً حمَٛ بؼٕبٌت فبئمت 

ٚوبٔج إٌخٍضت أْ اٌطشٌمت اٌّمخشحت  حٍذ لذِج أفضً إٌخبئش فً ػٍٍّت اٌخظٍٕف  (Random Forests)اٌخمٍٕت اٌّظٕفت 

ٚحؼخبش ٘زٖ إٌخٍضت ِشضٍت  ٚاوزش ِٓ صٍذة حبؼب ٌخٕٛع اٌبشِضٍبث  %74.7 حممج ٔضبت اوخشبق ٚححمكفً اٌشصبٌت 

حؼخبش ٘زٖ الأطشٚحت ِٓ اٌذساصبث , ٚحضضش ٚفٍشٚصبث ٚأحظٕت طشٚادة اٌخبٍزت ٚحؼذد حظٍٕفبحٙب ِٓ بشِضٍبث

 (RunTime)ٚالأبحبد اٌمٍٍٍت فً ٘زا اٌّضبي ٚرٌه ٌظؼٛبت حخبغ ٚفحض اٌبشِضٍبث فً ٚلج اٌخٕفٍز أٚ أرٕبء حشغٍٍٙب 

ذًٌ ػٍٍٗ بشىً وبٍش بٍئت اٌفحض حٍذ حُ حٕزًٌ ٔظبَ حشغًٍ الأٔذسٌٚذ ِفخٛط اٌّظذس ٚاٌخؼٚاػذاد حضٍٙز رٌه ِٓ خلاي ٚ

حٍذ حُ حٕفٍز اٌبشِضٍبث ػٍٍٗ ٌخخبغ حشوت اٌبٍبٔبث ِٚٓ رُ بٕبء ٔضخت صذٌذة حؼًّ ػٍى ٘بحف روً خبص ٌٙزٖ اٌؼٍٍّت 

 الأٌٍٚت ٌؼٍٍّت اٌخظٍٕف ٚاٌىشف.خشاس إٌخبئش ٚاصخ
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Abstract 

 

Code analysis and Malwares detection for Android applications are considered as an 

serious  problem; there are many researches to apply new and creative techniques that can 

detect Malwares at scan time before run the application then compare the similarity between 

them and the old malwares that archived on some malwares databases and some scanning 

website like VirusTotal. These researches are being rapidly grown because of wide using and 

a huge number of new applications. 

This thesis tries to take the lead of the way of detection malwares using dynamic analysis in 

specific dynamic taint analysis this method based on android application analysis at run time 

then monitoring and logging the information flow out of the device from any port like 

wireless card interface or Bluetooth, specially private data and secure info such as credit card 

info, SMS, contacts, IMEI . etc, Our malware dataset consist of 50 Android applications for 

this research 50% of them benign and the rest malwares. Finally we feed the machine 

learning algorithm with data to classify it and we measure the accuracy and detection ratio it 

reach 74.7% this result being satisfied and good enough because of variety of malwares in 

real life and difficulties on classifying them such like Trojans, spywares, exploits and viruses 

application. 

Thesis is considered as one of little researches on malwares detection using dynamic analysis, 

this because of huge difficulties faced by the way of monitoring and logging the information 

flow, it also take from us a huge effort on prepare and initialize the testing environment, 

downloading android OS source code and making some modifications then build a customize 

version that been compatible with some special devices types. 
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Glossary 

 

Astro File Manager application. 

VirusTotal   A website, originally developed by 

Hispasec, that provides free checking of 

files for viruses. 

Benign Clean, the opposite of malignant. 

Malware A short for malicious software. 

TaintDroid An Information Flow Tracking System for 

Real-Time Privacy Monitoring on 

Smartphones. 

Weka A collection of machine learning 

algorithms for data mining tasks. 

Taint  

TaintCollector An Android application that parse taints 

from android log and save it on 

database file. 

True Positive Rate Correctly classified ratio. 

False Positive Rate Incorrectly classified ratio. 

Kappa Statistic  

Receiver Operating Characteristic A trade off between TPR and FPR 

Aptoide An unofficial android market.  

Mobogenie An unofficial android market. 

1Mobilemarket An unofficial android market. 
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Trojan Generally a non-self-replicating type of 

malware program containing malicious 

code 

Virus A small infectious agent that replicates 

only inside the living cells of other 

organisms. 

Exploit A sequence of commands that takes 

advantage of a bug or vulnerability in 

order to cause unintended or 

unanticipated behavior to occur on 

computer software 

Spyware A software that aims to gather 

information about a person or 

organization without their knowledge 

and that may send such information to 

another entity without the consumer's 

consent, or that asserts control over a 

computer without the consumer's 

knowledge. 

Zero-day attack A severe threat. The terms also describe 

warez-group releases of pirated 

software on or before the release of the 

software. 

Contagio A collection of the latest malware 

samples, threats, observations, and 
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analyses. 

Jellybean A legacy version of Google's mobile OS. 

Dex files Android’s Java byte-code 
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Table Of Abbreviation 

 

SIMPIL A simple intermediate language 

IP Internet protocol 

GPS   Geometric Position System 

IF information flow 

AI   Artificial intelligent 

ACG Activity Call Graph 

MDG Minimal Direct Graph 

AV Antivirus 

ROC Receiver Operating Characteristic 

AMDA Automatic Malware Detection Algorithm 

ARFF Attribute Relation File-Format 

APK Android Application 

TPR True Positive Rate 

FPR False Positive Rate 
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Chapter 1 

1 Introduction 

 

1.1 Motivation 

A key feature of modern smartphone platforms is a centralized service for 

downloading third-party applications. The convenience to users and developers of 

such “app stores” has made mobile devices more fun and useful, and has led to an 

explosion of development. Apple’s App Store alone served nearly 3 billion 

applications after only 18 months. Many of these applications combine data from 

remote cloud services with information from local sensors such as a GPS receiver, 

camera, microphone, and accelerometer. Applications often have legitimate 

reasons for accessing this privacy sensitive data, but users would also like 

assurances that their data is used properly. Incidents of developers relaying private 

information back to the cloud and the privacy risks posed by seemingly innocent 

sensors like accelerometers illustrate the danger. Resolving the tension between 

the fun and utility of running third-party mobile applications and the privacy risks 

they pose is a critical challenge for smartphone platforms. Mobile-phone operating 

systems currently provide only coarse-grained controls for regulating whether an 

application can access private information, but provide little insight into how 

private information is actually used. For example, if a user allows an application to 

access her location information, she has no way of knowing if the application will 

send her location to a location-based service, to advertisers, to the application 
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developer, or to any other entity. As a result, users must blindly trust that 

applications will properly handle their private data, So the question is how to 

detect unknown malware that spies on private information by reliable and useful 

method with low cost of processing to save mobile resources. 

 

1.2 The problem 

As technology becomes more and more advanced we are becoming less and less 

reliable on stationary methods of computation which we have spent a great deal of 

time learning to secure. In nowadays, day and age the aspect of mobility is now 

almost synonymous with the business and social world. Smartphones are used daily 

to transfer data via a wide variety of both native and third party applications. 

However, for despite their usage they have yet to reach the same level of security 

as desktop computing. For such a large amount of data transferred via mobile 

devices there is not nearly enough security, especially for the type of private data 

many people store on their phones such as GPS location, banking information, 

contacts, emails, etc. In order to help address this, the makers of TaintDroid have 

developed a system which can identify the pieces of private data being sent from 

your mobile device and the IP where they are being sent.  

 

 

 

 



15 | P a g e  
 

1.3 The problem statement 

Many Applications on Android Market not verified by google (which is the case in 

AppStore) Developers can only request coarse-grained permissions, users rarely 

reads or understands the meaning of the permissions, so there is a leak of security 

which guide attackers to do what they want with sensitive data without any 

restriction, TaintDroid developed for Android with the purpose of analyzing 

Android applications with aspect to information flow (IF), it’s an example of a 

dynamic analysis system of IF, it’s only detect sensitive data gone out of the 

smartphone, but not prevent it from going out, leak of sensitive user information, 

but still not enough to detect and classify the variety of mobile malwares all over 

the world. 

In figure 1, How to detect new unknown Malwares that steal you private data and 

violate privacy. 

 

Figure 1 Information leakage example 
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Figure 2 App Analysis by Symantec's Norton Mobile Insight [1] 

 

Figure 2 shows massive increasing of Apps that classified as malware on one year 

only from 0.7 million to 1 million. 

 

1.4 Thesis contribution 

The main contribution of this research is to propose a new malware detection 

model for android application based on TaintDroid, the new model will detect all 

Android apps tainted communication, then sent them to a remote server for 

heuristic analysis by one of AI Classifier algorithms that help to detect malicious 

code in the app repackaged or injected with malicious code malwares in general, 
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Finally the model will be able to detect a new malware applications who have 

features similar to classified group.  

 

 

1.5 Thesis Structure 

Here the contents of each chapter are summarized and placed in the overall 

research process. 

In Chapter 2 we gather all previous studies and related works that was relevant to 

our topic and summarizing it with brief description of the related work, then we 

classify them into four topics android security, dynamic analysis of malwares, 

TaintDroid implementation, machine learning algorithms and classifiers. 

In the beginning of Chapter 3 presents a review relevant literature. Dynamic 

analysis, dynamic taint analysis are described and critiqued. The concept of 

dynamic analysis, its definition and importance. This review focus also on dynamic 

taint analysis challenges, opportunities and also limitations and drawbacks.  

Then in Chapter 4 Describes the implementation of dynamic taint analysis on 

android (TaintDroid), the concept of TaintDroid, its definition and importance, 

architecture, challenges and opportunities and also limitations and drawbacks. 

Next in Chapter 5 Describes the method we used of how making the detection for 

mobile application (APKs)  by doing deep analysis of types of private data that the 

application violate the rules and send them via internet or wireless network card 

and then classify them into two classes benign or malware.  
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Later in Chapter 6 is focused on the experiments, results and evaluation that we 

done in this study, firstly we make a single case study to describe how we test the 

android application at runtime, analysis its behavior, gathering information and 

building the taints dataset, then we discussed a real test comparison of some 

machine learning classifiers and select the best of them, finally we get the results 

and explain it with charts.  

Describes and summarizes the core findings of this thesis. Then brief discussion of 

results we found that lead us to conclusion of our study and some advices and 

points for researchers to complete after this study in the same field in future work 

in Chapter 7. 

 

1.6 Summary 

In this chapter, we define the problem that we focused on during this study. 

Section 1.1 describes briefly the study problem, then we discussed it on more 

details on section 1.2, after that we make a contribution for the issue and explain 

it at section 1.3, finally we build the study structure at section 1.4. 
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Chapter 2 

2 Related Work 

 

In this chapter we summarized some of previous works that have been relevant to 

our study and divide them into four sections. Section 2.1 Android security 

researches from past to present, section 2.2 Dynamic taint analysis, the analysis 

based on runtime and the behavior of the application, at section 2.3 we see the 

TaintDroid system implementation on android source code and its limitations and 

restrictions, then we take some look at machine learning classifier and its accuracy 

in section 2.4. 

 

2.1 Android security 

 To save power of scan processing some strategies are proposed to detect malware 

in malware in Smartphones as in [2] ,A preliminary prototype based on this 

strategy has been built for the android dev phone. solution will be outside the 

Smartphones. The key observation is that users often connect their Smartphones to 

a PC or desktop for information synchronization. Based on this observation, 

strategies that run detection/prevention software will be PC/desktop. 

In [3], automatic malware detection mechanism for the Android platform based on 

the results from sandbox is proposed. They extracted network spatial features of 

Android apps and used independent component analysis (ICA) to determine the 
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intrinsic domain name resolution behavior of Android malware. The proposed 

mechanism can identify Android malware automatically. A public Android malware 

app dataset and popular benign apps collected from the Android Market are used 

for evaluating the effectiveness of the proposed approach in terms of its grouping 

ability and effectiveness in identifying Android malware. 

 

2.2 Dynamic analysis and prevention 

For dynamic prevention [4] kernel-based behavior analysis for android malware 

inspection is presented. The system consists of a log collector in the Linux layer 

and a log analysis application. The log collector records all system calls and filters 

events with the target application. The log analyzer matches activities with 

signatures described by regular expressions to detect a malicious activity. 

Signatures of information leakage are automatically generated using the 

Smartphone IDs, e.g., phone number, SIM serial number, and Gmail accounts. They 

implement a prototype system and evaluate 230 applications in total. The result 

shows that our system can effectively detect malicious behaviors of the unknown 

applications. 

Some studies investigate the behavior of malicious Android applications; they [5] 

present a simple and effective way to safely execute and analyze them. As part of 

this analysis, they  use the Android application sandbox Droidbox to generate 

behavioral graphs for each sample and these provide the basis of the development 

of patterns to aid in identifying it. As a result, they  are able to determine if 

family names have been correctly assigned by current anti-virus vendors. Results 

indicate that the traditional anti-virus mechanisms are not able to correctly 
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identify malicious Android applications. The work in this paper is the first to 

examine behavior in malicious applications using DroidBox. dataset comprises 

samples that were collected from publicly available sources. Each malicious 

application is executed for 60 seconds in a sandboxed environment and the 

generated log files are collected at the end of execution. Using Droidbox, they  

also generate two types of graphs (behavior graphs and treemap graphs) for each 

sample. Both graphs help us to analyze the activities performed during run-time 

and also to establish patterns between variants from the same malware family. 

These graphs also illustrate how some benign applications might leak data 

connected to short message service (SMS) texting and other features of the 

applications. 

A feature-based mechanism to provide a static analyst paradigm for detecting the 

Android malware proposed in [6] . The mechanism considers the static information 

including permissions, deployment of components, Intent messages passing and API 

calls for characterizing the Android applications behavior. In order to recognize 

different intentions of Android malware, different kinds of clustering algorithms 

can be applied to enhance the malware modeling capability. Furthermore, They  

leverage the proposed mechanism and develop a system, called DroidMat˙It 

extracts the information (e.g., requested permissions, Intent messages passing, 

etc) from each application’s manifest file. In addition, it traces API calls for each 

component since API calls in different components may imply different intentions. 

Then, it applies K-means algorithm that enhances the malware modeling capability. 

Finally, it uses kNN algorithm to classify the applications benign or malicious. This 

will help in providing a static feature-based mechanism to extract represent active 

configuration and trace API calls for identifying the Android malware. So there are 
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no  need for dynamic simulation that can save the cost in environment deployment 

and manual efforts in investigation. 

Detecting malicious behavior in Android apps by automatically collecting Android 

applications, analyzing relevant malicious behavior and informing of the results. 

The proposed framework [7] [6] features automatic collection of apps in the 

Android market and black markets; static analysis extracting risky APIs and strings 

from Android apps; and dynamic analysis based on the patterns of malicious 

behavior 

New algorithms for static analysis of Android applications was proposed [8]  in 

order to address some problems that users and developers are encountering. All of 

the algorithms are based on the similarity distance using real world compressors 

[9]. To determine if someone pirated an application or parts of an application. 

They extend this problem to extract automatically malware that has been injected 

into an application. In addition, they  find similarities between two applications, 

the algorithm can be applied to evaluate the efficiency of an obfuscator on the 

application. They have used the same algorithms to identify small dissimilarities in 

methods and in basic blocks (without using graphs) in order to use the longest 

common subsequence algorithm to extract exact differences. 

In the other hand, new dynamic analysis techniques and algorithms proposed in 

[10], Dynamic taint analysis and forward symbolic execution are quickly becoming 

staple techniques in security analyses. Example applications of dynamic taint 

analysis and forward symbolic execution include malware analysis, input filter 

generation, test case generation, and vulnerability discovery. Despite the 

widespread usage of these two techniques, there has been little effort to formally 
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define the algorithms and summarize the critical issues that arise when these 

techniques are used in typical security contexts. 

 

2.3 Dynamic Taint Analysis 

Dynamic analysis is the capability monitoring code execution, has become major 

tool in computer security. Dynamic analysis is catchy, it allows us to reason about 

actual executions, and so can precise security analysis based upon run-time 

information. On the other hand, dynamic analysis is modest, we need only consider 

information about a single execution at a time.  

 

2.3.1 Concept of dynamic taint analysis 

One of the most commonly used dynamic taint analysis. Dynamic taint analysis runs 

a program and notices which computations are affected by predefined taint 

sources such as user input. 

The number of security applications utilizing this technique is enormous. Example 

security research areas employing dynamic taint analysis is: 

 Unknown Vulnerability Detection. Dynamic taint analysis can observe for 

misuses of user input while an execution. For example, dynamic taint 

analysis can be used to prevent code injection attacks by monitoring 

whether user input is executed. 
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 Data-Flow Tracking System. Dynamic taint analysis can used for tracking 

data-flow from user input to output and while propagation. For example, 

dynamic taint analysis can be used to prevent lack in privacy data while 

d

a
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a

-

f

l

o

w
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Figure 3 A simple intermediate language (SIMPIL). [10] 

 

• ◊b to represent typical binary operators, e.g., addition, subtraction, etc. 

Similarly. 

•  ◊u represents unary operators such as logical negation.  

• The statement get_input(src) returns input from source src. We use a dot (.) 

to denote an argument that is ignored, e.g., we will write get _input(.) 

when the exact input source is not relevant.  

• For simplicity, we consider only expressions (constants, variables, etc.) that 

evaluate to 32-bit integer values, extending the language and rules to 

additional types is straightforward. 

 

program ::= stmt* 

ptmt s  ::= var := exp | store(exp, exp)  

   | goto exp | assert exp  

   | if exp then goto exp 

         else goto exp 

exp e  ::= load(exp) | exp ◊b exp | ◊u exp 

       | var | get_input(src)  | v 

◊b  ::= typical binary operators 

◊u  ::= typical binary operators 

Value v ::= 32-bit unsigned integer 
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Dynamic taint analysis runs a program and observes which computations are 

affected by predefined taint sources such as user input. A precise definition of 

dynamic taint analysis must target a specific language. It used SIMPIL: a Simple 

Intermediate Language. The grammar of SIMPIL is presented in Figure 3. Although 

the language is simple, it is powerful enough to express typical languages as varied 

as Java and assembly code. Indeed, the language is representative of internal 

representations used by compilers for a variety of programming languages. 

The execution context is described by five parameters:  

 The list of program statements (Σ). 

 The current memory state (μ). 

 The current value for variables (Δ). 

 The program counter (pc).  

 The current statement (i).  

The Σ, μ and Δ contexts are maps, e.g., Δ[x] denotes the current value of variable 

x. They denote updating a context variable x with value v as x   v, e.g., Δ[x   10] 

denotes setting the value of variable x to the value 10 in context Δ.  

A summary of the five meta-syntactic variables is shown in Figure 3. 
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Figure 4 Summary of the five meta-syntactic variables [10] 

 

The evaluation rules for expressions use a similar notation. They denote by μ, Δ, ˫, 

e,     , v evaluating an expression e to a value v in the current state given by μ and 

Δ. The expression e is evaluated by matching e to an expression evaluation rule 

and performing the attached computation. 

 

          

〈             〉        〈         〉      
 

Figure 5 Evaluation rules for expressions [10] 

 

Rules are read bottom to top, left to right. Given a statement, we pattern-match 

the statement to find the applicable rule. We then apply the computation given in 

the top of the rule, and if successful, transition to the end state. If no rule 

matches (or the computation in the premise fails), then the machine halts 

abnormally. 
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Figure 6 TaintDroid Rule [10] 

 

The purpose of dynamic taint analysis is to track information flow between sources 

and sinks. Any program value whose computation depends on data derived from a 

taint source is considered tainted (denoted T). Any other value is considered 

untainted (denoted F). A taint policy P determines exactly how taint flows as a 

program executes, what sorts of operations introduce new taint, and what checks 

are performed on tainted values.  

There are two types of errors 

• Overtainted: Dynamic taint analysis can mark a value as tainted when it is 

not derived from a taint source. For example, in an attack detection 

application overtainting will typically result in reporting an attack when no 

attack occurred.  

 

• Undertainted: Dynamic taint analysis can miss the information flow from a 

source to a sink. In the attack detection scenario, undertainting means the 

system missed a real attack. A dynamic taint analysis system is precise if no 

undertainting or overtainting occurs. 

 

⬚
𝜇 𝛥  2  2

𝐶𝑂𝑁𝑆𝑇 
20 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡

𝜇 𝛥  𝑔𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 .   20
𝐼𝑁𝑃𝑈𝑇 𝑣  2 ∗ 20

𝜇 𝛥  2 ∗ 𝑔𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 .   40
𝐵𝐼𝑁𝑂𝑃     [𝑥 ← 40] 𝑖   [𝑝𝑐 + 1]

𝛴 𝜇 𝛥 𝑝𝑐 𝑥 ≔ 2 ∗ 𝑔𝑒𝑡𝑖𝑛𝑝𝑢𝑡 .  𝛴 𝜇    𝑝𝑐 + 1 𝑖
𝐴𝑆𝑆𝐼𝐺𝑁 

Consider evaluating the following program: 

x := 2 * get_input ( . )   [Take input = 20] 
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2.3.2 Dynamic Taint Policies 

A taint policy specifies three properties: 

• Taint Introduction: Taint introduction rules specify how taint is introduced 

into a system. The typical convention is to initialize all variables, memory 

cells, etc. as untainted. 

• Taint Propagation: Taint propagation rules specify the taint status for data 

derived from tainted or untainted operands. 

• Taint Checking: Taint status values are often used to determine the 

runtime behavior of a program, e.g., an attack detector may halt execution 

if a jump target address is tainted. 

 

Tainted Jump Policy is essential policy in dynamic taint policies, however the goal 

of the tainted jump policy is to protect a potentially vulnerable program from 

control flow hijacking attacks. In SIMPIL, we perform checking by adding the policy 

to the premise of the operational semantics. For instance, the T-GOTO rule uses 

the Pgotocheck(t) policy. Pgotocheck(t) returns T if it is safe to perform a jump 

operation and returns F otherwise. If F is returned, the premise for the rule is not 

met and the machine terminates abnormally (signifying an exception). The policy 

introduces taint into the system by marking all values returned by get*input(.) as 

tainted. Taint is then propagated through the program in a straightforward manner, 

e.g., the result of a binary operation is tainted if either operand is tainted, an 

assigned variable is tainted if the right-hand side value is tainted, and so on. 
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Table 1 Tainted Jump Policy [10] 

 

Component Policy Check 

Pinput  (.),Pbincheck  (.), Pmemcheck  (.) T 

Pconst  ( ) F 

Punop  (t), Passign  (t) t 

Pbinop  (t1 , t2) t1  t2 

Pmemcheck  (ta , tv) tv 

Pcondcheck  (te , ta) ta 

Pgotocheck  (t) ta 

 

 

 

Figure 7 Taintdroid executing program [10] 

 

In figure 7, on line 1, the executing program receives input, assumed to be 20, and 

multiplies by 2. Since all input is marked as tainted, 2 * get_input(.) is also tainted. 

On line 2, x (tainted) is added to y (untainted). Since one operand is tainted, y is 

1. x := 2 * get_input(.) 

2. y := 5 + x 

3. goto  y 
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marked as tainted. On line 3, the program jumps to y. Since y is tainted, the T-

GOTO premise for P is not satisfied, and the machine halts abnormally. 

 

Table 2: Taint calculations for example program [10] 

Line # Statement ∆ T∆ Rule pc 

 start {} {}  1 

1 x:=2*get_input(.) {x←40} {x→T} T-ASSIGN 2 

2 y:=5+x {x←40, y←45} {x→T, y→T } T-ASSIGN 3 

3 goto y {x←40, y←45} {x→T, y→T } T-GOTO error 

 

2.3.2.1 Different Policies for Different Applications 

Different applications of taint analysis can use different policy decisions. As we 

will see in the next section, the typical taint policy described in Jump Table 2 is 

not appropriate for all application domains, since it does not consider whether 

memory addresses are tainted. Thus, it may miss some attacks. We discuss 

alternatives to this policy in the next section. 

 

2.3.3 Dynamic Taint Analysis Challenges and Opportunities 

There are several challenges to using dynamic taint analysis correctly, including: 

• Tainted Addresses. Distinguishing between memory addresses and cells is 

not always appropriate. 

•  Undertainting. Dynamic taint analysis does not properly handle some types 

of information flow. 
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• Overtainting. Deciding when to introduce taint is often easier than deciding 

when to remove taint. 

• Time of Detection vs. Time of Attack. When used for attack detection, 

dynamic taint analysis may raise an alert too late 

Figure 8 TaintDroid index table as input [10] 

 

In figure 8 user provides input to the program that is used as a table index. The 

result of the table lookup is then used as the target address for a jump. Assuming 

addresses are of some fixed-width (say 32-bits), the attacker can pick an 

appropriate value of x to address any memory cell He/she wishes. 

As a result, the attacker can jump to any value in memory that is untainted. In 

many programs this would allow the user to violate the intended control flow of 

the program, thus creating a security violation. The tainted jump policy applied to 

the above program still allows an attacker to jump to untainted, yet attacker 

determined locations. This is an example of under-taint by the policy. This means 

that the tainted jump policy may miss an attack. One possible fix is to use the 

tainted addresses policy. Using this policy, a memory cell is tainted if either the 

memory cell value or the memory address is tainted. 

 

1) x := get_input(.) 

2) y := load(z+x) 

3) goto y 



32 | P a g e  
 

 

2.3.3.1 Sanitization  

One of the dynamic analysis problem, dynamic taint analysis as described only adds 

taint, it never removes it, leads to the problem of taint spread, as the program 

executes, more and more values become tainted, often with less and less taint 

precision. A significant challenge in taint analysis is to identify when taint can be 

removed from a value. We call this the taint sanitization problem. One common 

example where we wish to sanitize is when the program computes constant 

functions. A typical example in x86 code is b = a X-OR a. Since b will always equal 

zero, the value of b does not depend upon a. A default taint analysis policy, 

however, will identify b as tainted whenever a is tainted. 

 

 

2.3.3.2 Time of Detection vs Time of Attack 

Dynamic taint analysis can be used to flag an alert when tainted values are used in 

an unsafe way. However, there is no guarantee that the program integrity has not 

been violated before this point. Note, however, that the tainted jump policy does 

not raise an error when the return address is first overwritten only when it is later 

used as a jump target. Thus, the exploit will not be reported until the function 

returns. Arbitrary effects could happen between the time when the return address 

is first overwritten and when the attack is detected, e.g., any calls made by the 

vulnerable function will still be made before an alarm is raised.  
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2.4 TaintDroid – Application of dynamic taint analysis on Android 

To identify possible information leakage, LeakMiner [7] applies a static taint 

analysis to apps within Android market. The approach introduces three steps in 

identifying possible leakages: first, apk files of Android apps are transformed to 

Java bytecode so that the following analysis can directly work on Java bytecode. 

Besides, application metadata are extracted from the manifest file of Android app. 

Then, LeakMiner identifies sensitive information according to the extracted 

metadata. Finally, taint information is propagated through call graph to identify 

possible leakage paths. By introducing multiple entry point call graph, they  can 

cover all the code of Android app. They choose a set of 1750 apps to evaluate the 

accuracy of LeakMiner. LeakMiner can identify 145 real leakages in this app set. 

 

However, there is an implementation of dynamic analysis technique TaintDroid in 

[11], Today’s smartphone operating systems frequently fail to provide users with 

adequate control over and visibility into how third-party applications use their 

private data. We address these shortcomings with TaintDroid, an efficient, system-

wide dynamic taint tracking and analysis system capable of simultaneously tracking 

multiple sources of sensitive data. TaintDroid provides real time analysis by 

leveraging Android’s virtualized execution environment. TaintDroid incurs only 14% 

performance overhead on a CPU-bound micro-benchmark and imposes negligible 

overhead on interactive third-party applications. Using TaintDroid to monitor the 

behavior of 30 popular third-party Android applications, we found 68 instances of 
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potential misuse of users’ private information across 20 applications. Monitoring 

sensitive data with TaintDroid provides informed use of third-party applications for 

phone users and valuable input for smartphone security service firms seeking to 

identify misbehaving applications. 

 

While increasing of android worldwide smart phone market share, it reached 

almost 50% at 2011 then IOS becomes second largest smart phone platform. 

In spite of its popularity it has many security threats and vulnerability, because the 

operating systems fail providing users with sufficient control over and clarity into 

how third-party applications use their private data. TaintDroid is one example of 

dynamic analysis tools for Android applications. TaintDroid is a specially crafted 

DVM that supports taint analysis of Dalvik instructions and across API calls. The 

biggest advantage of using TaintDroid is that it runs on actual devices. All of the 

hardware, sensors, vendor software and unpredictable complexities that come 

with a real device are there. This can’t be achieved in an emulated environment. 

TaintDroid is a real-time dynamic taint tracker for Android with the explicit goal of 

protecting users from information leakage. However, TaintDroid has revealed that 

there are many apps that leak private information to the network. 
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2.4.1 TaintDroid Challenges & opportunities 

Monitoring data-flow over network of privacy sensitive information on smartphones 

faces several challenges: 

 Smartphones are resource constrained. The resource limitations of 

smartphones precludes the use of heavyweight information tracking systems 

such as Panorama. 

 Third-party applications are entrusted with several types of privacy sensitive 

information. The monitoring system must distinguish multiple information 

types, which requires additional computation and storage. 

 Context-based privacy sensitive information is dynamic and can be difficult 

to identify even when sent in the clear. For example, geographic locations 

are pairs of floating point numbers that frequently change and are hard to 

predict. Applications can share information. Limiting the monitoring system 

to a single application does not account for flows via files and IPC between 

applications, including core system applications designed to disseminate 

privacy sensitive information. 
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2.4.2 TaintDroid Architecture 

 

 

Figure 9 TaintDroid architecture [11] 

 

Figure 9 show our approach to taint tracking on smartphones. We leverage 

architectural features of virtual machine-based smartphones (e.g., Android, 

BlackBerry, and J2ME-based phones) to enable efficient, system-wide taint 

tracking using fine-grained labels with clear semantics. First, we instrument the 

VM interpreter to provide variable-level tracking within untrusted application code. 

Using variable semantics provided by the interpreter provides valuable context for 

avoiding the taint explosion observed in the x86 instruction set. 

Additionally, by tracking variables, we maintain taint markings only for data and 

not code. Second, we use message-level tracking between applications. Tracking 

taint on messages instead of data within messages minimizes IPC overhead while 

extending the analysis system wide. Third, for system-provided native libraries, we 

use method-level tracking. Here, we run native code without instrumentation and 

patch the taint propagation on return. These methods accompany the system and 
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have known information flow semantics. Finally, we use file level tracking to 

ensure persistent information conservatively retains its taint markings. 

 

2.4.3 Privacy Hook Placement 

Taint sources can only add taint tags to memory for which TaintDroid provides tag 

storage. Currently, taint source and sink placement is limited to variables in 

interpreted code, IPC messages, and files. This section discusses how valuable 

taint sources and sinks can be implemented within these restrictions. We 

generalize such taint sources based on information characteristics. 

 

2.4.3.1 Low-bandwidth Sensors 

A variety of privacy sensitive information types are acquired through low-

bandwidth sensors, e.g., location and accelerometer. Such information often 

changes frequently and is simultaneously used by multiple applications. Therefore, 

it is common for a smartphone OS to multiplex access to low-bandwidth sensors 

using a manager. This sensor manager represents an ideal point for taint source 

hook placement. For our analysis, we placed hooks in Android’s LocationManager 

and SensorManager applications. 

 

2.4.3.2 High-bandwidth Sensors 

Privacy sensitive information sources such as the microphone and camera are high-

bandwidth. Each request from the sensor frequently returns a large amount of data 

that is only used by one application. Therefore, the smartphone OS may share 

sensor information via large data buffers, files, or both. 
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When sensor information is shared via files, the file must be tainted with the 

appropriate tag. Due to flexible APIs, we placed hooks for both data buffer and file 

tainting for tracking microphone and camera information. 

 

2.4.3.3 Information Databases 

Shared information such as address books and SMS messages are often stored in file 

based databases. This organization provides a useful unambiguous taint source 

similar to hardware sensors. By adding a taint tag to such database files, all 

information read from the file will be automatically tainted. We used this 

technique for tracking address book information. Note that while TaintDroid’s file-

level granularity was appropriate for these valuable information sources, others 

may exist for which files are too coarse grained. 

However, we have not yet encountered such sources. Device Identifiers: 

Information that uniquely identifies the phone or the user is privacy sensitive. Not 

all personally identifiable information can be easily tainted. However, the phone 

contains several easily tainted identifiers: the phone number, SIM card identifiers 

(IMSI,ICC-ID), and device identifier (IMEI) are all accessed through well-defined 

APIs. We instrumented the APIs for the phone number, ICC-ID, and IMEI. An IMSI 

taint source has inherent limitations. 

 

2.4.3.4 Network Taint Sink 

Our privacy analysis identifies when tainted information transmits out the network 

interface. The VM interpreter-based approach requires the taint sink to be placed 
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within interpreted code. Hence, we instrumented the Java framework libraries at 

the point the native socket library is invoked. 

 

2.5 Machine learning 

Machine Learning (ML) techniques on static features that are extracted from 

Android’s application files for the classification of the files as in [12]. Features are 

extracted from Android’s Java byte-code (i.e., .dex files). Evaluation focused on 

classifying two types of Android applications: tools and games, they performed an 

evaluation using a collection comprising 2,850 games and tools. The results show 

that the combination of Boosted Bayesian Networks and the top 800 features 

selected using Information Gain yield an accuracy level of 0.918 with a 0.172 FPR. 

 

2.5.1 Naïve Bayes 

Naïve Bayes is the simplest form of Bayesian Network where in given a class 

variable, all attributes are assumed to be independent. [13] The algorithm is able 

to classify by calculating the maximum likelihood of the attributes belonging to a 

certain class. Even with the interaction of certain attributes, the Naïve Bayes 

assumption does not lose predictive accuracy even if the actual probabilities are 

different. [14] An understanding of the Bayes classifier (1) is required to also 

understand the Naïve Bayes classifier. C is the class of an unobserved random 

variable to be learned. X denotes a feature vector variable while x denotes the 

value of the variable. Given the Bayes Classifier, see figure 10 below [14] 
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 ∗               |           .. (1) 

Figure 10 Bayes Classifier 

 

Which determines the maximum a posteriori probability (MAP) given example x, 

proves difficult in providing direct estimation when there is high-dimensionality in 

feature space. This is because the Bayes classifier considers a class conditional 

probability distribution (CPD) defined in which relies on the dependence of each 

feature vector to another. Figure 11 describes a simplified assumption of the 

independence of features given the class. [15] 

 

  
           

   (       |           . .  2  

Figure 11 Naive Bayes Classifier 

 

 

2.5.2 Decision Trees  

Decision Trees base the classification of instances by sorting feature vectors. In a 

decision tree, a node represents a feature to be classified and a branch represents 

the next possible value of a node. Decision trees may be interpreted as a set of 

rules for each path from the root to each leaf of the tree. [16] The rules employed 

by decision trees define how a split is created and how cases are classified as to 

what leaf is reached [16], these rules may also be derived from training data to be 

used for actual testing. [17] 
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2.5.3 J48  

J48 is an open source Java-based implementation of the C4.5 Decision Tree 

Algorithm. The algorithm splits the data set to build a certain node for a tree. The 

data with the highest information gain would be the one that most effectively 

splits the data set onto one class or another so this certain data is chosen. After 

choosing the data, a decision node is created to split based on the data chosen. 

The sub list obtained by splitting on the data with the highest information gain is 

the recused and then added as children of the decision node. [17] 

 

2.5.4 Random Forest  

Random Forest utilizes many classification trees to be able to classify an object 

based on the majority vote of classification generated by the trees. A tree is grown 

by first sampling a random number of N cases in the training set. For each input 

variable M, a number value m is used for each node to select randomly from the 

input variable to be used to split a node. After, the generated tree is fully grown 

as deep as possible. [16] 

 

2.5.5 Multinomial Logistic Regression 

Since the study classifies more than two types of an Android application, 

Multinomial Logistic Regression (MLR) has to be utilized to produce polychotomous 

results over Logistic Regression (LR) which only produces a dichotomous result. In 

this note, MLR is an extension of LR which provides regression models by 

comparison of an arbitrary reference category to categories of an unordered 

response variable. Simply put, MLR utilizes multiple logistic regressions on a multi-
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category response variable that is unordered. Figure 12 illustrates a general 

multinomial logistic regression model where is an identified variable and is the 

reference variable, an explanatory variable affects the resulting model. [18] 

 

   
        

          
   +     +     +  +        

Figure 12 General Equation for MLR 

 

 

2.6 Summary 

Dynamic program analyses have become increasingly popular in security. The one 

most common dynamic taint analysis is used in a variety of application domains. 

However, despite it widespread usage, it has been little effort to formally define 

this analyses and summarize the critical issues that arise when implementing them 

in a security context.  

 

While some mobile phone operating systems allow users to control applications’ 

access to sensitive information, such as location sensors, camera images, and 

contact lists, users lack visibility into how applications use their private data. To 

address this, we present TaintDroid, an efficient, system-wide information flow 

tracking tool that can simultaneously track multiple sources of sensitive data. A 

key design goal of TaintDroid is efficiency, and TaintDroid achieves this by 

integrating four granularities of taint propagation (variable-level, message-level, 

method-level, and file-level) to achieve a 14% performance overhead on a CPU-
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bound micro-benchmark. We also used our TaintDroid implementation to study the 

behavior of 30 popular third-party applications, chosen at random from the 

Android Marketplace. Our study revealed that two-thirds of the applications in our 

study exhibit suspicious handling of sensitive data, and that 15 of the 30 

applications reported user’s locations to remote advertising servers. Our findings 

demonstrate the effectiveness and value of enhancing smartphone platforms with 

monitoring tools such as TaintDroid. 
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Chapter 3 

3 Methodology and Design  

 

In this chapter we describes the method we used of how making the detection for 

mobile application (APKs)  by doing deep analysis of types of private data that the 

application violate the rules and send them via internet or wireless network card 

and then classify them into two classes benign or malware. Section 3.1 describes 

briefly the TaintDroid environment that used detect and analysis android 

applications behavior, then in section 3.2 we illustrate how we collect and gather 

dataset of taints, at section 3.3 we make some manipulation on data as feature 

extraction and selection, section 3.4 behavior-based Analysis Module was discussed, 

then a briefly description of some machine learning classifiers which we will try on 

the dataset at section 3.5 and finally the proposed solution for the problem as 

algorithm and pseudo code in section 3.6. 

 

3.1 Introduction 

We gather a various collection of android APK samples (both clean & infected), 

then we install them on our system (modified Android operating system with 

TaintDroid), the system keep monitoring the applications some time then report all 

taints notifications and feed them in database (Dataset), this database we use it as 

dataset for the machine learning classification process, After collecting the 
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dataset, we training the classifier on it, then we can make a testing sample and 

get results, using AI in this field aiming to make a decision if the samples are 

normal (benign) or infected (malware). 

At the beginning, we install the Linux operating system (Ubuntu 10.04) on a 

dedicated pc with CPU Intel Core i3 2.4GHz, 4096MB RAM then downloading 

android source code from official Google website with version Android 4.1.1 

(JellyBean), after that we make TaintDroid changes on the source code, finally 

building the source code again and testing it on Emulator. 

  

3.2 Database (Dataset) 

Our database consists of taints of 50 samples APKs, 50% of them are benign and the 

rest of them malwares.  

For the benign applications, they are gathered through the official Android Market 

and some Alternative Android markets employing a cell phone running on Jellybean 

4.1.1 Android OS. The applications are extracted from the cell phone through the 

use of a File Manager application called Astro. Each application extracted produces. 

apk file format of the applying and these files are forwarded to VirusTotal to verify 

their status as benign applications. The table 4 shows imbalanced distribution of 

applications downloaded for each classification from VirusTotal. Once the 

applications are processed through the API, most applications are classified as a 

Trojan, instead of the tagged classification. 
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Table 3 Count of Applications Downloaded 

 

Type 

 

Number of Apps Collected 

From VirusTotal 

 

Number of Apps 

used for Training 

 

Benign 

 

50 

 

10 

 

Trojan 

 

150 

 

10 

 

Virus 

 

70 

 

10 

 

Spyware 

 

30 

 

10 

 

Exploit 

 

45 

 

10 

 

 

Malware applications are downloaded from online Android malware providers such 

as VirusTotal and Contagio. Applications downloaded from VirusTotal are tagged as 

malware by a minimum of 10 anti-virus engines. 

Test applications are downloaded both from the Official Android market and some 

Alternative Android markets. Benign applications are downloaded from the Official 

Android Market and known-malware applications are downloaded from online 

Android malware providers such as VirusTotal and Contagio. 
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Figure 13 below demonstrate the method of building training and testing dataset 

as application repository, the classified applications have been verified by 

VirusTotal Malware Verification System. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Application Acquisition Module 

 

3.3 Feature Extraction 

The Feature Extraction Module is the one that generates taints log from running 

applications retrieved from the application repository of the system. The activity 

log contains the taints (private data went out from wireless card interface) from 
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application activity which are the features that the module retrieves. For these 

features to be extracted in Figure 13, the logs are processed by the Virtualization 

Submodule which handles monitoring and logging of application activity. Features 

acquired from the Virtualization Submodule are filtered through parsing before 

being forwarded to the Behavior-based Analysis Module. 

Applications are run within the test cell phone Google Nexus S with modified 

Android version 4.1.1 (TaintDroid)  to collect for logs of the taints that system 

catch of attempting of these applications (as feature extraction) to send any 

private data over the wireless card. A TaintDroid system, implemented on Android 

version 4.1.1 to do the job of catching any private data went out from wireless 

card of the device from any application. I developed an android tool that parsing 

the log and gathering the taints and stored them into a separate database file 

along with its classification as benign or any of malware types.  

 

 

Figure 14 Feature Extraction Module 
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Table 4 below explain the building of taint feature that extracted from the log 

after parsing process and describes each element of it briefly. 

 

Table 4 Taint Featured extracted 

 

Taint Feature 

 

Description 

 

Application Name 

Defines the application which call the 

taint by sending private data out the 

cell phone. 

Ex. com.example.test  

 

Type 

Its define the datatype of the private 

data such as (IMEI, ICCID, SMS, ..) 

 

Destination IP 

This is the destination address of which 

the private data going, it provide also if 

it SSL or plain. 

 

Message (Data) 

The data itself such as like POST, GET 

request 

 

Date 

 

The date and time. 

 

 

3.4 Behavior-based Analysis Module  

The Behavior-based Analysis Module is responsible for classifying Android 

applications as either benign or malicious. This is done by employing machine 

learning algorithms for the generation of behavior models of malicious and benign 
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applications. A training phase, separate from the system, is the one which 

identifies the behavior of the applications. This module identifies Android 

applications into two classifications namely: Malware or Benign. 

For the training phase, behavior models for each type of Android application are 

generated by sampling a number of applications per each classification to run on 

different algorithms. 

Features of applications extracted from the previous module are translated into 

an .arff file format for Weka to be able to process the collected data. Currently, 

the module only generates the accuracy results of the chosen algorithms given 

feature sets from each type of malware and of the benign applications. 

 

 

Figure 15 Behavior-based Analysis Module 
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The algorithms used for this module include the Naïve Bayes algorithm for high 

bias in small data sets, the Decision Tree algorithms for its low bias and the 

Logistic Regression algorithm to accommodate for adjustments in the features. 

[19] Based on studies which used a similar system setup for malware detection, the 

aforementioned algorithms performed best based on the garnered False Positive 

Ratings and True Positive Ratio from the tests. [20] [21]. The best performing 

algorithm based on percentage of correctly classified instances, Kappa statistic, 

precision, true positive rate and false positive rate. 

 

 

Figure 16 Weka Statistics Result 

 

In the statistics summary above (Fig. 16), the percentage of the correct classified 

instances is 99% and for the incorrect is 0.65%. The correctly and incorrectly 

classified instances, often called accuracy or sample accuracy, are the percentage 

of the test instances that were correctly and incorrectly classified. These also 

refer to the case where the instances are used as test data. When it comes to 
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classification, correctly and incorrectly classified instances are the most important 

figures and will be used in the study. [22]With these figures, correctness of the 

classification of the applications to the different class labels can be determined. 

The numbers of applications and the classification are shown in the Confusion 

Matrix below, where a and b are the class labels which in the study’s case, the 

malware types. There were 40 samples, so when you add up, a + b = 10 + 18. 

 

Figure 17 Weka Confusion Matrix 

 

Kappa statistic (see Fig. 17) measures the agreement of prediction between the 

true classes and the classifications. A value greater than 0.0 means that the 

classifier is doing better than the chance and a value of 1.0 signifies complete or 

perfect agreement. However, the error rates are used for numeric prediction 

rather than classification tasks which are not relevant in the study. 

 

Figure 18 Weka Detailed Accuracy Result 
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The True Positive (TP) rate is the proportion of applications which were truly 

classified to a certain class and how much part of the class was captured. It is also 

equal to the Recall. The percentage of Trojan-labeled applications that are 

classified as Trojans could be determined using TP. False Positive (FP) rate is the 

proportion of examples which were classified to a certain class but belongs to a 

different class. With FP, the percentage of the application classified as Trojans but 

are Virus labeled can be generated. The Precision is the proportion of the 

examples which truly belong to a class among those where classified to a specific 

class. The F-Measure is simply (2*Precision*Recall/(Precision + Recall), a combined 

measure for Recall and Precision. This could actually be interpreted as the 

weighted average of Precision and Recall. [23]ROC, on the other hand, is the 

measure of certainty of the algorithm with the classification made. 

 

3.5 Machine Learning 

Different algorithms are tested to see whether which algorithm fares better.  

Whilst the algorithms to be tested are the following:  

1. J48 (J48graft)  

2. Random Forest  

3. Multinomial Logistic Regression  

4. Naive Bayes. 
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3.6 Our Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Algorithm Flow Chart 

 

Algorithm starts with application acquisition module as shown in figure 19, it is 

responsible for application collection and repository, next deploying the 

application into testing environment to extract features which here is taints, then 

selections and correction process begin on features to prepare it to next module 
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behavior-based analysis which selection the best machine learning algorithm by try 

collection of machine learning algorithms, then make applications classification as 

either benign or malicious. 

 

Figure 20 Pseudo code algorithm 

 

Figure 20 shows other way to demonstrate and explain the steps of the process in 

pseudo code form that starts with application acquisition module , it responsible 

for application collection and repository, next deploying the application into 

testing environment to extract features which here is taints, then selections and 

correction process begin on features to prepare it to next module behavior-based 

analysis which selection the best machine learning algorithm by try collection of 

machine learning algorithms, then make applications classification as either benign 

or malicious. 

 

 Algorithm AMDA is 

 Input: benign applications (APK) 

          Malware applications (APK) 

 Output: Decision TPR, ROC 

 For each APK (type) in repository do 

        DB (taints)  ← TanitDroid(APK(t)) 

 DB(taints) modified ← Feature Extraction 

 DB(taints) modified ← Feature selection 

 While there exists Taint t in DB(taints) modified do 

      Decision(APK) ← Behavior-Based analysis Module (APK taints Collection) 

 Return Decision(APK)  

 (Note Decision(APK)  Application classification, Get the Decision if benign or 

malicious) 
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Chapter 4 

4 Experiments, Results and Evaluation 

 

In this chapter we focused on the experiments, results and evaluation that we 

have in this study. Section 4.1 we make a single case study to describe how we test 

the android application at runtime, analysis its behavior, gathering information 

and building the taints dataset, then we discussed a real test comparison of some 

machine learning classifiers and select the best of them, finally we get the results 

and explain it with charts, then in section 4.2 we illustrate how we obtain the 

learning data (taints), at section 4.3 we explain the application deployment and 

the development of tool  called TaintCollector to collect the taints from log, 

section 4.4 log parsing methodology was discussed, then an algorithms tests being 

made to select the best classifier at section 4.5 and finally classification results 

and discussion in section 4.6. 

 

Using TaintDroid and cell phone Google Nexus S, we have suitable testing 

environment, optimization for input generators, record visited view objects, 

reasoning the “meaning” of view objects and give appropriate input, give “OK” or 

“Next” higher priority than “Cancel”, generate formatted texts: email, phone 

number and etc., we decide to use the minimal direct graph approach while 

testing applications, now we can test if an application leaked our sensitive data in 
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a very short time, in figure 21 shows a schematic diagram, which include ACG 

(Activity Call Graph) for application as an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 ACG Example 
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4.1 Single Case Analysis 

The Malware App in this example is intended to steal some privacy data. It 

connects to the Internet and sends the IMEI, IMSI out of your device after you click 

certain buttons. We consider both behaviors of reading the IMEI and accessing the 

Internet as sensitive behaviors. Because, the IMEI is the only ID of smartphone 

devices and accessing the Internet may leak private information. 

In figure 22, (a) when this App is started, the Android system creates an instance 

of the app’s main Activity (an “Activity” provides user interfaces) depicted in 

splash or logo page, which will pause 3 seconds and then start another Activity, (b) 

description page using an Intent (an Activity is started with an Intent in Android 

system). (b) There are two buttons for logging or entering into the app details. 

After you click one of them, (c) dialog pop-up on the screen when you confirm this 

dialog confirmation message, it will display the Activity shown in Figure 22 (d), 

which has form after submitting the form, (e) it switches to the final Activity 

shown in Figure 23. In the last Activity, it reads and sends out the device’s IMEI 

and IMSI by using the sensitive APIs 

“android.telephony.TelephonyManager.getDeviceId()” and 

“org.apache.http.client.HttpClient.execute()” respectively. 
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Figure 22 Single case study 
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Figure 23 Single case study ACG 

 

 

 

 

 

 

TaintDroid detect this process of sending IMEI and IMSI out of the device, after 

register the taints on file-base database which describes in table 5, taint contains 
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some data, firstly application name, remote address, privacy data, date and time 

and the body request or message.  

The detection of this outgoing privacy data acquire after the data go out from 

device because of this we can’t prevent this leakage or stolen of data, we just 

detect and analyze it, then making a decision of either benign or malware. 

 

 

Table 5 Taint Message Sample 

 

App Remote Address Privacy data Date & Time Request 

Com.ztf.Q 173.255.234.26 (SSL) IMEI, IMSI 12-23 15:32:40.946 secret=X8ljFrBNQh

qMGTy9d4Of0g&s

dkversion=2.7.1&h

ardware-android-

device-

id=0000000000000

00&hardware-a] 
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Case Study #1 with 25 Third-Party Apps 

Table 6 Sample of 10 Third-Party Apps 

# App IMEI ICCID  

SIM card 

identifier 

Address 

Book 

Contacts

Provider 

SMS Location Browser 

history  

Total 

1 com.example.sendimei  4 0 0 0 0 0 4 

2 com.truecaller  16 0 0 0 0 0 16 

3 com.netqin.ps  5 0 0 0 0 0 5 

4 com.anghami  8 0 0 0 0 0 8 

5 me.onemobile.android  21 15 0 0 0 0 21 

6 devian.tubemate.home  31 0 0 0 0 0 31 

7 com.talkray.client  0 0 9 0 0 0 9 

8 com.syblatv.sybla  0 0 0 0 0 1 1 

9 com.facebook.katana 0 0 4 671 10 0 15 

10 com.nimbuzz 6 0 69 1398 1162 0 24 

 

 

In this case study no. 1 in table 6 we test over twenty five various third party 

application, firstly we get it from application repository, then deploying into the 

testing environment TaintDroid. After that run each application for some time and 

try to click many explicit buttons, review major activities and screens, next 

waiting for the application to send privacy data out from the device, when it send 

any explicit data, TaintCollector tool will detect this leakage of data by monitoring 

and finally registered to the database. This statistics measured in table 6, it’s from 
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detected taints on the database it demonstrate the number of privacy data 

outgoing some application and total calculations.  

After repeating the same test in case study no. 2 but with various families of 

malwares. This statistics measured in table 7, it’s from detected taints on the 

database it demonstrate the number of privacy data outgoing some application and 

total calculations.  

Case Study #2 with 25 Malware Apps 

Table 7 Sample of 10 Malware Apps 

# App IMEI ICCID  

SIM card 

identifier 

Address 

Book 

Contacts

Provider 

SMS Location Browser 

history  

Total 

1 com.zeal.zealspydesign 0 0 0 20 0 0 20 

2 com.hellospy.system 471 0 68 0 0 61 600 

3 com.inospy 1 0 0 0 0 0 1 

4 com.maher.wieghtcalculat

e 

91 0 0 21 0 0 112 

5 com.one.pushnew 25 0 0 6 17 0 48 

6 com.tutusw.onekeyvpn 0 0 0 70 0 0 70 

7 com.Beauty.Breast 12 0 0 12 0 0 24 

8 com.Beauty.Leg 16 0 0 16 0 0 32 

9 com.keji.unclear 291 0 0 47 47 0 385 

10 mobi.rouwan.timezonecon

vertor 

49 0 0 9 3 0 61 
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4.2 Learning Data Acquisition  

Known-malware applications are gathered manually from the expert system 

VirusTotal which provides credibility for the learning data. VirusTotal uses an 

observed minimum of forty Anti-virus engines which scans the applications. 

Applications downloaded from VirusTotal are tagged as malware by at least ten 

anti-virus engines. For the known-benign applications, they are gathered through 

the official Android Market using a mobile phone running on Jellybean 4.1.1 

Android OS. The applications are extracted from the mobile phone through the use 

of a File Manager application called Astro. Each application extracted produces 

an .apk file format of the application and these files are forwarded to VirusTotal 

to verify their status as benign applications. 

 

Table 8 Count of Applications Downloaded 

Type Number of Apps Collected from 

VirusTotal 

Number of Apps used for 

Training 

Benign 25 18 

Malware 25 18  

 

 

The table 8 shows an imbalanced distribution of applications downloaded for each 

classification from VirusTotal. When the applications are processed through the API, 

most applications are classified as Trojan, instead of the tagged classification. 
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4.3 Application Deployment 

Applications are run inside a real physical device phone with model Google Nexus S 

within modified android version 4.1.1 (TaintDroid) to collect for logs of the 

behavior of these applications to be used by Weka.  

A tool, TaintCollector, is used to obtain the outgoing privacy data (taints) made by 

the application that is running. These taints that have been collected are then 

stored into a separate file along with its classification as benign or as one of the 

types of malware. 

 

4.4 Application Log Parsing  

The application taints that have been generated by TaintCollector are collected 

and injected into the parser program. This parser program generates the ARFF 

(Attribute Relation File-Format) file to be used by Weka in classifying the 

applications. The program searches for specific taints made by the application 

inside the log file. The count of these taints are taken and then appended into the 

ARFF file. This is done for all desired taints to be taken for all the application logs. 

 

4.5 Algorithm Testing  

The ARFF file generated by the parser program is fed into Weka for the 

classification of the applications. Different algorithms are tested to see whether 

which algorithm fares better. The metrics to be checked for are the following: 

1. True Positive Rate  

2. Kappa Statistic  
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3. Receiver Operating Characteristic (ROC)  

 

Whilst the algorithms to be tested are the following:  

5. J48 (J48graft)  

6. Random Forest  

7. Multinomial Logistic Regression  

8. Naive Bayes. 

 

The behavior logs of test applications are produced and then processed through 

the use of the parser for test applications. The parser works with a set dictionary 

of relevant features based from the features of the behavior model from the 

training phase. An ARFF file for each test application is produced by the parser 

which is used for comparison with the behavior-model of the most accurate 

algorithm. The applications for this test are downloaded from different sources. 

These test applications came from VirusTotal and as well as form alternative 

Android markets namely: aptoide, mobogenie and 1Mobilemarket. 

 

AMDA application classification results stored in the database are compared to the 

classification report from VirusTotal. AMDA collates the results and uses a counting 

mechanism as to how many tags of applications are made by the AV engines as 

Trojan, Spyware, Exploit, Virus and Unclassified. Again, the performance of the 

system is measured by the True Positive Rate, Kappa Statistic and the Receiver 

Operating Characteristic (ROC Curve). 
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4.6 Classification Results & Discussion 

The training phase for the system undergoes a rigorous process for being able to 

generate the best behavior model for the system. There is a total of 30 number of 

tests made. As mentioned in the earlier section, each algorithm is tested with 

three different feature selection methods and without a feature selection method 

used. This is done four times and for each test, the number of applications used 

varied in number. 

 

Table 9 Number of Applications per Training Phase 

Training Phase Number of Applications 

Test 1 10 

Test 2 20 

Test 3 30 

Test 4  36 
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Figure 24 Summarized Results of Machine Learning Algorithms 

 

For the training set, the Random Forest algorithm in Test 1 with Gain Ratio as the 

feature selection method and Test 4 with no feature selection method (See Figure. 

24) garnered the best accuracy through measurement by True Positive Rate. Both 

tests achieved 90% accuracy. In addition, the Random Forest algorithm consistently 

outperformed the other algorithms. The behavior model from Training Phase Test 

4 is chosen to be used for the system since it performed well even with a larger 

number of applications used and the test garnered a higher rate of ROC which 

means that the algorithm is definite with its classifications. 

After knowing the best algorithm for classification through the training phase, 

gathering and processing of test applications follows. 
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Table 10 Applications Classified by AMDA 

Type of Android 

Application 

Number of 

Applications Classified 

Benign 18 

Malware 15 

 

There are a total of 33 applications parsed by the system. The results are 

compared to the classification report from VirusTotal. 

 

  

Figure 25 Information Verification Results 

 

When the results of the AMDA System are validated to the results garnered through 

VirusTotal, TP Rate measurement exacted to 46.2%, Kappa Statistic to 27.17% and 

the ROC Area measured 67.5%. The results above constitute quite a low accuracy 
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for classification of the types of Android applications. The ROC Area, being above 

the 50% mark, means that the system is mostly certain of its classifications. A low 

measure was garnered by the Kappa Statistic which means that the system 

encountered a dataset with mostly random attributes. Further checking deep into 

the taints is made to identify other measurement of analysis and problems. It is 

found that fourteen of the taints features exhibit the same characteristics for pairs 

of malware types. Virus and Exploit applications typically measure the same for 

these taints. Trojan and Spyware applications are paired for the mentioned taints. 

With that information, it can be derived that malware applications exhibit the 

same behaviors which explains why the results of the classification is low. Instead 

of having 4 classifications for Malware, it is simplified into just Malware versus 

Benign classifications. 

 

 

Figure 26 Malware vs. Benign Results 
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The TP Rate measurement increased to 74.7%, the Kappa Statistic to 23.17% and 

the ROC area as 72.1% in figure 26. The TP Rate achieved a significantly higher 

value percentage compared to the previous result which indicates that the system 

is able to better correctly classify the applications. The Kappa Statistic measured 

is almost the same as the previous test. This is expected since the same dataset is 

used as with the previous test. The ROC Area still achieved a high measurement 

which indicates that the system is mostly certain of the classifications made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 | P a g e  
 

Chapter 5 

5 Conclusion and Future Work 

 

In this chapter, we describes and summarizes the core findings of this thesis. 

Section 5.1 presented the derived conclusion of our study and some advices and 

points for researchers to complete the research in the same field in future work at 

section 5.2. 

 

5.1 Conclusion 

Finally, we have two contribution in this thesis, first of all we gather more than 50 

android applications taints into dataset or database, 50% of them normal 

applications (benign) and the rest are malwares as we discussed before, this 

dataset rarely exist on the internet and no one provide it before. 

The second that our system given, the capability to classify unknown applications 

based from its data can be used to categorize different Android applications in the 

market. With the web crawler at hand, the system has the potential to 

automatically download and classify new applications uploaded to the different 

alternative markets. Other than these, the system has the ability to classify 

malware to different types using behavior-based analysis. With this at hand, the 

system can act as an Anti-Virus that could easily provide classification results to 

users. However, expert systems or different classification sources change 
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classifications from time to time. This happens when more Anti-virus engines are 

able to classify applications as from when the application was first classified or 

because there are more and more malware families being identified. With this, 

there is a clear lack of standards in the classification scheme of applications. This 

lack of standards contributes to the futility of classifying malware into different 

classifications other than just classifying it as malware. Another factor would be 

that malware families would have variants of other malware families which makes 

it even more difficult to distinguish between malware types [24]. 

 

This study tries to take the lead of the way of detection malwares using dynamic 

analysis in specific dynamic taint analysis this method based on android application 

analysis at run time then monitoring and logging the information flow out of the 

device from any port like wireless card interface or Bluetooth, specially private 

data and secure info such as credit card info, SMS, contacts, IMEI . etc, Our 

malware dataset consist of 50 Android applications for this research 50% of them 

benign and the rest malwares. Finally we feed the machine learning algorithm with 

data to classify it and we measure the accuracy and detection ratio it reach 74.7% 

this result being satisfied and good enough because of variety of malwares in real 

life and difficulties on classifying them such like Trojans, spywares, exploits and 

viruses application. 
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5.2 Future Work 

Further work to be done is to gather more samples for each type of Android 

application for further testing of the machine learning algorithms. More features 

are also to be added for monitoring to be able to create more distinction with 

regards to the behavior of the applications. A behavior model will then be 

generated to be able to classify Android applications. Classification results of the 

system are to be verified with VirusTotal for its validity as a metric to test if the 

generated behavior models are accurate. 

Also further work to be done is the ability to detect advanced malware attacks 

such as Zero-day attack. Implementation of Behavior-based analysis with 

permission-based can also be done to determine malicious Android applications. 

Administrative User interface and an AMDA Android Application will allow easier 

analysis and access of the system. 
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7 Appendices  

Appindex1: TaintCollector Code. 

 TaintDroidCollector.java 

package org.app.analysis; 

import org.app.analysis.R; 

import android.app.Activity; 

import android.content.Intent; 

import android.os.Bundle; 

import android.view.View; 

import android.view.View.OnClickListener; 

import android.widget.Button; 

 

public class TaintDroidCollector extends Activity { 

    private static final String TAG = 

TaintDroidCollector.class.getSimpleName(); 

    private OnClickListener onClickStartButton = new OnClickListener() { 

        public void onClick(View v) { 

            Intent i = new Intent(getApplicationContext(), 

TaintDroidCollectorService.class); 

            startService(i); 

        } 

    }; 

    private OnClickListener onClickStopButton = new OnClickListener() { 

        public void onClick(View v) { 

            Intent i = new Intent(getApplicationContext(), 

TaintDroidCollectorService.class); 

            stopService(i); 

        } 

    }; 

 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.control); 

        Button b = (Button) findViewById(R.id.StartButton); 

        b.setOnClickListener(onClickStartButton); 

        b.setEnabled(true); 

        b = (Button) findViewById(R.id.StopButton); 

        b.setOnClickListener(onClickStopButton); 

        b.setEnabled(true); 

    } 

} 

 

 

 

 

 

 TaintDroidCollectorDetail.java 

package org.app.analysis; 

import org.app.analysis.R; 

import android.app.Activity; 
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import android.os.Bundle; 

import android.util.Log; 

import android.widget.TextView; 

public class TaintDroidCollectorDetail extends Activity { 

    private void setInfo() { 

        Bundle b = getIntent().getExtras(); 

        String appname = 

b.getString(TaintDroidCollectorService.KEY_APPNAME); 

        String ipaddress = 

b.getString(TaintDroidCollectorService.KEY_IPADDRESS); 

        String taint = b.getString(TaintDroidCollectorService.KEY_TAINT); 

        String data = b.getString(TaintDroidCollectorService.KEY_DATA); 

        int id = b.getInt(TaintDroidCollectorService.KEY_ID); 

        String timestamp = 

b.getString(TaintDroidCollectorService.KEY_TIMESTAMP); 

 

        TextView tv = (TextView) findViewById(R.id.DetailAppTextView); 

        tv.setText(appname); 

 

        tv = (TextView) findViewById(R.id.DetailIPTextView); 

        tv.setText(ipaddress); 

 

        tv = (TextView) findViewById(R.id.DetailTaintTextView); 

        tv.setText(taint); 

 

        tv = (TextView) findViewById(R.id.DetailDataTextView); 

        tv.setText(data); 

         

        tv = (TextView) findViewById(R.id.DetailTimestampTextView); 

        tv.setText(timestamp); 

    } 

 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.detail); 

        setInfo(); 

    } 

} 

 

 TaintDroidCollectorService.java 

package org.app.analysis; 

import java.io.*; 

import java.util.*; 

import java.util.regex.Matcher; 

import java.util.regex.Pattern; 

import java.net.InetAddress; 

import java.net.UnknownHostException; 

import java.util.concurrent.*; 

import org.app.analysis.R; 

import android.annotation.SuppressLint; 

import android.app.ActivityManager; 

import android.app.Notification; 

import android.app.NotificationManager; 

import android.app.Notification.Style; 

import android.app.PendingIntent; 

import android.app.Service; 

import android.app.ActivityManager.RunningAppProcessInfo; 
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import android.content.BroadcastReceiver; 

import android.content.Context; 

import android.content.Intent; 

import android.net.Uri; 

import android.os.Bundle; 

import android.os.IBinder; 

import android.util.Log; 

import android.widget.Button; 

import android.widget.RemoteViews; 

 

public class TaintDroidCollectorService extends Service { 

    private static final String TAG = 

TaintDroidCollectorService.class.getSimpleName(); 

    private static final String filename =  "taints.csv"; 

    private static Hashtable<Integer, String> ttable = new 

Hashtable<Integer, String>(); 

    static { 

        // ttable.put(new Integer(0x00000000), "No taint"); 

        ttable.put(new Integer(0x00000001), "Location"); 

        ttable.put(new Integer(0x00000002), "Address Book 

(ContactsProvider)"); 

        ttable.put(new Integer(0x00000004), "Microphone Input"); 

        ttable.put(new Integer(0x00000008), "Phone Number"); 

        ttable.put(new Integer(0x00000010), "GPS Location"); 

        ttable.put(new Integer(0x00000020), "NET-based Location"); 

        ttable.put(new Integer(0x00000040), "Last known Location"); 

        ttable.put(new Integer(0x00000080), "camera"); 

        ttable.put(new Integer(0x00000100), "accelerometer"); 

        ttable.put(new Integer(0x00000200), "SMS"); 

        ttable.put(new Integer(0x00000400), "IMEI"); 

        ttable.put(new Integer(0x00000800), "IMSI"); 

        ttable.put(new Integer(0x00001000), "ICCID (SIM card identifier)"); 

        ttable.put(new Integer(0x00002000), "Device serial number"); 

        ttable.put(new Integer(0x00004000), "User account information"); 

        ttable.put(new Integer(0x00008000), "browser history"); 

    } 

 

    private volatile static boolean isRunning = false; 

 

    public static final String KEY_APPNAME = "KEY_APPNAME"; 

    public static final String KEY_IPADDRESS = "KEY_IPADDRESS"; 

    public static final String KEY_TAINT = "KEY_TAINT"; 

    public static final String KEY_DATA = "KEY_DATA"; 

    public static final String KEY_ID = "KEY_ID"; 

    public static final String KEY_TIMESTAMP = "KEY_TIMESTAMP"; 

 

    public static class Starter extends BroadcastReceiver { 

        @Override 

        public void onReceive(Context context, Intent intent) { 

            if(!isRunning && intent.getAction() != null) { 

                if(intent.getAction().equals(Intent.ACTION_USER_PRESENT)) { 

                    context.startService(new Intent(context, 

TaintDroidCollectorService.class)); 

                } 

            } 

        } 

    }; 

 

    private BlockingQueue logQueue; 

    private static final int LOGQUEUE_MAXSIZE = 4096; 

 



80 | P a g e  
 

    private volatile boolean doCapture = false; 

    private Thread captureThread = null; 

    private class Producer implements Runnable { 

     private final BlockingQueue queue; 

     Producer(BlockingQueue q) { queue = q; } 

        public void run() { 

            LogcatDevice lc = LogcatDevice.getInstance(); 

            while(doCapture && lc.isOpen()) { 

                try { 

                    // read an entry and insert it to our content provider 

                    LogEntry le = lc.readLogEntry(); 

                    if(le != null) { 

                        queue.put(le); 

                    } 

                } 

                catch(Exception e) { 

                    Log.e(TAG, "Could not read a log entry: " + 

e.getMessage()); 

                    e.printStackTrace(); 

                } 

            } 

        } 

    }; 

 

    private volatile boolean doRead = false; 

    private Thread readThread = null; 

    private class Consumer implements Runnable { 

     private final BlockingQueue queue; 

     Consumer(BlockingQueue q) { queue = q; } 

        public void run() 

        { 

            LogEntry prev = null; 

            while(doRead) { 

             try { 

              LogEntry le = (LogEntry)queue.take(); 

                    processLogEntry(le); 

             } 

             catch (InterruptedException e) { 

              Log.e(TAG, "Could not read log entry: " + 

e.getMessage()); 

             } 

            } 

        } 

    } 

 

    private String get_processname(int pid) { 

        ActivityManager mgr = (ActivityManager) 

getApplicationContext().getSystemService( 

            Context.ACTIVITY_SERVICE); 

 

        String pname = ""; 

        List<RunningAppProcessInfo> apps = mgr.getRunningAppProcesses(); 

        for(RunningAppProcessInfo pinfo : apps) { 

            if(pinfo.pid == pid) { 

                pname = pinfo.processName; 

                break; 

            } 

        } 

 

        return pname; 

    } 
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    private String get_ipaddress(String msg) { 

     Pattern p = Pattern.compile("\\((.+)\\) "); 

        Matcher m = p.matcher(msg); 

 

        if(m.find() && m.groupCount() > 0) { 

         String result = m.group(1); 

         // remove trailing junk 

         if (result.contains(")")) 

          result = result.substring(0,result.indexOf(")")-1); 

            return result; 

        } 

        else { 

            return null; 

        } 

    } 

 

    private String get_taint(String msg) { 

     // match hex digits 

     Pattern p = Pattern.compile("with tag 0x(\\p{XDigit}+) "); 

        Matcher m = p.matcher(msg); 

 

        if(m.find() && m.groupCount() > 0) { 

 

            String match = m.group(1); 

 

            // get back int 

            int taint; 

            try { 

                taint = Integer.parseInt(match, 16); 

            } 

            catch(NumberFormatException e) { 

                return "Unknown Taint: " + match; 

            } 

 

            if(taint == 0x0) { 

                return "No taint"; 

            } 

 

            // for each taint 

            ArrayList<String> list = new ArrayList<String>(); 

            int t; 

            String tag; 

             

            // check each bit 

            for (int i=0; i<32; i++) { 

             t = (taint>>i) & 0x1; 

             tag = ttable.get(new Integer(t<<i)); 

                if(tag != null) { 

                    list.add(tag); 

                } 

            } 

 

            // build output 

            StringBuilder sb = new StringBuilder(""); 

            if(list.size() > 1) { 

                for(int i = 0; i < list.size() - 1; i++) { 

                    sb.append(list.get(i) + ", "); 

                } 

                sb.append(list.get(list.size() - 1)); 

            } 
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            else { 

                if(!list.isEmpty()) { 

                    sb.append(list.get(0)); 

                } 

            } 

 

            return sb.toString(); 

        } 

        else { 

            return "No Taint Found"; 

        } 

    } 

 

    private String get_data(String msg) { 

        int start = msg.indexOf("data=[") + 6; 

        return msg.substring(start); 

    } 

 

 private int noti_id = 0; 

 

    private void sendTaintDroidNotification(int id, String ipaddress, 

String taint, String appname, String data, String timestamp) { 

        Notification notification = new Notification.BigTextStyle( 

        new Notification.Builder(this) 

        .setContentTitle("TaintDroid alert") 

        .setContentText(appname) 

        .setSmallIcon(R.drawable.icon)) 

        .bigText(appname+"\n"+ipaddress+"\n"+taint) 

        .build(); 

 

        // set intent to launch detail 

        Bundle extras = new Bundle(); 

        extras.putString(KEY_APPNAME, appname); 

        extras.putString(KEY_IPADDRESS, ipaddress); 

        extras.putString(KEY_TAINT, taint); 

        extras.putString(KEY_DATA, data); 

        extras.putInt(KEY_ID, id); 

        extras.putString(KEY_TIMESTAMP, timestamp); 

 

 

        //save to file  

        String path = 

getApplicationContext().getFilesDir().getAbsolutePath(); 

        String info = id  + " , " + appname + " , " + ipaddress + " , " +   

           taint + " , " + timestamp + " , " + data +" \n"; 

        FileOutputStream outputStream; 

 

        try { //path + "/" + 

          outputStream = openFileOutput(filename, MODE_APPEND | 

MODE_PRIVATE); 

          outputStream.write(info.getBytes()); 

          outputStream.close(); 

         }catch (IOException e) { 

              Log.e("Exception", "File write failed: " + e.toString()); 

          } 

         

        Intent i = new Intent(this, TaintDroidCollectorDetail.class); 

        i.addFlags(Intent.FLAG_ACTIVITY_NO_HISTORY); 

        i.putExtras(extras); 
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        PendingIntent pi = PendingIntent.getActivity(this, id, i, 

PendingIntent.FLAG_UPDATE_CURRENT); 

        notification.contentIntent = pi; 

 

        // set led 

        notification.ledOnMS = 500; 

        notification.ledOffMS = 500; 

        notification.ledARGB = 0x00ff0000; 

        notification.flags |= Notification.FLAG_SHOW_LIGHTS; 

 

        // send it 

        NotificationManager mgr = (NotificationManager) 

getSystemService(NOTIFICATION_SERVICE); 

  mgr.notify(noti_id, notification); 

  noti_id ++; 

    } 

 

    private boolean isTaintedSend(String msg) { 

        // covers "libcore.os.send" and "libcore.os.sendto" 

        return msg.contains("libcore.os.send"); 

    } 

     

    private boolean isTaintedSSLSend(String msg) { 

     return msg.contains("SSLOutputStream.write"); 

    } 

 

    private void processLogEntry(LogEntry le) { 

  String timestamp = le.getTimestamp(); 

  String msg = le.getMessage();  

        boolean taintedSend = isTaintedSend(msg); 

        boolean taintedSSLSend = isTaintedSSLSend(msg); 

        if(taintedSend || taintedSSLSend) { 

            String ip = get_ipaddress(msg); 

            String taint = get_taint(msg); 

            String app = get_processname(le.getPid()); 

            String data = get_data(msg); 

            if (taintedSSLSend) 

             ip=ip+" (SSL)"; 

 

            sendTaintDroidNotification(le.hashCode(), ip, taint, app, data, 

timestamp); 

        } 

    } 

 

    @Override 

    public IBinder onBind(Intent intent) { 

        // we don't bind to this service 

        return null; 

    } 

 

    @Override 

    public void onCreate() { 

     File file = new File(this.getFilesDir(), filename); 

        return; 

    } 

 

    @Override 

    public int onStartCommand(Intent intent, int flags, int startId) { 

        if(isRunning) { 

            return START_NOT_STICKY; 

        } 
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        logQueue = new ArrayBlockingQueue<LogEntry>(LOGQUEUE_MAXSIZE); 

        this.captureThread = new Thread(new Producer(logQueue)); 

        captureThread.setDaemon(true); 

 

        this.readThread = new Thread(new Consumer(logQueue)); 

        readThread.setDaemon(true); 

 

        try { 

            LogcatDevice.getInstance().open(); 

        } 

        catch(IOException e) { 

            Log.e(TAG, "Could not open the log device: " + e.getMessage()); 

            return START_NOT_STICKY; 

        } 

 

        this.doCapture = true; 

        captureThread.start(); 

 

        this.doRead = true; 

        readThread.start(); 

 

        isRunning = true; 

 

        return START_NOT_STICKY; 

    } 

 

    @Override 

    public void onDestroy() { 

        super.onDestroy(); 

 

        // stop the thread 

        this.doCapture = false; 

        this.doRead = false; 

 

        // close the log 

        try { 

            LogcatDevice.getInstance().close(); 

        } 

        catch(IOException e) { 

            Log.e(TAG, "Could not close the log device properly: " 

                    + e.getMessage()); 

        } 

 

        // destroy the thread 

        this.captureThread = null; 

        this.readThread = null; 

    } 

} 

 

 

 LogEntry.java 

package org.app.analysis; 

 

import android.util.Log; 

import java.util.Date; 

 

public class LogEntry { 

    private static final String LOGTAG = LogEntry.class.getSimpleName(); 
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    private String timestamp; 

    private int pid; 

    private String tag; 

    private String message; 

 

    private LogEntry() { 

    } 

     

    public static LogEntry fromLine(String line) { 

        String[] tokens = line.split("\\s+"); 

         

        // skip over "--------- beginning of /dev/log/system" etc 

        if (tokens[0].equals("---------")) 

            return null; 

         

        LogEntry le = new LogEntry(); 

         

        le.timestamp = tokens[0]+" "+tokens[1]; 

         

        le.tag = 

tokens[2].substring(tokens[2].indexOf("/"),tokens[2].indexOf("(")); 

         

        le.pid = 

Integer.valueOf((line.substring(line.indexOf("(")+1,line.indexOf(")"))).tri

m()); 

         

        int messageStart = line.indexOf("): "); 

        le.message = line.substring(messageStart); 

         

        return le; 

    } 

 

    public String getTimestamp() { 

        return this.timestamp; 

    } 

 

    public int getPid() { 

        return this.pid; 

    } 

 

    public String getTag() { 

        return this.tag; 

    } 

 

    public String getMessage() { 

        return this.message; 

    } 

} 

 

 

 LogcatDevice.java 

package org.app.analysis; 

 

import java.io.*; 

 

import android.util.Log; 

 

public class LogcatDevice { 
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    private static final String LOGTAG = 

LogcatDevice.class.getSimpleName(); 

 

    private Process logcatProcess = null; 

    private BufferedReader br = null; 

 

    private LogcatDevice() 

    { 

    } 

 

    private static LogcatDevice instance = new LogcatDevice(); 

 

    public static LogcatDevice getInstance() { 

        return instance; 

    } 

 

    public void open() throws IOException { 

        this.logcatProcess = Runtime.getRuntime().exec("logcat -v time *:S 

TaintLog:*"); 

        this.br = new BufferedReader(new 

InputStreamReader(logcatProcess.getInputStream())); 

    } 

 

    public boolean isOpen() { 

        return(this.br != null); 

    } 

 

    public LogEntry readLogEntry() throws IOException { 

        if(!isOpen()) { 

            throw new IOException("must open log first"); 

        } 

 

        String line = this.br.readLine(); 

        LogEntry le = LogEntry.fromLine(line); 

        return le; 

    } 

 

    public void close() throws IOException { 

        if(isOpen()) { 

            this.logcatProcess.destroy(); 

            this.br.close(); 

            this.br = null; 

        } 

    } 

} 


