
The Islamic University-Gaza
Deanery of Higher Studies
Faculty of Engineering
Computer Engineering Department

Arabic Continuous Speech
Recognition System using

Sphinx-4

Submitted By:

Eman Ziad Elzaza

Supervisor:

Dr. Wesam Ashour

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Computer Engineering

(July, 2012) 1433 h

id12211359 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

 i

Acknowledgements

First of all, I would like to thank ALLAH for providing me the power and the will to

complete this thesis.

 Then , I would like to thank Dr. Wesam Ashour, for his indispensable guidance during

the execution of the Master thesis and putting up with my many questions and for

helping me with all the technical aspects of this thesis, and for that I will always be

grateful.

 I would also like to thank all my instructors in the computer engineering department,

particularly Prof. Ibrahim Abuhaiba, for everything he has done for us.

I would like to include a personal thanks to my family and my parents, for all the

sacrifices they made for me, for the love they showed to me, and for providing me with

the inspiration to always do my best.

Most importantly, I would like to thank my friend Rwand for the supporting she has

shown to me.

 ii

Contents

Acknowledgements ... i

Contents ... ii

List of Figures ... v

List of Tables ... vi

List of Abbreviations.. vii

Abstract in Arabic .. ix

Abstract in English .. x

Chapter 1 : Introduction .. 1

1.1 Automatic Speech Recognition.. 1

1.2 ASR Techniques .. 3

1.3 Arabic Speech Recognition... 4

1.4 The Contribution ... 6

1.5 Thesis Structure ... 6

Chapter 2 : Speech Recognition... 7

 2.1 Speech Technology ������... 7

 2.2 Speech Recognition Basics �������������.���.... 8

 2.3 Types of Speech Recognition .. 9

 2.4 Uses and Applications �����... 11

 2.5 Hardware�����.. 12

 2.5.1 Sound Cards �����������������... 12

 2.5.2 Microphones �����������������.. 13

 2.5.3 Computers/Processors �������������� 13

 iii

 2.6 Inside Speech Recognition... 14

 2.6.1 How Recognizers Work ������������� 14

 2.6.2 Digital Audio Basics �������������� 15

 2.7 Arabic Language ��... 16

 2.8 Arabic Phoneme Set ��.. 18

 2.9 Feature Extraction ��������������������� 19

 2.9.1 Pre-emphasis �����������������. 20

 2.9.2 Frame Blocking and Windowing ����.����� 20

 2.9.3 Mel- Cepstrum ��.���������.����� 22

Chapter 3: Sphinx-4: Open Source Framework .. 24

 3.1 Introduction �����������������������.. 24

 3.2 Speech Recognition Systems����������..��..���� 24

 3.3 Sphnix-4 Framework .���...����������..����� 24

 3.3.1 Front-End �����������..������. 26

 3.3.2 Linguist ������������������� 27

 3.3.3 Decoder ������������������.. 30

Chapter 4: The Arabic Speech Recognition ����������. 31

4.1 The Proposed Work ����.���������������... 31

 4.1.1 System Overview ��������.��.....���.. 31

4.2 Training Phase �������..�.����...��........................ 32

 4.2.1 Feature Extraction .����.������................. 33

 4.2.2 Linguist model ��.���.������.................. 33

4.3 Testing Phase ������.���.����...��......................... 39

 4.3.1 Test System Overview .��.������................... 40

 4.3.2 Test System Creation ���������..................... 40

 4.3.3 Used Data �������.����������.... 42

 iv

 4.3.4 Feature Extraction.��������������.. 42

 4.3.5 Using Our Model �.������������.�.. 44

Chapter 5 : Experimental Results.. 46

5.1 Performance of Speech Recognition Systems ���������... 46

5.2 Our Experiments ��������������������� 47

 5.2.1 Experiment one ����������������... 47

 5.2.2 Experiment two ����������������.. 48

5.3 The Discussion ��������������������� 49

Chapter 6 : Conclusion And Future Work��... 51

6.1 Conclusion ���������������������...� 51

6.2 Future Work ������..���������������� 51

References�������...������.. 52

Appendix A : Building The Language Model �.�..����������. 57

Appendix B : The XML Configuration File ..�������������.. 66

Appendix C : The Java Source Code �����...����������� 73

 v

List of Figures
��

��

��

��

Figure 2.1: The speech processing classification ���������������. 11

 Figure 2.2: General Recognition Process�����������������..�... 14

Figure 2.3: Pre-emphasis Filter, a=0.97 ������������������.�. 20

Figure 2.4: Frame Blocking ������������������������ 21

Figure 2.5: An 25ms Hamming Window (fs=16KHz) ����������..��.. 21

Figure 2.6: The MFCC extraction process ����������������.�� 22

Figure 3.1: Sphinx 4 component������������������...��� 25

Figure 3.2 : Front-End Framework ��������..�� 26

Figure 3.3: SearchGraph Example ����������.���������.�� 29

Figure 4.1: Basic model of speech recognition ��������..��������. 31

Figure 4.2: Text to Language Model Mapping Instructions ���..��������. 36

Figure 5.1: The process of checking the wave file�����������..����. 47

 vi

List of Tables

Table 2.1: Arabic Syllables Pattern���������������������. 17

Table 2.2: The phoneme list used in the training. ���������������.. 19

Table 4.1: Data Base Criteria ����������������������� 35

Table 4.2: Parameters used in feature extraction ���������������.. 33

Table 5.1: Proper file format �����������������������.. 47

Table 5.2: The speech information in experiment one �������������.. 48

Table 5.3: The speech information in experiment two �������������... 48

Table 5.4: The result of experiment one �������������������. 49

Table 5.5: The result of experiment two �������������������. 49

Table 5.6 : Comparison our system to others ... 50

 vii

List of Abbreviations

A/D Analog to Digital

ASR Automatic Speech Recognition

BNF Backus Normal Form

CFG Context-Free Grammars

CHMM Continuous Hidden Markov Model

CMN Cepstral Mean Normalization

CMU Carnegie Mellon University

CPU Central Processing Unit

CSR Command Success Rate

DARPA Defense Advanced Research Projects Agency

DCT Discrete Cosine Transform

ELRA European Language Resource Association

FSG Finite-State Grammars

FST Finite-State Transducer

HMMs Hidden Markov Models

JSGF JavaTM Speech API Grammar Format

KACST King Abdulaziz City of Science and Technology

ksps Kilo [1000] Sample Per Second

LDC Linguistic Data Consortium

LMGrammar Language Model Grammar

LPC Linear Predictive Encoding

MFCC Mel Frequency Cepstral Coefficients

MSA Modern Standard Arabic

PCI Peripheral Component Interconnect

PLP Prediction Coefficient Extraction

RAM Random Access Memory

SAPI Speech API

 viii

SCHMM Semi-Continuous Hidden Markov Model

SWER Single Word Error Rate

UN United Nations

WER Word Error Rate

WRR Word Recognition Rate

��

��

 ix

ψϧϡΎ�ϑήόΘϟ�ϰϠϋ�ϡϼϜϟ�ϲΑήόϟ�ήϤΘδϤϟ�ϡΪΨΘγΎΑ�βϜϨϔγ�����
��

κΨϠϤϟ��

��
ϡϼϜϟ ���ϲϧΎδѧϧϹ�ϞѧλϮΘϟ�ϲѧϓ�ΎϣΪΨΘγ�ήΜϛϷ�ςϤϨϟ�Ϯϫ ϭ��ϡϼѧϜϟ�ΔѧΠϟΎόϣ ��ΪѧΣϭ�ϥΎѧϛ ���ϊϴѧοϮϤϟ�ήѧΜϛ�Ϧѧϣ

�ϲϓ�ΔϤϬϤϟ �ϝΎΠϣ�ΕέΎѧηϹ�ΔΠϟΎόϣ� ��ΖѧϘϘΣ�ΪѧϘϟϭ ���ϰѧϠϋ�ϑήѧόΘϟ�ΎѧϴΟϮϟϮϨϜΗ ���ΔѧόΑΎΘϣ�ΔѧϴϧΎϜϣ·�ϡϼѧϜϟ ��ϴΗϮμѧϟ�ήѧϣϭϷΔ

�ϭ�ϥΎδѧϧϺϟ�ϢѧϬϓ ��θѧΒϟ�ΕΎѧϐϟ���ήΗϮѧϴΒϤϜϟ�ίΎѧϬΟ�ϡΪΨΘѧγΎΑ�ήˬ�������ϡϼѧϜϟ�ϰѧϠϋ�ϑήѧόΘϟ�ϝΎѧΠϤϟ�ϲδѧϴήϟ�ϑΪѧϬϟ�ϥΎѧϜϓ� �ήϳϮѧτΗ

ϭ�ΕΎϴϨϘΘϟϡϼϜϟ�ϝΎΧΩϹ�ϢψϨϟ ϰϟ· ΔϟϵΓΩΪόΘϣ�ΕϻΎΠϣ�ϲϓ�ϪϣΪΨΘγϻ�ϪΘΠϟΎόϣ�ϢΛ�Ϧϣϭ�ήΗϮϴΒϤϜϟ�ίΎϬΟ�ΎϬϨϣϭ����ΎѧϤΑϭ

ΔϴΑήόϟ�ΔϐϠϟ�ϥ Ϧϣ�ΓΪΣϭ�ϲϫ ��ΕΎѧϐϠϟ�ήѧΜϛ �έΎθѧΘϧ ��ϢϟΎѧόϟ�ϲѧϓ��ˬ���ΕΎϴΎμѧΣϹ�ήѧϬψΗ�ΎѧϤϛϭ ���ϰѧϟϭϷ�ΔѧϐϠϟ�ΎѧϬϧ ���ΔѧϐϠϟ

ϡϷ� ��˰ϟ��� ϖσΎϧ�ϥϮϴϠϣ ΔΒΗήϤϟ�ϞΘΤΗ�ΎϬϧ�ΎϤϛ�ΔϴΑήόϟ�ΔϐϠϟΎΑ�ϲϠλ ΪόΑ�ΔόΑήϟ ϦϳέΪϧΎϤϟ ΔϳΰϴϠϜϧϹϭ�ΔϴϧΎΒγϹϭ.

Ϧϣ�ϢϏήϟ�ϰϠϋϥ�ϻ·�ΎϬΘϴϤϫ� ϝάΒΗ�ϲΘϟ�ΩϮϬΠϟ �ΙΎΤΑ�ϲϓϡϼϜϟ�ϰϠϋ�ϑήόΘϟ ϲϓ �ΔϐϠϟΔϴΑήόϟ ϒγϸϟ ��ήѧϴϏ�ϝί�Ύϣ

ϲϓΎϛ.

ΔΣϭήσϷ�ϩάϫ ΡήΘϘΗ������ϲΎѧϘϠΘϟ�ϲѧΑήόϟ�ϡϼѧϜϟ�ϰѧϠϋ�ϑήѧόΘϟ�ϡΎѧψϧ�ήϳϮτΗϭ�ϢϴϤμΗ�Δϴϔϴϛ�ϒμΗϭ��ˬ��ΪѧϤΘόϤϟ

ήϤΘδϤϟ�ΏΎτΨϟϭ�ϞϘΘδϤϟ�ΙΪΤΘϤϟ�ϰϠϋ�ˬ�����ΔѧϧίϮΘϣϭ�ΎϴΗϮѧλ�ΔѧϴϨϏ�ϡϼѧϛ�ΓΪѧϋΎϗ�ϡΪΨΘγΎΑ�ϚϟΫϭ�� ���ΩΎϨΘѧγϻ�ϢΘѧϳϭ �ϲѧϓ

ήϳϮτΗ ϡΎψϨϟ ΕϭΩ�ϰϠϋSphinx �Ϧϣ� ϲΠϴϧέΎϛ�ΔόϣΎΟ ϥϮϠϴϣ.���

����������������ϲΗϮμѧϟ�ϖѧτϨϟ�ϰѧϠϋ�ϱϮѧΘΤϳ�Ϯѧϫϭ�ϲѧψϔϠϟ�αϮϣΎϘϟ�ϲϫϭ�ΔϴγΎγ�ΕΪΣϭ�ΙϼΛ�˯Ύθϧ·�ϢΗ�ϡΎψϨϟ�άϫ�˯ΎϨΒϟϭ

�ΕΎѧϤϠϜϠϟ�ˬ�������Ύѧόϣ�ΕΎѧϤϠϜϟ�Ωϭέϭ�ΕϻΎѧϤΘΣ�ϱϮѧΤϳ�Ϯѧѧϫϭ�ΔѧϐϠϟ�ΝΫϮѧϤϧ�ΓΪѧΣϭϭ�ˬ�����ϰѧѧϠϋ�ϞѧϤόϳ�Ϯѧϫϭ�ϙήѧΤϤϟ�ΓΪѧΣϭ�ήѧѧϴΧϭ

ΰΨϤϟ�ΔϴΗϮμϟ�ΕΎϣϮϠόϤϟ�ϊϣ�ϞΧΪϤϟ�ΕϮμϟ�ΔϧέΎϘϣϲψϔϠϟ�αϮϣΎϘϟ�ϲϓ�ϡϼϜϠϟ�Δϧ�����

� �ΕΎϧΎϴΑ�ΓΪϋΎϗ�ϡΪΨΘδϳ�ϡΎψϨϟ� ϭ�ΔϴϨϏ�ΔϧίϮΘϣϰϠϋ�ϱϮΘΤΗ 367 ���ϦϤπѧΘΗ��ΔѧϠϤΟ��ωϮѧϤΠϣ�Ύѧϣ 14232 �ΔѧϤϠϛ�.�

αϮϣΎϘϟ�ΎϣϲψϔϠϟ�ϲϟϮΣ�ϰϠϋ�ϱϮΘΤϴϓ� 23841 ΎϬϨϣ�Ϟϛ�ϞΑΎϘϳ�ϒϳήόΗ �ΔϤϠϛ ϲϓ ΕΎϧΎϴΒϟ�ΓΪϋΎϗˬ. ΝΫϮϤϧ�ΎϤϨϴΑ ΔϐϠϟ

�ϡΪΨΘδϤϟ ϰϠϋ�ϱϮΘΤϳ 14233 ΣΔϳΩΎ ϊτϘϤϟ ϭ32813 ���ϭ�ϊѧτϘϤϟ�ϲΎѧϨΛ���37771�ΩΪѧόΘϣ�� ���ϙήѧΤϣ�ϡΪΨΘѧγ�ϢѧΗϭ��

�ϰϠϋ�ϲϨΒϣ ���ΔѧϴϔΨϤϟ�ϑϮϛέΎѧϣ�ΝΫΎѧϤϧ� ��ΪϨΘδѧϣ�ϰѧϟ·� �ΝΫΎѧϤϨϟ ���ϊσΎѧϘϤϟ�ΔѧϴΛϼΜϟ�ΔϴΗϮμѧϟ�ˬϭ ��ΐϳέΪѧΗ�ϢѧΗ ��ϰѧϠϋ�ϡΎѧψϨϟ 5

Ϧϣ�ΕΎϋΎγ ΏΎτΧ ΔϴΑήόϟ�ΔϐϠϟΎΑ�ΕΎϧΎϴΒϟ���

��

��

��

 x

CONTINUOUS ARABIC SPEECH RECOGNITION SYSTEM

USING SPHINX-4

Abstract

Speech is the most natural form of human communication and speech processing

has been one of the most exciting areas of the signal processing. Speech recognition

technology has made it possible for computer to follow human voice commands and

understand human languages. The main goal of speech recognition area is to develop

techniques and systems for speech input to machine and treat this speech to be used in

many applications. As Arabic is one of the most widely spoken languages in the world.

Statistics show that it is the first language (mother-tongue) of 206 million native

speakers ranked as fourth after Mandarin, Spanish and English. In spite of its

importance, research effort on Arabic Automatic Speech Recognition (ASR) is

unfortunately still inadequate[7].

This thesis proposes and describes an efficient and effective framework for

designing and developing a speaker-independent continuous automatic Arabic speech

recognition system based on a phonetically rich and balanced speech corpus. The

developing Arabic speech recognition system is based on the Carnegie Mellon

university Sphinx tools.

To build the system, we develop three basic components. The dictionary which

contains all possible phonetic pronunciations of any word in the domain vocabulary.

The second one is the language model such a model tries to capture the properties of a

sequence of words by means of a probability distribution, and to predict the next word

in a speech sequence. The last one is the acoustic model which will be created by

taking audio recordings of speech, and their text transcriptions, and using software to

create statistical representations of the sounds that make up each word. The system use

the rich and balanced database that contains 367 sentences, a total of 14232 words. The

phonetic dictionary contains about 23,841 definitions corresponding to the database

words. And the language model contains14233 mono-gram and 32813 bi-grams and

37771 tri-grams. The engine uses 3-emmiting states Hidden Markov Models (HMMs)

for tri-phone-based acoustic models..

Keywords: Arabic automatic speech recognition, acoustic model, and language Model��

 1

Chapter 1 Introduction

1.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is a technology that allows a computer to

identify the words that a person speaks into a microphone or telephone. It has a wide

area of applications: command recognition (voice user interface with the computer),

dictation, interactive voice response, and it can be used to learn a foreign language.

ASR can help also, handicapped people to interact with society. It is a technology which

makes life easier and very promising [1].

 View the importance of ASR too many systems are developed, the most popular

are: Dragon Naturally Speaking, IBM via voice, Microsoft SAPI. Many open source

speech recognition systems are available too, such as [2 , 3 , 4 , 5 , 6], which is based

on Hidden Markov Models (HMMs) [1].

 Arabic is one of the six official languages of the United Nations (UN), and is

one of the most widely spoken languages in the world. Statistics show that it is the first

language (mother-tongue) of 206 million native speakers, and ranked as the fourth after

Mandarin, Spanish and English [7]. In spite of its importance, research effort on Arabic

Automatic Speech Recognition is unfortunately still inadequate.

Modern Standard Arabic (MSA) is the formal linguistic standard of Arabic

language, which is widely taught in schools and universities, and used in the office and

the media. It has been the focus and the core interest of many previous and recent

researches compared to dialectal Arabic [8, 9, 10, 11]. Lack of spoken and written

training data is one of the main issues encountered by Arabic ASR researchers. A list of

most popular (from 1986 through 2005) corpora is provided [12] showing only 19

corpora (14 written, 2 spoken, 1 written and spoken, and 2 conversational). These

corpora are not readily available to the public and many of them can only be purchased

from the Linguistic Data Consortium (LDC) or the European Language Resource

Association (ELRA). It is clear that there is a shortage of spoken data as compared to

written data resulting in a great need for more speech corpora in order to serve different

domains of Arabic ASR. The available spoken corpora were mainly collected from

broadcast news (radios and televisions), and telephone conversations. This kind of

 2

spoken data may not necessarily serve quality Arabic ASR research, because of the

quality of the spoken data itself in terms of recording attributes and parameters used

(e.g., sampling rate). They are also limited to certain applications and domains. The

coverage of any corpora cannot contain complete information about all aspects of

language lexicon and grammar [13], due to the limited written training data and

therefore inadequate spoken training data. In addition, a clear strong relationship

between written and spoken forms needs to be clarified.

Writing is claimed to be more structurally complex, elaborate, more explicit, more

organized and planned than speech [14]. These differences generally lead to the

approach that the written form of the corpora needs to be created carefully before

producing and recording the spoken form. Therefore, linguists and phoneticians

carefully produce written corpora before handling them to speech recording specialists.

This can also be seen throughout the past few years, where a number of

phonetically rich and/or balanced corpora for many languages have been produced.

Many ASR researches are now based on phonetically rich and/or balanced corpora, e.g.,

English [15 - 17], Mandarin [18], Japanese [19], Indonesian, Korean, Cantonese Hindi,

Turkish and many others obtaining comparatively competitive results. As far as Arabic

language is concerned, automatic speech recognition tasks mainly addressed for Arabic

digits, broadcast news, command and control, the Holy Qur�an, and Arabic proverbs

researches. They explored various state-of-the-art techniques and tools for Arabic

speech recognition[20, 21, 9, 11].

The development of accurate Automatic Speech Recognition (ASR) systems is

faced with two major issues. The first problem is related to dicritization where diacritic

symbols refer to vowel phonemes in the designated words. Arabic texts are almost

never fully diacritized: implying that the short strokes placed above or below the

consonant, indicating the vowel following this consonant, are usually absent. This limits

the availability of Arabic ASR training material. The lack of this information leads to

many similar word forms, and consequently, decreases predictability in the language

model. The second problem is related to the morphological complexity since Arabic has

a rich potential of word forms which increases the out-vocabulary rate [22, 23].

 3

1.2 ASR Techniques

The HMM-based ASR technique has led to numerous applications requiring large

vocabulary, speaker independent and continuous speech recognition.

 HMM is a statistical model where the system being modeled with unknown parameters,

and the challenge is to determine the hidden parameters, from the observable

parameters. The extracted model parameters can then be used to perform further

analysis, for example the pattern recognition applications. Its extension into foreign

languages (English is the standard) represent a real research challenge area[24].

The HMM-based system essentially consists of recognizing speech by estimating

the likelihood of each phoneme at contiguous, small frames of the speech signal [25,

26]. Words in the target vocabulary are modeled into a sequence of phonemes, and then

a search procedure is used to find, amongst the words in the vocabulary list, the

phoneme sequence that best matches the sequence of phonemes of the spoken words.

Each phoneme is modeled as a sequence of HMM states. In standard HMM-based

systems, the likelihoods (also known as the emission probabilities) of a certain frame

observation being produced by a state is estimated using traditional Gaussian mixture

models. The use of HMM with Gaussian mixtures has several notable advantages such

as a rich mathematical framework, efficient learning and decoding algorithms, and an

easy integration of multiple knowledge sources. Two notable successes in the academic

community in developing high performance large vocabulary, speaker independent,

speech recognition systems are the HMM tools, known as the Hidden Markov Model

Toolkit (HTK), developed at Cambridge University [27]; and the Sphinx system

developed at Carnegie Mellon University [28], over the last two decades. The Sphinx

tools can be used for developing wide spectrum of speech recognition tasks.

For example, the Sphinx-II [29] uses the Semi-Continuous Hidden Markov Model

(SCHMM) models to reduce the number of parameters and the computer resources

required for decoding, but has limited accuracy and complicated training procedure. On

the other hand Sphinx-III uses the Continuous Hidden Markov Model (CHMM) with

higher performance, but requires substantial computer resources. Sphinx-4, which was

developed in Java, can be used for building platform independent speech recognition

applications [30, 28].

 4

1.3 Arabic Speech Recognition

Development of an Arabic speech recognition system is a multi-discipline effort,

which requires integration of Arabic phonetic [31, 32], Arabic speech processing

techniques [33], and Natural language [34, 35]. Development of an Arabic speech

recognition system has recently been addressed by a number of researchers.

Recognition of Arabic continuous speech was addressed by Al_Otaibi, [36]. He

provided a speech dataset for Modern Standard Arabic (MSA). He studied different

approaches for building the Arabic speech corpus, and proposed a new technique for

labeling Arabic speech. He reported a recognition rate for speaker dependent ASR of

93.78% using his technique.

 The ASR was built using the HTK tool kit. Bila et al. [37] addressed the problems

of indexing of Arabic news broadcast, and discussed a number of research issues for

Arabic speech recognition. There are a number of other attempts to build Arabic ASR

(AASR), but they considered either limited vocabulary, or speaker dependant system [4,

8, 9, 23, 26].

The most difficult problems in developing highly accurate ASRs for Arabic are the

predominance of non diacritized text material, the enormous dialectal variety, and the

morphological complexity[24]. Kirchhoff et al.[10] investigated the recognition of

dialectal Arabic and study the discrepancies between dialectal and formal Arabic in the

speech recognition point of view. Vergyri et al. [38] investigate the use of morphology-

based language model at different stages in a speech recognition system for

conversational Arabic; he studied also the automatic diacritizing Arabic text for use in

acoustic model training for ASR. Satori et al.[11] introduced an Arabic voice

recognition system where both training and recognizing process used romanized

characters. Most of previous works on Arabic ASR had been concentrated on

developing recognizers using romanized characters. The system in [9] used Carnegie

Mellon University�s (CMU) Sphinx-IV engine was based on Hidden Markov Models

(HMM), which obtained a word recognition rate of 99.21% for about 35 minutes of

training speech data and 7 minutes of testing speech data.

The system in [11] was also using CMU Sphinx- IV engine based on HMM for the

same task and obtained a word recognition rate of 85.56% for male speakers and

83.34% for female speakers. In [21], a different kind of speech data was presented for

 5

Arabic digits recognition system using telephony Saudi accented Arabic corpus. The

system used Cambridge HTK tools based on HMMs and reported correct digit

recognition rate of 93.67%. In addition, The Holy Qur�an was also considered for

Arabic speech recognition in [9], which used Sphinx-IV engine based on HMMs and

obtained a word recognition rate of 70.81% and a word error rate]of 40.18% for corpus

of 18.35 hours.

On the other hand, Arabic speech recognition system using broadcast news corpus was

developed in [8]. The system was trained using about 7 hours of speech using Sphinx 3

tools based on HMMs and tested using 400 utterances adding to about half an hour of

speech. The system obtained a correct word recognition rate of 90.78% and a WER of

10.87% with full diacritical marks, whereas it obtained a correct word recognition rate

of 93.04% and a WER of 8.61% without diacritical marks. Other Arabic automatic

speech recognition systems were developed for different tasks such as in [39, 9, 40]. A

command and control system covering approximately 30 words was developed in [9]

using Sphinx-IV engine based on HMMs and obtained a word recognition rate of

98.18%, whereas an Arabic ASR system to recognize 16 sentences of Egyptian

proverbs was developed [39] based on HMMs and obtained a word recognition rates of

56.8%, 66.65%, and 81.79% for Mono-phone, Tri-phone, and Syllable based

recognition respectively.

The technical report in [41] is one of the earliest works on producing written

Arabic training data based on phonetically rich and balanced sentences. This technical

report was submitted to King Abdulaziz City of Science and Technology (KACST) in

Saudi Arabia as the final deliverable of the project �Database of Arabic Sounds:

Sentences�. This written training data was created by experts from KACST and consists

of 367 sentences written using 663 phonetically rich words. KACST written (text)

training data was used as the baseline for creating our phonetically rich and balanced

speech corpus. Another 10 written sentences were created for testing purposes, which

taken from Arabic news.

1.4 The Contribution

In this thesis, we will construct an Arabic speech recognition system depending

on a rich and balance Arabic speech data set, the used data set coverage all Arabic

phoneme clustering with minimum words repletion and simple sentences structure. The

 6

first thing to do is to get the phonetic pronunciations of all words in the domain

vocabulary, and also the variant pronunciations for the words if their, these all possible

phonetic pronunciations will considered as dictionary.

The second step is to capture the properties of a sequence of words by means of

a probability distribution, and to predict the next word in a speech sequence through

generate the uni-gram , bi-gram and the tri-gram of the words, keeping them in the

language model. Then we will generate the corresponding HMM units of the used

words, by create statistical representations of the sounds that make up each. Using the

three modules together we can construct the Arabic speech recognition system for large

vocabulary and recognize continuous Arabic speech. The next phase is to test the

system . the testing include recording a speech audio from news channels and recognize

it through the system, and using the microphone to directly enter the sound to system to

be recognized.

1.5 Thesis Structure

In the next chapter we present a brief description of the speech recognition, it

contains the topics: speech technology, basic concepts, types of speech, speech uses and

applications, hardware needed to manipulate with speech, how the recognizer work,

illustrate the Arabic language, and a deep view of the feature extraction technique.

Chapter 3 gives a detailed view of the Sphinx_4 (open source framework), the view

covers its components, the way it used to construct the recognizer and the technique

used to recognize the speech.

In Chapter 4, we offer our proposed system, the chapter contains two main parts:

how to train the system and how to test the system. In Chapter 5, we present

experimental results in details. Finally, in Chapter 6, we provide our conclusion and

future works.

 7

Chapter 2 Speech Recognition

2.1 Speech Technology

Not all developers are familiar with speech technology, as an emerging

technology. There are subtle and powerful capabilities -with the basic function of both

speech synthesis and speech recognition- which are provided by computerized speech,

that developers will want to understand and utilize. Speech synthesis and speech

recognition technologies still have significant limitations despite very substantial

investment in speech technology research over the last 40 years. Most importantly,

speech technology does not always meet the high expectations of users familiar with

natural human-to-human speech communication. It s important for effective use of

speech input and output in a user interface to understand the limitations � as well as

the strengths. An understanding of the capabilities, strengths and limitations of speech

technology is also important for developers in making decisions about whether a

particular application will benefit from the use of speech input and output or not.

Speech Synthesis (TTS)

A speech synthesizer's task is converting a given written text into some spoken

language. Speech synthesis is also known as text-to-speech (TTS) conversion.

Producing speech from text has many steps, the major steps in producing speech from

text are:

Structure analysis and,

Text pre-processing.

We will illustrate the algorithm implementation steps in more details:

 Structure analysis: this step is for determining the paragraphs, sentences and

other structures start and end after processing the input text. Punctuation and

formatting data are used in this stage for most languages.

 Text pre-processing: in this step the speech synthesizer analyze the given input

text for special constructs of the language.

 8

Speech Recognition

The speech recognition can be defined as the process of converting spoken language to

written text or some similar form[44].

2.2. Speech Recognition Basics

Here in this section we will define some important terms which will be used a

lot in the coming sections and these are the basics needed for understanding speech

recognition technology.

Utterance

Utterances can be a single word, a few words, a sentence, or even multiple

sentences, it is the vocalization (speaking) of a word (words) or sentences that represent

a single meaning to the computer..

Speaker Dependence

There are two types of Speaker Dependence. The first type are the Speaker

independent systems are designed for a variety of speakers. Adaptive systems usually

start as speaker independent systems and utilize training techniques to adapt to the

speaker to increase their recognition accuracy. The second type are the speaker

dependent systems which designed around a specific speaker. They assume the speaker

will speak in a consistent voice and tempo. Thus, they generally are more accurate for

the correct speaker, but much less accurate for other speakers.

Vocabularies

Vocabularies (or dictionaries) can be defines as a lists of words or utterances

that can be recognized by the SR system. There is a difference between the words large

and small in computer recognition. For example, to explain more, smaller vocabularies

are easier for a computer to recognize, while larger vocabularies are more difficult.

Unlike normal dictionaries, each entry doesn't have to be a single word. They can be as

long as a sentence or two. Smaller vocabularies can have as few as 1 or 2 recognized

utterances (e.g. "Wake Up"), while very large vocabularies can have a hundred

thousand or more!

 9

Accurate

We can examine the ability of a recognizer by measuring its accuracy � or how

well that recognizer recognizes utterances. This includes not only correctly identifying

an utterance but also identifying if the spoken utterance is not in its vocabulary. The

acceptable accuracy of a system really depends on the application. Good ASR systems

have an accuracy of 98% or more!

Training

Sometimes the system has a recognizers that have the ability to adapt to a

speaker. And when the system has this ability, it may allow training to take place.

Training a recognizer usually improves its accuracy. Training can be used by speakers

that have difficulty speaking, or pronouncing certain words. As long as the speaker can

consistently repeat an utterance, ASR systems with training should be able to adapt. An

ASR system is trained by having the speaker repeat standard or common phrases and

adjusting its comparison algorithms to match that particular speaker.

2.3. Types of Speech Recognition

Speech recognition systems can be separated in several different classes by

describing what types of utterances they have the ability to recognize. These classes are

based on the fact that one of the difficulties of ASR is the ability to determine when a

speaker starts and finishes an utterance. Most packages can fit into more than one class,

depending on which mode they're using.

Isolated Words

Isolated word recognizers usually require each utterance to have quiet (lack of

an audio signal) on both sides of the sample window. It doesn't mean that it accepts

single words, but does require a single utterance at a time. Often, these systems have

"Listen/Not-Listen" states, where they require the speaker to wait between utterances

(usually doing processing during the pauses). Isolated utterance might be a better name

for this class.

 10

Connected Words

Connected word systems (or more correctly 'connected utterances') are similar to

Isolated words, but allow separate utterances to be 'run-together' with a minimal pause

between them.

Continuous Speech

The next step is the Continuous recognition. It is the most difficult to create the

recognizers with continuous speech capabilities, this is because they must utilize special

methods to determine utterance boundaries. Continuous speech recognizers allow users

to speak almost naturally, while the computer determines the content. Basically, it is

computer dictation.

Spontaneous Speech

Spontaneous speech has a large number of definitions. At a basic level, it can be

thought of as speech that is natural sounding and not rehearsed. The speaker starts an

utterance, and reaches a point where he can not find the right word or thinks better of a

word, and needs time to find a suitable alternative, they repeat a word as a sort of 'run

up' to the second attempt. An ASR system with spontaneous speech ability should be

able to handle a variety of non-standard grammar speech features such as words being

run together, "ϢϤϣ" and "Ϫϴϴϳ", and even slight stutters.

Voice Verification/Identification

 Some ASR systems have the ability to identify specific users.

 Automatic Speech Recognition system classification:

The following tree structure emphasizes the speech processing applications.

Depending on the chosen criterion, Automatic Speech Recognition systems can be

classified as shown in Figure 2.1[45] for many classes, the speech mode that defined the

type of the utterance that will be used as isolated or continuous utterance.

The speaking mode comprises three kinds of speakers mode used in systems,

the speaker dependent, independent and the adaptive speakers. Every speech

recognition system must deal with input corpus, the size of the corpus can be small or

medium or large. The last classification is the speaking style that determine if the

 11

system will considered as dictation system or spontaneous one. In our system we cover

the continuous speech and speaker independent using a large size vocabulary, the

speaking style is dictation.

Figure 2.1: the speech processing classification

2.4. Uses and Applications

Although any task that involves interfacing with a computer can potentially use

ASR, the following applications are the most common right now.

Dictation

Today, dictation is the most common use for ASR systems. Medical

transcriptions, legal and business dictation, as well as general word processing are Of

the most important examples of dictation uses . In some cases special vocabularies are

used to increase the accuracy of the system.

Command and Control

ASR systems that are designed to perform functions and actions on the system

are defined as Command and Control systems. Utterances like "Open Netscape" will do

just that.

 12

Telephony

Some voice systems allow callers to speak commands instead of pressing

buttons to send specific tones

Wearable

Because inputs are limited for wearable devices, speaking is a natural

possibility.

Medical/Disabilities

Many people have difficulty typing due to physical limitations such as repetitive

strain injuries, muscular dystrophy, and many others. For example, people with

difficulty hearing could use a system connected to their telephone to convert the caller's

speech to text.

Embedded Applications

Some newer cellular phones include speech recognition that allow utterances

such as "Call Home". This could be a major factor in the future of ASR and Linux[43].

2.5. Hardware

2.5.1. Sound Cards

You must have sound enabled in your kernel, and you must have correct drivers

installed. Because speech requires a relatively low bandwidth, just about any medium-

high quality 16 bit sound card will get the job done. Sound card quality often starts a

heated discussion about their impact on accuracy and noise.

Sound cards with the 'cleanest' A/D (analog to digital) conversions are

recommended, but most often the clarity of the digital sample is more dependent on the

microphone quality and even more dependent on the environmental noise. Electrical

"noise" from monitors, pci slots, hard-drives, etc. are usually nothing compared to

audible noise from the computer fans, squeaking chairs, or heavy breathing.

You will have to weigh the benefits and costs if you are considering packages

that require specific hardware to function properly. Some ASR software packages may

 13

require a specific sound card. It's usually a good idea to stay away from specific

hardware requirements, because it limits many of your possible future options and

decisions.

2.5.2. Microphones

The quality of microphone is very important. It is the key when utilizing ASR. A

desktop microphone just will not do the job in most cases. Because they tend to pick up

more ambient noise that gives ASR programs a hard time.

Hand held microphones are also not the best choice as they can be cumbersome

to pick up all the time. While they do limit the amount of ambient noise, they are most

useful in applications that require changing speakers often, or when speaking to the

recognizer isn't done frequently (when wearing a headset isn't an option).

The headset style is the best choice and by far it is the most common. It

minimized the ambient noise, while allowing you to have the microphone at the tip of

your tongue all the time. Headsets are available without earphones and with earphones

(mono or stereo). We recommend the stereo headphones, but it is just a matter of

personal taste[43].

2.5.3. Computers/Processors

processing speed is very important in all applications in general. ASR

applications are heavily dependent on processing speed. And this is because a large

amount of digital filtering and signal processing can take place in ASR. It is the faster

the better about any CPU intensive software. The more memory the better also. Most

software packages list their minimum requirements, because of the processing required.

For fast processing (large dictionaries, complex recognition schemes, or high sample

rates), you should shoot for a minimum of a 400MHz and 128M RAM.

 14

2.6. Inside Speech Recognition

2.6.1. How Recognizers Work

Recognition systems can be broken down into two main types. Pattern

recognition systems compare patterns to known/trained patterns to determine a match.

Acoustic Phonetic systems use knowledge of the human body (speech production, and

hearing) to compare speech features (phonetics such as vowel sounds). Most modern

systems focus on the pattern recognition approach because it combines nicely with

current computing techniques and tends to have higher accuracy.

Figure 2.2: General Recognition Process

Most recognizers can be broken down into the following step, as Figure 2.2:

1. Audio recording and Utterance detection

2. Pre-Filtering (pre-emphasis, normalization, banding, etc.)

3. Framing and Windowing (chopping the data into a usable format)

4. Filtering (further filtering of each window/frame/freq. band)

5. Comparison and Matching (recognizing the utterance)

6. Action (Perform function associated with the recognized pattern)

Although each step seems simple, each one can involve a multitude of different (and

sometimes completely opposite) techniques.

(1) Audio/Utterance Recording: can be accomplished in a number of ways. Starting

points can be found by comparing ambient audio levels (acoustic energy in some cases)

with the sample just recorded. Endpoint detection is harder because speakers tend to

leave "artifacts" including breathing/sighing, teeth chatters, and echoes.

 15

(2) Pre-Filtering: is accomplished in a variety of ways, depending on other features of

the recognition system. The most common methods are the "Bank-of-Filters" method

which utilizes a series of audio filters to prepare the sample, and the Linear Predictive

Coding method which uses a prediction function to calculate differences (errors).

Different forms of spectral analysis are also used.

(3) Framing/Windowing involves separating the sample data into specific sizes. This is

often rolled into step 2 or step 4. This step also involves preparing the sample

boundaries for analysis (removing edge clicks, etc.)

(4) Additional Filtering is not always present. It is the final preparation for each window

before comparison and matching. Often this consists of time alignment and

normalization.

(5) There are a huge number of techniques available for Comparison and Matching.

Most involve comparing the current window with known samples. There are methods

that use Hidden Markov Models (HMM), frequency analysis, differential analysis,

linear algebra techniques/shortcuts, spectral distortion, and time distortion methods. All

these methods are used to generate a probability and accuracy match.

(6) Actions can be just about anything the developer wants.

2.6.2. Digital Audio Basics

Audio is inherently an analog phenomenon. Recording a digital sample is done

by converting the analog signal from the microphone to a digital signal through the A/D

converter in the sound card. When a microphone is operating, sound waves vibrate the

magnetic element in the microphone, causing an electrical current to the sound card

(think of a speaker working in reverse). Basically, the A/D converter records the value

of the electrical voltage at specific intervals.

There are two important factors during this process. First is the "sample rate", or

how often to record the voltage values. Second, is the "bits per sample", or how accurate

the value is recorded. A third item is the number of channels (mono or stereo), but for

most ASR applications mono is sufficient. Most applications use pre-set values for these

parameters and user's shouldn't change them unless the documentation suggests it.

 16

Developers should experiment with different values to determine what works best with

their algorithms.

So what is a good sample rate for ASR? Because speech is relatively low

bandwidth (mostly between 100Hz-8kHz), 8000 samples/sec (8kHz) is sufficient for

most basic ASR. But, some people prefer 16000 samples/sec (16kHz) because it

provides more accurate high frequency information. If you have the processing power,

use 16kHz. For most ASR applications, sampling rates higher than about 22kHz is a

waste.

And what is a good value for "bits per sample"? 8 bits per sample will record

values between 0 and 255, which means that the position of the microphone element is

in one of 256 positions. 16 bits per sample divides the element position into 65536

possible values. Similar to sample rate, if you have enough processing power and

memory, go with 16 bits per sample. For comparison, an audio Compact Disc is

encoded with 16 bits per sample at about 44kHz.

2.7 Arabic Language

Arabic is a Semitic language, it is one of the oldest languages in the world.

Currently, it is the second most spoken language in terms of number of speakers [47].

Arabic is the first language in the Arab world, i.e., 25 countries. Arabic alphabets are

used in other languages besides Arabic, such as Persian and Urdu [24]. The estimated

number of Arabic speakers is about 300 million. However, a greater number of speakers

have a passive knowledge of Arabic since it is the language of instruction in Islam.

Recent approaches in language and speech processing categorize the Arabic language as

Modern Standard Arabic (MSA) and Modern Colloquial Arabic (MCA). Modern

Standard Arabic is the form of Arabic that is used in education, media, and formal talks.

Colloquial Arabic is what is spoken in everyday conversation and varies considerably

not only across countries, but also within the same country. It has many differences

when compared with Indo-European languages. Some of the differences include unique

phonemes and phonetic features, and a complex morphological word structure[49].

 Arabic language is comparatively much less researched compared to other

languages such as English and Japanese. Most of the reported studies to-date have been

conducted on Arabic language and speech digital processing in general, a limited

 17

number of research studies have been carried out on MSA, classical and Quraanic

(Islamic Holy Scripture based) versions of Arabic.

 Modern Standard Arabic (MSA) has 36 phonemes, of which six are vowels, two

diphthongs, and 28 are consonants. In addition to the two diphthongs, the six vowels are

/a, i, u, a: , i:, u:/ where the first three ones are short vowels and the last three are their

corresponding longer versions (that is, the three short vowels are /a, i, u /, and their

three long counterparts are /a:, i:, u:/) [48]. The Arabic language has fewer vowels than

the English language as the American English has twelve vowels.

 A phoneme is the smallest element of speech units that makes a difference in

the meaning of a word, or a sentence. Arabic phonemes contain two distinctive classes,

which are named pharyngeal and emphatic phonemes. These two classes can be found

only in other Semitic languages such as Hebrew [34]. The allowed syllables in the

Arabic language are: CV, CVC, and CVCC where V indicates a (long or short) vowel

while C indicates a consonant.

Table 2.1: Arabic Syllables Pattern

All Arabic syllables must contain a vowel. In addition, Arabic vowels cannot be

word initial and must occur either between two consonants or at word-final position.

Arabic syllables can be classified as short or long. The CV syllable type is a short one

while all others are long. Syllables can also be classified as open or closed. An open

syllable ends with a vowel while a closed syllable ends with a consonant. For Arabic, a

vowel always forms a syllable nucleus, and there are as many syllables in a word as

vowels in it [50]. With very few exceptions, alphabet-to-sound conversion for Arabic

usually has simple one-to-one mapping between graphemes to phonemes for a given

correct dicritized text [51].

 Open Example Close Example
Short CV �ΎΑ

CVC ϢϴΟ Long
CVCC Ϧϴϋ

 18

2.8 Arabic Phoneme Set

In order to produce a robust speaker-independent continuous automatic Arabic

speech recognizer, a set of speech recordings that are rich and balanced is required. The

rich characteristic is in the sense that it must contain all the phonemes of Arabic

language. It must be balanced in preserving the phonetics distribution of Arabic

language too. This set of speech recordings must be based on a proper written set of

sentences and phrases created by experts. Therefore, it is crucial to create a high quality

written (text) set of the sentences and phrases before recording them.

Creating phonetically rich and balanced text corpus requires selecting a set of

phonetically rich words, which are combined together to produce sentences and phrases.

These sentences and phrases are verified and checked for balanced phonetic

distribution. [64]. In 1997, KACST created a database for Arabic language sounds.

The purpose of this work was to create the least number of phonetically rich Arabic

words. As a result, a list of 663 phonetically rich words containing all Arabic phonemes,

which are subject to all Arabic phonotactic rules was produced. This work is the

backbone for creating individual sentences and phrases, which can be used for Arabic

ASR and text-to-speech synthesis applications. The list of 663 phonetically rich words

was created based on the following characteristics and guidelines :

1. Coverage of all Arabic phonemes which must be balanced so as to be close in

frequency as possible.

2. Coverage of all Arabic phoneme clusters.

3. The presence of the least possible number of words so that the list does not contain a

single word whose goal of existence is achieved by another word in the same list.

In 2003, KACST produced a technical report of the project �Database of Arabic

Sounds: Sentences.�, Arabic independent sentences have been written using the said

663 phonetically rich words. The database consists of 367 sentences; 2 to 9 words per

sentence. Therefore, we have an Arabic phrases and sentences that are phonetically rich

and balanced based on the previously created list of 663 phonetically rich words, which

were put in phrases and sentences while taking into consideration the following goals

[41]:

� To have the minimum word repetitions as far as possible.

� To have structurally simple sentences in order to ease readability and pronunciation.

� To have the minimum number of sentences.

 19

An average of 2 phonetically rich words and 5 other words were used in each single

sentence. Statistical analysis shows that 1333 words were repeated once only and 99

words were repeated more than once in the entire 367 sentences, whereas 17 words

were repeated 5 times and more. KACST 367 phonetically rich and balanced sentences

are used for training purposes in our system, Table 4.1 shows more technical details of

our speech corpus[42].

Table 2.2: Data Base Criteria

Criteria Data

No. of Sentences 367 sentences

Number of Words 1435 words

Average No. of Words/Sentence 5 words

Min. and Max. No. of Words/Sentence Min. of 2 and max. of 9

No. of Speakers 40 speakers

Speakers Age 18 to 66 years

Speakers Gender 20 males and 20 females

Average no. of sound Files/sentence 100 sound files/sentence

Sampling Rate(Hz) 44.1 KHz

No. of Bits 16 bits

2.9 Feature Extraction

Feature extraction stage is the most important one in the entire process, since it

is responsible for extracting relevant information from the speech frames, as feature

parameters or vectors. Common parameters used in speech recognition are Linear

Predictive Coding (LPC) coefficients, and Mel Frequency Cepstral Coefficients

(MFCC). These parameters have been widely used in recognition system partly to the

following reasons:

The calculation of these parameter leads to a source-filter separation.

The parameters have an analytically tractable model.

Experience proves that these parameters work well in recognition applications.

Due to their significance, they will be described in two different subsections.

 20

2.9.1. Pre-emphasis

In order to flatten speech spectrum, a pre-emphasis filter is used before spectral

analysis. Its aim is to compensate the high-frequency part of the speech signal that was

suppressed during the human sound production mechanism. The most used filter is a

high-pass filter described in Equation(1), and whose transfer function corresponds to

Figure 2.3.

Figure 2.3: Pre-emphasis Filter, a=0.97

2.9.2. Frame Blocking and Windowing

 The speech signal is divided into a sequence of frames where each frame can be

analyzed independently and represented by a single feature vector. Since each frame is

supposed to have stationary behavior, a compromise, in order to make the frame

blocking, is to use a 20-25 ms window applied at 10 ms intervals (frame rate of 100

frames/s and overlap between adjacent windows of about 50%), as Holmes & Holmes

exposed in 2001. One can see this in Figure 2.4.

 21

Figure 2.4: Frame Blocking

In order to reduce the discontinuities of the speech signal at the edges of each frame, a

tapered window is applied to each one. The most common used window is Hamming

window, described in Equation(2) and shown in Figure 2.5.

Figure 2.5: An 25ms Hamming Window (fs=16KHz)

 22

2.9.3. Mel- Cepstrum

The Mel Frequency Cepstrum6 Coefficients (MFCC) representation as a

beneficial approach for speech recognition. The MFCC is a representation of the speech

signal defined as the real cepstrum of a windowed short-time signal derived from the

Fast Fourier Transform (FFT) of that signal which, is first subjected to a log-based

transform of the frequency axis (mel-frequency scale), and then de-correlated using a

modified Discrete Cosine Transform (DCT-II).

Figure 2.6 illustrates the complete process to extract the MFFC vectors from the

speech signal. It is to be emphasized that the process of MFCC extraction is applied

over each frame of speech signal independently.

 Figure 2.6:The MFCC extraction process

 23

After the pre-emphasis and the frame blocking and windowing stage, the MFCC

vectors will be obtained from each speech frame. The process of MFFC extraction will

be described below considering in any instant that all the stages are being applied over

speech frames. The first step of MFCC extraction process is to compute the Fast Fourier

Transform (FFT) of each frame and obtain its magnitude.

The FFT is a computationally efficient algorithm of the Discrete Fourier

Transform (DFT). If the length of the FFT, is a power of two (K=2^n), a faster

algorithm can be used, so a zero-padding to the nearest power of two within speech

frame length is performed. The next step will be to adapt the frequency resolution to a

perceptual frequency scale which satisfies the properties of the human ears, such as a

perceptually mel-frequency scale. This issue corresponds to Mel filter bank stage. The

filter-bank analysis consists of a set of band pass filter whose bandwidths and spacings

are roughly equal to those of critical bands and whose range of the centre frequencies

covers the most important frequencies for speech perception[52].

 24

Chapter 3 Sphinx-4: Open Source Framework

3.1. Introduction

In the speech recognition approach, when researchers need to explore one

problem of it, they are often forced with the needing of core speech recognition, to be

used in research, so they often need to develop an entire system from scratch.

Many open source speech recognition systems are available, such as HTK [53],

ISIP [54], AVCSR [55] and earlier versions of the Sphinx systems [56], [57] these open

source systems are typically optimized for a single approach to speech system design.

So they considered as barriers to future research that departs from the original purpose

of this systems.

3.2. Speech Recognition Systems

 Many research systems such as Dragon [58], Harpy [59], Sphinx and others, are

created by using the traditional approach to speech recognition system design, which

using an optimized around a particular methodology to create the entire system.

This approach has proved to be quite valuable in speech recognition, as a result these

systems have provided foundational methods for speech recognition research

3.3. Sphnix-4 Framework

Sphinx-4 is a speech recognition system written entirely in the Java

programming language. It is a flexible, modular and pluggable framework to help

support new innovations in the research of hidden Markov model (HMM) recognition

systems. It is a very flexible system capable of performing many different types of

recognition tasks. Figure 3.1 shows the overall architecture of the system. Each

component in Figure 3.1 represents a module that can be easily replaced, allowing

researchers to experiment with different module implementations without needing to

modify other portions of the system.

The Sphinx-4 framework consists of three main modules that are the Front-End,

the Decoder, and the Linguist. One or more input signals are enter the Front-End

 25

module, it parameterizes them into a sequence of Features. The Linguist translates any

type of standard language model, along with pronunciation information from the

Dictionary and structural information from one or more sets of AcousticModels

function, into a SearchGraph. The decoder has a SearchManager, that uses the Features

from the Front-End and the SearchGraph from the Linguist to perform the actual

decoding, and then generating the results. At any time prior to or during the recognition

process, the application can issue Controls to each of the modules, effectively becoming

a partner in the recognition process. Like most speech recognition systems, Sphinx-4

system has a large number of configurable parameters, such as search beam size, that

controls the system performance. These parameters configured using the Sphinx-4

configuration manager. Unlike other systems, this configuration manager also gives

Sphinx-4 the ability to dynamically load and configure modules at run time, yielding a

flexible and pluggable system. number of Tools provided by Sphinx-4 are used to give

applications and developers the ability to track decoder statistics such as word error rate

[60], run time speed, and memory usage. This Tools are highly configurable, allowing

users to perform a wide range of system analysis. And also provide an interactive run

time environment that allows users to modify the parameters of the system while the

system in the run time, and allow rapid experimentation with various parameters

settings.

Figure 3.1: Sphinx 4 components

 26

3.3.1 Front-End

The front-end module receive the input signal [audio] then parameterize it

into a sequence of output features. The Front-End consists of one or more

parallel chains of replaceable communicating signal processing modules called

DataProcessors. These DataProcessors are responsible for producing a data object

composed of parameterized signals, called features, to be used by the decoder.

Figure 3.2 illustrates the entire structure of the front-end module, many types of

DataProcessors each implement common signal processing techniques. These

implementations include support for the following: reading from a variety of input

formats for batch mode operation, reading from the system audio input device for live

mode operation, preemphasis, windowing with a raised cosine transform (e.g.,

Hamming and Hanning windows), discrete Fourier transform (via FFT), mel frequency

filtering, bark frequency warping, discrete cosine transform (DCT), linear predictive

encoding (LPC), end pointing, cepstral mean normalization (CMN), mel cepstra

frequency coefficient extraction (MFCC), and perceptual linear prediction coefficient

extraction (PLP).

Figure 3.2 : Front-End Framework

Within the generic Front-End framework, supporting multiple chains permits

simultaneous computation of different types of parameters from the same or different

input signals. This enables the creation of systems that can simultaneously decode using

different parameter types, such as MFCC and PLP.

 27

3.3.2 Linguist

The Linguist module consists of three pluggable components: the Language Model,

the Dictionary, and the Acoustic Model, these components used to generate the

SearchGraph that is used by the decoder during the search, while at the same time

hiding the complexities involved in generating this graph. This SearchGraph

constructed using the language structure as represented by a given Language Model and

the topological structure of the Acoustic Model (HMMs for the basic sound units used

by the system). and also use a Dictionary (typically a pronunciation of the word) to

map words from the Language Model into sequences of Acoustic Model elements.

The size of the linguist is very important in the performance of the recognizer, for

example when using a simple numerical digits recognition application might use a

simple Linguist that keeps the search space entirely in memory. On the other hand, a

dictation application with a 100K word vocabulary might use a sophisticated Linguist

that keeps only a small portion of the potential search space in memory at a time. Now

we will produce the basic components of the linguist in more details.

 Language Model

The first component of the linguist is the Language Model, this component

provides word-level language structure, which can be represented by any number of

pluggable implementations as following:

� SimpleWordListGrammar: defines a grammar based upon a list of words. An optional

parameter defines whether the grammar �loops� or not. If the grammar does not loop,

then the grammar will be used for isolated word recognition. If the grammar loops, then

it will be used to support trivial connected word recognition that is the equivalent of a

unigram grammar with equal probabilities.

� JSGFGrammar: supports the JavaTMSpeech API Grammar Format (JSGF) [60], which

defines a BNF-style, platform-independent, and vendor-independent Unicode

representation of grammars.

� LMGrammar: defines a grammar based upon a statistical language model.

LMGrammar generates one grammar node per word and works well with smaller

unigram and bigram grammars of up to approximately 1000 words.

 28

� FSTGrammar: supports a finite-state transducer (FST) [61] in the ARPA FST grammar

format.

� SimpleNGramModel: provides support for ASCII N-Gram models in the ARPA

format. The SimpleNGramModel makes no attempt to optimize memory usage, so it

works best with small language models.

� LargeTrigramModel: provides support for true N-Gram models generated by the

CMUCambridge Statistical Language Modeling Toolkit [62]. The Large Trigram Model

optimizes memory storage, allowing it to work with very large files of 100MB or more.

 Dictionary

The second component is the Dictionary, which contains of the words and their

pronunciation phoneme. The pronunciations break words into sequences of sub-word

units found in the Acoustic Model. The Dictionary interface also supports the

classification of words and allows for a single word to be in multiple classes.

Sphinx-4 currently provides implementations of the Dictionary interface to

support the CMU Pronouncing Dictionary [63]. The various implementations optimize

for usage patterns based on the size of the active vocabulary. For example, one

implementation will load the entire vocabulary at system initialization time, whereas

another implementation will only obtain pronunciations on demand.

 Acoustic Model

The third component of the linguist is the Acoustic Model, which describes

sounds of the language. It provides a mapping between a unit of speech and an HMM

that can be scored against incoming features provided by the Front-End. This mapping

take into account the contextual and word position information. For example, in the case

of triphones, the context represents the single phonemes to the left and right of the given

phoneme, and the word position represents whether the triphone is at the beginning,

middle, or end of a word (or is a word itself).

 29

 SearchGraph

As mentioned before the linguist use its three components to generate the SearchGraph,

which will be used in the decoding process. It is a data structure and the manner in

which it is constructed affects the memory footprint, speed, and recognition accuracy.

As in Figure 3.3 it is a directed graph in which each node, called a SearchState,

represents either an emitting or a non-emitting state. Emitting states can be scored

against incoming acoustic features while non-emitting states are generally used to

represent higher-level linguistic constructs such as words and phonemes that are not

directly scored against the incoming features.

Figure 3.3: SearchGraph Example

 Implementations

As with the Front-End, Sphinx-4 provides several implementations of the

Linguist to support different tasks.

-The FlatLinguist is appropriate for recognition tasks that use context-free grammars

(CFG), finite-state grammars (FSG), finite-state transducers (FST) and small N-Gram

language models.

-The DynamicFlatLinguist is similar to the FlatLinguist in that is appropriate for similar

recognition tasks. The main difference is that the DynamicFlatLinguist dynamically

creates the SearchGraph on demand, giving it the capability to handle far more perplex

grammars. With this capability, however, comes a cost of a modest decrease in run time

performance.

-The LexTreeLinguist is appropriate for large vocabulary recognition tasks that use

large N-Gram language models. The LexTreeLinguist supports ASCII and binary

 30

language models generated by the CMU-Cambridge Statistical Language Modeling

Toolkit [62].

3.3.3 Decoder

The main part in the recognizer is the decoder, as it is responsible of generating

the resulting text using the features extracted by the Front-End and the SearchGraph that

constructed in the Linguist module. The primary component of the Decoder block is the

SearchManager, this SearchManager creates a Result object that contains all the paths

that have reached a final non-emitting state. The SearchManager's primary role is to

execute the search for a given number of frames. The SearchManager will return

interim results as the recognition proceeds and when recognition completes a final result

will be returned. Sphinx-4 provides a sub-framework to support SearchManagers

composed of an ActiveList, a Pruner and a Scorer. The implementations of a

SearchManager may construct a set of active tokens in the form of an ActiveList at each

time step.

 Applications can configure the Sphinx-4 implementations of the Pruner to

perform both relative and absolute beam pruning. The implementation of the Pruner is

greatly simplified by the garbage collector of the Java platform. With garbage

collection, the Pruner can prune a complete path by merely removing the terminal token

of the path from the ActiveList. The act of removing the terminal token identifies the

token and any unshared tokens for that path as unused, allowing the garbage collector to

reclaim the associated memory. The third part is the Scorer, a pluggable state

probability estimation module that provides state output density values on demand.

When the SearchManager requests a score for a given state at a given time, the Scorer

accesses the feature vector for that time and performs the mathematical operations to

compute the score, the Scorer retains all information pertaining to the state output

densities[46].

 31

Chapter 4 The Arabic Speech Recognition

4.1 The Proposed Work

This section describes how to create and develop an Arabic speech recognition

system using the open source framework Sphinx-4. Both training and recognizing

process use Arabic characters.

4.1.1 System Overview

A complete ASR system based on CMUSphinx4 system, which is HMM-based,

is built. The system is speaker-independent and continuous recognition. It is capable of

handling large vocabularies. Our approach for modeling Arabic sounds in the CMU

Sphinx system consist of construct and train the acoustic and language models with

Arabic speech data and generate the dictionary with Arabic characters.

Figure 4.1 shows a mathematical representation of speech recognition system in

simple equations which contain front end unit, acoustic model unit, language model

unit, and search unit.

Figure 4.1 :Basic model of speech recognition

 32

The standard approach to large vocabulary continuous speech recognition is to

assume a simple probabilistic model of speech production where by a specified word

sequence, W, produces an acoustic observation sequence Y, with probability P(W,Y).

The goal is then to decode the word string, based on the acoustic observation sequence,

so that the decoded string has the maximum a posteriori (MAP) probability.

Using Baye's rule, the equation can be written as

Since P(A) is independent of W, the MAP decoding rule of the equation is

The first term in the last equation P(A/W), is generally called the acoustic

model, as it estimates the probability of a sequence of acoustic observations,

conditioned on the word string. Hence P(A/W) is computed. For large vocabulary

speech recognition systems, it is necessary to build statistical models for sub word

speech units, build up word models from these sub word speech unit models (using a

lexicon to describe the composition of words), and then postulate word sequences and

evaluate the acoustic model probabilities via standard concatenation methods. The

second term in equation P(W), is called the language model. It describes the probability

associated with a postulated sequence of words. Then we illustrate how to employing

our system in an application and test it.

4.2 Training Phase

To train a new model we must prepare our system by installing a group of

software, which are:

-- SphinxTrain: We can download the SphinxTrain CMU, it is a free training package.

The execution of SphinxTrain requires additional software:

-- Active Perl: To edit scripts provided by SphinxTrain.

 33

4.2.1 Feature Extraction

The recorded speech is sampled at a rate of 16 ksps. The basic feature vector

uses the Mel Frequency Cepstral Coefficients MFCC. The mel-frequency scale is linear

frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. The

MFCCs are obtained by taking the Discrete Cosine Transform (DCT) of the log power

spectrum from Mel spaced filter banks [17]. 13 Mel frequency cepstra are computed,

x(0), x(1),� x(12), for each window of 25 ms, with adjacent windows overlapped by 15

ms. x(0) represents the log mel spectrum energy, and is used to derive other feature

parameters, see Section 2.8 for more information. The system uses the rest 12

coefficients as a basic feature vector. The basic feature vector is usually normalized by

subtracting the mean over the sentence utterance. Table 4.2 show all parameters used in

feature extraction.

Table 4.2 : Parameters used in feature extraction

Parameter Value

Sampling Rate 16Khz

Pre-emphases Coefficient 0.97

Window Size 25ms

Overlap Duration 15ms

Hamming Window True

Zero Mean True

Cepstral lifter 22

Number of Cepstral Coefficient 12

4.2.2 Linguist model

This sub-system contains the details that describe the recognized language itself.

This sub-system is where most of the adjustments are made in order to support the

Arabic Language recognition. It consists of three main modules:

The Acoustic Model: This module provides the HMMs of the Arabic triphones to be

used to recognize speech.

The Language Model: This module provides the grammar that is used by the system

(Usually the grammar of a natural language or a subset of it).

 34

The Dictionary: This module serves as an intermediary between the Acoustic Model

and the Language Model. It contains the words available in the language and the

pronunciation of each in terms of the phonemes available in the acoustic model.

It will use the knowledge from these three components to construct a search

graph that is appropriate for recognizing task.

So we can construct the acoustic model, the dictionary, and the language model as

follow:

The Dictionary

In this step we mapped each word in the vocabulary to a sequence of sound units

representing pronunciation; that it contains all words with all possible variants of their

pronunciation.

To take into account pronunciation variability, caused by various speaking

manners and the specificity of Arabic. Careful preparation of phonetic dictionary

prevents the incorrect association to a phoneme with audio parameters, which would

effect in decreasing the model�s accuracy[65].

Table 4.3 shows the listing of the phoneme set used in the training stage and the

corresponding symbols. The table also shows illustrative examples of the vowel usage.

We use the training wav files to construct the dictionary, the file result is ar.dict

that contain all the words pronunciations. For example:

�νέϷ˴ E L E AE R DD
νέϷ˴�� L E AE R DD

Γέ˴Ω˴·˶ E IH D AE: R AA H
Γέ˴Ω˴·˶��� E IH D AE: R AA T

 35

 Table 4.3: The phoneme list used in the training

Language Model

There are two types of models that describe language - grammars and statistical

language models. Grammars describe very simple types of languages for command and

control, and they are usually written by hand or generated automatically with plain

code.

Language Model is another important requirement for any ASR system.

Creation of a language model consists of computing the word uni-gram counts, which

are then converted into a task vocabulary with word frequencies, generating the bi-

grams and trigrams from the training text based on this vocabulary, and finally

converting the n-grams into a binary format language model and standard ARPA

format.

 36

There are many ways to build the statistical language models. When a model is

small, you can use an online quick web service. When your data set is large, there is

sense to use CMU language modeling toolkit(CMU SLM toolkit), which we used here.

Figure 4.2: Text to Language Model Mapping Instructions[63]

The steps for creating and testing the language model are shown in Figure 4.2.

The creation of a language model from a training text consists of the following steps:

1) Prepare a reference text that will be used to generate the language model. The

language model toolkit expects its input to be in the form of normalized text files, with

utterances delimited by <s> and </s> tags. The output file called a.txt.

2) Compute the word unigram counts

cat a.txt | text2wfreq > a.wfreq

 37

3) Convert the word unigram counts into a vocabulary consisting of the 20,000 most
common words

cat a.wfreq | wfreq2vocab -top 20000 > a.vocab
4) Generate a binary id 3-gram of the training text, based on this vocabulary

cat a.text | text2idngram -vocab a.vocab > a.idngram

5) Convert the idngram into a binary format language model

idngram2lm -idngram a.idngram -vocab a.vocab -binary a.binlm

See appendix A for more details.

Converting model into DMP format

To quickly load large models you probably would like to convert them to binary

format that will save your decoder initialization time. That's not necessary with small

models. Sphinx4 requires you to submit DMP model into TrigramModel component.

DMP format is mutually convert able. You can produce other file with

sphinx_lm_convert command from sphinxbase:

sphinx_lm_convert -i model.lm -o model.dmp

Testing your language model with PocketSphinx

In PocketSphinx, we have a program called pocketsphinx_continuous which

can be run from the command-line to recognize speech. We try running the following

command:

pocketsphinx_continuous -lm a.lm -dict dict.dic

Acoustic Model

The trainer learns the parameters of the models of the sound units using a set of

sample speech signals. This is called a training database. The database contains

information required to extract statistics from the speech in form of the acoustic model.

You have to design database prompts and post process the results to ensure that audio

actually corresponds to prompts. The folder structure is:

 38

 AR

o ar.dic - Phonetic dictionary

o ar.phone - Phoneset file

o ar.lm.DMP - Language model

o ar.filler - List of fillers

o ar_train.fileids - List of files for training

o ar_train.transcription - Transcription for training

o ar_test.fileids - List of files for testing

o ar_test.transcription - Transcription for testing

 wav

o speaker_1

 file_1.wav - Recording of speech utterance

o speaker_2

 file_2.wav

Let's go through the files and describe their format and the way to prepare them:

** Fileids (ar_train.fileids and ar_test.fileids) file is a text file listing the names of the

recordings (utterance ids) one by line

speaker_1/file_1

** Transcription file (ar_train.transcription and ar_test.transcription) is a text file

listing the transcription for each audio file

 <s> ϢϜϴϠϋ�ϡϼδϟ </s> (file_1)

** Phoneset file (ar.phone) should have one phone per line. The number of phones

should match the phones used in the dictionary plus the special SIL phone for silence:

AH

AX

** Filler dictionary (ar.filler) contains filler phones (not-covered by language model

non-linguistic sounds like breath, hmm or laugh). It can contain just silences:

<s> SIL

 39

</s> SIL

<sil> SIL

To start the training change to the database folder and run the following commands:

For SphinxTrain

../SphinxTrain/scripts_pl/setup_SphinxTrain.pl -ƚĂƐŬ�ĂŶϰ

../PocketSphinx/scripts/setup_sphinx.pl -ƚĂƐŬ�ĂŶϰ

Using the model

After training, the acoustic model is located in

model_parameters/a.cd_cont_1000 You need only that folder. The model should have

the following files:

 license.term

 mdef [model definition]

 feat.params

 means

 mixture_weights

 transition_matrices

 variancesic

Now we have a complete linguistic model components: Arabic dictionary, Arabic

language model, and Arabic acoustic model. How to use these components is the topic

of the next section.

 4.3 Testing Phase

For testing the Arabic speech recognition we need at first to have this software

installed on our processor:

1) Sphinx-4: Sphinx-4 can be downloaded either in binary format or in source

codes [66] It was compiled and tested on several versions of Linux and on

Windows operating systems.

sphinx4-{version}-bin.zip: provides the jar files, documentation, and demos

 40

sphinx4-{version}-src.zip: provides the sources, documentation, demos, unit

tests and regression tests.

2) Running, building and testing sphinx-4 requires additional software:

- Java 2 SDK, Standard Edition 6.0 [67].

- Java Runtime Environment (JRE)

- Ant: the tool to facilitate compilation and the implementation of sphinx-4

system [68].

- Subversion: install cygwin, which will give a Linux like environment in a

command prompt window.

- Get an IDE as Eclipse

4.3.1 Test System Overview

To test the model in an application, the project must contain these files:

 Project Name

o Src � source folder

 Java file

 Config.xml file

o JRE library � contain the general library used in java

o External Library � contain the sphinx files and our model files

4.3.2 Test System Creation

Now at first, we must create a new java project using the Eclipse, then do the

following :

� Insert the APIs Sphinx-4 into the new project.

You can start to link in the jars that you will need to do simple speech recognition. By

open the project java build path and add a new library then add a new jars by expand the

lib folder of the sphinx-4 and you�ll see the following jar files in it:

js.jar

jsapi.jar

 41

ƐƉŚŝŶǆϰ͘ũĂƌ

t^:ͺϴŐĂƵͺϭϯĚ�ĞƉͺϭϲŬͺϰϬŵĞůͺϭϯϬ,ǌͺϲϴϬϬ,ǌ͘ũĂƌ

This adds (links) the jar to your build path allows the IDE to use code from the jar for

your project.

� Create a jar file that contain the dictionary and the models:

Open the folder that contains the models, then use the command:

 C:\ũĚŬϭ͘ϲ͘ϬͺϯϬ\bin\Jar �cvf OurASR.jar *

A new jar file will be created with the name OurASR.jar, then insert it the project with

the same steps: My Project->build path->add the jar to build path. When that is done,

your folder structure should look something like this:

Notice when using the sphinx systems the important file here is the configure xml

file. this file determine the configuration of sphinx 4 system. This configuration file

defines the following:

 The names and types of all of the components of the system

 The connectivity of these components - that is, which components talk to each

other

 The detailed configuration for each of these components.

Using new models is easy, you just need to configure the recognizer properly. It

usually includes three steps:

 42

 Defining a dictionary and a language model

 Defining a model and a model loader

 Configure a front-end

4.3.3 Used Data

For testing phase : used the microphone to record the speaker sound And to

allow the system to listen to the microphone, we must added the property of it as follow

in the configure file:

4.3.4 Feature Extraction:

Sphinx-4 used Front-End, which is a wrapper class for the chain of front end

processors. It provides methods for manipulating and navigating the processors. The

front end is modeled as a series of data processors see Figure 3.1, each of which

performs a specific signal processing function. For example, a processor performs Fast-

Fourier Transform (FFT) on input data, another processor performs high-pass filtering.

The input data to the front end is typically audio data, but this front end allows any

input type. Similarly, the output data is typically features, but this front end allows any

output type. You can configure the front end to accept any input type and return any

output type. The front end must be configured through the Sphinx properties file.

Current front ends generate features that contain MFCC. To specify such a front end

(called a 'pipeline') in Sphinx-4, we insert the following lines in the Sphinx-4

configuration file:

 43

The signal processing filters applied on the recording audio signal are mentioned as

follow:

1- preemphasizer >> Preemphasize filter

2- windower >> Raised Cosine Windower

3- fft >> Discrete Fourier Transform

4- melFilterBank >> MelFrequency Filter Bank

5- Dct >> Discrete Cosine Transform

6- liveCMN >> liveCMN feature

7- featureExtractor >> Deltas Feature Extractor

Then in sphinx 4 there are many data processing could be used as:

1- SpeechClassifier - classifies chunks of audio into speech and non-speech. It has

the property 'threshold' to controls how sensitive the endpointer is. It is

empirically determined that the value of 13 is optimal for most environments. A

lower threshold will make the endpointer more sensitive, that is, mark more

 44

audio as speech. A higher threshold will make the endpointer less sensitive, that

is, mark less audio as speech.

2- SpeechMarker - marks the audio stream into speech and non-speech regions,

giving some 'cushion areas' around these regions.

3- NonSpeechDataFilter - removes the non-speech regions from the audio.

4- LiveCMN: Subtracts the mean of all the input so far from the Data objects.

Obtaining a Front End

In order to obtain a front end, The Sphinx-4 front end is connected to the rest of

the system via the scorer. We will show how the scorer will obtain the front end. In the

configuration file, the scorer should be specified as follows:

4.3.5 Using Our Model

-- The Dictionary

To use our new dictionary we must update the configure file with the path of our

dictionary and the path of the filler file also in the dictionary component.

-- The Language Model

In the training phase we build the Arabic language model, here we want to use it. So the
link where to load the model must be changed to the path of the building one, as our
system cover a large vocabulary so the trigram model is used here.

-- The Acoustic Model

The acoustic model used is the tiedstate Acoustic model and the sphinx3 loader,

so to inform the sphinx system the new acoustic model location we must change the

 45

sphinx3 loader manager location to our new location. See Appendix B for the complete

configure file.

Then we can add the simple java file that contain our code, that test the model

we build a java file that listen to the microphone and then convert the audio to text using

the command prompt, the file must determine its configure file in the first.

The pseudo code of test file :

We have cm is an instant of the configuration manger, A is the configure xml

file, reg is an instant of the recognizer class, and mic is an instant of the microphone

class

we begin with�

See Appendix C for the java source code.

See appendix c for source code.

 Set cm get source from (A xml)

 Set reg look up from cm

 Allocate the reg

 Test the mic for connectivity

o If mic not start

 Then ::

 print "can not start microphone"

 Deallocate the reg

 Exit

 Else ::

 Loop recognition until the program exit

 Print "Start Speaking. Press Ctrl-C to quit "

 Result get the recognized data

 If Result not null

 Then txt get best final result

 Print "you said : " + txt

 Else Print "I can not hear what you said..

"

 End

 46

Chapter 5 Experiments Results

5.1 Performance of Speech Recognition Systems

The performance of speech recognition systems is usually specified in terms of

accuracy and speed. Accuracy may be measured in terms of performance accuracy

which is usually rated with word error rate (WER), whereas speed is measured with the

real time factor. Other measures of accuracy include Single Word Error Rate (SWER)

and Command Success Rate (CSR).

WER is a common metric of the performance of a speech recognition or

machine translation system. The general difficulty of measuring performance lies in the

fact that the recognized word sequence can have a different length from the reference

word sequence (supposedly the correct one). The WER is working at the word level

instead of the phoneme level. This problem is solved by first aligning the recognized

word sequence with the reference (spoken) word sequence using dynamic string

alignment. Word error rate can then be computed as:

where

S is the number of substitutions,

D is the number of the deletions,

I is the number of the insertions,

N is the number of words in the reference.

When reporting the performance of a speech recognition system, sometimes

word recognition rate (WRR) is used instead:

Where H is N-(S+D), the number of correctly recognized words.

 47

5.2 Our Experiments

In this section, we will discuss the experiments that done on the proposed

system.

5.2.1 Experiment one

In this experiment we test the system using 144 sentences, divided to 10 groups,

each group for one speaker, so we have ten speakers [4 female and 6 male]. The speech

data recorded from Aljazeera news channel. In order to use a wave file, the code of

testing application must be changed to be able to read from existing file. And must

process that wave file to be compatible with our system, so every file must pass the

checking channel to test its format, if it suitable to one used in system then the wave file

just enter the system to be recognized, and if the file has different format type, then it

must be enter convert channel to be convert to the used format then enter the system to

be recognized Figure 5.1 shows the process of checking the wave file.

 Figure 5.1 The process of checking the wave file

The compatible formats of the speech file are mentioned in Table 5.1, see

appendix C for source code of using existing speech file.

Table 5.1 : Proper file format

File Type .wav

Sample Rate 16000Hz

Sample Size in bits 16

Recording Type Mono

Signed True

Character type Little-Endian

 48

The detailed of this experiment speech information are summarized in Table 5.2.

Table 5.2 : The speech information in experiment one

of

Speakers

of

Sentences

Duration

in sec

Ratio of Test.
Data (%)

Speaker 1 3 12 2.14

Speaker2 34 169 30.12

Speaker3 8 28 4.99

Speaker4 6 29 5.17

Speaker5 22 71 12.65

Speaker6 23 76 13.55

Speaker7 26 100 17.83

Speaker8 7 30 5.35

Speaker9 3 15 2.67

Speaker10 10 31 5.53

5.2.2 Experiment Two

In this experiment we test the system using 10 sentences, with two speakers

[male]. Here we use the microphone to enter the audio data directly to the recognizer,

the configuration needed to do that was mentioned in the testing phase Section 4.2.4

When using the microphone in testing we must take care of the parameters that listed in

Table 5.1. The details of the speech information used in this experiment are summarized

in Table 5.3:

Table 5.3 : The speech information in experiment two

of

Speakers

of Sentences Duration

in sec

Speaker 1 10 75

Speaker2 10 75

Total 10 each one 150≈2.5min

 49

5.3 The Discussion

Using the WER from Section 5.1, the first experiment we get the result listed in

Table 5.4.

Table 5.4 : The result of experiment one

of

Speakers

Accuracy

 (%)

WER

(%)

Speaker 1 90.8 9.2

Speaker2 92.3 7.7

Speaker3 92.4 7.6

Speaker4 91.4 8.6

Speaker5 91.7 8.3

Speaker6 90.2 9.8

Speaker7 91.1 8.9

Speaker8 92.2 7.8

Speaker9 91.5 8.5

Speaker10 91.8 8.2

Total 91.6 8.4

The second experiment gives us this result that mentioned in Table 5.5.

Table 5.5 : The result of experiment two

of

Speakers

Accuracy

 (%)

WER

(%)

Speaker 1 90.4 9.6

Speaker2 90 10

Total 90.2 9.8

At last we can summarized that our proposed Arabic speech recognition system

used the rich and balanced text corpus was testing with sphinx-4 framework with the

parameters absolute word beam width equal 20 and word insertion probability equal 0.7

and the language weight set to 0.7, the system gives an accuracy rate near to 90.2 % and

the WER rate in general got equals to 9.8% using the microphone and an accuracy rate

 50

near to 91.6 % and the WER rate in general got equals to 8.4% using previous recording

audio file. For systems that depend on medium and small size vocabulary the system

performance obtained WER ranged between 15% to 0% dedicated to standard Arabic,

as we used a large size vocabulary, our system performance obtained a good WER

[8.4%, 9.8%]. In Table 5.6 we summarize the accuracy rate and the WER rate of

previous Arabic systems cover a large size vocabulary and our system values.

Table 5.6 : Comparison our system to others

The compared systems Accuracy Rate (%) WER Rate (%)

System-1 90.5 9.5

System-2 92.8 7.2

Our System 91.6 [recorded]

90.2 [mic]

8.4

9.8

System-1 is from "Investigation Arabic Speech Recognition Using CMU Sphinx

System" paper[24], which depended on an in-house corpus was created from all 10

Arabic digits. A number of 6 Moroccan speakers (6 males) were asked to utter all digits

5 times. In order to evaluate the performances of the application, they performed some

experiments on different individuals (three men) each one of them was asked to utter 10

Arabic digits. they recorded the number of words that were correctly recognized, and

then a mean recognition ratio for all tester was calculated as 90.5%.

System-2 is from the paper with the title " speaker-independent natural Arabic

speech recognition system " for Moustafa Elshafei, Husni Al-Muhtaseb, and Mansour

Al-Ghamdi they built a system with in housing audio files recorded from several TV

news channels at a sampling rate of 16 ksps. A total of 249 news stories, summing up to

5.4 hours of speech, and they got the correctly recognized words was 92.8%, and WER

came down to 7.2 %.

Comparing it with our result, we got a good accuracy as we used the rich and

balanced corpus. To increase the accuracy of the system, we need more training.

 51

Chapter 6 Conclusion and Future Work

6.1 Conclusion

To conclude, a spoken Arabic recognition system was designed to investigate

the process of automatic speech recognition using Arabic environment. Both training

and recognizing process use Arabic characters. Our experiment demonstrates the

possible adaptability of the CMU Sphinx4 to Arabic language with large vocabulary

size. The system consisted of three basic components, which were an Arabic phonetic

dictionary contained all phonetic sound of the words used in training, and the Arabic

statistical language model that gave us the probability of the sequence of words. The

last component was the acoustic model that generated the HMM represented unit for

each phoneme. We used a phonetically rich and balanced speech corpus for training the

recognizer.

The developed system providing a good accuracy with speaker independent, and

natural Arabic continuous speech as it got 91.6% accuracy rate with recorded files and

90.2% accuracy rate using the microphone. The recognition results produced by our

system showed to be satisfactory and when compared, they can match with the results

of other ASR systems.

6.2 Future Work

The work reported in this thesis may be extended in a number of ways, some of

which are discussed below:

 extending the corpus to 10 hours of Arabic speech.

 enhancing the rule based phonetic dictionary, and parameterization of the

acoustic model.

 Build a Arabic Dictation Notepad Software that can be used.

 Using the Arabic dictionary in the mobile systems.

 52

References

[1] Haton M., Cerisara C., Fohr D., Laprie Y., and Smaili K., Reconnaissance

Automatique de la Parole du Signal a Son Interpretation, Monographies and

Books, Oxford, 2006.

[2] Young S., �The HTK Hidden Markov Model Toolkit: Design and Philosophy,�

Technical Report TR 152, Department of Engineering, Cambridge University,

Cambridge, 1994
[3] Deshmukh N., Ganapathiraju A., Hamaker J., Picone J., and Ordowski M., �A

Public Domain Speech to Text System,� in Proceedings of 6th European

Conferences on Speech Communication and Technology, Hungary, pp. 2127-

2130, 1999.

[4] Muhammad A., �Alaswaat Alaghawaiyah,� in Proceedings of International

Conference on Signal Processing, Jordan, pp. 646-651, 1990.

[5] Li X., Zhao Y., Pi X., Liang H., and Nefian V., �Audio Visual Continuous

Speech Recognition Using a Coupled Hidden Markov Model,� in Proceedings of

7th International Conferences on Spoken Language Processing, Denver, pp. 213-

216, 2002.

[6] Huang X., Acero A., and Hon H., "Spoken Language Processing: A Guide to

Theory", Algorithm and System Design, Prentice Hall, 2001.

[7] Gordon R., Ethnologue: Languages of the World, Texas: Dallas, SIL

International, 2005.

[8] Alghamdi M., Elshafei M., and Al-Muhtaseb H., �Arabic Broadcast News

Transcription System,� International Computer Journal of Speech Technology,

vol. 10, no. 4, pp. 183-195, 2009

[9] Hyassat H. and Abu Zitar R., �Arabic Speech Recognition Using SPHINX

Engine,� International Computer Journal of Speech Technology, vol. 9, no. 3-4,

pp. 133-150, 2008.

[10] Kirchhoff K., Bilmes J., Das S., Duta N., Egan M., Ji G., He F., Henderson J.,

Liu D., Noamany M., Schone P., Schwartz R., and Vergyri D., �Novel

 53

Approaches to Arabic Speech Recognition: Report from the 2002 Johns- Hopkins

Summer Workshop,� in Proceedings of IEEE International Conference on

Acoustics, Speech, and Single processing, Hong Kong, vol. 1, pp. 344-347, 2003
[11] H., Harti M., and Chenfour N., �Arabic Speech Recognition System Based on

CMUSphinx,� in Proceedings of IEEE International Symposium on

Computational Intelligence and Intelligent Informatics, Morocco, pp. 31-35,

2007.

[12] Alsulaiti L. and Atwell E., �The Design of a Corpus of Contemporary Arabic,�

International Computer Journal of Corpus Linguistics, John Benjamins

Publishing Company, pp. 1-36, 2006.

[13] Alansary S., Nagi M., and Adly N., �Building an International Corpus of Arabic

Progress of Compilation Stage,� in Proceedings of 8th International Conference

on Language Engineering, Egypt, pp. 337-344, 2007.

[14] Parkinson D. and Farwaneh S., Perspectives on Arabic Linguistics XV, John

Benjamins Publishing Company, Philadelphia, 2003.

[15] Black A. and Tokuda K., �The Blizzard Challenge Evaluating Corpus-Based

Speech Synthesis on Common Datasets,� in Proceeding of Interspeech, Portugal,

pp. 77-80, 2005.

[16] D�Arcy S. and Russell M., �Experiments with the ABI (Accents of the British

Isles) Speech Corpus,� in Proceeding of Interspeech 08, Australia, pp. 293-296,

2008.

[17] Garofolo J., Lamel L., Fisher W., Fiscus J., Pallett D., Dahlgren N., and Zue V.,

�TIMIT Acoustic-Phonetic Continuous Speech Corpus,� Technical Document,

Philadelphia, 1993.

[18] Chou F. and Tseng C., �The Design of Prosodically Oriented Mandarin Speech

Database,� in Proceedings of International Congress of Phonetics Sciences, San

Francisco, pp. 2375-2377, 1999.

[19] Sagisaka Y., Takeda K., Abel M., Katagiri S., Umeda T., and Kuwabara H., �A

Large-Scale Japanese Speech Database,� in Proceedings of International

Conference on Spoken Language Processing, 1990.

[20] Alotaibi Y., �Comparative Study of ANN and HMM to Arabic Digits

Recognition Systems,� Journal of King Abdulaziz University: Engineering

Sciences, vol. 19, no. 1, pp. 43-59, 2008.

 54

[21] Alotaibi Y., Alghamdi M., and Alotaiby F., �Using a Telephony Saudi Accented

Arabic Corpus in Automatic Recognition of Spoken Arabic Digits,� in

Proceedings of 4th International Symposium on Image/Video Communications

over Fixed and Mobile Networks, Spain, pp. 43-60, 2008.

[22] Ahmed Omar, �Study of Linguistic phonetics,� Aalam Alkutob, Eygpt 1991. (in

Arabic)

[23] El-Imam, �An Unrestricted Vocabulary Arabic Speech Synthesis System�, IEEE

Transactions on Acoustic, Speech, and Signal Processing, Vol. 37,No. 12, Dec.

1989, pp.1829-45.

[24] Hassan S., Hussein H., Mostafa H. and Noureddine C., " Investigation Arabic

Speech Recognition Using CMU Sphinx System", The International Arab

Journal of Information Technology, Vol. 6, No. 2, April 2009

[25] Rabiner, and Juang, "Fundamentals of Speech Recognition." Prentice Hall, 1993.

[26] Rabiner, �A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition,� Proceedings of the IEEE, 77(2):257�286, February 1989.

[27] HTK speech recognition tool kit. http://htk.eng.cam.ac.uk/ (accessed July, 2012).

[28] Sphinx-4 Java-based Speech Recognition Engine,

http://cmusphinx.sourceforge.net/sphinx4/ (accessed July, 2012).

[29] Huang, Alleva, Hon, Hwang, and Rosenfeld, �The SPHINX-II speech

recognition system: an overview,� Computer Speech and Language, vol. 7, no. 2,

pp. 137�148, 1993

[30] Lamere, Kwok, Walker, Gouvea, Singh, Raj, and Wolf, �Design of the CMU

Sphinx-4 decoder,� in Proceedings of the 8th European Conference on Speech

Communication and Technology, Geneve, Switzerland, Sept. 2003, pp. 1181�

1184

[31] Algamdi M., Arabic Phonetics, Attaoobah, Riyadh, 2000.

[32] Algamdi M., "KACST Arabic Phonetics Database", The Fifteenth International

Congress of Phonetics Science, Barcelona, 3109-3112, 2003.

[33] Elshafei M., Al-Muhtaseb H. and Alghamdi M., "Speech Units for Arabic Text-

to-speech", The Fourth Workshop on Computer and Inforamtion Sciences, 199-

212, 2002.

[34] Elshafei M., Al-Muhtaseb H. and Alghamdi M., "Techniques for High Quality

Text-to-speech", Information Science, 140 (3-4) 255-267, 2002

http://htk.eng.cam.ac.uk/
http://cmusphinx.sourceforge.net/sphinx4/

 55

[35] Elshafei M., Al-Muhtaseb H. and Alghamdi M., �Statistical Methods for

Automatic Diacritization of Arabic text�, Proceedings 18th National computer

Conference NCC�18, Riyadh, March 26-29, 2006.

[36] Al-Otaibi F., Speaker-Dependant Continuous Arabic Speech Recognition, M.Sc.

Thesis, King Saud University, 2001.

[37] Billa, J.; Noamany, M.; Srivastava, A.; Liu, D.; Stone, R.; Xu, J.; Makhoul, J.;

Kubala, F.,� Audio indexing of Arabic broadcast news�, Proceedings. (ICASSP

'02). IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2002. Volume 1, 2002 Page(s):I- 5 - I-8 vol.1

[38] Vergyri D. and Kirchhoff K., Automatic Diacritization of Arabic for Acoustic

Modelling in Speech Recognition, Editors, Coling, Geneva, 2004.

[39] Azmi M. and Tolba H., �Syllable-Based Automatic Arabic Speech Recognition

in Different Conditions of Noise,� IEEE Proceedings of the 9th International

Conference on Signal Processing, China, pp. 601-604, 2008.

[40] Nofal M., Abdel-Raheem E., El Henawy H., and Abdel Kader N., �Acoustic

Training System for Speaker Independent Continuous Arabic Speech

Recognition System,� in Proceedings of the 4th IEEE International Symposium

on Signal Processing and Information Technology, Italy, pp. 200-203, 2004.

[41] Alghamdi M., Alhamid A., and Aldasuqi M., �Database of Arabic Sounds:

Sentences,� Technical Report, King Abdulaziz City of Science and Technology,

Saudi Arabia, 2003.

[42] Raja A., Roziati Z., Moustafa E., and Othman Kh., " Arabic Speaker-Independent

Continuous Automatic Speech Recognition Based on a Phonetically Rich and

Balanced Speech Corpus", International Arab Journal Information Technology,

vol. 9(1): 84-93 (2012)

[43] "The Speech Recognition Information Source", http://www.sayican.com,

(accessed July, 2012).

[44] Sun Microsystems, " Java� Speech API Programmer�s Guide "Version 1.0�

October 26, 1998.

[45] M.A.Anusuya, S.K.Katti, "Speech Recognition by Machine:A Review",

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 6, No. 3, 2009

[46] Willie W.r, Paul L., Philip K., Bhiksha R.," Sphinx-4: A Flexible Open Source

http://www.sayican.com,

 56

Framework for Speech Recognition", Sun Microsystems, Inc., November 2004

[47] Top Internet Languages - Internet World Stats,

http://www.internetworldstats.com/stats7.htm , 2010. (accessed July, 2012).

[48] Alotaibi1 Y., Hussain A.," Comparative Analysis of Arabic Vowels using

Formants and an Automatic Speech Recognition System", International Journal

of Signal Processing, Image Processing and Pattern Recognition Vol. 3, No. 2,

June, 2010

[49] Ghania Droua-Hamdani, " Algerian Arabic Speech Database: Corpus Design and

Automatic Speech Recognition Application", The Arabian Journal for Science

and Engineering, Volume 35, Number 2C 157, 2010

[50] El-Imam Y., �An Unrestricted Vocabulary Arabic Speech Synthesis System�,

IEEE Transactions on Acoustic, Speech, and Signal Processing, 37(12)(1989),

pp. 1829�1845.

[51] Youssef and Emam, �An Arabic TTS System on the IBM Trainable

Synthesizer�, Le Traitement Automatique de l�Arabe, JEP-TALN 2004, Fes, 19�

21 avril 2004.

[52] Tsuhan Ch., "Audiovisual speech processing", IEEE Signal Processing

Magazine, 18(1):9-21, 2001.

[53] Young, �The HTK hidden Markov model toolkit: Design and philosophy,�

Cambridge University Engineering Department, UK, Tech. Rep. CUED/F-

INFENG/TR152, Sept. 1994.

[54] Deshmukh, Ganapathiraju, Hamaker, Picone, and Ordowski, �A public domain

speech-to-text system,� in Proceedings of the 6th European Conference on

Speech Communication and Technology, vol. 5, Budapest, Hungary, Sept. 1999,

pp. 2127�2130.

[55] Li, Zhao, Pi, Liang, and Nefian, �Audio-visual continuous speech recognition

using a coupled hidden Markov model,� in Proceedings of the 7th International

Conference on Spoken Language Processing, Denver, CO, Sept. 2002, pp. 213�

216.

[56] K. F. Lee, H. W. Hon, and R. Reddy, �An overview of the SPHINX speech

recognition system,� IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. 38, no. 1, pp. 35�45, Jan. 1990.

[57] Ravishankar, �Efficient algorithms for speech recognition,� PhD Thesis (CMU

http://www.internetworldstats.com/stats7.htm

 57

Technical Report CS-96-143), Carnegie Mellon University, Pittsburgh, PA,

1996.

[58] Baker, �The Dragon system - an overview,� in IEEE Transactions on Acoustic,

Speech and Signal Processing, vol. 23, no. 1, Feb. 1975, pp. 24�29.

[59] Lowerre, �The Harpy speech recognition system,� Ph.D. dissertation, Carnegie

Mellon University, Pittsburgh, PA, 1976.

[61] NIST. Speech recognition scoring package (score). [Online]. Available:

http://www.nist.gov/speech/tools for Developers/JSGF/ (accessed July, 2012).

[62] Mohri, �Finite-state transducers in language and speech processing,�

Computational Linguistics, vol. 23, no. 2, pp. 269�311, 1997.

[63] Clarkson and Rosenfeld, �Statistical language modeling using the CMU-

Cambridge toolkit,� in Proceedings of the 5th European Conference on Speech

Communication and Technology, Rhodes, Greece, Sept. 1997.

[64] Carnegie Mellon University. CMU pronouncing dictionary. [Online]. Available:

http://www.speech.cs.cmu.edu/cgi-bin/cmudict (accessed July, 2012).

[65] Pineda L., G.mez M., Vaufreydaz D., and Serignat J., �Experiments on the

Construction of a Phonetically Balanced Corpus from the Web,� in Proceedings

of 5th International Conference on Computational Linguistics and Intelligent Text

Processing, Lecture Notes in Computer Science, Korea, pp. 416-419, 2004.

[66] Yacine Y., Yekhlef M., Belkacem K., " Towards Quranic reader controlled by

speech", (IJACSA) International Journal of Advanced Computer Science and

Applications, Vol. 2, No. 11, 2011

[67] http://cmusphinx.sourceforge.net/sphinx4. (accessed July, 2012).

[68] Sun Microsystems. Available: http://java.sun.com. (accessed July, 2012).

[69] http://ant.apache.org/ . (accessed July, 2012).

[70] Zavaliagkos, 1998. The BBN byblos 1997 large vocabulary conversational

speech recognition system. Proc. ICASSP.

[70] Vergyri D., Katrin K., Kevin D. and Stolcke A., "Morphology-based language

modeling for Arabic speech recognition". Proc. ICSLP, Jeju, South Korea, 2004.

http://www.nist.gov/speech/tools
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://cmusphinx.sourceforge.net/sphinx4
http://java.sun.com
http://ant.apache.org/

 58

Appendix A

 Building The Language Model

Installing the Toolkit

 At first the variable BYTESWAP_FLAG will need to be set in the Makefile. This can be

done by editing src/Makefile directly, so that the line

#BYTESWAP_FLAG = -DSLM_SWAP_BYTES

is changed to

BYTESWAP_FLAG = -DSLM_SWAP_BYTES

Then the installation procedure is simply to change into the src/ directory and type:

make install The executables will then be copied into the bin/ directory, and the

library file SLM2.a will be copied into the lib/ directory.

Typical Usage

 59

The Tools

text2wfreq

Input : Text stream

Output : List of every word which occurred in the text, along with its number of

occurrences.

Command Line Syntax:

text2wfreq [-hash 1000000]

 [-verbosity 2]

 < .text > .wfreq

Higher values for the -hash parameter require more memory, but can reduce computation

time.

wfreq2vocab

Input : A word unigram file, as produced by text2wfreq

Output : A vocabulary file.

Command Line Syntax:

wfreq2vocab [-top 20000 | -gt 10]

 [-records 1000000]

 [-verbosity 2]

 < .wfreq > .vocab

The -top parameter allows the user to specify the size of the vocabulary; if the program

is called with the command -top 20000, then the vocabulary will consist of the most

common 20,000 words.

 60

The -gt parameter allows the user to specify the number of times that a word must occur

to be included in the vocabulary; if the program is called with the command -gt 10, then

the vocabulary will consist of all the words which occurred more than 10 times.

The -records parameter allows the user to specify how many of the word and count

records to allocate memory for. If the number of words in the input exceeds this

number, then the program will fail, but a high number will obviously result in a higher

memory requirement.

text2wngram

Input : Text stream

Output : List of every word n-gram which occurred in the text, along with its number

of occurrences.

Command Line Syntax:

text2wngram [-n 3]

 [-temp /usr/tmp/]

 [-chars n]

 [-words m]

 [-gzip | -compress]

 [-verbosity 2]

 < .text > .wngram

The maximum numbers of charactors and words that can be stored in the buffer are

given by the -chars and -words options. The default number of characters and words are

chosen so that the memory requirement of the program is approximately that of

STD_MEM, and the number of charactors is seven times greater than the number of

words.

The -temp option allows the user to specify where the program should store its

temporary files.

 61

text2idngram

Input : Text stream, plus a vocabulary file.

Output : List of every id n-gram which occurred in the text, along with its number of

occurrences.

Notes : Maps each word in the text stream to a short integer as soon as it has been read,

thus enabling more n-grams to be stored and sorted in memory.

Command Line Syntax:

text2idngram -vocab .vocab

 [-buffer 100]

 [-temp /usr/tmp/]

 [-files 20]

 [-gzip | -compress]

 [-n 3]

 [-write_ascii]

 [-fof_size 10]

 [-verbosity 2]

 < .text > .idngram

By default, the id n-gram file is written out as binary file, unless the -write_ascii switch is

used.

The size of the buffer which is used to store the n-grams can be specified using the -

buffer parameter. This value is in megabytes, and the default value can be changed from

100 by changing the value of STD_MEM in the file src/toolkit.h before compiling the

toolkit.

The program will also report the frequency of frequency of n-grams, and the

corresponding recommended value for the -spec_num parameters of idngram2lm. The -

fof_size parameter allows the user to specify the length of this list. A value of 0 will

result in no list being displayed.

 62

The -temp option allows the user to specify where the program should store its

temporary files.

In the case of really huge quantities of data, it may be the case that more temporary files

are generated than can be opened at one time by the filing system. In this case, the

temporary files will be merged in chunks, and the -files parameter can be used to specify

how many files are allowed to be open at one time.

idngram2lm

Input : An id n-gram file (in either binary (by default) or ASCII (if specified) format), a

vocabulary file, and (optionally) a context cues file. Additional command line

parameters will specify the cutoffs, the discounting strategy and parameters, etc.

Output : A language model, in either binary format (to be read by evallm), or in ARPA

format.

Command Line Syntax:

idngram2lm -idngram .idngram

 -vocab .vocab

 -arpa .arpa | -binary .binlm

 [-context .ccs]

 [-calc_mem | -buffer 100 | -spec_num y ... z]

 [-vocab_type 1]

 [-oov_fraction 0.5]

 [-linear | -absolute | -good_turing | -witten_bell]

 [-disc_ranges 1 7 7]

 [-cutoffs 0 ... 0]

 [-min_unicount 0]

 [-zeroton_fraction 1.0]

 [-ascii_input | -bin_input]

 [-n 3]

 [-verbosity 2]

 [-four_byte_counts]

 63

 [-two_byte_bo_weights

 [-min_bo_weight -3.2] [-max_bo_weight 2.5]

 [-out_of_range_bo_weights 10000]]

The -context parameter allows the user to specify a file containing a list of words within

the vocabulary which will serve as context cues (for example, markers which indicate

the beginnings of sentences and paragraphs).

-calc_mem, -buffer and -spec_num x y ... z are options to dictate how it is decided how much

memory should be allocated for the n-gram counts data structure. -calc_mem demands

that the id n-gram file should be read twice, so that we can accurately calculate the

amount of memory required. -buffer allows the user to specify an amount of memory to

grab, and divides this memory equally between the 2,3, ..., n-gram tables. -spec_num

allows the user to specify exactly how many 2-grams, 3-grams, ... , and n-grams will

need to be stored. The default is -buffer STD_MEM.

The toolkit provides for three types of vocabulary, which each handle out-of-vocabulary

(OOV) words in different ways, and which are specified using the -vocab_type flag.

A closed vocabulary (-vocab_type 0) model does not make any provision for OOVs. Any

such words which appear in either the training or test data will cause an error. This type

of model might be used in a command/control environment where the vocabulary is

restricted to the number of commands that the system understands, and we can therefore

guarantee that no OOVs will occur in the training or test data.

An open vocabulary model allows for OOVs to occur; out of vocabulary words are all

mapped to the same symbol. Two types of open vocabulary model are implemented in

the toolkit. The first type (-vocab_type 1) treats this symbol the same way as any other

word in the vocabulary. The second type (-vocab_type 2) of open vocabulary model is to

cover situations where no OOVs occurred in the training data, but we wish to allow for

the situation where they could occur in the test data. This situation could occur, for

example, if we have a limited amount of training data, and we choose a vocabulary

which provides 100% coverage of the training set. In this case, an arbitrary proportion

of the discount probability mass (specified by the -oov_fraction option) is reserved for

OOV words.

 64

The discounting strategy and its parameters are specified by the -linear, -absolute, -

good_turing and -witten_bell options. With Good Turing discounting, one can also specify

the range over which discounting occurs, using the -disc_ranges option.

The user can specify the cutoffs for the 2-grams, 3-grams, ..., n-grams by using the -

cutoffs parameter. A cutoff of K means that > n-grams occurring K or fewer times are

discarded. If the parameter is omitted, then all the cutoffs are set to zero.

The -zeroton_fraction option specifies that P(zeroton) (the unigram probability assigned to

a vocabulary word that did not occurred at all in the training data) will be at least that

fraction of P(singleton) (the probability assigned to a vocabulary word that occurred

exactly once in the training data).

By default, the n-gram counts are stored in two bytes by use of a count table (this allows

the counts to exceed 65535, while keeping the data structures used to store the model

compact). However, if more than 65535 distinct counts need to be stored (very

unlikely, unless constructing 4-gram or higher language models using Good-Turing

discounting), the -four_byte_counts option will need to be used.

The floating point values of the back-off weights may be stored as two-byte integers, by

using the -two_byte_alphas switch. This will introduce slight rounding errors, and so

should only be used if memory is short. The -min_alpha, -max_alpha and -out_of_range_alphas

are parameters used by the functions for using two-byte alphas. Their values should

only be altered if the program instructs it. For further details, see the comments in the

source file src/two_byte_alphas.c.

binlm2arpa

Input : A binary format language model, as generated by idngram2lm.

Output : An ARPA format language model.

Command Line Syntax:

binlm2arpa -binary .binlm

 -arpa .arpa

 65

 [-verbosity 2]

evallm

Input : A binary or ARPA format language model, as generated by idngram2lm. In

addition, one may also specify a text stream to be used to compute the perplexity of the

language model. The ARPA format language model does not contain information as to

which words are context cues, so if an ARPA format lanaguage model is used, then a

context cues file may be specified as well.

Output : The program can run in one of two modes.

 compute-PP - Output is the perplexity of the language model with respect to the

input text stream.

 validate - Output is confirmation or denial that the sum of the probabilities of

each of the words in the context supplied by the user sums to one.

Command Line Syntax:

evallm [-binary .binlm |

 -arpa .arpa [-context .ccs]]

Notes: evallm can receive and process commands interactively. When it is run, it loads

the language model specified at the command line, and waits for instructions from the

user. The user may specify one of the following commands:

 66

Appendix B
 The XML Configuration File

The Configure Xml file, which used in the test application.

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Sphinx-4 Configuration file
-->

<!-- ** -->
<!-- an4 configuration file -->
<!-- ** -->

<config>

 <!-- ** -->
 <!-- frequently tuned properties -->
 <!-- ** -->

 <property name="logLevel" value="WARNING"/>

 <property name="sampleRate" value="16000"/>
 <property name="relativeBeamWidth" value="1E-60"/>
 <property name="absoluteWordBeamWidth" value="22"/>
 <property name="relativeWordBeamWidth" value="1E-30"/>
 <property name="wordInsertionProbability" value=".2"/>
 <property name="languageWeight" value="10.5"/>
 <property name="silenceInsertionProbability" value=".1"/>
 <property name="acousticLookahead" value="1.7"/>
 <property name="frontend" value="epFrontEnd"/>
 <property name="recognizer" value="recognizer"/>
 <property name="showCreations" value="false"/>

 <property name="sampleRate" value="16000"/>
 <!-- ** -->
 <!-- word recognizer configuration -->
 <!-- ** -->

 <component name="recognizer"
type="edu.cmu.sphinx.recognizer.Recognizer">
 <property name="decoder" value="decoder"/>
 <propertylist name="monitors">
 <item>accuracyTracker </item>
 <item>speedTracker </item>
 <item>memoryTracker </item>
 </propertylist>
 </component>

 <!-- ** -->
 <!-- The Decoder configuration -->
 <!-- ** -->

 67

 <component name="decoder" type="edu.cmu.sphinx.decoder.Decoder">
 <property name="searchManager"
value="wordPruningSearchManager"/>
 <property name="featureBlockSize" value="50"/>
 </component>

 <!-- ** -->
 <!-- The Search Manager -->
 <!-- ** -->

 <component name="wordPruningSearchManager"

type="edu.cmu.sphinx.decoder.search.WordPruningBreadthFirstSearchManag
er">
 <property name="logMath" value="logMath"/>
 <property name="linguist" value="lexTreeLinguist"/>
 <property name="pruner" value="trivialPruner"/>
 <property name="scorer" value="threadedScorer"/>
 <property name="activeListManager" value="activeListManager"/>
 <property name="growSkipInterval" value="0"/>
 <property name="checkStateOrder" value="false"/>
 <property name="buildWordLattice" value="false"/>
 <property name="acousticLookaheadFrames" value="1.7"/>
 <property name="relativeBeamWidth"
value="${relativeBeamWidth}"/>
 </component>

 <component name="activeListManager"

type="edu.cmu.sphinx.decoder.search.SimpleActiveListManager">
 <propertylist name="activeListFactories">
 <item>standardActiveListFactory</item>
 <item>wordActiveListFactory</item>
 <item>wordActiveListFactory</item>
 <item>standardActiveListFactory</item>
 <item>standardActiveListFactory</item>
 <item>standardActiveListFactory</item>
 </propertylist>
 </component>
<component name="standardActiveListFactory"

type="edu.cmu.sphinx.decoder.search.PartitionActiveListFactory">
 <property name="logMath" value="logMath"/>
 <property name="absoluteBeamWidth"
value="${absoluteBeamWidth}"/>
 <property name="relativeBeamWidth"
value="${relativeBeamWidth}"/>
 </component>

 <component name="wordActiveListFactory"

type="edu.cmu.sphinx.decoder.search.PartitionActiveListFactory">
 <property name="logMath" value="logMath"/>
 <property name="absoluteBeamWidth"
value="${absoluteWordBeamWidth}"/>
 <property name="relativeBeamWidth"
value="${relativeWordBeamWidth}"/>
 </component>

 68

 <!-- ** -->
 <!-- The Pruner -->
 <!-- ** -->
 <component name="trivialPruner"
 type="edu.cmu.sphinx.decoder.pruner.SimplePruner"/>

 <!-- ** -->
 <!-- TheScorer -->
 <!-- ** -->
 <component name="threadedScorer"

type="edu.cmu.sphinx.decoder.scorer.ThreadedAcousticScorer">
 <property name="frontend" value="${frontend}"/>
 </component>
<!-- ** -->
 <!-- The linguist configuration -->
 <!-- ** -->

 <component name="lexTreeLinguist"

type="edu.cmu.sphinx.linguist.lextree.LexTreeLinguist">
 <property name="logMath" value="logMath"/>
 <property name="acousticModel" value="wsj"/>
 <property name="languageModel" value="trigramModel"/>
 <property name="dictionary" value="dictionary"/>
 <property name="addFillerWords" value="false"/>
 <property name="fillerInsertionProbability" value="1E-10"/>
 <property name="generateUnitStates" value="false"/>
 <property name="wantUnigramSmear" value="true"/>
 <property name="unigramSmearWeight" value="1"/>
 <property name="wordInsertionProbability"
 value="${wordInsertionProbability}"/>
 <property name="silenceInsertionProbability"
 value="${silenceInsertionProbability}"/>
 <property name="languageWeight" value="${languageWeight}"/>
 <property name="unitManager" value="unitManager"/>
 </component>

 <!-- ** -->
 <!-- The Dictionary configuration -->
 <!-- ** -->
 <component name="dictionary"
 type="edu.cmu.sphinx.linguist.dictionary.FastDictionary">
 <property name="dictionaryPath"
 value="file:///D:/OurASR/dict.6d"/>
 <property name="fillerPath"
 value="file:///D:/AASR/OurASR.filler"/>
 <property name="addSilEndingPronunciation" value="false"/>
 <property name="wordReplacement" value="<sil>"/>
 <property name="allowMissingWords" value="false"/>
 <property name="unitManager" value="unitManager"/>
 </component>

 <!-- ** -->
 <!-- The Language Model configuration -->
 <!-- ** -->
 <component name="trigramModel"

type="edu.cmu.sphinx.linguist.language.ngram.SimpleNGramModel">

 69

 <property name="location"
 value="file:///D:/AASR/OurASR.lm"/>
 <property name="logMath" value="logMath"/>
 <property name="dictionary" value="dictionary"/>
 <property name="maxDepth" value="3"/>
 <property name="unigramWeight" value=".7"/>
 </component>

 <!-- ** -->
 <!-- The acoustic model configuration -->
 <!-- ** -->
 <component name="wsj"

type="edu.cmu.sphinx.linguist.acoustic.tiedstate.TiedStateAcousticMode
l">
 <property name="loader" value="wsjLoader"/>
 <property name="unitManager" value="unitManager"/>
 </component>

 <component name="wsjLoader"
type="edu.cmu.sphinx.linguist.acoustic.tiedstate.Sphinx3Loader">
 <property name="logMath" value="logMath"/>
 <property name="unitManager" value="unitManager"/>
 <property name="location" value="file:///D:/AASR/OurASR-
model"/>

<property name="properties_file" value="am.props"/>
 <property name="FeatureVectorLength" value="39"/>

 </component>

 <!-- ** -->
 <!-- The unit manager configuration -->
 <!-- ** -->

 <component name="unitManager"
 type="edu.cmu.sphinx.linguist.acoustic.UnitManager"/>

 <!-- ** -->
 <!-- The frontend configuration -->
 <!-- ** -->

 <component name="frontEnd"
type="edu.cmu.sphinx.frontend.FrontEnd">
 <propertylist name="pipeline">
 <item>microphone </item>
 <item>preemphasizer </item>
 <item>windower </item>
 <item>fft </item>
 <item>melFilterBank </item>
 <item>dct </item>
 <item>liveCMN </item>
 <item>featureExtraction </item>
 </propertylist>
 </component>

 <!-- ** -->
 <!-- The live frontend configuration -->
 <!-- ** -->

 70

 <component name="epFrontEnd"
type="edu.cmu.sphinx.frontend.FrontEnd">
 <propertylist name="pipeline">
 <item>microphone </item>
 <item>dataBlocker </item>
 <item>speechClassifier </item>
 <item>speechMarker </item>
 <item>nonSpeechDataFilter </item>
 <item>preemphasizer </item>
 <item>windower </item>
 <item>fft </item>
 <item>melFilterBank </item>
 <item>dct </item>
 <item>liveCMN </item>
 <item>featureExtraction </item>

 <item>wavWriter </item>
 </propertylist>
 </component>

 <!-- ** -->
 <!-- The frontend pipelines -->
 <!-- ** -->
 <component name="featureTransform"
type="edu.cmu.sphinx.frontend.feature.FeatureTransform">
 <property name="loader" value="wsjLoader"/>
 </component>

 <component name="audioFileDataSource"
type="edu.cmu.sphinx.frontend.util.AudioFileDataSource"/>
 <component name="dataBlocker"
type="edu.cmu.sphinx.frontend.DataBlocker">
 <!--<property name="blockSizeMs" value="10"/>-->
 </component>

 <component name="speechClassifier"

type="edu.cmu.sphinx.frontend.endpoint.SpeechClassifier">
 <property name="threshold" value="15"/>
 </component>

 <component name="nonSpeechDataFilter"

type="edu.cmu.sphinx.frontend.endpoint.NonSpeechDataFilter"/>

 <component name="speechMarker"
 type="edu.cmu.sphinx.frontend.endpoint.SpeechMarker" >
 <property name="speechTrailer" value="50"/>
 <property name="startSpeech" value="200">
 <property name="speechLeader" value="50"/>
 <property name="endSilence" value="500"/>
</property>
 </component>

 <component name="preemphasizer"
 type="edu.cmu.sphinx.frontend.filter.Preemphasizer"/>

 <component name="windower"

type="edu.cmu.sphinx.frontend.window.RaisedCosineWindower">

 71

 </component>

 <component name="fft"

type="edu.cmu.sphinx.frontend.transform.DiscreteFourierTransform">
 </component>

 <component name="melFilterBank"

type="edu.cmu.sphinx.frontend.frequencywarp.MelFrequencyFilterBank">
 <property name="numberFilters" value="31"/>
 <property name="minimumFrequency" value="200"/>
 <property name="maximumFrequency" value="3500"/>
 </component>

 <component name="dct"

type="edu.cmu.sphinx.frontend.transform.DiscreteCosineTransform"/>

 <component name="liveCMN"
 type="edu.cmu.sphinx.frontend.feature.LiveCMN"/>

 <component name="featureExtraction"

type="edu.cmu.sphinx.frontend.feature.DeltasFeatureExtractor"/>

 <component name="microphone"
 type="edu.cmu.sphinx.frontend.util.Microphone">
 <property name="closeBetweenUtterances" value="false"/>
 </component>

 <component name="wavWriter"
type="edu.cmu.sphinx.frontend.util.WavWriter">
 <property name="outFilePattern" value="test-
seg000000"/>
 <property name="captureUtterances" value="true"/>
 </component>
 <!-- *** -->
 <!-- monitors -->
 <!-- *** -->

 <component name="accuracyTracker"

type="edu.cmu.sphinx.instrumentation.BestPathAccuracyTracker">
 <property name="recognizer" value="${recognizer}"/>
 <property name="showAlignedResults" value="false"/>
 <property name="showRawResults" value="false"/>
 </component>

 <component name="memoryTracker"
 type="edu.cmu.sphinx.instrumentation.MemoryTracker">
 <property name="recognizer" value="${recognizer}"/>
 <property name="showSummary" value="false"/>
 <property name="showDetails" value="false"/>
 </component>

 <component name="speedTracker"
 type="edu.cmu.sphinx.instrumentation.SpeedTracker">
 <property name="recognizer" value="${recognizer}"/>
 <property name="frontend" value="${frontend}"/>

 72

 <property name="showSummary" value="true"/>
 <property name="showDetails" value="false"/>
 </component>

 <!-- *** -->
 <!-- Miscellaneous components -->
 <!-- *** -->

 <component name="logMath" type="edu.cmu.sphinx.util.LogMath">
 <property name="logBase" value="1.0001"/>
 <property name="useAddTable" value="true"/>
 </component>

</config>

 73

Appendix C
 The Java Source Code

The java source code for listening to the microphone, then convert the listening speech
to its corresponding text in Arabic language using our Arabic model and sphinx-4 APIs.

import java.io.File;
import java.io.IOException;
import java.net.URL;
import edu.cmu.sphinx.frontend.util.Microphone;
import edu.cmu.sphinx.recognizer.Recognizer;
import edu.cmu.sphinx.result.Result;
import edu.cmu.sphinx.util.props.ConfigurationManager;

public class AA {

 public static void main(String[] args)
 {
 ConfigurationManager cm;

 if (args.length > 0) {
 cm = new ConfigurationManager(args[0]);
 } else {
 cm = new
ConfigurationManager(AA.class.getResource("AA.config.xml"));
 }

 Recognizer recognizer = (Recognizer) cm.lookup("recognizer");
 recognizer.allocate();
 // start the microphone or exit if the program if this is not
possible
 Microphone microphone = (Microphone) cm.lookup("microphone");
 if (!microphone.startRecording()) {
 System.out.println("Cannot start microphone.");
 recognizer.deallocate();
 System.exit(1);
 }

 // loop the recognition until the program exits.
 while (true) {
 System.out.println("Start speaking. Press Ctrl-C to quit.\n");

 Result result = recognizer.recognize();

 if (result != null) {
 String resultText =
result.getBestFinalResultNoFiller();
 System.out.println("You said: " + resultText + '\n');
 } else {
 System.out.println("I can't hear what you said.\n");
 }

 } }}

 74

The java source code for enter the speech from existing audio file, then convert the file
to adapting format then using our Arabic model and sphinx-4 APIs to display its
corresponding text in Arabic language.
public boolean convertedFile = false;
public static void main(String[] args) {
try {
URL audioFileURL;
//if (args.length > 0) {
audioFileURL = new File(args[0]).toURI().toURL();
System.out.println(audioFileURL);
//} else {
//if the ${file_prompt} isn�t in the program arguments, it�ll go with
this:
//audioFileURL = test.class.getResource(�1.wav�);
//}
URL configURL = test.class.getResource("config.xml");
System.out.println("URL:"+ configURL);
System.out.println("Loading Recognizer�\n");
ConfigurationManager cm = new ConfigurationManager(configURL);
System.out.println("cm:"+cm);
Recognizer recognizer = (Recognizer) cm.lookup("recognizer");
System.out.println("Recognise: "+recognizer);
/* allocate the resource necessary for the recognizer */
recognizer.allocate();
System.out.println("Recognizer : "+recognizer);
 System.out.println("Decoding " + audioFileURL.getFile());
System.out.println(AudioSystem.getAudioFileFormat(audioFileURL));
System.out.println("begin............ ");
StreamDataSource reader = (StreamDataSource)
cm.lookup("streamDataSource");
System.out.println("reader: "+reader);
AudioInputStream ais = AudioSystem.getAudioInputStream(audioFileURL);
System.out.println("ais: "+ais);
test wavFile = new test();
System.out.println(wavFile);
// Convert it to the proper format
AudioFormat targetFormat =
new AudioFormat(16000f,
16, // sample size in bits
1, // mono
true, // signed
false);
System.out.println(targetFormat);
//new AudioFormat(AudioFormat.Encoding.PCM_SIGNED, 16000, 16, 1, 2,
16000, false);
AudioInputStream convertedAis = wavFile.convertAudioInputStream(ais,
targetFormat);
File newFile = null;
if (wavFile.convertedFile)
{
newFile = wavFile.writeConvertedFile(convertedAis,
audioFileURL.toString());
audioFileURL = newFile.toURI().toURL();
ais = AudioSystem.getAudioInputStream(audioFileURL);
} /* set the stream data source to read from the audio file */
reader.setInputStream(ais, audioFileURL.getFile());
/* decode the audio file */
Result result = recognizer.recognize();
/* print out the results */
if (result != null) {

 75

System.out.println("\nRESULT: " +
result.getBestFinalResultNoFiller() + "\n");
} else {
System.out.println("Result: null\n");
}
if (newFile != null)
newFile.delete();
} catch (IOException e) {
System.err.println("Problem when loading WavFile: " + e);
e.printStackTrace();
} catch (PropertyException e) {
System.err.println("Problem configuring WavFile: " + e);
e.printStackTrace();
}
// catch (InstantiationException e) {System.err.println("Problem
creating WavFile: � + e); e.printStackTrace();}
catch (UnsupportedAudioFileException e) {
System.err.println("Audio file format not supported: " + e);
e.printStackTrace();
}
}
private AudioInputStream convertAudioInputStream(AudioInputStream
sourceAis, AudioFormat targetFormat) {
AudioFormat baseFormat = sourceAis.getFormat();
AudioFormat intermediateFormat;
AudioInputStream convertedAis = sourceAis;
// First convert the encoding, if necessary
if (!baseFormat.getEncoding().equals(targetFormat.getEncoding())) {
intermediateFormat = new AudioFormat(
targetFormat.getEncoding(),
baseFormat.getSampleRate(), baseFormat.getSampleSizeInBits(),
baseFormat.getChannels(),
baseFormat.getChannels() * 2, baseFormat.getSampleRate(),
false);
convertedAis = AudioSystem.getAudioInputStream(intermediateFormat,
sourceAis);
//this.writeConvertedFile(convertedAis, "C:\\encoding.wav�);
baseFormat = intermediateFormat;
sourceAis = convertedAis;
convertedFile = true;
}
// Then convert the sample rate
if (baseFormat.getSampleRate() != targetFormat.getSampleRate()) {
intermediateFormat = new AudioFormat(
baseFormat.getEncoding(),
targetFormat.getSampleRate(), baseFormat.getSampleSizeInBits(),
baseFormat.getChannels(),
baseFormat.getChannels() * 2, targetFormat.getSampleRate(),
false);
convertedAis = AudioSystem.getAudioInputStream(intermediateFormat,
sourceAis);
//this.writeConvertedFile(convertedAis, "C:\\sample.wav�);
baseFormat = intermediateFormat;
sourceAis = convertedAis;
convertedFile = true;
}
// Then convert the number of channels
if (baseFormat.getChannels() > targetFormat.getChannels()) {
intermediateFormat = new AudioFormat(
baseFormat.getEncoding(),

 76

baseFormat.getSampleRate(), baseFormat.getSampleSizeInBits(),
targetFormat.getChannels(),
targetFormat.getChannels() * 2, baseFormat.getSampleRate(),
false);
convertedAis = AudioSystem.getAudioInputStream(intermediateFormat,
sourceAis);
//this.writeConvertedFile(convertedAis, "C:\\channels.wav�);
baseFormat = intermediateFormat;
sourceAis = convertedAis;
convertedFile = true;
}
return convertedAis;
}
private File writeConvertedFile(AudioInputStream sourceAis, String
fileName)
{
File tempfile = null;
fileName = "tempwavfile.wav";
//fileName = fileName.substring(6, fileName.length()-4) + "_new.wav";
try
{
//This just takes an audio stream, writes it to disk, then plays it
the way TALL usually does.
//it�s a test to see if the input stream is readable by the Java audio
providers like Tritonus
//System.out.println(fileName);
tempfile = new File(fileName);
AudioSystem.write(sourceAis, AudioFileFormat.Type.WAVE, tempfile);
}
catch (Exception e)
{
System.out.println(e);
}
return tempfile;
}
}

