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Abstract 

 

In this thesis we discuss how to make a balance between the key size and  the 

speed of the encryption algorithm such that the encryption algorithm has high speed and 

strong encryption. Since security always comes at a cost of performance.  

 

We propose to improve the Advanced Encryption Standard with key  size length 

of 128 bit. The improvement includes the following: combination between time and 

password, using secure hash, using message authentication code algorithms, executing 

the AES in parallel, determining the parallel task size as a percentage of the original 

data file, and finally increasing the overlap between parallel execution and 

communication (pipelining).   

 

The contribution of the thesis includes enhancing the sequential AES and 

developing an original parallel AES based on the enhanced sequential AES. 

 

Measurement results of the proposed parallel AES show that we have the 

optimal parallel task size between 15% and 25% of the data file. This task size gives us 

best performance (small parallel run time, small communication, and low power 

consumption). 

 

Keywords: Security, cryptography, Advanced Encryption Standard, Parallel 

Computing, Overlapping, speedup, Efficiency, Overhead  Communication. 
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تحسين أداء خوارزميت تشفير مطورة  

 باستخذام البرمجت المتوازيت  

 

: ملخص البحث 

ٌقىو انثاحث فً هذِ الأطزوحح تًُاقشح عًهٍح انرىاسٌ تٍٍ طىل انًفراح تانخىارسيٍاخ        

عًهٍح الأيٍ ذأذً دائًاً عهى حساب . انًشفزج تحٍث ذرًرع تسزعح عانٍح و قىج فً عًهٍح انرشفٍز

 .نذنك َزغة تإٌجاد ذىافق تٍٍ عايم انسزعح والأداء وقىج انرشفٍز. انسزعح والأداء وانعكس
 

      أٌضاً قذو انثاحث يجًىعح يٍ انرحسٍُاخ خاصح ترطىٌز خىارسيٍح يحسُح نهرشفٍز انًرطىر 

عًهٍح ديج تٍٍ انىقد : هذا انرحسٍٍ ٌشرًم عهى انرانً.  تد128تاسرخذاو يفراح طىل ذشفٍزِ 

، اسرخذاو خىارسيٍح انركزٌز اَيٍ، اسرخذاو خىارسيٍح رسانح انرأكٍذ (كهًح انسز)ويفراح انرشفٍز 

اَيٍ، ذشغٍم خىارسيٍح انرشفٍز انًرقذو يٍ خلال انثزيجح انًرىاسٌح، ذحذٌذ حجى انًهًح انًُىي 

ذشفٍزها كُسثح يٍ حجى انًهف انكهً ، و فً انُهاٌح سٌادج عًهٍح انرخطً تٍٍ انرشغٍم انًرىاسي 

 .والاذصالاخ
 

      وذكًٍ انًساهًح انفعهٍح نهذِ انذراسح فً ذطىٌز وذحسٍٍ خىارسيٍح انرشفٍز انًرقذو فً حال 

 .انثزيجح انعادٌح ، واسرخذاو هذا انرطىٌز تعذ إدخال يجًىعح يٍ انرحسٍُاخ فً انثزيجح انًرىاسٌح 
 

      نقذ تٍُد َرائج انثحث تشكم كثٍز أٌ انحجى الأيثم نهًهًح انًُىي ذشفٍزها ذكىٌ يحصىرج تٍٍ 

هذا انحجى ٌعطٍُا أفضم أداء فًٍا ٌرعهق ترقهٍم انىقد . يٍ حجى انًهف الأصهً% 25إنى % 15

 . انًرىاسي، وذقهٍم الاذصالاخ تٍٍ انًعانجاخ تالإضافح إنى ذقهٍم كًٍح انطاقح انًسرههكح

 

انرشفٍز، انرشفٍز انًطىر، عًهٍح انرخطً ، انثزيجح انًرىاسٌح ، انسزعح : كهًاخ يفراحٍح- 

 .وانفاعهٍح
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Chapter 1 

Background Research 

In this chapter, we introduce notation and basic principles in cryptography used 

in this thesis, the purpose of this chapter is to give a general idea of the principles, 

techniques, and algorithms which are required for understanding this thesis, but we 

rather assume the reader is familiar with cryptography. 

1.1 Information Security and Cryptography 

Security is one of the fundamental and important metrics in digital 

communication. Hence, cryptography which is one technique to ensure data is an 

important topic in computer security. Cryptography is a process of transmission of  data 

through unsecured channels, and only the authenticated receiver who has the legitimate 

key can read the encrypted messages which might be documents, phone conversations, 

images or other forms of data as shown on Figure 1.1 . 

 

 

 

 

 

 

 

 

Figure 1.1: General Cryptosystem. 

Definition 1.1: Cryptography is the study of mathematical techniques related to 

aspects of information security such as confidentiality, data integrity, entity 

authentication, and data origin authentication. Cryptography is not the only means of 

providing information security, but rather one set of techniques. 

 Definition 1.2: Cryptography is a general term referring to a set of cryptographic 

primitives used to provide information security services. Most often the term is used in 

conjunction with primitives providing confidentiality, i.e., encryption [1]. In 

cryptosystems, the information must be scrambled, so that other users will not be able to 

access the actual information. While providing privacy remains a central goal, the field 

has expanded to encompass many others, including not just other goals of 

communication security, such as guaranteeing integrity and authenticity of 
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communications, but many more sophisticated and fascinating goals. When you shop on 

the Internet, for example to buy a book, cryptography is used to ensure privacy of your 

credit card number as it travels from you to the shop’s server. Also, in electronic 

banking, cryptography is used to ensure that your checks cannot be forged [2]. 

Cryptographic goals  

Cryptography services must guarantee the following goals: 

1. Confidentiality is a service used to keep the content of information from all but 

those authorized to have it. Secrecy is a term synonymous with confidentiality and 

privacy. There are numerous approaches to providing confidentiality, ranging from 

physical protection to mathematical algorithms which render data unintelligible. 

2. Data integrity is a service which addresses the unauthorized alteration of data. To 

assure data integrity, one must have the ability to detect data manipulation by 

unauthorized parties. Data manipulation includes such things as insertion, deletion, 

and substitution. 

3. Authentication is a service related to identification. This function applies to both 

entities and information itself. Two parties entering into a communication should 

identify each other. Information delivered over a channel should be authenticated as to 

origin, date of origin, data content, time sent, etc. for these reasons this aspect of 

cryptography is usually subdivided into major classes: entity authentication and data 

origin authentication. Data origin authentication implicitly provides data integrity. 

Data origin authentication implicitly provides data integrity (for if a message is 

modified, the source has changed). 

4. Non-repudiation is a service which prevents an entity from denying previous 

commitments or actions. When disputes arise due to an entity denying certain actions 

were taken, a means to resolve the situation is necessary. For example. One entity 

may authorize the purchase of property by another entity and later deny such 

authorization is granted. A procedure involving a trusted third party is needed to 

resolve the dispute [1, 2]. 

 The emergence of the Internet as a trusted medium for commerce and 

communication has made cryptography an essential component of modern information 

systems as shown in Figure 1.2. Cryptography provides the mechanisms necessary to 

implement accountability, accuracy, and confidentiality in communications [3]. As 

demands for secure communication bandwidth grow, efficient cryptographic processing 

will become increasingly vital to good system performance. To introduce cryptography, 

an understanding of issues related to information security in general is necessary. 

Information security manifests itself in many ways according to the situation and 

requirement. Regardless of who is involved, to one degree or another, all parties to a 

transaction must have confidence that certain objectives associated with information 

security have been met. Over the centuries, an elaborate set of protocols and 

mechanisms has been created to deal with information security issues when the 

information is conveyed by physical documents. Often the objectives of information 

security can not solely be achieved through mathematical algorithms and protocols 

alone, but require procedural techniques and abidance of laws to achieve the desired 

result. For example, privacy of letters is provided by sealed envelopes delivered by an 

accepted mail service. The physical security of the envelope is, for practical necessity, 
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limited and so laws are enacted which make it a criminal offense to open mail for which 

one is not authorized. It is sometimes the case that security is achieved not through the 

information itself but through the physical document recording it [4]. For example, 

paper currency requires special inks and materials to prevent counterfeiting. 

Conceptually, the way information is recorded has not changed dramatically over time. 

Whereas information was typically stored and transmitted on paper, much of it now 

resides on magnetic media and is transmitted via telecommunications systems. What has 

changed dramatically is the ability to copy and alter information. One can make 

thousands of identical copies of a piece of information stored electronically and each is 

indistinguishable from the original. With information on paper, this is much more 

difficult. What is needed then for a society where information is mostly stored and 

transmitted in electronic form is a means to ensure information security which is 

independent of the physical medium recording or conveying it and such that the 

objectives of information security rely solely on digital information itself [5]. 

 

 

Figure 1.2: Network security system. 
 

One of the fundamental tools used in information security is the signature. It is a 

building block for many other services such as non-repudiation, data origin 

authentication, identification, and witnessing, to mention a few. Having learned the 

basics in writing, an individual is taught how to produce a handwritten signature for the 

purpose of identification. At contract age the signature evolves to take on a very integral 

part of the person’s identity. This signature is intended to be unique to the individual 

and serve as a means to identify, authorize, and validate. With electronic information 

the concept of a signature needs to be readdressed; it can not simply be something 

unique to the signer and independent of the information signed. Electronic replication of 

it is so simple that appending a signature to a document not signed by the originator of 

the signature is almost a triviality. Achieving information security in an electronic 

society requires a vast array of technical and legal skills. There is, however, no 

guarantee that all of the information security objectives deemed necessary can be 

adequately met. The technical means is provided through cryptography [6, 7]. 
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1.2 Thesis Motivation 

There is more and more information transmitted over networks every day. This 

information may be banks transactions, business information or military information 

which should be accessed by authorized persons. In order to protect the confidential 

information; secure cryptographic algorithms are required. There are two basic types of 

cryptosystems: Public key systems and private key systems. Public key systems are 

much slower than private key systems, but private key systems require key agreement 

through an existing secure channel [8]. 

Private key systems use the same key for both encryption and decryption 

operations. In order to communicate securely using a private key system, two parties 

must agree on the key using some pre-existing secure channel. When more than two 

parties are involved key distribution has been a major obstacle for practical uses of 

cryptography.  

Public key cryptosystems help solve the key distribution problem by using separate 

keys for encryption and decryption operations, and making the encryption key public. 

Anyone can then encrypt a message, but only parties in possession of the private key 

can decrypt messages. Public key systems rely on one way trap door functions, which 

are interesting mathematical functions that can be easily computed in one direction but 

are very difficult to reverse unless a secret key is known [9].   

The  main goals of  this thesis are 

 For the sequential AES-128 bit algorithm 

1. We want to make a combination between time and password to generate the AES-

128 bit key. 
 

a.  The created AES key will be secure using SHA-256. 

b. We store the time and the message digest in the output file. 

c.  So, to decrypt the file and make expansion of the key we must know the 

time to make the round keys.  
 

d. During data transfer on network we guarantee that if the data is changed 

the data file will not to be decrypted. 
 

 For the parallel AES-128 bit algorithm  

1. We want to use multiprocessors to achieve the required speed to encrypt the large 

data file in parallel to minimize the total encryption time with lower power 

consumption. 
 

2. We want to determine the optimal parallel task size which is given to processors. 

This  optimal parallel task size is a percentage of the original data file to achieve 

the following goals: 
 

 Load balance. 

 Small processor communication. 

3. Our proposed parallel AES algorithm is able to  encrypt different extensions of 

files (video, text and images) with excellent quality since it deals with bits. 
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1.3 Research Questions 

The importance of this study can be summarized by the following fundamental 

questions: 

1. Why is it important to use the AES algorithm? 

2. What is the impact of the combination between time and password to 

generate the round keys? 
 

3. What is the best AES key size which gives good performance for parallel 

execution on  multiprocessors with good security level? 
 

4. What is the impact of using secure hash algorithm SHA-256? 

5. What is the impact of determining the task size as a percentage of the 

original file? 
 

6. What is the impact of parallel run time on power consumption? 

7. How much does the proposed modified AES algorithm increase the security? 

Could it holdup against the different types of attacks?  
 

1.4 Problem Definition 

It is possible to implement cryptographic algorithms in software running on 

multiple processors. However, most of the cryptographic algorithms like DES (Data 

Encryption Standard) or 3DES have some drawbacks when implemented in software. 

for example, DES is no longer secure as computers get more powerful while 3DES is 

relatively sluggish in software. AES (Advanced Encryption Standard), which is rapidly 

being adopted worldwide, provides a better combination of performance and enhanced 

network security than DES or 3DES by being computationally more efficient than these 

earlier standards. Furthermore, by supporting large key sizes of 128, 192, and 256 bits, 

AES offers higher security against brute-force attacks [10].  Hence, we need fast and 

secure AES task granularity which requires little memory (so the algorithm can be used 

in smartcards) and give good quality at different types of file extensions.  

 

The problem is divided into three steps as follows: 

1. Find the AES task granularity that gives good performance on multi 

processors. 
 

2. Increase the security of AES encryption by combining time and password 

and using secure hash algorithm to generate the keys. 
 

3. Find the parallel task size as a percentage of the original file that gives good 

performance. 
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1.5 Thesis Research Scope 

 The research scope focuses on increasing  the security level of AES, in addition 

to determining the parallel task size which gives low power consumption when working 

on multiprocessors. 

1.6 Thesis Research Purpose 

 The objectives of the thesis are: 

 Finding an efficient private key cryptosystem. 

 Increasing the security of the private key by combining time and password to 

generate the encryption key and using the secure hash algorithm. 
 

 Finding the parallel task size as a percentage of original data file size when 

executed on multiprocessors  to get the following goals: 
 

 Load balance. 

 Small processor communication. 

 Good performance by decreasing the parallel run time that leads to low 

power consumption with excellent quality. 
 

1.7 Research Methodology 

 The purpose here is to generate a robust, secure and fast cryptosystem, using 

different techniques, and different strategies, comparing the results with previous 

systems to determine the best. So, a variety of schemas will be tested to obtain the best 

combination between time and password and using secure hash algorithm to guarantee 

the data was not changed during transferring on network. We will determine the parallel 

task size as a percentage of original file to get high performance with low power 

consumption. 
 

 In other words, to answer these research goals, this research employs the research 

methodology in order to: 
 

 Show the literature survey on cryptography. 

 Propose efficient cryptosystem by:   

 Finding an efficient private key cryptosystem. 

 Increasing the security of the private key by combining time and 

password and using the secure hash algorithm. 
 

 Finding the parallel task size as a percentage of original data file size 

when executed on multiprocessors to get high performance. 
 

1.8 Thesis Contributions 

 Practically everyone agrees that cryptography is an essential information security 

tool, and encryption can protect communications and stored information from 

unauthorized access and disclosure. 
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Cryptography allows people to carry over the confidence found in the physical world to 

the electronic world, thus allowing people to do business electronically without worries 

of deceit and deception. Everyday hundreds of thousands of people interact 

electronically, whether it is through e-mail, e-commerce, or ATM machines. The 

increase of information transmitted electronically has lead to an increased reliance on 

cryptography. 
 

 In this thesis, we develop an enhanced AES encryption algorithm with increased 

security by combining time and password and using the secure hash algorithm to 

guarantee that data is not changed during transfer over network. We also develop a 

parallel enhanced AES algorithm that paralyzes the developed enhanced AES. We run 

the parallel AES on multiprocessors using MPI to improve the performance (parallel 

time) and to decrease the power consumption. 

The contributions of this thesis are as follows: 

 We review several kinds of advanced encryption standard (AES). 

 We select the AES with low work factor which gives good performance on 

multiprocessors. 
 

 We increase the security of serial implementation of AES with low work factor 

which gives good security level. 
 

 We determine the parallel task size as the percentage of the original data file size 

to get high performance with lower power consumption. 
 

 We demonstrate through testing the efficiency and effectiveness of the proposed 

cryptosystem. 
 

1.9 Outline of the Thesis 

The rest of the thesis is organized as follows: Chapter 2 we discusses the 

principles and techniques of cryptography. Chapter 3 presents and evaluates numerous 

cryptography schemes and their performance, to avoid their weakness in our proposed 

cryptosystem. Chapter 4 discusses the construction of the advanced encryption system 

(AES) in detail. Chapter 5 presents the basic  implementation of the parallel AES 

algorithm. It also  describes speedup, parallel run time, efficiency, and communication 

overhead metrics to measure the performance of the parallel systems when execute 

parallel programs. Chapter 6 discusses our proposed hybrid encryption algorithm which 

increases security of AES by combining password and time to generate the key. Other 

proposed enhancements to AES include using secure hash algorithm, message 

authentication code. In addition, chapter 6 presents the proposed parallel AES algorithm 

which is based on the proposed enhanced sequential AES algorithm. High performance 

of the parallel AES comes from determining the optimal parallel task size as a 

percentage of the original data file size. Finally, chapter 7 concludes the thesis and 

presents suggested future work.  
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Chapter 2 

Conventional Encryption 

 In this chapter we discuss the principles and techniques of cryptography. 

Introduction  

 Cryptography is generally understood to be the study of the principles and 

techniques by which information is converted into an encrypted version that is difficult 

(ideally impossible) for any unauthorized person to convert to the original information, 

while still allowing the intended reader to do so. In fact, cryptography covers rather 

more than merely encryption and decryption. It is, in practice, a specialized branch of 

information theory with substantial additions from other branches of mathematics. 

Cryptography is probably the most important aspect of communications security and is 

becoming increasingly important as a basic building block for computer security [11]. 

There are, in general, two types of cryptographic schemes which are typically 

used to accomplish the cryptography goals. These two  cryptographic schemes  are 

secret key (or symmetric or conventional) cryptography and public-key (or asymmetric) 

cryptography. In symmetric-key cryptography, an algorithm is used to scramble the 

message using a secret key in such a way that it becomes unusable to all except the ones 

that have access to that secret key. The most widely known symmetric cryptographic 

algorithm is DES, developed by IBM in the seventies. It uses a key of 56 bits and 

operates on chunks of 64 bits at a time [10, 11].  

In public key cryptography [12], algorithms use two different keys: a private key 

and a public one. A message encrypted with a private key can be decrypted with its 

public key (and vice versa). The owner of the key pair holds the private key, and may 

distribute the public key to anyone. Someone who wants to send a secret message uses 

the public key of the intended receiver to encrypt it. Only the receiver who holds the 

private key and can decrypt it. 

 The two basic building blocks of all encryption techniques are substitution and 

transposition. A substitution technique is one in which the letters of plaintext are 

replaced by other letters or by numbers or symbols. Transposition technique is a 

different kind of mapping where mapping is achieved by performing some sort of 

permutation on the plaintext letter [13]. 

2.1 Symmetric-key Cryptosystem  

2.1.1 Principles of Symmetric-key Cryptosystem 

 In Symmetric-key cryptography, a single key is used for both encryption and 

decryption. As shown in Figure 2.1, the sender uses the key (or some set of rules) to 

encrypt the plaintext and sends the cipher text to the receiver. The receiver applies the 

same key (or rule set) to decrypt the message and recover the plaintext. Because a single 

key is used for both functions, secret key cryptography is also called symmetric 

encryption [14]. 



9 

 

 With this form of cryptography, it is obvious that the key must be known to both 

the sender and the receiver; that, in fact, is the secret. The biggest difficulty with this 

approach, of course, is the distribution of the key. 

Symmetric-key cryptography schemes are generally categorized as being either 

stream ciphers or block ciphers [15]. Stream ciphers operate on a single bit (byte or 

computer word) at a time, and implement some form of feedback mechanism so that the 

key is constantly changing. A block cipher is so-called because the scheme encrypts one 

block of data at a time using the same key on each block. In general, the same plaintext 

block will always encrypt to the same cipher text when using the same key in a block 

cipher whereas the same plaintext will encrypt to different cipher text in a stream 

cipher. 

 

Stream ciphers come in several flavors but two are widely used. Self 

synchronizing stream ciphers calculate each bit in the key stream as a function of the 

previous n bits in the key stream. It is termed "self-synchronizing" because the 

decryption process can stay synchronized with the encryption process merely by 

knowing how far into the n-bit key stream it is. One problem is error propagation; a 

garbled bit in transmission will result in n garbled bits at the receiving side. 

Synchronous stream ciphers generate the key stream in a fashion independent of the 

message stream but by using the same key stream generation function at sender and 

receiver. While stream ciphers do not propagate transmission errors, they are by their 

nature, periodic the key stream will eventually repeat [16]. 
 

2.2 Block ciphers 

Block ciphers can operate in one of several modes; the following four are the most 

important [17]: 
 

 Electronic Codebook (ECB) mode is the simplest, most obvious application: the 

secret key is used to encrypt the plaintext block to form a cipher text block. Two 

identical plaintext blocks, then, will always generate the same cipher text block. 

Although this is the most common mode of block ciphers, it is susceptible to a 

variety of brute-force attacks. 
 

 Cipher Block Chaining (CBC) mode adds a feedback mechanism to the encryption 

scheme. In CBC, the plaintext is exclusively-ORed (XORed) with the previous 

cipher text block prior to encryption. In this mode, two identical blocks of plaintext 

never encrypt to the same cipher text. 
 

 Cipher Feedback (CFB) mode is a block cipher implementation as a self 

synchronizing stream cipher. CFB mode allows data to be encrypted in units smaller 

than the block size, which might be useful in some applications such as encrypting 

interactive terminal input. In case of 1-byte CFB mode, for example, each incoming 

character is placed into a shift register the same size as the block, encrypted, and the 

block transmitted. At the receiving side, the cipher text is decrypted and the extra 

bits in the block (i.e., everything above and beyond the one byte) are discarded. 
 

 Output Feedback (OFB) mode is a block cipher implementation conceptually 

similar to a synchronous stream cipher. OFB prevents the same plaintext block from 

generating the same cipher text block by using an internal feedback mechanism that 

is independent of both the plaintext and cipher text bit streams. 
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2.3 Model of Symmetric-key Cryptosystem 

 A symmetric or conventional encryption scheme has five ingredients [18]   

(Figure 2.3): 

 Plaintext /Message: This is the original intelligible message or data that is fed into 

the algorithm as input. 

 Encryption Algorithm: The encryption algorithm performs various substitution 

and transformation on the plaintext. 

 Secret Key: The secret key is also the input to the encryption algorithm. The key is 

a value independent of the plaintext. The algorithm will produce a different output 

depending on the specific key being used at the time. The exact substitutions and 

transformations performed by the algorithm depend on the key. 

 Cipher text: This is the scrambled message produced as output. It depends on the 

plaintext and secret key. For a given message, two different keys will produce two 

different cipher texts. 

 Decryption Algorithm: This is essentially the encryption algorithm run in reverse. 

It takes the cipher text and the secret key and produces the original plaintext. 

 

 

 

 

 

 

 

 

Figure 2.3: Model of Symmetric-key Cryptosystem. 

There are two requirements for the secure use of  symmetric-key 

encryption: 

1. A strong encryption algorithm: At a minimum, the algorithm to be such that an 

opponent who knows the algorithm and has access to one or more cipher texts 

would be unable to decipher the cipher text or figure out the key. This requirement 

is usually stated in a stronger form: The opponent should be unable to decrypt 

cipher text or discover the key even if he or she is in possession of a number of 

cipher texts together with the plaintext that produced each cipher text [19]. 
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2. Sender and receiver must have obtained copies of the secret key in a secure 

fashion and must keep the key secure. If some can discover the key and knows the 

algorithm, all communication using this key is readable. 
 

In symmetric-key cryptosystem, a source produces a message in plaintext, X =[X1, 

X2, X3, . . . . ., XM]. The M elements of X are letters in some finite alphabet. 

 Traditionally, the alphabet usually consists of the 26 capital letters. The binary 

alphabet {0,1} is also typically used. For encryption, a key of the form K = [K1, K2, 

K3,  . . . . ., KJ] is generated. If the key is generated at the message source, then it must 

also be provided to the destination by means of some secure channel. 
 

Alternatively, a third party could generate the key and securely deliver it to both 

source and destination. With the message X and the encryption key K as input, the 

encryption algorithm forms the cipher text Y =[Y1, Y2, Y3,. . . . ., YN]. This process 

can be expressed using the following notation: 
 

 Y = Ek(X) 

     This notation indicates that Y is produced by using the encryption algorithm E as a 

function of the plaintext X, with the specific function determined by the value of the 

key. The intended receiver, in possession of the key, is able to invert the transformation 

[20, 21]: 
 

X = Ek(Y) 
 

2.4 Importance of Symmetric-key Cryptography 

 The primary advantage of public-key cryptography is increased security and 

convenience. Private keys never need to transmitted or revealed to anyone. In a 

symmetric-key system, by contrast, the symmetric keys must be transmitted (either 

manually or through a communication channel), and there may be a chance that an 

enemy can discover the symmetric keys during their transmission [22]. 
 

 Another major advantage of public-key systems is that they can provide a method 

for digital signatures. Authentication via symmetric-key systems requires the sharing of 

some symmetric keys and sometimes requires trust of a third party as well. As a result, a 

sender can repudiate a previously authenticated message by claiming that the shared 

symmetric key was somehow compromised by one of the parties sharing the symmetric-

key. Public-key authentication, on the other hand, prevents this type of repudiation; 

each user has sole responsibility for protecting his or her private key. This property of 

public-key authentication is often called no repudiation [23]. 
 

  A disadvantage of using public-key cryptography for encryption is speed; there are 

popular symmetric-key encryption methods that are significantly faster than any 

currently available public-key encryption method. Nevertheless, public-key 

cryptography can be used with symmetric-key cryptography to get the best of both 

worlds. For encryption, the best solution is to combine public - and symmetric-key 

systems in order to get both the security advantages of public-key systems and the speed 

advantages of symmetric-key systems. The public-key system can be used to encrypt a 

symmetric- key which is used to encrypt the bulk of a file or message. Such a protocol 

is called a digital envelope [23, 24]. 

In some situations, public-key cryptography is not necessary and symmetric-key 

cryptography alone is sufficient. This includes environments where secure symmetric 

key agreement can take place, for example by users meeting in private. It also includes 
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environments where a single authority knows and manages all the keys (e.g., a closed 

banking system). Since the authority knows everyone’s keys already, there is not much 

advantage for some to be “public” and others “private.” Also, public-key cryptography 

is usually not necessary in a single-user environment. In general, public-key 

cryptography is best suited for an open multi-user environment [25].  
 

Public-key cryptography is not meant to replace symmetric-key cryptography, 

but rather to supplement it, to make it more secure. The first use of public-key 

techniques was for secure key exchange in an otherwise symmetric-key system; this is 

still one of its primary functions. Symmetric-key cryptography remains extremely 

important and is the subject of ongoing study and research [26]. 
 

Advantages of symmetric-key cryptography 

1. Symmetric-key ciphers can be designed to have high rates of data throughput. 

2. Keys for symmetric-key ciphers are relatively short. 

3. Symmetric-key ciphers can be employed as primitives to construct various 

cryptographic mechanisms including pseudorandom number generators, hash 

functions, and computationally efficient digital signature schemes, to name just a 

few. 
 

4. Symmetric-key ciphers can be composed to produce stronger ciphers. Simple 

transformations which are easy to analyze, but on their own weak, can be used to 

construct strong product ciphers. 
 

Disadvantages of symmetric-key cryptography 

1. In a two-party communication, the key must remain secret at both ends. 

2. In a large network, there are many key pairs to be managed. Consequently, 

effective key management requires the use of an unconditionally trusted TTP. 
 

3. In a two-party communication between n entities A and B, sound cryptographic 

practice dictates that the key be changed frequently and perhaps for each 

communication session. Digital signature mechanisms arising from symmetric-

key encryption typically require either large keys for the public verification 

function or the use of a TTP. 
 

Advantages of public-key cryptography 

1. Only the private key must be kept secret (authenticity of public keys must, 

however, be guaranteed). 
 

2. Depending on the mode of usage, a private key/public key pair may remain 

unchanged for considerable periods of time, e.g., many sessions (even several 

years). 
 

3. Many public-key schemes yield relatively efficient digital signature 

mechanisms. The key used to describe the public verification function is 

typically much smaller than for the symmetric-key counterpart. 
 

4. In a large network, the number of keys necessary may be considerably smaller 

than in the symmetric-key scenario. 
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Disadvantages of public-key encryption 

1. Throughput rates for the most popular public-key encryption methods are 

several orders of magnitude slower than the best-known symmetric-key 

schemes. 
 

2. Key sizes are typically much larger than those required for symmetric-key 

encryption, and the size of public-key signatures is larger than that of tags 

providing data origin authentication from symmetric-key techniques. 
 

Summary of comparison 

1. Public-key cryptography facilitates efficient signatures (particularly no 

repudiation) and key management. 
 

2. Symmetric-key cryptography is efficient for encryption and some data integrity 

applications. 
 

2.5 Cryptographic Hash Functions 

Cryptographic Hash function is a complex encryption algorithm used in 

cryptography and it refers to a shortened version of full-scale encryption. A 

Cryptographic hash function is a deterministic procedure that takes an arbitrary block of 

data and returns a fixed-size bit string, the hash value, such that an accidental or 

intentional change to the data will change the hash value. The data to be encoded is 

often called the message. The hash value is sometimes called message digest or simply 

digest [27]. 

Ideal Characteristics of Cryptographic Hash Functions 

1. It is easy to compute the hash value for any given message.  

2. Cryptographic hash functions are infeasible to generate a message that has a 

given hash.  

3. It is not possible to modify a message without changing the hash in cryptographic 

hash functions.  

4. In cryptographic hash functions, two different messages cannot be with same 

hash.  

Types of Cryptographic Hash Functions are: MAC, MDC, CRHF (collision 

resistant hash functions), UOWHF (universal one-way hash functions), and OWHF 

(one-way hash functions). Some of the popular Cryptographic Hash Functions are: 

SHA- Secure Hash Algorithms (SHA-0, SHA-1), MD- Message Digest Algorithms 

(MD5, which has 128-bit hash value), and RIPEMD- Race Integrity Primitives 

Evaluation Message Digest Algorithms (RIPEMD-128 and RIPEMD-160). Of all these, 

the most commonly used cryptographic hash functions are MD5 and SHA-1. 

Applications of Cryptographic Hash Functions: 

1. Cryptographic hash functions are used in the verification of message integrity.  

2. These hash functions allows a fast look-up of the data in a hash table.  
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3. Cryptographic hash functions use peer-to-peer file sharing networks to identify 

files.  

4. These hash functions are used in contexts where it is necessary for the users to 

protect themselves against the possibility of forgery.  

5. Cryptographic hash functions are also used in the generation of pseudorandom 

bits, to derive new keys or passwords from a single, secure key or password.  

6. These functions are widely used in information authentication.  

7. These cryptographic hash functions are used to maintain secrecy of the client 

password and hashes must be kept valid for a session.  

8. Cryptographic hashes provide security for E-mail and file transfer systems.  

9. Cryptographic Hash Functions are also used in Database matching and software 

downloads.  

2.6 Summary 

  This chapter covers the fundamentals and terminologies of cryptography, including 

the issues of private key cryptosystems and public key cryptosystems. We mention the 

advantages and disadvantages of symmetric-key cryptosystems, which motivate us to 

propose our enhanced system. 
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Chapter 3 

Literature Review 

 

  In this chapter numerous cryptography schemes are studied and their 

performance is evaluated, to avoid their weakness in our proposed cryptosystem. 
 

3.1 Previous Work  

Most cryptographic algorithms function more efficiently when implemented in 

hardware than in software running on single processor. However, systems that use 

hardware implementations have significant drawbacks: they are unable to respond to 

flaws discovered in the implemented algorithm or to changes in standards. As an 

alternative, it is possible to implement cryptographic algorithms in software running on 

multiple processors. However, most of the cryptographic algorithms like DES (Data 

Encryption Standard) or 3DES have some drawbacks when implemented in software: 

DES is no longer secure as computers get more powerful while 3DES is relatively 

sluggish in software. AES (Advanced Encryption Standard), which is rapidly being 

adopted worldwide, provides a better combination of performance and enhanced 

network security than DES or 3DES by being computationally more efficient than these 

earlier standards. Furthermore, by supporting large key sizes of 128, 192, and 256 bits, 

AES offers higher security against brute-force attacks [28]. 

In [29] the author makes a comparison of AES-128 bit on different processors as 

shown in Figure 3.1. He finds that AES-128 bit gives good performance and consumes 

low power consumption. 

 
 

 

 

 

 

 

 

 

Figure 3.1: Encryption speeds for 128 bits on different processors. 

 

In [30] the author illustrates the different work factors of AES on different 

multiprocessors and finds that the work factor of 128 bit gives us best performance as 

shown in Figure 3.2. 
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Figure 3.2: Encryption speeds for 128 bits.  

 In [31], Biham introduces the notion of comparing the algorithms based on their 

”minimal secure variants.” Different design teams were more or less conservative than 

each other; the number of rounds they could successfully cryptanalze. Biham tries to 

normalize the algorithms by determining the minimal number of rounds that is secure 

and then adds a standard two cycles. The results are shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Encryption speeds for the Minimal secure Variant In Assembly. 

 

Encryption with AES is based on a secret key with 128, 192 or 256 bits. But if 

the key is easy to guess it doesn’t matter if AES is secure, so it is as critically vital to 

use good and strong keys as it is to apply AES properly. Creating good and strong keys 

is a surprisingly difficult problem and requires careful design when done with a 

computer. Keys derived into a fixed length suitable for the encryption algorithm from 



17 

 

passwords or pass phrases typed by a human will seldom correspond to 128 bits much 

less 256. To even approach 128-bit equivalence in a pass phrase, at least 10 typical 

passwords of the kind frequently used in day-to-day work are needed. Weak keys can be 

somewhat strengthened by special techniques by adding computationally intensive steps 

which increase the amount of computation necessary to break it. The risks of incorrect 

usage, implementation and weak keys are in no way unique for AES; these are shared 

by all encryption algorithms. [32]. 
 

For some of the candidates, the performance or RAM requirements can depend on 

whether encryption or decryption is being performed. Many smart card terminals 

contain a secure module. In several applications, it is a requirement that two smart cards 

execute a protocol together, and many existing protocols use both encryption and 

decryption on the same smart card [33].  

In [62] the author illustrates the difference between the AES and other algorithms 

and discusses a number of criteria:  

 How secure the algorithm is currently judged to be in the cryptographic 

literature;  

 The performance characteristics of the algorithm (e.g. the "raw speed" of the 

algorithm, and whether it supports parallel encryption);  

 How politically safe a decision it is to use a particular algorithm (paradoxically, 

this doesn't necessarily depend directly on the algorithm's security);  

 Whether you have to interact with a legacy system.  

The authors compare measured speed of encryption with various algorithms 

available as standard in Sun's JDK. The encryption algorithms authors consider here are 

AES (with 128 and 256-bit keys), DES, Triple DES, RC4 (with a 256-bit key) and 

Blowfish (with a 256-bit key). Figure 3.4 shows the time taken to encrypt various 

numbers of 16-byte blocks of data using the algorithms mentioned.  

 

 

 

 

 

 
 

 

 

 

Figure 3.4: Cipher encryption speed. 
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Nobody yet has (publicly) a full attack on AES, or a partial attack that is practical 

(though some impractical partial attacks exist). However, AES is algebraically simpler 

than other block ciphers: effectively, it can be written as a series of mathematical 

equations, and there is a worry that somebody could demonstrate a way to solve those 

equations. 

In [63] the authors illustrate the minimum required key size is some combination of 

the maximum key size that can be attacked now for a given algorithm, extrapolated to 

the number of years that you need to keep the encrypted data confidential. Needless to 

say, such extrapolation is extremely difficult beyond a few years.  

In [63] the authors take data points from attacks on keys of various lengths and 

extrapolate via Moore's Law. They conclude that in 2030, it will seem as difficult to 

brute-force a 93-bit symmetric key as it did to brute-force DES in 1982, and that in 

2050 this will be true for a 109-bit key. From this, we might conclude that, ignoring 

collision attacks, a 128-bit key is sufficient to keep data confidential for the next few 

decades. Taking into account collision attacks, in [64] the authors recommend using a 

256-bits key size. In [65], presumably based on similar types of calculation, recommend 

a minimum of "128 bits of strength" to keep data confidential "beyond 2030".  

The Visa credit card company's Data Field Encryption best practices guide suggest 

that for the purpose of transmitting credit card numbers, "keys should have the strength 

of at least 112 equivalent bit strength". For this purpose, they actually judge 128 bits (as 

in the minimum AES key size) to be "stronger than needed" (presumably because of the 

relatively short lifespan of credit cards).  

In principle, a quantum computer could square root the effort of a brute-force key 

search, so that the bit strength of the key is halved (i.e. a 256-bit key in quantum 

computing has the strength of a 128-bit key in classical computing).  

In [66] the author looks at using implementing a modified version of the AES 

algorithm to be optimized in the use of smart cards. Although not relevant necessarily to 

the research being undertaken, the authors went into great detail explaining how the 

AES algorithm works, which is of relevance to the research.  

In [67] the author looks at a high speed/low cost implementation of the AES cipher, 

exploring different ways of physical wiring the AES operations to enhance performance 

of AES.  

We want to deal with the weakness of AES and to increase its performance. The 

main questions are as follows: 

1. Determining the AES work factor which requires little memory (so the 

algorithm can be used in smartcards efficiently) . 

2. How can we increase the security level of AES without using more work 

factors? 

3. How can we decrease the power consumption of AES to give good performance 

in smart card and other systems? 

4. How can we increase the performance of AES especially in large files? 

http://corporate.visa.com/_media/best-practices.pdf
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5. How to find agreement between the opposite criteria of AES security and 

performance. 

3.2 Research Issues 

   We notice that AES algorithm works on different work sizes. AES with high work 

factor enjoys top security but suffers from low speed and consumes high power.  

    It’s observed that AES encryption algorithm has one or more of the following 

weaknesses: 

 Needs a key distribution method. 

 Low encryption speed. 

 High power consumption. 

 Vulnerable to brute force attack. 

So, we need a system that has the advantage of being secure and fast. Moreover, 

the proposed cryptosystem must overcome most of the previous shortcomings. 
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Chapter 4 

The AES Construction 

In this chapter we discuss the construction of Advanced Encryption System 

(AES) in details. 

Introduction  

The Rijndael proposal for AES [34] defined a cipher in which the block length 

and the key length specified to be 128, 192, or 256 bits. The AES specification uses the 

same three key size alternatives but limits the block length to 128 bits. A number of 

AES parameters (Table 4.1) depend on the key length. Most of the implementation of 

AES uses the key length of 128 bits. 

Table (4.1): The AES Parameter. 

Key size (words/byte/bits) 4/16/128 6/24/192 8/32/256 

Plaintext block size (word/bytes/bits) 4/16/128 4/16/128 4/16/128 

Number of rounds 10 12 14 

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Expanded key size (words/bytes) 44/176 52/208 60/240 

 

Requirements of AES 

It  had to satisfy certain engineering criteria: 

 Performance, efficiency, implementability, and flexibility.  

 Rijndael can be implemented easily in both hardware and software. 

 Has realizations that require little memory (so the algorithm can be used in 

smartcards).  
 

The comparison between the AES and other cryptography algorithms is given in 

table 4.2 [35]. By using metric points from (1 to 3) we will measure the strength of an 

cryptographic algorithm. So,  Point 1 is low level, point 2 is medium level and point 3 is 

high level. The algorithm which sums more points is the best one as shown in table 4.2 

[35]. 
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Table (4.2): The Comparison between different Cryptography algorithms. 

 

Features of AES Encryption Algorithm: 

 Advanced Encryption Standard (AES) algorithm works on the principle of 

Substitution Permutation network.  

 AES is fast in both software and hardware.  

 AES operates on a 4×4 matrix of bytes termed as a state  

 The Advanced Encryption Standard cipher is specified as a number of repetitions 

of transformation sounds that convert the input plaintext into the final output of 

cipher text.  

 Each round consists of several processing steps, including one that depends on the 

Encryption key.  

 A set of reverse rounds are applied to transform cipher text back into the original 

plaintext using the same encryption key.  

Advantages of AES Encryption Algorithm: 

 Advanced Encryption Standard not only assures security but also improves the 

performance in a variety of settings such as smartcards, hardware implementations 

etc.  

 AES is federal information processing standard and there are currently no known 

non-brute-force direct attacks against AES.  

 AES is strong enough to be certified for use by the US government for top secret 

information.  

Alternative to Advanced Encryption Standard: The ciphers which are used 

alternatively to Advanced Encryption Standard are SSl and TLS. RC4 encryption is next 

to AES. RC4 is of 128- bits RC4 is a fast cipher and is always subjected to many types 

Algorithm Name AES Serpent Twofish MARS RC6 

General Security 2 3 3 3 2 

Implementation Difficulty 3 3 2 1 1 

Software Performance 3 1 1 2 2 

Smart-Card Performance 3 3 2 1 1 

Hardware Performance 3 3 2 1 2 

Design Features 2 1 3 2 1 

Total 16 14 13 10 9 
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of attacks. That is the reason WEP wireless encryption is poor. Thus AES is given 

priority than other standards [35]. 

4.1 Description of the Cipher  

The Advanced Encryption Standard is a block cipher that consists of four basic steps 

that are used in a series of 10 rounds to fully encrypt a 128-bit (16-byte) block of input 

data. The algorithm can encrypt any file or data size and will produce an encrypted 

output of identical size using an input cipher key (which can come from any of a 

number of public and/or private key methods). The AES algorithm successively 

encrypts the input data block in a square matrix representation to produce the output. 

There are five major components to the algorithm: (1) Key expansion; (2) the Add 

Round Key step; (3) the Sub Bytes step; (4) the Shift Rows step; and (5) the Mix 

Columns step [36]. 

 Key Expansion (AES KEY 128 bit):  

Since the algorithm consists of 10 rounds of execution the Key Expansion step is 

used to create a unique encryption key for each of the 10 rounds [37]. 

 

 

 

 

 

 

Figure 4.1: Key Expansion. 

 

4.2 Add Round Key Step  

One of the simplest steps in the AES algorithm, the Add Round Key step simply 

adds the 128-bit key for the particular round to the 128-bit block of data currently 

being used in the algorithm [38]. The 128-bit data is arranged as a 4x4 array of bytes 

(16 bytes in total). 

4.3 Sub Bytes Step 

In the Sub Bytes step, each byte in the data array is updated using an 8-bit S-Box 

to provide a certain amount of non-linearity to the AES cipher. The S-Box was designed 

as part of the original Rijndael algorithm to be resistant to linear and differential 

cryptanalysis for even great security within the AES algorithm [39]. There is a single S-

Box for the AES algorithm and can be implemented in the form of a table lookup as 

shown in Figure. 4.3.  
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4.4 Shift Rows Step 

The rows of the data matrix are cyclically shifted by a different offset for each 

row. The first row is left the same, while the second row is shifted by one byte to the 

left. The third and fourth rows are shifted by two and three bytes to the left, respectively 

[40]. In this way, the output in this step contains columns which consist of a mix of each 

of the input columns, further obscuring the complexity of the cipher as shown in Figure. 

4.4.  

 

 

 

 

 

 

 

Figure: 4.3: The result of the Shift Rows step on the input data block. 

4.5 Mix Columns Step 

The four bytes of each column in the input array are combined using an 

invertible linear transformation where each byte of the input column has a direct effect 

on all four bytes in the output column. The primary purpose of this step is to further 

diffuse and complicate the output of the AES algorithm [41]. The linear transformation 

can be represented as multiplication by a fixed polynomial C(x) as shown in Figure. 4.5. 

 

Figure 4.2: The Sub Bytes substitution step. 
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4.6  High Level Description of The Algorithm 

1. Key Expansion round keys are derived from the cipher key using 

Rijndael's key schedule . 

2. Initial Round: 

 Add Round Key each byte of the state is combined with the round 

key using bitwise xor. 

3. Rounds: 

 Sub Bytes: a non-linear substitution step where each byte is 

replaced with another according to a lookup table.  

 Shift Rows: a transposition step where each row of the state is 

shifted cyclically a certain number of steps.  

 Mix Columns: a mixing operation which operates on the 

columns of the state, combining the four bytes in each column.  

 Add Round Key. 

4. Final Round (no Mix Columns) : 
1. Sub Bytes. 

2. Shift Rows. 

3. Add Round Key. 

 The encryption and decryption operations are shown in Figure. 4.5. 

 

 

 

 

Figure 4.4: The result of the Mix Columns step. 

http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_S-box
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Figure 4.5: AES encryption and decryption. 
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4.7 Security  

Until May 2009, the only successful published attacks against the full AES were 

side-channel attacks on some specific implementations. The National Security Agency 

(NSA) reviewed all the AES finalists, including Rijndael, and stated that all of them 

were secure enough for U.S. Government non-classified data. In June 2003, the U.S. 

Government announced that AES may be used to protect classified information [42]. 

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 

and 256) are sufficient to protect classified information up to the SECRET level. TOP 

SECRET information will require use of either the 192 or 256 key lengths. The 

implementation of AES in products intended to protect national security systems and/or 

information must be reviewed and certified by NSA prior to their acquisition and                

use [43]. 

AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds 

for 256-bit keys. By 2006, the best known attacks were on 7 rounds for 128-bit keys, 8 

rounds for 192-bit keys, and 9 rounds for 256-bit keys.  

4.8 Performance 

High speed and low RAM requirements were criteria of the AES selection 

process. Thus AES performs well on a wide variety of hardware, from 8-bit smartcards 

to high-performance computers. On a Pentium Pro, AES encryption requires 18 clock 

cycles / byte, equivalent to a throughput of about 11 MB/s for a 200 MHz processor. On 

a Pentium M 1.7 GHz throughput is about 60 MB/s [44]. 

 

  

 

 

 

 

 

 

 

Figure 4.6: AES Block Cipher Speed. 

 

http://en.wikipedia.org/wiki/Side-channel_attack
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Classified_information
http://en.wikipedia.org/wiki/Pentium_Pro
http://en.wikipedia.org/wiki/Pentium_M
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4.9 Summary  

Advanced Encryption Standard not only assures security but also improves the 

performance in a variety of settings such as smartcards, hardware implementations etc. 

AES is federal information processing standard and there are currently no known non-

brute-force direct attacks against AES. AES is strong enough to be certified for use by 

the US government for top secret information. 
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Chapter 5 

Parallel Implementation of AES 

In this chapter we present the basic implementation of parallel AES algorithm. 

We also describe the speedup, run time, efficiency, and communication overhead 

metrics to measure the performance of parallel systems. 

 

5.1 The Importance of parallel Computing Systems 

The current trend in high performance computing is clustering and distributed 

computing. In clusters, powerful low cost workstations and/or PCs are linked through 

fast communication interfaces to achieve high performance parallel computing. Recent 

increases in communication speeds, microprocessor clock speeds, availability of high 

performance public domain software including operating system, compiler tools and 

message passing libraries, make cluster based computing appealing in terms of both 

high performance computing and cost effectiveness [45]. 

 

Parallel computing on clustered systems is a viable and attractive proposition 

due to the high communication speeds of modern networks. To efficiently use more 

than one processor in a program, the processors must share data and coordinate access 

to and updating of the shared data. The most popular approach to this problem is to 

exchange of data through messages between computers. The MPI (Message Passing 

Interface) approach is considered to be one of the most mature methods currently used 

in parallel programming mainly due to the relative simplicity of using the method by 

writing a set of library functions or an API (Application Program Interface) callable 

from C, C++ or Fortran Programs. MPI was designed for high performance on both 

massively parallel machines and clusters. For implementing the AES algorithm in 

parallel, the MPI based cluster is used in the this chapter. The performance of a parallel 

algorithms depend not only on input size but also on the architecture of the parallel 

computer, the number of processors, and the interconnection network. In this chapter, 

different types of parallel architectures are discussed before actually implementing the 

parallel algorithm of AES [46]. 

5.2 SIMD Architectures 

         SIMD (Single-Instruction Stream Multiple-Data Stream) [47] architectures are 

essential in the parallel world of computers. In SIMD architectures, several processing 

elements are supervised by one control unit. All the processing units receive the same 

instruction from the control unit but operate on different data sets, which come from 

different data flows, meaning that they execute programs in a lockstep mode, in which 

each processing element has its own data stream. There are two types of SIMD 

architectures: the True SIMD and the Pipelined SIMD. Each has its own advantages 

and disadvantages but their common attribute is superior ability to manipulate vectors. 

Figure 5.1 shows a model of an SIMD architecture. 
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Figure 5.1: Model of an SIMD architecture. 

The true SIMD architecture contains a single control unit (CU) with multiple 

processor elements (PE) acting as arithmetic units (AU). In this situation, the arithmetic 

units are slaves to the control unit. The AU's cannot fetch or interpret any instructions. 

They are merely a unit which has capabilities of addition, subtraction, multiplication, 

and division. Each AU has access only to its own memory. In this sense, if an AU needs 

the information contained in a different AU, it must put in a request to the CU and the 

CU must manage the transferring of information. The advantage of this type of 

architecture is in the ease of adding more memory and AU's to the computer. The 

disadvantage can be found in the time wasted by the CU managing all memory 

exchanges [48]. 
 

Pipelined SIMD architecture is composed of a pipeline of arithmetic units with 

shared memory. The pipeline takes different streams of instructions and performs all the 

operations of an arithmetic unit. The pipeline is a first in first out type of procedure. To 

take advantage of the pipeline, the data to be evaluated must be stored in different 

memory modules so the pipeline can be fed with this information as fast as possible. 

The advantages to this architecture can be found in the speed and efficiency of data 

processing [49]. 
 

5.3 MIMD Architectures  

Multiple instruction stream, multiple data stream (MIMD) [50] machines have a 

number of processors that function asynchronously and independently. At any time, 

different processors may be executing different instructions on different pieces of data. 

MIMD architectures may be used in a number of application areas such as computer-

aided design/computer-aided manufacturing, simulation, modeling, and as 

communication switches. MIMD machines can be of either shared memory or 

distributed memory categories. These classifications are based on how MIMD 

processors access memory. Shared memory machines may be of the bus-based, 
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extended, or hierarchical type. Distributed memory machines may have hypercube or 

mesh interconnection schemes. Figure 5.2 shows a Model of a MIMD architecture. 

 

 

 

 

 

 

 

 

 

 

v 

Figure 5.2: Model of a MIMD architecture. 

5.4 Algorithm for Parallel Implementation of AES  

   There are two major components of parallel algorithm design. The first one is 

identification and specification of the overall problem as a set of tasks that can be 

performed concurrently. The second is the mapping of these tasks onto different 

processors so that the overall communication overhead is minimized. The first 

component specifies concurrency, and the second one specifies data locality. The 

performance of an algorithm on a parallel architecture depends on both concurrency and 

data locality. Concurrency is necessary to keep the processors busy. Locality is 

important because it minimizes communication overhead. Ideally, a parallel algorithm 

should have maximum concurrency and locality. However, for most algorithms, there is 

a tradeoff. An algorithm that has more concurrency often has less locality [52]. 

 

To implement the AES algorithm in parallel, data blocks and a key are 

distributed among the available processors. Each processor will encrypt different data 

blocks using the same key. For example, in order to encrypt n number of data blocks 

with p processors, n/p data blocks will be encrypted by each processor. As each 

processor has its own data blocks and a key (increases data locality), all the 10/12/14 

rounds (consists of four transformations) will be executed by each processor for 

encrypting each data block [53]. 

 

After encrypting all the data blocks of each processor, the encrypted data will be 

merged (Figure 5.3) in tree structure and return back to the main processor. For 

example, if there are four processors working in parallel, processor P1 will send its 

encrypted data to P0 and P0 will merge its encrypted data with P1; processor P3 will 
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send its encrypted data to P2, and P2 will merge its encrypted data with P3. Finally 

processor P2 will send its (P2 & P3) encrypted data to P0 and P0 will merge its (P0 & 

P1) encrypted data with P2. This technique of merging and returning data to the main 

processor will increase the concurrency and reduce the idle time of each processor [54]. 

Figure. 5.3: (a) Data blocks are distributed between 2 processors. 

                  ( b) Data blocks are distributed among 4 processors. 

 5.5  Run Time Complexity of the Parallel Implementation  
 

  Time complexity is the most important measure of the performance of a parallel 

algorithm, since the primary motivation for parallel computation is to achieve a speedup 

in the computation. Parallel algorithms are executed by a set of processors and usually 

require inter-processor data transfers to complete execution successfully. The time 

complexity of a parallel algorithm to solve a problem of size n is a function T(n, p) 

which is the maximum time that elapses between the start of the algorithm’s execution 

by one processor and its termination by one or more processors with regard to any 

arbitrary input. There are two different kinds of operations associated with parallel 

algorithms. These are the elementary operation and the data routing operation [55]. 

Elementary operation is an arithmetic or logical operation performed locally by a 

processor. Data routing operations refer to the routing of data among processors for 

exchanging the information. The time complexity of a parallel algorithm is determined 

by counting both elementary steps and data routing steps. A corollary follows that the 

time complexity of a parallel algorithm depends on the type of computational model 

being used as well as on the number of processors available.  
 

Parallel computations are usually structured as a set of tasks executing 

concurrently and cooperatively on concurrent systems. Besides the actual service time 

spent in the system resources, execution time of a parallel computation consists of two 

kinds of additional delay: Queuing delay and Synchronization delay. Queuing delay 

results when two or more tasks compete for resources in the system. Synchronization 

delay results when a task has to idle and wait for others to finish before continuing. 

Because of the presence of queuing and synchronization delays, execution times of 

parallel computations are very difficult to predict. It is not possible to measure the 

performance of a parallel algorithm just by evaluating the run time complexity as shown 

in figure 5.4. It is also important to evaluate the speedup and efficiency of the algorithm 

[56]. All of these performance metrics are described below. 
 

(

a) 

(

b) 
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5.5.1 Parallel Run Time 

The serial run time of a program is the time elapsed between the beginning and 

the end of its execution on a sequential computer. The parallel run time is the time that 

elapses from the moment that a parallel computation starts to the moment that the last 

processor finishes execution. The serial and parallel run time is denoted by TS and TP 

respectively. The equation of parallel time is given as follows: 

 

Tp= Tcomp + Tcomm + Tsynch + Toverhead 

 

             Where Tcomp is the time of computation, Tcomm is the time of 

communication, Tsynch is the time of synchronization, Toverhead is the time of 

overhead communication. 

 

 

 

 

 

 

 

 

 

 

  Figure 5.4:  Run time as a function of number of processors. 
 

5.5.2 Speed-up  

When evaluating a parallel system, it is often important to know how much 

performance gain is achieved by parallelizing a given application over a sequential 

implementation. Speed-up is defined as the ratio of the time taken to solve a problem on 

a single processor to the time required to solve the same problem on a parallel computer 

with p identical processors. The speedup is denoted by the symbol S. Therefore, 

 

S = TS / TP 

 

Formally, the speedup S is defined as the ratio of the serial run time of the best 

sequential algorithm for solving a problem to the time taken by the parallel algorithm 

to solve the same problem on P processors. The speedup S has the upper and lower 

bounds as follows: 

1<=S<=p 

 

So, when the number of processors is equal to one, the speedup is one, but when 

number of processors is increased the speedup is increased. The speedup will never 

exceeds the number of processors in the parallel machine as shown in Figure 5.5. 
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 Figure 5.5: Speedup and Efficiency as a function of number of processors. 

    

5.5.3 Efficiency 

Efficiency is defined as the Speed-up with P processors divided by the number 

of processors P. Conceptually, the efficiency of the algorithm measures how well all P 

processors are being used when the algorithm is computed in parallel. An efficiency of 

100 percent means that all of the processors are being fully used all the time. Efficiency 

is denoted by E. Therefore, 

E = S / P 

            = TS / P TP 

 

In an ideal parallel system, speedup is equal to number of processors P and 

efficiency is equal to 1. In practice, ideal behavior is not achieved because while 

executing a parallel algorithm, the processors cannot devote 100 percent of their time to 

the computations of the algorithm. Because, some part of the time is spent in inter-

processor communication. The efficiency is decreased as number of processors are 

increased as shown in figure 5.5. 

 

5.5.4 Overhead Communication 

 Sources of overhead communication in parallel programs: 

  Overheads: wasted computation, communication, idling, contention. 

1. Inter-process interaction. 

2. Load imbalance.  

3. Dependencies. 

 Total parallel overhead. 

  Total time collectively spent by all processors : 

1. Processor Elements = pTp. Where p is the number of processors. 

2. Time spent doing useful work (serial time) = TS. 

3. Overhead function: TO = pTP-TS. 
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 Where TO is a general function which contains all kinds of overheads. The 

overhead is increased as the number of the processors is increased as shown in figure 

5.6. 

 

 

 

 

 

 

Figure 5.6: Overhead Communication as a function of number of processors. 

 
5.6 Summary 

There are two major components of parallel algorithm design. The first one is 

the identification and specification of the overall problem as a set of tasks that can be 

performed concurrently. The second is the mapping of these tasks onto different 

processors so that the overall communication overhead is minimized. 
 

After implementing the AES algorithm in parallel, it is found that the 

performance of AES algorithm increases significantly as the number of processor 

increases. It is not possible to get the speedup to be equal to P (number of processors), 

as some parallel processing overhead is also incurred during the implementation of AES 

in parallel. 
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Chapter 6 

Proposed AES 

 

In this chapter we discuss our proposed enhanced sequential encryption 

algorithm. We also develop an original parallel AES based on the enhanced sequential 

AES. 

The proposed enhanced sequential encryption algorithm increases the security of 

AES by combining password and time and using secure hash algorithm and message 

authentication code. The proposed parallel AES has  high performance by using parallel 

implementation of the sequential counterpart. It increases performance through 

determining the task size of the data file as a percentage of the original data file size.  
 

Introduction 
 

The protection of data is the key mechanism for data security. The challenges 

faced to protect the data explore new encryption algorithms [57]. The evolution of 

encryption of encryptions in the field of cryptography may provide better security than 

single encryption routine. 
 

The most important requirement for a new cryptographic algorithm is 

scalability. Implementers should be able to scale the algorithm from a bit-serial 

implementation to a highly parallel implementation depending on the desired maximum 

power consumption and speed. 
 

The security of encrypted data depends on several factors like what algorithm is 

used for, what is the key size and how was the algorithm implemented in the product. 

Hence, how we can make a balance between the key size and the speed of the encrypted 

algorithm such that it has high speed and strong encryption.  
 

Since most of complex encryption algorithms suffer from slow speed and in 

many times consume more power, which affects the encryption algorithm performance. 

In addition, how  parallel computing will help us in improving our enhanced encryption 

algorithm and how will it affect developing  the security of the database on the server 

side per database column to obtain overall security policy when encrypting addition data 

types (text, integer, image,……..) [58]. 
 

We develop the proposed enhanced AES and the parallel enhanced AES 

algorithms using JAVA with MPI (Message Passing Interface) support for parallel 

execution  on distributed memory multiprocessors. 

 

6.1 Tools Used in Algorithm Development  

6.1.1 MPJ Express  

MPJ Express is a message passing library that is used by the application 

developers to develop and execute parallel Java applications on compute clusters or 

network of computers. MPJ Express is originally designed for distributed memory 

machines like clusters but also supports efficient execution of parallel applications on 

desktops or laptops that contain shared memory or multi-core processors [59]. 
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MPJ Express is a reference implementation of MPI Java 1.2 API, which is an 

MPI-like API for Java defined by the Java Grande Forum .The current release contains: 

 The core library. 

 The runtime infrastructure. 

 The test-suite. 

6.1.2 MPJ Express Configuration 

        MPJ Express can be configured in two ways: Multicore configuration, and cluster 

configuration. 
 

Multicore Configuration: This configuration is used by developers who want 

to execute their parallel Java applications on multicore or shared memory machines 

(laptops and desktops) [59]. 
 

Cluster Configuration: This configuration is used by developers who want to 

execute their parallel Java applications on distributed memory platforms including 

clusters and network of computers [60].A sample program with MPJ Express is shown 

in Figure 6.1. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: MPJ Express Example. 

6.2 Enhanced AES Algorithm 

Advanced Encryption Standard consists of three block ciphers. They are: AES-

128, AES-192, and AES-256. Each of the these standard ciphers is 128-bit block size 

with key sizes of 128, 192 and 256 bits respectively. To get top security we will use key 

sizes of 192 or 256, but this consumes a lot of processing time, and it is a low speed 

algorithm and consumes a lot of power. Key size of 128 bit gives us good security level 

and consumes less power than key sizes 192 and 256. We propose improving the AES 

algorithm which uses the key size of 128 bit through implementing some enhancements 

such as secure hash algorithm, message authentication code. This improves the 
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performance of the algorithm in regards to security. In addition, we propose a parallel 

version of the enhanced proposed AES through determining the parallel task size as a 

percentage of the original data file. By executing this parallel AES on a multiprocessor 

system we achieve good performance in regards to speed up. 

 

6.3 Security Enhancement of sequential AES-128bit 

      We want to increase the security of AES by increasing the security of  key 

and data block as shown in figure 6.2. 

 

6.3.1  Increasing the security of a key  

We want to increase the security of a key by using the following parts:   

1.Using Time (the time of the current encryption which is taken after the 

program is worked). 
 

2.Using secure hash algorithm to generate the key size 256bit to encrypt the data 

file. 

 

6.3.1.1 Using Time 

          We want to make a combination between the time and the key size for the 

following reasons. 
 

 The time Generation depends on the computer clock cycle, so it is very 

difficult to predict it. 
 

 The prediction of the combination between time and key size is very  

complicated problem. 
 

 The time of the current encryption will send as an encrypted data in the 

encrypted data file to the second party. 

 

We encrypted the current encryption time by using the following: 

 

1. We use the SBOX to change the format of the current encryption time. 
 

2. We use the fourth round key of the key size 128bit to generate other 10 

round keys to encrypt the current encryption time. 
 

3. After encrypted the data blocks with key size 256 bit according to figure 6.3, 

We put the current encryption time after achieving steps 1 & 2 between the 

encrypted data blocks, since the data blocks are encrypted by the round key 

size 128 bit which generation from secure hash algorithm with key size 256 

bit, and the current encryption time is encrypted by the fourth round key size 

128 bit of  the original key size 128 bit too.  
 

4. The intruder will  not  have  enough information to find the current 

encryption time for the following combined reasons: 

  

 The format of the current encryption time is changed. 

 The current encryption time is encrypted by the fourth round key of the 

key size 128 bit. 
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 The current encryption time is putted in dynamic position between the encrypted 

data blocks  according to equations 6.3.1.1. So the half of the encrypted current 

time is merged with previous encrypted data block, and the second is merged 

with the next encrypted data block. 
 

 The data blocks are encrypted by round key size 128 bit which generate from 

secure hash algorithm with key size 256 bit, and the current encryption time is 

encrypted by the fourth round keys 128 bit of the original one too.  
 

 If the intruder catches the encrypted data file : 
 

 He should solve the equations 6.3.1.1, to determine the dynamic position of 

the encrypted current time. 

 He should know the original key size 128 bit to generate the fourth round 

key size 128 bit to decrypt the encrypted current time file which is not the 

suitable key to decrypt the data file, we want the  new key size 256bit to 

decrypt the data file.  
 

o   

 The second party is the only one who knows how to extract the dynamic position 

of the current encryption time. 

 
 

The following is the pseudo code of the current encrypted time module. 

                         begin 
 

j for columns (between blocks)  //change its value every time the program is beginning   
 

                       start 

1. I for rows    //change every getting new time  
 

2. Position =  #encrypted data file rows mod I   // the position of the 

encrypted current time. ------------------------------(Equation 6.3.1.1). 

3. Put the encrypted current time in the coordinate (position ,j); 
 

4. Send value = value(the random round key(1-10) size 128 bit of  the 

original one) mod position// sending value to the second party.  

                        End  

 

6.3.1.2 Using secure hash algorithm  

      After concatenation between the key size 128 bit and the current encryption time 

we will use secure hash algorithm to generate the new key size 256 bit. By this key 

we encrypted data blocks. We choose the secure hash algorithm for the following 

reasons: 

 

1. It enjoys fast operation, since it doesn't need a key. 

2. When the input is changed the output is changed directly. 

3. It takes any arbitrary input data size and produce fixed data size. 

The new generation key size will be 256 bit. We used 10 round keys instead of 14 round 

keys to encrypt the data file. 
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6.3.2 Increasing the security of the data blocks 

We increase the security of data blocks by using message authentication  

algorithm (MAC) by using the new key size 256 bit as a key and data blocks, the size of 

each data block to be encrypted  is 128 bit as shown in figure 6.3 part b .   

 

Before making encryption we calculate the  MAC value for each data block and 

store it in the encrypted output file. after making decryption we calculate the  MAC 

value for each data block. We compare between these values if the value of any data 

block  is not equal, we close the decrypted file since there is changing or attacking on it. 

 

 

 

 

 

 

 
 

         

 

 

 

    Figure 6.2: Sequential Enhanced Proposed AES Operations   
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6.3.3.1 Original  Sequential Encryption Algorithm 

The following is the pseudo code of the sequential original AES algorithm. 

Algorithm Sequential_AES( ) 

      Begin 

1. Generate AES 16 bytes random key 

2. Create cipher-1(Encrypt.mode, AES key) 

3. while(is not last block) do 

3.1 Cipher text= Cipher-1(block-data)  

4. End while loop 

5. Write last block cipher to the output  file 

6. Write last block size to the output  file 

END 

 

6.3.3.2 Proposed Enhanced Sequential Encryption Algorithm 

 We increase the security of the selected private key of the sequential AES 

by combining time and password and using the secure hash algorithm and message 

authentication code to guarantee the integrity of data. The following is the pseudo code 

of the enhanced sequential AES algorithm. 
 

Algorithm Enhanced_Sequential_AES( ) 

   Begin 

1. Generate incremental I for columns // the column of the position of the 

encrypted current time 

2. Input password, input file, output file 

3. Initialize:CipherAES-128,DIGEST_ALG="SHA-256" 

MAC_ALG="HmacSHA256" 

4. Generate key= password. get Bytes("UTF-16LE") //generate the  

     // AES-128 key 

5. Generate 8 bytes initial vector IV-1(8 current time) 

6. Generate 16 bytes AES key-1 combination from IV-1 and key from password 

7. Write IV-1 to output file 

8. Create cipher-1(Encrypt. Mode, AES key-1, IV-1) 

9. Create Hmac-1(AES key-1, HMAC_ALG) 

10. Calculate a HMAC-SHA256 for previous cipher in line 1 and write it to out 

file 
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11. While(is not last block) do 

            11.1 Cipher text= Cipher-1(block-data). 

11.2  MAC-data=Hmac-1(block-data). // make check for every block. 

So if one block of data is changed the encrypted file will not decrypt.  

12. End while loop 

13. Write last block cipher to output file 

14. Write last block size to output  file 

15. Write last block MAC-data to output  file 

16. Call current-encrypted-time-module //determine the position of the 

encrypted current time. 

 END 
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6.4  Proposed Parallel Encryption algorithm 

 
We use the proposed enhanced AES as module in our proposed parallel AES 

algorithm. We increase performance (speedup) by executing the proposed parallel AES 

algorithm in parallel on multiprocessors through reducing serialization by limiting use 

of barrier MPI statement which generates synchronization delay more than necessary, 

since. By limiting the number of barrier MPI statements there is less blocking 

asynchronous send and receive which allows a greater overlapping between 

computation and message passing communication. Also removal of the barrier MPI 

statement allows parallel processors to return control more quickly to the calling 

process. Writing the code for the parallel AES in Java with MPI library leads to 

appearance of many issues that must be handled in the MPI and MPJ  Express package 

methods and other data distributing problems that must be solved. 

6.4.1 Collective Communications 

 MPI provides a variety of routines for distributing and re-distributing data, 

gathering data, performing global sums etc. This class of routines comprises what are 

termed as the “collective communication” routines. Although a better term for this class 

of routines might be “collective operations”. Figure 6.2 shows what distinguishes 

collective communication from point-to-point communication. Collective 

communication always involves every process in the specified communicator [61]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: MPI Collective Communication. 

Barrier synchronization: This is the simplest of all the collective operations. It 

involves no data at all. MPI.COMM_WORLD.Barrier( ) blocks the calling process 

until all other group members have called it. As an example of using Barrier 

synchronization is that in one phase of a computation, all processes participate in 

writing a file. The file is to be used as input data for the next phase of the computation. 

Therefore no process should proceed to the second phase until all processes have 

completed phase one. 
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A broadcast MPI.COMM_WORLD.Bcast has a specified root process and every 

process receives one copy of the message from the root. All processes must specify the 

same root (and communicator). 

 MPI.COMM_WORLD,Gather: Each process sends the contents of its send buffer to 

the root process. 

 MPI.COMM_WORLD.Scatter : the inverse  of Gather. 
 

6.4.2 Scatter a file by MPJ 

public void Scatter (java.lang.Object sendbuf, int sendoffset, int sendcount, 

Datatype sendtype, java.lang.Object recvbuf, int recvoffset, 

int recvcount, Datatype recvtype, int root) 

throws MPIException. 

 

6.4.3 The Parallel Encryption Algorithm 

 The following is the pseudo code of the proposed enhanced parallel encryption 

AES algorithm which uses the enhanced sequential AES as a called module. 

Algorithm Parallel_AES_Encrypt_Algorithm(Input password, input file, output file) 

         Begin 

1. myRank=MPI.Rank() //determine the rank of the process 

2. size= MPI.Size()// total number of processes  

3. call Prepare_Data_File(inFile) 

4. call Enhanced_Sequential_AES_Encrypt() return result to encrypt  byte 

array 

5. allocate byte array alldata[encrupt_size*size]//dealing with bytes 

6. MPI.Gather(encrypt[],alldata[],root)//gathering data from all other 

7. processes and return back to the root process 

8. If(my Rank==root) 

  8.1 Write all data[] to output file 

9. End if 

        END 

    

../../../../mpj-v0_36/doc/javadocs/mpi/Datatype.html
../../../../mpj-v0_36/doc/javadocs/mpi/Datatype.html
../../../../mpj-v0_36/doc/javadocs/mpi/MPIException.html
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The following is the pseudo code of the parallel data file preparation subroutine. 

 
Subroutine Prepare_Data_File (Input: input file in File, Output: output file           

out File) 

 Begin 

1. If(my Rank==root) 

1.1 Calculate size of in File 

1.2 Calculate work int. work=size/#processors 

1.3 Calculate remainder r=size mod #processores 

1.4 Store work and r in array worksize[] 

2. End if 

3. MPI.Bcast(worksize[],root) 

4. Allocate myjob[work] 

5. If(r!=0 and myRank=#p-1) 

                    5.1 Allocate myjob[work+r] 

6.  End if 

7.  MPI.Barrier 

8.  Scatter(inFile,work,root) 

9.  MPI.Barrier 

10.  If(myRank==root and r!=0) 

10.1 MPI.ISend(inFile, last r bytes,#p-1) 

11. End if 

12. If(myRank==#p-1 and r!=0) 

         12.1 MPI.IRecv(myjob, last r location  ,root) 

13. End if 

END  
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The following is the pseudo code of the proposed enhanced parallel decryption 

AES subroutine. 

 

Subroutine Parallel_AES_Decryption(Input password, input file, output file) 

Begin 

1. myRank=MPI.Rank() 

2. size= MPI.Size() // return the number of processes  

3. call prepareFile(inFile) 

4. call Deccrypt()// return result to decrypt byte array 

5. allocate alldata[worksize[0]*#p-1+worsize[1]] 

6. Gather(decrypt,worksize[0],root) 

7. If(myRank==#p-1 and worksize[0]!=worksize[1]) 

7.1 Diff=worksize[1]-worksize[0] 

7.2 MPI.ISend(decrypt, last diff bytes, to root) 

8.   End if 

9.   If(myRank==root and worksize[0]!=worksize[1]) 

9.1 Diff=worksize[1]-worksize[0] 

9.2 MPI.IRecv(alldata, in last diff location, from last p) 

10.  End if 

11.  Write alldata[ ] to output file 

END 
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The following is the pseudo code of the proposed enhanced parallel decryption 

AES subroutine. 

 

Subroutine Parallel_AES_Decrypt( ) 

Begin 

1. Allocate worksize[2] 

2. Call SequentialDecrypt() return result to decrypt byte array. 

3. If(myRank!=#p-1) 

3.1Worksize[0]=decrypt.length. 

3.1 If(myRank==0) 

3.2.1MPI.ISend(worksize[0], to #p-1) 

3.2 End if 

4. End if 

5. If(myRank==#p-1) 

5.1 MPI.IRecv(worksize[0], from root) 

5.2 Worksize[1]=decrypt.length 

6. End if 

7. MPI.Bcast(worksize[1],from #p-1) 

END 

 

Note that in the decryption process we used Prepare_File() procedure mentioned 

in the encryption method to make our system more friendly and more productive 

because in future work we will add a subsystem for searching the data files. When a 

process finds a target data file it begins as the root process machine. So it is not a good 

idea to make the root process fixed (e.g., the  process with the maximum rank). In our 

solution this approach makes the parallel system more transparent and scalable. 

 

6.5 Tests and results-Multiprocessor Systems 

In the following measurement experiments we want to find the suitable parallel 

task size that achieves our goals of good load balance among parallel processors, small 

communication overhead, small parallel time, and best speedup and performance. 

The results in this section are only applicable to the AES encryption algorithm 

test case. These results are application dependent. They may change as different 

applications as used to test our novel techniques. Hence, the optimal task ratio that has 

been measured (15-25%) may be different for different applications. 
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       We test our proposed parallel AES using the following multiprocessor systems:  

 

 

6.6 Experiments   

The relation between parallel task size different performance metrics(speedup, 

parallel run time, efficiency, and overhead communication) for different number of 

processors(2, 4 and 8) is shown in the following experiments. 

Experiment 1: Relation between parallel task size and parallel run time for 

different data file sizes (25MB, 84MB and 144MB) and different number of processors 

(2, 4, and 8). 
 

Figure 6.3 shows the effect of varying parallel task size on the parallel run time 

for different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor 

system. 

Figure 6.3 (a) shows the effect of varying parallel task size on the parallel run 

time for data file size of 25MB. Figure 6.3 (b) shows the effect of varying parallel task 

size on the parallel run time for data file size of 84MB. And Figure 6.3 (c) shows the 

effect of varying parallel task size on the parallel run time for data file size of 144MB. 

As shown in figure. 6.3 the parallel task size between 15% and 25% of the total 

data file size gives the best performance (parallel run time). So, if the parallel task size 

is small we get good load balancing but the number of merging is increased. This leads 

to higher task management, more contention and more inter communication. So if the 

parallel task size is too small the number of merging increases and the communication 

increase, so the processors will consume their power in merging more than in 

processing the task size and hence, the run time will increase. If the task size is big, then 

this leads to load imbalance and some of processors will be idle and the parallel time 

will increase. 

Processor Pentium 4 Clock Speed :2.8GHZ Ram:1GB Cache:256 KB 

Processor Core2dueo Clock Speed :2 GHZ Ram:1.96GB Cache:256 KB 

Processor Core2Quad Clock Speed :2.4GHZ Ram:2GB Cache:512 KB 

Processor Core I8 Clock Speed :2 GHZ Ram:1GB Cache:256 KB 
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Figure 6.3: Parallel run time of the proposed parallel AES (128 bit key) with 2,4 

and 8 processor. (a) data file size of 25MB. (b) data file size of 84MB. 

        (c) data file size of 144MB. 
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Experiment 2: Relation between parallel task size and speed up for different 

data file sizes (25MB, 84MB and 144MB) and different number of processors (2, 4,  

and 8). 
 

Figure 6.4 shows the effect of varying parallel task size on the speedup for 

different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor 

system. 

Figure 6.4 (a) shows the effect of varying parallel task size on the speedup for 

data file size of 25MB. Figure 6.4 (b) shows the effect of varying parallel task size on 

the speedup for data file size of 84MB. And Figure 6.4 (c) shows the effect of varying 

parallel task size on the speedup for data file size of 144MB. 

As shown in figure. 6.4 the parallel task size between 15% and 25% of the total 

data file size gives the best performance (speedup). So, the optimal task size gives us  

good load balance with little communication and high data locality and high speed up.  

 

 

 

 

 

 

 

 

 

 



50 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

               
 

                          (a)                                                                                (b)            

                                                                      

 

 

 

 

 

 

 

  

 

 

 

                                                      
 

 
 

                                      (c) 
 

 

Figure 6.4: Speedup of the proposed parallel AES (128 bit key) with 2,4 and 8 

processor. (a) data file size of 25MB. (b) data file size of 84MB.    

                                    (c) data file size of 144MB. 
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Experiment 3: Relation between parallel task size and communication overhead 

for different data file sizes (25MB, 84MB and 144MB) and different number of 

processors (2, 4, and 8) 

Figure 6.5 shows the effect of varying parallel task size on the communication 

overhead for different data file sizes for number of processors of 2, 4, and 8 in the 

multiprocessor system. 

Figure 6.5 (a) shows the effect of varying parallel task size on the 

communication overhead for data file size of 25MB. Figure 6.5 (b) shows the effect of 

varying parallel task size on the communication overhead for data file size of 84MB. 

And Figure 6.5 (c) shows the effect of varying parallel task size on the communication 

overhead for data file size of 144MB. 

As shown in figure. 6.5 as we increase the parallel task size the communication 

overhead starts large then it decreases as we increase parallel task size, then it increases 

again. The parallel task size between 15% and 25% of the total data file size gives the 

best performance (communication overhead). So, the optimal task size gives us good 

load balance with little communication and high data locality and small communication 

overhead. So, when the parallel task is too small there is more contention, more 

intercommunication and the processors consume more power in merging than in 

processing the tasks. When the parallel task size becomes bigger, we get good task size 

which gives us good load balancing with little communication and high data locality 

and lower overhead communication. When parallel task size becomes more bigger, the 

execution of the algorithm becomes more sequential and concurrency decrease. 
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Figure 6.5: Communication overhead of the proposed parallel AES (128 bit key) 

with 2, 4 and 8 processor. (a) data file size of 25MB. (b) data file size of 84MB.   

                                                 (c) data file size of 144MB. 
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Experiment 4: Relation between parallel task size and efficiency for different 

data file sizes (25MB, 84MB and 144MB) and different number of processors (2, 4,  

and 8). 

Figure 6.6 shows the effect of varying parallel task size on the efficiency for 

different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor 

system. 

Figure 6.6 (a) shows the effect of varying parallel task size on the efficiency for 

data file size of 25MB. Figure 6.6 (b) shows the effect of varying parallel task size on 

the efficiency for data file size of 84MB. And Figure 6.6 (c) shows the effect of varying 

parallel task size on the efficiency for data file size of 144MB. 

As shown in figure. 6.6 the parallel task size between 15% and 25% of the total 

data file size gives the best performance (efficiency). So, if the parallel task size is 

small we get good load balancing but the number of merging is increased. This leads to 

higher task management, more contention and more inter communication. So if the 

parallel task size is too small the number of merging increases and the communication 

increase, so the processors will consume their power in merging more than in 

processing the task size and hence, the run time will increase. If the task size is big, 

then this leads to lead to load imbalance and some of processors will be idle and the 

parallel time will increase. 
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Figure 6.6: Efficiency of the proposed parallel AES (128 bit key) with 2, 4 and 8 

processor. (a) data file size of 25MB. (b) data file size of 84MB.    

                                    (c) data file size of 144MB. 
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 Experiment 5: Relation between parallel task size and speed up for different 

data file sizes (25MB, 84MB and 144MB) and different number of processors (2, 4,  

and 8). 
 

Figure 6.7 shows the effect of varying parallel task size on the speedup for 

different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor 

system. 

Figure 6.7 (a) shows the effect of varying parallel task size on the speedup for 2 

processors. Figure 6.7 (b) shows the effect of varying parallel task size on the speedup 

for 4 processors. And Figure 6.7 (c) shows the effect of varying parallel task size on the 

speedup for 8 processors. 

 As shown in figure. 6.7 the parallel task size between 15% and 25% of the total 

data file size gives the best performance (speedup). So, the optimal task size gives us  

good load balance with little communication and high data locality and high speed up.  
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Figure 6.7:  Speedup of the proposed parallel AES (128 bit key) with 2,4 and 8 

processor. (a) 2 processors. (b) 4 processors.   (c) 8 processors. 
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6.7 Summary of Experimental Results 

The goal of our experimental analysis of the proposed parallel AES algorithm is 

to find the parallel task size that gives the optimal  performance by achieving the 

following: 

 Load balance (all processors are as busy as possible). 

 Small communication overhead between processors. 

 

 So, if the task size is small we get good load balancing among the processors 

but the number of merging is increased, higher task management is obtained, and more 

contention and more inter processor communication is generated. So if the task size is 

too small the number of merging will be increased and the communication is increased, 

so the processors will consume their power in merging than in processing the task size 

and the parallel run time will increase. If the task size is big, then this leads to load 

imbalance and some of processors will be idle and the parallel time will increase. 
 

To get good performance in parallel computing we should reduce serialization by 

the following approaches: 

a. Limiting the use of barrier: Excessive serialization is the use of synchronization 

more than necessary. 

b. Mutual exclusion: We reduce serialization by using separate locks for separate 

data items. 

 As shown in the results of the developed experiments we can determine the 

suitable parallel task size to be between 15% and 25% of the total data file size. This 

optimal parallel task size gives us the best performance with low parallel run time and 

low power consumption. 
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Chapter 7 

Conclusion and Future work 

In this chapter, section 7.1 provides the conclusion of the thesis, whilst the 

suggested future work is proposed in section 7.2. 
 

7.1 Conclusion  

Advanced Encryption Standard (AES) consists of three block ciphers. They are: 

AES-128, AES-192, and AES-256. Each of the above standard ciphers is 128-bit block 

size with key sizes of 128, and 192 & 256 bits respectively. For top security AES uses 

key sizes of 192 or 256, but this takes high processing, low speed and take more power 

consumption. Key size of 128 bit gives us security level and takes less power 

consumption than key sizes of 192 and 256. So by improving AES with key size of 128 

bit by using secure hash algorithm, and message authentication code and determining 

the parallel task size as a percentage of the original data file by using parallel computing 

we can achieve good performance in speed with acceptable security. 
 

 Experimental results of the proposed algorithms demonstrate the efficiency of 

the proposed AES-128. We increased the security of the selected private key by 

combining time and password and using the secure hash and message authentication 

code algorithms  to guarantee the integrity of  data. We get good performance in parallel 

computing by reducing serialization through Limiting use of barrier MPI statements 

which produce more synchronization delay than necessary. Minimizing the use of 

barrier MPI statement reduces the blocking asynchronous send and receive and allows 

the greatest overlap between computation and message passing. It also does so by 

returning control most quickly to the calling process. 

Our Proposed AES-128 parallel algorithm enjoys high video file resolution and 

quality of encryption. In fact, all experiments show that the system keeps the high video 

file resolution and the quality of the data file. We recommend our system for encryption 

and decryption of large video files because experiments show excellent speedup and 

guarantee quality. 

It’s clear from the measurement results and visual inspection that the optimal 

parallel task size ranges from 15% to 25% of the data file size. This optimal parallel 

task size gives the best performance with low parallel run time and low power 

consumption. 
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7.2 Future Work 

The work of the thesis may be extended by the following enhancements: 

 

 Using  more key size than 128 bit to increase the security  
 

Encryption with AES is based on a secret key with 128, 192 or 256 bits. But if 

the key is easy to guess it doesn’t matter if AES is secure, so it is as critically vital to 

use good and strong keys as it is to apply AES properly. Creating good and strong keys 

is a surprisingly difficult problem and requires careful design when done with a 

computer. Keys derived into a fixed length suitable for the encryption algorithm from 

passwords or pass phrases typed by a human will seldom correspond to 128 bits much 

less 256 bits. 

 

 Using hybrid algorithm of Advanced Encryption Standard and Elliptic 

Curve Cryptosystems 

 
The evolution of encryption of encryptions in the field of cryptography may 

provide better security than single encryption routine. So, by making a combination 

between the stronger public and private key algorithms we avoid the weakness of 

each of them. The most important requirement for a new cryptographic algorithm is 

scalability.  

 
 

 Using Cluster Configuration 

The cluster configuration is meant for users who plan to execute their parallel 

Java applications on distributed memory platforms including clusters or network of 

computers. Application developers can opt to use either of the two communication 

devices in the cluster configuration: the communication devices including Java New I/O 

(NIO) device or Myrinet device as follows: 

 

1. Java New I/O (NIO) device driver known as niodev 

2. Myrinet device driver known as mxdev 

 

The Java NIO device driver (also known as niodev) can be used to execute MPJ 

Express programs on clusters or network of computers. The niodev device driver uses 

Ethernet-based interconnect for message passing.  

 

 Dynamic root depends on data locality  

MPJ express gives developers high scalability by converting traditional Ethernet 

network to cluster, of course there are limitation on load balancing, so in future work we 

hope to build a subsystem to determine the distributing of data over network to decide 

the rank of root according the locality of data. 
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