
The	Islamic	University	of	Gaza	

Graduate	Studies	Deanship	

Faculty	of	Engineering	

Computer	Engineering	Department	

	

	

Intrusion	Detection	Management	as	a	Service	
in	Cloud	Computing	Environments	

	

	

	

Mahmoud	Omar	Al‐Hoby	

	

Supervisor	

Prof.	Hatem	M.	Hamad	

	

A	Thesis	Submitted	in	Partial	Fulfillment	of	the	Requirements	for	the	

Degree	of	Master	in	Computer	Engineering	

	

	

	

1432H	(2011)	

II

Intrusion Detection Management as a Service in Cloud Computing Environments,

Mahmoud Omar Al-Hoby

Abstract
Current implementations and research trends for intrusion detection in grid and

cloud environments are limited to addressing the requirements for the perfect intrusion

detection to be part of the security infrastructure. This doesn’t take into consideration

the requirements of the cloud’s clients. In this thesis, we address the intrusion detection

in cloud environments from a different perspective, mainly on the possibilities to allow

intrusion detection to be provided to clients as a service. The thesis includes the

limitations in current intrusion detection systems that don’t allow such user-friendly

architecture of intrusion detection. The thesis describes the Cloud Intrusion Detection

Service (CIDS), which is a novel intrusion detection Web Service to be provided for

cloud clients in a service-based manner.

CIDS utilizes the “Snort” open source intrusion detection system. The operating

logic and user access webpages were developed using J2EE. The testing environment

was composed of two scenarios. The first scenario aimed at measuring the relative

overhead of using CIDS while the second one aims at measuring the CIDS effectiveness

and performance improvements over other implementations for approaching the same

problem. The CIDS was eventually found to put very small overhead due to the extra

complexity in the definitions of the attack models but at the same time gave excellent

results when it was compared to the other solutions. This improvement would be

experienced by both the cloud providers and subscribers alike.

Keywords: Cloud Computing; CRE, Intrusion Detection, SaaS

III

 إدارة كشف التسلل كخدمة في بيئات الحوسبة السحابية
 محمود عمر الھوبي

 ملخص الرسالة
على معالجة الشبكات السحابية في التطبيقات والأبحاث الحالية في مجال كشف التسلل تقتصر

جزءاً من بنية أمان الشبكات، وبشكل يعتمد على متطلبات وتخصيصات متطلبات كشف التسلل ليكون

مدراء ھذه الشبكات. وھو الأمر الذي يتجاھل متطلبات مستخدمي ھذه الشبكات. في ھذا البحث يتم

مھا كخدمة يالتطرق إلى تمكين استخدام قدرات كشف التسلل من منظور آخر، وبشكل أكثر تحديداً إلى تقد

ضمن الخدمات التي يرغبون بالتسجيل تضمينھاو شبكات الحوسبة السحابية اختيارھايمكن لمستخدمي

خلال البحث يتم التطرق إلى نقاط الضعف وأوجه القصور الموجودة في الأنظمة الحالية والتي تمنع فيھا.

بكات التوظيف المباشر لاستخدامھا كخدمة. كما يتم في ھذة الرسالة وصف وتقديم خدمة كشف التسلل للش

 والتي تعتبر خدمة ويب جديدة مقدمة خصيصاً لمستخدمي الشبكات السحابية. (CIDS)السحابية

نظام كشف التسلل المفتوح المصدر. لتجربة وتقييم أداء الخدمة وھو ”Snort“تستخدم برنامج

لتطبيق منطق العمل في النظام وأيضاً صفحات الويب التي يتعامل معھا J2EEالمقترحة تم استخدام لغة

مستخدمة الخدمة. تم تقسيم خيارات التقييم إلى جزءين بحيث يھدف الأول إلى قياس العبء الاضافي

نظراً للتعقيد الاضافي في تعريق الأنماط الھجومية، وأنا الثاني (CIDS)الحاصل نتيجة استخدام خدمة

ى قياس التحسن الحاصل عند استخدام الخدمة في مقابل استخدام الحلول الأخرى المقترحة في فيھدف إل

تفرض عبئاً صغيراً جداً على الأنظمة (CIDS)في نھاية الدراسة تم التوصل إلى أن خدمة ھذا المجال.

بيئات الحوسبة العادية الغير مصممة للشبكات السحابية ولكنھا في نفس الوقت تُحسن من أداء الخدمة في

 ل من مزودي الخدمة ومستخدميھا على حدٍ سواء.كالسحابية بشكل ملحوظ، كما أن ھذا التحسن يشمل

IV

Acknowledgement
I would like to express my deepest gratitude for my parents who have always

been there to support me. I also thank my wife who has been strongly supportive to me

to the end of this thesis.

 I am also greatly thankful to my supervisor, Prof. Hatem Hamad, whose

encouragement, guidance and support from the initial to the final phase enabled me to

develop a deep and thorough understanding of the subject. Finally, I offer my regards

and blessings to all of those who supported me in any respect during the completion of

the thesis.

Mahmoud Al-Hoby

V

Table of Contents

Abstract .. II

 III .. ملخص الرسالة

Acknowledgement .. IV

Table of Contents ... V

List of Figures .. VII

List of Tables ... VIII

Chapter 1 - Introduction .. 1

1.1 Thesis Statement ... 1

1.2 Background ... 1

1.3 Research problem .. 2

1.4 Scope of Implementation .. 2

Chapter 2 – Preliminary Discussions .. 4

2.1 Intrusion Detection Systems ... 4

2.2 Architecture of Intrusion Detection Systems .. 8

2.3 Cloud Computing .. 11

Chapter 3 – Related Work .. 17

3.1 State of the Art .. 17

3.2 Virtual-Machines Based IDS .. 20

Chapter 4 – Cloud Intrusion Detection Service .. 23

4.1 Overview ... 23

4.2 Cloud Rules Engine (CRE) ... 25

4.3 CRE Operations .. 26

Chapter 5 – CIDS Implementation and Discussion .. 33

5.1 System Model .. 33

5.2 Implementation Environment .. 37

5.3 CRE Web Interfaces .. 37

VI

5.4 Results and Discussion .. 39

Chapter 6 – Conclusion ... 47

6.1 Summary and Concluding Remarks .. 47

6.2 Recommendation and Future Work .. 49

References ... 50

Appendix A – Web Interfaces of CIDS .. 54

VII

List of Figures

Figure 2- 1: The evolution of attack sophistication and devolution of attacker’s skills ... 6

Figure 2- 2: Basic IDS Structure ... 8

Figure 2- 3: General Layered Architecture of Cloud Infrastructure 13

Figure 3- 1: IDS in the Cloud ... 21

Figure 3- 2: network packets being read by one virtual machine 22

Figure 4- 1: IDS Service within the Cloud ... 24

Figure 4- 2: Interactions of CIDS Layers ... 26

Figure 4- 3: CIDS Use-Cases for clients and administrators .. 32

Figure 5- 1: UML Class Diagram Model for Entities in the CRE Implementation 35

Figure 5- 2: Process size in (MB) for using CIDS and standard “Snort” 41

Figure 5- 3: Attack detection rate in (%) .. 42

Figure 5- 4: Average packet analysis time .. 43

Figure 5- 5: Process size in (MB) for using Sharing & Separating profiles 44

Figure 5- 6: Attack detection rates .. 45

Figure 5- 7: Average packet analysis time .. 46

Figure A: 1 - Administrator Main Panel ... 54

Figure A: 2 - Add Category Page ... 54

Figure A: 3 - Remove Category Page ... 54

Figure A: 4 - Available Categories Page .. 54

Figure A: 5 - Clients Login Page .. 55

Figure A: 6 - Client Options Page .. 55

Figure A: 7 - Unsubscribe From Category Page ... 55

Figure A: 8 - View Categories Page ... 55

VIII

List of Tables

Table 2- 1: The Old IT Infrastructure versus the Cloud ... 11

Table 4- 1: Supported operations within the CRE .. 30

Table 5- 1: Comparing CRE with other cloud-based intrusion detection systems 40

1

Chapter 1 - Introduction

1.1 Thesis Statement
This thesis discusses the effective design of an intrusion detection system that can

be integrated with the available services in cloud networks. The main idea is to provide

intrusion detection as a service for the cloud users. This in turn will enable the clients to

configure the intrusion detection (ID) components in a matter similar to configuring it

within their own local area networks (LANs). The ideas presented in this thesis are the

author’s original works. The implementations and results are also accurate and were

obtained solely by the author.

1.2 Background
The thesis builds upon the fact that cloud computing is becoming a more and more

accepted solution for hosting the information resources of organizations across the globe

[1], with no physical deployments needed at the clients side. Instead every needed service

can be made available as a subscription-based service [2]. Intrusion detection as a service is

by no means an exception. Typically, organizations that tend to host their own information

resources can deploy some sort of an intrusion detection system as part of their network.

The IDS infrastructure is hosted, managed, configured, and monitored by the technical staff

in the organization itself. Since cloud computing can provide solutions in the form of

Infrastructure as a Service (IaaS) [3], then a normal requirement would be to also include

intrusion detection as part of the infrastructure within the cloud.

2

As will be discussed with the following chapters, the current models for intrusion

detection are not mature enough to allow the flexibility for users to be in full control of the

utilized intrusion detection system as well as to not being resource friendly for the cloud

provider too.

1.3 Research problem
The current research activities for intrusion detection systems within cloud

environments [4][6] have mostly been concentrating on the IDS’s ability to handle the

enormous volumes of traffic passing through the core backbone of these shared networks

and the structuring of intrusion detection to be part of the security infrastructure of the

cloud [7]. But few of them discussed the ability to provide intrusion detection as a service

for clients in the cloud in limited manner. To be more specific, current implementations of

intrusion detection didn’t take into consideration the opinions of the cloud’s client. This

thesis provides the cloud intrusion detection service (CIDS) which is designed to be a

service-based intrusion detection system for cloud environments.

1.4 Scope of Implementation
The ideas in this thesis can be applied for any network. The main purpose is for

implementation within cloud computing environments to provide easily configurable

intrusion detection service for the customers.

One possible scenario is for a cloud provider to implement the system in this thesis

and provide it for cloud customers in service-based manner. Customers can then choose to

subscribe or unsubscribe from the system. Customers can also choose whatever protection

requirements are needed and pay for only the volume of protection they request. Another

possible implementation is by LAN manager, where they can deploy it within their

3

localized networks. This would enable them to create protection profiles for each asset they

have on site. For both cases, the system described in this thesis is very resource friendly

and can improve the overall performance considerably regardless of the volume of network

traffic.

In the following chapter, we present a background about the topic which includes a

preliminary discussion about Cloud Computing and Intrusion Detection Systems in chapter

2. Then in chapter 3 we take an overview about some of the recently published research

papers on the matter of integrating intrusion detection with cloud computing. Within this

overview, we discuss the limitations of them that hinder their utilization as intended in this

thesis. After that, we describe the Cloud Intrusion Detection Service (CIDS) which is the

solution presented by this thesis to address the issue of providing intrusion detection in a

service-based manner. Later and in chapter 5, we implement the CIDS and compare the

results to the existing solutions in order to verify the performance improvement and goal

achievement. The final results and future work are concluded in chapter 6.

4

Chapter 2 – Preliminary Discussions

In this chapter, we review the basic concepts behind this thesis. Mainly speaking,

we will discuss the concepts of Intrusion Detection Systems and Cloud Computing. For

each concept, a quick and comprehensive review will be made. This includes the main

concepts, the advantages, and the types available that distinguish their usage in practice,

and finally, a global view of the current deployments around the world, which will be aided

by figures to illustrate this.

2.1 Intrusion Detection Systems
An Intrusion Detection System (Commonly referred to IDS) is a system that

replaces the typical task of system administrators of constantly reviewing the log files in

attempt to spot any abnormal records. And by abnormal we mean any records that indicate

a malicious activity by the user. These malicious activities include a wide variety of actions

that usually tend to attack and/or damage the system being the target. This method was

enough for monitoring the activities of small group of people within a private organization.

But with the expanded usage of computing system and by the development of complex

interconnected networks, this is no longer an applicable method. Automated methods were

needed to make the task faster and easier [7]. This was the first step towards building the

intrusion detection systems.

Much has been written about intrusion detection systems recently. In fact, work in

IDS field has been in progress for more than 25 years now [8]. Generally, IDs can be

defined as the tools, methods, and resources that help to identify, assess, and report

unauthorized or unapproved network activities. The intrusion detection part of the name is

5

a bit of a misnomer, as an IDS system doesn’t actually detect intrusions. It rather detects

activities in traffic that may or may not be an intrusion. Intrusion detection is usually part of

an overall security architecture that is installed around a system or device [9].

Intrusion Detection is getting increased importance as the sophistication of Internet-

based attacks is also increasing. Figure 2-1 [10] illustrates the increasing level of

sophistication of attacks from mid-1980s to early 2000s. The following subsections present

the basic intrusion detection models that are currently being used and deployed by various

organizations globally.

2.1.1 Protection Level

By protection level, we mean the level at which the IDS can provide protection for.

For this categorization, two protection levels exist. The first is the Host-Based Protection

(HIDS), and the second is the Network-Based Protection (NIDS).

 Host-Based IDS

This is where the intrusion detection system is intended to protect a single host. This

is usually achieved using a special software running on the host and utilize fire-wall like

strategies to intercept traffic and analyze it to report any malicious traffic.

 Network-Based IDS

This type of IDS is usually used to protect a complete network segment. In order for

them to be able to do this task, they are typically placed on the network perimeter in a place

that allows it to read all the exchanged traffic with the protected network segment.

6

Figure 2- 1: The evolution of attack sophistication and devolution of attacker’s skills

7

2.1.2 Detection Techniques

This defines the techniques and strategies that are utilized for the purpose of

identifying intrusions. Generally, there exist two types of these techniques. These include

the Anomaly-Based intrusion detection and the Misuse-Based intrusion detection [12].

 Anomaly Detection

These types of intrusion detection systems attempt to model normal behavior. Any

events which violate this model are considered to be suspicious. For example, a normally

passive public web server attempting to open connections to a large number of addresses

may be indicative of worm infection.

The main advantage of anomaly detection systems is that they can detect previously

unknown attacks. By defining what’s normal, they can identify any violations, whether it is

part of the threat model or not. In actual systems however, the advantage of detecting

unknown attacks is paid for in terms of high false-positive rates. Anomaly detection is also

difficult to train in highly dynamic environments. [7]

 Misuse Detection

The misuse-based intrusion detection systems attempt to model the abnormal

behavior, any occurrence of which clearly indicates system abuse. For example, an HTTP

request referring to the cmd.exe file may indicate an attack.

The main disadvantage of misuse detection systems is that they can detect only

known attack for which they have a predefined signature. These techniques require the

8

modeling and development of new signatures for each newly discovered attack. These

signatures must then be added to the published signature database [7].

2.2 Architecture of Intrusion Detection Systems
The work of typical IDS is to analyze some input data. The Input data might range

from audit trails and operating system or application logs to raw network traffic. An IDS in

the basic structure consists of a Sensor, Analyzer, and Event Notifier [13]. Figure 2-2

illustrates the canonical model of such structure.

Figure 2- 2: Basic IDS Structure

 Sensor: whatever the used input data is, a component is needed which can read such

data and convert it to a format which is compatible with the one required from the

analyzer. The conversion into such a format sometimes involves the extraction of some

parameters of interest aimed at synthesizing the properties of the data which are of

greater interest for the problem at hand. In the case of the proposed intrusion detection

system, network packets are usually decoded, all the header fields are evaluated, and a

set of traffic features are computed, related to some statistical properties of the traffic.

9

 Analyzer: once the data is modeled into a common format, it needs to be analyzed. In

principle, the analyzer component could be independent of the type of data. It needs to

be aware of a set of criteria aimed at detecting some particular properties in the

analyzed data and, when at least one out of such criteria is matched, notify an entity

about the occurrence of such an event. If each criteria is associated to the most likely

cause which might have generated the event it’s related to, the analyzer not only is able

to notify in case of the occurrence of some particular events, but is also able to ascribe

such events to a generating cause, thus enabling the classification of each reported

event.

 Event Notifier: any time the analyzer reports the occurrence of some events, it is

necessary to enable the whole system to communicate with the external world, in order

to allow the notification of such occurrences. The event notifier is in charge of

interpreting the results of the analysis and correctly formatting the messages required

for communicating with the system users.

2.2.1 “Snort”

“Snort” is a free and open source network intrusion prevention system (NIPS) and

network intrusion detection system (NIDS) capable of performing packet logging and real-

time traffic analysis on IP networks. “Snort” was written by Martin Roesch [14] and is now

developed by Sourcefire® [7], of which Roesch is the founder and CTO. Integrated

enterprise versions with purpose built hardware and commercial support services are sold

by Sourcefire. [15]

10

“Snort” consists of three main components: Packet Decoder, Detection Engine, and

Logging/Alerting Subsystem [16]:

 Packet Decoder, which converts raw network traffic into organized and easily

accessible structures that can be later used to reference specific portions of the packets,

like source and destination IP addresses and port numbers.

 Detection Engine, which takes the decoded packets as input, performs pattern

matching for the available signatures and if any export the matches to the alert

subsystem. “Snort” maintains its detection rules or signatures in a two dimensional

linked list of what are termed Chain Headers and Chain Options.

 Logging/Alerting Subsystem, which differ in their intended function. The logging

options can be set to log packets in their decoded, human readable format to an IP-

based directory structure, or in TCP Dump binary format to a single log file. The

Alerting on the other hand enable the documentation of alerts found by positive

matches with the predefined attack patterns. Alerts may be sent to SysLog, logged to

an alert text file in two different formats, or sent as Win Popup messages using the

Samba SMB Client program.

11

2.3 Cloud Computing
The cloud is not simply the latest fashionable term for the Internet. Though the

Internet is a necessary foundation for the cloud, the cloud is something more than the

Internet. The cloud is where you go to use technology when you need it, for as long as you

need it, and not a minute more. There is no need not install anything on the desktop and

only pay for the technology when it is actually used [3].

The term ‘cloud’ first appeared in the early 1990s, referring mainly to large ATM

networks. Cloud computing began in earnest at the beginning of this century, just a few

years ago with the advent of Amazon’s web-based services. Recently, Yahoo and Google

announced plans to provide cloud computing services to some of USA’s largest

universities: Carnegie Mellon, University of Washington, Stanford, and MIT. IBM quickly

announced plans to offer cloud computing technologies, followed almost at once by

Microsoft. More recent entries into the fray include well known companies: Sun, Intel,

Oracle, SAS, and Adobe. All of these companies invested mightily in cloud computing

infrastructure to provide vendor-based cloud services to the masses [2].

Table 2-1, found in [3], demonstrates a comparison between the traditional computing

services and the web-based cloud services.

Table 2- 1: The Old IT Infrastructure versus the Cloud

Traditional Cloud
File Server Google Docs

MS Outlook, Apple Mail Gmail, Yahoo, MSN
SAP CRM/Oracle CRM/Siebel SalesForce.com

Quicken/Oracle Financials Intacct/NetSuite
Microsoft Offce/Lotus Notes Google Apps

Stellent Valtira
Off-Site Backups Amazon S3

Server, Racks, and Firewalls Amazon EC2, GoGrid, Mosso

12

Cloud Computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources that can be rapidly provisioned and

released with minimal management effort or service provider interaction. And by

computing resources we mean any things that can be utilized as part of computing systems,

this includes the networks, servers, storage, applications, and services. An important

concept that is always being mentioned as an apparent advantage of cloud computing is the

availability of resources [17].

From a technical viewpoint, the elements of the cloud include processing, network,

and storage elements. The cloud architecture consists of three abstract layers: infrastructure,

platform, and application. Infrastructure is the lowest layer and is a means of providing

processing, storage, networks, and other fundamental computing resources as standardized

services over the network. Servers, storage systems, switches, routers, and other systems

handle specific types of workloads from batch processing to server-storage augmentation

during peak loads [17].

Cloud providers’ clients can deploy and run operating systems and software for their

underlying infrastructures. The middle layer provides higher abstractions and services to

develop, test, deploy, host, and maintain applications in the same integrated development

environment. This layer provides a runtime environment and middleware to deploy

applications using programming languages and tools the cloud provider supports. The

application layer is the highest layer and features a complete application offered as a

service. Figure 2-3 shows a cloud infrastructure’s general layered architecture, with the

additional user interface layer, which enables seamless interaction with all the underlying

everything-as-a-service layers [17]

13

Figure 2- 3: General Layered Architecture of Cloud Infrastructure

2.3.1 Service Models in Cloud Computing

 Software as a Service (SaaS)

SaaS is a model for which the applications are hosted as services to customers who

access it via the Internet. When the software is hosted off-site, the customer doesn’t have to

maintain it or support it. On the other hand, it is out of the customer’s hands when the

hosting service decides to change it [18].

 Platform as a Service (PaaS)

PaaS on the other hand, delivers the cloud services differently. As the name

suggests, PaaS supplies all the resources required to build applications and services

completely from the Internet, without having to download or install any kind of software.

The services provided in PaaS model include application design, development, testing,

14

deployment, hosting, team collaboration, web service integration, database integration, and

versioning [18].

However, PaaS lacks the interoperability and portability among different providers.

In other words, if an application is created with one cloud provider and then the customer

decides to move to another provider, then she may not be able to do so or it may require

high prices for the application to run in the new provider’s cloud. Google App Engine [19]

is an example of PaaS clouds where users can create their own applications with either

python or Java and deploy it on Google’s cloud.

 Infrastructure as a Service (IaaS)

 Sometimes referred to as HaaS or Hardware as a Service [18], it is considered the

next form of services available in cloud computing. Where SaaS and PaaS are providing

applications to customers, IaaS doesn’t. In the simplest form, IaaS provides the

organizations with hardware resources that can be used for anything. The advantage is that

instead of buying servers, software, racks, and having to pay for the datacenter space for

them, the service provider rents those resources. And by renting resources we mean any

resources than a person can think of, including Server Space, Network Equipment,

Memory, CPU Cycles, Storage Space, etc… Additionally, the infrastructure resources can

be scaled up or down based on the application resource needs.

15

2.4 Security Services in the Cloud

In a report by Gartner Group [20], security services provided in the cloud have the

potential to provide cost savings and faster deployment compared with equivalent-capacity,

premises-based equipment, but providers are yet to deliver on customer expectations.

Currently many traditional security systems are provided as services in the cloud. These

systems have been made available to end user to provide the security products for users in a

service-based manner. Such model is referred to as Security-as-a-Service model [21]. This

included many product services and types like Remote Vulnerability Scanning [22],

Webroot® [23] Email and web Security SaaS [24], and Panda® [25] Managed Office

Protection [26].

In this thesis, we introduce the usage of intrusion detection systems as services in

cloud computing environments. The basic concept is that NIDS are used frequently as a

main component in perimeter network security [27]. While deploying and configuring

NIDS is considered an infrastructure type security measure, IaaS service models still have

limited support to offering intrusion detection as services. By limited we mean, that even

when cloud subscribers wish to deploy an IDS system in their cloud’s network segments,

they will need to do this task entirely themselves. An example of this is the usage is

Amazon Elastic Compute Cloud (EC2) [28] where users can purchase and use Amazon

Machine Image (AMI) that comes with “SNORT” IDS on it [29]. As we shall see in the

next chapter, other proposals have been introduced to enable intrusion detection for the

protection of the cloud itself not the cloud’s subscribers. And for many, the distinction

between the cloud protection and the cloud clients’ protection is unclear.

16

The distinction is based on the classic network and systems security architecture,

where the network infrastructure is designed, deployed, supported, and secured by a special

staff called network administrators. Their task is to provide a reliable infrastructure which

sets scalability, availability, performance protection as the main concerns [30]. On the other

hand, it is the task of the system developers to design and build their systems in a secure

way. The same case exists for cloud computing environments, where cloud providers have

some security tasks assigned to them. Kandukuri et. al. [31] have proposed a set of

requirements to be included in the Service-Level-Agreement (SLA) for cloud computing

contracts. These include security at the physical layer, security at the network layer, disaster

recovery, and the trustworthy of the encryption schemes.

17

Chapter 3 – Related Work

In this chapter, we review some of the significant and recent research papers in the

field of intrusion detection in cloud computing environments. We present these activities

and discuss their advantages and the disadvantages. More precisely, we will discuss the

reasons of why these solutions do not give the required intrusion detection as desired in a

service oriented model.

3.1 State of the Art
 Multiple research activities were introduced to address the issue of intrusion

detection within cloud computing environments. These activities can be classified as those

to detect intrusions against the cloud itself and those to detect attacks that target individual

machines inside the cloud. Our study is on the latter type of the two. More specifically, it

will cover the service-based or subscription-based intrusion detection; which is a field that

did not receive as much attention as the classical intrusion detection activities.

Among the different published works this field is Vieira et. al. [32], where they

proposed the Grid and Cloud Computing Intrusion Detection System (GCCIDS) which is

designed as an audit system for attacks that the networks and hosts cannot detect. In their

work, each node identifies local events that could represent security violations and alerts

the other nodes. Each individual IDS cooperatively participates in intrusion detection. The

system is designed for the purpose of detecting intrusions against the cloud and is not

intended for utilization by clients. The protection cannot also be customized by the cloud’s

clients. Therefore, it doesn’t support the requirements of subscription-based intrusion

detection service. Dastjerdi et. al. [33] implemented applied agent-based IDS as a security

18

solution for the cloud. The model they proposed was an enhancement of the DIDMA [34].

The model basically works by sending investigative task-specific Mobile Agent to every

virtual host that have generated similar alerts. The mobile agents can then help to verify

attacks and later assist in banning the compromised virtual machines and separate them

from the network. The system is mainly designed to protect the networks’ resources and

cannot be customized as a service. Therefore can’t support the requirements of adapting it

to become a subscription-based IDS service.

Bakshi et. al. [35] proposed another cloud intrusion detection solution, the main

concern was to protect the cloud from DDoS attacks. The model uses an installed intrusion

detection system on the virtual switch and when a DDoS attack is detected. The attacking

network gets blocked and the victim server is transferred to another virtual server. Future

connections from the attackers will be blocked and legitimate users are redirected to the

new virtual server. As clearly stated, the model helps to protect the cloud itself, not the

cloud clients who in turn don’t have any kind of authority over the intrusion detection

system being used. Another recent and significant contribution to this field is the work of

Lo et. al. [36]. The Web Service they proposed is mainly designed to create cloud networks

that are immune against the Distributed Denial of Service (DDoS) attacks [37]. The utilized

IDS implementation was the Open Source “Snort” IDS and the Web Service itself is

designed as a Distributed Intrusion Detection System (DIDS) [38] [39]. Mazzariello et. al.

[40] proposed a model for detecting DoS attacks against Session Initiation Protocol (SIP).

The model is limited to detecting SIP flooding attacks and falls largely within the category

of intrusion detection systems designed to protect the cloud itself.

19

Yee et. al [41] have proposed an intrusion detection system designed specifically to

detect certain attacks against web services. The Web Service they proposed cannot be

controlled by users and aims at protecting the web services themselves. Therefore, we can

consider this as an intrusion detection system designed to protect the cloud itself which is

usually the location where web services are hosted. Bosin et. al. [42] have proposed a

model for a new generation of intrusion detection systems. The new Web Service, which is

designed for security managers, is mainly designed to enable the access to intrusion

detection services whenever needed. The Web Service doesn’t specify the intrusion

detection service itself, but rather focuses on the composition of interoperable intrusion

detection (ID) services and aims to promote the reuse of ID tools and systems already

available at network nodes and/or supplied by different vendors. The model however

assumes the existence of already configured intrusion detection services. It also doesn’t

allow the clients within the cloud of network to determine the protection requirements but

rather use the ID service from one vendor and replaces it if it doesn’t suit their demands.

Perhaps the most relevant research was the work of Roschke et. al. [43] who have

proposed an intrusion detection Web Service based on the VM-based IDS [44]. In their

work, they have developed a general Web Service for intrusion detection. It consisted of

separate IDS sensors for each virtual host. The IDS sensors can be of different vendors. To

enable the collection and correlations of alerts from the different IDS implementations, an

Event Gatherer was made to work as a medium to standardize the output from the different

sensors as well as realize the logical communication. The cloud user can have access to

both the applications and the IDS sensors. The users can access the sensors, configure,

modify rule sets, and modify detection thresholds. Additionally, users can review the alerts

20

generated when attacks that target their virtual hosts or services are spotted. The Web

Service also includes the IDS Management module which is responsible for orchestrating

the message passing and alert transfer among the different IDS sensors and the main

storage unit whether it was a file system, a network database, or a shared folder. Figure 3-1

illustrates the deployment of the IDS in the cloud in the different possible layers. This

approach of separating the IDS from the protected hosts is of great advantage. But this

approach is criticized for two things. The first is due to the large consumption of computing

resources since every virtual application, platform, or host needs a separate VM-Based IDS

and the second is due to the usage of allowing the user to fully control and manage the IDS

hosts. The reasons why the second criticism is vital is explained in section 3.3.

3.2 Virtual-Machines Based IDS
Users may legitimately request the full control of the VM-IDS. But this may be

actually risky to implement. Virtual interfaces are linked with the physical interfaces. This

means that the traffic that is seen in a promiscuous mode for the virtual interfaces is similar.

Figure 3-2 illustrates this concept. The figure displays the output of the tcpdump command.

This command uses the pcap (packer capture) libraries to capture all the packets received at

the network interface specified in the command line parameters of the command. The

figure depicts the packets that are read by the tcpdump at a virtual “Ubuntu” machine when

another virtual machine is viewing a webpage from an external server. The shown tcpdumb

output reveals that the virtual machine is capable of receiving the network packets that are

being exchanged between the web server and the other virtual machine that share the same

NIC. In other words, the same traffic that is sent or received by one virtual machine can be

monitored by the other virtual machines that share the same physical interface. The

possible risk in this is that a malicious cloud user can write customized rules and IDS

21

Figure 3- 1: IDS in the Cloud

22

signatures to monitor the traffic originating from or destined to the other virtual machines.
This should not be allowed to happen since it violates a basic principal of information
security, i.e. confidentiality.

Figure 3- 2: network packets being read by one virtual machine

23

Chapter 4 – Cloud Intrusion Detection Service

This chapter presents the suggested solution to enable service-oriented access to

intrusion detection system process. The chapter begins with an overview of the proposed

system and the sequence diagrams of the workflow.

4.1 Overview
The proposed system builds upon the fact that intrusion detection systems utilize

very fast and very efficient search algorithms. So by increasing the complexity of the

signature database definitions, we will be able to customize the behavior of the intrusion

detection system in such a way that it acts as a cloud-capable intrusion detection system.

The proposed system is therefore nicknamed “Cloud Rule Engine (CRE)” and is capable of

receiving the subscriptions requests from the cloud users and translates these requests into a

standardized “Snort” signature database that can then be deployed and utilized as the Cloud

Intrusion Detection Service (CIDS). This process will convert standard intrusion detection

system into a fully capable system of handling the cloud variations. Figure 4-1 summarizes

this process. As the figure illustrates, users can choose to subscribe with the intrusion

detection service, choose their protection requirements and define any other options that

may be available. Once these changes are final, the CRE will translate them to the signature

database where they can be deployed and used by the intrusion detection process.

24

Figure 4- 1: IDS Service within the Cloud

25

4.2 Cloud Rules Engine (CRE)
This is the most important part of the service-oriented intrusion detection system for

cloud networks. As mentioned earlier, CRE works on different layers with varying

complexities. These Layers are the User Layer, the System Layer, and the Database Layer.

The User Layer includes the interface that will enable the cloud subscribers to define the

subscription and protection requirements. The user in this case can include both the cloud’s

clients and administrators alike. The common thing is that they can easily access the

configurations, the subscription details, and the security monitoring and alerting system as

well. This layer sends the different requests to the other layers in order to convert them to

actual IDS configurations. The second layer is the System Layer. This layer will be the

driver for the IDS service and will understand both the alerting mechanism and the

signature syntax. The third layer is The Database Layer, and its task is to track the

subscribers’ settings and to enable fast access to their settings for any later updates either to

the network segment or to the subscription details. It can also do the actual translations to

IDS signature database and also provides the required Application Programming Interface

(API) for accessing the alerts database. Figure 4-2 depicts these layers and their interactions

within the system.

26

Figure 4- 2: Interactions of CIDS Layers

4.3 CRE Operations
We now describe the operations that are supported with the CRE. These operations

are initialized at the User Layer and then dispatched to the two other layers according to the

request type. The other layers perform the needed translations to make these requests

viable. Before we delve into the details of the supported operations, we review some of the

terminology associated with the CIDS design.

 Subscriber – refers to the cloud user who chooses to ‘subscribe’ with the

intrusion detection service.

27

 Administrator – refers to the user who works in administering and managing the

CIDS.

 Category – refers to the set of signatures that together work to detect a certain

type of attacks and intrusions. A category can include multiple signatures to

detect different attack patterns. For example a category called ‘SQL Injection’

can refer to a set of signatures that detect the SQL injection attacks.

 Alert – refers to the payload that is detected as a malicious one. Alerts usually

contain the signature type, the attack source, and attack destination. Also, an

alert may optionally contain the name of the subscriber whose resources were

the ones targeted by the detected attack.

We now proceed to describe the CRE operations.

4.3.1 Category Operations
These operations are required to add/remove signature categories. The cloud

provider may wish to customize standard signature databases in order to optimize the

performance of the IDS process. For example, he may manually reorder a public signature

database called ‘web-attacks’ to obtain multiple categories that increase the flexibility of

protection options for the cloud users. This can be like converting the single web-attacks

database to web-attacks-apache, web-attacks-iis, web-attacks-glassfish, and so on. After

these customizations, the cloud administrator will need to deploy these signatures and

enable the subscribers to access them. This can be accomplished by the category operation

“add” which will receive the new categories as inputs, converts them to cloud capable

signatures database, verify them, and finally publish them for subscribers to consider. We

mean by cloud-capable signatures, that the signature variables will be set to dynamic mode

28

and the variables defining the targeted networks or hosts are initialized and stored in the

IDS System variables. The category operation “remove” works by removing the category

from the deployment point and editing the user subscriptions to eliminate the existence of

the deleted category.

These sets of operations are first issued as user requests at the User Layer. After that

the Database Layer modifies them to support the intrusion detection system variable

definitions, and finally deploy them at a publish point recognized by the intrusion detection

process. The Database Layer creates entries in the backend database to enable fast and

system-independent access to the available categories and subscription details. Each

category therefore contains the category name that will appear to the cloud users, a

meaningful description that describes the objective behind the category, and also the

number of signatures included within this category. The number of signatures will help in

two things. First it will help the cloud user to determine the priority of this category. It may

be unnecessary to subscribe in a category called general-attacks when it only contains a

single signature definition. Second, the cloud provider will utilize the number of rules to

determine the charge for subscribing with the given category. It is known that the more

signature definitions there are, the more load on the IDS process will be. Therefore, it

would be reasonable to charge the subscriber for the number of active signatures he is

currently activating. It is worth mentioning that CRE is able to utilize the same signature

with the same signature serial number by modifying the variable list only. This means that

any active category will only be loaded once despite the number of currently registered

subscribers.

29

4.3.2 Subscription Operations

These operations are used to enable administrators and subscribers alike to review

the details of current subscriptions and modify them as requested. A typical operation

frequently used by the administrators in scenarios is to view the list of users, perhaps

removing or modifying their details. The CIDS provides this function to comply with other

standard administration procedures. The cloud users or the subscribers can also use this set

of operations to activate their subscriptions with certain categories. They can hence, view

the available categories and review their descriptions as well as the available number of

signatures in each one of them. Additionally, they can modify their existence subscriptions

or completely disable it.

The subscription operations are first initiated at the User Layer, and then translated

to the subscription database with the help of the Database Layer. The system layer is used

to write translated subscriptions into the cloud IDS service to activate the required

protection preferences.

4.3.3 Alert System Operations

These constitute an intuitive set of operations that help the cloud administrator to

review the detected attacks targeting the cloud itself and can also help the subscribers to

review the alerts generated by attacks detected while targeting their own resources within

the cloud. These operations are mostly accomplished by translating the user requests to the

System Layer to retrieve the list of detected alerts.

30

A list of operations that the CRE supports is listed in Table 4-1. These operations

are given meaningful names to reflect their intended function.

Table 4- 1: supported operations within the CRE

Type Name Target User

Category

AddCategory Administrators

RemoveCategory Administrators

ResetToDefaultSettings Administrators

ViewNumberOfSignatures Administrators, Subscribers

Subscription

ViewSubscribers Administrators

AddSubscribtion Administrators, Subscribers

RemoveSubscribtion Administrators, Subscribers

SubscribeToCategory Subscribers

UnsubscribeFromCategory Subscribers

Alerting
ViewAlertSumary Administrator

ViewAlertsByUser Administrator, Subscribers

Figure 4-3 below displays the Use-Case diagram of the CIDS Web Service. As the model

shows, the main actors in the CIDs Web Service are the clients and administrators. The CIDS

clients need first to login before they can call the different functions available. For example, a client

might view the categories currently supported which in turn calls a special function that view the

number of signatures in the selected category. The client then may like to subscribe in the selected

category based upon the description available and the number of attack signatures definitions within

it. To do so, the client can subscribe to category. Later the client may wish to view the attacks

detected on his own protected resources. The client may not like to activate the selected package, so

he can unsubscribe from the category or even remove his subscription totally.

On the other hand, the administrators will also need to login before using or managing the

CIDS. He can view the current subscribers or view the categories. The administrator may have

31

defined a new protection package, he can add the category to the system or even remove the

category if it gives inaccurate results or is not popular among clients. The administrator may also

view alerts by a certain user (i.e. client) or even view the alert summary for all clients. The

administrator can also remove the users’ subscription himself for whatever reasons.

32

Figure 4- 3: CIDS Use-Cases for clients and administrators

33

Chapter 5 – CIDS Implementation and Discussion

In this chapter, we review the implementation details of the CIDS architecture. The

chapter first describes the proposed system model and then explains the implementation

environment and then the final results are summarized. The chapter also compares the

CIDS to the implementation of separate process for each user.

5.1 System Model
As described in the previous chapter, the main part of the system is the Cloud Rule

Engine or CRE in short. Figure 5-1 views the UML class diagram model for the CIDS

system where the different entities and relationships are illustrated. The model suggests

many functions that are not required in the original operation specifications mentioned in

chapter 3. However, the additional functions are all required for implementation-specific

purposes and are not necessarily required to perform the intended functions. For example,

the AdminServices and the ConfigManager entities are required for the system but their

effect is invisible to the users of the system. As shall be seen shortly, the AdminServices

includes functions that are needed to initialize the system while the ConfigManager is

needed to parse the CIDS configuration file. Both of them include functions that are not

needed for CIDS operations as they are listed in Table 4-1.

The model features multiple entity definitions, these entities or classes and the need

for the given operations are all described in shortly.

5.1.1 CategoryManager
This entity is used for category administration purposes. It can be used by the

administrators to add a new category or delete an existing one. The AddCategory function

34

receives as input the full path to the new signature database. Then it redefines its variables

to comply with the cloud requirements and finally deploy the signature rules set to the

publish point that is read by the intrusion detection daemon.

5.1.2 Category

This is where the details of the categories are stored and retrieved. For these

purposes, the LoadDetails, CountRules, GetName, and GetDescription are implemented.

The final function is the ListDetails which is a static member that can be used to obtain a

visual list of all the available categories for the users to review.

5.1.3 AlertManager

The AlertManager, as its name implies, is used to reach the Alerting database and

retrieve the details of the detected alerts. The function getAlertSummary and

GetAlerttByUser can obtain the list of all detected attacks and the list of detected attacks of

a certain service subscriber. The other two functions, i.e. ConvertIpToLong and

ConvertLongToIp are used to convert the integer representation of the IP addresses to the

A.B.C.D notation and vice versa. This is required for this implementation since the

addresses are stored as numeric values of long datatypes. Each detected alert is represented

as an instance of the Alert entity. The Alert entity stores the details of every alert, which

include the source and destination addresses, the signature type and identifier, the name of

the subscriber whose assets were targeted by the detected attack, and finally a simple utility

method for representing the alert as HTML statement in order to display the alert directly

on a special web page.

35

Figure 5- 1: UML Class Diagram Model for Entities in the CRE Implementation

+AddCategory()
+RemoveCategory()

CategoryManager +LoadDetails() : Subscriber
+SubscribeFromCategory()
+UnSubscribeFromCategory()
+GetNetworkID()
+GetCategories()
+Includes()
+SaveSettings()
+UpdateCategories()

-SUBSCRIBER_NAME : String
-NETWORK_ID : String

Subscriber

+ListCategories()
+LoadDetails()
+GetName()
+GetDescription()
+CountRules()

Category

+GetAlertsSummary()
+GetAlertsByUser()
+ConvertIpToLong()
+ConvertLongToIp()

-SUBSCRIBER_NAME : String

AlertManager

+GetSource()
+GetDestinations()
+GetSID()
+GetSignature()
+GetOwner()
+HTML()

-ALERT_DATA : String

Alert

+Initialize()
+GetConnectionString()
+getConfigByDirective()

-CONFIG_FILE_URI : String

ConfigManager

+ResetAndDeploySignatures()
+ResetCategories()
+ResetSubscribers()
+RelocateVariables()

AdminServices

+performScan()

-NETWORK_ID : String

PortScanner

+GetType()
+GetAddress()

Server

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

36

5.1.4 PortScanner

This class utilized the famous Network Scanner “nmap” [45]. This tool can be used

to scan the network and obtain a list of all open ports on all of its active hosts. The original

specification didn’t include this function, but the implementation required such a function

to facilitate the configuration and optimize the settings. In short, the “Snort”® IDS that we

used as the intrusion detection process contains a set of rulesets. Within these rule sets ,

multiple special variables are defined like SMTP_SERVERS, TELNET_SERVERS,

SQL_SERVERS, HTTP_SERVERS, and others. The traditional “Snort”® deployment

requires that a user specifies the values of these variables manually. However, in a cloud

network where the service usability is a main concern, users may not be able to enter these

exact values. This is where the PortScanner class comes in handy, the class contains a

single function PerformScan which do the actual scanning using nmap where the final

output is a list of Server entities, where each Server entity represents a server. Each server

contains the IP address of the server and the port number on which it listens, a single host

that contains an HTTP service and an SMTP service is represented by two Server instances.

5.1.5 AdminServices

This entity was used during the testing period, it contains the functions required to

flush the CRE system. By flush we mean reset the subscription information, re-initialize the

variables list, remove the deployed signature databases, and reset all the category

information to the original settings where no subscribers exist. This class is not required,

still, it can be used by any cloud provider who wishes to install and utilize the CRE engine

on their cloud environment.

37

5.1.6 ConfigManager

This entity is used to read the CRE configuration. It then parses the configuration

directives and stores them as a HashMap. The entity provides two functions. The first is the

GetConfigByDirective which is a static member that is used to obtain the value of a

specific configuration directive. The second static member is the GetConnectionString, this

is really not needed as a series of GetConfigByDirective calls can be used to replace it.

However, because it is frequently called and because the connection string contains

multiple directives, it was implemented as an independent function. A typical connection

string includes the [host name, port number of database management system, and the

database name].

5.2 Implementation Environment
As a proof of concept implementation, The CIDS was implemented using the Java 2

Enterprise Edition (J2EE) [46]. The entities in the UML class diagram model was

translated to Java-based classes. The web interface was created using Java Server Pages

(JSP) [47] technology while the implementation code was written using NetBeans 6.9.1

IDE [48] installed on Ubuntu 10.04 [49] Linux distribution.

5.3 CRE Web Interfaces
The CRE system model has successfully been implemented and tested. The final

implementation contains two simple web folders for cloud administrators and cloud

subscribers a like. Following is a description of the implemented functions within the web

interface of the CRE. Appendix A illustrates the web interfaces for CIDS

38

Once the cloud administrator logs in to the control panel, he will see a list of

choices that are available for administration procedures. These include the (Add Category,

Delete Category, Subscribers List, Categories Available, and the summary of all the alerts

detected including alerts detected by traffic destined to the subscribers networks or the

cloud network itself. In this case the cloud is considered a subscriber. The categories that

are activated by default are said to be the ones the cloud is subscribed with.

The Add category function available to the administrator provides a very simple

form designed to receive as input the full path to the new category signature database. The

form sends the content of the file along with the descriptions to the CIDS server, where the

database passes through some processing to convert it to cloud-capable signatures database.

Then the new database gets added to the list of available categories so that subscribers may

be able to subscribe with it. Similar functions apply to the Delete Category function, which

receives the name of the category to be removed and then performs some processing to

eliminate the database from the ones available for subscription. After this, the CIDS

revokes all subscriptions to the deleted category. This function can be used to quickly

remove any buggy signature database that generates false positives. A false positive is

defined as a positively detected attack while the actual traffic is not really an attack.

On the other hand, a client must first login or create a new account. An account

contains the name of the subscribing user and the network segment that is desired to be

included with the protection. Then, the subscriber may be able to subscribe to/unsubscribe

from the available categories. He also can view a list of all the current categories. For this

simple implementation, the client can view the category name as well as the number of

signatures included and the number of subscribers who are currently subscribed to that

39

category. The number of subscribers can be useful to give an indication to the clients on the

popularity and reliability of the signature database.

The implemented interfaces for both the cloud administrator and the cloud user are

made as a proof-of-concept only while the real implementation may include more complex

and user-friendly interfaces. However, this is not the main concern of this research which

focuses more on providing a cloud-capable service-based intrusion detection system.

5.4 Results and Discussion
Due to the unique requirements that are set before designing and implementing the

CRE component of the Cloud Intrusion Detection System (CIDS), the simulation is based

on two related scenarios. The first scenario is for the comparison of the CIDS design with

the simple implementation of “Snort” for single client protection. This scenario aims at

estimating the overhead obtained when implementing the CIDS Web Service using “Snort”

as the base IDS. In this scenario, we follow similar performance analysis outcomes as the

ones mentioned in Lo et. al. [36]. Specifically, we measure the “Snort” process size, the

detection rate of extremely hostile traffic, and the time per packet that is required to analyze

and detect attacks. The second scenario aims at comparing the resource consumption of

CIDS Web Service when compared to other solutions which allocate distinct process for

each user, similar to Virtualized IDS allocation in Roschke et. al. [43]. This scenario is

created to compare the effectiveness of using shared ID process among subscribers to the

case of using separate process for each subscriber. In this scenario we simply compare the

process size for using single shared setting as in CIDS with the case of using the ID process

with different protection profiles for each user, where the protection profile are in the form

of customized protection packages.

40

As mentioned earlier, the main objective was to design and architect an intrusion

detection system that can be run in a service-based manner. This service-based design

would then allow the cloud users to be able to take advantage of the service to include their

valuable assets with the available IDS. This can be classified as a Security-as-a-Service

service model.

Table 5-1 reviews the comparison of CIDS with the relevant published researches

on integrating intrusion detection systems with cloud computing networks. As stated in the

table, the CIDS have enough advantages that the other cloud IDS solutions do not have. As

it is shown in the table both Yee and Bosin works are designed for client protection. But as

stated earlier, Bosin work focuses on managing access to multiple ID sensors by different

vendors. Clients can’t change the options of a any single ID process but rather change to

another ID by another provider if the options are not suitable. On the other hand, Yee

focuses of protecting the web service in the cloud. These web services are owned or used

by cloud clients, but the protection is fixed and cannot be customized or accessed by the

clients.

Table 5- 1: Comparing CRE with other cloud-based intrusion detection systems

System CIDS Roschke Lo Bakshi Yee Bosin

Service-Based Yes Yes No No No Yes

Customizable Subscriptions Yes Yes No No No No
Designed for Clients
Protection

Yes Yes No No Yes Yes

General Protection Yes Yes No No No Yes

Fully Parallelizable Yes No Yes Yes Yes Yes
IDS Separated from
Networks

Yes No Yes Yes Yes Yes

41

5.4.1 First Scenario

The first scenario consists of running the standard “Snort” process for a single class

C network protection and comparing it to the case of using CIDS to protect multiple Class

C networks. The number of subscribed rules varies from 200 rules to 1000 rules.

Figure 5-2 displays the results obtained when measuring the process size for each of

the two cases. As clearly visible in the figure, the process size for using the CIDS to protect

multiple networks is very similar to using “Snort” for protecting a single network. This

behavior stays the same despite the number of subscribed signatures. The architecture of

CIDS Web Service is expected to give such result since the only addition difference is

length of the same number of signatures. The remaining process components are all the

same. The process size overhead is very small compared to the original snort process size.

This overhead is negligible because we are comparing the case of protecting a single

network and the case of protecting multiple networks.

Figure 5- 2: Process size in (MB) for using CIDS and standard “Snort”

42

We now measure the detection rate of heavy and hostile traffic. Figure 5-3 shows

the obtained results for the effective attack detection rate for the two cases mentioned

earlier. As the figure illustrates, the average attack detection rate is very high for the two

cases.

Despite the degradation in performance for the CIDS compared to the pure “Snort”

implementation, the detection rate is still very high since we are dealing with CIDS

protecting multiple networks. This result also proves that the CIDS is very effective when it

comes to detecting attacks in real-time.

Figure 5- 3: Attack detection rate in (%)

Finally, we measure the average time required to fully analyze and detect attacks in

network packets. This aims at estimating the time the ID process needs to detect an attack

when protecting a single network and when protecting multiple networks using CIDS.

Figure 5-4 shows these results.

43

The obtained results are very satisfying. Because it only takes 1 milliseconds extra

time to detect an attack that targets any of the multiple protected networks when compare it

to time required to detect attacks against a single network. This time is relatively small and

can be considered an accepted compensation to enable large-scale attack detection against

numerous networks at once.

Figure 5- 4: Average packet analysis time

5.4.2 Second Scenario

As mentioned earlier, the second scenario is for measuring the expected

improvement when using the CIDS architecture compared to using separate profile for each

subscriber. In order to do this, we first compare the memory consumption for using CIDS

when varying the number of subscribers from 100 to 500 subscribers with a protection

profile consisting of 1000 signatures. Figure 5-5 displays the obtained results.

44

At first glance, the results may seem as way too good results. But we need to point

out that this is only a demonstration of usefulness of the CIDS architecture that utilizes

fewer ID processes to protect the requesting subscribers. The other configuration is similar

to utilizing separate resources for each subscriber. Despite the fact that every subscriber

will have relatively good results on his own ‘virtualized IDS’, the cost of supporting

numerous and separate ID processes for subscribers is too high for the cloud provider.

Figure 5- 5: Process size in (MB) for using Sharing & Separating profiles

We measure the other two performance metrics that are useful to the cloud clients as

well as the provider. These are the attack detection rate and the average attack detection

time. As mentioned earlier, these metrics were measured by Lo et. al. to prove the

efficiency of their proposed IDS framework. We here extend these results to measure the

relative performance of our CIDS Web Service with Roschke-like implementations of

separate settings and processes for each client. Figure 5-6 displays the attack detection rate

for CIDS and the Separate setting scheme.

45

Figure 5- 6: Attack detection rates

The CIDS Web Service can detect attacks better than the separate profile

architecture. This is also due to the fact that the IDS process consumes fewer resources and

requires fewer signatures to match against. The utilization of larger resources causes more

buffer utilization for matching against larger number of signatures. This in turn causes

some of the packets to be dropped before they can even be processed, which causes the

CIDS to outperform in detection rates.

Finally, we measure the average attack detection time, which aims at measuring the

speed of the IDS Architecture in detecting attacks. Figure 5-7 views the results of this

performance metric.

46

Figure 5- 7: Average packet analysis time

As shown in the results, the shared scheme of the CIDS Web Service performs

better than the separate scheme of other implementations. This is due to the fact that the

IDS process has smaller number of signatures to match the traffic against, which leads to

faster full analysis of the network packets and hence faster detection speed.

The first scenario have proved that the sharing scheme in CIDS does provide very

small overhead to the ID processes regarding to only using the ID processes for one

network protection only. But as proved in the second scenario, this minimal overhead can

be very advantageous to the cloud providers, who can save too many resources by applying

CIDS Web Service in their cloud networks for providing intrusion detection services to the

clients. On the other hand, the cloud clients and subscribers can also benefit from the CIDS

Web Service as it provides better attack detection rate as well as detecting the attacks faster

than the other scheme of separating resources and settings for each client.

47

Chapter 6 – Conclusion

6.1 Summary and Concluding Remarks
In this thesis, we have designed and implemented the Cloud Intrusion Detection

Service (CIDS) which was proved to be a very effective solution to the problem of

providing intrusion detection as a service for cloud environments. The system which

consisted of three separate layers (User Layer, System Layer, and Database Layer), aims to

develop a scalable intrusion detection Web Service that can be deployed by cloud providers

to enable the clients to subscribe with the intrusion detection in service based manner. The

system is reengineering of the existing intrusion detection system (“Snort”) but can be

implemented with other systems if required. The three layers are recommended to be

separated to different machines.

The User Layer is the interface at which the users (clients and administrators alike)

interact with the system. It consists of various web pages that receive users’ subscription-

related actions and translate them to configuration settings to the intrusion detection system

at the System Layer. The System Layer needs to utilize highly efficient Network IDS

(NIDS) to be able to analyze the enormous traffic volumes found in typical cloud networks.

The CRE was developed as part of the core components in the CIDS to be the tool that

generates the configuration files and manage attack signature databases. The CRE rewrites

the categories that a client subscribes with and include the definition of his network

segment with the signature itself. The signature end up to be a new attack-signature and is

loaded to the IDS system afterwards.

48

A very important feature is the ability to reload the IDS process quickly. This is

required because when new users subscribe to the system, the intrusion detection process

needs to reload the signature databases so that it can include the new settings. By

comparing CRE and regular profile-based subscription, we found that the load time is

extremely superior in the case of CRE. An additional requirement was to have a memory-

efficient system. The CRE was also proved to be very efficient to memory utilization. We

can verify the superiority in memory utilization for the CRE compared to the other solution.

Finally, we needed to make sure that the previous configurations can be efficient when

placed in real environments. For this to be made, we retested the systems once again where

this time we wanted to measure the rate at which the packets can be fully analyzed. We

used a moderate 500-signatures database. These results give the final confirmation that the

CRE can indeed generate a very efficient shared signature databases that would be equal in

performance to the case when only one subscriber is concerned.

The final layer was the Database Layer, which is needed to keep track of all the

current configurations and subscription information for later web access at the User Layer.

As the name implies, this layer contains the subscription information stored in as database

records. Also, this layer can be used to dig in the alert database and review the alerts related

to each and every subscriber.

As a final conclusion, the CIDS have been a successful Web Service for managing

intrusion detection systems in cloud networks and provide it as a service to the cloud

clients. The system component of the CIDS is very scalable and extremely effective in

memory utilization, and supports large volumes of traffic.

49

6.2 Recommendation and Future Work
Enabling access to IDS modules in the cloud in subscription-based manner is highly

motivated. It is also highly recommended to separate the IDS process from the network

assets controlled owned by the users. This enables the cloud providers to fully control the

IDS process and its configuration. Additionally, it is of great advantage to enable the

subscription on the level of protection packages. With this, the providers can make a huge

list of protection options available to clients and at the same time update these packages

overtime whenever required. So the subscribers will always be subscribed to packages that

provide optimal performance and optimal protection coverage. Finally, it is also

recommended that the protection packages be used as templates and that they are shared

amongst all the subscribing clients. This would reduce the resource allocation required to

deploy the IDS module and simultaneously, increase the attack detection rates and the time

required to spot attacks.

Currently, only Snort NIDS is supported within CIDS. However, for future

endeavors, it is of great advantage to include additional NIDS solutions to the system.

Additionally, and since the CIDS depends on using a single ID process, it is very important

to consider the fault-tolerance techniques. Possibly by parallelizing the architecture of

CIDS.

50

References

[1] J. Li and Y. Yang, "Design and Realization of a Large-scale Distributed Intrusion Management,"

in IEEE Pacific‐Asia Workshop on Computational Intelligence and Industrial Application, 2008,

pp. 537-540.

[2] R. Maggiani, "Cloud Computing is Changing How We Communicate," in IEEE International

Professional Communication Conference, Waikiki, HI, 2009, pp. 1-4.

[3] George Reese, Cloud Application Architectures, 1st ed.: O'Reilly Media, 2009.

[4] B. P. Rimal, E. Choi, and I. Lumb, "A Taxonomy and Survey of Cloud Computing Systems," in

Fifth International Joint Conference on INC, IMS, and IDS, 2009.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu, "Cloud Computing and Grid Computing 360-Degree

Compared," in Grid Computing Environments Workshop, GCE'08, 2008.

[6] M. Hanaoka, K. Kono, and T. Hirotsu, "Performance Improvement by Means of Collaboration

between Network Intrusion Detection Systems," in 7th Annual Communication Networks and

Services Research Conference, 2009, pp. 262-269.

[7] R. A. Kemmerer and G. Vigna, "Intrusion Detection: A Brief History and Overview," IEEE

Security and Privacy Magazine, vol. 35, no. 4, pp. 27-30, April 2002.

[8] Ch. Dougligeris and D. N. Serpanos, Network Security: Current Status and Future Direction,

First Edition ed.: John Wiley & Sons, 2007.

[9] C. Endorf, E. Schultz, and J. Mellander, Intrusion Detection & Prevention, 1st ed., Marcia

Baker, Lisa Theobald Andy Carroll, Ed.: McGraw Hill, 2004.

[10] J. McHugh, "Intrusion and Intrusion Detection," International Journal of Information Security,

vol. I, no. 1, pp. 14-35, August 2001.

[11] T. Verwoerd and R. Hunt, "Intrusion Detection Techniques and Approaches," Computer

Communications, vol. 25, no. 15, pp. 1356-1365, September 2002.

[12] M. Esposito et al., "Intrusion Detection and Reaction: an Integrated Approach to Network

Security," Advances in Information Security, vol. Intrusion Detection Systems, 2008.

[13] Wikipedia. [Online]. http://en.wikipedia.org/wiki/Martin_Roesch, Last Accessed: March 31,

2011

51

[14] SouceFire. [Online]. http://www.sourcefire.org/, Last Accessed: March 31, 2011

[15] M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," in Proceedings of LISA '99:

13th Systems Administration Conferemce, Seattle, 1999.

[16] George Pallis, "Cloud Computing: The New Frontier of Internet Computing," IEEE Internet

Computing, pp. 70-73, September/October 2010.

[17] A. T. Velte, T. J. Velte, and R. Elsenpeter, Cloud Computing: A Practical Approach.: McGraw

Hill, 2010.

[18] Google. Google App Engine. [Online]. http://code.google.com/appengine/, Last Accessed:

March 31, 2011

[19] 'In The Cloud' Security Services Hit the Peak of the Gartner Hype Cycle in 2009. [Online].

http://www.gartner.com/it/page.jsp?id=1179113, Last Accessed: March 31, 2011

[20] McAfee Security. Security as a Service. [Online].

http://www.mcafee.com/us/small/security_insights/security_as_a_service.html, Last

Accessed: March 31, 2011

[21] HackerTarget.com. (2008, April) Security from the Cloud: Remote Vulnerbility Scanning.

Whitepaper.

[22] Webroot Security. [Online]. http://www.webroot.com/, Last Accessed: March 31, 2011

[23] K. Balakrishnan, S. Roy, and M. Holt. (2009, April) Email and Web Security SaaS. Whitepaper.

[24] Panda Security. [Online]. http://www.pandasecurity.com/, Last Accessed: March 31, 2011

[25] Panda Security. (2009) Switching from Anti-Virus to Security as a Service (SaaS). Whitepaper.

[26] Cliff Riggs, Network Perimeter Security: Building Defense In‐Depth.: Auerbach Publications,

2003.

[27] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). [Online].

http://aws.amazon.com/ec2/, Last Accessed: March 31, 2011

[28] SourceFire. (2010, July) Snort News & Events. [Online].

http://www.snort.org/news/2010/07/07/snort-now-available-on-the-amazon-cloud/, Last

Accessed: March 31, 2011

[29] Priscilla Oppenheimer, Top‐Down Network Design, 3rd Edition. Indianapolis: Cisco Press,

52

2011.

[30] B. R. Kandukuri, R. Paturi, and A. Rakshit, "Cloud Security Issues," in IEEE International

Conference on Services Computing, 2009, pp. 517-520.

[31] K. Vieira, A. Schulter, C. B. Westphall, and C. M. Westphall, "Intrusion Detection for Grid and

Cloud Computing," IT Professionals, pp. 38-43, July/August 2010.

[32] A. V. Dastjerdi, K. Abu Bakar, and S. Tabatabaei, "Distributed Intrusion Detection in Clouds

Using Mobile Agents," in Third International Conference on Advanced Engineering Computing

and Applications in Sciences, Sliema, Malta, 2009, pp. 175-180.

[33] P.Kannadiga and M.Zulkernine, "Distributed Intrusion Detection System Using Mobile

Agents," in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing, 2005.

[34] A. Bakshi and Yogesh B, "Securing cloud from DDOS Attacks using Intrusion Detection System

in Virtual Machine," in Second International Conference on Communication Software and

Networks, Singapore , 2010, pp. 260-264.

[35] Ch. Lo, Ch. Huang, and J. Ku, "A Cooperative Intrusion Detection System Framework for Cloud

Computing Networks," in 39th International Conference on Parallel Processing Workshops,

2010, pp. 280-284.

[36] Wikipedia. Denial-of-service attack. [Online]. http://en.wikipedia.org/wiki/Denial-of-

servoce_attack, Last Accessed: March 31, 2011

[37] D.J. Ragsdale, C.A. Carver, Jr. J.W. Humphries, and U.W. Pooch, "Adaptation Techniques for

Intrusion Detection and Intrusion Response Systems," Computer Networks, vol. 4, pp. 2344-

2349.

[38] E. H. Spafford and D. Zamboni, "Intrusion Detection Using Autonomous Agent," Computer

Networks, vol. 34, no. 4, pp. 547-570, 2000.

[39] C. Mazzariello, R. Bifulco, and R. Canonico, "Integrating a Network IDS into an Open Source

Cloud Computing Environment," in Sixth International Conference on Information Assurance

and Security, Atlanta, 2010, pp. 265-270.

[40] Ch. Yee, W. Shin, and G. Rao, "An Adaptive Intrusion Detection and Prevention (ID/IP)

Framework for Web Services," in International Conference on Convergence Information

Technology, Gyeongju , 2007, pp. 528-534.

[41] A. Bosin, N. Dessì, and B. Pes, "Service Based Approach to a New Generation of Intrusion

53

Detection Systems," in Sixth European Conference on Web Services, Dublin, 2008, pp. 215-

224.

[42] S. Roschke, F. Cheng, and Ch. Meinel, "Intrusion Detection in the Cloud," in Eighth IEEE

International Conference on Dependable, Autonomic, and Secure Computing, 2009, pp. 729-

734.

[43] M. Laureano, C. Maziero, and E. Jamhour, "Protecting Host-based Intrusion Detectors through

Virtual Machines," International Journal of Computer and Telecommunications Networking,

vol. 51, no. 5, pp. 1275-1283, April 2007.

[44] G. Lyon. Nmap Security Scanner. [Online]. http://nmap.org/, Last Accessed: March 31, 2011

[45] Oracle America. Oracle Corp. [Online].

http://www.oracle.com/technetwork/java/javaee/overview/index.html, Last Accessed:

March 31, 2011

[46] Sun Microsystems. Sun Developer Network (SDN)). [Online].

http://java.sun.com/products/jsp/, Last Accessed: March 31, 2011

[47] Oracle Corporation. NetBeans. [Online]. http://netbeans.org/, Last Accessed: March 31, 2011

[48] Canonical Ltd. Ubuntu Linux. [Online]. http://www.ubuntu.com/, Last Accessed: March 31,

2011

[49] E. V. Breusegem et al., "Grid Computing: the next network challenge!," in First Conference on

Broadband Network, Broadnets, 2004.

[50] P. Kokkinos and E. A. Varvarigos, "Resource Information Aggregation in Hierarchical Grid

Networks," 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009.

54

Appendix A – Web Interfaces of CIDS

A.1 Sample Administration Web Interfaces

Figure A: 1 - Administrator Main Panel

Figure A: 2 - Add Category Page

Figure A: 3 - Remove Category Page

Figure A: 4 - Available Categories Page

55

A.2 Sample Clients Web Interfaces

Figure A: 5 - Clients Login Page

Figure A: 6 - Client Options Page

Figure A: 7 - Unsubscribe From Category Page

Figure A: 8 - View Categories Page

