
 أ

Islamic University of Gaza

Faculty of Engineering
Computer Engineering Department

Hacker Location Detection System (HLDS)

For IPv6 Routers

Eng. Tayseer J. El Khateeb

Thesis submitted in partial ful llme nt of the
requirements for the degree of Master of Science in

Computer Engineering Program

Thesis Supervisor
Prof. Mohammad Mikki

Gaza, Palestine
(October, 2012)

 ب

THIS PAGE INTENTIONALLY LEFT BLANK

 ت

Abstract
The Enhanced IPv6-next generation routers and IPv6-network architectures are two of the

most important aspects of the Internet today. The users’ demand of new and more complex

services, as well as significant constraints imposed by current technologies, make the

design of IPv6 next-generation routers hard and challenging. IPv6 next-generation router

architectures are expected to provide capabilities, such as availability, reliability, modularity

and performance scalability, as well as the support of antivirus, anti spam, and antispyware,

which spans from energy-efficiency requirements to advanced levels of flexibility and

programmability.

In this thesis we address the problem of network monitoring and automatic detection of

vulnerabilities, weaknesses, and shortcomings of IPv4-based networks. Our main objective is

to generate Software Router Plug-ins (SRPs) that will be deployed as advanced and flexible

tools to IPv6 next generation routers to increase the network security. SRPs are one of the most

intelligent anti-malware technique that we will be used in IPv6 routers. We propose an original

methodology called Hacker Location Detection System (HLDS). HLDS is capable of both

detection of hackers and identification of their location based on their IP address, MAC

address, and geographic location. HLDS is a Software Router Plug-in (SRP) that will be used

in IPv6 routers to provide Internet security. Since hackers are able to change IP and MAC

addresses of their computers and NIC respectively, our proposed system does not depend only

on IP or MAC addresses but also on location of hackers. Hence, even if hackers change these

IP and/or MAC addresses our proposed system is capable of tracing these hackers.

We validate the proposed HLDS by developing experiments to measure its performance. We

used some performance metrics to measure the performance of HLDS which include

accuracy, False positive rate, and False negative rate. We also compare the performance

results of HLDS with performance of similar tools in the literature, namely Hierarchical

SOM, IDS using SVM, and Adaboost with Decision tree. Performance results show that

HLDS has a better accuracy, less false positive rate, and less false negative rate than these

programs.

 ث

THIS PAGE INTENTIONALLY LEFT BLANK

 ج

Acknowledgements
This Master’s thesis has been done for Islamic University of Gaza, and for the engineering

faculty in the computer engineering department.

I want to thank professor Dr. Eng. Mohammad Mikki my supervisor, for the opportunity to

work in this thesis. His knowledge about the field provided me with plenty of information.

My thankfulness also goes to my mother and the spirit of my father.

I would also like to thank my wife who encouraged me strongly to complete this thesis and

study in spite of the great burdens that I went through.

I want to thank my brothers for their support and patience during my studies and thesis.

I also want to thank my sisters for their support during my studies and thesis. Their

appreciation towards the education has pushed me forward in my studies.

Finally, I would like to thank my children whom I am preoccupied with and for their time in

the summer holidays.

 ح

Table of Contents

List of Figure VII
List of Table VIII
List of Acronyms IX

1 Introduction 1
1.1 IPv6 next-generation router 2
1.2 Thesis Objectives and Motivation 3
1.3 Thesis Questions 3
1.4 Thesis Contribution 3
1.5 Thesis Structure 5

2 IPv6 Background 6
2.1 IPv6 Overview 7
2.2 Huge address space 8
2.3 IPv6 Packet Format 13
2.4 IPv6 Configuration 20
2.5 ICMPv6 23

3 Computer Network Attacks and Related Work 25
3.1 Consistent Threats 26
3.2 New Threats 30
3.3 Comparing IPv6 and IPv4 Security 37

4 NIDSs, NIPSs and Scapy 41
4.1 Network Intrusion Detection Systems (NIDSs) 42
4.2 Network Intrusion Prevention Systems (NIPSs) 51
4.3 Scapy 57

5 Hacker Location Detection System (HLDS) Methodology 61
5.1 Introduction 62
5.2 Hacker Location Detection System (HLDS) Software Router Plug-in (SRP) 63
5.3 HLDS Test bed Development 70

6 Hacker Location Detection System (HLDS) Validation 77
6.1 Introduction 78
6.2 HLDS Results of First Test Bed 79
6.3 HLDS Results of Second Test Bed 82
6.4 HLDS Results of Rest of Test Beds 89
6.5 Performance Comparison between HLDS and Other Similar Tools 92

7 Conclusion and Future work 95

References 98

 خ

List of Figures

Figure 2.1: IPv6 header format. 7

Figure 2.2: IPv4 Header format. 7

Figure 2.3: Example of global unicast IPv6 address 11

Figure 2.4: Example of link local IPv6 address 11

Figure 2.5 The Next Header field 18

Figure 2.6: General ICMPv6 packet 23

Figure 3.1: A spoofing attack during logon 27

Figure3.2: Man In The meddle attack 30

Figure 3.3: Attacks on IPv6 related to the auto-configuration process. From [23] 34

Figure 4.1: The working process of Automatic Intrusion Detection System [71] 43

Figure 4.2: NIDS evaluation for particular network infrastructure.[72] 44

Figure 5.1: location of a particularly persistent hacker 65

Figure 5.2: Identifying the top ISPs used by hackers around the world 66

Figure 5.3 HLDS block diagram 68

Figure 5.4: HLDS flowchart 70

Figure 5.5: First test bed topology of HLDS 73

Figure 5.6: Gaza router configuration. 74

Figure 5.7: Lamaca router configuration. 75

Figure 5.8: London router configuration 76

Figure 5.9: Test bed topology of Figure 5.5 after being configured 65

Figure 6.1: ping from Gaza node to London node of the test bed of Figure 5.5 66

Figure 6.2: Second test bed topology of HLDS 82

Figure 6.3: Tokyo router configuration 84

Figure 6.4: Istanbul router configuration 85

Figure 6.5: Paris router configuration 86

Figure 6.6: Test bed topology of Figure 6.2 after being configured 86

Figure 6.7: Ping from Tokyo node to Paris node of the test bed of Figure 6.2 87

Figure 6.8: Detection Rate (DR) for HLDS, Hierarchical SOM, IDS using SVM, and

Adaboost with Decision tree 94

Figure 6.9: False Positive Rate (FPR) for HLDS, Hierarchical SOM, IDS using SVM, and

Adaboost with Decision tree 94

 د

List of Table

Table 2.1: IPv6 address space ranges 10

Table 2.2: The specific fields of the IPv6 protocol header 13

Table 2.3: The 128 bits of a link-local address for an Ethernet interface breakdown 15

Table 2.4: The format of a global multicast address in IPv6 16

Table 2.5: Some of the more common multicast groups 17

Table 2.6: The link local multicast address format 17

Table 2.7: IPv6 Extension Header Stub format 19

Table 2.8: Header options in IPv6 19

Table 3.1: IPv4 attacks that remain mostly unchanged when converted to IPv6 30

Table 3.2: Attacks with special consideration when converted to IPv6 37

Table 3.3: Main deference's between IPv4 and IPv6 40

Table 4.1: Summary of the anomaly detection techniques 47

Table 6.1: NLDS performance results of 1st 20 test bed topologies 90

Table 6.2: Performance comparison between HLDS and other similar tools 93

 ذ

List of Acronyms
ABSs Anomaly-Based Systems

ACL Access Control List

AIS Artificial Immune System

ANN Artificial Neural Network

CIFS Common Internet File System

CSRF Cross-Site Request Forgery

CGA Cryptographically Generated Addresses

DAD Duplicate Address Detection

DHCPv6 Dynamic Host Configuration Protocol version 6

DNS Domain Name System

DoS Denial of Service

DPI Deep Packet Inspection

ETH Ethernet

EUI Extended Unique Identifier

FSM Finite State Machine

GIS Geographic information system

GPS Global Positioning System

GRNN General Regression Neural Network

HLDS Hacker Location Detection System

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

ICMPv6 Internet Control Message Protocol Version 6

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IPsec Internet Protocol Security

IPv6 Internet Protocol Version 6

LAN Local Area Network

MAC Media Access Control

MLP Multilayer Perceptron

MTU Maximum Transmission Unit

NAS Network Attached Storage

 ر

NAT Network Address Translator

NIDS Network Intrusion Detection System

NIPS Network Intrusion Prevention System

NSAP Network Service Access Point

NVRAM Non-Volatile Random-Access Memory

OCSVM One-Class Support Vector Machine

OSPF Open Shortest Path First

OUI Organizationally Unique Identifier

PNN Probabilistic Neural Network

QoS Quality of Service

RAM Random-Access Memory

RFC Request for Comments

RH0 Routing Header Type 0

RIR Regional Internet Registry

SBSs Signature-Based Systems

SeND Secure Neighbor Discovery Protocol

SIP Session Initiation Protocol

SIEM Security Information and Event Management

SNMP Simple Network Management Protocol

SMO Support Vector Machines

SLAAC Stateless Address Autoconfiguration

SRP Software Router Plug-in

SSL Secure Socket Layer

SVM Support Vector Machines

TCM Transductive Confidence Machine

TCP Transmission Control Protocol

TLS Transport Layer Security

USB Universal Serial Bus

VLAN Virtual Local Area Network

VPN Virtual Private Network

WAN Wide Area Network

XSS cross Site Scripting

1

Chapter One
Introduction

2

1.1 IPv6 Next-Generation Routers

The Enhanced IPv6-next generation routers and IPv6-network architectures are two of the

most important aspects of the Internet today. The users’ demands of new and more complex

services, as well as significant constraints imposed by current technologies, make the

design of IPv6 next-generation routers hard and challenging. IPv6 next-generation router

architectures are expected to provide capabilities, such as availability, reliability, modularity

and performance scalability, as well as the support of antivirus, anti spam, and antispyware,

which spans from energy-efficiency requirements to advanced levels of flexibility and

programmability. These features are heavily required to lead network equipment design and

to support the evolution of the IPv6 next-generation Internet, where value-added services will

work through specific applicative overlays on the top of the IP layer. Thus, future

network nodes are supposed to flexibly include multi-layer functionalities at both control

and data planes, by allowing to map and to effectively interface them towards the network

layer capabilities (e.g., QoS, reliability, multicast, etc.). In such a scenario, router architectures

based on general purpose hardware and open source software (e.g., Linux and FreeBSD)

recently regained a remarkable consideration from the industrial and academic communities

[1].

Internet Protocol version 6 (IPv6) [2] will replace Internet Protocol version 4 (IPv4) [3] as the

protocol backbone of our packet-switched networks, devices, and eventually the Internet. In

fact, with the last IPv4 /8 address blocks being issued in early February 2011 and the 8 June

2011 world IPv6 day, the start-again stop-again conversion to IPv6 is rapidly approaching [4].

This movement towards IPv6 brings to light the need for knowledge of IPv6 infrastructure and

how to secure it (e.g., Network Intrusion Detection, Firewalls, Access Control Lists). To date,

these remain mostly little explored domains. Industry (e.g., Google, Akamai, Yahoo,

Ericsson, and Cisco) has made the move towards IPv6 with events like World IPv6 day, and

now it is time for everyone else to get on board. This includes the federal government and

Department of Defense in USA infrastructure, which must be prepared for IPv6 in order to

prevent having to catch up on the trend.

Computer networks are also required to support security techniques such as cryptographic

techniques, authentication, SSL, etc. Business-critical applications such as SAP, Voice over

IP, and video conferencing depend heavily on the quality of network connections. It is vital to

monitor network connections, detect vulnerabilities, virus packets, spyware packets, and spam

packets early and proactively and inform the parties involved. Current security in computer

3

networks is not acceptable due to software/hardware vulnerabilities, spyware, malware,

viruses, hacking, intrusion, etc. In addition, IPv4 routers have numerous technical problems.

The IPv4 address space is limited to 4 billion IP addresses which have been already consumed.

We run out of IP addresses unless we move to using Ipv6 routers. In practice, the only option

for building large new networks is to use IPv6 routers.

1.2 Thesis Objectives and Motivation

The main goal of this master thesis is to develop IPv6 plug-ins that enhance network security

and detect vulnerabilities, virus packets, spyware packets, spam packets in computer networks.

The motivation of the thesis is the lack or low security support in IPv4 –based networks and

the small number of IP addresses allocated in the IPv4 protocol.

As in most security related topics the analysis always assumes the presence of a determined

attacker, because this scenario poses the greatest threat. However, the concept of attacks also

encompasses the possibility of a mis-configuration or a bad implementation, all without

malicious intent but with similar negative effects on networks or nodes. For example, some

popular operating systems send rogue router advertisement messages, thus essentially

performing man-in-the-middle attacks.

1.3 Thesis Questions
Thesis asks primary questions: How we can find the IPv6 attacks? And how we can prevent

these attacks? The primary objectives of the thesis can be achieved through answering the

secondary questions:

• What are the current IPv6 attacks?

• What are the current router intrusion detection and prevention system?

• How can we enhance IPv6 next generation routers?

To achieve thesis objectives we use a controlled virtual IPv6 Scapy (Security Power tool) that

permits repeatable testing in a sanitized environment. Scapy is a powerful interactive packet

manipulation program which we use to program the SRP (Software Routers Plug-in).

1.4 Thesis Contribution

The contribution of this thesis is the design of an original network monitoring system that

automatically detects network vulnerabilities, weaknesses, and shortcomings of IPv6-based

networks. The designed system is called Hacker Location Detection System (HLDS) which is a

4

Software Router Plug-in (SRP) that could be deployed as advanced and flexible tool to IPv6

next generation routers to increase the network security. HLDS is capable of both detection of

hackers and identification of their location based on their IP address, MAC address, and

geographic location. HLDS is used in IPv6 routers to provide Internet security. Since hackers

are able to change IP and MAC addresses of their computers and NIC respectively, our

proposed system does not depend only on IP or MAC addresses but also on location of

hackers. Hence, even if hackers change these IP and/or MAC addresses our proposed system

is capable of tracing these hackers.

The idea of HLDS is based on the knowledge of the geographical location hackers from

previous experience. This location is used by hackers to hack network packets passing

through them. When a user sends a packet to another user and the packet passes through the

hacker’s router then HLDS will alarm the communicating users if HLDS has the location of

the hacker stored in Hacker Location Database (HLDB) server used by HLDS. HLDB is a

database that stores known hacker locations based on previous experience. It is updated

regularly to reflect the new situation of hackers and their locations. The accuracy of HLDS is

based on the accuracy of information stored about hackers in HLDB and its constant update.

HLDS is able to detect different attacks including Man-in-the-Middle (MITM), mail phishing,

IP spoofing, packet sniffing. These attacks attack data confidentiality, authenticity and

integrity. Hence, HLDS demonstrates if computer networks have any security vulnerabilities.

HLDS at the highest level of detail is composed of four modules:

- HLDB Server Module: HLDB Server Module contains the Hacker Location

Database (HLDB) that includes the known locations of the hackers. HLDB is to be

provided by a third party.

- HLDB Update Module: HLDB Update Module updates the HLDB based on the New

hacker location information received.

- Traceroute Module: Traceroute Module is used to trace the route of the packet that is

being monitored. It lists all routers that the packet passed through from source to

destination. Information provided by traceroute includes the IP addresses of these

routers as well as their geographic locations.

- HLDS Monitor Module: HLDS Monitor Module monitors the packets paths and

generates an alarm if any packet that is being monitored has passed through a hacker

router. This is determined by comparing the locations of the routers that the monitored

packet passes through with the locations of the routers in the HLDB.

5

1.5 Thesis Structure

The rest of the thesis is organized as follows: Chapter two presents the concepts, format,

configuration and the functionality of IPv6. Chapter three explains computer network attacks

and threats properties, their types and effects. In addition, Chapter three compares between

IPv6 and IPv4 security. Chapter four presents Network Intrusion Detection Systems, Network

Intrusion Prevention Systems, and Scapy security tool. Chapter five presents our proposed

methodology and approach the Hacker Location Detection System (HLDS). In Chapter five

we also present how the test beds are installed and configured. HLDS block diagram,

flowchart, and pseudo-code are also presented in Chapter five. Chapter six validates our

proposed methodology and gives some experimental results of HLDS. It compares the

performance of HLDS with that of some of the similar and popular programs in the literature.

Finally, chapter seven concludes the thesis report and presents some future work.

6

Chapter Two

IPv6 Background

7

2.1 IPv6 Overview

IPv6 or Internet Protocol Version 6 is the next generation protocol for the Internet. It's

designed to provide several advantages over current Internet Protocol Version 4 (or IPv4).

Both IPv6 and IPv4 define network layer protocol i.e., how data is sent from one computer to

another computer over packet-switched networks such as the Internet [5].

Some important changes from IPv4 to IPv6 are [6]:

• Larger Address Space: With 128 bits an IPv6 address is four times as long as an IPv4

address with 32 bits and allows for vastly more addressable nodes and networks. With

IPv4 address exhaustion imminent this is the most significant incentive to deploy

IPv6.

• Basic and Extension Headers: The number of fields in the IPv6 header has been

reduced to a minimum to make packet processing by intermediate routers more

efficient (see Figures 2.1 and 2.2).

• Multicast: IPv6 puts greater emphasis on multicast addressing, and depends on it for

autoconfiguration and neighbor discovery.

8

• Autoconfiguration and Neighbor Discovery: IPv6 allows network devices to configure

their own addresses and routes without manual configuration or additional network

services (like DHCP).

• Flow Labels: A new field is included to mark sequences of packets (like TCP

streams), which might aid routers with similar handling of a packet stream, for

example to implement Quality of Service, without having to read every packet’s Hop-

by-Hop header or upper layer information.

• IPsec: Support for strong authentication, data integrity and encryption is mandatory

for all nodes (in contrast to optional support with IPsec for IPv4). Albeit key

management problems generally prevent a widespread use, it provides the basis for

secure tunnels and authentication of other protocols (e. g. Mobile IP and OSPF).

• Mobile IPv6: To obtain roaming Internet connectivity for mobile devices, one

associates hosts with both a fixed Home Address and a changing Care of Address in

foreign nets. The use of IPsec enables a secure binding and tunneling between these

addresses. Like with IPsec, this is specified for IPv4 as well, but its IPv6 version

makes use of several IPv6 improvements (extension headers and neighbor discovery)

and no longer requires special router support.

• Transition mechanisms: To enable coexistence and interconnectivity of IPv4 and IPv6

nets a number of transition mechanisms are specified and implemented, including

dual-stack operation, tunnels and protocol translations. As all of these methods

introduce new network paths between nodes, they enable new ways to manipulate

routing paths and evade Access Control List (ACL) restrictions.

2.2 Huge Address Space in IPv6
The target of deploying IPv6 is its larger address space of 128 bits, as opposed to 32 bits in

IPv4. These 128 bit addresses are split into a 64 bit subnet prefix and a 64 bit interface

identifier, so every subnet has 264 addresses for hosts to choose from. At first sight this seems

to prevent remote reconnaissance attacks by network scanning because it is infeasible to scan

significant parts of such a large address space [15]. But this is only true if the address

allocation algorithm leads to a sparse and pseudo-random distribution across the available

address space. The mandatory algorithm is to derive the interface identifier from the network

interface’s MAC address in EUI-64 format. The IEEE EUI-64 (EUI for Extended Unique

Identifier) is a mapping of the 48 bit MAC address into the 64 bit address space for IPv6

9

interface identifiers. It concatenates the first 24 bits/3 octets of the MAC address, the constant

0xfffe, and the last 24 bits/3 octets of the MAC address. The network interface’s 48 bit MAC

address itself is a concatenation of a 24 bit manufacturer ID (the Organizationally Unique

Identifier, OUI) and a 24 bit device specific ID. With currently about 15000 assigned OUIs

(many of which are historic and not present in any current hardware), the actually used

partition of the EUI-64 address space can be reduced to well below 240 addresses. So the

EUI-64 addresses have considerably less entropy than randomly generated interface

identifiers, but still enough to prevent exhaustive scanning. Even more entropy is gained with

randomized interface identifiers, for example when using the privacy extension for stateless

address auto configuration or cryptographically generated addresses. On the other hand many

networks use a sequential numbering, often due to their DHCP server implementation or

because it simplifies manual address management assignment. These addresses have little

entropy and it is relatively easy to scan all hosts in such networks. Other address related

security issues might arise from IPv4–IPv6 transition mechanisms. Because IPv4 addresses

can also be represented as IPv6 addresses and the coexistence of two IP versions will lead to

many tunneled connections, multiple opportunities for evasion attacks are created. For the

foreseeable future all security devices, ranging from network traffic analysis to firewalls, will

have to understand a variety of addressing schemes and encapsulation protocols only to

determine the original protocol and source/destination addresses of packets (so they can apply

the right restrictions and ACLs).

Unlike IPv4 with its 32 bit addressing space, IPv6 uses 128 bits to define its address space.

This produces vast numbers of addresses that is much greater than those available in IPv4. For

example if every subscriber was given a /48 Global Unicast Address prefix, each would

contain 45 variable bits. This means that each subscriber would have 48 bits minus the 3 bit

type field, which leaves each subscriber with 45 variable bits from which addresses can be

derived. That is, the number of available prefixes is 245 or about 35 trillion [7]. This increase

from 32 bits to 128 bits also provides more levels of addressing hierarchy, a greater number

of addressable nodes, and a simplified auto-configuration of addresses; all of which provide

the network engineer increased flexibility. Specifically, the larger address space allows for

many more devices and users on the Internet as well as extra flexibility in allocating

addresses, thus eliminating the need for address conservation practices (e.g., NAT) and

simplifying the auto-configuration process. IPv6 addresses identify interfaces within one of

10

three hierarchical regions of the network. The scope of an address could be link-local, site-

local, or global [8].

As with IPv4, IPv6 addresses have the most significant part of the address placed to the left,

allowing for easy recognition of various address formats when logically dividing the 128

address bits into bit groups that can then be associated with special addressing features. The

largest group of IPv6 addresses is global unicast addresses. The rest of the address groups are

composed of unspecified and loopback addresses, multicast addresses, and link- and site-local

addresses. Some of the ranges of addresses currently in use are illustrated in Table 2.1.

 Table 2.1: IPv6 address space ranges

Use Binary Prefix Slash Description/Notes

Unspecified 00...0 ::/128 IPv6 address = 0:0:0:0:0:0:0:0 (or ::) Used

before an address allocated by DHCP

(equivalent of IPv4 0.0.0.0)

Loopback 00...1 ::1/128 IPv6 address = 0:0:0:0:0:0:0:1 (or ::1) Local

PC Loopback (equivalent of IPv4 127.0.0.1)

Multicast 1111 1111 FF::/8 There is now a link-local multicast

format defined by RFC 4489.

Link-Local

unicast

1111 1110 10 FE8::/10 Local LAN scope. Lower bits (EUI-64)

created from MAC address or other Interface

Identifier. There is now a link-local multicast

format defined by RFC 4489.

Site-Local

unicast

1111 1110 11 FEC::/10 Local Site scope. Lower bits assigned by user.

This binary prefix has been marked Reserved

by IANA to reflect the currently unsupported

state of Site-Local addressing.

Global

Unicast

All other values 2::/3 A note in RFC 3513 recommended that IANA

should continue to allocate only from the

binary prefix 001 (as in RFC 2373 version)

but RFC 3587 obsoletes this recommendation.

11

As shown in Table 2.1, there are three types of IPv6 addresses [10]:

• Unicast: An identifier for a single interface. A packet sent to a unicast address is

delivered to the interface identified by that address.

• Anycast: An identifier for a set of interfaces (typically belonging to different nodes).

A packet sent to an anycast address is delivered to any one of the destination nodes

identified by that address (the ”nearest” one, according to the routing protocols’

measure of the distance).

• Multicast: An identifier for a set of interfaces (typically belonging to different nodes).

A packet sent to a multicast address is delivered to all interfaces identified by that

address.

In IPv6 broadcast addresses are not available; instead multicast is used. For example, the

”linkscope all-hosts multicast” address, ff02::1, corresponds to the IPv4 subnet-local

broadcast address, 255.255.255.255. All IPv6 interfaces are required to have at least one link-

local unicast address. A single interface may also have multiple IPv6 addresses of any type

(Unicast, Multicast, Anycast) or scope [10]. Additionally multicast routing scalability is

improved in IPv6 due to the addition of an added “scope” field to each multicast address. The

addition of the “anycast address” is defined to allow for the delivery of a packet to any one of

a group of nodes [11]. The IPv6 address is broken up into two 64 bit sections, the first is for

network identification, while the second half identifies the host or Interface. Figure 2.3 shows

the IPv6 Global Unicast Address breakdown, while Figure 2.4 shows the breakdown of the

IPv6 Link Local Address.

Figure 2.3: Example of global unicast IPv6 address

Figure 2.4: Example of link local IPv6 address

12

Reserved Address

The Internet Engineering Task Force IETF has reserved several predefined multicast

addresses. These addresses are reserved for purposes such as news, music multicasts, and

experimental purposes. In addition to the predefined multicast addresses reserved by the

IETF, the following addresses are reserved:

• The IPv6 Unspecified Address: Each of the 128 bits in the IPv6 unspecified address

has a value of zero. (The hexadecimal representation of this address is

0:0:0:0:0:0:0:0). Because this reserved address is actually the absence of an address,

the unspecified address should neither be assigned to a node nor be used as a packet's

destination. However, hosts can use this address as a source address to initialize

themselves before they have configured their own unicast addresses.

• The Loop Back Address: The loop back address is another reserved address that

should not be assigned to a node. (The hexadecimal representation of this address is

0:0:0:0:0:0:0:1). Packets that contain the loop back address as a destination code come

back to the node from which the packet was sent. For example, you can use the loop

back address to test network connections.

• Addresses Reserved for IPX Packets: IPv6 includes two options for integrating IPX

networks with IPv6 networks. The first option uses an address space that is reserved

for IPX packets. This reserved address space enables enterprises that use the IPX

network layer protocol to map their IPX addresses to IPv6 addresses. These

enterprises can then send and receive packets over the Internet. The format prefix that

defines these mapped addresses is 0000010. The bits following this prefix contain the

mapped 80-bit IPX address.

The second option for integrating IPX networks with IPv6 networks is to tunnel IPX packets

in IPv6 packets. The IETF has defined an IPv6 header extension specifically for this purpose.

Addresses Reserved for Network Service Access Point (NSAP) Packets

To facilitate the mapping of NSAP addresses to IPv6 addresses, the IETF has reserved the set

of addresses with a format prefix of 0000001. Unlike IPv6 addresses, which belong to

organizations rather than a physical location, NSAP addresses describe the physical locations

at which a network is attached to the Internet.

Unassigned Address

13

According to RFC 2373, the IPv6 addresses to which format prefixes have been assigned

including unicast, anycast, multicast, and reserved addresses account for only 15 percent of

the total number of addresses available. The IETF has not assigned format prefixes to the

remaining 85 percent of addresses. These unassigned addresses are set aside for future use.

2.3 IPv6 Packet Format

IPv6 uses 128 bit addresses. In addition, some of the IPv4 header fields have been dropped or

made optional. Examples of these dropped fields include, Flags, Identifier, and Checksum.

The Fragment and Options and Padding fields have been replaced by IPv6 extension headers.

This is to reduce the common-case processing cost of packet handling and to limit the

bandwidth cost of the IPv6 header [2]. The specific fields of the IPv6 protocol header are

shown in Table 2.2 [9].

Implementing a hierarchical addressing structure is just one way that IPv6 simplifies routing.

Unlike IPv4, which uses variable-length packet headers, IPv6 uses fixed-length packet

headers of 40 bytes. These fixed-length headers allow routers to parse packets more

efficiently. IPv6 further simplifies routing requirements by using a smaller number of header

fields. IPv4 packet headers contain 14 fields; IPv6 packet headers contain only eight fields.

(See Table 2.2). Since IPv6 packets have fixed-length headers, the old IPv4 header length

field is obviously no longer needed. Other eliminated IPv4 fields include the fragment offset,

identification, flags, and header checksum fields.

The most significant deletion is the IPv4 header checksum field, which contains a

computation based on the total number of bits in each particular IPv4 header. Each time a

router receives an IPv4 packet, the router recomputes the number of bits the header contains.

The router then checks its computation against the computation contained in the IPv4 header

checksum field. If these two computations are identical, the data contained in the IPv4 header

is most likely uncorrupted. In this case, the router forwards the packet. If the two

computations are not identical, the router assumes the IPv4 packet is corrupted and discards

it.

According to the IAB's Internet draft titled "The Case for IPv6," the IPv4 header checksum

field is an unnecessary field that "has caused reduced performance in today's Internet."

Because corrupted packets can be detected at both the data-link layer of the Open Systems

Interconnection (OSI) model and the transport layer of the OSI model, routers do not need to

14

check for bad packet headers. Any bad packets the data-link layer misses, the transport layer

will catch.

Table 2.2: The specific fields of the IPv6 protocol header

IPv6 Header Format

Name Length Description/Notes

version 4 bits value = 6. Same location as IPv4 - everything after this changes.

traffic class 8 bits None formally defined with IANA (late 2004). When used with

Explicit Congestion Notification (ECN) (RFC 3168) may take

defined values.

Flow Label 20 bits -

payload length 16 bits unsigned length in octets of payload (excludes header but

includes extensions)

next header 8 bits Identifier in following header - same values as IPv4 Protocol

field Some common values:

0 (0x00) IPv6 Hop-by-Hop Option

1 (0x01) ICMP protocol

2 (0x02) IGMP protocol

4 (0x04) IP over IP

6 (0x06) TCP protocol

17 (0x11) UDP protocol

41 (0x29) IPv6 protocol

58 (0x3A) IPv6 ICMP protocol

59 (0x3B) IPv6 No Next Header (terminates a no upper layer

frame)

hop limit 8 bits Maximum number of hops. Formalizes the current practice when

using the TTL in IPv4.

source IP 128

bits

-

destination IP 128

bits

-

15

IPv6 Link-Local Address Format

Link-Local addresses are automatically assigned by the end user equipment and require no

external configuration (Format defined by RFC 4291). The address format uses a unique

binary prefix (FE8::/10) and the remaining bits (118) are built from the local interface

identifier. In the case of Ethernet (RFC 2464) the MAC (48 bits) is used to create the EUI-64

value. Each physical layer supported has a separate RFC. For example, FDDI, IEEE 802.15.4

etc. defining, among other things, how the link-local address is created. If an interface

identifier has more than 118 bits the link-local address cannot be generated and the unit must

be manually configured. Link-local addresses are not routable globally.

 The 128 bits of a link-local address for an Ethernet interface breakdown is shown in Table

2.3.

Table 2.3: The 128 bits of a link-local address for an Ethernet interface breakdown

10 bits - Binary Prefix

Name Size Description/Notes

Binary Prefix 10 bits 1111 1110 10 or FE8::/10 Link-Local Prefix

118 bits - constructed from interface MAC

Name Size Description/Notes

- 54 bits all zeros

MAC 24 bits Top 24 bits of the 48 bit interface MAC Vendor ID. Additionally,

when created using the MAC address or another EUI-48 derivation

scheme, bit 7 (bits numbered from 1 in normal IETF convention) of

this value is set to 1. Manually configured addresses do not set this

bit. Thus both simplifying their generation and allowing external

systems to identify how the address was generated. Note: This is

the reverse of the meaning of this bit in the MAC address.

ID 16 bits Fixed value of FFFE inserted

MAC 24 bits Low 24 bits of the 48 bit interface MAC serial number.

IPv6 Multicast Address Format

The Multicast format (which also replaces broadcast in IPv4) is defined by RFC 4291. There

is now a link-local multicast format defined by RFC 4489. The format of a global (non link-

local) multicast address is defined in Table 2.4.

16

Table 2.4: The format of a global multicast address in IPv6

Name Bits Size Value Description/Notes

Binary Prefix 0 - 7 8 1111

1111

Fixed value e.g., the routing prefix, binary prefix

flags 8-11 4 0RPT Where T may be:

0 = "well-known" or permanently (IANA)

assigned group

1 = "transient" group which has no IANA

assignment

R flag: (RFC 3956)

0 = no Rendevous Point (RP) encoded

1 = RP encoded using method defined by RFC

3956. T = 1 must also be set.

P flag: (RFC 3306)

0 = The multicast address is not based on the

network prefix

1 = the multicast address is assigned based on

the network prefix (format defined in RFC

3306). T = 1 must also be set.

scope 12-15 4 - May take one of the following assigned values:

0 - reserved

1 - interface-local scope

2 - link-local scope

3 - reserved

4 - admin-local scope

5 - site-local scope

6 - (unassigned)

7 - (unassigned)

8 - organization-local scope

9 - (unassigned)

A - (unassigned)

B - (unassigned)

C - (unassigned)

17

D - (unassigned)

E - global scope

F - reserved

Group ID 16 - 127 112 - Uniquely assigned by IANA if "well-known" bit

= 0 set in T flag above.

Table 2.5 lists some of the more common multicast groups.

Table 2.5: Some of the more common multicast groups

Address Description/Notes

FF01::1 Interface local - all nodes

FF02::1 Link local - all nodes

FF01::2 Interface local - all routers

FF02::2 Link local - all routers

IPv6 Link Local Multicast Address Format

RFC 4489 introduced the concept of a link-local (or link scoped) multicast format for

situations where all configuration is stateless. Theoretically, routers (and other equipment)

servicing a local (non-global) network could be now made self-configuring. Table 2.6 shows

the link local multicast address format.

 Table 2.6: The link local multicast address format

Name Bits Size Value Description/Notes

Binary Prefix 0 - 7 8 1111

1111

Fixed value e.g., the routing prefix, binary prefix

flags 8-11 4 0RPT Flags have same meaning as defined for global

multicast and must be set to 0011 meaning that T

= 1 = "transient" group which has no IANA

assignment and R = 1 = RP (Rendezvous Point)

encoded using method defined by RFC 3956.

scope 12-15 4 - Scope has the same meaning as defined for global

multicast but can only take the values:

0 - reserved

1 - interface-local scope

18

2 - link-local scope

Reserved 16 - 23 8 - Reserved - must be 0

plen 24 - 31 8 - Fixed value of 1111 1111 denotes a link-local (or

link scoped) multicast address

IID (EUI-64) 32 - 95 64 - Assigned using the normal link-local process

depending on the media type.

Group ID 96 - 127 32 - Since the T bit is set, this group ID is not defined

by IANA. Though RFC 4489 does indicate that

the guidelines for multicast address generation

could be used (RFC 4489 and its position within

the address also implies a mask of /96 applied to

both the global and link-local format would yield

a similar result.

IPv6 headers are daisy chained. The “Next Header” field is present in every header except the

upper layer header to indicate which header comes next as shown in Figure

2.5.

Figure 2.5: The Next Header field

Extension headers are always multiples of 8 octets. To allow skipping and processing of

extension headers they all begin with 16 bit stub format as shown in Table 2.7.

19

Table 2.7: IPv6 Extension Header Stub format

IPv6 Extension Header - Stub format

Name Length Description/Notes

Next Header 8 bits Same values as IPv6 Next Header

Extension Hdr Len 8 bits Unsigned integer. The total length of the extension header in

multiples of 8 octets, excluding the first 8 octets e.g. a value

of 0 = 8 octet header length, value = 2 = 24 octet header

length etc. NB the length field in ICMPv6 does not use this

convention.

Header Options

The Hop-By-Hop and Destination Headers carry a variable number of options within the

header and use a classic TLD (or TLV in the standards paralance) format as shown in Table

2.8.

Table 2.8: Header options in IPv6

Name Length Description/Notes

Type 8 bits The two high order (or low order depending on your numbering

convention) bits indicate what action to take if the option is not

recognized and may take one of the following values:

00 = skip option - keep processing

01 = discard packet

10 = discard packet and send ICMPv6 Parameter Problem (Code

2) message

11 = discard packet and, if not Multicast address, send

ICMPv6 Parameter Problem (Code 2) message

The third high order bit indicates whether the option can change

before reaching its destination

0 = data will not change

1 = data may change.

If the bit is set and an Authentication Header is present then an all zero

option value must be assumed when computing any digest.

Length 8 bits Length in octets of the option data - does not include the type or length

value.

Data variable Depends on Type

20

In order to force so-called natural alignment of option fields two padding options are

provided. An Option Type of 0 indicates a 1 octet pad (and does not have associated length or

data fields), a standard Option with a Type of 1 allows for multiple octet padding. NB in this

case a 2 octet pad will have an Option Length of 0.

2.4 IPv6 Configuration

2.4.1 Auto-Configuration
Autoconfiguration is one of the obvious advantages IPv6 has over IPv4. Autoconfiguration is

a protocol that allows IPv6-enabled hosts to automatically configure and reconfigure their

IPv6 addresses.

To automatically configure addresses, an IPv6-enabled host first configures an address for

itself using a local network prefix and the host's own link address. (A host's link address is the

physical address that identifies the host's Ethernet, Token Ring, or LocalTalk controller

board). The host then uses a protocol called Neighbor Discovery to determine whether or not

this link address is unique.

IPv6 Neighbor Discovery is a function of Internet Control Message Protocol version 6

(ICMPv6), a protocol that provides services, such as error reporting, for protocols that operate

at the network layer of the OSI model. Using Neighbor Discovery, a host on an IPv6 network

can discover whether or not its self-configured link address is unique: The host simply sends

an ICMP Neighbor Solicitation multicast message to all of the hosts on the local link. If the

originating host receives no reply, its link address is unique. If another host on this local link

recognizes the new self-configured link address as its own link address, this host sends the

originating host an ICMP message called a Neighbor Advertisement message. The Neighbor

Advertisement message informs the originating host that the new self-configured address is

not unique. The originating host then configures another address and sends a new multicast

Neighbor Discovery message to the hosts on the link.

When the host finds a unique self-configured link address, the host then sends another

Neighbor Discovery multicast message that includes the host's official link address as a

source address. However, rather than sending a message to all of the hosts on its local link,

the host sends the message to the router that connects that link to other network links.

When an IPv6-enabled router receives a Neighbor Discovery message from a host, the router

sends that host a unicast message called a router advertisement. A router advertisement

includes information such as a valid range of addresses for the subnet to which the router and

21

host are attached. The router also tells the host whether it must use stateful or stateless

autoconfiguration.

Stateful configuration requires a (DHCP) server to assign an IPv6 address to the host. If the

router instructs the host to use stateful autoconfiguration, the host contacts a DHCP server

with a request for a valid IPv6 address. DHCP servers assign valid IPv6 addresses

dynamically--that is, each time a host makes a request, the DHCP server assigns the host IPv6

addresses from a pool of IPv6 addresses.

If the router instructs the host to use stateless autoconfiguration, the host uses information

contained in the router's advertisement to generate its own address. This router-supplied

information includes the numbers of the subnets associated with the host's link. The host then

uses its own EUI-64 identifier to generate an interface ID for itself. Finally, the host appends

the interface ID it generates to the subnet information supplied by the router.

Autoconfiguration allows a company to change service providers without having to manually

reconfigure addresses for every node on its company's network. Naturally, the bigger a

company's network, the more time and money address autoconfiguration can save.

Address autoconfiguration also makes using roaming mobile hosts, such as a laptop or

Internet-enabled cellular telephone, easier. Using autoconfiguration, a roaming mobile host

can configure a valid IPv6 address for itself, regardless of the network to which it is

temporarily attached. Using this current, temporary IPv6 address, the roaming mobile host

can then ask a router on its home network (called a home agent) to forward packets to this

newly configured address. In fact, technologies such as roaming mobile hosts may prove to be

the push that starts the IPv6 ball rolling.

An IPv6 node interface can have multiple unicast addresses, a link-local address (which is the

first address assigned to the interface), and one or many global or site-local addresses.

Configuration of interfaces in IPv6 is controlled by the protocol itself [12]. The host auto-

configuration feature allows hosts joining a link to configure link-local addresses for their

interfaces as well as to check the uniqueness and validity of assigned addresses. Stateless

auto-configuration is the process that allows an IPv6 host to be assigned addresses based on

local router advertisements. In contrast, IPv4 uses the stateful address auto-configuration

protocol, or (DHCP). In the stateful auto-configuration model, a host obtains the interface

addresses as well as other required information such as the address of the default gateway a

DNS server from a DHCP server. The DHCP server maintains a manually administered list of

hosts and keeps track of which addresses have been assigned to which hosts. In addition, IPv6

22

offers stateless DHCPv6 which is a procedure during which addresses are configured

according to the router advertisements along with additional information given to the host,

such as default gateway and DNS servers, via a DHCP server.

IPv6 systems are typically multi-homed by default and have a link-local address configured

by the host and may have a global unicast address which may be configured by one of three

methods:

1. Stateful - Statically assigned = manual configuration

2. Stateful - DHCPv6 - Automatically assigned

3. Stateless - Automatically assigned (SLAAC)

2.4.2 IPv6 Stateless Autoconfiguration (SLAAC)
IPv6 systems may be configured to provide global unicast addresses using Stateless Address

AutoConfiguation (SLAAC - defined by RFC 4862) using what is called generically the

Neighborhood Discovery Protocol (NDP). Stateless autoconfiguration requires a router to be

present but not a DHCP server. The process of creating a stateless IPv6 address is as follows:

1. Host sends a Router Solicitation message.

2. Host waits for a Router Advertisement message.

3. Host takes top bits as defined in the Prefix Information of the Router Advertisement

message and combines it with the 64 bit EUI-64 address (in the case of Ethernet this is

created from the MAC address) to create a Global Unicast address. The host also uses

the source IP address - in the IP header - of the Router Advertisement message as its

default gateway address.

4. RFC 4941 defines a method by which temporary (essentially pseudo-random from the

interface derived EUI-64 address) addresses (EUI-64) may be created in order to

create privacy (or anonymity).

5. Host then performs a Duplicate Address Detection to ensure the address is unique. If

this check fails the host immediately aborts the autoconfiguration process and must be

manually configured.

2.5 ICMPv6
IPv6 uses the Internet Control Message Protocol (ICMP6) as defined for IPv4 [13], with a

number of changes [14]. ICMPv6 is vital to the proper operation of the IPv6 protocol. Unlike

ICMP for IPv4, which is not required for IPv4 communications, ICMPv6 has features that are

23

required elements which cannot be completely filtered [9]. For example the host auto

configuration and Neighbor Discovery Protocol (NDP) x2.1.4 both require ICMPv6 messages

to be able to complete address assignments and perform Duplicate Address Detection (DAD);

both of which are vital to IPv6 operation. ICMPv6 operates on top of IPv6 as an extension

header but actually works in conjunction with IPv6 for protocol operations. ICMPv6 is an

integral part of IPv6, and must be fully implemented by every IPv6 node [14].

ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to

perform other Internet-layer functions, such as diagnostics and testing (e.g., traceroute6).

ICMPv6 messages contain a type and a code that relate the details of the message to the type

of message, as well as a checksum and a payload of variable size. ICMPv6 error messages re-

lay useful information back to the source of the packet about any error that may have

occurred along the path. The general packet structure for ICMPv6 is shown in Figure 2.6. The

fields of the ICMPv6 packet are as follows:

Figure 2.6: General ICMPv6 packet

• Type: The type field indicates the type of message.

• Code: The code field depends on the message type and is used to create an additional

level of message granularity.

• Checksum: The checksum field is used to detect data corruption in the ICMPv6

message and parts of the IPv6 header.

ICMPv6 can be considered as the backbone of the IPv6 protocol, providing the following

functions [9]:

• Neighbor Discovery Protocol (NDP), Neighbor Advertisements (NA), and Neighbor

Solicitations (NS) provide the IPv6 equivalent of IPv4 Address Resolution Protocol

(ARP) functionality.

24

• Router Advertisements (RA) and Router Solicitations (RS) help nodes determine

information about their LAN, such as the network prefix, the default gateway, and

other information that can help them communicate.

• Echo Request and Echo Reply support the Ping6 utility.

• PMTUD determines the proper MTU size for communications.

• Multicast Listener Discovery (MLD) provides IGMP-like functionality for

communicating IP multicast joins and leaves. Multicast Router Discovery (MRD)

discovers multicast routers.

• Node Information Query (NIQ) shares information about nodes between nodes.

• Secure Neighbor Discovery (SEND) helps secure communications between neighbors.

25

Chapter Three

Computer Network Attacks and

Related work

26

Network threats exist in today’s world in many forms. One of the more exciting and dynamic
aspects of network security relates to the threat of attacks. Attack is any attempt to destroy,
expose, alter, disable, steal or gain unauthorized access to or make unauthorized use of an
asset [16]. A great deal of media attention and many vendor product offerings have addressed
the topics of attacks and attack methodologies. There are thirteen general attack classes or
categories [17] that attackers use to exploit IPv4 networks and hosts. These classes remain
relevant with the IPv6 protocol stack. Each of the following general attack classes has either
been made significantly easier, harder, or has no impact (or remains consistent) when
considered in an IPv6 environment and will be covered in more detail in the following section.

1. Sniffing

2. Application Layer Attacks

3. Rogue Devices

4. Man In the Middle (MITM)

5. Flooding

6. Reconnaissance

7. Unauthorized access

8. Header Manipulation and fragmentation

9. Layer 3 spoofing

10. Address Resolution Protocol (ARP) and Dynamic Host Configuration Protocol

(DHCP) attacks

11. Broadcast Amplification Attacks (smurf)

12. Viruses and Worms

13. Translation, Transition, and Tunneling

3.1 Consistent Threats
Some threats like application layer attacks remain mostly the same in IPv6 as they did in

IPv4. This is because the implementation of IPv6 only affects layer 3 and has no direct impact

on layer 7 of the OSI model. In fact, many of today’s common attacks are application layer

attacks. To this group of attacks belong buffer overflow attacks, Web application attacks (e.g.,

CGI attacks), different types of viruses and worms, etc [18]. Rogue device attacks such as an

unauthorized laptop, rogue router, or rogue wireless access point are common in an IPv4

network and are not substantially changed in IPv6 [17]. Transition to IPv6 will not impact

these types of attacks.

27

Spoofing Attacks

A spoofing attack is an attempt by someone or something to masquerade as someone else.

This type of attack is usually considered an access attack. A common spoofing attack that was

popular for many years on early Unix and other timesharing systems involved a programmer

writing a fake logon program. It would prompt the user for a user ID and password. No matter

what the user typed, the program would indicate an invalid logon attempt and then transfer

control to the real logon program. The spoofing program would write the logon and password

into a disk file, which was retrieved later. The most popular spoofing attacks today are IP

spoofing and DNS spoofing. With IP spoofing, the goal is to make the data look as if it came

from a trusted host when it didn’t (thus spoofing the IP address of the sending host). With

DNS spoofing, the DNS server is given information about a name server that it thinks is

legitimate when it isn’t. This can send users to a website other than the one they wanted to go

to, reroute mail, or do any other type of redirection wherein data from a DNS server is used to

determine a destination. Another name for this is DNS poisoning [20]. Figure 3.1 shows a

spoofing attack occurring as part of the logon process on a computer network. The attacker in

this situation impersonates the server to the client attempting to log in. No matter what the

client attempts to do, the impersonating system will fail the login. When this process is

finished, the impersonating system disconnects from the client. The client then logs in to the

legitimate server. In the meantime, the attacker now has a valid user ID and password. The

important point to remember is that a spoofing attack tricks something or someone into

thinking something legitimate is occurring

Figure 3.1: A spoofing attack during logon

Flooding Attacks

A flooding attack is a very frequent type of attack. The flooding is an attack that floods a

network device, such as a router or a host, with large amounts (more that it can process) of

28

network traffic. This attack can take the form of a local or distributed Denial of Service (DoS)

attack and can cause network resources to become unavailable. Arrival of IPv6 did not change

basic principles of a flooding attack [18]. However, with the introduction to new extension

headers and ICMPv6 message types along with the dependence on multicast addresses, IPv6

may introduce more ways of developing flooding attacks for malicious purposes.

Sniffing

Sniffing is observing packets passing by on a network. Sniffing is popular way to steal data

from a network, usually in form of passwords, ID names, etc. Passive attacks using this

method have become frequent on the Internet. The person who is sniffing a network obtains

data by actually sniffing the network for packets. The data is usually cached. Thus, hackers

look for user IDs and the passwords of legitimate users and use the user's information to log

on to the network. Once logged into the network, the hacker sniffs transmissions of packets.

With this method the hacker can gather needed information about the network. Sniffing or

eavesdropping on network traffic also remains unchanged. The tcpdump [19] tool has been

implemented with IPv6 support, thus the sniffing of network traffic remains unchanged

between IPv4 and IPv6.

Worms

A worm is a self-replicating virus that does not alter files but resides in active memory and

duplicates itself. Worms use parts of an operating system that are automatic and usually

invisible to the user. It is common for worms to be noticed only when their uncontrolled

replication consumes system resources, slowing or halting other tasks.

Worms are another threat that remains mostly unchanged when considered with IPv6. Since

worms are generally application layer threats, worms such as Melissa which spreads via email

will be unaffected in an IPv6 environment [20]. However one of the popular mechanisms for

worm propagation is random address-space probing. This allows a fast operating worm to

scan an entire address space in a matter of hours. This was emphasized by Staniford et al. in

their 2002 paper titled "How to own the Internet in your spare time" [21]. In this paper, they

conclude that it is realistic for an attacker to gain control of a million or more hosts via the use

of Worms on an IPv4 Internet. Thus giving the attacker the ability to conduct a mass

Distributed Denial of Service (DDoS) attack, access sensitive information (e.g., credit card

numbers, passwords), purposely sow confusion, as well as do deliberate damage to

infrastructure. In an IPv4 32 bit address space, random address-space probing can be done

quickly in order to find new hosts to infect. However when attempted with IPv6, with its 128

29

bit address space, scanning is a much more difficult and time consuming task. In fact, if we

assume that the number of hosts on the Internet does not increase by a factor proportional to

the address increase, then the work factor for finding a target in an IPv6 Internet would be

approximately 296 greater than that of IPv4 [20]. This work increase would seem to make the

random scanning worms irrelevant due to the scan time expense. In the Bellovin et al. paper

analyzing propagation strategies of worms in an IPv6 environment, they noted that address-

space scanning worms such as Code Red will have a tough time effectively finding vulnerable

victim hosts in an IPv6 environment [20]. The adoption of IPv6 removes one of the two ways

address-space scanning is currently performed by making it infeasible to use a uniformly

distributed random number generator to select new target addresses [20]. The other method,

biasing the search space by scanning within the same subnet, preferentially spreads locally

and is a much more feasible method [20]. However even scanning within an IPv6 subnetwork

seems to be an unattainable goal for any worm. Even with only having to scan the local IPv6

subnet, a worm would be required to scan through 80 bits of local address space, which is a

massive number and daunting obstacle. Thus, in an IPv6 environment, the worm threat itself

does not change. However the method by which worms find hosts may have to change.

Man In The Middle (MITM)

Man in the Middle (MITM) attacks tend to be fairly sophisticated. This type of attack is also

an access attack, but it can be used as the starting point for a modification attack. The method

used in these attacks places a piece of software between a server and the user that neither the

server administrators nor the user is aware of. The software intercepts data and then sends the

information to the server as if nothing is wrong. The server responds back to the software,

thinking it’s communicating with the legitimate client. The attacking software continues

sending information on to the server, and so forth. If communication between the server and

user continues, what’s the harm of the software? The answer lies in whatever else the

software is doing. The man-in-the-middle software may be recording information for

someone to view later, altering it, or in some other way compromising the security of the

system and session. Figure 3.2 shows the Man in the Middle (MITM) attack. In recent years,

the threat of Man in the Middle (MITM) attacks on wireless networks has increased. Because

it’s no longer necessary to connect to the wire, a malicious rogue can be outside the building

intercepting packets, altering them, and sending them on. A common solution to this problem

is to enforce a secure wireless authentication protocol such as WPA2 [22].

30

Figure 3.2: Man in the Middle (MITM) attack

The general theory of the Man in the Middle (MITM) threat does not change with IPv6.

Because the IPv4 and the IPv6 headers have no security mechanisms themselves, each

protocol relies on the IPsec protocol suite for security [17]. Since it is only mandatory for IPv6

implementations to support IPsec, but does not require it to be used, IPv6 falls prey to the

same security risks posed by a MITM attack. Table 3.1 lists the IPv4 attacks that remain

mostly unchanged when converted to IPv6. The table shows current IPv4 attack types or

vulnerabilities next to their IPv6 counterpart.

Table 3.1: IPv4 attacks that remain mostly unchanged when converted to IPv6

3.2 New Threats
This section outlines attacks that change significantly when considered in the IPv6 protocol

address space. This section is based largely on Convery and Miller’s 2004 paper on threat

comparison and best practices [17]. IPv6 specific threat studies will also be covered in this

section, however this will be as they relate to host and not NIDS detection.

Reconnaissance

Generally the first attack performed, reconnaissance, is an attempt by the adversary to learn

about a network in an effort to find possible holes or weaknesses. Convery and Miller state

that this includes both active network methods such as scanning as well as more passive data

mining such as through search engines or public documents. [17]. The active host probing or

port scanning is an attempt for an attacker to discover specific information about hosts and

31

network devices on the victim’s network. This includes how they interconnect and what

traffic is being passed between them. Passive data mining can be considered environmental

data to assist the attacker in theorizing different ways to attack the victim network. Typical

IPv4 methods of collecting information are ping sweeps, port scans, and application and

vulnerability scans. Reconnaissance in IPv6 differs from IPv4 in two relevant ways. The first

is that ping sweep or port scan, when used to enumerate hosts on a subnet, are much more

difficult to complete in an IPv6 network [17]. This is emphasized by Caicedo et al. in their

2009 paper where they note, the potentially huge size of IPv6 subnets makes reconnaissance

attacks more difficult [23]. The large size of the IPv6 address space makes port scanning,

whose procedures are identical for IPv4 and IPv6, more tedious and time consuming. With a

default subnet on an IPv6 network being 64 bits, which means that to perform a scan on the

whole subnet it is necessary to make 264 probes, a next to impossible task [18]. Or as

summarized by Convery and Miller, a network that ordinarily required sending 256 probes

now requires sending more than 18 quintillion probes to cover an entire subnet. A task that

would take 28 centuries of constant 1-million-packets-per-second scanning to find the first

host on the first subnet on a /64 IPv6 network containing 100 active hosts [17]. In an attempt

to prove application vulnerability scans, or OS fingerprinting, have similar possibilities in

IPv6 as they do in IPv4 Nerakis, in his 2006 thesis, used existing TCP/UDP packet probing

methods along with IPv6 Extension Headers to attempt to determine the version and type of

remote host operating systems. Nerakis discovered that existing TCP/UDP methods work,

however it is more difficult to perform in an IPv6 environment. This is believed to be due in

part to the larger address space and the (at the time) experimental nature of IPv6 with similar

OSs possibly reusing IPv6 code [24]. IPv6’s reliance on Multicast addresses will do just the

opposite, making the adversaries life easier. The multicast address structure as defined in RFC

2375 [25] lets the attacker identify groups of key network components, such as the all router

or all DHCP servers for a given network. This gives the attacker an almost hand delivered list

of devices to scan for vulnerabilities, making his reconnaissance possible if not easy. This

defined list of multicast addresses is clearly for legitimate protocol use, however it opens IPv6

up for reconnaissance as well as “simple flooding” attacks, or something more sophisticated

that is designed to subvert the device [17].

Unauthorized Access

32

The Unauthorized Access attack is the type of attack in which an adversary tries to exploit the

open transport policy found in IPv4. There is nothing in the protocol stack that limits the

number of hosts that can connect to one another on an IP network. Attackers rely on this fact

to establish connectivity to upper-layer protocols and applications on inter-networking

devices and hosts [17]. To aid in preventing this attack the need for access controls is the

same in IPv6 as it is in IPv4, though eventually the requirement and use of IPsec may enable

easier host access control. Besides the mandatory support for IPsec, IPv6 technology

differences that enable unauthorized access include Extension Headers, ICMP, Multicast and

Anycast Inspection. In the case of Extension headers, which replaced the IPv4 IP options, all

IPv6 endpoints are required to accept IPv6 packets with a routing header. This can be used by

an attacker to circumvent security policies because of the possibility that the endpoint does

not only accept the IPv6 packet but also processes it and forwards it, which possibly bypasses

networks firewalls [17]. For ICMP, which is not required by IPv4, current best practices are

generally in favor of complete filtering. However, ICMPv6 is an integral part of IPv6

operations and cannot be completely filtered without preventing communications. Since many

of the utilities in IPv6, such as Neighbor Discovery, use ICMPv6, there are many

opportunities to use it to aid in an Unauthorized Access Attack and thus subvert the networks’

security policies or bypass firewalls.

Header Manipulation and Fragmentation

The misuse of IPv6 routing and fragment headers can give an adversary tools to perform DoS

attacks as well as avoid access controls. RFC 2460 [2] stipulates that all IPv6 nodes have to

be able process routing headers. Because routing headers can be used to avoid access controls

based on destination addresses, this presents a significant security issue. For instance, if an

intruder sends a packet to a publicly accessible address with a routing header containing a

“forbidden” address (address on the victim network) the publicly accessible host will forward

the packet to a destination address stated in the routing header (e.g.,”forbidden” address) even

though that destination address is filtered [18]. This enables the adversary the ability to

perform a DoS attack by using this publicly accessible host to redirect spoofed packets.

Historically fragmentation has been used in IPv4 to bypass access controls or slip attacks past

routers, firewalls, and in particular NIDSs. The IPv6 specification [2] does not allow packet

fragmentation by intermediary devices. In other words, only the source host can perform

fragmentation. The source node could move port numbers from the first fragment to bypass

security monitoring devices (which do not reassemble fragments) expecting to find transport

33

layer protocol data in the first fragment [18]. Convery and Miller hypothesize that it is also

possible to use the combination of multiple extension headers and fragmentation to create the

same ability for the intruder to hide an attack. Since the “IPv6 minimum MTU is 1280 octets”

a good security policy for IPv6 would have any packet with a MTU less that 1280 be

dropped, but this is not always the case. Thus, an attacker can use large numbers of packets

with small fragments (MTU <1280) to overload reconstruction buffers on the target system in

an attempted DoS and possibly causing it to crash [17] [18].

Address Resolution Protocol (ARP) and Dynamic Host Configuration Protocol (DHCP)

attacks

ARP and DHCP attacks attempt to subvert the host initialization process or a device that a

host accesses for transit. These types of attacks try to get end hosts to communicate with an

unauthorized or compromised device or attempt to configure these hosts with incorrect

network information such as default gateway, DNS, or IP address [17]. In their 2004 paper,

Convery and Miller note that IPv6 has no inherent security added to the IPv6 equivalents of

DHCP (DHCPv6) or ARP (Neighbor Discovery). With the preference to Stateless Auto-

configuration over DHCP, IPv6 is open for attacks in these areas. Although DHCP servers

may be used on occasion, especially for setting up hosts with network configuration

information, dedicated servers are not common in IPv6. Stateless Auto-configuration

messages can be spoofed to allow an adversary to deny access to devices [17]. With the many

types of devices that now connect to todays networks and the Internet, IPv6 replaces ARP

with elements of ICMPv6 called Neighbor Discovery, which has the same inherent security as

ARP in IPv4 [17]. This means that there are many options for these types of attacks in IPv6

based on vulnerabilities associated with ICMPv6. IPsec, the default security mechanism for

IPv6, does not allow for automatic protection of the auto-configuration process. Thus, the

Secure Neighbor Discovery Protocol (SeND) [27] was created to protect this process. SeND

uses Cryptographically Generated Addresses (CGA) and asymmetric cryptography as a first

line of defense against attacks on integrity and identity. In his 2007 thesis, Marcin Pohl

evaluated SeND. He found that even though SeND claims to achieve mutual authentication of

hosts and routers without the need for a Certification Authority (CA), SeND does not really

offer mutual authentication without a CA and is susceptible to CPU exhaustion attacks [28].

However, without SeND both router and Neighbor solicitation and advertisement messages

can be “spoofed” and will overwrite existing neighbor discovery cache information on a

device, resulting in the same issues present in IPv4 ARP. What this means is that a spoofed

34

router discovery could inject a bogus router address that hosts listen to and perhaps choose for

their default gateway. Then the bogus router can record traffic and forward it to proper routers

without detection; leaving the adversary the ability to perform MITM or DoS attacks at will

[17]. [23] cover a DoS attack on the Duplicate Address Detection (DAD) protocol and its

procedures in their 2009 paper. In this type of attack an attacker on the local link waits until a

node sends an NS packet. The attacker then falsely responds with a neighbor advertisement

(NA) packet, informing the new node that it is already using that address. Upon receiving the

NA, the new node generates another address and repeats the DAD process; the attacker again

falsely responds with an NA packet, thus repeating the whole process. They note, eventually

the new node gives up without initializing its interface [23].

Another possible attack exploiting the stateless auto-configuration process is a MITM attack.

This is possible when a node needs a MAC address of another node on the subnet and sends a

NS message to the all-nodes multicast address. An attacker on the same link can see the NS

message and reply to it with the corresponding NA message, thereby taking over all traffic

between the two original nodes. Figure 3.3 graphically shows the process of three IPv6 auto-

configuration (ARP/DHCP) type attacks.

Figure 3.3: Attacks on IPv6 related to the auto-configuration process (From [23])

35

Broadcast Amplification Attacks (smurf)

Broadcast Amplification attacks, also known as “smurf” attacks, are DoS attacks that take

advantage of the ability to send echo requests with a destination address of a subnet broadcast

and a spoofed source address, using a victim’s IP address. This generates a response from all

hosts on that subnet directly to the victim’s host creating a flood of echo response messages.

In IPv6, since the concept of broadcast addresses is removed from the specification [1] and

protocol, these types of attacks are mitigated. In regard specifically to “smurf” attacks,

ICMPv6 messages should not be generated as response to a packet with a multicast

destination address, a link layer multicast, or a link layer broadcast address as stated in RFC

2463 [29]. Even though this effectively kills “smurf” attacks in properly implemented IPv6

stacks, exceptions are made making these attacks possible on the local subnet. If a target has

mis-implemented IPv6, it responds with an echo reply to the All-Nodes multicast address, this

generates a mass of response traffic sent directly to the target.

Viruses and Worms

As discussed earlier, traditional worms and viruses remain unchanged with IPv6. The

propagation methods of these types of attacks may encounter some difficulty with the large

address space, which is seen in the Bellovin et al. 2006 paper [30]. Because of this difficulty

most worms would be less effective in an IPv6 environment simply because of their inability

to find hosts to infect.

Translation, Transition, and Tunneling

With the transition to IPv6 already underway, careful consideration must be given to the

period between native IPv4 and native IPv6. As IPv4 networks are converted, there will be a

considerable period of time where a transition mechanism will be required. During this ”in

between” time, vulnerabilities specific to the transition mechanism must be taken into account

and evaluated. There are several approaches to transitioning from IPv4 to IPv6:

• Dual stack

• Tunneling

• Translation

Each of these approaches has their own security considerations to be taken into account when

deciding how to transition to IPv6. [17] state that the existence of so many transition

technologies creates a situation in which network designers need to understand the security

implications of the transition technologies and select the appropriate one for their network

[17]. To this point when discussing IPv6 native access, we have discussed vulnerabilities and

36

attacks that assume the end host is dual stacked, having both IPv4 and IPv6 infrastructure.

Tunneling refers to the transmission of data intended for use only within a private, sometimes

corporate, network through a public network in such a way that the routing nodes in the

public network are unaware that the transmission is part of a private network. In this case,

IPv6 is tunneled through the public IPv4 infrastructure. The IPv6 global Internet uses

numerous tunnels over the existing IPv4 infrastructure. This is generally done through a

tunnel broker such as Hurricane Electric [31] due to the complexity of setting up and

managing these tunnels. Tunnels are difficult to configure and maintain and too complex for

the isolated end user, so the concept of the tunnel broker was presented to help early IPv6

adopters to hook up to an existing IPv6 network. Additionally [74] noted that in many of the

transition studies done, automatic tunneling mechanisms are susceptible to packet forgery and

DoS attacks. These risks are the same in IPv4, however IPv6 increases the number of paths of

exploitation for the adversaries [17]. Relay translation technologies, such as 6 to 4 [32],

introduce automatic tunneling with third parties as well as additional DoS possibilities.

Although, much like the case with tunneling IPv6, new avenues for exploitation are created

and the risks do not change from those with IPv4 [17, 32].

Table 3.2 lists IPv4 attack classifications that have new or unique considerations when

converted to IPV6. Just as in Table 3.2, the table shows current IPv4 attack types or

vulnerabilities next to their IPv6 counterpart.

37

Table 3.2: Attacks with special consideration when converted to IPv6

3.3 Comparing IPv6 and IPv4 Security
A number of commenter's contend that IPv6 will provide a greater level of security than is

available under IPv4. [75] states that because IPv6 was “designed with security in mind,” it is

inherently more secure than IPv4, which does not have integrated security fields. Other

commenters note that support for Internet Protocol Security (IPsec) is “mandatory” in IPv6,

but only “optional” in IPv4, which should lead to more extensive use of IPsec in IPv6

38

networks and applications. [76] suggests that incorporating IPsec into the IPv6 protocol stack

may reduce incompatibility between different vendors’ implementations of IPsec. The

virtually limitless address space available via IPv6 can also further network security. Many

common IPv4-based network attack scenarios begin with “brute force” address and port scans

of entire subnets, sites, or even the Internet as a whole. In typical IPv4 deployments, once an

assigned address prefix is known, an attacker only has to scan between 28 subnet and 216 site

addresses (about 256 and 65,500 addresses, respectively) to find every host device on that

network. The 64-bit space for individual interface IDs in the IPv6 address structure, on the

other hand, is so vast that brute-force scans of the available address space are practically

impossible. To the extent that deployment of IPv6 can enhance network security, the potential

benefits to organizations and individuals can be significant. However, empirical estimates of

the cost of cyber-security breaches vary widely because of differences in what is included in

the cost estimates and disincentives for companies to publicly disclose the number of

breaches or level of damage. Studies that focus on IT costs, such as the 2004 Computer

Security Institute/FBI Computer Crime and Security Survey, have reported total losses from

cyber-security breaches of approximately $142 million in 2004[35].

In addition to the above differences between IPv4 and IPv6 protocols, reference [35] states

the following:

The evidence gathered in the Task Force’s examination of IPv6 indicates that several

potential security benefits can be realized from the eventual adoption and use of IPv6 by

government, the private sector, and the Internet as a whole. At the same time, the greatest

potential security benefits appear to be associated with the long-term evolution to new

security paradigms, significantly different than those commonly employed in today’s

networks. As a result, the potential security benefits outlined above must be balanced against

what might be considerable costs to complete the design and development of new security

models and the potential increased risks to incrementally deploy and transition to them in

existing operational networks. A number of factors may also limit the possible security

benefits of IPv6 deployment in the near term. For example, although the expanded IPv6

address space may eliminate address and port scanning-based network attacks, network

administrators may also lose the ability to perform brute-force address scans for the purposes

of security auditing and testing. Many popular IPv4 security analysis tools are fundamentally

based upon address scanning. Thus finding and identifying mis-configured or compromised

hosts that are deliberately “hiding” on an IPv6 subnet may be as difficult as attacking them

39

from the outside. This implies that in IPv6 networks both network administrators and would-

be attackers must look elsewhere (e.g., DNS, server logs, neighbor discovery caches) to

gather lists of active hosts. Furthermore, although IPsec support is mandatory in IPv6, IPsec

use is not. In fact, many current IPv6 implementations do not include IPsec. On the other

hand, though optional, IPsec is being widely deployed in IPv4. There appear to be no

appreciable technical differences in the way that IPsec is implemented in either protocol, and

several commenters state that there are no significant functional differences in the

performance of IPsec in IPv6 and IPv4 networks. Any differences in performance are

attributable to the presence of NATs in most IPv4 networks, which interfere with end to end

communications using IPsec. Thus, to the extent that NATs persist in IPv6 networks, they

may reduce the security benefits available via the new protocol.

Furthermore, experts generally agree that implementing any new protocol, such as IPv6, will

be followed by an initial period of increased security vulnerability and that additional network

staff will be necessary to address new threats posed by a dual network environment. For

instance, IPv6 provides support for various configuration capabilities (e.g., neighbor

discovery, address auto-configuration, router discovery, renumbering) and control (e.g., path

MTU discovery). These capabilities are richer and better integrated than the auto-

configuration capabilities typically found in today’s IPv4 networks and, as noted above,

should result in reduced administrative costs associated with the operation of large-scale

networks and potentially more streamlined implementations of some protocol functions.

Although there are clear operational advantages to these autoconfiguration and control

capabilities, IPv6’s fundamental reliance on their operation also creates new threats and

vulnerabilities associated with their potential misuse. This fact, coupled with a desire to

support end-to-end (or host-based) security architectures in which trust among local network

nodes is not assumed, requires that new levels of scrutiny be given to the security of the IPv6

Internet Control Message Protocol (ICMPv6) and its uses in neighbor discovery, and address

auto-configuration. In addition, most IPv6 auto-configuration mechanisms make significant

use of multicast, anycast, and scoped addressing capabilities. Care must be taken to ensure

that network security systems limit the extent to which these new modes of addressing are not

exploited as new attack vectors by compromised hosts.

Additionally, IPv6 inherently supports modes of addressing other than unicast (e.g., multicast,

anycast, scoped unicast) that are not typically found in IPv4 operational deployments.

Although these new addressing capabilities present significant opportunities for the

40

development of new network services, security mechanisms and practices for these new

modes of addressing are not as mature or well understood as those for global unicast.

Additional efforts are needed to develop security solutions for IPv6 that can enable secure

multicast and unicast communications while at the same time ensuring that these capabilities

do not create new vulnerabilities in the networks in which they are deployed.

Although IPv4 may have presented similar security concerns when first implemented, it

currently benefits in its comparison with IPv6 from 20 years of identifying and addressing

security issues. As IPv6 becomes more prevalent, many security issues will likely arise as

attackers give it more attention. On the other hand, the experience gained from running IPv4

networks may help bring security levels in IPv6 networks up to the level of current IPv4

networks at a faster pace. We can summarize a lot of main deference's between IPv4 and IPv6

in table 3.3.

Table 3.3: Main deference's between IPv4 and IPv6

IPv4 IPv6

32 bit address space 128 bit address space

Dynamic header length Fix header length (40 byte)

14 fields heard 8 fields header

Hard routing header parsing Easy routing header parsing

Need DHCP for Autoconfiguration Autoconfiguration With Or not DHCPv6

Router or end node can fragment Only end nodes can fragment

Source routing could be disable Routing header required for Mobile IPv6

Layer 3 privacy Layer 2or 3 privacy

Single address for each interface Multi address for each interface

41

Chapter 4
NIDSs, NIPSs and Scapy

42

In this chapter we present Network Intrusion Detection Systems (NIDSs), Network Intrusion
Prevention Systems (NIPSs), and Scapy security tool,.

4.1 Network Intrusion Detection Systems (NIDSs)
Network intrusion detection systems (NIDSs) are most efficient way of defending against

network-based attacks aimed at computer systems [40, 41]. These systems are used in almost

all large-scale IT infrastructures [42]. Basically, there are two main types of intrusion

detection systems: Signature-Based Systems (SBSs) and Anomaly-Based Systems (ABSs).

SBSs (e.g. Snort [43 ،44]) rely on pattern recognition techniques where they maintain the

database of signatures of previously known attacks and compare them with analyzed data. An

alarm is raised when the signatures are matched. On the other hand ABSs (e.g PAYL [45])

build a statistical model describing the normal network traffic, and any abnormal behavior

that deviates from the model is identified. In contrast to signature-based systems, anomaly-

based systems have the advantage that they can detect zero-day attacks, since novel attacks

can be detected as soon as they take place. Whereas ABSs (unlike SBSs) require a training

phase to develop the database of general attacks and a careful setting of threshold level of

detection makes it complex.. Payload-based systems are particularly suitable to detect

advanced attacks [45], [46].

Criteria are important part of evaluation process, but we believe that most important part of

IDS evaluation is setting testing objectives, it is necessary to collect enough background

information before testing [72]. Lei Wei in the article [71] proposes framework for automatic

Intrusion Detection System (IDS) evaluation which is shown in Figure 4.1. To get a report

about the test result, there are around ten steps:

1. The process chooses a malware to attack the target system and sets configuration of

the target system.

2. The process uses a sandbox, VMware, to build a virtual network for a test.

3. The evaluation system sets the attack configuration on the virtual attacker.

4. The virtual attacker machine attacks the target and, meanwhile, the traffic traces are

documented and recorded by the system. Alarms raised by IDS are also collected.

5. The recorded data are saved into a data set in the shared disk.

6. The virtual attacker and target machines are restored to their initial configuration for

next round of test.

7. IDS evaluator picks out all the traffic traces of a test case from the data set.

8. The IDS evaluator put those traffic traces to the tested IDS.

43

9. IDS result analyzer gets those traffic traces as well as the alarms generated by the IDS.

He compares the traffic traces against the alarms to figure out the number of intrusions

are detected by the IDS in the test scenario.

10. The evaluation framework generates the report.

Figure 4.1: The working process of Automatic Intrusion Detection System [71]

The main problem in automatic evaluation is that there is missing IDS analysis within

particular infrastructure. Even if we make automatic evaluation and comparison with other

systems anyway network infrastructure should be analyzed. This process is extended with five

more steps which can be seen in Figure 4.2. Such automatic evaluation can be done if it is

necessary to compare some systems, but not for implementing system in organization network

infrastructure. New security approaches should match the nature of the security problems,

capable of adapting the strategy to new threats/attacks and of generating solutions

dynamically. Each new service can include different compositions of many new technological

equipment and software solutions, and these compositions entail different complex threats

and risks. The composition of services does not necessarily imply that the upper services

inherit the security attributes of its components. Each new composition adds and amplifies

vulnerabilities and threats, and therefore each new service would require a specific security

analysis [73]. Evaluation process should start from gathering user requirements for their

network infrastructure and get information about environment characteristics and specific of

NIDS, for example system type or architecture see Figure 4.2. From gathered information

44

correct objectives and evaluation metrics can be set. Just after these steps can be started script

generation and setting up of testing environment.

Figure 4.2: NIDS evaluation for particular network infrastructure [72]

4.1.1 Categories Of Intrusion Detection Systems

4.1.1.1 Signature Based Detection
Signature detection involves searching network traffic for a series of malicious bytes or

packet sequences. The main advantage of this technique is that signatures are very easy to

develop and understand if we know what network behavior we are trying to identify. For

instance, we might use a signature that looks for particular strings within exploit particular

buffer overflow vulnerability. The events generated by signature based IDS can communicate

the cause of the alert. As pattern matching can be done more efficiently on modern systems so

the amount of power needed to perform this matching is minimal for a rule set. For example if

the system that is to be protected only communicate via DNS, ICMP and SMTP, all other

signatures can be ignored. Limitations of these signature engines are that they only detect

attacks whose signatures are previously stored in database; a signature must be created for

every attack; and novel attacks cannot be detected. This technique can be easily deceived

because they are only based on regular expressions and string matching. These mechanisms

45

only look for strings within packets transmitting over wire. More over signatures work well

against only the fixed behavioral pattern, they fail to deal with attacks created by human or a

worm with self-modifying behavioral characteristics .Signature based detection does not

work well when the user uses advanced technologies like nop generators, payload encoders

and encrypted data channels. The efficiency of the signature based systems is greatly

decreased, as it has to create a new signature for every variation. As the signatures keep on

increasing, the system engine performance decreases. Due to this, many intrusion detection

engines are deployed on systems with multi processors and multi Gigabit network cards. IDS

developers develop the new signatures before the attacker does, so as to prevent the novel

attacks on the system. The difference of speed of creation of the new signatures between the

developers and attackers determine the efficiency of the system [47].

4.1.1.2 Anomaly Based Detection
The anomaly based detection is based on defining the network behavior. The network

behavior is in accordance with the predefined behavior, then it is accepted or else it triggers

the event in the anomaly detection. The accepted network behavior is prepared or learned by

the specifications of the network administrators. The important phase in defining the network

behavior is the IDS engine capability to cut through the various protocols at all levels. The

Engine must be able to process the protocols and understand its goal. Though this protocol

analysis is computationally expensive, the benefits it generates like increasing the rule set

helps in less false positive alarms. The major drawback of anomaly detection is defining its

rule set. The efficiency of the system depends on how well it is implemented and tested on all

protocols. Rule defining process is also affected by various protocols used by various

vendors. Apart from these, custom protocols also make rule defining a difficult job. For

detection to occur correctly, the detailed knowledge about the accepted network behavior

need to be developed by the administrators. But once the rules are defined and protocol is

built then anomaly detection systems works well. If the malicious behavior of the user falls

under the accepted behavior, then it goes unnoticed. An activity such as directory traversal on

a targeted vulnerable server, which complies with network protocol, easily goes unnoticed as

it does not trigger any out-of-protocol, payload or bandwidth limitation flags. The major

advantage of anomaly based detection over signature-based engines is that a novel attack for

which a signature does not exist can be detected if it falls out of the normal traffic patterns.

This is observed when the systems detect new automated worms. If the new system is

infected with a worm, it usually starts scanning for other vulnerable systems at an accelerated

46

rate filling the network with malicious traffic, thus causing the event of a TCP connection or

bandwidth abnormality rule [47].

4.1.2 Some Network Intrusion Detection Systems
CIDF (Common Intrusion Detection Framework):

Integrated with IETF and labeled as IDWG (Intrusion Detection Working Group) has

achieved considerable progress in defining the framework, the group defined a general IDS

architecture based on the consideration of four types of functional modules [47].

E-Modules (Event-Modules):

 Combination of sensor elements that monitor the target system, thus acquiring information

events to be analyzed by following modules [47].

D-Modules (Database-Modules):

The information from E-Modules are stored for further processing by following modules.

A-Modules (Analysis-Modules):

The Analysis of events and detecting probable aggressive behavior, so that some kind of

alarm will be generated if necessary.

R-Modules (Response-Modules):

 The main function of this type of block is the execution, if any intrusion occurs, of a response

to perplexing the detected threat. Normally, Anomaly based Network intrusion detection

systems (ANIDS) have following functional stages.

§ Observation stage: A model is built on based on behavioral characteristics of the

system. This can be done in many distinct ways, automatically or manually

(depending on the type of ANIDS considered).

§ Espial stage: If the model of the system is available, it is matched with the experiential

traffic [47].

L-Modules (Location- Modules):

Our proposed modules in this thesis it depend of hacker location to detect the attack.

4.1.3 Anomaly Detection Techniques

47

Anomaly detection (as shown in table 4.1)is based on a host or network. Many distinct

techniques are used based on type of processing related to behavioral model. They are:

Statistical based, Operational or threshold metric model, Markov Process or Marker Model,

Statistical Moments or mean and standard deviation model, Univariate Model, Multivariate

Model, Time series Model, Cognition based, Finite State Machine Model, Description script

Model, Adept System Model, Machine Learning based, Baysian Model, Genetic Algorithm

model, Neural Network Model, Fuzzy Logic Model, Outlier Detection Model, Computer

Immunology based, and User Intention based [47].

Table 4.1: Summary of the anomaly detection techniques

4.1.3.1 Statistical Models

Operational Model (or) Threshold Metric

The count of events that occur over a period of time determines the alarm to be raised if

fewer then "m" or more than "n" events occur. This can be visualized in Windows lock, where

a user after "n" unsuccessful login attempts. His allowed remaining attempts becomes zero.

Executable files size downloaded is restricted in some organizations to about 4MB. The

difficulty in this sub model is determining "m" and "n" [47].

Markov Process or Marker Model

The intrusion detection in this model is done by investigating the system at fixed intervals and

keeping track of its state; a probability for each state at a given time interval is determined.

The change of the state of the system occurs when an event happens and the behavior is

detected as anomaly if the probability of occurrence of that state is low. The transitions

between certain commands determine the anomaly detection where command sequences were

important[47].

48

Statistical Moments or Mean and Standard Deviation Model

In statistical mean, standard deviation, or any other correlations are known as a moment. If

the event that falls outside the set interval above or below the moment is said to be

anomalous. The system is subjected to change by considering the aging data and making

changes to the statistical rule data base. There are two major advantages over an operational

model. First, prior knowledge is not required determining the normal activity in order to set

limits; Second ،determining the confidence intervals depends on observed user data, as it

varies from user to user. Threshold model lacks this flexibility. The major variation on the

mean and standard deviation model is to give higher weights for the recent activities [47].

Multivariate Model

The major difference between the mean and standard deviation model is based on correlations

among two or more metrics. If experimental data reveals better judicious power can be

achieved from combinations of related measures rather than treating them individually.

Time Series Model

Interval timers together with an event counter or resource measure are major components in

this model. Order and inter arrival times of the observations as well as their values are stored.

If the probability of occurrence of a new observation is too low then it is considered as

anomaly. The disadvantage of this model is that it is more computationally expensive.

4.1.3.2 Cognition Models

Finite State Machine

A finite state machine (FSM) or finite automation is a model of behavior captured in states,

transitions and actions. A state contains information about the past, i.e. any changes in the

input are noted and based on it the transition happens. An action is a description of an activity

that is to be performed at a given moment. There are several action types: entry action, exit

action, and transition action.

Description Scripts

49

Numerous proposals for scripting languages, which can describe signatures of attacks on

computers and networks, are given by the intrusion detection community. All of these

scripting languages are capable of identifying the sequences of specific events that are

indicative of attacks.

Adept Systems

Human expertise in problem solving is used in adept systems. It solves uncertainties where

generally one or more human experts are consulted. These systems are efficient in certain

problem domain, and also considered as a class of artificial intelligence (AI) problems. Adept

Systems are trained based on extensive knowledge of patterns associated with known attacks

provided by human experts.

4.1.3.3 Cognition Based Detection Techniques

Cognition-Based (also called knowledge-based or expert systems) Detection Techniques work

on the audit data classification technique, influenced by set of predefined rules, classes and

attributes identified from training data, set of classification rules, parameters and procedures

inferred.

Boosted Decision Tree

Boosted Tree (BT), that uses ADA Boost algorithm [48] to generate many Decision Trees

classifiers trained by different sample sets drawn from the original training set, is

implemented in many IDS successfully[49, 50, 51]. All hypotheses, produced from each of

these classifiers, are combined to calculate total learning error, thereby arriving at a final

composite hypothesis.

Support Vector Machine

Support vector machines (SVM)) [52], reliable on a range of classification tasks, are less

prone to over-fitting problem, and are effective with unseen data. The basic learning process

of the SVM includes two phases:

1. Mapping the training data from the original input space into a higher dimensional

feature space, using kernels to transform a linearly non separable problem into a

linearly separable one.

50

2. Finalizing a hyper plane within the feature space, with a maximum margin using

Sequential Minimal Optimization (SMO) [53] or Osuna’s method [54].

Artificial Neural Network

Artificial Neural Network (ANN) architectures (popular one being, Multilayer Perceptron

(MLP), a layered feed-forward topology in which each unit performs a biased weighted sum

of their inputs and pass this activation level through a transfer function to produce their output

[55]), are able to identify not readily-observable patterns, however MLP is ineffective with

new data. For general signal processing and pattern recognition problems, another branch of

ANN that makes use of radial basis function, called The Modified Probabilistic Neural

Network (related to General Regression Neural Network (GRNN) classifier [56] and

generalization of Probabilistic Neural Network (PNN)), was introduced by Zaknich [57]. It

assigns the clusters of input vectors rather than each individual training case to radial units.

4.1.3.4 Machine Learning Based Detection Techniques:

Machine learning techniques to detect outliers in datasets from a variety of fields were

developed by [64] (use a One-Class Support Vector Machine (OCSVM) to detect anomalies

in EEG data from epilepsy patients) and Barbara (proposed an algorithm to detect outliers in

noisy datasets where no information is available regarding ground truth, based on a

Transductive Confidence Machine (TCM)] (58 [Unlike induction that uses all data points to

induce a model, transduction, an alternative, uses small subset of them to estimate unknown

attributes of test points. To perform online anomaly detection on time series data in [59], [59]

presented an algorithm using support vector regression. [60] present an adaptive anomaly

detection algorithm that is based on a Markov-modulated Poisson process model, and use

Markov Chain Monte Carlo methods in a Bayesian approach to learn the model parameters

[60].

4.1.3.5 Detection Models Based on Computer Immunology

Inspired by the ideas taken from the concept of immunology, the computational technique,

Artificial Immune System (AIS) is developed in developing adaptive systems that are capable

of solving problems from various domains. This has now become a tool for research which

studied well and applied in solving problems in the computer security field and particularly to

detect the viruses [61] in computers and also network intruders [62]. It is also applied to give

a solution to the scheduling problem [63], to build support systems in taking decisions or to

solve function optimization and combinatorial optimization problems [64]. Applying

51

immunology to the basic computational model is the subject of research; the widely applied

basic notions are antigen and antibody. The invaders which are foreign to the system and

attack it in some way are antigens. A part of system, and which helps in detecting and

eliminating the antigens are called antibodies. The detection of antigens is done by matching

them. The number of antigens is much higher than the number of antibodies in the system, so

a perfect matching can never occur. To keep a less number of antibodies, that reliably detect

large number of antigens that were never seen before, AIS-based system is used.

4.1.3.6 Models Based on User Intention

Building the profile of normal behavior and attempting to identify certain pattern or activity

deviations from normal profile. Anomaly detection is used to find unknown attacks by using

the concept of profiling normal behaviors. But significant false alarm may be caused because

it is difficult to obtain complete normal behaviors. Intrusion detection can be built upon

multiple levels in a real computer network system. It will be a choosing the features that

characterize the user or the system usage patterns in the best way, such that distinguishing

abnormal activities from normal activities is done clearly. Data sources like Unix shell

commands, audit events, keystroke, system calls and network packages can be used. The first

crucial step in building a profiling method for intrusion detection is selecting a data source.

During the early study on anomaly detection, the main focus was on profiling system or user

behaviors from monitored system log or accounting log data [47].

4.2 Network Intrusion Prevention Systems (NIPSs)
NIPSs are an advance combination of NIDSs, personal firewalls and anti-viruses etc. The

purpose of a Network Intrusion Prevention System (NIPS) is not only to detect an attack that

is trying to interrupt, but also to stop it by responding automatically such as logging off the

user, shutting down the system, stopping the process and disabling the connection etc. Similar

to NIDSs, NIPSs can be divided into two types, i.e. Host-Based Intrusion Prevention Systems

and Network-Based Intrusion Prevention Systems [70].

NIPSs are network security appliances that monitor network and/or system activities for

malicious activity. The main functions of intrusion prevention systems are to identify

malicious activity, log information about said activity, attempt to block/stop activity, and

report activity [65].

Network intrusion prevention systems are considered extensions of intrusion detection

systems because they both monitor network traffic and/or system activities for malicious

activity. The main differences are, unlike intrusion detection systems, intrusion prevention

52

systems are placed in-line and are able to actively prevent/block intrusions that are

detected [66][67]. More specifically, NIPSs can take such actions as sending an alarm,

dropping the malicious packets, resetting the connection and/or blocking the traffic from the

offending IP address [68]. An IPS can also correct Cyclic Redundancy Check (CRC) errors,

un-fragment packet streams, prevent TCP sequencing issues, and clean up unwanted transport

and network layer options [66] [69].

Intrusion detection systems are network or host based solutions. Network-based IDS systems

(NIDS) are often standalone hardware appliances that include network intrusion detection

capabilities. It will usually consist of hardware sensors located at various points along the

network or software that is installed to system computers connected to your network, which

analyzes data packets entering and leaving the network. Host-based IDS systems (HIDS) do

not offer true real-time detection, but if configured correctly are close to true real-time.

Host-based IDS systems consist of software agents installed on individual computers within

the system. HIDS analyze the traffic to and from the specific computer on which the intrusion

detection software is installed on. HIDS systems often provide features you can't get with a

network-based IDS. For example, HIDS are able to monitor activities that only

an administrator should be able to implement. It is also able to monitor changes to key

system files and any attempt to overwrite these files. Attempts to

install Trojans or backdoors can also be monitored by a HIDS and stopped. These specific

intrusion events are not always seen by a NIDS.

While it depends on the size of your network and the number of individual computers which

require intrusion detection system, NIDS are usually a cheaper solution to implement and it

requires less administration and training − but it is not as versatile as a HID. Both systems

will require Internet access (bandwidth) to ensure they system is kept up-to-date with the

latest virus and worm signatures [77].

Before evaluating IDPS products, organizations should define the requirements that the

products should meet . Evaluators need to understand the characteristics of the organization’s

system and network environments ، so that a compatible IDPS can be selected that can

monitor the events of interest on the systems and/or networks. Evaluators should articulate

the goals and objectives they wish to attain by using an IDPS, such as stopping common

attacks, identifying mis-configured wireless network devices, and detecting misuse of the

organization’s system and network resources. Evaluators should also review their existing

security policies, which serve as a specification for many of the features that the IDPS

53

products need to provide. In addition, evaluators should understand whether or not the

organization is subject to oversight or review by another organization. If so, they should

determine if that oversight authority requires IDPSs or other specific system security

resources. Resource constraints should also be taken into consideration by evaluators.

Evaluators also need to define specialized sets of requirements for the following :

• Security capabilities, including information gathering, logging, detection, and

prevention.

• Performance, including maximum capacity and performance features.

• Management, including design and implementation (e.g., reliability, interoperability,

scalability ، product security), operation and maintenance (including software

updates), and training ، documentation, and technical support .

• Life cycle costs, both initial and maintenance costs.

4.2.1 Key Functions of IDPS Technologies

There are many types of IDPS technologies, which are differentiated primarily by the types of

events that they can recognize and the methodologies that they use to identify incidents. In

addition to monitoring and analyzing events to identify undesirable activity, all types of IDPS

technologies typically perform the following functions :

- Recording information related to observed events: Information is usually recorded

locally, and might also be sent to separate systems such as centralized logging servers,

security information and event management (SIEM) solutions, and enterprise

management systems.

- Notifying security administrators of important observed events: This notification,

known as an alert, occurs through any of several methods, including the following: e-

mails, pages, messages on the IDPS user interface, Simple Network Management

Protocol (SNMP) traps, syslog messages, and user-defined programs and scripts. A

notification message typically includes only basic information regarding an event;

administrators need to access the IDPS for additional information .

- Producing reports: Reports summarize the monitored events or provide details on

particular events of interest .Some IDPSs are also able to change their security profile

when a new threat is detected. For example, an IDPS might be able to collect more

detailed information for a particular session after malicious activity is detected within

that session. An IDPS might also alter the settings for when certain alerts are

triggered or what priority should be assigned to subsequent alerts after a particular

54

threat is detected .IPS technologies are differentiated from IDS technologies by one

characteristic: IPS technologies can respond to a detected threat by attempting to

prevent it from succeeding. They use several response techniques, which can be

divided into the following groups :

§ The IPS stops the attack itself: Examples of how this could be done

are as follows :

o Terminate the network connection or user session that is being

used for the attack .

o Block access to the target (or possibly other likely targets) from

the offending user account, IP address, or other attacker

attribute .

o Block all access to the targeted host, service, application, or

other resource .

§ The IPS changes the security environment: The IPS could change

the configuration of other security controls to disrupt an attack.

Common examples are reconfiguring a network device (e. g., firewall,

router, switch) to block access from the attacker or to the target, and

altering a host-based firewall on a target to block incoming attacks.

Some IPSs can even cause patches to be applied to a host if the IPS

detects that the host has vulnerabilities .

§ The IPS changes the attack’s content: Some IPS technologies can

remove or replace malicious portions of an attack to make it benign. A

simple example is an IPS removing an infected file attachment from an

e-mail and then permitting the cleaned email to reach its recipient. A

more complex example is an IPS that acts as a proxy and normalizes

incoming requests, which means that the proxy repackages the payloads

of the requests, discarding header information. This might cause

certain attacks to be discarded as part of the normalization process .

Another common attribute of IDPS technologies is that they cannot provide completely

accurate detection. When an IDPS incorrectly identifies benign activity as being malicious, a

false positive has occurred. When an IDPS fails to identify malicious activity, a false

negative has occurred. It is not possible to eliminate all false positives and negatives; in most

cases, reducing the occurrences of one increases the occurrences of the other. Many

55

organizations choose to decrease false negatives at the cost of increasing false positives,

which means that more malicious events are detected but more analysis resources are needed

to differentiate false positives from true malicious events. Altering the configuration of an

IDPS to improve its detection accuracy is known as tuning . Most IDPS technologies also

offer features that compensate for the use of common evasion techniques .Evasion is

modifying the format or timing of malicious activity so that its appearance changes but its

effect is the same. Attackers use evasion techniques to try to prevent IDPS technologies from

detecting their attacks. For example, an attacker could encode text characters in a particular

way, knowing that the target understands the encoding and hoping that any monitoring IDPSs

do not. Most IDPS technologies can overcome common evasion techniques by duplicating

special processing performed by the targets. If the IDPS can “see” the activity in the same

way that the target would, then evasion techniques will generally be unsuccessful at hiding

attacks [78].

4.2.2 IDPS Product Selection
There are many points to select an IDS or an IPS. The following are the main six criteria

[79]:

1. Provide comprehensive protection for all types of network attacks

As with all security systems, the comprehensiveness of protection provided by an

intrusion detection and prevention system is a critical element to its ability to

accurately identify threats and effectively secure the network. Yet many products fall

short. The inherent complexity of network traffic, which includes the vast number of

protocols at both the network (IP, TCP, UDP, ICMP, etc.) and application (HTTP,

FTP, SMTP, DNS, POP3, IMAP, etc.) layers, provides attackers ample vulnerabilities

to exploit. Combine the inherent complexity with the fact that attacks come in

different shapes and forms, and attackers have a virtual buffet to choose from when

they are attacking your network. If a system does not support one of these protocols or

types of attacks, it will ignore and miss the attack, leaving the enterprise network and

its valuable corporate data unprotected. To thwart the attacker’s efforts, a device needs

to be able to address and protect against all types of traffic and potential attacks .

2. Ensure a high degree of accuracy

Accuracy is key to an effective and efficient intrusion detection and prevention

system. To create a high level of accuracy, a system must be able to track all network

communications, interpret the intent of each individual communication, and then make

56

a security decision, based on accurate evidence of an attempted attack perpetration. If

the product isn’t accurate, attacks may go undetected or benign traffic may be alerted

on as an attack. Attacks that go by undetected is the worst scenario because it means

the network is vulnerable and the administrator has to try and figure out what

happened from scratch. However, if the number of false alarms that a device sends out

overwhelms the administrator, or even outnumber the real ones, it is also very

detrimental, wasting valuable time and resources chasing down false alarms and

eroding the trust that an administrator has in the system. The system needs to be

reliable and accurately detect all the attacks in the network.

3. Process traffic in a highly efficient manner

Efficient data processing, to ensure that all functions of the system are optimally

performed, is another important element of effective intrusion detection and

prevention .The system must process traffic quickly, make security decisions instantly,

and present that information to the network manager in a timely fashion, ensuring the

administrator has a real-time view of the system at all times. A slow system that

cannot keep up with the rapid flow of network traffic can mean missed attacks and an

increasingly vulnerable corporate network. An administrator should also be able to

choose the level of performance for the device to meet network requirements and

ensure that both fast Ethernet and Gigabit network segments can be protected. The

device needs to perform in an optimal manner, so that the administrator knows exactly

what is going on in the network at any given time.

4. Protect against an attack without latency

Whether an intrusion detection and prevention system can stop the attack from ever

reaching its victim is the cornerstone to its prevention capabilities. How effective is

an intrusion detection system that has to rely on another system to try to prevent an

attack ؟The answer is obvious, but many intrusion detection products do just that,

sending a request to a firewall or even the victims themselves to try to end the attack.

All of these mechanisms come after the attack has already reached the victim, so even

when successful, they require the network administrator to investigate exactly how

much the attack was able to do before it was stopped. Any device that introduces

latency to the prevention response, is not able to offer true prevention. A truly

effective solution can actively prevent attacks during the detection process and drop

57

the malicious traffic. This ensures it never reaches its intended victim, keeping the

enterprise network and sensitive, mission-critical data safe and secure .

5. Deliver ease of use

The ease of use of intrusion detection and prevention system translates directly into

greater control and a higher degree of security. If the system enables administrators to

quickly view pertinent, critical information and make adjustments, network managers

can ensure the network is efficiently protected from the latest threats and the most up-

to-date security policy is in force. If a device is hard to control and understand,

administrators are going to waste time trying to find the information they need to do

their job. It is important that the solution enables both a quick summary of the most

important types of events, as well as a way to quickly drill into the raw data and

manipulate it to analyze individual incidents. Providing a granular level of control in

an intuitive manner to security managers, not only ensures that the system meets the

company’s specific security requirements, but also that valuable IT time and resources

are not misspent or wasted.

6. Simple installation and maintenance

In today’s highly distributed, global enterprises, the intrusion detection and prevention

product must be both easy and cost-effective to install and maintain. Companies

simply cannot spare the time and resources required to update each individual device

within the corporate network every time a change is made to the enterprise’s security

policy or a new attack is detected from which the enterprise must be protected. Quick

system installation, security policy definition, and easy, global updates from a single,

centralized location ensure that enterprise IT teams scattered around the globe can

have a comprehensive, real-time view of the system and the network.

4.3 Scapy

Scapy is a powerful interactive packet manipulation program. It is able to forge or decode

packets of a wide number of protocols, send them on the wire, capture them, match requests

and replies, and much more. It can easily handle most classical tasks like scanning,

tracerouting, probing, unit tests, attacks or network discovery (it can replace hping, 85% of

nmap, arpspoof, arp-sk, arping, tcpdump, tethereal, etc.). It also performs very well at a lot of

other specific tasks that most other tools can't handle, like sending invalid frames, injecting

someone’s own 802.11 frames, combining techniques (VLAN hopping+ARP cache

poisoning, VOIP decoding on WEP encrypted channel, ...), etc. [36].

58

Scapy uses the python interpreter as a command board. This means that we can use directly

python language (assign variables, use loops, define functions, etc.) [37].

In the following subsections we present some of the Scapy topics.

4.3.1 Installing Scapy
The main prerequisite to run Scapy is Python 2.5, one of the features of Scapy is that once

you start creating packets within the application you can then use it in python scripts/code.

The following steps are what you need to get started with Scapy:

1. Install Python 2.5+

2. Download and install Scapy

3. Install additional software for special features (Optional):

4. Run Scapy with root privileges

In the following we describe these steps in some detail.

Install Python 2.5+

The official documentation for Scapy states Python 2.5 to run Scapy 2.x,

In Ubuntu Linux Operating system you can simply type:

$ sudo apt-get install python

Download and install Scapy

Once you have python installed you need to get scapy. There are a few ways you can do this.

The following are some of the popular ones:

$ sudo apt-get install python-scapy

$ cd /tmp

$ wget scapy.net

$unzip scapy-latest.zip

$ cd scapy-2.*

$ sudo python setup.py install

Install additional software for special features (Optional):

Now by this point you should have Scapy installed, you can test this by simply typing this in a

terminal:

$ sudo scapy

WARNING: No route found for IPv6 destination :: (no default route?)

59

Welcome to Scapy (2.2.0)

To exit out of Scapy, just type:

>>> exit()

Version 2.2.0 seems to be latest stable build and it is the version we will use in this thesis.

Now when you just ran Scapy you might have noticed some errors about components

missing, Scapy can do a lot of extra things such as providing 3D maps, graphs, charts etc but

you need some extra packages. Here’s the command to get all those extra goodies:

$ sudo apt-get install tcpdump graphviz imagemagick python-gnuplot pythoncrypto

python-pyx (this is all one line)

Run Scapy with root privileges

The following is the command to do this:

$ sudo scapy

The, you may see this:

WARNING: No route found for IPv6 destination :: (no default route?)

Welcome to Scapy (2.2.0)

>>>

So that covers the install of Scapy. And you are all set to get started.

4.3.2 Creating a Packet
You will slowly build your knowledge and start experimenting yourself with Scapy. To start

with we are going to create a single ICMP packet with the well-known message

“HelloWorld” contained as the payload [38].

Welcome to Scapy (2.2.0)

>>> send(IP(dst="10.1.99.2")/ICMP()/"HelloWorld")

Sent 1 packets.

>>>

There are many Scapy commands that we used to program our SRP. To see this command

you can type:

>>>lsc()

4.3.3 Probe Once, Interpret Many
Network discovery is blackbox testing. When probing a network, you will send many stimuli,

and some of them will be answered. If you choose the right stimuli you can obtain the

60

information you need from the responses or from the lack of responses. Unlike many tools,

Scapy will give you all the information, i.e. all the stimuli you sent and all the responses you

got. You will have to look into them to get the information you are looking for. When the

dataset is small، you can just dig for it. In other cases, you will have to choose a point of view

on this data. Most tools choose the point of view for you and loose all the data not related to

the given point of view. Because Scapy gives you the whole raw data, you can use them many

times and have your point of view evolve during your analysis. For example, you can probe

for a TCP port scan, visualize the data like the result of a port scan, then decide you would

like to also visualize the TTL of response packet. You do not need to do a new probe each

time you want to visualize other data [39].

4.3.4 Scapy Decodes, It Does Not Interpret
A common problem in network probing tools is that they try to interpret the answers they got

instead of only decoding and giving facts. Saying something like I received a TCP Reset on

port 80 is not subject to interpretation errors. Saying the port 80 is closed is an interpretation

that can be right most of the time but wrong in some specific contexts. For instance, some

scanners tend to report a filtered TCP port when they receive an ICMP destination

unreachable packet. This may be right, but in some cases it means the packet was not filtered

by the firewall but there was no host to forward the packet to interoperating results can help

people that don’t know what a port scan is. But it can also make more harm than good, as it

bias the results. In fact, what happen to people that know exactly what they are doing and that

know very well their tools is that they try to reverse the tool’s interpretation to get the facts

that triggered the interpretation, in order to do the interpretation themselves [39].

61

Chapter 5

Hacker Location Detection

System (HLDS) Methodology

62

5.1 Introduction
In this chapter we present our proposed Hacker Location Detection System (HLDS) which is

capable of both detection of hackers and identification of their location based on their IP

address, MAC address, and geographic location. HLDS is a Software Router Plug-in (SRP)

that will be used in IPv6 routers to provide Internet security. Since hackers are able to change

IP and MAC addresses of their computers and NIC respectively, our proposed system does

not depend only on IP or MAC addresses but also on location of hackers. Hence, even if

hackers change these IP and/or MAC addresses our proposed system is capable of tracing

these hackers.

The idea of HLDS is based on the knowledge of the geographical location hackers from

previous experience. This location is used by hackers to hack network packets passing

through them.

When a user sends a packet to another user and the packet passes through the hacker’s router

then HLDS will alarm the communicating users if HLDS has the location of the hacker stored

in Hacker Location Database (HLDB) server used by HLDS. HLDB is a database that stores

known hacker locations based on previous experience. It is updated regularly to reflect the

new situation of hackers and their locations. The accuracy of HLDS is based on the accuracy

of information stored about hackers in HLDB and its constant update. Hackers could use

different locations at different times. This leads to false positive alarms as well as false

negative alarms. A false positive alarm is generated by HLDS when the packet passes through

router at a location that is identified as a hacker’s location while in reality the location is not

used by a hacker. This could be due to existence of not-hacker routers that use the same

location that is stored in HLDB as a hacker’s location. A false negative result of HLDS is

when HLDS does not generate an alarm while in reality the packet passed through a router in

a location that is not identified by HLDS as a hacker’s location. This could be due to the fact

that HLDB is not updated to include that location. Hence, the accuracy of HLDS is dependent

on the frequent updating of HLDB to reflect recent changes in hackers locations. This

minimizes false negative and also false positive alarms. We could minimize false positive

alarms by updating HLDB so as to remove any location that does not contain a hacker router

anymore. In addition, we could minimize false negative result by adding locations that are new

and which contain new hacker locations. False positive alarms may also be generated when a

non-hacker router uses the location of the hacker router. This could be minimized by

63

specifying the location of the hacker router more accurately and precisely using accurate

Geographic Position Systems (GPSs).

HLDS is able to detect different attacks including Man-in-the-Middle (MITM), mail phishing,

IP spoofing, packet sniffing. These attacks attack data confidentiality, authenticity and

integrity. Hence, HLDS demonstrates if computer networks have any security vulnerabilities.

HLDS uses the following tools and technologies:

- Packet Tracer: Packet tracer is used as a simulator to simulate of complex networks

used in our test bed. Packet Tracer will simulate most popular network devices such as

Cisco switches and routers by allowing the network administrator to try different

network topologies.

- Scapy: Scapy is used to develop the code for the validation experiments, and to

develop the software plug-in. In addition, HLDS uses Scapy to decode, craft, generate,

modify, manipulate, and capture packets through writing the appropriate Scapy code.

Scapy is a good security tool that enables programmers to write code effectively in

regards to number of lines.

- Traceroute: Traceroute is the program that shows you the route over the network

between two systems, listing all the intermediate routers a connection must pass

through to get to its destination. It can help you determine why your connections to a

given server might be poor, and can often help you figure out where exactly the

problem is. It also shows you how systems are connected to each other, letting you see

how your ISP connects to the Internet as well as how the target system is connected

[84].

HLDS will be used as a testing tool by network users, network administrators, ISPs, and

hackers. Each of these users will use HLDS for different reasons and purposes.

The contribution of this thesis is the proposed HLDS tools, addition of a SRP that enhances

IPv6 routers security. This SRP enables IPv6 routers to detect a lot of vulnerabilities and

Malwares.

5.2 Hacker Location Detection System (HLDS) Software Router

Plug-in (SRP)
After we install and configure the test bed, now we are ready to program the HLDS. Hackers

can attack any computer in the world that is connected to the Internet, which means that

someone could be probing your computer right now and checking it for weaknesses. Even

64

worse is that you may catch a hacker in your computer, but as soon as he disconnects, he is

gone.

Since hackers can appear and disappear at any time, there is nothing to stop them from

attacking any computer they want, since it is highly unlikely that they will ever get caught. To

eliminate the hacker's refuge in anonymity, HLDS developed a hack tracer, which can trace a

hacker back to his Internet service provider (ISP) and possibly even find the hacker's location

as well.

Knowing an IP address may identify the hacker's location, but the cryptic series of numbers

that make up an IP address might not give you a clue where the hacker is located. The next

time your firewall or IDS identifies a hacker's IP address, run it through McAfee Visual

Trace, which is part of the McAfee Personal Firewall program [81] or “what is my IP

address" [82] to see the hacker's approximate location on a world map. Figure 5.1 shows the

geographical location of a particularly persistent hacker. After tracing enough hackers' IP

addresses, you may be surprised to find that your personal computer in Gaza has been

targeted by hackers in Korea, Canada, or Germany.

To further track down hacker activity, visit traceroute [83] and share hacker attempts on your

computer with people all over the world. The more people who pool information about

hackers, the more likely whatismyipaddress.com/traceroute-tool can identify specific types of

attacks and pinpoint the IP addresses of the more active hackers in the world. Figure 5.2

identifies the top ISPs used by hackers around the world using traceroute.

65

Figure 5.1: Geographical location of a particularly persistent hacker

66

Figure 5.2: Identifying the top ISPs used by hackers around the world

While hackers can always choose when to attack a computer, that does not mean that your

computer needs to be defenseless. With a good firewall, an intrusion-detection system, a

securely patched operating system, and even a honeypot, you can protect your computer and

possibly turn the tables on the hacker by tracing him and revealing his location for everyone

to see. If enough people contact the ISP used by a particularly annoying hacker, the ISP may

disconnect the hacker and force him to look for alternative ISPs. If this happens often enough,

67

this may not discourage the hacker, but at least it can cause him enough trouble that he might

restrict his activities and spare many potential victims from future attacks.

Figure 5.3 shows the block diagram of the proposed HLDS SRP used to detect, trace and

locate hackers. Figure 5.3 shows that HLDS has four main modules:

- HLDB Server Module: HLDB Server Module contains the Hacker Location

Database (HLDB) that includes the known locations of the hackers. HLDB is to be

provided by a third party.

- HLDB Update Module: HLDB Update Module updates the HLDB based on the New

hacker location information received.

- Traceroute Module: Traceroute Module is used to trace the route of the packet that is

being monitored. It lists all routers that the packet passed through from source to

destination. Information provided by traceroute includes the IP addresses of these

routers as well as their geographic locations.

- HLDS Monitor Module: HLDS Monitor Module monitors the packets paths and

generates an alarm if any packet that is being monitored has passed through a hacker

router. This is determined by comparing the locations of the routers that the monitored

packet passes through with the locations of the routers in the HLDB.

The inputs to the HLDS are:

- Packets to be monitored: These packets are submitted to the HLDS for checking

whether they passed through a hacker router.

- New hacker location information: This information is used to update the HLDB

regularly and frequently. The accuracy of HLDS depends on the acuuracy of the data

in the HLDB.

Output of the HLDS is:

- Result: Results indicate whether the monitored packets passed through a hacker router

or not. Results are used to warn the network managers, ISPs, and network users.

68

Figure 5.3: HLDS block diagram

Figure 5.4 shows the flowchart of the proposed Hacker Location Detection System (HLDS)

SRP. The flowchart of Figure 5.4 shows that HLDS executes the steps shown in Code 5.1

which presents the pseudo-code of HLDS. Code 5.1 explains flowchart of Figure 5.4.

Update
regularly

Packet P

Third party
new hacker
informa on

Results

Routers loca on in
path of packet P

HLDB server

Module

HLDS Monitor
Module

Traceroute

Module

HLDB Update
module

Hackers
loca ons

69

algorithm HLDS(input New hacker location information,

 List of packets to be monitored PL,

 output: monitoring results Result)

1. Begin

2. The HLDB is created/imported into the HLDB server if we used HLDS for the first

time. Otherwise, HLDB is updated periodically using the HLDB Update Module.

HLDB Update Module uses the input “New hacker location information” for this

purpose.

3. Packets are passed to HLDS for monitoring, Input “List of packets to be monitored

PL” is used for this purpose.

4. For each packet P in PL, HLDS executes the following steps:

4.1Traceroute is invoked to supply HLDS with routers that P passed through from

source to destination. Traceroute generate a list of routers RL.

4.2 For each router R in RL

4.2.1 HLDS Monitor Module compares location of R with hacker routers locations

stored in HLDB.

4.2.2 If Location of R == any hacker router location in HLDB then

 HLDS generates an alarm that packet P has been hacked.

 Result: “Packet has been hacked”

4.2.3 Else if location of R != all hacker routers locations in HLDB then HLDS

generates a message stating that packet P passed through safe routers.

 Result” “Packet passed through a safe route”

5. End algorithm

Code 5.1: HLDS pseudo-code

70

Figure 5.4: HLDS flowchart

5.3 HLDS Test bed Development
The environment required for HLDS is strictly based on devices composed of machines

running Ubuntu operating system. These machines will be used to demonstrate the scope and

capabilities of HLDS.

No

Yes

Yes

No

Start

Did P pass through a hacker
loca on listed in HL DB

Create or update hacker
loca on dat a base (HL DB)

Trace a packet P using
traceroute

Alarm the user with message
"Your packet May have beeen

hacked"

Is there new Packet
P

stop

71

HLDS uses the Ubuntu distribution of Linux operating system with Scapy installed on the

host OS with packet tracer CISCO academy tool to simulate Cisco routers and switches. The

following sections will explain the HLDS required environment in more detail.

5.3.1 Scapy Installation
The operating system used for HLDS is Ubuntu release 12.04.1 LTS. Ubuntu as the universal

operating system has a package management system to provide packages in binary format.

Scapy is one of those packages which are available through Ubuntu package management

system. The installation of Scapy using Ubuntu package management system is simply to

install python-Scapy with graphical user interface. Then we need to fetch “python-Scapy”

binary package from the official Ubuntu package repository and install it.

Python-Scapy depends on other packages that need to be installed on the system before the

package is to be installed.

We need to ensure that python 2.6 is installed as well as other required packages. An

alternative to installing Scapy using a pre-build binary package is downloading the package

from the maintainer’s website (http://www.secdev.org/projects/scapy/). This will provide the

most up-to-date release of Scapy.

HLDS users need to learn the basics of Scapy in order to develop tests and experiments using

the tool. Scapy provides users with capabilities to generate, craft, modify, capture of packets

through writing the appropriate code. It enables users to modify any field in the packet. A

good starting point to learn Scapy is reference [85].

Note: Scapy requires more privileges than a regular user and must be ran as root.

5.3.2 Packet Tracer Installation and Setup
Packet Tracer is a graphical network simulator that allows simulation of complex networks

[80]. Simply stated, Packet Tracer will simulate most popular network devices such as Cisco

Switches and Routers by allowing the network administrator to try different network

topologies. The simulator is a Graphical User Interface (GUI) that facilitates the Cisco IOSs.

It simulates both desktops and servers computers with different architectures. The simulator

will facilitate all network connections between all devices used. The installation of Packet

Tracer is simply downloading the binary package from Packet Tracer web site of ref. [86].

Once downloaded, it is extracted to a location on the file system in Ubuntu package system

and could be installed using the Ubuntu package management system. We will not provide

detailed instruction on how to install Packet Tracer. In order to implement HLDS we installed

http://www.secdev.org/projects/scapy/)

72

and configured Packet Tracer properly. The version of Packet Tracer used for this thesis is

5.3.0.0088. Note that Packet Tracer uses official Cisco IOS images.

5.3.3 HLDS Environment Setup
At this point, all applications required for HLDS are installed and configured properly. This

section provides detailed information about the network topology used to test, validate and

experiment HLDS. The topology will be created using Packet Tracer to simulate end nodes

such as Windows 7 client and Linux. Figure 5.5 shows the first test bed network topology.

Figure 5.5 was developed using packet tracer. The topology consists of an Internet cloud

which connects routers used in the test bed. The red points that connect network devices mean

that devices are not configured yet. A router in the topology is the router-on-a-stick that will

be responsible for routing internal traffic between the various VLANs and external traffic by

sending frames to the next hop which is the tap on the host machine. Traffic from one VLAN

must be routed using routers before reaching its final destination.

Gaza router in Figure 5.5 has two interfaces:

- The first interface is Fa0/0 with global IPv6 address of 2001:BDA:0:1::2/64 (local link

address FE80::2) which is connected to the layer two switch that connects the Hacker

Location DataBase (HLDB) server and the victim.

- The second interface is Fa0/1 with global IPv6 address of 2001:BDA:0:2::22/64 (local

link address FE80::22) which is connected to Internet cloud tap.

Lamaca router has three interfaces:

- Fa0/0 with global IPv6 address of 2001:BDA:0:4::4/64 (local link address FE80::4)

which is connected to the cloud0 tap.

- Fa0/1 with global IPv6 address of 2001:BDA:0:3::5/64 (local link address FE80::5)

which is connected to hacker PC.

- Fa1/0 with global IPv6 address of 2001:BDA:0:5::6/64 (local link address FE80::6)

which is connected to the cloud1 tap.

London router has two interfaces:

- Fa0/0 with global IPv6 address of 2001:BDA:0:6::7/64 (local link address FE80::7)

which is connected to the cloud1 tap.

- Fa0/1 with global IPv6 address of 2001:BDA:0:7::8/64 (local link address FE80::8)

which is connected to destination PC.

73

Figure 5.5: First test bed topology of HLDS

In Figure 5.5 we configured the network devices as follows:

- The HLDB server was configured with global IPv6 address of 2001:BDA:0:1::3/64

(local link address FE80::3). We installed on it the Hacker Location Database

(HLDB) which defines the locations of known hackers (or Hacker Homes). Each

entry in the HLDB includes the 4 tuple (Hacker IP address, Hacker MAC address,

Hacker’s location –latitude, Hacker’s location – longitude). IP and MAC addresses of

the hacker may be changed by the hacker. Thus, HLDS does not depend only on these

addresses but also on its geographic location. Geographic location of the hacker

cannot be spoofed by the hacker. The HLDB server contains virtual database.

- The victim (sender of the packet) PC with global IPv6 address of 2001:BDA:0:1::1/64

(local link address FE80::1).

- The Cisco Router model 2811 is used to build Gaza router. Figure 5.6 shows the

configuration of Gaza router.

- The Cisco Router model 2811 is used to build a host with the name

LAMACA. Figure 5.7 shows the configuration of LAMACA router.

- The Cisco Router model 2811 is used to build a host with the name London router.

Figure 5.8 shows the configuration of London router.

- The hacker PC is configured with IPv6 address of global IPv6 address of

2001:BDA:0:4::44/64 (local link address FE80::44).

- The destination PC is configured with global IPv6 address of 2001:BDA:0:7::9/64

(local link address FE80::9)

74

After the configuration our test bed as shown above, network topology is configured

properly. Then every red connected port in Figure 5.5 is changed to green as shown in

Figure 5.9.

Figure 5.6: Gaza router configuration

75

-

Figure 5.7: Lamaca router configuration

76

Figure 5.8: London router configuration

Figure 5.9: Test bed topology of Figure 5.5 (first test bed of HLDS) after being configured

77

Chapter 6

Hacker Location Detection

System (HLDS) Validation

78

6.1 Introduction
In this chapter we validate the proposed HLDS. We develop experiments to measure the

performance of HLDS. We used some performance metrics to measure the performance of

HLDS. The performance metrics used are:

- Accuracy: Accuracy measures the rate of generating correct results. If there are N

packets being monitored by HLDS and there are x of these packets for which HLDS

predicts correctly if the path of these packets is hacked or not then:

accuracy (%) = (x/N)*100%

Accuracy is also called Detection Rate (DR) which is defined as the number of

intrusion instances detected by the system (True Positive) divided by the total number

of intrusion instances present in the test set.

- False positive rate: This is the rate at which HLDS generates an alarm that a packet

has been hacked while in reality the packet has not been hacked. If HLDS tests N

packets for possible hacking. In addition, HLDS generates N1 positive alarms that N1

packets have been hacked out of N packets. If x of these N1 alarms are false, then:

False positive rate (%) = (x/N1)*100 %

- False negative rate: This is the rate at which HLDS dos not generates an alarm that a

packet has been hacked while in reality the packet has been hacked. If HLDS tests N

packets for possible hacking. In addition, HLDS generates N1 negative alarms that N1

packets have been hacked out of N packets. If x of these N1 alarms are false, then:

False negative rate (%) = (x/N1)*100 %

In order to validate HLDS we compare the performance results of HLDS with performance of

similar tools in the literature. The comparison shows how HLDS performs compared to other

similar tools.

To test HLDS, we develop test beds. These test beds are network topologies that connect two

nodes, the source node and the destination node. The source and node in the test bed topology

have multiple routers between them. These routers represent the path connecting the source

and destinations.

79

6.2 HLDS Results of First Test Bed

The first test bed we developed was presented in Section 5.3.3. It connects the source node

which is located in Gaza and the destination node which is located in London.

We used ping command to test the health of the path connecting source and destination of the

first test bed which is shown in Figure 5.5. The result of the ping is shown in Figure 6.1.

Figure 6.1 shows that there is a network connection between Gaza (source node) and London

(destination node).

Figure 6.1: ping from Gaza node to London node of the test bed of Figure 5.5 (first test bed)

In order to test HLDS we create two paths. The first path is a healthy path whose routers

between source and destination are safe and not hacked, i.e., no router’s location of these

routers is in the HLDB. The second path is a hacked path where one of the routers in the path

between source and destination is hacked, i.e., its location is in the HLDB.

Then, we craft packets using Scapy. These packets will be tested for hacking through passing

through both the healthy path and hacked path. We develop code using Scapy for this purpose.

The result of HLDS Monitoring Module could be one of the following:

- HLDS does not generate an alarm when the packet passes through the healthy path. In

this case HLDS works correctly and accurately.

80

- HLDS generates an alarm when the packet passes through the healthy path. In this case

HLDS works incorrectly and produces a wrong result. This case is called false positive

since HLDS should not generate an alarm but it does. HLDS produces a false positive

result when a safe router in the path has its location stored in HLDB. This is due to this

safe router being too close geographically to a hacked router whose location is stored in

HLDB. The case of false positive could also be that a hacked router does not anymore

use its location that has been previously stored in the HLDB.

- HLDS generates an alarm when the packet passes through the hacked path. In this case

HLDS works correctly and accurately.

- HLDS does not generate an alarm when the packet passes through the hacked path. In

this case HLDS works incorrectly and produces a wrong result. This case is called

false negative since HLDS should generate an alarm but it does not. HLDS produces a

false negative result when a hacker router in the path does not have its location stored

in HLDB. This is due to this hacked router being new such that it is not identified yet

as a hacked router and hence its location is not yet stored in the HLDB. The case of

false negative could also be that a hacked router whose location that is stored in the

HLDB is an old location and this hacked router does not anymore use this location.

The next step is to run HLDS Code shown in Code 6.1. In Code 6.1, HLDS runs traceroute

program between source node and destination node. Code 6.1 shows the HLDS Scapy

program needed to implement this task. In Code 6.1 HLDS invokes traceroute. Code 6.1

works for the test bed case of Figure 5.5. This test bed was presented in Section 5.3.3. Code

6.1 does the following:

- HLDS crafts a packet at the source node for being tested.

- HLDS creates a healthy path that connects source and destination that does not include

a hacked router whose location is in the HLDB.

- HLDS creates a hacked path that connects source and destination through a sequence

of routers, where one of these routers is a hacked router whose location is stored in the

HLDB.

- HLDS invokes traceroute to trace the crafted packet. Traceroute will generate a list IP

addresses of routers that the packet passed through.

- HLDS converts the IP addresses of the routers generated by traceroute into

geographical locations.

81

- HLDS checks whether HLDB contains the location of any router in the path between

source and destination. If HLDB contains the location of any router in the path

between source and destination, then, HLDS generates an alarm. Otherwise, HLDS

does not generate an alarm.

Create Victim (source node) IPv6 Packet

 i=IPv6()

 i.src="2001:bda:0:1::1"

 i.dst="2001:bda:0:7::9"

 q=ICMPv6EchoRequest()

 p=(i/q)

 sr1(p)

Create Victim (source node) IPv6 Packet path without passing through hacker location

 h1=IPv6ExtHdrRouting()

h1.addresses=["2001:bda:0:1::2","2001:bda:0:2::2","2001:bda:0:3::5","2001:bda:0:5::6","2001:bda:0:6

::7","2001:bda:0:7::8"]

Create Victim (source node) IPv6 Packet path that passes through hacker’s router

 h2=IPv6ExtHdrRouting()

h2.addresses=["2001:bda:0:1::2","2001:bda:0:2::2","2001:bda:0:3::5","2001:bda:0:4::4","2001:bda:0:5

::6","2001:bda:0:6::7","2001:bda:0:7::8"]

Traceroute Victim (source node) IPv6 Packet

 waypoint = "2001:bda:0:1::2"

 target = "2001:bda:0:7::9"

 t1= traceroute6(waypoint, minttl=15 , maxttl=34, l4=h1 (addresses=[target])

/ICMPv6EchoRequest(data=RandString(7)))

 t2= traceroute6(waypoint, minttl=15 , maxttl=34, l4=h1 (addresses=[target])

/ICMPv6EchoRequest(data=RandString(7)))

Convert traced IPv6 addresses to locations

 L1=Convtolocation(t1)

 L2=Convtolocation(t2)

check for hacking

for i in range(2):

 for addr in Li:

 If addr=hackerLocation

 print('Your packet may have been hacked')

 els continue

 end for

end for

Code 6.1: HLDS Scapy program that tests test bed topology of Figure 5.5 (first test bed)

82

When running HLDS program of Code 6.1 and force the crafted packet to pass through the

hacked path, HLDS generates the alarm message 'Your packet may have been
hacked' and sends this message to the source node. When running HLDS program of Code

6.1 and force the crafted packet to pass through the safe path, HLDS does not generate any

alarm message. This means that HLDS works correctly for the first test bed topology.

6.3 HLDS Results of Second Test Bed
In this section we present a second test bed. Here we examine HLDS with another test bed to

see if it works correctly for a different topology than that which was presented in the first

topology of Figure 5.5.

In the second test bed topology the victim node (source node) is located in Tokyo in Japan

with latitude of 35.6851 and longitude of 139.75141. The hacker’s router is located in

Istanbul in Turkey with latitude of 41.0186 and longitude of 28.9647. The destination node is

located in Paris in France with latitude of 48.8667 and longitude of 2.3333. This topology is

shown in Figure 6.2. Figure 6.2 was developed using packet tracer.

Figure 6.2: Second test bed topology of HLDS

The topology of Figure 6.2 consists of an Internet cloud which connects routers used in the

second test bed. The red points that connect network devices mean that devices are not

configured yet. So we configure each device as follows:

83

1. The HLDB server is configured with the global IPv6 address of 2001:ABC:0:1::3/64

(local link address FE80::3). We install on this server the HLDB. HLDB define the

locations (or Hacker Homes), their IPs and MAC addresses (Hackers may be change

their IP address or MAC Address frequently but they can not change their locations).

2. The source node PC is configured with the global IPv6 address of 2001:ABC:0:1::1/64

and a local link address of FE80::1.

3. The Cisco Router model 2811 is used to build the source node that is located Tokyo.

Figure 6.3 shows the configuration of Tokyo router.

4. The Cisco Router model 2811 is used to build Istanbul router. Figure 6.4 shows the

configuration of Istanbul router.

5. The Cisco Router model 2811 is used to build Paris router. Figure 6.5 shows the

configuration of Istanbul router.

6. The hacker’s router is configured with the global IPv6 address of

2001:ABC:0:4::44/64 and local link address of FE80::44.

7. The destination node PC is configured with the global IPv6 address of

2001:ABC:7::9/64 and local link address of FE80::9.

After the configuration our second test bed as shown above, network topology is

configured properly. Then every red connected port in Figure 6.2 is changed to green as

shown in Figure 6.6.

84

Figure 6.3: Tokyo router configuration

85

Figure 6.4: Istanbul router configuration

86

Figure 6.5: Paris router configuration

Figure 6.6: Test bed topology of Figure 6.2 (second test bed of HLDS) after being

configured

87

We used ping command to test the health of the path connecting source and destination of the

second test bed which is shown in Figure 6.2. The result of the ping is shown in Figure 6.7.

Figure 6.7 shows that there is a network connection between Tokyo (source node) and Paris

(destination node).

Figure 6.7: ping from Tokyo node to Paris node of the test bed of Figure 6.2 (second test bed)

The next step is to run HLDS Code shown in Code 6.5. In Code 6.5, HLDS runs traceroute

program between source node and destination node. Code 6.5 shows the HLDS Scapy

program needed to implement this task. In Code 6.5 HLDS invokes traceroute. Code 6.5

works for the test bed case of Figure 6.2. Code 6.5 is similar to the HLDS code 6.1 used in the

first test bed. Hence, same explanation of Code 6.1 applies to Code 6.5.

88

Create Victim (source node) IPv6 Packet

 i=IPv6()
 i.src="2001:ABC:0:1::1"
 i.dst="2001:ABC:0:7::9"
 q=ICMPv6EchoRequest()
 p=(i/q)
 sr1(p)
Create Victim (source node) IPv6 Packet path without

passing through hacker’s location

 h1=IPv6ExtHdrRouting()
h1.addresses=["2001:ABC:0:1::2","2001:ABC:0:2::2","2001:ABC:0:3::5","
2001:ABC:0:5::6","2001:ABC:0:6::7","2001:ABC:7::8"]

Create Victim IPv6 Packet path that passes through hacker’s location

 h2=IPv6ExtHdrRouting()
h2.addresses=["2001:ABC:0:1::2","2001:ABC:0:2::2","2001:ABC:0:3::5","
2001:ABC:0:4::4","2001:ABC:0:5::6","2001:ABC:0:6::7","2001:ABC:7::8"]

Invoke Traceroute for Victim (source node) IPv6 Packet

 waypoint = "2001:ABC:0:1::2"
 target = "2001:ABC:7::9"

 t1= traceroute6(waypoint, minttl=15 , maxttl=34, l4=h1
(addresses=[target]) /ICMPv6EchoRequest(data=RandString(7)))
 t2= traceroute6(waypoint, minttl=15 , maxttl=34, l4=h1
(addresses=[target]) /ICMPv6EchoRequest(data=RandString(7)))

Convert traced IPv6 addresses to locations

 L1=Convtolocation(t1)
 L2=Convtolocation(t2)

check for hacking

for i in range(2):
 for addr in Li:
 If addr=hackerLocation
 print('Your packet may be hacked')
 els continue
 end for
end for

Code 6.5: HLDS Scapy program that tests test bed topology of Figure 6.2 (second test bed)

When running HLDS program of Code 6.5 and force the crafted packet to pass through the

hacked path, HLDS generates the alarm message 'Your packet may have been

89

hacked' and sends this message to the source node. When running HLDS program of Code

6.5 and force the crafted packet to pass through the safe path, HLDS does not generate any

alarm message. This means that HLDS works correctly for the second test bed topology.

6.4 HLDS Results of Rest of Test Beds
In order to validate HLDS more thoroughly, we developed 300 test bed topologies that are

similar to first and second test bed topologies presented in Section 5.3.3 and 6.3 respectively.

HLDS is run for each of these 300 test bed topologies in both Packet Tracer simulator and

Scapy environment.

For every test bed topology of these 300, we configured two paths between source and

destination: healthy path that does not include any hacked router, and hacked path that

includes a hacked router. We configured every test case topology including source node,

destination node, intermediate nodes, and hacked router (in case of hacked router). For every

router in the path we configured its IPv6 address, and location. For every test bed topology of

these 300 test bed topologies, and for every path (healthy and hacked), we measured whether

HLDS generates an alarm or not. HLDS performance results for the first 20 test bed

topologies of the 300 test bed topologies are summarized in Table 6.1. Note that HLDS

performance results of all 300 test bed topologies are computed and measured but only the

performance results of the first 20 test bed topologies is shown for simplicity. For every test

bed topology we of the 300 test bed topologies we measured (for both healthy and hacked

path) Detection Rate (DR)/Accuracy, False Positive Rate (FPR), True Positive Rate (TPR),

False Negative Rate (FNR), and True Negative Rate (TNR).

Results of running HLDS using these 300 test bed topologies are as follows:

Detection Rate (DR) = (571/600)*100 % = 95.16%

False Positive Rate (FPR) = (4/300)*100 % = 1.3%

True Positive Rate (TPR) = (287 / 300)*100 % = 95.6 %

False Negative Rate (FNR) = (25/300)*100 % = 8.3%

True Negative Rate (TNR) = (284 / 300)*100 % = 94.6%

90

Table 6.1: NLDS performance results (accuracy) for 1st 20 test bed topologies out of 300 test

bed topologies

Test

bed

No.

Hacker’s

Location

Hacker’s IPv6

Address

Hacker’s

Latitude

Hacker

Longitude

Hacked

path?

HLDS

gives an

alarm

Result

Yes Yes True Positive 1. Cyprus

Lamaca

2001:BDA:0:4::44/64

FE80::44

34.9081 33.6355

No No True Negative

Yes Yes True Positive 2. Turkey

Istanbul

2001:ABC:0:4::44/64

FE80::44

41.0186 28.9647

No No True Negative

Yes Yes True Positive 3. Cote D'Ivoire, 2001:AB:29CA:8000 8 -5

No No True Negative

Yes Yes True Positive 4. Nigeria,

Kachia

2001:A1:50FF:2870 10 8

No No True Negative

Yes Yes True Positive 5. UK, Leeds 2001:B1:538A:A728 54 -2

No No True Negative

Yes No False Positive 6. Nigeria, Port

Harcourt

2001:5A:29CD:A000 4.7774 7.0134

No No True Negative

Yes Yes True Positive 7. Switzerland,

Willisau

2001:2C:C32C:A800 47 8

No No True Negative

Yes Yes True Positive 8. Canada,

Manitoba

2001:EF01:D046:000

0

60 -95

No Yes False Positive

Yes Yes True Positive 9. Austria,

Falchau

2001:A234:D992:03

B0

47.3333 13.3333

No No True Negative

Yes Yes True Positive 10. Ukraine,

Kamiaka

2001:A78:4D78:0000 49 32

No No True Negative

91

Table 6.1: NLDS performance results (accuracy) for 1st 20 test bed topologies out of 300 test

bed topologies (Continued)

Yes Yes True

Positive
11. Russian,

Moscow

2001:A92:4F78:0000 55.7522 37.6156

No No True Negative

Yes Yes True Positive 12. Romania,

Rupea

2001:E12:524C:0000 46 25

No No True Negative

Yes Yes True Positive 13. Russian

Kaliningrad

2001:F567:53DB:810

0

55.9142 37.8256

No No True Negative

Yes Yes True Positive 14. Bulgaria,

Blagoevgrad

2001:8965:550E:230

0

42.0167 23.1

No No True Negative

Yes No False Negative 15. Romania,

Constanta

2001:ABDC:567F:13

00

44.1833 28.65

No Yes False Positive

Yes Yes True Positive 16. China,

Zhengzhou

2001:FCA:01C0:000

0

34.6836 113.5325

No No True Negative

Yes Yes True Positive 17. India, Risod 2001:DCA:0E60:000

0

20 77

No No True Negative

Yes Yes True Positive 18. Indonesia,

Bontocani

2001:EEA:3132:0400 -5 120

No No True Negative

Yes Yes True Positive 19. Japan, Kaya 2001:1A23:1B32:600

0

36 138

No No True Negative

Yes Yes True Positive 20. Korea,

Seojeongri

2001:23A9:1B73:800

0

37 127.5

No No True Negative

92

6.4 Performance Comparison between HLDS and Other Similar
Tools

In this section we measure the performance of HLDS and other similar tools to prove that

HLDS is more accurate than most of the current similar tools in the literature.

To compare performance of HLDS with similar tools from the literature, we used

Hierarchical SOM, IDS using SVM, and Adaboost with Decision tree [80]. [87] proposed a

hierarchical Self Organized Map (SOM) for intrusion detection. They utilized the

classication capability of the SOM on selected dimensions and specic attention was given

to the hierarchical development of abstractions. The reported results showed that there was an

increase in attack detection rate. [88] demonstrated that the ensemble of di erent learning

paradigms by assigning proper weight to the individual classiers. They have also observed

that there was an improvement on attack detection and signicant reduction on false alarm.

Several hybrid Intrusion Detection System (IDS) have been proposed recently to deal with the

complexity of the intrusion detection problem by combining di erent machine learning

algorithms. [89] were developed a hybrid intelligent IDS by incorporating a Hierarchical

Clustering and Support Vector Machines (SVM). The SVM theory was slightly modied in

this research in order to be used with standard network intrusions dataset that contains labels.

[90] designed IDS by combining the supervised tree classiers and unsupervised Bayesian

clustering to detect intrusions. [91] proposed a new framework of unsupervised anomaly

Network IDS based on the outlier detection technique in random forests algorithm. The

framework builds the patterns of network services over datasets labeled by the services. With

the built in patterns, the framework detected attacks in the datasets using the outlier detection

algorithm. This approach reduced the time complexity and cost of memory to a larger extent.

[92] took a slightly di erent approach. Their anomaly IDS was based on modular multiple

classier system where each module was designed for each group of protocols and services.

The reported results showed that this approach provides a better trade-o between

generalization abilities and false alarm generation than that provided by an individual

classier trained on the overall feature set. [93] Have demonstrated a new ensemble boosted

decision tree for intrusion detection system. The underlying idea of this approach is to

combine simple rules to form an ensemble such that the performance of the single ensemble is

improved. [94] Have constructed a classier by using a decision tree as its base learner. The

classication accuracy of this algorithm was little better than SOM algorithms. [95] Have

93

proposed an Adaboost based algorithm for network intrusion detection which used decision

stump as a weak learner. The decision rules are provided for both categorical and continuous

features and some provision was made for handling the overtting.

The performance metrics used for the comparison are detection rate (accuracy), false positive

and false negative rates. The detection rate and false positive rate of HLDS are compared to

Hierarchical SOM, IDS using SVM, and Adaboost with Decision tree. Results are shown in

Table 6.2. As the table shows, HLDS is more accurate (has a higher Detection Rate – DR)

than Hierarchical SOM, IDS using SVM, and Adaboost with Decision tree. In addition,

HLDS has the lowest False Positive Rate (FPR) than Hierarchical SOM, IDS using SVM, and

Adaboost with Decision tree. This shows that HLDS has the best performance that existing

similar Internet security tools present in the literature.

Table 6.2: Performance comparison between HLDS and other similar tools

Tool Detection Rate –DR (%) False Positive Rate –

FPR (%)

HLDS 95.16 1.3

Hierarchical SOM 90.04 2.19

IDS using SVM 91.2 6.12

Adaboost with Decision tree 92.12 3.26

Detection Rate (DR) for HLDS, Hierarchical SOM, IDS using SVM, and Adaboost with

Decision tree is shown in Figure 6.8. HLDS has the highest DR.

False Positive Rate (FPR) for HLDS, Hierarchical SOM, IDS using SVM, and Adaboost with

Decision tree is shown in Figure 6.9. HLDS has the lowest FPR.

It is important for a network security tool/IDS to have low False Positive Rate (FPR) and

high accuracy/detection Rate (DR).

94

Figure 6.8: Detection Rate (DR) for HLDS, Hierarchical SOM, IDS using SVM, and

Adaboost with Decision tree

Figure 6.9: False Positive Rate (FPR) for HLDS, Hierarchical SOM, IDS using SVM, and

Adaboost with Decision tree

95

Chapter Seven

Conclusion and

Future work

96

In this Master thesis we proposed a new methodology to detect the hackers depending on their

location. This methodology is called Hacker Location Detection System (HLDS). HLDS

monitors packing while they pass through the network and sends an alarm message to the

involved communicating parties about the status of the path between them. HLDS uses Scapy,

Packet Tracer simulator, and traceroute to fulfill its objectives.

HLDS enables a packet crafter of Scapy to pull packets off the wire or create ones as required.

Once a packet set is assembled, Scapy will enable the Crafter to change any fields in any

header of any packet, as well as altering the payload of the packet to the Crafters own desires.

A fully assembled packet set must be played or replayed onto the network as many times and

at any speed required as stipulated by the testing case at hand; Scapy is able to replay such

packets. Packets launched onto the network will most generally cause a response from the

target device. Such response must be captured and analyzed to further understand the problem

at hand or to confirm the results; Scapy is able to decode packets.

HLDS uses Open Source tools that are readily available to accomplish the task of Packet

Assembly, Packet Editing, Packet tracing and Packet decoding; all together constitute Packet

Crafting. Two of the well documented industry standard protocols, and one proprietary

protocol were used to demonstrate the ease and power of Scapy as it adheres to the Packet

Monitoring methodology.

By using HLDS SRP we are able to identify a lot of network vulnerabilities such as Man in

the middle, sniffing IP, spoofing IP and hacker honeypot.

By introducing such a tool HLDS and demonstrating the danger of such a tool when used by

the wrong hands; users need to see such potential danger and be prepared for it. For the time

being it can be said that training is essential because the engineers who grew up using IPv4

need a fresh education because IPv6 quite different than IPv4, and it uses different tools. Also

the security policies between IPv4 and IPv6 aren’t consistent. In addition, we recommend that

people be ready to run IPv6 to get their systems prepared for this new technology. People also

need to try to protect themselves against the known network weaknesses.

The contribution of this thesis is the design of an original network monitoring system that

automatically detects network vulnerabilities, weaknesses, and shortcomings of IPv6-based

networks. The designed system is called Hacker Location Detection System (HLDS) which is

a Software Router Plug-in (SRP) that could be deployed as advanced and flexible tool to IPv6

next generation routers to increase the network security. HLDS is capable of both detection of

hackers and identification of their location based on their IP address, MAC address, and

geographic location. HLDS is used in IPv6 routers to provide Internet security. Since hackers

97

are able to change IP and MAC addresses of their computers and NIC respectively, our

proposed system does not depend only on IP or MAC addresses but also on location of

hackers. Hence, even if hackers change these IP and/or MAC addresses our proposed system

is capable of tracing these hackers.

HLDS has four main modules: HLDB Server Module which contains the Hacker Location

Database (HLDB) that includes the known locations of the hackers, HLDB Update Module

which updates the HLDB based on the New hacker location information received, Traceroute

Module which is used to trace the route of the packet that is being monitored and it lists all

routers that the packet passed through from source to destination, and finally HLDS Monitor

Module which monitors the packets paths and generates an alarm if any packet that is being

monitored has passed through a hacker router.

We validate the proposed HLDS by developing experiments to measure its performance. We

used some performance metrics to measure the performance of HLDS which include

accuracy, False positive rate, and False negative rate. We also compare the performance

results of HLDS with performance of similar tools in the literature, namely Hierarchical

SOM, IDS using SVM, and Adaboost with Decision tree. Performance results show that

HLDS has a better accuracy, less false positive rate, and less false negative rate than these

programs.

Future work:
• Could be to try to connect HLDS with GPS and GIS to improve modeling hacker

location positions more accurately.

• IDS companies adopt this idea and create a set of database servers that contain

blacklists of hacker's locations and publish these databases around the world and

update them continuously to easily identify the hacker's locations.

98

References
 [1] Raffaele Bolla, Roberto Bruschi, Guerino Lamanna and Andrea Ranieri, " DROP: An

Open- Source Project towards Distributed SW Router Architectures" This paper appears

in: Performance Evaluation of Computer and Telecommunication Systems (SPECTS),

International Symposium on July 2010.

[2] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.” RFC 2460

(Draft Standard), Dec. 1998. Updated by RFCs 5095, 5722, 5871.

[3] J. Postel, “Internet Protocol.” RFC 791 (Standard), Sept. 1981. Updated by RFC 1349.

[4] Hurricane Electric Internet Services, “Hurricane electric ipv4 exhaustion counters.”

http://ipv6.he.net/statistics, April 2011.

[5] N Ranjith Kumar," Seminar Report on IPv6: Next Generation IP" School of Information

Technology Indian Institute of Technology-Kharagpur, May2005.

[6] Martin Sch¨utte "Design and Implementation of an IPv6 Plugin for the Snort Intrusion

Detection System" Potsdam University Institute for Computer Science September 1,

2011.

[7] IAB and IESG, “IAB/IESG Recommendations on IPv6 Address Allocations to Sites.”

RFC 3177 (Informational), Sept. 2001. Obsoleted by RFC 6177.

[8] S. Chozos, “Implementation and analysis of a threat model for ipv6 host

autoconfiguration,” Master’s thesis, Naval Postgraduate School, Monterey, CA, 2006.

[9] S. Hogg and E. Vyncke, IPv6 Security. Cisco Press, 1st ed., 2008.

[10] R. Hinden and S. Deering, “Internet Protocol Version 6 (IPv6) Addressing Architecture.”

RFC 3513 (Proposed Standard), Apr. 2003. Obsoleted by RFC 4291.

[11] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.” RFC

2460(Draft Standard), Dec. 1998. Updated by RFCs 5095, 5722, 5871.

[12] S. Chozos, “Implementation and analysis of a threat model for ipv6 host

autoconfiguration,”Master’s thesis, Naval Postgraduate School, Monterey, CA, 2006.

[13] J. Postel, “Internet Control Message Protocol.” RFC 792 (Standard), Sept. 1981. Updated

by RFCs 950, 4884.

[14] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol (ICMPv6) for

the Internet Protocol Version 6 (IPv6) Specification.” RFC 4443 (Draft Standard), Mar.

2006. Updated by RFC 4884.

[15] Gehrke, Keith A., "The Unexplored Impact of IPv6 on Intrusion Detection Systems",

April 2012.

http://ipv6.he.net/statistics

99

[16] Free download of ISO/IEC 27000:2009 from ISO, via their ITTF web site

[17] S. Convery and D. Miller, “Ipv6 and ipv4 threat comparison and best-practice evaluation

(v1.0),” www.seanconvery.comv6-v4-threats.pdf, March 2004.

[18] D. Zagar and K. Grgic, “Ipv6 security threats and possible solutions,” World Automation

Congress, 2006.

[19]SourceForge, “Tcpdump.” http://www.tcpdump.org, Feb. 2011.

[20] S. Bellovin, A. Keromytis, and B. Cheswick, “Worm propagation strategies in an ipv6

internet,” USENIX ;login, vol. 31, pp. 70–76, February 2006.

[21] S. Staniford, V. Paxson, and N. Weaver, “How to own the internet in your spare time,” in

Proceedings of the 11th USENIX Security Symposium, (Berkeley, CA, USA), pp. 149–

167, USENIX Association, 2002.

[22] Emmett Dulaney, "CompTIA security+ deluxe study guide " 1st ed, 2009

[23] C. Caicedo, J. Joshi, and S. Tuladhar, “Ipv6 security challenges,” Computer, vol. 42, pp.

36 –42, feb. 2009.

[24] E. Nerakis, “Ipv6 host fingerprint,” Master’s thesis, Naval Postgraduate School,

Monterey, CA, 2006.

[25] R. Hinden and S. Deering, “IPv6 Multicast Address Assignments.” RFC 2375

(Informational), July 1998.

[26] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial of Service

Attacks which employ IP Source Address Spoofing.” RFC 2827 (Best Current Practice),

May 2000. Updated by RFC 3704.

[27] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor Discovery (SEND).”

RFC 3971 (Proposed Standard), Mar. 2005.

[28] M. Pohl, “Experimentation and evaluation of ipv6 secure neighbor discovery protocol,”

Master’s thesis, Naval Postgraduate School, Monterey, CA, 2007.

[29] A. Conta and S. Deering, “Internet Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification.” RFC 2463 (Draft Standard), Dec. 1998.

Obsoleted by RFC 4443.

[30] S. Bellovin, A. Keromytis, and B. Cheswick, “Worm propagation strategies in an ipv6

internet,” USENIX ;login, vol. 31, pp. 70–76, February 2006.

[31] Hurricane Electric Internet Services, “Hurricane electric homepage.” http://ipv6.he.net/,

April 2011.

[32] C. Aoun and E. Davies, “Reasons to Move the Network Address Translator – Protocol

Translator (NAT-PT) to Historic Status.” RFC 4966 (Informational), July 2007.

http://www.seanconvery.comv6-v4-threats.pdf
http://www.tcpdump.org
http://ipv6.he.net/

100

[33] Oracle, “Virtualbox homepage.” https://www.virtualbox.org/, Sept 2011.

[34] D. Morr, “Thoughts on ipv6 security, take two.”

http://www.personal.psu.edu/dvm105/blogs/ipv6/2009/05/thoughts-on-ipv6-securitytake.

html, May 2009.

[35] http://www.ntia.doc.gov/legacy/ntiahome/ntiageneral/ipv6/final/IPv6final3.htm#ftn171.

[36] http://www.secdev.org/projects/scapy/.

[37] http://www.secdev.org/projects/scapy/demo.html.

[38] Adam Maxwell, "The Very Unofficial Dummies Guide to Scapy", May 2012.

[39] Philippe BIONDI, "Scapy Documentation", Oct 2006.

[40] azem M. El-Bakry, Nikos MastorakisA, “Real-Time Intrusion Detection Algorithm for

Network Security,WSEAS Transactions on communications, Issue 12, Volume 7,

December 2008.

[41] Debar.H, Dacier.M and Wespi.A, “A Revised Taxonomy of Intrusion-Detection

Systems” Annales des Telecommunications 55(7–8) (2000) 361–378 .

 [42]Allen.J, Christie.A, Fithen.W, McHugh.J, Pickel.J, Stoner.E, “State of the practice of

intrusion detection technologies” Technical Report CMU/SEI-99TR- 028, Carnegie-

Mellon University - Software Engineering Institute (2000).

[43] Roesch.M, “Snort - Lightweight Intrusion Detection for Networks” 13th USENIX

Conference on System Administration, USENIX Association (1999) 229–238 .

[44] Sourcefire: Snort Network Intrusion Detection System web site (1999) URL

http://www.snort.org.

[45] Wang. K and Stolfo.S.J, “Anomalous Payload-Based Network Intrusion Detection” 7th

Symposium on Recent Advances in Intrusion Detection, Volume 3224 of LNCS.,

Springer-Verlag (2004) 203–222.

[46] Bolzoni.D, Zambon.E., Etalle.S, Hartel.P, “POSEIDON: a 2-tier Anomaly based

Network Intrusion Detection System”IEEE International Workshop on Information

Assurance, IEEE Computer Society Press (2006) 144–156.

[47]V. Jyothsna, V. V. Rama Prasad, and K. Munivara Prasad," A Review of Anomaly based

Intrusion Detection Systems", International Journal of Computer Applications (0975 –

8887(Volume 28– No.7, August 2011.

[48]Y. Freund, Schapire.R. , "Experiments with a new boosting algorithm" Thirteenth

International Conference on Machine Learning, Italy, 1996.

 [49]B.Pfahringer, "Winning the KDD99 Classification Cup: Bagged Boosting," in SIGKDD

Explorations, 2000.

https://www.virtualbox.org/
http://www.personal.psu.edu/dvm105/blogs/ipv6/2009/05/thoughts-on-ipv6-securitytake
http://www.ntia.doc.gov/legacy/ntiahome/ntiageneral/ipv6/final/IPv6final3.htm#ftn171
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/demo.html
http://www.snort.org

101

[50]I. Levin, "KDD-99 Classifier Learning Contest: LLSoft s Results Overview" SIGKDD

Explorations, 2000.

[51]V. Miheev, Vopilov.A and Shabalin.I., "The MP13 Approach to the KDD 99 Classifier

Learning Contest" SIGKDD Explorations, 2000.

 [52]Q. Yang, Li, F., "Support Vector Machine for Intrusion Detection Based on LSI Feature

Selection," Intelligent Control and Automation, WCICA, 2006.

[53] J. C. Platt, "Sequential minimal optimization: A fast algorithm for training support vector

machines" Advances in Kernel Method: Support Vector Learning, 1998.

[54]F. E. Osuna, R., Girosi, F., "Improved training algorithm for support vector machines,"

IEEE NNSP 97, 1997.

[55]Y. Yao, Wei, Y., Gao, F.X., Yu, G. , "Anomaly Intrusion Detection Approach Using

Hybrid MLP/CNN Neural Network," Sixth International Conference on Intelligent

Systems Design and Applications (ISDA'06) Washington, DC, USA 2006.

 [56]D. F. Specht, "Probabilistic Neural Network," International Journal of Neural Networks,

vol. 3, pp. 109-118, 1990.

[57]A. Zaknich, "Introduction to the modified probabilistic neural network for general signal

processing applications" IEEE Transactions on Signal Processing, vol. 46, 1998.

 [58]D. Barbar´a, C. Domeniconi and J. Rogers, “Detecting outliers using transduction and

statistical testing” ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD), Philadelphia, PA,Aug. 2003.

[59]J. Ma and S. Perkins, “Online novelty detection on temporal sequences” ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD),

Washington, DC, Aug. 2003.

[60]A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event detection with time-varying Poisson

processes” ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining

(KDD), Philadelphia, PA, Aug. 2006.

[61]D. Dasgupta, “Artificial Immune Systems and Their Applications” Springer, 1999

[62]S. A. Hofmeyr, S. Forrest, “Architecture for an artificial immune system” IEEE Trans. on

Evolutionary Computation, vol. 8, N4, 2000, pp. 443-473.

 [63]E. Hart, P. Ross, J. Nelson, “Producing robust schedules via an artificial immune

system” IEEE International Conference on Evolutionary Computing, May 1998, pp.

464-469.

102

[64]A. Gardner, A. Krieger, G. Vachtsevanos, and B. Litt, “One-class novelty detection for

seizure analysis from intracranial EEG,” J. Machine Learning Research (JMLR), vol. 7,

pp. 1025–1044, Jun. 2006.

[65] "NIST – Guide to Intrusion Detection and Prevention Systems (IDPS)". 2007-02.

Retrieved 2010-06-25.

[66] Robert C. Newman ,"Computer Security: Protecting Digital Resources". Jones & Bartlett

Learning. pp. 273–. ISBN 978-0-7637-5994-0. Retrieved 25 June 2010.

[67]Michael E. Whitman; Herbert J. Mattord."Principles of Information Security". Cengage

Learning EMEA. pp. 289–. ISBN 978-1-4239-0177-8. Retrieved 25 June 2010.

[68]Tim Boyles ."CCNA Security Study Guide": Exam 640-553. John Wiley and Sons.

pp. 249–. ISBN 978-0-470-52767-2. Retrieved 29 June 2010.

[69]Harold F. Tipton; Micki Krause."Information Security Management Handbook". CRC

Press. pp. 1000–. ISBN 978-1-4200-1358-0. Retrieved 29 June 2010.

[70] Matt Carlson and Andrew Scharlott. Intrusion detection and prevention systems, (2006).

[71] Wei, L., 2007. Evaluation of Intrusion Detection Systems. University of Auckland,

Department of Coputer Science, pp.1-10.

[72] Martins Sapats, Nauris Paulins" Evaluation Methods Of Network Intrusion Detection

Systems " International Conference on Applied Information and Communication

Technologies (AICT2012), 26.-27. April, 2012, Jelgava, Latvia.

[73] Atay, S. & Masera, M., 2011. Challenges for the security analysis of Next Generation

Networks. Information Security Technical Report, 16(1), pp.3-11. Available at:

http://linkinghub.elsevier.com/retrieve/pii/S136341271000035X [Accessed October 10,

2011].

[74] Convery, Sean, and Miller, Darrin. IPv6 and IPv4 threat comparison and best-practice

evaluation (v1.0). in IPv6 Eprints Server [database online]. 2006 Available from

http://www.6journal.org/archive/00000202/01/v6-v4-threats.pdf (accessed 12/21/ 2006).

[75] NTT/Verio Comments at 13. See also Microsoft Comments at 11 (IPv6 is a “new, more

secure protocol” that could help make North America a “Safe Cyber Zone”).

[76] BellSouth Comments at 3. h p: //www. n a.doc. gov/ l egacy/n ahome/ n ageneral / i pv6/

final / IPv6final 3.htm .

[77] http://www.webopedia.com/DidYouKnow/Computer_Science/2005/intrusion_detection_

prevention.asp.

http://linkinghub.elsevier.com/retrieve/pii/S136341271000035X
http://www.6journal.org/archive/00000202/01/v6-v4-threats.pdf
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/intrusion_detection_

103

[78] Scarfone, K. and P. Mell. 2007. Guide to Intrusion Detection and Prevention Systems.

National Institute of Standards and Technology. Special Publication 800-94.

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf.

[79] Buyer’s Guide For Intrusion Prevention Systems (IPS) (http://www.forum-

intrusion.com/Buyers_Guide.pdf).

[80] Natesan P ،Balasubramanie P, and Gowrison G." PERFORMANCE COMPARISON OF

ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION

DETECTION"Journal of Information Systems and Communication ISSN: 0976-8742 &

E-ISSN: 0976-8750, Volume 3, Issue 1, 2012, pp.-295-299.

[81] h p: //www. mc af ee. com

[82] http://whatismyipaddress.com/ip/213.244.80.135.

[83] http://whatismyipaddress.com/traceroute-tool.

[84] http://www.exit109.com/~jeremy/news/providers/traceroute.html.

[85] (http://www.secdev.org/projects/scapy/doc/).

[86] http://www.cisco.com/web/learning/netacad/index.html, Cisco Network Academy Packet

Tracer.

[87] H. G. Kayacik, A. NZincir-Heywood, M. I. Heywood, On the capability of an SOM

based intrusion detection systems, in Proc. Int. Joint Conference in Neural Networks.

Vol. 3, 2003, 1808-1813.

[88] Anazida Zainal, Mohd Aizaini Maarof, Siti Mariyam Shasuddin, Ensemble classiers for

network intrusion cetection system. Journal of Information Assurance and Security, Vol.

4, 2009, 217-225.

[89] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-Jian Chen,

Jui-Lin Lai, Citra Dwi Perkasa, A novel intrusion detection system based on hierarchical

clustering and support vector machines, Journal of Expert systems with Applications,

Vol. 38, 2011, 306-313.

[90] Cheng Xiang, Png Chin Yong, Lim Swee Meng, Design of multiple-level hybrid

classier for intrusion detection system using Bayesian clustering and decision trees,

Journal of Pattern Recognition Letters, Vol. 29, 2008, 918-924.

[91] Jiong Zhang, Mohammad Zulkernine, Anomaly based network intrusion detection with

unsupervised outlier detection, Proc. IEEE Communication Society, 2006, 2388-2393.

[92] Giorgio Giacinto, Fabio Roli, Luca Didaci, Fusion of multiple classiers for intrusion

detection in computer networks, Proc. IEEE Conference in Network Security, 2007, 23-

32.

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.forum
http://whatismyipaddress.com/ip/213.244.80.135
http://whatismyipaddress.com/traceroute-tool
http://www.exit109.com/~jeremy/news/providers/traceroute.html
http://www.secdev.org/projects/scapy/doc/)
http://www.cisco.com/web/learning/netacad/index.html

104

[93] Mrudula Gudahe, Prakash Prasad, Kapil Wankhade, A new data mining based network

intrusion detection model, International Conference on Computer & Communication

Technology, 2010, 731- 736.

[94] Yongiin Liu, Na Li, Leina Shi, Fangping Li, An intrusion detection method based on

decision tree, International Conference on E-Health Networking, Digital Ecosystems

and Technologies, 2010, 232-235.

[95] Weiming Hu, Wei Hu, Steve Maybank, AdaBoost-based algorithm for network intrusion

detection, IEEE Transactions on Systems, Man and Cybernetics, Vol. 38, April-2008,

577-583.

