
Computer Engineering Department 

Faculty of Engineering 

Deanery of Higher Studies 

Islamic University – Gaza 

Palestine 

 

 

Intelligent and Distributed Localization 

of Nodes in Wireless Sensor Networks 

 

 

Amina Yusif Al-Sallut 

 

 

Supervisor 

Prof. Ibrahim S. I. Abuhaiba 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Computer Engineering 

 

 

    H (    ) 

 

 



II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

 

Dedication 

 

 

I dedicate this thesis to…… 

           My brother, God bless his soul… 

           My great parents, for instilling the importance of hard work                   

and higher education, and their continuous prayers for me... 

           My dear husband, for his understanding, patience, and great 

support along the way…….. 

           My sister, brothers, and kids, may you also be motivated                    

and encouraged to reach your dreams…….... 



IV 

 

Acknowledgment 

 

I feel greatly privileged to express thanks to all the people who 

helped me to complete the project successfully. 

 

I would like to thank Prof. Ibrahim S. I. Abuhaiba, Professor of 

Computer Engineering Department at the IUG, for giving me the honor of 

his supervision, for his great understanding and support, and for 

providing me encouragement and guidance throughout my work. 

 

 

 

 

 

 

 

 

 

 



V 

 

Table of Contents 

Chapter 1 

Introduction ..............................................................................................................................   

1.1 Sensor Networks.............................................................................................................   

1.2 Topic Area ......................................................................................................................   

1.3 Research Question .........................................................................................................   

1.4 Thesis Contribution .......................................................................................................   

    Outline of Rest of Thesis ................................................................................................   

 

Chapter 2 

Related Work ...........................................................................................................................   

2.1 Localization Algorithms ................................................................................................   

2.2 Range-based Localization Algorithms .........................................................................   

2.3 Range-free Localization Algorithms ............................................................................   

2.3.1 Localization using Neural Networks .....................................................................   

2.3.2 SOM-based Localization Algorithms ....................................................................   

 

Chapter 3 

Background ............................................................................................................................    

3.1 Wireless Sensor Networks ...........................................................................................    

3.1.1 Challenges in WSNs ..............................................................................................    

3.1.2 Sensor Networks Applications .............................................................................    

3.2 Localization ..................................................................................................................    

3.2.1 Localization Techniques .......................................................................................    

3.3 Self Organizing Maps (SOMs) ....................................................................................    

3.3.1 Reducing Data Dimensions and Data Similarity ................................................    

      SOM Algorithm .....................................................................................................    



VI 

 

Chapter 4 

Proposed Technique...............................................................................................................    

4.1 The Proposed Algorithm .............................................................................................    

  1.1 Anchors Number and Placement .........................................................................    

4.1.2 The Initialization Stage .........................................................................................    

4.1.3 The Learning Stage ...............................................................................................    

    DLSOM Mathematical Equations and Methodology ...............................................    

 

Chapter 5 

Experimentation and Results ................................................................................................    

5.1 Experimental Environment .........................................................................................    

5.2 Simulation Results .......................................................................................................    

5.2.1 A 10-Nodes Wireless Network .............................................................................    

5.2.2 A 50-Nodes Wireless Network .............................................................................    

5.2.3 A 100-Nodes wireless Network.............................................................................    

5.2.4 Selecting the Anchors at the Four Centers .........................................................    

5.3 Evaluation Parameters ................................................................................................    

5.3.1 Performance of DLSOM ......................................................................................    

5.3.2 Time Analysis ........................................................................................................    

5.3.3 Performance Comparisons ...................................................................................    

 

Chapter 6 

Conclusion ..............................................................................................................................    

6.1 Summary and Concluding Remarks ..........................................................................    

6.2 Recommendations and Future Work .........................................................................    

 

References ...............................................................................................................................    



VII 

 

List of Figures 

Figure  .  A typical Wireless Sensor Network………………………….....………..  

Figure 3.1 A typical SOM with input vector connection……………………...........   

Figure 3.2 Weights changes by applying the neighborhood function…....................   

Figure  .  Anchors broadcast locations to neighbors……………….……......…..…   

Figure  .  Anchors' Neighbors estimated locations………………….………......…   

Figure  .  Neighbors broadcast their estimated location……………….…...….…..   

Figure  .  Neighbors estimate locations by averaging received locations……..…..   

Figure  .  Unconnected nodes estimate their locations randomly……………...….   

Figure  . : The block diagram of the DLSOM algorithm………………...…….….   

Figure  .  DLSOM pseudocode………………………………………...……..…..   

Figure  .  The Initialization Stage Flowchart……………………………….......…   

Figure  .  The Learning Stage Flowchart………………………………….....…....   

Figure 5.1 Actual Wireless Networks (N=  )……………………………….......…   

Figure  .  Estimated Locations of anchors' neighbors (N=  , R= )…………..…..   

Figure  .  The estimated locations for the network nodes (N=  , R= )……….…   

Figure 5.4 The resulted estimated locations for the network nodes (N=10, R=1)...   

Figure  .  Estimated Locations of anchors' neighbors (N=  , R= )……………....   

Figure  .  The estimated locations for the network nodes (N=  , R= )…………..   

Figure 5.7 The resulted estimated locations for the network nodes (N=10, R=2)....   

Figure  .  Estimated Locations of anchors' neighbors (N=  , R= )……………....   

Figure  .  The estimated locations for the network nodes (N=  , R= )………......   

Figure 5.10 The resulted estimated locations for the network nodes (N=10, R= )..   

Figure 5.11 Actual Wireless Networks (N=  )………………………………...…..   

Figure  .   Estimated Locations of anchors' neighbors (N=  , R= )…………..…   

Figure  .   The estimated locations for the network nodes (N=  , R= )……...….   

Figure 5.14 The resulted estimated locations for the network nodes (N=  , R= )….   

Figure  .   Estimated Locations of anchors' neighbors (N=  , R= )…………….…   



VIII 

 

Figure  .   The estimated locations for the network nodes (N=  , R= ) …………..   

Figure 5.17 The resulted estimated locations for the network nodes (N=  , R= )….   

Figure  .   Estimated Locations of anchors' neighbors (N=  , R= )…………….…   

Figure  .   The estimated locations for the network nodes (N=  , R= )……….…..   

Figure 5.20 The resulted estimated locations for the network nodes (N=  , R= )….   

Figure 5.   Number of network nodes Vs. Average error (R= )…………....…....…   

Figure 5.   Number of network nodes Vs. Average error (R= )…………....……....   

Figure 5.   Number of network nodes Vs. Average error (R= )……………….…...   

Figure 5.   Radio range Vs. Average error (N=  )……………………………..…..   

Figure 5.   Radio range Vs. Average error (N=  )…………………………........…   

Figure 5.   Radio range Vs. Average error (N=   )…………………......……........   

Figure 5.27 No. of Nodes Vs. Time (R=1)..................................................................   

Figure 5.28 No. of Nodes Vs. Time (R=2)..................................................................   

Figure 5.29 No. of Nodes Vs. Time (R=4)..................................................................   

Figure 5.30 Radio Range Vs. Time (N=10)................................................................   

Figure 5.31 Radio Range Vs. Time (N=50)................................................................   

Figure 5.32 Radio Range Vs. Time (N=100)..............................................................   

Figure 5.3  Estimated networks by applying SOM and MDS-MAP (N=  , R= )…   

Figure 5.3  Estimated networks by applying DV-HOP and SOM (N=100, R=2).....63 

Figure 5.35 Actual Network (N=100, R=2)................................................................   

Figure 5.36 Resulted estimated Network by DLSOM (N=100, R=2)........................   

Figure 5.3  Performance comparison by applying DLSOM and Localized SOM…..   

 

 

 

 

 

 



IX 

 

List of Tables 

 

Table 5.1 The simulation results for different set of parameters............................   

Table 5.2 The simulation results for selecting anchors at the four centers............   

Table 5.3 The average error for different algorithms (N=50, R=2)…………...…   

Table 5.4 The average error for different algorithms (N=   ,R= )…………......   

Table 5.5 The average error for DLSOM and Localized SOM (N=10, R=2)…....   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 

 

List of Abbreviations 

` 

APS                  Ad-hoc Positioning System  

AOA                Angle-Of-Arrival  

BMU                Best Matching Unit 

DLSOM            Distributed Localization using Self Organizing Maps 

DV-HOP          Distance Vector-HOP 

GPS                 Global Positioning System 

MIT                 Massachusetts Institute of Technology 

MLP                Multi-Layer Perceptron 

MCL               Monte Carlo Localization 

MCB               Monte Carlo Localization Boxed 

MDS-MAP     Multidimensional Scaling Map 

PVA                Position-Velocity-Acceleration 

RSSI               Received-Signal-Strength-Indicator 

RNN               Recurrent Neural Networks 

SOM              Self Organizing Map 

SOFM            Self Organizing Feature Map 

SVM              Support Vector Machine 

TDOA           Time-Differential-Of-Arrival 

TOA             Time-Of-Arrival  

WSN            Wireless Sensor Networks 



XI 

 

في شبكات الاستشعار  نقاط الاتصالقع امول ذكي وموزع تحديد

 اللاسلكية

 

 أمينة يوسف السلوت

 

 ملخص

 
فييش كيي الاس شعار ييلالال شة،اييخات م شلةييحس د يياة  للعقييع دسشكيي  شةلاةييع شة،اييخات  د ييلا    شاييلا       

لأايي لات لرلاخييل ةلاةرسلتيي   ار ييلالالشع عةييع دسشكيي دلاظييا شةري تةييلاس ةللاليي  إةيي  دلا فيي  إن ةخ ليي   

 SOMs ةلاايرةعش   دسزعي  لعقيع    خسشلزدتي   لا شكر شح  فش هحش شة ل م ةخ تلانلاس شلأدثل  شة  ق 

 ةرلعقع دسك  عةع  عاخات  فش ك ا  شار لالال عاخات  

 

 رةع  فةط دلاخسدلاس شعلصيلا   ل  ت ةسشلزدت  خلاةت  دن شةنيلاق كلصنف شةةسشلزدت  شةمةر    

ةسشلزدتلاس شةم رنع  إة  شةكلال  كملا لريخ  شلإ كس  سصس  أ شةةتن شةلاةع د ن شةللال  ةةتلاس  كت 

شةملا  في    شةمسشكي  شةم رة خ  دن شةلاةع شةمجيلا ل   دين   ملاخسدلاس شة  ل رفتع شةةسشلزدت  دنشةنيلاق  

: لئت يترتن دين دي  خرتن   شةةسشلزدتي   رايسن  لةخلاةيع   ة لاض شةلاةع شةثلاةر  ةل لات شةمسشكي  شةرةعق قي    

 شةيرلاخا: م  د  خي   SOMsشةريش لذيح     شلأ ةتي  :  قرا فتهيلا   يلات شةمسشكي  شةرةعق قي      د  خ  شةرهتئ 

  ار لالالشعشةمسشك  شةفلاخت  ةلاةع ةل لات  SOMs شةرش ل رةع  

 

دين   فيش شةم  خي  شلأ ةي  خفايت شةةسشلزدتي      شةم رة خ  دين شةلاةيع شةمجيلا ل     ةلاارةعش  شةملاخسدلاس 

  دين نلا تي  أخي  م    ةخسصس  إة  شةرةلالت ة يال دخليس     ععد د شس شةرا شل SOMsللاخا   كت

إةي  شةليع شلأكصي      لفلات شةةسشلزدت  دك  شةنريلائ     لا سشئتشةةععً دن شة تلانلاس   ةتةت  ة تلانلاسةعءشً 

شةاذط عخ  شةلاةع شة،اخات م شةرش لرمتي    خفف خةسشلزدت شةمسزع ةرنفتح شة فإن ع،   عخ  ذةكم 

 دنةفا  ةةعلشس دلع د   طلاك  

 

 ل ةيت ةن ي  عيعد دةرخيف ديين      MATLABلاايرةعش  ة نييلاد   ةليا لنفتيح شةةسشلزدتي  شةمةر  ي      

ةلايعد دين   شةرلةيل دين أدشء شةةسشلزدتي      ليا  شلصيلا  دةرخفي      د  دي  نيلاكيلاس  شةلاةع فيش دنيةي  دليع   

أث رييت كييع شةةسشلزدتيي  فييإن دكيي  لتييع  لييعشً   عيي،   عخيي  ذةييكم   شةرييش أ يي زس شةمللاكييلا   نمييلاذ  

ةسشلزدتيلاس  شةفلالاةترهلا د  شنةفيلا  درسايط شةةييا  عيعد دي شس شةراي شل شةميخسةي  ةلاةمةلالني  دي           

 ذشس شةصخ  شةلعقث  
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Intelligent and Distributed Localization of 

Nodes in Wireless Sensor Networks  

Amina Yusif Al-Sallut 

 

Abstract 

In wireless sensor networks, the issue of wireless nodes localization has taken a wide 

area of research. Most applications need to know position of sensor nodes for reasons 

of optimal and fast data routing. In this research, a new distributed localization 

algorithm based on Self Organizing Maps (SOMs) is proposed to determine the 

location of a wireless node in a wireless sensor network. 

 

The proposed algorithm is classified as a range-free algorithm which uses only the 

connectivity information between nodes without the need to measure the time of 

arrival or signal strength as the range-based algorithms require. It utilizes the 

neighborhood information and the well-known anchors' positions to calculate the 

estimated locations of nodes. Our algorithm is made up of two main stages: the 

initialization stage, in which the initial estimated locations of nodes are calculated to 

be fed to the SOMs, and the learning stage, in which SOMs are used to calculate the 

physical locations of sensor nodes. 

 

By using the neighborhood information at the first stage, the algorithm has reduced 

the SOM learning time and the number of iterations to the convergence significantly. 

On the other hand, starting with real beneficial data rather than random data 

maximized the accuracy of the resulted locations. Furthermore, the distributed 

implementation of the algorithm highly alleviated the pressure on the wireless nodes, 

which are characterized with low power and limited capabilities. 

 

The proposed algorithm has been implemented using MATLAB software and 

experimented by deploying different number of nodes in a specific area with different 

communication radio ranges. Extensive simulations evidently verified the 

performance of the algorithm and achieved a very good accuracy. Moreover, the 

algorithm proved its effectiveness with the low average error and number of iterations 

needed in comparison with other recent related algorithms. 

 

Keywords 

Wireless Sensor Networks, Localization, Self Organizing Maps, Anchor Nodes
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Chapter 1 

Introduction 

1.1 Sensor Networks 

Sensor networks are dense wireless networks of small, low-cost sensors, which collect 

and disseminate environmental data. Wireless sensor networks facilitate monitoring 

and controlling of physical environments from remote locations with better accuracy 

   . They have applications in a variety of fields such as environmental monitoring, 

military purposes and gathering sensing information in inhospitable locations   -  . 

Sensor nodes have various energy and computational constraints because of their 

inexpensive nature and ad-hoc method of deployment. Considerable research has been 

focused at overcoming these deficiencies through more energy efficient routing, 

localization algorithms and system design   ,   . Figure 1.1 [8] demonstrates a typical 

wireless sensor network deployed in a specific area. 

 

Figure 1.1 A typical Wireless Sensor Network. 

    Topic Area 

A wireless sensor network [ ] is usually a relatively large-scale network of 

inexpensive, energy efficient devices [  ]. For a node in a WSN, awareness of its 

location and maybe the location of some other nodes is crucial for a successful 

operation. As a case in point, routing data in sensor networks requires a fine 

cooperation among nodes in order to use small amount of energy and to deliver data 

as fast as possible. A node can choose a proper way to the destination, usually a sink 

node, if it knows geographic location of itself and its neighbor nodes [  ]. 
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Furthermore, most applications of sensor networks need to know position of sensor 

nodes. For instance, a jungle watching WSN [  ] must find out and report the location 

of a probable fire. 

Using GPS (Global Positioning System)[  ] devices is the simplest way to determine 

the location of a sensor  node; nevertheless, because of some trait of GPS devices 

which are in contrary with sensor networks demands, using them in all sensor nodes is 

not justifiable. These traits include relatively high cost, high weight, and debatable 

accuracy of GPS equipment in some situations. To overcome GPS Limitations, many 

localization techniques have been developed for sensor networks which don’t depend 

on the GPS devices merely. In these localization methods, a few nodes, called anchors 

or seeds, is equipped with GPS devises and help other nodes to determine their 

position. 

Many algorithms have been proposed for localization of static WSNs [  -   . Nodes 

in static WSNs do not have movement; in consequences, if a node of these networks 

could estimate its location once, it won’t have to repeat localization process again. 

Nodes in mobile WSNs may move by external agent like wind, animal’s movements, 

stream of a river, or by internal movement agents like wheels and continuous track 

[  ,   ]. Mobility has two contrary effects on localization process. In one hand, as 

previous works [1 ] indicates, mobility can help localization of static sensor 

networks. In that, more nodes can get information from mobile anchor nodes. On the 

other hand, mobile sensor networks may suffer from rapidly changing situation which 

leads to less validation time for observed information.  

In general, the proposed localization algorithms concentrated on static WSNs due to 

the high importance of this issue. Under mobility conditions, the static localization 

algorithm is supposed to be applicable with some superficial modifications and 

periodic mobility parameters tracking. 

   

    Research Question 

Localization is a fundamental task in wireless ad-hoc networks. We consider the 

problem of locating and orienting a network of unattended sensor nodes that have 
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been deployed in an area at unknown locations. In a location related system, the 

acquisition of objects’ locations is the critical step for the effective and smooth 

working procedures. The basic concept is to deploy a large number of low-cost, self-

powered sensor nodes that acquire and process data. The sensor nodes may include 

one or more acoustic microphones as well as seismic, magnetic, or imaging sensors. A 

typical sensor network objective is to detect, track, and classify objects or events in 

the neighborhood of the network [   . 

We consider location estimation in networks where a small proportion of devices, 

called reference devices or anchors, have a priori information about their coordinates. 

All devices, regardless of their absolute coordinate knowledge, estimate the range 

between themselves and their neighboring devices. Such location estimation is called 

relative location because the range estimates collected are predominantly between 

pairs of devices of which neither has absolute coordinate knowledge. 

We intend to implement a range-free localization algorithm with the consideration of 

power limitations of sensor nodes, the need for accurate results, and the time required 

to execute the algorithm and get results. 

 

    Thesis Contribution 

In this research, a new enhanced SOM-based localization algorithm is being proposed 

due to the importance of the localization process and the limitations of the wireless 

sensor nodes (hardware and power limits). The proposed technique is supposed to be 

faster and more accurate over the previous similar algorithms. 

The main contribution of this research is the utilization of neighboring nodes’ 

information to be used in the first stage of the learning process in the SOM, rather 

than random initialization. Also, a modified SOM algorithm will be used instead of 

the classical SOM algorithm (i.e. the updating formula). Furthermore, the localization 

algorithm will be implemented in a distributed manner rather than centralized. 

With these specifications, the algorithm will be faster, more accurate, and 

significantly decrease the overhead on the sensor nodes. 
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    Outline of Rest of Thesis 

The rest of thesis is organized as follows: Chapter 2 briefly describes some of the 

most related works that have been done in the wireless nodes localization area. The 

advantages and drawbacks of every work have been mentioned and discussed. In 

chapter 3, the required theoretical and experimental materials that have been used in 

this research are described. 

Chapter 4 describes accurately the proposed technique, algorithm steps and the whole 

system methodology used to localize the wireless nodes in a given wireless network. 

In chapter 5, the experimentation environment, the experiment simulations and results 

are demonstrated and analyzed. Comparisons to other related and recent works have 

been done and also analyzed to verify the proposed algorithm. Finally, the concluding 

remarks and future work have been listed in chapter 6, conclusion.     
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Chapter 2 

Related Work 

 .1 Localization Algorithms 

Recently, mobile ad-hoc network localization has received attention from many 

researchers [ 1]. Many algorithms and solutions have been presented so far. These 

algorithms are ranging from simple to complicated schemes, but they can be 

categorized as range-based and range-free algorithms. Range-free algorithms utilize 

only connectivity information and the number of hops between nodes. The others 

utilize the distance measured between nodes by either using the Time-Of-Arrival 

(TOA) [ 2], Time-Differential-Of-Arrival (TDOA) [ 3], Angle-Of-Arrival (AOA) 

[ 4], or Received-Signal-Strength-Indicator (RSSI) [ 5] technologies. However, they 

usually need extra hardware to achieve such measurement. When calculating the 

absolute location, most schemes need at least three anchors (nodes that are equipped 

with Global Positioning System or know their location in advance).  

Range-free algorithms are widely used due to the observable advantages over the 

range-based algorithms especially the conservation in power consumption in wireless 

devices. Many trends have utilized the artificial neural networks in the localization 

process. Different types of neural networks have been used in these algorithms. One 

of the most recent used neural networks are the Self Organizing Maps (SOMs). The 

use of SOMs showed its effectiveness in the localization process over other 

algorithms. 

 

    Range-based Localization Algorithms 

The traditional ranging methods based on received signal strength (RSSI), time of 

arrival (TOA), angle of arrival (AOA), time difference of arrival (TDOA), etc. have 

several shortcomings from the point of view of the sensor networks. RSSI is usually 

very unpredictable since the received signal power is a complex function of the 

propagation environment. Hence, radios in sensors will need to be well calibrated 

otherwise sensors may exhibit significant variation in power to distance mapping. 
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TOA using acoustic ranging will require an additional ultrasound source. TOA and 

RSSI are affected by measurement as well as non-line of sight errors. TDOA is not 

very practical for a distributed implementation. AOA sensing will require either an 

antenna array or several ultra-sound receivers     .  

The Active Badge Location System [  ] is often credited as one of the earliest 

implementations of an indoor sensor network used to localize a mobile node [  ]. 

Although this system, utilizing infrared, was only capable of localizing the room that 

the mobile node was located in, many other systems based on this concept have been 

proposed. The Bat system [28, 29], much like the Active-Badge System, also utilizes 

a network of sensors. This system features a central controller that emits a query 

which the mobile node responds to with an ultrasonic pulse. This pulse is picked up 

by a network of receivers at varying times due to their locations. These times can be 

used to compute the distances and hence the location of the mobile node. Researchers 

at MIT (Massachusetts Institute of Technology) have utilized similar concepts from 

the Bat System in their Cricket sensors, using a more decentralized structure. This 

system requires less of a support infrastructure than the Bat system. The Cricket 

Location System [  ] uses a hybrid approach consisting of an Extended Kalman filter, 

Least Square Minimization to reset the Kalman filter, and Outlier Rejection to 

eliminate bad distance readings. Other researchers at MIT have proposed localization 

by exploiting properties of robust quadrilaterals to localize an ad-hoc collection of 

sensors without the use of beacons [31]. 

It is also possible to localize optically as shown in the HiBall head tracking system 

[  ]. Arrays of LEDs flash synchronously, and cameras capture the position of these 

LEDs. The system utilizes information about the geometry of the system and 

computes the position. Localization using signal strength of RF signals has been 

studied extensively, [  -  ] are all examples of methods that were devised using this 

approach.  

Monte Carlo Localization (MCL) was also one of the first practical methods for 

localization of mobile WSNs. Sequential Monte Carlo method had used for 

localization of mobile robots previously [3 ]. Hu and Evans adapted this technique 

for sensor networks and proposed a practical method [3 ] for localization of mobile 

sensor networks. In Sequential Monte Carlo methods, the current state of a system can 
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be obtained by using its current observations and its posterior state. In MCL, the time 

is divided into discrete intervals. A sensor node moves during a time interval and 

localizes at the beginning of the next time interval. The main idea of Monte Carlo 

Localization Boxed (MCB) method proposed by Baggio and Langendoen [3 ] is to 

limit the area which the samples are drawn in MCL. Unlike the MCL, MCB uses the 

information obtained from anchor nodes both before and after generation of samples. 

This can lead to faster and more efficient sample generation. 

All of these approaches complain from the use of range-based (signal strength) and 

connectivity information, that are hard and slow to be collected, need hardware 

support in the network nodes, and are rapidly changed especially in mobile networks 

as well. 

 

    Range-free Localization Algorithms 

Some other schemes are range-free and use connectivity information only. One of the 

first examples of such a technique is the “GPS-Less”    ] positioning system, where 

nodes use a centroid approach to estimate their position by averaging the coordinates 

of nearby anchor nodes. DV-HOP (Distance Vector-HOP) is a typical range-free 

algorithm [  ], where anchor nodes flood the network with message beacons that are 

used by each node to determine the minimal hop count distances. Using an estimate of 

the average hop length, this information is used to obtain distance values and perform 

multi-lateration. A similar approach is proposed in [  ] and in [  ] as an Ad-hoc 

Positioning System (APS). It uses distance-vector forwarding technique to get the 

minimum hop count from a node to heard anchors. By using corrections calculated by 

anchors (average hop-distance between anchors), nodes estimate their location by 

using lateration (triangulation) method. 

Besides DV-HOP, some other algorithms seem to be more complicated, but have 

better accuracy. The Multidimensional Scaling Map (MDS-MAP) proposed by Shang 

et al. [  ] is an example. MDS-MAP is originated from a data analytical technique by 

displaying distance-like data in geometrical visualization. It computes the shortest 

paths between all pairs of nodes to build a distance matrix and then applies the 
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classical Multidimensional Scaling (MDS) to this matrix to retain the first two largest 

eigenvalue and eigenvector to a 2D relative map. After that, with three given anchors, 

it transforms the relative map into an absolute map based on anchors’ absolute 

location. There are some variances of MDS-MAP such as centralized method: MDS-

MAP(C), and distributed one: MDS-MAP (P). But, in the distributed method, to get 

the absolute location, nodes need global information about the subnetwork’s map that 

contains at least three anchors. 

 

   .1 Localization using Neural Networks  

Neural networks have not been used extensively in this area. There has been some 

research conducted by Chenna et al in [  ]. However, Chenna et al, restricted 

themselves to comparing Recurrent Neural Networks (RNN) to the Kalman Filter. In 

[  ], the authors showed that an MLP (Multi-Layer Perceptron) neural network can 

be used for localization, and that its performance exceeds that of the Position-Velocity 

(PV) and Position-Velocity-Acceleration (PVA) variants of the Kalman Filter.  Tran 

and Nguyen [  ] proposed a new localization scheme based on Support Vector 

Machine (SVM). The authors have contributed another machine learning method to 

the localization problem, and proved the upper bound error of this method. 

These first approaches that used neural networks in the localization process in 

wireless sensor networks showed that it is a promising area and may lead to faster and 

more accurate localization. 

 

   .2 SOM-based Localization Algorithms  

Regarding the localization based on Self-Organizing Maps, some researchers have 

employed SOM directly or with some modification. The SOM projection technique 

from the input space to the plane defined by the lattice of neurons property has been 

widely exploited in many applications for data analysis and visualization of large data 

sets [48, 49]. More recently, SOMs have been used to implement localization schemes 

for mobile robots in unknown environments [50, 51]. The SOM, initially trained with 
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information collected by on-board sensors during the exploration phase, is then used 

as a virtual map to translate new sensor readings into grid positions or to recognize 

different environments. The method presented by Giorgetti [52] employed the 

classical SOM to the localization. This method uses centralized implementation and 

requires thousands of learning steps in convergence of network topology. The authors 

also realize that this method is good for small and medium size networks of up to 100 

nodes. S. Asakura et al. proposed a distributed localization scheme [53] based on 

SOM. Hu and Lee [54] also proposed another version of distributed localization based 

on SOM. In this work, the authors employed a deduced SOM version [55]. But, this 

method still needs too many iterations (at least 4000) to make the topology to be 

converged with a relatively low accuracy. 

In another work [56], the authors use SOM to track a mobile robot with the utilization 

of surrounding environments from readings of sensor data. In the work presented by 

Ertin and Priddy [57], another version of SOM was used to implement the localization 

in wireless sensor networks. Their model is based on the assumption that network 

nodes can sense a common phenomena (e.g. acoustic or seismic) at synchronized 

timesteps. A further assumption is that the correlation between sensor readings is a 

function only of the distance between nodes. Under these conditions, sensor readings 

from all the nodes are first accumulated to form the training set, and then, after the 

SOM model has been trained, are used to sort the nodes according to their proximity 

to a set of virtual sensors placed on a regular grid. 

These SOM-based algorithms led to acceptable error range and accuracy, but still 

need a huge number of iterations to approach convergence. Also, they used the 

classical SOM update algorithm, which may be not suitable in some cases, and 

applicable only to small networks. 

This research will also use the Self Organizing Maps in the localization process, but 

will try to enhance the existing techniques and try to get benefit from the connectivity 

and neighboring nodes’ information to start the learning stage with meaningful 

initialization, and thus fasten the process. Moreover, the SOM update function will be 

modified to be suitable for different network topologies as well as different network 

sizes. 
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Chapter 3 

Background 

3.1 Wireless Sensor Networks 

Previously, sensor networks consisted of small number of sensor nodes that were 

wired to a central processing station. However, nowadays, the focus is more on 

wireless, distributed, sensing nodes. When the exact location of a particular 

phenomenon is unknown, distributed sensing allows for closer placement to the 

phenomenon than a single sensor would permit [  ]. Also, in many cases, multiple 

sensor nodes are required to overcome environmental obstacles like obstructions, line 

of sight constraints etc. In most cases, the environment to be monitored does not have 

an existing infrastructure for either energy or communication. It becomes imperative 

for sensor nodes to survive on small, finite sources of energy and communicate 

through a wireless communication channel. Another requirement for sensor networks 

would be distributed processing capability. This is necessary since communication is 

a major consumer of energy. A centralized system would mean that some of the 

sensors would need to communicate over long distances that lead to even more energy 

depletion. Hence, it would be a good idea to process locally as much information as 

possible in order to minimize the total number of bits transmitted. 

 

3.1.1 Challenges in WSNs 

In spite of the diverse applications, sensor networks pose a number of unique 

technical challenges due to the following factors [20]: 

 Ad hoc deployment: Most sensor nodes are deployed in regions, which have 

no infrastructure at all. A typical way of deployment in a forest would be 

tossing the sensor nodes from an airplane. In such a situation, it is up to the 

nodes to identify its connectivity and distribution.  

 Unattended operation: In most cases, once deployed, sensor networks have no 

human intervention. Hence the nodes themselves are responsible for 

reconfiguration in case of any changes. 
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 Not tethered: The sensor nodes are not connected to any energy source. There 

is only a finite source of energy, which must be optimally used for processing 

and communication. An interesting fact is that communication dominates 

processing in energy consumption. Thus, in order to make optimal use of 

energy, communication should be minimized as much as possible. 

 Dynamic changes: It is required that a sensor network system be adaptable to 

changing connectivity (for e.g., due to addition of more nodes, failure of nodes 

etc.) as well as changing environmental stimuli.  

 

Thus, unlike traditional networks, where the focus is on maximizing channel 

throughput or minimizing node deployment, the major consideration in a sensor 

network is to extend the system lifetime as well as the system robustness [59]. 

 

      Sensor Networks Applications 

Sensor networks may consist of many different types of sensors as discussed in [  ] 

such as seismic, low sampling rate magnetic, thermal, visual, infrared, acoustic and 

radar, which are able to monitor wide variety of ambient conditions that include the 

following: 

 Temperature 

 Humidity 

 vehicular movement 

 lightning condition 

 pressure 

 soil makeup 

 noise levels 

 the presence or absence of certain kinds of objects 

 mechanical stress levels on attached objects 

 The current characteristics such as speed, direction and size of an object. 

 

Sensor nodes can be used for continuous sensing, event detection, event ID, location 

sensing, and local control of actuators. The concept of micro-sensing and wireless 

connection of these nodes promises many new application areas. The applications are 
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categorized into military, environment, health, home and other commercial areas. It is 

possible to expand this classification with more categories such as space exploration, 

chemical processing and disaster relief. In fact, due to the pervasive nature of micro 

sensors, sensor networks have the potential to revolutionize the very way we 

understand and construct complex physical system [  ]. 

 

3.2 Localization 

In sensor networks, nodes are deployed into an unplanned infrastructure where there 

is no a priori knowledge of location. The problem of estimating spatial-coordinates of 

the node is referred to as localization. An immediate solution, which comes to mind, 

is GPS or the Global Positioning System. The different approaches to the localization 

problem have been studied in [62-  ]. However, there are some strong factors against 

the usage of GPS. For one, GPS can work only outdoors. Secondly, GPS receivers are 

expensive and not suitable in the construction of small cheap sensor nodes. A third 

factor is that it cannot work in the presence of any obstruction like dense foliage etc. 

Thus, sensor nodes would need to have other means of establishing their positions and 

organizing themselves into a co-ordinate system without relying on an existing 

infrastructure. Most of the proposed localization techniques today, depend on 

recursive trilateration/multilateration techniques [  ]. One way of considering sensor 

networks is taking the network to be organized as a hierarchy with the nodes in the 

upper level being more complex and already knowing their location through some 

technique (say, through GPS). These nodes then act as beacons by transmitting their 

position periodically. The nodes, which have not yet inferred their position, listen to 

broadcasts from these beacons and use the information from beacons with low 

message loss to calculate its own position. A simple technique would be to calculate 

its position as the centroid of all the locations it has obtained. This is called as 

proximity based localization. It is quite possible that all nodes do not have access to 

the beacons. In this case, the nodes which have obtained their position through 

proximity based localization themselves, act as beacons to the other nodes. This 

process is called iterative multilateration. As can be guessed, iterative multilateration 

leads to accumulation of localization error. Thus, trilateration is a geometric principle 

which allows us to find a location if its distance from three already-known locations. 
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The same principle is extended to three-dimensional space. In this case, spheres 

instead of circles are used and four spheres would be needed. When a localization 

technique using beacons is used, an important question would be how many initial 

beacons to deploy. Too many beacons would result in self-interference among the 

beacons while too less number of beacons would mean that many of the nodes would 

have to depend on iterative multilateration. 

 

      Localization Techniques 

Localization can be classified as fine-grained, which refers to the methods based on 

timing/signal strength and coarse-grained, which refers to the techniques based on 

proximity to a reference point. In    ], an over-view of the various localization 

techniques is given. 

 

Examples of fine-grained localization are: 

 Timing: The distance between the receiver node and a reference point is 

determined by the time of flight of the communication signal. 

 Signal strength: As a signal propagates, attenuation takes place proportional to 

the distance traveled. This fact is made use of to calculate the distance. 

 Signal pattern matching: In this method, the coverage area is pre-scanned with 

transmitting signals. A central system assigns a unique signature for each 

square in the location grid. The system matches a transmitting signal from a 

mobile transmitter with the pre-constructed database and arrives at the correct 

location. But pre-generating the database goes against the idea of ad hoc 

deployment. 

 Directionality: Here, the angle of each reference point with respect to the 

mobile node in some reference frame is used to determine the location.  

 

Examples of coarse-grained localization are proximity based localization as described 

earlier. [6 ] Proposes a localization system which is RF-based, receiver-based, ad 

hoc, responsive, low-energy consuming and adaptive. RF-based transceivers would be 

more inexpensive and smaller compared to GPS-receivers. Also in an infrastructure 



14 

 

less environment, the deployment would be ad hoc and the nodes should be able to 

adapt themselves to available reference points. 

 

Locating objects in two (e.g., surface of the earth) or three dimensions (e.g., space) 

from the knowledge of locations of some distinguished nodes, called anchors, has 

been the central problem in navigation. Anchors can know location of a node from its 

distances and/or angles. What distinguishes the localization problem in sensor 

networks from the navigation problem is the following: due to spatial expanse of a 

sensor network, not every sensor will have the required number of anchors for 

ranging; to be cost effective, fewer anchors are desired. 

 

3.3 Self Organizing Maps (SOMs) 

A self-organizing map (SOM) [    or self-organizing feature map (SOFM) is a type 

of artificial neural network [    that is trained using unsupervised learning to produce 

a low-dimensional (typically two-dimensional), discretized representation of the input 

space of the training samples, called a map. Self-organizing maps are different from 

other artificial neural networks in the sense that they use a neighborhood function to 

preserve the topological properties of the input space. 

This makes SOMs useful for visualizing low-dimensional views of high-dimensional 

data, akin to multidimensional scaling [   . The model was first described as an 

artificial neural network by the Finnish professor Teuvo Kohonen, and is sometimes 

called a Kohonen map [  ]. 

Self Organizing Map (SOM) by Teuvo Kohonen provides a data visualization 

technique which helps to understand high dimensional data by reducing the 

dimensions of data to a map. SOM also represents clustering concept by grouping 

similar data together. Therefore it can be said that SOM reduces data dimensions and 

displays similarities among data. 

With SOM, clustering is performed by having several units compete for the current 

object. Once the data have been entered into the system, the network of artificial 

neurons is trained by providing information about inputs. The weight vector of the 

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Scientific_visualization
http://en.wikipedia.org/wiki/Multidimensional_scaling
http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Self-organizing_map#cite_note-KohonenMap-0#cite_note-KohonenMap-0
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unit that is closest to the current object becomes the winning or active unit. During the 

training stage, the values for the input variables are gradually adjusted in an attempt to 

preserve neighborhood relationships that exist within the input data set. As it gets 

closer to the input object, the weights of the winning unit are adjusted as well as its 

neighbors.  

Teuvo Kohonen writes "The SOM is a new, effective software tool for the 

visualization of high-dimensional data. It converts complex, nonlinear statistical 

relationships between high-dimensional data items into simple geometric relationships 

on a low-dimensional display. As it thereby compresses information while preserving 

the most important topological and metric relationships of the primary data items on 

the display, it may also be thought to produce some kind of abstractions."  

 

   .1 Reducing Data Dimensions and Data Similarity 

Unlike other learning technique in neural networks, training a SOM requires no target 

vector. A SOM learns to classify the training data without any external supervision. 

Figure 3.1 [70] illustrates a SOM and how an input vector x is connected to the nodes 

(neurons) of the SOM. 

 

Figure 3.1 A typical SOM with input vector connection. 
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Every node is connected to the input the same way, and no nodes are connected to 

each other. 

Getting the Best Matching Unit is done by running through all weight vectors and 

calculating the distance from each weight to the sample vector. The weight with the 

shortest distance is the winner. There are numerous ways to determine the distance; 

however, the most commonly used method is the Euclidean Distance and/or Consine 

Distance. 

 

   .  SOM Algorithm  

Each data from data set recognizes themselves by competing for representation. SOM 

mapping steps starts from initializing the weight vectors. From there a sample vector 

is selected randomly and the map of weight vectors is searched to find which weight 

best represents that sample. Each weight vector has neighboring weights that are close 

to it. The weight that is chosen is rewarded by being able to become more like that 

randomly selected sample vector. The neighbors of that weight are also rewarded by 

being able to become more like the chosen sample vector. From this step the number 

of neighbors and how much each weight can learn decreases over time. This whole 

process    ,     is repeated a large number of times, usually more than 1000 times. 

 In sum, learning occurs in several steps and over many iterations:  

 . Each node's weights are initialized.  

 . A vector is chosen at random from the set of training data.  

 . Every node is examined to calculate which one's weights are most like the 

input vector. The winning node is commonly known as the Best Matching 

Unit (BMU).  

 . Then the neighborhood of the BMU is calculated. The amount of neighbors 

decreases over time.  

 . The winning weight is rewarded with becoming more like the sample vector. 

The neighbors also become more like the sample vector. The closer a node is 



17 

 

to the BMU, the more its weights get altered and the farther away the neighbor 

is from the BMU, the less it learns.  

 . Repeat step 2 for N iterations. 

 

 Calculating the Best Matching Unit: 

Calculating the BMU is done according to the Euclidean distance among the 

node’s weights (w , w , …, wn) and the input vector’s values (x , x , … , xn). This 

gives a good measurement of how similar the two sets of data are to each other. 

           2
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where n is the dimension of the weight vectors and the input vector. 

 Determining the BMU Neighborhood 

o Size of the neighborhood: an exponential decay function( )(t ) is used 

that shrinks at each iteration until eventually the neighborhood is just 

the BMU itself. 
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Where t is the time step, 0  is the initial value and  is a time constant. 

o Effect of location within the neighborhood: The neighborhood is 

defined by a gaussian curve so that nodes that are closer are influenced 

more than farther nodes. 
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where  )(t is the neighborhood function used in the updating formula. 
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Figure 3.2 [71] illustrates the changes of weights on a given weight vector wj by 

applying the neighborhood function. 

 

Figure 3.2 The weights changes by applying the neighborhood function. 

 

 Modifying Nodes’ Weights 

The new weight for a node is the old weight, plus a fraction (L) of the difference 

between the old weight and the input vector and adjusted ( ) based on distance 

from the BMU. 

))()()(()()()1( twtxtLttwtw                                                       ( . ) 

The learning rate, L, is also an exponential decay function. This ensures that the 

SOM will converge. 












t
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where L  is the initial value of the learning rate,   represents a time constant, and 

t is the time step. 
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Chapter 4 

Proposed Technique 

4.1 The Proposed Algorithm 

In this chapter, the proposed algorithm used to localize the nodes' positions in a 

wireless network will be introduced and described in details. 

We named the algorithm (DLSOM), which stands for (Distributed Localization using 

Self Organizing Maps). The algorithm is divided into two main stages, the 

initialization stage and the SOM learning and converging stage. 

 

4.1.1 Anchors Number and Placement 

The accuracy of the estimated positions is highly affected by the number of anchor 

nodes and their distribution in the sensor field. Although various algorithms use the 

location information of anchors differently, the number and placement of anchors 

affect the accuracies of localization algorithms to a certain extent. Substantial amount 

of anchors are required to maintain the accuracy for distributed algorithms based on 

multilateration, in which nodes estimate their positions as the average of the received 

positions from anchors and neighbors. Theoretically, more anchors bring higher 

location accuracy. However, too many anchors cause high energy consumption and 

calculation complexity.  

Many previous studies found that the optimal number of anchors to be selected in 

most distributions of wireless sensor networks ranges from 3 to 6. In multilateration-

based algorithms, like our algorithm, using 4 anchors gives satisfying accuracy with 

very slight difference of using more anchors, taking into account the calculation 

complexity and energy consumption.  

In [72], the number of anchors is optimized through a simulation with Matlab. The 

localization algorithm was simulated with different number of anchors (3, 4, 6, 8, 10, 

20, and 50). The correction quality of multilateration stagnates when more than six 

anchors are used. To keep low complexity and energy consumption, four is chosen as 
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the optimal number of anchors. Also, in the experiments of [73], they tried from 3 to 

10 anchors on the anisotropic networks and found that 4 anchors usually give the best 

result. Another benefit of using just 4 anchors for multilateration is that the 

communication cost is much lower than using many anchors. The delay in getting the 

distance information is also smaller. The information locality enables the method to 

scale to large-size networks. 

For the selection of anchors' positions, also many studies showed that the performance 

is better when anchors are uniformly distributed along the perimeter of the network. 

The nodes with high correlations with other nodes should be selected [74-76]. In [73], 

experiments showed that placing 4 anchors randomly gives slightly worse solutions 

than using the 4 outer anchors (at the network perimeter). Using the 4 inner anchors 

(at the four centers) gives the worst solution. 

In this research, we tried to select the anchors at the perimeter and at the four centers 

of the network. Extensive simulations using the two distributions showed that 

selecting the anchors at the network perimeter gives better accuracy and less 

estimation error.  

This can be interpreted as: the nodes at the perimeter of the network are more 

correlated to the unknown nodes. Moreover, the neighbors of these anchors can 

estimate their locations more accurately based on the anchor position with regard to 

the network (as will be explained later in the algorithm methodology and equations). 

Thus, four anchors distributed at the network perimeter are selected in the simulations 

of our algorithm. 

 

      The Initialization Stage 

In this stage, the wireless network nodes try to estimate their locations using the well-

known positions of the anchor nodes. The anchor nodes are very small number of 

nodes that know their locations in advance (equipped with GPS). 

Each node in the network can estimate its initial location according to the following 

steps: 
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 - Each anchor node broadcasts its location to only the neighbors of that node. An 

example is illustrated in Figure 4.1: 

 

Figure 4.1 Anchors broadcast locations to neighbors. 

 - According to the location of that node with regard to the network topology (top-

right, top-left, bottom-right, bottom-left), the neighboring nodes can estimate 

their initial locations, as illustrated in Figure 4.2. 

 

Figure 4.2 Anchors' Neighbors estimated locations. 
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 - Now, the neighboring nodes also broadcast their estimated locations resulted 

from step 2 to their neighbors inside the network as Figure 4.3 illustrates. 

 

Figure 4.3 Neighbors broadcast their estimated location. 

 - As shown in Figure 4.4, each node can estimate its location by averaging the 

estimated locations received from its neighbors. 

 

Figure 4.4 Neighbors estimate locations by averaging received locations. 
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 - Finally, the unconnected nodes, like the red nodes illustrated in Figure 4.5, i.e. 

have no neighbors can estimate their locations randomly. 

 

Figure 4.5 Unconnected nodes estimate their locations randomly. 

 - All the estimated initial locations can now be fed to the next stage of the 

algorithm, the learning stage. 

 

      The Learning Stage 

To begin the iterations of the learning stage, the estimated locations resulted from the 

previous stage must be exchanged through the network. This can be done according to 

the following steps: 

 - Each node forwards its estimated location to all of its neighbors. Now, each 

node plays as the input vector and the winning neuron for the region formed 

by its neighbors. This is done instead of finding the Best Matching Unit 

(BMU) for each node to update its location and the neighboring locations as 

well. Due to the distributed scheme of the algorithm, the step of finding the 

BMU can be skipped, and consider each node as the BMU for the set of its 

neighbors to do perform the calculations and updates.                                                                      
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 - Based on SOM updating formulas, the neighboring nodes of each node update 

their weights (locations) using that node as the winning neuron.  

 - At the end of the previous step, each node transmits its neighbor location 

updates to all of its neighbors. On the other hand, it also receives its location 

updates from its neighbors. 

 - Finally, each node calculates its new estimated location by averaging its 

current location and the received updates from its neighbors. 

This process is repeated T time (The total number of iterations). The general steps of 

the Initialization and learning stages are shown in Figure  . : 
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Figure  .  The block diagram of the DLSOM algorithm. 
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4.2 DLSOM Mathematical Equations and Methodology 

As described in the previous section, the DLSOM algorithm is divided into two main 

stages. Given a wireless network with randomly distributed nodes (N nodes) in a 

specified area (L × L) and a determined radio range (R) (also called a communication 

range) in which the nodes can maximally communicate with others, the anchor nodes 

are selected to be at the four ends (the perimeter) of the network topology (can select 

anchors randomly or at the four centers, but this selection technique makes the 

algorithm easier and more accurate).  

In the initialization stage, the anchors begin to broadcast their well-known locations to 

their neighbors (nodes within their communication range), as well as the position of 

these anchors with regard to the network topology (top-right, top-left, bottom-right, 

bottom-left). This information can be usefully used by the neighbors to estimate their 

initial locations. The neighboring nodes to the anchor (top-right) will estimate their 

locations using the following equation: 

For all nodes i, where i = { ,  ,  ,….., N }, N  is the number of the top-right anchor 

neighbors: 

(xi , yi) = (random [xanch1-R, xanch1], random [yanch1-R, yanch1 )                  ( . ) 

where (xi , yi) are the coordinates of the i-th neighboring node to the first anchor (top-

right),  R is the communication range, and (xanch1, yanch1) is the well-known location of 

the first anchor. 

The x-coordinate of the first anchor (top-right) is supposed to be the maximum x value 

for the whole network nodes. The neighboring nodes of this anchor can take 

advantage from this information and estimate their x-coordinate as a random value in 

the period of [xanch1-R, xanch1]. 

Also, the y-coordinate of the first anchor (top-right) is supposed to be the maximum y 

value for the whole network nodes. The neighboring nodes of this anchor can take 

advantage from this information and estimate their y-coordinate as a random value in 

the period of [yanch1-R, yanch1]. 

 



27 

 

Similarly, the neighboring nodes to the second anchor (top-left) estimate their 

locations according to (4.2): 

For all nodes j, where j = { ,  ,  ,….., N }, N  is the number of the top-left anchor 

neighbors: 

(xj , yj) = (random [xanch2, xanch2+R], random [yanch2-R, yanch2 )                  ( . ) 

where (xj , yj) are the coordinates of the j-th neighboring node to the second anchor 

(top-left), and (xanch , yanch ) is the well-known location of the second anchor. 

The x-coordinate of the second anchor (top-left) is supposed to be the minimum x 

value for the whole network nodes. The neighboring nodes of this anchor can take 

advantage from this information and estimate their x-coordinate as a random value in 

the period of [xanch2, xanch2+R]. 

Also, the y-coordinate of the second anchor (top-left) is supposed to be the maximum 

y value for the whole network nodes. The neighboring nodes of this anchor can take 

advantage from this information and estimate their y-coordinate as a random value in 

the period of [yanch2-R, yanch2]. 

The neighboring nodes to the third anchor (bottom-right) estimate their locations 

according to (4.3): 

For all nodes k, where k = { ,  ,  ,….., N }, N  is the number of the bottom-right 

anchor neighbors: 

(xk , yk) = (random [xanch3-R, xanch3], random [yanch3, yanch3+R )                 ( . ) 

where (xk , yk) are the coordinates of the k-th neighboring node to the third anchor 

(bottom-right), and (xanch , yanch ) is the well-known location of the third anchor. 

The x-coordinate of the third anchor (bottom-right) is supposed to be the maximum x 

value for the whole network nodes. The neighboring nodes of this anchor can take 

advantage from this information and estimate their x-coordinate as a random value in 

the period of [xanch3-R, xanch3]. 

Also, the y-coordinate of the third anchor (bottom-right) is supposed to be the 

minimum y value for the whole network nodes. The neighboring nodes of this anchor 
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can take advantage from this information and estimate their y-coordinate as a random 

value in the period of [yanch3, yanch3+R]. 

Finally, the neighboring nodes to the fourth anchor (bottom-left) estimate their 

locations according to (4.4): 

For all nodes z, where z = { ,  ,  ,….., N }, N  is the number of the bottom-left 

anchor neighbors: 

(xz , yz) = (random [xanch4, xanch4+R], random [yanch4, yanch4+R])                 ( . ) 

where (xz , yz) are the coordinates of the z-th neighboring node to the fourth anchor 

(bottom-left), and (xanch , yanch ) is the well-known location of the fourth anchor. 

The x-coordinate of the fourth anchor (bottom-left) is supposed to be the minimum x 

value for the whole network nodes. The neighboring nodes of this anchor can take 

advantage from this information and estimate their x-coordinate as a random value in 

the period of [xanch4, xanch4+R]. 

Also, the y-coordinate of the fourth anchor (bottom-left) is supposed to be the 

minimum y value for the whole network nodes. The neighboring nodes of this anchor 

can take advantage from this information and estimate their y-coordinate as a random 

value in the period of [yanch4, yanch4+R]. 

Now, the estimated initial locations of the anchors' neighbors are transmitted to the 

unknown neighboring nodes. These neighboring nodes will actually receive many 

estimated locations (according to the number of neighbors). Each node estimates its 

initial location by averaging the received locations according to the following 

equation: 

For all nodes v, where v = { ,  ,  , ….., N }, N  is the number of inner nodes that 

received estimated locations from neighbors:  

(xv , yv) =  ( 
v
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where (xv , yv) are the coordinates of the v-th node, and Nv is the number of node's v 

neighbors. 

As a final step of the initialization stage, the rest of the network nodes that did not 

receive any estimated location, due to its wide distance of the network nodes, i.e. out 

of range of any network node will estimate their initial locations randomly (no 

knowledge of any neighboring information).  

For all nodes s, s = { ,  ,  , ….., N },  N  is the number of the remaining unconnected 

nodes: 

            (xs , ys) = random()                                                                            (4.6) 

where (xs , ys) are the coordinates of the s-th node. 

After completing the initialization stage, each node forwards its estimated location to 

all of its neighbors in preparation to the learning stage. 

Before going into the learning stage SOM formulas, let us formulate the mathematical 

notations that will be used in these formulas and equations. The actual locations of the 

wireless nodes are denoted by a

iw  (i =  ,  ,  , …, N) and the estimated locations are 

denoted by e

iw  (i =  ,  ,  , …, N). 

As each node forwarded its estimated initial location to all of its neighbors, it also 

knows the estimated locations of its neighbors, denoted as e

jiw ,  (j =  ,  ,  , …, Ni) 

where Ni is the number of neighboring nodes to the node with location e

iw  . 

Now, the node with the location e

iw  plays as the winning neuron to the region formed 

by the neighbors of that node. Instead of finding the BMU for each node, this 

calculation step is skipped. Because each node knows its neighbors (within 

communication range) and due to the distributed scheme of the algorithm, each node 

can be considered as the BMU to the set of its neighbors and performs the location 

updates of its neighbors. 
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The following steps represent the learning stage of the algorithm: 

1. Based on SOM, the neighboring nodes of e

iw  will update their weights (locations) 

according to the following updating formula: 

            e

jiw ,  (t  ) = e

jiw ,  (t)   ∆ (t)                                                  ( . ) 

where ∆ (t) is calculated using: 

                       ∆ (t) = α (t) ( e

iw  - e

jiw ,  (t))                                                     ( . ) 

And α (t) is the learning rate exponential decay function calculated using: 

                     α (t) =  exp (
T

t )1( 
)                                                             ( . ) 

where t is t-th time step of the total T learning steps. 

 . The node with location e

iw  now transmits its neighbor location updates to all of its 

neighbors, and on the other hand, receives the same updates from its neighbors as e

ijw ,  

(j =  ,  ,  , …, Ni).  

 . At the end of the step, the node with location e

iw  calculates its new estimated 

location according to the following equation: 

                   e

iw   =   
1

1

iN
 ( 



iN

j 1

e

ijw ,  +  e

iw  )                                                ( .  )  

This is done by averaging the current location and the received updates from 

neighbors.  

 . Now, it re-forwards its new estimated location to its neighbors. 

This learning process (steps 1- ) is repeated T times. The number of iterations can be 

varied till convergence (reaching stable results).  

The algorithm pseudocode, initialization stage flowchart, and learning stage flowchart 

are illustrated in Figure 4.7, Figure 4.8, and Figure 4.9, respectively. 
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Figure 4.7 DLSOM pseudocode, cont. 

Algorithm 4.1: DLSOM 

Purpose: Wireless Node Localization 

Input: N: No. of Nodes, R: Communication Radio Range 

Output: e

iw , i= ,…., N: Estimated Nodes' Locations 

Procedure: 

% Initialization 

for all anchors anch1, anch2, anch3, anch4 do 

      Broadcast location to neighbors 

end for  

for all nodes  i=1: N1 do  % N1, number of anch1 neighbors 

      Receive anch1 location (xanch1, yanch1)  

     % anch1 is top-right; estimate location based on the equation:     

      (xi , yi) = (random [xanch1-R, xanch1], random [yanch1-R, yanch1]) 

end for 

 

for all nodes j  : N2  do   % N2, number of anch2 neighbors 

      Receive anch2 location (xanch2, yanch2)  

     % anch2 is top-left; estimate location based on the equation:     

      (xj , yj) = (random [xanch2, xanch2+R], random [yanch2-R, yanch2])  

end for 

 

for all nodes k  : N3  do   % N3, number of anch3 neighbors 

      Receive anch3 location (xanch3, yanch3)  

     % anch3 is bottom-right; estimate location based on the equation:     

      (xk , yk) = (random [xanch3-R, xanch3], random [yanch3, yanch3+R]) 

end for 

 

            (xj,yj) = random (anchx+R, anchy-R) 

         else if anch is bottom-right 

            (xk,yk) = random (anchx-R, anchy+R) 

         else if anch is bottom-left 
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Figure 4.7 DLSOM pseudocode, cont. 

 

 

for all nodes z   :N4    do    % N4, number of anch4 neighbors 

      Receive anch4 location (xanch4, yanch4)  

     % anch4 is bottom-left; estimate location based on the equation:     

      (xz , yz) = (random [xanch4, xanch4+R], random [yanch4, yanch4+R]) 

end for 

 

for all nodes m= :M    do   % M= (N1+N2+N3+N4)            

       Transmit estimated locations to neighbors 

end for 

 

for all nodes  v =  : N     do    % N5,  number of inner nodes that have neighbors 

      Receive estimated locations from neighbors 

      % estimate location based on the equation: 

      (xv , yv) =  ( 
v

N

i

i

N

x
v


1    ,   

v

N

i

i

N

y
v


1  )             

end for 

 

for all nodes  s =  : N     do  % N  , number of the remaining unconnected nodes 

    (xs , ys) = random () 

end for 
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Figure 4.7 DLSOM pseudocode. 

 

 

for all nodes i do 

     e

iw  = (xi , yi) 

end for 

 

% SOM Learning 

for t = :T do  

      α (t) =  exp (
T

t )1( 
) 

      for all nodes i do 

             for all nodes  j=1:Ni     do     % Ni , number of e

iw  neighbors 

                    ∆ (t) = α (t) ( e

iw  - e

jiw ,  (t)) 

                    e

jiw ,  (t  ) = e

jiw ,  (t)   ∆ (t) 

             end for 

 

      for all nodes i do 

            Transmit updated locations to neighbors                    

            Receive updated locations from neighbors  

            e

iw  =   
1

1

iN
 ( 



iN

j 1

 
e

ijw , +  e

iw  ) 

       end for 

end for 
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Figure  .  The Initialization Stage Flowchart. 
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Each node forwards its 

estimated location to all of its 

neighbors

Based on SOM formulas, each 

node updates its neighbors’ 

locations using its weight as the 

BMU

Each node transmits its 

neighbors’ updates to the 

neighbors and also receives its 

location updates from neighbors

Each node calculates its new 

estimated location by averaging 

its current location and the 

received updates

t < T

YES

NO

End DLSOM

                 Figure 4.9 The Learning Stage Flowchart. 
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Chapter 5 

Experimentation and Results 

5.1 Experimental Environment 

The DLSOM algorithm is implemented and executed using Matlab 7.9 Software. The 

source code is run on a desktop PC with Intel Pentium 4.0, 2.6 GHz CPU and 512 KB 

RAM. The flow of the program is as follows: 

 - Wireless network topology generation and deployment: The network was 

generated randomly based on the following varying parameters: 

(a) Number of Nodes (N): varied from 10 to 100 nodes. 

(b) Communication Range (R): varied from 1 km to 4 km 

(c) Deployment Area (L×L): 10 km× 10 km is used. 

 - Initialization Stage: The initial estimated locations of nodes were calculated 

according to the following parameters: 

(a) Four anchors are selected at the perimeter of the network topology (top-

right, bottom-right, top-left, bottom-left). 

 - SOM Learning Stage: The final estimated locations were calculated according 

to the following SOM parameters: 

(a) Maximum Number of Iterations (T): varied from 25 to 50. 

(b) Learning Rate (α): a decay exponential function of the current iteration and 

the maximum number of iterations is used. 

(c) Weight Updating Formula (∆): is calculated using the learning rate and the 

estimated vectors. 
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5.2 Simulation Results 

5.2.1 A 10-Nodes Wireless Network 

The wireless network is generated randomly with  0 wireless nodes in an area of 

10km ×10km. Figure 5.1 shows the actual network nodes' locations with different 

communication ranges, and the lines connecting the nodes represent the 

neighborhood relations between nodes based on the communication range given to 

the network. In Figure 5.1 (a), (b), and (c), the ranges are 1km, 2km, and 4km, 

respectively. 

   

                         (a) Range = 1.                                                                     (b) Range = 2. 

 

          (c) Range = 4. 

Figure 5.1 Actual Wireless Networks (N=10). 

The anchors are selected to be nodes 1 (top-right), 2 (bottom-left), 5 (bottom-right), 

and 8 (top-left). 
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 For the communication range 1, Figure 5.2 (a), (b), (c), and (d) show the estimated 

locations for the neighbors of these anchors. As observed in the actual network, due to 

the low connectivity, the anchors almost have no neighbors. 

     

(a) Neighbors of first anchor.                                                    (b) Neighbors of second anchor.  

     

             (c) Neighbors of third anchor.                                  (d) Neighbors of fourth anchor. 

  Figure 5.2 Estimated Locations of anchors' neighbors (N=10, R=1). 

For this communication range, most of the nodes have no neighbors, this, of course, 

will force the nodes to estimate their locations randomly (no neighborhood 

information is available). 

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location as illustrated in Figure 5.3 These locations are to be used in 

the SOM learning as initial weights. 
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           Figure 5.3 The estimated locations for the network nodes (N=10, R=1). 

The degree of divergence between the actual network and the network of initial 

estimated locations (shown in figure 5.3) is very high. Almost all the network nodes 

have estimated their locations randomly. 

As a result of the SOM learning, the final estimated locations (weights) are shown in 

Figure 5.4: 

 

           Figure 5.  The resulted estimated locations for the network nodes (N=10, R=1). 

Obviously, the accuracy of the result is not very high. For example the nodes 6 and 9 

shared the same location, and node 3 has an estimated location with a considerable 
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difference of the actual one. Also, the number of iterations needed to reach 

convergence (stable results) is considerably high (took about 50 iterations). 

For the communication range 2, Figure 5.5 (a), (b), (c), and (d) shows the estimated 

locations for the neighbors of the four anchors. As observed in the actual network, due 

to the low connectivity and low number of nodes, the anchors almost have no 

neighbors. 

      

         (a) Neighbors of first anchor.                                           (b) Neighbors of second anchor.  

       

       (c) Neighbors of third anchor.                                     (d) Neighbors of fourth anchor. 

  Figure  .  Estimated Locations of anchors' neighbors (N=10, R= ). 

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location as illustrated in Figure 5.6 These locations are to be used in 

the SOM learning as initial weights. 
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    Figure 5.  The estimated locations for the network nodes (N=10, R= ). 

Here, the degree of divergence between the actual network and the initial estimations 

network is much smaller. This is because some of the inner nodes have neighbors and 

got advantage of the estimated locations. 

 As a result of the SOM learning, the final estimated locations (weights) are shown in 

Figure  . : 

 

  Figure 5.  The resulted estimated locations for the network nodes (N=10, R= ). 

Obviously, the accuracy of the result is also much higher (about twice), and also, the 

number of iterations needed to reach convergence (stable results) is lower (took about 

35 iterations). 
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For the communication range 4, Figure 5.8 (a), (b), (c), and (d) shows the estimated 

locations for the neighbors of the four anchors. As observed in the actual network, all 

anchors have neighbors. These neighbors estimate their locations as shown in the 

following figures.  

     

         (a) Neighbors of first anchor.                                                 (b) Neighbors of second anchor.  

     

                         (c) Neighbors of third anchor.                                    (d) Neighbors of fourth anchor. 

  Figure 5.  Estimated Locations of anchors' neighbors (N=10, R= ). 

For this communication range, most of the nodes have neighbors, this, of course, will 

help the nodes to estimate their locations based on neighborhood information and 

totally get benefit from the proposed algorithm. 

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location as illustrated in Figure 5.9 These locations are to be used in 

the SOM learning as initial weights. 
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     Figure 5.  The estimated locations for the network nodes (N=10, R= ). 

The degree of divergence between the actual network and the initial estimations 

network is considerably small. As a result of the SOM learning, the final estimated 

locations (weights) are shown in Figure  .  : 

 

                   Figure 5.   The resulted estimated locations for the network nodes (N=10, R= ). 

 

The accuracy of the result is considerably high. This can be observed from the 

previous figure, in which most of the nodes have estimated locations with low 
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difference of the actual locations. Also, the number of iterations needed to reach 

convergence (stable results) is very low (took about 25 iterations). 

 

5.2.2 A 50-Nodes Wireless Network 

The wireless network is generated randomly with 50 wireless nodes in an area of 

10km ×10km. Figure 5.11 shows the actual network nodes' locations with different 

communication ranges, and the lines connecting the nodes represent the neighborhood 

relations between nodes based on the communication range given to the network. In 

Figure 5.11 (a), (b), and (c), the ranges are 1km, 2km, and 4km, respectively. 

    

                           (a) Range = 1.                                                                 (b) Range = 2. 

 

(c) Range = 4. 

Figure 5.1  Actual Wireless Networks (N=50). 
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The anchors are selected to be nodes 1 (bottom-right), 8 (top-left), 34 (top-right), and 

   (bottom-left). For the communication range 1, Figure 5.12 (a), (b), (c), and (d) 

shows the estimated locations for the neighbors of these anchors. As observed in the 

actual network, the anchors almost have no neighbors due to low radio range. 

    

    (a) Neighbors of first anchor.                                                 (b) Neighbors of second anchor. 

      

           (c) Neighbors of third anchor.                              (d) Neighbors of fourth anchor. 

  Figure 5. 2 Estimated Locations of anchors' neighbors (N= 0, R=1). 

 

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location as illustrated in Figure 5.13 These locations are to be used in 

the SOM learning as initial weights. 
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  Figure 5. 3 The estimated locations for the network nodes (N=50, R=1). 

Most of the nodes estimated their locations randomly due to low connectivity. Also, 

some of the inner nodes that have neighbors shared the same estimated location. As a 

result of the SOM learning, the final estimated locations (weights) are shown in 

Figure  .  : 

 

     Figure 5.   The resulted estimated locations for the network nodes (N= 0, R=1). 
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The accuracy of the result is relatively low. As shown in the previous figure, the final 

estimated locations for most of the nodes have noticeable difference of the actual 

locations. Also, the number of iterations needed to reach convergence (stable results) 

is relatively high (In contrast with the 10-Node wireless network with R = 4). Here, It 

took about 35 iterations to converge.  

For the communication range 2, Figure 5.15 (a), (b), (c), and (d) shows the estimated 

locations for the neighbors of the four anchors. All four anchors have considerable 

number of neighbors that can estimate their locations easily. 

   

             (a) Neighbors of first anchor.                                              (b) Neighbors of second anchor. 

   

              (c) Neighbors of third anchor.                                (d) Neighbors of fourth anchor. 

  Figure 5.   Estimated Locations of anchors' neighbors (N=50, R=2). 

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location as illustrated in Figure 5.16 These locations are to be used in 

the SOM learning as initial weights. 
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For this communication range, most of the nodes have neighbors, this, of course, will 

help the nodes to estimate their locations based on neighborhood information and 

totally get benefit from the proposed algorithm. 

 

           Figure 5.   The estimated locations for the network nodes (N=50, R=2).  

As a result of the SOM learning, the final estimated locations (weights) are shown in 

Figure  .  : 

 

Figure 5.   The resulted estimated locations for the network nodes (N=50, R=2). 

The accuracy of the result is higher, and also, the number of iterations needed to reach 

convergence (stable results) is much lower (took about 25 iterations). This is due to 

the higher connectivity and the correlation between nodes. 
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For the communication range 4, Figure 5.18 (a), (b), (c), and (d) shows the estimated 

locations for the neighbors of the four anchors. As can be shown in the actual 

network, all anchors have large number of neighbors that can estimate their locations 

based on received anchors' locations. 

      

         (a) Neighbors of first anchor.                                         (b) Neighbors of second anchor.  

      

             (c) Neighbors of third anchor.                               (d) Neighbors of fourth anchor. 

  Figure 5.   Estimated Locations of anchors' neighbors (N=50, R=4). 

 

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location as illustrated in Figure 5.19 These locations are to be used in 

the SOM learning as initial weights. 

For this communication range, all of the nodes have neighbors, this, of course, will 

help the nodes to estimate their locations based on neighborhood information and 

totally get benefit from the proposed algorithm. 
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Figure 5.   The estimated locations for the network nodes (N=50, R=4) 

. 

But, because of the existence of the averaging step during the initialization stage, and 

because of the similarity of neighbors for some nodes, the final estimated locations for 

these nodes will be –nearly- the same. This will lead to the agglomeration noticed in 

the previous figure. 

This problem occurred in most of multiteraion-based methods, in which a node can 

estimate its location by averaging the received locations. This is due the accumulation 

of the error in previous estimations. 

As a result of the SOM learning, the final estimated locations (weights) are shown in 

Figure  .  : 
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Figure 5.   The resulted estimated locations for the network nodes (N=50, R=4). 

Here, we noticed that the accuracy of the algorithm is lower than the previous case, 

contrary to the expectations. This can be explained due to the agglomeration 

happened during the initialization stage. The number of iterations is about 28. 

 

5.2.3 A 100-Nodes wireless Network 

The wireless network is generated randomly with 10  wireless nodes in an area of 

10km×  km. Three networks with different communication ranges, 1km, 2km, and 

4km have been used.                           

The anchors are selected to be nodes 8 (top-left), 18 (bottom-right), 24 (bottom-left), 

and 100 (top-right). For the communication range 1, anchors have low number of 

neighbors due to low radio range.  

After the initialization stage for all the network nodes is complete, each node has an 

initial estimated location. These locations are to be used in the SOM learning as initial 

weights. Some of the inner nodes, that have neighbors, estimate their locations based 

on received data from adjacent nodes. As a result of the SOM learning, the final 

estimated locations showed that the accuracy of the result is relatively low (many 

nodes shared the same location), and also, the number of iterations needed to reach 
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convergence (stable results) is high (took about 45 iterations). Although the 

communication range is very low, the problem of agglomeration slightly occurred and 

- besides the low communication range- influenced the accuracy of the algorithm. 

This is due the large number of nodes deployed in a limited area. 

For the communication range 2, most anchors have neighbors that can estimate their 

locations based on anchors' sent data. After the initialization stage for all the network 

nodes is complete, each node has an initial estimated location that can be used in the 

SOM learning as initial weights. The problem of agglomeration occurred; this is due 

to the large number of nodes.  

As a result of the SOM learning, the final estimated locations (weights) showed that 

the accuracy of the result is higher than the previous case (the difference of estimated 

and actual locations of nodes decreased), and also, the number of iterations needed to 

reach convergence (stable results) is lower (took about    iterations).  

For the communication range 4, anchors have high number of neighbors that can 

estimate their locations with taking advantage of received data. After the initialization 

stage for all the network nodes is complete, each node has an initial estimated location 

to be used in the SOM learning as initial weights. 

Again, the agglomeration problem occurred with a high degree due to the high 

communication range and the large number of nodes. As a result of the SOM learning, 

the accuracy of the result in this case is relatively low (many nodes share the same 

location and have noticeable difference of the actual locations) and the number of 

iterations is about   . 

Table 5.1 summarizes the results of the three network types that have been used in 

simulations. The best case is when the number of nodes is 50 with radio range of 2, in 

which the average estimation error is about  .    whereas the worst case is when the 

number of nodes is 10 with radio range of 1, in which the average estimation error is 

about  .  . 
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              Table 5.1 The simulation results for different set of parameters. 

Number of Nodes Rradio Range 
Number of 

Iterations 
Avg.  Error 

         .        

         .       

         .       

         .       

         .       

         .       

          .       

          .       

          .       

 

 

5.2.4 Selecting the Anchors at the Four Centers 

To see the effect of changing the four anchors placement on DLSOM, we tried to 

select the anchors at the four centers of the network. The following Table 5.2 shows 

the average error results by applying this change - placement - on the same 

experimental cases described earlier. 

         Table 5.2 The simulation results for selecting anchors at the four centers. 

Number of Nodes Radio Range Avg.  Error 

      .     

      .     

      .    

      .    

      .     

      .    

       .    

       .     

       .    
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As shown in the previous table, the average error by placing the anchors at the four 

centers is much larger in comparison with the results shown in Table 5.1. This can be 

explained as: the anchors at the perimeter of the network are more correlated to nodes 

than the four-center anchors. Moreover, the equations used to estimate the locations of 

anchors' neighbors - explained in chapter 4 - are more accurate; for all the anchors at 

the centers of the network, the estimation equation that can be used is: 

(x , y) = (random [xanch-R, xanch+R], random [yanch-R, yanch+R])                 ( . ) 

where (x , y) are the coordinates of all the anchors' neighbors, (xanch, yanch) are the 

coordinates of any of the four anchors, and R is the communication range. Obviously, 

the period of randomization for location estimation is unified and larger in contrast 

with the four different periods used before. 

Thus, based on this experiment results and previous studies, the anchors are selected 

at the perimeter of the network to increase the DLSOM accuracy. 

 

5.3 Evaluation Parameters 

The evaluation parameter that is used in this thesis is the average error between the 

estimated locations resulted from the DLSOM algorithm and the actual locations. This 

error is calculated according to the following equation: 

     





N

i

a

i

e

i

R

ww

N
RError

1

1
)(                                                            ( . )  

where R is the communication range, N is the number of nodes, e

iw  is the i-th node 

estimated location, and a

iw is the i-th node actual location. 

 

5.3.1 Performance of DLSOM 

To evaluate the performance of DLSOM, the average error is calculated for each of 

the experimental cases. Figures 5.21, 5.22, and 5.23 show the relationship between the 

number of nodes and the average error calculated. 
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Figure 5.21 Number of network nodes Vs. Average error (R=1). 

For radio range 1, by increasing the number of nodes, the average error is decreasing. 

This can be explained as: by increasing the number of nodes with a low radio range, 

the neighborhood information increases slightly, and thus, the DLSOM algorithm 

performs better. 

Figure 5.22 Number of network nodes Vs. Average error (R=2). 

For radio range 2, by increasing the number of nodes, the average error is decreasing 

and then increasing. This can be explained as: by increasing the number of nodes with 

a medium radio range, the neighborhood information increases, and thus, the DLSOM 

algorithm performs better. But, by deploying a large number of nodes in a limited area 

with this radio range, the agglomeration problem – described earlier - occurs and the 

DLSOM performance decreases slightly. 
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Figure 5.23 Number of network nodes Vs. Average error (R=4). 

For radio range 4, by increasing the number of nodes, the average error is increasing. 

This can be explained as: by increasing the number of nodes with a large radio range 

in a limited area, the agglomeration problem occurs and the DLSOM performance 

decreases slightly. 

In Figures 5.24, 5.25, and 5.26, the effect of radio range variance is illustrated: 
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Figure 5.24 Radio range Vs. Average error (N=10). 

For low number of nodes, by increasing radio range, the average error decreases. This 

is due to the neighborhood information support that increases with high radio ranges. 
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Figure 5.25 Radio range Vs. Average error (N=50). 

For medium number of nodes, by increasing radio range, the average error decreases 

and then increases. This is – again - due to the occurrence of the agglomeration 

problem. 
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Figure 5.26 Radio range Vs. Average error (N=100). 

Also, for large number of nodes, by increasing radio range, the average error 

decreases and then increases because of the occurrence of the agglomeration problem. 

5.3.2 Time Analysis 

To evaluate the speed of the algorithm, the time elapsed to execute the DLSOM 

algorithm has been measured for each of the simulation experimental cases. 
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Figures 5.27, 5.28, and 5.29 illustrate the relationship between the number of nodes 

and time elapsed to execute the algorithm: 
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Figure 5.27 No. of Nodes Vs. Time (R=1). 
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Figure 5.28 No. of Nodes Vs. Time (R=2). 
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Figure 5.29 No. of Nodes Vs. Time (R=4). 
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As observed from the previous figures, the time needed to execute the DLSOM 

algorithm increases linearly by increasing the number of nodes. The time spent in the 

initialization stage is constant and short. This is because this stage executes for one 

time (not iterative) and the calculations are fast and simple. 

Most of the time is spent in the learning stage (iterative process), in which the nodes 

transmit and receive location updates to neighbors at each iteration. This time, of 

course, increases by increasing the number of nodes. 

For example, in Figure 5.27, for radio range 1, the time needed to execute the 

algorithm is about 56 seconds. About 12 seconds only are spent in the initialization 

stage and 44 seconds in the learning stage. 

Figures 5.30, 5.31, and 5.32 illustrate the relationship between the radio range 

variance and the time elapsed to execute the algorithm. 
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Figure 5.30 Radio Range Vs. Time (N=10). 

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Radio Range (km)

T
im

e
 (

s
)

 

Figure 5.31 Radio Range Vs. Time (N=50). 
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Figure 5.32 Radio Range Vs. Time (N=100). 

 

Also, as observed from the previous figures, the time needed to execute the DLSOM 

algorithm increases linearly by increasing the radio range. This is because by 

increasing the radio range, more transmission and receiving processes are done by the 

increment of neighboring nodes. These processes take most of the time. 

In all previous figures, although the number of iterations decreases by number of 

nodes and radio range increment, the time spent increases. This slight increment does 

not affect the performance of the algorithm; DLSOM is considered to be fast in all 

cases. 

 

 

      Performance Comparisons 

The DLSOM algorithm is compared to many similar algorithms that are used to 

localize the wireless nodes in an ad-hoc wireless network. The comparable parameter 

chosen is the average error and some expressive figures in a unified set of simulation 

parameters. 

For 50 wireless nodes randomly deployed in an area of 10km×10km with a radio 

range of 2km and four anchors selected at the network perimeter, Figure 5.33      

illustrates the actual network and the different estimated networks resulted from 

applying the SOM and MDS-MAP, respectively. 
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               (a) The actual network (N=50, R=2, anchors= 4). 

           (b) SOM.                                                                       (c) MDS-MAP. 

Figure 5.33 Resulted estimated networks by applying SOM and MDS-MAP (N=50, R=2). 

 

The following Table 5.3 summarizes the average error calculated for each of the 

previous estimated networks. These results are the average of 30 different trials of the 

same set of parameters. 
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                Table 5.3 The average error for different algorithms (N=50, R=2). 

Algorithm No. of Nodes Radio Range Avg. Error 

SOM       .   

MDS-MAP       .   

DLSOM       .   

 

Obviously, the DLSOM algorithm has the least average error over the other 

algorithms with a noticeable variance. It is worth mentioning that especially in this 

case – 50 Nodes and range of 2 - , the DLSOM performs the best. 

Also, comparing the resulted estimated networks by applying the SOM and the MDS-

MAP algorithms to the one resulted by applying the DLSOM algorithm in a unified 

set of simulation parameters, the DLSOM network is observed to be the most similar 

to the original network (actual network shown in Figure 5.11 (b) and estimated using 

DLSOM is shown in Figure 5.17 ). 

 

In Figure 5.34    ], 100 wireless nodes are randomly deployed in an area of 

10km×10km with a radio range of 2km and four anchors selected at the ends of the 

network. The actual network and the different estimated networks resulted from 

applying DV-HOP and SOM are illustrated in Figure 5.34 (a), (b) and (c), 

respectively. 
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(a) The actual network (N=100, R=2, Anchors=4).                                                    (b) DV-HOP. 

 

 

 

 

 

 

 

 

              (c) SOM. 

Figure 5.34 Resulted estimated networks by applying DV-HOP and SOM (N=  0, R=2). 

 

The following Table 5.4 summarizes the average error calculated for each of the 

previous estimated networks. These results are the average of 50 different trials of the 

same set of parameters. 
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               Table 5.  The average error for different algorithms (N=  0,R=2). 

Algorithm No. of Nodes Radio Range Avg. Error 

DV-HOP        .   

SOM        .   

DLSOM        .   

 

Again, the DLSOM algorithm has the least average error over the other algorithms 

with a noticeable variance. And, comparing the resulted estimated networks by 

applying the SOM and the DV-HOP algorithms to the one resulted by applying the 

DLSOM algorithm in a unified set of simulation parameters, the DLSOM network is 

observed to be the most similar to the original network.  

Figures 5.35 and 5.36 show the actual and estimated networks by applying DLSOM 

in the same set of the previous parameters: 

 

Figure 5.35 Actual Network (N=100, R=2). 
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Figure 5.36 Resulted estimated Network by DLSOM (N=100, R=2). 

 

For low radio ranges, low number of nodes, and irregular network topology (random), 

some algorithms proved their high performance over the others. In [52], a classical 

SOM localization algorithm is used and produced accurate results in comparison with 

the others. Here, we will prove that in these situations our algorithm performs better. 

We have implemented the classical SOM algorithm used in [52] on the same 

hardware/software environment that we used to implement our algorithm. Figure 5.37 

illustrates the actual network and the resulted estimated networks by applying the 

classical SOM and the DLSOM algorithms. 

The original network is a 10 wireless nodes deployed randomly in an area of 

10km×10km with a radio range of 2km. 
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(a) The actual Network (N=10, R=2). 

    

                              (b) DLSOM.                                                                   (c) Localized SOM. 

             Figure 5.37 Performance comparison by applying DLSOM and Localized SOM. 

 

The figure shows that the DLSOM performs better with the similarity to the original 

network and with the less average error calculated for both algorithms (showed in 

Table 5.5).  

Moreover, the classical SOM algorithm is centralized while the DLSOM is 

distributed. Hence, the wireless network nodes' computation overhead is reduced 

significantly, and also the number of iterations took in the DLSOM is about 35 which 
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is not mentioned in comparison to the thousand iterations took by the classical 

localized SOM. 

The following Table 5.5 summarizes the average error calculated for DLSOM and 

Localized SOM of the previous estimated networks. These results are the average of 

50 different trials of the same set of parameters. 

       Table 5.  The average error for DLSOM and Localized SOM (N=  , R=2). 

Algorithm No. of Nodes Radio Range Avg. Error 

DLSOM       .   

Localized SOM       .   

 

With about 2% less percentage error of DLSOM in comparison with localized SOM, 

DLSOM approved its effectiveness even in WSNs with low number of nodes.  
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Chapter 6 

Conclusion 

    Summary and Concluding Remarks 

In this thesis, a Self Organizing Maps (SOMs) - based distributed localization 

algorithm is proposed (DLSOM). The main objective of this algorithm is to calculate 

the locations of nodes in wireless sensor networks. 

The intelligent SOM neural networks are selected due to their multiple characteristics 

over other types of neural networks. One of the most important characteristics of 

SOMs is their unsupervised training fashion, in which no reward or cost functions are 

needed. The other feature is that SOMs provides a technique for representation of 

multidimensional data into much lower-dimensional spaces. Moreover, the 

arrangement of neurons into a grid increases the accuracy of the results.  

The proposed localization algorithm aimed to get benefit from the neighborhood 

information that can be gathered fast and easy by the wireless nodes (each node 

knows its neighbors based on the communication radio range). Thus, no 

communication overhead occurs and the usage of this information in the initialization 

stage of the algorithm significantly helped SOMs to begin with useful initial data to 

be used in the learning stage. Hence, the learning time and the number of iterations 

took by SOMs to reach stable results have been noticeably decreased. Also, the 

accuracy of the results increased and the output locations are the most approximate in 

comparison with the previous related algorithms. 

The experimentation and simulation results proved the effectiveness of the DLSOM 

algorithm in different simulation parameters. The criterion that has been calculated to 

evaluate and compare the performance of the algorithm over other algorithms is the 

average error.  

The average error of the DLSOM is found to be the least in most cases in comparison 

with some related algorithms that proved their accuracy in this field. The accuracy of 

DLSOM which is directly related to the average error is also found to be the most. 

The total average error (calculated by averaging errors using all experiments) is about 
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30%. This percentage is much lower than the other algorithms. Moreover, the number 

of iterations needed in DLSOM ranges from 25 to 50. This number is significantly 

much smaller in comparison with the hundreds to thousands iterations needed by 

other algorithms which reduces the learning time substantially.  

Experimentations showed that the case in which the DLSOM performs the best is 

with the set of parameters (50 wireless nodes and radio range of 2). The performance 

gets worse and worse by increasing the number of nodes in a limited area and also 

increasing the radio range with this large number of nodes. But in all cases, the 

algorithms proved its effectiveness over the previous contributions either in low or 

high number of nodes. Referring to the best case mentioned before, this can be 

considered as the most important advantage of the algorithm because most of the real 

wireless networks deployed in a limited area (10km×10km) usually contains no more 

50 nodes with a communication range of 2km as an average. 

  

    Recommendations and Future Work 

During the experimentations and validation of our proposed algorithm, the problem of 

agglomeration has been occurred in some cases, in which the nodes have 

approximately the same initial estimated location due to the averaging step in the 

initialization stage. These cases include the high number of network nodes deployed 

in a limited area and have a relatively high communication radio range.  

This may be solved by selecting the nearest three - or more (based on the total number 

of nodes) - neighbors to be averaged to get the estimated location. In this way, the 

nodes that have the same set of neighbors will be enforced to choose the nearest 

subset and hence will get a distinct estimated location.  

 Another suggested solution is to replace the averaging process step with a more 

complex and distinguishing mathematical process, such as trilateration method used 

in GPS systems to locate some wireless node, in which three known-location nodes 

are used to estimate the unknown node location with a series of complex 

mathematical equations. On the other hand, trilateration could be more accurate to 

calculate the initial estimated locations of wireless nodes.  
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In this thesis research, we investigated a proposed distributed localization algorithm 

that has been applied on static wireless sensor networks, in which the nodes have no 

movement. 

For mobile wireless networks, in which the nodes move with specific parameters 

(motion speed and motion direction), the proposed localization algorithm can be 

modified to be applied on these networks. This can be done by refreshing the set of 

nodes' neighbors periodically and use the most updated neighbors list in the learning 

stage to get the most approximate location of the node. 

The period of refreshing is determined based on the motion speed of the wireless 

nodes in the network. 

In mobile networks, the accuracy of the algorithm is supposed to be less than static 

networks due to the continuous movement and different neighborhood information 

that change rapidly, and hence influence the principle of the algorithm. 
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