

Computer Engineering Department

Faculty of Engineering

Deanery of Higher Studies

Islamic University – Gaza

Palestine

Combining Different Approaches to

Improve Arabic Text Documents

Classification

Hassan Mohammad Dawoud

Supervisor

Prof. Ibrahim S. I. Abuhaiba

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

1434H (2013)

III

IV

Dedication

To My Father, and Mother,

To My Wife,

To My Son,

To My Sisters and Brothers,

To My Friends,

To those who gave me all kinds of support,

To all, I dedicate this work.

V

Acknowledgements

Praise is to Allah, the Almighty for having guided me at every

stage of my life.

I would also like to take this opportunity to thank my research

supervisor, Prof. Ibrahim S. I. Abuhaiba for giving me the

opportunity to work with him and guiding and helping me

throughout this research and other courses.

Also I would like to thank Dr. Mohammed A. Alhanjouri and

Dr. Tamer S. Fatayer for their encouragement and insightful

comments.

VI

Table of Contents

List of Abbreviations--VIII

List of Figures ---IX

List of Tables --XI

Arabic Abstract --XIII

Abstract---XIV

CHAPTER 1 : INTRODUCTION -- 1

1.1 Combining Classifiers -- 2

1.2 Arabic Language -- 4

1.3 Arabic Language Challenges -- 4

1.4 Topic Area -- 5

1.5 Thesis Questions --- 5

1.6 Thesis Significance -- 6

1.7 Thesis Contribution --- 6

1.8 Thesis Organization--- 7

CHAPTER 2 : RELATED WORK -- 8

2.1 Applying Classification Algorithms on Arabic Text -------------------------------------- 8

2.2 Comparing between different Classification Algorithms applied on Arabic Text -- 9

2.3 Combining Classification Algorithms --- 11

CHAPTER 3 : BACKGROUND --- 13

3.1 Text classification --- 13

3.2 Text Classification Methods --- 13

3.2.1 Decision Trees --- 13

3.2.2 SVM Classifiers --- 14

3.2.3 Learning Vector Quantization Algorithms --- 16

3.2.4 Naïve Bayes -- 17

3.2.5 K-Nearest Neighbor Classifier-- 20

3.2.6 Radial Basis Function Neural Network --- 21

3.3 Combining Classifiers -- 22

3.3.1 Reasons for combining classifiers --- 22

3.3.2 Fixed Combining Rules -- 25

3.3.3 Stacking -- 28

3.3.4 The Boosting Algorithm --- 30

3.3.5 Bagging Algorithm --- 33

CHAPTER 4 : METHODOLOGY -- 35

4.1 Data Collection -- 36

VII

4.2 Data Preprocessing-- 38

4.2.1 String Tokenizing -- 39

4.2.2 Normalization --- 39

4.2.3 Stop Words -- 39

4.2.4 Stemming Algorithms --- 40

4.2.5 Term weighting --- 41

4.3 Evaluation -- 43

CHAPTER 5 : EXPERIMENTAL RESULTS -- 45

5.1 Implementation Environment -- 45

5.2 Arabic Text Documents classification using fixed combining rules------------------ 45

5.2.1 Using three classifiers Model -- 46

5.2.2 Using five classifiers Model -- 49

5.2.3 Using seven classifiers Model --- 52

5.2.3 Comparing all models --- 55

5.3 Arabic Text Documents classification using Stacking ---------------------------------- 56

5.3.1 Stacking with Naïve Bayes as Meta classifier --- 56

5.3.2 Stacking with Linear Regression as Meta classifier -- 59

5.4 Arabic Text Documents classification using boosting ---------------------------------- 60

5.5 Arabic Text Documents classification using Bagging ---------------------------------- 61

5.5 Comparing Combined models with single classifiers ----------------------------------- 62

5.5.1 Comparing combined classifiers using fixed combining rules with single classifiers -------- 62

5.5.2 Comparing combined classifiers using stacking with single classifiers ------------------------ 64

5.5.3 Comparing AdaBoost with single classifier --- 66

5.5.4 Comparing Bagging with single classifier --- 67

5.6 Discussion --- 67

CHAPTER 6 : CONCLUSIONS --- 71

6.1 Summary and Concluding Remarks -- 71

6.2 Recommendations and Future Work -- 71

REFERENCES --- 75

VIII

LIST OF ABBREVIATIONS

AdaBoost Adaptive Boosting

Bagging Bootstrap Aggregating

DF Document Frequency

DT Decision Tree

IDF Inverse Document Frequency

kNN k Nearest Neighbor

kNNM k Nearest Neighbor Model-based

LDC Linguistic Data Consortium

LVQ Learning Vector Quantization

MLP Multilayer Perceptron

NB Naïve Bayes

NN Neural Networks

OSAC Open Source Arabic Corpora

OWA Ordered Weighted Averaging

RBFNN Radial Basis Function Neural Network

SVD Singular Value Decomposition

SVM Support Vector Machine

TC Text Classification , Text Categorization

TF Term frequency

TF-IDF Term Frequency-Inverse Document Frequency

TR-Classifiers Trigger Classifiers

IX

 LIST OF FIGURES

Figure 3.1: Support Vectors 15

Figure 3.2: LVQ algorithm procedure. ... 17

Figure 3.3: Architecture of Radial Basis Function (RBFNN). 21

Figure 3.4: The statistical reason for combining classifiers. 23

Figure 3.5: The computational reason for combining classifiers. 24

Figure 3.6: The representational reason for combining classifiers. 25

Figure 3.7: The architecture of combined classifiers using fixed rules. 28

Figure 3.8: Pseudo code for the stacking algorithm. .. 30

Figure 3.9: The framework of AdaBoost algorithm. .. 31

Figure 3.10: The steps of classifying a new object by the ensemble of classifiers build

by AdaBoost Algorithm.. 32

Figure 3.11: The framework of Bagging algorithm. ... 33

Figure 3.12: The steps of classifying a new object by the ensemble of classifiers build

by Bagging Algorithm .. 34

Figure 4.1: Methodology steps ... 35

Figure 4.2: Arabic text documents preprocessing steps. .. 38

Figure 5.1: Accuracy summarization of three classifiers combined models 48

Figure 5.2: Summarization of three classifiers combined Model building time 49

Figure 5.3: Accuracy summarization of five classifiers combined models 51

Figure 5.4: Comparison of five classifiers combined Models building time.............. 52

Figure 5.5: Accuracy summarization of seven classifiers combined models 54

Figure 5.6: Comparison of seven classifiers combined Models building time 55

Figure 5.7: The accuracy of all models using three, five and seven classifiers. 55

Figure 5.8: A comparison between three combined classifiers using majority voting

rule vs. single classifiers. .. 62

Figure 5.9: A comparison between five combined classifiers using majority voting

rule vs. single classifiers. .. 63

Figure 5.10: A comparison between seven combined classifiers using majority voting

rule vs. single classifiers. .. 63

Figure 5.11: A comparison between stacking using three classifiers vs. single

classifiers. ... 64

X

Figure 5.12: A comparison between stacking using three classifiers vs. single

classifiers. ... 64

Figure 5.13: A comparison between stacking using five classifiers vs. single

classifiers. ... 65

Figure 5.14: A comparison between stacking using five classifiers vs. single

classifiers .. 65

Figure 5.15: A comparison between stacking using three and five classifiers vs.

single classifiers. ... 66

Figure 5.16: A comparison between AdaBoost vs. single classifier (C4.5) using 5 and

10 iterations. ... 66

Figure 5.17: A comparison between Bagging vs. single classifier (Decision Tree)

using 5 and 10 iterations. .. 67

XI

LIST OF TABLES

Table 4.1: Categories and number of documents per category for CNN Arabic corpus.

 .. 36

Table 4.2: Categories and number of documents per category for OSAC dataset. 37

Table 4.3: Categories and number of documents per category for BBC Arabic corpus.

 .. 38

Table 4.4: Some derivations of the root “40”لعب

Table 4.5: A word and its affixes "ليناقشوهم" .. 41

Table 4.6: Confusion matrix for two class classification problem. 43

Table 5.1: Accuracy, F-measure and Time of combined classifiers using three

classifiers and BBC dataset (TF-IDF and Light stemming). 46

Table 5.2: Accuracy, F-measure and Time of combined classifiers using three

classifiers and BBC dataset (TF-IDF and Khoja stemmer). 47

Table 5.3: Accuracy, F-measure and Time of combined classifiers using three

classifiers and CNN dataset (TF-IDF and Light stemming). 47

Table 5.4: Accuracy, F-measure and Time of combined classifiers using three

classifiers and CNN dataset (TF-IDF and Khoja stemmer). 48

Table 5.5: Accuracy, F-measure and Time of combined classifiers using five

classifiers and BBC dataset (TF-IDF and Light stemming). 49

Table 5.6: Accuracy, F-measure and Time of combined classifiers using five

classifiers and BBC dataset (TF-IDF and Khoja stemmer). 50

Table 5.7: Accuracy, F-measure and Time of combined classifiers using five

classifiers and CNN dataset (TF-IDF and Light stemming). 50

Table 5.8: Accuracy, F-measure and Time of combined classifiers using five

classifiers and CNN dataset (TF-IDF and Khoja stemmer). 51

Table 5.9: Accuracy, F-measure and Time of combined classifiers using seven

classifiers and BBC dataset (TF-IDF and Light stemming). 52

Table 5.10: Accuracy, F-measure and Time of combined classifiers using seven

classifiers and BBC dataset (TF-IDF and Khoja stemmer). 53

Table 5.11: Accuracy, F-measure and Time of combined classifiers using seven

classifiers and CNN dataset (TF-IDF and Light stemming). 53

Table 5.12: Accuracy , F-measure and Time of combined classifiers using seven

classifiers and CNN dataset (TF-IDF and Khoja stemmer) 54

XII

Table 5.13: Accuracy, F-measure and Time of stacked model of three (Naïve Bayes,

SVM and C4.5) classifiers and Naïve Bayes Meta classifier. 57

Table 5.14: Accuracy, F-measure and Time of stacked model of three classifiers

(LVQ, Naive Bayes and C4.5) and Naïve Bayes Meta classifier. 57

Table 5.15: Accuracy, F-measure and Time of stacked model of five classifiers

(SVM, Naive Bayes, C4.5, Decision Stump and kNN) and Naïve Bayes Meta

classifier. ... 58

Table 5.16: Accuracy, F-measure and Time of stacked model of five classifiers

(LVQ, Naive Bayes, C4.5, RBF networks and kNN) and Naïve Bayes Meta

classifier. ... 58

Table 5.17: Accuracy, F-measure and Time of stacked model of three (Naïve Bayes,

SVM and C4.5) classifiers and Linear Regression Meta classifier. 59

Table 5.18: Accuracy, F-measure and Time of stacked model of five classifiers

(SVM, Naive Bayes, C4.5, Decision Stump and kNN) and Linear Regression

Meta classifier. .. 60

Table 5.19: Accuracy, F-measure and Time of using AdaBoost with C4.5 classifier

using 5 iterations. .. 60

Table 5.20: Accuracy, F-measure and Time of using AdaBoost with C4.5 using 10

iterations. .. 61

Table 5.21: Accuracy, F-measure and Time of using Bagging with Decision Tree

using 5 iterations. .. 61

Table 5.22: Accuracy, F-measure and Time of using Bagging with Decision Tree

using 10 iterations. .. 61

Table 5.23: Comparing the Accuracy and Time between Fixed combining rules and

Stacking. ... 69

Table 5.24: Comparing the Accuracy and Time between AdaBoost and Bagging. ... 70

XIII

 دمج طرق مختلفة لتحسين تصنيف المستندات النصية العربية

 حسن محمد داود

 الملخص

تصنيف المستندات النصية هي عملية يتم فيها تصنيف المستندات إلى مجموعات محددة مسبقا

هنالك العديد من الابحاث التي تمت لتصنيف المستندات .المستنداتبناءً على محتويات هذه

الهدف الرئيسي من هذا البحث هو تحسين دقة . العربية باستخدام خوارزميات تصنيف مختلفة

 .تصنيف المستندات العربية باستخدام طرق دمج مختلفة بين المصنفات

لقد .حصول على دقة تصنيف عاليةفي هذا البحث سنقوم باستخدام عدة طرق لدمج المصنفات لل

 Fixed ruleالطريقة الاولى وتسمى . قمنا باستخدام اربع طرق لدمج العديد من المصنفات

combination تعتمد على دمج المصنفات بإستخدام قواعد دمج ثابتة لدمج نتائج مصنفات

غلبية وقد وصلت دقة مختلفة وقد حققت هذه الطريقة نتائج ممتازة باستخدام قاعدة التصويت بالا

وقد احتاج بناء هذا النموذج الى , باستخدام سبعة مصنفات مختلفة% 59.3التصنيف الى

 .ثانية 439.58

حيث يتم فيها تصنيف المستندات على ، Stackingالطريقة الثانية التي تم استخدامها تسمى

ويتم بعد ذلك ،المرحلة الاولى تتم باستخدام عدة مصنفات تسمى المصنفات الأساسية, مرحلتين

 Naïveاستخدام نتائج التصنيف كمدخلات للمرحلة الثانية التي تتم باستخدام مصنف واحد مثل

Bayes لاولى بالاضافة الى التصنيفات حيث يعتمد تعليم هذا المصنف على نتائج المرحلة ا

 .الصحيحة للمستندات التى سيتم تصنيفها

 Naïve Bayesباستخدام % 55.9لقد حققت هذه الطريقة دقة عالية في التصنيف وصلت الى

لكن هذه , Linear Regressionعند استخدام % 55.8في المرحلة الثانية من التصنيف و

لذلك فقد احتاج هذا , التصنيف لانها تتكون من مرحلتين ليةالطريقة تحتاج الى وقت اطول في عم

ثانية باستخدام 3934.79و الى Naïve Bayesثانية لبناءه باستخدام 35.9.93النموذج الى

Linear Regression.

وقد حققت هذه C4.5لتعزيز كفاءة المصنف AdaBoostالطريقة الثالثة تمت باستخدام

 عند تكرار عملية تعليم المصنف خمس مرات% 59.3ة تصل الى الطريقة دقة تصنيف عالي

عند تكرار العملية عشر مرات % 55.9ووصلت الى , ثانية 3398.94خلال فترة زمنية تساوي

 .ثانية 35.9.99خلال

حيث ان هذه الطريقة تهدف الى تحسين ، Baggingالتجربة الاخيرة التي تمت باستخدام

مع هذه Decision Treeوقد تم استخدام المصنف ،استقرار ودقة خوارزميات التصنيف

عند تكرار تعليم % ..53الطريقة وحصلنا على نتائج عالية لدقة تصنيف المستندات تصل الى

 العملية عشر مراتعند تكرار % 55.8و الى ثانية 959.49وذلك خلال المصنف خمس مرات

 .ثانية 897.55خلال

ولقد تم استخدام ثلاث RapidMinerواداة WEKAلقد اعتمدنا في تجاربنا على اداة

للتأكد وذلك BBC Arabic, CNN Arabic, OSACوهي مجموعات من النصوص العربية

بسرعة Core i3جميع التجارب تمت باستخدام جهاز ذو معالج من نوع . من دقة النتائج

2.2GHz 4و ذاكرة عشوائية سعتهاGB .قد تمت مقارنة النتائج التي حصلنا عليها من دمج ل

ظهرت طرق الدمج تفوق واضح في أوقد ،المصنفات بالطرق التى تستخدام مصنف واحد فقط

 .دقة تصنيف المستندات العربية

XIV

Combining Different Approaches to Improve Arabic Text

Documents Classification

Hassan Mohammad Dawoud

ABSTRACT

Text classification is the process of classifying documents into a predefined set of

categories based on their content. A variety of classifiers are used to classify Arabic

text documents. The main objective of this research is to improve Arabic text

documents classification by combining different classification algorithms. To achieve

this objective we build four models using different combination methods.

The first combined model was built using fixed combination rules, we used five fixed

rules to combine different classifiers; and for each rule we used different number of

classifiers; the best classification accuracy was achieved using majority voting rule

and it was 95.3% using seven classifiers, the time required to build this model was

835.94 seconds.

The second combination approach we used was stacking, which consists of two stages

of classification; the first stage was done by the base classifiers, where the second one

was done by a Meta classifier. In our experiments we used two different Meta

classifiers Naïve Bayes and Linear Regression; and we used different number of base

classifiers. Stacking achieved a very high classification accuracy of 99.2% when

using Naïve Bayes as a Meta classifier and 99.4% when using Linear Regression as a

Meta classifier. Stacking needed a long time to build the models because it consists of

two stages of learning and it was 1962.73 seconds using naïve Bayes and 3718.07

seconds using Linear Regression.

The third experiment was done using AdaBoost; we boosted C4.5 classifier with

different number of iterations. Boosting improves the classification accuracy of C4.5

classifier; it was 95.3% using 5 iterations and needed 1174.58 seconds to build the

model, where the accuracy was 99.5% using 10 iterations and needed 1965.72

seconds to build the model.

The fourth approach was done using Bagging, which was designed to improve the

stability and accuracy of machine learning algorithms, we used decision tree with

bagging, the results were 93.7% achieved through 295.85 seconds when using 5

iterations and 99.4% when using 10 iteration which needed 470.99 seconds. We used

three datasets to test the combined models, BBC Arabic, CNN Arabic and OSAC

datasets. The experiments were done using WEKA and RapidMiner data mining

tools. We used a platform of Intel Core i3 Processing power of 2.2 GHz CPU with

4GB RAM.

The results of all models showed that combining classifiers can effectively improve

the accuracy of Arabic text documents classification.

Keywords: Text classification, Combining classifiers, Fixed combining rules,

Stacking, Boosting, Bagging.

1

CHAPTER 1

INTRODUCTION

TEXT Classification (TC) is a technique often used as a basis for applications in

document processing, Web mining, topic identifications, text filtering and documents

organization etc. Many methods and algorithms have been applied to the problem of

text classification. These methods vary in their accuracy. Assessment of different

methods by experiment is the basis for choosing a classifier as a solution to a

particular problem instance. There are several methods used to classify text such as

Support Vector Machine (SVM), K-Nearest Neighbor (kNN), Artificial Neural

Networks (ANN), Naïve Bayes Classifier (NB), and Decision Trees (DT). Often none

of the basic set of traditional classifiers, ranging from Bayes-normal to Decision

Trees, Neural Networks and Support Vector Classifiers is powerful enough to

distinguish the pattern classes optimally; it has become clear that for more

complicated data sets the traditional set of classifiers can be improved by various

types of combining rules [1]. So, for practical purposes, we need an effective

methodology for combining them.

Several researches have reported that combining classifiers can improve the accuracy

of a standalone classifier, so based on these researches we will combine different

classification models to improve Arabic text documents classification.

According to Dietterich [2], there are three main motivations to combine classifiers, the

worst case, the best case and the computational motivation:

 Statistical motivation: it is possible to avoid the worst classifier by averaging

several classifiers. It was confirmed theoretically by Fumera and Roli [3]. This

simple combination was demonstrated to be efficient in many applications.

 Representational motivation: under particular situations, fusion of multiple

classifiers can improve the performance of the best individual classifier. It

happens when the optimal classifier for a problem is outside the considered

“classifier space”. There are many experimental evidences that it is possible if

the classifiers in an ensemble make different errors. This assumption has a

theoretical support in some cases when linear combination is performed.

2

 Computational motivation: some algorithms perform an optimization task in

order to learn and suffer from local minima. Algorithms such as the back

propagation for neural networks are initialized randomly in order to avoid

locally optimum solutions. In this case, it is a difficult task to find the best

classifier, and it is often used several (hundreds or even thousands)

initializations in order to find a presumable optimal classifier. Combination of

such classifiers showed to stabilize and improve the best single classifier

result.

According to the benefits of combining classifiers, we will use these techniques in

classifying Arabic text documents. The idea of combining classifiers is motivated by

the observation of their complementary characteristics. It is desirable to take

advantage of the strengths of individual classifiers and to avoid their weakness,

resulting in the improvement of classification accuracy.

1.1 Combining Classifiers

The general idea of combining classifiers can be summarized by the use of a

methodology to create an ensemble of learners and to produce a final decision given

the outputs of those learners. This kind of models is intuitive since it imitates our

nature to seek several opinions before making a crucial decision [4].

The research field of multiple classifier systems becomes very popular after the half

of the 1990 decade, with many papers published on the creation of ensembles of

classifiers that provided some theoretical insights of why combining classifiers could

be interesting. Classifier ensemble is a set of learning machines whose decisions are

combined to improve performance of the pattern recognition system. Much of the

efforts in classifier combination researches focus on improving the accuracy of

difficult problems, managing weaknesses and strengths of each model in order to give

the best possible decision. The use of combination of multiple classifiers was

demonstrated to be effective, under some conditions, for several pattern recognition

applications. Many studies showed that classification problems are often more

accurate when using combination of classifiers rather than an individual base learner

[5].

3

In this research we will use four models to combine classifiers to improve the

classification of Arabic text documents. These models are Fixed Combining Rules,

Stacking, AdaBoost and Bagging.

The fixed combining rules provide the classification decision by combining the

outputs of several classifiers [6]. In this approach, all classifiers in the model are

learned and each classifier give its decision, then the combiner uses the results of

classifiers to give the final decision according to the rule used for combination. Many

rules such as majority voting, maximum rule, minimum rule, average rule and product

rule can be used in the combiner [7].

The second approach is stacking algorithm [8]. Stacking is probably the most popular

meta-learning technique. Stacking is usually employed to combine models built by

different classifiers. The stacking algorithm is based on two level of classification.

The first level contains the base classifiers which are trained using the original

dataset. Then a new dataset is generated using the original dataset and the prediction

of base classifiers. This dataset is used to learn the Meta classifier. This classifier

combines the different predictions into a final one [4].

The third algorithm that we will use in our research is AdaBoost [9]. AdaBoost tries

to combine weak base classifier in order to produce an accurate “strong” classifier.

The approach is an iterative process that builds an ensemble of classifiers. The

algorithm trains classifier sequentially, a new model per round. At the end of each

round, the misclassified patterns are weighted in order to be considered more

important in the next round, so that the subsequent models compensate error made by

earlier classifiers. The learning algorithm of the classifier used in AdaBoost must

allow the use of a weight for each training pattern. The idea is to give higher weights

to the patterns that are misclassified and in the next iteration try to construct a

classifier capable of classify correctly these kinds of patterns [4].

The fourth approach that we will use is the Bagging. The Bagging technique

(bootstrap aggregating) [10] is based on the idea that bootstrap samples of the original

training set will present a small change with respect to the original training set, but

sufficient difference to produce diverse classifiers. Each member of the ensemble is

trained using a different training set, and the predictions are combined by averaging or

voting. The different datasets are generated by sampling from the original set,

4

choosing N items uniformly at random with replacement [6]. All of these models will

be explained in chapter 3.

1.2 Arabic Language

Arabic Language is one of the widely used languages in the world. Arabic language is

a Semitic language that has a complex and much morphology than English; it is a

highly inflected language and that due to this complex morphology [11].

Arabic Language consists of 28 alphabet characters: رز ذ د خ ح ج ث ت ب ا ص ش س ش

 which is considered as a letter (ء) In addition to the hamza .ي و ل ك ق ف غ ع ظ ط ع ض

by some Arabic linguistics. Arabic is written from right to left. Arabic letters have

different styles when appearing in a word depending on the letter position at

beginning, middle or end of a word and on whether the letter can be connected to its

neighbor letters or not [12].

Arabic words have two genders, feminine and masculine; three numbers, singular,

dual, and plural; and three grammatical cases, nominative, accusative, and genitive. A

noun has the nominative case when it is subject; accusative when it is the object of a

verb; and the genitive when it is the object of a preposition. Words are classified into

three main parts of speech, nouns (including adjectives and adverbs), verbs, and

particles. All verbs and some nouns are morphologically derived from list of roots.

Words are formed by the following fixed patterns, the prefixes and suffixes are added

to the word to indicate its number, gender and tense [12].

1.3 Arabic Language Challenges

Arabic is a challenging language for a number of reasons [13]:

1. Orthographic with diacritics is less ambiguous and more phonetic in Arabic,

certain combinations of characters can be written in different ways. For

example, sometimes in glyphs combining HAMZA with ALEF (أ) the

HAMZA is dropped (ا). This makes the glyph ambiguous as to whether the

HAMZA is present.

2. Arabic has a very complex morphology recording as compared to English

language. For example, to convey the possessive, a word shall have the letter

 .”attached to it as a suffix. There is no disjoint Arabic-equivalent of “my (ی)

3. Arabic words are derived: Arabic words are usually derived from a root (a

simple bare verb form) that usually contains three letters. In some derivations,

5

one or more of the root letters may be dropped. In such cases tracing the root

of the derived word would be a much more difficult problem.

4. Broken plurals are common. Broken plurals are somewhat like irregular

English plurals except that they often do not resemble the singular form as

closely as irregular plurals resemble the singular in English. Because broken

plurals do not obey normal morphological rules, they are not handled by

existing stemmers.

5. In Arabic we have short vowels which give different pronunciation.

Grammatically they are required but omitted in written Arabic texts.

6. Arabic synonyms are widespread. Arabic is considered one of the richest

languages in the world. This makes exact keyword match is inadequate for

Arabic retrieval and classification

1.4 Topic Area

Text classification has been considered as a vital method to manage and process a vast

amount of documents in digital forms that are widespread and continuously

increasing. In general, text classification can be applied in important operations such

as real time sorting of files into folder hierarchies, topic identifications, dynamic task-

based interests, automatic meta-data organization, text filtering and documents

organization for databases and web pages.

There are a lot of researches for text classification using different classification

techniques where, a lot of these researches are applied to English documents, but in

Arabic it is still limited [11, 12, 14, 15, 16]. All previous researchers applied single

classifiers to classify Arabic documents, but in this research we will combine multiple

classifiers aiming to more accurate classification decision.

1.5 Thesis Questions

The main research problem is classifying Arabic text documents. There are many

researches that aimed to classify Arabic documents using a single classifier. These

works may have more accurate results if we use a combination of different

classification models. Where several studies have reported that combining classifiers

can improve the accuracy of a standalone classifier, so based on these researches the

main objective of this research is to classify Arabic text by using a combination of

6

different classification models to improve Arabic text documents classification in

terms of accuracy.

1.6 Thesis Significance

Text classification has always been an important application and research topic since

the inception of digital documents. Today, text classification is a necessity due to the

very large amount of text documents that we have to deal with it daily. The current

study has a valuable significance, because it derived from the urgent need of

classifying the huge number of electronic Arabic documents. These documents are

available through the rapid and increasing growth of the Internet. Also the manual

classification of such huge documents needs a considerable time and effort as well as

it is costly.

There are many classification algorithms applied on Arabic text using single

classifier, such as SVM, Naïve Bayes, and kNN, these algorithms have given good

classification accuracy, but this accuracy can be improved using a combination

approach.

The combination of classifiers has not applied on Arabic documents classification

before, although many researchers have shown that combining different classifiers

can improve classification accuracy [17, 18, 19, 20]. Many researchers make a

comparison between the best individual classifier and the combined approach, and

showed that the performance of the combined approach is superior [21].

1.7 Thesis Contribution

The contributions of this research are highlighted hereunder:

1- Combining different classification algorithms using five fixed combining rules

to improve the accuracy of Arabic text documents classification.

2- Combining different classification approaches using stacking algorithm with

two different Meta classifiers to improve the accuracy of Arabic text

documents classification.

3- Applying boosting algorithm on a weak classifier to enhance the accuracy of

that classifier on classifying Arabic text documents.

4- Applying bagging algorithm on a weak classifier to enhance the accuracy of

that classifier on classifying Arabic text documents.

7

5- As a results, the classification accuracy achieved by combining classifiers are :

a. 95.3% of classification accuracy achieved by combining seven

classifiers using majority voting rule as a fixed combination rule.

b. 99.4% of classification accuracy achieved by combining five

classifiers using stacking algorithm.

c. 99.5% of classification accuracy achieved by using AdaBoost

algorithm.

d. 99.4% of classification accuracy achieved by using Bagging algorithm.

1.8 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 introduces the related work; we will show some researches that have been

done in classifying Arabic text documents. The related works are divided into three

categories; in the first one we will show some researches which have been used

classification algorithms onto Arabic text documents, in the next one we will show

some researches that have been compared between classification algorithms which

applied onto Arabic Documents, where in the last section we will show some related

works that have using combined classifiers.

In Chapter 3, we will overview some background theory, in the first part we will

explain some classification algorithms that we will use in our approaches. Then we

will explain the four combining approaches that we will use in our thesis.

In Chapter 4, we will show the methodology that we will use in our thesis such as pre-

processing steps, term weighting, datasets and evaluation metrics.

Chapter 5 shows the experimental results of our work. All results of our approaches

will be discussed and analyzed; also we will compare our approaches with different

single classifiers which have been applied in Arabic text documents.

Finally the conclusion of the research will be in Chapter 6. In this chapter we will

summarizes the research, remarks, and some notes around the work.

8

CHAPTER 2

RELATED WORK

Many researchers have been worked on text classification in English and other

European languages. However, researches on text classification for Arabic language

are fairly limited [11, 12, 14, 15, 16]. In this chapter we will show some researches

that are related to our work, these researches are categorized to:

1- Applying classification algorithms on Arabic text.

2- Comparing between different classification algorithms applied on Arabic text.

3- Combining classification algorithms.

2.1 Applying Classification Algorithms on Arabic Text

Mesleh [22] applied SVMs to classify Arabic articles with Chi Square feature

selection in the pre-processing step. The reported F-measure by Mesleh is 88.11%.

Mesleh also compared six feature selection methods with SVMs. He concludes that

Chi Square method is the best. He used an in-house collected corpus from online

Arabic newspaper archives, including Al-Jazeera, Al-Nahar, Al-hayat, Al-Ahram, and

Al-Dostor as well as a few other specialized websites. The collected corpus contains

1445 documents that vary in length. These documents fall into 9 classification

categories that vary in the number of documents (Computer, Economics, Education,

Engineering, Law, Medicine, Politics, Religion and Sports). In the pre-processing

step, each article in the data set is processed to remove the digits and punctuation

marks. He has applied normalization of some Arabic letters such as the normalization

of (hamza) in all its forms to (alef). Also, all non Arabic text was filtered, and he does

not apply stemming.

 Harrag and El-Qawasmah [23] applied neural networks (NN) on Arabic text. Their

experimental results show that using NN with Singular Value Decomposition (SVD)

as a feature selection technique gives better result 88.3% than the basic NN (without

SVD) 85.7%. They also experienced scalability problem with high dimensional text

dataset using NN. Harrag collected his corpus from Hadith encyclopedia from the

nine books. It contains 435 documents belonging to 14 categories. He applied light

stemming and stop words removal on his corpus. Term Frequency-Inverse Document

Frequency (TF-IDF) is used as a weighting scheme.

9

El-Kourdi et. al. [24] classified Arabic text documents automatically using NB. The

average accuracy reported was about 68.78%, and the best accuracy reported was

about 92.8%. El-Kourdi used a corpus of 1500 text documents belonging to 5

categories; each category contains 300 text documents. All words in the documents

are converted to their roots. The vocabulary size of resultant corpus is 2,000

terms/roots. Cross-validation was used for evaluation.

Maximum entropy was used by El-Halees [25] for Arabic text classification, and by

Sawaf [26] to classify and cluster News articles. The best classification accuracy

reported by El-Halees was 80.4% and 62.7% by Sawaf.

kNN has been applied by Al-Shalabi [27] on Arabic text. They used TF-IDF as a

weighting scheme and got accuracy of 95%. They also applied stemming and feature

selection. The authors reported in their paper the problem of lacking freely publically

availability of Arabic corpus. They collected a corpus from newspapers (Al-Jazeera,

An-Nahar, Al-Hayat, Al-Ahram, and Ad-Dostor) and from Arabic Agriculture

Organization website. The corpus consists of 621 documents belonging to 1 of 6

categories (politics 111, economic 179, sport 96, health and medicine 114, health and

cancer 27, agriculture 100). They preprocessed the corpus by applying stop words

removal and light stemming.

2.2 Comparing between different Classification Algorithms applied on

Arabic Text

Hmeidi [28] compared kNN and SVM for Arabic text classification; they used full

word features and considered TF-IDF as the weighting method for feature selection,

and CHI statistics for ranking metrics. Hmeidi showed that both SVM and kNN have

superior performance, and SVM has better accuracy and time. Authors collected

documents from online newspaper (Al-Ra’i and Ad-Dostor). They collected 2206

documents for training and 29 documents for testing. The collected documents belong

to one of two categories (sport and economic).

Abbas [29] compared Triggers Classifier (TR-Classifier) and kNN to identify Arabic

topic. kNN uses the whole vocabulary (800), while TR uses reduced vocabulary

(300), the average recall and precision for kNN and TR are 0.75, 0.70 and 0.89,

0.86% respectively. Abbas collected 9,000 articles from Omani newspaper (Al-

Watan) of year 2004. The corpus belongs to 1 of 6 categories (culture, economic,

10

religious, local news, international news). The corpus includes 10M word including

stop words. After removing stop words and infrequent words the vocabulary size

became 7M words. TF-IDF was used as weighting schemes.

Duwairi [12] compared three popular text classification algorithms; (kNN, NB, and

Distance-Based classifier). Duwairi experimental results show that NB outperforms

the other two algorithms. Duwairi collected 1,000 text documents belonging to 1of 10

categories (sport, economic, internet, art, animals, technology, plants, religious,

politics, and medicine). Each category contains 100 documents. She preprocessed the

corpus by applying stop words removal and stemming. She used 50% for training and

50% for testing.

Kannan [16] also compared three classification algorithms on Arabic text. The three

algorithms were kNN, NB, and Rocchio. Kannan revealed that NB is the best

performing algorithm. The author collected the corpus from online newspapers (Al-

Jazeera, An-Nahar, Al-Hayat, Al-Ahram, and Ad-Dostor). The corpus consists of

1,445 documents belonging to 9 categories (medicine 232, sport 232, religious 227,

economic 220, politics 184, engineering 115, low 97, computer 70, and education 68).

They applied light stemming for feature reduction. Cross-validation was performed

for evaluation.

Al-Harbi [11] evaluated the performance of two popular text classification algorithms

(SVMs and C5.0) to classify Arabic text using seven Arabic corpora. The average

accuracy achieved by SVMs is 68.65%, while the average accuracy achieved by C5.0

is 78.42%. One of the goals of their paper is to compile Arabic corpora to be

benchmark corpora. The authors compiled 7 corpora consisting of 17,658 documents

and 11,500,000 words including stop words. The corpora are not available publically.

Bawaneh [30] applied kNN and NB on Arabic text and concluded that kNN has

better performance than NB, they also concluded that feature selection and the size of

training set and the value of K affect the performance of classification. The

researchers also posed the problem of unavailability of freely accessible Arabic

corpus. The in-house collected corpus consists of 242 documents belonging to 1of 6

categories. Authors applied light stemming as a feature reduction technique and TF-

IDF as weighting scheme, they also performed cross-validation test.

El-Halees [15] compared six well know classifiers applied on Arabic text; ANN,

SVM, NB, kNN, Maximum Entropy and Decision Tree. El-Halees showed that the

NB and SVMs are the best classifiers in terms of F-Measure with 91% and 88%,

11

respectively. El-Halees also applied information grain feature selection; the reported

F-Measure was 83% and 88% for NB and SVMs, respectively. El-Halees collected

Arabic documents collected from the Internet. It is mainly collected from Aljazeera

Arabic news channel. The documents categorized into six domains: politics, sports,

culture and arts, science and technology, economy and health. The author applied stop

words removal and normalization and used 10-folds cross-validation for testing.

Saad [14] compares the impact of text preprocessing on Arabic text classification

using popular text classification algorithms; Decision Tree, K Nearest Neighbors,

Support Vector Machines, Naïve Bayes and its variations. He applied different term

weighting schemes, and Arabic morphological analysis (stemming and light

stemming). Saad used seven Arabic corpora (3 in-house collected and 4 existing

corpora). The experiments showed that light stemming with term pruning is the best

feature reduction technique which reduced features to average of 50% of the original

feature space. Support Vector Machines and Naïve Bayes variations achieved the best

classification accuracy and outperform other algorithms. Weighting schemes impact

the performance of distance based classifier.

2.3 Combining Classification Algorithms

Many researches show that combining classifiers can enhance the results of

classification in general, but combining classifiers does not used previously to classify

Arabic documents. The idea of combining classifiers is motivated by the observation

of their complementary characteristics. It is desirable to take advantage of the

strengths of individual classifiers and to avoid their weakness, resulting in the

improvement of classification accuracy [17].

El-Halees [19] presented a combined approach that automatically extracts opinions

from Arabic documents. They used a combined approach that consists of three

methods. At the beginning, lexicon based method is used to classify as much

documents as possible. The resultant classified documents are used as training set for

maximum entropy method which subsequently classifies some other documents.

Finally, k-Nearest Neighbor method used the classified documents from lexicon based

method and maximum entropy as training set and classifies the rest of the documents.

Experiments showed that in average, the accuracy moved from 50% when using only

lexicon based method to 60% when used lexicon based method and maximum entropy

together, to 80% when using the three combined methods.

12

Danesh [31] proposed a novel approach in text classification. Their approach is a

supervised method, meaning that the list of categories should be defined and a set of

training data should be provided for training the system. Documents are represented

as vectors where each component is associated with a particular word. They propose

voting methods and ordered weighted averaging (OWA) operator and Decision

Template method for combining classifiers. Experimental results show that these

methods decrease the classification error to 15 percent as measured on 2000 training

data from 20 newsgroups dataset.

Fujino [32] provide good statistical classifiers with generalization ability for multi-

label categorization and present a classifier design method based on approach

combination and F1-score maximization. They design multiple models for binary

classification per category, and then they combine these models to maximize the F1-

score of a training dataset. Experimental results confirmed that the method was useful

especially for datasets where there were many combinations of category labels.

Y. Bi [17] presents an investigation into the combination of four different

classification methods for text categorization using Dempster's rule of combination.

These methods include the SVM, kNN, kNN model-based approach (kNNM), and

Rocchio methods. They present an approach for effectively combining the different

classification methods. Then, they apply these methods to a benchmark data

collection of 20-newsgroup, individually and in combination. Experimental results

show that the performance of the best combination of the different classifiers on the

10 groups of the benchmark data can achieve 91.07% classification accuracy, which is

2.68% better than SVM.

13

CHAPTER 3

 BACKGROUND

3.1 Text classification

Text classification, also known as text categorization and occasionally as topic

spotting, is the process of algorithmically analyzing an electronic document to assign

this document to one of predefined categories. This assignment can be used for

classification, filtering, and retrieval purposes. Many researchers have explored a

variety of machine learning methods for text classification. Machine learning

algorithms can be divided into two types supervised and unsupervised learning

algorithms. Supervised learning algorithms operate by learning the objective function

from a set of training examples and then applying the learned function to the target

set. Unsupervised learning operates by trying to find useful relations between the

elements of the target set. Text categorization can be characterized as a supervised

learning problem. We have a set of examples (documents) that have been correctly

categorized (usually by human indexers). This set is then used to train a classifier

based on a machine learning algorithm. The trained classifier is then used to

categorize the target set.

More formally, let C = {c1, . . . , cn} be a set of categories and D = {d1, . . . , dN} be a

set of documents. Given a set of examples of the form where di ∈ D, and if di

∈ cj then yj = 1, otherwise yj = 0, the objective is to learn a function f such that f(x) = 1

if x ∈ cj and f(x) = 0 if x cj. This function is called the classifier [20].

3.2 Text Classification Methods

A wide variety of techniques have been designed for text classification. In this

section, we will show in a brief some techniques that are used for Arabic text

classification, and then we will show in details different approaches to combine

classifiers.

3.2.1 Decision Trees

Decision trees classify instances by sorting them down the tree from the root to some

leaf node, which provides the classification of the instance. Each node in the tree

specifies a test of some attribute of the instance, and each branch descending from

that node corresponds to one of the possible values for this attribute. An instance is

14

classified by starting at the root node of the tree, testing the attribute specified by this

node, then moving down the tree branch corresponding to the value of the attribute in

the given example. This process is then repeated for the sub-tree rooted at the new

node [33].

In the general case, in order to develop a decision tree, the designer has to consider

the following design elements in the training phase [34]:

 At each node, the set of candidate questions to be asked has to be decided.

Each question corresponds to a specific binary split into two descendant

nodes. Splitting of a node is equivalent to the split of the subset
t

X into two

disjoint descendant subsets
tY

X ,
tN

X . The first of the two consists of the

vectors in
t

X that correspond to the answer “Yes” of the question and those of

the second to the “No.” The first (root) node of the tree is associated with the

training set X. For every split, the following is true:

ttNtY

tNtY

XXX

XX

 …….………………… (3.1)

A splitting criterion must be adopted according to which the best split from the

set of candidate ones is chosen.

 A stop-splitting rule is required that controls the growth of the tree, and a node

is declared as a terminal one (leaf).

 A rule is required that assigns each leaf to a specific class.

There are a number of standard packages for DT learning, and most DT approaches to

TC have made use of one such package. Among the most popular ones are Iterative

Dichotomiser 3 (ID3), C4.5 and C5 [35].

3.2.2 SVM Classifiers

Support vector machines are based on the Structural Risk Minimization principle

from computational learning theory. SVM seeks a decision surface to separate the

training data points into two classes and makes decisions based on the support vectors

that are selected as the only effective elements in the training set [36].

Given a set of N linearly separable points },...,2,1|{ NiRxS
n

i
 , each point

i
x

belongs to one of the two classes, labeled as }1,1{
i

y . A separating hyper-plane

15

divides S into 2 sides, each side containing points with the same class label only. The

separating hyper-plane can be identified by the pair (w, b) that satisfies:

 bxwy . …….……..………………..…..…… (3.2)

1 if 1.

1y if 1.

i

ii

i

ybxw

bxw
and ……………….…………… (3.3)

for i = 1, 2, …., N and where

i

ii
xwxw…………….……….….……… (3.4)

for vectors w and x.

Thus the goal of the SVM learning is to find the optimal separating hyper plane that

has the maximal margin to both sides. This can be formularized as:

2

2

1
 minimize w ..……………..……….….……… (3.5)

 Subject to N .,… 2, 1, = ifor
1 if 1.

1y if 1.

i

ii

i

ybxw

bxw
 ……….... (3.6)

SVMs can be used for both linear and nonlinear data. It uses a nonlinear mapping to

transform the original training data into a higher dimension. With the new dimension,

it searches for the linear optimal separating hyper plane. With an appropriate

nonlinear mapping to a sufficiently high dimension, data from two classes can always

be separated by a hyper plane. SVMs find this hyper plane using support vectors and

margins (defined by the support vectors).

Figure 3.1 shows support vectors and how margins are maximized.

Figure 3.1: Support Vectors [37].

16

The following summarizes SVMs steps [14]:

 Map the data to a predetermined very high-dimensional space via a kernel

function.

 Find the hyper plane that maximizes the margin between the two classes.

 If data are not separable find the hyper plane that maximizes the margin and

minimizes the (a weighted average of the) misclassifications.

3.2.3 Learning Vector Quantization Algorithms

The LVQ model is a classification method based on Kohonen 1995. The original of

Kohonen model is known as Self Organizing Map networks (SOM) [38]. It uses a

competitive unsupervised learning algorithm [39]. In this model, the output layer has

neurons equal to the number of classes [38]. The weight vector associate to each

output unit is known as codebook vector. Each class of input space is represented by

its own codebook vector. Codebook vectors are defined according to the specific task.

There are different types or algorithms for LVQ algorithm which used as optimization

of original LVQ [40]:

 LVQ1 (LVQ)

 LVQ2.1

 LVQ3

 Optimized learning rate algorithms OLVQ1

 OLVQ3 for the classification task

The LVQ network finds the output unit w that is closest to the input vector x. If x and

w belong to the same class, then we move the weights toward the new input vector; if

x and w, belong to different classes, then we move the weights away from this input

vector [40].

The LVQ algorithm is a competitive network, and thus, for each training vector,

output units compete among themselves in order to find the winner according to some

metric. The LVQ algorithm uses the Euclidean distance to find the winner unit. Only

the winner unit (i.e., the output unit with the smallest Euclidean distance with regard

to the input vector) will modify its weights using the LVQ learning rule. The basic

LVQ algorithm is shown in Figure 3.2 [39, 40, 41].

17

Algorithm 3.1: LVQ Algorithm

Purpose: Learning LVQ algorithm on a given dataset

Input: Training dataset

Output: A Learned neural network based on LVQ algorithm

Procedure:

1. Initialize the codebook vectors Wi and the learning rate α

2. Randomly select an input vector X

3. Find the winner unit closest to the input vector (i.e., the codebook vector Wc with

the smallest Euclidean distance with regard to the input vector X):

kkc
WXWX min ,

kk
WXc minarg

4. Modify the weights of the winner unit:

 If Wc and X belong to the same class (the classification has been correct)

)]()()[()()1(tWtXttWtW
ccc

 .

 If Wc and X belong to different classes (the classification has not been correct)

)]()()[()()1(tWtXttWtW
ccc

5. Reduce the learning rate α

6. Repeat from step 2 until the neural network is stabilized or until a fixed number of

iterations have been carried out.

Figure 3.2: LVQ algorithm procedure [40].

The learning rate α(t) (0 < α(t) < 1) is a monotonically decreasing function of time

which controls how quickly the weight vector is allowed to change. It is

recommended that α(t) should already initially be rather small, say, smaller than 0.3

and it continues decreasing to a given threshold very close to 0.

3.2.4 Naïve Bayes

The Naive Bayes (NB) classifier is a probabilistic model that uses the joint

probabilities of terms and categories to estimate the probabilities of categories given a

test document [33]. The naive part of the classifier comes from the simplifying

assumption that all terms are conditionally independent of each other given a

category. Because of this independence assumption, the parameters for each term can

be learned separately and this simplifies and speeds the computation operations

compared to non-naive Bayes classifiers.

18

There are two common event models for NB text classification, discussed by [42],

multinomial model and multivariate Bernoulli model. In both models classification of

test documents is performed by applying the Bayes’ rule [33]:

)(

)|().(
)|(

j

iji

ji

dP

cdPcP
dcP ..………………...…….….……… (3.7)

Where dj is a test document and ci is a category. The posterior probability of each

category ci given the test document dj, i.e. P(ci | dj), is calculated and the category

with the highest probability is assigned to dj.

In order to calculate)|(
ji

dcP ,)(
i

cP and)|(
ij

cdP have to be estimated from the

training set of documents. Note that)(
j

dP is same for each category so we can

eliminate it from the computation. The category prior probability)(
i

cP can be

estimated as follows:

N

cdy

cP

N

j

ij

i

),(

)(
1

 ..……………………….….………….… (3.8)

Where, N is number of training documents and),(
ij

cdy is defined as follows:

otherwise

cd
cdy

ij

ij

 0

 if 1
),(..…………………...……….……… (3.9)

So, prior probability of category ci is estimated by the fraction of documents in the

training set belonging to ci.)|(
ij

cdP parameters are estimated in different ways by

the multinomial model and multivariate Bernoulli model.

a. Multinomial Model

In the multinomial model a document dj is an ordered sequence of term events, drawn

from the term space T. The Naive Bayes assumption is that the probability of each

term event is independent of term’s context, position in the document, and length of

the document. So, each document dj is drawn from a multinomial distribution of

terms with number of independent trials equal to the length of dj. The probability of a

document dj given its category ci can be approximated as:

j
d

k

ikij
ctPcdP

1

)|()|(..……………….….……… (3.10)

19

Where | dj | is the number of terms in document dj; and tk is the kth term occurring in

document dj. Thus the estimation of)|(
ij

cdP is reduced to estimating each)|(
ik

ctP

independently. The following Bayesian estimate is used for)|(
ik

ctP :

Tt

il

ik

ik

l

ctTFT

ctTF
ctP

),(

),(1
)|(..……………….…..……… (3.11)

Here,),(
il

ctTF is the total number of times term tk occurs in the training set

documents belonging to category ci. The summation term in the denominator stands

for the total number of term occurrences in the training set documents belonging to

category ci [43].

b. Multivariate Bernoulli Model

In Multivariate Bernoulli model a document is represented by a vector of binary

features indicating the terms that occur and that do not occur in the document. Here,

the document is the event and absence or presence of terms is the attributes of the

event. The Naive Bayes assumption is that the probability of each term being present

in a document is independent of the presence of other terms in a document. To state

differently, the absence or presence of each term is dependent only on the category of

the document. Then,)|(
ij

cdP the probability of a document given its category is

simply the product of the probability of the attribute values over all term attributes:

T

k

ikjkikjkij
ctPBctPBcdP

1

)))|(1)(1()|(.)|(…………………… (3.12)

Where |T| is the number of terms in the training set and Bjk is defined as follows:

otherwise

n d appears i if term t
B

j

jk

 0

 1
……………………….….……… (3.13)

Thus, a document can be seen as a collection of multiple independent Bernoulli

experiments, one for each term in the term space. The probabilities of each of these

term events are defined by the class conditional term probabilities)|(
ik

ctP . We can

estimate the probability of term
k

t in category ci as follows:

20

N

j

ij

N

j

ijjk

ik

cdy

cdyB

ctP

1

1

),(2

),(.1

)|(..…………...…….……… (3.14)

Where, N is number of training documents and)|(
ij

cdy is defined as shown above in

equation (3.14) [43].

3.2.5 K-Nearest Neighbor Classifier

The kNN algorithm is a similarity-based learning algorithm that has been shown to be

very effective for a variety of problem domains including text categorization [33, 44].

Given a test document, the kNN algorithm finds the k nearest neighbors among the

training documents, and uses the categories of the k neighbors to weight the category

candidates. The similarity score of each neighbor document to the test document is

used as the weight of the categories of the neighbor document.

Similarity may be measured by for example the Euclidean distance or the cosine

between the two document vectors. The Euclidean distance is used as a conventional

method for measuring distance between two documents, the formula of the Euclidean

distance between documents d1(w11,w12,…,w1n) and d2(w21,w22,…,w2n) is as follow

[45]:

 2

1

1221
)(),(

n

i

ii
wwddE ..……………….……… (3.15)

kNN has a set of drawbacks. kNN is a lazy learning example-based method that does

not have a off-line training phase. The main computation is the on-line scoring of

training documents given a test document in order to find the k nearest neighbors, this

makes kNN not efficient because nearly all computation takes place at classification

time rather than when the training examples are first encountered, kNN time

complexity is O(N*M) where N is number of training documents and M is the number

of terms in the super vector. Moreover, kNN classifier has a major drawback of

selecting the value of k; the success of classification is very much dependent on this

value.

21

3.2.6 Radial Basis Function Neural Network

A Radial Basis Function Neural Network (RBFNN) is a special type of ANN with

several distinctive features [46]. The radial basis function (RBF) network is a feed-

forward artificial neural network that uses radial basis functions as activation

functions. It is based on linear combination of radial basis functions. It has been

shown that RBFNN had a simple structure and many excellent performances.

Therefore, RBFNN has been widely used for pattern classification, functional

approximation, signal processing, mixture models and many other fields [40].

The structure of a RBFNN consists of three different layers, namely the input layer,

the hidden layer, and the output layer. Each RBF is a fixed two layer NN that hides all

nonlinearities in its special hidden layer and performs a linear combination in the

output layer as shown in Figure 3.2 [47]. The parameters that determine the output

values are the centers of the hidden RBF units and the weights of the synapses from

the hidden to the output layer. One important difference is that Multilayer Perceptron

(MLP) is most of the times a multilayer network, whereas each RBFNN consists of

only one hidden layer with radial basis function neurons.

Figure 3.3: Architecture of Radial Basis Function (RBFNN) [47].

In a typical implementation, the hidden nodes and the output nodes of a MLP share a

common computation and neuronal model, while the RBFNN neurons of the RBF

hidden layer plays a totally different role in comparison to the output nodes which are

22

most of the times linear and perform a linear combination of the hidden layer neurons

responses [40].

3.3 Combining Classifiers

The practice of combining multiple classifiers into ensembles is inspired by the notion

that the combined opinions of a number of human experts is more likely to be correct

than that of a single expert. Ideally, a classifier ensemble will collectively perform

better than any individual classifier in the ensemble. There are many different ways in

which one can combine classifiers into ensembles, each of which can work well in

certain scenarios but not in others. There are a wide variety of techniques and

approaches available to combine classifiers. A good selection can potentially result in

better ensemble success rates than any one of the component classifiers could provide

individually. A poor selection, however, can result in reduced performance relative to

what one would have received from a single well chosen classifier. In either case, the

use of an ensemble will most often increase training and classification computational

demands, as well as system complexity [18].

3.3.1 Reasons for combining classifiers

There are a number of important reasons why combined classifiers can in fact be a

better choice than a single classifier. Dietterich [2] has organized these reasons into

three categories:

a. Statistical

Suppose we have a labeled data set Z and a number of different classifiers with a good

performance on Z. We can pick a single classifier as the solution, running onto the

risk of making a bad choice for the problem. For example, suppose that we run the 1-

nn classifier or a decision tree classifier for L different subsets of features thereby

obtaining L classifiers with zero resubstitution error. Although these classifiers are

indistinguishable with respect to their (resubstitution) training error, they may have

different generalization performances. Instead of picking just one classifier, a safer

option would be to use them all and “average” their outputs. The new classifier might

not be better than the single best classifier but will diminish or eliminate the risk of

picking an inadequate single classifier. Dietterich gives a graphical illustration of this

argument as shown in Figure 3.4. The outer circle denotes the space of all classifiers.

23

The shaded inner region contains all classifiers with good performances on the

training data. The best classifier for the problem (supposedly with a good

performance on the training data too) is denoted by D*. The hope is that some form of

aggregating of the L classifiers will bring the resultant classifier closer to D* than a

classifier randomly chosen from the classifier space would be.

Figure 3.4: The statistical reason for combining classifiers. D1 through D4 are trained classifiers and

D* is the theoretically optimum classifier. The shaded area represents the area in classifier space of

classifiers that perform well on a given data set.

b. Computational

Some classifiers train using hill-climbing or random search techniques. Many

classifiers also rely on random initializations which can influence the minima in error

space that they converge to during training. Training multiple feed-forward neural

networks, for example, on the same training data can very well result in significantly

different trained classifiers. Although they will each most likely move closer to the

optimal solution during training, there is no guarantee that they will do so in the same

way or that they will converge to the same solution. Aggregating such classifiers into

an ensemble can take advantage of the multiplicity of solutions offered by the

different classifiers, none of which may be optimal, in order to arrive at a solution that

is better than the solution offered by any one individual classifier. The computational

argument is illustrated in Figure 3.5. Classifiers D1 through D4 move closer during

training to the theoretically optimum classifier (D*) from their initial pre-training

24

locations in classifier space. Each of D1 through D4 offers a different solution after

training, and combining these solutions can result in better solution overall than the

solution offered by any of the individual classifiers.

Figure 3.5: The computational reason for combining classifiers. D1 through D4 are hill climbing

classifiers and D* is the theoretically optimum classifier. The dashed lines show the trajectories of each

classifier during training.

The computation argument highlights the particular appropriateness of instable

classifiers for ensemble classification. Instable classifiers are classifiers where small

changes in the training set can have a significant effect on the classifier output. The

use of multiple instable classifiers trained on slightly different but potentially

overlapping training sets can lead to a variety of useful solutions that can be fruitfully

combined.

c. Representational

There is no guarantee that the types of classifiers that one is using for a particular

problem could ever converge to the theoretically optimal solution during training. For

example, say a researcher mistakenly believes that a given problem is linear, and

decides to use only linear classifiers. In reality, the optimal classifier will be non-

linear, so it is not possible that any of the linear classifiers under consideration will

perform optimally. However, an ensemble of linear classifiers can approximate a non-

linear decision boundary, and could therefore potentially perform better than any

25

single linear classifier possibly could. The representational argument is illustrated in

Figure 3.6.

Figure 3.6: The representational reason for combining classifiers. The closed shape represents the

range of classifiers that one is able or willing to construct. D1 through D4 represent four trained

classifiers and D* represents the theoretically optimal classifier.

An alternative solution to the non-linear problem presented above, of course, would

be to use a more sophisticated single classifier. One must remember, however, that the

primary disadvantage of using classifier ensembles over single classifiers is that they

introduce added complexity to the solution, but this complexity depends on the

selected classifiers that we want to combine them. It may well be that an ensemble of

simple classifiers can perform faster and be implemented more easily and intuitively

than a single complex classifier. The argument against using classifier ensembles is

therefore reversed in cases such as this.

The previous three reasons motivate us to use classifiers combination to improve the

accuracy of classifying arabic text documents.

In the next sections we will show different approaches to combine classifiers, which

we will use in our research.

3.3.2 Fixed Combining Rules

Fixed combining rules are the simplest combination approach and it is probably the

most commonly used in the multiple classifier system [48]. This combination

approach is called non-trainable combiner, because combiners are ready to operate as

soon as the classifiers are trained and they do not require any further training of the

26

ensemble as a whole [49]. A theoretical framework for fixed rules combination was

proposed by Kittler [7]. It includes the sum, product, max, min, average and median

rules.

Consider a pattern recognition problem where the pattern x is to be assigned to one of

m possible classes), . . . ,(
m1

 . Let us assume that we have R classifiers, the feature

vector
)(i

x represents the given pattern on the ith classifier. In the feature space each

class
k

 is modeled by the probability density function)|(
)(

k

i
xp and its a priori

probability of occurrence)(
k

P [48].

According to Bayesian theory, for given features
)(i

x , },...,1{ Ri the pattern x should

be assigned to class
j

 with the maximal value of the a posteriori probability such

that:

),...,|P(max argj ,)(
)()1(

k
k

R

j
xxxf ..………..……… (3.16)

Using Bayes’ Theorem the a posteriori probability is:

),...,(

)()|,...,(
),...,|P(

)()1(

)()1(

)()1(

k R

kk

R

R

xxP

PxxP
xx

 .……...….…… (3.17)

Now the following fixed rules can be used to combine classifiers [49]:

a. Product Rule

Let us assume that the probability distributions)|,...,(
)()1(

k

R
xxP are conditionally

statistically independent. Then

R

i

k

i

k

R
xpxxP

1

)()()1(
)|()|,...,(.……….…………… (3.18)

and the decision rule

i

k

i

k
k

j
xpPjxf)|()(maxarg ,)(

)(
 .…….…...…… (3.19)

The product rule multiplies the score provided by each base classifiers and assigns the

class label with the maximum score to given input pattern [7].

b. Majority Voting Rule

The voting method finds the class output of each classifier and counts its output as a

vote for a class, and assigns the input pattern to the class with the majority vote as the

following [49]:

27

)|P(
)(

k

R
x will produce binary valued functions

ki
 like :

otherwise 0

)|P(max)|P(1
)(

j

)(

k

R

j

R

ki

xxif
.……….……… (3.20)

Assuming that each a priori probability is equal, this leads to the following decision

rule:

i

ki
k

j
jxf maxarg ,)(.…………………….……… (3.21)

The sum on the right side of equation (3.21) simply counts the votes received from

each individual classifier [49].

c. The average rule

Let us assume that the probability distributions)|,...,(
)()1(

k

R
xxP are conditionally

statistically independent [49]. Then

R

i

k

i

k

R
xp

R
xxP

1

)()()1(
)|(

1
)|,...,(.……….………….…… (3.22)

Then the average decision rule is:

R

i

i

k
k

j
xp

R
jxf

1

)(
)|(

1
maxarg ,)(……….….……….…… (3.23)

The average rule can be defined as finding the maximum value of the average of

)|(
)(i

k
xP and assigns the class label with it to the given input pattern [49].

d. The Maximum rule

Maximum rule is based on the information provided by the maximum value of

)|(
)(

k

i
xP across all class labels. It finds the maximum score of each class between

the classifiers and assigns the input pattern to the class with the maximum score

among the maximum scores as the following [49]:

)}|({maxmaxarg ,)(
)(

k

i

k
j

xPjxf ……….………….…… (3.24)

e. The Minimum rule

The minimum rule finds the minimum score of each class between the classifiers and

assigns the input pattern to the class with the maximum score among the maximum

scores; that means the Minimum rule selects the class that having the least objection.

The decision of the minimum rule is defined as [49]:

28

)}|({minmaxarg ,)(
)(

k

i

k
j

xPjxf ……….………….…… (3.25)

Figure 3.6 shows the architecture of combined classifiers using fixed rules.

Figure 3.7: The architecture of combined classifiers using fixed rules.

As shown in Figure 3.7, the dataset (which are Arabic text documents in our case) are

used to train and test the system, each classifier in the system is trained using the

training data set, and then give an output. The outputs of all classifiers are combined

using one of fixed rules that mentioned previously to give the final decision.

3.3.3 Stacking

Stacked generalization is a way of combining multiple models that have been learned

for a classification task [8].Typically, different learning algorithms learn different

models for the task, and in the most common form of stacking the first step is to

collect the output of each model into a new set of data. For each instance in the

original training set, this data set represents every model's prediction of that instance's

class, along with its true classification. During this step, care is taken to ensure that

the models are formed from a batch of training data that does not include the instance

in question, in just the same way as ordinary cross-validation. The new data are

treated as the data for another learning problem, and in the second step a learning

algorithm is employed to solve this problem. The original data and the models

constructed for them in the first step are referred to as level-0 data and level-0 models,

respectively, while the set of cross-validated data and the second-stage learning

algorithm are referred to as level-1 data and the level-1 generalizer.

29

The stacking framework

Stacking is concerned with combining multiple classifiers generated by using

different learning algorithms L1, . . . , LN on a single dataset S, which consists of

examples si = (xi , yi), pairs of feature vectors (xi) and their classifications (yi). In the

first phase, a set of base-level classifiers C1, C2, . . . , CN is generated, where Ci =

Li(S). In the second phase, a meta-level classifier is learned that combines the outputs

of the base-level classifiers [50].

To generate a training set for learning the meta-level classifier, a leave-one-out or a

cross validation procedure is applied. For leave-one-out, we apply each of the base-

level learning algorithms to almost the entire dataset, leaving one example for testing:

)(:,...,1:,...,1
ik

i

k
sSLCNkni where i is the number of examples, k is

the number of base classifiers. We then use the learned classifiers to generate

predictions for)(ˆ:
i

i

k

i

ki
xCys . The meta-level dataset consists of examples of the

form)),ˆ,...,ˆ((
1

i

n

ii
yyy , where the features are the predictions of the base-level

classifiers and the class is the correct class of the example at hand. When performing

10-fold cross validation, instead of leaving out one example at a time, subsets of size

one-tenth of the original dataset are left out and the predictions of the learned base-

level classifiers obtained on these.

Figure 3.8 shows pseudo code for the stacking algorithm, the first step is to learn the

first level (base classifiers) using the original dataset as shown in line 2, in lines 4 to

10 a new data set is generated. The new dataset is then used to learn the second level

(Meta) classifier.

Algorithm 3.2: Stacking Algorithm

Purpose: Combining classifiers using Stacking

Input:

 Data set D =)},),....(,(),,{(
2211 mm

yxyxyx

 First-level learning algorithms
T

LL
1

 Second-level learning algorithm L.

Output: A composite model))()......(()(
1

^
xhxhhxH

T

Procedure:

1 for t = 1 to T

2)(DLh
tt

 Train a first-level individual learner ht by applying the first-level

3 endfor learning algorithm Lt to the original data set D

4
^

D Generate a new data set

30

5 for i = 1 to m

6 for t = 1 to T

7)(
itit

xhz Use ht to classify the training example xi

8 endfor

9)}),,......,{((
21

^^

iiTii
yzzzDD

10 endfor

11)(
^^

DLh Train the second-level learner h0 by applying the second-level

 learning algorithm L to the new data set D0

Output:))()......(()(
1

^
xhxhhxH

T

Figure 3.8: Pseudo code for the stacking algorithm.

3.3.4 The Boosting Algorithm

Boosting is a general method for improving the performance of a weak learner. The

method works by iteratively invoking a weak learner, on training data that is taken

from various distributions. Similar to bagging, the classifiers are generated by

resampling the training set. The classifiers are then combined into a single strong

composite classifier. Contrary to bagging, the resampling mechanism in boosting

improves the sample in order to provide the most useful sample for each of

consecutive iteration.

The AdaBoost Algorithm

AdaBoost (Adaptive Boosting) [51] is a popular ensemble algorithm that improves

the simple boosting algorithm via an iterative process. The main idea behind this

algorithm is to give more focus to patterns that are harder to classify. The amount of

focus is quantified by a weight that is assigned to every pattern in the training set.

Initially, the same weight is assigned to all the patterns. In each iteration the weights

of all misclassified instances are increased while the weights of correctly classified

instances are decreased. As a consequence, the weak learner is forced to focus on the

difficult instances of the training set by performing additional iterations and creating

more classifiers.

Furthermore, a weight is assigned to every individual classifier. This weight measures

the overall accuracy of the classifier and is a function of the total weight of the

correctly classified patterns. Thus, higher weights are given to more accurate

classifiers. These weights are used for the classification of new patterns. This iterative

procedure provides a series of classifiers that complement one another.

31

In AdaBoost, the input includes a dataset D of d class-labeled objects, an integer k

specifying the number of iterations, and a classification learning scheme as shown in

Figure 3.9.

Each object in the dataset is assigned a weight. Initially, all weights are assigned a

same value of 1/d. The algorithm repeats k times. At each time, a model Mi is built on

current dataset Di, which is obtained by sampling with replacement on original

training dataset D.

Algorithm 3.3: AdaBoost algorithm

Purpose: Generating an ensemble of classifiers using AdaBoost

Input:

 D, training set

 k, the number of rounds

 A classification learning algorithm

Output: A composite model

Procedure:

1 Initialize the weight of each object in D to 1/d;

2 for i = 1 to k do

3 Sample D with replacement according to the object weights to obtain Di;

4 Use training set Di to derive a model, Mi;

5 Compute the error rate error(Mi) of Mi;

6 if error(Mi) > 0.5 then

7 Reinitialize the weights to 1/d;

8 Go back to step 3 and try again;

9 endif

10 Update and normalize the weight of each object;

11 endfor

Figure 3.9: The framework of AdaBoost algorithm.

The error rate of Mi is the sum of the weights of all objects in Di that Mi

misclassified:

d

j

jji
XerrwMerror

1

)()(……….………….…… (3.26)

Where err(Xj) = 1 if Xj is misclassified and err(Xj) = 0 otherwise.

Then the weight of each object is updated so that the weights of misclassified objects

are increased and the weights of correctly classified objects are decreased. This can be

done by multiplying the weights of each correctly classified object by error(Mi)/(1 –

error(Mi)). The weights of all objects are then normalized so that the sum of them is

equal to 1. In order to keep this constraint, the weight of each object is divided by the

sum of the new weights.

32

After k rounds, a composite model will be generated, or an ensemble of classifiers,

which is then used to classify new data. When a new object X comes, it is classified

through the steps shown in Figure 3.10.

Algorithm 3.4: Classification Using AdaBoost algorithm

Purpose: Classify a new object using ensemble of classifiers build by AdaBoost

Input: a new object

Output: the class of an object

Procedure:

1 Initialize weight of each class to 0;

2 for i = 1 to k do

3 Get weight wi of classifier Mi ;

4 Get class prediction for X from Mi: c = Mi(X);

5 Add wi to weight for class c;

6 endfor

7 Return the class with the largest weight;

Figure 3.10: The steps of classifying a new object by the ensemble of classifiers build by AdaBoost

Algorithm.

The weight wi of each classifier Mi is calculated by this equation:

)(

)(1
log

i

i

i

Merror

Merror
w

 ……….……………….…… (3.27)

AdaBoost seems to improve the performance accuracy for two main reasons:

1- It generates a final classifier whose error on the training set is small by

combining many hypotheses whose error may be large.

2- It produces a combined classifier whose variance is significantly lower than

the variances produced by the weak base learner.

However, AdaBoost sometimes fails to improve the performance of the base inducer.

According [9], the main reason for AdaBoost failure is overfitting. The objective of

boosting is to construct a composite classifier that performs well on the data by

iteratively improving the classification accuracy. Nevertheless, a large number of

iterations may result in an overcomplex composite classifier, which is significantly

less accurate than a single classifier. One possible way to avoid overfitting is to keep

the number of iterations as small as possible.

33

3.3.5 Bagging Algorithm

Bagging (bootstrap aggregating) [6] is a simple effective method for generating an

ensemble of classifiers. The ensemble of classifiers, which is created by this method,

combines the outputs of various learned classifiers into a single classification. This

results in a classifier whose accuracy is higher than the accuracy of each individual

classifier. Specifically, each classifier in the ensemble is trained on a sample of

instances taken with replacement (allowing repetitions) from the training set.

To ensure that there is a sufficient number of training instances in every sample, it is

common to set the size of each sample to the size of the original training set. Figure

3.11 presents the pseudo-code for building an ensemble of classifiers using the

bagging. The algorithm receives an induction algorithm I which is used for training all

members of the ensemble. The stopping criterion in line 6 terminates the training

when the ensemble size reaches T. One of the main advantages of bagging is that it

can be easily implemented in a parallel mode by training the various ensemble

classifiers on different processors.

Since sampling with replacement is used, some of the original instances of S may

appear more than once in St and some may not be included at all. Furthermore, using

a large sample size causes individual samples to overlap significantly, with many of

the same instances appearing in most samples.

Algorithm 3.5: Bagging Algorithm

Purpose: Generating an ensemble of classifiers using Bagging

Input :

 S, training set

 μ ,the sample size

 T, the number of rounds

 I , A classification learning algorithm

Output: A composite model

Procedure:

1 t ← 1

2 repeat

3 St ← a sample of μ instances from S with replacement.

4 Construct classifier Mt using I with St as the training set

5 t ← t + 1

6 until t > T

Figure 3.11: The framework of Bagging algorithm.

34

So while the training sets in St may be different from one another, they are certainly

not independent from a statistical stand point. In order to ensure diversity among the

ensemble members, a relatively unstable inducer should be used. This will result is an

ensemble of sufficiently different classifiers which can be acquired by applying small

perturbations to the training set. If a stable inducer is used, the ensemble will be

composed of a set of classifiers who produce nearly similar classifications, and thus

will unlikely improve the performance accuracy.

In order to classify a new instance, each classifier returns the class prediction for the

unknown instance. The composite bagged classifier as shown in Figure 3.12 returns

the class with the highest number of predictions (also known as majority voting).

Algorithm 3.6: Classification Using Bagging algorithm

Purpose: Classify a new object using ensemble of classifiers build by Bagging

Input: A new object

Output: The class of an object

Procedure:
1 Counter1, . . . , Counter|dom(y)| ← 0 { initializes class votes counters }

2 for i = 1 to T do

3 votei ← Mi (x) { get predicted class from member i }

4 Countervotei ← Countervotei + 1 { increase by 1 the counter of the corresponding class }

5 end for

6 C ← the class with the largest number votes

7 Return C

Figure 3.12: The steps of classifying a new object by the ensemble of classifiers build by Bagging

Algorithm

Often, bagging produces a combined model that outperforms the model that is built

using a single instance of the original data especially for unstable inducers since

bagging can eliminate their instability [6].

35

CHAPTER 4

METHODOLOGY

This chapter explains methodology which we will follow in this research. To

implement and evaluate our approaches we will use the following methodology steps

as presented in Figure 4.1:

1. Collecting data: collect Arabic text documents from different domains.

2. Preprocessing data: through applying different text pre-processing

techniques which include applying different term weighting schemes, and

Arabic morphological analysis (stemming and light stemming).

3. Combining classifiers: through implementing models by combining different

classification algorithms and by using different combining techniques.

Combing classifiers can be built on different subsets of features. Feature

selection aims at a more efficient computation and a higher accuracy; so we

will evaluate different feature selection methods in our experiments.

4. Evaluate the model: to evaluate the classification performance of our model,

we will use accuracy, precision, recall and f-Measure.

5. Compare the results of combining classifiers with other results using single

classifiers.

Figure 4.1: Methodology steps

Data Collection

Data Preprocessing

Combining Classifiers

Evaluating Models

Comparing the results

36

4.1 Data Collection

One of difficulties for Arabic language is the lack of publicly available Arabic corpus

for evaluating text categorization algorithms [27]. On the other side, English language

has different public data set for English text classification. Researchers in Arabic text

classification used their own data sets collected from several Arabic website like Al-

Jazeera, Al-Nahar, Al-hayat, Al-Ahram, and Al-Dostor. The collected data has

different size and different categories used for training and testing. On the other hand,

the Linguistic Data Consortium (LDC) provides two non-free Arabic corpora, the

Arabic NEWSWIRE and Arabic Gigaword corpus.

In my research, I will use a freely public data set published by Saad in [52]. The first

dataset was collected from CNN Arabic website. It is free and public and contains a

suitable number of documents for the classification process and also suitable to the

hardware used in experiments. CNN Arabic dataset has different domains. Table 4.1

presents domains of CNN-Arabic corpus which includes 5070 documents. Each

document belongs to 1 of the 6 domains or categories.

Table 4.1: Categories and number of documents per category for CNN Arabic corpus.

Number Category Number of text documents

1.
Business 836

2.
Entertainments 474

3.
Middle East News 1462

4.
Science & Technology 526

5.
Sports 762

6.
World News 1010

Total
5070

The second dataset to be used is called OSAC. OSAC dataset was collected from

multiple websites. The corpus includes 22,429 text documents. Each text document

belongs to 1 of 10 categories as shown in Table 4.2.

37

Table 4.2: Categories and number of documents per category for OSAC dataset.

Number Category Number of text documents

1.
Economic 3102

2.
History 3233

3.
Education and family 3608

4.
Religious and Fatwas 3171

5.
Sport 2419

6.
Health 2296

7.
Astronomy 557

8.
Low 944

9.
Stories 726

10.
Cooking Recipes 2373

Total
22,429

The third data set dataset was collected from BBC Arabic website. It is free and

public and contains a suitable number of documents for the classification process and

also suitable to the hardware used in experiments. BBC Arabic dataset has different

domains. Table 4.3 presents domains of BBC-Arabic corpus which includes 4,763

documents. Each document belongs to 1 of the 7 domains or categories.

38

Table 4.3: Categories and number of documents per category for BBC Arabic corpus.

Number Category Number of text documents

1.
Middle East News 2356

2.
World News 1489

3.
Business 296

4.
Science & Technology 232

5.
Sports 219

6.
Entertainments 122

7.
World Press 49

Total 4,763

4.2 Data Preprocessing

Text preprocessing includes many steps, the process starts by tokenizing string to

words, after that normalizing tokenized words, the stop word removed and applying

stemming algorithm (stemming / light stemming), and finally term weighting for each

word , Figure 4.2 shows these steps. In the next section we will describe text

preprocess steps applied on Arabic text.

Figure 4.2: Arabic text documents preprocessing steps.

String Tokenizing

Normalization

Stop word removal

Stemming

Term Weighting

39

4.2.1 String Tokenizing

Tokenization is very important in natural language processing. It can be seen as a

preparation stage for all other natural language processing tasks [53]. Tokenization is

the task of separating out words from running text into units. These units could be

characters, words, numbers, sentences or any other appropriate unit [54]. The

definition of a word here is not the exact syntactic form, which is why we call it a

'token'. In the case of Arabic, where a single word can comprise up to four

independent tokens, morphological knowledge needs to be incorporated into the

tokenize. However, Tokenization closely related to the morphological analysis. The

tokenize process is responsible for defining word boundaries such as white spaces and

punctuation marks, multiword expressions, abbreviations and numbers [55].

One of the most useful features in detecting sentences boundaries and tokens is

punctuation marks. However, the total number of punctuation marks and symbols

used in Arabic corpus was 134, while in the corresponding English corpus only 54

punctuations and symbols were used [55]. There are several methods to apply

tokenization; the simplest way we used is extracting any alphanumeric string between

two white spaces.

4.2.2 Normalization

Normalization is the process of unification of different forms of the same letter.

Before stemming and stop word removal, corpus was normalized as follows:

 Remove punctuation.

 Remove diacritics (primarily weak vowels).

 Remove non letters.

 Replace إ , أ , and آ with ا.

 Replace final ى with ي.

 Replace final ة with ه .

4.2.3 Stop Words

Stop words are frequently occurring, insignificant words that appear in an article or

web page (i.e. pronouns, prepositions, conjunctions, etc.). Words like (بين , قد ,تكون ,هذه

40

كان ,أين, على, انه) are considered stop words. These words carry no information. Stop

words are filtered out prior to processing of natural language data [36].

4.2.4 Stemming Algorithms

One of the major techniques that have been used in preprocessing stage in

document classification is stemming. Christopher et al. [56] define Stemming as a

crude heuristic process that chops off the ends of words in the hope of achieving this

goal correctly most of the time, and often includes the removal of derivational affixes.

In other words it is the process of removing any affixes (prefixes that added to the

beginning of the word, infixes that added to the middle of the word, or/and suffixes

that added to the ending of the word) from words to reduce these words to their stems

or roots under the assumption that words with the same stem are semantically related.

There are two major approaches that are followed for Arabic stemming. One

approach is called light stemming (also called stem-based stemming) by which a

word’s prefixes and suffixes are removed; the other one called Root-based stemming

(also called aggressive stemming) which reduces a word to its root. Another two

approaches that have been researched are Statistical stemming and Manual

constructing of dictionaries; the last one is not efficient and there for not so popular.

Studies show that light stemming outperforms aggressive stemming and other

stemming types [57].

1- Root–based Stemmer

Arabic words are formed from abstract forms named roots, the root is the basic form

of word from which many derivations can be obtained by attaching certain affixes so

we produce many nouns and verbs and adjectives from the same root [58]. A root

based stemmer main goal is to extract the basic form for any given word by

performing morphological analysis for the word [59], Table 4.4 shows an example

root “لعب” and a set (not all) derivations can be obtained from this root [60]:

Table 4.4: Some derivations of the root “لعب”.

 لعبة ملعوب لاعب ملعب يلعب

Play Playground Player Played Game

Khoja stemmer [61] basically attempts to find roots for Arabic words which are far

more abstract than stems. It first removes prefixes and suffixes, then attempts to find

41

the root for the stripped form. The problem in this stemming technique is that many

different word forms are derived from an identical root, and so the root extraction

stemmer creates invalid conflation classes that result in an ambiguous query which

leads to a poor performance [60].

2- Light Stemmer

Light stemming is to find the representative indexing form of a word by the

application of truncation of affixes [62]. The main goal of light stemming is to retain

the word meaning intact and so improves the retrieval performance of an Arabic

information retrieval system. Many light stemming methods like Leah [63] stemmer

classifies the affixes to four kinds of affixes: antefixes, prefixes, suffixes and postfixes

that can be attached to words. Thus an Arabic word can have a more complicated

form if all these affixes are attached to its root. The following example, Table 4.5,

shows a sample of a word and its affixes [62] :

Table 4.5: A word and its affixes "ليناقشوهم"

Antefix Prefix Core Suffix Postfix

 هم و ناقش ي ل

So from the above example we see that if we could remove all affixes of a word then

we will get the stemmed word which is not the root but basic word without any

affixes and so we maintain the meaning of the word and improve the search

effectiveness.

In this research we will apply light stemming and Khoja stemmer on our datasets.

 4.2.5 Term weighting

Term weighting is one of pre-processing methods used for enhanced text document

presentation as feature vector. Term weighting helps us to locate important terms in a

document collection for ranking purposes [64]. There are several term weighting

schemes the popular term weighting schemes are Boolean model, Term Frequency

(TF), Inverse Document Frequency (IDF), and Term Frequency-Inverse Document

Frequency (TF-IDF) [13]. Choosing an appropriate term weighting scheme is more

important for text categorization [65].

42

a. Boolean model

The Boolean model is the simplest retrieval model based on Boolean algebra and set

theory. Boolean model indicates to absence or presence of a word with Booleans 0 or

1 respectively [13].

b. Term Frequency

Term frequency TF (t,d) is the number that the term t occurs in the document d [13].

The TF measures the importance of term ti within the particular document dj can be

calculated by equation [40]:

jk

ji

ji

n

n
TF

,

,

,
 ………………………………...….. (4.1)

Where

ji
n

,
 : The number of occurrences of the considered term (ti) in the document dj.

 jk
n

,
: Sum of number of occurrences of all terms in document dj.

c. Inverse Document Frequency

The inverse document frequency (IDF) is one of the most widely used term weighting

schemes for estimating the specificity of term in a document collection [66]. It is

based on the idea that if a term appears in only a few documents in the collection, then

such a term is expected to be a good discriminator of these documents. The IDF

weight of a term t can be calculated from document frequency using the formula [40]:

)log(
n

N
IDF

t
 ………….………………….…….. (4.2)

Where

N: number of documents.

n: number of documents with word i.

The IDF of a term is low if it occurs in many documents and high if the term occurs in

only a few documents [13].

d. Term Frequency-Inverse Document Frequency

Term Frequency and Inverse Document Frequency (TF-IDF), is a popular method of

pre-processing documents in the information retrieval community [65]. TF-IDF works

by determining the relative frequency of words in a specific document compared to

the inverse proportion of that word over the entire document corpus. Intuitively, this

43

calculation determines how relevant a given word is in a particular document [67].

The TF-IDF calculated by using the formula [40]:

TF-IDF =
ji

TF
,

.
t

IDF ………….………………….…….. (4.3)

TF-IDF =)log(.

,

,

n

N

n

n

jk

ji

 ……...………………….…….. (4.4)

In this research, TF-IDF term weighting schema is applied to our datasets, because it

is the most popular weighting schema and many researches such as [14] show that it

gives a good results.

4.3 Evaluation

There are different measures that we can use to measure classification accuracy. The

basic measures that we can use are: accuracy, precision, recall, F-measure. Accuracy

as a measure is the number of samples that are correctly classified.

Computation of precision and recall are based on computing confusion matrix [26] as

shown in Table 4.6. A confusion matrix is computed by creating two categories, it is a

matrix where test cases are distributed as follows:

1- True positive (TP): refers to positive instances that are correctly labeled.

2- False Negative (FN): are the positive instances that are incorrectly labeled.

3- False Positive (FP): are the negative instances that are incorrectly labeled.

4- True negative (TN): refers to negative instances that are correctly labeled.

Table 4.6: Confusion matrix for two class classification problem.

True Positive (TP) False Negative (FN)

False Positive (FP) True Negative (TN)

We can compute classifier accuracy as:

TNFNFPTP

TNof
Accuracy

ofnumber

 number TP ofnumber
 ………….………………….…….. (4.5)

44

The precision is the percentage of predicted documents for the given topic that are

correctly classified:

positivesfalsepositivestrueofnumber

positivestrueofnumber
Precision

 ……………… (4.6)

Also, we compute recall which is the percentage of the total documents for the given

topic that are correctly classified as follows:

negativesfalsepositivestrue

positivestrue
Recall

 …………………………….. (4.7)

The F measure combines precision and recall. We used the F-measure to evaluate the

performance of text classifiers:

recallprecision

recallprecision
F

 2 …………….…….………………….…….. (4.8)

So using accuracy, precision, recall and F-measure we can evaluate our system and

compare our results with other experiments.

 4.4 Text Mining Tools

1- Weka Data Mining Software in Java [68]: Weka is a collection of machine

learning algorithms for data mining tasks. The algorithms can either be applied

directly to a dataset or called from your own Java code. Weka contains tools

for data pre-processing, classification, regression, clustering, association rules,

and visualization. It is also well-suited for developing new machine learning

schemes.

2- RapidMiner [69]: RapidMiner provides data mining and machine learning

procedures including: data loading and transformation, data preprocessing and

visualization, modeling, evaluation, and deployment. RapidMiner is written in

the Java programming language. It uses learning schemes and attributes

evaluators from the Weka machine learning environment.

45

CHAPTER 5

EXPERIMENTAL RESULTS

This chapter describes the results and analyses of combining different classification

approaches on the selected Arabic datasets. In our experiments we implement four

combination approaches. We select different classifiers to use in our experiments such

as SVM, Naïve Bayes, C4.5, kNN, Decision Stump, RBFNN and LVQ2.1. These

classifiers are selected because they are the most famous classifiers used in other

researches to classify Arabic text documents. Also some classifiers such as Decision

trees are selected in AdaBoost and Bagging because researchers recommended using

these classifiers with such of these combining algorithms.

In our experiments we implement four combined models. The first model is built

using fixed combination rules. We examine five fixed rules which mentioned in

chapter 3. The second combination approach we build is combining classifiers using

stacking. Different numbers of classifiers are used to build different stacked models.

The third model is built using AdaBoost algorithm. We use C4.5 classifier with this

algorithm. The last model that we examine is build using Bagging algorithm. We use

Decision stump classifier with this algorithm.

The experiments are implemented using three datasets, BBC Arabic, CNN Arabic,

OSAC datasets.

Two stemming approaches were used with these datasets, light stemming and Khoja

stemmer. We used only TF-IDF term weighting schema.

In the following sections we will examine and analyze the four combined models.

Experimental results investigate building models time, precision, recall, F-measure

and classifiers accuracy.

5.1 Implementation Environment

The combined models are implemented using two data mining tools, WEKA and

RapidMiner. We use WEKA tool to build two models using fixed combining rules

and stacking. The AdaBoost and Bagging models were built using RapidMiner.

In our implementation, we use a platform of Intel Core i3 of speed 2.2 GHz, 4 GB of

Memory and 64 bit windows 7 operating system.

5.2 Arabic Text Documents classification using fixed combining rules

In this approach we use five different fixed combination rules as the following:

46

1- Average rule.

2- Product rule.

3- Majority Voting

4- Minimum rule.

5- Maximum rule.

We apply these five fixed rules using different number of classification algorithms;

we combine three, five and seven classifiers using these rules.

In every case we use three datasets to confirm our results as we will show in the next

sections.

5.2.1 Using three classifiers Model

In the first step we use three classifiers with each rule; the classifiers used at this stage

are SVM, Naive Bayes and C4.5.

Table 5.1 shows the results of combining three classifiers using five fixed rules when

Appling light stemming on the BBC Arabic data set and using TF-IDF term

weighting.

Table 5.1 presents that applying majority voting rule achieved the highest accuracy

(94.1%), recall (0.943), precision (0.943) and F-measure (0.943) of classification.

Table 5.1: Accuracy, F-measure and Time of combined classifiers using three classifiers and BBC

dataset (TF-IDF and Light stemming).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.937 0.938 0.937 93.7 90.5

Product rule 0.940 0.940 0.941 90.4 105.2

Majority vote 0.943 0.943 0.943 94.1 107.1

Minimum rule 0.895 0.893 0.897 89.6 110.37

Maximum rule 0.880 0.879 0.882 88.2 111.67

Table 5.2 shows the result of combining three classifiers using with five fixed rules

when applying Khoja stemmer on BBC Arabic data set and using TF-IDF term

weighting.

47

Table 5.2: Accuracy, F-measure and Time of combined classifiers using three classifiers and BBC

dataset (TF-IDF and Khoja stemmer).

Rule F measure Precision Recall Accuracy % Time (s)

Average rule 0.929 0.929 0.929 92.9 135.18

Product rule 0.911 0.912 0.911 91.3 155.52

Majority vote 0.935 0.935 0.935 93.5 153.65

Minimum rule 0.894 0.891 0.898 90.7 156.50

Maximum rule 0.861 0.860 0.862 86.2 166.06

And from Table 5.2 we notice also that the majority voting rule outperforms (93.5%)

over all other fixed combination rules.

To confirm our results we use other dataset as shown in Table 5.3 which shows the

result of combining three classifiers using with five fixed rules when Appling light

stemming on the CNN Arabic data set and using TF-IDF term weighting.

Table 5.3: Accuracy, F-measure and Time of combined classifiers using three classifiers and CNN

dataset (TF-IDF and Light stemming).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.924 0.925 0.924 92.4 468.94

Product rule 0.923 0.923 0.923 92.3 459.58

Majority vote 0.959 0.959 0.959 93.4 457.44

Minimum rule 0.909 0.909 0.910 91.2 451.68

Maximum rule 0.884 0.890 0.879 87.9 453.90

Table 5.4 shows the result of combining three classifiers using with five fixed rules

when Appling Khoja stemmer on CNN Arabic data set and using TF-IDF term

weighting.

48

Table 5.4: Accuracy, F-measure and Time of combined classifiers using three classifiers and CNN

dataset (TF-IDF and Khoja stemmer).

Rule F measure Precision Recall Accuracy % Time (s)

Average rule 0.922 0.923 0.922 92.2 308.08

Product rule 0.910 0.911 0.910 91.8 291.54

Majority vote 0.924 0.925 0.924 92.4 299.88

Minimum rule 0.909 0.911 0.908 91.8 298.15

Maximum rule 0.877 0.888 0.867 86.7 298.38

Figure 5.1 summarizes the results in term of accuracy using two datasets and two

different stemmers.

Figure 5.1: Accuracy summarization of three classifiers combined models

From Figure 5.1 we notice that applying majority voting combination rule on BBC

Arabic dataset with Light stemming give the highest accuracy (94.1%) of

classification.

Figure 5.2 summarizes the results in term of model building time using two datasets

and two different stemmers.

93.7

90.4

94.1

89.6

88.2

82

84

86

88

90

92

94

96

Average rule Product rule Majority
vote

Minimum
rule

Maximum
rule

BBC-Light stemming

BBC-Khoja

CNN-Light stemming

CNN-Khoja

49

Figure 5.2: Summarization of three classifiers combined Model building time.

From Figure 5.2, building Average rule model using BBC Arabic dataset with Khoja

stemmer need less time (90.5 s) than any other model, and this model gives a good

accuracy (92.9%) as shown in Table 5.2.

5.2.2 Using five classifiers Model

At this model we combine five classifiers using fixed rules combination method; the

classifiers used at this stage are SVM, Naive Bayes and C4.5, kNN and Decision

Stump.

Table 5.5 shows the results of combining five classifiers using five fixed rules when

applying light stemming on the BBC Arabic data set and using TF-IDF term

weighting.

Table 5.5 presents that applying majority voting rule achieves the highest Accuracy

(94.5%), Recall (0.945), Precision (0.945) and F-measure (0.943) of classification.

Table 5.5: Accuracy, F-measure and Time of combined classifiers using five classifiers and BBC

dataset (TF-IDF and Light stemming).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.925 0.926 0.925 92.5 150.9

Product rule 0.911 0.912 0.911 91.3 166.5

Majority vote 0.945 0.945 0.945 94.5 158.78

Minimum rule 0.915 0.913 0.917 91.4 147.92

Maximum rule 0.861 0.860 0.862 86.2 165.73

90.5 105.2 107.1 110.37 111.67

0

100

200

300

400

500

600

BBC-Light stemming

BBC-Khoja

CNN-Light stemming

CNN-Khoja

50

And from Table 5.6 we notice also that the majority voting rule outperforms (94.3%)

over all other fixed combination rules using Khoja stemmer.

Table 5.6: Accuracy, F-measure and Time of combined classifiers using five classifiers and BBC

dataset (TF-IDF and Khoja stemmer).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.928 0.929 0.927 92.7 90.48

Product rule 0.912 0.913 0.912 91.1 90.59

Majority vote 0.943 0.944 0.943 94.3 96.19

Minimum rule 0.942 0.943 0.942 89.6 91.15

Maximum rule 0.880 0.879 0.882 88.2 93.98

Also to confirm our results using five classifiers model we use other dataset as shown

in Table 5.7 which shows the result of combining five classifiers by five fixed rules

when applying light stemming on the CNN Arabic data set and using TF-IDF term

weighting.

Table 5.7: Accuracy, F-measure and Time of combined classifiers using five classifiers and CNN

dataset (TF-IDF and Light stemming).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.930 0.930 0.930 92.9 489.34

Product rule 0.926 0.926 0.926 92.5 478.30

Majority vote 0.954 0.959 0.950 93.4 473.46

Minimum rule 0.905 0.909 0.901 90.4 463.49

Maximum rule 0.884 0.879 0.890 87.9 508.91

Table 5.8 shows the result of combining five classifiers using five fixed rules when

Appling Khoja stemmer on CNN Arabic data set and using TF-IDF term weighting.

51

Table 5.8: Accuracy, F-measure and Time of combined classifiers using five classifiers and CNN

dataset (TF-IDF and Khoja stemmer).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.921 0.922 0.921 92.1 299.47

Product rule 0.950 0.950 0.950 91.8 300.69

Majority vote 0.926 0.926 0.926 92.6 299.3

Minimum rule 0.902 0.903 0.902 90.7 300.17

Maximum rule 0.877 0.888 0.867 86.7 281.13

Figure 5.3 summarizes the accuracy results of applying 5 classifiers combined model

using fixed rules, applied on two datasets with two different stemming algorithms.

Figure 5.3: Accuracy summarization of five classifiers combined models

From Figure 5.3 we notice that the best results are when using majority vote rule

applied on BBC Arabic dataset with light stemming.

Figure 5.4 summarizes the results of combining a five classifiers model in term of

time using two datasets and two different stemmers, and we notice that building

Average rule model using BBC Arabic dataset with Khoja stemmer need less time

(90.48 s) than any other model, and this model gives a good accuracy (92.7%) as

shown in Table 5.6.

92.5

91.3

94.5

91.4

86.2

82

84

86

88

90

92

94

96

Average
rule

Product
rule

Majority
vote

Minimum
rule

Maximum
rule

BBC-Light stemming

BBC-Khoja

CNN-Light stemming

CNN-Khoja

52

Figure 5.4: Comparison of five classifiers combined Models building time

5.2.3 Using seven classifiers Model

At this model we combine seven classifiers using fixed rules combination method; the

classifiers used at this stage are SVM, Naive Bayes, C4.5, RBFN, kNN, Decision

Stump and Nearest-neighbor-like

Table 5.9 shows the results of combining seven classifiers using five fixed rules when

applying light stemming on the BBC Arabic data set and using TF-IDF term

weighting.

Table 5.9: Accuracy, F-measure and Time of combined classifiers using seven classifiers and BBC

dataset (TF-IDF and Light stemming).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.935 0.939 0.932 93.2 730.32

Product rule 0.926 0.926 0.926 92.9 787.54

Majority vote 0.954 0.955 0.953 95.3 835.94

Minimum rule 0.901 0.901 0.901 90.2 735.12

Maximum rule 0.876 0.883 0.870 87.0 741.05

We notice that from Table 5.9, the accuracy increases when applying majority voting

rule on BBC Arabic dataset using seven classifiers, the highest accuracy equal to

95.3%.

90.48 90.59 96.19 91.15 93.98

0

100

200

300

400

500

600

Average
rule

Product
rule

Majority
vote

Minimum
rule

Maximum
rule

BBC-Light stemming

BBC-Khoja

CNN-Light stemming

CNN-Khoja

53

Also we apply the model on BBC Arabic dataset with Khoja stemmer. Table 5.10

shows that the maximum accuracy when using fixed rules combination is given by

using majority voting rule (94.6%).

Table 5.10: Accuracy, F-measure and Time of combined classifiers using seven classifiers and BBC

dataset (TF-IDF and Khoja stemmer).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.920 0.920 0.921 92.0 360.57

Product rule 0.910 0.908 0.912 90.1 360.83

Majority vote 0.946 0.946 0.946 94.6 323.7

Minimum rule 0.901 0.901 0.902 89.2 360.97

Maximum rule 0.864 0.870 0.858 85.8 332.13

To confirm our results, we apply the model to CNN Arabic dataset as shown in Table

5.11 and Table 5.12.

Table 5.11 shows the result when we use CNN Arabic dataset with light stemming,

and we notice that the majority voting accuracy about 93.3% which is the highest one

over all other rules.

Table 5.11: Accuracy, F-measure and Time of combined classifiers using seven classifiers and CNN

dataset (TF-IDF and Light stemming).

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.921 0. 922 0.920 92.0 5948.59

Product rule 0.917 0.916 0.918 91.8 6102.25

Majority vote 0.930 0.931 0.930 93.3 5945.64

Minimum rule 0.901 0.902 0.901 90.9 5891.67

Maximum rule 0.890 0.889 0.891 88.9 5982.17

And using CNN Arabic dataset with Khoja stemmer, Table 5.12 shows the results

which confirm all previous experiments results in which the majority voting give

92.8% of accuracy.

54

Table 5.12: Accuracy , F-measure and Time of combined classifiers using seven classifiers and CNN

dataset (TF-IDF and Khoja stemmer)

Rule F-measure Precision Recall Accuracy % Time (s)

Average rule 0.919 0.919 0.919 91.9 3682.28

Product rule 0.901 0.902 0.901 90.0 3722.75

Majority vote 0.926 0.927 0.926 92.8 3602.66

Minimum rule 0.887 0.887 0.887 88.9 3589.54

Maximum rule 0.861 0.861 0.861 86.0 3584.02

Figure 5.5 summarizes the accuracy results of applying seven classifiers combined

model using fixed rules, applied on two datasets with two different stemming

algorithms.

Figure 5.5: Accuracy summarization of seven classifiers combined models

From Figure 5.5 we notice that the best results are when using majority vote rule

applied on BBC Arabic dataset with light stemming.

Figure 5.6 summarizes the results of combining seven classifiers model in term of

time using two datasets and two different stemmers, and we notice that building

majority voting model using BBC Arabic dataset with Khoja stemmer need less time

93.2 92.9

95.3

90.2

87

80

82

84

86

88

90

92

94

96

98

Average
rule

Product
rule

Majority
vote

Minimum
rule

Maximum
rule

BBC-Light stemming

BBC-Khoja

CNN-Light stemming

CNN-Khoja

55

(323 s) than any other model, and this model gives a high accuracy (92.8%) as shown

in Table 5.12.

Figure 5.6: Comparison of seven classifiers combined Models building time.

5.2.3 Comparing all models

In this section we compare between the previous models, Figure 5.7 shows the

accuracy of all models using three, five and seven classifiers.

From the previous tables and figures we notice that the best results are got using BBC

dataset with light stemming and TF-IDF weighting, Figure 5.7 compare between these

models using this dataset and stemming.

From Figure 5.7 we can conclude that the best accuracy achieved when using seven

classifiers model using BBC dataset with Light stemming and TF-IDF weighting.

Figure 5.7: The accuracy of all models using three, five and seven classifiers.

360.57 360.83 323.7 360.97 332.13

0

1000

2000

3000

4000

5000

6000

7000

BBC-Light stemming

BBC-Khoja

CNN-Light stemming

CNN-Khoja

93.2 92.9
95.3

90.2

87

80
82
84
86
88
90
92
94
96

3 Classifiers

5 Classifiers

7 Classifiers

56

5.3 Arabic Text Documents classification using Stacking

The second approach that we build in this thesis to improve Arabic text documents

classification is stacking.

In this approach, we use two basic models, in which the difference between them is

the Meta classifier. In the first model we use Naïve Bayes classifier as a Meta

classifier, where in the second model we use Linear Regression prediction as a Meta

classifier.

In each model, we use different number of base classifiers as we will show in the next

sections. The base classifiers that we use in all models are:

1- Naïve Bayes

2- SVM

3- C4.5

4- Decision Stump

5- k-Nearest Neighbor (kNN)

6- A radial basis function network (RBFN)

7- Learning Vector Quantization (LVQ)

In each of the two models, we use different number of base classifiers. We implement

the models using three and five base classifiers where as we cannot implement a

stacking model with seven classifiers because it needs more high resources.

The models evaluated using two datasets BBC and CNN, with two different stemming

algorithms (Light Stemming and Khoja stemmer).

The following sections show the evaluated models and the results of each model.

5.3.1 Stacking with Naïve Bayes as Meta classifier

In this section, we build combined models that based on Naïve Bayes classifier as a

Meta classifier using three and five base classifiers.

The first model that we evaluate is a stacking model that consists of the following

three base classifiers:

1- Naïve Bayes

2- SVM

3- C4.5

57

Table 5.13: Accuracy, F-measure and Time of stacked model of three (Naïve Bayes, SVM and C4.5)

classifiers and Naïve Bayes Meta classifier.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.989 0.989 0.989 98.9 1480.35

BBC with Khoja stemmer 0.975 0.976 0.975 97.6 951.40

CNN with light stemming 0.924 0.924 0.924 92.4 3671.63

CNN with Khoja stemmer 0.906 0.907 0.906 90.8 3203.74

OSAC with light stemming 0.968 0.968 0.968 96.8 16433.78

OSAC with Khoja stemmer 0.956 0.956 0.957 95.7 15527.16

Three different datasets are used to confirm the results of combination as shown in

Table 5.13, which shows the result of combining three classifiers using stacking; the

highest accuracy is given by using BBC Arabic dataset with light stemming (98.9 %).

The second model that we evaluate is a stacking model that consists of the following

three base classifiers:

1- LVQ

2- Naive Bayes

3- C4.5

Table 5.14: Accuracy, F-measure and Time of stacked model of three classifiers (LVQ, Naive Bayes

and C4.5) and Naïve Bayes Meta classifier.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.982 0.983 0.982 98.3 1713.75

BBC with Khoja stemmer 0.977 0.979 0.976 97.7 1535.51

CNN with light stemming 0.960 0.962 0.959 96.0 3503.74

CNN with Khoja stemmer 0.951 0.952 0.950 95.1 3253.84

Table 5.14 shows the results of combining LVQ, Naive Bayes, and C4.5 using

stacking with Naïve Bayes as a Meta classifier, the results show that stacking these

classifiers gives high classification accuracy with the two datasets.

The third model that we evaluate is a stacking model that consists of the following

five base classifiers:

1- SVM

2- Naive Bayes

58

3- C4.5

4- Decision Stump

5- kNN

Table 5.15: Accuracy, F-measure and Time of stacked model of five classifiers (SVM, Naive Bayes,

C4.5, Decision Stump and kNN) and Naïve Bayes Meta classifier.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.992 0.993 0.992 99.2 1962.73

BBC with Khoja stemmer 0.983 0.985 0.981 98.9 1760.91

CNN with light stemming 0.977 0.978 0.977 97.8 3756.54

CNN with Khoja stemmer 0.965 0.966 0.964 96.4 3572.37

From Table 5.15 we notice that we get a very high accuracy using five classifiers, but

also the time needed to build the model is increasing also compared to Table 5.13.

At this stage we use only two datasets because using stacking with five base

classifiers needs high memory recourses, so we cannot use OSAC dataset with all

stacked models that contain five classifiers.

The fourth model that we evaluate is a stacking model that consists of the following

five base classifiers:

1- LVQ

2- Naive Bayes

3- C4.5

4- RBF networks

5- kNN

Table 5.16: Accuracy, F-measure and Time of stacked model of five classifiers (LVQ, Naive Bayes,

C4.5, RBF networks and kNN) and Naïve Bayes Meta classifier.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.988 0.989 0.988 98.9 2163.43

BBC with Khoja stemmer 0.983 0.985 0.981 98.1 1822.65

CNN with light stemming 0.975 0.976 0.975 97.6 4196.71

CNN with Khoja stemmer 0.970 0.970 0.970 96.9 3714.42

59

Table 5.16 shows the results of combining these five classifiers with stacking and

using Naïve Bayes as Meta classifier. Also we notice that the accuracy increases when

using five bas classifiers compared to the model contains just three classifiers as in

Table 5.14.

5.3.2 Stacking with Linear Regression as Meta classifier

In this section we build combined models that based on Linear Regression classifier

as a Meta classifier using three and five base classifiers.

The first model that we evaluate is a stacking model that consists of the following

three base classifiers with Linear Regression classifier as a Meta classifier:

1- Naïve Bayes

2- SVM

3- C4.5

Table 5.17 shows the results of combining these three classifiers with stacking and

using Linear Regression as Meta classifier, and we notice this model achieves a high

accuracy using BBC dataset.

Table 5.17: Accuracy, F-measure and Time of stacked model of three (Naïve Bayes, SVM and C4.5)

classifiers and Linear Regression Meta classifier.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.994 0.994 0.994 99.4 1567.84

BBC with Khoja stemmer 0.977 0.977 0.977 97.7 1026.27

CNN with light stemming 0.938 0.939 0.938 93.9 3701.96

CNN with Khoja stemmer 0.922 0.922 0.922 92.2 3289.74

OSAC with light stemming 0.955 0.956 0.955 95.6 16964.25

OSAC with Khoja stemmer 0.942 0.942 0.942 94.2 15891.81

The second model that we evaluate is a stacking model that consists of the following

five base classifiers with Linear Regression classifier as a Meta classifier:

1- Naïve Bayes

2- SVM

3- C4.5

60

4- Decision Stump

5- kNN

Table 5.18 shows the results of combining five classifiers with stacking and using

Linear Regression as Meta classifier; we notice the accuracy increases when using

five classifiers where as the time is also increases.

Table 5.18: Accuracy, F-measure and Time of stacked model of five classifiers (SVM, Naive Bayes,

C4.5, Decision Stump and kNN) and Linear Regression Meta classifier.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.994 0.995 0.994 99.5 3718.07

BBC with Khoja stemmer 0.980 0.980 0.980 98.0 3291.12

CNN with light stemming 0.940 0.941 0.940 94.0 8721.59

CNN with Khoja stemmer 0.929 0.929 0.929 93.0 8036.61

5.4 Arabic Text Documents classification using boosting

At this experiment we build a model that use AdaBoost to classify Arabic text

documents. The model build based on C4.5 classifier.

Table 5.19 shows the results of using AdaBoost with C4.5 with 5 iterations; we notice

that we get the highest accuracy (95.3%) using BBC Arabic dataset with light

stemming.

Table 5.19: Accuracy, F-measure and Time of using AdaBoost with C4.5 classifier using 5 iterations.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.952 0.953 0.952 95.3 1174.58

BBC with Khoja stemmer 0.941 0.941 0.942 94.2 922.37

CNN with light stemming 0.924 0.924 0.924 92.6 3543.64

CNN with Khoja stemmer 0.901 0.901 0.901 90.1 3328.93

From Table 5.19 and Table 5.20 we see that increasing the number of iteration

produces a high classification accuracy using all datasets.

61

Table 5.20: Accuracy, F-measure and Time of using AdaBoost with C4.5 using 10 iterations.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.995 0.995 0.995 99.5 1965.72

BBC with Khoja stemmer 0.980 0.980 0.980 98.0 1585.29

CNN with light stemming 0.942 0.942 0.943 94.3 4877.76

CNN with Khoja stemmer 0.938 0.938 0.939 93.9 4398.46

5.5 Arabic Text Documents classification using Bagging

At this experiment we build a model that use bagging to classify Arabic text

documents. The model build based on Decision Tree classifier.

At the first experiment we use bagging with decision Tree with 5 iterations as shown

in Table 5.21, we notice that the highest accuracy is got when using BBC dataset with

light stemming.

Table 5.21: Accuracy, F-measure and Time of using Bagging with Decision Tree using 5 iterations.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.936 0.936 0.936 93.7 295.85

BBC with Khoja stemmer 0.930 0.931 0.930 93.0 201.17

CNN with light stemming 0.911 0.912 0.911 91.1 922.16

CNN with Khoja stemmer 0.906 0.906 0.906 90.6 738.88

We use the same experiment but with 10 iterations as shown in Table 5.22, we notice

that we get a higher accuracy when increasing the number of iterations.

Table 5.22: Accuracy, F-measure and Time of using Bagging with Decision Tree using 10 iterations.

Dataset F-measure Precision Recall Accuracy % Time (s)

BBC with light stemming 0.993 0.993 0.993 99.3 470.99

BBC with Khoja stemmer 0.977 0.977 0.977 97.7 365.62

CNN with light stemming 0.928 0.929 0.928 92.9 1427.54

CNN with Khoja stemmer 0.913 0.913 0.913 91.3 1132.43

62

5.5 Comparing Combined models with single classifiers

In this section we compare the classification accuracy of all combined models that we

build with the classification accuracy of single classifiers that other researchers used

to classify Arabic text documents

5.5.1 Comparing combined classifiers using fixed combining rules with single

classifiers

According to the results that we get from combining different classifiers using fixed

combining rules in section 5.1 , we compare these results with each single classifier

that used by other researchers to classify Arabic text document.

Figure 5.8 shows the accuracy of combining three classifiers using majority voting

rule and BBC Arabic dataset with light stemming with other classifiers.

From Figure 5.8 we notice that the combined model of three classifiers (Naïve Bayes,

SVM and C4.5) give a high accuracy (94.1%) compared to the results of single

classifiers used in [22, 24, 27].

Figure 5.8: A comparison between three combined classifiers using majority voting rule vs. single

classifiers.

Figure 5.9 shows the accuracy of combining five classifiers using majority voting rule

and BBC Arabic dataset with light stemming with other classifiers.

94.1

89.1 88.1

78.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Combined
Classifiers

Naïve Bayes SVM C4.5

Accuracy

63

Figure 5.9: A comparison between five combined classifiers using majority voting rule vs. single

classifiers.

From Figure 5.9 we notice that the combined model of five classifiers (Naïve Bayes,

SVM, C4.5, kNN and Decision Stump) gives a high accuracy (94.5%) compared to the

results of single classifiers used in [11, 22, 24, 27].

Figure 5.10 shows the accuracy of combining seven classifiers using majority voting

rule and BBC Arabic dataset with light stemming with other classifiers.

The comparison shows that the combined model using seven classifiers (Naïve Bayes,

SVM, C4.5, kNN, RBFN, Nearest-neighbor-like and Decision Stump) an majority

voting rule give a accuracy higher than any other single classifier used in the model

[11, 22, 24, 27].

Figure 5.10: A comparison between seven combined classifiers using majority voting rule vs. single

classifiers.

94.5
89.1 88.1

78.4

87.6
82.4

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Combined
Classifiers

Naïve Bayes SVM C4.5 kNN Decision
Stump

Accuracy

95.3

89.1 88.1

78.4

87.6
82.4

80.1
85.1

70.0
75.0
80.0
85.0
90.0
95.0

100.0

Accuracy

64

5.5.2 Comparing combined classifiers using stacking with single classifiers

In this section we compare the results of combined classifiers using stacking with

other single classifiers that researchers use to classify Arabic text document.

First we will compare stacked model with three and five classifiers using naïve Bayes

as a Meta classifier.

Figure 5.11 compare between stacked model using three classifiers (Naïve Bayes,

SVM and C4.5) using Naïve Bayes as a Meta classifier and single classifiers , we see

that the accuracy of stacked model (98.3%) is higher than any single classifier.

Figure 5.11: A comparison between stacking using three classifiers vs. single classifiers.

In Figure 5.12 we use other three classifiers (LVQ, Naïve Bayes and C4.5); the

comparison shows that stacked model outperforms other single classifiers [22, 24,

40].

Figure 5.12: A comparison between stacking using three classifiers vs. single classifiers.

98.9

89.1 88.1

78.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Stacking three
classifiers

Naïve Bayes SVM C4.5

Accuracy

98.3

89.1

93.8

78.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Stacking three
classifiers

Naïve Bayes LVQ C4.5

Accuracy

65

Figure 5.13: A comparison between stacking using five classifiers vs. single classifiers.

The other comparison is done between the stacked models built using five classifiers,

the first model consists of Naïve Bayes, kNN , SVM, Decision Stump and C4.5 using

Naïve Bayes as a Meta classifier and with each single classifier used to classify

Arabic text documents , the result shows the high accuracy of stacked model as shown

in Figure 5.13.

Figure 5.14: A comparison between stacking using five classifiers vs. single classifiers

Figure 5.14 shows other model that consists of Naïve Bayes, kNN, LVQ, Decision

Stump and C4.5; comparing this model to the accuracy of single classifiers we get

that stacking outperforms all single classifiers which used in [11, 22, 24, 27].

The last stacked model that we will compare is the same as previous model but when

using Linear Regression as a Meta classifier.

99.4

89.1 88.1

78.4

87.6

82.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Stacking
five

classifiers

Naïve
Bayes

SVM C4.5 kNN Decision
Stump

Accuracy

99.2

89.1

93.8

78.4

87.6

82.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Stacking
five

classifiers

Naïve
Bayes

LVQ C4.5 kNN Decision
Stump

Accuracy

66

Figure 5.15 show the comparison between stacked models using Linear Regression as

a Meta classifier and other single classifiers, the result shows that using five stacked

classifiers to classify Arabic text documents give a very high accuracy compared to

single classifiers in [11, 22, 24, 27, 40].

Figure 5.15: A comparison between stacking using three and five classifiers vs. single classifiers.

5.5.3 Comparing AdaBoost with single classifier

In this section we compare the results of using AdaBoost a single classifier that

researchers use to classify Arabic text document.

We use C4.5 classifier with AdaBoost, first we implement boosting using 5 iterations

and then using 10 iterations; Figure 5.16 shows the result of boosting C4.5.

Figure 5.16: A comparison between AdaBoost vs. single classifier (C4.5) using 5 and 10 iterations.

99.4 99.5

89.1

93.8

78.4

87.6

82.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Stacking
Three

classifiers

Stacking
five

classifiers

Naïve
Bayes

LVQ C4.5 kNN Decision
Stump

Accuracy

95.3

99.5

78.4

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Boosting C4.5 (5
Iterations)

Boosting C4.5 (10
Iterations)

C4.5 (without
Boosting)

Accuracy

67

From Figure 5.16 we see that using C4.5 as a single classifier used in [11] achieved a

classification accuracy 78.42%, which is low compared to using the same classifier

with boosting which improve the accuracy of classifying Arabic text documents to

99.5% using 10 iterations.

5.5.4 Comparing Bagging with single classifier

In this section we compare the results of using bagging a single classifier that

researchers use to classify Arabic text document.

We use Decision Tree classifier with bagging, first we implement bagging using 5

iterations and then using 10 iterations; Figure 5.17 shows the result of bagging

Decision Tree.

We notice that applying bagging on Decision Tree classifier improves effectively the

accuracy of classifying Arabic text documents compared to using the Decision Tree as

a single classifier such in [70].

Figure 5.17: A comparison between Bagging vs. single classifier (Decision Tree) using 5 and 10

iterations.

5.6 Discussion

In this chapter we implement different approaches to combine classifiers, fixed

combining rules, stacking, boosting and Bagging are used to improve the accuracy of

classifying Arabic text document. Two stemmers are applied on our datasets, where

we use only TF-IDF term weighting schema.

All combined approaches used in this thesis achieve a high accuracy in classifying

Arabic text documents. The best results obtained using BBC Arabic dataset with light

stemming and TF-IDF weighting schema. The time needed to build the models

93.7

99.4

77.7

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Bagging Decision Tree
(5 Iterations)

Bagging Decision Tree
(10 Iterations)

Decision Tree

Accuracy

68

depends on the combination algorithm, we notice that stacking needs more time than

any other approach. Also the number of classifiers used in the model increase the time

needed to build the model.

The fixed combination rules need less time to build the model than any other

combination approach, because this approach simply called non-trainable combiner,

which means the combiners do not need to be trained. Each classifier in the model

gives a decision and the combiner uses the selected rule to give the final decision.

The Stacking algorithm needs more time than any other combination approach

because it consists of two levels of classifiers. The first level consists of base

classifiers which are trained using the documents dataset, and then the outputs of the

base classifiers are used with the original dataset to produce a new dataset. 70 % of

the dataset is used to train the base classifiers, and 30% for testing. The second level

or Meta classifier is trained using the new dataset by using 10 folds cross validation.

The 10 folds cross validation training method needs more time than the method used

with the base classifiers. All mentioned reasons makes the stacking algorithm need

more time to be built.

The AdaBoost algorithm also achieves a very high accuracy in classification. The

AdaBoost algorithm focuses on the unclassified documents or the misclassified during

building the model. It assigns weights and focuses on these documents through the

next iterations to improve the classification accuracy. The AdaBoost algorithm needs

an acceptable time to build the model compared with stacking model.

The last algorithm is bagging which achieves a high accuracy in classifying Arabic

text documents. We notice that bagging needs less time than AdaBoost algorithm to

build the model because bagging trains different models in the same time and

combines their decisions, see section (3.3.5).

Table 5.23 shows a comparison between fixed combination rules and stacking when

using the BBC Arabic dataset.

From Figure 5.23 we notice that the accuracy of using three classifiers with fixed

combining rules was 94.1%, and the needed time to build the approach was 107.1

seconds. When we increased the number of classifiers to seven, the accuracy

increased to 95.3%, but in the other side the time needed to build the approach was

69

increased to 835.94 seconds. That means increasing the accuracy of results by 1.2%

needs additional 728.84 seconds.

The accuracy of the stacking algorithm was 98.9%, where the time needed to build the

approach was 1480.35 seconds when using three classifiers. But when we used five

classifiers, the accuracy was 99.2% and the time needed to build the approach was

1963.73 seconds. Comparing the results of stacked approach using three classifiers

with the approach which was built by three classifiers using fixed combining rules, we

notice that the accuracy of the stacking algorithm is higher by 4.8%, but the time cost

was very high because the stacking algorithm needed 1373.25 seconds more than the

fixed combining rules combiner.

The high cost of time that the stacking algorithm needed to build the approach was

due to the two levels of learning and the 10 fold cross validation learning method used

by level-1 Meta classifier, where in the other side the fixed combining rules did not

need to learn the combiner.

Table 5.23: Comparing the Accuracy and Time between Fixed combining rules and Stacking.

Number of classifiers

Fixed Combining Rules Stacking

Accuracy (%) Time(s) Accuracy (%) Time(s)

3 classifiers
94.1 107.1 98.9 1480.35

5 classifiers
94.5 158.78 99.2 1962.73

7 classifiers
95.3 835.94 - -

Table 5.24 shows a comparison between AdaBoost and Bagging algorithms. We

notice that the AdaBoost algorithm needs more time than bagging to build the

approach. For example using ten iterations, the accuracy of AdaBoost was 99.5% and

it needed 1174.58 seconds to classify documents, where the accuracy of bagging

algorithm was 99.3% and it needed 470.99 second to classify documents.

70

The high cost of time that the AdaBoost needed to build the approach was due to it

works iteratively, while the bagging algorithm works in parallel, which means that in

the bagging algorithm, each classifier learn using a sample of dataset at the same

time.

Table 5.24: Comparing the Accuracy and Time between AdaBoost and Bagging.

Number of

Iterations

AdaBoost Bagging

Accuracy Time(s) Accuracy Time(s)

5
95.3 1174.58 93.7 295.85

10
99.5 1965.72 99.3 470.99

Based upon the experimental results, we have demonstrated that combining classifiers

using different approaches can effectively improve the accuracy of classifying Arabic

Text documents.

71

CHAPTER 6

CONCLUSIONS

6.1 Summary and Concluding Remarks

Many different classifiers were used to classify Arabic text documents; some of these

classifiers gave high classification accuracy. In this thesis, we combined different

approaches to enhance Arabic text documents classification.

The advantages of combining classifiers motivated us to combine classifiers to

improve the accuracy of classifying Arabic text documents.

In this thesis, we built four combined models; the first model used fixed combining

rules to combine the results of different classifiers, where the second one is stacking

which used two stages of classification, in the first stage it used base classifiers, where

in the second one it learnt a meta classifier based on the results of base classifiers to

give the final classification result.

The third and the fourth models that we built are AdaBoost and Bagging respectively,

where we used different number of iterations for each one.

The results of combining classifiers using fixed combining rules showed that the

majority voting rule outperformed all single classifiers that were used to build the

model and it also outperformed all other fixed combining rules such as average of

probability, median of probability and other fixed rules. The highest accuracy of

combining classifiers using fixed rules was achieved by majority voting using BBC

Arabic data set with light stemming and using TF-IDF term weighting schema, the

accuracy of the model using seven classifiers is 95.3% which was high compared to

using single classifier. The time required to build this model was 835.94 second

which was relatively acceptable compared to some single classifiers such as Decision

Tree.

We used different classifiers at this model, the results showed that the accuracy

increased when we increased the number of classifiers, but at the same time, the

required time to build the model increased also. The accuracy using a model with

72

three classifiers was 94.1%, where it was 94.5% when using five classifiers, but the

best accuracy achieved using seven classifiers and it was 95.3%.

The second model that we built was a stacking model; the accuracy of stacked model

was very high compared to the accuracy of single classifiers, but it needed more time

to build the model because stacking needed two stages to learn the model. The first

stage was to learn the base classifiers; where the second stage was to learn the Meta

classifier based on the original dataset and the classification results of the base

classifiers.

We used Naïve Bayes and Linear Regression as Meta classifiers to build our stacked

model, where we used three and five base classifiers for each model.

The best results achieved using Naïve Bayes Meta classifier when using five base

classifiers was 99.2%; where the best accuracy when using Linear Regression with

five base classifiers was 99.4%. All these results achieved using BBC Arabic dataset

with light stemming and TF-IDF term weighting schema.

The third model we built using AdaBoost, the AdaBoost used in conjunction with

C4.5 classifier, the AdaBoost improved the performance of C4.5 classifier to classify

Arabic text documents, when boosting the C4.5 using 5 iterations it classified Arabic

documents and achieved a 95.3% of classification accuracy, where when we used 10

iterations the accuracy was 99.5%.

The last model we built using bagging in conjunction with Decision Tree, the model

achieved a high accuracy and improved the results of decision tree classifier , the

results showed that using 5 iterations achieved an accuracy of 93.7% where when we

used 10 iterations we achieved 99.4% of classification accuracy.

In all of previous models, the highest accuracy achieved using BBC Arabic dataset

with light stemming and TF-IDF term weighting schema.

In our experiments we used three datasets BBC Arabic, CCN Arabic and OSAC

datasets. We used just two stemming methods, the light stemming and Khoja stemmer

and we used only TF-IDF term weighting schema.

73

The combined models were compared to other single classifiers that used by

researchers to classify Arabic text documents, the comparison was done in term of

accuracy, precision, recall and F-measure.

The first limitation in our experiments that we cannot use the OSAC data set with all

models because the OSAC data set did not fit into memory specially with stacking ,

AdaBoost and Bagging because they needed a high memory resources.

The second limitation was that we cannot build a stacking model that consisted of

more than five classifiers because of memory resources that were needed, and at the

same time increasing the number of base classifiers produced a model that needed a

very long time to be built.

The combined models that we built in our research improved the accuracy of

classifying Arabic text documents, all models achieved a high classification accuracy

compared to the single classifiers used by other researchers, although some models

such as stacking needed more time to be built, but it achieved a very high accuracy.

Fixed combining rules, AdaBoost and Bagging achieved a high accuracy and needed

an acceptable time to build the model compared to some classification algorithms.

6.2 Recommendations and Future Work

In this thesis, we have shown that combining classifiers improved the accuracy of

classifying Arabic text documents. Different combination methods were evaluated

and all of these approaches achieved high classification accuracy.

Using fixed combination rules achieved a high accuracy with an acceptable time

compared to other classifiers, where stacking achieved a very high accuracy but it

needed a relatively more time to train the system.

Using boosting we showed that weak classifiers such as C4.5 can achieve high

classification accuracy. The same high accuracy was achieved using bagging with

decision tree classifiers.

According to the results of experiments and the limitations that we faced in our thesis,

the future work will be devoted to the following points:

74

1- Using other classifiers to build a combined model by fixed rules to enhance

the accuracy more than the achieved results.

2- Reducing the time needed to build a combined model especially for stacked

models.

3- Adopting our models to deal with large datasets specially when using a large

number of classifiers.

4- Working with other data types such as images and voice.

75

REFERENCES

[1] T. David and D. Robert, "Experiments with Classifier Combining Rules," in Proceedings

of the First International Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[2] T. Dietterich, "Ensemble Methods in Machine Learning," in Proceedings of the First

International Workshop on Multiple Classifier Systems, London, UK, 2000.

[3] G. Fumera and F. Roli, "A theoretical and experimental analysis of linear combiners for

multiple classifier systems," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 27, no. 6, p. 942–956, 2005.

[4] M. Ponti, "Combining Classifiers: From the Creation of Ensembles to the Decision

Fusion," in 4th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials, Sao

Carlos, Brazil, 2011.

[5] K. L., B. J. and D. R., "Decision templates for multiple classifier fusion: an experimental

comparison," Pattern Recognition, vol. 24, no. 2, p. 299–314, 2001.

[6] R. Lior, Pattern Classification Using Ensemble Methods, New Jersey: World Scientific

Publishing Co. Pte. Ltd., 2010.

[7] J. Kittler, M. Hatef, R. Duin and J. Matas, "On combining classifiers," IEEE Trans

Pattern Analysis and Machine Intelligence, vol. 20, no. 3, p. 226–239, 1998.

[8] D. Wolpert, "Stacked Generalization," Neural Networks, vol. 5, no. 2, pp. 241-259, 1992.

[9] J. Quinlan, "Bagging, Boosting, and C4.5," in In Proceedings of the Thirteenth National

Conference on Artificial Intelligence, 1996.

[10] B. Leo, "Bagging Predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[11] S. Al-Harbi, A. Almuhareb, A. Al-Thubaity, M. Khorsheed and A. Al-Rajeh, "Automatic

Arabic Text Classification," in Proceedings of The 9th International Conference on the

Statistical Analysis of Textual Data, Lyon-, France, 2008.

[12] R. Duwairi, "Arabic text Categorization," The International Arab Journal of Information

Technology, vol. 4, no. 2, pp. 125-132, 2007.

[13] M. Saad and W. Ashour, "Arabic Text Classification Using Decision Trees," in

Computer science and information technologies, Moscow,Russia, 2010.

[14] M. Saad, "The Impact of Text Preprocessing and Term Weighting on Arabic Text

Classification," The Islamic University, Gaza, 2010.

[15] A. El-Halees, "A Comparative Study on Arabic Text Classification," Egyptian Computer

76

Science Journal, vol. 20, no. 2, 2008.

[16] G. Kanaan, R. Al-Shalabi, S. Ghwanmeh and H. Al-Ma'adeed, "A comparison of text

classification techniques applied to Arabic text," Journal of the American Society for

Information Science and Technology, vol. 60, no. 9, p. 1836 – 1844, 2009.

[17] Y. Bi, D. Bell, H. Wang, G. Guo and J. Juan, "Combining Multiple Classifiers Using

Dempster’s Rule of Combination for Text Categorization," Applied Artificial

Intelligence, vol. 21, no. 3, pp. 211-239, 2007.

[18] M. Cory, "Classifier Ensembles: A Practical Overview," 20 April 2005. [Online].

[Accessed March 2013].

[19] A. El-Halees, "Arabic Opinion Mining Using Combined Classification Approach," in

Proceedings of The International Arab Conference On Information Technology, Azrqa,

Jordan, 2011.

[20] R. Miguel and S. Padmini, "Combining Machine Learning and Hierarchical Indexing

Structures for Text Categorization," PhD. Thesis. December, The University of Iowa ,

Iowa City, 2001.

[21] D. B. Durga and G. Venu, "Text Categorization and Machine Learning Methods:Current

State of the Art," Global Journal of Computer Science and Technology, vol. 12, no. 11,

2012.

[22] A. Mesleh, "Chi Square Feature Extraction Based Svms Arabic Language Text

Categorization System," Journal of Computer Science, vol. 3, no. 6, pp. 430-435, 2007.

[23] F. Harrag and E. El-Qawasmeh, "Neural Network for Arabic text classification," in The

2nd International Conference of Applications of Digital Information and Web

Technologies, London, 2009.

[24] M. El-Kourdi, A. Bensaid and T. Rachidi, "Automatic Arabic Document Categorization

Based on the Naïve Bayes Algorithm," in The 20th International Conference on

Computational Linguistics, Geneva, 2004.

[25] A. El-Halees, "Arabic Text Classification Using Maximum Entropy," The Islamic

University Journal, vol. 15, no. 1, pp. 157-167, 2007.

[26] H. Sawaf, J. Zaplo and H. Ney, "Statistical Classification Methods for Arabic News

Articles," in In the Workshop on Arabic Natural Language Processing, Toulouse,

France, 2001.

[27] R. Al-Shalabi, G. Kanaan and M. Gharaibeh, "Arabic text categorization using kNN

algorithm," in Proceedings of the 4th International Multiconference on Computer

Science and Information Technology, Amman, Jordan, 2006.

[28] I. Hmeidi, B. Hawashin and E. El-Qawasmeh, "Performance of KNN and SVM

classifiers on full word Arabic articles," Advanced Engineering Informatics, vol. 22, no.

77

1, p. 106–111, 2008.

[29] M. Abbas, K. Smaili and D. Berkani, "Comparing TR-Classifier and kNN by using

Reduced Sizes of Vocabularies," in The 3rd International Conference on Arabic

Language Processing, Rabat, Morroco, 2009.

[30] M. Bawaneh, M. Alkoffash and A. Al-Rabea, "Arabic Text Classification using K-NN

and Naive Bayes," Journal of Computer Science, vol. 4, no. 7, pp. 600-605, 2008.

[31] A. Danesh, B. Moshiri and O. Fatemi, "Improve text classification accuracy based on

classifier fusion methods," in Proceedings of The 10th International Conference on

Information Fusion, Quebec, Canada, 2007.

[32] A. Fujino, H. Isozaki and J. Suzuki, "Multi-label Text Categorization with Model

Combination based on F1-score Maximization," in Proceedings of the 3rd International

Joint Conference on Natural Language Processing, Kyoto, Japan, 2008.

[33] T. M. Mitchell, Machine learning, New York, US: McGraw Hill, 1996.

[34] T. Sergios and K. Konstantinos, Pattern Recognition, Burlington,USA: Elsevier Inc,

2009.

[35] S. Fabrizio, N. Consiglio and R. delle, "Machine learning in automated text

categorization," ACM Computing Surveys (CSUR) journal , vol. 34, no. 1, pp. 1-47 ,

2002 .

[36] T. Gharib, M. Habib and Z. Fayed, "Arabic Text Classification Using Support Vector

Machines," International Journal of Computers and Their Applications, vol. 16, no. 4,

pp. 192-199, 2009.

[37] A. Yottamine, "Analytics: The Machine Learning Advantage," Analytics: The Machine

Learning Advantage, 2011. [Online]. Available: http://yottamine.com/machine-learning-

svm. [Accessed September 2013].

[38] T. Kohonen, Self-organization and associative memory, New York: Springer-Verlag,

1995.

[39] M. Martín-Valdivia, L. Ureña-López and G.-V. M., "The learning vector quantization

algorithm applied to automatic text classification tasks," Neural Networks, vol. 20, no. 6,

pp. 748-756, 2007.

[40] M. Azara, T. Fatayer and A. El-Halees, "Arabie text classification using Learning Vector

Quantization," in 8th International Conference on Informatics and Systems (INFOS),

Giza, Egypt, 2012.

[41] K. Khalifa, M. Bedoui, M. Dogui and F. Alexandre, "Alertness States Classification By

SOM and LVQ Neural Networks," in Proceedings Of World Academy Of Science,

Engineering And Technology, 2005.

78

[42] M. Andrew and N. Kamal, "A comparison of event models for naive bayes text

classification," in In AAAI-98 Workshop on Learning for Text Categorization, Madison,

Wisconsin, 1998.

[43] J. Thorsten, "A probabilistic analysis of the rocchio algorithm with tfidf for text

categorization," in In proceedings of the 14th International Conference on Machine

Learning , Nashville,USA, 1997.

[44] Y. Yiming and L. Xin, "A Re-Examination of Text Categorization Methods," in In

Proceedings of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval, New York, NY, USA, 1999.

[45] M. B. Habib, "An intelligent system for automated arabic text categorization," Ain shams

University,Electrical Engineering, Mathematics and Computer Science, Cairo, Egypt,

2008.

[46] O. Yen-Jen, H. Shien-Ching, O. Yu-Yen and C. Chien-Yu, "Data classification with

radial basis function networks based on a novel kernel density estimation algorithm,"

IEEE Transactions on Neural Networks, vol. 16, no. 1, 2005.

[47] Wikipedia, "Radial basis function network," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Radial_basis_function_network.

[48] L. Felföldi, "Classifier Combination Systems and their Application in Human Language

Technology," Research Group on Artificial Intelligence, Szeged,Hungary, 2008.

[49] L. Kuncheva, "'Fuzzy' vs `Non-fuzzy' in combining classifiers designed by boosting,"

IEEE Transactions on Fuzzy Systems, vol. 11, no. 6, pp. 729-741, Dec 2003.

[50] D. Saso, Bernard and Ženko, "Is Combining Classifiers with Stacking Better than

Selecting the Best One?," Machine Learning Journal, vol. 54, no. 3, pp. 255 - 273, 2004.

[51] Y. Freund, "Boosting a Weak Learning Algorithm by Majority," Information and

Computation, vol. 121, no. 2, p. 256–285, 1995.

[52] M. Saad, "Arabic Computational Linguistics," 26 07 2010. [Online]. Available:

http://sourceforge.net/projects/ar-text-mining/. [Accessed 23 04 2013].

[53] A. Aliwy, "Tokenization as Preprocessing for Arabic Tagging System," International

Journal of Information and Education Technology, vol. 2, no. 4, pp. 348-353, 2012.

[54] A. Fahad, A. Ibrahim and F. Salah, "Processing Large Arabic Text Corpora: Preliminary

Analysis and Results," in Proceedings of the Second International Conference on Arabic

Language Resources and Tools, Cairo, Egypt, 2009.

[55] M. Attia, "Arabic Tokenization System," in Proceedings of the 2007 Workshop on

Computational Approaches to Semitic Languages: Common Issues and Resources,

Prague, Czech Republic, 2007.

79

[56] C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, New

York: Cambridge University Press, 2008.

[57] M. R. Al-Maimani, A. Naamany and A. Z. A. Bakar, "Arabic information retrieval:

techniques, tools and challenges," in GCC Conference and Exhibition, 2011.

[58] A. Hayder, A. Shaikha, A. Amna, A. Khadija, A. Naila, A. Noura and A. and Shaikha,

"Arabic Light Stemmer: A new Enhanced Approach," in The Second International

Conference on Innovations in Information Technology (IIT’05), Dubai, 2005.

[59] C. Aitao, "“Building an Arabic Stemmer for Information Retrieval," in Proceedings of

the Eleventh Text Retrieval Conference, Berkeley, 2003.

[60] M. Ababneh, R. Al-Shalabi, G. Kanaan and A. Al-Nobani, "Building an Effective Rule-

Based Light Stemmer for Arabic Language to Improve Search Effectiveness," The

International Arab Journal of Information Technology, vol. 9, no. 4, pp. 368-372, 2012.

[61] S. Khoja and R. Garside, "Stemming Arabic Text," in Lancaster, UK, Computing

Department, Lancaster University, 1999.

[62] N. Abdusalam, S. Tahaghoghi and S. Falk, "Stemming Arabic Conjunctions and

Prepositions," in Proceedings of the 12th international conference on String Processing

and Information Retrieval, Heidelberg, 2005.

[63] L. Leah, B. Lisa and C. Margaret, "Light Stemming for Arabic Information Retrieval,"

Arabic Computational Morphology Text, Speech and Language Technology, vol. 38, pp.

221-243, 2007.

[64] Q. Zhengwei, G. Cathal, D. Aiden and S. Alan, "Term weighting approaches for mining

significant locations from personal location logs," in CIT 2010 - 10th IEEE International

Conference on Computer and Information Technology, Bradford, UK, 2010.

[65] L. Man, T. Chew-Lim, L. Hwee-Boon and S. Sam-Yuan, "A comprehensive comparative

study on term weighting schemes for text categorization with support vector machines,"

in WWW '05 Special interest tracks and posters of the 14th international conference on

World Wide Web, Chiba, Japan, 2005.

[66] N. Nanas, V. Uren, A. Roeck and J. Domingue, "A Comparative Study of Term

Weighting Methods for Information Filtering," KMi-TR-128. Knowledge Media Institue,

The Open University, 2003.

[67] J. Ramos, "Using TF-IDF to Determine Word Relevance in Document Queries," in First

International Conference on. Machine Learning, New Brunswick:NJ, USA, 2003.

[68] "Weka 3: Data Mining Software in Java," Machine Learning Group at the University of

Waikato, [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.

[69] "RapidMiner," [Online]. Available: http://rapid-i.com/.

80

[70] F. Harrag, E. El-Qawasmeh and P. Pichappan, "Improving arabic text categorization

using decision trees," in First International Conference on Networked Digital

Technologies, Ostrava, 2009.

[71] A. Charu and Z. ChengXiang, "A Survey of Text Classification Algorithms," in Mining

Text Data, Springer US, 2012, pp. 163-222.

[72] R. Duin, "The combining classifier: to train or not to train?," in Proceedings of 16th

International Conference on Pattern Recognition, Netherlands, 2002.

[73] L. Shoushan, Z. Chengqing and W. Xia, "Sentiment Classification through Combining

Classifiers with Multiple Feature Sets," in International Conference on Natural

Language Processing and Knowledge Engineering, Beijing, 2007.

