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Core The core object for each cluster is the object that has the minimum 

density function value according. 

DBCLASD A Distribution-Based CLustering Algorithm for mining in large Spatial 

Databases. 

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 

DENCLUE Clustering Based on Density Distribution Functions "DENsity-based 

CLUstEring". 

DMDBSCAN Dynamic Method DBSCAN. 

DVBSCAN A Density based Algorithm for Discovering Density Varied Clusters in 

Large Spatial Databases. 

E Total Density Function represents the difference among the data 

points, which is based on the core. 

E-neighborhood The neighborhood within a radius Eps of a given object is called the 

E-neighborhood of the object. 

Eps The radius of a number of objects. 

MDBSCAN                A Multi-Density DBSCAN. 

MinPts The Minimum number of Points (objects) each point of a cluster the 

neighborhood of a given radius (Eps) has to contain. 

p Some Point in a data set. 

ST-DBSCAN An algorithm for clustering Spatial–Temporal data. 

VDDBSCAN Vibration and Dynamic DBSCAN. 

VMDBSCAN Vibration Method DBSCAN. 
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vخوارزميةvعلىvتعديلDBSCANvالمتغيرةvالكثافةvعندvنتائجvأفضلvعليvللحصولv

vمحمدvنديدvتكريمvالبطة

vملخص

DBSCAN مجموعات من معرفة يمكنبواسطته ة. كثافال علىالبيانات بالاعتماد  لتجميعتستخدم  هو خوارزمية 

غير مرتبطة قيم ضوضاء و بيانات فيها  تحتوي على، والتي البيانات كمية كبيرة من من كال والأحجاممختلف الأش

 المحلية كثافةال في اختلافوجود  التعامل مع فشل فيي ومع ذلك، فإنهبالبيانات الاصلية المطلوب تصنيفها. 

 المجموعة. فيكثافة البيانات نحتاج الي طريقة للتعامل مع اختلاف ، وبالتالي. البياناتضمن  الموجودة

مختلف الاشكال  مجموعات من يكشف عن الذي، DBSCAN الخوارزمية تعزيزل حااقتر تم عرض هذه الأطروحة  في

،  VMDBSCAN المقترحة الاولي الخوارزميةدة. خوارزميات جدي ثلاث نقدم . والكثافة في التي تختلف والاحجام

 خوارزمية استخدامعن بعضها عند ة البيانات المرتبطة مجموعكلة فصل حيث تم استخدام فكرة الاهتزاز لحل مش

DBSCAN  هي ةالمقترح ةالثاني الخوارزمية قديمة.الDMDBSCAN   حيث تتغلب هذه الخوارزمية الجديدة علي

وعة المستخدم لقياس المسافات بين النقاط. أي نقاط يتم ايجاد المجم EPS ة استخدام قيمة واحدة لنصف القطرمشكل

الاخيرة تجمع الخوارزمية الاولي مع  خوارزميةال .التي تنتمي اليها يتم عزلها وتطبيق الخوارزمية علي باقي النقاط

 ، وبالتالي نحصل علي افضل النتائج.تجميع للبياناتافضل  لإيجادالثانية 

هذه البيانات تحتوي علي  .UCIمن حقيقية البيانات وثلاث مجموعات من ال صناعية التجارب اجريناها علي بيانات

المقترحة،  الخوارزمياتأظهرت كفاءة ودقة نقاط لها كثافة متغيرة لاختبار الخوارزميات التي اقترحناها. النتائج النهائية 

الأساسية وخوارزمية  DBSCAN خوارزميةالمقترحة مع  الخوارزمياتحيث حصلنا علي نتائج ممتازة عند مقارنة 

DVBSCAN. عند دمج الخوارزمية الحقيقية حصلنا علي اقل نسبة خطأ ت في البياناVMDBSCAN  مع

DMDBSCAN  لبيانات  9..6وصلت الي %IRIS بينما ،DVBSCAN 11..2الي  ت نسبة الخطأوصل  .%

لبيانات  %. 51.92وصل الي  DVBSCAN، بينما % 21.21الخطأ الي  نسبة وصلت Habermanلبيانات 

Glass في  بينما%،  33.33الي  الخطأت نسبة وصلDVBSCAN 12.15الي  خطأت نسبة الوصل .%  
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An Improvement for DBSCAN Algorithm for Best 

Results in Varied Densities 

Mohammad N. T. Elbatta 

Abstract 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a base 

algorithm for density based clustering. It can find out the clusters of different shapes and 

sizes from a large amount of data, which is containing noise and outliers. However, it 

fails to handle the local density variations that exist within the cluster. In this thesis, an 

enhancement of DBSCAN algorithm is proposed, which detects the clusters of different 

shapes, sizes that differ in local density. We introduce three new algorithms. Our first 

proposed algorithm Vibration Method DBSCAN (VMDBSCAN) first finds out the “core” 

of each cluster – clusters generated after applying DBSCAN -. Then it “vibrates" points 

toward cluster that has the maximum influence on these points. 

The second proposed algorithm is Dynamic Method DBSCAN (DMDBSCAN). It selects 

several values of the radius of a number of objects (Eps) for different densities according 

to a k-dist plot. For each value of Eps, DBSCAN algorithm is adopted in order to make 

sure that all the clusters with respect to corresponding density are clustered. And for the 

next process, the points that have been clustered are ignored, which avoids marking both 

denser areas and sparser ones as one cluster. 

The last algorithm Vibration and Dynamic DBSCAN (VDDBSCAN) combines the first 

and second algorithms to produce best clustering results. It begins by searching for each 

level of density its corresponding Eps, then it will use DBSCAN to find all clusters, 

finally, it will use vibration method of VMDBSCAN to solve the problem of splitting 

clusters. 

Experimental results are obtained from artificial data sets and three real data sets from 

UCI. These data sets are of varied densities to match our goal for testing the proposed 

algorithms. The final results show that our algorithms get a good results with respect to 

the original DBSCAN algorithm and DVBSCAN algorithm. We obtain the correct 

number of clusters of artificial data sets. In the real data sets, the error rate is decreased 

when merging VMDBSCAN with DMDBSCAN and reach 9.76 % for IRIS data set, 

while when using DVBSCAN it was 17.22 %. For Haberman data set it reach 12.54 %, 

while when using DVBSCAN it was 32.65 %. For Glass data set it reach 33.43 %, while 

when using DVBSCAN it was 41.23 %. 

Keywords: Cluster, Vibrating, Core, Density Different Cluster, Variance Density, 

DBSCAN, Total Density Function, K-dist. 
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Chapter 1 
Introduction 

1.1 What Is Clustering 

The process of grouping a set of physical or abstract objects into classes of similar 

objects is called clustering. A cluster is a collection of data points that are similar to 

one another within the same cluster and are dissimilar to the objects in other clusters. 

A cluster of data points can be treated collectively as one group and so may be 

considered as a form of data compression [1]. 

Clustering is also called data segmentation in some applications because clustering 

partitions large data sets into groups according to their similarity. Clustering can also 

be used for outlier detection, where outliers (values that are “far away” from any 

cluster) may be more interesting than common cases. Applications of outlier detection 

include the detection of credit card fraud and the monitoring of criminal activities in 

electronic commerce [2]. 

Data mining has attracted a great deal of attention in the information industry and in 

society as a whole in recent years, due to the wide availability of huge amounts of 

data and the imminent need for turning such data into useful information and 

knowledge which can be used for applications ranging from market analysis, fraud 

detection, and customer retention, to production control and science exploration. Data 

mining can be viewed as a result of the natural evolution of information technology in 

a lot of functionalities such as data collection and database creation, data and 

advanced data analysis (involving data warehousing and data mining). Clustering, 

which divides the data to disparate clusters, is a crucial part of data mining. The 

objects within a cluster are "similar," whereas the objects of different clusters are 

"dissimilar" [3]. 

In many applications, the notion of a cluster in not well defined. To better understand 

the difficulty of deciding what constitutes a cluster, look at Figure 1.1, which shows 

twenty points and three different ways of dividing them into clusters. The shapes of 



2 

 

markers indicate cluster membership. Figures 1.1(a) and 1.1(d) divide the data into 

two and six parts, respectively. However, the apparent division of each of the two 

larger clusters into three sub clusters may simply be an artifact of human visual 

system. Also, it may not be unreasonable to say that the points form four clusters, as 

shown in Figure 1.1(c). This figure illustrates that the definition of a cluster is 

imprecise and that the best definition depends on the nature of data and the desired 

results [2]. 

 
 

(a) Original points (b) Two clusters 

  
(c) Four clusters (d) Six clusters 

Figure 1.1 Different ways of dividing points into clusters [2] 

1.2 Types of Clustering  

Clustering methods can be categorized into two main types: fuzzy clustering and hard 

clustering. In fuzzy clustering, data points can belong to more than one cluster with 

probabilities. In hard clustering, data points are divided into distinct clusters, where 

each data point can belong to one and only one cluster. These data points can be 

grouped with many different techniques, such as partitioning, hierarchical, density 

based, grid based, and model based Figure 1.2 [4, 5, 6]. 

Partitioning algorithms minimize a given clustering criterion by iteratively 

relocating data points between clusters until a (locally) optimal partition is attained. 

The most popular partition-based clustering algorithms are the k-means [7] and the k-

mediod [8]. The advantage of the partition-based algorithms is the use an iterative 

way to create the clusters, but the limitation is that the number of clusters has to be 

determined by user and only spherical shapes can be determined as clusters. This 
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limitation because clusters are separable in a way so that the mean value converges 

towards the cluster center. 

 

Figure 1.2 Diagram of clustering algorithms [4] 

Hierarchical algorithms provide a hierarchical grouping of the objects. These 

algorithms can be divided into two approaches, the bottom-up or agglomerative and 

the top-down or divisive approach. In case of agglomerative approach, at the start of 

the algorithm, each object represents a different cluster and at the end, all objects 

belong to the same cluster. In divisive method at the start of the algorithm all objects 

belong to the same cluster, which is split, until each object constitute a different 

cluster. Hierarchal algorithms create nested relation-ships of clusters, which can be 

represented as a tree structure called dendrogram [9]. The resulting clusters are 

determined by cutting the dendrogram by a certain level. Hierarchal algorithms use 

distance measurements between the objects and between the clusters. Many 

definitions can be used to measure distance between the objects, for example 

Euclidean, City-block (Manhattan), Minkowski etc. 

Between the clusters one can determine the distance as the distance of the two nearest 

objects in the two clusters (single linkage clustering) [10], or as the two furthest 

(complete linkage clustering) [11], or as the distance between the mediods of the 

clusters. The disadvantage of the hierarchical algorithm is that after an object is 

assigned to a given cluster it cannot be modified later. Also only spherical clusters can 
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be obtained. The advantage of the hierarchical algorithms is that the validation indices 

(correlation, inconsistency measure), which can be defined on the clusters, can be 

used for determining the number of the clusters. The popular hierarchical clustering 

methods are CHAMELEON [9], BIRCH [7] and CURE [8]. 

Density-based algorithms like DBSCAN [10] and OPTICS [11] find the core objects 

at first and they grow the clusters based on these cores and search for objects that are 

in a neighborhood within a radius of a given object. The advantage of these types of 

algorithms is that they can detect arbitrary forms of clusters and they can filter out the 

noise. 

Grid-based algorithms quantize the object space into a finite number of cells (hyper-

rectangles) and then perform the required operations on the quantized space. The 

advantage of this approach is the fast processing time that is in general independent of 

the number of data points. The popular grid-based algorithms are STING [12], 

WaveCluster [13], and CLIQUE [14]. 

Model-based algorithms find good approximations of model parameters that best fit 

the data. They can be either partitional or hierarchical, depending on the structure or 

model they hypothesize about the data set and the way they refine this model to 

identify partitioning. They are closer to density-based algorithms, in that they grow 

particular clusters so that the preconceived model is improved. However, they 

sometimes start with a fixed number of clusters and they do not use the same concept 

of density. The most popular model-based clustering methods is EM [15]. 

Fuzzy algorithms suppose that no hard clusters exist on the set of objects, but one 

object can be assigned to more than one cluster. The best known fuzzy clustering 

algorithm is FCM (Fuzzy C-MEANS) [16]. 

So we can summarize the clustering algorithms as follows [12]: 

1. Hierarchical Methods  

 Agglomerative Algorithms  

 Divisive Algorithms  

2. Partitioning Methods  
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 Relocation Algorithms  

 Probabilistic Clustering 

 k-medoids Methods  

 k-means Methods  

 Density-Based Algorithms  

3. Density-Based Connectivity Clustering  

4. Density Functions Clustering  

5. Grid-Based Methods  

6. Methods Based on Co-Occurrence of Categorical Data  

7. Constraint-Based Clustering  

8. Clustering Algorithms Used in Machine Learning  

 Gradient Descent and Artificial Neural Networks  

 Evolutionary Methods 

9. Scalable Clustering Algorithms  

10. Algorithms For High Dimensional Data  

 Subspace Clustering  

 Projection Techniques  

 Co-Clustering Techniques  

1.3 Types of Clusters 

There are many algorithms that deal with the problem of clustering large number of 

objects. The different algorithms can be classified regarding different aspects. These     

methods can be categorized into partitioning methods [4, 5, 6], hierarchical   methods 

[4, 7, 8], density based methods [10, 11, 17], grid based methods [12, 13, 14], and 

model based methods [18, 19]. Figure 1.3 depicts different types of clusters. 

Well-Separated: In this type of cluster, each object is closer (or more similar) to 

every other object in the cluster than to any object not in the cluster Figure 1.3(a). 

Prototype-Based: It is a cluster in which each object is closer(more similar) to the 

prototype that defines the cluster than the prototype of any other cluster. We 

commonly refer to prototype-based clusters as center-based clusters Figure 1.3(b). 
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Graph-Based: A cluster can be defined as a connected component; i.e., a group of 

objects that are connected to one another, but that have no connection to objects 

outside the group. An important example of graph-based clusters are contiguity-based 

clusters, where two objects are connected only if they are within a specified distance 

of each other. This implies that each object in a contiguity-based cluster is closer to 

some other object in the cluster than to any point in a different cluster Figure 1.3(c). 

Density-Based: A cluster is a dense region of objects that is surrounded by a region 

of low density. Objects in these sparse areas - that are required to separate clusters - 

are usually considered to be noise and border points Figure 1.3(d). 

The famous density based clustering method is DBSCAN algorithm. In contrast to 

many newer methods, it features a well-defined cluster model called "density-

reachability". It is based on connecting points within certain distance thresholds. 

However, it only connects points that satisfy a density criterion, in the original variant 

defined as a minimum number of other objects within this radius. A cluster consists of 

all density-connected objects plus all objects that are within these objects range. So, it 

will define any arbitrary shape of original data. Also, DBSCAN complexity is fairly 

low - it requires a linear number of range queries on the database - and that it will 

discover essentially the same results in each run, therefore there is no need to run it 

multiple times. 

Shared-Property (Conceptual Clusters): A cluster of objects that share some 

property. It is distinguished from ordinary data clustering by generating a concept 

description for each generated class. Most conceptual clustering methods are capable 

of generating hierarchical category structures Figure 1.3(e). 

1.4 Requirements of Clustering Algorithms 

Clustering is a challenging field of research in which its potential applications pose 

their own special requirements. The following are typical requirements of clustering 

algorithms in data mining: 

Ability to deal with different types of attributes [1]: Many algorithms are designed  
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(a) Well-separated clusters. Each point 

is closer to all of the points in its 

cluster than to any point in another 

cluster. 

(b) Center-based clusters. Each 

point is closer to the center of 

its cluster than to the center of 

any other cluster. 

  
(c) Contiguity-based clusters. Each 

point is closer to at least one point in 

its cluster than to any point in 

another cluster. 

(d) Density-based clusters. Clusters 

are regions of high density 

separated by regions of low 

density. 

 
(e) Conceptual clusters. Points in a cluster share some general property that 

derives from the entire set of points. (Points in the intersection of the circles 

belong to both.) 

Figure 1.3 Different types of clusters [2] 

to cluster numeric (interval-based) data. However, applications may require clustering 

other data types, such as binary, nominal (categorical), and ordinal data, or mixtures 

of these data types. Recently, more and more applications need clustering techniques 

for complex data types such as graphs, sequences, images, and documents. 

Scalability [4]: Many clustering algorithms work well on small data sets containing 

fewer than several hundred data points; however, a large database may contain 

millions or even billions of objects, particularly in Web search scenarios. Clustering 
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on only a sample of a given large data set may lead to biased results. Therefore, 

highly scalable clustering algorithms are needed. 

Discovery of clusters with arbitrary shape [3]: Many clustering algorithms 

determine clusters based on Euclidean or Manhattan distance measures. Algorithms 

based on such distance measures tend to find spherical clusters with similar size and 

density. However, a cluster could be of any shape. Consider sensors, for example, 

which are often deployed for environment surveillance. Cluster analysis on sensor 

readings can detect interesting phenomena. We may want to use clustering to find the 

frontier of a running forest fire, which is often not spherical. It is important to develop 

algorithms that can detect clusters of arbitrary shape. 

Able to deal with noise and outliers [3]: Most real-world data sets contain outliers 

and/or missing, unknown, or erroneous data. Sensor readings, for example, are often 

noisy, some readings may be inaccurate due to the sensing mechanisms, and some 

readings may be erroneous due to interferences from surrounding transient objects. 

Clustering algorithms can be sensitive to such noise and may produce poor-quality 

clusters. Therefore, we need clustering methods that are robust to noise. 

Requirements for domain knowledge to determine input parameters [2]: Many 

clustering algorithms require users to provide domain knowledge in the form of input 

parameters such as the desired number of clusters. Consequently, the clustering 

results may be sensitive to such parameters. Parameters are often hard to determine, 

especially for high-dimensionality data sets and where users have yet to grasp a deep 

understanding of their data. Requiring the specification of domain knowledge not only 

burdens users, but also makes the quality of clustering difficult to control. 

Time complexity [20, 21]: The time complexity of a clustering algorithm quantifies 

the amount of time taken by an clustering algorithm to run as a function of the size of 

the input to the problem. Real world problems need the time of any algorithm to be 

fast to do the processing and then output the results. 

High dimensionality [22, 23]: A database or a data warehouse can contain several 

dimensions or attributes. Many clustering algorithms are good at handling low-

http://en.wikipedia.org/wiki/Algorithm
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dimensional data, involving only two to three dimensions. Human eyes are good at 

judging the quality of clustering for up to three dimensions. Finding clusters of data 

points in high-dimensional space is challenging, especially considering that such data 

can be sparse and highly skewed. 

Incremental clustering and insensitivity to input order [24]: In many applications, 

incremental updates (representing newer data) may arrive at any time. Some 

clustering algorithms cannot incorporate incremental updates into existing clustering 

structures and, instead, have to re-compute a new clustering from scratch. Clustering 

algorithms may  also be sensitive to the input data order. That is, given a set of data 

points, clustering algorithms may return dramatically different clustering depending 

on the order in which the objects are presented. Incremental clustering algorithms and 

algorithms that are insensitive to the input order are needed. 

Labeling or assignment: hard or strict vs. soft or fuzzy [25, 26, 27]. 

Interpretability and usability of results [1]: Users want clustering results to be  

interpretable, comprehensible, and usable. That is, clustering may need to be tied in 

with specific semantic interpretations and applications. It is important to study how an 

application goal may influence the selection of clustering features and clustering 

methods. 

Insensitive to the initial conditions[3]: 

However, clustering is a difficult combinatorial problem, and differences in 

assumptions and contexts in different communities have made the transfer of useful 

generic concepts and methodologies slow to occur [1]. 

1.5 Our Contribution  

The contributions of this research is that we developed a new three clustering 

algorithms named VMDBSCAN, DMDBSCAN, and VDDBSCAN. All these 

algorithms are Density-based Multi-density algorithms. The first algorithm 

VMDBSCAN uses the idea of vibration to find the good clustering results in varied 

densities data sets. The second algorithm will solve the problem of using one global 
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value of Eps for all data set, by find local value of Eps for each density in data set. 

The last algorithm will merge the first algorithm and second algorithm to find the best 

clustering results by find local values of Eps and apply vibration after that. 

Main advantages of our proposed algorithms are highlighted hereunder: 

 Enhancing the quality of clustering by solving the problem of varied densities. 

 Because for large spatial databases it is very difficult to identify the initial 

parameters like number of clusters, shape and density in advance. Our 

proposed algorithms select several values of input parameter Eps for different 

densities, so, no need from the user to input these values. 

 The clusters which are formed based on the proposed algorithms are easy to 

understand and it does not limit itself to the shapes of clusters. 

Experimental results are shown in this thesis to demonstrate the effectiveness of the 

proposed algorithms. We compared our proposed algorithm results with other famous 

related algorithms results. And we present that our new proposed algorithm is the best 

one. 

1.6 Thesis Structure 

The rest of the thesis is organized as follows: Chapter 2 talks about related work 

which discusses the clustering problem. Chapter 3 summarizes the methodologies of 

the new proposed clustering algorithms and a number of concepts related to the 

techniques used in my proposed algorithms. Chapter 4 discusses and explains our 

proposed algorithms VMDBSCAN, DMDBSCAN and VDDBSCAN, and shows our 

contribution for improving efficiency of our proposed algorithms to cluster data sets. 

Chapter 5 shows the experimental results which compare our new proposed 

algorithms with other density-based algorithms; and finally, chapter 6 concludes the 

thesis and presents suggestions for future work. 
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Chapter2 
Related Works  

Data mining is the process of identifying hidden and interesting patterns from large 

data set, which can further be used in decision making and future prediction [28]. 

Clustering is an important technique of class identification in spatial databases. 

Objective of the clustering is to maximize the intra cluster similarity and minimizing 

the inter cluster similarity. Clustering is used to find useful patterns in unlabeled data. 

Clustering has been extensively studied for over 40 years and across many disciplines 

due to its broad applications. Most books on pattern classification and machine 

learning contain chapters on cluster analysis or unsupervised learning [29]. 

In this chapter we survey the techniques proposed in the literature to overcome the 

limitations of DBSCAN. DBSCAN will be survey in more details on chapter 3. 

2.1 Background 

Several textbooks are dedicated to the methods of cluster analysis, including Hartigan 

[30],  Jain  and Dubes [31], Kaufman and Rousseeuw [32], and Arabie, Hubert, and 

De Sorte [33]. There are also many survey articles on different aspects of clustering 

methods. Recent ones include Jain, Murty, and Flynn [34], Parsons, Haque, and Liu 

[35], and Jain [36]. 

For partitioning methods, the k -means  algorithm was first introduced by Lloyd [37], 

and then by MacQueen [38]. Arthur and Vassilvitskii [39] presented the k-means++ 

algorithm. A filtering algorithm, which uses a spatial hierarchical data index to speed 

up the computation of cluster means, is given in Kanungo, Mount, Netanyahu, Piatko, 

Silverman, and Wu [40]. 

The k-medoids algorithms of PAM and CLARA were proposed by Kaufman and 

Rousseeuw [32]. The k-modes (for clustering nominal data) and prototypes (for 

clustering hybrid data) algorithms were proposed by Huang [41]. The k-modes 

clustering algorithm was also proposed independently by Chaturvedi, Green, and 
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Carroll [42, 43]. The CLARANS algorithm was proposed by Ng and Han [44]. Ester, 

Kriegel, and Xu [45] proposed techniques for further improvement of the  

performance of CLARANS using efficient spatial access methods, such as R*-tree 

and focusing  techniques. A k-means-based scalable clustering algorithm was 

proposed by Bradley, Fayyad, and Reina [46]. 

Partitioning techniques like k-means and PAM clustering algorithms assume clusters 

are globular and are of similar sizes. Both fail in large variation in cluster sizes and 

when cluster shapes are convex as in Figure 2.1 below. The data set in Figure 2.1 

below contains two convex clusters. K-means and PAM clustering algorithms fail to 

find the correct clusters, so that the right cluster take points from the left one and the 

vice versa, and it is wrong result. 

 

Figure 2.1 Clustering with k-means and PAM algorithms 

Hierarchical Techniques like CURE [47] and ROCK [48] clustering algorithms use 

static models to determine the most similar cluster to merge in the hierarchical 

clustering. CURE measures the similarity of two clusters based on the similarity of 

the closest pair of the representative points belonging to different clusters, without 

considering the internal closeness (i.e., density or homogeneity) of the two clusters 

involved. It fails to take into account special characteristics and shapes as in Figure 

2.2 below, we get a wrong clustering result. ROCK measures the similarity of two 
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clusters by comparing the aggregate inter-connectivity of two clusters against a user-

specified static inter-connectivity model, and thus it ignores the potential variations in 

the inter-connectivity of different clusters within the same data set. 

 

Figure 2.2 Clustering an artificial data set with CURE algorithm 

DBSCAN is an important and widely used technique for class identification in spatial 

databases [3]. Many variations to the DBSCAN exist. DDBSCAN was first proposed 

in [14], for clustering over large data sets. Two major drawbacks are seen with 

DBSCAN: 

1. The time complexity which reaches to O(n
2
) in worst case. 

2. The accuracy of clustering over the varied densities [15]. 

Ankerst, Breunig, Kriegel, and Sander [49] developed OPTICS, a cluster ordering 

method that  facilitates density-based clustering without worrying about parameter 

specification. 

OPTICS [11] algorithm is an improvement of DBSCAN to deal with variance density 

clusters. OPTICS does not assign cluster memberships but this algorithm computes an 

ordering of the objects based on their reachability distance for representing the 

intrinsic hierarchical clustering structure. Pei et al [50] proposed a nearest-neighbor 

cluster method, in which the threshold of density (equivalent to Eps of DBSCAN) is 
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computed via the Expectation-Maximization (EM) [15] algorithm and the optimum 

value of k (equivalent to minimum points MinPts of DBSCAN) can be decided by the 

lifetime individual k. As a result, the clustered points and noise were separated 

according to the threshold of density and the optimum value of k. 

In order to adapt DBSCAN to data consisting of multiple processes, an improvement 

should be made to find the difference in the mth nearest distances of processes. Roy 

and Bhattacharyya [51] developed new DBSCAN algorithm, which may help to find 

different density clusters that overlap. However, the parameters in this method are still 

defined by users. Lin and Chang [52] introduced new approach called GADAC, which 

may produce more precise classification results than DBSCAN does. Nevertheless, in 

GADAC, the estimation of the radius is dependent upon the density threshold δ, 

which can only be determined in an interactive way. 

Pascual et al [53] developed density-based cluster method to deal with clusters of 

different sizes, shapes, and densities. However, the parameters neighborhood radius 

R, which is used to estimate the density of each point, have to be defined using prior 

knowledge and finding Gaussian-shaped clusters and is not always suit for clusters 

with arbitrary shapes. 

EDBSCAN (An Enhanced Density Based Spatial Clustering of Application with 

Noise) [54] algorithm is another extension of DBSCAN; it keeps tracks of density 

variation which exists within the cluster. It calculates the density variance of a core 

object with respect to its E-neighborhood. If density variance of  a core object is less 

than or equal to a threshold value and also satisfying the homogeneity index with 

respect to its neighborhood then it will allow the core object for expansion. But it 

calculates the density  variance and homogeneity index locally in the E-neighborhood 

of a core object. 

DD_DBSCAN [55] algorithm is another enhancement of DBSCAN, which finds the 

clusters of different shapes, sizes which differ in local density. But, the algorithm is 

unable to handle the density variation within the cluster. DDSC [56] (A Density 

Differentiated Spatial Clustering Technique) is proposed, which is again an extension 
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of the DBSCAN algorithm. It detects clusters, which are having non-overlapped 

spatial regions with reasonable homogeneous density variations within them. 

CHAMELEON [9] finds the clusters in a data set by two-phase algorithm. In first 

phase, it generates a k-nearest neighbor graph. In the second phase, it uses an 

agglomerative hierarchical clustering algorithm to find the cluster by combining the 

sub clusters. 

In the following sections, we will study in more details the DBSCAN and some of 

algorithms variations to solve shortcomings of DBSCAN. 

2.2 DENCLUE 

DENCLUE (DENsity-based CLUstEring) [1, 17] is a clustering method based on a 

set of density distribution functions. The method is built on the following ideas: 

1. The influence of each data point can be formally modeled using a 

mathematical function, called an influence function, which describes the 

impact of a data point  within its neighborhood. 

2. The overall density of the data space can be modeled analytically as the sum 

of  the influence function applied to all data points. 

3. Clusters can then be determined mathematically by identifying density 

attractors, where density attractors are local maxima of the overall density 

function. 

Let x and y be objects or points in F
d
, a d-dimensional input space. The influence  

function of data point y on x is a function,   
 

: F
d
    

 
, which is defined in terms of 

a basic influence function fB: 

  
 ( )    (   )                                                         (   ) 

This reflects the impact of y on x. In principle, the influence function can be an 

arbitrary function that can be determined by the distance between two objects in a 

neighborhood. 
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Problems of Denclue: 

The method requires careful selection of the density parameter   and noise threshold   

– any point has density function value less than   is considered as outlier -, as the 

selection of such parameters may significantly influence the quality of the clustering 

results [29]. 

2.3 DBCLASD 

This new clustering Algorithm DBCLASD [57] detects clusters with arbitrary shape 

and it does not require any input parameters. The efficiency of DBCLASD on large 

spatial databases is also very attractive. 

DBCLASD algorithm works as follow: 

1. DBCLASD is an incremental algorithm that is the assignment of a point to a 

cluster is based only on the points processed so far without considering the 

whole database. 

2. It incrementally augments an initial cluster by its neighboring points as long as 

the nearest neighbor distance of the resulting cluster fits the expected distance 

distribution. 

3. A set of candidates of a cluster is constructed using region queries which is 

supported by Spatial Access Methods (SAM). 

 The incremental approach implies an inherent dependency of the 

discovering clusters from the order of generating and testing candidates. 

The order of testing the candidates is crucial. Candidates which are not 

accepted by the test for the first time are called unsuccessful candidates. 

DBCLASD Problems: 

DBCLASD [57] Algorithm is based on the assumption that the points inside a cluster 

are uniformly distributed. The application of DBCLASD to earthquake catalogues 

shows that it also works effectively on real databases where the data is not exactly 

uniformly distributed. It is very efficient for large spatial databases. This algorithm 



17 

 

fulfills all the requirements needed for designing a good clustering algorithm for 

spatial databases. So, it suffers when there are non-uniform points [29]. 

2.4 ST-DBSCAN 

ST-DBSCAN [58] algorithm is constructed by modifying DBSCAN [10] algorithm. 

In contrast to existing density-based clustering algorithm, ST-DBSCAN [12] 

algorithm has the ability of discovering  clusters with respect to non-spatial, spatial 

and temporal values of the objects. 

The three modifications done in DBSCAN algorithm are as follows: 

1. ST-DBSCAN algorithm can cluster spatial-temporal data according to non-

spatial, spatial and temporal attributes. 

2. DBSCAN does not detect noise points when it is of varied density but this 

algorithm overcomes this problem by assigning density factor to each cluster. 

3. In order to solve the conflicts in border objects it compare the average value of 

a cluster with new coming value. 

The algorithm starts with the first point p in database D: 

1. This point p is processed according to DBSCAN algorithm and next point is 

taken. 

2. Retrieve_Neighbors (object, Eps1, Eps2) function retrieves all objects density-

reachable from the selected object with respect to Eps1, Eps2 and Minpts. If 

the returned points in E-neighborhood are smaller than Minpts input, the 

object is assigned as noise. 

3. The points marked as noise can be changed later that is the points are not 

directly density-reachable but they will be density reachable. 

4. If the selected point is a core object, then a new cluster is constructed. Then all 

the directly-density reachable neighbors of this core objects is also included. 

5. Then the algorithm iteratively collects density-reachable objects from the core 

object using stack. 
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6. If the object is not marked as noise or it is not in a cluster and the difference 

between the average value of the cluster and new value is smaller than ∆E , it 

is placed into the current cluster. 

7. If two clusters C1 and C2 are very close to each other, a point p may belong to 

both C1 and C2. Then point p is assigned to cluster which discovered first. 

ST-DBSCAN Problems: 

One of the main problems of ST-DBSCAN algorithm it needs three input parameter 

from the user [29]. 

2.5 DVBSCAN 

In contrast to DBSCAN [10], DVBSCAN [59] algorithm handles local density 

variation within the cluster. The input parameters used in this algorithm are minimum 

objects (µ), radius, threshold values (α, λ). It calculates the growing cluster density 

mean and then the cluster density variance for any core object, which is supposed to  

be expanded further by considering density of its E-neighborhood with respect to 

cluster density mean. If cluster density variance for a core object is less than or equal 

to a threshold value and is also satisfying the cluster similarity index, then it will 

allow the core object for expansion. 

It outperforms the DBSCAN, especially in case of local density as shown in Figure 

2.3 and  Figure 2.4. 

The DVBSCAN algorithm has the following steps: 

1. A cluster is formed by selecting core object. 

2. Then it computes cluster density mean (CDM) is calculated for the growing  

cluster before allowing the expansion of an unprocessed core object. 

3. Computation of the cluster Density variance (CDV) includes the E-

neighborhood of the unprocessed core object with respect to CDM. 

4. If CDV of growing cluster with respect to CDM is less than a specified 

threshold value α and the difference between the minimum and maximum 

object lying in the E-neighborhood of the object is less than a specified 
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threshold value λ then only an unprocessed core object is allowed for 

expansion. 

5. Otherwise the object is simply added into the cluster. 

DVBSCAN Problems: 

The parameters α and λ are used to limit the amount of allowed local density 

variations within the cluster. These input parameters must be determined by the user. 

Other problem of DVBSCAN is the time complexity, which is high compared with 

other density based algorithms [29]. 

 
 

Figure 2.3 Clusters generated by 

DBSCAN algorithm [29] 

Figure 2.4 Clusters generated by 

DVBSCAN algorithm [29] 
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Chapter 3 
Background 

Our thesis presents new ideas to solve the problem of variant densities which most 

DBSCAN based algorithms suffer from. This chapter will explain some background 

and techniques used in clustering, that we will use it when applying our proposed 

algorithms. Also, we will review the DBSCAN, its advantages and its shortcomings. 

3.1 Data Types in Clustering Analysis 

The type of data is directly associated with data clustering, and it is a major factor to 

consider in choosing an appropriate clustering algorithm. The attributes can be 

Binary, Categorical, Ordinal, Interval-scaled or Ratio-scaled [1].  

Binary: Have only two states: 0 or 1, where 0 means that the variable is absent and 1 

means that it is present.  

Categorical: also referred to as nominal, are simply used as names, such as the 

brands of cars and names of bank branches. That is, a categorical attribute is a 

generalization of the binary variable; it can take on more than two states. 

Ordinal: resembles a categorical variable, except that the M states of the ordinal 

value are ordered in a meaningful sequence. For example, professional ranks are often 

enumerated in a sequential order. 

Interval-scaled: are continuous measurements of a linear scale such as weight, height 

and weather temperature. 

Ratio-scaled: make a positive measurement on a nonlinear scale. For example an 

exponential scale and the volume of scales over time are ratio-scaled attributes. 

There are many other data types, such as image data, though we believe that once 

readers get familiar with these basic types of data, they should be able to adjust the 

algorithms accordingly. 
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3.2 Similarity and Dissimilarity  

Similarity and Dissimilarity (Distances) play an important role in cluster analysis. 

Similarity measures, similarity coefficients, dissimilarity measures, or distances are 

used to describe quantitatively the similarity or dissimilarity of two data points or two 

clusters, that how similar two data points are or how similar two clusters are: the 

greater the similarity coefficient, the more similar are the two data points. 

Dissimilarity measure and distance are the other way around: the greater the 

dissimilarity measure or distance, the more dissimilar are the two data points or the 

two clusters. Consider the two data points x and y example. The Euclidean distance 

between x and y is calculated as: 

          (   )  √(       )
  (       )

    (       )
         (   ) 

where i =(   ,    , … ,     ) and j =(   ,    , … ,     ) are two n-dimensional data 

points. 

The lower the distance between x and y, the more probability that x and y fall in the 

same cluster. 

Every clustering algorithm is based on the index of similarity or dissimilarity between 

data points [7].  

3.3 Scale Conversion  

In many applications, the variables describing the objects to be clustered will not be 

measured in the same scales. They may often be variables of completely different 

types, some interval, others categorical. Scale conversion is concerned with the 

transformation between different types of variables. There are three approaches to 

cluster objects described by variables of different types.  

One is to use a similarity coefficient, which can incorporate information from 

different types of variable. The second is to carry out separate analyses of the same set 

of objects, each analysis involving variables of a single type only, and then to 
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synthesize the results from different analyses. The third is to convert the variables of  

different types to variables of the same type, such as converting all variables 

describing the objects to be clustered into categorical variables [6]. Any scale can be 

converted to any other scale. Several cases of scale conversion are described by 

Anderberg (1973) [6], including interval to ordinal, interval to nominal, ordinal to 

nominal, nominal to ordinal, ordinal to interval, nominal to interval, dichotomization 

(binarization) and so on. 

3.4 Data Standardization and Transformation 

In many applications of cluster analysis, the raw data, or actual measurements, are not 

used directly unless a probabilistic model for pattern generation is available. 

Preparing data for cluster analysis requires some sort of transformation, such as 

standardization or normalization [1]. 

Data standardization makes data dimensionless. It is useful for defining standard 

indices. After standardization, all knowledge of the location and scale of the original 

data may be lost. It is necessary to standardize variables in cases where the 

dissimilarity measure, such as the Euclidean distance, is sensitive to the differences in 

the magnitudes or scales of the input variables. The approaches of standardization of 

variables are essentially of two types: global standardization and within-cluster 

standardization[2]. 

Global standardization standardizes the variables across all elements in the data set. 

Within-cluster standardization refers to the standardization that occurs within clusters 

on each variable. Some forms of standardization can be used in global standardization 

and within-cluster standardization as well, but some forms of standardization can be 

used in global standardization only. 

It is impossible to directly standardize variables within clusters in cluster analysis, 

since the clusters are not known before standardization [60]. 

For convenience, let D
* = {  

    
    ,   

 }
 denotes the d-dimensional raw data set. 

Then the data matrix is an n × d matrix given by:
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)               (3.2) 

To standardize the raw data given in equation (3.1), we can subtract a location 

measure and divide a scale measure for each variable. That is, 

    =  
   
 

  
  

  

  
                                                    (3.3) 

where     denotes the standardized value,    is the location measure, and   is the 

scale measure. 

We can obtain various standardization  methods  by  choosing  different    and    in 

equation (3.3) [1]. Some well-known standardization methods are mean, median, 

standard deviation, range, Huber’s estimate, Tukey’s biweight estimate, and 

Andrew’s wave estimate [3]. Table 3.1 gives some forms of standardization, where 
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  are the mean, range, and standard deviation of the jth variable, 

respectively, i.e., 
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3.5 Overview of DBSCAN Algorithm 

The DBSCAN [10] is density fundamental cluster formation. Its advantage is that it 

can discover clusters with arbitrary shapes and size. The algorithm typically regards 

clusters as dense regions of objects in the data space that are separated by regions of 

low-density objects. The algorithm has two input parameters, radius Eps and MinPts.  

There are some basic concepts related to DBSCAN algorithm, we will  present these 

concepts: 
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Table 3.1 Some data standardization methods, where   
 
,   

 , and   
  are defined in 

equation (3.4)

 

1. The neighborhood within a radius Eps of a given object is called the E-

neighborhood of the object. 

2. If the E-neighborhood of an object contains at least a minimum number, 

MinPts, of objects, then the object is called a core object. 

3. Given a set of objects, D, we say that an object p is directly density-reachable 

from object q if p is within the E-neighborhood of q, and q is a core object 

Figure 3.1. 

4. An object p is density-reachable from object q with respect to Eps and MinPts 

in a set of objects, D, if there is a chain of objects p1,… , pn, where p1 = q and 

pn = p  such that pi+1 is directly density-reachable from pi with respect to Eps 

and MinPts, for 1 ≤ i ≤ n, pi   D Figure 3.1. 

5. An object p is density-connected to object q with respect to Eps and MinPts in 

a set of objects, D, if there is an object o   D such that both p and q are 

density-reachable from o with respect to Eps and MinPts Figure 3.1. 

6. Density reachability is the transitive closure of direct density reachability, and  

this relationship is asymmetric. Only core objects are mutually density 

reachable. Density connectivity, however, is a symmetric relation. 

According to the above definitions, it only needs to find out all the maximal density- 

connected spaces to cluster the data points in an attribute space. And these density- 
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connected spaces are the clusters. Every object not contained in any cluster is 

considered noise and can be ignored. 

 

Figure 3.1 Density reachability and density connectivity in density-based clustering 

[2] 

Explanation of DBSCAN Steps: 

1. DBSCAN requires two parameters: Eps and MinPts. It starts with an arbitrary 

starting point that has not been visited. It then finds all the neighbor points 

within distance Eps of the starting point. 

2. If the number of neighbors is greater than or equal to MinPts, a cluster is 

formed. The starting point and its neighbors are added to this cluster and the 

starting point is marked as visited. The algorithm then repeats the evaluation 

process for all the neighbors' recursively. 

3. If the number of neighbors is less than MinPts, the point is marked as noise. 

4. If a cluster is fully expanded (all points within reach are visited) then the 

algorithm proceeds to iterate through the remaining unvisited points in the 

data set. 

DBSCAN Problems [29]: 

1. When applying the DBSCAN algorithm, we must input two parameters: 

 Eps 

 MinPts 



26 

 

2. Another issues in Eps value that it is determined globally, so due to a single 

global parameter Eps, it is impossible to detect some clusters using one 

global-MinPts. 

3. DBSCAN performance is poor on multi-density data sets. In the multi-density 

data set, DBSCAN may merge different clusters and may also neglect other 

clusters that assign them as noise. 

4. Also the runtime complexity of constructing R*-tree and implementation of 

DBSCAN are not linear. 

  



27 

 

Chapter 4 
Proposed Algorithms 

In this chapter we will introduce a three new improved algorithms in the following, 

for the purpose of effective clustering analysis of data sets with varied densities. First 

algorithm will solve the problem of splitting clusters resulted from varied densities, 

by using the idea of vibration. Second algorithm will solve the problem of using one 

global Eps for all data set in varied densities, so it will use the idea of K-dist to find 

suitable Epsi for each density level. The last algorithm combines the first and second 

algorithms to produce best clustering results. 

4.1 First Proposed Algorithm VMDBSCAN 

In this section, we will present new method to solve the problem of splitting clusters 

when there are densities variations in data sets. 

DBSCAN is a base algorithm for density based clustering. It can find out the clusters 

of different shapes and sizes from a large amount of data, which is containing noise 

and outliers. However, it fails to handle the local density variations that exists within 

the cluster. Thus, a good clustering method should allow a significant density 

variation within the cluster because, if we go for homogeneous clustering, a large 

number of smaller unimportant clusters may be generated. In this section, an 

enhancement of DBSCAN algorithm is proposed, which detects the clusters of 

different shapes, sizes that differ in local density. Our proposed method VMDBSCAN 

first finds out the “core” of each cluster – clusters generated after applying DBSCAN 

-. Then it “vibrates" points toward cluster that has the maximum influence on these 

points. 

As shown in Figure 4.1, if we use DBSCAN directly to find the clusters of data set, 

we will obtain three clusters C1, C2, and C3. This is because there are some varied 

density between C2 and C3, which result in splitting one correct cluster into 2-

clusters. So, when using Vibration method, we will have the correct number of 

clusters, which are C1, and merging C2 with C3 into one cluster. 
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Figure 4.1 Problem of splitting clusters when using DBSCAN for two-moons data set 

4.1.1 Description of Proposed Algorithm to Find Correct Number of 

Clusters: 

One of the problems with DBSCAN is that it is has wide density variation within a 

cluster. To overcome this problem, new method based on DBSCAN algorithm is 

proposed in this section. It first clusters the data points using DBSCAN. Then, it finds 

the density functions for all data points within each cluster. The data point that has the 

minimum density function value will be the core for that cluster, since this point will 

be local maximum of the density function. After that, it computes the density 

variation of the data point with respect to the density of core object of its cluster 

against all densities of other core's clusters. According to the density variance, we do 

the movement for data points toward the new core. New core is one of other core's 

clusters, which has the maximum influence on the tested data point. 

We intuitively present some definitions: 
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Definition 1. Suppose   and   are be two data points in a d-Dimensional feature 

space,  . The influence function of data point y on x is a function   
 
     

 , where 

  
  is real positive numbers, and can be defined as basic influence function   : 

  
 ( )    (   )                                                     (   ) 

In principle, the influence function can be an arbitrary function that can be determined 

by the distance between two objects in a neighborhood. The distance function, d(x, y), 

should be reflexive and symmetric, such as the Euclidean distance function. 

          (   )  √(       )
  (       )

    (       )
                             (   ) 

where i =(   ,    , … ,     ) and j =(   ,    , … ,     ) are two n-dimensional data 

points. 

Definition 2. Given a d-Dimensional feature space,  .The density function at a data 

point     is defined as the sum of all the influence to x from the rest of data points 

in  . 

  
 ( )  ∑  

  

 

   

( )                               (   ) 

According to Definition 1 and Definition 2, we can calculate the density function for 

each data point in the space by applying equation (4.2) to calculate the Euclidian 

distance for every data point with respect to every data point in the data set, then 

applying equation (4.3) to sum all distances from that data point to every data point in 

the data set. 

Definition 3. Core, the core object for each cluster is the object that has the minimum 

density function value according to Definition 2, since this point will be local 

maximum of the density function. That is, we can calculate the density function for 

each object in the cluster, which given initially by DBSCAN, and the object which 

has the minimum connection to all other objects will be the core for that cluster. 
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Definition 4. Total Density Function (E) represents the difference among the data 

points, which is based on the core. That is, the E for data point     is the difference 

between the data point xi and the core of its cluster. 

    (     )                                                   (   ) 

where     n,       k,   is number of points, k is number of cores. 

In addition, according to our initial clusters which is given by the  density-based 

clustering methods, we can take over the influence function (Definition 1) and density 

function (Definition 2) to calculate the E of the data points by subtracting the value of 

their density function to the value of the core's: 

   |  
 (  )    

 ( )|                                         (   ) 

4.1.2 Vibration Process: 

The main idea is to vibrate data points according to the density of the data point with 

respect to core (Definition 3), the core that represents each cluster, and measure the E 

of each data point as in (4.5). Then, if its    with respect to its core is greater than 

   for some other cores, vibrate all points in that cluster toward the core object which 

has the maximum  influence on that object point, according to [62]: 

 (   )   ( )    ( ( )   ( ))  ( 
 
 
    )        (   )    

where: 

   =       

 ( ): is the current tested point 

 ( ): is the current tested core 

 : is the learning rate, determined by user. 

T: is the control of reduction in sigma, it take the value of length of the data set. 
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Uses of   in the vibration equation to control the winner of the current cluster, and we 

can adapt it to get the best clustering results. T is used in formula to control the 

reduction in sigma, that is, as the time increased, the movement (vibrate) of the point 

toward the new core is reduced. 

VMDBSCAN first clusters of the given data points using DBSCAN in order to find 

out the core of the clusters. And then, it vibrates the data points such that the 

difference between data points are lowered, and the similar clusters can be merged. 

We will describe the process of the VMDBSCAN by an example as below. 

Suppose that: there are two-moons data set with 256 data points. Each data point is a 

2-dimensional data point, and each point has two different attributes (x, y). Eps is 0.2, 

and MinPts are 5. 

Step 1: Initial Clustering 

The purpose of initial clustering is to get an initial understanding of the data points 

and find out the core of the clusters. 

Firstly, we adopt DBSCAN algorithm to find initial clusters. Secondly, we compute 

the value of each data object's density function by using equation (4.3). Based on the 

data points' density function, we divide the data points into three clusters. Among 

each cluster, we choose the data point, which have the maximal density function 

value, as the core of the cluster. The result is shown in Figure 4.2. 

Step 2: Vibrating 

In this step, we calculate the Ei of the data points at first. In this example, as described 

in Definition 4, the Ei of each data point is the difference between the value of its 

density function and the value of the density function of the core as in equation (4.5). 

Next, if its Ei with respect to its core's density function is greater than    for some 

other core's density functions, vibrate all points in that cluster toward the core which 

has the maximum influence on that point, according to equation (4.6). 
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Figure 4.2 The distribution of the data points after applying DBSCAN algorithm 

It shows in Figure 4.3 that the clusters with clear boundaries have somewhat merged. 

From the comparison of Figure 4.2 to Figure 4.3, we can figure out that those clusters, 

which are close to each other but are not density connected, have somewhat mixed 

together. 

Formally, the proposed algorithm can be described as follow: 

1. Data sets input and Data standardization.  

2. Calculate the Density Function for all the data points. 

3. Do Clustering for the data points using traditional DBSCAN algorithm. 

4. Find out the core of each cluster. 

5. Calculate the Density Function for all the data points within each cluster 

generated by traditional DBSCAN. 

6. For each data point, if its E with respect to its core's density function is greater 

than with respect to other core's density function, then vibrate the data points 

in that cluster toward the core which has the maximum influence on that point. 
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Figure 4.3 The Optimized distribution of the data points after applying VMDBSCAN 

4.1.3 VMDBSCAN Algorithm Pseudo-Code: 

The proposed algorithm to find the correct number of clusters in varied densities is 

shown as pseudo code in Algorithm 4.1.  

The first step initializes the value of learning rate  , it can takes small values from 

[0,1] ; n is the number of data points in the data set. For each data point in the data set, 

algorithm computes the density function of this data point according to equation (4.3), 

and then store results in an array list of Point Density (d). Lines 8 and 9 of the 

algorithm call the DBSCAN algorithm to make initial clustering. From lines 9-12, 

algorithm search the core object for each cluster resulted from DBSCAN. Line 14 

calculates the E for each point    with respect to its core object. Line 16 calculates the 

E for that point    with respect to all other core objects. From line 16 to Line 19 

algorithm checks the effect of core objects on the data point    if the effect of its core 

object is less than other core objects    then vibrate the whole points which data point 

belongs to it toward the core   .  
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Algorithm 4.1: The pseudo code of the proposed technique VMDBSCAN to 

find correct number of clusters in varied densities 

Purpose: 1. Merge splitting clusters if found 

Input: 2. Data set of size n 

Output: 3. Correct number of clusters 

Procedure: 4.                    

5.              

6.                   (  ) 
7.         
8.                                           

9.       ( ) 
10.              

11.                (  ) 

12.         
13.              

14.          |       (  )         (  )| 
15.                    

16.                 |       (  )         (  )| 

17.                       
18.                                                        

19.                                                         

20.                                  
21.                             

22.                    

23.               
24.         

4.2 Second Proposed Algorithm DMDBSCAN: 

In this section, we will present new method to solve the problem of using one global 

value of parameter Eps for all densities in data set, instead DMDBSCAN will use 

dynamic method to find suitable value of Eps for each density level of data set. 

One of data mining primary method is clustering analysis. Clustering analysis has 

many methods such as density clustering. This method has advantages as: 

1. Its clusters are easy to understand. 

2. It does not limit itself to shapes of clusters. 

But existing density-based algorithms have trouble in finding out all the meaningful 

clusters for data sets with varied densities. In this section we will introduce a new 
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algorithm called DMDBSCAN for the purpose of varied-density data sets analysis. 

The basic idea of DMDBSCAN is that we need some methods to find the suitable 

values of parameters Eps for different densities according to k-dist plot, then we can 

use traditional DBSCAN algorithm to find clusters. For each value of Eps, DBSCAN 

algorithm is adopted to find all the clusters with respect to corresponding level of 

density. Then in the next step of algorithm, all points which clustered ignored. The 

final result will avoids marking both denser areas and sparser ones as one cluster. 

To determine the parameters Eps and MinPts we need to look at the behavior of the 

distance from point to its k
th

 nearest neighbor, which is called k-dist. This k-dists are 

computed for all data points for some (k), then the plot sorted values in ascending 

order, after that, we expect to see the sharp change in the plotted graph. This sharp 

change at the value of k-dist corresponds with a suitable value of Eps for each density 

level of data set. In the K-dist plot some little changes show up for the changing 

density level of the examining dataset. But finally after a certain time a sharp change 

shows up and according to the DMDBSCAN algorithm the suitable value of (k) 

corresponds to this sharp changed level are 3. For example the Line (A) in Figure 4.4 

shows a simple k-dist line for the value of k=3. We notice the value of Eps 

determined in this way depends on (k), but doesn't change dramatically as (k) 

changes. 

DBSCAN can find many clusters which could not be found using some other 

clustering algorithms, like k-means, because DBSCAN uses a density-based 

definition of a cluster, which result in less relatively resistant to noise and can handle 

clusters of different shapes and sizes. However, the main weakness of DBSCAN is 

that it has trouble when the clusters have greatly varied densities. 

For more description of new algorithm DMDBSCAN, 2-dimension data is chosen. 

Figure 4.5 shows the data. Obviously, there are two regions with respect to different 

densities in the data and data points of each region are uniformly distributed. The data 

set provides a clustering standard to estimate the accuracy of the result, for it has 

strong regularity and obvious clusters. In addition, as it has been already 

acknowledged that density-based clustering algorithms can find out clusters with any 

shape. 
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Figure 4.4 Points sorted in ascending order distance to the 3rd nearest neighbor to find 

the best value of Eps in varied densities data set 

Suppose that the noise around the denser cluster C1 has the same density as the other 

cluster C2. If the Eps threshold is low enough that DBSCAN finds C2 as cluster, then 

C1 and the points surrounding it will become a single cluster. If the Eps threshold is 

high enough that DBSCAN finds C1 as a separate cluster, and the points surrounding 

are marked as noise, then C2 and the points surrounding it will also be marked as 

noise. DBSCAN also has trouble with high-dimensional data because density is more 

difficult to define for such data. 

4.2.1 Description of  Finding suitable Epsi For Each Density Level: 

Formally, algorithm can describe our proposed to find suitable Epsi for each density 

level of data set as follow: 

1. Data sets input and Data standardization.  

2. Calculates and stores k-dist for each point and partition k-dist plots. 

3. The number of densities is given intuitively by k-dist plot. 
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Figure 4.5 Problem of varied densities when there are two regions with respect to two 

different densities 

4. Choose parameters Epsi automatically for each density. 

In the first step, K-dist plot is drawn for not only selection of parameters Eps, but also 

analysis of density levels of the data set. If we have data sets with widely varied   

density, we notice that there will be some variation, depends on the density of the 

cluster and the random distribution of points, but the points of the same density level, 

the range of the variation will not be huge while a sharp changes that expected to see 

between two density levels. Thus there will be several smooth curves connected by 

greatly variation ones. For a data set of single-density, if its density does not vary 

widely, there is only one smooth curve in its k-dist plot. 

Figure 4.2 shows a simple k-dist plot. Line A shows a simple k-dist line of a single-

density data set. Figure 4.6 shows a simple line of a three varied-densities data set. 

We notice that there are sharp change in the curves which correspond to noise points 

connecting two smooth curves which stand for two density levels, as Line b and d 

which can be called level-turning lines. Line b connects line a and c, and line d  
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Figure 4.6 Data set with three levels of density 

connects c and e, while a, c and e stand for different density levels. The outliers are 

shown with line f are not a level-turning line for it does not connect two smooth lines. 

In Figure 4.4 we have three density levels, the result of that three suitable Eps. 

Combine line a and b as a sub-k-dist plot to select Eps1, and then take line c and d as 

a sub-k-dist plot for Eps2, e and f for Eps3. 

4.2.2 DMDBSCAN Algorithm Pseudo-Code: 

The proposed method of the algorithm to find suitable Epsi for each level of density is 

shown as pseudo code in Algorithm 4.2. 

Algorithm 4.2: The pseudo code of the proposed technique DMDBSCAN to find 

suitable Epsi for each level of density. 

Purpose: 1. To find suitable values of Eps 

Input: 2. Data set of size n 

Output: 3. Eps for each varied density 
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Procedure: 4.              
5.                    
6.            (   )               (     ) 
7.                                                          

 

8.                          

9.               
10.           
11.                                                      
12.                                               

4.3 Third Proposed Algorithm VDDBSCAN: 

In this section, we will use the idea of algorithm VMDBSCAN with algorithm 

DMDBSCAN to introduce new algorithm VDDBSCAN. This algorithm will results 

in best clustering. It will solve the problem of using one global value of parameter Eps 

for all densities in data set, and overcomes the problem of splitting clusters when 

there are densities variations in data sets. 

Our new algorithm can be divided and organized into three steps: 

1. Data sets input and data standardization.  

2. Overcoming on problems of varied densities. 

3. Noise Elimination. 

4.3.1 Data sets Input and Data Standardization: 

This is the first step, it is necessary to standardize variables in cases where the 

dissimilarity measure, such as the Euclidean distance, is sensitive to the differences in 

the magnitudes or scales of the input variables. Section 3.4 describes in more details 

how data point attributes are standardized. 

The z-score is a well-known form of standardization used for transforming normal 

variants to standard score form. We will use the z-score standardization to standardize 

the data point attributes. So, the first step in our proposed algorithm is to input the 

data set which is in a multi-density format. And then make the data standardization 

step. 
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4.3.2 Overcoming on Problems of Varied Densities: 

At this step we need to find the different values of Epsi for each level of density. Then 

we will use this values of Epsi to implement the idea of vibration method to find the 

correct number of clusters. 

Firstly, to determine the parameters Eps and MinPts we need to look at the behavior 

of the distance from point to its kth nearest neighbor, which is called k-dist. This k-

dists are computed for all data points for some (k), then the plot sorted values in 

ascending order, after that, we expect to see the sharp change in the plotted graph. 

This sharp change at the value of k-dist corresponds with a suitable value of Eps for 

each density level of data set. 

K-dist plot is drawn for not only selection of parameters Eps, but also analysis of 

density levels of the data set. If we have data sets with widely varied density, we 

notice that there will be some variation, depends on the density of the cluster and the 

random distribution of points, but the points of the same density level, the range of the 

variation will not be huge while a sharp changes that expected to see between two 

density levels. Thus there will be several smooth curves connected by greatly 

variation ones. 

Secondly, it clusters the data points using traditional DBSCAN algorithm. Then, it 

finds the density functions for all data points within each cluster. The data point that 

has the minimum density function value will be the core for that cluster. After that, it 

computes the density variation of every data point with respect to the density of core 

object of its cluster against all densities of other core's clusters. According to the 

density variance, we do the movement for data points toward the new core. New core 

is one of other core's clusters, which has the maximum influence on the tested data 

point. 

Formally, algorithm can describe our proposed to find suitable Epsi for each density 

level of data set and then use Vibration method to overcome on the problem of 

splitting clusters as follow: 

1. Data sets input and Data standardization. 
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2. Calculates and stores k-dist for each point and partition k-dist plots. 

3. The number of densities is given intuitively by k-dist plot. 

4. Choose parameters Epsi automatically for each density. 

5. Calculate the Density Function for all the data points. 

6. Do Clustering for the data points using traditional DBSCAN algorithm, 

7. Calculate the Density Function for all the data points again, and then find out 

the core of each generated cluster. 

8. For each data point, if its E with respect to its core is greater than with respect to 

other cores, then vibrate the data points in that cluster. 

4.3.3 Noise Elimination: 

Any data set almost always contains outliers. These do not belong to any of the 

clusters. That is, the neighborhoods of outliers are generally sparse compared to  

points in clusters, and the distance of an outlier to the nearest cluster is comparatively  

higher than the distances among points of the points in clusters themselves. Each 

clustering method needs mechanism to eliminate outliers. In our proposed algorithm, 

outliers due to their larger distances from other points, tend to merge with other points 

less and typically grow at a much slower rate than actual clusters. Thus the clusters 

which are growing very slowly are identified and eliminated as outliers. Also, since 

the number of points in a collection of outliers is typically much less than the number 

in a cluster and that outliers form very small clusters, we can easily identify such 

small groups and eliminate them. Consequently, the final step, the outlier elimination, 

is necessary step for good clustering. 

4.3.4 Proposed Algorithm VDDBSCAN Pseudo-Code: 

Our proposed technique to do best clustering is shown as pseudo code in Algorithm 

4.3. 

Algorithm 4.3: The pseudo code of the proposed technique VDDBSCAN 

Purpose: 1. Find Clusters From Data set 

Input: 2. Data set of size n 

Output: 3. Number of clusters 
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Procedure: 4.              

5.                    

6.             (   )               (     ) 
7.                                                           

8.                            9.               

10.         

11.                                                      

12.                                              13.              

14.              

15.                   (  ) 
16.         
17.                            () 
18.              

19.                (  ) 

20.         
21.              

22.          |       (  )         (  )| 
23.                    

24.                 |       (  )         (  )| 

25.                       
26.                                     
27.                             

28.                    

29.               
30.         

4.4 Proposed Algorithms Properties: 

 The proposed algorithms will solve the problem of splitting clusters resulted 

from varied densities. Also, they will solve the problem of using one global 

Eps for all data set in varied densities, by using local value for each data set 

density. 

 The proposed algorithms can deal with varied data types of data sets. 

 DBSCAN requires two input parameters Eps and MinPts, but the proposed 

algorithms does need these input parameters. 

 The proposed algorithms discovers clusters of arbitrary shape. It holds good 

for large spatial databases.  
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Chapter 5 
Experimental Results 

In this chapter we will show a sufficient number of results with various types of data 

sets and with various numbers of points, we will compare between five algorithms 

namely: DBSCAN, DVBSCAN, and our proposed algorithms VMDBSCAN, 

DMDBSCAN, and VDDBSCAN. 

5.1 Implementation Environment 

The experiments are implemented on windows 7 operating system using MATLAB 

R2012a. Our hardware are hp laptop of Intel Core 2 Due processing power of 2.4 

GHz CPU with 2GB RAM. 

5.2 Artificial Data sets 

In this section we will show all results when implement the above mentioned 

algorithms on artificial data sets. 

We use three artificial two-dimensional data sets, since the results are easily 

visualized. The first data set is ball data set which is shown in Figure 5.1(a). It 

consists of 226 data points, each data point is 2-dimensional. The ball data set is one 

cluster and has different densities. The second data set is two-moons data set which is 

shown in Figure 5.1(b). It consists of 256 data points , each data point is 2-

dimensional. The two-moons dataset is two nested moons and it is two-clusters with 

different densities. The third data set is shown in Figure 5.1(c) which consists of 385 

data points with five clusters and some points of noise. Each data point is 2-

dimensional. 

5.2.1 DBSCAN 

Figure 5.1(a) shows the original data set plotting. In Figure 5.2, after applying the 

DBSCAN algorithm, with MinPts = 5, Eps = 11.8, we get 2-clusters. And we notice  
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Figure 5.1(a) Ball data set with 226 data points with one cluster 

 

Figure 5.1(b) Two-moons data set with 256 data points with two clusters 
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Figure 5.1(c) Moon data set with many points of noises and with 385 data points with 

five clusters 

that there some points deleted by DBSCAN, as DBSCAN considered it as noise 

points, which resulted from varied density area. 

Figure 5.1(b) shows the original data set plotting. Figure 5.3 shows the result of 

applying DBSCAN on the second data set, with MinPts = 5, and Eps = 0.2. The 

resulted clusters are 3-clusters. 

Figure 5.1(c) shows the original data set plotting. In Figure 5.4, after applying the 

DBSCAN algorithm, with MinPts = 5, Eps = 8, we get 4-clusters. In this data set, 

DBSCAN treats some points as noise and remove them.  

5.2.2 DVBSCAN 

Figure 5.1(a) shows the original data set plotting. In Figure 5.5, after applying the 

DVBSCAN algorithm, with α = 100, λ = 50, µ = 20, Eps = 12, we get 1-cluster. A 

parameters α and λ are used to limit the amount of allowed local density variations 

within the cluster. The selection of parameter is very crucial. If the value of α is small, 
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then it generates a large number of small unimportant clusters, on the other hand if we 

have large value of α then it merges a number of good quality clusters into single 

cluster. 

 

Figure 5.2 Two clusters generated by applying DBSCAN algorithm on ball data set 

for the values Eps = 11.8, and MinPts = 5 

So if we select suitable value of α then it not only separates the sparse region but also 

separate the region which does not have the significant density variation. 

After many tries, the previous parameters are the best values for ball data set. We 

notice that there some points deleted by DVBSCAN, as DVBSCAN considered it as 

noise points, which resulted from varied density area.  

Figure 5.1(b) shows the original data set plotting. Figure 5.6 shows the result of 

applying DVBSCAN on the second data set, with α = 100, λ = 50, µ = 20, Eps = 0.25. 

The resulted clusters are 4-clusters. 

Figure 5.1(c) shows the original data set plotting. In Figure 5.7, after applying the 

DVBSCAN algorithm, with α = 100, λ = 50, µ = 20, Eps = 8.5, we get 4-clusters. 
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Figure 5.3 Three clusters generated by applying DBSCAN algorithm on two-moons 

data set for the values Eps = 0.2, and MinPts = 5 

 

Figure 5.4 Four clusters generated by applying DBSCAN algorithm on moon data 

set for the values Eps = 8, and MinPts = 5 
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5.2.3 VMDBSCAN 

Figure 5.1(a) shows the original data set plotting. In Figure 5.8, after applying our 

proposed algorithm with   = 0.0005 of equation (4.6), and Eps = 11.8, we get the 

correct number of clusters, that is, we have only 1-cluster. The used value of   which 

equal 0.0005 in the vibration equation controlled the winner of the current cluster and  

we adapted it to get the best clustering results. Its best value in this experiment was 

found by trying many values and then selecting the best one that get correct clusters. 

We notice that the points which deleted by DBSCAN, as DBSCAN considered it as 

noise points, now they are appeared after applying our proposed algorithm. 

Figure 5.1(b) shows the original data set plotting. Figure 5.9 shows the result of 

applying VMDBSCAN on the second data set with   = 0.005 of equation (4.6), its 

best value in this experiment was found by trying many values and then selecting the 

best one that get correct clusters. The Eps value = 0.26. We get the correct number of 

clusters, which are 2-clusters. 

Figure 5.1(c) shows the original data set plotting. In Figure 5.10, after applying our 

proposed algorithm with   = 0.0005 of equation (4.6), its best value in this experiment 

was found by trying many values and then selecting the best one that get correct 

clusters. We get the correct number of clusters, that is, we have only 5-clusters. 

5.2.4 DMDBSCAN 

In this section, we will apply the proposed algorithm DMDBSCAN to solve the 

problem of using one global value of parameter Eps for all densities in data set, 

instead of DMDBSCAN will use dynamic method to find suitable values of Eps for 

each density level of data set. Figures 5.11, 5.12 and 5.13 show the plotting of k-dist 

with k=1,2 and 3 respectively (the nearest 3 distance) for ball data set, and sorting 

them in ascending order to find the best values of Eps which will adopt to 

DMDBSCAN to find the correct number of clusters. 
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Figure 5.5 One cluster generated by applying DVBSCAN algorithm on ball data 

set for the values α = 100, λ = 50, µ = 20, and Eps = 12

 

Figure 5.6 Four clusters generated by applying DVBSCAN algorithm on two-

moons data set for the values, α = 100, λ = 50, µ = 20, and Eps = 0.25 
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Figure 5.7 Four clusters generated by applying DVBSCAN algorithm on moon 

data set for the values, α = 100, λ = 50, µ = 20, and Eps = 8.5

 

Figure 5.8 One Cluster generated by applying VMDBSCAN algorithm on ball 

data set for the values   = 0.0005  and Eps = 11.8 
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We split the plotting in 3 figures for simplifying and visualizing the critical point 

(Eps) for each density level. When applying DMDBSCAN, firstly we find the nearest 

3 distance for each point in data set. We notice that there is sharp change (critical) in 

Figures 5.11, 5.12 and 5.13 at best values of Eps equal 10.77, 12.17 and 18.25 

respectively. Figure 5.14 is the result of applying DMDBSCAN and we got the 

correct number of cluster which is 1-cluster. 

 

Figure 5.9 Two Clusters generated by applying VMDBSCAN algorithm on two-

moons data set for the values   = 0.005, Eps = 0.26, and MinPts = 5 

Figures 5.15, 5.16 and 5.17 show the plotting of k-dist with k=1, 2 and 3 respectively 

(the nearest 3 distance) for two-moons data set, and sorting them in ascending order to 

find the best values of Eps which will adopt to DMDBSCAN to find the correct 

number of clusters. We split the plotting in 3 figures for simplifying and visualizing 

the critical point (Eps) for each density level. When applying DMDBSCAN, firstly 

we find the nearest 3 distance for each point in data set. We notice that there is sharp 

change  (critical) in Figures 5.15, 5.16 and 5.17 at best values of Eps equal 0.1007, 

0.1208 and 0.171 respectively. Figure 5.18 is the result of applying DMDBSCAN and 

we got the correct number of cluster which equal 2-clusters. 
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Figure 5.10 Five clusters generated by applying VMDBSCAN algorithm on moon 

data set for the values   = 0.0005, Eps = 8.8 , and MinPts = 5 

Figures 5.19, 5.20 and 5.21 show the plotting of k-dist with k=1,2 and 3 respectively 

(the nearest 3 distance) for moon data set, and sorting them in ascending order to find 

the best values of Eps which will adopt to DMDBSCAN to find the correct number of 

clusters. We split the plotting in 3 figures for simplifying and visualizing the critical 

point (Eps) for each density level. When applying DMDBSCAN, firstly we find the 

nearest 3 distance for each point in data set. We notice that there are sharp changes  

(critical) in Figures 5.19, 5.20 and 5.21 which represent the best values of Eps equal 

8.062, 13.15 and 18.03 respectively. Figure 5.22 is the result of applying 

DMDBSCAN and we got the correct number of cluster which equal 5-clusters. 

5.2.5 VDDBSCAN 

In this section, we will apply the proposed algorithm VDDBSCAN to solve the 

problem of using one global value of parameter Eps for all densities in data set, 

instead VDDBSCAN will use dynamic method to find suitable values of Eps for each 

density level of data set. Also, it will solve the problem of splitting one cluster into 

two or more clusters by using vibration method. Figures 5.11, 5.12 and 5.13 show the 
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plotting of k-dist with k=1,2 and 3 respectively (the nearest 3 distance) for ball data 

set, and sorting them in ascending order to find the best values of Eps which will 

adopt to VDDBSCAN to find the correct number of clusters. 

 

Figure 5.11 Nearest 1-dist sorted points in ascending order to find critical change 

We split the plotting in 3 figures for simplifying and visualizing the critical point 

(Eps) for each density level. When applying VDDBSCAN, firstly we find the nearest 

3 distance for each point in data set and with   = 0.0005 of equation (4.6). We notice 

that there are sharp changes (critical) in Figures 5.11, 5.12 and 5.13 which represent 

the best values of Eps and equal 10.77, 12.17 and 18.25 respectively. Figure 5.23 is 

the result of applying VDDBSCAN and we got the correct number of cluster which 

equal one. Figures 5.15, 5.16 and 5.17 show the plotting of k-dist with k=1, 2 and 3 

respectively (the nearest 3 distance) for two-moons data set, and sorting them in 

ascending order to find the best values of Eps which will adopt to VDDBSCAN to 

find the correct number of clusters. 
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Figure 5.12 Nearest 2-dist sorted points in ascending order to find critical change 

We split the plotting in 3 figures for simplifying and visualizing the critical point 

(Eps) for each density level. When applying VDDBSCAN, firstly we find the nearest 

3 distance for each point in data set and with   = 0.005. We notice that there are sharp 

change (critical) in Figures 5.15, 5.16 and 5.17 at best values of Eps and equal 0.1007, 

0.1208 and 0.171 respectively. Figure 5.24 is the result of applying VDDBSCAN and 

we got the correct number of cluster which equal 2-clusters. 

Figures 5.19, 5.20 and 5.21 show the plotting of k-dist with k = 1, 2 and 3 

respectively (the nearest 3 distance) for moon data set, and sorting them in ascending 

order to find the best values of Eps which will adopt to VDDBSCAN to find the 

correct number of clusters. We split the plotting in 3 figures for simplifying and 

visualizing the critical point (Eps) for each density level. When applying 

VDDBSCAN, firstly we find the nearest 3 distance for each point in data set and with 

  = 0.0005. We notice that there are sharp changes (critical) in Figures 5.19, 5.20 and 

5.21 which represent the best values of Eps and equal 8.062, 13.15 and 18.03 

respectively. Figure 5.25 is the result of applying VDDBSCAN and we got the correct 

number of cluster which equal 5-clusters. 
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Figure 5.13 Nearest 3-dist sorted points in ascending order to find critical change 

 

    

Figure 5.14 One cluster generated by applying DMDBSCAN algorithm on ball data 

set with three values of Eps equal 10.77, 12.17 and 18.25 respectively 
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Figure 5.15 Nearest 1-dist sorted points in ascending order to find critical change 

 

Figure 5.16 Nearest 2-dist sorted points in ascending order to find critical change 
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Figure 5.17 Nearest 3-dist sorted points in ascending order to find critical change 

 

Figure 5.18 Two Clusters generated by applying DMDBSCAN algorithm on two-

moons data set with three values of Eps equal 0.1007, 0.1208 and 0.171 respectively 
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Figure 5.19 Nearest 1-dist sorted points in ascending order to find critical change 

 

Figure 5.20 Nearest 2-dist sorted points in ascending order to find critical change 
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Figure 5.21 Nearest 3-dist sorted points in ascending order to find critical change 

 

Figure 5.22 Five clusters generated by applying DMDBSCAN algorithm on moon 

data set with three values of Eps equal 8.062, 13.15 and 18.03 respectively 
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Figure 5.23 One cluster generated by applying VDDBSCAN algorithm on ball data 

set with three values of Eps and equal 10.77, 12.17 and 18.25 respectively, 

  = 0.0005, and MinPts = 5 

 

       

Figure 5.24 Two clusters generated by applying VDDBSCAN algorithm on two-

moons data set with three values of Eps equal 0.1007, 0.1208 and 0.171 respectively, 

  = 0.005, and MinPts = 5 
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Figure 5.25 Five clusters generated by applying VDDBSCAN algorithm on moon 

data set with three values Eps equal 8.062, 13.15 and 18.03 respectively,   = 0.0005, 

and MinPts = 5 

5.3 Real Data sets 

In this section we will show all results when implement the proposed algorithms on 

real data sets. 

Data sets which will be used found at UCI [61], and we use three real data sets from 

it. Table 5.1 shows the characteristics of these data sets. The IRIS data set contains 3 

classes of 50 instances each, where each class refers to a type of iris plant. One class 

is linearly separable from the other 2; the latter are NOT linearly separable from each 

other. The second data set is Haberman, which contains 306 instances, and 3 

attributes. The first attribute is the age of patient, the second attribute is year of 

operation, the third attribute is number of positive axillary nodes detected. Each 

instance has one of 2 possible classes. The last data set is Glass, which contains 214 

instances, and 10 attributes. Each instance has one of 6 possible classes. For 

measuring the accuracy of our proposed algorithms, we use an average error index in 
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which we count the misclassified samples and divide it by the total number of 

samples. 

Table 5.1 Real data set characteristics 

Data set 

Name 

Data set 

Characteristics 

Number 

of 

Instances 

Number of 

Attributes 

Attribute 

Characteristics 

True 

Clusters  

IRIS Multivariate 150 4 Real 3 

Haberman Multivariate 306 3 Integer 2 

Glass Multivariate 214 10 Real 6 

5.3.1 DBSCAN 

We apply the DBSCAN algorithm on IRIS data set with Eps = 0.35 and MinPts = 5, 

and obtain an average error index of 45.33%. Number of determined clusters = 2 

while number of true clusters = 3. While applying DBSCAN on Haberman data set, 

we get an average error index of 33.33% with Eps = 4.3 and MinPts = 5. Number of 

determined clusters = 1 while number of true clusters = 2. Another real data set is 

Glass data set and when we apply DBSCAN on it, we get an average error index of 

68.22% with Eps = 0.85 and MinPts = 5. Number of determined clusters = 3 while 

number of true clusters = 6. 

Table 5.2 shows all results when apply DBSCAN on these real data sets. 

Table 5.2 Average error index of applying DBSCAN on real data sets 

Data set True Clusters 

Determined 

Clusters 

DBSCAN 

Time (ms) 
DBSCAN 

Error % 

IRIS 3 2 35 45.33 

Haberman 2 1 51 33.33 

Glass 6 3 42 68.22 

5.3.2 DVBSCAN 

Here in this section, we will offer the results of the second comparison algorithm. We 

apply the DVBSCAN algorithm on IRIS data set with α = 100, λ = 50, µ = 20, Eps = 

0.4, and obtain an average error index of 17.22%. Number of determined clusters = 3 
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and number of true clusters = 3. While applying DVBSCAN on Haberman data set, 

we get an average error index of 32.65% with α = 100, λ = 50, µ = 20, Eps = 4.5. 

Number of determined clusters = 2 and number of true clusters = 2. Another real data 

set is Glass data set and when we apply DVBSCAN on it, we get an average error 

index of 41.23% with α = 100, λ = 50, µ = 20, Eps = 0.9. Number of determined 

clusters = 5 while number of true clusters = 6. 

From the previous results, DVBSCAN gives results better than DBSCAN in real data 

sets. 

Table 5.3 shows all results when apply DVBSCAN on these real data sets. 

Table 5.3 Average error index of applying DVBSCAN on real data sets 

Data set True Clusters 

Determined 

Clusters 

DVBSCAN 

Time (ms) 
DVBSCAN 

Error % 

IRIS 3 3 24 17.22 

Haberman 2 2 33 32.65 

Glass 6 5 29 41.23 

5.3.3 VMDBSCAN 

Here we will introduce the results of apply our first proposed algorithm 

VMDBSCAN. 

We apply the VMDBSCAN algorithm on IRIS data set with   = 0.00005, we have an 

average error index of 20.00%. Number of determined clusters = 3 and number of of 

true clusters = 3. While applying VMDBSCAN on Haberman data set with 

  = 0.0005, we have an average error index of 27.78%. Number of determined 

clusters = 2 and number of true clusters = 2. Another real data set is Glass data set and 

when we apply VMDBSCAN  on it with   = 0.0005, we have an average error index 

of 62.15%. Number of determined clusters = 4 while number of true clusters = 6 

Table 5.4 shows all results when apply VMDBSCAN on these real data sets. 
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Table 5.4 Average error index of applying VMDBSCAN on real data sets 

Data set True Clusters 

Determined 

Clusters 

VMDBSCAN 

Time (ms) 
VMDBSCAN 

Error % 

IRIS 3 3 39 20.00 

Haberman 2 2 55 27.78 

Glass 6 4 47 62.15 

5.3.4 DMDBSCAN 

Here we will introduce the results of apply our second proposed algorithm 

DMDBSCAN. 

We apply the DMDBSCAN algorithm on IRIS data set, and applying k-dist for 3-

nearest points, we have 2 values of Eps which are 0.37 and 0.42. The average error 

index is 15.00%. Number of determined clusters = 3 and number of true clusters = 3. 

While applying DMDBSCAN on Haberman data set, and applying k-dist for 3-nearest 

points, we have 3 values of Eps which are 4.5, 4.8, and 5. The average error index is 

20.33%. Number of determined clusters = 2 and number of true clusters = 2. 

Another real data set is Glass data set and when we apply DMDBSCAN on it, and 

applying k-dist for 3-nearest points, we have 3 values of Eps which are 0.85, 9.1, and 

9.4. The average error index is 50.34%. Number of determined clusters = 5 while 

number of true clusters = 6. 

Table 5.5 shows all results when apply DMDBSCAN on these real data sets. 

Table 5.5 Average error index of applying DMDBSCAN on real data sets 

Data set True Clusters 

Determined 

Clusters 

DMDBSCAN 

Time (ms) 
VMDBSCAN 

Error % 

IRIS 3 3 37 15.00 

Haberman 2 2 53 20.33 

Glass 6 5 46 50.34 
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5.3.5 VDDBSCAN 

Here we will introduce the results of apply our first proposed algorithm VDDBSCAN. 

We apply the VDDBSCAN algorithm on IRIS data set with   = 0.00005, and 

applying k-dist for 3-nearest points, we have 2 values of Eps which are 0.37 and 0.42. 

The average error index is 9.76%. Number of determined clusters = 3 and number of 

true clusters = 3. While applying VDDBSCAN on Haberman data set with 

  = 0.0005, and applying k-dist for 3-nearest points, we have 3 values of Eps which 

are 4.5, 4.8, and 5. The average error index is 12.54%. Number of determined clusters 

= 2 and number of true clusters = 2. 

Another real data set is Glass data set and when we apply VDDBSCAN on it with 

  = 0.0005, and applying k-dist for 3-nearest points, we have 3 values of Eps which 

are 0.85, 9.1, and 9.4. The average error index is 33.43%. Number of determined 

clusters = 6 and number of true clusters = 6. 

Table 5.6 shows all results when apply VDDBSCAN on these real data sets. 

Table 5.6 Average error index of applying VDDBSCAN on real data sets 

Data set True Clusters 

Determined 

Clusters 

VDDBSCAN 

Time (ms) 
VDDBSCAN 

Error % 

IRIS 3 3 41 9.76 

Haberman 2 2 56 12.54 

Glass 6 6 50 33.43 

5.4 The Results Summary 

5.4.1 Artificial Data sets 

In this section we will discuss the previous results from using proposed algorithms to 

three artificial data sets. In the first artificial data set, ball data set, when we apply 

traditional DBSCAN algorithm, we got 2-clusters. This is due the fact that DBSCAN 

algorithm uses one global Eps for the whole data set, and there are two levels of 
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density. But when we used our proposed algorithms, we get the correct number of 

clusters, which is 1-cluster. This is due the fact that we use vibration in VMDBSCAN 

algorithm, which will merge the clusters if DBSCAN spitted them. 

Also, when using DMDBSCAN, we got 1-cluster. That is because we have two levels 

of density. But when we use VDDBSCAN algorithm, the correct number of clusters 

are generated which is 1-cluster. By using VDDBSCAN, we first get 3-Eps values, 

and then we use vibration, so we got 1-clusetr. 

In the second data set, two-moons data set, because there are varied density, the 

DBSCAN result in 3-clusters. But applying our proposed algorithm VMDBSCAN, 

the correct number of clusters are generated which is 2-clusters. That is, when there 

are varied density in the second moon of data set, the vibration will merge the 2-

clusters generated by using DBSCAN into one cluster. 

In the last data set, moon data set, Using DBSCAN resulted in 3-clusters, and 

removed one of cluster. But using our proposed algorithm VMDBSCAN will generate 

the correct number of clusters, which is 5-clusters. Also, the same results were in 

DMDBSCAN and VDDBSCAN. 

5.4.2 Real Data sets 

In this section we will compare the efficiency and time complexity of our algorithms 

compared to DBSCAN and DVBSCAN. 

From our experiments, and as Tables 5.7, 5,8 and 5.9 show, by using DBSCAN 

algorithm for multi-densities data sets, we get bad quality results with long times. 

DBSCAN algorithm is a time consuming algorithm when dealing with large multi-

densities datasets. This is due to Eps parameter value which is very important for 

DBSCAN algorithm, but it's calculation is a time-consuming. In other words, 

clustering algorithms is in need to discover a better version of DBSCAN algorithm to 

deal with these special multi-densities datasets. 

DVBSCAN algorithm gives efficiency - in terms of error rate - less than DBSCAN 

algorithm. Also, it takes less time to get the clustering results. 
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VMDBSCAN gives better efficiency results than DBSCAN, but it takes more time 

compared with DBSCAN. This is due that algorithm need to call DBSCAN algorithm 

to make initial clustering, then it needs to find cores of each returned clusters from 

DBSCAN. 

DMDBSCAN gives better efficiency results than DBSCAN or DVBSCAN or 

VMDBSCAN clustering algorithms, but takes more time compared with DBSCAN 

and DVBSCAN. This is due that algorithm needs to call DBSCAN algorithm for each 

value of Eps. 

VDDBSCAN gives the best efficiency results compared with all algorithms which we 

compare with them here, but it is the worst in time compared with them. This is due 

that algorithm need to find Eps for each level of data density, then to call DBSCAN 

algorithm to find initial clusters, and applying Vibration to find the correct number of 

clusters. 

Table 5.7 Time complexity comparison between varies algorithms applied on IRIS 

data set 

Algorithm True C's Determined C's Time (ms) Error % 

DBSCAN 3 2 35 45.33 

DVBSCAN 3 3 24 17.22 

VMDBSCAN 3 3 39 20.00 

DMDBSCAN 3 3 37 15.00 

VDDBSCAN 3 3 41 9.76 

We notice in Glass real data set that the error rate resulted by using DBSCAN or our 

proposed algorithms is large. This is due to the fact that as the number of dimensions 

increase, the clustering algorithms fail to find the correct number of clusters. But for 

IRIS or Haberman real data sets, the error rate is less than in Glass, that is because the 

dimension in these real data sets are smaller. Using DBSCAN will result in the largest 

error rate, but when using our proposed algorithms, the error rates are small compared 

with DBSCAN and DVBSCAN algorithms. 
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Table 5.8 Time complexity comparison between varies algorithms applied on 

Haberman data set 

Algorithm True C's Determined C's Time (ms) Error % 

DBSCAN 2 1 51 33.33 

DVBSCAN 2 2 33 32.65 

VMDBSCAN 2 2 55 27.78 

DMDBSCAN 2 2 53 20.33 

VDDBSCAN 2 2 56 12.54 

Table 5.9 Time complexity comparison between varies algorithms applied on Glass 

data set 

Algorithm True C's Determined C's Time (ms) Error % 

DBSCAN 6 3 42 68.22 

DVBSCAN 6 5 29 41.23 

VMDBSCAN 6 4 47 62.15 

DMDBSCAN 6 5 46 50.34 

VDDBSCAN 6 6 50 33.43 
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Chapter 6 
Conclusion 

6.1 Summary and Conclusion Remarks 

DBSCAN is technique used widely for clustering in spatial databases. DBSCAN 

needs less knowledge of input parameters. Major advantages of DBSCAN are to 

identify arbitrary shape objects and removal of noise during the clustering process. 

Beside its familiarity, DBSCAN has problems with handling large databases and in 

worst case its complexity reaches to O(n
2
). Also, a major limitation of DBSCAN is 

that it requires to know the parameters Eps and MinPts, and it uses global parameter 

of Eps, so it cannot handle data containing clusters of differing densities, since its 

density based definition of core points cannot identify the core points of varying 

density clusters. New algorithms were proposed to work with efficient way for these 

problems. In this thesis we proposed new algorithms in which original DBSCAN is 

modified or enhanced with improvement in results on varied densities data sets to find 

the correct number of clusters over many different types of data of different shapes 

and sizes. We compare these variations one with another and other algorithm 

DVBSCAN to show the efficiency of our proposed algorithms.  

In this thesis, we introduce some enhancement to DBSCAN algorithm by estimating 

its parameter based on the rank of points distances. In which we use the k-dist plotting 

to find Eps for each level of density in data set. Also, we eliminate the wrong splitting 

of two clusters when using traditional DBSCAN algorithm by testing density 

variation of the data point with respect to the density of core object of its cluster 

against all densities of other core's clusters. According to the density variance, we do 

the movement for data points toward the new core. Then merging old cluster with 

new cluster. 

We have proposed an enhancement algorithm based on DBSCAN to cope the 

problems of one of the most used clustering algorithm. Our proposed algorithm 

VMDBSCAN gives far more stable estimates of the number of clusters than existing 

DBSCAN over many different types of data of different shapes and sizes. The second 
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new algorithm DMDBSCAN overcomes on the problem of using one local value of 

Eps, by using local value of Eps for each level of density in a data set. After merge 

algorithm VMDBSCAN with DMDBSCAN, we get the best results to find the correct 

number of clusters over many different types of data of different shapes and sizes. 

Experimental results demonstrate that our algorithm is effective and efficient and  

outperform DBSCAN in detecting clusters of different densities and in eliminating 

noises. 

The experiments show the efficiency of the new algorithms, and get best results with 

minimum errors. 

6.2 Future Work 

Future work will focus on determining the best value of the parameter   which used in 

VMDBSCAN and VDDBSCAN algorithms, and improve the results for high 

dimensions data sets. 

Several opportunities for future research, how to select all the parameters 

automatically is one of the interesting challenges as parameter k has to be chosen 

subjectively in DMDBSCAN and VDDBSCAN algorithms. 

The future work can be focused on to reduce  the time complexity of algorithms. 

Future research will have to consider cases when the points inside of a cluster are 

non-uniformly distributed. Other unknown distributions of the points should be 

investigated.  
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