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Abstract

Two dimensional (2D) materials have been extensively studied due to their novel properties and
technologically important applications. Especially, the discovery of graphene has stimulated an
avalanche of investigations to exploit its novel properties for applications at nanoscale. In the post-
silicon era, graphene has been widely regarded as the most promising building blocks for the
electronic devices. However, its metallic nature together with sensitivity to the environment leads
to somewhat limited scope of applications. A finite band gap in a material is known to be essential
for the fabrication of devices such as transistors. Such a limitation associated with graphene has led
to the exploration of 2D materials beyond graphene. My work in this thesis can be broadly classified
into two parts. The first part is focused on exploring the properties of some new 2D materials that
have been synthesized in experiments using first-principles calculations based on density
functional theory. Specifically, the electronic properties of group IV monolayer graphyne and
group V monolayer phosphorene, engineering of their properties with external strain and defects,
and the oxidation and degradation of phosphorene in air are investigated. The second part is focused
on computational design of new 2D materials that have not been synthesized in experiments yet.
For example, the structure and stability of antimonene and carbon phosphide monolayers are
studied. These theoretical investigations in the present thesis not only improve our understandings
on the physics and chemistry of existing 2D materials, but also lead to the fabrication of novel 2D

materials for future applications.
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Chapter 1 Introduction

1.1. Graphene and related 2D materials

It was long believed in history that crystals with a single layer of atoms would not exist because
they are thermodynamically unstable ', The discovery of graphene, a one-atom-thick sheet of
carbon atoms, by Konstantin Novoselov, Andre Geim and their colleagues in 2004 took the world
by surprise ‘. Due to its fundamental importance and amazing properties such as flexible,
transparent, stronger than steel, and more conductive than copper, graphene was immediately rising

as a star in material science and condensed matter physics.

Table 1.1. 2D library summarized in 2013. (Reprinted with permission from reference °. Copyright
2013 Nature Publishing Group. See Appendix B for documentation of permission to republish this
material.)

Graphene hBN

family Graphene ‘white graphene’ BCN Fluorographene Graphene oxide

Metallic dichalcogenides:

0 Semiconducting NbSe,, NbS,, TaS,, TiS,, NiSe, and so on
dichalcogenides:
chalcogenldes MoS,, WS,, MoSe,, WSe, MoTe,, WTe,,

Layered semiconductors:

ZrS,, ZrSe, and so on
GaSe, GaTe, InSe, Bi,Se, and so on

Micas, Hydroxides:
BSCCO MoO,, WO, Perovskite-type: Ni(OH),, Eu(OH), and so on
) LaNb,0O,, (Ca,Sr),Nb,O,,.
2D oxides ) Bi,Ti,0,,, Ca,Ta,TiO,, and so on
Layered TIOZ, MnOz, VZOS, Oth
Cu oxides TaOa, Rqu and so on ers

Soon after the discovery of graphene, it was assumed that graphene could replace silicon in modern
electronic circuits ®. However, the group IV elemental monolayers, including graphene, silicene
and germanene 7, are not suitable for application in transistors due to the well-known ‘switch-off’
problem. They are found to be semi-metallic with zero band gaps, thus cannot be used to make

1



transistors with a perfect switch-off state. This limitation on group IV elemental monolayers has

led to the exploration of new two dimensional (2D) materials that go beyond graphene ®.

Figure 1.1 Building van der Waals heterostructures from 2D materials. (Reprinted with permission
from reference °. Copyright 2013 Nature Publishing Group. See Appendix B for documentation of
permission to republish this material.)

Hundreds of 2D materials have been discovered during the past decades ®. Table 1.1 is a summary
of some of them that have been reported up to 2013. These materials can exhibit unique and
fascinating electronic, mechanical, and transport properties, thus enable the fabrication of
electronic and optoelectronic devices. More interestingly, these 2D materials can be considered as
Lego bricks. We can assemble these bricks together to design materials with completely different

functionalities, known as the van der Waals heterostructures as illustrated in Figure 1.1 °.



1.2. Group V elemental monolayers
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Figure 1.2 Comparison of the band gap values of a few 2D materials. (Reprinted with permission
from reference ® . Copyright 2015 American Chemical Society. See Appendix B for documentation
of permission to republish this material.)

The group V elemental monolayers join the 2D material family since 2014. The monolayer form
of black phosphorus, also known as phosphorene, has drawn considerable attention as a novel 2D
semiconducting material with a fundamental band gap ' !!. Since the interlayer interaction in the

bulk black phosphorus is dominated by the van der Waals forces, phosphorene could be obtained



by exfoliating from the bulk lattice. In fact, a few layer of phosphorene has been successfully
isolated by mechanical or liquid exfoliation and exploited for applications in electronic devices '*
131t has been demonstrated that phosphorene-based transistors possess a larger current on/off ratio
compared to graphene-based transistors and higher charge mobility than MoS,-based devices '*.
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Furthermore, the tunable band gap '* ', directional dependent conductance !, and fast photo-

response have been predicted for phosphorene '® 1°, thereby inducing interest amongst scientists

for its novel applications in devices at nanoscale 2% 2!,

More importantly, as shown in Figure 1.2, the band gap values of black phosphorus related
materials span a wide energy range from 0.3 eV in the bulk form to 2.0 ¢V in the monolayer, which
is not covered by other 2D materials °. Thus, phosphorene bridges the gap between zero band gap
material graphene and other semiconducting 2D materials °. This band gap range is particularly

suitable for applications such as thermal imaging, thermoelectric and photovoltaic applications °.

1.3. Motivation of this thesis

Although large amounts of 2D materials have been discovered, the elemental monolayers are
relatively rare. The discovered elemental monolayers include the group III element (B), the group
IV elements (C, Si, Ge, Sn). The group V elemental monolayer, phosphorene, just joined the 2D
materials family, its physical and chemical properties have not been fully understood. For example,
previous experiments have demonstrated the degradation of phosphorene in air, however, the
degradation mechanism has not been discussed due to the difficulties in characterizing the chemical
processes at atomic level. In the meantime, considering the chemical similarity of elements
belonging to the same group in the periodic table, it is natural to consider the other group V

elemental monolayers such as monolayers of arsenic, antimony and bismuth. However, their

4



structure and electronic properties are still open due the challenges in the exfoliation in

experiments.

Based on this background, the first motivation of this thesis is to explore group IV and group V
related 2D elemental monolayers using first-principles calculations. Theoretical studies can be
performed readily and can provide atomic level insights into the physics and chemistry of materials.
Additionally, we will computationally design new 2D materials that have not been synthesized in
experiments, and explore their stability and electronic properties. These theoretical studies will not
only contribute to the interpretation of the experimental data, but also lead to the synthesis of new

2D materials for future applications.



Chapter 2 Computational methods

2.1. Density functional theory (DFT)

Density functional theory (DFT) is an approximate practical method to get the ground state of a
many-body system . The number of publications related to DFT increases dramatically since 1990
(see Figure 2.1), and reaches more than 15,000 each year. The success of DFT roots in the
availability of accurate exchange-correlation functional and sufficient computational resources
since the past twenty years. In this section, some of the basic ideas and practical methods related to

DFT are introduced.
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Figure 2.1 Number of publications per year (1975-2014) on topics of “density functional” or
“DFT”, according to the Web of Science Core Collection (February 2015). (Reprinted with
permission from reference *>. Copyright 2015 American Physical Society. See Appendix B for
documentation of permission to republish this material.)



2.1.1. Schrodinger equation for many-body systems

Quantum mechanics is one of the most fundamental theory in physics that governs the motion of
microparticles. To begin with, let’s look at the time-independent Schrédinger equation for a many-
body system with electrons and nuclei

HY(r) = E¥ (1), (1.1)

H is the Hamiltonian for the many-body system,

H=-L 323, TS YRR S NN IR
- 2m, 4 l lllr R| L:t]lr rl 2M; IYI I;tleI_R]l» )

where the electrons are represented by lower case subscripts, and the nuclei are represented with

upper case subscripts.

According to the Born-Oppenheimer/adiabatic approximation %, the motion of nuclei and electrons
can be decoupled due to the fact that nuclei are much heavier than electrons and they move much
slowly than the electrons. The electrons can be considered to respond instantaneously to the motion
of the nuclei. Thus, the Hamiltonian for the many-body system in Equation 1.2 could be decoupled

into two parts 2

N 2,1 e? Zre?
H, = ZmeZin +22i¢j|ri_rj| Zi"lrz—Rzl’ (1.3)

hZ
Hy =———%,V/ +U(R), (1.4)
I
where H, is the Hamiltonian for the electrons, and H,, is the Hamiltonian for the nuclei. The total
potential of the nuclei is defined as

ZIZ]E

UR) = 551y + ER). (15)



where E (R) is the total energy of the electrons within the set of coordinates R for the nuclei. The

force on each nucleus can be calculated with
2

The equilibrium geometry of the nuclei is given by the condition that the force acting on individual

nucleus is zero.

2.1.2. The Kohn-Sham equations

Due to the computational complexity of solving the many-body Schrodinger equation for a system

with large amount of electrons, Paul Dirac made a famous announcement 2

“The general theory of quantum mechanics is now almost complete, ...
The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems without too

much computation.”

As stated by Dirac, the difficulty of solving the many body Schrodinger equation lies in developing
an ‘approximate practical method’ to get the wave functions and energy eigenvalues for complex
systems, such as atoms, molecules and solids. To this end, density functional theory (DFT) was

born, and it has now become a well-established tool in physics, chemistry and materials science.
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The theoretical foundations of DFT were laid by Hohenberg, Kohn, and Sham in 1964 and 1965 2%

?7. The Hohenberg-Kohn theorem I states that

For any system of interacting particles in an external potential Veu(r),
the potential Veu(r) is uniquely determined by the ground state particle

density no(r).

The Hohenberg-Kohn theorem II states that

A universal functional for the energy E[n(r)] can be defined in terms of
the density n(r). The ground state energy of the system is the global
minimum value of this functional, and the density that minimizes the

functional is the exact ground state density ny(r).

The Hohenberg-Kohn theorems describe the electron density as a basic variable, thus reduces a N-
electron many-body problem with 3N spatial coordinates to a problem with only 3 spatial
coordinates, and the ground state can be obtained by minimizing the total energy with respect to
the density. However, the Hohenberg-Kohn theorems do not provide a prescription for calculating

ground state density no(r) of a system in practice.

HK KS HK
VadF) &= ny(r) &= nyr) = vgs(r)

{ 1 [ {
Fi(ir}) =%(ir}) Wit neF) &= wir)

Figure 2.2 Schematic representation of Kohn-Sham ansatz.




A practical approach to obtain the ground state density was achieved by the ansatz made by Kohn
and Sham in 1965 ?’. A schematic representation of the Kohn-Sham ansatz is given in Figure 2.2.
According to Kohn-Sham ansatz, an auxiliary non-interacting system can be constructed to replace
the interacting many-body system. The auxiliary system has the same ground state density as the
original system, but the complexity in the equations for the original system is greatly reduced in
the equations for the non-interacting system. One finds the ground state density and energy for the

original system by solving the Kohn-Sham equations for the non-interacting system,

(_% Vet ”eff) Yi(r) = gipi(r), (1.7)
Verf = Vext (1) + Vhareree (1) + Vxe (1), (1.8)
Vext = = i ogon (1.9)
Vhartree = 'SE,;’T;) (1.10)

Ve = fan (1.11)

where E,,;(r) is the potential energy due to the nuclei and any other external field, and
Enartree(r) is the Hartree energy which describes the classical Coulomb interaction of the electron
density n(r). The exact formula of E,,; (1) and Eygy¢ree (7) are already known, the only unknown
term in the Kohn-Sham equations is the exchange-correlation functional E,..(r). If the universal
functional E,.(r) were known, the exact ground state density and energy of the real interacting
system can be obtained by solving the Kohn-Sham equations for the auxiliary non-interacting

system.
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Since a universal functional E,..(r) is unknown, different approximations have been proposed for
E,.(r). These different flavors for E,.(r) form the well-known “Jacob’s ladder” of density
functional approximations as shown in Figure 2.3 28, Local density approximation (LDA) is the
simplest form for the exchange-correlation functional, and it is the first rung of the Jacob’s ladder.
At this level of theory, it is assumed that the exchange-correlation energy density to be the same as
a homogeneous electrons gas, and the exchange-correlation functional depends only on the density

at the coordinate where the functional is evaluated
ELDA = [ ehomm)n(r) d3r. (1.12)

The second rung of the Jacob’s ladder is the generalized gradient approximation (GGA) which
introduces the gradients of the density Vn(r) as additional ingredients in the exchange-correlation

functional
ESGA = [ €564 (n, Vn)n(r) d3r. (1.13)

The third rung of the Jacob’s ladder is meta-GGA which involves the Laplacian of the density

(V2n(r)), and/or the Kohn-Sham kinetic energy density (t = %Zi“ |V |?) 28
EMGGA = [ MGGA(n, vn, V2n(r), Dn(r) d3r. (1.14)

The fourth rung of the Jacob’s ladder includes the exact exchange information, which are known
as hybrid functionals. These functionals mix a fraction of Hartree-Fock exchange with a fraction

of DFT exchange and full DFT correlation

EH664 = aBHF[(yi}] + (1 — a)EPFT + EDFT. (1.15)
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The fifth rung of the Jacob’s ladder is the functional related to random phase approximation (RPA)
which involves the unoccupied Kohn-Sham orbitals. This level of theory is not involved in the

current work due to the huge computational costs.

HEAVEN OF CHEMICAL ACCURACY

unoccupied {0;} generalized RPA
Ex hyper-GGA
T and/or V?n meta-GGA
Vn GGA
n LSD
HARTREE WORLD

Figure 2.3 Jacob’s ladder of density functional approximations to the exchange-correlation
energy. (Reprinted with permission from reference **. Copyright 2005 AIP Publishing LLC. See
Appendix B for documentation of permission to republish this material.)

The LDA/GGA is a local/semilocal functional of the density, which is computationally efficient
for most calculations and is widely used for electronic structure calculations in material science,
condensed mater physics, and quantum chemistry. The hybrid functional evolves the nonlocal
exchange term, which is computationally more expensive than the LDA/GGA functional, but

provides improvements on band gap values for most semiconductors. In this work, the LDA/GGA

12



functional is mainly used for the structure, stability and electronic property calculations. The hybrid

functional HSE06 * will be used to get the band gap values for a few 2D materials.

2.1.3. Self-consistent approach to the Kohn-sham equations

Initial Guess
n(r)

l«

Calculate Effective Potential
v&’ff = v{’\'l(r)+VH[I}'Fr(’e‘(r)+VX('(r)

!

Solve Kohn-Sham Equations

2
(429" + vy )ur) = )

!

Evaluate the Electron Density and Total Energy
no(r)zth//,‘(r”z = E,[n(r)]

No

Converged?

Output Quantities
ny(r), E[ny(r)] — Eigenvalues, Forces,...

Figure 2.4 A flow chart of the self-consistent approach to solve the Kohn-Sham equations.

The Kohn-Sham equations are solved self-consistently as illustrated in Figure 2.4. One starts from
the initial guess for n(r), for example, the superposition of atomic charge densities, to construct

the effective potential of the system. Then, the eigenvalues &; and eigenstates 1;(r) is obtained by

13



solving the Kohn-Sham equations. The charge density is subsequently evaluated to check if the
convergence criterion is fulfilled. If it is not fulfilled, the effective potential is evaluated based on
the new charge density in replacement of the initial guess, and the diagonalization of the Kohn-
Sham equations is performed again. This loop is repeated until the convergence criterion is satisfied,

the properties of the system are then calculated with the ground state charge density ny (7).

2.1.4. Basis sets

The use of basis sets for expanding the wave functions is an important step towards solving the
Kohn-Sham equations. The central idea of basis set is to represent the unknown wave function of

the system as a linear combination of a set of known basis function ¢; (1)

Y(r) = Xicii(r), (1.16)

where c; is the expansion coefficient. With this linear expansion, the eigenvalue problem of the
Kohn-Sham equation is transformed to a linear algebra problem of finding the solution for the
secular equation. Some of the widely used basis sets include plane waves, localized atomic orbitals,
numerical basis sets, and augmented plane wave methods. Each of these methods has its own

advantages and pitfalls.

The plane wave approach is widely used in solid state physics, the wave function is expressed as

the sum of plane waves
1 ; :
Y(r) = 75X ci(6) eI, (1.17)

where G is the reciprocal lattice vector, k is the crystal wave vector in the first Brillouin zone, and

Q is the volume of the unit cell in real space. The plane wave basis set is the natural choice for a

14



periodic system such as a perfect crystal. In practical implementation, the number of plane waves
is determined by the cutoff kinetic energy E.,;, only reciprocal lattice vectors satisfied the

following condition are included in the expansion
h2 2
ﬁ|k+6| < Equt (1.18)

Thus, the mathematical form of the plane wave basis set is quite simple, which merits the practical
implementation in calculations. The quality of the plane wave basis set is only determined by the
cutoff energy. However, large amounts of plane waves are normally required to accurately
represent the Kohn-Sham orbitals, especially for the orbitals near the core of atoms. The plane wave

basis sets are implemented in Vienna ab initio simulation package (VASP) 33!,

In the localized atomic orbitals approach, the wave function is written as the sum of atomic-like

orbitals x;

Y(r) = Xicxi (1.19)

Slator Type Orbitals (STOs) and Gaussian Type Orbitals (GTOs), which are written as the product
of spherical harmonics Y; ,,, (8, ¢) and a radical function, are two basis functions traditionally used

in molecular quantum chemistry. The STOs are represented as
X(,6,9) = NY, (6, 0)r" e, (1.20)
and the GTOs are represented as

X(1,6,9) = NY, (6, p)r?"=2"le =87, (1.21)
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where N is the normalization factor. The localized atomic orbitals give direct insights into the
atomic states, and small amounts of basis functions are usually required for describing the Kohn-

Sham orbitals.

In the numerical approach, the basis orbitals are products of a numerical radial function and

spherical harmonic *2. For atom I, the basis orbitals are written as

Primn (T, 0, (P) = Prin (T)Yl,m (9' (P)’ (1 ~22)

where n is the index for different orbital, and (I, m) is the index for angular momentum. There will
be several orbitals with same angular dependence, but different radial dependence, which is
conventionally called a multiple-{ basis. The radial functions @;;,, (1) are defined by a cubic spline
interpolation from the values given on a fine radial mesh. Each radial function may have a different
cutoff radius, up to that radius, its shape is completely free can be introduced by the user in an input
file. Beyond that cutoff radius, the radial function is forced to zero. This essentially enables the
Hamiltonian and overlap matrix elements to vanish beyond a certain distance. The numerical basis
sets are implemented in the SIESTA (Spanish Initiative for Electronic Simulations with Thousands

of Atoms) program *.

In the augmented plane wave approach, the real space is partitioned into the region close to each
atom and the interstitial region. The wave function close to an atom is represented with localized
atomic-like orbitals, and the interstitial region is represented by plane waves. The matching of wave

functions at the interface between the two regions is required.
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2.1.5. Pseudopotential

As mentioned in the previous section, large amounts of basis functions are required to represent the
rapidly varying core states. The goal of pseudopotential is to replace the all-electron potential by
an effective potential such that core states are eliminated and the valence electrons are described
by pseudo-wavefunctions with significantly fewer nodes as illustrated in Figure 2.5. The
pseudopotential is constructed such that it matches the true potential outside a designated core
radius 7,.. Similarly, each pseudowavefunction must match the corresponding true wavefunction
beyond this distance. In addition, the charge densities obtained outside the core region must be
identical to the true charge density. The pseudopotential approach works well due to the fact that
most physical and chemical properties of atoms are determined by the structure and dynamics of

valence electrons. This is particular true for the formation of chemical bonds, thus the details of the

34, 35 36, 37

core states can be neglected. Norm-conserving and ultrasoft pseudopotentials are two

forms of pseudopotentials which are widely used in modern quantum chemistry community.
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Figure 2.5 Comparison of a wavefunction in the Coulomb potential of the nucleus (blue) to the one
in the pseudopotential (red). The real and the pseudo wavefunction and potentials match above a
certain cutoff radius.
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Norm-conserving pseudopotential was proposed by Hamann, Schluter, and Chiang* *>, which
requires the charge enclosed within the radius 7, must be the same for the pseudo wavefunction

E

(pf: (r) and the all-electron wavefunction @{.Z () (known as the norm-conserving condition)

e PR dr = [ rff (r)? dr. (123)

Norm-conserving condition benefits the accuracy and transferability of the pseudopotential at the
cost of sofeness. An alternative choice is the ultrasoft pseudopotential proposed by Vaderbilt in
early 1990 3¢ 37, This approach releases the norm-conserving constraint thus offers greater
flexibility in the construction of pseudopotentials which needs a much smaller size of basis

functions.

2.2. Lattice dynamics from DFT

Up to this point, we have assumed that the crystal lattice to be completely rigid and nuclei stay at
the positions of a perfect lattice without any displacements. However, this is not actually the case
as the nuclei are always vibrating around their equilibrium positions even at very low temperature.
The quanta of lattice vibrations are known as phonons which are extremely important for
understanding the thermal properties of materials, such as heat capacity, thermal expansion, and

thermal conductivity.
Assuming the equilibrium position of a nucleus j in the unit cell / is written as

R(j) =R, +R;. (1.24)

A small displacement of the nucleus from its equilibrium position is u(lj), and U is potential

energy of the system. Then, the equation of motion for this nucleus is
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*ulj) _ au
atz  ~ au(l))

M, (1.25)

We can perform a Taylor expansion for the potential energy U of the nuclei with respect to u, (1))

1
U=Up+ Y 0qual) +5 Y > Saplsl/Dua(ugl’j")

lja Lja l'j'B
1 . I r:r . r:r r-r
+§lea Zl’j’/j’ Zl”j”y q)a/j’y(l]; Uil )ua(l])uﬁ(l J )uy(l j)+ 0(u4)> (1.26)
where, @, f, and y are the indices for the Cartesian coordinates, ®,(lj), ®4(lj;1'j'), and
Dopy (s U'j;1"j") are the first, second and third order derivatives of the total potential as

expressed as

au

®() =555 (1.27)
N o°U
q)aﬁ(l]. l.] ) - aua(lj)au/;(l’j’) uzoa (128)
oy U
q)aﬁy(l]: l_] ) l ] ) - aua(l])au/g(l']')auﬁ(l”j”) uzo, (129)

®,(lj) is the force on the nucleus ;j in the unit cell /, dDaB(lj; l’j'), and dDaBy(lj; I l"j”) are
also known as the harmonic and cubic force constants, respectively. Since the nuclei are vibrating
around their equilibrium positions, the first derivative of the potential energy ®,(lj) equals to

zero. Within the harmonic approximation **, we neglect the higher order force constants than the

harmonic ones, the equation of motion in Equation 1.25 is written as

dzua(lj)_
APTTRE

=2ujrg Pap s U'jDugl'j"). (1.30)
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Considering the periodic structures of crystals, we can write the displacements in terms of a plane

wave with respect to cell coordinates
. 1 ~ iaRy - —i
uq(lj) = \/T_inmqa(])elq Rig=tWmat, (1.31)

where m is the index for different vibrational mode, q is the wave vector, and Npqq(j) is the
component along direction « of the normal mode. Substituting this trial solution into the equation

of motion, we obtain the dynamical equation
Wrznqnmqa(j) = Zj’/j’Dja,j’/}(q)nmqﬁ(j,)a (1.32)

where the dynamical matrix is defined as

Yo Pop(0j; 1'j)e Ry (1.33)

1
D. . =
J%] ﬁ (q) mjmj:

We can write the dynamical equation in 1.32 into the matrix form
D(g) n(q) = w?(@n(Q). (1.34)

Solving the above eigenvalue equation yields the phonon dispersion relation w(q). The dynamic
matrix can be calculated with finite displacement method or the density functional perturbation
theory (DFPT) in practice. Since the dynamical matrix is Hermitian 3°, the eigenvalues which are

2 can only be positive. Imaginary frequencies are indicative of a

the vibrational frequencies w
dynamical instability of the crystal. This law can be used to check the stability of the proposed 2D

materials.

In this work, the phonon dispersion curves were calculated with Phonopy code #°. One starts from

the ground state geometry of a material, displacements of the atoms or supercells are created during
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the pre-processing stage. Then, DFT calculations are performed to obtain the interatomic force
constants. Finally, Phonopy will collect the force constants and do the subsequent phonon related

calculations.

2.3. Molecular dynamics

Molecular dynamics is a powerful technique to study the kinetic and thermodynamic properties of
complex systems. It is based on numerical integration of the classical equations of motion, and can
be considered as ‘computational experiment’ to the system. The positions and velocities of atoms

are updated from the initial state according to the Newton’s equations of motion

d?r;

m— = fi (1.35)

The force acting on an atom is calculated from the potential energy

au
fi= o (1.36)

The commonly used numerical integration for the Newton’s equations is the so-called Verlet
algorithm *!. The basic idea of this algorithm can be derived from the Talyor’s expansion for r; (t +

At) and r;(t — At)
ri(t+ AL = 1y(t) + ¥ (DAL + 7, (A% + 1, (HAL + 0 (ALY, (1.37)
ri(t — At) = 1y(t) — 7, (DAL + 2 F (DAL — =7, (D)AL® + O (ALY, (1.38)

adding Equation 1.37 and Equation 1.38 yields

ri(t + At) = 21 () — r;(t — At) + 1, (t)At? + O(At?). (1.39)
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In classical molecular dynamics, the potential energy U is described with an empirical model,
known as the force field, which includes the bond, bend, and dihedral angle potential as well as van
der Waals and electrostatic interactions between atoms. The force field is parameterized by fitting
to experimental data or ab initio calculations. Although classical molecular dynamics has been
widely used in the treatment of liquids and solids, the force field model is not able to describe the
chemical bond breaking and forming events. This is where ab initio molecular dynamics (AIMD)
comes in. In AIMD, the force acting on an atom is obtained from electronic structure calculations
such as DFT, which overcomes the limitations of classical molecular dynamics. AIMD has
becoming increasingly popular for the study of a wide range of problems in materials science,
chemistry, and biology. In this work, I will touch a little bit of classical molecular dynamics
simulations to get the buckling structures of phosphorene. Some AIMD simulations will be
employed to study the interaction of O, and H>O molecules with phosphorene and to verify the

stability of novel 2D materials at finite temperature.

2.4. Crystal structure prediction

Crystal structure prediction for materials plays significant role in accelerating the discovery of new
materials. Once the crystal structure of a material is known, one can easily obtain its properties
with DFT calculations before the material is synthesized in experiments. In addition, crystal
structure prediction is valuable for investigating the materials under extreme conditions which are
difficult for experiments. However, crystal structure prediction involves the searching of stable
structures among huge amounts of energy minima on the crystal energy surface, which is a difficult
task. A lot of efforts have been undertaken for crystal structure prediction, some practical methods

42, 43

available nowadays include simulated annealing , minima hopping *, basin hopping *°,
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metadynamics “°, the genetic algorithm 4> 8, random sampling method *°, hybrid evolutionary
algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) *°, and the particle-

swarm optimization CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) °'.

In this work, the CALYPSO code is used for the prediction of novel 2D materials. PSO is a method
for multidimensional optimization which is inspired by the social behavior of birds flocking 2.
CALYPSO contains three main steps as illustrated in Figure 2.6: the generation of initial structures
with the constraint of symmetry; local optimization of structures using DFT code, such as VASP

39:31 in this work; and the evolution of structures based on PSO algorithm.

[ Generation of initial structures ]

_’I List the symmetry functions |

k4

Local optimization

NO Generation of new structures by
PSO (some structures are generated
randomly )

Figure. 2.6 The flow chart of 2D materials searching using CALYPSO. (Reprinted with permission
from reference . Copyright 2012 AIP Publishing LLC. See Appendix B for documentation of
permission to republish this material.)

With this algorithm, the positions of the particle (e.g. each structure) are updated according to the

following equation®
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t+1 _ ot t+1
X=X, (1.40)

where x and v are the positon (e.g. lattice parameters and atomic coordinates) and velocity,

respectively. i represents the atomic index, j is the dimension of the structure, and t is the index of

generation (e.g. a set of structures). The velocity of the particle depends on the previous unrelaxed

¢

. t
Lj

positions x ij»

the previous velocity v; ;, the atomic positions of the optimized structure (pbest), and

the atomic positions of the lowest structure (gbes?) that has been found so far

t+1

2 WUl-t’j + clrl(pbestit’j - xl-t,j) + czrz(gbestit,j - xit,j), (1.41)

where w is the inertia weight defined in the range of 0.9 to 0.4 3% ¢; = ¢, = 2 has been
demonstrated to give the overall best performance *. r; and r; are two random number in the range
of 0 to 1. This code has good interface to a few DFT codes, and has been successfully utilized to

predict the crystal structures of lithium-boron compounds at high pressure *® and other 2D materials

53,57
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Chapter 3  Group IV elemental 2D materials — 6,6,12-
graphyne and engineering of its properties’

3.1. Introduction

Graphene remains one of the most extensively investigated 2D materials and has offered a wealth
of information on the exotic physics and potential technological applications * 3862, Graphene has
a honeycomb structure with two carbon atoms in the unit cell. The carbon atoms are connected
through o bonds with sp? hybridized character. The out-of-plane p. orbital forms the 7 bands which
endows the observed linear dispersion near Fermi level . Graphene can be synthesized by top-

58, 64

down strategy such as exfoliation from bulk graphite , or bottom-up strategy such as chemical

) 65-68

vapour deposition (CVD . There are a few comprehensive reviews on the fabrication,

characterization, and application of graphene 7!,

As the closest cousin of graphene belonging to the group IV elemental monolayers and being
compatible with Si-based electronics, silicene has also attracted a great deal of attention from
theorists and experimentalists 7>7*. The stronger spin orbit coupling in silicene compared to
graphene makes it a potential candidate for the study of quantum spin Hall effect (QSHE) >77. The
chemical bonds in silicene are different from those in the bulk: bulk Si is composed of sp’
hybridized Si atoms; whereas silicene has a low buckled structure with mixed sp?-sp* hybridized
Siatoms ’® 7, Free-standing silicene is predicted to have linear dispersive band structure near Fermi
level similar to that in graphene ®* 8!, The buckled structure and sp*-sp? hybridized bonds impart

novel physical and chemical properties to silicene differentiating it from graphene *. Due to the

" The contents in this chapter were previously published in Appl. Phys. Lett., 2014, 104, 213107.
Refer Appendix C for granted permission to be republished.
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non-existence of a layered bulk counterpart, silicene cannot be isolated by exfoliation methods.
Silicene has been grown by depositing Si atoms on Ag(111) 7, ZrB,(0001) ¥ , and MoS, *

substrates.

Germanene is another analogue of graphene belonging to group IV elemental monolayers. The
structure of germanene is similar to that of silicene with a buckled lattice *. The Ge-Ge bonds in
germanene show mixed sp?-sp® hybridized character 7®. The electronic properties of germanene

T 80, 85, 86

have been extensively studied using DF Atomically thin germanene has been recently

synthesized on Au(111), Al(111) or Pt(111) surface 73788,

All these group IV elemental monolayers are found to be semi-metallic with Dirac cone like band
structures. New allotropes of group IV elemental monolayers have also been proposed, for example
graphyne. In this section, the electronic properties of graphyne and the engineering of its properties

with external strain is explored.

Owing to the flexibility of forming sp, sp? or sp® bonds ¥, carbon can form abundant allotropes
including three dimensional (3D) (e.g. diamond and graphite), two dimensional (2D) (e.g.

! and nanoribbons °%), and even zero

graphene) *°, one dimensional (ID) (e.g. nanotubes
dimensional (OD) fullerenes **. Graphyne, another 2D carbon allotrope which is formed by inserting
a carbon triple bond (-C=C-) into C-C bond (Figure 3.1), has attracted increasing attention in recent

d % %. Theoretical

years. For example, strategies for synthesizing graphyne were propose
calculations on a, f, and y-graphyne were performed to predict their stability and electronic
properties . Synthesis of graphdiyne, a 2D carbon allotrope which has two tripe bonds (-C=C-)

inserted into C-C bond, has also motivated attention on the several forms of 2D carbon allotrope

97 1t was predicted that a-, f-, and 6,6,12-graphyne have graphene-like Dirac cone band structures
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% Thus, existence of Dirac cones for 6,6,12-graphyne which has a rectangular lattice is a significant
prediction since it has long been assumed that Dirac cone is unique for the hexagonal 2D materials
or topological insulators . Moreover, 6,6,12-graphyne has two nonequivalent anisotropic Dirac

cones making it to be even more fascinating than graphene for device applications.

Applying external strain is one of the approaches to tailor electronic properties of materials. Strain
could be induced by the mismatch of lattice constant and thermal expansion between the substrate
and the film, which has been widely used to achieve tunable properties in functional oxide films'*
101 Tn graphene, it has been shown that its Dirac band structure is invariant under a symmetric strain
and a band gap could open by applying an asymmetric strain '°2. The tunable energy gap could be
realized in a bilayer graphene by changing the strength and direction of strain '. Local strain could
be utilized to integrate graphene for all carbon electronics ', Experimentally, it is also possible to
apply large strain by stretchable substrates '. Considering the importance of the relationship
between strain and the electronic properties of 2D materials, we will investigate such relationship
for monolayer and bilayer of 6,6,12-graphyne using density functional theory, and will show that

Dirac cones can be tuned independently with the strain applied to graphyne.

3.2. Computational methods

Electronic structure calculations were performed using a norm-conserving pseudopotential % as
implemented in the SIESTA package **. In our calculations, van der Waals (vdW) interactions '*”
108 were included in density functional theory (DFT). We used a 11x11x1 Monkhorst-Pack grid !%°
for k-point sampling in the Brillouin Zone (BZ). The mesh cutoff energy is 400 Ry and the vacuum

distance perpendicular to the monolayer is larger than 25 A in the supercell model employed. The
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geometric structure was obtained by relaxing all the atoms with residual force smaller than 0.01

eV/A on each atom.

3.3. Results and discussions

The 6,6,12-graphyne monolayer is defined by the number of carbon atoms along the rings as shown
in Figure 3.1. The (average) length of sp’ hybridized C bond is 1.447 A, and that of the sp
hybridized C bond is 1.257 A in the ground state configuration of 6,6,12-graphyne obtained at the
vdW-DFT level of theory. To keep the consistency with calculations for the bilayer where the vdW
interaction is necessary, vdW interaction is also included in the calculations for the monolayer. The

calculated bond lengths are slightly larger than those obtained at PBE-DFT level of theory ''°.

Figure 3.1 Schematic representations of (a) graphene and (b) 6,6,12-graphyne. 6,6,12-graphyne is
defined by the number of carbon atoms along the rings as shown in (b). (Reprinted with permission
from reference '!!. Copyright 2014 AIP Publishing.)

Figure 3.2 shows the calculated band structure of the monolayer of 6,6,12-graphyne. In the first
BZ, there exists two kinds of anisotropic Dirac cones. One of the Dirac points is slightly above the
Fermi energy, and the other is slightly below the Fermi energy suggesting that 6,6,12-graphyne is
self-doped *%. The cone I is located at the high symmetric direction from I' to X', and the cone II is
at X point. These cones are anistropic based on the absolute derivative of the 7 band (right panels

of Figures 3.2 (¢) and (d)). The cone I shows a linear dispersion with the group velocities of v, =
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0.49x10° m/s and Vi = 0.58x10° m/s which are about 40% smaller than that of graphene (ve

=0.85x10°m/s)!'% '3, The cone 1I is parabolic near the center of the cone, so the group velocity
goes to zero. Note that the group velocity is defined by the derivative of energy dispersion

v, =(1/ h)(3E, / k), ;. -

In our case, the cone II has a band gap of 43 meV, which is different from the previous results 8.
This is due to the fact that the exchange-correlation functional form in this study includes the effect

of vdW interactions which are important in predicting accurate interlayer spacing for bilayers of

carbon-based systems !4,
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Figure 3.2 (a) Band structure of 6,6,12-graphyne monolayer, (b) The illustration of first BZ and
high symmetry points; (c) 2D band structure of the cone I (left panel) and the absolute derivative
(right panel) of the corresponding w band; (d) 2D band structure of the cone I (left panel) and the
absolute derivative (right panel) of the corresponding w band. Fermi energy is set to zero. The 2D
band structure are ploted within a circle of radius 0.2*pi/a. (Reprinted with permission from
reference ''!. Copyright 2014 AIP Publishing.)
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Figure 3.3 shows the band structure of graphyne with tensile strain applied along x direction. The
strain drives movement of Dirac points in the momentum space. With increasing strain, the cone I
moves towards X', and the two conical dispersions of the bands merge into a single cone at applied
strain of 6.3%. The merged cone shows the linear dispersion along k, and the parabolic dispersion
along k.. This is also accompanied by opening of the energy gap for strains larger than 6.3%. Such
transition from zero gap to finite gap band structure was also predicted for the pristine graphene
under the application of external strain, though the critical strain for the merging of Dirac cones
was reported to be larger that 20% !''> 116, Thus, 6,6,12-graphyne could be a potential candidate
material to study the merging of Dirac cones without using complex techniques involving
molecular graphene !'7 or cold atoms ''®. The position of the cone II does not change with tensile
strain up to 8% along x direction. For the tensile strain along y direction, the gap at the cone II

increases whereas the position of cone I is not affacted.
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Figure 3.3 Variation of the calculated 2D band structures of the cone-I with strain along x. The
band structures are plotted within a circle of radius 0.5*w/a centered at X'. (Reprinted with
permission from reference '!!. Copyright 2014 AIP Publishing.)



The effects of compressive strain on the band structure of the monolayer are shown in Figure 3.4.
With the compressive strain applied along x direction, the cone I shifts above Fermi energy, and
the cone II shifts below Fermi energy. Thus, shifting of the Dirac points causes n-type doping at
the cone I, and p-type doping at the cone II. We notice that the strain induced self-doping effect has
also been reported for silicene and germanece ' for which there only exits one kind of a charge
carrier. This is not the case with 6,6,12-graphyne for which both negative and positive charge
carriers coexist in the lattice. The Dirac points shift almost linearly with compresive strain (Figure
3.4(b)), which means the concentration of charge carriers can be tuned effectively. The application
of compressive strain along y direction has similar effects, however, the cone I is p-type doped and

the cone II is n-type doped.
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Figure 3.4 (a) The calculated 2-D band structure of the cone-II; (b) variation of the energy of the
two Dirac points with strain along x and y. Fermi energy is set to zero. The band structure is plotted
within a circle of radius 0.5*n/a centered at X. (Reprinted with permission from reference .
Copyright 2014 AIP Publishing.)

Since the cone II is parabolic near the center of the cone, its group velocities go to zero if no tensile
strain is applied. The group velocities appear when the applied compressive strain pushes the cone
to be duplicate (Figure 3.4(a)). For the uniaxial strain along x direction, the group velocity vi. of
the cone I decreases gradually, and goes to zero with the merging of the Dirac cones; the velocity
viy of the cone I increases slightly and vanishes when the band gap opens up as shown in Figure
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3.5(a). The increased discrepancy between v and vg, with the tensile strain along x implies that the
anisotropy of the cone I is greatly increased. The anisotropy of the group velocity may lead to the
observable resistance anisotropy . For the strain along y, the group velocities of the cone I nearly

remains the same (Figure 3.5 (b)).

Bilayers of graphene-like systems can possess the properties which are not exhibited by monolayers
such as tunability of the band gap in graphene bilayer by the external electric field '*. Also,
synthesis of a bilayer is likely to be easier than that of a monolayer; multilayer graphidyne was first
synthesized before monolayer could be produced °’. We will now consider 6,6,12-graphyne bilayer
focusing on its equilibrium stacking configuration and the effect of strain on its electronic
properties. The calculated results find the AB-stacked configuration to be most stable bilayer
configuration with the interlayer spacing of 3.416 A. The calculated interlayer distance is

consistence with the one predicted for the a-graphyne 2.
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Figure 3.5 Variation of the group velocities of & electrons of the cones I and Il with the uniaxial
strain (a) along x, and (b) along y. (Reprinted with permission from reference ''!. Copyright 2014
AIP Publishing.)
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Figure 3.6 (a) Band structure of AB-stacked 6,6,12-graphyne bilayer, (b) Illustration of the first
BZ; (¢) 2D band structure around Cone I (left panel) andthe absolute derivative (right panel) of
the corresponding w band; (d) 2D band structure around Cone Il (left panel) and the absolute
derivative (right panel) of the corresponding  band. Fermi energy is set to zero. The 2D band
structure are ploted within a circle of radius 0.5*n/a. (Reprinted with permission from reference
- Copyright 2014 AIP Publishing.)

Figure 3.6 shows the band structure of the AB stacked bilayer showing the splitting of highly
anisotropic Dirac cones (Figures 3.6 (¢) and (d)) due to appearance of the interlayer interaction in

the bilayer system. The group velocities of the cone I are v =0.24x10°m/s and v, = 0.55x 10° m/s

showing the enhancement in anistropy relative to that of the monolayer. The 7 and 7#* bands at cone
I meet together and result into two Dirac points near X (Figure 3.6(d)). The splitting of Dirac cones
is associated with overlapping of p, orbitals of the two layers. This is confirmed by taking the
interlayer distance to be large enough (~6 A) to exclude interactions between monolayers; the band
structure is exactly the same as that of the monolayer. On the other hand, a bilayer with a interlayer

distance of 2.5 A shows opening of the band gap of 43.5 meV due to relatively large overlap of the
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p- orbitals. This implies the possibility of tuning electronic properties with the application of the

perpendicular strain to the bilayers.

The effects of the in-plane strains on 6,6,12-graphyne bilayer are similar to the effects predicted
for the monolayer. A small tensile strain along x direction will cause the shifting of the cone I in
the BZ. The gap opens up with a larger strain, but the strain along x has little influence on the cone
II. Likewise, the unixial strain along y will open up the gap at the cone II, but it does not affect the
cone 1. The compressive strain shifts Dirac points either above or below Fermi surface, which
indicates that the self-doping effect in 6,6,12-graphyne bilayer could also be achieved under a

compressive strain.

The elastic properties can be characterized by Young’s modulus and Poisson’s ration which are
critical for the strain engineering of electronic properties of materials. As it is ambiguous to define
the volume of the sheet with atomic thickness, the in-plane stiffness constant C is generally used.
In the limit of small deformations, the strain energy is simply a quadratic function of strain %, so
the stiffness constant C can be expressed as

1 0K
S, o¢’

C= , (3.1)

where S is the equilibrium area, the strain energy Es is the energy difference between the strained
and strain relaxed system. The stiffness constant can be obtained by fitting the strain energy curves

within the elastic region.

The calculated stiffness constants of 6,6,12-graphyne are 183 and 136 N/m along x and y directions,
respectively. These values are slightly larger than the values of ~142 and ~112N/m (obtained by

converting the data obtained by molecular dynamics calculations in units of GPa using the thickness
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of 3.2 A) 12124 Due to the weak interlayer vdW interactions, the stiffness constants for AB stacking
bilayer are approximately twice that of the monolayer. The stiffness of 6,6,12-graphyne is just one
half of the experimental value for graphene (340+ 40 N/m !2%), which implies that 6,6,12-graphyne
is softer than graphene. The softness facilitates the strain engineering of electronic properties and

makes the realization of the merging of Dirac cones possible in 2D materials !5 118126,

3.4. Summary

First principles calculations were performed on 6,6,12-graphyne monolayer and bilayer systems.
Both monolayer and bilayer systems are semi-metals with Dirac cones in first Brillouin zone.
Uniaxial tensile strain along x will induce shifting of the cone I, and the merging of two conical
bands at X’ is predicted. The tensile strain along y will increase the energy gap at the cone II. The
compressive strain shifts the energy of the Dirac points almost linearly which results into
coexistence of positive and negative charge carriers in the lattice. The large anisotropy in stiffness
is also being predicted for the monolayer graphyne. The energetically preferred structure of the
graphyne bilayer is similar to the Bernal’s AB stacking of two adjacent graphene layers. The
anisotropy of the Dirac cone is largely enhanced in the bilayer, which implies a possibility of
increased anisotropy in its electron transport properties. We believe that the predicted tunability of
electronic properties makes 6,6,12-graphyne to be a candidate 2D material for theoretical studies

and applications at nanoscale.
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Chapter 4 Group V elemental 2D materials -
phosphorene and engineering of its properties”

4.1. Introduction

As discussed in the previous chapter, the group IV elemental monolayers have a zero band gap
which limits their applications in transistors. Although tremendous efforts have been done to open
the band gap in graphene, for examples by patterning graphene into nanoribbons or applying
perpendicular electric field to multilayer graphene, the band gap value is still too small (less than

9.120.127.128 Dyjfferent from the group

0.2 eV) for applications where a suitable band gap is necessary
IV elemental monolayers, a fundamental band gap exists in group V elemental monolayer
phosphorene. And the band gap value can be effectively tuned from 0.3 eV in the bulk form to 2.0
eV in the monolayer form, which is attracting from an application point of view. In this section, the
possibility of tuning the electronic properties of phosphorene with external defects and strain is

explored. The results may guide the design of phosphorene based electronic devices for future

applications.

4.2. Engineering phosphorene with adatoms

4.2.1. Introduction

It is well-known that the exfoliation or growth processes can introduce defects and impurities in

2D materials, which can dramatically alter the electronic, thermal and mechanical properties of the

* The contents in this chapter were previously published in Appl. Phys. Lett., 2015, 106, 173104
and Nanotechnology, 2016, 27, 055701. Refer Appendix C and D for granted permission to be
republished.
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pristine counterparts. Vice versa, a deliberate introduction of defects can be a possible approach to
modify the properties of the pristine materials. For example, ion or electron irradiation can
introduce intrinsic point defects, e.g. vacancies and Stone-Wales (SW) defect in graphene 2% 139,
which could enrich its properties to act as a building block for devices with new functionalities "

132 Besides intrinsic defects, extrinsic defects such as adatoms are shown to be important to design

graphene based devices with dedicated properties '*°.

Considering that the scientific work on investigating the properties of phosphorene has recently
started, the role of extrinsic point-defects including surface adatoms is still undefined. The
adsorption of several adatoms was considered recently '3* 135, but the underlying mechanism of the
different behaviors of the adatom on phosphorene is not mentioned. In this section, we will focus
on the adsorption of a series of adatoms from B, C, N, O, and F which provide an interesting
variation in the number of valence electrons with a [He] core and the electronegativity. B is s°p!, C
is s?p?, N is s°p®, O is s*p* and F is s°p°. The values of electronegativity for B is 2.0, C is 2.5, N is
3.1,01is 3.5 and F is 4.1 '3, The electronegativity of P is 2.1 3¢, We will calculate their geometric
structure and electronic properties on phosphorene comparing the results with those on graphene
and silicene to gain insights into the adsorption mechanism due to puckered nature of phosphorene
15, We will see that the adsorption behavirour of B and C is totoally different from that of N, O and
F adatom, and the adsorption mechanism is dorminated by the electronagetivity of the adatom and

the surface electronic structure of phosphorene. In Sec 4.2.2 is a brief description of the

computational model. Results and discussion are given in Sec. 4.2.3.

37



4.2.2. Computational methods

The electronic structure calculations were performed using the norm-conserving Troullier-Martins
pseudopotential implemented in the SIESTA program package *. The Perdew-Burke-Ernzerhof
(PBE) "*7 exchange-correlation functional to density functional theory was employed, which has
been shown to correctly describe the adsorption of adatom on graphene '3® and the adsorption of O
adatom on phosphorene '*. The energy convergence is set to 107 €V, and the residual force on

each atom is smaller than 0.01 eV/A during structural optimization. The mesh cutoff energy

was chosen to be 500 Ry. A double-( basis including polarization orbitals were used.

The (4x5) supercell with 80 atoms was used to simulate the pristine phosphorene. The length of
the supercell is 18.6 A x16.7 A, and the vacuum distance normal to the 2D lattice was chosen to be
20 A to eliminate interaction between the replicas. A single adatom is added in the supercell which
corresponds to an adatom concentration of ~3.23x10'3/cm?. The reciprocal space was sampled by
a grid of (4x5%1) k points. The tunneling current calculations were based on Bardeen, Tersoff, and

Hamann (BTH) formulism ',

In order to benchmark the modeling elements, the results on the pristine phosphorene were
compared with the previously reported results. The bond lengths are calculated to be 2.29 and 2.26
A, which are consistent with the values of 2.28 and 2.24 A obtained at the PBE-DFT level of theory
1519 A direct band gap slightly less than 1 €V is predicted for the pristine phosphorene which is in

excellent agreemnt with the previous thereoctical reports 6141,
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4.2.3. Results and conclusions
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Figure 4.1 Energy profile of adatoms approaching the surface of phosphorene at the top (T), bridge
(B), and hexagonal site (H): (a) B, (b) C, (c) N, (d) O, and (e) F. (Reprinted with permission from
reference '*. Copyright 2015 AIP Publishing.)

We begin with calculations to determine the energy profile of the adatom approaching surface sites
of phosphorene (Figure 4.1). The surface sites considered are (i) hexagonal site (H) - site above the
center of hexagonal ring, (ii) top site (T) - above the top phosphorus atom, and (iii) bridge site (B)
- above the bridge of the top P-P bond. The energy profile was initially obtained by varying the
distance of the adatom to the 'rigid' phosphorene. Later, a full structural optimization was performed

to obtain the ground state configuration in which all atoms are allowed to relax.

The calculated ground state configurations of the adsorbed systems are shown in Figure 4.2.
Interestingly, B and C adatoms break the native P-P bonds and enter the interstitial site of the 2D
lattice. The configuration at the top site is found to be 0.75 and 1.27 eV higher in energy for B and
C adatom, respectively, demonstrating that B and C atom prefer to penetrate into the pristine lattice.

On the other hand, the interstitial site is found to have higher energy than the surface site for N, O
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and F atoms. The results, therefore, show that N, O and F atoms tend to bind the surface P atom
without breaking the P-P bonds. The (average) bond lengths of surface adatoms are Rp.p (1.96 A),

RP_C (180 A), RP.N (168 A), Rp_o (1.54 A), and RP.F (1.70 A)
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( o
N
1

76

Figure 4.2 Adsorption of adatoms with a [He] core on phosphorene after structural optimization:
(a) B, (b) C, (c) N, (d) O, and (e) F. (Reprinted with permission from reference '**. Copyright 2015
AIP Publishing.)

The height of the adatom from the surface (4z) gradually increases in going from B to F (Table

4.1). In the equilibrium configurations, some of native P atoms are repelled away by B or C at the
interstitial site resulting into significant lattice distortions. For N, O, or F surface adatoms, the
overall lattice structure of phosphorene is maintained. Note that the P-P bond length in the pristine

2D lattice is 2.26 A. The binding energy of the surface adatom is defined as

Ebinding = Etotal - (Epristine +Eatom), (4 1)
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where Ea 1S the total energy of phosphorene with surface adatom, Epigine is the energy of pristine
phosphorene. Euon is the energy of a single adatom in a 10 Ax10 A x10 A cell, which are -97.10
eV, -153.12 eV, -271.94 eV, -440.22 eV, and -665.22 eV for B, C, N, O and F atom, respectively.
The adsorption of these light elements is found to be exothermic with a negative binding energy

which implies that these light elements could bind strongly on phosphorene (Table 4.1).

Table 4.1. Adsorption of adatoms with a [He] core on phosphorene: The prefered binding site,
distance between adatom to the host P atom (R), binding energy (Ebinding), Voronoi charge (Qvoronoi)
and magnetic moment (). Az is the height of adatom from the surface. Negative Voronoi charge

means excess of electron. (Reprinted with permission from reference '*. Copyright 2015 AIP
Publishing.)

o Preferred  Rhost-adatom Az Ebinding Ovoronoi Magnetic
Site (A) (A) @V) @  Mmoment (i)
B () Interstitial 196 ~0.0 5.08 20.19 1.00
C(sp) Interstitial  1.80 ~0.0 5.16 021 0.00
N(sp%)  Surface 1.68 0.51 2.98 031 1.00
O(sp")  Surface 1.54 0.87 4.69 033 0.00
F(sp’)  Surface 1.70 1.78 2,30 0.15 1.00

In order to understand the site dependency of the light elements with a [He] core, the deformation
charge density (0=protwr-(PphosphorencsTpaom)) 0f the adsorbed phosphorene is calculated (Figure 4.3).
B and C at the interstitial sites clearly form bonds with three native P atoms. These sp>~like bonds
almost lie in a same plane, and the charge density increases in the region between the adatom and

P (Figures 4.3 (a) and (b)). On the other hand, N, O and F adatoms appear to form bonds with one
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or two native P atoms at the surface in their equilibrium configurations. Accumulation of the charge
density around the adatom suggests that N, O and F atoms gain electrons from the host P atoms

(Figures 4.3 (¢), (d) and (¢)).

jo 7] R U
(o) R | o) R
oo oo o oo ‘pd oo
oc B @ R od C ¥ <)
o B 0| | LY
00 & ot o S /g
oa. oo oo ~ P oo
(e ] [s ] o0 o0 o0 [« s ]
G v Q
ia%s 'e[atu e}

() — °°@1°" @“” -
00 00 00 (K) 00
oo o o oo 0o PO
loa’ N pa \ ooooo OOFGO od
o ( po & 00 D Do
odd od o od od
00 % 5] DO D0 00 00 CO DO
[cs] og oo [ s}

108 [y ‘%

Figure 4.3 Deformation charge density of adsorption of adatoms with a [He] core on phosphorene:
(a) B, (b) C, (c) N, (d) O, and (e) F. The yellow (blue) region represents accumulation (depletion)
of electrons. The isovalue is 0.003 e/A>. (Reprinted with permission from reference . Copyright
2015 AIP Publishing.)

A schematic illustration explaining the adsorption of light elements with a [He] core on
phosphorene is given in Figure 4.4. In phosphorene, each P atom (with s*p*® valence electron
configuration) shares three of its valence electrons with the neighboring P atoms forming sp* bonds
while the remaining valence electrons form a lone pair at the surface. Since N, O, and F atoms are
more electronegative than the host P atoms, these adatoms tend to attract electrons from the native
P atom. For example, F has s’p° valence electron configuration and will attract one electron of the

lone pair forming bond with one native P atom. O has s*p* electron configuration attracting the lone
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pair of P atom, possibly form P=0O bond with the bond length of 1.54 A **. N has s°p° configuration
and will form bond with two native P atoms. This scenario is clearly reflected in Table 4.1 showing
the calculated bond lengths (Rhost-adatom) in the equilibrium configurations of the adsorbed systems.
B and C atoms are close to P atom in terms of the electronegativity, they prefer to form sp? bonds

with the native P atoms by breaking the native sp® bonds of the pristine phosphorene.

P—P. b) pP—P.
a (
( ) / sz.": / sp?
g B P-—p P C —RP

Figure 4.4 A schematic illustration of adsorption of adatoms with a [He] core on phosphorene: (a)
B, (b) C, (c) N, (d) O and (e) F. The arrow represents upaired electron around the atom. (Reprinted
with permission from reference '**. Copyright 2015 AIP Publishing.)

Comparing our results on phosphorene with those obtained for graphene '“-'%) we find that
adatoms prefer surface sites on graphene due to robustness of the sp? network; B, C, N and O
adatoms prefer the bridge site whereas F adatom prefers the top site. The calculated binding
energies of B, C, N, O, and F adatoms on graphene are -1.77 ¥, -1.4 % -0.88 14, -2.41 15 2.01
eV 4, respectively. Note that sp® bonds tend to be more reactive leading to higher binding energies
of surface adatoms on phosphorene (Table 4.1). This is also true for silicene where the sp*-like
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lattice structure is highly reactive '*°, the adsorption of adatom such as C could result in the local
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reconstruction in silicene '#’. Therefore, B, C, N, O or F adatom on silicene also has high binding

energy, which is -5.85 146, -5.88 147 _5.54 146 _6.16 ¥’ and -4.45 eV ¥, respectively.

Figure 4.5 Spin polarized density of states of adatoms with a [He] core on phosphorene: (a) B, (b)
C, (c) N, (d) O, and (e) F. The states related to the surface adatoms are magnified by a factor of
10. The up (or down) arrow represents spin up (or spin down) density of states. (Reprinted with
permission from reference'*. Copyright 2015 AIP Publishing.)

Figure 4.5 displays spin and atom resolved density of states (DOS) of the adsorbed systems. B, C,
N, and F induce mid-gap states in the band gap of phosphorene. On the other hand, O induces states
inside the valence band due to the possible formation of a stronger P=O bond. Adsorption of B, N,
or F also results in spin polarized DOS which induces ~1 up magnetic moment to the lattice. The
spin polarized charge density is found to be localized on the distorted P atoms around the adatoms.
B has three valence electrons which form sp*-like bonds with three neighboring P atoms, one of the
neighboring P atom (the one was repelled away from its original site) has an unpaired electron in
the 2p orbit (Figure 4.4(a)) which induces magnetic moment in the system. The adsorption site of
C is similar to that of B (Figure 4.4 (b)), however, C has one more valence electron than B, which

could possibly pair with the electron of P resulting in zero net magnetic moment. N and F adatoms
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will attract the electron from the lone pair of P, and left an unpaired electron on the 2p orbit of the
native P atom, which contributes to the observed magnetic moment (Figure 4.4). O adatom will

attract both of the electrons of a lone pair which will not introduce magnetic moment to the system.

Considering that the tunneling current is sensitive to the local electronic properties of surface atoms,
we now investigate the tunneling characteristics of the adatom systems. The tunneling current from

the sample to the tip at location 7#; based on Tersoff and Hamann approximation '#° is

2me p+oo

1GV) = 2207 p (B =) ps (Fis E +5) F(E)E, (5.1)

— 00

where p;is the electron density of the tip, p; is the electron density of the sample at the location of
the tip. F(E) is the term to include the effect of thermally excited electrons as proposed by He ef al.
149,150 Tn order to mimic the scanning tunneling micriscope (STM) measurements, the tip was

simulated by a Auis cluster which was placed above the adatom with a distance 5 A.
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Figure 4.6 The tunneling characteristics of adatoms with a [He] core on phosphorene: (a) B, (b)
C, (c¢) N, (d) O, and (e) F. (Reprinted with permission from reference'*. Copyright 2015 AIP
Publishing.)
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B, C, N, and F atoms show metallic tunneling characteristics with abrupt increase in the current at
a small bias (Figure 4.6). While the tunneling current above O adatom shows a diode like behavior
with a gap in the small bias region. The tunneling characteristics are consistent with the calculated
DOS where mid-gap states due to B, C, N and F contribute to the tunneling current at small bias.
This is not the case with O adatom since it does not introduce any mid-gap states in phosphorene.
Also, prominent negative differential resistance (NDR) is observed for B, C, N and F adatoms due

to the mid-gap states near Fermi level.

4.2.4. Summary

In summary, adsorption of light elements with a [He] core on phosphorene is investigated by using
density function theory. The results find that B and C prefer the interstitial site and N, O, F atoms
prefer the surface site of phosphorene. The distinct preference of these adatoms on phosphorene is
the result of the interplay between electronegativity values and electronic structure of phosphorene.
B, C, N, and F adsorption will induce mid-gap states leading to metallic characteristics of the
phosphorene. On the other hand, single oxygen adatom adsorption is not likely to modify the
electronic properties of phosphorene, and a diode like tunneling behavior is observed. Our results
therefore clearly offer a possible route to tailor the electronic and magnetic properties of
phosphorene by the adatom functionalization, and will be helpful to experimentalists in evaluating

the performance and aging effects of phosphorene-based electronic devices.
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4.3. Engineering phosphorene with strain: the formation of
buckling

4.3.1. Introduction

Buckling is one of the most important mechanical phenomena in 2D materials including graphene

which has elicited broad scientific interests *!%*. Graphene possesses a high in-plane Young’s

125

modulus with sp? bonded carbon atoms '%, while it can easily be warped in the out-of-plane

6 7 8

direction enabling folding '*, bending ', corrugating '*” or wrinkling '** without loss of its

structural integrity '°. This structural flexibility facilitates the fabrication of graphene-based

1

complex structures with distinct functionalities '*8. Furthermore, buckling often appears in

) 160-162 and can be controlled via thermally

graphene grown from chemical vapor deposition (CVD
activated shape-memory polymer substrates '%3. Similar buckling has also been observed in other

2D materials, such as hexagonal boron nitride (2-BN) %4, and molybdenum disulphide (MoS,) '%%
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The mechanical properties of phosphorene under tensile strains have been investigated using both

DFT calculations '%7 and classical MD simulations '8

. The formation of ripples in phosphorene
under a compressive strain has also been investigated via DFT calculations '®. However, the

previous DFT study on the ripples '® was unable to capture the dynamical aspect of phosphorene

membrane at finite temperatures, and the ripples were limited to small surface curvatures.

In this section, the buckling and its effect on the electronic properties of phosphorene are studied
by classical MD simulations complemented by first-principles calculations based on DFT. The MD
simulations allow us to investigate the dynamical process of buckling at large scale with modest

computational resources. For the buckled configurations obtained by MD simulations, the
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electronic properties are further determined by DFT calculations. The calculated results find that
the buckling behavior of phosphorene can be described by Euler’s buckling rule. More importantly,
phosphorene shows superior out-of-plane structural flexibility along the armchair direction. The
semiconducting and direct band gap nature are retained with buckling at large curvatures, which

facilitates its application in flexible electronics and optoelectronics.

4.3.2. Computational methods

The classical MD simulations were performed using the large-scale atomic/molecular massively
parallel simulator (LAMMPS) code '. In phosphorene, the interatomic interactions were
characterized by the Stillinger-Weber (SW) potential !”!. The SW potential has been previously
parameterized to correctly describe the mechanical properties of phosphorene '®®. In MD
simulations, phosphorene membranes with different dimensions were considered and the periodic

boundary conditions were applied to both the armchair and the zigzag directions.

L, armchair
Figure 4.7 Snapshots of phosphroene at a thermally stable state at 300 K. L. is the supercell size

along the armchair direction, and L, is the size along the zigzag direction. (Reprinted with
permission from reference 2. Copyright 2016 IOP Publishing.)
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Figure 4.7 shows one snapshot of phosphorene membrane at a thermally stable state. Initially, the
structure of phosphorene membrane was minimized using the SW potential. After minimization,
the monolayer was equilibrated to a thermally stable state with the NVT (constant particle number,
constant volume, and constant temperature) ensemble for 250 ps, followed by the NPT (constant
particle number, constant pressure, and constant temperature) ensemble for 250 ps. After
equilibration, phosphorene was compressed in either the armchair or zigzag direction with a strain
rate of 10" ps™!, while the stress in the lateral direction was allowed to relax. To eliminate the inter-
layer interaction, simulation boxes with thickness of 10 nm were used. The temperature was set to
0.1 K or 300 K, the pressure to 0 bar, and the time step was set to 0.5 fs. The VMD ! software

package was used to visualize the simulation results. The strain is defined as the change of supercell

. . . T AL AL
size along the armchair or the zigzag direction (¢ = L—x, or L—y)
x y

Due to the structural anisotropy of phosphorene as shown in Figure 4.7, the buckling along the
armchair and the zigzag direction is expected to be different. Thus, different samples with variable
sizes as listed in Table 4.2 were used to simulate the buckling. The size of supercell along strain

direction was varied from ~60 to 160 A, while the size in the lateral direction was close to ~130 A.

The electronic properties of the buckled phosphorene were obtained by DFT calculations using the
norm-conserving Troullier-Martins pseudopotential as implemented in SIESTA *. The Perdew-
Burke-Ernzerhof (PBE) '37 exchange correlation functional and a double-{ basis including
polarization functions were employed. Supercells of (30x1) and (1x30) were used for buckling
along the armchair and the zigzag direction, respectively. The reciprocal space was sampled by a
grid of (5%1x1) or (1x5%1) k points in the Brillouin zone, respectively. The buckled configurations
with different curvatures obtained from the snapshots of LAMMPS simulations at 0.1 K were taken
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as the initial configurations for DFT calculations. The energy convergence was set to 10” eV for
electronic self-consistency steps. The mesh cutoff energy was 500 Ry. The geometry optimization
was considered to converge when the residual force on each atom was smaller than 0.01 eV/A. The
atoms were allowed to relax during the structural optimization, while the size of the supercell was
fixed. Note that lattice constants obtained by the SW potential along the armchair and the zigzag
direction (4.38 A and 3.31 A, respectively) are in agreement to those obtained from the DFT

calculations (4.57 A and 3.31 A, respectively).

Table 4.2. The size of the supercell in terms of L. and L, used for MD calculations. The unit is A.
(Reprinted with permission from reference '’2. Copyright 2016 IOP Publishing.)

supercell  14x40 16x40 18x40 21x40 23x40 25x40 28x40 30x40  32x40  35%40

Armchair L« 61.2 69.9 79.0 923 100.5  109.1 122.4 1313 1398 1533
L, 132.6 1326 1326 1326 1327 1326 132.6 1326 1326 1326

supercell ~ 30x19  30x22  30x25 30x28 30x31 30x34 30x37 30x40 30x43  30x47

Zigzag Ly 1312 1312 1314 131.8 131.1 131.1 131.2 1313 1312 1313
L, 63.0 72.9 82.9 92.9 102.8 1127 1227 132.6 1426 1559

4.3.3. Results and conclusions

Figure 4.8 shows the structural evolution of phosphorene with the applied compressive strain (&)
along the armchair and the zigzag directions at 300 K. With small &, phosphorene maintains a flat
surface with small ripples due to thermal vibrations. Buckling starts with slightly larger strains

applied along both directions. Further increasing the magnitude of ¢ results in the deformation of
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phosphorene with enhancement of buckling height in the out-of-plane direction. Interestingly, the
structural integrity of phosphorene is preserved even under a large strain along the armchair

direction, while the bonds are broken at a large strain along the zigzag direction (Figure 4.8(b)).

armchair zigzag

- -

Figure 4.8 Snapshots of phosphroene (cell size=(30%40)) under in-plane compressive strain (€) at
300 K: (a) strain along armchair direction, (b) strain along zigzag direction. The structures are
shown in periodic manner along strain direction. (Reprinted with permission from reference '”.
Copyright 2016 IOP Publishing.)

The difference in buckling along the armchair and the zigzag direction stems from its structural
anisotropy. As seen in Figure 4.7, the phosphorous atoms are arranged in a puckered lattice along
the armchair direction. The puckered structure could accommodate external strains by changing the
pucker angle without much distortion of the bond length, thereby giving rise to its structural

flexibility. This is also the origin of the superior mechanical properties of phosphorene under tensile
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strains '¢7. However, in the zigzag direction, the phosphorus atoms are bonded into a zigzag chain

like structure (Figure 4.7) which offers reduced flexibility.

Figure 4.9 Polynomial fitting of phosphorene surface. The blue dots are phosphorus atoms. The
mean curvature at each point P is calculated on the fitted surface. 1/R; and 1/R; are the principle

: . 11, 1 . . .
curvatures at P point. The mean curvature is defined as 3 (R— + R—) at each point. (Reprinted with
1 2

permission from reference '”?. Copyright 2016 IOP Publishing.)

To quantitatively describe the buckling behavior, we calculate the curvature of phosphorene
membrane as illustrated in Figure 4.9. Since phosphorene has two sub-layers of phosphorus atoms,
a polynomial fitting of the surface yields the principle curvatures at each point of the surface. The

mean curvature at each point (P) on the surface is defined as half of the sum of the principle

1.1, 1 1 1 e
curvatures, - (— + —), where — and — are the principle curvatures.
2Ry Ry Ry Ry
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Figure 4.10. Maximum mean curvature of phosphorene (cell size=(30%40)) under compressive
strains along the armchair (square) and the zigzag directions (circle) at a temperature of 0.1 K
(black) or 300 K (red). The solid lines are guides to the eye. The arrow represents the break of the
structure along zigzag direction with an abrupt increase of the maximum mean curvature. The inset
is the zoomed in plot in the small strain region in the dashed box, the dashed line in the inset

corresponds to the buckling critical strain. (Reprinted with permission from reference '
Copyright 2016 IOP Publishing.)

Figure 4.10 shows the change of maximum mean curvature of phosphorene under a compressive
strain along the armchair and the zigzag directions. It has distinct trends for the cases of ¢ < & and

&> &, where & is the critical strain for the formation of buckling as illustrated by the vertical dashed

line in the inset.

For &< &, as shown in the inset of Figure 4.10, the maximum mean curvature is almost unchanged
along both the armchair and the zigzag directions, which corresponds to the elastic response of the
membrane to external strain. During this process, the surface keeps almost flat with small vibrations
due to thermally excited ripples. For £> &, the maximum mean curvature starts to increase, which

corresponds to the formation of buckling. The mean curvature increases linearly with the strain on
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phosphorene. The buckling critical strain & is ~0.007 along armchair and zigzag directions for the

sample with supercell size of (30%x40).

0.03 T T T T T T T T T
. . 2 [ armchair 300 K
fitting with €, = AxL
B armchair 0.1 K
g 002 ® zigzag 300 K .
E O zigzag 0.1 K
®
o
o
0.01 |
0'00 1 " 1 1 1 1 1 1 1 "
60 80 100 120 140 160
L (A)

Figure 4.11 Buckling crictial strain vs the size of the simulation sample. The lines are fitted curve
according to the Euler’s buckling theory. (Reprinted with permission from reference '°. Copyright
2016 IOP Publishing.)

The buckling curvature along the armchair direction linearly increases with ¢ up to 0.8 inducing
the formation of folded phosphorene without breaking the structural integrity (see also in Figure
4.8(a)), which suggests its flexibility along the armchair direction. In the zigzag direction, an abrupt
increase appears in the maximum mean curvature curve (illustrated by arrows in Figure 4.10),
which corresponds to the breaking of the structure with abrupt release of stress (see also in Figure
4.8(b)). The breaking strain of the structure at 0.1 K is 0.47, which decreases to 0.17 at 300 K.
Therefore, a large strain along the zigzag direction will break the structural integrity of

phosphorene.
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Figure 4.12 Electronic properties of phosphorene with buckling along armchair direction: (a) band

structures at different curvature, (b) charge density at valence band maxiamim (VBM) and

conduction band minimum (CBM). The inset is the Brillouin zone. (Reprinted with permission from

reference '’?. Copyright 2016 IOP Publishing.)

s buckling theory 74, a thin plate will experience buckling due to a compressive

According to Euler’

strain applied on it. The buckling critical strain is an inverse quadratic function of the length of the

here L is the length of the plate. The length dependence of buckling critical strain

1
» &¢ OC_L_pW

plate

for various samples is summarized in Figure 4.11. The critical strain decreases with the increase of
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the sample size in both the armchair and the zigzag directions, which can be well fitted with Euler’s

. 1
buckling rule, g, « — 7
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Figure 4.13 Electronic properties of phosphorene with buckling along zigzag direction: (a) band
structures at different curvatures, (b) charge density at VBM and CBM. The inset is the Brillouin
zone. (Reprinted with permission from reference '’?. Copyright 2016 IOP Publishing.)

In order to investigate the electronic properties of buckled phosphorene, DFT calculations were
performed on the buckled structures with various curvatures obtained at the classical MD

simulations. Note that the buckled structures at low temperature were chosen to enable the fast
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convergence during DFT calculations. Strain-free phosphorene has a direct band gap of ~1 eV in

our calculations, which agrees with the previously predicted values !> 175,

Figure 4.12 shows the band structures and charge density at conduction band minimum (CBM) and
at valence band maximum (VBM) with buckling along the armchair direction. Low buckled
phosphorene has a direct band gap at I'. The charge density at VBM and CBM are evenly distributed
over the surface as seen in Figure 4.12 (b). The semiconducting property, direct band gap, and
evenly distributed charge density are retained in largely buckled phosphorene suggesting the

electronic robustness of phosphorene to the buckling along the armchair direction.

As seen in Figure 4.13, low buckled structure along the zigzag direction has a direct band gap, the
charge density at VBM and CBM is evenly distributed over the surface as expected. Upon increase
in the curvature of buckling, some conduction states approach Fermi level, thus reducing the band
gap and thereby inducing a direct-indirect band gap transition. The decrease of the band gap with
increasing curvature has also been predicted in a recently published report on non-planar
phosphorene ', We observe unevenly distributed charge density at VBM and CBM at large
curvature. The conduction states contributing to the decrease of the band gap come from the convex
region of the buckled surface due to accumulated local strains in these regions (Figure 4.13 (b)).
Therefore, compared to the buckling in the armchair direction, buckled phosphorene along the
zigzag direction is less robust in terms of the structural and electronic properties of a candidate two-

dimensional material for device applications.
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4.3.4. Summary

(a)

Figure 4.14. (a) Folded phosphorene, and (b) phosphorene nano-scroll. (Reprinted with
permission from reference 2. Copyright 2016 IOP Publishing.)

In summary, we investigate buckling in phosphorene under compressive strains by using classical
MD simulation combined with first-principles calculations. A few interesting results are obtained
from present study. (i) Buckling will form in phosphorene unsder a compressive strain along the
armchair and the zigzag direction. The buckling critical strain satisfies the Euler’s buckling theory.
(i1) Phosphorene shows superior out-of-plane structural flexibility along the armchair direction,
which allows the formation of buckling with large curvature; the buckling along the zigzag
direction may break the structural integrity at large curvatures. (iii) The semiconducting and direct
band gap nature of phosphorene are robust with the formation of buckling along the armchair
direction; while buckling with large curvature along the zigzag direction will induce a direct to
indirect band gap transition. The out-of-plane structural flexibility and electronic robustness of
phosphorene along the armchair direction allow the fabrication of phosphorene based devices with
complex shapes, such as folded structures and nano-scrolls in Figure 4.14. Also, the tunability of
the band gap by the curvature along the zigzag offers great potential for electronics and
optoelectronics device applications. Our results contribute to the understanding of mechanical
properties of phosphorene, and guide the design of phosphorene-based devices for flexible
electronics and optoelectronics.
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Chapter 5 Group V elemental 2D materials — oxidation
and degradation of phosphorene’

5.1. Introduction

In the previous chapter, the properties of phosphorene and engineering of its properties with
external defects and strain are discussed. Although phosphorene is a promising material among the
2D material family, it is found to be chemically unstable in air ! 177178 which presents challenges
for its synthesis, characterization and integration into active devices. The degradation of
phosphorene is related to its interaction with oxygen and water in the air. In this chapter, [ will first
explore the oxidation of phosphorene by molecular oxygen and propose the possible formation of
phosphorene oxides. Then, the degradation of phosphorene will be discussed in terms of its

interaction with O; and H,O.

5.2. Formation of phosphorene oxide
5.2.1. Introduction

The chemical modification of 2D materials has now routinely been performed to tailor their
physical, chemical and electronic properties. In the case of graphene, surface modifications by H,
O, and F atoms often lead to substantial changes in its electronic structure. For example, H- and F-
functionalized graphene are wide band gap materials, whereas graphene has zero-gap at the Dirac

point 7181 Also, graphene oxides are the structures with the presence of the oxygen functional

* The contents in this chapter were previously published in Nanoscale, 2015, 7, 524-531 and 2D
Mater, 2016, 3, 025011. Refer Appendix E for granted permission to be republished.
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groups on graphene which show remarkable mechanical strength and tunable optoelectronic

properties and have broadly used for large scale fabrication of graphene '8%134,

In this section, I will first look into the interaction of oxygen in both atomic and molecular form
with the bare phosphorene predicting the preferred binding site and energy barrier to dissociate the
oxygen molecule adsorbed on the monolayer. The effect of the coverage of oxygen on the stability
and electronic structure of phosphorene will be examined latter. Then, the electron transport
properties of the oxide configurations are calculated in a model setup mimicking the Scanning

Tunneling Microscopy (STM) experiment.

5.2.2. Computational methods

Electronic structure calculations were performed using the density functional theory (DFT) method
with the norm-conserving Troullier-Martins pseudopotential as implemented in SIESTA *. The
Perdew-Burke-Ernzerhof (PBE) !*7 exchange correlation functional was employed. A double-{
basis including polarization orbitals was used. The energy convergence was set to 10 eV. The
mesh cutoff energy was chosen to be 500 Ry. The geometry optimization was considered to be
converged when the residual force on each atom was smaller than 0.01 eV/A. In our periodic
supercell approach, the vacuum distance normal to the plane was larger than 20 A to eliminate
interaction between the replicas. A dipole correction was employed to eliminate the artificial

electrostatic field between the periodic supercells.

For calculations describing interaction of an O atom and an O, molecule with phosphorene, we
used a (3x4) supercell with a total of 48 phosphorus atom in the cell and the reciprocal space was
sampled by a grid of (5%5x1) k points in the Brillouin zone. On the other hand, PO, P,O; and P40,

configurations were calculated with a (1x1) supercell consisting of 4 phosphorus atoms, and the
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P3O, configuration was calculated with a (1x2) supercell consisting of 8 phosphorus atoms in the
cell. The k-point mesh of (11x11x1) was used for these oxide configurations. The phonon

dispersion calculation was based on Vibra of SIESTA utility '*°.

Phosphorene has a puckered surface due to the sp® character of the chemical bonds at the surface.
We find the bond lengths and the bond angles to be (2.29, 2.26 A), (103.7°, 95.6°) which are in
agreement with the previously reported values obtained at the PBE-DFT level of theory !> 36,
Likewise, calculations using the same modeling elements reproduced the structural and electronic

properties of graphene-based systems !'!' 187 thereby showing accuracy and reliability of our

computational model in describing 2D materials.

5.2.3. Results and conclusions
Monoatomic Oxygen (O)

Figure 5.1 shows the lattice sites considered for the oxygen approaching phosphorene e.g. (i) the
ring site - above the center of hexagonal ring, (ii) the top site - above the top of P atom, and (iii)
the bridge site - above the bridge of P-P bonds. Interestingly, O atoms approaching either top or
ring sites prefer the same equivalent positions in their equilibrium configurations having tetrahedral

coordination for P atoms.

In the equilibrium configuration, Rp.oyis ~1.54 A, and the bridge site configuration is ~2.3 eV
higher in energy. The predicted most stable configuration and bond length are the same to the result
in section 4.2. Notice that the equilibrium configuration is in contrast to the case of graphene oxide

where the bridge site is found to be the preferred binding site for oxygen 8%,
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Figure 5.1 Single oxygen atom absorption on phosphorene. The left panel shows the initial
configurations and the right panel shows the optimized configurations. The oxygen atoms are in

red, and phosphorus atoms in purple. (Reprinted with permission from reference '*°. Copyright
2015 Royal Society of Chemistry.)

Molecular Oxygen (O2)

Next, the interaction of an oxygen molecule with phosphorene is investigated by considering both
adsorption and dissociation processes on the surface. Figure 5.2(a) shows the calculated ground
state configuration of the adsorbed oxygen molecule. Here, O, prefers a tilted orientation with Rep.
o1=1.69 A and Rp.02=1.75 A. Note that the adsorbed O, gets stretched out on the surface with Ro.
0y of 1.60, which is substantially larger than that of O, (~1.24 A). The binding energy defined as
(E Phosphorene) T E 02 molecule) — E(Phosphorene+02 molecule)) 18 found to be about 0.78 eV/oxygen molecule. The
binding energy of an oxygen molecule is smaller than the binding energy of two separated oxygen
atoms due to the energy needed to stretch the Ro.0) to 1.60 A. Note that the spin polarization was

considered for the binding energy calculations.
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Figure 5.2 O, on phosphorene: (a) the ground state configuration, (b) the energy surface showing
displacement of an O atom from PI to P2 to P3 atomic sites, and (c) the calculated energy barrier
along the paths as shown by the arrows in (b). The oxygen atoms are in red, and phosphorus atoms
in purple. (Reprinted with permission from reference’®. Copyright 2015 Royal Society of
Chemistry.)

The dissociation process of the adsorbed O, is simulated by fixing an O atom (i.e. O1), and moving
the other atom (i.e. O2) laterally in the unit cell (shadowed region) as shown in the inset of Figure
5.2(a). A minimum occurs in the corresponding energy surface as shown in Figure 5.2(b) when 02
moves toward the P2 site. The calculated energy barrier is 0.33 eV along the path illustrated by the
arrows in the inset, Figure 5.2(c). The energy barrier increases to 1.31 eV when we move O2 to a
new atomic site, P3. Note that the dissociation energy of an O, molecule on the bare graphene is

about 2.39 eV ', which is much larger than the dissociation energy of the O, molecule on
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phosphorene (~0.3 eV). Dissociation of the adsorbed O, on phosphorene can therefore be one of

the possible chemical routes to form the phosphorene oxide ''.

Stoichiometric phosphorene oxide (PO)

Phosphorene has a puckered surface (Figure 5.3(a)), and addition of an O atom at each atomic site
leads to a configuration of PO with a slight increase in the P-P bond length (2.32, 2.37 A) as
compared those for the bare phosphorene. The length of P-O bond is 1.51 A (Figure 5.3(b)) which

192

is similar to the C-O bond length of 1.47 A in graphene oxide !°?, and is slightly larger than the

distance between B-O of 1.40 A for O, adsorbed on the Bis cluster 3.

As seen from the side view of Figure 5.3(b), PO is deformed compared to the bare phosphorene
with changes in bond angles between P atoms. However, the structure retains its original
configuration without cleavage of P-P bonds. This is different from the cases of H, F, and -OH

absorption which act as chemical scissors and break down phosphorene into nanoribbons ',

In the stoichiometric PO configuration, the ./ P-P-P bond angles are 121.2°, 93.6° and 100.9°. The
change in the ~/P-P-P bond angles, relative to the bare phosphorene, is closely related to the charge
redistribution. Analysis of the Mulliken charges finds that ~0.2 e is transferred from a P atom to an

O atom. This is different from the case of graphene oxide where O tends to bind on the bridge of

C-C bond forming epoxy groups, and the accumulated electron density around O comes from two

neighboring C atoms of graphene %% 1% 196,
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Figure 5.3 Top and side views of (a) phosphorene, and (b) phosphorene oxide. (Reprinted with
permission from reference’®. Copyright 2015 Royal Society of Chemistry.)

The stability of the phosphorene oxide is confirmed by the calculated phonon dispersion curves
showing no negative frequencies (Figure 5.4). The phonon dispersion of PO is greatly different
from that of phosphorene; it can be grouped into three regions (Figure 5.4(b)) with the highest
vibrational frequency of about ~1160 cm™. On the other hand, the phonon dispersion curves of the
bare phosphorene have separated acoustic and optical modes with the maximum vibrational
frequency of ~460 cm!. In the lower acoustic region for PO, the vibrational modes are associated
with the constituent P and O atoms. The modes associated with the P atoms dominate in the middle
region of the spectrum. The high frequency modes correspond to the P-O stretching modes

indicating a relative high strength of the P-O bond in the 2D lattice.
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Figure 5.4 Phosphorene oxide (a) the phonon dispersion curves, and (b) density of states.
(Reprinted with permission from reference '*°. Copyright 2015 Royal Society of Chemistry.)

In our study, we consider the oxygen adsorption on phosphorene to be more-like an ordered
absorption of adsorbates on graphene, such as the case of graphane, fluorographene, and
chlorographene '8 81197 In graphene oxide, the oxygen functional groups form a inhomogeneous
lattice as revealed by the transmission electron microscopy (TEM) measurements '°®. This may be
due to interaction of oxygen atoms at the top and bottom sides of graphene leading to clustering of
oxygen atoms. A recent theoretical study predicts the formation of ordered, homogenous of single
surface graphene oxides by oxidizing only the top layer of graphene '®8. A formation of the
homogenous graphene oxides is also observed after the oxidation of epitaxial graphene grown on

a SiC substrate '%8.

The calculated band structure of PO is shown in Figure 5.5. The valence band maximum (VBM)
has p, character associated with both P and O atoms (Figure 5.5(c)), and the conduction band

minimum (CBM) is formed by P-s orbitals and O-p. orbitals (Figure 5.5(c)). The calculated band
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gap is direct at I" with a value of ~0.6 eV. It is smaller in magnitude than that calculated for the
bare phosphorene (~1 eV at the PBE-DFT level of theory). Anisotropy in the band structure of the
2D lattice is predicted; the hole effective masses are 4.56 and 1.74 m. along I'-X and I"-Y directions,
respectively. On the other hand, the electron effective mass does not show anisotropy and has a

magnitude of 0.18 m..
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Figure 5.5 Electronic properties of phosphorene oxide: (a) band structure, (b) density of states,
and (c) Kohn-Sham wave functions at I" associated with states corresponding to top of the valence
band (VBM) and bottom of the conduction band (CBM). (Reprinted with permission from reference
189 Copyright 2015 Royal Society of Chemistry.)
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Figure 5.6 Phosphorene oxide: Band gap vs. in-plane tensile strain, and (b) band gap vs. electric
field applied perpendicular to the 2D lattice. (Reprinted with permission from reference '%.
Copyright 2015 Royal Society of Chemistry.)

Application of the strain along x yields a linear variation of the band gap in a range of values (0.1-
0.6 eV) for the tensile strain values of 0% to 8% (Figure 5.6(a)). The predicted variation in the band
gap is mainly due to variation of the conduction band minimum (CBM). The top of the valence
band (VBM), mainly formed by the oxygen atoms, does not appear to be sensitive to the external
strain. Likewise, the external electric field modifies the band gap reducing it to be 0.4 eV at 1.5
V/A, while it does not change the band gap in the bare phosphorene (Figure 5.6(b)). This is due to

the reduced symmetry in the oxide configuration compared to its bare configuration. Thus, the
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oxygen functionalization of phosphorene yields tunability of the band gap with both strain and

electric field.

The in-plane stiffness of the 2D lattice is calculated by fitting the strain energy within the strain
range of -2% to 2% ', The calculated stiffness constant for phosphorene is 21 and 66 N/m along
x and y directions, respectively. For the phosphorene oxide, the stiffness constant is decreased to
16 and 33 N/m along x and y directions due to the increased P-P bond length in the oxide lattice.
These values are much smaller those associated with graphene (340 N/m '2°) which suggest the

softness of phosphorene-based 2D materials '%°.

Non-stoichiometric phosphorene oxide

We now investigate stabilities and electronic properties of non-stoichiometric phosphorene oxides
representing the cases of the partial functionalization of the phosphorene. Figure 5.7 shows the
considered non-stoichiometric oxide configurations including PsO; (i.e. POq.125), P4O: (i.e. POq2s),

and P,O; (i.e. POos), with a single side absorption of the oxygen atoms.

Figure 5.8 shows the variation of the band gap with the degree of the functionalization of
phosphorene. Bare phosphorene is a direct gap 2D material. This is not the case with phosphorene
oxides where the nature of the band gap depends on the degree of functionalization; an indirect
band gap is predicted for POg.125, POo.s, and POy s. Finally, a crossover from indirect to direct band
gap is seen for the stoichiometric PO configuration. The direct band gap is defined as the energy

gap at I" and the indirect band gap is the minimum energy gap from VB to CB.
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Top views

Figure 5.7 Structures of non-stoichiometric oxide configurations: POy 125, POy2s, and POys.
(Reprinted with permission from reference '*°. Copyright 2015 Royal Society of Chemistry.)

The work function is a crucial physical quantity to determine the emission properties of materials
and have considerable impact on device performance. It is defined as energy difference between
the vacuum level and Fermi energy. For the oxide configurations, the work function shows a
monotonous increase which is expected with the increased degree of oxygen functionalization of
the bare phosphorene. This is due to the fact that the charge transfer from P to O will lead to
formation of dipoles between the phosphorus layer and oxygen layer, thus preventing electrons
moving toward the vacuum 2%, The calculated values of the work function for bare phosphorene,
POqg.125, POo2s, POgs, and PO are 4.5, 4.9, 5.2, 5.8, and 7.2 eV, respectively. Therefore, the work
function can be tailored effectively with the degree of oxygen functionalization of phosphorene.
Similar tunable work function has already been reported for graphene; the work function increases

from 4.2 eV to 5.5 eV with 20% concentration of oxygen functionalization 2% 2%!,
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Figure 5.8 The variation of band gap as a degree of functionalization of the bare phosphorene.
Open and solid circles represent the values of indirect and direct band gaps, respectively. The
direct band gap is taken to be at I. The indirect band gap for P, POy 25, POy.2s, POys and PO are
the minimum energy gap between CB and VB. (Reprinted with permission from reference '*.
Copyright 2015 Royal Society of Chemistry.)

Tunneling characteristics

Finally, the tunneling characteristics of the phosphorene oxides are investigated. The tunneling
current from the sample to the tip at location 7; based on the Tersoff and Hamann approximation

140 is

> 2 © |4 - 14
1GsV) ~ 5200 pe (B =) ps (7o E + 5) F(E)E, (5.1)

where p;is the electron density of the tip, p; is the electron density of the sample at the location of
the tip. F(E) is the term to include the effect of thermally excited electrons as proposed by He ef al.
149,150 Tn order to mimic the scanning tunneling micriscope (STM) measurements, we use the
constant current mode with the gold tip represented by a Aui;s cluster. The size of the STM images

is 20 Ax20 A, and a positive bias between the sample and the tip was applied. It is to be noted here
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that a positive bias between the sample and the tip will lead to tunneling of electrons from tip-VB

to sample-CB. With a negative bias, the electrons will tunnel from sample-VB to tip-CB.
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Figure 5.9 (a) Tunneling characteristics of the phosphorene oxide configurations. (b) The
simulated STM images of phosphorene and the phosphorene oxide. The current is calculated using
a Aul3 tip located at 3 A above the surface. The side scale bar shows the distance from the tip to
the surface in unit of angstrom. (Reprinted with permission from reference "*°. Copyright 2015
Royal Society of Chemistry.)

3.95

The electron transport studies offer some intriguing insight into electron tunneling in the direction
perpendicular to the stable phosphorene oxide plane. Asymmetric current-voltage (IV)
semiconducting characteristics (Figure 5.9(a)) are seen for both stoichiometric and non-
stoichiometric oxide configurations. To start, a bare phosphorene shows strong diode like behavior

with large tunneling current in the positive bias regime. Upon oxygen adsorption, this behavior
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completely changes, with high current in the negative bias regime. The high tunneling current of
PO in the negative bias region is due to the contribution of oxygen atoms in the top of valance band

(Figure 5.5(b)).

The dependence of the threshold voltage onset of the tunneling current on the degree of
functionalization suggests that tunable electronic properties can be achieved by the oxygen
functionalization of phosphorene. In the negative bias region, the threshold voltage decreases from
-0.55 V (PsO1) to -0.15 V (PO) which is related to variation in the band gap of oxides. Furthermore,
the STM images as seen in Figures 5.9 (b) and (c) can help in identifying formation of the

phosphorene oxide from the bare phosphorene.

5.2.4. Summary

The interaction of phosphorene with oxygen and the formation of 2D phosphorene oxide were
investigated with the use of the density functional theory. A number of key findings have emerged
from this study based on density functional theory. First, our calculations predict that the 2D
phosphorene oxide to be stable in both stoichiometric and non-stoichiometric configurations.
Second, a fully functionalized phosphorene is a direct band gap material with tunable band gaps by
external strain and electric field. Partially functionalized phosphorene has an indirect band gap.
Third, the dissociation energy of an oxygen molecule is calculated to be ~0.33 eV, suggesting
possible, low-energy oxidation of phosphorene which is likely to lead to the 2D phosphorene-based
structures. Finally, electron transport studies offer some intriguing insight into electron tunneling
in the direction perpendicular to the phosphorene oxide plane with dependence of the current on

the degree of functionalization of phosphorene. We believe that the results of this study would
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inspire experimental efforts into the synthesis and electronic device physics studies of phosphorene

oxide.

5.3. Degradation of phosphorene in air

5.3.1. Introduction

The chemical degradation of phosphorene upon exposure to ambient conditions is a challenge to
the stability and performance of phosphorene-based devices - 77178 The presence of oxygen and
humidity is suggested to be the main cause of the degradation process !*%-202:23_ Recent experiments
have also demonstrated the photo-assisted degradation of phosphorene *, which is predicted to be
related to intrinsic defects *. Theoretically, it was reported that HO adsorbed on phosphorene will
induce a significant distortion to its structure 2. Contradictory results were obtained suggesting
that phosphorene is stable in the presence of H,O ?*7. Despite these experimental and theoretical
efforts, there are still some unanswered questions regarding the degradation of phosphorene,
including (i) atomic level of understanding on the degradation process of phosphorene; (ii) the role
of H>O in the degradation process; and (3) the environmental stability of other theoretical

phosphorene allotropes (e.g., blue phosphorene *® which has not been realized in experiments).

In order to address these questions, density functional theory (DFT) calculations combined with ab
initio molecular dynamics (AIMD) simulations were performed to investigate the interactions of
0O, and H,O with phosphorene. We first focus on the interaction of O, with phosphorene using
AIMD. Since surface reaction of black phosphorene with O, has established in the previous section,
we will extend the discussion to blue phosphorene. Then, the adsorption of H>O on phosphorene
allotropes is investigated in terms of adsorption configuration, binding energy, and bonding

characteristics. Finally, we discuss the degradation of phosphorene by calculating the relative
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energies along a likely interaction pathway. Our calculated results show that O, can spontaneously
dissociate on phosphorene at room temperature; H>O will not strongly interact with pristine
phosphorene, however, an exothermic reaction could occur if phosphorene is first oxidized. Other

allotropes of phosphorene, ¢.g. blue phosphorene are also expected to deteriorate in air.

5.3.2. Computational methods

The electronic structure calculations were performed using the Vienna ab initio simulation package
(VASP) 303! The exchange-correlation was treated within the generalized gradient approximation
(GGA) using Perdew—Burke—Ernzerhof (PBE) 37 functional for the calculations. We also
employed the DFT-D2 method of Grimme 2% to include contributions from the van der Waals
(vdW) interactions. The energy of convergence was set to 1 x 10® eV and the residual force on
each atom was smaller than 0.01 eV/A during the structural optimization. The cutoff energy for the
plane-wave basis was set to 500 e¢V. The vacuum distance normal to the plane was larger than 30
A to eliminate interaction between the periodic replicas. A rectangular supercell of (3x4) was used
for the black phosphorene, and a parallelogram supercell of (4x4) was used for the blue

phosphorene. The reciprocal space was sampled by a grid of (2x2x1) k points in the Brillouin Zone.

First principles molecular dynamics (MD) simulations were also performed to simulate the
interaction processes considered. The MD simulation was based on the norm-conserving Troullier-
Martins pseudopotential together with Nosé thermostat*'? as implemented in the SIESTA program
package®. In order to minimize the constraints induced by periodicity in the slab model for MD
simulations, (5%6) and (5x5) supercells were used for black and blue phosphorene, respectively.
The time step was set to 1 5, and the simulation temperature was set to 300 K. It is to be noted that

most of the experiments on degradation of phosphorene were done in the air. In our MD
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simulations, the number density of gas molecules was about 65.8x10*/m’> considering 9 O
molecules in a simulation cell of (22.9 A x 19.9 A x 30 A). Such high pressure conditions were

also used for MD simulations to study oxidation of SiC*'! and graphene '.

5.3.3. Results and discussions

Black phosphorene has a puckered surface with two sub-layers of phosphorus atoms which are
arranged in a rectangular lattice. At GGA-PBE level of theory, the lattice constants along the
armchair and the zigzag direction are 4.57 A and 3.31 A, respectively. The bond lengths are 2.22
A and 2.25 A. Blue phosphorene has a buckled honeycomb structure with lattice constant of 3.28
A and bond length of 2.26 A. Our results are in agreement with the reported lattice constants and
bond lengths of black and blue phosphorene "> 2% thereby, demonstrating the reliability of the

modeling elements used in the calculations.

O interacting with phosphorene

AQ=-4.07 eV AQ =-4.02 eV
+0, ——» P(20) Ppristing ¥+ O~ = P(20)

P

pristine

Figure 5.10 O; dissociation on phosphorene: (a) black phosphorene, (b) blue phosphroene. P(20)
represents black or blue phosphorene with two O adatoms. (Reprinted with permission from
reference *°. Copyright 2016 IOP Publishing.)
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Table 5.1. Structural properties of atomic O adsorbed on phosphorene. (Reprinted with permission
from reference *°. Copyright 2016 IOP Publishing.)

Phosphorene Black Blue
Bond length
1.50A  150A
Rro (A)
Bond angle 112°,
117° 1237
ZP-P-0O (°)
Bader charge,
-1.31e -1.32¢
Oxygen

From section 5.2, we know that that O, can easily dissociate on black phosphorene 3% 2!4 Jeading
to the formation the oxidized lattice '*. As shown in Figure 5.10, O, tends to dissociate on the
surface with exothermic energy (40) of -4.07 ¢V/O, molecule on black phosphorene, and -4.02
e¢V/O, molecule on blue phosphorene. Note that the dissociation energy is obtained by comparison

with the most stable triplet Os.

Ziletti et al. have found the dissociation barrier of O, on phosphorene is only 0.54 eV %,
Considering that chemical reaction with an energy barrier less than 0.9 eV (=21 kcal/mol) from
DFT calculations could occur at room temperature %, the oxidation of phosphorene is expected to
occur readily at room temperature. Other external sources such as photon radiation may speed up
the dissociation process. After dissociation, atomic oxygen finds the dangling position to be the

preferred site on black phosphorene which is consistent with previous theoretical studies '3% 42,
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This is not the case with blue phosphorene where the preferred site is the top site. The P-O bond
shows similar bonding character as seen from the bond length and Bader charges !¢ given in Table
5.1. Overall, the nature of interaction of oxygen with phosphorene stems from the sp* bonds which
leave a lone electron pair on each phosphorous atom, and the preferred binding site follows the

direction of the lone electron pair on both allotropes.

0fs 1000 fs 1100 fs 1150 fs

Figure 5.11 Snapshots of O: interacting with phosphorene during MD simulations: (a) black
phosphorene, (b) blue phosphorene. Reprinted with permission from reference’. (Copyright 2016
1OP Publishing.)

The calculated results based on AIMD simulations further affirm the dissociation of O, on
phosphorene. Figure 5.11 shows time-dependent snapshots of the configurations showing
interaction of oxygen with phosphorene during MD simulations. These configurations were
obtained by placing a few O, molecules 4 A initially above the surface at a constant temperature of
300 K. For the case of black phosphorene, some O, molecules will first move closer to the native
phosphorus atoms, then dissociate into atomic oxygen atoms after 600 fs. A similar O, dissociation

process is seen on the blue phosphorene after 1150 f5.
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Considering that we have used relatively high pressure conditions in our MD simulations, we have
performed additional MD calculations with only one O, molecule in the simulation box of (22.9 A
x 19.9 A x 85 A) which appears to mimic number density of gas molecules of 2.5x10%/m’ under
standard atmospheric conditions. The dissociation of O, on the surface does occur under the
relatively reduced pressure conditions. We may therefore conclude that both allotropes of
phosphorene will go through the spontaneous oxidation process upon exposure to O, at room
temperature due to the affinity of P and O atoms forming P=O bonds with a large exothermic

energy.

H20 interacting with phosphorene

Figure 5.12 shows the configurations of H,O interacting with phosphorene considered for the
calculations: one leg, two leg, and O closer. The configuration referred to as “one leg” is the
configuration in which one of the H atoms is closer to the surface, “two leg” means both H atoms

are closer to the surface, and “O closer” means the O atom is closer to the surface.

The calculated binding energy profiles with vdW correction using DFT-D2 method of Grimme 2%

are shown in Figure 5.13. Some of the results deduced are:

(i). The ‘two leg’ configuration is the most stable configuration suggesting that H atoms prefer
to move towards the surface. This is due to the well-known polar nature of the H,O molecule in

which H atoms tend to attract the lone electron pairs of phosphorene.

(i1). The calculated binding energy including vdW correction term is about 180 and 125 meV

for H>O on the black and blue phosphorene, respectively. It is larger than that of H,O on graphene
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at the same level of theory (in the range from 60 to 120 meV 2!7), mainly because of the presence

of the lone electron pairs on phosphorene.

(a) one leg two leg O closer
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Figure 5.12 Top and side views of the configurations considered for H>O interacting with
phosphorene: (a) black phosphorene, (b) blue phosphorene. Reprinted with permission from
reference *°. Copyright 2016 IOP Publishing.)

In order to further examine the interaction of H,O with phosphorene, we considered the initial
configuration to consist of a “forced” H»O molecule at the interstitial site of the phosphorene lattice.
If H,O prefers to interact strongly with phosphorene, then the optimized configuration should show
that H and O atoms remain in the lattice. This is not the case as HO moves out of the lattice to a
surface site without distorting the surface for both allotropes. Our first principles MD simulations

up to 10 ps also find that H,O molecules stay near the phosphorene surface without any chemical
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interaction within 10 ps. Therefore, instead of strongly interacting with phosphorene, H,O prefers

to bind to the surface through hydrogen bonds.
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Figure 5.13 The calculated binding energy profiles of a H>O molecule approaching phosphorene:
(a) black phosphorene, (b) blue phosphorene. Reprinted with permission from reference **°.
Copyright 2016 I0OP Publishing.)

Stability of phosphorene in air : Exposure to O; and H;O

The dissociation of HO on pristine black and blue phosphorene is endothermic with energy
increase of 1.24 eV and 1.37 eV, respectively (Figure 5.14). This is not the case with the oxidized

phosphorene monolayers for which the endothermic energy significantly decreases to 0.26 eV and
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0.48 eV, respectively. Therefore, oxidation of phosphorene may enable dissociation of H,O on the
surface. Also considering that the phosphorous oxides (e.g., P3O, P4O10) are reactive with H>O 2'%,
a simple intuitive view of the degradation of phosphorene in air based on energetic considerations

can be offered: first, oxidation of the 2D lattice of phosphorene will occur in air; then, the oxide

species will interact with H»O.

AQ=1248V AQ =137 eV
Porisine + HyO ———3p=  P(OH, H) Ppristine + H20 ez P(OH, H)

AQ=0.26eV AQ=048eV
Poige *+ H)O =3 P(20H, O) Posige + H)O ~ ———m P(20H, O)

Figure 5.14 H>O dissocation on pristine and oxide phosphorene: (a) black phosphorene, (b) blue

phosphorene. P(OH,O) represents black or blue phosphorene with OH group and O adatom.
(Reprinted with permission from reference’””. Copyright 2016 IOP Publishing.)

In order to validate our view of this interaction process, the relative energy of the initial and final
chemical species along the pathway are calculated. The reactants are phosphorene, 3 O, molecules,
and 3 H>O molecules and the products are 2 phosphoric acid and phosphorene with defects
including di-vacancy and O adatom (Figure 5.15). For black phosphorene, the total energy release
during this process is 15.60 eV. The oxidation process is exothermic with energy release of about
12.21 eV, and the reaction of phosphorene oxide species with 3 H,O molecule further releases 3.39
eV of energy. The reaction process for blue phosphorene is also exothermic, which suggests the

similarity of black and blue phases in terms of the environmental stability. Overall, the exothermic
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process implies that H,O will react with phosphorene if it is oxidized on the surface. The proposed
pathway will lead to the formation of phosphoric acid and defective phosphorene. The defective
phosphorene could further be photo-oxidized 2°, and then the oxide species will further react with
H,O. This reaction circle results in the fast degradation of phosphorene in air. Different from
graphene where the dangling bonds near the defects initiate its degradation®®, the degradation of

phosphorene is expected to occur without any initial intrinsic defects.
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Figure 5.15 Relative energy during the interaction process of black (solid curve) and blue (dashed
curve) phosphorene with Oz and H>O. The insets show the structure of initial phosphorene structure
and the products. Pu(0) represents defective phosphorene with one divacancy and one O adatom.
(Reprinted with permission from reference *'>. Copyright 2016 IOP Publishing.)

5.3.4. Summary

In order to investigate the stability of phosphorene in air, the interaction of O, and H,O with
phosphorene was studied by using density functional theory combined with first-principles

molecular dynamics simulations. We find that (i) O, will spontaneously dissociate on phosphorene
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at room temperature. The exposure of phosphorene to O, will induce its oxidation forming an
oxidized phosphorene lattice; (ii) H2O does not interact directly (chemically) with the pristine
phosphorene lattice. It prefers to bind to the surface of phosphorene though hydrogen bonds; (iii)
H,O will exothermically interact with phosphorene if it has first been oxidized; (iv) Other
theoretically predicted 2D phosphorene allotropes, e.g. blue phosphorene, are also expected to be

unstable in air.

Our calculations are supported by several experimental results; e.g. experiments have shown that
fast degradation of phosphorene occurs with the existence of both O, and H»O, the degradation

O 204220, experiments have

process slows down with the exposure of phosphorene to only O or H»
shown a drop of pH after water addition to phosphorene ?*!, which is a clear identification of the
formation of phosphoric acid. Considering the rapid growth of research on 2D materials based on
the group V semiconductors, our study provides an atomic scale understanding of the stability of

phosphorene in air, which will aid in determining the degradation and aging effects of phosphorene-

based devices.
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Chapter 6 Group V elemental 2D materials —
antimonene and its allotropes’

6.1. Introduction

Group-V elemental monolayers have recently emerged as novel two dimensional (2D) materials
with semiconducting electronic properties. For example, the monolayer form of black phosphorous,
phosphorene (a-P), has a direct band gap and high carrier mobility '*222, which can be exploited in
the electronics 223, Additionally, the stability of phosphorene in the other allotropes including f,
7, and J phases was predicted '*% 2%, The equilibrium configuration of a-P is puckered due to the
intralayer sp* bonding character in the lattice. The 2D form of the so-called blue phosphorene is
refereed to as B-P 2% which possesses the hexagonal honeycomb structure maintaining the sp*
character of bonds. Each atom is three-fold coordinated forming silicene-like 2D structure with

buckling at the surface 7. y-P and §-P have rectangular Wigner-Seitz cells 22,

Considering the chemical similarity of elements belonging to the same column in the periodic table,
the other group-V elemental monolayers have also been investigated. Arsenene in « and f phases
is predicted to be stable 22%22¢, Ultrathin Bi (111) and Bi (110) films have been assembled on Si
substrate or pyrolytic graphite in experiments 2”22, It is important to note that, unlike group-IV
monolayers which are semi-metallic including graphene 2%, silicene 7*, and germanene ’, group-V
monolayers are found to be semiconductors 22> 226 239 thereby offering prospects for device

applications at nanoscale.

* The contents in this chapter were previously published in ACS Appl. Mater. Interfaces, 2015, 7,
11490-11496. Refer Appendix F for granted permission to be republished.
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In the bulk form, various allotropes exist for group-V elements at ambient conditions. For example,
the most stable allotrope for P is black phosphorus which is composed of AB stacked a-P
monolayers. Bulk black phosphorus possesses an intrinsic band gap of ~0.3 eV 2?2 2! which
increases to ~2 eV in its monolayer form '°. The other group-V elements, As, Sb, and Bi, crystallize
in a rhombohedral structure at ambient conditions, where the (111) direction is composed of ABC

stacked f- phase monolayers %2,

In this chapter, I will focus on the 2D antimony (Sb), referred to as antimonene. Recently, Zhang
et al. have shown that the Sb (111) films (i.e. 5-Sb) undergo a thickness dependent transition from
topological semimetal to topological insulator to normal semiconductor with decreasing thickness
232 The semiconducting electronic properties of A-Sb monolayer is also confirmed by a recent
theoretical investigation ***. However, stability and electronic properties of antimonene in other

allotropes (i.e. a, y, and J-Sb) have not yet been investigated.

We consider antimonene allotropes including a-, -, y-, and J-Sb examining their stability by
phonon dispersion calculations based on density functional theory (DFT). Furthermore, we will
investigate the effect of mechanical strain on the electronic properties of antimonene allotropes.
We will also calculate Raman spectra and scanning tunneling microscope (STM) images to gain

further insights into the electronic structure and surface morphology.

6.2. Computational methods

The calculations were performed with the use of VASP program package *°. We employed the local
density approximation (LDA) together with the projector-augmented-wave (PAW) #** method

which has been shown to correctly describe Sb films 2*2. For bulk Sb, our calculations find the
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lattice constant of 4.31 A is in excellent agreement with the experimental value of 4.30 A 2*° giving
confidence in the calculated results with the proposed approach based on the LDA-DFT level of
theory. To compare stability and structural parameters of different allotropes of antimonene, the
Perdew-Burke-Ernzerhof (PBE) ¥’ functional and the DFT-D2 method of Grimme 2% were also

employed to describe the weak vdW interaction.

In calculations, the energy convergence was set to 10° eV and the residual force on each atom was
smaller than 0.01 eV/A. The cutoff energy for the plane-wave basis was set to 500 eV. The
reciprocal space was sampled by a grid of (15x15x1) k points in the Brillouin zone. The vacuum
distance normal to the plane was larger than 20 A to eliminate interaction between the replicas due
to the period boundary conditions in the supercell approach of our model. The spin-orbit coupling
(SOC) was included in calculations for the band structure. The Phonopy code *° was used for the
phonon dispersion calculation considering supercell of (4x5) for a-Sb, (5%5) for S-Sb, (5x4) for y-
Sb, and (3%3) for 6-Sb. The non-resonance Raman spectra were obtained within density-functional
perturbation theory (DFPT) by second order response to an electric field as implemented in
Quantum Espresso 2*. The scanning tunneling microscope (STM) images are based on BTH

14

approximation '*°, which has been successfully used to investigate tunneling characteristics of

several nanomaterials 4> %7,

6.3. Results and discussions

The structural configurations of antimonene allotropes are shown in Figure 6.1. The a-Sb has a
distorted atomic structure with two sub-layers, where atoms belonging to the same sub-layer are

not in the same planes (Figure 6.1(a)). The four atoms in the unit cell are arranged in a rectangular
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lattice with a puckered surface. The calculated bond lengths are 2.83 and 2.91 A and the calculated

bond angles are 95.0 and 102.5° at LDA-DFT level of theory for a-Sb (Table 6.1).
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Figure 6.1 The structural configurations of antimonene allotropes: (a) o-Sb, (b) 5-Sb, (c) y-Sb, and
(d) 6-Sb. (Reprinted with permission from reference **’. Copyright 2015 American Chemical
Society.)
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Figure 6.2 The calculated phonon dispersions of antimonene allotropes. (a) a-Sb, (b) p-Sb, (c) y-
Sb, and (d) 5-Sh. (Reprinted with permission from reference . Copyright 2015 American
Chemical Society.)

The ground state configuration of f-Sb mimics the metallic Sb (111) surface (Figure 6.1(b)). It has
a hexagonal lattice with the buckled surface similar to what was predicted for f-P. The bond length
between neighboring Sb atoms is 2.84 A, and the bond angle is 89.9° (Table 6.1). The results are

in agreement with previous theoretical calculations on S-Sb monolayer 3% 2%8, Similar to y- and J-
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P 224 the y- and J-Sb have the rectangular unit cells which are shown in Figure 6.1(c) and (d). The
optimized bond lengths are 2.82 and 2.94 A for y-Sb, and the corresponding bond lengths are 2.87

and 2.93 A for §-Sb at LDA-DFT level of theory.

Table 6.1. The ground state structural parameters (see Figure 1) of antimonene allotropes: a is the
lattice constant, R is the near-neighbor distance, 0 is the bond angle, and Ec is the cohesive energy
which is taken to be the total energy difference between the 2D material and its constituting atoms.
(Reprinted with permission from reference **’. Copyright 2015 American Chemical Society.)

-Sb 5-Sb

Level of aj az R; R, 0, 0, E. a R 0 E.
theory

@ @ @ @ O O eww| A (A () ermon

LDA 448 431 283 291 950 1025 -4.63 | 401 2.84 899 -457

GGA(PBE) | 474 436 287 294 953 1024 -4.03 | 412 2.89 90.8 -4.03

DFT-D2 | 4.77 428 286 291 94.6 1035 -429 |4.04 287 89.6 -4.26

The stability of these antimonene allotropes is first investigated by the calculation of the phonon
dispersion curves as shown in Figure 6.2. No imaginary vibrating mode is observed for a-Sb and
S-Sb illustrating their stability as the free-standing monolayers. The phonon dispersion curve of -
Sb is similar to that of phosphorene with separated acoustic and optical modes. The maximum
vibrational frequency in a-Sb and #-Sb is 170 and 200 cm™, respectively. Our calculations show
that y-Sb has imaginary mode along I'-X, and J-Sb has imaginary modes at I'. Employing a larger
supercell model with higher convergence criteria also yielded imaginary frequencies for y- and J-

Sb, thus confirming their structural instabilities.
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The stability of a- and S-Sb monolayers is further examined by the cohesive energy calculations at
different levels of DFT. As listed in Table 6.1, a-Sb has larger cohesive energy than $-Sb at the
LDA-DFT (=60 meV) and DFT-D2 (=30 meV) levels of theory, though both monolayers are nearly

degenerate at GGA(PBE)-DFT level of calculation.
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Figure 6.3 The calculated Raman spectra (a) and the corresponding vibrational modes of
antimonene allotropes (b and c). (Reprinted with permission from reference **’. Copyright 2015
American Chemical Society.)

(c)

The phonon free energy difference in the temperature range of 0-600 K is calculated to be less than

15 meV/atom between a-Sb and f-Sb suggesting stabilization of both monolayers in experiments.
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Interestingly, a crossover in the cohesive energies of a-Sb and 5-Sb multilayers at 3 atomic layers
is predicted which suggests that $-Sb is more stable than a-Sb in multilayers with more than 3
atomic layers. The thickness dependent phase transition is mainly due to the stronger interlayer
interaction in £ multilayers (as will be shown later), resulting into their stability over a-Sb
multilayers. The experimental results on ultrathin Bi films show stability of 5-Bi over a-Bi for films

with thickness more than 4 atomic layers 2%,
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Figure 6.4 Electronic properties of 0-Sb (a, b, and c) and p-Sb (d, e, and f) monolayers: (a and d)
band structure, (b and e) charge density projected in the plane, and (c and f) simulated STM images.
(Reprinted with permission from reference *’. Copyright 2015 American Chemical Society.)

Considering that the Raman measurements are widely used to characterize 2D materials, such as
graphene **°, we have calculated the Raman spectra for a- and f-Sb monolayers at the LDA-DFT
level of theory which are shown in Figure 3. In order to assess the reliability of our approach, we

first calculated the Raman spectrum of the bulk Sb. Two Raman peaks, E; at ~100 cm™ and A, at
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~148 cm! are in agreement with experiments 2*!. This gives confidence in our calculated results

for the Raman spectra of antimonene.

a-Sb belongs to C,y group, and the modes, A;'at 63 cm™, By at 102 cm™!, A;? at 132 cm™!, and A*
at 147 cm’!, exhibit prominent Raman scattering. A;' and A;* are out-of-plane modes. For the A,
mode, atoms belonging to the same sub-layer vibrate along opposite directions. A;* is the most
dominating Raman peak for a-Sb for which atoms belonging to the same sub-layer vibrate along
the same direction and the two sub-layers vibrate opposite each other. B; and A,? are both in-plane
modes in a-Sb. The f-Sb monolayer belongs to D34 group and the Raman active modes are at 150
cm! (Eg) and 195 cm™! (Ay,). The E, modes are doubly degenerate in-plane modes with two atoms

in the unit cell vibrating along opposite directions, and A, is an out-of-plane vibrating mode.

The calculated band structure, charge density and STM images are shown in (Figure 6.4). The a-
Sb monolayer has a relatively small indirect band gap of ~0.28 eV. The valence band maximum
(VBM) has a hybrid character of s orbitals and in-plane p, and p, orbitals, which shows an almost
linear dispersion at VBM. Due to the puckered structure, a-Sb has a stripe like STM surface
characteristic (Figure 6.4(c)). The electronic band structure (Figure 6.4(d)) for the f-Sb monolayer
shows it to be semiconducting with an indirect band gap of ~0.76 eV. A dot-like feature in the

simulated STM image (Figure 6.4(f)) of the 5-Sb monolayer results from its buckled surface.

Figure 6.5 shows atomic arrangements of antimonene multilayers. f-Sb multilayers prefer an ABC
stacking similar to the bulk Sb (Figure 6.5(d)); the AA-stacked bilayer is higher in energy by <24
meV/atom than the AB-stacked bilayer. The calculated layer distance is found to be 3.65 A. The
band gap of the bilayer and trilayer 5-Sb decreases significantly due to the small surface states

splitting as predicted in the previous theoretical report on ultrathin -Sb 22, 1t is interesting to note
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that the binding energy of f-Sb bilayer is 124 meV/atom, which is much larger than that of other
vdW layered materials, such as graphite (=20 meV/atom 2*?) and MoS; (=60 meV/atom 2*?). This
is due to the partially overlapping of lone pair orbitals from the neighboring layers as seen from the
charge density plot (Figure 6.5(e)). This is also confirmed by the deformation change density shown
in Figure 6.5(f). Therefore, the mechanical exfoliation of bulk Sb is not expected to be relatively

easier than that of graphite or MoS..

a-Sh ¢

Isovalue:
0.001 e/A®
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) ¥ 0.001 /A3

Figure 6.5 a-Sb and p-Sb multilayers: (a) atomic structure, (b) charge density projected
perpendicular to the layers, (c) deformation charge density for a-Sb bilayer; (d) atomic structure,
(e) charge density projected perpendicular to the layers, and (f) the deformation charge density for
B-Sb bilayer. (Reprinted with permission from reference . Copyright 2015 American Chemical
Society.)

a-Sb multilayers prefer an AB stacking similar to that of black phosphorus (Figure 6.5(a)). The

layer distance in a-Sb bilayer is calculated to be 6.16 A. The binding energy of the AB-stacked a-
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Sb bilayer is calculated to be 68 meV/atom, which is close to those of other layered materials, e.g.
MoS; **. The charge density in the region between the bilayer is very small (Figure 6.5(b)), and
the electron redistribution in a-Sb bilayer (Figure 6.5(c)) is not as obvious as that in 5-Sb bilayer.
All these features indicate that the interlayer interaction is dominated by vdW interaction in a-Sb
multilayers. The AA-stacked bilayer is calculated to be 8 meV/atom higher in energy than the AB-
stacked bilayer. The a-Sb bilayer and trilayer are calculated to be metallic with VBM and CBM

crossing the Fermi level.

It is well known that strain can be introduced spontaneously by deposition of ultra-thin films on
substrates with mismatched lattice constants. Application of strain to 2D atomic layers is also one
of the possible approaches to tailor their electronic properties. Previous calculations on silicene,
which has similar structure to S-Sb, have predicted it to sustain under the strain up to 20% 24244,
Likewise, a-P shows superior mechanical properties due to its puckered structure, sustaining under

167

the strain up to 30% along the armchair direction '°’. Experimentally, a large strain up to 30% could

be applied to 2D materials by the use of stretchable substrates '%.

The tensile strain is defined as & = (a-ao)/ao, where ao and a are the lattice constants of the relaxed
and strained structure, respectively. The stress-strain curve for antimonene allotropes is calculated
following the procedure of Wei and Peng '¢7 are shown in Figure 6.6. The stress is rescaled by the
factor Z/d to get the equivalent stress, where Z is the cell length along z direction and d is the
interlayer spacing. d is calculated to be 3.65 and 6.16 A for 8-Sb and a-Sb, respectively. It should

be noted that the inter layer distance predicted for f-P and a-P are 4.20 and 5.30 A, respectively

224
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For a-Sb, the ideal strengths, which are defined as the maximum stress in the stress-strain curve,
are ~10 GPa and ~4 GPa along the zigzag and armchair directions (Figure 6.6(a)). The
corresponding critical strains are 18% and 32%, respectively. For -Sb, the ideal strengths are ~10
and ~11 GPa along zigzag and armchair directions, respectively (Figure 6.6(b)). The corresponding
critical strains are 15% (zigzag direction) and 18% (armchair direction). Both the ideal strength and
critical strain are quite close along the zigzag and armchair directions. This clearly shows that f-
Sb has nearly isotropic mechanical properties while a-Sb exhibits strongly anisotropic mechanical
characteristics. The critical strain along the armchair direction is extremely large in a-Sb, which

will lead to strain engineering of its electronic properties.
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Figure 6.6 Stress-strain relationship for antimonene monolayers: (a) o-Sb and (b) 5-Sb. (Reprinted
with permission _from reference *¥’. Copyright 2015 American Chemical Society.)

Next, we examine the tensile strain effect on the electronic properties of both Sb monolayers within
the critical strain region. a-Sb has an indirect band gap and the tensile strain along the armchair

direction induces an indirect-direct band gap transition (Figure 6.7(a)). With strain larger than 6%,
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a direct band gap at VI is predicted. For 11% strain, the band gap at V1 decreases to 0.05 eV.
Thereafter, the band gap gradually increases with strain larger than 11%, and reaches to 0.45 eV at
20% strain. For the tensile strain along zigzag direction (Figure 6.7(b)), CBM moves to V2 point,
and VBM moving to /" for 8% of strain. The strain induced indirect-direct band transition is mainly
due to competition of states at I, V1 and V2. Similar theoretical results have also been reported for

a-P 1% and a-As layers 5.
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Figure 6.7 Electronic band structures of a-Sb and [-Sb monolayers under various strains: (a) a-
Sb under strain along armchair direction, (b) a-Sb under strain along zigzag direction, and (c) p-
Sb under biaxial strain. (Reprinted with permission from reference **’. Copyright 2015 American
Chemical Society.)
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Since S-Sb monolayer shows isotropic mechanical properties along the zigzag and armchair
directions, a biaxial tensile strain was applied to the lattice as shown in Figure 6.7(c). p-Sb
monolayer has (minimum) indirect band gap of 0.76 eV at the equilibrium configuration. Under
5% of strain, its band gap becomes direct at /. The band gap closes under 12% of strain, and reopens
for strain of 20%. Considering that f-Sb monolayer still preserves its buckled structure under 15%

of strain, its band gap can be effectively tuned by the in-plane strain.
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Figure 6.8 Structural and electronic properties of antimonene monolayers on graphene
substrates: (a) and (b) f-Sb on graphene; (b) and (d) a-Sb on graphene. (Reprinted with
permission from reference . Copyright 2015 American Chemical Society.)
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Considering that the mechanical exfoliation (scotch tape) approach will be difficult to fabricate
antimonene due to much larger predicted binding energy of the bilayers, the standard chemical
techniques are likely to play a major role in the synthesis of 2D antimonene system. For example,
the ultrathin Bi(111) and Bi(110) films have been assembled on Si or highly ordered pyrolytic
graphite (HOPG) substrate by vapor deposition 2*>2%_ In our work, we have considered a graphene
substrate for the fabrication of Sb monolayers. a-Sb/graphene is simulated with a rectangular
supercell of 4.5 Ax17.1 A, and B-Sb/graphene is simulated with a parallelogram supercell of 10.6
Ax10.6 A as shown in Figure 6.8. The large supercells are chosen to reduce the lattice mismatch

between graphene and antimonene to 5%.

As seen from the relaxed structures, the distance between the antimonene and the graphene
substrate is larger than 3.2 A at LDA-DFT level of theory. The corresponding binding energies of
o- and S-Sb on graphene substrate are 16 meV/atom and 14 meV/atom, respectively. The Sb-Sb
bond lengths are 2.82 A and 2.86 A in a-Sb/graphene, and 2.83 A in 5-Sb/graphene, which are
close to the bond lengths in antimonene monolayer without a substrate. From the projected band
structures (see Figure 6.8), the electronic property of £-Sb monolayer is maintained on graphene
substrate; and slightly charge transfer from a-Sb to graphene is observed as indicated by the shifting
of the Fermi level (see Figure 6.8). Therefore, graphene could possibly serve as a substrate for the

epitaxial growth of antimonene allotropes.

6.4. Summary

In conclusion, DFT calculations were performed on 2D antimonene atomic layers. Our results show
that a- and S-Sb monolayers to be stable and can be realized experimentally. Both monolayers are

semiconductors with indirect band gap. f-Sb has nearly isotropic mechanical properties whereas o-

98



Sb exhibits strongly anisotropic mechanical characteristics. Moderate tensile strain would induce
indirect to direct band gap transition in antimonene. The calculated Raman spectrum prominently
shows in-plane and out of plane vibrating modes that can be used to characterize experimentally

synthesized antimonene monolayers.
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Chapter 7 Group IV-V binary 2D materials— carbon
phosphide”

7.1. Introduction

Since the discovery of graphene % 247, two dimensional (2D) materials have sparked an
extraordinary level of interest due to their unique properties and novel applications in electronics
and optoelectronics. Among the 2D material family, the group IV elemental monolayers, graphene,
silicene and germanene stand out due to presence of the Dirac cones ** ?*8, which endow the
massless Dirac fermions with extremely high carrier mobility. However, the gapless nature of group

IV monolayers is one of the major obstacles for their applications in transistors. Recently, the group

11, 175 225, 226 237, 249

V elemental monolayers such as phosphorene , arsenene and antimonene were
established as promising 2D materials with electronic properties which are significantly different
from those of the group IV elemental monolayers. For example, phosphorene is a direct band gap
semiconductor with anisotropic electronic conductance and high hole mobility !>, However, due
to the fast degradation of phosphorene in air, its application in electronic devices has been

161, 177, 178

challenging

Interestingly, the group IV and V elemental monolayers show noticeable structural similarities
including three-fold coordinated atoms and a hexagonal network. In graphene, each C atom is sp?
hybridized connecting to three neighboring C atoms in a planar hexagonal structure through o
bonds. The out-of-plane p. orbitals form z and z* bands leading to its band structure with Dirac

3

cones ®. In phosphorene, P atom is sp® hybridized sharing three of its valence electrons with

* The contents in this chapter were previously published in Nanoscale, 2016, 8, 8819-8825. Refer
Appendix G for granted permission to be republished.
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neighboring P atoms forming a puckered hexagonal lattice. The remaining two valence electrons
form a lone pair in one of the sp® orbitals. Since preference of C and P atoms appears to be three-
fold coordination in the 2D monolayer, the following intriguing questions arise: Is it possible to
form a stable carbon phosphide (CP) monolayer? If yes, then how will the binary monolayer be
like in terms of mechanical and electronic properties including nature of the band gap and carrier

mobility?

It is to be noted that experimental efforts are being made to produce carbon phosphide (or
phosphorus carbide). Initial attempts to synthesize bulk CP were made by producing P-doped
diamond-like carbon 2°°. Later, synthesis of amorphous CP films using radio frequency plasma
deposition with CHs and PH3 gas mixtures was reported *! 22, The ratio of P/C in their samples

251, 252

can be widely controlled via the ratio of PH3/PH4 gas , which led to the efforts of producing

233,254 and magnetron sputtering techniques 2°°. In these

CP films using pulsed laser deposition
experiments, the presence of direct C-P bonds was established. Theoretically, the properties of bulk
phases of crystalline carbon phosphide with a range of stoichiometric compositions were

investigated via density functional theory 3% 2, Various phases with three- and four-fold

coordinated P atoms have been predicted 2*.

To the best of our knowledge, no experimental or theoretical study has been made on CP
monolayer. In this paper, we consider structure, stability, mechanical and electronic properties of
the low-energy phases of CP monolayer obtained by an exhaustive structural search performed

using a recently developed CALYPSO code with particle swarm optimization method >'.
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7.2. Computational methods

The CP monolayers with different stoichiometric compositions are obtained with CALYPSO code
51, The number of structures (e.g., population) that produced at each step is set to 24, and the number
of CALYPSO steps (e.g., generation) is fixed to 20. The number of atoms in the unit cells is up to
10. The stoichiometric monolayers with composition ratio of C,P; have attracted our particular
attentions due to their compact structural configurations. We classify these hexagonal
configurations to be a-, f-, and y-phases of CP monolayer (Figure 7.1) in analogy to the
classification used for phosphorene, o-P (black) and B-P (blue) monolayers 2%. The a-P has a
puckered surface due to the intralayer sp* bonding character in the lattice. B-P possesses a buckled
hexagonal honeycomb structure maintaining the sp?® character of bonds. Note that the cohesive
energies of these structures are 60-90 meV/atom lower than the average cohesive energy of a-P
and graphene, which implies these structures are metastable compared to a-P and graphene.
However, this does not necessarily mean that CP monolayers cannot be synthesized in experiments.
For examples, the layered As;—Px compounds, which are predicted to be metastable compared to
layered As and layered P compounds !#!, have been synthesized 2*’. Moreover, the stability of these
monolayers is verified by the vibration spectra calculations and ab initio molecular dynamics

(AIMD) simulations in the present study.

Calculations of electronic properties were performed using the projector-augmented-wave (PAW)
method and the generalized-gradient approximation (GGA-PBE) for electron exchange-correlation

137 as implemented in the Vienna Ab initio Simulation Package (VASP) 2%. The

interaction
electronic and mechanical properties were obtained with GGA-PBE functional throughout this

paper. Since GGA usually underestimates the band gap, we also used the hybrid Heyd-Scuseria-
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Ernzerhof (HSE06) functional form ? to get relatively accurate values of the band gap. The energy
convergence was set to 10 eV and the residual force on each atom was smaller than 0.01 eV/A.
The energy cutoff for the plane-wave basis was set to 500 eV. The reciprocal space was sampled
by k-point meshes of (11x11x1) for geometry optimization, and (45%45x1) for density of states
(DOS) calculations. The vacuum distance normal to the plane was larger than 20 A to eliminate
interaction between the replicas due to the periodic boundary conditions in the supercell approach
of our model. The vibration spectra calculations were performed by means of finite displacement
method as implemented in the PHONOPY program *’ with supercell size of (3x4x1), (8x5x1), and
(4x5x1) for a-, B-, and y-CP, respectively. The AIMD simulations were based on the NVT
ensemble with a time step of 1 f5. The temperature was controlled to 300 K with Nose-Hoover
thermostat 2'°. In this work, the van der Waals (vdW) term was also included as in the DFT-D2
method of Grimme 2% to check the structure, stability and electronic properties of a-, B-, and y-CP.

Consistent results were obtained with GGA-PBE and DFT-D2 functional forms.

7.3. Results and discussions
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Figure 7.1 The structural geometry including top view, side view, and the Brillouin zone of (a) o-
CP, (b) 5-CP, and (c) y-CP. a; and a; are the lattice constants, R is the nearest neighbor distance,
0 is the bond angle of C-P-P. (Reprinted with permission from reference **°. Copyright 2016 Royal
Society of Chemistry.)
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In a-, B-, and y-CP, each C atom bonds with three nearest neighbors in a planar configuration (see
the side views in Figure 7.1) implying the C atoms are sp? hybridized. On the other hand, each P
atom bonds with three neighboring atoms in a buckled configuration suggesting sp* hybridization
of P atoms in the 2D lattice. For a- and B-CP, the zigzag (i.e. y) direction is composed of alternating
C and P atoms, and the armchair (i.e. x) direction is composed of alternating C-C and P-P dimers.
Overall, a-CP has a puckered surface, and B-CP has a buckled surface as seen from the side views

in Figures 7.1(a) and 1(b). The y-CP is composed of alternating P chain and C chain along the
armchair direction (Figure 7.1(c)). Due to mismatch in C-C and P-P bonds, the y-CP has a distorted

hexagonal network.

Table 7.1. Calculated structural parameters of CP monolayers (see Figure 1) at the GGA-PBE
level of theory. (Reprinted with permission from reference *°. Copyright 2016 Royal Society of
Chemistry.)

ai a Rec Rcp Re-p 0 Cohesive energy
A A A) (A) A) ©) (eV/atom)
a-CP 8.68 292 1.36 1.83 2.32 97.40 5.32
B-CP 472 2091 1.37 1.82 2.33 97.78 5.33
v-CP 480 5.63 145,143 1.82 2.30,2.17 104.00 5.35

All three phases of CP monolayer have nearly degenerate cohesive energy with the rectangular unit
cells as summarized in Table 7.1. The length of C-C, C-P, P-P bonds in a- and B-CP are 1.36-1.37
A, 1.82-1.83 A, and 2.32-2.22 A, respectively. The C-C bond in CP monolayer is slightly shorter

than that of 1.42 A in graphene ®, and the P-P bond is slightly longer than that of 2.26 (2.22) A in
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phosphorene calculated at the same level of theory '7°. In y-CP, the length of C-C and P-P bonds
vary in the range 1.43-1.45 A and 2.17-2.30 A, respectively which are very close to those of
graphene and phosphorene. Typical C-P bond lengths of 1.85 A were reported in the bulk CP by

the GGA-PBE calculations >*°.

(@) a-CP (b) B-CP (c) y-CP
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Figure 7.2 The phonon dispersion and phonon density of states (phDOS) calculated for (a) a-CP,
(b) B-CP, and (c) y-CP. (Reprinted with permission from reference ***. Copyright 2016 Royal
Society of Chemistry.)

The phonon dispersion curves are displayed in Figure 7.2 showing no imaginary (negative)
vibration mode in the Brillouin zone. AIMD simulations show that a-, -, and y-CP maintain their
structural integrity up to 5 ps demonstrating the dynamical stability of a-, B-, and y-CP. It is to be
noticed that the slopes of the longitudinal acoustic (LA) branch along I'-X is significantly different
from those along I'-Y near I'. The speed of sound derived from the LA branch along I'-X (armchair)
and I'-Y (zigzag) directions are found to be (5.9, 12.0 km/s), (6.3, 12.3 km/s), and (13.3, 6.8 km/s)
for a-, B-, and y-CP, respectively, reflecting the anisotropic nature of the in-plane stiffness in the
hexagonal network. The maximum vibrational frequency at 1450 cm™! for the optical branches of
a-, and B-CP is associated with C atoms as seen in the phonon density of states affirming a high
strength of C-C bonds in the hexagonal network. Additional calculations based on the strain energy

111, 260

curves reveal the in-plane stiffness along the armchair and zigzag directions to be (18.8,

171.5 N/m), (46.6, 158.3 N/m), and (233.2, 51.9 N/m) for a-, B-, and y-CP, respectively confirming
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the anisotropy nature of the mechanical properties. The lower stiffness along the armchair direction
is due to the puckered or buckled nature of a- and B-CP lattice (Figures 7.1(a) and (b)) which could
accommodate external strains by changing the puckered or buckled angle without much distortion
of the bond length. This is similar to the anisotropic mechanical properties observed for
phosphorene "> 26!, For the y-CP, the stiffness along the armchair direction is large because of the
C chains. The in-plane stiffness of CP monolayers is smaller than that of 340 N/m in graphene '
125 while it is larger than that of 28.9 N/m and 101.6 N/m in phosphorene * (except for the a-CP
along the armchair direction) due to the existence of stronger C-C and C-P bonds with sp?

hybridization in the hexagonal lattice.

The electronic properties of a-CP monolayer are presented in Figure 7.3. The calculated band
structure and density of states (DOS) indicate a-CP monolayer to be a semiconductor with an
indirect band gap of 0.63 eV at the GGA-PBE level of theory. The valence band maximum (VBM)
is at I" with a value of -4.05 eV. The conduction band minimum (CBM) is located at Y with a value
of -3.42 eV. The direct energy gap at I" is 40 meV larger than the indirect gap from I" to S. The C-

p- and P-p; orbitals dominate the VBM and the CBM.

The band structure and DOS indicate B-CP monolayer to be a semiconductor with a band gap of
0.39 eV (Figure 7.4(a)). CBM is at X point with a value of -3.76 eV, and VBM at -4.15 eV lies
very close to X point. Since the energy of the first VB at X point is only 10 meV lower than VBM,
we may identify the gap to be a quasi-direct band gap for B-CP monolayer. The C-p. and P-p.
orbitals dominate VBM, and C-p. and P-p. orbitals mainly contribute to CBM. Bader charge
analyses reveal a similar charge transfer of 0.92¢ and 0.99¢ from P atom to C atom in a- and B-CP,

respectively.
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CB

Figure 7.3 Electronic properties of a-CP: (a) band structure and density of states, the inset is the
zoomed figure around V point, (b) 2D energy profiles of the first valence band (VB) and the first
conduction band (CB), and (c) effective mass of electrons and holes at I along different directions;
distance from a data point to I is proportional to the magnitude of the effective mass. The solid
line acts as a guide to the eye. (Reprinted with permission from reference ***. Copyright 2016 Royal
Society of Chemistry.)

a- and B-CP monolayers are found to show high anisotropy in their electronic properties. For
example, valence and conduction bands around Fermi level have different slopes along the X-I"
(armchair) and X-S (zigzag) directions (Figure 7.4(a)), which reflects directional dependence of

effective mass of electrons and holes in B-CP. From the 2D plots of the energy dispersion of the
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first valence and conduction bands shown in Figure 7.4(b), we see elongated shape along X-S. In
contrast, the bands encounter a higher degree of dispersion along X-I" reflecting a smaller effective

mass of carriers.

. _ _ _ =
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Figure 7.4 Electronic properties of p-CP monolayer: (a) band structure and density of states, (b)
2D energy dispersion of the first valence band (VB) and the first conduction band (CB), and (c)
effective mass of electrons and holes along different directions at X; distance from a data point to
X is proportional to the magnitude of the effective mass. The solid line acts as a guide to the eye.
(Reprinted with permission from reference **°. Copyright 2016 Royal Society of Chemistry.)
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The calculated directional dependence of effective mass of the carriers is shown in Figure 7.4(c).
The values are significantly larger in the X-S (zigzag) direction than the X-I" (armchair) direction.
Along the X-I" (armchair) direction, electrons and holes have effective masses smaller than 0.05ms,.
The values along X-S (zigzag) direction are 1.10my and 4.10my, respectively. The effective mass
of holes could reach a maximum of 6.30my nearby the X-S direction. a-CP also has significant

anisotropic effective mass as demonstrated in Figures 7.2(a), (b) and (c).

The effective masses of carries in a- and B-CP along the zigzag (y) direction are comparable to the
values in phosphorene (1.12my and 6.35m, '* 7 %), while the values along the armchair (x) direction
are even smaller than those in phosphorene (0.17mg and 0.15my '* !°). The heavier holes along the
zigzag direction are mostly contributed by the P-p. orbital, and the lighter holes along the armchair
direction Sare mainly associated with C-p. and P-p. orbitals. Therefore, contributions of C-p-
clectrons appear to decrease the effective mass of carriers in the binary carbon phosphide
monolayer which are extremely important for nanoscale devices requiring semiconducting

materials with high carrier mobility.

An understanding of the electronic conductance of the material can be gained from the carrier
mobility calculations based on the deformation potentials (DP) theory as proposed by Bardeen and
Shockley 22, According to the DP theory, the carrier mobility of 2D materials can be evaluated

according to the following expression ¢ 1719 263

_ eh3C,
(2m)*kpTmymq(Efy) °

Hx (7.1)

where e is the electron charge, / is the Planck’s constant, 7'is the temperature and m” is the effective

mass. my is determined by ms = (m.'m,")"?. E;, is the deformation potential defined as E;. =
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AV/(Aa/ax), and is obtained by varying the lattice constant a, along the direction of electron
conduction. AV is the change of the band energy. The in-plane stiffness constant C, is obtained by

evaluating the strain energy curve !'2°0, Equation 7.1 has been demonstrated previously to give a

reliable estimate for the upper limit of the carrier mobility in phosphorene 7> 1°.

Table 7.2. Calculated carrier mobility in a-CP monolayer at T = 300 K along x (armchair) and y
(zigzag) direction obtained at GGA-PBE level of theory. m.” and my" are the effective masses of
electron (e) and hole (h), respectively. (Reprinted with permission from reference *°. Copyright
2016 Royal Society of Chemistry.)

me'imy  me'Imo Ex Ey C: C, L Uy
x % (eV) (Nm™) (10° cm?V-1sh)
e 0.10 1.22 1.72 10.55 18.75 171.47 3.87 0.08
h 0.12 6.63 0.18 1.75 18.75 171.47  115.18 0.20

The calculated carrier mobility using Equation 7.1 at room temperature (7 = 300K) for o- and f3-
CP is summarized in Tables 7.2 and 7.3, respectively. The carrier mobility shows strongly
directional dependence as one would expect from the anisotropic nature of the calculated effective
masses for a- and B-CP. The electron and hole mobility along the armchair direction is significantly
larger than those obtained along the zigzag direction suggesting the presence of an anisotropic
conductance in a- and B-CP. Such strong anisotropy in carrier mobility can be measured in

experiments '

and may facilitate fabrication of the anisotropic electronic devices. More interesting
than the anisotropic electronic conductance is the large value of the carrier mobility in CP

monolayers. For example, the hole mobility at room temperature in o-CP could potentially reach

1.15x10° ¢cm?V-'s”!, which is approximately five times larger than the maximum value in
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phosphorene (0.26x10° cm?*V-!s! %), and significantly larger than other 2D materials, such as MoS;
14 Such a large hole mobility in a-CP is attributed to a small effective mass together with a small
deformation potential along the armchair direction (Table 7.2). B-CP has comparable hole mobility

to phosphorene, while the electron mobility is much larger that in phosphorene °.

Table 7.3. Calculated carrier mobility in p-CP monolayer at T = 300 K along x (armchair) and y
(zigzag) direction obtained at GGA-PBE level of theory. m.” and my" are the effective masses of
electrons (e) and holes (h), respectively. (Reprinted with permission from reference *°. Copyright
2016 Royal Society of Chemistry.)

me'imy  me'Imo Ex Ey C: C, L Uy
x % (eV) (Nm™) (10° cm?V-1sh)
e 0.05 1.10 2.56 9.30 46.56 158.27 12.91 0.15
h 0.05 4.10 1.68 1.66 46.56 158.27 15.52 0.66

Distinct from a- and B-CP, y-CP is found to be a semimetal as shown in Figure 7.5. From the band
structure in Figure 7.5(a), the VB and CB cross at V point on the I'-X. The 2D and 3D energy
dispersion plots in Figures 7.5(b) and (c) illustrate that VB and CB touch at V and V’ in the
Brillouin zone forming distorted Dirac cones. An average of 0.46e is transferred from P atom to C

atom from Bader charge analysis. Calculations with a step size of 0.0013 1/A along I'-X were

performed to calculate Fermi velocity (v, = (%) (%) |g,=g)- The calculated vg values for of
electrons and holes along the V-X direction are 0.78x10%m/s and 0.40x10° m/s, respectively. The

Fermi velocity of electrons is close to the value in graphene (v =0.85x10° m/s ''?) implying the

high electron mobility in y-CP.
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Figure 7.5 Electronic properties of y-CP monolayer: (a) band structure and density of states, (b)
2D energy dispersion of the first CB and first VB, and (c) 3D plot for first VB and first CB. V and
V' are the Dirac points in the Brillouin zone. (Reprinted with permission from reference *°.
Copyright 2016 Royal Society of Chemistry.)

The band structures of a-, -, and y-CP based on the hybrid HSE06 functional reveal a relatively
large band gap of 1.26 eV (0.87 eV) for a-CP (B-CP). Note that the hybrid HSE06 functional finds
nearly the same shape of the band structure which is obtained by the GGA-PBE functional form.
The semi-metallic property of y-CP is also verified with HSE06 functional form. Therefore, y-CP

is like graphyne showing Dirac Fermions in a rectangular lattice ** !,
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The most appealing properties which make carbon phosphide monolayers intriguing members of
the 2D material family are the anisotropic nature of electronic conductance and high carrier
mobility. a- and B-CP monolayers are predicted to have strongly anisotropic electronic properties
together with the smallest effective mass of carriers (=0.10my, and 0.05my, respectively) among the

known 2D semiconductors such as phosphorene (0.15my) !¢ ! and MoS, (0.45my) 264,

a-, B-, and y-CP monolayers cannot be fabricated with the mechanical exfoliation methods due to

the absence of layered bulk counterparts. The possible synthesis approach can be chemical vapor

deposition (CVD) which has been successfully used to synthesize 2D materials including group IV

65, 66 72-74

monolayers, such as graphene and silicene , and group V thin films, such as Bi(111) and
Bi(110) %24 We also notice recent progress in the fabrication of carbon phosphide thin films
including strong evidence of the formation of C-P bonded regions in samples prepared with the
pulsed laser deposition method has been found 2>%; The black phosphorus-graphite composites with

sp* hybridized P-C bonds using mechanical milling process have also been reported 2%°. The present

work will further inspire the experimental realization of CP monolayers.

7.4. Summary

In summary, structure, stability and electronic properties of CP monolayers, namely a-, -, and
v-CP, have been predicted. The structural configurations are comprised of sp? hybridized C and sp?
hybridized P atoms in hexagonal networks. a- and f-CP are semiconductors with high anisotropy
in electronic and mechanical properties. A large carrier mobility is predicted due to the small
effective mass of the carriers. y-CP is semi-metallic with Dirac cones. Our results suggest the yet
unexplored binary carbon phosphide monolayers to hold great promises for applications in high-

performance electronics and optoelectronics at nanoscale.
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Chapter 8 Summary and future perspectives

8.1. Summary

In this thesis, the electronic properties of group IV and group V related 2D materials are
investigated using first-principles calculations based on density functional theory. We started with
one of the group IV elemental monolayer, graphyne. Its electronic properties and strain effects on
its properties were investigated. It is shown that graphyne is semi-metallic with a Dirac cone like
band structure in the freestanding form. External strain can be used to tune the Dirac cones.
However, opening the band gap is not feasible in group IV elemental monolayers, thus greatly

hinders their applications in electronics such as transistors.

Next, we moved to the group V elemental monolayers which have a fundamental band gap.
Engineering of electronic properties of phosphorene by strain and external defects such as adatoms
were investigated. It is found that adsorption of B, C, N, O and F adatoms can modify the electronic
properties of phosphorene by inducing various mid-gap states, which are related to the interplay
between electronegativity values and electronic structure of phosphorene. Under compressive
strain, buckling will form without breaking the chemical bonds in the crystal. The structure
flexibility enables the formation of nano-scrolls like structures in phosphorene. Additionally, we
found phosphorene can easily get oxidized in air, and we proposed the possible formation of
phosphorene oxide with different level of oxidation. The oxidized phosphorene species could
chemically react with water molecules in the air ultimately leading to the degradation of

phosphorene.

Then, the other group V elemental monolayer, antimonene, was systematically studied. The

stability of a few allotropes of antimonene was examined. Their electronic properties including the
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band structure, charge density, STM images and Raman spectra were simulated to help the
experimentalists to characterize this material. It is interesting to note that the proposed antimonene

structure has recently been realized in experiments.

Finally, the stable structures of binary group IV-V monolayers, carbon phosphide, were proposed.
These monolayers can be semiconducting or semi-metallic depending on the arrangements of the
atoms in the lattice. The predicted semiconducting phases have very high carrier mobility and high

anisotropic electronic properties, suggesting their potential applications in future electronic devices.

8.2. Future perspectives

In this work, first-principles calculations were performed to study group IV and group V related

2D materials. There are a few unsolved questions that are worthy of future investigations:

1) Going beyond GGA functional. The calculations in this thesis are mostly at the
LDA/GGA level of theory. It is well-known that LDA/GGA underestimates the band
gap of semiconducting materials. It would be interesting to check the band structures
of these 2D materials with a higher level of theory such as GW calculations, explore
the optical properties of these materials at a higher level of theory, and compare with

existing experiments.

i) Binary group IV-V monolayers. In the current thesis, we only studied the carbon
phosphide monolayers as an example of the binary group IV-V monolayers. It would
be interesting to extend to other possible combinations of the IV-V compounds with

different chemical compositions.
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iii)

Devices with 2D materials. The ultimate goal of material research is to fabricate
devices for various applications. Hundreds of 2D materials have been discovered,
making it possible to design devices with these materials at will. It would be interesting
to design and optimize the performance of devices built on these 2D materials using
computational methods. For example, we can construct transistors using the
semiconducting 2D materials in this thesis, and simulate their performance as channel

materials.

Stability and electronic properties of group V elemental monolayers. In this work, we
have learned that phosphorene is not chemically stable in air. However, the chemical
stability of the other group V elemental monolayers, such as arsenene and antimonene
have not been systematically studied. Considering the increasing scientific interests on
these materials, it is urgent to investigate their chemical stability and their interactions

with gas molecules.

Some of these 2D materials have been fabricated in experiments, such as phosphorene
and antimonene; while some of them have not been fabricated yet, such as graphyne
and carbon phosphide. Efforts to synthesize these materials would not only be
invaluable to confirm the theoretical predictions, but also lead to novel materials for

future applications.
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	Abstract
	Two dimensional (2D) materials have been extensively studied due to their novel properties and technologically important applications. Especially, the discovery of graphene has stimulated an avalanche of investigations to exploit its novel properties ...

	Chapter 1      Introduction
	1.1. Graphene and related 2D materials
	It was long believed in history that crystals with a single layer of atoms would not exist because they are thermodynamically unstable 1-3. The discovery of graphene, a one-atom-thick sheet of carbon atoms, by Konstantin Novoselov, Andre Geim and thei...
	Table 1.1. 2D library summarized in 2013. (Reprinted with permission from reference 5. Copyright 2013 Nature Publishing Group. See Appendix B for documentation of permission to republish this material.)
	Soon after the discovery of graphene, it was assumed that graphene could replace silicon in modern electronic circuits 6. However, the group IV elemental monolayers, including graphene, silicene and germanene 7, are not suitable for application in tra...
	Figure 1.1 Building van der Waals heterostructures from 2D materials. (Reprinted with permission from reference 5. Copyright 2013 Nature Publishing Group. See Appendix B for documentation of permission to republish this material.)
	Hundreds of 2D materials have been discovered during the past decades 8. Table 1.1 is a summary of some of them that have been reported up to 2013. These materials can exhibit unique and fascinating electronic, mechanical, and transport properties, th...

	1.2. Group V elemental monolayers
	Figure 1.2 Comparison of the band gap values of a few 2D materials. (Reprinted with permission from reference 9 . Copyright 2015 American Chemical Society. See Appendix B for documentation of permission to republish this material.)
	The group V elemental monolayers join the 2D material family since 2014. The monolayer form of black phosphorus, also known as phosphorene, has drawn considerable attention as a novel 2D semiconducting material with a fundamental band gap 10, 11. Sinc...
	More importantly, as shown in Figure 1.2, the band gap values of black phosphorus related materials span a wide energy range from 0.3 eV in the bulk form to 2.0 eV in the monolayer, which is not covered by other 2D materials 9. Thus, phosphorene bridg...

	1.3. Motivation of this thesis
	Although large amounts of 2D materials have been discovered, the elemental monolayers are relatively rare. The discovered elemental monolayers include the group III element (B), the group IV elements (C, Si, Ge, Sn). The group V elemental monolayer, p...
	Based on this background, the first motivation of this thesis is to explore group IV and group V related 2D elemental monolayers using first-principles calculations. Theoretical studies can be performed readily and can provide atomic level insights in...


	Chapter 2      Computational methods
	2.1. Density functional theory (DFT)
	Figure 2.1 Number of publications per year (1975–2014) on topics of “density functional” or “DFT”, according to the Web of Science Core Collection (February 2015). (Reprinted with permission from reference 22. Copyright 2015 American Physical Society....
	2.1.1. Schrödinger equation for many-body systems
	2.1.2. The Kohn-Sham equations
	Figure 2.3 Jacob’s ladder of density functional approximations to the exchange-correlation energy. (Reprinted with permission from reference 28. Copyright 2005 AIP Publishing LLC. See Appendix B for documentation of permission to republish this materi...

	2.1.3. Self-consistent approach to the Kohn-sham equations
	2.1.4. Basis sets
	2.1.5. Pseudopotential

	2.2. Lattice dynamics from DFT
	2.3. Molecular dynamics
	2.4. Crystal structure prediction
	Figure. 2.6 The flow chart of 2D materials searching using CALYPSO. (Reprinted with permission from reference 53. Copyright 2012 AIP Publishing LLC. See Appendix B for documentation of permission to republish this material.)


	Chapter 3     Group IV elemental 2D materials – 6,6,12-graphyne and engineering of its properties0F*
	3.1. Introduction
	Graphene remains one of the most extensively investigated 2D materials and has offered a wealth of information on the exotic physics and potential technological applications 4, 58-62. Graphene has a honeycomb structure with two carbon atoms in the uni...
	As the closest cousin of graphene belonging to the group IV elemental monolayers and being compatible with Si-based electronics, silicene has also attracted a great deal of attention from theorists and experimentalists 72-74. The stronger spin orbit c...
	Owing to the flexibility of forming sp, sp2 or sp3 bonds 89, carbon can form abundant allotropes including three dimensional (3D) (e.g. diamond and graphite), two dimensional (2D) (e.g. graphene) 90, one dimensional (1D) (e.g. nanotubes 91 and nanorib...
	Applying external strain is one of the approaches to tailor electronic properties of materials. Strain could be induced by the mismatch of lattice constant and thermal expansion between the substrate and the film, which has been widely used to achieve...

	3.2. Computational methods
	Electronic structure calculations were performed using a norm-conserving pseudopotential 106 as implemented in the SIESTA package 33. In our calculations,  van der Waals (vdW) interactions 107, 108 were included in density functional theory (DFT). We ...

	3.3. Results and discussions
	The 6,6,12-graphyne monolayer is defined by the number of carbon atoms along the rings as shown in Figure 3.1. The (average) length of sp2 hybridized C bond is 1.447 Å, and that of the sp hybridized C bond is 1.257 Å in the ground state configuration ...
	Figure 3.1 Schematic representations of (a) graphene and (b) 6,6,12-graphyne. 6,6,12-graphyne is defined by the number of carbon atoms along the rings as shown in (b). (Reprinted with permission from reference 111. Copyright 2014 AIP Publishing.)
	Figure 3.2 shows the calculated band structure of the monolayer of 6,6,12-graphyne. In the first BZ, there exists two kinds of anisotropic Dirac cones. One of the Dirac points is slightly above the Fermi energy, and the other is slightly below the Fer...
	In our case, the cone II has a band gap of 43 meV, which is different from the previous results 98. This is due to the fact that the exchange-correlation functional form in this study includes the effect of vdW interactions which are important in pred...
	Figure 3.2 (a) Band structure of 6,6,12-graphyne monolayer; (b) The illustration of first BZ and high symmetry points; (c) 2D band structure of the cone I (left panel) and the absolute derivative (right panel) of the corresponding π band; (d) 2D band ...
	Figure 3.3 shows the band structure of graphyne with tensile strain applied along x direction. The strain drives movement of Dirac points in the momentum space. With increasing strain, the cone I moves towards X', and the two conical dispersions of th...
	Figure 3.3 Variation of the calculated 2D band structures of the cone-I with strain along x. The band structures are plotted within a circle of radius 0.5*π/a centered at X'. (Reprinted with permission from reference 111. Copyright 2014 AIP Publishing.)
	The effects of compressive strain on the band structure of the monolayer are shown in Figure 3.4. With the compressive strain applied along x direction, the cone I shifts above Fermi energy, and the cone II shifts below Fermi energy. Thus, shifting of...
	Figure 3.4 (a) The calculated 2-D band structure of the cone-II; (b) variation of the energy of the two Dirac points with strain along x and y. Fermi energy is set to zero. The band structure is plotted within a circle of radius 0.5*π/a centered at X....
	Since the cone II is parabolic near the center of the cone, its group velocities go to zero if no tensile strain is applied. The group velocities appear when the applied compressive strain pushes the cone to be duplicate (Figure 3.4(a)). For the uniax...
	Bilayers of graphene-like systems can possess the properties which are not exhibited by monolayers such as tunability of the band gap in graphene bilayer by the external electric field 120. Also, synthesis of a bilayer is likely to be easier than that...
	Figure 3.5 Variation of the group velocities of π electrons of the cones I and II with the uniaxial strain (a) along x, and (b) along y. (Reprinted with permission from reference 111. Copyright 2014 AIP Publishing.)
	Figure 3.6 (a) Band structure of AB-stacked 6,6,12-graphyne bilayer; (b) Illustration of the first BZ; (c) 2D band structure around Cone I (left panel) andthe absolute derivative (right panel) of the corresponding π band; (d) 2D band structure around ...
	Figure 3.6 shows the band structure of the AB stacked bilayer showing the splitting of highly anisotropic Dirac cones (Figures 3.6 (c) and (d)) due to appearance of the interlayer interaction in the bilayer system. The group velocities of the cone I a...
	The effects of the in-plane strains on 6,6,12-graphyne bilayer are similar to the effects predicted for the monolayer. A small tensile strain along x direction will cause the shifting of the cone I in the BZ. The gap opens up with a larger strain, but...
	The elastic properties can be characterized by Young’s modulus and Poisson’s ration which are critical for the strain engineering of electronic properties of materials. As it is ambiguous to define the volume of the sheet with atomic thickness, the in...
	,                                                     (3.1)
	where S0 is the equilibrium area, the strain energy ES is the energy difference between the strained and strain relaxed system. The stiffness constant can be obtained by fitting the strain energy curves within the elastic region.
	The calculated stiffness constants of 6,6,12-graphyne are 183 and 136 N/m along x and y directions, respectively. These values are slightly larger than the values of ~142 and ~112N/m (obtained by converting the data obtained by molecular dynamics calc...

	3.4. Summary
	First principles calculations were performed on 6,6,12-graphyne monolayer and bilayer systems. Both monolayer and bilayer systems are semi-metals with Dirac cones in first Brillouin zone. Uniaxial tensile strain along x will induce shifting of the con...


	Chapter 4      Group V elemental 2D materials – phosphorene and engineering of its properties1F*
	4.1. Introduction
	As discussed in the previous chapter, the group IV elemental monolayers have a zero band gap which limits their applications in transistors. Although tremendous efforts have been done to open the band gap in graphene, for examples by patterning graphe...

	4.2. Engineering phosphorene with adatoms
	4.2.1. Introduction
	It is well-known that the exfoliation or growth processes can introduce defects and impurities in 2D materials, which can dramatically alter the electronic, thermal and mechanical properties of the pristine counterparts. Vice versa, a deliberate intro...
	Considering that the scientific work on investigating the properties of phosphorene has recently started, the role of extrinsic point-defects including surface adatoms is still undefined. The adsorption of several adatoms was considered recently 134, ...

	4.2.2. Computational methods
	The electronic structure calculations were performed using the norm-conserving Troullier-Martins pseudopotential implemented in the SIESTA program package 33. The Perdew-Burke-Ernzerhof (PBE) 137 exchange-correlation functional to density functional t...
	The (4×5) supercell with 80 atoms was used to simulate the pristine phosphorene. The length of the supercell is 18.6 Å ×16.7 Å, and the vacuum distance normal to the 2D lattice was chosen to be 20 Å to eliminate interaction between the replicas. A sin...

	4.2.3. Results and conclusions
	Figure 4.1 Energy profile of adatoms approaching the surface of phosphorene at the top (T), bridge (B), and hexagonal site (H): (a) B, (b) C, (c) N, (d) O, and (e) F. (Reprinted with permission from reference 142. Copyright 2015 AIP Publishing.)
	We begin with calculations to determine the energy profile of the adatom approaching surface sites of phosphorene (Figure 4.1). The surface sites considered are (i) hexagonal site (H) - site above the center of hexagonal ring, (ii) top site (T) - abov...
	The calculated ground state configurations of the adsorbed systems are shown in Figure 4.2. Interestingly, B and C adatoms break the native P-P bonds and enter the interstitial site of the 2D lattice. The configuration at the top site is found to be 0...
	Figure 4.2 Adsorption of adatoms with a [He] core on phosphorene after structural optimization: (a) B, (b) C, (c) N, (d) O, and (e) F. (Reprinted with permission from reference 142. Copyright 2015 AIP Publishing.)
	The height of the adatom from the surface (Δz) gradually increases in going from B to F (Table 4.1). In the equilibrium configurations, some of native P atoms are repelled away by B or C at the interstitial site resulting into significant lattice dist...
	Ebinding = Etotal – (Epristine +Eatom),                            (4.1)
	where Etotal is the total energy of phosphorene with surface adatom, Epristine is the energy of pristine phosphorene. Eatom is the energy of a single adatom in a 10 Å×10 Å ×10 Å cell, which are -97.10 eV, -153.12 eV, -271.94 eV, -440.22 eV, and -665.2...
	Table 4.1. Adsorption of adatoms with a [He] core on phosphorene: The prefered binding site, distance between adatom to the host P atom (R), binding energy (Ebinding), Voronoi charge (QVoronoi) and magnetic moment (μB). Δz is the height of adatom from...
	In order to understand the site dependency of the light elements with a [He] core, the deformation charge density (ρ=ρtotal-(ρphosphorene+ρatom)) of the adsorbed phosphorene is calculated (Figure 4.3). B and C at the interstitial sites clearly form bo...
	Figure 4.3 Deformation charge density of adsorption of adatoms with a [He] core on phosphorene: (a) B, (b) C, (c) N, (d) O, and (e) F. The yellow (blue) region represents accumulation (depletion) of electrons. The isovalue is 0.003 e/Å3. (Reprinted wi...
	A schematic illustration explaining the adsorption of light elements with a [He] core on phosphorene is given in Figure 4.4. In phosphorene, each P atom (with s2p3 valence electron configuration) shares three of its valence electrons with the neighbor...
	Figure 4.4 A schematic illustration of adsorption of adatoms with a [He] core on phosphorene: (a) B, (b) C, (c) N, (d) O and (e) F. The arrow represents upaired electron around the atom. (Reprinted with permission from reference 142. Copyright 2015 AI...
	Comparing our results on phosphorene with those obtained for graphene 143-145, we find that adatoms prefer surface sites on graphene due to robustness of the sp2 network; B, C, N and O adatoms prefer the bridge site whereas F adatom prefers the top si...
	Figure 4.5 Spin polarized density of states of adatoms with a [He] core on phosphorene: (a) B, (b) C, (c) N, (d) O, and (e) F. The states related to the surface adatoms are magnified by a factor of 10. The up (or down) arrow represents spin up (or spi...
	Figure 4.5 displays spin and atom resolved density of states (DOS) of the adsorbed systems. B, C, N, and F induce mid-gap states in the band gap of phosphorene. On the other hand, O induces states inside the valence band due to the possible formation ...
	Considering that the tunneling current is sensitive to the local electronic properties of surface atoms, we now investigate the tunneling characteristics of the adatom systems. The tunneling current from the sample to the tip at location ,,𝑟.-𝑡. bas...
	𝐼(,,𝑟.-𝑡.;𝑉)≈,2𝜋𝑒- ħ.,−∞-+∞-,𝜌-𝑡.,𝐸−,𝑒𝑉-2..,𝜌-𝑠.,,,𝑟.-𝑡.;𝐸+,𝑒𝑉-2...𝐹(𝐸)𝑑𝐸,                  (5.1)
	where ρt is the electron density of the tip, ρs is the electron density of the sample at the location of the tip. F(E) is the term to include the effect of thermally excited electrons as proposed by He et al. 149, 150 In order to mimic the scanning tu...
	Figure 4.6 The tunneling characteristics of adatoms with a [He] core on phosphorene: (a) B, (b) C, (c) N, (d) O, and (e) F. (Reprinted with permission from reference142. Copyright 2015 AIP Publishing.)
	B, C, N, and F atoms show metallic tunneling characteristics with abrupt increase in the current at a small bias (Figure 4.6). While the tunneling current above O adatom shows a diode like behavior with a gap in the small bias region. The tunneling ch...

	4.2.4. Summary
	In summary, adsorption of light elements with a [He] core on phosphorene is investigated by using density function theory. The results find that B and C prefer the interstitial site and N, O, F atoms prefer the surface site of phosphorene. The distinc...


	4.3. Engineering phosphorene with strain: the formation of buckling
	4.3.1. Introduction
	Buckling is one of the most important mechanical phenomena in 2D materials including graphene which has elicited broad scientific interests 151-154. Graphene possesses a high in-plane Young’s modulus with sp2 bonded carbon atoms 125, while it can easi...
	The mechanical properties of phosphorene under tensile strains have been investigated using both DFT calculations 167 and classical MD simulations 168. The formation of ripples in phosphorene under a compressive strain has also been investigated via D...
	In this section, the buckling and its effect on the electronic properties of phosphorene are studied by classical MD simulations complemented by first-principles calculations based on DFT. The MD simulations allow us to investigate the dynamical proce...

	4.3.2. Computational methods
	The classical MD simulations were performed using the large-scale atomic/molecular massively parallel simulator (LAMMPS) code 170. In phosphorene, the interatomic interactions were characterized by the Stillinger-Weber (SW) potential 171. The SW poten...
	Figure 4.7 Snapshots of phosphroene at a thermally stable state at 300 K. Lx is the supercell size along the armchair direction, and Ly is the size along the zigzag direction. (Reprinted with permission from reference 172. Copyright 2016 IOP Publishing.)
	Figure 4.7 shows one snapshot of phosphorene membrane at a thermally stable state. Initially, the structure of phosphorene membrane was minimized using the SW potential. After minimization, the monolayer was equilibrated to a thermally stable state wi...
	Due to the structural anisotropy of phosphorene as shown in Figure 4.7, the buckling along the armchair and the zigzag direction is expected to be different. Thus, different samples with variable sizes as listed in Table 4.2 were used to simulate the ...
	The electronic properties of the buckled phosphorene were obtained by DFT calculations using the norm-conserving Troullier-Martins pseudopotential as implemented in SIESTA 33. The Perdew-Burke-Ernzerhof (PBE) 137 exchange correlation functional and a ...
	Table 4.2. The size of the supercell in terms of Lx and Ly used for MD calculations. The unit is Å. (Reprinted with permission from reference 172. Copyright 2016 IOP Publishing.)

	4.3.3. Results and conclusions
	Figure 4.8 shows the structural evolution of phosphorene with the applied compressive strain () along the armchair and the zigzag directions at 300 K. With small , phosphorene maintains a flat surface with small ripples due to thermal vibrations. Bu...
	Figure 4.8 Snapshots of phosphroene (cell size=(30×40)) under in-plane compressive strain () at 300 K: (a) strain along armchair direction, (b) strain along zigzag direction. The structures are shown in periodic manner along strain direction. (Reprin...
	The difference in buckling along the armchair and the zigzag direction stems from its structural anisotropy. As seen in Figure 4.7, the phosphorous atoms are arranged in a puckered lattice along the armchair direction. The puckered structure could acc...
	Figure 4.9 Polynomial fitting of phosphorene surface. The blue dots are phosphorus atoms. The mean curvature at each point P is calculated on the fitted surface. 1/R1 and 1/R2 are the principle curvatures at P point. The mean curvature is defined as ,...
	To quantitatively describe the buckling behavior, we calculate the curvature of phosphorene membrane as illustrated in Figure 4.9. Since phosphorene has two sub-layers of phosphorus atoms, a polynomial fitting of the surface yields the principle curva...
	Figure 4.10. Maximum mean curvature of phosphorene (cell size=(30×40)) under compressive strains along the armchair (square) and the zigzag directions (circle) at a temperature of 0.1 K (black) or 300 K (red). The solid lines are guides to the eye. Th...
	Figure 4.10 shows the change of maximum mean curvature of phosphorene under a compressive strain along the armchair and the zigzag directions. It has distinct trends for the cases of  < c and  > c, where c is the critical strain for the formation...
	For  < c, as shown in the inset of Figure 4.10, the maximum mean curvature is almost unchanged along both the armchair and the zigzag directions, which corresponds to the elastic response of the membrane to external strain. During this process, the ...
	Figure 4.11 Buckling crictial strain vs the size of the simulation sample. The lines are fitted curve according to the Euler’s buckling theory. (Reprinted with permission from reference 172. Copyright 2016 IOP Publishing.)
	The buckling curvature along the armchair direction linearly increases with  up to 0.8 inducing the formation of folded phosphorene without breaking the structural integrity (see also in Figure 4.8(a)), which suggests its flexibility along the armcha...
	Figure 4.12 Electronic properties of phosphorene with buckling along armchair direction: (a) band structures at different curvature, (b) charge density at valence band maxiamim (VBM) and conduction band minimum (CBM). The inset is the Brillouin zone. ...
	According to Euler’s buckling theory 174, a thin plate will experience buckling due to a compressive strain applied on it. The buckling critical strain is an inverse quadratic function of the length of the plate, ,𝜀-𝑐.∝−,1-,𝐿-2.., where L is the le...
	Figure 4.13 Electronic properties of phosphorene with buckling along zigzag direction: (a) band structures at different curvatures, (b) charge density at VBM and CBM. The inset is the Brillouin zone. (Reprinted with permission from reference 172. Copy...
	In order to investigate the electronic properties of buckled phosphorene, DFT calculations were performed on the buckled structures with various curvatures obtained at the classical MD simulations. Note that the buckled structures at low temperature w...
	Figure 4.12 shows the band structures and charge density at conduction band minimum (CBM) and at valence band maximum (VBM) with buckling along the armchair direction. Low buckled phosphorene has a direct band gap at Γ. The charge density at VBM and C...
	As seen in Figure 4.13, low buckled structure along the zigzag direction has a direct band gap, the charge density at VBM and CBM is evenly distributed over the surface as expected. Upon increase in the curvature of buckling, some conduction states ap...

	4.3.4. Summary
	Figure 4.14. (a) Folded phosphorene, and (b) phosphorene nano-scroll. (Reprinted with permission from reference 172. Copyright 2016 IOP Publishing.)
	In summary, we investigate buckling in phosphorene under compressive strains by using classical MD simulation combined with first-principles calculations. A few interesting results are obtained from present study. (i) Buckling will form in phosphorene...



	Chapter 5      Group V elemental 2D materials – oxidation and degradation of phosphorene2F*
	5.1. Introduction
	5.2. Formation of phosphorene oxide
	5.2.1. Introduction
	The chemical modification of 2D materials has now routinely been performed to tailor their physical, chemical and electronic properties. In the case of graphene, surface modifications by H, O, and F atoms often lead to substantial changes in its elect...
	In this section, I will first look into the interaction of oxygen in both atomic and molecular form with the bare phosphorene predicting the preferred binding site and energy barrier to dissociate the oxygen molecule adsorbed on the monolayer. The eff...

	5.2.2. Computational methods
	Electronic structure calculations were performed using the  density functional theory (DFT) method with the norm-conserving Troullier-Martins pseudopotential  as implemented in SIESTA 33. The Perdew-Burke-Ernzerhof (PBE) 137 exchange correlation funct...
	For calculations describing interaction of an O atom and an O2 molecule with phosphorene, we used a (3×4) supercell with a total of 48 phosphorus atom in the cell and the reciprocal space was sampled by a grid of (5×5×1) k points in the Brillouin zone...
	Phosphorene has a puckered surface due to the sp3 character of the chemical bonds at the surface. We find the bond lengths and the bond angles to be (2.29, 2.26 Å), (103.7 , 95.6 ) which are in agreement with the previously reported values obtained at...

	5.2.3. Results and conclusions
	Monoatomic Oxygen (O)
	Figure 5.1 shows the lattice sites considered for the oxygen approaching phosphorene e.g. (i) the ring site - above the center of hexagonal ring, (ii) the top site - above the top of P atom, and (iii) the bridge site - above the bridge of P-P bonds. I...
	In the equilibrium configuration, R(P-O) is ~1.54 Å, and the bridge site configuration is ~2.3 eV higher in energy. The predicted most stable configuration and bond length are the same to the result in section 4.2.  Notice that the equilibrium configu...
	Figure 5.1 Single oxygen atom absorption on phosphorene. The left panel shows the initial configurations and the right panel shows the optimized configurations. The oxygen atoms are in red, and phosphorus atoms in purple. (Reprinted with permission fr...
	Molecular Oxygen (O2)
	Next, the interaction of an oxygen molecule with phosphorene is investigated by considering both adsorption and dissociation processes on the surface. Figure 5.2(a) shows the calculated ground state configuration of the adsorbed oxygen molecule. Here,...
	Figure 5.2 O2 on phosphorene: (a) the ground state configuration, (b) the energy surface showing displacement of an O atom from P1 to P2 to P3 atomic sites, and (c) the calculated energy barrier along the paths as shown by the arrows in (b). The oxyge...
	The dissociation process of the adsorbed O2 is simulated by fixing an O atom (i.e. O1), and moving the other atom (i.e. O2) laterally in the unit cell (shadowed region) as shown in the inset of Figure 5.2(a). A minimum occurs in the corresponding ener...
	Stoichiometric phosphorene oxide (PO)
	Phosphorene has a puckered surface (Figure 5.3(a)), and addition of an O atom at each atomic site leads to a configuration of PO with a slight increase in the P-P bond length (2.32, 2.37 Å) as compared those for the bare phosphorene. The length of P-O...
	As seen from the side view of Figure 5.3(b), PO is deformed compared to the bare phosphorene with changes in bond angles between P atoms.  However, the structure retains its original configuration without cleavage of P-P bonds. This is different from ...
	In the stoichiometric PO configuration, the ∠P-P-P bond angles are 121.2 , 93.6  and 100.9 . The change in the ∠P-P-P bond angles, relative to the bare phosphorene, is closely related to the charge redistribution. Analysis of the Mulliken charges find...
	Figure 5.3 Top and side views of (a) phosphorene, and (b) phosphorene oxide. (Reprinted with permission from reference189. Copyright 2015 Royal Society of Chemistry.)
	The stability of the phosphorene oxide is confirmed by the calculated phonon dispersion curves showing no negative frequencies (Figure 5.4). The phonon dispersion of PO is greatly different from that of phosphorene; it can be grouped into three region...
	Figure 5.4 Phosphorene oxide (a) the phonon dispersion curves, and (b) density of states. (Reprinted with permission from reference 189. Copyright 2015 Royal Society of Chemistry.)
	In our study, we consider the oxygen adsorption on phosphorene to be more-like an ordered absorption of adsorbates on graphene, such as the case of graphane, fluorographene, and chlorographene 180, 181, 197. In graphene oxide, the oxygen functional gr...
	The calculated band structure of PO is shown in Figure 5.5. The valence band maximum (VBM) has py character associated with both P and O atoms (Figure 5.5(c)), and the conduction band minimum (CBM) is formed by P-s orbitals and O-pz orbitals (Figure 5...
	Figure 5.5 Electronic properties of phosphorene oxide: (a) band structure, (b) density of states, and (c) Kohn-Sham wave functions at Γ associated with states corresponding to top of the valence band (VBM) and bottom of the conduction band (CBM). (Rep...
	Figure 5.6 Phosphorene oxide: Band gap vs. in-plane tensile strain, and (b) band gap vs. electric field applied perpendicular to the 2D lattice. (Reprinted with permission from reference 189. Copyright 2015 Royal Society of Chemistry.)
	Application of the strain along x yields a linear variation of the band gap in a range of values (0.1-0.6 eV) for the tensile strain values of 0% to 8% (Figure 5.6(a)). The predicted variation in the band gap is mainly due to variation of the conducti...
	The in-plane stiffness of the 2D lattice is calculated by fitting the strain energy within the strain range of -2% to 2% 111. The calculated stiffness constant for phosphorene is 21 and 66 N/m along x and y directions, respectively. For the phosphoren...
	Non-stoichiometric phosphorene oxide
	We now investigate stabilities and electronic properties of non-stoichiometric phosphorene oxides representing the cases of the partial functionalization of the phosphorene. Figure 5.7 shows the considered non-stoichiometric oxide configurations inclu...
	Figure 5.8 shows the variation of the band gap with the degree of the functionalization of phosphorene. Bare phosphorene is a direct gap 2D material. This is not the case with phosphorene oxides where the nature of the band gap depends on the degree o...
	Figure 5.7 Structures of non-stoichiometric oxide configurations: PO0.125, PO0.25, and PO0.5. (Reprinted with permission from reference 189. Copyright 2015 Royal Society of Chemistry.)
	The work function is a crucial physical quantity to determine the emission properties of materials and have considerable impact on device performance. It is defined as energy difference between the vacuum level and Fermi energy. For the oxide configur...
	Figure 5.8 The variation of band gap as a degree of functionalization of the bare phosphorene. Open and solid circles represent the values of indirect and direct band gaps, respectively. The direct band gap is taken to be at Γ. The indirect band gap f...
	Tunneling characteristics
	Finally, the tunneling characteristics of the phosphorene oxides are investigated. The tunneling current from the sample to the tip at location ,,𝑟.-𝑡. based on the Tersoff and Hamann approximation 140 is
	𝐼(,,𝑟.-𝑡.;𝑉)≈,2𝜋𝑒- ħ.,−∞-+∞-,𝜌-𝑡.,𝐸−,𝑒𝑉-2..,𝜌-𝑠.,,,𝑟.-𝑡.;𝐸+,𝑒𝑉-2...𝐹(𝐸)𝑑𝐸,              (5.1)
	where ρt is the electron density of the tip, ρs is the electron density of the sample at the location of the tip. F(E) is the term to include the effect of thermally excited electrons as proposed by He et al. 149, 150 In order to mimic the scanning tu...
	Figure 5.9 (a) Tunneling characteristics of the phosphorene oxide configurations. (b) The simulated STM images of phosphorene and the phosphorene oxide. The current is calculated using a Au13 tip located at 3 Å above the surface. The side scale bar sh...
	The electron transport studies offer some intriguing insight into electron tunneling in the direction perpendicular to the stable phosphorene oxide plane. Asymmetric current-voltage (IV) semiconducting characteristics (Figure 5.9(a)) are seen for both...
	The dependence of the threshold voltage onset of the tunneling current on the degree of functionalization suggests that tunable electronic properties can be achieved by the oxygen functionalization of phosphorene. In the negative bias region, the thre...

	5.2.4. Summary
	The interaction of phosphorene with oxygen and the formation of 2D phosphorene oxide were investigated with the use of the density functional theory. A number of key findings have emerged from this study based on density functional theory. First, our ...


	5.3. Degradation of phosphorene in air
	5.3.1. Introduction
	The chemical degradation of phosphorene upon exposure to ambient conditions is a challenge to the stability and performance of phosphorene-based devices 161, 177, 178. The presence of oxygen and humidity is suggested to be the main cause of the degrad...
	In order to address these questions, density functional theory (DFT) calculations combined with ab initio molecular dynamics (AIMD) simulations were performed to investigate the interactions of O2 and H2O with phosphorene. We first focus on the intera...

	5.3.2. Computational methods
	The electronic structure calculations were performed using the Vienna ab initio simulation package (VASP) 30, 31. The exchange-correlation was treated within the generalized gradient approximation (GGA) using Perdew−Burke−Ernzerhof (PBE) 137 functiona...
	First principles molecular dynamics (MD) simulations were also performed to simulate the interaction processes considered. The MD simulation was based on the norm-conserving Troullier-Martins pseudopotential together with Nosé thermostat210 as implem...

	5.3.3. Results and discussions
	Black phosphorene has a puckered surface with two sub-layers of phosphorus atoms which are arranged in a rectangular lattice. At GGA-PBE level of theory, the lattice constants along the armchair and the zigzag direction are 4.57 Å and 3.31 Å, respecti...
	O2 interacting with phosphorene
	Figure 5.10 O2 dissociation on phosphorene: (a) black phosphorene, (b) blue phosphroene. P(2O) represents black or blue phosphorene with two O adatoms. (Reprinted with permission from reference 213. Copyright 2016 IOP Publishing.)
	Table 5.1. Structural properties of atomic O adsorbed on phosphorene. (Reprinted with permission from reference 213. Copyright 2016 IOP Publishing.)
	From section 5.2, we know that that O2 can easily dissociate on black phosphorene 139, 214 leading to the formation the oxidized lattice 189. As shown in Figure 5.10, O2 tends to dissociate on the surface with exothermic energy (Q) of -4.07 eV/O2 mol...
	Ziletti et al. have found the dissociation barrier of O2 on phosphorene is only 0.54 eV 139. Considering that chemical reaction with an energy barrier less than 0.9 eV (≈21 kcal/mol) from DFT calculations could occur at room temperature 215, the oxida...
	Figure 5.11 Snapshots of O2 interacting with phosphorene during MD simulations: (a) black phosphorene, (b) blue phosphorene. Reprinted with permission from reference 213. (Copyright 2016 IOP Publishing.)
	The calculated results based on AIMD simulations further affirm the dissociation of O2 on phosphorene. Figure 5.11 shows time-dependent snapshots of the configurations showing interaction of oxygen with phosphorene during MD simulations. These configu...
	Considering that we have used relatively high pressure conditions in our MD simulations, we have performed additional MD calculations with only one O2 molecule in the simulation box of (22.9 Å × 19.9 Å × 85 Å) which appears to mimic number density of ...
	H2O interacting with phosphorene
	Figure 5.12 shows the configurations of H2O interacting with phosphorene considered for the calculations: one leg, two leg, and O closer. The configuration referred to as “one leg” is the configuration in which one of the H atoms is closer to the surf...
	The calculated binding energy profiles with vdW correction using DFT-D2 method of Grimme 209 are shown in Figure 5.13. Some of the results deduced are:
	(i). The ‘two leg’ configuration is the most stable configuration suggesting that H atoms prefer to move towards the surface. This is due to the well-known polar nature of the H2O molecule in which H atoms tend to attract the lone electron pairs of ph...
	(ii). The calculated binding energy including vdW correction term is about 180 and 125 meV for H2O on the black and blue phosphorene, respectively. It is larger than that of H2O on graphene at the same level of theory (in the range from 60 to 120 meV ...
	Figure 5.12 Top and side views of the configurations considered for H2O interacting with phosphorene: (a) black phosphorene, (b) blue phosphorene. Reprinted with permission from reference 213. Copyright 2016 IOP Publishing.)
	In order to further examine the interaction of H2O with phosphorene, we considered the initial configuration to consist of a “forced” H2O molecule at the interstitial site of the phosphorene lattice. If H2O prefers to interact strongly with phosphoren...
	Figure 5.13 The calculated binding energy profiles of a H2O molecule approaching phosphorene: (a) black phosphorene, (b) blue phosphorene. Reprinted with permission from reference 213. Copyright 2016 IOP Publishing.)
	Stability of phosphorene in air : Exposure to O2 and H2O
	The dissociation of H2O on pristine black and blue phosphorene is endothermic with energy increase of 1.24 eV and 1.37 eV, respectively (Figure 5.14). This is not the case with the oxidized phosphorene monolayers for which the endothermic energy signi...
	Figure 5.14 H2O dissocation on pristine and oxide phosphorene: (a) black phosphorene, (b) blue phosphorene. P(OH,O) represents black or blue phosphorene with OH group and O adatom. (Reprinted with permission from reference213. Copyright 2016 IOP Publi...
	In order to validate our view of this interaction process, the relative energy of the initial and final chemical species along the pathway are calculated. The reactants are phosphorene, 3 O2 molecules, and 3 H2O molecules and the products are 2 phosph...
	Figure 5.15 Relative energy during the interaction process of black (solid curve) and blue  (dashed curve) phosphorene with O2 and H2O. The insets show the structure of initial phosphorene structure and the products. Pdiv(O) represents defective phosp...

	5.3.4. Summary
	In order to investigate the stability of phosphorene in air, the interaction of O2 and H2O with phosphorene was studied by using density functional theory combined with first-principles molecular dynamics simulations. We find that (i) O2 will spontane...
	Our calculations are supported by several experimental results; e.g. experiments have shown that fast degradation of phosphorene occurs with the existence of both O2 and H2O, the degradation process slows down with the exposure of phosphorene to only ...



	Chapter 6      Group V elemental 2D materials – antimonene and its allotropes3F*
	6.1. Introduction
	Group-V elemental monolayers have recently emerged as novel two dimensional (2D) materials with semiconducting electronic properties. For example, the monolayer form of black phosphorous, phosphorene (α-P), has a direct band gap and high carrier mobil...
	Considering the chemical similarity of elements belonging to the same column in the periodic table, the other group-V elemental monolayers have also been investigated. Arsenene in α and β phases is predicted to be stable 225, 226. Ultrathin Bi (111) a...
	In the bulk form, various allotropes exist for group-V elements at ambient conditions. For example, the most stable allotrope for P is black phosphorus which is composed of AB stacked α-P monolayers. Bulk black phosphorus possesses an intrinsic band g...
	In this chapter, I will focus on the 2D antimony (Sb), referred to as antimonene. Recently, Zhang et al. have shown that the Sb (111) films (i.e. β-Sb) undergo a thickness dependent transition from topological semimetal to topological insulator to nor...
	We consider antimonene allotropes including α-, β-, γ-, and δ-Sb examining their stability by phonon dispersion calculations based on density functional theory (DFT). Furthermore, we will investigate the effect of mechanical strain on the electronic p...

	6.2. Computational methods
	The calculations were performed with the use of VASP program package 30. We employed the local density approximation (LDA) together with the projector-augmented-wave (PAW) 234 method which has been shown to correctly describe Sb films 232.  For bulk S...
	In calculations, the energy convergence was set to 10-6 eV and the residual force on each atom was smaller than 0.01 eV/Å. The cutoff energy for the plane-wave basis was set to 500 eV. The reciprocal space was sampled by a grid of (15×15×1) k points i...

	6.3. Results and discussions
	The structural configurations of antimonene allotropes are shown in Figure 6.1. The α-Sb has a distorted atomic structure with two sub-layers, where atoms belonging to the same sub-layer are not in the same planes (Figure 6.1(a)). The four atoms in th...
	Figure 6.1 The structural configurations of antimonene allotropes: (a) α-Sb, (b) β-Sb, (c) γ-Sb, and (d) δ-Sb. (Reprinted with permission from reference 237. Copyright 2015 American Chemical Society.)
	Figure 6.2 The calculated phonon dispersions of antimonene allotropes: (a) α-Sb, (b) β-Sb, (c) γ-Sb, and (d) δ-Sb. (Reprinted with permission from reference 237. Copyright 2015 American Chemical Society.)
	The ground state configuration of β-Sb mimics the metallic Sb (111) surface (Figure 6.1(b)). It has a hexagonal lattice with the buckled surface similar to what was predicted for β-P. The bond length between neighboring Sb atoms is 2.84 Å, and the bon...
	Table 6.1. The ground state structural parameters (see Figure 1) of antimonene allotropes: a is the lattice constant, R is the near-neighbor distance, θ is the bond angle, and Ec is the cohesive energy which is taken to be the total energy difference ...
	The stability of these antimonene allotropes is first investigated by the calculation of the phonon dispersion curves as shown in Figure 6.2. No imaginary vibrating mode is observed for α-Sb and β-Sb illustrating their stability as the free-standing m...
	The stability of α- and β-Sb monolayers is further examined by the cohesive energy calculations at different levels of DFT. As listed in Table 6.1, α-Sb has larger cohesive energy than β-Sb at the LDA-DFT (≈60 meV) and DFT-D2 (≈30 meV) levels of theor...
	Figure 6.3 The calculated Raman spectra (a) and the corresponding vibrational modes of antimonene allotropes (b and c). (Reprinted with permission from reference 237. Copyright 2015 American Chemical Society.)
	The phonon free energy difference in the temperature range of 0-600 K is calculated to be less than 15 meV/atom between α-Sb and β-Sb suggesting stabilization of both monolayers in experiments. Interestingly, a crossover in the cohesive energies of α-...
	Figure 6.4 Electronic properties of α-Sb (a, b, and c) and β-Sb (d, e, and f) monolayers: (a and d) band structure, (b and e) charge density projected in the plane, and (c and f) simulated STM images. (Reprinted with permission from reference 237. Cop...
	Considering that the Raman measurements are widely used to characterize 2D materials, such as graphene 240, we have calculated the Raman spectra for α- and β-Sb monolayers at the LDA-DFT level of theory which are shown in Figure 3. In order to assess ...
	α-Sb belongs to C2v group, and the modes, A11 at 63 cm-1, B1 at 102 cm-1, A12 at 132 cm-1, and A13 at 147 cm-1, exhibit prominent Raman scattering. A11 and A13 are out-of-plane modes. For the A11 mode, atoms belonging to the same sub-layer vibrate alo...
	The calculated band structure, charge density and STM images are shown in (Figure 6.4). The α-Sb monolayer has a relatively small indirect band gap of ~0.28 eV. The valence band maximum (VBM) has a hybrid character of s orbitals and in-plane px and py...
	Figure 6.5 shows atomic arrangements of antimonene multilayers. β-Sb multilayers prefer an ABC stacking similar to the bulk Sb (Figure 6.5(d)); the AA-stacked bilayer is higher in energy by ≈24 meV/atom than the AB-stacked bilayer. The calculated laye...
	Figure 6.5 α-Sb and β-Sb multilayers: (a) atomic structure, (b) charge density projected perpendicular to the layers, (c) deformation charge density for α-Sb bilayer; (d) atomic structure, (e) charge density projected perpendicular to the layers, and ...
	α-Sb multilayers prefer an AB stacking similar to that of black phosphorus (Figure 6.5(a)). The layer distance in α-Sb bilayer is calculated to be 6.16 Å. The binding energy of the AB-stacked α-Sb bilayer is calculated to be 68 meV/atom, which is clos...
	It is well known that strain can be introduced spontaneously by deposition of ultra-thin films on substrates with mismatched lattice constants. Application of strain to 2D atomic layers is also one of the possible approaches to tailor their electronic...
	The tensile strain is defined as ε = (a-a0)/a0, where a0 and a are the lattice constants of the relaxed and strained structure, respectively. The stress-strain curve for antimonene allotropes is calculated following the procedure of Wei and Peng 167 a...
	For α-Sb, the ideal strengths, which are defined as the maximum stress in the stress-strain curve, are ~10 GPa and ~4 GPa along the zigzag and armchair directions (Figure 6.6(a)). The corresponding critical strains are 18% and 32%, respectively. For β...
	Figure 6.6 Stress-strain relationship for antimonene monolayers: (a) α-Sb and (b) β-Sb. (Reprinted with permission from reference 237. Copyright 2015 American Chemical Society.)
	Next, we examine the tensile strain effect on the electronic properties of both Sb monolayers within the critical strain region. α-Sb has an indirect band gap and the tensile strain along the armchair direction induces an indirect-direct band gap tran...
	Figure 6.7 Electronic band structures of α-Sb and β-Sb monolayers under various strains: (a) α-Sb under strain along armchair direction, (b) α-Sb under strain along zigzag direction, and (c) β-Sb under biaxial strain. (Reprinted with permission from r...
	Since β-Sb monolayer shows isotropic mechanical properties along the zigzag and armchair directions, a biaxial tensile strain was applied to the lattice as shown in Figure 6.7(c). β-Sb monolayer has (minimum) indirect band gap of 0.76 eV at the equili...
	Figure 6.8 Structural and electronic properties of antimonene monolayers on graphene substrates: (a) and (b) β-Sb on graphene; (b) and (d) α-Sb on graphene. (Reprinted with permission from reference 237. Copyright 2015 American Chemical Society.)
	Considering that the mechanical exfoliation (scotch tape) approach will be difficult to fabricate antimonene due to much larger predicted binding energy of the bilayers, the standard chemical techniques are likely to play a major role in the synthesis...
	As seen from the relaxed structures, the distance between the antimonene and the graphene substrate is larger than 3.2 Å at LDA-DFT level of theory. The corresponding binding energies of α- and β-Sb on graphene substrate are 16 meV/atom and 14 meV/ato...

	6.4. Summary
	In conclusion, DFT calculations were performed on 2D antimonene atomic layers. Our results show that α- and β-Sb monolayers to be stable and can be realized experimentally. Both monolayers are semiconductors with indirect band gap. β-Sb has nearly iso...


	Chapter 7      Group IV-V binary 2D materials– carbon phosphide4F*
	7.1. Introduction
	Since the discovery of graphene 58, 247, two dimensional (2D) materials have sparked an extraordinary level of interest due to their unique properties and novel applications in electronics and optoelectronics. Among the 2D material family, the group I...
	Interestingly, the group IV and V elemental monolayers show noticeable structural similarities including three-fold coordinated atoms and a hexagonal network. In graphene, each C atom is sp2 hybridized connecting to three neighboring C atoms in a plan...
	It is to be noted that experimental efforts are being made to produce carbon phosphide (or phosphorus carbide). Initial attempts to synthesize bulk CP were made by producing P-doped diamond-like carbon 250. Later, synthesis of amorphous CP films using...
	To the best of our knowledge, no experimental or theoretical study has been made on CP monolayer. In this paper, we consider structure, stability, mechanical and electronic properties of the low-energy phases of CP monolayer obtained by an exhaustive ...

	7.2. Computational methods
	The CP monolayers with different stoichiometric compositions are obtained with CALYPSO code 51. The number of structures (e.g., population) that produced at each step is set to 24, and the number of CALYPSO steps (e.g., generation) is fixed to 20. The...
	Calculations of electronic properties were performed using the projector-augmented-wave (PAW) method and the generalized-gradient approximation (GGA-PBE) for electron exchange-correlation interaction 137 as implemented in the Vienna Ab initio Simulati...

	7.3. Results and discussions
	Figure 7.1 The structural geometry including top view, side view, and the Brillouin zone of (a) α-CP, (b) β-CP, and (c) γ-CP. a1 and a2 are the lattice constants, R is the nearest neighbor distance, θ is the bond angle of C-P-P. (Reprinted with permis...
	In α-, β-, and γ-CP, each C atom bonds with three nearest neighbors in a planar configuration (see the side views in Figure 7.1) implying the C atoms are sp2 hybridized. On the other hand, each P atom bonds with three neighboring atoms in a buckled co...
	Table 7.1. Calculated structural parameters of CP monolayers (see Figure 1) at the GGA-PBE level of theory. (Reprinted with permission from reference 259. Copyright 2016 Royal Society of Chemistry.)
	All three phases of CP monolayer have nearly degenerate cohesive energy with the rectangular unit cells as summarized in Table 7.1. The length of C-C, C-P, P-P bonds in α- and β-CP are 1.36-1.37 Å, 1.82-1.83 Å, and 2.32-2.22 Å, respectively. The C-C b...
	Figure 7.2 The phonon dispersion and phonon density of states (phDOS) calculated for (a) α-CP, (b) β-CP, and (c) γ-CP. (Reprinted with permission from reference 259. Copyright 2016 Royal Society of Chemistry.)
	The phonon dispersion curves are displayed in Figure 7.2 showing no imaginary (negative) vibration mode in the Brillouin zone. AIMD simulations show that α-, β-, and γ-CP maintain their structural integrity up to 5 ps demonstrating the dynamical stabi...
	The electronic properties of α-CP monolayer are presented in Figure 7.3. The calculated band structure and density of states (DOS) indicate α-CP monolayer to be a semiconductor with an indirect band gap of 0.63 eV at the GGA-PBE level of theory. The v...
	The band structure and DOS indicate β-CP monolayer to be a semiconductor with a band gap of 0.39 eV (Figure 7.4(a)). CBM is at X point with a value of -3.76 eV, and VBM at -4.15 eV lies very close to X point. Since the energy of the first VB at X poin...
	Figure 7.3 Electronic properties of α-CP: (a) band structure and density of states, the inset is the zoomed figure around V point, (b) 2D energy profiles of the first valence band (VB) and the first conduction band (CB), and (c) effective mass of elec...
	α- and β-CP monolayers are found to show high anisotropy in their electronic properties. For example, valence and conduction bands around Fermi level have different slopes along the X-Γ (armchair) and X-S (zigzag) directions (Figure 7.4(a)), which ref...
	Figure 7.4 Electronic properties of β-CP monolayer: (a) band structure and density of states, (b) 2D energy dispersion of the first valence band (VB) and the first conduction band (CB), and (c) effective mass of electrons and holes along different dir...
	The calculated directional dependence of effective mass of the carriers is shown in Figure 7.4(c). The values are significantly larger in the X-S (zigzag) direction than the X-Γ (armchair) direction. Along the X-Γ (armchair) direction, electrons and h...
	The effective masses of carries in α- and β-CP along the zigzag (y) direction are comparable to the values in phosphorene (1.12m0 and 6.35m0 16, 17, 19), while the values along the armchair (x) direction are even smaller than those in phosphorene (0.1...
	An understanding of the electronic conductance of the material can be gained from the carrier mobility calculations based on the deformation potentials (DP) theory as proposed by Bardeen and Shockley 262. According to the DP theory, the carrier mobili...
	,𝜇-𝑥.=,𝑒,ℎ-3.,𝐶-𝑥.-,,2𝜋.-3.,𝑘-𝐵.𝑇,𝑚-𝑥-∗.,𝑚-𝑑.(,𝐸-1𝑥-2.). ,                                                        (7.1)
	where e is the electron charge, h is the Planck’s constant, T is the temperature and m* is the effective mass. md is determined by md = (mx*my*)1/2. E1x is the deformation potential defined as E1x = ΔV/(Δax/ax), and is obtained by varying the lattice ...
	Table 7.2. Calculated carrier mobility in α-CP monolayer at T = 300 K along x (armchair) and y (zigzag) direction obtained at GGA-PBE level of theory. me* and mh* are the effective masses of electron (e) and hole (h), respectively. (Reprinted with per...
	The calculated carrier mobility using Equation 7.1 at room temperature (T = 300K) for α- and β-CP is summarized in Tables 7.2 and 7.3, respectively. The carrier mobility shows strongly directional dependence as one would expect from the anisotropic na...
	Table 7.3. Calculated carrier mobility in β-CP monolayer at T = 300 K along x (armchair) and y (zigzag) direction obtained at GGA-PBE level of theory. me* and mh* are the effective masses of electrons (e) and holes (h), respectively. (Reprinted with p...
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