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 دمج طرق مختلفة لتحسين تصنيف المستندات النصية العربية

 حسن محمد داود
 

 الملخص

 

تصنيف المستندات النصية هي عملية يتم فيها تصنيف المستندات إلى مجموعات محددة مسبقا 

هنالك العديد من الابحاث التي تمت لتصنيف المستندات  .المستنداتبناءً على محتويات هذه 

الهدف الرئيسي من هذا البحث هو تحسين دقة . العربية باستخدام خوارزميات تصنيف مختلفة

 .تصنيف المستندات العربية باستخدام طرق دمج مختلفة بين المصنفات

لقد  .حصول على دقة تصنيف عاليةفي هذا البحث سنقوم باستخدام عدة طرق لدمج المصنفات لل

 Fixed ruleالطريقة الاولى وتسمى . قمنا باستخدام اربع طرق لدمج العديد من المصنفات

combination  تعتمد على دمج المصنفات بإستخدام قواعد دمج ثابتة لدمج نتائج مصنفات

غلبية وقد وصلت دقة مختلفة وقد حققت هذه الطريقة نتائج ممتازة باستخدام قاعدة التصويت بالا

وقد احتاج بناء هذا النموذج الى ,  باستخدام سبعة مصنفات مختلفة% 59.3التصنيف الى 

 .ثانية 439.58

حيث يتم فيها تصنيف المستندات على  ، Stackingالطريقة الثانية التي تم استخدامها تسمى

ويتم بعد ذلك  ،المرحلة الاولى تتم باستخدام عدة مصنفات تسمى المصنفات الأساسية, مرحلتين

 Naïveاستخدام نتائج التصنيف كمدخلات للمرحلة الثانية التي تتم باستخدام مصنف واحد مثل 

Bayes  لاولى بالاضافة الى التصنيفات حيث يعتمد تعليم هذا المصنف على نتائج المرحلة ا

  .الصحيحة للمستندات التى سيتم تصنيفها

  Naïve Bayesباستخدام % 55.9لقد حققت هذه الطريقة دقة عالية في التصنيف وصلت الى 

لكن هذه ,  Linear Regressionعند استخدام % 55.8في المرحلة الثانية من التصنيف و 

لذلك فقد احتاج هذا , التصنيف لانها تتكون من مرحلتين ليةالطريقة تحتاج الى وقت اطول في عم

ثانية باستخدام  3934.79و الى  Naïve Bayesثانية لبناءه باستخدام  35.9.93النموذج الى 

Linear Regression. 

وقد حققت هذه   C4.5لتعزيز كفاءة المصنف  AdaBoostالطريقة الثالثة تمت باستخدام 

 عند تكرار عملية تعليم المصنف خمس مرات% 59.3ة تصل الى الطريقة دقة تصنيف عالي

عند تكرار العملية عشر مرات % 55.9ووصلت الى , ثانية 3398.94خلال فترة زمنية تساوي 

 .ثانية 35.9.99خلال 

حيث ان هذه الطريقة تهدف الى تحسين  ، Baggingالتجربة الاخيرة التي تمت باستخدام 

مع هذه    Decision Treeوقد تم استخدام المصنف  ،استقرار ودقة خوارزميات التصنيف

عند تكرار تعليم % ..53الطريقة وحصلنا على نتائج عالية لدقة تصنيف المستندات تصل الى 

 العملية عشر مراتعند تكرار %  55.8و الى  ثانية 959.49وذلك خلال  المصنف خمس مرات

 .ثانية 897.55خلال 

ولقد تم استخدام ثلاث   RapidMinerواداة    WEKAلقد اعتمدنا في تجاربنا على اداة 

للتأكد وذلك  BBC Arabic, CNN Arabic, OSACوهي مجموعات من النصوص العربية 

بسرعة  Core i3جميع التجارب تمت باستخدام جهاز ذو معالج من نوع . من دقة النتائج

2.2GHz  4و ذاكرة عشوائية سعتهاGB .قد تمت مقارنة النتائج التي حصلنا عليها من دمج ل

ظهرت طرق الدمج تفوق واضح في أوقد  ،المصنفات بالطرق التى تستخدام مصنف واحد فقط

 .دقة تصنيف المستندات العربية
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Combining Different Approaches to Improve Arabic Text 

Documents Classification 

 

Hassan Mohammad Dawoud 
 

ABSTRACT 

Text classification is the process of classifying documents into a predefined set of 

categories based on their content. A variety of classifiers are used to classify Arabic 

text documents. The main objective of this research is to improve Arabic text 

documents classification by combining different classification algorithms. To achieve 

this objective we build four models using different combination methods.  

The first combined model was built using fixed combination rules, we used five fixed 

rules to combine different classifiers; and for each rule we used different number of 

classifiers; the best classification accuracy was achieved using majority voting rule 

and it was 95.3% using seven classifiers, the time required to build this model was 

835.94 seconds.  

The second combination approach we used was stacking, which consists of two stages 

of classification; the first stage was done by the base classifiers, where the second one 

was done by a Meta classifier. In our experiments we used two different Meta 

classifiers Naïve Bayes and Linear Regression; and we used different number of base 

classifiers. Stacking achieved a very high classification accuracy of 99.2% when 

using Naïve Bayes as a Meta classifier and 99.4% when using Linear Regression as a 

Meta classifier. Stacking needed a long time to build the models because it consists of 

two stages of learning and it was 1962.73 seconds using naïve Bayes and 3718.07 

seconds using Linear Regression.  

The third experiment was done using AdaBoost; we boosted C4.5 classifier with 

different number of iterations. Boosting improves the classification accuracy of C4.5 

classifier; it was 95.3% using 5 iterations and needed 1174.58 seconds to build the 

model, where the accuracy was 99.5% using 10 iterations and needed 1965.72 

seconds to build the model. 

The fourth approach was done using  Bagging, which was designed to improve the 

stability and accuracy of machine learning algorithms, we used decision tree with 

bagging, the results were 93.7% achieved through 295.85 seconds when using 5 

iterations and 99.4% when using 10 iteration which needed 470.99 seconds. We used 

three datasets to test the combined models, BBC Arabic, CNN Arabic and OSAC 

datasets. The experiments were done using WEKA and RapidMiner data mining 

tools. We used a platform of Intel Core i3 Processing power of 2.2 GHz CPU with 

4GB RAM. 

The results of all models showed that combining classifiers can effectively improve 

the accuracy of Arabic text documents classification.  

Keywords: Text classification, Combining classifiers, Fixed combining rules, 

Stacking, Boosting, Bagging. 
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CHAPTER 1  

INTRODUCTION 

TEXT Classification (TC) is a technique often used as a basis for applications in 

document processing, Web mining, topic identifications, text filtering and documents 

organization etc. Many methods and algorithms have been applied to the problem of 

text classification. These methods vary in their accuracy. Assessment of different 

methods by experiment is the basis for choosing a classifier as a solution to a 

particular problem instance. There are several methods used to classify text such as 

Support Vector Machine (SVM), K-Nearest Neighbor (kNN), Artificial Neural 

Networks (ANN), Naïve Bayes Classifier (NB), and Decision Trees (DT). Often none 

of the basic set of traditional classifiers, ranging from Bayes-normal to Decision 

Trees, Neural Networks and Support Vector Classifiers is powerful enough to 

distinguish the pattern classes optimally; it has become clear that for more 

complicated data sets the traditional set of classifiers can be improved by various 

types of combining rules [1]. So, for practical purposes, we need an effective 

methodology for combining them.   

Several researches have reported that combining classifiers can improve the accuracy 

of a standalone classifier, so based on these researches we will combine different 

classification models to improve Arabic text documents classification. 

According to Dietterich [2], there are three main motivations to combine classifiers, the 

worst case, the best case and the computational motivation: 

 Statistical motivation: it is possible to avoid the worst classifier by averaging 

several classifiers. It was confirmed theoretically by Fumera and Roli [3]. This 

simple combination was demonstrated to be efficient in many applications.  

 Representational motivation: under particular situations, fusion of multiple 

classifiers can improve the performance of the best individual classifier. It 

happens when the optimal classifier for a problem is outside the considered 

“classifier space”. There are many experimental evidences that it is possible if 

the classifiers in an ensemble make different errors. This assumption has a 

theoretical support in some cases when linear combination is performed. 
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 Computational motivation: some algorithms perform an optimization task in 

order to learn and suffer from local minima. Algorithms such as the back 

propagation for neural networks are initialized randomly in order to avoid 

locally optimum solutions. In this case, it is a difficult task to find the best 

classifier, and it is often used several (hundreds or even thousands) 

initializations in order to find a presumable optimal classifier. Combination of 

such classifiers showed to stabilize and improve the best single classifier 

result. 

 

According to the benefits of combining classifiers, we will use these techniques in 

classifying Arabic text documents.  The idea of combining classifiers is motivated by 

the observation of their complementary characteristics. It is desirable to take 

advantage of the strengths of individual classifiers and to avoid their weakness, 

resulting in the improvement of classification accuracy. 

1.1 Combining Classifiers 

The general idea of combining classifiers can be summarized by the use of a 

methodology to create an ensemble of learners and to produce a final decision given 

the outputs of those learners. This kind of models is intuitive since it imitates our 

nature to seek several opinions before making a crucial decision [4]. 

The research field of multiple classifier systems becomes very popular after the half 

of the 1990 decade, with many papers published on the creation of ensembles of 

classifiers that provided some theoretical insights of why combining classifiers could 

be interesting. Classifier ensemble is a set of learning machines whose decisions are 

combined to improve performance of the pattern recognition system. Much of the 

efforts in classifier combination researches focus on improving the accuracy of 

difficult problems, managing weaknesses and strengths of each model in order to give 

the best possible decision. The use of combination of multiple classifiers was 

demonstrated to be effective, under some conditions, for several pattern recognition 

applications. Many studies showed that classification problems are often more 

accurate when using combination of classifiers rather than an individual base learner 

[5]. 
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In this research we will use four models to combine classifiers to improve the 

classification of Arabic text documents. These models are Fixed Combining Rules, 

Stacking, AdaBoost and Bagging. 

The fixed combining rules provide the classification decision by combining the 

outputs of several classifiers [6]. In this approach, all classifiers in the model are 

learned and each classifier give its decision, then the combiner uses the results of 

classifiers to give the final decision according to the rule used for combination. Many 

rules such as majority voting, maximum rule, minimum rule, average rule and product 

rule can be used in the combiner [7]. 

The second approach is stacking algorithm [8]. Stacking is probably the most popular 

meta-learning technique. Stacking is usually employed to combine models built by 

different classifiers. The stacking algorithm is based on two level of classification. 

The first level contains the base classifiers which are trained using the original 

dataset. Then a new dataset is generated using the original dataset and the prediction 

of base classifiers. This dataset is used to learn the Meta classifier. This classifier 

combines the different predictions into a final one [4]. 

The third algorithm that we will use in our research is AdaBoost [9]. AdaBoost tries 

to combine weak base classifier in order to produce an accurate “strong” classifier. 

The approach is an iterative process that builds an ensemble of classifiers. The 

algorithm trains classifier sequentially, a new model per round. At the end of each 

round, the misclassified patterns are weighted in order to be considered more 

important in the next round, so that the subsequent models compensate error made by 

earlier classifiers. The learning algorithm of the classifier used in AdaBoost must 

allow the use of a weight for each training pattern. The idea is to give higher weights 

to the patterns that are misclassified and in the next iteration try to construct a 

classifier capable of classify correctly these kinds of patterns [4].  

The fourth approach that we will use is the Bagging. The Bagging technique 

(bootstrap aggregating) [10] is based on the idea that bootstrap samples of the original 

training set will present a small change with respect to the original training set, but 

sufficient difference to produce diverse classifiers. Each member of the ensemble is 

trained using a different training set, and the predictions are combined by averaging or 

voting. The different datasets are generated by sampling from the original set, 
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choosing N items uniformly at random with replacement [6]. All of these models will 

be explained in chapter 3. 

1.2 Arabic Language 

Arabic Language is one of the widely used languages in the world. Arabic language is 

a Semitic language that has a complex and much morphology than English; it is a 

highly inflected language and that due to this complex morphology [11]. 

Arabic Language consists of 28 alphabet characters: رز ذ د خ ح ج ث ت ب ا  ص ش س ش 

 which is considered as a letter (ء) In addition to the hamza .ي و ل ك ق ف غ ع ظ ط ع ض

by some Arabic linguistics. Arabic is written from right to left. Arabic letters have 

different styles when appearing in a word depending on the letter position at 

beginning, middle or end of a word and on whether the letter can be connected to its 

neighbor letters or not [12]. 

Arabic words have two genders, feminine and masculine; three numbers, singular, 

dual, and plural; and three grammatical cases, nominative, accusative, and genitive. A 

noun has the nominative case when it is subject; accusative when it is the object of a 

verb; and the genitive when it is the object of a preposition. Words are classified into 

three main parts of speech, nouns (including adjectives and adverbs), verbs, and 

particles. All verbs and some nouns are morphologically derived from list of roots. 

Words are formed by the following fixed patterns, the prefixes and suffixes are added 

to the word to indicate its number, gender and tense [12]. 

1.3 Arabic Language Challenges 

Arabic is a challenging language for a number of reasons [13]: 

1. Orthographic with diacritics is less ambiguous and more phonetic in Arabic, 

certain combinations of characters can be written in different ways. For 

example, sometimes in glyphs combining HAMZA with ALEF (أ) the 

HAMZA is dropped (ا). This makes the glyph ambiguous as to whether the 

HAMZA is present. 

2. Arabic has a very complex morphology recording as compared to English 

language. For example, to convey the possessive, a word shall have the letter 

 .”attached to it as a suffix. There is no disjoint Arabic-equivalent of “my (ی)

3. Arabic words are derived: Arabic words are usually derived from a root (a 

simple bare verb form) that usually contains three letters. In some derivations, 
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one or more of the root letters may be dropped. In such cases tracing the root 

of the derived word would be a much more difficult problem. 

4. Broken plurals are common. Broken plurals are somewhat like irregular 

English plurals except that they often do not resemble the singular form as 

closely as irregular plurals resemble the singular in English. Because broken 

plurals do not obey normal morphological rules, they are not handled by 

existing stemmers. 

5. In Arabic we have short vowels which give different pronunciation. 

Grammatically they are required but omitted in written Arabic texts. 

6. Arabic synonyms are widespread. Arabic is considered one of the richest 

languages in the world. This makes exact keyword match is inadequate for 

Arabic retrieval and classification 

1.4 Topic Area  

Text classification has been considered as a vital method to manage and process a vast 

amount of documents in digital forms that are widespread and continuously 

increasing. In general, text classification can be applied in important operations such 

as real time sorting of files into folder hierarchies, topic identifications, dynamic task-

based interests, automatic meta-data organization, text filtering and documents 

organization for databases and web pages. 

There are a lot of researches for text classification using different classification 

techniques where, a lot of these researches are applied to English documents, but in 

Arabic it is still limited [11, 12, 14, 15, 16]. All previous researchers applied single 

classifiers to classify Arabic documents, but in this research we will combine multiple 

classifiers aiming to more accurate classification decision. 

1.5 Thesis Questions 

The main research problem is classifying Arabic text documents. There are many 

researches that aimed to classify Arabic documents using a single classifier. These 

works may have more accurate results if we use a combination of different 

classification models. Where several studies have reported that combining classifiers 

can improve the accuracy of a standalone classifier, so based on these researches the 

main objective of this research is to classify Arabic text by using a combination of 
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different classification models to improve Arabic text documents classification in 

terms of accuracy. 

1.6 Thesis Significance  

Text classification has always been an important application and research topic since 

the inception of digital documents. Today, text classification is a necessity due to the 

very large amount of text documents that we have to deal with it daily. The current 

study has a valuable significance, because it derived from the urgent need of 

classifying the huge number of electronic Arabic documents. These documents are 

available through the rapid and increasing growth of the Internet. Also the manual 

classification of such huge documents needs a considerable time and effort as well as 

it is costly.  

There are many classification algorithms applied on Arabic text using single 

classifier, such as SVM, Naïve Bayes, and kNN, these algorithms have given good 

classification accuracy, but this accuracy can be improved using a combination 

approach.  

The combination of classifiers has not applied on Arabic documents classification 

before, although many researchers have shown that combining different classifiers 

can improve classification accuracy [17, 18, 19, 20]. Many researchers make a 

comparison between the best individual classifier and the combined approach, and 

showed that the performance of the combined approach is superior [21]. 

1.7 Thesis Contribution 

The contributions of this research are highlighted hereunder: 

1- Combining different classification algorithms using five fixed combining rules 

to improve the accuracy of Arabic text documents classification. 

2- Combining different classification approaches using stacking algorithm with 

two different Meta classifiers to improve the accuracy of Arabic text 

documents classification. 

3- Applying boosting algorithm on a weak classifier to enhance the accuracy of 

that classifier on classifying Arabic text documents. 

4- Applying bagging algorithm on a weak classifier to enhance the accuracy of 

that classifier on classifying Arabic text documents. 
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5- As a results, the classification accuracy achieved by combining classifiers are : 

a. 95.3% of classification accuracy achieved by combining seven 

classifiers using majority voting rule as a fixed combination rule. 

b. 99.4% of classification accuracy achieved by combining five 

classifiers using stacking algorithm. 

c. 99.5% of classification accuracy achieved by using AdaBoost 

algorithm. 

d. 99.4% of classification accuracy achieved by using Bagging algorithm. 

1.8 Thesis Organization 

The rest of this thesis is organized as follows: 

Chapter 2 introduces the related work; we will show some researches that have been 

done in classifying Arabic text documents. The related works are divided into three 

categories; in the first one we will show some researches which have been used 

classification algorithms onto Arabic text documents, in the next one we will show 

some researches that have been compared between classification algorithms which 

applied onto Arabic Documents, where in the last section we will show some related 

works that have using combined classifiers.  

In Chapter 3, we will overview some background theory, in the first part we will 

explain some classification algorithms that we will use in our approaches. Then we 

will explain the four combining approaches that we will use in our thesis. 

In Chapter 4, we will show the methodology that we will use in our thesis such as pre-

processing steps, term weighting, datasets and evaluation metrics.  

Chapter 5 shows the experimental results of our work. All results of our approaches 

will be discussed and analyzed; also we will compare our approaches with different 

single classifiers which have been applied in Arabic text documents. 

Finally the conclusion of the research will be in Chapter 6. In this chapter we will 

summarizes the research, remarks, and some notes around the work.  
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CHAPTER 2  

RELATED WORK 

Many researchers have been worked on text classification in English and other 

European languages. However, researches on text classification for Arabic language 

are fairly limited [11, 12, 14, 15, 16]. In this chapter we will show some researches 

that are related to our work, these researches are categorized to: 

1- Applying classification algorithms on Arabic text. 

2- Comparing between different classification algorithms applied on Arabic text. 

3- Combining classification algorithms. 

2.1 Applying Classification Algorithms on Arabic Text 

Mesleh [22] applied SVMs to classify Arabic articles with Chi Square feature 

selection in the pre-processing step. The reported F-measure by Mesleh is 88.11%. 

Mesleh also compared six feature selection methods with SVMs. He concludes that 

Chi Square method is the best. He used an in-house collected corpus from online 

Arabic newspaper archives, including Al-Jazeera, Al-Nahar, Al-hayat, Al-Ahram, and 

Al-Dostor as well as a few other specialized websites. The collected corpus contains 

1445 documents that vary in length. These documents fall into 9 classification 

categories that vary in the number of documents (Computer, Economics, Education, 

Engineering, Law, Medicine, Politics, Religion and Sports). In the pre-processing 

step, each article in the data set is processed to remove the digits and punctuation 

marks. He has applied normalization of some Arabic letters such as the normalization 

of (hamza) in all its forms to (alef). Also, all non Arabic text was filtered, and he does 

not apply stemming. 

  Harrag and El-Qawasmah [23] applied neural networks (NN) on Arabic text. Their 

experimental results show that using NN with Singular Value Decomposition (SVD) 

as a feature selection technique gives better result 88.3% than the basic NN (without 

SVD) 85.7%. They also experienced scalability problem with high dimensional text 

dataset using NN. Harrag collected his corpus from Hadith encyclopedia from the 

nine books. It contains 435 documents belonging to 14 categories. He applied light 

stemming and stop words removal on his corpus. Term Frequency-Inverse Document 

Frequency (TF-IDF) is used as a weighting scheme. 
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El-Kourdi et. al. [24] classified Arabic text documents automatically using NB. The 

average accuracy reported was about 68.78%, and the best accuracy reported was 

about 92.8%. El-Kourdi used a corpus of 1500 text documents belonging to 5 

categories; each category contains 300 text documents. All words in the documents 

are converted to their roots. The vocabulary size of resultant corpus is 2,000 

terms/roots. Cross-validation was used for evaluation. 

Maximum entropy was used by El-Halees [25] for Arabic text classification, and by 

Sawaf [26] to classify and cluster News articles. The best classification accuracy 

reported by El-Halees was 80.4% and 62.7% by Sawaf. 

kNN has been applied by Al-Shalabi [27] on Arabic text. They used TF-IDF as a 

weighting scheme and got accuracy of 95%. They also applied stemming and feature 

selection. The authors reported in their paper the problem of lacking freely publically 

availability of Arabic corpus. They collected a corpus from newspapers (Al-Jazeera, 

An-Nahar, Al-Hayat, Al-Ahram, and Ad-Dostor) and from Arabic Agriculture 

Organization website. The corpus consists of 621 documents belonging to 1 of 6 

categories (politics 111, economic 179, sport 96, health and medicine 114, health and 

cancer 27, agriculture 100). They preprocessed the corpus by applying stop words 

removal and light stemming. 

2.2 Comparing between different Classification Algorithms applied on 

Arabic Text 

Hmeidi [28] compared kNN and SVM for Arabic text classification; they used full 

word features and considered TF-IDF as the weighting method for feature selection, 

and CHI statistics for ranking metrics. Hmeidi showed that both SVM and kNN have 

superior performance, and SVM has better accuracy and time. Authors collected 

documents from online newspaper (Al-Ra’i and Ad-Dostor). They collected 2206 

documents for training and 29 documents for testing. The collected documents belong 

to one of two categories (sport and economic). 

Abbas [29] compared Triggers Classifier (TR-Classifier) and kNN to identify Arabic 

topic. kNN uses the whole vocabulary (800), while TR uses reduced vocabulary 

(300), the average recall and precision for kNN and TR are 0.75, 0.70 and 0.89, 

0.86% respectively. Abbas collected 9,000 articles from Omani newspaper (Al-

Watan) of year 2004. The corpus belongs to 1 of 6 categories (culture, economic, 
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religious, local news, international news). The corpus includes 10M word including 

stop words. After removing stop words and infrequent words the vocabulary size 

became 7M words. TF-IDF was used as weighting schemes. 

Duwairi [12] compared three popular text classification algorithms; (kNN, NB, and 

Distance-Based classifier). Duwairi experimental results show that NB outperforms 

the other two algorithms. Duwairi collected 1,000 text documents belonging to 1of 10 

categories (sport, economic, internet, art, animals, technology, plants, religious, 

politics, and medicine). Each category contains 100 documents. She preprocessed the 

corpus by applying stop words removal and stemming. She used 50% for training and 

50% for testing. 

Kannan [16] also compared three classification algorithms on Arabic text. The three 

algorithms were kNN, NB, and Rocchio. Kannan revealed that NB is the best 

performing algorithm. The author collected the corpus from online newspapers (Al-

Jazeera, An-Nahar, Al-Hayat, Al-Ahram, and Ad-Dostor). The corpus consists of 

1,445 documents belonging to 9 categories (medicine 232, sport 232, religious 227, 

economic 220, politics 184, engineering 115, low 97, computer 70, and education 68). 

They applied light stemming for feature reduction. Cross-validation was performed 

for evaluation. 

Al-Harbi [11] evaluated the performance of two popular text classification algorithms 

(SVMs and C5.0) to classify Arabic text using seven Arabic corpora. The average 

accuracy achieved by SVMs is 68.65%, while the average accuracy achieved by C5.0 

is 78.42%. One of the goals of their paper is to compile Arabic corpora to be 

benchmark corpora. The authors compiled 7 corpora consisting of 17,658 documents 

and 11,500,000 words including stop words. The corpora are not available publically. 

Bawaneh [30] applied kNN and NB on Arabic text and concluded that kNN has 

better performance than NB, they also concluded that feature selection and the size of 

training set and the value of K affect the performance of classification. The 

researchers also posed the problem of unavailability of freely accessible Arabic 

corpus. The in-house collected corpus consists of 242 documents belonging to 1of 6 

categories. Authors applied light stemming as a feature reduction technique and TF-

IDF as weighting scheme, they also performed cross-validation test. 

El-Halees [15] compared six well know classifiers applied on Arabic text; ANN, 

SVM, NB, kNN, Maximum Entropy and Decision Tree. El-Halees showed that the 

NB and SVMs are the best classifiers in terms of F-Measure with 91% and 88%, 
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respectively. El-Halees also applied information grain feature selection; the reported 

F-Measure was 83% and 88% for NB and SVMs, respectively. El-Halees collected 

Arabic documents collected from the Internet. It is mainly collected from Aljazeera 

Arabic news channel. The documents categorized into six domains: politics, sports, 

culture and arts, science and technology, economy and health. The author applied stop 

words removal and normalization and used 10-folds cross-validation for testing. 

Saad [14] compares the impact of text preprocessing on Arabic text classification 

using popular text classification algorithms; Decision Tree, K Nearest Neighbors, 

Support Vector Machines, Naïve Bayes and its variations. He applied different term 

weighting schemes, and Arabic morphological analysis (stemming and light 

stemming). Saad used seven Arabic corpora (3 in-house collected and 4 existing 

corpora). The experiments showed that light stemming with term pruning is the best 

feature reduction technique which reduced features to average of 50% of the original 

feature space. Support Vector Machines and Naïve Bayes variations achieved the best 

classification accuracy and outperform other algorithms. Weighting schemes impact 

the performance of distance based classifier. 

2.3 Combining Classification Algorithms  

Many researches show that combining classifiers can enhance the results of 

classification in general, but combining classifiers does not used previously to classify 

Arabic documents.  The idea of combining classifiers is motivated by the observation 

of their complementary characteristics. It is desirable to take advantage of the 

strengths of individual classifiers and to avoid their weakness, resulting in the 

improvement of classification accuracy [17]. 

El-Halees [19] presented a combined approach that automatically extracts opinions 

from Arabic documents. They used a combined approach that consists of three 

methods. At the beginning, lexicon based method is used to classify as much 

documents as possible. The resultant classified documents are used as training set for 

maximum entropy method which subsequently classifies some other documents. 

Finally, k-Nearest Neighbor method used the classified documents from lexicon based 

method and maximum entropy as training set and classifies the rest of the documents. 

Experiments showed that in average, the accuracy moved from 50% when using only 

lexicon based method to 60% when used lexicon based method and maximum entropy 

together, to 80% when using the three combined methods. 
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Danesh [31] proposed a novel approach in text classification. Their approach is a 

supervised method, meaning that the list of categories should be defined and a set of 

training data should be provided for training the system. Documents are represented 

as vectors where each component is associated with a particular word. They propose 

voting methods and ordered weighted averaging (OWA) operator and Decision 

Template method for combining classifiers. Experimental results show that these 

methods decrease the classification error to 15 percent as measured on 2000 training 

data from 20 newsgroups dataset. 

Fujino [32] provide good statistical classifiers with generalization ability for multi-

label categorization and present a classifier design method based on approach 

combination and F1-score maximization. They design multiple models for binary 

classification per category, and then they combine these models to maximize the F1-

score of a training dataset. Experimental results confirmed that the method was useful 

especially for datasets where there were many combinations of category labels. 

Y. Bi [17] presents an investigation into the combination of four different 

classification methods for text categorization using Dempster's rule of combination. 

These methods include the SVM, kNN, kNN model-based approach (kNNM), and 

Rocchio methods. They present an approach for effectively combining the different 

classification methods. Then, they apply these methods to a benchmark data 

collection of 20-newsgroup, individually and in combination. Experimental results 

show that the performance of the best combination of the different classifiers on the 

10 groups of the benchmark data can achieve 91.07% classification accuracy, which is 

2.68% better than SVM. 
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CHAPTER 3  

   BACKGROUND 

3.1 Text classification 

Text classification, also known as text categorization and occasionally as topic 

spotting, is the process of algorithmically analyzing an electronic document to assign 

this document to one of predefined categories. This assignment can be used for 

classification, filtering, and retrieval purposes. Many researchers have explored a 

variety of machine learning methods for text classification. Machine learning 

algorithms can be divided into two types supervised and unsupervised learning 

algorithms. Supervised learning algorithms operate by learning the objective function 

from a set of training examples and then applying the learned function to the target 

set. Unsupervised learning operates by trying to find useful relations between the 

elements of the target set. Text categorization can be characterized as a supervised 

learning problem. We have a set of examples (documents) that have been correctly 

categorized (usually by human indexers). This set is then used to train a classifier 

based on a machine learning algorithm. The trained classifier is then used to 

categorize the target set. 

More formally, let C = {c1, . . . , cn} be a set of categories and D = {d1, . . . , dN} be a 

set of documents. Given a set of examples of the form         where di ∈  D, and if di 

∈  cj then yj = 1, otherwise yj = 0, the objective is to learn a function f such that f(x) = 1 

if x ∈  cj and f(x) = 0 if x   cj. This function is called the classifier [20]. 

3.2 Text Classification Methods 

A wide variety of techniques have been designed for text classification. In this 

section, we will show in a brief some techniques that are used for Arabic text 

classification, and then we will show in details different approaches to combine 

classifiers. 

3.2.1 Decision Trees  

Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance. Each node in the tree 

specifies a test of some attribute of the instance, and each branch descending from 

that node corresponds to one of the possible values for this attribute. An instance is 
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classified by starting at the root node of the tree, testing the attribute specified by this 

node, then moving down the tree branch corresponding to the value of the attribute in 

the given example. This process is then repeated for the sub-tree rooted at the new 

node [33]. 

In the general case, in order to develop a decision tree, the designer has to consider 

the following design elements in the training phase [34]: 

 At each node, the set of candidate questions to be asked has to be decided. 

Each question corresponds to a specific binary split into two descendant 

nodes. Splitting of a node is equivalent to the split of the subset 
t

X  into two 

disjoint descendant subsets
tY

X ,
tN

X . The first of the two consists of the 

vectors in 
t

X  that correspond to the answer “Yes” of the question and those of 

the second to the “No.” The first (root) node of the tree is associated with the 

training set X. For every split, the following is true: 

                                                 
ttNtY

tNtY

XXX

XX



 
 …….………………… (3.1)  

A splitting criterion must be adopted according to which the best split from the 

set of candidate ones is chosen. 

 A stop-splitting rule is required that controls the growth of the tree, and a node 

is declared as a terminal one (leaf). 

 A rule is required that assigns each leaf to a specific class. 

There are a number of standard packages for DT learning, and most DT approaches to 

TC have made use of one such package. Among the most popular ones are Iterative 

Dichotomiser 3 (ID3), C4.5 and C5 [35]. 

 

3.2.2 SVM Classifiers 

Support vector machines are based on the Structural Risk Minimization principle 

from computational learning theory. SVM seeks a decision surface to separate the 

training data points into two classes and makes decisions based on the support vectors 

that are selected as the only effective elements in the training set [36]. 

Given a set of N linearly separable points },...,2,1|{ NiRxS
n

i
 , each point 

i
x  

belongs to one of the two classes, labeled as }1,1{ 
i

y . A separating hyper-plane 
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divides S into 2 sides, each side containing points with the same class label only. The 

separating hyper-plane can be identified by the pair (w, b) that satisfies: 

                                    bxwy  . …….……..………………..…..…… (3.2) 
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1y if   1.
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for i = 1, 2, …., N  and where 

                                    

i

ii
xwxw ..    ..…………….……….….……… (3.4) 

for vectors w and x. 

Thus the goal of the SVM learning is to find the optimal separating hyper plane that 

has the maximal margin to both sides. This can be formularized as: 

                                    
2

2

1
  minimize w ..……………..……….….……… (3.5) 

        Subject to N .,… 2, 1, = ifor   
1 if  1.

1y if   1.
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bxw
  ……….... (3.6) 

SVMs can be used for both linear and nonlinear data. It uses a nonlinear mapping to 

transform the original training data into a higher dimension. With the new dimension, 

it searches for the linear optimal separating hyper plane. With an appropriate 

nonlinear mapping to a sufficiently high dimension, data from two classes can always 

be separated by a hyper plane. SVMs find this hyper plane using support vectors and 

margins (defined by the support vectors). 

Figure 3.1 shows support vectors and how margins are maximized. 

 

 

Figure 3.1: Support Vectors [37]. 
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The following summarizes SVMs steps [14]: 

 Map the data to a predetermined very high-dimensional space via a kernel 

function.  

 Find the hyper plane that maximizes the margin between the two classes.  

 If data are not separable find the hyper plane that maximizes the margin and 

minimizes the (a weighted average of the) misclassifications.  

 

3.2.3 Learning Vector Quantization Algorithms 

The LVQ model is a classification method based on Kohonen 1995. The original of 

Kohonen model is known as Self Organizing Map networks (SOM) [38]. It uses a 

competitive unsupervised learning algorithm [39]. In this model, the output layer has 

neurons equal to the number of classes [38]. The weight vector associate to each 

output unit is known as codebook vector. Each class of input space is represented by 

its own codebook vector. Codebook vectors are defined according to the specific task. 

There are different types or algorithms for LVQ algorithm which used as optimization 

of original LVQ [40]: 

 LVQ1 (LVQ) 

 LVQ2.1 

 LVQ3 

 Optimized learning rate algorithms OLVQ1 

 OLVQ3 for the classification task 

The LVQ network finds the output unit w that is closest to the input vector x. If x and 

w belong to the same class, then we move the weights toward the new input vector; if 

x and w, belong to different classes, then we move the weights away from this input 

vector [40]. 

The LVQ algorithm is a competitive network, and thus, for each training vector, 

output units compete among themselves in order to find the winner according to some 

metric. The LVQ algorithm uses the Euclidean distance to find the winner unit. Only 

the winner unit (i.e., the output unit with the smallest Euclidean distance with regard 

to the input vector) will modify its weights using the LVQ learning rule. The basic 

LVQ algorithm is shown in Figure 3.2 [39, 40, 41]. 
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Algorithm 3.1: LVQ Algorithm 

Purpose: Learning LVQ algorithm on a given dataset 

Input: Training dataset  

Output: A Learned neural network based on LVQ algorithm  

Procedure: 

1. Initialize the codebook vectors Wi and the learning rate α 

2. Randomly select an input vector X 

3. Find the winner unit closest to the input vector (i.e., the codebook vector Wc with 

the smallest Euclidean distance with regard to the input vector X): 

kkc
WXWX  min , 

kk
WXc  minarg  

4. Modify the weights of the winner unit: 

 If Wc and X belong to the same class (the classification has been correct) 

              )]()()[()()1( tWtXttWtW
ccc

  . 

 If Wc and X belong to different classes (the classification has not been correct) 

              )]()()[()()1( tWtXttWtW
ccc

   

5. Reduce the learning rate α 

6. Repeat from step 2 until the neural network is stabilized or until a fixed number of 

iterations have been carried out. 

 

Figure 3.2: LVQ algorithm procedure [40]. 

 

The learning rate α(t) (0 < α(t) < 1) is a monotonically decreasing function of time 

which controls how quickly the weight vector is allowed to change. It is 

recommended that α(t) should already initially be rather small, say, smaller than 0.3 

and it continues decreasing to a given threshold very close to 0. 

 

3.2.4 Naïve Bayes 

The Naive Bayes (NB) classifier is a probabilistic model that uses the joint 

probabilities of terms and categories to estimate the probabilities of categories given a 

test document [33]. The naive part of the classifier comes from the simplifying 

assumption that all terms are conditionally independent of each other given a 

category. Because of this independence assumption, the parameters for each term can 

be learned separately and this simplifies and speeds the computation operations 

compared to non-naive Bayes classifiers. 
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There are two common event models for NB text classification, discussed by [42], 

multinomial model and multivariate Bernoulli model. In both models classification of 

test documents is performed by applying the Bayes’ rule [33]:  

 

)(

)|().(
)|(

j

iji

ji

dP

cdPcP
dcP  ..………………...…….….……… (3.7) 

 

Where dj is a test document and ci is a category. The posterior probability of each 

category ci given the test document dj, i.e. P(ci | dj), is calculated and the category 

with the highest probability is assigned to dj. 

In order to calculate )|(
ji

dcP , )(
i

cP  and )|(
ij

cdP  have to be estimated from the 

training set of documents. Note that )(
j

dP  is same for each category so we can 

eliminate it from the computation. The category prior probability )(
i

cP  can be 

estimated as follows: 
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Where, N is number of training documents and ),(
ij

cdy  is defined as follows: 
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So, prior probability of category ci is estimated by the fraction of documents in the 

training set belonging to ci. )|(
ij

cdP  parameters are estimated in different ways by 

the multinomial model and multivariate Bernoulli model. 

a. Multinomial Model 

In the multinomial model a document dj is an ordered sequence of term events, drawn 

from the term space T. The Naive Bayes assumption is that the probability of each 

term event is independent of term’s context, position in the document, and length of 

the document. So, each document dj is drawn from a multinomial distribution of 

terms with number of independent trials equal to the length of dj. The probability of a 

document dj given its category ci can be approximated as: 
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Where | dj | is the number of terms in document dj; and tk is the kth term occurring in 

document dj. Thus the estimation of )|(
ij

cdP  is reduced to estimating each )|(
ik

ctP  

independently. The following Bayesian estimate is used for )|(
ik

ctP : 
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Here, ),(
il

ctTF  is the total number of times term tk occurs in the training set 

documents belonging to category ci. The summation term in the denominator stands 

for the total number of term occurrences in the training set documents belonging to 

category ci [43]. 

b. Multivariate Bernoulli Model 

In Multivariate Bernoulli model a document is represented by a vector of binary 

features indicating the terms that occur and that do not occur in the document. Here, 

the document is the event and absence or presence of terms is the attributes of the 

event. The Naive Bayes assumption is that the probability of each term being present 

in a document is independent of the presence of other terms in a document. To state 

differently, the absence or presence of each term is dependent only on the category of 

the document. Then, )|(
ij

cdP the probability of a document given its category is 

simply the product of the probability of the attribute values over all term attributes: 
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Where |T| is the number of terms in the training set and Bjk is defined as follows: 
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Thus, a document can be seen as a collection of multiple independent Bernoulli 

experiments, one for each term in the term space. The probabilities of each of these 

term events are defined by the class conditional term probabilities )|(
ik

ctP . We can 

estimate the probability of term 
k

t  in category ci as follows: 
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Where, N is number of training documents and )|(
ij

cdy is defined as shown above in 

equation (3.14) [43]. 

3.2.5 K-Nearest Neighbor Classifier 

The kNN algorithm is a similarity-based learning algorithm that has been shown to be 

very effective for a variety of problem domains including text categorization [33, 44]. 

Given a test document, the kNN algorithm finds the k nearest neighbors among the 

training documents, and uses the categories of the k neighbors to weight the category 

candidates. The similarity score of each neighbor document to the test document is 

used as the weight of the categories of the neighbor document.  

Similarity may be measured by for example the Euclidean distance or the cosine 

between the two document vectors. The Euclidean distance is used as a conventional 

method for measuring distance between two documents, the formula of the Euclidean 

distance between documents d1(w11,w12,…,w1n) and d2(w21,w22,…,w2n) is as follow 

[45]: 

                                         2
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1221
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i

ii
wwddE ..……………….……… (3.15) 

kNN has a set of drawbacks. kNN is a lazy learning example-based method that does 

not have a off-line training phase. The main computation is the on-line scoring of 

training documents given a test document in order to find the k nearest neighbors, this 

makes kNN not efficient because nearly all computation takes place at classification 

time rather than when the training examples are first encountered, kNN time 

complexity is O(N*M) where N is number of training documents and M is the number 

of terms in the super vector. Moreover, kNN classifier has a major drawback of 

selecting the value of k; the success of classification is very much dependent on this 

value. 
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3.2.6 Radial Basis Function Neural Network 

A Radial Basis Function Neural Network (RBFNN) is a special type of ANN with 

several distinctive features [46]. The radial basis function (RBF) network is a feed-

forward artificial neural network that uses radial basis functions as activation 

functions. It is based on linear combination of radial basis functions. It has been 

shown that RBFNN had a simple structure and many excellent performances. 

Therefore, RBFNN has been widely used for pattern classification, functional 

approximation, signal processing, mixture models and many other fields [40]. 

The structure of a RBFNN consists of three different layers, namely the input layer, 

the hidden layer, and the output layer. Each RBF is a fixed two layer NN that hides all 

nonlinearities in its special hidden layer and performs a linear combination in the 

output layer as shown in Figure 3.2 [47]. The parameters that determine the output 

values are the centers of the hidden RBF units and the weights of the synapses from 

the hidden to the output layer. One important difference is that Multilayer Perceptron 

(MLP) is most of the times a multilayer network, whereas each RBFNN consists of 

only one hidden layer with radial basis function neurons. 

 

Figure 3.3: Architecture of Radial Basis Function (RBFNN) [47]. 

In a typical implementation, the hidden nodes and the output nodes of a MLP share a 

common computation and neuronal model, while the RBFNN neurons of the RBF 

hidden layer plays a totally different role in comparison to the output nodes which are 
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most of the times linear and perform a linear combination of the hidden layer neurons 

responses [40]. 

3.3 Combining Classifiers   

The practice of combining multiple classifiers into ensembles is inspired by the notion 

that the combined opinions of a number of human experts is more likely to be correct 

than that of a single expert. Ideally, a classifier ensemble will collectively perform 

better than any individual classifier in the ensemble. There are many different ways in 

which one can combine classifiers into ensembles, each of which can work well in 

certain scenarios but not in others. There are a wide variety of techniques and 

approaches available to combine classifiers. A good selection can potentially result in 

better ensemble success rates than any one of the component classifiers could provide 

individually. A poor selection, however, can result in reduced performance relative to 

what one would have received from a single well chosen classifier. In either case, the 

use of an ensemble will most often increase training and classification computational 

demands, as well as system complexity [18]. 

3.3.1 Reasons for combining classifiers               

There are a number of important reasons why combined classifiers can in fact be a 

better choice than a single classifier. Dietterich [2] has organized these reasons into 

three categories: 

a. Statistical 

Suppose we have a labeled data set Z and a number of different classifiers with a good 

performance on Z. We can pick a single classifier as the solution, running onto the 

risk of making a bad choice for the problem. For example, suppose that we run the 1-

nn classifier or a decision tree classifier for L different subsets of features thereby 

obtaining L classifiers with zero resubstitution error. Although these classifiers are 

indistinguishable with respect to their (resubstitution) training error, they may have 

different generalization performances. Instead of picking just one classifier, a safer 

option would be to use them all and “average” their outputs. The new classifier might 

not be better than the single best classifier but will diminish or eliminate the risk of 

picking an inadequate single classifier. Dietterich gives a graphical illustration of this 

argument as shown in Figure 3.4. The outer circle denotes the space of all classifiers. 
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The shaded inner region contains all classifiers with good performances on the 

training data. The best classifier for the problem (supposedly with a good 

performance on the training data too) is denoted by D*. The hope is that some form of 

aggregating of the L classifiers will bring the resultant classifier closer to D* than a 

classifier randomly chosen from the classifier space would be. 

 

Figure 3.4: The statistical reason for combining classifiers. D1 through D4 are trained classifiers and 

D* is the theoretically optimum classifier. The shaded area represents the area in classifier space of 

classifiers that perform well on a given data set. 

 

b. Computational 

Some classifiers train using hill-climbing or random search techniques. Many 

classifiers also rely on random initializations which can influence the minima in error 

space that they converge to during training. Training multiple feed-forward neural 

networks, for example, on the same training data can very well result in significantly 

different trained classifiers. Although they will each most likely move closer to the 

optimal solution during training, there is no guarantee that they will do so in the same 

way or that they will converge to the same solution. Aggregating such classifiers into 

an ensemble can take advantage of the multiplicity of solutions offered by the 

different classifiers, none of which may be optimal, in order to arrive at a solution that 

is better than the solution offered by any one individual classifier. The computational 

argument is illustrated in Figure 3.5.  Classifiers D1 through D4 move closer during 

training to the theoretically optimum classifier (D*) from their initial pre-training 
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locations in classifier space. Each of D1 through D4 offers a different solution after 

training, and combining these solutions can result in better solution overall than the 

solution offered by any of the individual classifiers. 

 

Figure 3.5: The computational reason for combining classifiers. D1 through D4 are hill climbing 

classifiers and D* is the theoretically optimum classifier. The dashed lines show the trajectories of each 

classifier during training. 

The computation argument highlights the particular appropriateness of instable 

classifiers for ensemble classification. Instable classifiers are classifiers where small 

changes in the training set can have a significant effect on the classifier output. The 

use of multiple instable classifiers trained on slightly different but potentially 

overlapping training sets can lead to a variety of useful solutions that can be fruitfully 

combined. 

c. Representational 

There is no guarantee that the types of classifiers that one is using for a particular 

problem could ever converge to the theoretically optimal solution during training. For 

example, say a researcher mistakenly believes that a given problem is linear, and 

decides to use only linear classifiers. In reality, the optimal classifier will be non-

linear, so it is not possible that any of the linear classifiers under consideration will 

perform optimally. However, an ensemble of linear classifiers can approximate a non-

linear decision boundary, and could therefore potentially perform better than any 
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single linear classifier possibly could. The representational argument is illustrated in 

Figure 3.6. 

 

Figure 3.6: The representational reason for combining classifiers. The closed shape represents the 

range of classifiers that one is able or willing to construct. D1 through D4 represent four trained 

classifiers and D* represents the theoretically optimal classifier. 

An alternative solution to the non-linear problem presented above, of course, would 

be to use a more sophisticated single classifier. One must remember, however, that the 

primary disadvantage of using classifier ensembles over single classifiers is that they 

introduce added complexity to the solution, but this complexity depends on the 

selected classifiers that we want to combine them. It may well be that an ensemble of 

simple classifiers can perform faster and be implemented more easily and intuitively 

than a single complex classifier. The argument against using classifier ensembles is 

therefore reversed in cases such as this. 

The previous three reasons motivate us to use classifiers combination to improve the 

accuracy of classifying arabic text documents. 

In the next sections we will show different approaches to combine classifiers, which 

we will use in our research. 

3.3.2 Fixed Combining Rules 

Fixed combining rules are the simplest combination approach and it is probably the 

most commonly used in the multiple classifier system [48]. This combination 

approach is called non-trainable combiner, because combiners are ready to operate as 

soon as the classifiers are trained and they do not require any further training of the 
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ensemble as a whole [49]. A theoretical framework for fixed rules combination was 

proposed by Kittler [7]. It includes the sum, product, max, min, average and median 

rules. 

Consider a pattern recognition problem where the pattern x is to be assigned to one of 

m possible classes ), . . . ,(
m1

 . Let us assume that we have R classifiers, the feature 

vector 
)( i

x  represents the given pattern on the ith classifier. In the feature space each 

class 
k

  is modeled by the probability density function )|(
)(

k

i
xp   and its a priori 

probability of occurrence )(
k

P   [48]. 

According to Bayesian theory, for given features
)( i

x , },...,1{ Ri  the pattern x should 

be assigned to class 
j

  with the maximal value of the a posteriori probability such 

that: 

                                ),...,|P( max argj ,)(
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k
k

R

j
xxxf   ..………..……… (3.16) 

Using Bayes’ Theorem the a posteriori probability is: 
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Now the following fixed rules can be used to combine classifiers [49]: 

a. Product Rule 

Let us assume that the probability distributions )|,...,(
)()1(

k

R
xxP   are conditionally 

statistically independent. Then 
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and the decision rule 
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The product rule multiplies the score provided by each base classifiers and assigns the 

class label with the maximum score to given input pattern [7]. 

b. Majority Voting Rule 

The voting method finds the class output of each classifier and counts its output as a 

vote for a class, and assigns the input pattern to the class with the majority vote as the 

following [49]:  
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x  will produce binary valued functions 
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Assuming that each a priori probability is equal, this leads to the following decision 

rule: 
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The sum on the right side of equation (3.21) simply counts the votes received from 

each individual classifier [49]. 

c. The average rule 

Let us assume that the probability distributions )|,...,(
)()1(

k

R
xxP   are conditionally 

statistically independent [49]. Then 
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Then the average decision rule is: 
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The average rule can be defined as finding the maximum value of the average of  

)|(
)( i

k
xP   and assigns the class label with it to the given input pattern [49]. 

d. The Maximum rule 

Maximum rule is based on the information provided by the maximum value of 

)|(
)(

k

i
xP  across all class labels. It finds the maximum score of each class between 

the classifiers and assigns the input pattern to the class with the maximum score 

among the maximum scores as the following [49]: 

                    )}|({maxmaxarg   ,  )(
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e. The Minimum rule 

The minimum rule finds the minimum score of each class between the classifiers and 

assigns the input pattern to the class with the maximum score among the maximum 

scores; that means the Minimum rule selects the class that having the least objection. 

The decision of the minimum rule is defined as [49]: 
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Figure 3.6 shows the architecture of combined classifiers using fixed rules. 

 

Figure 3.7: The architecture of combined classifiers using fixed rules. 

 

As shown in Figure 3.7, the dataset (which are Arabic text documents in our case) are 

used to train and test the system, each classifier in the system is trained using the 

training data set, and then give an output. The outputs of all classifiers are combined 

using one of fixed rules that mentioned previously to give the final decision. 

3.3.3 Stacking    

Stacked generalization is a way of combining multiple models that have been learned 

for a classification task [8].Typically, different learning algorithms learn different 

models for the task, and in the most common form of stacking the first step is to 

collect the output of each model into a new set of data. For each instance in the 

original training set, this data set represents every model's prediction of that instance's 

class, along with its true classification. During this step, care is taken to ensure that 

the models are formed from a batch of training data that does not include the instance 

in question, in just the same way as ordinary cross-validation. The new data are 

treated as the data for another learning problem, and in the second step a learning 

algorithm is employed to solve this problem. The original data and the models 

constructed for them in the first step are referred to as level-0 data and level-0 models, 

respectively, while the set of cross-validated data and the second-stage learning 

algorithm are referred to as level-1 data and the level-1 generalizer.  
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The stacking framework  

Stacking is concerned with combining multiple classifiers generated by using 

different learning algorithms L1, . . . , LN on a single dataset S, which consists of 

examples si = (xi , yi), pairs of feature vectors (xi ) and their classifications (yi ). In the 

first phase, a set of base-level classifiers C1, C2, . . . , CN is generated, where Ci = 

Li(S). In the second phase, a meta-level classifier is learned that combines the outputs 

of the base-level classifiers [50].  

To generate a training set for learning the meta-level classifier, a leave-one-out or a 

cross validation procedure is applied. For leave-one-out, we apply each of the base-

level learning algorithms to almost the entire dataset, leaving one example for testing: 

)(:,...,1:,...,1
ik

i

k
sSLCNkni  where i is the number of examples, k is 

the number of base classifiers. We then use the learned classifiers to generate 

predictions for )(ˆ:
i

i

k

i

ki
xCys  . The meta-level dataset consists of examples of the 

form )),ˆ,...,ˆ((
1

i

n

ii
yyy , where the features are the predictions of the base-level 

classifiers and the class is the correct class of the example at hand. When performing 

10-fold cross validation, instead of leaving out one example at a time, subsets of size 

one-tenth of the original dataset are left out and the predictions of the learned base-

level classifiers obtained on these.  

Figure 3.8 shows pseudo code for the stacking algorithm, the first step is to learn the 

first level (base classifiers) using the original dataset as shown in line 2, in lines 4 to 

10  a new data set is generated. The new dataset is then used to learn the second level 

(Meta) classifier. 

 

Algorithm 3.2: Stacking Algorithm 

Purpose: Combining classifiers using Stacking 

Input:  

 Data set D = )},),....(,(),,{(
2211 mm

yxyxyx  

 First-level learning algorithms  
T

LL .........
1

 

 Second-level learning algorithm L. 

Output: A composite model ))()......(()(
1

^
xhxhhxH

T
  

Procedure: 

 

1   for  t = 1 to T  

2   )( DLh
tt

           Train a first-level individual learner ht by applying the first-level 

3    endfor                 learning algorithm Lt to the original data set D 

4   
^

D                 Generate a new data set 
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5    for  i = 1 to m  

6        for  t = 1 to T  

7    )(
itit

xhz            Use ht to classify the training example  xi 

8        endfor  

9    )}),,......,{((
21

^^

iiTii
yzzzDD   

10   endfor  

11  )(
^^

DLh           Train the second-level learner h0 by applying the second-level 

                                   learning algorithm L to the new data set D0 
 

Output: ))()......(()(
1

^
xhxhhxH

T
  

 

 
 

Figure 3.8: Pseudo code for the stacking algorithm. 

3.3.4 The Boosting Algorithm  

Boosting is a general method for improving the performance of a weak learner. The 

method works by iteratively invoking a weak learner, on training data that is taken 

from various distributions. Similar to bagging, the classifiers are generated by 

resampling the training set. The classifiers are then combined into a single strong 

composite classifier. Contrary to bagging, the resampling mechanism in boosting 

improves the sample in order to provide the most useful sample for each of 

consecutive iteration.  

The AdaBoost Algorithm 

AdaBoost (Adaptive Boosting) [51] is a popular ensemble algorithm that improves 

the simple boosting algorithm via an iterative process. The main idea behind this 

algorithm is to give more focus to patterns that are harder to classify. The amount of 

focus is quantified by a weight that is assigned to every pattern in the training set. 

Initially, the same weight is assigned to all the patterns. In each iteration the weights 

of all misclassified instances are increased while the weights of correctly classified 

instances are decreased. As a consequence, the weak learner is forced to focus on the 

difficult instances of the training set by performing additional iterations and creating 

more classifiers.  

Furthermore, a weight is assigned to every individual classifier. This weight measures 

the overall accuracy of the classifier and is a function of the total weight of the 

correctly classified patterns. Thus, higher weights are given to more accurate 

classifiers. These weights are used for the classification of new patterns. This iterative 

procedure provides a series of classifiers that complement one another. 
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In AdaBoost, the input includes a dataset D of d class-labeled objects, an integer k 

specifying the number of iterations, and a classification learning scheme as shown in 

Figure 3.9. 

Each object in the dataset is assigned a weight. Initially, all weights are assigned a 

same value of 1/d. The algorithm repeats k times. At each time, a model Mi is built on 

current dataset Di, which is obtained by sampling with replacement on original 

training dataset D. 

 
Algorithm 3.3: AdaBoost algorithm 

Purpose: Generating an ensemble of classifiers using AdaBoost 

Input:  

 D, training set  

 k, the number of rounds  

 A classification learning algorithm  

Output: A composite model  

Procedure: 

1    Initialize the weight of each object in D to 1/d;  

2    for i = 1 to k do  

3    Sample D with replacement according to the object weights to obtain Di;  

4    Use training set Di to derive a model, Mi;  

5    Compute the error rate error(Mi) of Mi;  

6    if error(Mi) > 0.5 then  

7    Reinitialize the weights to 1/d;  

8    Go back to step 3 and try again;  

9    endif  

10  Update and normalize the weight of each object;  

11  endfor  

 

 
Figure 3.9: The framework of AdaBoost algorithm. 

The error rate of Mi is the sum of the weights of all objects in Di that Mi 

misclassified:  

                                  




d

j

jji
XerrwMerror

1

)()(         ……….………….…… (3.26) 

Where err(Xj) = 1 if Xj is misclassified and err(Xj) = 0 otherwise.  

Then the weight of each object is updated so that the weights of misclassified objects 

are increased and the weights of correctly classified objects are decreased. This can be 

done by multiplying the weights of each correctly classified object by error(Mi)/(1 – 

error(Mi)). The weights of all objects are then normalized so that the sum of them is 

equal to 1. In order to keep this constraint, the weight of each object is divided by the 

sum of the new weights. 
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After k  rounds, a composite model will be generated, or an ensemble of classifiers, 

which is then used to classify new data. When a new object X comes, it is classified 

through the steps shown in Figure 3.10. 

 

Algorithm 3.4: Classification Using AdaBoost algorithm 

Purpose: Classify a new object using ensemble of classifiers build by AdaBoost 

Input: a new object 

Output: the class of an object 

Procedure: 

 

1   Initialize weight of each class to 0;  

2   for i = 1 to k do  

3   Get weight wi  of classifier Mi ;  

4   Get class prediction for X from Mi: c = Mi(X);  

5   Add wi to weight for class c;  

6   endfor  

7   Return the class with the largest weight;  

 
 

Figure 3.10: The steps of classifying a new object by the ensemble of classifiers build by AdaBoost 

Algorithm. 

 

The weight wi of each classifier Mi is calculated by this equation:  
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Merror
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     ……….……………….…… (3.27) 

AdaBoost seems to improve the performance accuracy for two main reasons: 

1- It generates a final classifier whose error on the training set is small by 

combining many hypotheses whose error may be large. 

2- It produces a combined classifier whose variance is significantly lower than 

the variances produced by the weak base learner. 

However, AdaBoost sometimes fails to improve the performance of the base inducer. 

According [9], the main reason for AdaBoost failure is overfitting. The objective of 

boosting is to construct a composite classifier that performs well on the data by 

iteratively improving the classification accuracy. Nevertheless, a large number of 

iterations may result in an overcomplex composite classifier, which is significantly 

less accurate than a single classifier. One possible way to avoid overfitting is to keep 

the number of iterations as small as possible.  



 

33 
 

3.3.5 Bagging Algorithm  

Bagging (bootstrap aggregating) [6] is a simple effective method for generating an 

ensemble of classifiers. The ensemble of classifiers, which is created by this method, 

combines the outputs of various learned classifiers into a single classification. This 

results in a classifier whose accuracy is higher than the accuracy of each individual 

classifier. Specifically, each classifier in the ensemble is trained on a sample of 

instances taken with replacement (allowing repetitions) from the training set.  

To ensure that there is a sufficient number of training instances in every sample, it is 

common to set the size of each sample to the size of the original training set. Figure 

3.11 presents the pseudo-code for building an ensemble of classifiers using the 

bagging. The algorithm receives an induction algorithm I which is used for training all 

members of the ensemble. The stopping criterion in line 6 terminates the training 

when the ensemble size reaches T. One of the main advantages of bagging is that it 

can be easily implemented in a parallel mode by training the various ensemble 

classifiers on different processors.  

Since sampling with replacement is used, some of the original instances of S may 

appear more than once in St and some may not be included at all. Furthermore, using 

a large sample size causes individual samples to overlap significantly, with many of 

the same instances appearing in most samples. 

 

Algorithm 3.5: Bagging Algorithm 

Purpose: Generating an ensemble of classifiers using Bagging 

Input : 

 S, training set  

 μ ,the sample size 

 T, the number of rounds  

 I , A classification learning algorithm  

Output: A composite model  

Procedure: 

1   t ← 1 

2   repeat 

3   St ← a sample of μ instances from S with replacement. 

4 Construct classifier Mt  using I with St as the training set 

5  t ← t + 1 

6  until t > T 

 

Figure 3.11: The framework of Bagging algorithm. 
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So while the training sets in St may be different from one another, they are certainly 

not independent from a statistical stand point. In order to ensure diversity among the 

ensemble members, a relatively unstable inducer should be used. This will result is an 

ensemble of sufficiently different classifiers which can be acquired by applying small 

perturbations to the training set. If a stable inducer is used, the ensemble will be 

composed of a set of classifiers who produce nearly similar classifications, and thus 

will unlikely improve the performance accuracy. 

In order to classify a new instance, each classifier returns the class prediction for the 

unknown instance. The composite bagged classifier as shown in Figure 3.12 returns 

the class with the highest number of predictions (also known as majority voting). 

 

Algorithm 3.6: Classification Using Bagging algorithm 

Purpose: Classify a new object using ensemble of classifiers build by Bagging 

Input: A new object 

Output: The class of an object 

Procedure: 
1   Counter1, . . . , Counter|dom(y)| ← 0  { initializes class votes counters } 

2   for i = 1 to T do 

3  votei ← Mi (x) { get predicted class from member i } 

4  Countervotei ← Countervotei + 1 { increase by 1 the counter of the corresponding class } 

5  end for 

6  C ← the class with the largest number votes 

7  Return C 

 

Figure 3.12: The steps of classifying a new object by the ensemble of classifiers build by Bagging 

Algorithm 

Often, bagging produces a combined model that outperforms the model that is built 

using a single instance of the original data especially for unstable inducers since 

bagging can eliminate their instability [6].  
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CHAPTER 4  

METHODOLOGY 

This chapter explains methodology which we will follow in this research. To 

implement and evaluate our approaches we will use the following methodology steps 

as presented in Figure 4.1: 

1. Collecting data: collect Arabic text documents from different domains. 

2. Preprocessing data: through applying different text pre-processing 

techniques which include applying different term weighting schemes, and 

Arabic morphological analysis (stemming and light stemming). 

3. Combining classifiers: through implementing models by combining different 

classification algorithms and by using different combining techniques. 

Combing classifiers can be built on different subsets of features. Feature 

selection aims at a more efficient computation and a higher accuracy; so we 

will evaluate different feature selection methods in our experiments. 

4. Evaluate the model: to evaluate the classification performance of our model, 

we will use accuracy, precision, recall and f-Measure. 

5. Compare the results of combining classifiers with other results using single 

classifiers. 

 

Figure 4.1: Methodology steps 

Data Collection 

Data Preprocessing 

Combining Classifiers 

Evaluating Models 

Comparing the results 
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4.1 Data Collection  

One of difficulties for Arabic language is the lack of publicly available Arabic corpus 

for evaluating text categorization algorithms [27]. On the other side, English language 

has different public data set for English text classification. Researchers in Arabic text 

classification used their own data sets collected from several Arabic website like Al-

Jazeera, Al-Nahar, Al-hayat, Al-Ahram, and Al-Dostor. The collected data has 

different size and different categories used for training and testing. On the other hand, 

the Linguistic Data Consortium (LDC) provides two non-free Arabic corpora, the 

Arabic NEWSWIRE and Arabic Gigaword corpus.  

In my research, I will use a freely public data set published by Saad in [52]. The first 

dataset was collected from CNN Arabic website. It is free and public and contains a 

suitable number of documents for the classification process and also suitable to the 

hardware used in experiments. CNN Arabic dataset has different domains. Table 4.1 

presents domains of CNN-Arabic corpus which includes 5070 documents. Each 

document belongs to 1 of the 6 domains or categories. 

Table 4.1: Categories and number of documents per category for CNN Arabic corpus. 

Number Category Number of text documents 

1.  
Business  836  

2.  
Entertainments  474  

3.  
Middle East News  1462  

4.  
Science & Technology  526  

5.  
Sports  762  

6.  
World News  1010  

Total 
5070  

 

 

The second dataset to be used is called OSAC. OSAC dataset was collected from 

multiple websites. The corpus includes 22,429 text documents. Each text document 

belongs to 1 of 10 categories as shown in Table 4.2. 

 



 

37 
 

Table 4.2: Categories and number of documents per category for OSAC dataset. 

Number Category Number of text documents 

1.  
Economic  3102 

2.  
History  3233 

3.  
Education and family  3608 

4.  
Religious and Fatwas  3171 

5.  
Sport  2419 

6.  
Health  2296 

7.  
Astronomy  557 

8.  
Low  944 

9.  
Stories  726 

10.  
Cooking Recipes  2373 

Total 
22,429  

 

The third data set dataset was collected from BBC Arabic website. It is free and 

public and contains a suitable number of documents for the classification process and 

also suitable to the hardware used in experiments. BBC Arabic dataset has different 

domains. Table 4.3 presents domains of BBC-Arabic corpus which includes 4,763 

documents. Each document belongs to 1 of the 7 domains or categories. 
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Table 4.3: Categories and number of documents per category for BBC Arabic corpus. 

Number Category Number of text documents 

1.  
Middle East News 2356  

2.  
World News 1489  

3.  
Business 296 

4.  
Science & Technology  232  

5.  
Sports  219  

6.  
Entertainments 122  

7.  
World Press 49 

Total 4,763 

 

4.2 Data Preprocessing  

Text preprocessing includes many steps, the process starts by tokenizing string to 

words, after that normalizing tokenized words, the stop word removed and applying 

stemming algorithm (stemming / light stemming), and finally term weighting for each 

word , Figure 4.2 shows these steps. In the next section we will describe text 

preprocess steps applied on Arabic text. 

 

Figure 4.2: Arabic text documents preprocessing steps. 
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4.2.1 String Tokenizing 

Tokenization is very important in natural language processing. It can be seen as a 

preparation stage for all other natural language processing tasks [53]. Tokenization is 

the task of separating out words from running text into units. These units could be 

characters, words, numbers, sentences or any other appropriate unit [54]. The 

definition of a word here is not the exact syntactic form, which is why we call it a 

'token'. In the case of Arabic, where a single word can comprise up to four 

independent tokens, morphological knowledge needs to be incorporated into the 

tokenize. However, Tokenization closely related to the morphological analysis. The 

tokenize process is responsible for defining word boundaries such as white spaces and 

punctuation marks, multiword expressions, abbreviations and numbers [55]. 

One of the most useful features in detecting sentences boundaries and tokens is 

punctuation marks. However, the total number of punctuation marks and symbols 

used in Arabic corpus was 134, while in the corresponding English corpus only 54 

punctuations and symbols were used [55]. There are several methods to apply 

tokenization; the simplest way we used is extracting any alphanumeric string between 

two white spaces. 

4.2.2 Normalization 

Normalization is the process of unification of different forms of the same letter. 

Before stemming and stop word removal, corpus was normalized as follows: 

 Remove punctuation. 

 Remove diacritics (primarily weak vowels).  

 Remove non letters. 

 Replace إ , أ , and آ with ا. 

 Replace final ى with ي. 

 Replace final ة with ه . 

4.2.3 Stop Words 

Stop words are frequently occurring, insignificant words that appear in an article or 

web page (i.e. pronouns, prepositions, conjunctions, etc.). Words like ( بين , قد ,تكون ,هذه
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كان ,أين, على, انه ) are considered stop words. These words carry no information. Stop 

words are filtered out prior to processing of natural language data [36]. 

4.2.4 Stemming Algorithms 

One of the major techniques that have been used in preprocessing stage in 

document classification is stemming. Christopher et al. [56] define Stemming as a 

crude heuristic process that chops off the ends of words in the hope of achieving this 

goal correctly most of the time, and often includes the removal of derivational affixes. 

In other words it is the process of removing any affixes (prefixes that added to the 

beginning of the word, infixes that added to the middle of the word, or/and suffixes 

that added to the ending of the word) from words to reduce these words to their stems 

or roots under the assumption that words with the same stem are semantically related. 

There are two major approaches that are followed for Arabic stemming. One 

approach is called light stemming (also called stem-based stemming) by which a 

word’s prefixes and suffixes are removed; the other one called Root-based stemming 

(also called aggressive stemming) which reduces a word to its root. Another two 

approaches that have been researched are Statistical stemming and Manual 

constructing of dictionaries; the last one is not efficient and there for not so popular. 

Studies show that light stemming outperforms aggressive stemming and other 

stemming types [57]. 

1- Root–based Stemmer 

Arabic words are formed from abstract forms named roots, the root is the basic form 

of word from which many derivations can be obtained by attaching certain affixes so 

we produce many nouns and verbs and adjectives from the same root [58]. A root 

based  stemmer main goal is to extract the basic form for any  given word by 

performing morphological analysis for the word [59], Table 4.4 shows an example 

root “لعب” and  a set (not all) derivations can be obtained from this  root [60]: 

 

Table 4.4: Some derivations of the root “لعب”. 

 لعبة ملعوب لاعب ملعب يلعب

Play Playground Player Played Game 

 

Khoja stemmer [61] basically attempts to find roots for Arabic words which are far 

more abstract than stems. It first removes prefixes and suffixes, then attempts to find 
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the root for the stripped form. The problem in this stemming technique is that many 

different word forms are derived from an identical root, and so the root extraction 

stemmer creates invalid conflation classes that result in an ambiguous query which 

leads to a poor performance [60].  

2- Light Stemmer 

Light stemming is to find the representative indexing form of a word by the 

application of truncation of affixes [62]. The main goal of light stemming is to retain 

the word meaning intact and so improves the retrieval performance of an Arabic 

information retrieval system. Many light stemming methods like Leah [63] stemmer 

classifies the affixes to four kinds of affixes: antefixes, prefixes, suffixes and postfixes 

that can be attached to words. Thus an Arabic word can have a more complicated 

form if all these affixes are attached to its root. The following example, Table 4.5, 

shows a sample of a word and its affixes [62] : 

Table 4.5: A word and its affixes "ليناقشوهم"  

Antefix Prefix Core Suffix Postfix 

 هم و ناقش ي ل

 

So from the above example we see that if we could remove all affixes of a word then 

we will get the stemmed word which is not the root but basic word without any 

affixes and so we maintain the meaning of the word and improve the search 

effectiveness.  

In this research we will apply light stemming and Khoja stemmer on our datasets. 

 4.2.5 Term weighting 

Term weighting is one of pre-processing methods used for enhanced text document 

presentation as feature vector. Term weighting helps us to locate important terms in a 

document collection for ranking purposes [64]. There are several term weighting 

schemes the popular term weighting schemes are Boolean model, Term Frequency 

(TF), Inverse Document Frequency (IDF), and Term Frequency-Inverse Document 

Frequency (TF-IDF) [13]. Choosing an appropriate term weighting scheme is more 

important for text categorization [65]. 
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a. Boolean model   

The Boolean model is the simplest retrieval model based on Boolean algebra and set 

theory. Boolean model indicates to absence or presence of a word with Booleans 0 or 

1 respectively [13]. 

b. Term Frequency 

Term frequency TF (t,d) is the number that the term t occurs in the document d [13]. 

The TF measures the importance of term ti within the particular document dj can be 

calculated by equation [40]: 
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Where  

ji
n

,
 : The number of occurrences of the considered term (ti) in the document dj. 

 jk
n

,
: Sum of number of occurrences of all terms in document dj. 

 

c. Inverse Document Frequency  

The inverse document frequency (IDF) is one of the most widely used term weighting 

schemes for estimating the specificity of term in a document collection [66]. It is 

based on the idea that if a term appears in only a few documents in the collection, then 

such a term is expected to be a good discriminator of these documents. The IDF 

weight of a term t can be calculated from document frequency using the formula [40]: 

)log(
n

N
IDF

t
      ………….………………….…….. (4.2) 

Where  

N: number of documents.  

n: number of documents with word i. 

The IDF of a term is low if it occurs in many documents and high if the term occurs in 

only a few documents [13]. 

d. Term Frequency-Inverse Document Frequency  

Term Frequency and Inverse Document Frequency (TF-IDF), is a popular method of 

pre-processing documents in the information retrieval community [65]. TF-IDF works 

by determining the relative frequency of words in a specific document compared to 

the inverse proportion of that word over the entire document corpus. Intuitively, this 
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calculation determines how relevant a given word is in a particular document [67]. 

The TF-IDF calculated by using the formula [40]: 

TF-IDF =
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t

IDF      ………….………………….…….. (4.3) 
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In this research, TF-IDF term weighting schema is applied to our datasets, because it 

is the most popular weighting schema and many researches such as [14] show that it 

gives a good results. 

4.3 Evaluation 

There are different measures that we can use to measure classification accuracy. The 

basic measures that we can use are: accuracy, precision, recall, F-measure. Accuracy 

as a measure is the number of samples that are correctly classified.  

Computation of precision and recall are based on computing confusion matrix [26] as 

shown in Table 4.6. A confusion matrix is computed by creating two categories, it is a 

matrix where test cases are distributed as follows:  

 

1- True positive (TP): refers to positive instances that are correctly labeled. 

2- False Negative (FN): are the positive instances that are incorrectly labeled.  

3- False Positive (FP): are the negative instances that are incorrectly labeled. 

4- True negative (TN): refers to negative instances that are correctly labeled. 

 
Table 4.6: Confusion matrix for two class classification problem. 

True Positive (TP) False Negative (FN) 

False Positive (FP) True Negative (TN) 

 

We can compute classifier accuracy as: 

TNFNFPTP

TNof
Accuracy






ofnumber

 number TP ofnumber
  ………….………………….…….. (4.5) 
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The precision is the percentage of predicted documents for the given topic that are 

correctly classified: 

positivesfalsepositivestrueofnumber

positivestrueofnumber
Precision


  ……………… (4.6) 

Also, we compute recall which is the percentage of the total documents for the given 

topic that are correctly classified as follows: 

negativesfalsepositivestrue

positivestrue
Recall


  …………………………….. (4.7) 

The F measure combines precision and recall. We used the F-measure to evaluate the 

performance of text classifiers: 

recallprecision

recallprecision
F




 2  …………….…….………………….…….. (4.8) 

So using accuracy, precision, recall and F-measure we can evaluate our system and 

compare our results with other experiments.  

 4.4 Text Mining Tools 

1- Weka Data Mining Software in Java [68]: Weka is a collection of machine 

learning algorithms for data mining tasks. The algorithms can either be applied 

directly to a dataset or called from your own Java code. Weka contains tools 

for data pre-processing, classification, regression, clustering, association rules, 

and visualization. It is also well-suited for developing new machine learning 

schemes. 

2- RapidMiner [69]: RapidMiner provides data mining and machine learning 

procedures including: data loading and transformation, data preprocessing and 

visualization, modeling, evaluation, and deployment. RapidMiner is written in 

the Java programming language. It uses learning schemes and attributes 

evaluators from the Weka machine learning environment.  
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CHAPTER 5  

EXPERIMENTAL RESULTS 

This chapter describes the results and analyses of combining different classification 

approaches on the selected Arabic datasets. In our experiments we implement four 

combination approaches. We select different classifiers to use in our experiments such 

as SVM, Naïve Bayes, C4.5, kNN, Decision Stump, RBFNN and LVQ2.1. These 

classifiers are selected because they are the most famous classifiers used in other 

researches to classify Arabic text documents. Also some classifiers such as Decision 

trees are selected in AdaBoost and Bagging because researchers recommended using 

these classifiers with such of these combining algorithms. 

In our experiments we implement four combined models. The first model is built 

using fixed combination rules. We examine five fixed rules which mentioned in 

chapter 3. The second combination approach we build is combining classifiers using 

stacking. Different numbers of classifiers are used to build different stacked models. 

The third model is built using AdaBoost algorithm. We use C4.5 classifier with this 

algorithm. The last model that we examine is build using Bagging algorithm. We use 

Decision stump classifier with this algorithm. 

The experiments are implemented using three datasets, BBC Arabic, CNN Arabic, 

OSAC datasets. 

Two stemming approaches were used with these datasets, light stemming and Khoja 

stemmer. We used only TF-IDF term weighting schema. 

In the following sections we will examine and analyze the four combined models. 

Experimental results investigate building models time, precision, recall, F-measure 

and classifiers accuracy. 

5.1 Implementation Environment 

The combined models are implemented using two data mining tools, WEKA and 

RapidMiner. We use WEKA tool to build two models using fixed combining rules 

and stacking. The AdaBoost and Bagging models were built using RapidMiner. 

In our implementation, we use a platform of Intel Core i3 of speed 2.2 GHz, 4 GB of 

Memory and 64 bit windows 7 operating system. 

5.2 Arabic Text Documents classification using fixed combining rules 

In this approach we use five different fixed combination rules as the following: 
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1- Average rule. 

2- Product rule. 

3- Majority Voting 

4- Minimum rule. 

5- Maximum rule. 

We apply these five fixed rules using different number of classification algorithms; 

we combine three, five and seven classifiers using these rules. 

In every case we use three datasets to confirm our results as we will show in the next 

sections. 

5.2.1 Using three classifiers Model 

In the first step we use three classifiers with each rule; the classifiers used at this stage 

are SVM, Naive Bayes and C4.5. 

Table 5.1 shows the results of combining three classifiers using five fixed rules when 

Appling light stemming on the BBC Arabic data set and using TF-IDF term 

weighting. 

Table 5.1 presents that applying majority voting rule achieved the highest accuracy 

(94.1%), recall (0.943), precision (0.943) and F-measure (0.943) of classification. 

 

Table 5.1: Accuracy, F-measure and Time of combined classifiers using three classifiers and BBC 

dataset (TF-IDF and Light stemming). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.937 0.938 0.937 93.7 90.5 

Product rule 0.940 0.940 0.941 90.4 105.2 

Majority vote 0.943 0.943 0.943 94.1 107.1 

Minimum rule 0.895 0.893 0.897 89.6 110.37 

Maximum rule 0.880 0.879 0.882 88.2 111.67 

  

Table 5.2 shows the result of combining three classifiers using with five fixed rules 

when applying Khoja stemmer on BBC Arabic data set and using TF-IDF term 

weighting. 
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Table 5.2: Accuracy, F-measure and Time of combined classifiers using three classifiers and BBC 

dataset (TF-IDF and Khoja stemmer). 

Rule F measure Precision Recall Accuracy  % Time (s) 

Average rule 0.929 0.929 0.929 92.9 135.18 

Product rule 0.911 0.912 0.911 91.3 155.52 

Majority vote 0.935 0.935 0.935 93.5 153.65 

Minimum rule 0.894 0.891 0.898 90.7 156.50 

Maximum rule 0.861 0.860 0.862 86.2 166.06 

 

And from Table 5.2 we notice also that the majority voting rule outperforms (93.5%) 

over all other fixed combination rules. 

To confirm our results we use other dataset as shown in Table 5.3 which shows the 

result of combining three classifiers using with five fixed rules when Appling light 

stemming on the CNN Arabic data set and using TF-IDF term weighting. 

 
Table 5.3: Accuracy, F-measure and Time of combined classifiers using three classifiers and CNN 

dataset (TF-IDF and Light stemming). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.924 0.925 0.924 92.4 468.94 

Product rule 0.923 0.923 0.923 92.3 459.58 

Majority vote 0.959 0.959 0.959 93.4 457.44 

Minimum rule 0.909 0.909 0.910 91.2 451.68 

Maximum rule 0.884 0.890 0.879 87.9 453.90 

 

Table 5.4 shows the result of combining three classifiers using with five fixed rules 

when Appling Khoja stemmer on CNN Arabic data set and using TF-IDF term 

weighting. 
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Table 5.4: Accuracy, F-measure and Time of combined classifiers using three classifiers and CNN 

dataset (TF-IDF and Khoja stemmer). 

Rule F measure Precision Recall Accuracy  % Time (s) 

Average rule 0.922 0.923 0.922 92.2 308.08 

Product rule 0.910 0.911 0.910 91.8 291.54 

Majority vote 0.924 0.925 0.924 92.4 299.88 

Minimum rule 0.909 0.911 0.908 91.8 298.15 

Maximum rule 0.877 0.888 0.867 86.7 298.38 

 

Figure 5.1 summarizes the results in term of accuracy using two datasets and two 

different stemmers. 

 

 
 

Figure 5.1: Accuracy summarization of three classifiers combined models 

 

 

From Figure 5.1 we notice that applying majority voting combination rule on BBC 

Arabic dataset with Light stemming give the highest accuracy (94.1%) of 

classification. 

Figure 5.2 summarizes the results in term of model building time using two datasets 

and two different stemmers. 
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Figure 5.2: Summarization of three classifiers combined Model building time. 

 

From Figure 5.2, building Average rule model using BBC Arabic dataset with Khoja 

stemmer need less time (90.5 s) than any other model, and this model gives a good 

accuracy (92.9%) as shown in Table 5.2. 

5.2.2 Using five classifiers Model 

At this model we combine five classifiers using fixed rules combination method; the 

classifiers used at this stage are SVM, Naive Bayes and C4.5, kNN and Decision 

Stump. 

Table 5.5 shows the results of combining five classifiers using five fixed rules when 

applying light stemming on the BBC Arabic data set and using TF-IDF term 

weighting. 

Table 5.5 presents that applying majority voting rule achieves the highest Accuracy 

(94.5%), Recall (0.945), Precision (0.945) and F-measure (0.943) of classification. 

 

Table 5.5:  Accuracy, F-measure and Time of combined classifiers using five classifiers and BBC 

dataset (TF-IDF and Light stemming). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.925 0.926 0.925 92.5 150.9 

Product rule 0.911 0.912 0.911 91.3 166.5 

Majority vote 0.945 0.945 0.945 94.5 158.78 

Minimum rule 0.915 0.913 0.917 91.4 147.92 

Maximum rule 0.861 0.860 0.862 86.2 165.73 
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And from Table 5.6 we notice also that the majority voting rule outperforms (94.3%) 

over all other fixed combination rules using Khoja stemmer. 

 
Table 5.6: Accuracy, F-measure and Time of combined classifiers using five classifiers and BBC 

dataset (TF-IDF and Khoja stemmer). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.928 0.929 0.927 92.7 90.48 

Product rule 0.912 0.913 0.912 91.1 90.59 

Majority vote 0.943 0.944 0.943 94.3 96.19 

Minimum rule 0.942 0.943 0.942 89.6 91.15 

Maximum rule 0.880 0.879 0.882 88.2 93.98 

 

Also to confirm our results using five classifiers model we use other dataset as shown 

in Table 5.7 which shows the result of combining five classifiers by five fixed rules 

when applying light stemming on the CNN Arabic data set and using TF-IDF term 

weighting. 

 

Table 5.7: Accuracy, F-measure and Time of combined classifiers using five classifiers and CNN 

dataset (TF-IDF and Light stemming). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.930 0.930 0.930 92.9 489.34 

Product rule 0.926 0.926 0.926 92.5 478.30 

Majority vote 0.954 0.959 0.950 93.4 473.46 

Minimum rule 0.905 0.909 0.901 90.4 463.49 

Maximum rule 0.884 0.879 0.890 87.9 508.91 

 

Table 5.8 shows the result of combining five classifiers using five fixed rules when 

Appling Khoja stemmer on CNN Arabic data set and using TF-IDF term weighting. 
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Table 5.8: Accuracy, F-measure and Time of combined classifiers using five classifiers and CNN 

dataset (TF-IDF and Khoja stemmer). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.921 0.922 0.921 92.1 299.47 

Product rule 0.950 0.950 0.950 91.8 300.69 

Majority vote 0.926 0.926 0.926 92.6 299.3 

Minimum rule 0.902 0.903 0.902 90.7 300.17 

Maximum rule 0.877 0.888 0.867 86.7 281.13 

 

Figure 5.3 summarizes the accuracy results of applying 5 classifiers combined model 

using fixed rules, applied on two datasets with two different stemming algorithms. 

   

 
 

Figure 5.3: Accuracy summarization of five classifiers combined models 

 

From Figure 5.3 we notice that the best results are when using majority vote rule 

applied on BBC Arabic dataset with light stemming. 

Figure 5.4 summarizes the results of combining a five classifiers model in term of 

time using two datasets and two different stemmers, and we notice that building 

Average rule model using BBC Arabic dataset with Khoja stemmer need less time 

(90.48 s) than any other model, and this model gives a good accuracy (92.7%) as 

shown in Table 5.6. 
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Figure 5.4: Comparison of five classifiers combined Models building time 

 

5.2.3 Using seven classifiers Model 

 

At this model we combine seven classifiers using fixed rules combination method; the 

classifiers used at this stage are SVM, Naive Bayes, C4.5, RBFN, kNN, Decision 

Stump and Nearest-neighbor-like  

Table 5.9 shows the results of combining seven classifiers using five fixed rules when 

applying light stemming on the BBC Arabic data set and using TF-IDF term 

weighting. 

 
Table 5.9: Accuracy, F-measure and Time of combined classifiers using seven classifiers and BBC 

dataset (TF-IDF and Light stemming). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.935 0.939 0.932 93.2 730.32 

Product rule 0.926 0.926 0.926 92.9 787.54 

Majority vote 0.954 0.955 0.953 95.3 835.94 

Minimum rule 0.901 0.901 0.901 90.2 735.12 

Maximum rule 0.876 0.883 0.870 87.0 741.05 

 

We notice that from Table 5.9, the accuracy increases when applying majority voting 

rule on BBC Arabic dataset using seven classifiers, the highest accuracy equal to 

95.3%.  
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Also we apply the model on BBC Arabic dataset with Khoja stemmer. Table 5.10 

shows that the maximum accuracy when using fixed rules combination is given by 

using majority voting rule (94.6%). 

 

Table 5.10: Accuracy, F-measure and Time of combined classifiers using seven classifiers and BBC 

dataset (TF-IDF and Khoja stemmer). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.920 0.920 0.921 92.0 360.57 

Product rule 0.910 0.908 0.912 90.1 360.83 

Majority vote 0.946 0.946 0.946 94.6 323.7 

Minimum rule 0.901 0.901 0.902 89.2 360.97 

Maximum rule 0.864 0.870 0.858 85.8 332.13 

 

To confirm our results, we apply the model to CNN Arabic dataset as shown in Table 

5.11 and Table 5.12. 

Table 5.11 shows the result when we use CNN Arabic dataset with light stemming, 

and we notice that the majority voting accuracy about 93.3% which is the highest one 

over all other rules. 

 
Table 5.11: Accuracy, F-measure and Time of combined classifiers using seven classifiers and CNN 

dataset (TF-IDF and Light stemming). 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.921 0. 922 0.920 92.0 5948.59 

Product rule 0.917 0.916 0.918 91.8 6102.25 

Majority vote 0.930 0.931 0.930 93.3 5945.64 

Minimum rule 0.901 0.902 0.901 90.9 5891.67 

Maximum rule 0.890 0.889 0.891 88.9 5982.17 

 

And using CNN Arabic dataset with Khoja stemmer, Table 5.12 shows the results 

which confirm all previous experiments results in which the majority voting give 

92.8% of accuracy. 
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Table 5.12: Accuracy , F-measure and Time of combined classifiers using seven classifiers and CNN 

dataset (TF-IDF and Khoja stemmer) 

Rule F-measure Precision Recall Accuracy  % Time (s) 

Average rule 0.919 0.919 0.919 91.9 3682.28 

Product rule 0.901 0.902 0.901 90.0 3722.75 

Majority vote 0.926 0.927 0.926 92.8 3602.66 

Minimum rule 0.887 0.887 0.887 88.9 3589.54 

Maximum rule 0.861 0.861 0.861 86.0 3584.02 

 

Figure 5.5 summarizes the accuracy results of applying seven classifiers combined 

model using fixed rules, applied on two datasets with two different stemming 

algorithms.   

 

 

Figure 5.5: Accuracy summarization of seven classifiers combined models 

 

From Figure 5.5 we notice that the best results are when using majority vote rule 

applied on BBC Arabic dataset with light stemming. 
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(323 s) than any other model, and this model gives a high accuracy (92.8%) as shown 

in Table 5.12. 

 

 
 

Figure 5.6: Comparison of seven classifiers combined Models building time. 

 

5.2.3 Comparing all models  

In this section we compare between the previous models, Figure 5.7 shows the 

accuracy of all models using three, five and seven classifiers.  

From the previous tables and figures we notice that the best results are got using BBC 

dataset with light stemming and TF-IDF weighting, Figure 5.7 compare between these 

models using this dataset and stemming. 

From Figure 5.7 we can conclude that the best accuracy achieved when using seven 

classifiers model using BBC dataset with Light stemming and TF-IDF weighting.  

 

Figure 5.7: The accuracy of all models using three, five and seven classifiers. 

360.57 360.83 323.7 360.97 332.13 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

BBC-Light stemming 

BBC-Khoja 

CNN-Light stemming 

CNN-Khoja 

93.2 92.9 
95.3 

90.2 

87 

80 
82 
84 
86 
88 
90 
92 
94 
96 

3 Classifiers  

5 Classifiers  

7 Classifiers  



 

56 
 

5.3 Arabic Text Documents classification using Stacking 

The second approach that we build in this thesis to improve Arabic text documents 

classification is stacking. 

In this approach, we use two basic models, in which the difference between them is 

the Meta classifier. In the first model we use Naïve Bayes classifier as a Meta 

classifier, where in the second model we use Linear Regression prediction as a Meta 

classifier. 

In each model, we use different number of base classifiers as we will show in the next 

sections. The base classifiers that we use in all models are: 

1- Naïve Bayes 

2- SVM  

3- C4.5 

4- Decision Stump 

5- k-Nearest Neighbor (kNN) 

6- A radial basis function network (RBFN) 

7- Learning Vector Quantization (LVQ) 

In each of the two models, we use different number of base classifiers. We implement 

the models using three and five base classifiers where as we cannot implement a 

stacking model with seven classifiers because it needs more high resources.  

The models evaluated using two datasets BBC and CNN, with two different stemming 

algorithms (Light Stemming and Khoja stemmer). 

The following sections show the evaluated models and the results of each model.  

5.3.1 Stacking with Naïve Bayes as Meta classifier 

In this section, we build combined models that based on Naïve Bayes classifier as a 

Meta classifier using three and five base classifiers. 

The first model that we evaluate is a stacking model that consists of the following 

three base classifiers: 

1- Naïve Bayes 

2- SVM 

3- C4.5 
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Table 5.13: Accuracy, F-measure and Time of stacked model of three (Naïve Bayes, SVM and C4.5 ) 

classifiers and Naïve Bayes Meta classifier. 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.989 0.989 0.989 98.9 1480.35 

BBC with Khoja stemmer 0.975 0.976 0.975 97.6 951.40 

CNN with light stemming 0.924 0.924 0.924 92.4 3671.63 

CNN with Khoja stemmer 0.906 0.907 0.906 90.8 3203.74 

OSAC with light stemming 0.968 0.968 0.968 96.8 16433.78 

OSAC with Khoja stemmer 0.956 0.956 0.957 95.7 15527.16 

 

Three different datasets are used to confirm the results of combination as shown in 

Table 5.13, which shows the result of combining three classifiers using stacking; the 

highest accuracy is given by using BBC Arabic dataset with light stemming (98.9 %). 

The second model that we evaluate is a stacking model that consists of the following 

three base classifiers: 

1- LVQ  

2- Naive Bayes 

3- C4.5 

 
Table 5.14: Accuracy, F-measure and Time of stacked model of three classifiers (LVQ, Naive Bayes 

and C4.5) and Naïve Bayes Meta classifier. 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.982 0.983 0.982 98.3 1713.75 

BBC with Khoja stemmer 0.977 0.979 0.976 97.7 1535.51 

CNN with light stemming 0.960 0.962 0.959 96.0 3503.74 

CNN with Khoja stemmer 0.951 0.952 0.950 95.1 3253.84 

 

Table 5.14 shows the results of combining LVQ, Naive Bayes, and C4.5 using 

stacking with Naïve Bayes as a Meta classifier, the results show that stacking these 

classifiers gives high classification accuracy with the two datasets. 

The third model that we evaluate is a stacking model that consists of the following 

five base classifiers: 

1- SVM 

2- Naive Bayes 
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3- C4.5  

4- Decision Stump 

5- kNN 

 

Table 5.15: Accuracy, F-measure and Time of stacked model of five classifiers (SVM, Naive Bayes, 

C4.5, Decision Stump and kNN) and Naïve Bayes Meta classifier. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.992 0.993 0.992 99.2 1962.73 

BBC with Khoja stemmer 0.983 0.985 0.981 98.9 1760.91 

CNN with light stemming 0.977 0.978 0.977 97.8 3756.54 

CNN with Khoja stemmer 0.965 0.966 0.964 96.4 3572.37 

 

From Table 5.15 we notice that we get a very high accuracy using five classifiers, but 

also the time needed to build the model is increasing also compared to Table 5.13. 

At this stage we use only two datasets because using stacking with five base 

classifiers needs high memory recourses, so we cannot use OSAC dataset with all 

stacked models that contain five classifiers. 

The fourth model that we evaluate is a stacking model that consists of the following 

five base classifiers: 

1- LVQ 

2- Naive Bayes 

3- C4.5 

4- RBF networks 

5- kNN 

 

Table 5.16: Accuracy, F-measure and Time of stacked model of five classifiers (LVQ, Naive Bayes, 

C4.5, RBF networks and kNN) and Naïve Bayes Meta classifier. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.988 0.989 0.988 98.9  2163.43 

BBC with Khoja stemmer 0.983 0.985 0.981 98.1 1822.65 

CNN with light stemming 0.975 0.976 0.975 97.6  4196.71 

CNN with Khoja stemmer 0.970 0.970 0.970 96.9  3714.42 
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Table 5.16 shows the results of combining these five classifiers with stacking and 

using Naïve Bayes as Meta classifier. Also we notice that the accuracy increases when 

using five bas classifiers compared to the model contains just three classifiers as in 

Table 5.14. 

5.3.2 Stacking with Linear Regression as Meta classifier 

In this section we build combined models that based on Linear Regression classifier 

as a Meta classifier using three and five base classifiers. 

The first model that we evaluate is a stacking model that consists of the following 

three base classifiers with Linear Regression classifier as a Meta classifier: 

1- Naïve Bayes 

2- SVM 

3- C4.5 

Table 5.17 shows the results of combining these three classifiers with stacking and 

using Linear Regression as Meta classifier, and we notice this model achieves a high 

accuracy using BBC dataset.  

 

Table 5.17: Accuracy, F-measure and Time of stacked model of three (Naïve Bayes, SVM and C4.5) 

classifiers and Linear Regression Meta classifier. 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.994 0.994 0.994 99.4 1567.84 

BBC with Khoja stemmer 0.977 0.977 0.977 97.7 1026.27 

CNN with light stemming 0.938 0.939 0.938 93.9 3701.96 

CNN with Khoja stemmer 0.922 0.922 0.922 92.2 3289.74 

OSAC with light stemming 0.955 0.956 0.955 95.6 16964.25 

OSAC with Khoja stemmer 0.942 0.942 0.942 94.2 15891.81 

 

The second model that we evaluate is a stacking model that consists of the following 

five base classifiers with Linear Regression classifier as a Meta classifier: 

1- Naïve Bayes 

2- SVM 

3- C4.5 
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4- Decision Stump 

5- kNN 

Table 5.18 shows the results of combining five classifiers with stacking and using 

Linear Regression as Meta classifier; we notice the accuracy increases when using 

five classifiers where as the time is also increases. 

 
Table 5.18: Accuracy, F-measure and Time of stacked model of five classifiers (SVM, Naive Bayes, 

C4.5, Decision Stump and kNN) and Linear Regression Meta classifier. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.994 0.995 0.994 99.5 3718.07 

BBC with Khoja stemmer 0.980 0.980 0.980 98.0 3291.12 

CNN with light stemming 0.940 0.941 0.940 94.0 8721.59 

CNN with Khoja stemmer 0.929 0.929 0.929 93.0 8036.61 

 

5.4 Arabic Text Documents classification using boosting  

At this experiment we build a model that use AdaBoost to classify Arabic text 

documents. The model build based on C4.5 classifier. 

Table 5.19 shows the results of using AdaBoost with C4.5 with 5 iterations; we notice 

that we get the highest accuracy (95.3%) using BBC Arabic dataset with light 

stemming. 

 

Table 5.19: Accuracy, F-measure and Time of using AdaBoost with C4.5 classifier using 5 iterations. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.952 0.953 0.952 95.3 1174.58 

BBC with Khoja stemmer 0.941 0.941 0.942 94.2 922.37 

CNN with light stemming 0.924 0.924 0.924 92.6 3543.64 

CNN with Khoja stemmer 0.901 0.901 0.901 90.1 3328.93 

 

From Table 5.19 and Table 5.20 we see that increasing the number of iteration 

produces a high classification accuracy using all datasets. 
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Table 5.20:  Accuracy, F-measure and Time of using AdaBoost with C4.5 using 10 iterations. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.995 0.995 0.995 99.5 1965.72 

BBC with Khoja stemmer 0.980 0.980 0.980 98.0 1585.29 

CNN with light stemming 0.942 0.942 0.943 94.3 4877.76 

CNN with Khoja stemmer 0.938 0.938 0.939 93.9 4398.46 

 

5.5 Arabic Text Documents classification using Bagging  

At this experiment we build a model that use bagging to classify Arabic text 

documents. The model build based on Decision Tree classifier. 

At the first experiment we use bagging with decision Tree with 5 iterations as shown 

in Table 5.21, we notice that the highest accuracy is got when using BBC dataset with 

light stemming. 

 

Table 5.21: Accuracy, F-measure and Time of using Bagging with Decision Tree using 5 iterations. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.936 0.936 0.936 93.7 295.85 

BBC with Khoja stemmer 0.930 0.931 0.930 93.0 201.17 

CNN with light stemming 0.911 0.912 0.911 91.1 922.16 

CNN with Khoja stemmer 0.906 0.906 0.906 90.6 738.88 

 

We use the same experiment but with 10 iterations as shown in Table 5.22, we notice 

that we get a higher accuracy when increasing the number of iterations. 

Table 5.22: Accuracy, F-measure and Time of using Bagging with Decision Tree using 10 iterations. 

 

Dataset F-measure Precision Recall Accuracy  % Time (s) 

BBC with light stemming 0.993 0.993 0.993 99.3 470.99 

BBC with Khoja stemmer 0.977 0.977 0.977 97.7 365.62 

CNN with light stemming 0.928 0.929 0.928 92.9 1427.54 

CNN with Khoja stemmer 0.913 0.913 0.913 91.3 1132.43 
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5.5 Comparing Combined models with single classifiers  

In this section we compare the classification accuracy of all combined models that we 

build with the classification accuracy of single classifiers that other researchers used 

to classify Arabic text documents  

5.5.1 Comparing combined classifiers using fixed combining rules with single 

classifiers 

According to the results that we get from combining different classifiers using fixed 

combining rules in section 5.1 , we compare these results with each single classifier 

that used by other researchers to classify Arabic text document. 

Figure 5.8 shows the accuracy of combining three classifiers using majority voting 

rule and BBC Arabic dataset with light stemming with other classifiers. 

From Figure 5.8 we notice that the combined model of three classifiers (Naïve Bayes, 

SVM and C4.5) give a high accuracy (94.1%) compared to the results of single 

classifiers used in [22, 24, 27]. 

 

 
 

Figure 5.8: A comparison between three combined classifiers using majority voting rule vs. single 

classifiers. 

 

Figure 5.9 shows the accuracy of combining five classifiers using majority voting rule 

and BBC Arabic dataset with light stemming with other classifiers. 
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Figure 5.9: A comparison between five combined classifiers using majority voting rule vs. single 

classifiers. 

From Figure 5.9 we notice that the combined model of five classifiers (Naïve Bayes, 

SVM, C4.5, kNN and Decision Stump) gives a high accuracy (94.5%) compared to the 

results of single classifiers used in [11, 22, 24, 27]. 

Figure 5.10 shows the accuracy of combining seven classifiers using majority voting 

rule and BBC Arabic dataset with light stemming with other classifiers. 

The comparison shows that the combined model using seven classifiers (Naïve Bayes, 

SVM, C4.5, kNN, RBFN, Nearest-neighbor-like  and Decision Stump) an majority 

voting rule give a accuracy higher than any other single classifier used in the model 

[11, 22, 24, 27]. 

 

 

Figure 5.10: A comparison between seven combined classifiers using majority voting rule vs. single 

classifiers. 
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5.5.2 Comparing combined classifiers using stacking with single classifiers 

 

In this section we compare the results of combined classifiers using stacking with 

other single classifiers that researchers use to classify Arabic text document. 

First we will compare stacked model with three and five classifiers using naïve Bayes 

as a Meta classifier. 

Figure 5.11 compare between stacked model using three classifiers (Naïve Bayes, 

SVM and C4.5) using Naïve Bayes as a Meta classifier and single classifiers , we see 

that the accuracy of stacked model (98.3%) is higher than any single classifier. 

 

 

Figure 5.11: A comparison between stacking using three classifiers vs. single classifiers. 

 

In Figure 5.12 we use other three classifiers (LVQ, Naïve Bayes and C4.5); the 

comparison shows that stacked model outperforms other single classifiers [22, 24, 

40]. 

 

Figure 5.12: A comparison between stacking using three classifiers vs. single classifiers. 
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Figure 5.13: A comparison between stacking using five classifiers vs. single classifiers. 

The other comparison is done between the stacked models built using five classifiers, 

the first model consists of  Naïve Bayes, kNN , SVM, Decision Stump and C4.5 using 

Naïve Bayes as a Meta classifier and with each single classifier used to classify 

Arabic text documents , the result shows the high accuracy of stacked model as shown 

in Figure 5.13. 

 

 
 

Figure 5.14: A comparison between stacking using five classifiers vs. single classifiers 

Figure 5.14 shows other model that consists of Naïve Bayes, kNN, LVQ, Decision 

Stump and C4.5; comparing this model to the accuracy of single classifiers we get 

that stacking outperforms all single classifiers which used in [11, 22, 24, 27]. 

The last stacked model that we will compare is the same as previous model but when 

using Linear Regression as a Meta classifier. 
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Figure 5.15 show the comparison between stacked models using Linear Regression as 

a Meta classifier and other single classifiers, the result shows that using five stacked 

classifiers to classify Arabic text documents give a very high accuracy compared to 

single classifiers in [11, 22, 24, 27, 40]. 

 

 

Figure 5.15: A comparison between stacking using three and five classifiers vs. single classifiers. 

5.5.3 Comparing AdaBoost with single classifier 

In this section we compare the results of using AdaBoost a single classifier that 

researchers use to classify Arabic text document. 

We use C4.5 classifier with AdaBoost, first we implement boosting using 5 iterations 

and then using 10 iterations; Figure 5.16 shows the result of boosting C4.5. 

  

 

 

Figure 5.16: A comparison between AdaBoost vs. single classifier (C4.5) using 5 and 10 iterations. 
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From Figure 5.16 we see that using C4.5 as a single classifier used in [11] achieved a 

classification accuracy 78.42%, which is low compared to using the same classifier 

with boosting which improve the accuracy of classifying Arabic text documents to 

99.5% using 10 iterations. 

5.5.4 Comparing Bagging with single classifier 

In this section we compare the results of using bagging a single classifier that 

researchers use to classify Arabic text document. 

We use Decision Tree classifier with bagging, first we implement bagging using 5 

iterations and then using 10 iterations; Figure 5.17 shows the result of bagging 

Decision Tree.  

We notice that applying bagging on Decision Tree classifier improves effectively the 

accuracy of classifying Arabic text documents compared to using the Decision Tree as 

a single classifier such in [70]. 

 

 

Figure 5.17: A comparison between Bagging vs. single classifier (Decision Tree) using 5 and 10 

iterations. 
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depends on the combination algorithm, we notice that stacking needs more time than 

any other approach. Also the number of classifiers used in the model increase the time 

needed to build the model.  

The fixed combination rules need less time to build the model than any other 

combination approach, because this approach simply called non-trainable combiner, 

which means the combiners do not need to be trained. Each classifier in the model 

gives a decision and the combiner uses the selected rule to give the final decision. 

The Stacking algorithm needs more time than any other combination approach 

because it consists of two levels of classifiers. The first level consists of base 

classifiers which are trained using the documents dataset, and then the outputs of the 

base classifiers are used with the original dataset to produce a new dataset. 70 % of 

the dataset is used to train the base classifiers, and 30% for testing. The second level 

or Meta classifier is trained using the new dataset by using 10 folds cross validation. 

The 10 folds cross validation training method needs more time than the method used 

with the base classifiers. All mentioned reasons makes the stacking algorithm need 

more time to be built.  

The AdaBoost algorithm also achieves a very high accuracy in classification. The 

AdaBoost algorithm focuses on the unclassified documents or the misclassified during 

building the model. It assigns weights and focuses on these documents through the 

next iterations to improve the classification accuracy. The AdaBoost algorithm needs 

an acceptable time to build the model compared with stacking model. 

The last algorithm is bagging which achieves a high accuracy in classifying Arabic 

text documents. We notice that bagging needs less time than AdaBoost algorithm to 

build the model because bagging trains different models in the same time and 

combines their decisions, see section (3.3.5). 

Table 5.23 shows a comparison between fixed combination rules and stacking when 

using the BBC Arabic dataset.  

From Figure 5.23 we notice that the accuracy of using three classifiers with fixed 

combining rules was 94.1%, and the needed time to build the approach was 107.1 

seconds. When we increased the number of classifiers to seven, the accuracy 

increased to 95.3%, but in the other side the time needed to build the approach was 
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increased to 835.94 seconds. That means increasing the accuracy of results by 1.2% 

needs additional 728.84 seconds. 

The accuracy of the stacking algorithm was 98.9%, where the time needed to build the 

approach was 1480.35 seconds when using three classifiers. But when we used five 

classifiers, the accuracy was 99.2% and the time needed to build the approach was 

1963.73 seconds.   Comparing the results of stacked approach using three classifiers 

with the approach which was built by three classifiers using fixed combining rules, we 

notice that the accuracy of the stacking algorithm is higher by 4.8%, but the time cost 

was very high because the stacking algorithm needed 1373.25 seconds more than the 

fixed combining rules combiner. 

The high cost of time that the stacking algorithm needed to build the approach was 

due to the two levels of learning and the 10 fold cross validation learning method used 

by level-1 Meta classifier, where in the other side the fixed combining rules did not 

need to learn the combiner. 

Table 5.23: Comparing the Accuracy and Time between Fixed combining rules and Stacking. 

Number  of classifiers 

Fixed Combining Rules Stacking 

Accuracy (%) Time(s) Accuracy (%) Time(s) 

3 classifiers 
94.1 107.1 98.9 1480.35 

5 classifiers 
94.5 158.78 99.2 1962.73 

7 classifiers 
95.3 835.94 - - 

 

Table 5.24 shows a comparison between AdaBoost and Bagging algorithms. We 

notice that the AdaBoost algorithm needs more time than bagging to build the 

approach. For example using ten iterations, the accuracy of AdaBoost was 99.5% and 

it needed 1174.58 seconds to classify documents, where the accuracy of bagging 

algorithm was 99.3% and it needed 470.99 second to classify documents. 



 

70 
 

The high cost of time that the AdaBoost needed to build the approach was due to it 

works iteratively, while the bagging algorithm works in parallel, which means that in 

the bagging algorithm, each classifier learn using  a sample of dataset at the same 

time.   

 

Table 5.24: Comparing the Accuracy and Time between AdaBoost and Bagging. 

Number  of 

Iterations 

AdaBoost Bagging 

Accuracy Time(s) Accuracy Time(s) 

5 
95.3 1174.58 93.7 295.85 

10 
99.5 1965.72 99.3 470.99 

 

 

Based upon the experimental results, we have demonstrated that combining classifiers 

using different approaches can effectively improve the accuracy of classifying Arabic 

Text documents. 
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CHAPTER 6  

CONCLUSIONS 
 

6.1 Summary and Concluding Remarks 

Many different classifiers were used to classify Arabic text documents; some of these 

classifiers gave high classification accuracy. In this thesis, we combined different 

approaches to enhance Arabic text documents classification. 

The advantages of combining classifiers motivated us to combine classifiers to 

improve the accuracy of classifying Arabic text documents.  

In this thesis, we built four combined models; the first model used fixed combining 

rules to combine the results of different classifiers, where the second one is stacking 

which used two stages of classification, in the first stage it used base classifiers, where 

in the second one it learnt a meta classifier based on the results of base classifiers to 

give the final classification result. 

The third and the fourth models that we built are AdaBoost and Bagging respectively, 

where we used different number of iterations for each one. 

The results of combining classifiers using fixed combining rules showed that the 

majority voting rule outperformed all single classifiers that were used to build the 

model and it also outperformed all other fixed combining rules such as average of 

probability, median of probability and other fixed rules. The highest accuracy of 

combining classifiers using fixed rules was achieved by majority voting using BBC 

Arabic data set with light stemming and using TF-IDF term weighting schema, the 

accuracy of the model using seven classifiers is 95.3% which was high compared to 

using single classifier. The time required to build this model was 835.94 second 

which was relatively acceptable compared to some single classifiers such as Decision 

Tree. 

We used different classifiers at this model, the results showed that the accuracy 

increased when we increased the number of classifiers, but at the same time, the 

required time to build the model increased also. The accuracy using a model with 
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three classifiers was 94.1%, where it was 94.5% when using five classifiers, but the 

best accuracy achieved using seven classifiers and it was 95.3%. 

The second model that we built was a stacking model; the accuracy of stacked model 

was very high compared to the accuracy of single classifiers, but it needed more time 

to build the model because stacking needed two stages to learn the model. The first 

stage was to learn the base classifiers; where the second stage was to learn the Meta 

classifier based on the original dataset and the classification results of the base 

classifiers. 

We used Naïve Bayes and Linear Regression as Meta classifiers to build our stacked 

model, where we used three and five base classifiers for each model. 

The best results achieved using Naïve Bayes Meta classifier when using five base 

classifiers was 99.2%; where the best accuracy when using Linear Regression with 

five base classifiers was 99.4%. All these results achieved using BBC Arabic dataset 

with light stemming and TF-IDF term weighting schema. 

The third model we built using AdaBoost, the AdaBoost used in conjunction with 

C4.5 classifier, the AdaBoost improved the performance of C4.5 classifier to classify 

Arabic text documents, when boosting the C4.5 using 5 iterations it classified Arabic 

documents and achieved a 95.3% of classification accuracy, where when we used 10 

iterations the accuracy was 99.5%. 

The last model we built using bagging in conjunction with Decision Tree, the model 

achieved a high accuracy and improved the results of decision tree classifier , the 

results showed that using 5 iterations achieved an accuracy of 93.7% where when we 

used 10 iterations we achieved 99.4% of classification accuracy. 

In all of previous models, the highest accuracy achieved using BBC Arabic dataset 

with light stemming and TF-IDF term weighting schema. 

In our experiments we used three datasets BBC Arabic, CCN Arabic and OSAC 

datasets. We used just two stemming methods, the light stemming and Khoja stemmer 

and we used only TF-IDF term weighting schema. 
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The combined models were compared to other single classifiers that used by 

researchers to classify Arabic text documents, the comparison was done in term of 

accuracy, precision, recall and F-measure. 

The first limitation in our experiments  that we cannot use the OSAC data set with all 

models because the OSAC data set did not fit into memory specially with stacking , 

AdaBoost and Bagging  because they needed a high memory resources. 

The second limitation was that we cannot build a stacking model that consisted of 

more than five classifiers because of memory resources that were needed, and at the 

same time increasing the number of base classifiers produced a model that needed a 

very long time to be built. 

The combined models that we built in our research improved the accuracy of 

classifying Arabic text documents, all models achieved a high classification accuracy 

compared to the single classifiers used by other researchers, although some models 

such as stacking needed more time to be built, but it achieved a very high accuracy. 

Fixed combining rules, AdaBoost and Bagging achieved a high accuracy and needed 

an acceptable time to build the model compared to some classification algorithms. 

6.2 Recommendations and Future Work 

In this thesis, we have shown that combining classifiers improved the accuracy of 

classifying Arabic text documents. Different combination methods were evaluated 

and all of these approaches achieved high classification accuracy. 

Using fixed combination rules achieved a high accuracy with an acceptable time 

compared to other classifiers, where stacking achieved a very high accuracy but it 

needed a relatively more time to train the system. 

Using boosting we showed that weak classifiers such as C4.5 can achieve high 

classification accuracy. The same high accuracy was achieved using bagging with 

decision tree classifiers. 

According to the results of experiments and the limitations that we faced in our thesis, 

the future work will be devoted to the following points:  
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1- Using other classifiers to build a combined model by fixed rules to enhance 

the accuracy more than the achieved results. 

2- Reducing the time needed to build a combined model especially for stacked 

models. 

3- Adopting our models to deal with large datasets specially when using a large 

number of classifiers. 

4- Working with other data types such as images and voice. 
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