
0

Islamic University of Gaza

Deanery of Higher Studies

Faculty of Engineering

Computer Engineering Department

Master Thesis

A HIGH PERFORMANCE

ENHANCED SEQUENTIAL AND

PARALLEL AES

 تحسين أداء خوارزميت تشفير مطورة باستخذام البرمجت المتوازيت

Fadi El-Faleet

Supervisor

Prof. Mohammad A. Mikki

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Gaza, Palestine

(1432, 2011)

ii

 قَالُوا سُبِحَانَك لا عِلْمَ لَنَا إِلا مَا
 عَلَمتَنَا إِنَّكَ أَنْتَ العَلِيْمُ الحَكيْم

 [32: البقرة آيت]

iii

Dedication

 To my beloved mother…

 To my beloved father…

 To my sisters and brothers…

 To my wife…

 To all friends…

iv

Acknowledgements

Praise is to Allah, the Almighty for having guided me at every stage of my life.

 This thesis is the result of years of work whereby I have been accompanied

and supported by many people. It is wonderful that I now have the opportunity to

express my gratitude to all of them.

 This work would not have been possible without the constant

encouragement and support I received from prof. Mohammad Mikki, my advisor and

mentor. I would like to express my deep and sincere gratitude to him. His understanding

and personal guidance have provided a good basis for the present thesis.

 I also extend my thanks to prof. Hatem Hamad and Dr. Aiman Abusamra

the members of the thesis discussion committee.

 Also, I would like to take this opportunity to express my profound

gratitude to my beloved family – my mother, father, brothers, and my wife- without

whom I would ever have been able to achieve so much. I especially wish to express my

love for my mother, my father, my brothers and my wife, they did not only endure my

manifold activities but also provided inspiration and support for my inclination to

perfectionism. Only they know how much I am indebted to them.

 Last, but certainly not least, I want to thank my friends, for their moral

support during this study.

v

Table Of Contents

Contents Page No.

 DEDICATION…………………………….…………………………………

 Acknowledgments…………………………………….……………..………

 Table Of CONTENTS…………………………………………….…………

 LIST OF FIGURES………………………………..…..……………………

 LIST OF TABLES…………………………….……………………..………

 ABSTRACT…………………………………………………...………………

 ARABIC ABSTRACT……………………………………..…………………

iii

iv

v

ix

xi

xii

xiii

Chapter 1:Background Research 1

1.1 Information Security and Cryptography…………………………...….……

1.2 Motivation…………………..………………..…………………………………

1.3 Research Question………………………………………………………..…...

1.4 Problem Definition……….……………………………………….…..……..

1.5 Research Scope…………………………………………………………..…….

1.6 Research Purpose ………………………………………………….….………

1.7 Research Methodology………………………………………………….…….

1.8 Thesis Contributions ……………………………………………..…..………

1.9 Outline of the Thesis……………………………………………...…..……….

1

4

5

5

5

6

6

6

7

Chapter 2: Conventional Encryption 8

 Introduction……………………………………………………..…………...

2.1 Symmetric-key Cryptosystem ………………………………...…….………

2.1.1 Principles of Symmetric-key Cryptosystem……………………....

2.2 Block ciphers……………………………..…………………………………..

2.3 Model of Symmetric-key Cryptosystem…………………………..……….

2.4Importance of Symmetric-key Cryptography………………………...……

 Advantages of symmetric-key cryptography……………………………

 Disadvantages of symmetric-key cryptography………………………..

 Advantages of public-key cryptography…………………………...……

 Disadvantages of public-key encryption…………………………..……

 Summary of comparison……………………………………………….….

2.5 Cryptographic Hash Functions ……………..………………………….….

 Ideal Characteristics of Cryptographic Hash Functions……………..

 Applications of Cryptographic Hash Functions…………………….....

2.6 Summary……………………….……………….………………………….…

8

8

8

9

10

11

12

12

12

13

13

13

13

13

14

Chapter 3: Literature Review 15

3.1 Previous Work…………………………………………….………………….

3.2 Research Issues …………………………………………………....…

15

19

vi

Chapter 4: The AES Construction 20

 Introduction ………………………………………………………………….

 Requirements of AES ………………………………..……………….…….

 Features of AES Encryption Algorithm………………………...………...

 Advantages of AES Encryption Algorithm……………………...………..

4.1 Description of the cipher……………………………………………………..

4.2 Add Round Key Step…………………………………………………………..

4.3 Sub Bytes Step……………………………………………………...………….

4.4 Shift Rows Step…………………………………………………...……….......

4.5 Mix Columns Step…………………………………………..………………...
4.6 High Level Description of The Algorithm……………………..………..……………….
4.7 Security………………………………………………………...……………………….

4.8 Performance……………………….……………………………..……………………

4.9 Summary………………………………………………………………………………..

20

20

21

21

22

22

22

23

23
24

26

26

27

Chapter 5: Parallel Implementation of AES 28

5.1The importance of parallel………………………….....………….………..

5.2SIMD Architectures………………………………………………….……..

5.3MIMD Architectures …………………………….................................

5.4 Algorithm for Parallel Implementation of AES…………………………...

5.5Run Time Complexity of the Parallel Implementation…………………...

5.5.1 Run Time………………………………………………………...…..

5.5.2 Speed-up ……………………………………………………..……..

5.5.3 Efficiency……………………………………………………...……..

5.5.4 Overhead Communication …………………………………………

5.6 Summary……………………………………………………...…………..……

28

28

29

30

31

32

32

33

33

34

Chapter 6: Proposed AES 35

 Introduction ……………………………..……………………………………

6.1 Tools ………………………………...…………………………………………

6.1.1 MPJ Express …………………………………………………………

6.1.2 MPJ Express Configuration…………………….…………………..

6.2 Enhancement AES algorithm………………………………………………..

6.3 Security Enhancement of sequential AES128bit………………………….

 6.3.1 Increasing the security of a key……………………………………

 6.3.2 Increasing the security of the data blocks………………………

 6.3.3.1 Pseudo-Code of Sequential Encryption Algorithm…………

 6.3.3.2 Pseudo-Code of The modified Sequential Encryption

 Algorithm………………………..………………………………..

6.4 Parallel Encryption algorithm…………………………...………………...

6.4.1 Collective Communications………………………………….……..

6.4.2 Scatter a file by MPJ………………………………………….……..

6.4.3 Pseudo-Code of The Parallel Encryption Algorithm…………..

6.5 Tests and results …………….……………………………………………...

6.6 Experiments …………………………………………………………………

6.7 Summary……………………………………………………………………...

35

35

35

36

36

37

37

39

40

41

41

42

42

43

46

47

57

Chapter 7: Conclusion and Future work 58

7.1Conclusion……………………………………………………………………...

7.2 Future Work……………………………………………………………………

 References……………………………………………..................................

58

59

60

vii

List Of Figures

Contents Page No.

Chapter 1: Background Research

Figure. 1.1 General Cryptosystem……………………………….……………….

Figure. 1.2: Network security system……………………………………….……

1

3

Chapter 2: Conventional Encryption

Figure. 2.3: Model of Symmetric-key Cryptosystem……………………………..
10

 Chapter 3: Literature Review

Figure. 3.1: Encryption speeds for 128 bits on different processors………...

Figure. 3.2: Encryption speeds for 128 bits ………………………………..…….

Figure. 3.3: Encryption speeds for the Minimal secure Variant In Assembly

Figure. 3.4: Cipher encryption speed………………………………………………

15

16

16

17

20

 Chapter 4: The AES Construction

Figure. 4.1: Key Expansion………………………………………….………………

Figure. 4.3: The Sub Bytes substitution step………………………………….…

Figure. 4.4: The result of the Shift Rows step on the input data block………

Figure 4.5: The result of the Mix Columns step on………………………………

Figure. 4.6: AES encryption and decryption…………………………………….

Fig. 4.3: AES Block Cipher Speed……………………………………………….…

22

23

23

24

25

26

Chapter 5: Parallel Implementation of AES

Figure. 5.2: Model of an SIMD architecture……………………………………

Figure. 5.3: Model of an MIMD architecture……………………………………..

Figure. 5.4: a) Data blocks are distributed between 2 processors…………..…

 b) Data blocks are distributed among 4 processors…………….

Figure. 5.5: a) Run time as a function of number of processors………………..

 b) Speedup up and Efficiency as a function of number of

 processors……………………………………………………………

Figure 5.5:c) Overhead Communication as a function of number of

 processors…………………………………………………………….

29
30

31

32

34

 Chapter 6: Proposed AES

Figure. 6.1.2: MPJ Express Example…………………………………….………

Figure. 6.3.1 MPI Collective Communication………………………………….…

Figure.6.3:exp1)Parallel Time of AES(128 bit key) with 2,4 and 8 processors

Figure. 6.4: exp2) Speedup of AES(128 bit key) with 2,4 and 8 processors…..
Figure.6.5:exp3)Overhead Communication as a function of task size for

 different number of processors………………………………….

Figure. 6.6: exp4) Efficiency of AES(128 bit key) with 2,4 and 8………………

Figure. 6.7: exp5) Speedup for three different files (25,84,144) MB with 2,4

 and 8 processors………………………………………………

36

39

48

50

52

54

56

viii

List Of Tables

Contents Page No.

Chapter 4: The AES Construction

Table 4.1. The AES Parameter………………………………………………….

Table4.2.The Comparison between different Cryptography algorithms……

20

21

ix

Abstract

In this thesis we discuss how to make a balance between the key size and the

speed of the encryption algorithm such that the encryption algorithm has high speed and

strong encryption. Since security always comes at a cost of performance.

We propose to improve the Advanced Encryption Standard with key size length

of 128 bit. The improvement includes the following: combination between time and

password, using secure hash, using message authentication code algorithms, executing

the AES in parallel, determining the parallel task size as a percentage of the original

data file, and finally increasing the overlap between parallel execution and

communication (pipelining).

The contribution of the thesis includes enhancing the sequential AES and

developing an original parallel AES based on the enhanced sequential AES.

Measurement results of the proposed parallel AES show that we have the

optimal parallel task size between 15% and 25% of the data file. This task size gives us

best performance (small parallel run time, small communication, and low power

consumption).

Keywords: Security, cryptography, Advanced Encryption Standard, Parallel

Computing, Overlapping, speedup, Efficiency, Overhead Communication.

x

تحسين أداء خوارزميت تشفير مطورة

 باستخذام البرمجت المتوازيت

: ملخص البحث

ٌقىو انثاحث فً هذِ الأطزوحح تًُاقشح عًهٍح انرىاسٌ تٍٍ طىل انًفراح تانخىارسيٍاخ

عًهٍح الأيٍ ذأذً دائًاً عهى حساب . انًشفزج تحٍث ذرًرع تسزعح عانٍح و قىج فً عًهٍح انرشفٍز

 .نذنك َزغة تإٌجاد ذىافق تٍٍ عايم انسزعح والأداء وقىج انرشفٍز. انسزعح والأداء وانعكس

 أٌضاً قذو انثاحث يجًىعح يٍ انرحسٍُاخ خاصح ترطىٌز خىارسيٍح يحسُح نهرشفٍز انًرطىر

عًهٍح ديج تٍٍ انىقد : هذا انرحسٍٍ ٌشرًم عهى انرانً. تد128تاسرخذاو يفراح طىل ذشفٍزِ

، اسرخذاو خىارسيٍح انركزٌز اَيٍ، اسرخذاو خىارسيٍح رسانح انرأكٍذ (كهًح انسز)ويفراح انرشفٍز

اَيٍ، ذشغٍم خىارسيٍح انرشفٍز انًرقذو يٍ خلال انثزيجح انًرىاسٌح، ذحذٌذ حجى انًهًح انًُىي

ذشفٍزها كُسثح يٍ حجى انًهف انكهً ، و فً انُهاٌح سٌادج عًهٍح انرخطً تٍٍ انرشغٍم انًرىاسي

 .والاذصالاخ

 وذكًٍ انًساهًح انفعهٍح نهذِ انذراسح فً ذطىٌز وذحسٍٍ خىارسيٍح انرشفٍز انًرقذو فً حال

 .انثزيجح انعادٌح ، واسرخذاو هذا انرطىٌز تعذ إدخال يجًىعح يٍ انرحسٍُاخ فً انثزيجح انًرىاسٌح

 نقذ تٍُد َرائج انثحث تشكم كثٍز أٌ انحجى الأيثم نهًهًح انًُىي ذشفٍزها ذكىٌ يحصىرج تٍٍ

هذا انحجى ٌعطٍُا أفضم أداء فًٍا ٌرعهق ترقهٍم انىقد . يٍ حجى انًهف الأصهً% 25إنى % 15

 . انًرىاسي، وذقهٍم الاذصالاخ تٍٍ انًعانجاخ تالإضافح إنى ذقهٍم كًٍح انطاقح انًسرههكح

انرشفٍز، انرشفٍز انًطىر، عًهٍح انرخطً ، انثزيجح انًرىاسٌح ، انسزعح : كهًاخ يفراحٍح-

 .وانفاعهٍح

1

Chapter 1

Background Research

In this chapter, we introduce notation and basic principles in cryptography used

in this thesis, the purpose of this chapter is to give a general idea of the principles,

techniques, and algorithms which are required for understanding this thesis, but we

rather assume the reader is familiar with cryptography.

1.1 Information Security and Cryptography

Security is one of the fundamental and important metrics in digital

communication. Hence, cryptography which is one technique to ensure data is an

important topic in computer security. Cryptography is a process of transmission of data

through unsecured channels, and only the authenticated receiver who has the legitimate

key can read the encrypted messages which might be documents, phone conversations,

images or other forms of data as shown on Figure 1.1 .

Figure 1.1: General Cryptosystem.

Definition 1.1: Cryptography is the study of mathematical techniques related to

aspects of information security such as confidentiality, data integrity, entity

authentication, and data origin authentication. Cryptography is not the only means of

providing information security, but rather one set of techniques.

 Definition 1.2: Cryptography is a general term referring to a set of cryptographic

primitives used to provide information security services. Most often the term is used in

conjunction with primitives providing confidentiality, i.e., encryption [1]. In

cryptosystems, the information must be scrambled, so that other users will not be able to

access the actual information. While providing privacy remains a central goal, the field

has expanded to encompass many others, including not just other goals of

communication security, such as guaranteeing integrity and authenticity of

2

communications, but many more sophisticated and fascinating goals. When you shop on

the Internet, for example to buy a book, cryptography is used to ensure privacy of your

credit card number as it travels from you to the shop’s server. Also, in electronic

banking, cryptography is used to ensure that your checks cannot be forged [2].

Cryptographic goals

Cryptography services must guarantee the following goals:

1. Confidentiality is a service used to keep the content of information from all but

those authorized to have it. Secrecy is a term synonymous with confidentiality and

privacy. There are numerous approaches to providing confidentiality, ranging from

physical protection to mathematical algorithms which render data unintelligible.

2. Data integrity is a service which addresses the unauthorized alteration of data. To

assure data integrity, one must have the ability to detect data manipulation by

unauthorized parties. Data manipulation includes such things as insertion, deletion,

and substitution.

3. Authentication is a service related to identification. This function applies to both

entities and information itself. Two parties entering into a communication should

identify each other. Information delivered over a channel should be authenticated as to

origin, date of origin, data content, time sent, etc. for these reasons this aspect of

cryptography is usually subdivided into major classes: entity authentication and data

origin authentication. Data origin authentication implicitly provides data integrity.

Data origin authentication implicitly provides data integrity (for if a message is

modified, the source has changed).

4. Non-repudiation is a service which prevents an entity from denying previous

commitments or actions. When disputes arise due to an entity denying certain actions

were taken, a means to resolve the situation is necessary. For example. One entity

may authorize the purchase of property by another entity and later deny such

authorization is granted. A procedure involving a trusted third party is needed to

resolve the dispute [1, 2].

 The emergence of the Internet as a trusted medium for commerce and

communication has made cryptography an essential component of modern information

systems as shown in Figure 1.2. Cryptography provides the mechanisms necessary to

implement accountability, accuracy, and confidentiality in communications [3]. As

demands for secure communication bandwidth grow, efficient cryptographic processing

will become increasingly vital to good system performance. To introduce cryptography,

an understanding of issues related to information security in general is necessary.

Information security manifests itself in many ways according to the situation and

requirement. Regardless of who is involved, to one degree or another, all parties to a

transaction must have confidence that certain objectives associated with information

security have been met. Over the centuries, an elaborate set of protocols and

mechanisms has been created to deal with information security issues when the

information is conveyed by physical documents. Often the objectives of information

security can not solely be achieved through mathematical algorithms and protocols

alone, but require procedural techniques and abidance of laws to achieve the desired

result. For example, privacy of letters is provided by sealed envelopes delivered by an

accepted mail service. The physical security of the envelope is, for practical necessity,

3

limited and so laws are enacted which make it a criminal offense to open mail for which

one is not authorized. It is sometimes the case that security is achieved not through the

information itself but through the physical document recording it [4]. For example,

paper currency requires special inks and materials to prevent counterfeiting.

Conceptually, the way information is recorded has not changed dramatically over time.

Whereas information was typically stored and transmitted on paper, much of it now

resides on magnetic media and is transmitted via telecommunications systems. What has

changed dramatically is the ability to copy and alter information. One can make

thousands of identical copies of a piece of information stored electronically and each is

indistinguishable from the original. With information on paper, this is much more

difficult. What is needed then for a society where information is mostly stored and

transmitted in electronic form is a means to ensure information security which is

independent of the physical medium recording or conveying it and such that the

objectives of information security rely solely on digital information itself [5].

Figure 1.2: Network security system.

One of the fundamental tools used in information security is the signature. It is a

building block for many other services such as non-repudiation, data origin

authentication, identification, and witnessing, to mention a few. Having learned the

basics in writing, an individual is taught how to produce a handwritten signature for the

purpose of identification. At contract age the signature evolves to take on a very integral

part of the person’s identity. This signature is intended to be unique to the individual

and serve as a means to identify, authorize, and validate. With electronic information

the concept of a signature needs to be readdressed; it can not simply be something

unique to the signer and independent of the information signed. Electronic replication of

it is so simple that appending a signature to a document not signed by the originator of

the signature is almost a triviality. Achieving information security in an electronic

society requires a vast array of technical and legal skills. There is, however, no

guarantee that all of the information security objectives deemed necessary can be

adequately met. The technical means is provided through cryptography [6, 7].

4

1.2 Thesis Motivation

There is more and more information transmitted over networks every day. This

information may be banks transactions, business information or military information

which should be accessed by authorized persons. In order to protect the confidential

information; secure cryptographic algorithms are required. There are two basic types of

cryptosystems: Public key systems and private key systems. Public key systems are

much slower than private key systems, but private key systems require key agreement

through an existing secure channel [8].

Private key systems use the same key for both encryption and decryption

operations. In order to communicate securely using a private key system, two parties

must agree on the key using some pre-existing secure channel. When more than two

parties are involved key distribution has been a major obstacle for practical uses of

cryptography.

Public key cryptosystems help solve the key distribution problem by using separate

keys for encryption and decryption operations, and making the encryption key public.

Anyone can then encrypt a message, but only parties in possession of the private key

can decrypt messages. Public key systems rely on one way trap door functions, which

are interesting mathematical functions that can be easily computed in one direction but

are very difficult to reverse unless a secret key is known [9].

The main goals of this thesis are

 For the sequential AES-128 bit algorithm

1. We want to make a combination between time and password to generate the AES-

128 bit key.

a. The created AES key will be secure using SHA-256.

b. We store the time and the message digest in the output file.

c. So, to decrypt the file and make expansion of the key we must know the

time to make the round keys.

d. During data transfer on network we guarantee that if the data is changed

the data file will not to be decrypted.

 For the parallel AES-128 bit algorithm

1. We want to use multiprocessors to achieve the required speed to encrypt the large

data file in parallel to minimize the total encryption time with lower power

consumption.

2. We want to determine the optimal parallel task size which is given to processors.

This optimal parallel task size is a percentage of the original data file to achieve

the following goals:

 Load balance.

 Small processor communication.

3. Our proposed parallel AES algorithm is able to encrypt different extensions of

files (video, text and images) with excellent quality since it deals with bits.

5

1.3 Research Questions

The importance of this study can be summarized by the following fundamental

questions:

1. Why is it important to use the AES algorithm?

2. What is the impact of the combination between time and password to

generate the round keys?

3. What is the best AES key size which gives good performance for parallel

execution on multiprocessors with good security level?

4. What is the impact of using secure hash algorithm SHA-256?

5. What is the impact of determining the task size as a percentage of the

original file?

6. What is the impact of parallel run time on power consumption?

7. How much does the proposed modified AES algorithm increase the security?

Could it holdup against the different types of attacks?

1.4 Problem Definition

It is possible to implement cryptographic algorithms in software running on

multiple processors. However, most of the cryptographic algorithms like DES (Data

Encryption Standard) or 3DES have some drawbacks when implemented in software.

for example, DES is no longer secure as computers get more powerful while 3DES is

relatively sluggish in software. AES (Advanced Encryption Standard), which is rapidly

being adopted worldwide, provides a better combination of performance and enhanced

network security than DES or 3DES by being computationally more efficient than these

earlier standards. Furthermore, by supporting large key sizes of 128, 192, and 256 bits,

AES offers higher security against brute-force attacks [10]. Hence, we need fast and

secure AES task granularity which requires little memory (so the algorithm can be used

in smartcards) and give good quality at different types of file extensions.

The problem is divided into three steps as follows:

1. Find the AES task granularity that gives good performance on multi

processors.

2. Increase the security of AES encryption by combining time and password

and using secure hash algorithm to generate the keys.

3. Find the parallel task size as a percentage of the original file that gives good

performance.

6

1.5 Thesis Research Scope

 The research scope focuses on increasing the security level of AES, in addition

to determining the parallel task size which gives low power consumption when working

on multiprocessors.

1.6 Thesis Research Purpose

 The objectives of the thesis are:

 Finding an efficient private key cryptosystem.

 Increasing the security of the private key by combining time and password to

generate the encryption key and using the secure hash algorithm.

 Finding the parallel task size as a percentage of original data file size when

executed on multiprocessors to get the following goals:

 Load balance.

 Small processor communication.

 Good performance by decreasing the parallel run time that leads to low

power consumption with excellent quality.

1.7 Research Methodology

 The purpose here is to generate a robust, secure and fast cryptosystem, using

different techniques, and different strategies, comparing the results with previous

systems to determine the best. So, a variety of schemas will be tested to obtain the best

combination between time and password and using secure hash algorithm to guarantee

the data was not changed during transferring on network. We will determine the parallel

task size as a percentage of original file to get high performance with low power

consumption.

 In other words, to answer these research goals, this research employs the research

methodology in order to:

 Show the literature survey on cryptography.

 Propose efficient cryptosystem by:

 Finding an efficient private key cryptosystem.

 Increasing the security of the private key by combining time and

password and using the secure hash algorithm.

 Finding the parallel task size as a percentage of original data file size

when executed on multiprocessors to get high performance.

1.8 Thesis Contributions

 Practically everyone agrees that cryptography is an essential information security

tool, and encryption can protect communications and stored information from

unauthorized access and disclosure.

7

Cryptography allows people to carry over the confidence found in the physical world to

the electronic world, thus allowing people to do business electronically without worries

of deceit and deception. Everyday hundreds of thousands of people interact

electronically, whether it is through e-mail, e-commerce, or ATM machines. The

increase of information transmitted electronically has lead to an increased reliance on

cryptography.

 In this thesis, we develop an enhanced AES encryption algorithm with increased

security by combining time and password and using the secure hash algorithm to

guarantee that data is not changed during transfer over network. We also develop a

parallel enhanced AES algorithm that paralyzes the developed enhanced AES. We run

the parallel AES on multiprocessors using MPI to improve the performance (parallel

time) and to decrease the power consumption.

The contributions of this thesis are as follows:

 We review several kinds of advanced encryption standard (AES).

 We select the AES with low work factor which gives good performance on

multiprocessors.

 We increase the security of serial implementation of AES with low work factor

which gives good security level.

 We determine the parallel task size as the percentage of the original data file size

to get high performance with lower power consumption.

 We demonstrate through testing the efficiency and effectiveness of the proposed

cryptosystem.

1.9 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 we discusses the

principles and techniques of cryptography. Chapter 3 presents and evaluates numerous

cryptography schemes and their performance, to avoid their weakness in our proposed

cryptosystem. Chapter 4 discusses the construction of the advanced encryption system

(AES) in detail. Chapter 5 presents the basic implementation of the parallel AES

algorithm. It also describes speedup, parallel run time, efficiency, and communication

overhead metrics to measure the performance of the parallel systems when execute

parallel programs. Chapter 6 discusses our proposed hybrid encryption algorithm which

increases security of AES by combining password and time to generate the key. Other

proposed enhancements to AES include using secure hash algorithm, message

authentication code. In addition, chapter 6 presents the proposed parallel AES algorithm

which is based on the proposed enhanced sequential AES algorithm. High performance

of the parallel AES comes from determining the optimal parallel task size as a

percentage of the original data file size. Finally, chapter 7 concludes the thesis and

presents suggested future work.

8

Chapter 2

Conventional Encryption

 In this chapter we discuss the principles and techniques of cryptography.

Introduction

 Cryptography is generally understood to be the study of the principles and

techniques by which information is converted into an encrypted version that is difficult

(ideally impossible) for any unauthorized person to convert to the original information,

while still allowing the intended reader to do so. In fact, cryptography covers rather

more than merely encryption and decryption. It is, in practice, a specialized branch of

information theory with substantial additions from other branches of mathematics.

Cryptography is probably the most important aspect of communications security and is

becoming increasingly important as a basic building block for computer security [11].

There are, in general, two types of cryptographic schemes which are typically

used to accomplish the cryptography goals. These two cryptographic schemes are

secret key (or symmetric or conventional) cryptography and public-key (or asymmetric)

cryptography. In symmetric-key cryptography, an algorithm is used to scramble the

message using a secret key in such a way that it becomes unusable to all except the ones

that have access to that secret key. The most widely known symmetric cryptographic

algorithm is DES, developed by IBM in the seventies. It uses a key of 56 bits and

operates on chunks of 64 bits at a time [10, 11].

In public key cryptography [12], algorithms use two different keys: a private key

and a public one. A message encrypted with a private key can be decrypted with its

public key (and vice versa). The owner of the key pair holds the private key, and may

distribute the public key to anyone. Someone who wants to send a secret message uses

the public key of the intended receiver to encrypt it. Only the receiver who holds the

private key and can decrypt it.

 The two basic building blocks of all encryption techniques are substitution and

transposition. A substitution technique is one in which the letters of plaintext are

replaced by other letters or by numbers or symbols. Transposition technique is a

different kind of mapping where mapping is achieved by performing some sort of

permutation on the plaintext letter [13].

2.1 Symmetric-key Cryptosystem

2.1.1 Principles of Symmetric-key Cryptosystem

 In Symmetric-key cryptography, a single key is used for both encryption and

decryption. As shown in Figure 2.1, the sender uses the key (or some set of rules) to

encrypt the plaintext and sends the cipher text to the receiver. The receiver applies the

same key (or rule set) to decrypt the message and recover the plaintext. Because a single

key is used for both functions, secret key cryptography is also called symmetric

encryption [14].

9

 With this form of cryptography, it is obvious that the key must be known to both

the sender and the receiver; that, in fact, is the secret. The biggest difficulty with this

approach, of course, is the distribution of the key.

Symmetric-key cryptography schemes are generally categorized as being either

stream ciphers or block ciphers [15]. Stream ciphers operate on a single bit (byte or

computer word) at a time, and implement some form of feedback mechanism so that the

key is constantly changing. A block cipher is so-called because the scheme encrypts one

block of data at a time using the same key on each block. In general, the same plaintext

block will always encrypt to the same cipher text when using the same key in a block

cipher whereas the same plaintext will encrypt to different cipher text in a stream

cipher.

Stream ciphers come in several flavors but two are widely used. Self

synchronizing stream ciphers calculate each bit in the key stream as a function of the

previous n bits in the key stream. It is termed "self-synchronizing" because the

decryption process can stay synchronized with the encryption process merely by

knowing how far into the n-bit key stream it is. One problem is error propagation; a

garbled bit in transmission will result in n garbled bits at the receiving side.

Synchronous stream ciphers generate the key stream in a fashion independent of the

message stream but by using the same key stream generation function at sender and

receiver. While stream ciphers do not propagate transmission errors, they are by their

nature, periodic the key stream will eventually repeat [16].

2.2 Block ciphers

Block ciphers can operate in one of several modes; the following four are the most

important [17]:

 Electronic Codebook (ECB) mode is the simplest, most obvious application: the

secret key is used to encrypt the plaintext block to form a cipher text block. Two

identical plaintext blocks, then, will always generate the same cipher text block.

Although this is the most common mode of block ciphers, it is susceptible to a

variety of brute-force attacks.

 Cipher Block Chaining (CBC) mode adds a feedback mechanism to the encryption

scheme. In CBC, the plaintext is exclusively-ORed (XORed) with the previous

cipher text block prior to encryption. In this mode, two identical blocks of plaintext

never encrypt to the same cipher text.

 Cipher Feedback (CFB) mode is a block cipher implementation as a self

synchronizing stream cipher. CFB mode allows data to be encrypted in units smaller

than the block size, which might be useful in some applications such as encrypting

interactive terminal input. In case of 1-byte CFB mode, for example, each incoming

character is placed into a shift register the same size as the block, encrypted, and the

block transmitted. At the receiving side, the cipher text is decrypted and the extra

bits in the block (i.e., everything above and beyond the one byte) are discarded.

 Output Feedback (OFB) mode is a block cipher implementation conceptually

similar to a synchronous stream cipher. OFB prevents the same plaintext block from

generating the same cipher text block by using an internal feedback mechanism that

is independent of both the plaintext and cipher text bit streams.

10

2.3 Model of Symmetric-key Cryptosystem

 A symmetric or conventional encryption scheme has five ingredients [18]

(Figure 2.3):

 Plaintext /Message: This is the original intelligible message or data that is fed into

the algorithm as input.

 Encryption Algorithm: The encryption algorithm performs various substitution

and transformation on the plaintext.

 Secret Key: The secret key is also the input to the encryption algorithm. The key is

a value independent of the plaintext. The algorithm will produce a different output

depending on the specific key being used at the time. The exact substitutions and

transformations performed by the algorithm depend on the key.

 Cipher text: This is the scrambled message produced as output. It depends on the

plaintext and secret key. For a given message, two different keys will produce two

different cipher texts.

 Decryption Algorithm: This is essentially the encryption algorithm run in reverse.

It takes the cipher text and the secret key and produces the original plaintext.

Figure 2.3: Model of Symmetric-key Cryptosystem.

There are two requirements for the secure use of symmetric-key

encryption:

1. A strong encryption algorithm: At a minimum, the algorithm to be such that an

opponent who knows the algorithm and has access to one or more cipher texts

would be unable to decipher the cipher text or figure out the key. This requirement

is usually stated in a stronger form: The opponent should be unable to decrypt

cipher text or discover the key even if he or she is in possession of a number of

cipher texts together with the plaintext that produced each cipher text [19].

11

2. Sender and receiver must have obtained copies of the secret key in a secure

fashion and must keep the key secure. If some can discover the key and knows the

algorithm, all communication using this key is readable.

In symmetric-key cryptosystem, a source produces a message in plaintext, X =[X1,

X2, X3,, XM]. The M elements of X are letters in some finite alphabet.

 Traditionally, the alphabet usually consists of the 26 capital letters. The binary

alphabet {0,1} is also typically used. For encryption, a key of the form K = [K1, K2,

K3, , KJ] is generated. If the key is generated at the message source, then it must

also be provided to the destination by means of some secure channel.

Alternatively, a third party could generate the key and securely deliver it to both

source and destination. With the message X and the encryption key K as input, the

encryption algorithm forms the cipher text Y =[Y1, Y2, Y3,., YN]. This process

can be expressed using the following notation:

 Y = Ek(X)

 This notation indicates that Y is produced by using the encryption algorithm E as a

function of the plaintext X, with the specific function determined by the value of the

key. The intended receiver, in possession of the key, is able to invert the transformation

[20, 21]:

X = Ek(Y)

2.4 Importance of Symmetric-key Cryptography

 The primary advantage of public-key cryptography is increased security and

convenience. Private keys never need to transmitted or revealed to anyone. In a

symmetric-key system, by contrast, the symmetric keys must be transmitted (either

manually or through a communication channel), and there may be a chance that an

enemy can discover the symmetric keys during their transmission [22].

 Another major advantage of public-key systems is that they can provide a method

for digital signatures. Authentication via symmetric-key systems requires the sharing of

some symmetric keys and sometimes requires trust of a third party as well. As a result, a

sender can repudiate a previously authenticated message by claiming that the shared

symmetric key was somehow compromised by one of the parties sharing the symmetric-

key. Public-key authentication, on the other hand, prevents this type of repudiation;

each user has sole responsibility for protecting his or her private key. This property of

public-key authentication is often called no repudiation [23].

 A disadvantage of using public-key cryptography for encryption is speed; there are

popular symmetric-key encryption methods that are significantly faster than any

currently available public-key encryption method. Nevertheless, public-key

cryptography can be used with symmetric-key cryptography to get the best of both

worlds. For encryption, the best solution is to combine public - and symmetric-key

systems in order to get both the security advantages of public-key systems and the speed

advantages of symmetric-key systems. The public-key system can be used to encrypt a

symmetric- key which is used to encrypt the bulk of a file or message. Such a protocol

is called a digital envelope [23, 24].

In some situations, public-key cryptography is not necessary and symmetric-key

cryptography alone is sufficient. This includes environments where secure symmetric

key agreement can take place, for example by users meeting in private. It also includes

12

environments where a single authority knows and manages all the keys (e.g., a closed

banking system). Since the authority knows everyone’s keys already, there is not much

advantage for some to be “public” and others “private.” Also, public-key cryptography

is usually not necessary in a single-user environment. In general, public-key

cryptography is best suited for an open multi-user environment [25].

Public-key cryptography is not meant to replace symmetric-key cryptography,

but rather to supplement it, to make it more secure. The first use of public-key

techniques was for secure key exchange in an otherwise symmetric-key system; this is

still one of its primary functions. Symmetric-key cryptography remains extremely

important and is the subject of ongoing study and research [26].

Advantages of symmetric-key cryptography

1. Symmetric-key ciphers can be designed to have high rates of data throughput.

2. Keys for symmetric-key ciphers are relatively short.

3. Symmetric-key ciphers can be employed as primitives to construct various

cryptographic mechanisms including pseudorandom number generators, hash

functions, and computationally efficient digital signature schemes, to name just a

few.

4. Symmetric-key ciphers can be composed to produce stronger ciphers. Simple

transformations which are easy to analyze, but on their own weak, can be used to

construct strong product ciphers.

Disadvantages of symmetric-key cryptography

1. In a two-party communication, the key must remain secret at both ends.

2. In a large network, there are many key pairs to be managed. Consequently,

effective key management requires the use of an unconditionally trusted TTP.

3. In a two-party communication between n entities A and B, sound cryptographic

practice dictates that the key be changed frequently and perhaps for each

communication session. Digital signature mechanisms arising from symmetric-

key encryption typically require either large keys for the public verification

function or the use of a TTP.

Advantages of public-key cryptography

1. Only the private key must be kept secret (authenticity of public keys must,

however, be guaranteed).

2. Depending on the mode of usage, a private key/public key pair may remain

unchanged for considerable periods of time, e.g., many sessions (even several

years).

3. Many public-key schemes yield relatively efficient digital signature

mechanisms. The key used to describe the public verification function is

typically much smaller than for the symmetric-key counterpart.

4. In a large network, the number of keys necessary may be considerably smaller

than in the symmetric-key scenario.

13

Disadvantages of public-key encryption

1. Throughput rates for the most popular public-key encryption methods are

several orders of magnitude slower than the best-known symmetric-key

schemes.

2. Key sizes are typically much larger than those required for symmetric-key

encryption, and the size of public-key signatures is larger than that of tags

providing data origin authentication from symmetric-key techniques.

Summary of comparison

1. Public-key cryptography facilitates efficient signatures (particularly no

repudiation) and key management.

2. Symmetric-key cryptography is efficient for encryption and some data integrity

applications.

2.5 Cryptographic Hash Functions

Cryptographic Hash function is a complex encryption algorithm used in

cryptography and it refers to a shortened version of full-scale encryption. A

Cryptographic hash function is a deterministic procedure that takes an arbitrary block of

data and returns a fixed-size bit string, the hash value, such that an accidental or

intentional change to the data will change the hash value. The data to be encoded is

often called the message. The hash value is sometimes called message digest or simply

digest [27].

Ideal Characteristics of Cryptographic Hash Functions

1. It is easy to compute the hash value for any given message.

2. Cryptographic hash functions are infeasible to generate a message that has a

given hash.

3. It is not possible to modify a message without changing the hash in cryptographic

hash functions.

4. In cryptographic hash functions, two different messages cannot be with same

hash.

Types of Cryptographic Hash Functions are: MAC, MDC, CRHF (collision

resistant hash functions), UOWHF (universal one-way hash functions), and OWHF

(one-way hash functions). Some of the popular Cryptographic Hash Functions are:

SHA- Secure Hash Algorithms (SHA-0, SHA-1), MD- Message Digest Algorithms

(MD5, which has 128-bit hash value), and RIPEMD- Race Integrity Primitives

Evaluation Message Digest Algorithms (RIPEMD-128 and RIPEMD-160). Of all these,

the most commonly used cryptographic hash functions are MD5 and SHA-1.

Applications of Cryptographic Hash Functions:

1. Cryptographic hash functions are used in the verification of message integrity.

2. These hash functions allows a fast look-up of the data in a hash table.

14

3. Cryptographic hash functions use peer-to-peer file sharing networks to identify

files.

4. These hash functions are used in contexts where it is necessary for the users to

protect themselves against the possibility of forgery.

5. Cryptographic hash functions are also used in the generation of pseudorandom

bits, to derive new keys or passwords from a single, secure key or password.

6. These functions are widely used in information authentication.

7. These cryptographic hash functions are used to maintain secrecy of the client

password and hashes must be kept valid for a session.

8. Cryptographic hashes provide security for E-mail and file transfer systems.

9. Cryptographic Hash Functions are also used in Database matching and software

downloads.

2.6 Summary

 This chapter covers the fundamentals and terminologies of cryptography, including

the issues of private key cryptosystems and public key cryptosystems. We mention the

advantages and disadvantages of symmetric-key cryptosystems, which motivate us to

propose our enhanced system.

15

Chapter 3

Literature Review

 In this chapter numerous cryptography schemes are studied and their

performance is evaluated, to avoid their weakness in our proposed cryptosystem.

3.1 Previous Work

Most cryptographic algorithms function more efficiently when implemented in

hardware than in software running on single processor. However, systems that use

hardware implementations have significant drawbacks: they are unable to respond to

flaws discovered in the implemented algorithm or to changes in standards. As an

alternative, it is possible to implement cryptographic algorithms in software running on

multiple processors. However, most of the cryptographic algorithms like DES (Data

Encryption Standard) or 3DES have some drawbacks when implemented in software:

DES is no longer secure as computers get more powerful while 3DES is relatively

sluggish in software. AES (Advanced Encryption Standard), which is rapidly being

adopted worldwide, provides a better combination of performance and enhanced

network security than DES or 3DES by being computationally more efficient than these

earlier standards. Furthermore, by supporting large key sizes of 128, 192, and 256 bits,

AES offers higher security against brute-force attacks [28].

In [29] the author makes a comparison of AES-128 bit on different processors as

shown in Figure 3.1. He finds that AES-128 bit gives good performance and consumes

low power consumption.

Figure 3.1: Encryption speeds for 128 bits on different processors.

In [30] the author illustrates the different work factors of AES on different

multiprocessors and finds that the work factor of 128 bit gives us best performance as

shown in Figure 3.2.

16

Figure 3.2: Encryption speeds for 128 bits.

 In [31], Biham introduces the notion of comparing the algorithms based on their

”minimal secure variants.” Different design teams were more or less conservative than

each other; the number of rounds they could successfully cryptanalze. Biham tries to

normalize the algorithms by determining the minimal number of rounds that is secure

and then adds a standard two cycles. The results are shown in Figure 3.3.

Figure 3.3: Encryption speeds for the Minimal secure Variant In Assembly.

Encryption with AES is based on a secret key with 128, 192 or 256 bits. But if

the key is easy to guess it doesn’t matter if AES is secure, so it is as critically vital to

use good and strong keys as it is to apply AES properly. Creating good and strong keys

is a surprisingly difficult problem and requires careful design when done with a

computer. Keys derived into a fixed length suitable for the encryption algorithm from

17

passwords or pass phrases typed by a human will seldom correspond to 128 bits much

less 256. To even approach 128-bit equivalence in a pass phrase, at least 10 typical

passwords of the kind frequently used in day-to-day work are needed. Weak keys can be

somewhat strengthened by special techniques by adding computationally intensive steps

which increase the amount of computation necessary to break it. The risks of incorrect

usage, implementation and weak keys are in no way unique for AES; these are shared

by all encryption algorithms. [32].

For some of the candidates, the performance or RAM requirements can depend on

whether encryption or decryption is being performed. Many smart card terminals

contain a secure module. In several applications, it is a requirement that two smart cards

execute a protocol together, and many existing protocols use both encryption and

decryption on the same smart card [33].

In [62] the author illustrates the difference between the AES and other algorithms

and discusses a number of criteria:

 How secure the algorithm is currently judged to be in the cryptographic

literature;

 The performance characteristics of the algorithm (e.g. the "raw speed" of the

algorithm, and whether it supports parallel encryption);

 How politically safe a decision it is to use a particular algorithm (paradoxically,

this doesn't necessarily depend directly on the algorithm's security);

 Whether you have to interact with a legacy system.

The authors compare measured speed of encryption with various algorithms

available as standard in Sun's JDK. The encryption algorithms authors consider here are

AES (with 128 and 256-bit keys), DES, Triple DES, RC4 (with a 256-bit key) and

Blowfish (with a 256-bit key). Figure 3.4 shows the time taken to encrypt various

numbers of 16-byte blocks of data using the algorithms mentioned.

Figure 3.4: Cipher encryption speed.

18

Nobody yet has (publicly) a full attack on AES, or a partial attack that is practical

(though some impractical partial attacks exist). However, AES is algebraically simpler

than other block ciphers: effectively, it can be written as a series of mathematical

equations, and there is a worry that somebody could demonstrate a way to solve those

equations.

In [63] the authors illustrate the minimum required key size is some combination of

the maximum key size that can be attacked now for a given algorithm, extrapolated to

the number of years that you need to keep the encrypted data confidential. Needless to

say, such extrapolation is extremely difficult beyond a few years.

In [63] the authors take data points from attacks on keys of various lengths and

extrapolate via Moore's Law. They conclude that in 2030, it will seem as difficult to

brute-force a 93-bit symmetric key as it did to brute-force DES in 1982, and that in

2050 this will be true for a 109-bit key. From this, we might conclude that, ignoring

collision attacks, a 128-bit key is sufficient to keep data confidential for the next few

decades. Taking into account collision attacks, in [64] the authors recommend using a

256-bits key size. In [65], presumably based on similar types of calculation, recommend

a minimum of "128 bits of strength" to keep data confidential "beyond 2030".

The Visa credit card company's Data Field Encryption best practices guide suggest

that for the purpose of transmitting credit card numbers, "keys should have the strength

of at least 112 equivalent bit strength". For this purpose, they actually judge 128 bits (as

in the minimum AES key size) to be "stronger than needed" (presumably because of the

relatively short lifespan of credit cards).

In principle, a quantum computer could square root the effort of a brute-force key

search, so that the bit strength of the key is halved (i.e. a 256-bit key in quantum

computing has the strength of a 128-bit key in classical computing).

In [66] the author looks at using implementing a modified version of the AES

algorithm to be optimized in the use of smart cards. Although not relevant necessarily to

the research being undertaken, the authors went into great detail explaining how the

AES algorithm works, which is of relevance to the research.

In [67] the author looks at a high speed/low cost implementation of the AES cipher,

exploring different ways of physical wiring the AES operations to enhance performance

of AES.

We want to deal with the weakness of AES and to increase its performance. The

main questions are as follows:

1. Determining the AES work factor which requires little memory (so the

algorithm can be used in smartcards efficiently) .

2. How can we increase the security level of AES without using more work

factors?

3. How can we decrease the power consumption of AES to give good performance

in smart card and other systems?

4. How can we increase the performance of AES especially in large files?

http://corporate.visa.com/_media/best-practices.pdf

19

5. How to find agreement between the opposite criteria of AES security and

performance.

3.2 Research Issues

 We notice that AES algorithm works on different work sizes. AES with high work

factor enjoys top security but suffers from low speed and consumes high power.

 It’s observed that AES encryption algorithm has one or more of the following

weaknesses:

 Needs a key distribution method.

 Low encryption speed.

 High power consumption.

 Vulnerable to brute force attack.

So, we need a system that has the advantage of being secure and fast. Moreover,

the proposed cryptosystem must overcome most of the previous shortcomings.

20

Chapter 4

The AES Construction

In this chapter we discuss the construction of Advanced Encryption System

(AES) in details.

Introduction

The Rijndael proposal for AES [34] defined a cipher in which the block length

and the key length specified to be 128, 192, or 256 bits. The AES specification uses the

same three key size alternatives but limits the block length to 128 bits. A number of

AES parameters (Table 4.1) depend on the key length. Most of the implementation of

AES uses the key length of 128 bits.

Table (4.1): The AES Parameter.

Key size (words/byte/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (word/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Requirements of AES

It had to satisfy certain engineering criteria:

 Performance, efficiency, implementability, and flexibility.

 Rijndael can be implemented easily in both hardware and software.

 Has realizations that require little memory (so the algorithm can be used in

smartcards).

The comparison between the AES and other cryptography algorithms is given in

table 4.2 [35]. By using metric points from (1 to 3) we will measure the strength of an

cryptographic algorithm. So, Point 1 is low level, point 2 is medium level and point 3 is

high level. The algorithm which sums more points is the best one as shown in table 4.2

[35].

21

Table (4.2): The Comparison between different Cryptography algorithms.

Features of AES Encryption Algorithm:

 Advanced Encryption Standard (AES) algorithm works on the principle of

Substitution Permutation network.

 AES is fast in both software and hardware.

 AES operates on a 4×4 matrix of bytes termed as a state

 The Advanced Encryption Standard cipher is specified as a number of repetitions

of transformation sounds that convert the input plaintext into the final output of

cipher text.

 Each round consists of several processing steps, including one that depends on the

Encryption key.

 A set of reverse rounds are applied to transform cipher text back into the original

plaintext using the same encryption key.

Advantages of AES Encryption Algorithm:

 Advanced Encryption Standard not only assures security but also improves the

performance in a variety of settings such as smartcards, hardware implementations

etc.

 AES is federal information processing standard and there are currently no known

non-brute-force direct attacks against AES.

 AES is strong enough to be certified for use by the US government for top secret

information.

Alternative to Advanced Encryption Standard: The ciphers which are used

alternatively to Advanced Encryption Standard are SSl and TLS. RC4 encryption is next

to AES. RC4 is of 128- bits RC4 is a fast cipher and is always subjected to many types

Algorithm Name AES Serpent Twofish MARS RC6

General Security 2 3 3 3 2

Implementation Difficulty 3 3 2 1 1

Software Performance 3 1 1 2 2

Smart-Card Performance 3 3 2 1 1

Hardware Performance 3 3 2 1 2

Design Features 2 1 3 2 1

Total 16 14 13 10 9

22

of attacks. That is the reason WEP wireless encryption is poor. Thus AES is given

priority than other standards [35].

4.1 Description of the Cipher

The Advanced Encryption Standard is a block cipher that consists of four basic steps

that are used in a series of 10 rounds to fully encrypt a 128-bit (16-byte) block of input

data. The algorithm can encrypt any file or data size and will produce an encrypted

output of identical size using an input cipher key (which can come from any of a

number of public and/or private key methods). The AES algorithm successively

encrypts the input data block in a square matrix representation to produce the output.

There are five major components to the algorithm: (1) Key expansion; (2) the Add

Round Key step; (3) the Sub Bytes step; (4) the Shift Rows step; and (5) the Mix

Columns step [36].

 Key Expansion (AES KEY 128 bit):

Since the algorithm consists of 10 rounds of execution the Key Expansion step is

used to create a unique encryption key for each of the 10 rounds [37].

Figure 4.1: Key Expansion.

4.2 Add Round Key Step

One of the simplest steps in the AES algorithm, the Add Round Key step simply

adds the 128-bit key for the particular round to the 128-bit block of data currently

being used in the algorithm [38]. The 128-bit data is arranged as a 4x4 array of bytes

(16 bytes in total).

4.3 Sub Bytes Step

In the Sub Bytes step, each byte in the data array is updated using an 8-bit S-Box

to provide a certain amount of non-linearity to the AES cipher. The S-Box was designed

as part of the original Rijndael algorithm to be resistant to linear and differential

cryptanalysis for even great security within the AES algorithm [39]. There is a single S-

Box for the AES algorithm and can be implemented in the form of a table lookup as

shown in Figure. 4.3.

23

4.4 Shift Rows Step

The rows of the data matrix are cyclically shifted by a different offset for each

row. The first row is left the same, while the second row is shifted by one byte to the

left. The third and fourth rows are shifted by two and three bytes to the left, respectively

[40]. In this way, the output in this step contains columns which consist of a mix of each

of the input columns, further obscuring the complexity of the cipher as shown in Figure.

4.4.

Figure: 4.3: The result of the Shift Rows step on the input data block.

4.5 Mix Columns Step

The four bytes of each column in the input array are combined using an

invertible linear transformation where each byte of the input column has a direct effect

on all four bytes in the output column. The primary purpose of this step is to further

diffuse and complicate the output of the AES algorithm [41]. The linear transformation

can be represented as multiplication by a fixed polynomial C(x) as shown in Figure. 4.5.

Figure 4.2: The Sub Bytes substitution step.

24

4.6 High Level Description of The Algorithm

1. Key Expansion round keys are derived from the cipher key using

Rijndael's key schedule .

2. Initial Round:

 Add Round Key each byte of the state is combined with the round

key using bitwise xor.

3. Rounds:

 Sub Bytes: a non-linear substitution step where each byte is

replaced with another according to a lookup table.

 Shift Rows: a transposition step where each row of the state is

shifted cyclically a certain number of steps.

 Mix Columns: a mixing operation which operates on the

columns of the state, combining the four bytes in each column.

 Add Round Key.

4. Final Round (no Mix Columns) :
1. Sub Bytes.

2. Shift Rows.

3. Add Round Key.

 The encryption and decryption operations are shown in Figure. 4.5.

Figure 4.4: The result of the Mix Columns step.

http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_S-box

25

Figure 4.5: AES encryption and decryption.

26

4.7 Security

Until May 2009, the only successful published attacks against the full AES were

side-channel attacks on some specific implementations. The National Security Agency

(NSA) reviewed all the AES finalists, including Rijndael, and stated that all of them

were secure enough for U.S. Government non-classified data. In June 2003, the U.S.

Government announced that AES may be used to protect classified information [42].

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192

and 256) are sufficient to protect classified information up to the SECRET level. TOP

SECRET information will require use of either the 192 or 256 key lengths. The

implementation of AES in products intended to protect national security systems and/or

information must be reviewed and certified by NSA prior to their acquisition and

use [43].

AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds

for 256-bit keys. By 2006, the best known attacks were on 7 rounds for 128-bit keys, 8

rounds for 192-bit keys, and 9 rounds for 256-bit keys.

4.8 Performance

High speed and low RAM requirements were criteria of the AES selection

process. Thus AES performs well on a wide variety of hardware, from 8-bit smartcards

to high-performance computers. On a Pentium Pro, AES encryption requires 18 clock

cycles / byte, equivalent to a throughput of about 11 MB/s for a 200 MHz processor. On

a Pentium M 1.7 GHz throughput is about 60 MB/s [44].

Figure 4.6: AES Block Cipher Speed.

http://en.wikipedia.org/wiki/Side-channel_attack
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Classified_information
http://en.wikipedia.org/wiki/Pentium_Pro
http://en.wikipedia.org/wiki/Pentium_M

27

4.9 Summary

Advanced Encryption Standard not only assures security but also improves the

performance in a variety of settings such as smartcards, hardware implementations etc.

AES is federal information processing standard and there are currently no known non-

brute-force direct attacks against AES. AES is strong enough to be certified for use by

the US government for top secret information.

28

Chapter 5

Parallel Implementation of AES

In this chapter we present the basic implementation of parallel AES algorithm.

We also describe the speedup, run time, efficiency, and communication overhead

metrics to measure the performance of parallel systems.

5.1 The Importance of parallel Computing Systems

The current trend in high performance computing is clustering and distributed

computing. In clusters, powerful low cost workstations and/or PCs are linked through

fast communication interfaces to achieve high performance parallel computing. Recent

increases in communication speeds, microprocessor clock speeds, availability of high

performance public domain software including operating system, compiler tools and

message passing libraries, make cluster based computing appealing in terms of both

high performance computing and cost effectiveness [45].

Parallel computing on clustered systems is a viable and attractive proposition

due to the high communication speeds of modern networks. To efficiently use more

than one processor in a program, the processors must share data and coordinate access

to and updating of the shared data. The most popular approach to this problem is to

exchange of data through messages between computers. The MPI (Message Passing

Interface) approach is considered to be one of the most mature methods currently used

in parallel programming mainly due to the relative simplicity of using the method by

writing a set of library functions or an API (Application Program Interface) callable

from C, C++ or Fortran Programs. MPI was designed for high performance on both

massively parallel machines and clusters. For implementing the AES algorithm in

parallel, the MPI based cluster is used in the this chapter. The performance of a parallel

algorithms depend not only on input size but also on the architecture of the parallel

computer, the number of processors, and the interconnection network. In this chapter,

different types of parallel architectures are discussed before actually implementing the

parallel algorithm of AES [46].

5.2 SIMD Architectures

 SIMD (Single-Instruction Stream Multiple-Data Stream) [47] architectures are

essential in the parallel world of computers. In SIMD architectures, several processing

elements are supervised by one control unit. All the processing units receive the same

instruction from the control unit but operate on different data sets, which come from

different data flows, meaning that they execute programs in a lockstep mode, in which

each processing element has its own data stream. There are two types of SIMD

architectures: the True SIMD and the Pipelined SIMD. Each has its own advantages

and disadvantages but their common attribute is superior ability to manipulate vectors.

Figure 5.1 shows a model of an SIMD architecture.

29

Figure 5.1: Model of an SIMD architecture.

The true SIMD architecture contains a single control unit (CU) with multiple

processor elements (PE) acting as arithmetic units (AU). In this situation, the arithmetic

units are slaves to the control unit. The AU's cannot fetch or interpret any instructions.

They are merely a unit which has capabilities of addition, subtraction, multiplication,

and division. Each AU has access only to its own memory. In this sense, if an AU needs

the information contained in a different AU, it must put in a request to the CU and the

CU must manage the transferring of information. The advantage of this type of

architecture is in the ease of adding more memory and AU's to the computer. The

disadvantage can be found in the time wasted by the CU managing all memory

exchanges [48].

Pipelined SIMD architecture is composed of a pipeline of arithmetic units with

shared memory. The pipeline takes different streams of instructions and performs all the

operations of an arithmetic unit. The pipeline is a first in first out type of procedure. To

take advantage of the pipeline, the data to be evaluated must be stored in different

memory modules so the pipeline can be fed with this information as fast as possible.

The advantages to this architecture can be found in the speed and efficiency of data

processing [49].

5.3 MIMD Architectures

Multiple instruction stream, multiple data stream (MIMD) [50] machines have a

number of processors that function asynchronously and independently. At any time,

different processors may be executing different instructions on different pieces of data.

MIMD architectures may be used in a number of application areas such as computer-

aided design/computer-aided manufacturing, simulation, modeling, and as

communication switches. MIMD machines can be of either shared memory or

distributed memory categories. These classifications are based on how MIMD

processors access memory. Shared memory machines may be of the bus-based,

30

extended, or hierarchical type. Distributed memory machines may have hypercube or

mesh interconnection schemes. Figure 5.2 shows a Model of a MIMD architecture.

v

Figure 5.2: Model of a MIMD architecture.

5.4 Algorithm for Parallel Implementation of AES

 There are two major components of parallel algorithm design. The first one is

identification and specification of the overall problem as a set of tasks that can be

performed concurrently. The second is the mapping of these tasks onto different

processors so that the overall communication overhead is minimized. The first

component specifies concurrency, and the second one specifies data locality. The

performance of an algorithm on a parallel architecture depends on both concurrency and

data locality. Concurrency is necessary to keep the processors busy. Locality is

important because it minimizes communication overhead. Ideally, a parallel algorithm

should have maximum concurrency and locality. However, for most algorithms, there is

a tradeoff. An algorithm that has more concurrency often has less locality [52].

To implement the AES algorithm in parallel, data blocks and a key are

distributed among the available processors. Each processor will encrypt different data

blocks using the same key. For example, in order to encrypt n number of data blocks

with p processors, n/p data blocks will be encrypted by each processor. As each

processor has its own data blocks and a key (increases data locality), all the 10/12/14

rounds (consists of four transformations) will be executed by each processor for

encrypting each data block [53].

After encrypting all the data blocks of each processor, the encrypted data will be

merged (Figure 5.3) in tree structure and return back to the main processor. For

example, if there are four processors working in parallel, processor P1 will send its

encrypted data to P0 and P0 will merge its encrypted data with P1; processor P3 will

31

send its encrypted data to P2, and P2 will merge its encrypted data with P3. Finally

processor P2 will send its (P2 & P3) encrypted data to P0 and P0 will merge its (P0 &

P1) encrypted data with P2. This technique of merging and returning data to the main

processor will increase the concurrency and reduce the idle time of each processor [54].

Figure. 5.3: (a) Data blocks are distributed between 2 processors.

 (b) Data blocks are distributed among 4 processors.

 5.5 Run Time Complexity of the Parallel Implementation

 Time complexity is the most important measure of the performance of a parallel

algorithm, since the primary motivation for parallel computation is to achieve a speedup

in the computation. Parallel algorithms are executed by a set of processors and usually

require inter-processor data transfers to complete execution successfully. The time

complexity of a parallel algorithm to solve a problem of size n is a function T(n, p)

which is the maximum time that elapses between the start of the algorithm’s execution

by one processor and its termination by one or more processors with regard to any

arbitrary input. There are two different kinds of operations associated with parallel

algorithms. These are the elementary operation and the data routing operation [55].

Elementary operation is an arithmetic or logical operation performed locally by a

processor. Data routing operations refer to the routing of data among processors for

exchanging the information. The time complexity of a parallel algorithm is determined

by counting both elementary steps and data routing steps. A corollary follows that the

time complexity of a parallel algorithm depends on the type of computational model

being used as well as on the number of processors available.

Parallel computations are usually structured as a set of tasks executing

concurrently and cooperatively on concurrent systems. Besides the actual service time

spent in the system resources, execution time of a parallel computation consists of two

kinds of additional delay: Queuing delay and Synchronization delay. Queuing delay

results when two or more tasks compete for resources in the system. Synchronization

delay results when a task has to idle and wait for others to finish before continuing.

Because of the presence of queuing and synchronization delays, execution times of

parallel computations are very difficult to predict. It is not possible to measure the

performance of a parallel algorithm just by evaluating the run time complexity as shown

in figure 5.4. It is also important to evaluate the speedup and efficiency of the algorithm

[56]. All of these performance metrics are described below.

(

a)

(

b)

32

5.5.1 Parallel Run Time

The serial run time of a program is the time elapsed between the beginning and

the end of its execution on a sequential computer. The parallel run time is the time that

elapses from the moment that a parallel computation starts to the moment that the last

processor finishes execution. The serial and parallel run time is denoted by TS and TP

respectively. The equation of parallel time is given as follows:

Tp= Tcomp + Tcomm + Tsynch + Toverhead

 Where Tcomp is the time of computation, Tcomm is the time of

communication, Tsynch is the time of synchronization, Toverhead is the time of

overhead communication.

 Figure 5.4: Run time as a function of number of processors.

5.5.2 Speed-up

When evaluating a parallel system, it is often important to know how much

performance gain is achieved by parallelizing a given application over a sequential

implementation. Speed-up is defined as the ratio of the time taken to solve a problem on

a single processor to the time required to solve the same problem on a parallel computer

with p identical processors. The speedup is denoted by the symbol S. Therefore,

S = TS / TP

Formally, the speedup S is defined as the ratio of the serial run time of the best

sequential algorithm for solving a problem to the time taken by the parallel algorithm

to solve the same problem on P processors. The speedup S has the upper and lower

bounds as follows:

1<=S<=p

So, when the number of processors is equal to one, the speedup is one, but when

number of processors is increased the speedup is increased. The speedup will never

exceeds the number of processors in the parallel machine as shown in Figure 5.5.

33

 Figure 5.5: Speedup and Efficiency as a function of number of processors.

5.5.3 Efficiency

Efficiency is defined as the Speed-up with P processors divided by the number

of processors P. Conceptually, the efficiency of the algorithm measures how well all P

processors are being used when the algorithm is computed in parallel. An efficiency of

100 percent means that all of the processors are being fully used all the time. Efficiency

is denoted by E. Therefore,

E = S / P

 = TS / P TP

In an ideal parallel system, speedup is equal to number of processors P and

efficiency is equal to 1. In practice, ideal behavior is not achieved because while

executing a parallel algorithm, the processors cannot devote 100 percent of their time to

the computations of the algorithm. Because, some part of the time is spent in inter-

processor communication. The efficiency is decreased as number of processors are

increased as shown in figure 5.5.

5.5.4 Overhead Communication

 Sources of overhead communication in parallel programs:

 Overheads: wasted computation, communication, idling, contention.

1. Inter-process interaction.

2. Load imbalance.

3. Dependencies.

 Total parallel overhead.

 Total time collectively spent by all processors :

1. Processor Elements = pTp. Where p is the number of processors.

2. Time spent doing useful work (serial time) = TS.

3. Overhead function: TO = pTP-TS.

34

 Where TO is a general function which contains all kinds of overheads. The

overhead is increased as the number of the processors is increased as shown in figure

5.6.

Figure 5.6: Overhead Communication as a function of number of processors.

5.6 Summary

There are two major components of parallel algorithm design. The first one is

the identification and specification of the overall problem as a set of tasks that can be

performed concurrently. The second is the mapping of these tasks onto different

processors so that the overall communication overhead is minimized.

After implementing the AES algorithm in parallel, it is found that the

performance of AES algorithm increases significantly as the number of processor

increases. It is not possible to get the speedup to be equal to P (number of processors),

as some parallel processing overhead is also incurred during the implementation of AES

in parallel.

35

Chapter 6

Proposed AES

In this chapter we discuss our proposed enhanced sequential encryption

algorithm. We also develop an original parallel AES based on the enhanced sequential

AES.

The proposed enhanced sequential encryption algorithm increases the security of

AES by combining password and time and using secure hash algorithm and message

authentication code. The proposed parallel AES has high performance by using parallel

implementation of the sequential counterpart. It increases performance through

determining the task size of the data file as a percentage of the original data file size.

Introduction

The protection of data is the key mechanism for data security. The challenges

faced to protect the data explore new encryption algorithms [57]. The evolution of

encryption of encryptions in the field of cryptography may provide better security than

single encryption routine.

The most important requirement for a new cryptographic algorithm is

scalability. Implementers should be able to scale the algorithm from a bit-serial

implementation to a highly parallel implementation depending on the desired maximum

power consumption and speed.

The security of encrypted data depends on several factors like what algorithm is

used for, what is the key size and how was the algorithm implemented in the product.

Hence, how we can make a balance between the key size and the speed of the encrypted

algorithm such that it has high speed and strong encryption.

Since most of complex encryption algorithms suffer from slow speed and in

many times consume more power, which affects the encryption algorithm performance.

In addition, how parallel computing will help us in improving our enhanced encryption

algorithm and how will it affect developing the security of the database on the server

side per database column to obtain overall security policy when encrypting addition data

types (text, integer, image,……..) [58].

We develop the proposed enhanced AES and the parallel enhanced AES

algorithms using JAVA with MPI (Message Passing Interface) support for parallel

execution on distributed memory multiprocessors.

6.1 Tools Used in Algorithm Development

6.1.1 MPJ Express

MPJ Express is a message passing library that is used by the application

developers to develop and execute parallel Java applications on compute clusters or

network of computers. MPJ Express is originally designed for distributed memory

machines like clusters but also supports efficient execution of parallel applications on

desktops or laptops that contain shared memory or multi-core processors [59].

36

MPJ Express is a reference implementation of MPI Java 1.2 API, which is an

MPI-like API for Java defined by the Java Grande Forum .The current release contains:

 The core library.

 The runtime infrastructure.

 The test-suite.

6.1.2 MPJ Express Configuration

 MPJ Express can be configured in two ways: Multicore configuration, and cluster

configuration.

Multicore Configuration: This configuration is used by developers who want

to execute their parallel Java applications on multicore or shared memory machines

(laptops and desktops) [59].

Cluster Configuration: This configuration is used by developers who want to

execute their parallel Java applications on distributed memory platforms including

clusters and network of computers [60].A sample program with MPJ Express is shown

in Figure 6.1.

Figure 6.1: MPJ Express Example.

6.2 Enhanced AES Algorithm

Advanced Encryption Standard consists of three block ciphers. They are: AES-

128, AES-192, and AES-256. Each of the these standard ciphers is 128-bit block size

with key sizes of 128, 192 and 256 bits respectively. To get top security we will use key

sizes of 192 or 256, but this consumes a lot of processing time, and it is a low speed

algorithm and consumes a lot of power. Key size of 128 bit gives us good security level

and consumes less power than key sizes 192 and 256. We propose improving the AES

algorithm which uses the key size of 128 bit through implementing some enhancements

such as secure hash algorithm, message authentication code. This improves the

37

performance of the algorithm in regards to security. In addition, we propose a parallel

version of the enhanced proposed AES through determining the parallel task size as a

percentage of the original data file. By executing this parallel AES on a multiprocessor

system we achieve good performance in regards to speed up.

6.3 Security Enhancement of sequential AES-128bit

 We want to increase the security of AES by increasing the security of key

and data block as shown in figure 6.2.

6.3.1 Increasing the security of a key

We want to increase the security of a key by using the following parts:

1.Using Time (the time of the current encryption which is taken after the

program is worked).

2.Using secure hash algorithm to generate the key size 256bit to encrypt the data

file.

6.3.1.1 Using Time

 We want to make a combination between the time and the key size for the

following reasons.

 The time Generation depends on the computer clock cycle, so it is very

difficult to predict it.

 The prediction of the combination between time and key size is very

complicated problem.

 The time of the current encryption will send as an encrypted data in the

encrypted data file to the second party.

We encrypted the current encryption time by using the following:

1. We use the SBOX to change the format of the current encryption time.

2. We use the fourth round key of the key size 128bit to generate other 10

round keys to encrypt the current encryption time.

3. After encrypted the data blocks with key size 256 bit according to figure 6.3,

We put the current encryption time after achieving steps 1 & 2 between the

encrypted data blocks, since the data blocks are encrypted by the round key

size 128 bit which generation from secure hash algorithm with key size 256

bit, and the current encryption time is encrypted by the fourth round key size

128 bit of the original key size 128 bit too.

4. The intruder will not have enough information to find the current

encryption time for the following combined reasons:

 The format of the current encryption time is changed.

 The current encryption time is encrypted by the fourth round key of the

key size 128 bit.

38

 The current encryption time is putted in dynamic position between the encrypted

data blocks according to equations 6.3.1.1. So the half of the encrypted current

time is merged with previous encrypted data block, and the second is merged

with the next encrypted data block.

 The data blocks are encrypted by round key size 128 bit which generate from

secure hash algorithm with key size 256 bit, and the current encryption time is

encrypted by the fourth round keys 128 bit of the original one too.

 If the intruder catches the encrypted data file :

 He should solve the equations 6.3.1.1, to determine the dynamic position of

the encrypted current time.

 He should know the original key size 128 bit to generate the fourth round

key size 128 bit to decrypt the encrypted current time file which is not the

suitable key to decrypt the data file, we want the new key size 256bit to

decrypt the data file.

o

 The second party is the only one who knows how to extract the dynamic position

of the current encryption time.

The following is the pseudo code of the current encrypted time module.

 begin

j for columns (between blocks) //change its value every time the program is beginning

 start

1. I for rows //change every getting new time

2. Position = #encrypted data file rows mod I // the position of the

encrypted current time. ------------------------------(Equation 6.3.1.1).

3. Put the encrypted current time in the coordinate (position ,j);

4. Send value = value(the random round key(1-10) size 128 bit of the

original one) mod position// sending value to the second party.

 End

6.3.1.2 Using secure hash algorithm

 After concatenation between the key size 128 bit and the current encryption time

we will use secure hash algorithm to generate the new key size 256 bit. By this key

we encrypted data blocks. We choose the secure hash algorithm for the following

reasons:

1. It enjoys fast operation, since it doesn't need a key.

2. When the input is changed the output is changed directly.

3. It takes any arbitrary input data size and produce fixed data size.

The new generation key size will be 256 bit. We used 10 round keys instead of 14 round

keys to encrypt the data file.

39

6.3.2 Increasing the security of the data blocks

We increase the security of data blocks by using message authentication

algorithm (MAC) by using the new key size 256 bit as a key and data blocks, the size of

each data block to be encrypted is 128 bit as shown in figure 6.3 part b .

Before making encryption we calculate the MAC value for each data block and

store it in the encrypted output file. after making decryption we calculate the MAC

value for each data block. We compare between these values if the value of any data

block is not equal, we close the decrypted file since there is changing or attacking on it.

 Figure 6.2: Sequential Enhanced Proposed AES Operations

40

6.3.3.1 Original Sequential Encryption Algorithm

The following is the pseudo code of the sequential original AES algorithm.

Algorithm Sequential_AES()

 Begin

1. Generate AES 16 bytes random key

2. Create cipher-1(Encrypt.mode, AES key)

3. while(is not last block) do

3.1 Cipher text= Cipher-1(block-data)

4. End while loop

5. Write last block cipher to the output file

6. Write last block size to the output file

END

6.3.3.2 Proposed Enhanced Sequential Encryption Algorithm

 We increase the security of the selected private key of the sequential AES

by combining time and password and using the secure hash algorithm and message

authentication code to guarantee the integrity of data. The following is the pseudo code

of the enhanced sequential AES algorithm.

Algorithm Enhanced_Sequential_AES()

 Begin

1. Generate incremental I for columns // the column of the position of the

encrypted current time

2. Input password, input file, output file

3. Initialize:CipherAES-128,DIGEST_ALG="SHA-256"

MAC_ALG="HmacSHA256"

4. Generate key= password. get Bytes("UTF-16LE") //generate the

 // AES-128 key

5. Generate 8 bytes initial vector IV-1(8 current time)

6. Generate 16 bytes AES key-1 combination from IV-1 and key from password

7. Write IV-1 to output file

8. Create cipher-1(Encrypt. Mode, AES key-1, IV-1)

9. Create Hmac-1(AES key-1, HMAC_ALG)

10. Calculate a HMAC-SHA256 for previous cipher in line 1 and write it to out

file

41

11. While(is not last block) do

 11.1 Cipher text= Cipher-1(block-data).

11.2 MAC-data=Hmac-1(block-data). // make check for every block.

So if one block of data is changed the encrypted file will not decrypt.

12. End while loop

13. Write last block cipher to output file

14. Write last block size to output file

15. Write last block MAC-data to output file

16. Call current-encrypted-time-module //determine the position of the

encrypted current time.

 END

42

6.4 Proposed Parallel Encryption algorithm

We use the proposed enhanced AES as module in our proposed parallel AES

algorithm. We increase performance (speedup) by executing the proposed parallel AES

algorithm in parallel on multiprocessors through reducing serialization by limiting use

of barrier MPI statement which generates synchronization delay more than necessary,

since. By limiting the number of barrier MPI statements there is less blocking

asynchronous send and receive which allows a greater overlapping between

computation and message passing communication. Also removal of the barrier MPI

statement allows parallel processors to return control more quickly to the calling

process. Writing the code for the parallel AES in Java with MPI library leads to

appearance of many issues that must be handled in the MPI and MPJ Express package

methods and other data distributing problems that must be solved.

6.4.1 Collective Communications

 MPI provides a variety of routines for distributing and re-distributing data,

gathering data, performing global sums etc. This class of routines comprises what are

termed as the “collective communication” routines. Although a better term for this class

of routines might be “collective operations”. Figure 6.2 shows what distinguishes

collective communication from point-to-point communication. Collective

communication always involves every process in the specified communicator [61].

Figure 6.2: MPI Collective Communication.

Barrier synchronization: This is the simplest of all the collective operations. It

involves no data at all. MPI.COMM_WORLD.Barrier() blocks the calling process

until all other group members have called it. As an example of using Barrier

synchronization is that in one phase of a computation, all processes participate in

writing a file. The file is to be used as input data for the next phase of the computation.

Therefore no process should proceed to the second phase until all processes have

completed phase one.

43

A broadcast MPI.COMM_WORLD.Bcast has a specified root process and every

process receives one copy of the message from the root. All processes must specify the

same root (and communicator).

 MPI.COMM_WORLD,Gather: Each process sends the contents of its send buffer to

the root process.

 MPI.COMM_WORLD.Scatter : the inverse of Gather.

6.4.2 Scatter a file by MPJ

public void Scatter (java.lang.Object sendbuf, int sendoffset, int sendcount,

Datatype sendtype, java.lang.Object recvbuf, int recvoffset,

int recvcount, Datatype recvtype, int root)

throws MPIException.

6.4.3 The Parallel Encryption Algorithm

 The following is the pseudo code of the proposed enhanced parallel encryption

AES algorithm which uses the enhanced sequential AES as a called module.

Algorithm Parallel_AES_Encrypt_Algorithm(Input password, input file, output file)

 Begin

1. myRank=MPI.Rank() //determine the rank of the process

2. size= MPI.Size()// total number of processes

3. call Prepare_Data_File(inFile)

4. call Enhanced_Sequential_AES_Encrypt() return result to encrypt byte

array

5. allocate byte array alldata[encrupt_size*size]//dealing with bytes

6. MPI.Gather(encrypt[],alldata[],root)//gathering data from all other

7. processes and return back to the root process

8. If(my Rank==root)

 8.1 Write all data[] to output file

9. End if

 END

../../../../mpj-v0_36/doc/javadocs/mpi/Datatype.html
../../../../mpj-v0_36/doc/javadocs/mpi/Datatype.html
../../../../mpj-v0_36/doc/javadocs/mpi/MPIException.html

44

The following is the pseudo code of the parallel data file preparation subroutine.

Subroutine Prepare_Data_File (Input: input file in File, Output: output file

out File)

 Begin

1. If(my Rank==root)

1.1 Calculate size of in File

1.2 Calculate work int. work=size/#processors

1.3 Calculate remainder r=size mod #processores

1.4 Store work and r in array worksize[]

2. End if

3. MPI.Bcast(worksize[],root)

4. Allocate myjob[work]

5. If(r!=0 and myRank=#p-1)

 5.1 Allocate myjob[work+r]

6. End if

7. MPI.Barrier

8. Scatter(inFile,work,root)

9. MPI.Barrier

10. If(myRank==root and r!=0)

10.1 MPI.ISend(inFile, last r bytes,#p-1)

11. End if

12. If(myRank==#p-1 and r!=0)

 12.1 MPI.IRecv(myjob, last r location ,root)

13. End if

END

45

The following is the pseudo code of the proposed enhanced parallel decryption

AES subroutine.

Subroutine Parallel_AES_Decryption(Input password, input file, output file)

Begin

1. myRank=MPI.Rank()

2. size= MPI.Size() // return the number of processes

3. call prepareFile(inFile)

4. call Deccrypt()// return result to decrypt byte array

5. allocate alldata[worksize[0]*#p-1+worsize[1]]

6. Gather(decrypt,worksize[0],root)

7. If(myRank==#p-1 and worksize[0]!=worksize[1])

7.1 Diff=worksize[1]-worksize[0]

7.2 MPI.ISend(decrypt, last diff bytes, to root)

8. End if

9. If(myRank==root and worksize[0]!=worksize[1])

9.1 Diff=worksize[1]-worksize[0]

9.2 MPI.IRecv(alldata, in last diff location, from last p)

10. End if

11. Write alldata[] to output file

END

46

The following is the pseudo code of the proposed enhanced parallel decryption

AES subroutine.

Subroutine Parallel_AES_Decrypt()

Begin

1. Allocate worksize[2]

2. Call SequentialDecrypt() return result to decrypt byte array.

3. If(myRank!=#p-1)

3.1Worksize[0]=decrypt.length.

3.1 If(myRank==0)

3.2.1MPI.ISend(worksize[0], to #p-1)

3.2 End if

4. End if

5. If(myRank==#p-1)

5.1 MPI.IRecv(worksize[0], from root)

5.2 Worksize[1]=decrypt.length

6. End if

7. MPI.Bcast(worksize[1],from #p-1)

END

Note that in the decryption process we used Prepare_File() procedure mentioned

in the encryption method to make our system more friendly and more productive

because in future work we will add a subsystem for searching the data files. When a

process finds a target data file it begins as the root process machine. So it is not a good

idea to make the root process fixed (e.g., the process with the maximum rank). In our

solution this approach makes the parallel system more transparent and scalable.

6.5 Tests and results-Multiprocessor Systems

In the following measurement experiments we want to find the suitable parallel

task size that achieves our goals of good load balance among parallel processors, small

communication overhead, small parallel time, and best speedup and performance.

The results in this section are only applicable to the AES encryption algorithm

test case. These results are application dependent. They may change as different

applications as used to test our novel techniques. Hence, the optimal task ratio that has

been measured (15-25%) may be different for different applications.

47

 We test our proposed parallel AES using the following multiprocessor systems:

6.6 Experiments

The relation between parallel task size different performance metrics(speedup,

parallel run time, efficiency, and overhead communication) for different number of

processors(2, 4 and 8) is shown in the following experiments.

Experiment 1: Relation between parallel task size and parallel run time for

different data file sizes (25MB, 84MB and 144MB) and different number of processors

(2, 4, and 8).

Figure 6.3 shows the effect of varying parallel task size on the parallel run time

for different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor

system.

Figure 6.3 (a) shows the effect of varying parallel task size on the parallel run

time for data file size of 25MB. Figure 6.3 (b) shows the effect of varying parallel task

size on the parallel run time for data file size of 84MB. And Figure 6.3 (c) shows the

effect of varying parallel task size on the parallel run time for data file size of 144MB.

As shown in figure. 6.3 the parallel task size between 15% and 25% of the total

data file size gives the best performance (parallel run time). So, if the parallel task size

is small we get good load balancing but the number of merging is increased. This leads

to higher task management, more contention and more inter communication. So if the

parallel task size is too small the number of merging increases and the communication

increase, so the processors will consume their power in merging more than in

processing the task size and hence, the run time will increase. If the task size is big, then

this leads to load imbalance and some of processors will be idle and the parallel time

will increase.

Processor Pentium 4 Clock Speed :2.8GHZ Ram:1GB Cache:256 KB

Processor Core2dueo Clock Speed :2 GHZ Ram:1.96GB Cache:256 KB

Processor Core2Quad Clock Speed :2.4GHZ Ram:2GB Cache:512 KB

Processor Core I8 Clock Speed :2 GHZ Ram:1GB Cache:256 KB

48

 (a) (b)

 (c)

Figure 6.3: Parallel run time of the proposed parallel AES (128 bit key) with 2,4

and 8 processor. (a) data file size of 25MB. (b) data file size of 84MB.

 (c) data file size of 144MB.

49

Experiment 2: Relation between parallel task size and speed up for different

data file sizes (25MB, 84MB and 144MB) and different number of processors (2, 4,

and 8).

Figure 6.4 shows the effect of varying parallel task size on the speedup for

different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor

system.

Figure 6.4 (a) shows the effect of varying parallel task size on the speedup for

data file size of 25MB. Figure 6.4 (b) shows the effect of varying parallel task size on

the speedup for data file size of 84MB. And Figure 6.4 (c) shows the effect of varying

parallel task size on the speedup for data file size of 144MB.

As shown in figure. 6.4 the parallel task size between 15% and 25% of the total

data file size gives the best performance (speedup). So, the optimal task size gives us

good load balance with little communication and high data locality and high speed up.

50

 (a) (b)

 (c)

Figure 6.4: Speedup of the proposed parallel AES (128 bit key) with 2,4 and 8

processor. (a) data file size of 25MB. (b) data file size of 84MB.

 (c) data file size of 144MB.

51

Experiment 3: Relation between parallel task size and communication overhead

for different data file sizes (25MB, 84MB and 144MB) and different number of

processors (2, 4, and 8)

Figure 6.5 shows the effect of varying parallel task size on the communication

overhead for different data file sizes for number of processors of 2, 4, and 8 in the

multiprocessor system.

Figure 6.5 (a) shows the effect of varying parallel task size on the

communication overhead for data file size of 25MB. Figure 6.5 (b) shows the effect of

varying parallel task size on the communication overhead for data file size of 84MB.

And Figure 6.5 (c) shows the effect of varying parallel task size on the communication

overhead for data file size of 144MB.

As shown in figure. 6.5 as we increase the parallel task size the communication

overhead starts large then it decreases as we increase parallel task size, then it increases

again. The parallel task size between 15% and 25% of the total data file size gives the

best performance (communication overhead). So, the optimal task size gives us good

load balance with little communication and high data locality and small communication

overhead. So, when the parallel task is too small there is more contention, more

intercommunication and the processors consume more power in merging than in

processing the tasks. When the parallel task size becomes bigger, we get good task size

which gives us good load balancing with little communication and high data locality

and lower overhead communication. When parallel task size becomes more bigger, the

execution of the algorithm becomes more sequential and concurrency decrease.

52

 (a) (b)

 (c)

Figure 6.5: Communication overhead of the proposed parallel AES (128 bit key)

with 2, 4 and 8 processor. (a) data file size of 25MB. (b) data file size of 84MB.

 (c) data file size of 144MB.

53

Experiment 4: Relation between parallel task size and efficiency for different

data file sizes (25MB, 84MB and 144MB) and different number of processors (2, 4,

and 8).

Figure 6.6 shows the effect of varying parallel task size on the efficiency for

different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor

system.

Figure 6.6 (a) shows the effect of varying parallel task size on the efficiency for

data file size of 25MB. Figure 6.6 (b) shows the effect of varying parallel task size on

the efficiency for data file size of 84MB. And Figure 6.6 (c) shows the effect of varying

parallel task size on the efficiency for data file size of 144MB.

As shown in figure. 6.6 the parallel task size between 15% and 25% of the total

data file size gives the best performance (efficiency). So, if the parallel task size is

small we get good load balancing but the number of merging is increased. This leads to

higher task management, more contention and more inter communication. So if the

parallel task size is too small the number of merging increases and the communication

increase, so the processors will consume their power in merging more than in

processing the task size and hence, the run time will increase. If the task size is big,

then this leads to lead to load imbalance and some of processors will be idle and the

parallel time will increase.

54

 (a) (b)

 (c)

Figure 6.6: Efficiency of the proposed parallel AES (128 bit key) with 2, 4 and 8

processor. (a) data file size of 25MB. (b) data file size of 84MB.

 (c) data file size of 144MB.

 [

55

 Experiment 5: Relation between parallel task size and speed up for different

data file sizes (25MB, 84MB and 144MB) and different number of processors (2, 4,

and 8).

Figure 6.7 shows the effect of varying parallel task size on the speedup for

different data file sizes for number of processors of 2, 4, and 8 in the multiprocessor

system.

Figure 6.7 (a) shows the effect of varying parallel task size on the speedup for 2

processors. Figure 6.7 (b) shows the effect of varying parallel task size on the speedup

for 4 processors. And Figure 6.7 (c) shows the effect of varying parallel task size on the

speedup for 8 processors.

 As shown in figure. 6.7 the parallel task size between 15% and 25% of the total

data file size gives the best performance (speedup). So, the optimal task size gives us

good load balance with little communication and high data locality and high speed up.

56

 (a) (b)

 (c)

Figure 6.7: Speedup of the proposed parallel AES (128 bit key) with 2,4 and 8

processor. (a) 2 processors. (b) 4 processors. (c) 8 processors.

57

6.7 Summary of Experimental Results

The goal of our experimental analysis of the proposed parallel AES algorithm is

to find the parallel task size that gives the optimal performance by achieving the

following:

 Load balance (all processors are as busy as possible).

 Small communication overhead between processors.

 So, if the task size is small we get good load balancing among the processors

but the number of merging is increased, higher task management is obtained, and more

contention and more inter processor communication is generated. So if the task size is

too small the number of merging will be increased and the communication is increased,

so the processors will consume their power in merging than in processing the task size

and the parallel run time will increase. If the task size is big, then this leads to load

imbalance and some of processors will be idle and the parallel time will increase.

To get good performance in parallel computing we should reduce serialization by

the following approaches:

a. Limiting the use of barrier: Excessive serialization is the use of synchronization

more than necessary.

b. Mutual exclusion: We reduce serialization by using separate locks for separate

data items.

 As shown in the results of the developed experiments we can determine the

suitable parallel task size to be between 15% and 25% of the total data file size. This

optimal parallel task size gives us the best performance with low parallel run time and

low power consumption.

58

Chapter 7

Conclusion and Future work

In this chapter, section 7.1 provides the conclusion of the thesis, whilst the

suggested future work is proposed in section 7.2.

7.1 Conclusion

Advanced Encryption Standard (AES) consists of three block ciphers. They are:

AES-128, AES-192, and AES-256. Each of the above standard ciphers is 128-bit block

size with key sizes of 128, and 192 & 256 bits respectively. For top security AES uses

key sizes of 192 or 256, but this takes high processing, low speed and take more power

consumption. Key size of 128 bit gives us security level and takes less power

consumption than key sizes of 192 and 256. So by improving AES with key size of 128

bit by using secure hash algorithm, and message authentication code and determining

the parallel task size as a percentage of the original data file by using parallel computing

we can achieve good performance in speed with acceptable security.

 Experimental results of the proposed algorithms demonstrate the efficiency of

the proposed AES-128. We increased the security of the selected private key by

combining time and password and using the secure hash and message authentication

code algorithms to guarantee the integrity of data. We get good performance in parallel

computing by reducing serialization through Limiting use of barrier MPI statements

which produce more synchronization delay than necessary. Minimizing the use of

barrier MPI statement reduces the blocking asynchronous send and receive and allows

the greatest overlap between computation and message passing. It also does so by

returning control most quickly to the calling process.

Our Proposed AES-128 parallel algorithm enjoys high video file resolution and

quality of encryption. In fact, all experiments show that the system keeps the high video

file resolution and the quality of the data file. We recommend our system for encryption

and decryption of large video files because experiments show excellent speedup and

guarantee quality.

It’s clear from the measurement results and visual inspection that the optimal

parallel task size ranges from 15% to 25% of the data file size. This optimal parallel

task size gives the best performance with low parallel run time and low power

consumption.

59

7.2 Future Work

The work of the thesis may be extended by the following enhancements:

 Using more key size than 128 bit to increase the security

Encryption with AES is based on a secret key with 128, 192 or 256 bits. But if

the key is easy to guess it doesn’t matter if AES is secure, so it is as critically vital to

use good and strong keys as it is to apply AES properly. Creating good and strong keys

is a surprisingly difficult problem and requires careful design when done with a

computer. Keys derived into a fixed length suitable for the encryption algorithm from

passwords or pass phrases typed by a human will seldom correspond to 128 bits much

less 256 bits.

 Using hybrid algorithm of Advanced Encryption Standard and Elliptic

Curve Cryptosystems

The evolution of encryption of encryptions in the field of cryptography may

provide better security than single encryption routine. So, by making a combination

between the stronger public and private key algorithms we avoid the weakness of

each of them. The most important requirement for a new cryptographic algorithm is

scalability.

 Using Cluster Configuration

The cluster configuration is meant for users who plan to execute their parallel

Java applications on distributed memory platforms including clusters or network of

computers. Application developers can opt to use either of the two communication

devices in the cluster configuration: the communication devices including Java New I/O

(NIO) device or Myrinet device as follows:

1. Java New I/O (NIO) device driver known as niodev

2. Myrinet device driver known as mxdev

The Java NIO device driver (also known as niodev) can be used to execute MPJ

Express programs on clusters or network of computers. The niodev device driver uses

Ethernet-based interconnect for message passing.

 Dynamic root depends on data locality

MPJ express gives developers high scalability by converting traditional Ethernet

network to cluster, of course there are limitation on load balancing, so in future work we

hope to build a subsystem to determine the distributing of data over network to decide

the rank of root according the locality of data.

60

References

[1] A. Menezes, P. van Oorschotand, and S. Vanstone, “Handbook of Applied

Cryptography,”CRC Press, pp. 4 4- 15, 516, 1996.

[2] H. Delfs, and H. Kneble, “Introduction to Cryptography Principles and

Applications”, Springer, 2007.

[3] W. Stallings, “Cryptography and network security Principles and Practices”, 4
th

Ed, Prentice-Hall, 2003.

[4] National Bureau of Standards, “Data Encryption Standard”, Federal Information

Processing Standard (FIPS), Publication 46, National Bureau of standards, U.S.

Department of commerce ,1997.

[5] M, Robshaw, “Stream Cipher”, RSA Laboratories, Technical Report TR-

701,Version 2.0, July 1995.

[6] J. D. Golic, “Cryptanalysis of alleged A5 stream cipher,” in Advances in

Cryptology-EUROCRYPT97, New York, Springer-Verlag, vol. LNCS 1233, PP

239-255,1997.

[7] M. Sharbaf, “Quantum Cryptography: A New Generation of Information

Technology Security System“, in Proc. The 6
th
 international Conf. of information

Technology: New Generations, Las Vegas, Nevada, pp. 1644-1648,2009.

[8] http://electronicsbus.com/tutorials/search/AES+Encryption+Algorithm.

[9] J. Buchmann, ”An Introduction to Cryptography”, 2
nd

 edition ,Springer, 2000.

[10] J. Daemon, and V. Rijmen, “Rijndael: The Advanced Encryption Standard.” ,

Dr. Dobb’s Journal, 26, 3, March 2001, 137-139.

[11]http://electronicsbus.com/tutorials/transient-key-cryptography-digital-

signature.

[12] W. Diffie, and M. Hellman, “Multiuser Cryptographic Techniques”,

proceedings of AFIPS National Computer Conference, 1976, 109-112 .

[13] J. Daemon, and V. Rijmen, “The Rijndael Block Cipher: AES Proposal”, NIST,

Version 2, March 1999.

[14] http://electronicsbus.com/tutorials/asymmetric-encryption-algorithms.

[15] B. Schneier, “Applied Cryptgraphy.”, New York: Wiley, 1996.

[16] National Policy on the Use of the Advanced Encryption Standard (AES) to Protect

National Security Systems and National Security Information, CNSS Policy No. 1,

Fact Sheet No. 1, June 2003, www.nstissc.gov/Assets/pdf/fact%20sheet.pdf

http://electronicsbus.com/tutorials/search/AES+Encryption+Algorithm
http://electronicsbus.com/tutorials/transient-key-cryptography-digital-signature
http://electronicsbus.com/tutorials/transient-key-cryptography-digital-signature
http://electronicsbus.com/tutorials/asymmetric-encryption-algorithms.
http://www.nstissc.gov/Assets/pdf/fact%20sheet.pdf

61

[17] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels

Ferguson. In Proc. 2nd AES candidate conference, pp 15–34,NIST, 1999,

www.macfergus.com/pub/icrijndael.html .

[18] W. Stallings, “Cryptography and Network Security: Principles and Practices.”

Third Edition, Pearson Education, Inc. 2003.

[19] V. Rijmen, “The block cipher Rijndael”,http://www.esat.kuleuven.ac.be/~rijmen/

 rijndael/, (2001).

[20] M. Flynn, “Some Computer Organizations and their effectiveness.”, IEEE

Transactions on Computer, C-21, 9, 948-960, 1972

[21] National Institute of Standards and Technology: Data Encryption Standard

(DES).http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf, (2001).

[22] http://electronicsbus.com/tutorials/symmetric-key-encryption-algorithms.

[23] http://electronicsbus.com/tutorials/search/Generating+Digital+Signature/feed/rss2/ .

[24] http://electronicsbus.com/tutorials/public-key-cryptographic-system/.

[25] NIST (National Institute of Standards and Technology) Special Publication 800-

57(May2006)http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-

Part1.pdf .

[26] http://www.ecrypt.eu.org/documents/D.SPA.21-1.1.pdf .

[27] http://electronicsbus.com/tutorials/message-authentication-codes-mac-cryptography-

data-security/.

[28] D. Coppersmith, “The Data Encryption Standard (DES) and Its Strength

Against Attacks.”, IBM Journal of Research and Development, May 1994.

[29] A Performance Comparison of the Five AES Finalists, 7 April 2000.

[30] A Thesis Presented in “Partial Fulfillment of the Requirements for the Degree

Master of Science in Computer Science”, INDEPENDENT UNIVERSITY,

BANGLADESH May 27, 2004.

[31] E. Biham, ”Design Tradeoffs of the AES Candidates,” invited talk presented at

ASIACRYPT’98, Beijing, 1998.

[32] About AES – “Advanced Encryption Standard A short introduction 2007-08-

24”, Copyright 2007, Svante Seleborg Axantum Software AB.

[33] P. Preneel, V. Rijmen, and A. Bosselaers, “Principle and Performance of

Cryptographic Algorithms”, Dr. Dobb’s Journal, v.23, n. 12, 1998, pp. 126-131.

[34] M. Petkac and L. Badger, “ Security Agility in Response to Intrusion Detection

” Proceedings of the 16th Annual Computer Security Applications Conference

(ACSAC) , New Orleans, LA, 2000, pp. 11–20.

http://www.macfergus.com/pub/icrijndael.html
http://electronicsbus.com/tutorials/symmetric-key-encryption-algorithms
http://electronicsbus.com/tutorials/search/Generating+Digital+Signature/feed/rss2/
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
http://www.ecrypt.eu.org/documents/D.SPA.21-1.1.pdf
http://electronicsbus.com/tutorials/message-authentication-codes-mac-cryptography-data-security/
http://electronicsbus.com/tutorials/message-authentication-codes-mac-cryptography-data-security/

62

[35] Bl ِ mer J. & Krummel, V, "Fault Based Collision Attacks on AES," FDTC

2006, pp. 106-120.

[36] http://www.cryptographyworld.com .

[37] M. Abe, R. Gennaro, and K. Kurosawa, Tag-KEM/DEM: “A new framework for

hybrid encryption”. J. Cryptol.21(1), 97–130 (2008).

[38] R. Cramer, and V. Shoup, Design and analysis of practical public-key

encryption schemes secure against adaptive chosen ciphertext attack, SIAM J.

Comput. 33, 167–226 (2003)

[39] D. Hofheinz, and E. Kiltz, “Secure hybrid encryption from weakened key

encapsulation”, in CRYPTO 2007, Springer LNCS, vol. 4622 (Springer, Berlin,

2007), pp. 553–571.

[40] K. Kurosawa, and Y. Desmedt, “A New Paradigm of Hybrid Encryption

Scheme”, in CRYPTO’04. Springer LNCS, vol. 3152 (Springer, Berlin, 2004),

pp. 426–442.

[41] http://www.tech-faq.com/.

[42] http://en.wikipedia.org/wiki/Security/AES.

[43] http://en.wikipedia.org/wiki/Security/Round Keys.

[44] L. Knudsen, and W. Meier, “Correlations in RC6”, Fast Software Encryption, 7
th

International Workshop, Springer-Verlag, 2008.

[45] Writing Message Passing Parallel Programs with MPI: A Two Day Course

on MPI Usage, Neil MacDonald, Elspeth Minty, Joel Malard, Tim Harding,

Simon Brown, Mario Antonioletti.

[46] "Introduction to Parallel Computing". Ananth Grama, Anshul Gupta,

GeorgeKarypis,VipinKumar.http://www-users.cs.umn.edu/~karypis/parbook/ .

[47] C. Bell, “Ultracomputer: A teraflop before its time”, Communication of the

ACM, 35, 8, 27-47, 1992.

[48] M. A tighetchi , P. Pal , F. Webber , R. Schantz , C. Jones , and J. Loyall , “

Adaptive Cyber Defense for Survival and Intrusion Tolerance , ” Internet

Computing, IEEE , 8 : 25 – 33 , 2004 .

[49] I.Foster,"Designing and Building Parallel Programs",http://www-

unix.mcs.anl.gov/dbpp/ .

[50] M. Flynn, “Some Computer Organizations and their effectiveness”, IEEE

Transactions on Computer, C-21, 9, 948-960, 1972.

[51] J. van der Steen, and J. Dongarra, “Overview of Recent Supercomputers",

www.phys.uu.nl/~steen/web03/overview.html.

http://www.cryptographyworld.com/
http://www.tech-faq.com/
http://en.wikipedia.org/wiki/Security/AES
http://en.wikipedia.org/wiki/Security/Round
http://www-users.cs.umn.edu/~karypis/parbook/
http://www-unix.mcs.anl.gov/dbpp/
http://www-unix.mcs.anl.gov/dbpp/
http://www.phys.uu.nl/~steen/web03/overview.html

63

[52] M. Abbadi, “A new message authentication technique using zigzag

manipulation and block chaining”, Applied Sci., 8: 3863-3870, 2008.

[53] http://electronicsbus.com/tutorials/public-key-cryptographic-system/.

[54] Wu, K; Karri, R.; Kuznetsov, G. & Goessel, M., "Low Cost Concurrent Error

Detection for the Advanced Encryption Standard", International Test

Conference, 2004. pp 1242- 1248.

[55] Ananth Grama, Anshul Gupta, GeorgeKarypis, and VipinKumar, "Introduction

to Parallel Computing"http://www-users.cs.umn.edu/~karypis/parbook/ .

[56] http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ .

[57] http://www.truecrypt.org.

[58] http://www.crypto.com/papers/keylength.pdf.

[59] http://mpj-express.org/ .

[60] http://www.tech-faq.com/ .

[61] Di Natale,G.; Flottes M.L. & Rouzeyre, B., "An On-Line Fault Detection

Scheme for SBoxes in Secure Circuits", Proc. of 13th IEEE International On-

Line Testing Symposium, IOLTS 2007, pp. 57-62.

[62] http://www.javamex.com/tutorials/cryptography/ciphers.shtml.

[63] A. K. Lenstra, and E. R. Verheul, “Selecting Cryptographic Key Sizes”, Journal

of Cryptology 14(4):255-293, 2001.

[64] N. Ferguson, and B. Schneier, “Practical Cryptography”, Wiley, 2003.

[65] NIST, Recommendation for Key Management: Part 1, NIST. 2006.

[66] L. Chi-Feng, K. Yan-Shun, C. Hsia-Ling, and Y. Chung-Huang, „Fast

implementation of AES cryptographic algorithms in smart cards‟, IEEE 37
th

Annual 2003 International Carnahan Conference On Security Technology, pp.

573 – 579, 2003.

[67] M. Liberatori, F. Otero, J. Bonadero, and J. Castineira, 2007, „AES-128 Cipher.

High Speed, Low Cost FPGA Implementation‟, 3
rd

 Southern Conference on

Programmable Logic, pp. 195 – 198.

http://www-users.cs.umn.edu/~karypis/parbook/
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
http://www.truecrypt.org/
http://mpj-express.org/
http://www.tech-faq.com/
http://www.win.tue.nl/~klenstra/key.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf

