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CONTINUOUS ARABIC SPEECH RECOGNITION SYSTEM 

USING SPHINX-4  
 

Abstract 

Speech is the most natural form of human communication and speech processing 

has been one of the most exciting areas of the signal processing. Speech recognition 

technology has made it possible for computer to follow human voice commands and 

understand human languages. The main goal of speech recognition area is to develop  

techniques and systems for speech input to machine and treat this speech to be used in 

many applications. As Arabic is one of the most widely spoken languages in the world. 

Statistics show that it is the first language (mother-tongue) of 206 million native 

speakers ranked as fourth after Mandarin, Spanish and English. In spite of its 

importance, research effort on Arabic Automatic Speech Recognition (ASR) is 

unfortunately still inadequate[7]. 

This thesis proposes and  describes an efficient and effective framework for  

designing  and developing a speaker-independent continuous automatic Arabic speech 

recognition system based on a phonetically rich and balanced speech corpus.  The 

developing Arabic speech recognition system is based on the Carnegie Mellon 

university Sphinx tools.  

To build the system, we develop three basic components. The dictionary which 

contains all possible phonetic pronunciations of any word in the domain vocabulary. 

The second one is the language model such a model tries to capture the properties of a 

sequence of words by means of a probability distribution, and to predict the next word 

in a speech sequence. The last one is the acoustic model  which will be created by 

taking audio recordings of speech, and their text transcriptions, and using software to 

create statistical representations of the sounds that make up each word. The system use 

the rich and balanced database that contains 367 sentences, a total of 14232 words. The 

phonetic dictionary contains about 23,841 definitions corresponding to the database 

words. And the language model contains14233 mono-gram and 32813 bi-grams and 

37771 tri-grams. The engine uses 3-emmiting states Hidden Markov Models (HMMs)  

for tri-phone-based acoustic models..  

 

Keywords: Arabic automatic speech recognition, acoustic model, and language Model��
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Chapter 1                                                                Introduction 

 

 

 

1.1 Automatic Speech Recognition 

Automatic Speech Recognition (ASR) is a technology that allows a computer to 

identify the words that a person speaks into a microphone or telephone. It has a wide 

area of applications: command recognition (voice user interface with the computer), 

dictation, interactive voice response, and  it can be used to learn a foreign language. 

ASR can help also, handicapped people to interact with society. It is a technology which 

makes life easier and very promising [1].  

            View the importance of ASR too many systems are developed, the most popular 

are: Dragon Naturally Speaking, IBM via voice, Microsoft SAPI. Many open source 

speech recognition systems are available too, such as [2 ,  3 , 4 , 5 , 6], which is based 

on Hidden Markov Models (HMMs) [1]. 

  Arabic is one of the six official languages of the United Nations (UN), and is 

one of the most widely spoken languages in the world. Statistics show that it is the first 

language (mother-tongue) of 206 million native speakers, and ranked as the fourth after 

Mandarin, Spanish and English [7]. In spite of its importance, research effort on Arabic 

Automatic Speech Recognition is unfortunately still inadequate.  

Modern Standard Arabic (MSA) is the formal linguistic standard of Arabic 

language, which is widely taught in schools and universities, and used in the office and 

the media. It has been the focus and the core interest of many previous and recent 

researches compared to dialectal Arabic [8, 9, 10, 11]. Lack of spoken and written 

training data is one of the main issues encountered by Arabic ASR researchers. A list of 

most popular (from 1986 through 2005) corpora is provided [12] showing only 19 

corpora (14 written, 2 spoken, 1 written and spoken, and 2 conversational). These 

corpora are not readily available to the public and many of them can only be purchased 

from the Linguistic Data Consortium (LDC) or the European Language Resource 

Association (ELRA). It is clear that there is a shortage of spoken data as compared to 

written data resulting in a great need for more speech corpora in order to serve different 

domains of Arabic ASR. The available spoken corpora were mainly collected from 

broadcast news (radios and televisions), and telephone conversations. This kind of 
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spoken data may not necessarily serve quality Arabic ASR research, because of the 

quality of the spoken data itself in terms of recording attributes and parameters used 

(e.g., sampling rate). They are also limited to certain applications and domains. The 

coverage of any corpora cannot contain complete information about all aspects of 

language lexicon and grammar [13], due to the limited written training data and 

therefore inadequate spoken training data. In addition, a clear strong relationship 

between written and spoken forms needs to be clarified. 

Writing is claimed to be more structurally complex, elaborate, more explicit, more 

organized and planned than speech [14]. These differences generally lead to the 

approach that the written form of the corpora needs to be created carefully before 

producing and recording the spoken form. Therefore, linguists and phoneticians 

carefully produce written corpora before handling them to speech recording specialists. 

This can also be seen throughout the past few years, where a number of 

phonetically rich and/or balanced corpora for many languages have been produced. 

Many ASR researches are now based on phonetically rich and/or balanced corpora, e.g., 

English [15 - 17], Mandarin [18], Japanese [19], Indonesian, Korean, Cantonese Hindi, 

Turkish and many others obtaining comparatively competitive results. As far as Arabic 

language is concerned, automatic speech recognition tasks mainly addressed for Arabic 

digits, broadcast news, command and control, the Holy Qur�an, and Arabic proverbs 

researches. They explored various state-of-the-art techniques and tools for Arabic 

speech recognition[20, 21, 9, 11].   

The development of accurate Automatic Speech Recognition (ASR) systems is 

faced with two major issues. The first problem is related to dicritization where diacritic 

symbols refer to vowel phonemes in the designated words. Arabic texts are almost 

never fully diacritized: implying that the short strokes placed above or below the 

consonant, indicating the vowel following this consonant, are usually absent. This limits 

the availability of Arabic ASR training material. The lack of this information leads to 

many similar word forms, and consequently, decreases predictability in the language 

model. The second problem is related to the morphological complexity since Arabic has 

a rich potential of word forms which increases the out-vocabulary rate [22, 23].   
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1.2 ASR Techniques 

The HMM-based ASR technique has led to numerous applications requiring large 

vocabulary, speaker independent and continuous speech recognition. 

 HMM is a statistical model where the system being modeled with unknown parameters, 

and the challenge is to determine the hidden parameters, from the observable 

parameters. The extracted model parameters can then be used to perform further 

analysis, for example the pattern recognition applications. Its extension into foreign 

languages (English is the standard) represent a real research challenge area[24].   

The HMM-based system essentially consists of recognizing speech by estimating 

the likelihood of each phoneme at contiguous, small frames of the speech signal [25, 

26]. Words in the target vocabulary are modeled into a sequence of phonemes, and then 

a search procedure is used to find, amongst the words in the vocabulary list, the 

phoneme sequence that best matches the sequence of phonemes of the spoken words. 

Each phoneme is modeled as a sequence of HMM states. In standard HMM-based 

systems, the likelihoods (also known as the emission probabilities) of a certain frame 

observation being produced by a state is estimated using traditional Gaussian mixture 

models. The use of HMM with Gaussian mixtures has several notable advantages such 

as a rich mathematical framework, efficient learning and decoding algorithms, and an 

easy integration of multiple knowledge sources. Two notable successes in the academic 

community in developing high performance large vocabulary, speaker independent, 

speech recognition systems are the HMM tools, known as the Hidden Markov Model 

Toolkit (HTK), developed at Cambridge University [27]; and the Sphinx system 

developed at Carnegie Mellon University [28], over the last two decades. The Sphinx 

tools can be used for developing wide spectrum of speech recognition tasks.  

For example, the Sphinx-II [29] uses the Semi-Continuous Hidden Markov Model 

(SCHMM) models to reduce the number of parameters and the computer resources 

required for decoding, but has limited accuracy and complicated training procedure. On 

the other hand Sphinx-III uses the Continuous Hidden Markov Model (CHMM) with 

higher performance, but requires substantial computer resources. Sphinx-4, which was 

developed in Java, can be used for building  platform independent speech recognition 

applications [30, 28].  
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1.3 Arabic Speech Recognition  

Development of an Arabic speech recognition system is a multi-discipline effort, 

which requires integration of Arabic phonetic [31, 32], Arabic speech processing 

techniques [33], and Natural language [34, 35]. Development of an Arabic speech 

recognition system has recently been addressed by a number of researchers. 

Recognition of Arabic continuous speech was addressed by Al_Otaibi, [36]. He 

provided a speech dataset for Modern Standard Arabic (MSA). He studied different 

approaches for building the Arabic speech corpus, and proposed a new technique for 

labeling Arabic speech. He reported a recognition rate for speaker dependent ASR of 

93.78% using his technique. 

 The ASR was built using the HTK tool kit. Bila et al. [37] addressed the problems 

of indexing of Arabic news broadcast, and discussed a number of research issues for 

Arabic speech recognition. There are a number of other attempts to build Arabic ASR 

(AASR), but they considered either limited vocabulary, or speaker dependant system [4, 

8, 9, 23, 26].  

The most difficult problems in developing highly accurate ASRs for Arabic are the 

predominance of non diacritized text material, the enormous dialectal variety, and the 

morphological complexity[24]. Kirchhoff et al.[10] investigated the recognition of 

dialectal Arabic and study the discrepancies between dialectal and formal Arabic in the 

speech recognition point of view. Vergyri et al. [38] investigate the use of morphology-

based language model at different stages in a speech recognition system for 

conversational Arabic; he studied also the automatic diacritizing Arabic text for use in 

acoustic model training for ASR. Satori et al.[11] introduced an Arabic voice 

recognition system where both training and recognizing process used romanized 

characters. Most of previous works on Arabic ASR had been concentrated on 

developing recognizers using romanized characters. The system in [9] used Carnegie 

Mellon University�s (CMU) Sphinx-IV engine was based on Hidden Markov Models 

(HMM), which obtained a word recognition rate of 99.21% for about 35 minutes of 

training speech data and 7 minutes of testing speech data.  

The system in [11] was also using CMU Sphinx- IV engine based on HMM for the 

same task and obtained a word recognition rate of 85.56% for male speakers and 

83.34% for female speakers. In [21], a different kind of speech data was presented for 
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Arabic digits recognition system using telephony Saudi accented Arabic corpus. The 

system used Cambridge HTK tools based on HMMs and reported correct digit 

recognition rate of 93.67%. In addition, The Holy Qur�an was also considered for 

Arabic speech recognition in [9], which used Sphinx-IV engine based on HMMs and 

obtained a word recognition rate of 70.81% and a word error rate]of 40.18% for corpus 

of 18.35 hours.  

On the other hand, Arabic speech recognition system using broadcast news corpus was 

developed in [8]. The system was trained using about 7 hours of speech using Sphinx 3 

tools based on HMMs and tested using 400 utterances adding to about half an hour of 

speech. The system obtained a correct word recognition rate of 90.78% and a WER of 

10.87% with full diacritical marks, whereas it obtained a correct word recognition rate 

of 93.04% and a WER of 8.61% without diacritical marks. Other Arabic automatic 

speech recognition systems were developed for different tasks such as in [39, 9, 40]. A 

command and control system covering approximately 30 words was developed in [9] 

using Sphinx-IV engine based on HMMs and obtained a word recognition rate of 

98.18%, whereas an Arabic ASR system to recognize 16 sentences of Egyptian 

proverbs was developed [39] based on HMMs and obtained a word recognition rates of 

56.8%, 66.65%, and 81.79% for Mono-phone, Tri-phone, and Syllable based 

recognition respectively.  

The technical report in [41] is one of the earliest works on producing written 

Arabic training data based on phonetically rich and balanced sentences. This technical 

report was submitted to King Abdulaziz City of Science and Technology (KACST) in 

Saudi Arabia as the final deliverable of the project �Database of Arabic Sounds: 

Sentences�. This written training data was created by experts from KACST and consists 

of 367 sentences written using 663 phonetically rich words. KACST written (text) 

training data was used as the baseline for creating our phonetically rich and balanced 

speech corpus. Another 10 written sentences were created for testing purposes, which 

taken from Arabic news. 

 

1.4 The Contribution 

In this thesis, we will construct an Arabic speech recognition system depending 

on a rich and balance Arabic speech data set, the used data set coverage all Arabic 

phoneme clustering with minimum words repletion and simple sentences structure. The 
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first thing to do is to get the phonetic pronunciations of all words in the domain 

vocabulary,  and also the variant pronunciations for the words if their, these all possible 

phonetic pronunciations will considered as dictionary. 

The second step is to capture the properties of a sequence of words by means of 

a probability distribution, and to predict the next word in a speech sequence through 

generate the uni-gram , bi-gram and the tri-gram of the words, keeping them in the 

language model. Then we will generate the corresponding HMM units of the used 

words, by create statistical representations of the sounds that make up each. Using the 

three modules together we can construct the Arabic speech recognition system for large 

vocabulary and recognize continuous Arabic speech. The next phase is to test the 

system . the testing include recording a speech audio from news channels and recognize 

it through the system, and using the microphone to directly enter the sound to system to 

be recognized. 

 

1.5 Thesis Structure 

In the next chapter we present a brief description of the speech recognition, it  

contains the topics: speech technology, basic concepts, types of speech, speech uses and 

applications, hardware needed to manipulate with speech, how the recognizer work, 

illustrate the Arabic language, and a deep view of the feature extraction technique. 

Chapter 3 gives a detailed view of the Sphinx_4 (open source framework), the view 

covers its components, the way it used to construct the recognizer and the technique 

used to recognize the speech. 

In Chapter 4, we offer our proposed system, the chapter contains two main parts: 

how to train the system and how to test the system. In Chapter 5, we present 

experimental results in details. Finally, in Chapter 6, we provide our conclusion and 

future works. 
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Chapter 2                                                 Speech Recognition 

 

 

 

2.1 Speech Technology 

Not all developers are familiar with speech technology, as an emerging 

technology. There are subtle and powerful capabilities -with the basic function of both 

speech synthesis and speech recognition- which are provided by computerized speech, 

that developers will want to understand and utilize. Speech synthesis and speech 

recognition technologies still have significant limitations despite very substantial 

investment in speech technology research over the last 40 years. Most importantly, 

speech technology does not always meet the high expectations of users familiar with 

natural human-to-human speech communication. It s important for effective use of 

speech input and output in a user interface  to understand the limitations � as well as 

the strengths. An understanding of the capabilities, strengths  and limitations of speech 

technology is also important for developers in making decisions about whether a 

particular application will benefit from the use of speech input and output or not. 

 

Speech Synthesis (TTS) 

A speech synthesizer's task is converting a given written text into some spoken 

language. Speech synthesis is also known as text-to-speech (TTS) conversion. 

Producing speech from text has many steps, the major steps in producing speech from 

text are: 

Structure analysis and,    

Text pre-processing.   

We will illustrate the algorithm implementation steps in more details: 

 Structure analysis:   this step is for determining the paragraphs, sentences and 

other structures start and end after processing the input text. Punctuation and 

formatting data are used in this stage for most languages. 

 Text pre-processing:   in this step the speech synthesizer analyze  the given input 

text for special constructs of the language.  
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Speech Recognition 

The speech recognition can be defined as the process of converting spoken language to 

written text or some similar form[44]. 

2.2. Speech Recognition Basics 

Here in this section we will define some important terms which will be used a 

lot in the coming sections and these are the basics needed for understanding speech 

recognition technology. 

Utterance  

Utterances can be a single word, a few words, a sentence, or even multiple 

sentences, it is the vocalization (speaking) of a word (words) or sentences that represent 

a single meaning to the computer..  

 

Speaker Dependence  

There are two types of Speaker Dependence. The first type are the Speaker 

independent systems are designed for a variety of speakers. Adaptive systems usually 

start as speaker independent systems and utilize training techniques to adapt to the 

speaker to increase their recognition accuracy. The second type are the speaker 

dependent systems which designed around a specific speaker. They assume the speaker 

will speak in a consistent voice and tempo. Thus, they generally are more accurate for 

the correct speaker, but much less accurate for other speakers.  

 

Vocabularies  

Vocabularies (or dictionaries) can be defines as a lists of words or utterances 

that can be recognized by the SR system. There is a difference between the words large 

and small in computer recognition. For example, to explain more, smaller vocabularies 

are easier for a computer to recognize, while larger vocabularies are more difficult. 

Unlike normal dictionaries, each entry doesn't have to be a single word. They can be as 

long as a sentence or two. Smaller vocabularies can have as few as 1 or 2 recognized 

utterances (e.g. "Wake Up"), while very large vocabularies can have a hundred 

thousand or more!  
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Accurate  

We can examine the ability of a recognizer by measuring its accuracy � or how 

well that recognizer recognizes utterances. This includes not only correctly identifying 

an utterance but also identifying if the spoken utterance is not in its vocabulary. The 

acceptable accuracy of a system really depends on the application. Good ASR systems 

have an accuracy of 98% or more!  

 

Training  

Sometimes the system has a recognizers that have the ability to adapt to a 

speaker. And when the system has this ability, it may allow training to take place. 

Training a recognizer usually improves its accuracy.  Training can be used by speakers 

that have difficulty speaking, or pronouncing certain words. As long as the speaker can 

consistently repeat an utterance, ASR systems with training should be able to adapt. An 

ASR system is trained by having the speaker repeat standard or common phrases and 

adjusting its comparison algorithms to match that particular speaker.  

2.3. Types of Speech Recognition 

Speech recognition systems can be separated in several different classes by 

describing what types of utterances they have the ability to recognize. These classes are 

based on the fact that one of the difficulties of ASR is the ability to determine when a 

speaker starts and finishes an utterance. Most packages can fit into more than one class, 

depending on which mode they're using. 

Isolated Words  

Isolated word recognizers usually require each utterance to have quiet (lack of 

an audio signal) on both sides of the sample window. It doesn't mean that it accepts 

single words, but does require a single utterance at a time. Often, these systems have 

"Listen/Not-Listen" states, where they require the speaker to wait between utterances 

(usually doing processing during the pauses). Isolated utterance might be a better name 

for this class.  
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Connected Words  

Connected word systems (or more correctly 'connected utterances') are similar to 

Isolated words, but allow separate utterances to be 'run-together' with a minimal pause 

between them. 

  

Continuous Speech  

The next step is the Continuous recognition. It is the most  difficult to create the 

recognizers with continuous speech capabilities, this is because they must utilize special 

methods to determine utterance boundaries. Continuous speech recognizers allow users 

to speak almost naturally, while the computer determines the content. Basically, it is 

computer dictation.  

 

Spontaneous Speech  

Spontaneous speech has a large number of definitions. At a basic level, it can be 

thought of as speech that is natural sounding and not rehearsed. The speaker starts an 

utterance, and reaches a point where he can not find the right word or thinks better of a 

word, and needs time to find a suitable alternative, they repeat a word as a sort of 'run 

up' to the second attempt. An ASR system with spontaneous speech ability should be 

able to handle a variety of non-standard grammar speech features such as words being 

run together, "ϢϤϣ" and "Ϫϴϴϳ", and even slight stutters.  

 

Voice Verification/Identification  

  Some ASR systems have the ability to identify specific users.  

 

 Automatic Speech Recognition system classification: 

The following tree structure emphasizes the speech processing applications. 

Depending on the chosen criterion, Automatic Speech Recognition systems can be 

classified as shown in Figure 2.1[45] for many classes, the speech mode that defined the 

type of the utterance that will be used as isolated or continuous utterance. 

The speaking mode comprises three kinds of speakers mode used in systems, 

the speaker dependent, independent and the adaptive speakers. Every speech 

recognition system must deal with input corpus, the size of the corpus can be small or 

medium or large. The last classification is the speaking style that determine if the 
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system will considered as dictation system or spontaneous one. In our system we cover 

the continuous speech and speaker independent using a large size vocabulary, the 

speaking style is dictation. 

Figure 2.1: the speech processing classification 

2.4. Uses and Applications 

Although any task that involves interfacing with a computer can potentially use 

ASR, the following applications are the most common right now. 

Dictation  

Today, dictation is the most common use for ASR systems. Medical 

transcriptions, legal and business dictation, as well as general word processing are Of 

the most important examples of dictation uses . In some cases special vocabularies are 

used to increase the accuracy of the system.  

 

Command and Control  

ASR systems that are designed to perform functions and actions on the system 

are defined as Command and Control systems. Utterances like "Open Netscape" will do 

just that.  
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Telephony  

Some voice systems allow callers to speak commands instead of pressing 

buttons to send specific tones  

 

Wearable  

Because inputs are limited for wearable devices, speaking is a natural 

possibility.  

 

Medical/Disabilities  

Many people have difficulty typing due to physical limitations such as repetitive 

strain injuries, muscular dystrophy, and many others. For example, people with 

difficulty hearing could use a system connected to their telephone to convert the caller's 

speech to text.  

 

Embedded Applications  

Some newer cellular phones include speech recognition that allow utterances 

such as "Call Home". This could be a major factor in the future of ASR and Linux[43].  

2.5. Hardware 

2.5.1. Sound Cards 

You must have sound enabled in your kernel, and you must have correct drivers 

installed. Because speech requires a relatively low bandwidth, just about any medium-

high quality 16 bit sound card will get the job done. Sound card quality often starts a 

heated discussion about their impact on accuracy and noise.  

Sound cards with the 'cleanest' A/D (analog to digital) conversions are 

recommended, but most often the clarity of the digital sample is more dependent on the 

microphone quality and even more dependent on the environmental noise. Electrical 

"noise" from monitors, pci slots, hard-drives, etc. are usually nothing compared to 

audible noise from the computer fans, squeaking chairs, or heavy breathing. 

You will have to weigh the benefits and costs if you are considering packages 

that require specific hardware to function properly. Some ASR software packages may 
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require a specific sound card. It's usually a good idea to stay away from specific 

hardware requirements, because it limits many of your possible future options and 

decisions.  

2.5.2. Microphones 

The quality of microphone is very important. It is the key when utilizing ASR. A 

desktop microphone just will not do the job in most cases. Because they tend to pick up 

more ambient noise that gives ASR programs a hard time. 

Hand held microphones are also not the best choice as they can be cumbersome 

to pick up all the time. While they do limit the amount of ambient noise, they are most 

useful in applications that require changing speakers often, or when speaking to the 

recognizer isn't done frequently (when wearing a headset isn't an option). 

The headset style is the best choice and by far it is the most common. It 

minimized the ambient noise, while allowing you to have the microphone at the tip of 

your tongue all the time. Headsets are available without earphones and with earphones 

(mono or stereo). We recommend the stereo headphones, but it is just a matter of 

personal taste[43]. 

2.5.3. Computers/Processors 

processing speed is very important in all applications in general. ASR 

applications are heavily dependent on processing speed. And this is because a large 

amount of digital filtering and signal processing can take place in ASR. It is the faster 

the better about any CPU intensive software. The more memory the better also. Most 

software packages list their minimum requirements, because of the processing required. 

For fast processing (large dictionaries, complex recognition schemes, or high sample 

rates), you should shoot for a minimum of a 400MHz and 128M RAM.  
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2.6. Inside Speech Recognition 

2.6.1. How Recognizers Work 

Recognition systems can be broken down into two main types. Pattern 

recognition systems compare patterns to known/trained patterns to determine a match. 

Acoustic Phonetic systems use knowledge of the human body (speech production, and 

hearing) to compare speech features (phonetics such as vowel sounds). Most modern 

systems focus on the pattern recognition approach because it combines nicely with 

current computing techniques and tends to have higher accuracy. 

 

Figure 2.2: General Recognition Process 

Most recognizers can be broken down into the following step, as Figure 2.2: 

1. Audio recording and Utterance detection  

2. Pre-Filtering (pre-emphasis, normalization, banding, etc.)  

3. Framing and Windowing (chopping the data into a usable format)  

4. Filtering (further filtering of each window/frame/freq. band)  

5. Comparison and Matching (recognizing the utterance)  

6. Action (Perform function associated with the recognized pattern)  

Although each step seems simple, each one can involve a multitude of different (and 

sometimes completely opposite) techniques.  

(1) Audio/Utterance Recording: can be accomplished in a number of ways. Starting 

points can be found by comparing ambient audio levels (acoustic energy in some cases) 

with the sample just recorded. Endpoint detection is harder because speakers tend to 

leave "artifacts" including breathing/sighing, teeth chatters, and echoes.  
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(2) Pre-Filtering: is accomplished in a variety of ways, depending on other features of 

the recognition system. The most common methods are the "Bank-of-Filters" method 

which utilizes a series of audio filters to prepare the sample, and the Linear Predictive 

Coding method which uses a prediction function to calculate differences (errors). 

Different forms of spectral analysis are also used. 

(3) Framing/Windowing involves separating the sample data into specific sizes. This is 

often rolled into step 2 or step 4. This step also involves preparing the sample 

boundaries for analysis (removing edge clicks, etc.) 

(4) Additional Filtering is not always present. It is the final preparation for each window 

before comparison and matching. Often this consists of time alignment and 

normalization. 

(5) There are a huge number of techniques available for Comparison and Matching. 

Most involve comparing the current window with known samples. There are methods 

that use Hidden Markov Models (HMM), frequency analysis, differential analysis, 

linear algebra techniques/shortcuts, spectral distortion, and time distortion methods. All 

these methods are used to generate a probability and accuracy match. 

(6) Actions can be just about anything the developer wants.  

2.6.2. Digital Audio Basics 

Audio is inherently an analog phenomenon. Recording a digital sample is done 

by converting the analog signal from the microphone to a digital signal through the A/D 

converter in the sound card. When a microphone is operating, sound waves vibrate the 

magnetic element in the microphone, causing an electrical current to the sound card 

(think of a speaker working in reverse). Basically, the A/D converter records the value 

of the electrical voltage at specific intervals. 

There are two important factors during this process. First is the "sample rate", or 

how often to record the voltage values. Second, is the "bits per sample", or how accurate 

the value is recorded. A third item is the number of channels (mono or stereo), but for 

most ASR applications mono is sufficient. Most applications use pre-set values for these 

parameters and user's shouldn't change them unless the documentation suggests it. 
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Developers should experiment with different values to determine what works best with 

their algorithms. 

So what is a good sample rate for ASR? Because speech is relatively low 

bandwidth (mostly between 100Hz-8kHz), 8000 samples/sec (8kHz) is sufficient for 

most basic ASR. But, some people prefer 16000 samples/sec (16kHz) because it 

provides more accurate high frequency information. If you have the processing power, 

use 16kHz. For most ASR applications, sampling rates higher than about 22kHz is a 

waste. 

And what is a good value for "bits per sample"? 8 bits per sample will record 

values between 0 and 255, which means that the position of the microphone element is 

in one of 256 positions. 16 bits per sample divides the element position into 65536 

possible values. Similar to sample rate, if you have enough processing power and 

memory, go with 16 bits per sample. For comparison, an audio Compact Disc is 

encoded with 16 bits per sample at about 44kHz. 

2.7 Arabic Language 

Arabic is a Semitic language, it is one of the oldest languages in the world.  

Currently, it is the second most spoken language in terms of number of speakers [47]. 

Arabic is the first language in the Arab world, i.e., 25 countries. Arabic alphabets are 

used in other languages besides Arabic, such as Persian and Urdu [24]. The estimated 

number of Arabic speakers is about 300 million. However, a greater number of speakers 

have a passive knowledge of Arabic since it is the language of instruction in Islam. 

Recent approaches in language and speech processing categorize the Arabic language as 

Modern Standard Arabic (MSA) and Modern Colloquial Arabic (MCA). Modern 

Standard Arabic is the form of Arabic that is used in education, media, and formal talks. 

Colloquial Arabic is what is spoken in everyday conversation and varies considerably 

not only across countries, but also within the same country. It has many differences 

when compared with Indo-European languages. Some of the differences include unique 

phonemes and phonetic features, and a complex morphological word structure[49]. 

 Arabic language is comparatively much less researched compared to other 

languages such as English and Japanese. Most of the reported studies to-date have been 

conducted on Arabic language and speech digital processing in general, a limited 
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number of research studies have been carried out on MSA, classical and Quraanic 

(Islamic Holy Scripture based) versions of Arabic. 

 Modern Standard Arabic (MSA) has 36 phonemes, of which six are vowels, two 

diphthongs, and 28 are consonants. In addition to the two diphthongs, the six vowels are 

/a, i, u, a: , i:, u:/ where the first three ones are short vowels and the last three are their 

corresponding longer versions (that is, the three short vowels are /a, i, u /, and their 

three long counterparts are /a:, i:, u:/) [48]. The Arabic language has fewer vowels than 

the English language as the American English has twelve vowels. 

 A phoneme is the smallest element of speech units that makes a difference in 

the meaning of a word, or a sentence. Arabic phonemes contain two distinctive classes, 

which are named pharyngeal and emphatic phonemes. These two classes can be found 

only in other Semitic languages such as Hebrew [34]. The allowed syllables in the 

Arabic language are: CV, CVC, and CVCC where V indicates a (long or short) vowel 

while C indicates a consonant.  

 

Table 2.1: Arabic Syllables Pattern 

                                                             

 

 

 

 

All Arabic syllables must contain a vowel. In addition, Arabic vowels cannot be 

word initial and must occur either between two consonants or at word-final position. 

Arabic syllables can be classified as short or long. The CV syllable type is a short one 

while all others are long. Syllables can also be classified as open or closed. An open 

syllable ends with a vowel while a closed syllable ends with a consonant. For Arabic, a 

vowel always forms a syllable nucleus, and there are as many syllables in a word as 

vowels in it [50]. With very few exceptions, alphabet-to-sound conversion for Arabic 

usually has simple one-to-one mapping between graphemes to phonemes for a given 

correct dicritized text [51]. 

 

 
 
 
 

 Open Example Close Example 
Short CV �ΎΑ   

CVC ϢϴΟ Long   
CVCC Ϧϴϋ 
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2.8 Arabic Phoneme Set 
 

In order to produce a robust speaker-independent continuous automatic Arabic 

speech recognizer, a set of speech recordings that are rich and balanced is required. The 

rich characteristic is in the sense that it must contain all the phonemes of Arabic 

language. It must be balanced in preserving the phonetics distribution of Arabic 

language too. This set of speech recordings must be based on a proper written set of 

sentences and phrases created by experts. Therefore, it is crucial to create a high quality 

written (text) set of the sentences and phrases before recording them. 

Creating phonetically rich and balanced text corpus requires selecting a set of 

phonetically rich words, which are combined together to produce sentences and phrases. 

These sentences and phrases are verified and checked for balanced phonetic 

distribution. [64]. In 1997, KACST created a database for Arabic language sounds.     

The purpose of this work was to create the least number of phonetically rich Arabic 

words. As a result, a list of 663 phonetically rich words containing all Arabic phonemes, 

which are subject to all Arabic phonotactic rules was produced. This work is the 

backbone for creating individual sentences and phrases, which can be used for Arabic 

ASR and text-to-speech synthesis applications. The list of 663 phonetically rich words 

was created based on the following characteristics and guidelines : 

1. Coverage of all Arabic phonemes which must be balanced so as to be close in 

frequency as possible. 

2. Coverage of all Arabic phoneme clusters. 

3. The presence of the least possible number of words so that the list does not contain a 

single word whose goal of existence is achieved by another word in the same list. 

In 2003, KACST produced a technical report of the project �Database of Arabic 

Sounds: Sentences.�, Arabic independent sentences have been written using the said 

663 phonetically rich words. The database consists of 367 sentences; 2 to 9 words per 

sentence. Therefore, we have an Arabic phrases and sentences that are phonetically rich 

and balanced based on the previously created list of 663 phonetically rich words, which 

were put in phrases and sentences while taking into consideration the following goals 

[41]: 

� To have the minimum word repetitions as far as possible.  

� To have structurally simple sentences in order to ease readability and pronunciation. 

� To have the minimum number of sentences.  
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An average of 2 phonetically rich words and 5 other words were used in each single 

sentence. Statistical analysis shows that 1333 words were repeated once only and 99 

words were repeated more than once in the entire 367 sentences, whereas 17 words 

were repeated 5 times and more. KACST 367 phonetically rich and balanced sentences 

are used for training purposes in our system, Table 4.1 shows more technical details of 

our speech corpus[42]. 

 
Table 2.2: Data Base Criteria 

Criteria Data 

No. of Sentences  367 sentences 

Number of Words  1435 words 

Average No. of Words/Sentence 5 words 

Min. and Max. No. of Words/Sentence Min. of 2 and max. of 9 

No. of Speakers 40 speakers 

Speakers Age 18 to 66 years 

Speakers Gender 20 males and 20 females 

Average no. of sound Files/sentence 100 sound files/sentence 

Sampling Rate(Hz) 44.1 KHz 

No. of Bits 16 bits 

 
 

2.9 Feature Extraction 

Feature extraction stage is the most important one in the entire process, since it 

is responsible for extracting relevant information from the speech frames, as feature 

parameters or vectors. Common parameters used in speech recognition are Linear 

Predictive Coding (LPC) coefficients, and Mel Frequency Cepstral Coefficients 

(MFCC). These parameters have been widely used in recognition system partly to the 

following reasons: 

The calculation of these parameter leads to a source-filter separation. 

The parameters have an analytically tractable model. 

Experience proves that these parameters work well in recognition applications. 

Due to their significance, they will be described in two different subsections. 
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2.9.1. Pre-emphasis 

In order to flatten speech spectrum, a pre-emphasis filter is used before spectral 

analysis. Its aim is to compensate the high-frequency part of the speech signal that was 

suppressed during the human sound production mechanism. The most used filter is a 

high-pass filter described in Equation(1), and whose transfer function corresponds to 

Figure 2.3. 

                                                                 

 
Figure 2.3: Pre-emphasis Filter, a=0.97 

 
2.9.2. Frame Blocking and Windowing   
 
 The speech signal is divided into a sequence of frames where each frame can be 

analyzed independently and represented by a single feature vector. Since each frame is 

supposed to have stationary behavior, a compromise, in order to make the frame 

blocking, is to use a 20-25 ms window applied at 10 ms intervals (frame rate of 100 

frames/s and overlap between adjacent windows of about 50%), as Holmes & Holmes 

exposed in 2001. One can see this in Figure 2.4. 
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Figure 2.4: Frame Blocking 

 

In order to reduce the discontinuities of the speech signal at the edges of each frame, a 

tapered window is applied to each one. The most common used window is Hamming 

window, described in Equation(2) and shown in Figure 2.5. 

 
 

 
Figure 2.5: An 25ms Hamming Window ( fs=16KHz ) 
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2.9.3. Mel- Cepstrum 
 

The Mel Frequency Cepstrum6 Coefficients (MFCC) representation as a 

beneficial approach for speech recognition. The MFCC is a representation of the speech 

signal defined as the real cepstrum of a windowed short-time signal derived from the 

Fast Fourier Transform (FFT) of that signal which, is first subjected to a log-based 

transform of the frequency axis (mel-frequency scale), and then de-correlated using a 

modified Discrete Cosine Transform (DCT-II).  

Figure 2.6 illustrates the complete process to extract the MFFC vectors from the 

speech signal. It is to be emphasized that the process of MFCC extraction is applied 

over each frame of speech signal independently.  

 

 
                                Figure 2.6:The MFCC extraction process 
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After the pre-emphasis and the frame blocking and windowing stage, the MFCC 

vectors will be obtained from each speech frame. The process of MFFC extraction will 

be described below considering in any instant that all the stages are being applied over 

speech frames. The first step of MFCC extraction process is to compute the Fast Fourier 

Transform (FFT) of each frame and obtain its magnitude. 

The FFT is a computationally efficient algorithm of the Discrete Fourier 

Transform (DFT). If the length of the FFT, is a power of two (K=2^n), a faster 

algorithm can be used, so a zero-padding to the nearest power of two within speech 

frame length is performed. The next step will be to adapt the frequency resolution to a 

perceptual frequency scale which satisfies the properties of the human ears, such as a 

perceptually mel-frequency scale. This issue corresponds to Mel filter bank stage. The 

filter-bank analysis consists of a set of band pass filter whose bandwidths and spacings 

are roughly equal to those of critical bands and whose range of the centre frequencies 

covers the most important frequencies for speech perception[52]. 
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Chapter 3                         Sphinx-4: Open Source Framework  

 

 

 

3.1. Introduction 

In the speech recognition approach, when researchers need to explore one 

problem of it, they are often forced with the needing of core speech recognition, to be 

used in research, so they often need to develop an entire system from scratch. 

Many open source speech recognition systems are available, such as HTK [53], 

ISIP [54], AVCSR [55] and earlier versions of the Sphinx systems [56], [57] these open 

source systems are typically optimized for a single approach to speech system design. 

So they considered as barriers to future research that departs from the original purpose 

of this systems. 

 

3.2. Speech Recognition Systems 

 Many research systems such as Dragon [58], Harpy [59], Sphinx and others, are 

created by using the traditional approach to speech recognition system design, which 

using an optimized around a particular methodology to create the entire system. 

This approach has proved to be quite valuable in speech recognition,  as a result these 

systems have provided foundational methods for speech recognition research 

 

3.3. Sphnix-4 Framework 

Sphinx-4 is a speech recognition system written entirely in the Java 

programming language. It is a flexible, modular and pluggable framework to help 

support new innovations in the research of hidden Markov model (HMM) recognition 

systems. It is a very flexible system capable of performing many different types of 

recognition tasks. Figure 3.1 shows the overall architecture of the system. Each 

component in Figure 3.1 represents a module that can be easily replaced, allowing 

researchers to experiment with different module implementations without needing to 

modify other portions of the system. 

The Sphinx-4 framework consists of three main modules that are the Front-End, 

the Decoder, and the Linguist. One or more input signals are enter the Front-End 
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module, it parameterizes them into a sequence of Features. The Linguist translates any 

type of standard language model, along with pronunciation information from the 

Dictionary and structural information from one or more sets of AcousticModels 

function, into a SearchGraph. The decoder has a SearchManager, that uses the Features 

from the Front-End and the SearchGraph from the Linguist to perform the actual 

decoding, and then generating the results. At any time prior to or during the recognition 

process, the application can issue Controls to each of the modules, effectively becoming 

a partner in the recognition process. Like most speech recognition systems, Sphinx-4 

system has a large number of configurable parameters, such as search beam size, that 

controls the system  performance. These parameters configured using the Sphinx-4 

configuration manager. Unlike other systems, this configuration manager also gives 

Sphinx-4 the ability to dynamically load and configure modules at run time, yielding a 

flexible and pluggable system. number of Tools provided by Sphinx-4 are used to give 

applications and developers the ability to track decoder statistics such as word error rate 

[60], run time speed, and memory usage. This Tools are highly configurable, allowing 

users to perform a wide range of system analysis. And also provide an interactive run 

time environment that allows users to modify the parameters of the system while the 

system in the run time, and allow rapid experimentation with various parameters 

settings. 

 
Figure 3.1: Sphinx 4 components 
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3.3.1 Front-End 

The front-end  module receive the input signal [audio] then parameterize it 

into a sequence of output features. The Front-End consists of one or more 

parallel chains of replaceable communicating signal processing modules called 

DataProcessors. These DataProcessors are responsible for producing a data object 

composed of parameterized signals, called features, to be used by the decoder. 

Figure 3.2 illustrates the entire structure of the front-end module, many types of 

DataProcessors each implement common signal processing techniques. These 

implementations include support for the following: reading from a variety of input 

formats for batch mode operation, reading from the system audio input device for live 

mode operation, preemphasis, windowing with a raised cosine transform (e.g., 

Hamming and Hanning windows), discrete Fourier transform (via FFT), mel frequency 

filtering, bark frequency warping, discrete cosine transform (DCT), linear predictive 

encoding (LPC), end pointing, cepstral mean normalization (CMN), mel cepstra 

frequency coefficient extraction (MFCC), and perceptual linear prediction coefficient 

extraction (PLP). 

 

 
Figure 3.2 :  Front-End Framework 

 

Within the generic Front-End framework, supporting multiple chains permits 

simultaneous computation of different types of parameters from the same or different 

input signals. This enables the creation of systems that can simultaneously decode using 

different parameter types, such as MFCC and PLP.  
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3.3.2 Linguist 

The Linguist module consists of three pluggable components: the Language Model, 

the Dictionary, and the Acoustic Model, these components used to generate the 

SearchGraph that is used by the decoder during the search, while at the same time 

hiding the complexities involved in generating this graph. This SearchGraph 

constructed using the language structure as represented by a given Language Model and 

the topological structure of the Acoustic Model (HMMs for the basic sound units used 

by the system). and also use a Dictionary (typically a pronunciation of the word ) to 

map words from the Language Model into sequences of Acoustic Model elements. 

The size of the linguist is very important in the performance of the recognizer, for 

example when using a simple numerical digits recognition application might use a 

simple Linguist that keeps the search space entirely in memory. On the other hand, a 

dictation application with a 100K word vocabulary might use a sophisticated Linguist 

that keeps only a small portion of the potential search space in memory at a time. Now 

we will produce the basic components of the linguist in more details. 

 

  Language Model 

  

The first component of the linguist is the Language Model, this component 

provides word-level language structure, which can be represented by any number of 

pluggable implementations as following: 

� SimpleWordListGrammar: defines a grammar based upon a list of words. An optional 

parameter defines whether the grammar �loops� or not. If the grammar does not loop, 

then the grammar will be used for isolated word recognition. If the grammar loops, then 

it will be used to support trivial connected word recognition that is the equivalent of a 

unigram grammar with equal probabilities. 

� JSGFGrammar: supports the JavaTMSpeech API Grammar Format (JSGF) [60], which 

defines a BNF-style, platform-independent, and vendor-independent Unicode 

representation of grammars. 

� LMGrammar: defines a grammar based upon a statistical language model. 

LMGrammar generates one grammar node per word and works well with smaller 

unigram and bigram grammars of up to approximately 1000 words. 
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� FSTGrammar: supports a finite-state transducer (FST) [61] in the ARPA FST grammar 

format. 

� SimpleNGramModel: provides support for ASCII N-Gram models in the ARPA 

format. The SimpleNGramModel makes no attempt to optimize memory usage, so it 

works best with small language models. 

� LargeTrigramModel: provides support for true N-Gram models generated by the 

CMUCambridge Statistical Language Modeling Toolkit [62]. The Large Trigram Model 

optimizes memory storage, allowing it to work with very large files of 100MB or more. 

 

  Dictionary 

 

The second component is the Dictionary, which contains of the words and their 

pronunciation phoneme. The pronunciations break words into sequences of sub-word 

units found in the Acoustic Model. The Dictionary interface also supports the 

classification of words and allows for a single word to be in multiple classes. 

Sphinx-4 currently provides implementations of the Dictionary interface to 

support the CMU Pronouncing Dictionary [63]. The various implementations optimize 

for usage patterns based on the size of the active vocabulary. For example, one 

implementation will load the entire vocabulary at system initialization time, whereas 

another implementation will only obtain pronunciations on demand. 

 

        Acoustic Model 

 

The third component of the linguist is the Acoustic Model, which describes 

sounds of the language. It provides a mapping between a unit of speech and an HMM 

that can be scored against incoming features provided by the Front-End. This mapping 

take into account the contextual and word position information. For example, in the case 

of triphones, the context represents the single phonemes to the left and right of the given 

phoneme, and the word position represents whether the triphone is at the beginning, 

middle, or end of a word (or is a word itself). 
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    SearchGraph 

 

As mentioned before the linguist use its three components to generate the SearchGraph, 

which will be used in the decoding process. It is a data structure and the manner in 

which it is constructed affects the memory footprint, speed, and recognition accuracy. 

As in Figure 3.3 it is a directed graph in which each node, called a SearchState, 

represents either an emitting or a non-emitting state. Emitting states can be scored 

against incoming acoustic features while non-emitting states are generally used to 

represent higher-level linguistic constructs such as words and phonemes that are not 

directly scored against the incoming features. 

 
Figure 3.3: SearchGraph Example 

 

   Implementations 

 

As with the Front-End, Sphinx-4 provides several implementations of the 

Linguist to support different tasks. 

-The FlatLinguist is appropriate for recognition tasks that use context-free grammars 

(CFG), finite-state grammars (FSG), finite-state transducers (FST) and small N-Gram 

language models. 

-The DynamicFlatLinguist is similar to the FlatLinguist in that is appropriate for similar 

recognition tasks. The main difference is that the DynamicFlatLinguist dynamically 

creates the SearchGraph on demand, giving it the capability to handle far more perplex 

grammars. With this capability, however, comes a cost of a modest decrease in run time 

performance. 

-The LexTreeLinguist is appropriate for large vocabulary recognition tasks that use 

large N-Gram language models. The LexTreeLinguist supports ASCII and binary 
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language models generated by the CMU-Cambridge Statistical Language Modeling 

Toolkit [62]. 

 

3.3.3 Decoder 

The main part in the recognizer is the decoder, as it is responsible of generating 

the resulting text using the features extracted by the Front-End and the SearchGraph that 

constructed in the Linguist module. The primary component of the Decoder block is the 

SearchManager, this SearchManager creates a Result object that contains all the paths 

that have reached a final non-emitting state. The SearchManager's primary role is to 

execute the search for a given number of frames. The SearchManager will return 

interim results as the recognition proceeds and when recognition completes a final result 

will be returned. Sphinx-4 provides a sub-framework to support SearchManagers 

composed of an ActiveList, a Pruner and a Scorer. The implementations of a 

SearchManager may construct a set of active tokens in the form of an ActiveList at each 

time step.  

 Applications can configure the Sphinx-4 implementations of the Pruner to 

perform both relative and absolute beam pruning. The implementation of the Pruner is 

greatly simplified by the garbage collector of the Java platform. With garbage 

collection, the Pruner can prune a complete path by merely removing the terminal token 

of the path from the ActiveList. The act of removing the terminal token identifies the 

token and any unshared tokens for that path as unused, allowing the garbage collector to 

reclaim the associated memory. The third part is the Scorer, a pluggable state 

probability estimation module that provides state output density values on demand. 

When the SearchManager requests a score for a given state at a given time, the Scorer 

accesses the feature vector for that time and performs the mathematical operations to 

compute the score, the Scorer retains all information pertaining to the state output 

densities[46]. 
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Chapter 4                                The Arabic Speech Recognition 

 

 

 

4.1 The Proposed Work 

This section describes how to create and develop an Arabic speech recognition 

system using the open source framework Sphinx-4. Both training and recognizing 

process use Arabic characters. 

 

4.1.1  System Overview 

A complete ASR system based on CMUSphinx4 system, which is HMM-based, 

is built. The system is speaker-independent and continuous recognition. It is capable of 

handling large vocabularies. Our approach for modeling Arabic sounds in the CMU 

Sphinx system consist of construct  and train the acoustic and language models with 

Arabic speech data and generate the dictionary with Arabic characters.  

Figure 4.1 shows a mathematical representation of speech recognition system in 

simple equations which contain front end unit, acoustic model unit, language model 

unit, and search unit.  

 
Figure 4.1 :Basic model of speech recognition 
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The standard approach to large vocabulary continuous speech recognition is to   

assume a simple probabilistic model of speech production where by a specified word 

sequence, W, produces an acoustic observation sequence Y, with probability P(W,Y). 

The goal is then to decode the word string, based on the acoustic observation sequence, 

so that the decoded string has the maximum a posteriori (MAP) probability. 

 

Using Baye's rule, the equation can be written as 

 

Since P(A) is independent of W, the MAP decoding rule of the equation is 

 

The first term in the last equation P(A/W), is generally called the acoustic 

model, as it estimates the probability of a sequence of acoustic observations, 

conditioned on the  word string. Hence P(A/W) is computed. For large vocabulary 

speech recognition systems, it is necessary to build statistical models for sub word 

speech units, build up word models from these sub word speech unit models (using a 

lexicon to describe the composition of words), and then postulate word sequences and 

evaluate the acoustic model probabilities via standard concatenation methods. The 

second term in equation P(W), is called the language model. It describes the probability 

associated with a postulated sequence of words. Then we  illustrate how to employing 

our system in an application and test it. 

 

4.2 Training Phase  

To train a new model we must prepare our system by installing a group of 

software,  which are: 

-- SphinxTrain: We can download the SphinxTrain CMU, it is a free training package. 

The execution of SphinxTrain requires additional software: 

-- Active Perl: To edit scripts provided by SphinxTrain. 
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4.2.1 Feature Extraction 

The recorded speech is sampled at a rate of 16 ksps. The basic feature vector 

uses the Mel Frequency Cepstral Coefficients MFCC. The mel-frequency scale is linear 

frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. The 

MFCCs are obtained by taking the Discrete Cosine Transform (DCT) of the log power 

spectrum from Mel spaced filter banks [17]. 13 Mel frequency cepstra are computed, 

x(0), x(1),� x(12), for each window of 25 ms, with adjacent windows overlapped by 15 

ms. x(0) represents the log mel spectrum energy, and is used to derive other feature 

parameters, see Section 2.8 for more information. The system uses the rest 12 

coefficients as a basic feature vector. The basic feature vector is usually normalized by 

subtracting the mean over the sentence utterance. Table 4.2 show all parameters used in 

feature extraction. 

Table 4.2 : Parameters used in feature extraction 

Parameter Value 

Sampling Rate 16Khz 

Pre-emphases Coefficient 0.97 

Window Size 25ms 

Overlap Duration 15ms 

Hamming Window  True 

Zero Mean True 

Cepstral lifter 22 

Number of Cepstral Coefficient 12 

 

4.2.2 Linguist model 

This sub-system contains the details that describe the recognized language itself. 

This sub-system is where most of the adjustments are made in order to support the 

Arabic Language recognition. It consists of three main modules: 

The Acoustic Model: This module provides the HMMs of the Arabic triphones to be 

used to recognize speech. 

The Language Model: This module provides the grammar that is used by the system 

(Usually the grammar of a natural language or a subset of it). 
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The Dictionary: This module serves as an intermediary between the Acoustic Model 

and the Language Model. It contains the words available in the language and the 

pronunciation of each in terms of the phonemes available in the acoustic model. 

It will use the knowledge from these three components to construct a search 

graph that is appropriate for recognizing task. 

So we  can construct the acoustic model, the dictionary, and the language model as 

follow: 

 
 
The Dictionary  
 

In this step we mapped each word in the vocabulary to a sequence of sound units 

representing pronunciation; that it contains all words with all possible variants of their 

pronunciation. 

To take into account pronunciation variability, caused by various speaking 

manners and the specificity of Arabic. Careful preparation of phonetic dictionary 

prevents the incorrect association to a phoneme with audio parameters, which would 

effect  in decreasing the model�s accuracy[65]. 

Table 4.3 shows the listing of the phoneme set used in the training stage and the  

corresponding symbols. The table also shows illustrative examples of the vowel usage. 

We use the training wav files to construct the dictionary, the file result is  ar.dict 

that contain all the words pronunciations. For example: 

 

�νέϷ˴         E L E AE R DD 
νέϷ˴��       L E AE R DD 

Γέ˴Ω˴·˶             E IH D AE: R AA H 
Γέ˴Ω˴·˶���          E IH D AE: R AA T 
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                                Table 4.3: The phoneme list used in the training 

 

Language Model 
 

There are two types of models that describe language - grammars and statistical 

language models. Grammars describe very simple types of languages for command and 

control, and they are usually written by hand or generated automatically with plain 

code. 

Language Model is another important requirement for any ASR system. 

Creation of a language model consists of computing the word uni-gram counts, which 

are then converted into a task vocabulary with word frequencies, generating the bi-

grams and trigrams from the training text based on this vocabulary, and finally 

converting the n-grams into a binary format language model and standard ARPA 

format.   
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There are many ways to build the statistical language models. When a model is 

small, you can use an online quick web service. When your data set is large, there is 

sense to use CMU language modeling toolkit(CMU SLM toolkit), which we used here. 

 

Figure 4.2: Text to Language Model Mapping Instructions[63] 

 

The steps for creating and testing the language model are shown in Figure 4.2. 

The creation of a language model from a training text consists of the following steps: 

1) Prepare a reference text that will be used to generate the language model. The 

language model toolkit expects its input to be in the form of normalized text files, with 

utterances delimited by <s> and </s> tags. The output file called a.txt. 

2)  Compute the word unigram counts  

 

cat a.txt | text2wfreq > a.wfreq  
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3)  Convert the word unigram counts into a vocabulary consisting of the 20,000 most 
common words  
 
cat a.wfreq | wfreq2vocab -top 20000 > a.vocab  
4)  Generate a binary  id 3-gram of the training text, based on this vocabulary 
 
cat a.text | text2idngram -vocab a.vocab > a.idngram  
 
5)   Convert the idngram into a binary format language model  

 

idngram2lm -idngram a.idngram -vocab a.vocab -binary a.binlm 

See appendix A for more details. 

 

Converting model into DMP format  

To quickly load large models you probably would like to convert them to binary 

format that will save your decoder initialization time. That's not necessary with small 

models. Sphinx4 requires you to submit DMP model into TrigramModel component. 

DMP format is mutually convert able. You can produce other file with 

sphinx_lm_convert command from sphinxbase:  

sphinx_lm_convert -i model.lm -o model.dmp 
 
 

Testing  your language model with PocketSphinx 

In  PocketSphinx, we have a program called pocketsphinx_continuous which 

can be run from the command-line to recognize speech. We try running the following 

command:  

pocketsphinx_continuous -lm a.lm -dict dict.dic 

Acoustic Model  

The trainer learns the parameters of the models of the sound units using a set of 

sample speech signals. This is called a training database. The database contains 

information required to extract statistics from the speech in form of the acoustic model. 

You have to design database prompts and post process the results to ensure that audio 

actually corresponds to prompts. The folder structure is:  
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 AR 

o ar.dic - Phonetic dictionary 

o ar.phone - Phoneset file 

o ar.lm.DMP - Language model 

o ar.filler - List of fillers 

o ar_train.fileids - List of files for training 

o ar_train.transcription - Transcription for training 

o ar_test.fileids - List of files for testing 

o ar_test.transcription - Transcription for testing 

 wav 

o speaker_1 

 file_1.wav - Recording of speech utterance 

o speaker_2 

 file_2.wav 

Let's go through the files and describe their format and the way to prepare them:  

** Fileids (ar_train.fileids and ar_test.fileids) file is a text file listing the names of the 

recordings (utterance ids) one by line 

speaker_1/file_1 

** Transcription file (ar_train.transcription and ar_test.transcription) is a text file 

listing the transcription for each audio file  

   <s> ϢϜϴϠϋ�ϡϼδϟ </s> (file_1) 

** Phoneset file (ar.phone) should have one phone per line. The number of phones 

should match the phones used in the dictionary plus the special SIL phone for silence:  

AH 

AX 

** Filler dictionary (ar.filler) contains filler phones (not-covered by language model 

non-linguistic sounds like breath, hmm or laugh). It can contain just silences:  

<s> SIL 
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</s> SIL 

<sil> SIL 

To start the training change to the database folder and run the following commands:  

For SphinxTrain  

../SphinxTrain/scripts_pl/setup_SphinxTrain.pl -ƚĂƐŬ�ĂŶϰ 

../PocketSphinx/scripts/setup_sphinx.pl -ƚĂƐŬ�ĂŶϰ 

Using the model 

After training, the acoustic model is located in  

model_parameters/a.cd_cont_1000 You need only that folder. The model should have 

the following files:  

 license.term 

 mdef [model definition] 

 feat.params 

 means 

 mixture_weights 

 transition_matrices 

 variancesic 

Now we have a complete linguistic model components: Arabic dictionary, Arabic 

language model, and Arabic acoustic model. How to use these components is the topic 

of the next section. 

 4.3 Testing Phase 

For testing the Arabic speech recognition we need at first to have this software 

installed on our processor: 

1) Sphinx-4: Sphinx-4 can be downloaded either in binary format or in source 

codes [66] It was compiled and tested on several versions of Linux and on 

Windows operating systems. 

sphinx4-{version}-bin.zip: provides the jar files, documentation, and demos 
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sphinx4-{version}-src.zip: provides the sources, documentation, demos, unit 

tests and regression tests. 

2)  Running, building and testing sphinx-4 requires additional software: 

-  Java 2 SDK, Standard Edition 6.0 [67]. 

-  Java Runtime Environment (JRE) 

- Ant: the tool to facilitate compilation and the implementation of sphinx-4 

system [68]. 

- Subversion: install cygwin, which will give a Linux like environment in a 

command prompt window. 

- Get an IDE  as Eclipse 

4.3.1 Test System Overview 

To test the model in an application, the project must contain these files: 

 Project Name 

o Src � source folder 

 Java file  

 Config.xml file 

o JRE library � contain the general library used in java  

o External Library � contain the sphinx files and our model files 

4.3.2 Test System Creation 

Now at first, we must create a new java project using the Eclipse, then do the 

following : 

� Insert the APIs Sphinx-4 into the new project.  

You can start to link in the jars that you will need to do simple speech recognition. By 

open the project java build path and add a new library then add a new jars by expand the 

lib folder of the sphinx-4  and you�ll see the following jar files in it: 

js.jar 

jsapi.jar 
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ƐƉŚŝŶǆϰ͘ũĂƌ 

t^:ͺϴŐĂƵͺϭϯĚ�ĞƉͺϭϲŬͺϰϬŵĞůͺϭϯϬ,ǌͺϲϴϬϬ,ǌ͘ũĂƌ 

This adds (links) the jar to your build path allows the IDE to use code from the jar for 

your project. 

� Create a jar file that contain the dictionary and the models: 

Open the folder that contains the models, then use the command: 

        C:\ũĚŬϭ͘ϲ͘ϬͺϯϬ\bin\Jar  �cvf    OurASR.jar     *  

A new jar file will be created with the name OurASR.jar, then insert  it the project with 

the same steps: My Project->build path->add the jar to build path. When that is done, 

your folder structure should look something like this: 

 

Notice when using the sphinx systems the important file here is the configure  xml 

file. this file determine the configuration of sphinx 4 system. This configuration file 

defines the following: 

 The names and types  of all of the components of the system  

 The connectivity of these components - that is, which components talk to each 

other  

 The detailed configuration for each of these components. 

Using new models is easy, you just need to configure the recognizer properly. It 

usually includes three steps:  
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 Defining a dictionary and a language model 

 Defining a model and a model loader 

 Configure a front-end  

4.3.3  Used Data  

For testing phase : used the microphone to record the speaker sound And to 

allow the system to listen to the microphone, we must added the property of it as follow 

in the configure file: 

    

 

4.3.4 Feature Extraction: 

Sphinx-4 used Front-End, which is a wrapper class for the chain of front end 

processors. It provides methods for manipulating and navigating the processors.  The 

front end is modeled as a series of data processors see Figure 3.1, each of which 

performs a specific signal processing function. For example, a processor performs Fast-

Fourier Transform (FFT) on input data, another processor performs high-pass filtering.   

The input data to the front end is typically audio data, but this front end allows any 

input type. Similarly, the output data is typically features, but this front end allows any 

output type. You can configure the front end to accept any input type and return any 

output type. The front end must be configured through the Sphinx properties file.    

Current front ends generate features that contain MFCC. To specify such a front end 

(called a 'pipeline') in Sphinx-4,  we insert the following lines in the Sphinx-4 

configuration file:  
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The signal processing filters applied on the recording audio signal are mentioned as 

follow: 

1- preemphasizer          >>  Preemphasize filter 

2- windower                  >>  Raised Cosine Windower 

3- fft                                >>  Discrete Fourier Transform 

4- melFilterBank           >>  MelFrequency Filter Bank  

5- Dct                              >>  Discrete Cosine Transform        

6- liveCMN                     >>  liveCMN feature 

7- featureExtractor       >>  Deltas Feature Extractor 

Then in sphinx 4 there are many data processing could be used as: 

1-  SpeechClassifier - classifies chunks of audio into speech and non-speech. It has 

the property 'threshold' to controls how sensitive the endpointer is. It is 

empirically determined that the value of 13 is optimal for most environments. A 

lower threshold will make the endpointer more sensitive, that is, mark more 
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audio as speech. A higher threshold will make the endpointer less sensitive, that 

is, mark less audio as speech. 

2- SpeechMarker - marks the audio stream into speech and non-speech regions, 

giving some 'cushion areas' around these regions.  

3- NonSpeechDataFilter - removes the non-speech regions from the audio.  

4-  LiveCMN:   Subtracts the mean of all the input so far from the Data objects. 

Obtaining a Front End  

In order to obtain a front end, The Sphinx-4 front end is connected to the rest of 

the system via the scorer. We will show how the scorer will obtain the front end. In the 

configuration file, the scorer should be specified as follows:  

 
 

4.3.5 Using Our Model 

-- The Dictionary 

To use our new dictionary we must update the configure file with the path of our 

dictionary  and the path of the filler file also in the dictionary component. 

-- The Language Model 

In the training phase we build the Arabic language model, here we want to use it. So the 
link where to load the model must be changed to the path of the building one, as our 
system cover a large vocabulary so the trigram model is used here.  

-- The Acoustic  Model 

The acoustic model used is the tiedstate Acoustic model and the sphinx3 loader, 

so to inform the sphinx system the new acoustic model location we must change the 
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sphinx3 loader manager location to our new location. See Appendix B for the complete  

configure file. 

Then we can add the simple java file that contain our code, that test the model 

we build a java file that listen to the microphone and then convert the audio to text using 

the command prompt, the file must determine its configure file in the first.  

 

The pseudo code of test file :                                      

We have cm is an instant of the configuration manger, A is the configure xml 

file, reg is an instant of the recognizer class, and mic is an instant of the microphone 

class 

we begin with� 

 
 
See Appendix C for the java source code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
See appendix c for source code. 
 

 Set cm  get source from ( A xml) 

 Set reg  look up from cm 

 Allocate the reg 

 Test the mic for connectivity  

o If mic not start  

 Then :: 

  print "can not start microphone" 

 Deallocate the reg 

 Exit 

 Else :: 

 Loop recognition until the program exit  

 Print "Start Speaking. Press Ctrl-C to quit " 

 Result get the recognized data 

 If Result not null 

 Then   txt  get best final result 

           Print "you said : " + txt 

 Else    Print "I can not hear what you said.. 

"  

 End 
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Chapter 5                                                   Experiments Results 

 

 

 

5.1  Performance of Speech Recognition Systems 

The performance of speech recognition systems is usually specified in terms of 

accuracy and speed. Accuracy may be measured in terms of performance accuracy 

which is usually rated with word error rate (WER), whereas speed is measured with the 

real time factor. Other measures of accuracy include Single Word Error Rate (SWER) 

and Command Success Rate (CSR). 

WER is a common metric of the performance of a speech recognition or 

machine translation system. The general difficulty of measuring performance lies in the 

fact that the recognized word sequence can have a different length from the reference 

word sequence (supposedly the correct one). The WER is working at the word level 

instead of the phoneme level. This problem is solved by first aligning the recognized 

word sequence with the reference (spoken) word sequence using dynamic string 

alignment. Word error rate can then be computed as: 

 

where 

S is the number of substitutions, 

D is the number of the deletions, 

I is the number of the insertions, 

N is the number of words in the reference. 

 

When reporting the performance of a speech recognition system, sometimes 

word recognition rate (WRR) is used instead: 

 

Where H is N-(S+D), the number of correctly recognized words. 
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5.2   Our Experiments 

In this section, we will discuss the experiments that done on the proposed 

system. 

 

5.2.1 Experiment one 

In this experiment we test the system using 144 sentences, divided to 10 groups, 

each group for one speaker, so we have ten speakers [ 4 female and 6 male]. The speech 

data recorded from Aljazeera news channel. In order to use a wave file, the code of 

testing application must be changed to be able to read from existing file. And must 

process that wave file to be compatible with our system, so every file must pass the 

checking channel to test its format, if it suitable to one used in system then the wave file 

just enter the system to be recognized, and if the file has different format type, then it 

must be enter convert channel to be convert to the used format then enter the system to 

be recognized Figure 5.1 shows the process of checking the wave file. 

 

 
  Figure 5.1 The process of checking the wave file 

 

The compatible formats of the speech file are mentioned in Table 5.1, see 

appendix C for source code of  using existing speech file. 

 

Table 5.1 : Proper file format     

File Type  .wav 

Sample Rate 16000Hz 

Sample Size in bits 16 

Recording Type Mono 

Signed True 

Character type Little-Endian 
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The detailed of this experiment speech information are summarized in Table 5.2. 

 

Table 5.2 : The speech information in experiment one 

# of 

Speakers 

# of 

Sentences 

Duration 

in sec 

Ratio of Test. 
Data (%) 

Speaker 1 3 12 2.14 

Speaker2 34 169 30.12 

Speaker3 8 28 4.99 

Speaker4 6 29 5.17 

Speaker5 22 71 12.65 

Speaker6 23 76 13.55 

Speaker7 26 100 17.83 

Speaker8 7 30 5.35 

Speaker9 3 15 2.67 

Speaker10 10 31 5.53 

 

5.2.2 Experiment Two 

In this experiment we test the system using 10 sentences, with two speakers 

[male]. Here we use the microphone to enter the audio data directly to the recognizer, 

the configuration needed to do that was mentioned in the testing phase Section  4.2.4 

When using the microphone in testing we must take care of the parameters that listed in 

Table 5.1. The details of the speech information used in this experiment are summarized 

in Table 5.3: 

 

Table 5.3 : The speech information in experiment two 

# of 

Speakers 

# of Sentences Duration 

in sec 

Speaker 1 10 75 

Speaker2 10 75 

Total 10 each one 150≈2.5min 
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5.3 The Discussion  

Using the WER from Section 5.1, the first experiment we get the result listed in 

Table 5.4.  

Table 5.4 : The result of experiment one 

# of 

Speakers 

Accuracy 

   (%) 

WER 

(%) 

Speaker 1 90.8 9.2 

Speaker2 92.3 7.7 

Speaker3 92.4 7.6 

Speaker4 91.4 8.6 

Speaker5 91.7 8.3 

Speaker6 90.2 9.8 

Speaker7 91.1 8.9 

Speaker8 92.2 7.8 

Speaker9 91.5 8.5 

Speaker10 91.8 8.2 

Total 91.6 8.4 

 

The second experiment gives us this result that mentioned in Table 5.5. 

 

Table 5.5 : The result of experiment two 

# of 

Speakers 

Accuracy 

   (%) 

WER 

(%) 

Speaker 1 90.4 9.6 

Speaker2 90 10 

Total 90.2 9.8 

 

At last we can summarized that our proposed Arabic speech recognition system  

used the rich and balanced text corpus was testing with sphinx-4 framework with the 

parameters absolute word beam width equal 20 and word insertion probability equal 0.7 

and the language weight set to 0.7, the system gives an accuracy rate near to 90.2 % and 

the WER rate in general got equals to 9.8% using the microphone and an accuracy rate 
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near to 91.6 % and the WER rate in general got equals to 8.4% using previous recording 

audio file. For systems that depend on medium and small size vocabulary the system 

performance obtained WER ranged between 15% to 0% dedicated to standard Arabic, 

as we used a large size vocabulary, our system performance obtained  a good WER 

[8.4%, 9.8%]. In Table 5.6 we summarize the accuracy rate and the WER rate of 

previous Arabic systems cover a large size vocabulary and our system values. 

 

Table 5.6 : Comparison our system to others  

The compared systems Accuracy Rate (%) WER Rate (%) 

System-1 90.5 9.5 

System-2 92.8 7.2 

Our System 91.6    [recorded] 

90.2    [mic] 

8.4 

9.8 

 

System-1 is from "Investigation Arabic Speech Recognition Using CMU Sphinx 

System" paper[24], which depended on an in-house corpus was created from all 10 

Arabic digits. A number of 6 Moroccan speakers (6 males) were asked to utter all digits 

5 times. In order to evaluate the performances of the application, they performed some 

experiments on different individuals (three men) each one of them was asked to utter 10 

Arabic digits. they recorded the number of words that were correctly recognized, and 

then a mean recognition ratio for all tester was calculated as 90.5%. 

System-2 is from the paper with the title " speaker-independent natural Arabic 

speech recognition system " for Moustafa Elshafei, Husni Al-Muhtaseb, and Mansour 

Al-Ghamdi they built a system with in housing audio files recorded from several TV 

news channels at a sampling rate of 16 ksps. A total of 249 news stories, summing up to 

5.4 hours of speech, and they got the correctly recognized words was 92.8%, and WER 

came down to 7.2 %.  

Comparing it with our result, we got a good accuracy as we used the rich and 

balanced corpus. To increase the accuracy of the system, we need more training.  
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Chapter 6                         Conclusion and Future Work 

 

 

 

6.1 Conclusion 

To conclude, a spoken Arabic recognition system was designed to investigate 

the process of automatic speech recognition using Arabic environment. Both training 

and recognizing process use Arabic characters. Our experiment demonstrates the 

possible adaptability of the CMU Sphinx4 to Arabic language with large vocabulary 

size. The system consisted of three basic components, which were an Arabic phonetic 

dictionary contained all phonetic sound of the words used in training, and the Arabic 

statistical language model that gave us the probability of the sequence of words. The 

last component was the acoustic model that generated the HMM represented unit for 

each phoneme. We used a phonetically rich and balanced speech corpus for training the 

recognizer.  

The developed system providing a good accuracy with speaker independent, and 

natural Arabic continuous speech as it got 91.6% accuracy rate with recorded files and 

90.2% accuracy rate using the microphone. The recognition results produced by our 

system showed to be satisfactory and when compared, they can match with the results 

of other ASR systems. 

  

6.2 Future Work 

The work reported in this thesis may be extended in a number of ways, some of 

which are discussed below: 

 extending the corpus to 10 hours of Arabic speech. 

 enhancing the rule based phonetic dictionary, and parameterization of the 

acoustic model. 

 Build a  Arabic Dictation Notepad Software that can be used. 

 Using the Arabic dictionary in the mobile systems. 
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Appendix A 

                                                   Building The Language Model 

 

Installing the Toolkit  

 At first the variable BYTESWAP_FLAG will need to be set in the Makefile. This can be 

done by editing src/Makefile directly, so that the line  

#BYTESWAP_FLAG  = -DSLM_SWAP_BYTES 

is changed to  

BYTESWAP_FLAG  = -DSLM_SWAP_BYTES 

Then  the installation procedure is simply to change into the src/ directory and type:  

make install    The executables will then be copied into the bin/ directory, and the 

library file SLM2.a will be copied into the lib/ directory.  

Typical Usage 
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The Tools  

text2wfreq  

Input : Text stream  

Output : List of every word which occurred in the text, along with its number of 

occurrences.  

Command Line Syntax: 

text2wfreq [ -hash 1000000 ] 

           [ -verbosity 2 ] 

           < .text > .wfreq 

Higher values for the -hash parameter require more memory, but can reduce computation 

time.  

wfreq2vocab  

Input : A word unigram file, as produced by text2wfreq  

Output : A vocabulary file.  

Command Line Syntax: 

wfreq2vocab [ -top 20000 | -gt 10] 

            [ -records 1000000 ] 

            [ -verbosity 2] 

            < .wfreq > .vocab 

The -top parameter allows the user to specify the size of the vocabulary; if the program 

is called with the command -top 20000, then the vocabulary will consist of the most 

common 20,000 words. 
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The -gt parameter allows the user to specify the number of times that a word must occur 

to be included in the vocabulary; if the program is called with the command -gt 10, then 

the vocabulary will consist of all the words which occurred more than 10 times. 

The -records parameter allows the user to specify how many of the word and count 

records to allocate memory for. If the number of words in the input exceeds this 

number, then the program will fail, but a high number will obviously result in a higher 

memory requirement. 

text2wngram  

Input : Text stream  

Output : List of every word n-gram which occurred in the text, along with its number 

of occurrences. 

Command Line Syntax: 

text2wngram [ -n 3 ] 

            [ -temp /usr/tmp/ ] 

            [ -chars n ] 

            [ -words m ] 

            [ -gzip | -compress ] 

            [ -verbosity 2 ] 

            < .text > .wngram 

The maximum numbers of charactors and words that can be stored in the buffer are 

given by the -chars and -words options. The default number of characters and words are 

chosen so that the memory requirement of the program is approximately that of 

STD_MEM, and the number of charactors is seven times greater than the number of 

words.  

The -temp option allows the user to specify where the program should store its 

temporary files. 
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text2idngram  

Input : Text stream, plus a vocabulary file.  

Output : List of every id n-gram which occurred in the text, along with its number of 

occurrences. 

Notes : Maps each word in the text stream to a short integer as soon as it has been read, 

thus enabling more n-grams to be stored and sorted in memory.  

Command Line Syntax: 

text2idngram -vocab .vocab 

           [ -buffer 100 ] 

           [ -temp /usr/tmp/ ] 

           [ -files 20 ] 

           [ -gzip | -compress ] 

           [ -n 3 ] 

           [ -write_ascii ] 

           [ -fof_size 10 ] 

           [ -verbosity 2 ] 

           < .text > .idngram  

By default, the id n-gram file is written out as binary file, unless the -write_ascii switch is 

used. 

The size of the buffer which is used to store the n-grams can be specified using the -

buffer parameter. This value is in megabytes, and the default value can be changed from 

100 by changing the value of STD_MEM in the file src/toolkit.h before compiling the 

toolkit.  

The program will also report the frequency of frequency of n-grams, and the 

corresponding recommended value for the -spec_num parameters of idngram2lm. The -

fof_size parameter allows the user to specify the length of this list. A value of 0 will 

result in no list being displayed. 
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The -temp option allows the user to specify where the program should store its 

temporary files. 

In the case of really huge quantities of data, it may be the case that more temporary files 

are generated than can be opened at one time by the filing system. In this case, the 

temporary files will be merged in chunks, and the -files parameter can be used to specify 

how many files are allowed to be open at one time. 

idngram2lm  

Input : An id n-gram file (in either binary (by default) or ASCII (if specified) format), a 

vocabulary file, and (optionally) a context cues file. Additional command line 

parameters will specify the cutoffs, the discounting strategy and parameters, etc.  

Output : A language model, in either binary format (to be read by evallm), or in ARPA 

format.  

Command Line Syntax: 

idngram2lm -idngram .idngram 

           -vocab .vocab 

           -arpa .arpa | -binary .binlm 

         [ -context .ccs ] 

         [ -calc_mem | -buffer 100 | -spec_num y ... z ] 

         [ -vocab_type 1 ] 

         [ -oov_fraction 0.5 ] 

         [ -linear | -absolute | -good_turing | -witten_bell ] 

         [ -disc_ranges 1 7 7 ]  

         [ -cutoffs 0 ... 0 ] 

         [ -min_unicount 0 ] 

         [ -zeroton_fraction 1.0 ] 

         [ -ascii_input | -bin_input ] 

         [ -n 3 ]   

         [ -verbosity 2 ] 

         [ -four_byte_counts ] 
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         [ -two_byte_bo_weights 

            [ -min_bo_weight -3.2 ] [ -max_bo_weight 2.5 ]  

            [ -out_of_range_bo_weights 10000 ] ] 

The -context parameter allows the user to specify a file containing a list of words within 

the vocabulary which will serve as context cues (for example, markers which indicate 

the beginnings of sentences and paragraphs). 

-calc_mem, -buffer and -spec_num x y ... z are options to dictate how it is decided how much 

memory should be allocated for the n-gram counts data structure. -calc_mem demands 

that the id n-gram file should be read twice, so that we can accurately calculate the 

amount of memory required. -buffer allows the user to specify an amount of memory to 

grab, and divides this memory equally between the 2,3, ..., n-gram tables. -spec_num 

allows the user to specify exactly how many 2-grams, 3-grams, ... , and n-grams will 

need to be stored. The default is -buffer STD_MEM. 

The toolkit provides for three types of vocabulary, which each handle out-of-vocabulary 

(OOV) words in different ways, and which are specified using the -vocab_type flag. 

A closed vocabulary (-vocab_type 0) model does not make any provision for OOVs. Any 

such words which appear in either the training or test data will cause an error. This type 

of model might be used in a command/control environment where the vocabulary is 

restricted to the number of commands that the system understands, and we can therefore 

guarantee that no OOVs will occur in the training or test data.  

An open vocabulary model allows for OOVs to occur; out of vocabulary words are all 

mapped to the same symbol. Two types of open vocabulary model are implemented in 

the toolkit. The first type (-vocab_type 1) treats this symbol the same way as any other 

word in the vocabulary. The second type (-vocab_type 2) of open vocabulary model is to 

cover situations where no OOVs occurred in the training data, but we wish to allow for 

the situation where they could occur in the test data. This situation could occur, for 

example, if we have a limited amount of training data, and we choose a vocabulary 

which provides 100% coverage of the training set. In this case, an arbitrary proportion 

of the discount probability mass (specified by the -oov_fraction option) is reserved for 

OOV words. 
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The discounting strategy and its parameters are specified by the -linear, -absolute, -

good_turing and -witten_bell options. With Good Turing discounting, one can also specify 

the range over which discounting occurs, using the -disc_ranges option. 

The user can specify the cutoffs for the 2-grams, 3-grams, ..., n-grams by using the -

cutoffs parameter. A cutoff of K means that > n-grams occurring K or fewer times are 

discarded. If the parameter is omitted, then all the cutoffs are set to zero.  

The -zeroton_fraction option specifies that P(zeroton) (the unigram probability assigned to 

a vocabulary word that did not occurred at all in the training data) will be at least that 

fraction of P(singleton) (the probability assigned to a vocabulary word that occurred 

exactly once in the training data).  

By default, the n-gram counts are stored in two bytes by use of a count table (this allows 

the counts to exceed 65535, while keeping the data structures used to store the model 

compact). However, if more than 65535 distinct counts need to be stored (very 

unlikely, unless constructing 4-gram or higher language models using Good-Turing 

discounting), the -four_byte_counts option will need to be used. 

The floating point values of the back-off weights may be stored as two-byte integers, by 

using the -two_byte_alphas switch. This will introduce slight rounding errors, and so 

should only be used if memory is short. The -min_alpha, -max_alpha and -out_of_range_alphas 

are parameters used by the functions for using two-byte alphas. Their values should 

only be altered if the program instructs it. For further details, see the comments in the 

source file src/two_byte_alphas.c.  

binlm2arpa  

Input : A binary format language model, as generated by idngram2lm.  

Output : An ARPA format language model. 

Command Line Syntax: 

binlm2arpa -binary .binlm 

           -arpa .arpa  
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         [ -verbosity 2 ] 

evallm  

Input : A binary or ARPA format language model, as generated by idngram2lm. In 

addition, one may also specify a text stream to be used to compute the perplexity of the 

language model. The ARPA format language model does not contain information as to 

which words are context cues, so if an ARPA format lanaguage model is used, then a 

context cues file may be specified as well. 

Output : The program can run in one of two modes.  

 compute-PP - Output is the perplexity of the language model with respect to the 

input text stream.  

 validate - Output is confirmation or denial that the sum of the probabilities of 

each of the words in the context supplied by the user sums to one.  

Command Line Syntax: 

evallm [ -binary .binlm |  

         -arpa .arpa [ -context .ccs ] ] 

Notes: evallm can receive and process commands interactively. When it is run, it loads 

the language model specified at the command line, and waits for instructions from the 

user. The user may specify one of the following commands:  
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Appendix B 
                                                      The XML Configuration File 
 
 
 
The Configure Xml file, which used in the test application. 

<?xml version="1.0" encoding="UTF-8"?> 

 
<!-- 
   Sphinx-4 Configuration file 
--> 
 
<!-- ******************************************************** --> 
<!--  an4 configuration file                             --> 
<!-- ******************************************************** --> 
 
<config> 
 
    <!-- ******************************************************** --> 
    <!-- frequently tuned properties                              --> 
    <!-- ******************************************************** --> 
 
    <property name="logLevel" value="WARNING"/> 
 
    <property name="sampleRate" value="16000"/> 
     <property name="relativeBeamWidth" value="1E-60"/> 
     <property name="absoluteWordBeamWidth" value="22"/> 
     <property name="relativeWordBeamWidth" value="1E-30"/> 
     <property name="wordInsertionProbability" value=".2"/> 
     <property name="languageWeight" value="10.5"/> 
     <property name="silenceInsertionProbability" value=".1"/> 
     <property name="acousticLookahead" value="1.7"/> 
     <property name="frontend" value="epFrontEnd"/> 
     <property name="recognizer" value="recognizer"/> 
     <property name="showCreations" value="false"/> 
 
     <property name="sampleRate" value="16000"/> 
    <!-- ******************************************************** --> 
    <!-- word recognizer configuration                            --> 
    <!-- ******************************************************** --> 
 
    <component name="recognizer" 
type="edu.cmu.sphinx.recognizer.Recognizer"> 
        <property name="decoder" value="decoder"/> 
        <propertylist name="monitors"> 
            <item>accuracyTracker </item> 
            <item>speedTracker </item> 
            <item>memoryTracker </item> 
        </propertylist> 
    </component> 
 
    <!-- ******************************************************** --> 
    <!-- The Decoder   configuration                              --> 
    <!-- ******************************************************** -->  
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    <component name="decoder" type="edu.cmu.sphinx.decoder.Decoder"> 
        <property name="searchManager" 
value="wordPruningSearchManager"/> 
        <property name="featureBlockSize" value="50"/> 
    </component> 
     
    <!-- ******************************************************** --> 
    <!-- The Search Manager                                       --> 
    <!-- ******************************************************** -->  
     
    <component name="wordPruningSearchManager"  
    
type="edu.cmu.sphinx.decoder.search.WordPruningBreadthFirstSearchManag
er"> 
        <property name="logMath" value="logMath"/> 
        <property name="linguist" value="lexTreeLinguist"/> 
        <property name="pruner" value="trivialPruner"/> 
        <property name="scorer" value="threadedScorer"/> 
        <property name="activeListManager" value="activeListManager"/> 
        <property name="growSkipInterval" value="0"/> 
        <property name="checkStateOrder" value="false"/> 
        <property name="buildWordLattice" value="false"/> 
        <property name="acousticLookaheadFrames" value="1.7"/> 
        <property name="relativeBeamWidth" 
value="${relativeBeamWidth}"/> 
    </component> 
     
     
 
    <component name="activeListManager"  
             
type="edu.cmu.sphinx.decoder.search.SimpleActiveListManager"> 
        <propertylist name="activeListFactories"> 
     <item>standardActiveListFactory</item> 
     <item>wordActiveListFactory</item> 
     <item>wordActiveListFactory</item> 
     <item>standardActiveListFactory</item> 
     <item>standardActiveListFactory</item> 
     <item>standardActiveListFactory</item> 
 </propertylist> 
    </component> 
<component name="standardActiveListFactory"  
             
type="edu.cmu.sphinx.decoder.search.PartitionActiveListFactory"> 
        <property name="logMath" value="logMath"/> 
        <property name="absoluteBeamWidth" 
value="${absoluteBeamWidth}"/> 
        <property name="relativeBeamWidth" 
value="${relativeBeamWidth}"/> 
    </component> 
     
    <component name="wordActiveListFactory"  
             
type="edu.cmu.sphinx.decoder.search.PartitionActiveListFactory"> 
        <property name="logMath" value="logMath"/> 
        <property name="absoluteBeamWidth" 
value="${absoluteWordBeamWidth}"/> 
        <property name="relativeBeamWidth" 
value="${relativeWordBeamWidth}"/> 
    </component> 
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    <!-- ******************************************************** --> 
    <!-- The Pruner                                               --> 
    <!-- ******************************************************** -->  
    <component name="trivialPruner"  
                type="edu.cmu.sphinx.decoder.pruner.SimplePruner"/> 
     
    <!-- ******************************************************** --> 
    <!-- TheScorer                                                --> 
    <!-- ******************************************************** -->  
    <component name="threadedScorer"  
                
type="edu.cmu.sphinx.decoder.scorer.ThreadedAcousticScorer"> 
        <property name="frontend" value="${frontend}"/> 
    </component> 
<!-- ******************************************************** --> 
    <!-- The linguist  configuration                              --> 
    <!-- ******************************************************** --> 
     
    <component name="lexTreeLinguist"  
                
type="edu.cmu.sphinx.linguist.lextree.LexTreeLinguist"> 
        <property name="logMath" value="logMath"/> 
        <property name="acousticModel" value="wsj"/> 
        <property name="languageModel" value="trigramModel"/> 
        <property name="dictionary" value="dictionary"/> 
        <property name="addFillerWords" value="false"/> 
        <property name="fillerInsertionProbability" value="1E-10"/> 
        <property name="generateUnitStates" value="false"/> 
        <property name="wantUnigramSmear" value="true"/> 
        <property name="unigramSmearWeight" value="1"/> 
        <property name="wordInsertionProbability"  
                value="${wordInsertionProbability}"/> 
        <property name="silenceInsertionProbability"  
                value="${silenceInsertionProbability}"/> 
        <property name="languageWeight" value="${languageWeight}"/> 
        <property name="unitManager" value="unitManager"/> 
    </component>     
     
     
    <!-- ******************************************************** --> 
    <!-- The Dictionary configuration                            --> 
    <!-- ******************************************************** --> 
    <component name="dictionary"  
        type="edu.cmu.sphinx.linguist.dictionary.FastDictionary"> 
        <property name="dictionaryPath" 
                  value="file:///D:/OurASR/dict.6d"/> 
        <property name="fillerPath"  
           value="file:///D:/AASR/OurASR.filler"/> 
        <property name="addSilEndingPronunciation" value="false"/> 
        <property name="wordReplacement" value="&lt;sil&gt;"/> 
        <property name="allowMissingWords" value="false"/> 
        <property name="unitManager" value="unitManager"/> 
    </component> 
     
 
    <!-- ******************************************************** --> 
    <!-- The Language Model configuration                         --> 
    <!-- ******************************************************** --> 
    <component name="trigramModel"  
        
type="edu.cmu.sphinx.linguist.language.ngram.SimpleNGramModel"> 
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        <property name="location"  
            value="file:///D:/AASR/OurASR.lm"/> 
        <property name="logMath" value="logMath"/> 
        <property name="dictionary" value="dictionary"/> 
        <property name="maxDepth" value="3"/> 
        <property name="unigramWeight" value=".7"/> 
    </component> 
     
     
    <!-- ******************************************************** --> 
    <!-- The acoustic model configuration                         --> 
    <!-- ******************************************************** --> 
    <component name="wsj" 
               
type="edu.cmu.sphinx.linguist.acoustic.tiedstate.TiedStateAcousticMode
l"> 
        <property name="loader" value="wsjLoader"/> 
        <property name="unitManager" value="unitManager"/> 
    </component> 
 
    <component name="wsjLoader" 
type="edu.cmu.sphinx.linguist.acoustic.tiedstate.Sphinx3Loader"> 
        <property name="logMath" value="logMath"/> 
        <property name="unitManager" value="unitManager"/> 
        <property name="location" value="file:///D:/AASR/OurASR-
model"/> 
 
<property name="properties_file" value="am.props"/> 
    <property name="FeatureVectorLength" value="39"/> 
 
    </component> 
 
    <!-- ******************************************************** --> 
    <!-- The unit manager configuration                           --> 
    <!-- ******************************************************** --> 
 
    <component name="unitManager"  
        type="edu.cmu.sphinx.linguist.acoustic.UnitManager"/> 
 
    <!-- ******************************************************** --> 
    <!-- The frontend configuration                               --> 
    <!-- ******************************************************** --> 
 
    <component name="frontEnd" 
type="edu.cmu.sphinx.frontend.FrontEnd"> 
        <propertylist name="pipeline"> 
            <item>microphone </item> 
            <item>preemphasizer </item> 
            <item>windower </item> 
            <item>fft </item> 
            <item>melFilterBank </item> 
            <item>dct </item> 
            <item>liveCMN </item> 
            <item>featureExtraction </item> 
        </propertylist> 
    </component> 
 
    <!-- ******************************************************** --> 
    <!-- The live frontend configuration                          --> 
    <!-- ******************************************************** --> 
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    <component name="epFrontEnd" 
type="edu.cmu.sphinx.frontend.FrontEnd"> 
        <propertylist name="pipeline"> 
            <item>microphone </item> 
            <item>dataBlocker </item> 
            <item>speechClassifier </item> 
            <item>speechMarker </item> 
            <item>nonSpeechDataFilter </item> 
            <item>preemphasizer </item> 
            <item>windower </item> 
            <item>fft </item> 
            <item>melFilterBank </item> 
            <item>dct </item> 
            <item>liveCMN </item> 
            <item>featureExtraction </item> 
           
            <item>wavWriter </item> 
        </propertylist> 
    </component> 
 
    <!-- ******************************************************** --> 
    <!-- The frontend pipelines                                   --> 
    <!-- ******************************************************** --> 
    <component name="featureTransform" 
type="edu.cmu.sphinx.frontend.feature.FeatureTransform"> 
      <property name="loader" value="wsjLoader"/> 
  </component> 
   
 <component name="audioFileDataSource" 
type="edu.cmu.sphinx.frontend.util.AudioFileDataSource"/> 
    <component name="dataBlocker" 
type="edu.cmu.sphinx.frontend.DataBlocker"> 
        <!--<property name="blockSizeMs" value="10"/>--> 
    </component> 
 
    <component name="speechClassifier" 
               
type="edu.cmu.sphinx.frontend.endpoint.SpeechClassifier"> 
        <property name="threshold" value="15"/> 
    </component> 
 
    <component name="nonSpeechDataFilter" 
               
type="edu.cmu.sphinx.frontend.endpoint.NonSpeechDataFilter"/> 
 
    <component name="speechMarker" 
               type="edu.cmu.sphinx.frontend.endpoint.SpeechMarker" > 
        <property name="speechTrailer" value="50"/> 
        <property name="startSpeech"   value="200"> 
        <property name="speechLeader" value="50"/> 
        <property name="endSilence" value="500"/> 
</property> 
    </component> 
 
 
    <component name="preemphasizer" 
               type="edu.cmu.sphinx.frontend.filter.Preemphasizer"/> 
 
    <component name="windower" 
               
type="edu.cmu.sphinx.frontend.window.RaisedCosineWindower"> 



 71 

    </component> 
 
    <component name="fft" 
            
type="edu.cmu.sphinx.frontend.transform.DiscreteFourierTransform"> 
    </component> 
 
    <component name="melFilterBank" 
        
type="edu.cmu.sphinx.frontend.frequencywarp.MelFrequencyFilterBank"> 
    <property name="numberFilters" value="31"/> 
    <property name="minimumFrequency" value="200"/> 
    <property name="maximumFrequency" value="3500"/> 
    </component> 
 
    <component name="dct" 
            
type="edu.cmu.sphinx.frontend.transform.DiscreteCosineTransform"/> 
 
    <component name="liveCMN" 
               type="edu.cmu.sphinx.frontend.feature.LiveCMN"/> 
 
    <component name="featureExtraction" 
               
type="edu.cmu.sphinx.frontend.feature.DeltasFeatureExtractor"/> 
 
    <component name="microphone" 
               type="edu.cmu.sphinx.frontend.util.Microphone"> 
        <property name="closeBetweenUtterances" value="false"/> 
    </component> 
  
   
 <component name="wavWriter" 
type="edu.cmu.sphinx.frontend.util.WavWriter">  
   <property name="outFilePattern" value="test-
seg000000"/>  
   <property name="captureUtterances" value="true"/>  
 </component> 
    <!-- ******************************************************* --> 
    <!--  monitors                                               --> 
    <!-- ******************************************************* --> 
 
    <component name="accuracyTracker" 
                
type="edu.cmu.sphinx.instrumentation.BestPathAccuracyTracker"> 
        <property name="recognizer" value="${recognizer}"/> 
        <property name="showAlignedResults" value="false"/> 
        <property name="showRawResults" value="false"/> 
    </component> 
 
    <component name="memoryTracker" 
                type="edu.cmu.sphinx.instrumentation.MemoryTracker"> 
        <property name="recognizer" value="${recognizer}"/> 
 <property name="showSummary" value="false"/> 
 <property name="showDetails" value="false"/> 
    </component> 
 
    <component name="speedTracker" 
                type="edu.cmu.sphinx.instrumentation.SpeedTracker"> 
        <property name="recognizer" value="${recognizer}"/> 
        <property name="frontend" value="${frontend}"/> 
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 <property name="showSummary" value="true"/> 
 <property name="showDetails" value="false"/> 
    </component> 
 
 
    <!-- ******************************************************* --> 
    <!--  Miscellaneous components                               --> 
    <!-- ******************************************************* --> 
 
    <component name="logMath" type="edu.cmu.sphinx.util.LogMath"> 
        <property name="logBase" value="1.0001"/> 
        <property name="useAddTable" value="true"/> 
    </component> 
 
</config> 
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Appendix C 
                                                                                      The Java Source Code 
 
 
 
The java source code for listening to the microphone, then convert the listening speech 
to its corresponding text in Arabic language using our Arabic model and sphinx-4 APIs. 
 
import java.io.File; 
import java.io.IOException; 
import java.net.URL; 
import edu.cmu.sphinx.frontend.util.Microphone; 
import edu.cmu.sphinx.recognizer.Recognizer; 
import edu.cmu.sphinx.result.Result; 
import edu.cmu.sphinx.util.props.ConfigurationManager; 
 
public class AA { 
 
 public static void main(String[] args)  
 { 
  ConfigurationManager cm; 
 
        if (args.length > 0) { 
            cm = new ConfigurationManager(args[0]); 
        } else { 
            cm = new        
ConfigurationManager(AA.class.getResource("AA.config.xml")); 
        } 
 
        Recognizer recognizer = (Recognizer) cm.lookup("recognizer"); 
        recognizer.allocate(); 
  // start the microphone or exit if the program if this is not 
possible 
        Microphone microphone = (Microphone) cm.lookup("microphone"); 
        if (!microphone.startRecording()) { 
            System.out.println("Cannot start microphone."); 
            recognizer.deallocate(); 
            System.exit(1); 
        } 
 
        // loop the recognition until the program exits. 
     while (true) { 
       System.out.println("Start speaking. Press Ctrl-C to quit.\n"); 
 
            Result result = recognizer.recognize(); 
 
            if (result != null) { 
                String resultText = 
result.getBestFinalResultNoFiller(); 
                System.out.println("You said: " + resultText + '\n'); 
            } else { 
                System.out.println("I can't hear what you said.\n"); 
            } 
 
    }    }} 
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The java source code for enter the speech from existing audio file, then convert the file 
to adapting format then using our Arabic model and sphinx-4 APIs to display its 
corresponding text in Arabic language. 
public boolean convertedFile = false; 
public static void main(String[] args) { 
try { 
URL audioFileURL; 
//if (args.length > 0) { 
audioFileURL = new File(args[0]).toURI().toURL(); 
System.out.println(audioFileURL); 
//} else { 
//if the ${file_prompt} isn�t in the program arguments, it�ll go with 
this: 
//audioFileURL = test.class.getResource(�1.wav�); 
//} 
URL configURL = test.class.getResource("config.xml"); 
System.out.println("URL:"+ configURL); 
System.out.println("Loading Recognizer�\n"); 
ConfigurationManager cm = new ConfigurationManager(configURL); 
System.out.println("cm:"+cm); 
Recognizer recognizer = (Recognizer) cm.lookup("recognizer"); 
System.out.println("Recognise: "+recognizer); 
/* allocate the resource necessary for the recognizer */ 
recognizer.allocate(); 
System.out.println("Recognizer : "+recognizer); 
 System.out.println("Decoding " + audioFileURL.getFile()); 
System.out.println(AudioSystem.getAudioFileFormat(audioFileURL)); 
System.out.println("begin............ "); 
StreamDataSource reader = (StreamDataSource) 
cm.lookup("streamDataSource"); 
System.out.println("reader: "+reader); 
AudioInputStream ais = AudioSystem.getAudioInputStream(audioFileURL); 
System.out.println("ais: "+ais); 
test wavFile = new test(); 
System.out.println(wavFile); 
// Convert it to the proper format 
AudioFormat targetFormat =  
new AudioFormat(16000f, 
16, // sample size in bits 
1, // mono 
true, // signed 
false); 
System.out.println(targetFormat); 
//new AudioFormat(AudioFormat.Encoding.PCM_SIGNED, 16000, 16, 1, 2, 
16000, false); 
AudioInputStream convertedAis = wavFile.convertAudioInputStream(ais, 
targetFormat); 
File newFile = null; 
if (wavFile.convertedFile) 
{ 
newFile = wavFile.writeConvertedFile(convertedAis, 
audioFileURL.toString()); 
audioFileURL = newFile.toURI().toURL(); 
ais = AudioSystem.getAudioInputStream(audioFileURL); 
} /* set the stream data source to read from the audio file */ 
reader.setInputStream(ais, audioFileURL.getFile()); 
/* decode the audio file */ 
Result result = recognizer.recognize(); 
/* print out the results */ 
if (result != null) { 
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System.out.println("\nRESULT: " + 
result.getBestFinalResultNoFiller() + "\n"); 
} else { 
System.out.println("Result: null\n"); 
} 
if (newFile != null) 
newFile.delete(); 
} catch (IOException e) { 
System.err.println("Problem when loading WavFile: " + e); 
e.printStackTrace(); 
} catch (PropertyException e) { 
System.err.println("Problem configuring WavFile: " + e); 
e.printStackTrace(); 
} 
// catch (InstantiationException e) {System.err.println("Problem 
creating WavFile: � + e); e.printStackTrace();} 
catch (UnsupportedAudioFileException e) { 
System.err.println("Audio file format not supported: " + e); 
e.printStackTrace(); 
} 
} 
private AudioInputStream convertAudioInputStream(AudioInputStream 
sourceAis, AudioFormat targetFormat) { 
AudioFormat baseFormat = sourceAis.getFormat(); 
AudioFormat intermediateFormat; 
AudioInputStream convertedAis = sourceAis; 
// First convert the encoding, if necessary 
if (!baseFormat.getEncoding().equals(targetFormat.getEncoding())) { 
intermediateFormat = new AudioFormat( 
targetFormat.getEncoding(), 
baseFormat.getSampleRate(), baseFormat.getSampleSizeInBits(), 
baseFormat.getChannels(), 
baseFormat.getChannels() * 2, baseFormat.getSampleRate(), 
false); 
convertedAis = AudioSystem.getAudioInputStream(intermediateFormat, 
sourceAis); 
//this.writeConvertedFile(convertedAis, "C:\\encoding.wav�); 
baseFormat = intermediateFormat; 
sourceAis = convertedAis; 
convertedFile = true; 
} 
// Then convert the sample rate 
if (baseFormat.getSampleRate() != targetFormat.getSampleRate()) { 
intermediateFormat = new AudioFormat( 
baseFormat.getEncoding(), 
targetFormat.getSampleRate(), baseFormat.getSampleSizeInBits(), 
baseFormat.getChannels(), 
baseFormat.getChannels() * 2, targetFormat.getSampleRate(), 
false); 
convertedAis = AudioSystem.getAudioInputStream(intermediateFormat, 
sourceAis); 
//this.writeConvertedFile(convertedAis, "C:\\sample.wav�); 
baseFormat = intermediateFormat; 
sourceAis = convertedAis; 
convertedFile = true; 
} 
// Then convert the number of channels 
if (baseFormat.getChannels() > targetFormat.getChannels()) { 
intermediateFormat = new AudioFormat( 
baseFormat.getEncoding(), 
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baseFormat.getSampleRate(), baseFormat.getSampleSizeInBits(), 
targetFormat.getChannels(), 
targetFormat.getChannels() * 2, baseFormat.getSampleRate(), 
false); 
convertedAis = AudioSystem.getAudioInputStream(intermediateFormat, 
sourceAis); 
//this.writeConvertedFile(convertedAis, "C:\\channels.wav�); 
baseFormat = intermediateFormat; 
sourceAis = convertedAis; 
convertedFile = true; 
} 
return convertedAis; 
} 
private File writeConvertedFile(AudioInputStream sourceAis, String 
fileName) 
{ 
File tempfile = null; 
fileName = "tempwavfile.wav"; 
//fileName = fileName.substring(6, fileName.length()-4) + "_new.wav"; 
try 
{ 
//This just takes an audio stream, writes it to disk, then plays it 
the way TALL usually does. 
//it�s a test to see if the input stream is readable by the Java audio 
providers like Tritonus 
//System.out.println(fileName); 
tempfile = new File(fileName); 
AudioSystem.write(sourceAis, AudioFileFormat.Type.WAVE, tempfile); 
} 
catch (Exception e) 
{ 
System.out.println(e); 
} 
return tempfile; 
} 
} 
 
 
 
 
 
 
 
 
 


