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Abstract 
 

Atmospheric particles are ubiquitous in Earth’s atmosphere and impact the environment 

and the climate while affecting human health and Earth’s radiation balance, and 

degrading visibility. Atmospheric particles directly affect our planet’s radiation budget 

by scattering and absorbing solar radiation, and indirectly by interacting with clouds. 

Single particle morphology (shape, size and internal structure) and mixing state (coating 

by organic and inorganic material) can significantly influence the particle optical 

properties as well as various microphysical processes, involving cloud-particle 

interactions and including heterogeneous ice nucleation and water uptake. Conversely, 

aerosol cloud processing can affect the morphology and mixing of the particles. For 

example, fresh soot has typically an open fractal-like structure, but aging and cloud 

processing can restructure soot into more compacted shapes, with different optical and 

ice nucleation properties. 

During my graduate research, I used an array of electron microscopy and image analysis 

tools to study morphology and mixing state of a large number of individual particles 

collected during several field and laboratory studies. To this end, I investigated various 

types of particles such as tar balls (spherical carbonaceous particles emitted during 

biomass burning) and dust particles, but with a special emphasis on soot particles. In 

addition, I used the Stony Brook ice nucleation cell facility to investigate heterogeneous 

ice nucleation and water uptake by long-range transported particles collected at the Pico 

Mountain Observatory, in the Archipelago of the Azores. Finally, I used ice nucleation 

data from the SAAS (Soot Aerosol Aging Study) chamber study at the Pacific 

Northwest National Laboratory to understand the effects that ice nucleation and 

supercooled water processing has on the morphology of residual soot particles. Some 

highlights of our findings and implications are discussed next. 

We found that the morphology of fresh soot emitted by vehicles depends on the driving 

conditions (i.e.; the vehicle specific power). Soot emitted by biomass burning is often 



 

xix 
 

heavily coated by other materials while processing of soot in urban environment 

exhibits complex mixing. We also found that long-range transported soot over the ocean 

after atmospheric processing is very compacted. In addition, our results suggest that 

freezing process can facilitate restructuring of soot and results into collapsed soot. 

Furthermore, numerical simulations showed strong influence on optical properties when 

fresh open fractal-like soot evolved to collapsed soot. Further investigation of long-

range transported aged particles exhibits that they are efficient in water uptake and can 

induce ice nucleation in colder temperature.  

Our results have implications for assessing the impact of the morphology and mixing 

state of soot particles on human health, environment and climate. Our findings can 

provide guidance to numerical models such as particle-resolved mixing state models to 

account for, and better understand, vehicular emissions and soot evolution since its 

emission to atmospheric processing in urban environment and finally in remote regions 

after long-range transport.  Morphology and mixing state information can be used to 

model observational-constrained optical properties. The details of morphology and 

mixing state of soot particles are crucial to assess the accuracy of climate models in 

describing the contribution of soot radiative forcing and their direct and indirect climate 

effects. Finally, our observations of ice nucleation ability by aged particles show that 

nucleated particles are internally mixed and coated with several materials.  

. 
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1. Introduction 
 

Particles suspended in the atmosphere (aerosol) impact the environment and the climate 

by affecting Earth’s radiation balance, cloud formation, and heterogeneous chemistry. 

The morphology (shape, size and internal structure) and mixing state of individual 

atmospheric particles influence their optical properties as well as their interactions with 

clouds, and therefore their radiative forcing. This dissertation provides an overview of 

electron microscopy analysis of the morphology of a large number of particles collected 

in various geographical locations and atmospheric conditions, and discusses the 

implications that morphology and mixing state have on the particle optical ice 

nucleation properties. 

 

1.1 Research motivation 

Atmospheric aerosols have significant impact on human health. By penetrating deep 

into the lungs they cause respiratory and cardiovascular diseases (Brunekreef and 

Forsberg, 2005). Particles also impact the environment and the climate by affecting 

Earth’s radiation balance, clouds properties and atmospheric chemistry (Finlayson-Pitts, 

2000; Haywood and Ramaswamy, 1998); in addition, particles reduce visibility 

(Watson, 2002). The effects that particles have on human health, the clouds, the 

environment, the climate and the atmospheric visibility all depend on several 

parameters including morphology and their mixing states. 

Different particle shapes are present in the atmosphere such as spherical (Barone and 

Zhu, 2008), chain-like or fractal-like aggregates (soot particles), irregularly shaped, bar-

shaped (elongated rectangular) or fiber-like particles (Dye et al., 2000; Friedlander, 

2000; Okada and Heintzenberg, 2003; Xiong and Friedlander, 2001). Particle shape 

influences the particle transport behavior, the deposition in the human respiratory 

system (Oberdörster, 2001) and the interaction with lung epithelial cells (Stearns et al., 

2001). Aerosol morphology also significantly influences the optical properties of soot 
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particles (Bond and Bergstrom, 2006) and mineral dust particles (Kalashnikova and 

Sokolik, 2004). The complex morphology of atmospheric aerosols with varying 

composition and mixing state makes it difficult to understand various microphysical 

processes in the atmosphere, including heterogeneous ice nucleation and water uptake 

by particles.  

In this dissertation, we investigate tar balls (spherical carbonaceous particles emitted 

during the smoldering phase of biomass burning), dust particles and soot particles, but 

we place special emphasis on soot particles. Soot or nano-sphere soot (“ns-soot”) 

(Buseck et al., 2014) or black carbon particles are ubiquitous in the atmosphere. Soot 

particles are generated during combustion process. Internal combustion engines, power 

plants, biomass burning (Friedlander, 2000; Kocbach et al., 2006) and domestic heating 

are the main sources of atmospheric soot particles (Horvath, 1993). The terms “soot” 

and “black carbon” have been used interchangeably in the literature and recently there 

have been renewed discussions about what the term “black carbon” really means 

(Buseck et al., 2014; Petzold et al., 2013). These discussions suggest that the use of the 

correct term critically depends on the measurement technique used to detect the particle 

or its properties. Soot is consisting of many spherical particles (or nano-spheres) with 

distinct internal structures of concentrically wrapped, graphene-like layers of carbon 

(Buseck et al., 2014). Black carbon particles are mostly composed of soot, but can also 

include other light-absorbing carbonaceous materials. We will use the term “soot” 

throughout this dissertation as it is one of the most appropriate terms for the main 

measurement technique that we used in our work, namely “single particle electron 

microscopy”. 

 

1.1.1 Effect of morphology and mixing state on optical properties 

The morphology and mixing state of absorbing aerosol play an important role in 

determining the radiative properties of soot. While aging, soot particles can change 

morphology, oxidize and mix, and become coated by organic and inorganic materials. 

Coated soot particles (especially when coating is non-absorbing) can significantly 
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enhance their light absorption and scattering coefficient. This absorption enhancement 

is defined as the ratio of the absorption coefficient for the coated (aged)  to the uncoated 

(fresh) soot (Moffet and Prather, 2009). A recent study suggests that internal mixing of 

soot and organic carbon emitted from biomass burning might enhance absorption by up 

to 70% (Lack et al., 2012). However, from another recent study performed in urban 

environments in California, it appears that the aerosol absorption enhancement expected 

for mixed black carbon might have been overestimated in past modeling efforts (Cappa 

et al., 2012), at least in such environments.  

Freshly emitted non-spherical soot particles can quickly (within a few hours) evolve due 

to photochemical processes and can mix with other material (Moffet and Prather, 2009). 

When soot particle mix with external material (host), soot can be located in off‐center 

positions within the host materials. Knowledge of the position of soot within the host 

meterial is important to predict their absorption. For example, if the host is not 

concentric around the soot particle, then those mixed soot particles absorb sunlight less 

efficiently compared to particles with soot located at the center of the host material 

(Adachi et al., 2010).  These studies suggest that soot morphology and their mixing are 

important to understand the absorption enhancement. 

The fractal-like or chain-like morphology of soot particles also plays an important role 

in detemining their optical properties (Adachi et al., 2007; Scarnato et al., 2012). 

However, optical properties modeling and climate modelling studies typically assume 

soot as mass equivalent or volume equivalent spherical particles, completely ignoring 

the fractal nature of soot (Chakrabarty et al., 2007; Jacobson, 2012). More exact 

numerical simulations of the soot optical properties using discrete dipole approximation 

(Scarnato et al., 2012) and T-matrix (Liu et al., 2008) show that the morphology of soot 

particles significantly affect their scattering phase function (angular distribution of light 

intensity scattered by a particle at a given wavelength), and their scattering and 

absorption cross sections. The diameter of the monomers constituting the soot paticles 
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and the refractive index of the balk material they are made of, also influence the soot 

optical properties. 

 

1.1.2 Effect of morphology and mixing state on microphysical process 

Aerosol particles influence the microphysical evolution of clouds by acting as cloud 

condensation nuclei (CCN). Particle can grow (hygroscopic growth) by uptaking water 

as relative humidity increases. Particles may turn into efficent CCN when are coated 

with layers of hygroscopic material. For example, bare dust particles are already good 

CCN, but when they become coated by layers of hygroscopic sulfate, through cloud 

processing or aqueous phase chemistry, they became even more efficent CCN (Laskin 

et al., 2005). The large active surface area and the morphology of dust can affect their 

mixing with hygroscopic material thus affect the CCN activity. The fractal-like 

morphology of soot may provide active sites for adsorption and deposition of water and 

other chemical species, thus influences its hygroscopicity; furthermore, it can affect its 

ability to act as cloud conensation nuclei or ice nuclei (Popovicheva et al., 2008; Zhang 

et al., 2008).  

Ice nuclei can  affect the dynamical and microphysical structure of cloud by altering 

numbers and shapes of the ice crystals (Bailey and Hallett, 2002; Wendisch et al., 

2007). Soot particles can act as ice nuclei and faciliate ice formation through 

heterogenous ice nucleation (Kärcher et al., 2007). An investigation of ice crystal 

residual particles from cirrus clouds showed that 11 to 25% of the residuals are 

composed of carbonaceous material, including soot and organic carbon (Twohy and 

Poellot, 2005). Soot containg ice crystals or supercooled droplets can undergo various 

cycles and can sublimate and evaporate in the atmosphere (Heymsfield et al., 2010). 

Upon sublimation of the host ice crystal, soot particles can fragment into small pieces, 

or it can aggregate into larger clusters (Kärcher et al., 2007). The morphology of those 

residual soot particles that remain after the sublimation of the host ice crystal is not well 

characterized.  
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1.2 Research objectives 

The objective of this dissertation is to understand the morphology of aerosol particles, 

in particular the morphology of soot and dust particles and their mixing with other 

material collected in different environments. The goal is that of understanding how the 

morphology and mixing state of particles influence its optical, water uptake and ice 

nucleation properties. Scanning electron and transmission electron microscopies along 

with Energy dispersive X-ray spectroscopy are used here to investigate the morphology 

and mixing state of individual particles. In particular, in this dissertation we will 

investigate the following: 

a) The morphology of freshly emitted soot particles by vehicles near freeway on-ramps 

in Southern Michigan (2010), and effects of vehicle driving conditions on soot 

morphology. 

b) The morphology and mixing states of freshly emitted biomass burning particles (Las 

Conchas wildfire, New Mexico, 2011) 

c) The evolution of the morphology and mixing state of soot particles in different 

atmospheric conditions. At this aim, particles were collected in several geographical 

locations, including:  

 In Mexico City: in the center of the city and in the uplifted boundary layer 

captured on the top of the Pico de Tres Padres Mountain on the north edge of the 

city during the MILAGRO (Megacity Initiative: Local and Global Research 

Observations) field campaign (2006). 

 In the Sacramento urban area and the Sierra Nevada foothills in California 

during the CARES (Carbonaceous Aerosols and Radiative Effects Study) 

campaign (2010). 

 In Detling, a village in UK, during the ClearfLo (Clean Air for London) 

campaign aimed at studying airmasses transported from London and affected by 

household biomass burning (2012).  
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 The soot morphology in a remote region in the free troposphere, at Pico 

Mountain Observatory in the Azores, Portugal. The aim of the study is to better 

understand the aging of soot during its transport from the source to the station, 

over the Atlantic Ocean (2012). 

d) The changes in soot morphology in supercooled droplets and ice crystal residuals 

after evaporation/sublimation and the effects on the soot optical properties. This was 

a laboratory study conducted at the Pacific Northwest National Laboratory (2013-

2014). 

e) Heterogeneous ice nucleation and water uptake on free tropospheric particles 

collected in the North Atlantic free troposphere at the Pico Mountain Observatory 

(2013).  

 

1.3 Organization of the dissertation  

In this section, I provide a brief description of the structure of the dissertation and 

organization of the chapters. Each chapter provides a brief introduction, experimental 

methods, results and discussion, and a conclusion section. Following is a list of chapters 

and a brief description of their contents: 

Chapter two discusses the morphological properties of soot freshly emitted from 

vehicles at a road site. The samples were collected at six different cloverleaf freeway 

on‐ramps in Southern Michigan. In this chapter we investigate the effect of on-road 

driving conditions on soot morphology and some possible influence of vehicle type and 

model year on soot morphology.  

Chapter three focuses on the analysis of individual biomass burning particles from the 

Las Conchas fire (New Mexico, 2011). We discuss the coating and oxidation of tar balls 

and the morphological properties of soot particles and their mixing with other materials.  

Chapter four discusses the evolution of soot morphology and the mixing of soot with 

other materials in different stages of the soot’s “life” in the atmosphere. In particular, in 

this chapter, we focus on the morphology and mixing state of aged soot particles 
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transported over long-ranges in the free-troposphere. The samples were collected at 

Pico Mountain Observatory, in the Azores Islands (Portugal), in the Northern Atlantic 

Ocean. We further examine the optical properties of aged soot particles through 

numerical simulations and compare them with those of less aged and fresh soot 

particles. This chapter provides a brief summary of the morphology and mixing states of 

soot particles collected from different geographical locations and environmental 

conditions and the implications on climate.  

Chapter five delves into the morphological changes of soot particles when interacting 

with water at sub-freezing (supercooled) and freezing temperatures by investigating 

supercooled droplet residuals and ice crystal residuals in a laboratory study. This 

chapter also discusses the results obtained from numerical simulations of the optical 

properties of the soot residuals.  

Chapter six discusses the results from laboratory experiments of heterogeneous ice 

nucleation and water uptake on long-range transported free-tropospheric particles 

collected at Pico Mountain Observatory. This chapter further discusses the 

morphological and elemental composition of the nucleated particles. 
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2. Morphology of Freshly Emitted Soot Particles1 
 

Vehicles represent a major source of soot in urban environments. Knowledge of the 

morphology and mixing state of soot particles is fundamental to understand their 

potential health and climatic impacts. We investigate 5,738 single particles collected at 

six different cloverleaf freeway on‐ramps in Southern Michigan, using 2D images from 

scanning electron microscopy. Of those, 3364 particles are soot. We present an analysis 

of the morphological and mixing properties of those soot particles. The relative 

abundance of soot particles shows a positive association with traffic density (number of 

vehicles per minute). A classification of the mixing state of freshly emitted soot 

particles shows that most of them are bare (or thinly coated) (72%) and some are partly-

coated (22%). We find that the fractal dimension of soot particles (one of the most 

relevant morphological descriptors) varies from site to site, and increases with 

increasing vehicle specific power that represents the driving/engine load condition, and 

with increasing percentage of vehicles older than 15 years. Our results suggest that 

driving conditions, and vehicle age and type have significant influence on the 

morphology of soot particles.  

  

2.1 Introduction 

Traffic related pollution in urban areas can adversely affect human respiratory system 

and cause various diseases (Brauer et al., 2002; Heinrich and Wichmann, 2004). 

Carbonaceous soot aggregates (often also termed as black carbon) or ns-soot 

(nanosphere soot) (Adachi and Buseck, 2013; Buseck et al., 2012) consist of many 

spherical monomers ranging from 20 to 50 nm in diameter composed of graphite 

carbon, and coated with polycyclic aromatic compounds, hydrocarbons, lubricating oil, 

sulfate layers and/or inorganic materials (Adachi and Buseck, 2008; Adachi and 
                                                            
1 Reprinted (adapted) with permission from Swarup China, Neila Salvadori and Claudio Mazzoleni, 
Environmental science and Technology, 2014, 48 (6), pp 3128–3135. Copyright (2014) American 
Chemical Society. See Appendix A.1 for documentation of permission to republish this material. 
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Buseck, 2013; Kittelson, 1998; Sakurai et al., 2003; Schauer et al., 1999). Soot particles 

are ubiquitous in the atmosphere (Pusechel et al., 1992) and are generated during 

combustion processes such as in internal combustion engines, power plants, biomass 

burning (Friedlander, 2000; Kocbach et al., 2006) and domestic heating (Horvath, 

1993). Vehicles are one of the major sources of soot in the atmosphere (Bond et al., 

2004). In 2012 the International Agency for Research on Cancer (IARC) and the World 

Health Organization (WHO) classified diesel exhaust emissions as  “carcinogenic to 

humans” (group 1) (Benbrahim-Tallaa et al., 2012). In addition, soot is an efficient light 

absorber and it has been suggested to be the second most important anthropogenic 

climate forcer with a total positive radiative forcing up to 1.1W/m2 with high 

uncertainty (Bond et al., 2013).  

Chemical composition, size, mixing and morphology of soot particles determine their 

properties and their effects on the environment. For example, the mixing state and 

morphology of soot affect its light scattering and absorption cross sections due to the 

potential enhancement of these properties upon coating (Adachi and Buseck, 2013; 

Cappa et al., 2012) or their reduction upon soot aggregate restructuring. In addition, 

soot morphology  can significantly affect their deposition in human respiratory system 

(Broday and Rosenzweig, 2011).  

Due to scale invariance of soot particles, their morphology can be described using 

fractal formalism introducing Mandelbrot’s concept of fractal dimension and following 

the scaling law (Mandelbrot, 1982): 

                                           ܰ ൌ ݇௚ ൬
ଶோ೒
ௗ೛
൰
஽೑

                                                                   (1) 

Where N is the number of monomers per aggregate, Rg is the radius of gyration, dp is 

the monomer diameter, kg is the fractal proportionality constant (also called fractal 

prefactor or structural coefficient), and Df is the mass fractal dimension. The radius of 

gyration is the root-mean-square distance from the center of each monomer to the 
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aggregate center of mass. The prefactor is an important parameter as it is related to the 

cluster mass, atmospheric transport processing, and optical properties (Oh and 

Sorensen, 1997). The value of the prefactor kg, represents the level of compactness, the 

smaller the prefactor value the lower the packing density for a given Df.  

Densely packed or compacted soot particles have higher Df than chain-like branched 

clusters or open soot structures (Liu et al., 2008). Df for a soot particle reflects its 

history and is controlled by the particle source, generating conditions, mixing, and 

aging processes (Adachi et al., 2007). For example, Dye et al. (2000) studied the 

morphology of urban roadside and background aerosol and observed various 

agglomerate particles having several morphologies with and without coating. They 

found a relatively higher fraction of agglomerate compared to non-agglomerate particles 

in roadside aerosol (94%) with respect to background aerosol samples (89%). The 

perimeter-based fractal dimension was significantly greater at the roadside than at the 

background site, especially for the 120-220 nm size range. The authors suggested that 

the differences between roadside and background aerosols were due to inclusion of 

particles from other sources and generation of new agglomerates away from the 

roadside under dilute atmospheric conditions. Similarly, Barone and Zhu (2008) studied 

changes in atmospheric particle morphology, with increasing distance from a roadside 

near two major Los Angeles freeways. They found that the fraction of agglomerates was 

greater near a freeway than 90 m downwind, while an opposite scenario was observed 

for multiple-inclusions type particles which contained smaller solid and/or liquid 

particles inside or on the edge. Collisions of particles increase the faction of multiple-

inclusions particle downwind from the freeway. The authors suggested that the decrease 

in the fraction of agglomerated particles away from the freeway was due to secondary 

aerosol formation. 

In this study we report morphological properties of road-side soot particles collected on 

28 filters at 6 different cloverleaf freeway on‐ramps in Southern Michigan. We study 

the morphology of soot particles using 2D projected images from scanning electron 
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microscopy (SEM) for various on-road driving situations. In this study we investigate 

single soot particle characteristics to address the following questions: (1) What is the 

prominent type of particles and how does the particle type relate to traffic density? (2) 

What are the mixing states of soot? (3) What is the effect of on-road driving conditions 

on soot morphology? (4) Does soot morphology correlate with vehicle type and model 

year? 

 

2.2 Experimental section and methods 

2.2.1 Sampling sites 

On-road aerosol sampling was conducted in the Detroit–Ann Arbor geographical area, 

in Southern Michigan, in July-August 2010. The sites were all cloverleaf freeway on-

ramps to allow for the passage of only one vehicle at the time. A total of 28 samples 

were analyzed from six sites in three different counties (Washtenaw, Oakland, Wayne) 

(Figure 2-1 and Table 2-1). Samples were collected for ~10 minutes. 

Table 2-1: List of the sampling sites surveyed during this study. 

Site County 
Lat 

(degree) 
Long 

(degree) 
Ramp 

Elev 
(m) 

Slope 
(%) 

1 Washtenaw 42.224 -83.685 
EB I 94 to NB 

US 23 
270 1.10 

2 Washtenaw 42.227 -83.686 
WB I 94 to SB 

US 23 
260 0.40 

3 Oakland 42.495 -83.446 
EB 12 Mile Rd to 

NB M 5 
263 1.45 

4 Wayne 42.279 -83.441 
EB US 12 to NB 

I 275 
213 1.80 

5 Oakland 42.497 -83.447 
WB 12 Mile Rd 

to SB M 5 
284 1.15 

6 Oakland 42.517 -83.617 
SB Milford Rd to 

EB I 96 
302 0.79 

 

EB – East Bound, NB – North Bound, WB – West Bound, SB – South Bound 
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Figure 2-1: Location of the on-ramp measurement sites (red stars and numbers). The 
light purple areas in the map indicate the urban areas. Sites 1 and 2 are close to each 
other and at the edge of the Ann Arbor urban area. (Data courtesy, NOAA-National 
weather service – AWIPS Shapefile Database). 

 

2.2.2 Instrumentation 

Aerosol samples were collected on nuclepore  polycarbonate filters (100 nm pore size) 

using a custom-made sequential sampler (China et al., 2013; Zaveri, 2012) using 

filtration technique (Chakrabarty et al., 2006). A field emission scanning electron 

microscope (FE-SEM) (Hitachi S-4700) was used for imaging. Two video cameras 

were used to capture the rear license plate of each vehicle passing by the sampling set-

up for license plate transcription. License plates were transcribed manually from the 

images and randomly crosschecked by other operators. The license plate database was 

matched with the Vehicle Identification Number (VIN) database of the Michigan 

Department of Motor Vehicle (DMV) providing information on model year, 

manufacturer and country, body-style, vehicle type (MOBILE 6 classification) and fuel 
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type. Vehicle speed and acceleration were measured using two diode lasers and two 

detectors at opposite sides of the road set up at about 10 cm above the road pavement. 

Wind speed, wind direction, relative humidity and temperature were measured using a 

wireless meteorological station (6162 Vantage Pro2™ plus by Davis Instruments, CA).  

Table 2-2: Mean values ± one standard deviation for the meteorological parameters at 
the different sampling sites.   

Site Wind speed (ms-1) Temperature (˚C) Relative humidity (%) 

1 2.0 ± 1.4 28.5 ± 1.8 56.3 ± 6.8 

2 1.0 ± 0.6 24.7 ± 0.1 76.0 ± 1.0 

3 1.5 ± 1.5 26.6 ± 2.6 64.7 ± 12.2 

4 1.6 ± 0.5 30.3 ± 0.8 65.4 ± 6.3 

5 2.1 ± 0.9 23.0 ± 2.4 59.4 ± 9.5 

6 0.8 ± 0.5 27.0 ± 2.4 52.0 ± 10.2 

 

2.2.3 Particle Types and Classification 

Examples of different types of particles with various shapes found on the filters are 

shown in Figure 2-2. The most abundant are soot particles but we also found several 

smaller spherical particles. Typically, vehicle-generated nano-particles (diameter<50 

nm) are formed from volatile or semi-volatile compounds during the dilution and 

cooling of the exhaust and are primarily composed of unburned oil and sulfate 

(Kittelson, 1998; Sakurai et al., 2003). Other types of particles are also found such as, 

mineral dust, particles with multiple inclusions, and particles mixed with fibrous 

material, possibly of biological origin. Energy dispersive X-Ray spectroscopy (EDS) 

analysis is conducted on selected particles (~10% of total particles) to study their 

elemental composition and is used to confirm that particles identified as soot are mainly 

composed of carbon and oxygen, while particles identified as mineral dust are mainly 

composed of aluminum and silicon.    
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Each particle is visually classified within one of four main categories: 1) soot; 2) 

irregularly-shaped particles; 3) non-fractal-like aggregates and; 4) spherical particles 

(Figure 2-2). Particles consisting of aggregates of many spherical monomers and chain-

like structures (open or closed) are classified as soot. Particles are categorized as 

irregularly-shaped when the particles have no defined shape and can be considered as a 

single particle (e.g.; dust particles). Particles are categorized as non-fractal-like 

aggregates if they are composed of more than one particle, but do not present a chain-

like or fractal-like aspect. Particles with circular or close to circular, shape are classified 

as spherical. A caveat of the filtration sampling method using 100 nm pore size 

employed in our study is that  particles smaller than the pore size are potentially not 

retained by the filter, biasing the analysis toward particles larger than 100 nm. Our 

classification is therefore based on particles in the size range of 50 nm to 2500 nm. In 

particular, most of the analysis presented in the following sections is based on soot 

typically larger than 100 nm.   

 

Figure 2-2: Examples of different particle morphologies encountered in this study: a) 
Particles mixed with some fiber-like material possibly of biological nature. b) mineral 
dust; c) open-soot; d) collapsed soot; e) particle with multiple inclusions; f) coated soot. 

a) b) 

c) d) 

e) f) 
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2.2.4 Soot Classification 

Soot particles are classified into four categories based on their morphology and visual 

coating, to understand their mixing state and degree of coating (China et al., 2013): 1) 

embedded soot (heavily coated), where the particle is completely engulfed with organic 

or inorganic material (Adachi and Buseck, 2008); 2) partly-coated, where voids in the 

soot structure are partially or completely filled by coating material, but the soot is not 

completely within the host particles; c) bare soot (no substantial coating or a thin layer 

of coating), where coating is not visible from the SEM images and voids between the 

monomers are not filled, 4) soot inclusions, where soot particles are mixed with other 

particles and are partially on the surface of the host particle. What we call soot inclusion 

particles are similar to attached soot particles discussed by Adachi and Buseck (2008). 

However, we should caution about the limitations of SEM and two possible sources of 

bias: 1) the vacuum conditions in the SEM can result in some of the more volatile 

compounds to be lost 2) the fraction of embedded soot might be biased low because 

particle would not be classified as soot if the monomers are not visible.  

 

2.2.5 Area Equivalent Diameter and Shape Descriptors  

High magnification images (e.g., ×60K to ×100K) are used to measure the 

morphological parameters discussed next. A critical limitation of 2-D imaging is that it 

can yield different surface area, size and shape of 3-D particles depending on their 

orientations (Adachi et al., 2007; Van Poppel et al., 2005). The length-scale for every 

image is calibrated carefully before processing. The FE-SEM magnification and scale is 

routinely calibrated by factory-trained technicians using a Geller Analytical MRS-4 

calibration standard. Thresholds of gray scale for each particle are adjusted to convert 

the image into a binary image where black pixels represent the particle and white pixels 

represent the background. A Gaussian blur filter is used to remove the noise from the 

thresholded image. The parameters calculated from each image include: 1) maximum 

projected length (Lmax), 2) maximum width (Wmax), 3) area of monomers (Ap) in 
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aggregates, 4) total projected area (Aa), and 5) perimeter of the particle (P). The Lmax is 

the distance between the two most separated points of the particle. The maximum width 

(Wmax) is the maximum width perpendicular to the line of maximum length.  Lmax and 

Wmax are independent from the orientation of the image. We measure Aa, Lmax, and Wmax 

of a soot particle multiple times provides results less than 2% difference (from 

maximum to minimum). For the perimeter, the difference is around 4 to 6%. However, 

we should highlight that differences in perimeter up to 40% for the same particle is 

recorded when the Gaussian blur filter is not applied. Gaussian blur filter is applied to 

process all the images. Average area of the monomers is calculated from individual 

aggregates by measuring 10-15 monomers on average in the aggregate depending upon 

the distinctness of the monomers in the two dimensional projected image.  

The projected area equivalent diameter (DAeq)  is defined as the diameter of a spherical 

particle of the same projected area (Baron and Willeke, 2001). The DAeq is calculated 

from eq 2 where Aa is the projected area of the particle. 

஺௘௤ܦ                                            ൌ ටସ஺ೌ
గ

                                                                   (2) 

A ratio of two particle size measurements is typically used for quantitative shape 

characterization. In our study we selected the following shape descriptors: a) aspect 

ratio, b) circularity, and c) roundness. The aspect ratio is defined as the ratio of the 

longest dimension (Lmax) to the maximum orthogonal width (Wmax) (equation 3). A 

related parameter, the elongation, is defined as [1-(Aspect ratio)-1]. Therefore, higher 

aspect ratio indicates higher elongation. The circularity (equation 4) is sensitive to 

boundary irregularities, as it depends on the perimeter (P) of the particle whereas 

roundness is sensitive to Lmax. As an example, a circularity of 1 represents a perfect 

circle with no boundary roughness; a circle with “rugged” perimeter would have a 

lower circularity than a smooth circle, while the roundness would change just slightly. 

The roundness, as the aspect ratio, represents the elongation of the particle (equation 5).  
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݋݅ݐܴܽ	ݐܿ݁݌ݏܣ                                     ൌ ௅೘ೌೣ

ௐ೘ೌೣ
                                                                (3) 

ݕݐ݅ݎ݈ܽݑܿݎ݅ܥ                                     ൌ ସగ஺ೌ
௉మ

                                                                   (4) 

ݏݏ݁݊݀݊ݑ݋ܴ                                     ൌ ସ஺ೌ
గ௅೘ೌೣ

మ                                                                 (5) 

 

2.2.6 Fractal Analysis 

Fractal dimension of an agglomerate depends on the number of monomers (N) and the 

radius of gyration (Rg) of the agglomerate; both of these parameters are difficult to 

measure directly from two-dimensional images and different approximations and 

estimations are typically employed. Actual Estimation of N of an actual three 

dimensional soot particle from 2-dimensional projected images is difficult and can 

introduce biases (Adachi et al., 2007). The value of N in an aggregate is estimated from 

the projected area of the aggregate (Aa) and the mean projected area of a monomer (Ap) 

in the aggregate, as follows (Köylü et al., 1995; Oh and Sorensen, 1997; Samson et al., 

1987) 

                                                ܰ ൌ ݇௔ ൬
஺ೌ
஺೛
൰
ఈ

                                                                  (6) 

Where α is an empirical projected area exponent and ݇௔  is a constant, normally 

approximated with a value close to one. The exact value of α and ka depends on the 

overlap parameter (δ) which is the ratio of the monomer diameter to the distance 

between two adjacent and touching monomers center points (e.g.; δ=1 for point contact) 

(Oh and Sorensen, 1997). A  correct estimation of the value of the number of monomers 

requires an estimated value of δ and an estimate of the range of N before using the 

equation 6 (Oh and Sorensen, 1997). However, an accurate estimation of δ from 

projected images is difficult (Oh and Sorensen, 1997). The values of α and ka have been 

investigated by several researchers for flame generated soot using experimental and 

simulation studies (Cai et al., 1993; Köylü et al., 1995; Meakin, 1984b; Samson et al., 
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1987). Meakin (1984b) showed that the value of α approached unity for large clusters 

using cluster-cluster aggregate simulations. Cai et al. (1993) used the value of α 1.09 for 

5<N<505 to estimate the number of monomers and the same value of α is used by 

Megaridis and Dobbins (1990) for soot generated from an ethylene diffusion flame. 

Köylü et al. (1995) investigated the structure of soot particles generated from buoyant 

turbulent diffusion flames and also with computer simulations based on cluster-cluster 

aggregation. Both experiments and simulations showed a good agreement on the value 

of α  (1.09) but the value of ka was relatively higher (1.15) than earlier estimates of 1.0 

(Köylü et al., 1995). For N=5 to 580, Oh and Sorensen (Oh and Sorensen, 1997) found 

ka=1.17±0.02 and α=1.07±0.01 for δ=1 and ka=1.81±0.03 and α=1.19±0.01 for δ=2. 

While Chakrabarty et al. (2006) used values of α = 1.20, 1.14 and 1.16 and values of ka 

= 1.50, 1.30 and 1.35 for a light duty passenger vehicle (Buick Century), and two light 

duty trucks (Chevrolet C2 and Chevrolet El Camino), respectively; the N varies from 2-

1000 in their study.  

For our study, the aggregates have different degrees of overlap due to the mixture of 

different vehicles, fuels, engine loads, environmental conditions, particle aging etc. 

Therefore, we decided to estimate approximately the overlap parameter for individual 

aggregates. Average monomer diameter per particle and average distance between two 

adjacent and touching monomers center points are calculated from each SEM image of 

soot particles to estimate an approximate overlap parameter. The values of α and ka are 

estimated from the relation between α and ka with the overlap parameter provided by 

Oh and Sorensen (1997). The α and ka values increase with increasing overlaps between 

monomers. The values of α range from 1.090 to 1.145 and ka ranged from 1.150 to 

1.625 in this study. However, sometimes it is difficult to estimate the overlap parameter 

from the images and a default value (α=1.09 and ka=1.15) is used to estimate the 

number of monomers in such instances.   

The radius of gyration (Rg) is also required to determine the three dimensional fractal 

dimension. Estimation of the actual radius of gyration is complicated. Several 

simplified methods have been developed as surrogate for Rg. One approach is to use the 
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maximum length of the aggregate as an approximation for 2Rg into equation 1 as 

follows (Köylü et al., 1995; Samson et al., 1987) 

                                                     ܰ ൌ ݇௅ ൬
௅೘ೌೣ

ௗ೛
൰
஽೑

                                                        (7) 

Here the Df is the three dimensional fractal dimensions and kL is a proportionality 

constant. In our study the slope of the log-log power fit, which is the fractal dimension, 

is calculated by using the approximation in equation 7 and assuming that Lmax/2Rg is 

constant with a value of Lmax/2Rg=1.50±0.05 (Brasil et al., 1999). The proportionality 

constants kg and kL are then related to each other through the following relation: 

                                                     ݇௚ ൌ ݇௅ ൬
௅೘ೌೣ

ଶோ೒
൰
஽೑

                                                       (8)             

 

Figure 2-3: Example of ensemble fractal dimension estimation for one specific 
sampling period (site#4, 3:35 PM to 3:45 PM). 

 

In Figure 2-3 we show an example of fractal dimension calculation. Ensemble fractal 

dimension of soot particles are calculated for each samples (total 28 samples). The 

fractal dimension is 1.75 and the proportionality constant (kg) estimated from equation 9 

N = 1.20(Lmax/dp)1.75

R² = 0.84
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is found to be 2.44 for the example calculation showed in Figure 2-3. The 

proportionality constant, kg, in this study ranged from 1.45 to 4.99.  

 

2.2.7 Vehicle Specific Power 

The Vehicle Specific Power (VSP), represents the engine load conditions, and it is 

defined as the power required by the engine to operate the vehicle at a given speed and 

acceleration divided by the mass of the vehicle. The VSP (measured in kW/Mg) is 

estimated through the following formula (Jiménez-Palacios, 1999; Kuhns et al., 2004)      

 ܸܵܲ ൌ 	ቀ௉௢௪௘௥
ெ௔௦௦

ቁ ൌ ቀ
௉಼೔೙೐೟೔೎ା௉ು೚೟೐೙೟೔ೌ೗ା௉ೃ೚೗೗೔೙೒ା௉಺೙೟೐ೝ೙ೌ೗	ಷೝ೔೎೟೔೚೙ା௉ಲ೐ೝ೚೏೤೙ೌ೘೔೎

ெ௔௦௦
ቁ              (9) 

Where, ௄ܲ௜௡௘௧௜௖ is the power needed to accelerate the vehicle at a specified velocity; 

௉ܲ௢௧௘௡௧௜௔௟ is the power needed to overcome the gravitational force (on a sloped road); 

ோܲ௢௟௟௜௡௚ is the power needed to overcome the vehicle friction with the road pavement; 

ூܲ௡௧௘௥௡௔௟	ி௥௜௖௧௜௢௡  is the power needed to overcome the vehicle internal friction; 

஺ܲ௘௥௢ௗ௬௡௔௠௜௖	is the power needed to overcome the aerodynamic drag. 

Jiménez-Palacios (1999) suggested that the formula can be developed into the following 

approximated expression that involves only parameters that are easily observable on the 

road such as speed, acceleration, wind and road grade 

ܸܵܲ ൌ ߥ ∙ ܽሺ1 ൅ ௜ሻߝ ൅ ݃ ∙ ݁݀ܽݎ݃ ∙ ߥ ൅ ݃ ∙ ோܥ ∙ ߥ ൅ ௜௙ܥ ∙ ߥ ൅
ଵ

ଶ
஽ܥ௔ߩ

஺

ெ௔௦௦
ሺߥ ൅ ௪ሻଶߥ ∙ ߥ                

ൎ 1.1 ∙ ߥ ∙ ܽ ൅ 9.81 ∙ ݁݀ܽݎ݃ ∙ ߥ ൅ 0.132 ∙ ߥ ൅ 0.000305ሺߥ ൅ ௪ሻଶߥ ∙  (10)                      ߥ

Where ν is the vehicle speed, νw is the headwind speed, a is the acceleration, the grade 

is given in terms of rise/run, εi	 is a unitless mass factor,	 CR	 is the coefficient of rolling 

resistance,	 CD	 is the coefficient of aerodynamic drag,	 Cif	 is the internal friction factor,	 ρa	

is the density of air,	 A	 is the frontal area and Mass is the mass of the vehicle (Jiménez-

Palacios, 1999; Kuhns et al., 2004). We use equation 10 with the coefficients provided 
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by Jiménez-Palacios (1999) to calculate the VSP and investigate the effect of driving 

conditions on particle morphology.  

 

2.3 Results and discussions 

2.3.1 Abundance of soot particles  

We classify 5,738 individual particles to estimate the contribution of soot to the total 

number of particles collected on the filters. In Figure 2-4 we show the correlations 

between the fraction of soot particles and the traffic density (defined as the total number 

of vehicles per minute) for two different days, July 26 (grey bubbles) and July 29 (black 

bubbles) at site number 6 and 5, respectively. We selected July 26 and 29 because these 

two days had the maximum variation in traffic densities. Average fractions of 

irregularly-shaped particles, non-fractal-like aggregates and spherical particles were 

14%, 13% and 3%, respectively on July 26 and similarly 16%, 18% and 8% on July 29.  

The size of the bubbles is proportional to the percentage of heavy‐duty vehicles 

(HDVs). The slopes of linear regressions are similar for the two sites, but the intercept 

at site 6 is considerably higher; this might reflect different background concentrations of 

soot particles at the two sites. The intercept of the linear regression for July 26 is 

statistically significant (p =3.5×10-5) but not for July 29 data (p =0.03). Site 6 was on 

the on-ramp from South Bound Milford Road to East Bound on Interstate-96; 

background particles at this site might have been emitted from the intense traffic on the 

adjacent cloverleaf of West Bound Interstate-96 and transported to the sampling site. 

Additionally, there are large department stores and some automotive stores nearby 

implying possible higher surrounding traffic congestion. Whereas, site 5 was on the on-

ramp from West Bound 12 Mile Road to South Bound M-5 with no near-by shopping 

centers or highly congested roads. However, the meteorological conditions and long 

range transport could also have played a role in affecting the background 

concentrations. Means and standard deviations of the meteorological parameters 

measured during the sampling period are summarized in Table 2-2. Wind speed was 
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higher at site 5 (2.1 ms-1) than at site 12 (0.8 ms-1) and the dominant wind at site 6 was 

from south-west while at site 5 was from north-west and north-east. 

  

Figure 2-4: Left panel: Examples of different morphological categories of road-side 
aerosol particles: a) soot; b) irregularly-shaped particle; c) aggregate (non-fractal-like); 
d) spherical particle. Right panel: Linear regression between fraction of soot (in 
percent) and traffic density (in number of vehicles per minute) for two different days at 
site#6 (grey bubbles) and site#5 (black bubbles). Each bubble represents data 
determined from different times of the day. The bubble size represents the fraction (in 
percent) of HDVs with respect to the total. The open circles on the right side represent 
the size of the bubbles and the correspondent percentage of HDVs.  

 

For the data of July 29 at site 6, points with higher percentage of HDVs lay above the 

least square regression line, which reflects the fact that HDVs that are typically diesel-

powered might dominate the emissions of soot. This is also observed on July 26, 

although it is not as evident; possible reasons might be other confounding factors such 

as the different fraction of diesel vehicles from near-by traffic (which is unknown), 

different soot backgrounds, driving conditions, vehicle model years and/or 

meteorological conditions.  
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2.3.2 Mixing state of soot particles 

We classify 3,028 individual soot particles into four categories as discussed earlier. 

Figure 2-5 (a-d) shows the four categories a) embedded soot, b) partly-coated c) bare 

soot and d) soot with inclusions. Figure 2-5 (e) shows the distribution of the four 

categories of soot at the different sites. On average, bare soot particles are the most 

abundant (~72%), followed by partly-coated (~22%) and soot inclusions (~5.5%) with a 

negligible fraction (~0.5%) of embedded soot.  

 

 

Figure 2-5: On the top panel, coating and mixing of soot particles: a) embedded (the 
residue of an evaporated coating is also visible); b) partly-coated; c) bare and d) soot 
inclusions. Bottom panel: average fractions of four categories of soot at 6 on-road sites.  
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We find no significant correlation between mixing state of soot and fraction of HDVs or 

diesel vehicles for individual samples. On average, the highest fraction (31%) of partly-

coated soot is observed at site 2, which had the highest number of HDVs (19%), 

suggesting that HDVs emissions might lead to larger coating on soot particles. 

However, the fraction of partly coated soot can include also particles transported from 

nearby freeways and from the surroundings. 

 

2.3.3 Monomer size distribution of soot 

The size of the soot monomers is an important parameter as the Df depends on the 

average monomer diameter (dp) for the aggregate as evident from equation 1. For 

example, Wentzel et al. (2003) performed a Transmission Electron Microscopy (TEM) 

analysis and found an average dp of 22.6± 6 nm for soot particles emitted from a diesel 

engine and a Df in the range of 1.70±0.13. Whereas Chakrabarty et al. (2006)  

conducted an SEM analysis of particles emitted from spark ignition engines during a 

dynamometer study and found a bi-modal size distribution of dp (20-24 nm and 54-60 

nm for the two modes, respectively) for more aggressive driving conditions. Adachi et 

al. (2007) conducted a TEM analysis of traffic samples in Arizona and found dp in the 

range of 26-44 nm.  

Distribution of dp can be influenced by engine load and speed, combustion temperature, 

and residence time. Zhu et al. (2005) investigated the dp distribution for a 1.7-L light-

duty diesel engine at various engine conditions. They found that dp decreases with 

increasing exhaust temperature, proportionally to the combustion temperature in the 

cylinders. The authors suggested that particle oxidation at higher temperatures is mainly 

responsible for the decrease in dp. They also found a broader size range (10-60 nm) at 

idling conditions (19.4-32.5 nm). We find broad as well as narrow dp distributions for 

individual aggregates; the mean dp for our samples ranges from 27 to 44 nm. On 

average 10-15 monomers are measured per soot aggregate and 3364 individual soot 

particles are used to estimate the size distribution of monomers. The mode ranges from 
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31 to 34 nm and the monomer distributions in most of the sites have more than one 

mode. However, we do not observe any clear association between dp and on-road 

driving conditions (i.e.; the vehicle specific power).   

 

2.3.4 Shape descriptors of soot 

Figure 2-6 depicts the correlation between aspect ratio, circularity and roundness with 

DAeq. Vertical error bars represent the standard error of circularity, roundness and aspect 

ratio. Horizontal errors bars represent the standard error of the area equivalent diameter. 

The standard error is the standard deviation of the mean (i.e. the standard deviation 

divided by the square root of the total number of particles used for each point of the 

graphs). Aspect ratio decreases with DAeq up to 165 nm and increases with increasing 

DAeq after 165 nm. Similarly, circularity and roundness first increase with DAeq up to 

about 165 nm DAeq, and then they visibly decrease with increasing DAeq. A decreasing 

trend of roundness and increasing trend of aspect ratio with increasing DAeq as seen in 

the Figure 2-6, suggest that particles with higher DAeq are more elongated. The overall 

coefficients of determination (R2) are 0.26, 0.42 and 0.45 for aspect ratio, circularity and 

roundness respectively. The decreasing trends of circularity and roundness with 

increasing DAeq are in agreement with previous study (Chakrabarty et al., 2006).   

However, the correlation improves (R2 = 0.37, 0.59 and 0.47 for aspect ratio, circularity 

and roundness, respectively) after the “break-point” (for particles larger than 165 nm for 

circularity, 150 nm for roundness and 175 nm for aspect ratio). This “break-point” can 

be attributed to different mechanisms of soot formation (Virtanen et al., 2004). 

Monomer cluster aggregation is dominant at the beginning of the coagulation process 

resulting in a compact cluster. Later the cluster can become more branched out when 

aggregation is led by cluster-cluster agglomeration. Smaller particles (<100 nm) can 

have compact cluster-like structures whereas larger particles (~200 nm) can be more 

open as they might be formed during cluster-cluster agglomeration (Virtanen et al., 

2004).   
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Figure 2-6: Correlations between different shape descriptors and area equivalent 
diameter. Average a) aspect ratio; b) circularity and c) roundness of an ensemble of soot 
particles, each point represents the average value for each filter sample collected (total 
28 samples) at 6 sites. Each sampling site is represented by a different color.  

 

2.3.5 Vehicle specific power 

We use VSP as discussed earlier, as a surrogate for driving/engine load conditions to 

investigate the effect on soot morphology. Various previous studies have been 

conducted to test the effects of engine load and speed on the fractal dimension (Df) in 

laboratory settings and simulated on-road driving conditions. These studies suggest that  

Df decreases with increasing engine load (Virtanen et al., 2004). Fuel/air equivalence 

ratio is higher when engine load increases, and this condition favors soot monomers 

formation. Initially, a compact cluster is formed with high Df close to a value of 3 by a 
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monomer-cluster aggregation process. Later, agglomeration is dominated by cluster-

cluster agglomeration resulting in lower Df close to a value of 1.8-2 (Meakin, 1984a). 

Virtanen et al. (2004) found dense cluster-like structures for smaller particles (<100 nm) 

and more open structures for larger particles (200 nm). Also Df of diesel soot with 

diameters between 55 and 260 nm, has been found to decrease with increasing engine 

load (Skillas et al., 1998); their studies suggest that at higher engine load cluster-cluster 

aggregation dominates over monomer-cluster aggregation processes.  

 

Figure 2-7: Relation between fractal dimension Df and vehicle specific power (VSP) for 
all the soot particles characterized in this study and for different days and sampling 
sites. Sampling sites are color-coded and the size of the bubble represents the % of 
HDVs.  

 

In Figure 2-7 we plot the ensemble Df estimated from each sample versus the mean of 

the VSP data during the correspondent sampling period. The color of the points 

indicates different sites, while the size of the bubbles corresponds to the percentage of 

HDVs. The largest and smallest sizes of the bubbles correspond to 26% and 0% of 

HDVs, respectively. Horizontal error bars reflect the standard errors in VSP data and 

vertical error bars are the standard errors in the slope of the power fit of the log-log 

plots of the number of monomers versus Lmax/dp. Ensemble Df significantly and 

positively correlates with VSP. The slope of the linear regression of Df vs. VSP is 
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different for each day, but overall the Df increases with increasing VSP (R2=0.58, 

p=2.8×10-6). Slope and intercept are calculated using a modified least squares linear 

regression fit as both VSP and Df have large uncertainties (traditional least squares fits 

assume no, or negligible error on the independent variable, as the methods operates on 

minimizing only the sum of the square differences of the dependent variable from the 

predicted line). Considering both VSP and Df as independent variables one at a time 

(meaning flipping VSP vs. Df or Df vs. VSP), yields two slopes ݉௏ௌ௉  and ݉஽௙  and 

intercepts. In the case of large and comparable uncertainties in both x and y variables, 

the geometric mean of the slope-1 with the inverse of slope-2 is a good estimator of the 

slope (Norman and Draper, 1998). However, if one variable has more uncertainties than 

other (here σVSP > σDf) then a weighted ratio r can be used to estimate modified slope 

and intercept (Mazzoleni et al., 2004). The ratio r can be expressed as ݎ ൌ
〈ఙವ೑〉/〈஽೑〉

〈ఙೇೄು〉/〈௏ௌ௉〉
 

where 〈 〉 indicates the arithmetic mean, and can be used to estimate the modified 

slope as a weighted geometric mean 	݉ ൌ ቀ݉஽௙
௥ ൈ ଵ

௠ೇೄು
ቁ
ሾଵ/ሺଵା௥ሻሿ

such that ܦ௙ ൌ ݉ ∙

ܸܵܲ ൅ ܿ . The intercept c is calculated as ܿ ൌ ሺ〈ܦ௙〉 െ ݉ ൈ 〈ܸܵܲ〉). The error in the 

slope and intercept represent the half ranges (i.e., [maximum-minimum]/2) of slopes 

and intercepts using the two fits of VSP vs. Df and Df vs. VSP. 

Local environmental conditions, such as wind, temperature and relative humidity (Table 

2-2) and various fractions of HDVs at different sites and days might be partially 

responsible for the scatter in the data. These findings are different from the few studies 

mentioned earlier where it was found that the Df decreases with increasing engine load 

(Park et al., 2003; Skillas et al., 1998; Virtanen et al., 2004). 

Our findings are also different from a few studies that suggested weak or no dependence 

of Df on the engine load/speed (Neer and Koylu, 2006; Zhu et al., 2005). However, our 

results are in agreement with findings from other controlled studies (Lapuerta et al., 

2009; Olfert et al., 2007). Lapuerta et al. (2009) studied the morphology of soot 

particles by controlling the engine parameters independently. They found a statistically 
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significant increase in Df of soot with increasing fuel/air ratio. This trend can be 

explained by two opposite effects. Soot concentration increases with increasing fuel/air 

ratio leading to less ballistic collisions between agglomerates and resulting in a decrease 

of the Df. On the other side, the increase in fuel/air ratio results in an increase in thermal 

energy in the exhaust, which increases the probability for thermal restructuring of the 

agglomerates. The authors suggested that the later effect dominates in the conditions of 

their study, leading to an overall increase in Df with increasing fuel/air ratio (Lapuerta et 

al., 2009). Similar trends were qualitatively observed by Olfert et al. (2007). 

Additionally, an increase in VSP corresponds to higher fuel/air equivalence ratio or in 

other words, at higher VSP soot particles are produced in fuel-rich conditions.Cross et 

al. (2010) found that soot mass fraction was 0.74 at fuel equivalence ratio of 2, while it 

was lower (0.32) at higher fuel equivalence ratio (5.0). Fuel-rich conditions result in 

incomplete combustion, producing more condensable organics (aliphatics and PAH) 

within the flame that consequently coat the soot core. This would result in more void-

filling and might facilitate the collapse of the soot particle structure to a more 

compacted shape; this might be responsible for the increase in Df with increasing VSP. 

Sample collection condition can also influence Df as soot collected under cold and 

diluted condition can have higher Df compared to those collected from hot and 

undiluted conditions (Lapuerta et al., 2009). 

 

2.3.6 Vehicle model year 

Next, we investigate the dependence of soot morphology with vehicle model year. 

Vehicle age is calculated considering 2010 and newer models as of zero age. The 

vehicles that passed by during the sampling periods are divided into three groups: (1) 

vehicle age of 0 to 5 years; (2) 5 to 15 years and (3) older than 15 years. Df ranges from 

1.52 to 1.94, and is divided into five groups from 1.5 to 2.0 with increments of 0.1. In 

Figure 2-8 we show the summary of the binned data. Df increases with increasing 

fraction of vehicles older than 15 years (in red) while for vehicle age groups of 0-5 
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years (in black) and 5-15 years (in blue)  Df does not show any evident correlation with 

the age fractions. This indicates that the morphology of soot might not have a strong 

dependence on newer vehicle technologies, but might be affected by older technology 

such as for vehicles older than 15 years.  

 

Figure 2-8: Relation between fractal dimension and vehicle age. Vehicle age is divided 
into three groups, 0-5 years, 5-10 years and older than 15 years. Fractal dimension is 
divided into five groups from 1.5 to 2.0, with 0.1 increments. 

 
A previous on-road study of vehicular particulate matter emision factors showed that for 

vehicles built before 1996 the particluate matter emission factors increase steadily with 

increasing vehicle age (Kuhns et al., 2004). We speculate that the increasing trend of Df 

with increasing fraction of vehicles older than 15  years might be due to the fact that 

older vehicles emit more particles and other condensable material (e.g.; oil and 

uncombusted fuel), conditions that facilitate the particle collision, coagulation and void 

filling, resulting in higher Df. This seems to be consistent also with the increase of Df 

with VSP.  
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2.4 Conclusions 

Our results have significant implications for assessing the impact of the morphology of 

soot emitted by vehicles on human health, environment and climate. However our 

results are applicable to the conditions we measure and can differ from situation where 

other fuels are used (e.g.; different regions, or different seasons). Freshly generated soot 

particles from vehicular emissions can impact passengers while travelling on freeways, 

as well as humans living in downwind areas. Soot with lower Df tends to deposit in the 

pulmonary region of adults more efficiently than soot with higher Df. However, infants 

are more vulnerable to proximal deposition of low Df soot (Broday and Rosenzweig, 

2011). Therefore, quantification of Df for different traffic and driving conditions is 

necessary to understand deposition patterns. In addition, optical properties of soot 

depend on morphology and mixing having significant effect on radiative properties 

affecting climate. Both scattering and absorption by soot particles can be influenced as 

soot morphology evolves from low to high Df (Liu et al., 2008) while mixing can 

enhance both scattering and absorption.  

Morphology and mixing state of soot particles can be highly variable depending on the 

combustion source and operating conditions and the aging processes and time. 

Quantifying the complex soot morphology and mixing state is necessary to understand 

the effects of soot emissions from vehicles at the initial stage of the soot life cycle. Our 

analysis provides quantitative parameters such as morphological descriptors, fractal 

dimension and mixing classification. We show that freshly emitted soot is mostly very 

thinly coated with a substantial fraction of partly coated soot (~22%). We also show that 

driving conditions and vehicle age (for vehicles older than 15 years) are quantitatively 

associated with soot fractal dimension. This analysis can provide guidance to numerical 

models such as particle-resolved mixing state models (Riemer et al., 2009) to account 

for, and better understand, vehicular emissions and soot evolution since its emission. 
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3. Morphology and Mixing State of Freshly 

Emitted Wildfire Carbonaceous Particles2 
 

Biomass burning is one of the largest sources of carbonaceous aerosol in the 

atmosphere, significantly affecting Earth’s radiation budget and climate. Tar balls, 

abundant in biomass burning smoke, absorb sunlight and have highly variable optical 

properties, typically not accounted for in climate models. We analyze single biomass 

burning particles from the Las Conchas fire (New Mexico, 2011) using electron 

microscopy. We show that the relative abundance of tar balls (80%) is 10 times greater 

than soot particles (8%). We also report two distinct types of tar balls; one less oxidized 

than the other. Furthermore, the mixing of soot particles with other material affects their 

optical, chemical and physical properties. We quantify the morphology of soot particles 

and classify them into four categories: ~50% are embedded (heavily-coated), ~34% are 

partly-coated, ~12% have inclusions, and ~ 4% are bare. Inclusion of these observations 

should improve climate model performances.  

 

3.1 Introduction 

Biomass burning (BB) emissions significantly impact radiative forcing of climate at 

regional and global scales (Ramanathan and Carmichael, 2008). Global annual 

emissions of black carbon (BC) and organic carbon (OC) aerosols are estimated as ~8 

Tg yr–1 and 33.9 Tg yr–1, respectively, and the contributions from open burning are 

estimated as 42% for BC, and 74% for OC (Bond et al., 2004). However, current 

estimates of BB emissions are highly uncertain (a factor of 3 to 5 for individual aerosol 

and gaseous species) (Bond et al., 2013). Additionally, the emission of BB 

carbonaceous aerosols could increase, as future global and regional warming 
                                                            
2 Copyright © (2013) Nature publishing group. The material contained in this chapter was previously 
published in the Nature Communications journal: Swarup China, Claudio Mazzoleni, Kyle Gorkowski, 
Allison C. Aiken, Manvendra K. Dubey (2013). See Appendix A.2 for documentation of permission to 
republish this material. 
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accentuate favorable conditions for wildfire activities (Westerling et al., 2006). A recent 

study shows that the radiative forcing from BB can vary non-linearly with the 

concentration of co-emitted trace gases and aerosols (Mao et al., 2013). BB aerosol is 

estimated to have a highly uncertain net positive direct radiative forcing (e.g.; 0.03 ± 

0.12 Wm-2 in (IPCC, 2007; Myhre et al., 2012)). Recently Bond et al. (2013) estimated 

the direct radiative forcing from the total BC burden as +0.71 W m-2 (with 90% 

uncertainty bounds from +0.08 W m-2 to 1.27 W m-2). They also estimated the 

contributions from open burning as +0.20W m-2 (with 90% uncertainty bounds from -

0.50 to +1.08 W m-2). The uncertainty is due to many factors including the balance 

between a large positive forcing by BC and a large negative forcing by OC.  

Mixing state and composition of the aerosols can strongly influence the balance of 

radiative forcing by BC and OC. Models estimate an enhancement of BC forcing up to a 

factor of 2.9 when BC is internally mixed with other aerosols, compared to externally 

mixed scenarios (Jacobson, 2001). Internal mixing of BC emitted from BB might 

enhance absorption by 70%, with OC coatings playing a key role (Lack et al., 2012). In 

contrast, a recent study on urban plumes, suggests that the aerosol absorption 

enhancement for mixed BC might have been overestimated in models (Cappa et al., 

2012). It is unclear how these findings might apply to other BC sources including BB. 

Following the contrasting results of these and similar studies, there is an intense debate 

about the issue of absorption enhancement, the appropriateness of scaling point 

measurements up to scales relevant to global climate models, and conversely, the ability 

of models to correctly capture the enhancement in different environments (Cappa et al., 

2013; Cappa et al., 2012; Jacobson, 2013). To add to the debate, recently there has been 

a renewed discussion about what the term “BC” really means (Buseck et al., 2012; 

Petzold et al., 2013).  In addition to the BC mixing state issue, the optical and physical 

properties of tar balls (TBs) that constitute a large fraction of the total BB aerosols, are 

highly uncertain (Alexander et al., 2008; Chakrabarty et al., 2010; Reid et al., 2005). 

Electron microscopy has been used widely to investigate BB particles size, morphology, 

chemical composition and mixing state. These parameters can vary largely depending 
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on aerosol sources, formation temperature, transport, condensation and evaporation of 

primary and secondary gases (Hand et al., 2005; Li, 2003; Pósfai, 2004; Pósfai et al., 

2003). 

In this study, we report a detailed analysis of a large number of single BB particles from 

the Las Conchas fire. We discuss coating and oxidation of TBs and morphological 

properties of aggregates of carbonaceous nano-spheres and their mixing with other 

materials. We refer to aggregates of carbonaceous nano-spheres particles as soot. As we 

analyze particles only from BB combustion, we consider soot to well represent BC in 

BB smoke. As described in the method section, we used a thermodenuder to remove 

most of the volatile compounds from the BB aerosols, and in the following sections we 

describe the differences in the properties of ambient versus thermodenuded particles to 

understand coating effects. We report the existence of two distinct types of TBs, which 

differ in their degree of oxidation and coating. We also classify soot particles based on 

their coating and morphology and discuss their properties. Aerosol from BB is still 

poorly characterized and these findings should improve our understanding of 

atmospheric processing of BB aerosol and their effects on climate.  

 

3.2 Experimental section and methods 

3.2.1 Aerosol sampling 

The Las Conchas wildfire started on June 26, 2011 in northern New Mexico, USA and 

burned an area of 245 square miles. This was the second largest wildfire in New Mexico 

state history and the largest at the time. The particles were collected during the 

smoldering phase at a distance of ~25 km from the emission location (~1-2 hours aged). 

Aerosol samples were collected on nucleopore filters (100 nm pores) at the Physics 

Building in Los Alamos National Laboratory during the third week of the wildfire. A 

thermodenuder (University of Northwest, Switzerland) was used to remove volatile 

compounds at temperatures up to 200˚C, leaving behind refractory soot and low 

volatility compounds. We note that even at 200C many non-refractory organic material 
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and other inorganic coatings may still remain (Cappa et al., 2013). Two sample lines 

were used for collecting ambient and denuded particles with automated switching 

occurring at 5 minutes intervals. Two sets of ambient and denuded samples were 

collected on July 12th; the first set (ambient-1 and denuded-1) was collected from 13:00 

to 17:20 local time, and the second set (ambient-2 and denuded-2), was collected from 

17:30 to 18:00. The denuding system was originally set-up also to study the optical 

properties of the aerosol. To study the changes in optical properties vs. the denuding 

temperature, the temperature during the sample-1 period was ramping from 100˚C to 

200˚C with a mean time-weighted temperature of 152˚C. The analysis and discussion of 

the optical properties of the aerosols is beyond the scope of this work, as we 

intentionally focus on the morphological properties. However, to accumulate enough 

samples for electron microscopy, aerosol was collected during the entire period and we 

cannot separate particles that underwent different denuding temperatures, although we 

can still obtain useful information on a statistical basis. On the contrary, for the 

denuded-2 (D-2) sample, the denuder temperature was kept constant at 200˚C.  

 

3.2.2 Microscopy analysis 

The individual aerosol particles were investigated using a field-emission scanning 

electron microscope (FE-SEM, Hitachi S-4700) and energy dispersive X-ray 

spectroscopy (EDS) to distinguish different carbonaceous particles and their shape, size, 

elemental composition and mixing state. We used gray scale intensity to classify 

“electronically” dark and bright tar balls (TBs). Figure 3-2 shows the histogram of the 

gray scale intensity. The distribution of gray scale intensities ranged from 0 to 256; a 

threshold of 120 was selected after analyzing the distribution. TBs with gray scale 

intensity below 120 were categorized as dark and above 120 were categorized as bright. 

Gray scale intensity for dark particles peaks between 60 and 70, while for bright 

particles peaks between 250 and 256. 
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Semi-quantitative EDS analysis was conducted on 25 dark TBs and 25 bright TBs of 

comparable size. First, the dark and bright TBs were selected using a 1kV accelerating 

voltage at 2-3 mm working distances; then the settings of the microscope were changed 

to 10 kV and 12 mm working distance to enable the EDS analysis. 

 

3.2.3 Fractal dimension analysis of soot particles 

The total number of monomers (N) in a fractal aggregate is estimated from the projected 

area of the aggregate (Aa) and the mean projected area of the monomers (Ap) in the 

aggregate, as follows (Köylü et al., 1995; Oh and Sorensen, 1997; Samson et al., 1987):    

                                                            ܰ ൌ ݇௔ ൬
஺ೌ
஺೛
൰
ఈ

                                                      (1) 

Where α is an empirical projected area exponent and ka is a constant, typically 

approximated with a value close to one. To calculate N, we first estimate the overlap 

parameter, δ from the two-dimensional images; δ is defined as the ratio of the monomer 

diameter to the distance between the centers of two touching monomers (Oh and 

Sorensen, 1997). We then select α and ka based on a relationship developed by Oh and 

Sorensen (1997), as discuss later. A caveat of this approach is that an accurate 

estimation of δ from 2-dimensional projected images is difficult (Oh and Sorensen, 

1997). The estimated values of δ in our samples ranged from 1 (point contact) to 1.7 

with median and mode of 1.5. We used α=1.13 and ka=1.50. In Oh and Sorensen (1997), 

the values of α and ka for a given δ are based on the assumption that the soot particles 

are formed via diffusion-limited cluster aggregation (DLCA). However, most of the 

soot particles analyzed in our samples are coated by organic or inorganic material, and 

the effect of coating might limit the validity of this approach. We therefore performed a 

sensitivity analysis to investigate the effects that different overlap parameters might 

have on the calculation of N, the fractal dimension Df, and the prefactor kg. Table 3-1 

reports the results of this analysis for different overlap parameters (δ=1 to 1.5) and for α 

and ka values most commonly used in literature of 1.09 and 1.15 (or 1), respectively. 
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Images of individual soot particles were used for the calculation of the fractal 

dimension using equation 2 

                                                 ܰ ൌ ݇௅ ൬
௅೘ೌೣ

ௗ೛
൰
஽೑

                                                            (2) 

Where we used the maximum length of the aggregate as an approximation for 2Rg into 

equation 1 as follows: Lmax/2Rg = 1.50±0.05 (Brasil et al., 1999).        

Table 3-1: Sensitivity analysis of the effect of different input parameters on number of 
monomers, fractal dimension and prefactor for soot particles.  

Ambient-1 Denuded-1 
δ α ko Df kg N Df kg N 

1 1.07 1.18 
1.75 

(0.04) 
2.48 

(1.13) 
277 

(502) 
1.45 

(0.06) 
3.74 

(1.15) 
83 

(85) 

1.5 1.13 1.50 
1.85 

(0.05) 
3.09 

(1.13) 
498 

(995) 
1.53 

(0.06) 
5.08 

(1.16) 
135 

(155) 

1.7 1.145 1.625 
1.88 

(0.04) 
3.66 

(1.14) 
589 

(1205) 
1.56 

(0.07) 
5.63 

(1.17) 
164 

(189) 

 
1.09 1.15 

1.81 
(0.04) 

2.37 
(1.13) 

303 
(567) 

1.46 
(0.06) 

3.76 
(1.15) 

85 
(88) 

 
1.09 1.0 

1.81 
(0.04) 

2.10 
(1.12) 

263 
(493) 

1.46 
(0.06) 

3.20 
(1.16) 

74 
(76) 

 

Values of Df, kg and N for different overlap parameters (δ=1 to 1.7) and for α and ka values most 
commonly used in literature of 1.09 and 1.15 (or 1.0), respectively. The numbers in parenthesis 
represent standard errors for Df and kg and standard deviations for N. 

 
Particles categorized as “soot with inclusions” were not used for the calculation of Df as 

the projected area of the whole particle (including the inclusion) would bias the 

calculation of N and therefore Df. For the other three types of soot (“bare”, “partly-

coated” and “embedded”) we used only the particles for which we were able to clearly 

distinguish and measure the diameter of at least a couple of monomers. Only 

approximately 50% of all the images acquired for embedded soot particles were used 

for the calculation of Df. Note that the number of particles in the “bare soot” group is 

small, as only a small fraction of the total soot population was found to be bare (4%). In 
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general, the data are more scattered in sample-1 than in sample-2. This variability is 

probably due to the fact that the denuder was not kept at constant temperature during 

the collection of sample-1, resulting in the collection of particles with different degrees 

of denuding. 

 

3.3 Results and discussions 

3.3.1 Particle classification	

Based on morphology and elemental composition, we classified over 4200 particles into 

three categories: 1) TBs, 2) soot and 3) others particles. The classification is similar to 

that adopted by Adachi and Buseck (2011) except that we combined organic matter and 

irregularly shaped particles as dust and salt, in the “other” category. We also want to 

underline that the category “soot” includes soot particles that are coated by other 

material, as further discussed later. TBs are amorphous, spherical carbonaceous 

particles that show no crystallographic structure and normally are most abundant in 

slightly aged (minutes to hours) BB smoke (Pósfai, 2004). TBs are easily identified due 

to their spherical shape and resistance to electron beam damage (Li, 2003). EDS of our 

samples shows that TBs are mainly composed of C and O, and sometimes contain traces 

of K and S. It is believed that TBs are similar to high-molecular weight humic-like 

substances formed during gas to particle phase transitions, involving rapid 

polymerization of lignin products induced by OH radicals (Hand et al., 2005; Pósfai et 

al., 2004; Tivanski et al., 2007). In contrast, fresh soot exhibits a characteristic chain-

like morphology as agglomerates of small spherical monomers (Buseck et al., 2012). 

The soot particles investigated here are often mixed with other organic and inorganic 

material also emitted by fire (Hand et al., 2010). Ambient samples (denoted in this 

paper as A-1 and A-2) had an average of 80% TBs by number with an average of 8% 

soot and 12% of other particles. The fraction of TBs is similar to other studies (Hand et 

al., 2005; Pósfai et al., 2004; Pósfai et al., 2003) where fractions up to 90% have been 

reported; although, a lower fraction of TBs ( ~15%) have been found for relatively fresh 

samples (few minutes of aging) (Adachi and Buseck, 2011).   
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3.3.2 Identification of two kinds of TBs 

Using secondary electron (SE) imaging of individual particles at low accelarating 

voltage (1 kV) (Ivey, 2010), we identified two distinct kinds of TBs, “electronically” 

dark and bright (Figure 3-1a); whereas TBs appear indistinguishable at high 

accelerating voltage (10 kV) (Figure 3-1b).  

 

Figure 3-1: Identification of electronically dark and bright TBs (spherical particles). 
Field Emission Scanning Electron Microscopy (FE-SEM) micrographs of ambient 
particles collected from the Las Conchas fire. (a) Image at low working distance (3.4 
mm) and low accelerating voltage (1kV). (b) Image of the same particles, but at higher 
working distance (13 mm) and higher accelerating voltage (10kV). Electronically bright 
and dark TBs are evident at the low accelerating voltage, but not at the high accelerating 
voltage. The scale bars equal 1 m. 
 

We conjecture that the enhanced contrast at low accelerating voltages is due to different 

SE yields owing to various degree of oxidation at the particle’s surface. A similar SE 

contrast effect has been observed on zinc versus zinc oxide samples (Ivey, 2010). 

However, estimation of SE yields for individual TBs is complicated due to their 

complex and uncertain composition and mixing. In addtion to SE imaging we imaged 

the TBs in our samples using backscattered electrons (BSE)  and found no prominent 

contrast difference between the two types of TBs. Typically, detected SEs originate 

from very small escape depths (a few nanometers deep within the sample) much smaller 

than the dimensions of the particles, while BSE are detected even when generated from 
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relatively large depths (10s to 100s of nm), which are comparable to the particle size 

(Egerton, 2005). In other words, SEs are sensitive to the surface, while BSEs are 

sensitive to the bulk of the particle.  Tivanski et al. (2007) found a 40 nm thick 

oxygenated interface layer around the TBs after atmospheric processing. The fact that 

we found different contrasts in the SE images, but not in the BSE images, is consistent 

with the existence of a layer of different composition at the surface of the TBs. 

We classified “electronically” dark and bright TBs based on their gray scale intensity on 

the SE low accelerating voltage SEM images (Figure 3-2). We found that 

approximately 32% of the TBs are dark in ambient samples. Figure 3-4a and 4b show 

the size distributions of ambient TBs and denuded TBs, respectively. Dark and light 

gray lines represent the lognormal fit of dark and bright TBs, respectively. Dark TBs are 

larger in both ambient and denuded samples. The difference between the size of 

ambient-bright and denuded-bright TBs (61 nm) is larger than the difference between 

the size of ambient-dark and denuded-dark TBs (33 nm), implying that on average more 

material was removed by the denuder for bright TBs. This could indicate thicker coating 

and/or coating material having different volatility. 

 

Figure 3-2: Distribution of gray scale intensities and grouping of “electronically” dark 
and bright TBs.  
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Figure 3-3: Atomic oxygen content in bright and dark TBs.  

 

   

Figure 3-4: Size distribution of ambient and denuded bright and dark TBs.	 Size 
distribution and lognormal fits of: a) ambient particles (435 dark and 930 bright 
particles); b) denuded particles (415 dark and 1086 bright particles). The number of 
particles in each size bin is normalized by the bin width in logarithmic space and the 
mode of the distribution is normalized to one. The light gray lines represent bright TBs 
and the dark lines represent dark TBs. The difference between the count median 
diameter for ambient dark and denuded dark TBs is 33 nm (209-176 nm); whereas the 
difference between ambient bright and denuded bright TBs is 61 nm (173-112 nm).  
Dark TBs display smaller reduction in size on denuding, consistent with being more 
refractory. 
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Semi-quantitative EDS was conducted on 25 dark and 25 bright TBs of comparable 

size. Out of the 25 dark TBs, 18 showed higher average oxygen content (50 atomic %) 

than in bright TBs (35 atomic %) (Figure 3-3). The remaining 7 dark TBs showed 

similar oxygen content to the bright TBs possibly due to the presence of an insulating 

layer or due to the somewhat subjective segregation of each TBs group. Similarly, 

Tivanski et al. (2007) found that TBs consist of 55% atomic carbon and 45% atomic 

oxygen and as mentioned earlier, suggested the existence of an oxygenated layer on 

TBs. This analysis, together with the comparison of the size distribution of denuded vs. 

ambient TBs (dark TBs display smaller reduction in size upon denuding than bright TBs 

do), suggests that the dark TBs are more oxidized and possibly have a less volatile 

coating.  

 

3.3.3 Mixing state of soot particles	

Figure 3-5 shows an example of soot particles from the Las Conchas fire classified into 

four categories based on morphology and visual estimation of coating: a) embedded 

soot, where the particle is heavily coated (Adachi and Buseck, 2008) (potentially 

corresponding to a large optical absorption enhancement), but where some monomers 

are still evidently visible; b) partly-coated, where soot voids are filled by coating 

material, but the soot is not completely engulfed; c) bare soot, where monomers are 

easily distinguished and no considerable  coating is evident from the SEM image, 

although very thin coating might be present on the monomers (corresponding to no or 

little optical absorption enhancement); d) soot with inclusions, where soot is mixed 

with, but not uniformly coated by, other material or particles. Of the 1026 soot particles 

analyzed 50% were heavily-coated, 34% partly-coated, 4% bare and 12% with 

inclusions. We should caution that the count of embedded soot particles might be biased 

low because when the coating is very thick the monomers of the soot particle might not 

be distinguishable, and then the particle would not be classified as soot. 
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Figure 3-5: Mixing and classification of soot particles. FE-SEM images of four 
different categories of soot particles: a) embedded, b) partly-coated, c) bare and d) with 
inclusions. Approximately 50% of the ambient soot particles are embedded, 34% are 
partly-coated and 12% have inclusions. Only 4% of the particles are bare soot (not 
coated or very thinly coated).  

 
3.3.4 Morphology of ambient and denuded soot particles 

Soot particles are “fractal-like aggregates” and their ensemble morphology can be 

characterized by analyzing many individual aggregates using the following statistical 

scaling law (Adachi et al., 2007):                                        

                                          ܰ ൌ ݇௚ ൬
ଶோ೒
ௗ೛
൰
஽೑

                                                                    (3) 

where N is the number of monomers per aggregate; Rg is the radius of gyration of the 

aggregate; dp is the monomer diameter; kg is called fractal prefactor; and Df is the mass 

fractal dimension. For a given Df, kg represents the level of compactness, with a smaller 

a) b) 

c) d) 
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prefactor indicating lower packing (Lewis et al., 2009). Figure 3-6 shows an example of 

the estimation of the fractal dimension of soot particles for ambient-1 and denuded-1 

samples. The details of the calculation are provided in the method section. 

For completeness, we estimated three other morphological parameters: 1) aspect ratio, 

2) roundness, and 3) area equivalent diameter (DAeq) (Chakrabarty et al., 2006). In 

Table 3-2 we summarize all the morphological descriptors for ambient (A-1 and A-2) 

and corresponding denuded (D-1 and D-2) particles collected during two different time 

periods.  

Table 3-2: Morphological descriptors of soot particles 

Sample 
Sampling 

time 
Df kg N RN AR 

Lmax 
[nm] 

dp 
[nm] 

DAeq 
[nm] 

A-1 
13:03-
17:19 

1.85 3.09 498 0.59 1.71 1011 56 590 
(0.05) (1.13) (995) (0.20) (0.46) (709) (12) (344) 

D-1 
12:58-
17:24 

1.53 5.02 135 0.57 1.72 508 45 317 
(0.07) (1.2) (155) (0.16) (0.41) (244) (9) (129) 

A-2 
17:35-
18:00 

1.92 2.20 437 0.61 1.65 766 42 438 
(0.06) (1.18) (846) (0.17) (0.40) (610) (11) (301) 

D-2 
17:30-
17:55 

1.74 3.60 132 0.55 1.76 409 37 264 
(0.05) (1.13) (116) (0.17) (0.43) (242) (10) (129) 

 

Df: Mass fractal dimension, kg: prefactor, N: average number of monomers, RN: roundness, AR: 
aspect ratio, Lmax: maximum length, dp: primary particle diameter, DAeq: and area equivalent 
diameter. Note that the two-dimensional morphological parameters (RN and AR) are the mean 
values of all the four types of soot particles. ΔDf (Df-ambient-Df-denuded) is 0.32±0.09 and 0.18±0.08 
for sample-1 and sample-2, respectively. In parenthesis: standard errors for Df and kg calculated 
from the uncertainty in the mean‐square fit considering the uncertainty in N and dp, and standard 
deviations for the other parameters. 
 

As expected, for both samples, Df is larger for ambient than denuded particles. Different 

organic and inorganic substances can condense on soot particles (Pósfai et al., 2003); 

this coating is partially removed during the denuding process, resulting in smaller 

particles with less-filled voids and therefore  lower Df. The conceptual model is that the 

Df of the denuded soot particles represents the morphology of the soot particles as they 

are stripped of most of the volatile coating. What is left after denuding might or might 
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not represent the nascent soot immediately after formation depending on the 

atmospheric processing. In fact, the coating material might actually modify the 

morphology of the soot core by rearranging the monomers position before the aerosol 

reaches the sampling location. The reduction in particle size after denuding is evident 

by noting that DAeq decreased by 46% and 40% for sample-1 and sample-2, 

respectively. The values of dp (42 nm - 56 nm) are within the range (20 nm - 60 nm) of 

previous studies (Li, 2003) and decreased by up to 20% after denuding. The higher 

maximum length, Lmax and the higher dp in the ambient samples result in higher 

estimates of N and Df. Filling of the voids by condensed material on ambient particles 

results in more compact (higher roundness) particles (Table 3-2). 

 

Figure 3-6: Fractal dimension of soot particles. Fractal dimension of ambient-1 (in 
black) and denuded-1 (in gray) soot particles. The fractal dimension of ambient and 
denuded soot are 1.85±0.05 (n=176) and 1.53±0.07 (n=209), respectively. Standard 
errors were calculated from the uncertainty in the mean‐square fit considering the 
uncertainty in N and dp. The insets provide example of ambient-1 and denuded-1 soot 
particles. The scale bars equal 500 nm. 
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Df reflects the history of a fractal-like particle and is controlled by  source, combustion 

conditions, and aging processes (Adachi et al., 2007). Densely packed or compacted 

soot particles have higher Df  than chain-like branched clusters or open  structures (Liu 

et al., 2008). Compaction of aggregates due to coating contributes to changes in particle 

size and Df. In a previous laboratory study, the mass-mobility exponent, which is 

equivalent to Df, of coated soot was found to be higher than for denuded and nascent 

soot (Cross et al., 2010). The level of compaction depends on the coating material due 

to surface tension forces, discharge of electrostatic forces (Cross et al., 2010) and/or 

capillary forces acting on aggregate chains during the condensation‐evaporation cycle 

(Lewis et al., 2009).  

In our study, the Df of three soot types were investigated separately: highest Df was 

found for embedded-soot followed by partly-coated and bare soot; although denuded 

soot did not show a similar pattern, possibly due to restructuring of the soot particles by 

the denuding process. The changes in Df for embedded particles (ΔDf[Embedded] = Df -

ambient - Df -denuded) are statistically significant for both samples, ΔDf [Embedded]=0.42±0.17 

(p =0.01, paired Student’s t-test) and ΔDf [Embedded]=0.34±0.16 (p =0.03, paired Student’s 

t-test) for sample-1 and sample-2, respectively. It is interesting to note that the 

difference between Df for all ambient and denuded soot (excluding soot with inclusions) 

is 0.32±0.09 and 0.18±0.08 for sample-1 and sample-2, respectively. This suggests that 

in general particles were more coated in sample-1 than sample-2. The changes in 

morphology of the mixed particle upon denuding are also confirmed by the differences 

in DAeq and Lmax in ambient and denuded samples. Finally, we note that for denuded-1 

soot, Df (1.53) is quite smaller than for denuded-2 particles (1.78) even though the 

average denuder temperature was higher in the denuded-2 sample. This suggests that 

the structure of the nascent soot in sample-2 was more compact than in sample-1.  
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3.4 Conclusions 

Our analysis of the Las Conchas fire shows that approximately 32% of the TBs were 

highly oxidized and 50% of the soot particles were heavily coated. Increased oxidation 

of organic aerosol has been found to correlate with enhanced ice nucleation efficiency 

(Baustian et al., 2012). Similarly, the existence of different oxidation states in TBs 

could influence cloud condensation nuclei activity, ice nucleation and TB scavenging; 

this should be the subject of further study to assess the indirect effects of TBs on 

climate. Furthermore, the oxidation state of atmospheric particles affects their optical 

properties (Cappa et al., 2011; George and Abbatt, 2010) in terms of their effective 

index of refraction and size, therefore impacting their direct effect on climate. 

Typically, TBs and the variability in their optical properties are not accounted for in 

climate models. However, recently general circulation climate models have started 

including simplified schemes to account for soot mixing (Aquila et al., 2011; Bauer et 

al., 2008; Jacobson, 2001; Stier et al., 2005) and for TBs (Jacobson, 2012; Jacobson, 

2001) as well on regional scales (Vogel et al., 2009). The refractive index values of TBs 

vary greatly in the literature and probably  differ substantially for various conditions 

(e.g.; environmental conditions, location, aging, BB fuel type) (Alexander et al., 2008; 

Chakrabarty et al., 2010). Our analysis shows that the properties of TBs might be highly 

variable even within the same fire event. Furthermore, aerosol radiative forcing strongly 

depends on the description of coating and mixing state of BB particles within the 

models (Jacobson, 2001; Myhre, 2009). Our measurements of soot mixing state 

provides quantitative observational guidance on the applicability and validity of 

particle-resolved mixing state models (Riemer et al., 2009). These details  are crucial to 

assess the accuracy of climate models in describing the contribution of BB aerosol 

radiative forcing (Lack and Cappa, 2010) and their direct and indirect climate effects. 

Finally, the abundance of embedded soot particles can be used to understand the 

enhancement potential of (or lack thereof) absorption and scattering of internally mixed 

soot particles (Cappa et al., 2012).  
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4. Evolution of Soot Morphology and          
Mixing State in the Atmosphere3 

 

The evolution of morphology and mixing state of soot particles during long-range 

transport is still not well characterized. We collected free tropospheric aerosols at the 

Pico Mountain Observatory, located in the Azores Islands (Portugal) in the North 

Atlantic Ocean. Using electron microscopy, we analyze the morphology and mixing 

state of individual soot particles that have been long–range transported over the ocean 

during two specific events with different plume age. We find that the morphology of 

aged soot particles is overall much more compacted than freshly emitted soot. We use 

discrete dipole approximation to perform numerical calculations of the soot optical 

properties and show that compaction results in increased single scattering albedo. 

Finally, we provide a brief summary and comparison of morphology and mixing state of 

soot particles collected from different geographical locations and environmental 

conditions. We find that soot processing in urban atmospheres results in a complex 

mixture of coated and uncoated particles with a variety of morphologies and mixing 

states, while soot particles transported over long ranges are most compacted. 

 

4.1 Introduction 

Soot particles or ns-soot (nanosphere soot) (Buseck et al., 2014), often referred to as 

black carbon, are aggregates of carbonaceous monomers  produced from incomplete 

combustion such as fossil fuel and biomass burning. Soot particles strongly absorb sun-

light, directly impacting Earth’s radiation balance (Bond et al., 2013; Haywood and 

Ramaswamy, 1998). Soot particles also facilitate atmospheric heterogeneous reactions 

due to their large surface area (Nyeki and Colbeck, 2000; Zhang et al., 2008) and they 

can affect climate indirectly by acting as cloud condensation nuclei (CCN) and ice 

                                                            
3 Major portion of this chapter is based on material to be submitted, as China et al., (2014), Geophysical 
Research letters. 
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nuclei (Bond et al., 2013; Tritscher et al., 2011; Zhang et al., 2008). Soot warm the 

atmospheric layer where it is accumulated strengthening atmospheric stability and 

causing cloud droplet evaporation when within a cloud (Hansen et al., 1997) or 

potentially causing cloud thickening when above a cloud (Wilcox, 2012). Soot can also 

be transported over long distances such as to remote Arctic regions or high elevation 

Himalayan regions and be deposited by wet or dry deposition on snow, reducing its 

albedo and contributing to snow melt and regional and global warming (Hansen and 

Nazarenko, 2004; Ramanathan and Carmichael, 2008; Rosen et al., 1981). 

Freshly emitted soot particles are typically hydrophobic, and structured as open fractal-

like aggregates. During transport, soot aggregates undergo various aging processes such 

as coagulation, condensation and heterogeneous reactions resulting in chemical and 

morphological changes such as oxidation, mixing, coating, and shape restructuring. 

These changes affect the soot hygroscopicity, and its light scattering and absorption 

cross sections (Cross et al., 2010; Khalizov et al., 2009; Lack et al., 2012; Zhang et al., 

2008). The aging time scale of soot (i.e., the time required for fresh hydrophobic soot to 

be converted to hydrophilic soot) is an important parameter in global climate models. 

Hydrophilic particles can be removed by wet scavenging, affecting the global transport 

of soot. Models often assume a constant aging time scale with an exponential rate of 

1.15 days (Cooke et al., 2002). However, several studies consider both coagulation and 

condensation as aging process (Jacobson, 2001; Riemer et al., 2003) including chemical 

oxidation (Huang et al., 2013). Therefore, the aging rate and atmospheric life time of 

soot are still major sources of uncertainty in global climate models (Liu et al., 2011). 

The complex morphology (shape, size and internal structure) and mixing states (coating 

and mixing of other material) of soot significantly impacts its aging time scale as well 

as atmospheric life time, affecting its global burden and radiative forcing (Van Poppel 

et al., 2005). Studying the morphology of aged soot particles after long-range transport 

is therefore essential to understand their aging processes and to accurately model their 

properties.  
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In this study, we investigate the morphology and mixing state of soot particles 

transported over long-ranges in the free-troposphere and collected at Pico Mountain 

Observatory, located in the summit caldera of the Pico volcano in the Pico Island in the 

archipelago of the Azores, Portugal. We use scanning electron microscopy for single 

particle analysis. Here we present results from samples collected at the site during two 

events in July 2012, one being a transport with long recirculation time over the marine 

environment and relatively longer plume age (~15.7 days as estimated from retroplume 

simulations), compared to a second event of transport from North America and shorter 

plume age (~9.5 days). We investigate the morphology of individual soot particles 

based on their coating, shape and mixing state. We then study the implications of these 

findings on the optical properties of soot, by using numerical simulations based on 

discrete dipole approximation. 

 

4.2 Experimental section and methods 

4.2.1 Sampling site and measurements 

The Pico Mountain Observatory (PMO) is located in the summit caldera of the Pico 

Volcano (at 2225m asl) in the Azores, Portugal (38.47°N, 28.40°W). The mountaintop 

station is typically above the marine boundary layer (Honrath et al., 2004; Rémillard et 

al., 2012). The station receives air masses often from North America and sometimes 

from Africa and Europe and is an ideal site to study free-tropospheric aerosol 

transported over long distances across the Atlantic Ocean.  

The first event studied here (event-1) took place in July 06-07, 2012. The second event 

(event-2) took place in July 20-21, 2012. Retroplume analysis using the Lagrangian 

particle dispersion model FLEXPART (Owen and Honrath, 2009; Stohl et al., 2005) 

shows that in both periods the air masses reaching PMO were traveling from west to 

east. Figure 4-1 shows the horizontal and vertical transport pattern for two events. 

Figure 4-1 (a and b) show the transport pattern for event-1, July (06-07), 2012 and 

Figure 4-1(c and d) show the transport event-2, July (20-21), 2012. FLEXPART 
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retroplumes and emission inventories are combined to compute anthropogenic CO 

tracer concentrations. Average plume ages for the two events are calculated using the 

CO tracer concentrations. The average plume age of the event-1 was ~15.7 days and for 

event-2 was 9.5 days and the retroplume analysis shows a possible air recirculation over 

the Atlantic Ocean. For the first event air masses were mostly transported to PMO from 

the south-west Atlantic Ocean, while during the second event air masses reaching PMO 

were mostly transported from North America. Soot particles analyzed for event-1 are 

probably more aged compared to those in event-2 as the plume age of event-1 is 

relatively higher (~15.7 days)  compared to event-2 (~9.5 days).  

  

Figure 4-1: FLEXPART Retroplumes. Left panels (a and b) show the transport pattern 
for event-1, July (06-07), 2012 and right panels for event-2, July (20-21), 2012. Left 
panels (a and c) show the column-integrated horizontal transport from all height levels 
while right panels (b and d) show the vertical distribution of transport.  

 
Atmospheric particles were collected on nuclepore polycarbonate filters (100 nm pore 

size) using a custom-made sequential sampler (China et al., 2013). Particle morphology 

and mixing state are studied using two-dimensional images of individual particles with 

a) 

b) 

c) 

d) 
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a field emission scanning electron microscope (FE-SEM) (Hitachi S-4700) coupled with 

an energy dispersive X-ray spectrometer (EDS).  

In particular, this chapter discusses aged soot particles collected at PMO. At the end of 

this chapter, we provide a brief summary of the morphology and mixing states of soot 

particles collected from different geographical locations and environmental conditions. 

Samples from various geographical location includes, samples from Mexico City: in the 

center of the city and in the uplifted boundary layer captured on the top of the Pico de 

Tres Padres Mountain on the north edge of the city during the MILAGRO (Megacity 

Initiative: Local and Global Research Observations) field campaign (2006), samples 

from the Sacramento urban area and the Sierra Nevada foothills in California during the 

CARES (Carbonaceous Aerosols and Radiative Effects Study) campaign (2010) and 

samples from Detling, a village in UK, during the ClearfLo (Clean Air for London) 

campaign aimed at studying airmasses transported from London and affected by 

household biomass burning (2012). Samples from fresh vehicular emission (Ann Arbor, 

MI) and biomass burning emission (Las Conchas fire) (discussed in chapter 2 and 3 

respectively) also included in the comparison. 

 

4.2.2 Particle classification and soot mixing state 

This study focuses on soot particles; the first step is therefore that of identifying the soot 

particles within all the particles collected on the filters. We do that by classifying the 

particles into five general categories based on their morphologies and elemental 

composition: i) soot, ii) spherical particles, iii) near spherical particles, iv) mineral dust, 

and v) other irregularly shaped particles (Figure 4-2). Particles were classified based on 

their morphology and elemental composition using energy dispersive X-ray 

spectroscopy analysis. Note that from this classification we exclude particles smaller 

than 50 nm because the pore size of our filters is 100 nm resulting in reduced collection 

efficiency for smaller particles.   
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Figure 4-2 shows an example of different types of particles with various morphologies 

that were collected on the filters. Irregularly shaped particles can be salt particles, 

biological particles or other organic and mixed particles. On average ~27% and ~54% 

of the total number of particles imaged on the filters were soot particles for event-1 and 

event-2 respectively. Particle classification is based on particles in the size range of 50 

nm to 3000 nm. Elemental composition from EDS analysis shows that the soot particles 

are mostly composed of C and O and sometimes a fraction of S. Dust particles consist 

of mostly of Si, Al, O, C and minor fractions of Fe, Mg, S, K and Na. Figure 4-2 (e-I 

and e-ii) show rectangular crystalline particles with O, S and Ca as the dominant 

content and a minor fraction of C. Spherical particles are mostly composed of C and O. 

                           

     

Figure 4-2:  a) soot b) spherical c) near spherical d) dust and e-i) and e-ii) other 
irregularly shaped particles.  
 

Soot particles are identified from their unique aggregate nature made of carbonaceous 

monomers. In this classification, soot includes soot particles that are mixed with, or 

coated by other material. The caveat with this classification is that particles made of 

volatile material might partially evaporate in the vacuum conditions of the SEM 

chamber, skewing the number of soot particles toward larger fractions than actually 

present in the atmosphere. A second caveat, is that soot particle that are fully embedded 

e-ii) e-i) d) 

c) b) a) 
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into coating material might not be recognized as soot particles as SEM is a surface 

imaging technique; this artifact can actually result in an undercounting of the soot 

particles, especially those classified as embedded. However, the method still allows 

comparing the relative abundances for different events, assuming the volatility of others 

particles and the abundance of heavily coated particles is approximately the same. Then, 

the second step is that of examining the mixing state of soot particles by visually 

classifying the particles based on their coating and mixing. Soot particles are 

categorized into four groups: 1) embedded soot (Adachi and Buseck, 2008), where the 

particle is fully engulfed in the coating material; 2) partly coated soot, where the coating 

material is substatial but thiner than in embedded particles; 3) thinly coated soot, where 

coating on soot is minimal or missing (or bare soot); 4) soot with inclusions, where only 

a part of the soot particle is mixed with other material or the soot particle is only 

partially touching another particle (Figure 4-3). Details of this soot classification and its 

limitations are discussed  elsewhere (China et al., 2013). 

 

Figure 4-3: Four major types of soot particle mixing states: a) embedded; b) partly 
coated; c) thinly coated; and d) soot inclusion.  

 

a) b) 

c) d) 
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4.2.3 Soot morphology 

Soot particles are considered to be fractal-like aggregates, meaning that they exhibit 

self-similar structures over several length scales (Oh and Sorensen, 1997) and can be 

described using a mass fractal dimension (Df) (Mandelbrot, 1982). The ensemble 

method can be used to calculate the fractal dimension of freshly emitted soot particles 

from 2-D images (for particles with Df < 2) (Oh and Sorensen, 1997; Wentzel et al., 

2003). However, soot particles collected at PMO and discussed here are extremely aged 

and often highly compacted (with an expected Df larger than 2). Therefore, we did not 

use the commonly employed ensemble method to estimate the scaling law, we used 

instead the measurable projected area of the aggregate (Aa) and its maximum length 

(Lmax) (Lee and Kramer, 2004) in the following scaling law: 

௔ܣ                                            ൌ ݇ଶሺܮ௠௔௫ሻ
஽మ೑                                                         (1) 

In which we assume Aa to be proportional (in log-log space) to the particle mass. Here, 

the power law exponent, D2f  represents our estimate of the 2-D fractal dimension. We 

applied the above power relation using ensembles of soot particles to provide a measure 

of the fractal morphology of soot particles inclusive of eventual coating material that 

might fill the voids between monomers. 

The size of the soot particle, as estimated from 2D SEM images, is expressed in terms 

of the projected area equivalent diameter, DAeq that is defined as the diameter of the 

spherical particle of the same projected area as the particle under consideration. We use 

roundness and convexity to further quantify the compactness of soot particles. 

Roundness is defined as the ratio of the projected area of the particle to the area of a 

circle of diameter equal to Lmax. Convexity, or solidity, is the ratio of the projected area 

of the particle to the area of the convex hull polygon (smallest convex polygon that 

fully covers the particle’s projected area).  
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4.2.4 Optical properties of soot with different compaction 

We investigate how the optical properties (scattering and absorption cross sections, 

single scattering albedo, and asymmetry parameter) of soot particles change with three 

different levels of compaction (open chain-like soot, medium compaction, and very 

compacted shape, representing fresh, medium aged and very aged soot, respectively) as 

a function of wavelength. First we use a random walk aggregation algorithm to generate 

synthetic soot particles (Richard et al., 2011) that closely mimic typical particles found 

in our study (Figure 4-4). Note that we investigate here the effect of soot compaction on 

optical properties without considering coating. For fresh emission, we generate the soot 

particle to get a Df close to 1.80 which is typically used for fresh emission. We use an 

intermediate Df (between 2 and 2.5) to represent medium aged soot. We use the thinly 

coated or bare soot particles (represent very aged soot) to estimate the number of 

monomers and monomer sizes to generate the aggregates for numerical simulation.  

 

 

Figure 4-4: The synthetic particles represent fresh, medium-aged and very-aged soot 
from left to right.  
 

The optical properties of the synthetic soot particles are calculated using the Discrete 

Dipole Approximation (DDA-DDSCAT7.3 code) (Draine and Flatau, 1994, 2013). 

Detailed description of the methods for the aggregate generation and DDA simulations 

is provided elsewhere (Scarnato et al., 2012). For the synthetic aggregate generation we 

use average morphological parameters (monomer diameter = 34 nm, number of 

monomers (N) = 66 and 150) obtained from the analysis of the soot particles collected 
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at PMO. Two N values are obtained considering different overlaps between monomers 

(discussed in section 5.3.4). For the DDA calculations a wavelength-dependent 

refractive index for soot is used following (Chang and Charalampopoulos, 1990). We 

calculate scattering and absorption cross sections for 10 wavelengths ranging from 370 

nm to 950 nm relevant to different measurement techniques including remote sensing 

and covering the visible and NIR solar spectrum. The optical properties discussed in the 

following sections are averaged values computed over 1000 random target orientations 

(Scarnato et al., 2012).  

 

4.3 Results and discussions 

4.3.1 Abundance of soot particles	

The main purpose of the general particle classification was to compare the relative 

abundance of soot particles between the two different transport events. Typically, soot 

particles can be easily distinguished as they appear as agglomerates of small spherical 

monomers (14-64 nm in this study), the exception is when soot particles are completely 

engulfed in a coating material so thick that the soot particle is not distinguishable from 

SEM images. For the purpose of the analysis presented here, 1,317 and 806 particles 

were used for event-1 and event-2, respectively. During event-2, the relative abundance 

of soot particles was almost double (~54%) compared to event-1 (27%). During event-

2, the fraction of mineral dust and other particle types are 14% and 7% respectively. On 

the contrary, during event-1, we found ~30% of mineral dust particles and ~29% of 

other irregularly shaped particles (dominated by rectangular crystalline particles with O, 

S and Ca content), suggesting that mineral dust might have been transported to PMO 

from North Africa. This possibility is corroborated by FLEXPART model simulations, 

suggesting recirculation over the Atlantic Ocean with the possible entrainment of air 

from southerner latitudes, where dust is often present as it is transported from the 

Saharan desert westward to the Gulf of Mexico.  
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4.3.2 Mixing states of soot 

Freshly emitted soot particles are normally very thinly coated or bare and most of them 

have an open chain-like structure (Adachi et al., 2007; China et al., 2014; Wentzel et al., 

2003). During atmospheric processing, soot mixes with other compounds or other 

particles, resulting in different mixing configurations and sometimes in soot 

restructuring. Figure 4-5(a-f) shows typical morphologies of soot particles collected at 

PMO that are all very compact in shape. Open chain-like soot aggregates are rarely 

observed on the membranes collected during both events.  

 

Figure 4-5: Left SEM images (a-f) show typical morphologies of soot particles 
observed at PMO. Right panel (g) shows the fraction of thinly coated, partly coated, 
embedded and inclusion soot for event-1 (July (06-07), 2012) and event-2 (July (20-21), 
2012).   
 

A total of 413 and 407 individual soot particles were analyzed for event-1 and event-2, 

respectively. The Approximate fractions of embedded, partly coated, thinly coated, and 

inclusion soot particles are presented in Figure 4-5 (g). The higher fraction of embedded 

and partially coated soot (87%) in event-2 compared to event-1 (57%) and the higher 

fraction of thinly coated soot in event-1 (37%) compared to event-2 (9%) suggest 

different atmospheric processing for the comparatively less aged plume in event-2; with 

condensation of coating material being prominent during event-2. The finding that the 

fraction of inclusion particles is small for both events suggests that coagulation 
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processes were less important compared to condensation processes during the long-

range transport over the ocean. Semi-quantitative EDS analysis shows that the particles 

attached to the soot in the particles categorized as soot inclusions, often contains C, O 

and S for both events. A previous electron microscopy study found that 10–45% of 

sulfate particles contained soot as inclusions in clean air above the remote Southern 

Ocean (Pósfai et al., 1999). However, for our samples, the elemental composition of the 

embedded particles is mostly dominated by C and O with only a minor fraction of S, 

suggesting that soot was possibly embedded in organic material.  

 

4.3.3 Morphology of soot particles 

The fractal dimension of soot particles reflects their aging and is controlled by the 

particles’ source, generating conditions, and atmospheric processing pathways (Adachi 

et al., 2007). Compacted soot particles have higher Df than chain-like open clusters (Liu 

et al., 2008). For example, theoretically Figure 4-5 (c and d) should have a 3-D Df close 

to 3. Figure 4-6 shows the 2-d power law exponent or 2-D fractal dimension (D2f) for 

event-2 and event-1 as calculated following equation 1. For the fractal dimension 

analysis, soot inclusion particles are not used as the projected area of the entire particle 

(including the inclusion) would bias the calculation of D (China et al., 2014). On 

average, our 2-D fractal dimension D2f, as estimated from equation (1), is higher for 

event-2 (1.89±0.02) than event-1 (1.82±0.02). Higher D2f reflects higher coating and/or 

higher compactness. In Table 4-1 and 4-2 we report the values of D2f for three classes of 

soot particles. During both events, embedded soot shows higher D2f than partly coated 

and thinly coated soot (Table 4-1 and 4-2).   
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Figure 4-6: Power relationship between projected area and maximum length for a) 
event-1 and b) event-2. This includes all three kinds of soot particles but excludes soot 
with inclusions.  
 

Table 4-1: Morphological parameters of thinly coated, partly coated and embedded soot 
particles for Event-1 (July 06-07, 2012). Numbers in the parenthesis represents standard 
deviation.  

 
n DAeq (nm2) AR Convexity RN D2f k2 

Thinly coated 153 
249 
(95) 

1.38 
(0.20) 

0.85 
(0.07) 

0.60 
(0.11) 

1.81 
(0.04) 

0.37 
(0.02) 

Partly coated 189 
262 

(128) 
1.44 

(0.25) 
0.84 

(0.07) 
0.57 

(0.11) 
1.81 

(0.03) 
0.35 

(0.02) 

Embedded 46 
283 
(89) 

1.41 
(0.21) 

0.88 
(0.05) 

0.61 
(0.10) 

1.84 
(0.07) 

0.40 
(0.03) 

 

Number of particles analyzed (n), Area equivalent diameter (DAeq), aspect ratio (AR), convexity, 
roundness (RN), power law exponent or 2-D fractal dimension (D2f) and 2D prefactor (k2) for thinly 
coated, partly coated and embedded soot particles. E-1 represents event-1 and E-2 represents event-2.   

 

On average, DAeq of embedded particles is the largest (283 nm), followed by partly 

coated (262 nm) and thinly coated soot particles (249 nm) for event-1 (Table 4-1), 

meaning that the size of the particle increases as coating increases. In contrast, for 

event-2 (Table 4-2) the difference in size between embedded and thinly coated soot is 

small, suggesting that soot inside the embedded structure might be smaller in size 

and/or that the coating is thinner. The details of the size distributions for the different 

a) b) 
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soot particle types are discussed in the SI. The relatively larger size of thinly coated soot 

particles might result in those particles being better CCNs.  

Table 4-2: Morphological parameters of thinly coated, partly coated and embedded soot 
particles for Event-2 (July 20-21, 2012). Numbers in the parenthesis represents standard 
deviation.  

 
n DAeq (nm2) AR Convexity RN D2f k2 

Thinly coated 36 
245 

(122) 
1.57 

(0.34) 
0.79 

(0.09) 
0.50 

(0.12) 
1.85 

(0.08) 
0.32 

(0.04) 

Partly coated 230 
206 

(106) 
1.49 

(0.30) 
0.82 

(0.07) 
0.55 

(0.11) 
1.88 

(0.03) 
0.36 

(0.02) 

Embedded 122 
236 

(130) 
1.47 

(0.28) 
0.85 

(0.08) 
0.57 

(0.12) 
1.90 

(0.04) 
0.39 

(0.02) 

 

Figure 4-7 shows the size distribution of classified soot particles (thinly coated, partly 

coated and embedded) for event-1 and event-2. Size diributions of event-2 for all the 

soot types are relatively broader compared to event-1. On average, soot particles (mean 

values combing all three types) are larger (259 nm) for event-1compared to event-2 

(219 nm). Figure 4-8 shows the roundness distribution for two events. Event-2 shows 

multiple peaks in the roundness distribution comparted to event-1.  

      

Figure 4-7:  Size distribution of thinly coated, partly coated and embedded soot 
particles for a) event-1 July (06-07) and b) event-2 July (20-21).   
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Figure 4-8: Histograms of roundnes for embedded, partly coated and bare soot particles 
for a) event-1 and b) event-2. 
 

Figure 4-9 shows the distribution of the convexity for thinly coated, partly coated and 

embedded soot particles for event-1 and event-2. For both events, the thinly coated soot 

particles are very compacted suggesting morphological changes (restructuring) during 

their transport from the source. Laboratory study showed that partially aged soot 

particles adsorb water under humidification and turn into efficient CCNs, leading to 

additional compaction of soot particle (Khalizov et al., 2013). This suggests that cloud 

or water processing might be responsible for the compacted shape of thinly coated soot 

particles. Previous studies reported collapsing of soot under the influence of water 

(Mikhailov et al., 1999; Weingartner et al., 1995). Capillary forces induced during 

condensation or filling of soot cavities with water have been hypothesized to be 

responsible for the soot restructuring (Tritscher et al., 2011). However, others argue that 

capillary forces drive the soot restucturing during evaporation of water instead of 

condenstation (Ebert et al., 2002; Ma et al., 2013). The entrainment of soot particles 

within cloud droplets can facilitate local warming and even evaporation of clouds (i.e. 

cloud burning effect) (Ackerman et al., 2000). In addition, soot-water mixing also affect 

their optical properties (Mishchenko et al., 2014).   

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

P
ar

ti
cl

es
 (

%
)

Roundness

 Thinly coated
 Partly coated
 Embedded

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

P
ar

ti
cl

es
 (

%
)

Roundness

 Thinly coated
 Partly coated
 Embedded

a) b) 



 

79 
 

  

Figure 4-9: Convexity distribution for thinly coated (black), partly coated (light green) 
and embedded (dark green) soot particles for a) event-1 (July 06-07) and b) event-2 
(July 20-July 21). 

 

4.3.4 Optical properties of soot particles 

The soot particles collected at PMO during these events have very compacted shape. 

These compacted soot particles however, have been found to be very prominent in 

several other samples collected at PMO, suggesting that these structures might be very 

common in the free troposphere and remote regions where soot is transported from far 

away and/or in marine environments. Therefore, we investigate how the compactions of 

soot particle influence their optical properties by performing DDA simulations, as these 

effects might be relevant on global scales.  

We estimate the fractal dimension (Df) of the synthesized soot aggregates and use three 

different degrees of soot compaction, open chain-like aggregate, medium compacted 

soot and very compacted soot representing fresh, medium aged and very aged soot, 

respectively. We generated soot particles with two different number of monomers (N). 

The actual estimation of N  from 2-D projected images are difficult and typically 

estimated using the projected area of the aggregate (Aa) and the mean projected area of a 

monomer (Ap) in the aggregate, as follows  
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Where α is an empirical projected area exponent and ka is a constant, normally 

approximated with a value close to one. The exact values of α and ka depend on the 

overlap parameter (δ) which is the ratio of the monomer diameter to the distance 

between two adjacent and touching monomers center points (e.g.; δ=1 for point 

contact). In this study we the values typically employed in the literature for α and ka  of 

α =1.09 ; ka =1.15 for point contact and for δ=2  we use α =1.19 ; ka =1.81, to estimate 

two different N.   

Synthesized soot particles are then binarized at random orientaions (at least 50 particles 

for each case) and the resulting two-dimensional projected images are analyzed. Df of 

the synthesized soot aggregates is calculated from equation 1 using a contsant value of 

kg (1.6) (Liu et al., 2008). Table 4-3 shows the morphological parameters of the 

synthesized aggregates.  

Table 4-3: Morphological parameters of synthetic soot aggregates. N is number of 
monomers. 

 Aspect ratio Convexity Roundness Df 

N=66 

Fresh 1.38 0.59 0.38 1.83 

Medium aged 1.30 0.81 0.62 2.40 

Very aged 1.27 0.87 0.67 2.67 

N=150 

Fresh 1.66 0.55 0.32 1.83 

Medium aged 1.38 0.68 0.48 2.13 

Very aged 1.22 0.86 0.69 2.69 

  

Figure 4-10 illustrates the normalized absorption (Cabs) and scattering (Csca) cross 

sections (medium aged/fresh and very aged/fresh) of soot particle for two different 

cases of number of monomers (N=66 and N=150). The figure also reports the single 

scattering albedo (SSA) that is the ratio of the scattering to the extinction cross sections, 

and the asymmetry parameter (g) that is the cosine-weighted average over the entire 

scattering angle of the scattering phase function. These last two are critical aerosol 

parameters that determine, together with the optical depth, the aerosol radiative forcing. 

The measured fractal dimension (Df) from 2D projections of the synthesized soot 
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particles (N=66) for fresh, medium aged (medium-compacted) and very aged (very-

compacted) particles are 1.83, 2.40 and 2.67 respectively and the convexities are 0.59, 

0.89 and 0.81 respectively (Table 4-3).  

The orientation averaged Cabs ratio is lower than unity for shorter wavelengths but 

becomes rapidly (around 500 nm) larger than unity for visible and near-infrared 

wavelengths, meaning that compacted, aged particles have higher Cabs compared to 

fresh soot. A previous T-matrix simulation study also found a similar pattern and 

suggested two possible reasons responsible for the observed trend. As particles become 

more compacted, less absorbing materials are directly exposed to the incident light, 

resulting in lower Cabs. On the other hand, Cabs can increase for compacted particles due 

to an increased electromagnetic interaction between monomers (Liu et al., 2008). The 

Csca ratio is higher than 1.4 for N=66 and 2.30 for N=150 in the visible range, but the 

ratio decreases (although remaining above unity) in the near infrared region. The effect 

of compaction is substantially higher for scattering than for absorption, resulting in 

higher SSA values as the particle becomes more compacted and the magnitude of the 

SSA ratio decreases as the wavelength increases but always remaining above unity. The 

asymmetry parameter (g) is both a strong function of particle size and shape (Kahnert et 

al., 2012; Liu et al., 2008). For smaller N (N=66), g for fresh chain-like soot is higher 

compared to medium aged and very aged soot, but it shows a different scenario for 

larger N. For N = 155, medium aged soot exhibits higher g, followed by fresh and aged 

soot. Similarly,  Liu et al. (2008) found that g reaches highest point around Df~2 and 

start decreasing as particle become more compacted.  
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Figure 4-10: Normalized absorption and scattering cross-sections, single scattering 
albedo (SSA), and, asymmetry parameter (g) as functions of wavelength for two cases 
of number of monomers (N=66 and N=150). We use the cross sections, SSA and g of 
fresh soot as normalizing values. 

 

Soot particles observed at PMO are possibly cloud processed, and this might be the 

reason for the very compacted shape. This also implies that soot might have been 

incorporated into water droplets during they journey over the Atlantic. A recent T-

matrix study (Mishchenko et al., 2014) on soot-water mixing shows that orientation-
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averaged Cabs strongly depend on the soot morphology and their position inside a water 

droplet. Orientation-averaged Cabs of soot-water mixture is higher for open chain-like 

soot than compacted soot and Cabs tends to decrease as the soot particle moves from the 

center of the droplet to the boundary. Finally, Cabs can change by a factor exceeding 6.5 

depending on the various scenarios of soot-water mixing. This implies that the soot 

morphology might have an important role in the semi-direct effect, with soot 

compaction also resulting in a lower in-cloud absorption and therefore lower positive 

forcing as well. 

 

4.3.5 Evolution of soot morphology and mixing state 

This section provides a brief summary and comparison of morphology and mixing state 

of soot particles collected from different geographical locations and environmental 

conditions. Samples collected in Ann Arbor, MI represent fresh traffic emissions 

(discussed in chapter 2). Samples collected during the Las Conchas fire, NM represent 

biomass burning emission (discussed in chapter 3). Samples collected in Sacramento, 

CA; Detling, UK and Mexico City represent urban emissions. Finally, samples collected 

at the Pico Mountain Observatory in Pico Island, Azores represent long range 

transported, free tropospheric aerosol as discussed earlier in this chapter. Note that the 

Pico data showed in this section include a number (592) of additional particles from 

September 24 and 25 (2012) that have not been discussed earlier in this chapter.  

Figure 4-11 shows that the soot mixing state varies widely depending on geographical 

location and source. Freshly emitted soot from vehicles in close proximity to the 

sampling inlet, exhibited minimum coating (embedded + partly coated, ~22%), while 

freshly emitted biomass burning soot exhibited maximum coating (~84%). Soot 

particles in urban area displayed the highest variability in their mixing state, with 

relatively higher fraction of soot with multiple inclusions, suggesting complex mixing 

pathways and a possible higher impact of other processes such as coagulation and 

coalescence. The fraction of embedded soot at Detling, UK and Mexico City were 
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similar (~10%) but a smaller fraction was found in Sacramento, CA (~3%). The largest 

fraction of soot inclusion particles were found in Mexico City. In the complex terrain of 

the Mexico City basin, surrounded by high mountains, particles are expected to have 

long residence time in the atmosphere and to be exposed to complex processing 

(Johnson et al., 2005).  

The mixing state information can provide insights to interpret and/or model optical 

scattering and absorption enhancements. For example, embedded soot particles 

potentially exhibit higher scattering and absorption enhancements (in reference to 

comparable thinly coated soot) compared to soot with inclusions (Adachi and Buseck, 

2013). The lower fraction of embedded particles in Sacramento, CA (~3%) compared to 

biomass burning (~50%) suggests that substantially lower absorption enhancement 

might be expected in California urban plumes with respect to biomass burning plumes. 

It was in fact shown that the absorption enhancement experimentally measured in 

California’s urban plumes (Sacramento and Los Angeles urban area) was much lower 

(negligible) than expected assuming an embedded soot mixing model (core-shell Mie 

model) (Cappa et al., 2012); while much larger values of the absorption enhancement 

were measured in a biomass burning event in Colorado (Lack et al., 2012). The results 

reported in Figure 4-11 are therefore qualitatively consistent with the experimentally 

measured absorption enhancements and underline the importance of studying the details 

of the soot mixing state, to understand and potentially in future forecast, the absorption 

enhancement in different atmospheric conditions.  
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Figure 4-11: Mixing state of soot particles collected at different locations and 
environmental conditions. Number below location represents total number of particles 
used for analysis. 

 

Furthermore, we compared convexity of soot particles collected at different locations 

and environmental conditions as soot morphology can provide insight on particle aging 

and atmospheric processing. We remind the reader that convexity is a measure of the 

morphology of the particle that is expected to increase when the structure of an open 

aggregate is compacted and/or voids are filled by coating material. Figure 4-12 shows 

the distribution of convexity of soot particles. The number (in bold) in the plot 

represents the mean convexity values. The distributions show that freshly emitted soot 

particles have lower convexity, representing soot aggregates with a fractal-like open 

structure; while soot particles that are processed in the atmosphere during long range 

transport (as in the case of the samples collected at Pico) have more collapsed structures 

(highest convexity). Soot from urban plumes exhibits intermediate convexity values, 
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once again suggesting complex mixing stages as urban plumes include freshly emitted 

as well as processed soot depending on the residence time of the particle and semi-

volatile compounds concentrations. Interestingly, soot in Delting, UK shows relatively 

higher convexity; foggy weather and household biomass burning practices, might have 

led to cloud processing and soot coating explaining the higher convexity, especially 

considering that samples were collected during winter time. As shown in the previous 

section (6.3.4) both scattering and absorption can increase when soot particle transform 

from open-soot to collapsed soot.  

 

Figure 4-12: Distribution of convexity of soot particles. Number in the plot represents 
the mean convexity. 

 

4.4 Conclusions 

The morphology of soot particles transported over long ranges and reaching PMO is 

very compacted, probably representing very aged soot. Most of the soot particles were 

coated to some extent. However, thinly coated soot also exhibited very compacted 

structures with high convexity. Free tropospheric soot particles collected at PMO are 

possibly cloud processed during their journey over the Atlantic. The water processing is 

possibly the reason for the vey compacted shape of the soot particles. Compacted and 

aged soot particles can enhance both scattering and absorption of the particle but with 
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an overall resulting increase in single scattering albedo and reduction of the positive, 

top of the atmosphere, direct radiative forcing. When soot particles are mixed with 

water, absorption of their mixture can enhanced substantially depending on the degree 

of compaction of soot particles and their mixing with, finally resulting radiative 

properties of soot particles.  

Here we investigated two specific events; more events will be investigated in the future 

to further quantify the soot morphology and mixing state in the North Atlantic free 

troposphere. The results of this study have implications on how soot particles should be 

represented in particle-resolving mixing state models (Riemer et al., 2009) and in 

numerical models in remote regions (Wang et al., 2013) of the free troposphere, and 

how the correct representation might affect the calculation of atmospheric soot radiative 

forcing.  

Comparison of soot morphology and mixing state with other locations suggest that soot 

mixing state depends on location, source and atmospheric condition. Biomass burning 

soot can lead to higher single scattering albedo due to large fraction of embedded soot 

while aged soot at Pico showed more compacted soot compared to soot from urban 

plume. The evolution of soot morphology and mixing state in the atmosphere have 

important consequences for soot optical properties, thus direct climate forcing.  

A comparison of soot morphology and mixing state with other locations depicts that 

soot mixing state depends on location, source and atmospheric conditions. The 

significant coating in embedded soot particles found in biomass burning plumes can 

lead to higher single scattering albedo; similarly, aged soot at Pico that showed 

extremely collapsed shape compared to soot from urban plumes, might also exhibit 

higher single scattering albedo with respect to fresh soot of similar mass. The evolution 

of soot morphology and mixing state in the atmosphere has important consequences for 

soot optical and microphysical properties, and thus the effect of soot on climate forcing. 
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5. Morphology and Optical Properties                  
of Soot Residuals from Supercooled Droplets 

and Ice Crystals4 
 

Morphology of soot particle influences their optical properties. Soot morphology within 

ice crystal residue or supercooled droplet residue is not well known. Changes in the 

morphology of soot particles in interaction with water were investigated at sub-freezing 

(supercooled) and freezing temperatures. At -40C ice crystals were formed on soot 

particles, while at -20C water droplets remained in supercooled state. Ice crystal and 

supercooled droplet soot residuals were analyzed on a single-particle basis using 

electron microscopy. Soot particles in supercooled residuals were compacted compared 

to nascent soot. Soot particles from ice crystal residuals exhibited an even higher degree 

of compaction, suggesting that the collapsing of the soot structure is strongly affected 

by the freezing process. Numerical simulations of the optical properties of the soot 

particles collected during this study show that the collapse of the soot structure results 

in enhanced light scattering and absorption.   

 

5.1 Introduction 

Soot particles consist of many spherical carbonaceous monomers (spherules) and are 

ubiquitous in the atmosphere. Combustion sources, such as fossil fuel, biomass burning 

emit soot in the lower atmosphere, while aviation is one of the major sources in the 

upper troposphere (Kärcher et al., 1998; Schumann et al., 2013). Soot particles affect 

climate directly by absorbing and scattering sun-light and indirectly by influecing the 

microphysical properties of clouds either serving as a cloud condenstaion nuclei (CCN) 

or ice nuclei (IN) (Bond et al., 2013). Soot particles affect surface albedo by depositing 

over snow and ice sheets and accelerates melting (Hansson and Ahlberg, 1985; 

                                                            
4 This chapter is based on material to be submitted as China et al., (2014), Environmental Research 
Letters. 
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Ramanathan and Carmichael, 2008). Further soot particles might lead to increase in 

absorption of solar radiation by decreasing cloud cover in the lower troposphere 

(Lohmann and Feichter, 2005). Soot particles within ice crystal and cloud droplet can 

also enhance absorption and decrease cloud albedo (Jacobson, 2006; Ramanathan and 

Carmichael, 2008).    

Soot particles can facilitate primary ice formation at supercooled temperatures through 

heterogenous ice nucleation where soot particles can act as IN (Kärcher et al., 2007). 

The role of soot as IN is still not well understood, fewer experiments are available and 

there are discrepancies between several studies (Hoose and Möhler, 2012). The 

efficiency of soot as IN depends on various parameters such as temperature, relative 

humidity, supersaturation, soot size, surface oxidation and ice active sites, but the 

sensitivity of these parameters is still ambiguous (Heymsfield et al., 2010; Hoose and 

Möhler, 2012; Persiantseva et al., 2004). Soot may not be efficient IN below water 

satuation and tempeatures above -35C (DeMott et al., 1999; Dymarska et al., 2006), 

but soot can be efficient IN (by immersion or condensation mode) when water 

condenses on soot at relative humidity with respect to ice (RHice) above water saturation 

and at temperatures above -35C (Gorbunov et al., 2001; Mohler et al., 2005). Friedman 

et al. (2011) found no evidence of ice formation by soot below water saturation, but 

only droplet formation above water saturation at -30C and  and -35C. They conclude 

that ice formation at -40C was formed due to homogeneous freezing. Kanji et al. 

(2011) showed that graphite soot does not nucleate ice via deposition nucleation at 

temperatures warmer than -38C. Koehler et al. (2009) also found no ice nucleation by  

different types of soot at temperatures warmer than -40C. 

Aircraft soot emissions play a major role in contrail fomation  in the upper troposphere 

at −40°C or below (Kärcher et al., 1998) as well as induces ice formation in contrails 

(Petzold et al., 1999). The microphysics of contrails is determined by the chemical and 

water activation of soot particles (Heymsfield et al., 2010; Kärcher et al., 1996). 

Environmental  RHice controls evaporation of  contrails and formation of contrail 



 

96 
 

induced cirrus clouds. Contrails can be sustained in an ice-saturated atmosphere, and 

through heterogeneous ice nucleation modes ice crystals can be formed at these 

supersaturation conditions. However, contribution of soot to nucleate ice is not well 

understood, and it is highly uncertain if the ice formation occurs without contrail 

formation or after evaporation of short-lived contrails (Heymsfield et al., 2010).  

Investigation of ice crystal residual particles from cirrus clouds showed that 11 to 25% 

of the residuals are composed of carbonaceous material, including soot and organic 

carbon (Twohy and Poellot, 2005). Higher soot number concentration (0.2 cm-3) was 

observed in ice crystal residuals  from contrail compared  to cirrus (0.02 cm-3) (Petzold 

et al., 1998). They suggsted that soot in the cirrus cloud can be attributed to scavenging 

of soot by ice crystals during the atmospheric aging. They found that contrail residues 

are dominated by small soot particles (<200nm) composed of mostly carbon (87%) and 

only a minor fraction (1.6%) of larger soot particles (~1000nm) that was coated with 

sulfur. Targino et al. (2006) found a small fraction of soot in individual ice crystal 

residues from orographic wave clouds. Several other studies also found a small fraction 

of soot in cirrus ice crystal residue (Cziczo and Froyd, 2014; Cziczo et al., 2013).  

The complex morphology of soot particles significantly influence their optical 

properties (Adachi et al., 2007; Scarnato et al., 2012). A the discrete dipole 

approximation study showed that fractal-like open soot exhibits a higher mass 

absorption coefficient (absorption cross section/soot mass) compared to more compact 

soot with monomer diameter of 40 nm (Scarnato et al., 2012). However, a T-matrix 

study found lower  absorption cross section for  for fractal-like open soot compared to 

more compact soot, with monomer diameter of 15nm (Liu et al., 2008).  

During cloud processing soot particles experience various cycles of condensation and 

evaporation (Huang et al., 1994). Cloud processing play a key role in collasping 

(restructing) of soot aggregates, resulting changes in optical properties of soot (Colbeck 

et al., 1990; Mikhailov et al., 2006). Filling of soot cavities or any irregular part (active 

sites) of the particles with water, capillary condensation or other processes (such as 
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electrostatic forces) have been proposed as driving the restructuring of soot (Huang et 

al., 1994; Tritscher et al., 2011). However, other studies found that capillary forces lead 

to soot restucturing during evaporation of water instead of condensation (Ebert et al., 

2002; Ma et al., 2013). The degree of restructing might depend on the source of soot, 

nascent diesel soot exhibited much smaller collapsing compared to carbon soot 

(produced from spark discharges between two graphite electrode) (Weingartner et al., 

1997). Sulfur content in fuel can be responsible for restructuring of diesel soot: high 

sulfur content exhibited significanly much lower collapsing compared to low sulfur 

content (Huang et al., 1994).  

In addition soot particles can be scavenged by ice crystals in clouds (at -25C to-45C) 

and increase the soot-to-ice mass ratio (Bond et al., 2013). Soot containg ice crystalsor 

supercooled droplets can undergos various cycles and can sublimate and evaporate in 

the atmosphere (Heymsfield et al., 2010). After sublimation of ice crystal, soot residuals 

can facilitate subsequent nucleation event by lowering the supersaturation threshold 

(preactivation effect) (Hobbs, 1974; Knopf and Koop, 2006). Upon sublimation of ice 

crystal, soot particles can fragments into small pieces or aggregates into large cluster 

(Kärcher et al., 2007). Fate of those soot particles inside the ice crystals after their 

sublimation is not well understood and remain ambiguous. Previous studies showed 

SEM images of collaped soot from sublimated ice crystal residue collected from 

contrail and cirrus but morphology of those soot particles were not discussed and 

quantified (Petzold et al., 1998; Targino et al., 2006). 

The goal of this study was to 1) experimentally investigate the morphological and 

structural properties of soot residuals from supercooled droplets and ice crystals, and 2) 

model the optical properties of nascent soot and nucleated soot particles (residuals).  
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5.2 Experimental section and methods 

5.2.1 Soot generation and characterization 

The experiments dicussed here took place at the environmental chamber facility at the 

Pacific Northwest National Laboratory during November 2013. Soot particles were 

generated using a diesel engine. A charcoal denuder was used to remove volatile 

organic carbon components and NOx. Polydisperse soot particles were charged by a 

neutralizer, and then size selected (120 nm) (Figure 5-1) according to their electrical 

mobility with a differential  mobility analyzer (DMA, TSI, 3081). Quasi-monodisperse 

soot particles (due to small fraction of multiply charged particles) were injected into the 

environmental chamer.  

 

Figure 5-1: Size distribution of nascent soot particles from scanning mobility particle 
sizer (TSI, 3936) sampled from PNNL chamber.  

 

5.2.2 Morphological characterization 

Individual nascent soot particles, residuals from sublimated ice crystals and supercooled 

droplets were investigated using a field-emission SEM (Hitachi S-4700) and TEM 

(JEOL JEM-2010). Their elemental composition was studied using energy dispersive x-

ray spectroscopy (EDS) to investigate any potential impuities associated with soot 
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particles. Soot particles are often represented as fractal-like aggregates due to their self-

similar structures over several length scales (Oh and Sorensen, 1997) and can be 

described by the following scaling law.  

                                           ܰ ൌ ݇௚ ൬
ଶோ೒
ௗ೛
൰
஽೑

                                                                   (1) 

Where Df is the mass fractal dimension, N is the number of monomers per aggregate, Rg 

is the radius of gyration, dp is the monomer diameter, kg is the fractal proportionality 

constant or fractal prefactor. The radius of gyration is the root-mean-square distance 

from the center of each monomer to the aggregate center of mass. The prefactor is 

related to the cluster mass, atmospheric transport processing, and optical properties 

(Adachi et al., 2007; Oh and Sorensen, 1997), and a large set of values can be found in 

literature. We used the ensemble method to calculate the fractal dimension of freshly 

emitted soot particles from 2-D images (Oh and Sorensen, 1997). Typically, in the 

ensemble method, N is estimated from the projected area of individual soot (Aa) and the 

mean projected area of a monomer (Ap) in the soot particle, as follows (Köylü et al., 

1995; Oh and Sorensen, 1997; Samson et al., 1987): 

                                                     ܰ ൌ ݇௔ ൬
஺ೌ
஺೛
൰
ఈ

                                                             (2) 

Where α is an empirical exponent (1.09) and ka (1.15) is a constant We used an 

approximate relation Lmax/2Rg=1.50±0.05  as a surrogate for Rg (Brasil et al., 1999). Df 

for nascent soot particles (with Df < 2) is then calculated using equation 1.  

Soot from supercooled and ice crystal residuals are restructured and compacted, 

resulting in a Df >2 and using equation 2 would underestimate N due to the monomer 

overlap. Therefore, we calculated a 2-d fractal dimension (D2f) using the directly 

measurable area of each aggregate (Aa) and its maximum length (Lmax) (Lee and 

Kramer, 2004) using the following scaling law: 

௔ܣ                                                    ൌ ݇ሺܮ௠௔௫ሻ
஽మ೑                                                        (3) 
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For direct comparison purpose, we calculated D2f for nascent soot particles as well. We 

also used several other 2-D morphological descriptors such as aspect ratio, roundness 

and convexity to characterize nascent soot, and supercooled droplet and ice crystal 

residuals. Higher roundness indicates particles that are more compacted. The convexity 

is defined as the ratio of Ap and the area of the convex hull polygon (smallest convex 

polygon in which the particle is inscribed).  

 

5.2.3 Supercooled droplet and ice residue collection 

Ice nucleation measurements of nascent soot particles were performed using the 

compact ice chamber (CIC). Ice nucleation measurements were conducted at two 

different temperatures, -40C and -20C.  Freezing events occurred at -40C  and ice 

crystals were seperated using a pumped counterflow virtual impactor (PCVI) (Kulkarni 

et al., 2011), and then impacted on substrates for electron microscopy using a four-stage 

cascade impactor (MPS-4G1). Soot particles were collected on 300 mesh transmission 

electron microscopy (TEM) copper lacey formvar grids. Samples were colelcted on the 

third and fourth stages of the impactor with 50% cut off aerodynamic diameters of 

150nm and 50nm, respectively. For this study samples from fourth stage only were 

analyzed to avoid multiply charged particles possibly present on the third stage. 

Samples were also collected on nucleopre polycarbonate membrane using a custom 

built aspirated sampler for scanning electron microscopy (SEM) analysis. At -20C no 

freezing event was observed and supercooled droplet residuals were similarly seperated 

from interstitial particles using the PCVI and soot particles were collected again on 

TEM grids and SEM membranes. Nascent soot particles were also collected directly 

from the environmental chamber  for comparison.   

 

5.2.4 Simulation of optical properties 

We have investigated the effect of compaction on the optical properties of soot particles 

as a function of wavelength, using the discrete dipole approximation (DDA-
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DDSCAT7.3) code (Draine and Flatau, 1994, 2013). In particular, in this study we 

discuss the absorption (Cabs) and scattering cross-sections (Csca), and the single 

scattering albedo (SSA = Csca /(Cabs+Csca)). We used a random walk aggregation 

method to generate soot particles for the DDA simulations (Richard et al., 2011). The 

detailed method for the generation of the aggregates and for the DDA simulations are 

described elsewhere (Scarnato et al., 2012). We have generated soot aggregates with 

100 monomers with a diameter of 23 nm, in agreement with our observed values for 

nascent soot, ice crystal and supercooled droplet residuals (Figure 5-2). Then, we 

computed average values of scattering and absorption cross sections for wavelengths of 

405, 532, 550 and 781 nm and for 1000 random particle orientations (see for discussion 

on the solution convergence due to the average of number of orientations) (Scarnato et 

al., 2012). The wavelength dependent soot refractive index provided by Chang and 

Charalampopoulos (1990) was used in all calculations. The selected wavelengths 

include the 3-wavelengths of the photoacoustic spectrometer and the 550 nm 

wavelength used in many studies, as is of use in many weather or climate models.  

   

Figure 5-2: The synthetic soot particles used in the simulation, representing open 
fractal-like nascent soot, soot from supercooled droplet residual and ice crystal residual 
from left to right.  

 

5.3 Results and discussions 

5.3.1 Morphology of residuals	

In this section, we discuss the morphological changes of soot particles after sublimation 

of ice crystals and evaporation of supercooled water droplets and compare their 

morphology with nascent soot particles. The left panel in Figure 5-3 shows TEM 
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images of individual open fractal-like shape of nascent soot particles and soot from 

supercooled droplet (middle panel) and ice crystal residuals (right panel). EDS analysis 

shows carbon and oxygen in all three samples suggesting no potential impurities in all 

the samples. The open fractal-like structure of nascent soot particle exhibited a Df of 

1.53±0.02 and a kg of 3.44±0.06. For diesel soot, previous studies showed Df values 

ranging between 1.20 to 1.82 depending on engine conditions and combustion 

properties (e.g. (Li et al., 2011; Luo et al., 2005).  

   

Figure 5-3: TEM images of nascent soot (left panel), supercooled droplet (SCD) 
residuals (middle panel) and ice crystal (IC) residuals (right panel).  

 

Table 5-1: Mean morphological descriptors of nascent soot, soot from supercooled 
droplet and ice crystal residuals.  

Samples n 
dp 

[nm]
DAeq 

[nm] 
AR RN CV D2f k2g 

Nascent soot 226 
23 
(3) 

153 
(45) 

1.75 
(0.48) 

0.41 
(0.12) 

0.71 
(0.10) 

1.42 
(0.05) 

0.13 
(0.03) 

Supercooled 
droplet residuals 

208 
23 
(5) 

179 
(75) 

1.65 
(0.37) 

0.45 
(0.12) 

0.75 
(0.10) 

1.61 
(0.03) 

0.20 
(0.02) 

Ice crystal residuals 241 
24 
(4) 

201 
(61) 

1.46 
(0.27) 

0.55 
(0.11) 

0.83 
(0.08) 

1.71 
(0.04) 

0.28 
(0.02) 

 

n, number of individual particles analyzed; dp, monomer diameter; DAeq, projected area 
equivalent diameter; AR, aspect ratio; RN, roundness; CV, convexity; D2f, 2-d fractal dimension; 
k2g, 2-d prefactor. In parenthesis: standard error for D2f and k2g calculated from the uncertainty in 
the mean-square fit, and standard deviation for the other parameters. 
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Figure 5-4: Aspect ratio (left panel), roundness (middle panel) and convexity (right 
panel) of nascent soot, soot from supercooled droplet (SCD) and ice crystal (IC) 
residuals. Number of particles analyzed for nascent soot, supercooled and ice crystal 
residuals were 226, 208 and 241 respectively.  

 

   

Figure 5-5: Two-dimensional fractal dimension for nascent soot (left panel), 
supercooled (middle panel) droplet and ice crystal residuals (right panel).  

 

Figure 5-4 compares the distribution of aspect ratio (top panel), roundness (middle 

panel) and convexity (right panel) between  nascent soot, soot from supercooled droplet 

and ice crystal residuals, respectively. The distributions show that soot particles from 

ice crystal residuals are the most compacted (higher roundness and convexity and lower 

aspect ratio) followed by supercooled droplet residuals and nascent soot particles. 

Compacted soot from ice crystal residual suggest that the freezing process can 

potentially influence soot collapsing. Table 5-1 summarizes the mean and standard 

deviations for several morphological descriptors (aspect ratio, roundness and convexity) 

including 2-D fractal dimension and prefactor (Figure 5-5). Monomer size of the soot 

particles depicts no significant change in soot from ice crystal and supercooled droplet 

residuals compared to nascent soot. A consistent pattern is evident for 2-d fractal 
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dimension; D2f is highest for soot from ice crystal residuals followed by soot from 

supercooled droplet residuals and finally by nascent soot. Higher D2f represents more 

compacted structures.     

 

5.3.2 Restructuring of soot particles 

We found significantly higher collapsed soot (soot with a compact shape) from ice 

crystal residuals than supercooled droplet residuals, suggesting that freezing process 

might be reponsible for further collapsing. However, the actual mechanisim is still 

under investigation. Sublimation or evaporation of melted ice crystal in PCVI can 

influence the restructuring of soot particles. Another possible explanation for the soot 

restructuring is that the increase of pressure inside the frozen drop can (Visagie, 1969) 

deform the soot structure. The average fragementation energies for dry and wet diesel 

soot are approximately 0.52×10-16 J and 1.2×10-10 J respectively (Rothenbacher et al., 

2008). Structural deformation of soot due to mechanical stress while freezing can alter 

the shape and maginitude of the soot-water contact angle and filling angle (Butt and 

Kappl, 2009). Change in the soot-water contact angle and filling angle can influence the 

capilary force, which can result collapsing of the soot structure.  

 

5.3.3 Optical properties of residuals 

Optical properties of nascent soot, as well as soot from supercooled droplet and ice 

crystal residuals were simulated using discrete dipole approximation (DDA) model. 

Figure 5-6 shows the spectral dependency of several optical properties, such as 

absorption (Cabs) and scattering (Csca) cross sections, and single scattering albedo (SSA) 

of soot residuals from supercooled droplets and ice crystal normalized by the 

corresponded property of nascent soot. DDA predicts higher optical cross sections and 

SSA for compact aggregates. Soot residuals from ice crystal have a slightly higher Cabs 

and a substantially higher scattering cross section Csca than the soot residuals from 

supercooled droplets. Similarly, a T-matrix simulation study showed an increase in Cabs 

and Csca at 870 nm for compact soot compared to less compacted soot. Less absorbing 
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material are exposed to the light when soot particles become collapsed, which should 

decrease the absorption, but at the same time, monomer-monomer interactions increase, 

resulting in a small enhancement of absorption (Liu et al., 2008). These results imply an 

overall higher SSA for collapsed soot particles with implications for the radiative 

forcing of soot processed by water and ice in clouds.  

Soot specific absorption can be enhanced when soot and water are mixed in a water 

droplet, and the degree of enhancement depends on the details of the soot-water mixing 

(e.g. the soot location within the water droplet). Absorption is maximized when the 

same soot mass is fragmented in the monomers and quasi-uniformly distributed inside 

the droplet (Mishchenko et al., 2014), which is a probable case to some extent as 

previously described for fragmentation of soot particles inside frozen drop.  

   

Figure 5-6: Normalized absorption and scattering cross-sections, and single scattering 
albedo (SSA). Optical cross-sections and SSA for supercooled droplet (SCD) and ice 
crystal (IC) soot residuals were normalized by the values obtained for nascent soot.  
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5.4 Conclusions 

This work investigates the effect of freezing and sub-freezing temperature during ice 

crystal and supercooled droplet formation, respectively, on individual soot particle 

morphology. Soot particles from ice crystal residuals show restructuring of soot, 

resulting in very compacted structures, compared to supercooled droplet residuals and 

nascent soot. Soot contained in ice crystals and supercooled cloud droplets can facilitate 

local warming and even evaporation of clouds (i.e. cloud burning effect) [Ackerman et 

al., 2000]. As we demonstrated that both supercooling of water and freezing in soot 

containing droplets can lead to soot restructuring, changing the soot optical properties, 

these results have implications to the radiative forcing due to soot in superocooled and 

ice clouds.  

 

5.5 References 

Adachi, Chung, S. H., Friedrich, H., and Buseck, P. R.: Fractal parameters of individual 

soot particles determined using electron tomography: Implications for optical 

properties, Journal of Geophysical Research-Atmospheres, 112, 2007. 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., 

Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, 

P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., 

Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., 

Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., 

Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black 

carbon in the climate system: A scientific assessment, Journal of Geophysical 

Research: Atmospheres, 118, 5380-5552, 2013. 

Brasil, A. M., Farias, T. L., and Carvalho, M. G.: A recipe for image characterization of 

fractal-like aggregates, Journal of Aerosol Science, 30, 1379-1389, 1999. 

Butt, H.-J. and Kappl, M.: Normal capillary forces, Advances in Colloid and Interface 

Science, 146, 48-60, 2009. 



 

107 
 

Chang, H. and Charalampopoulos, T.: Determination of the wavelength dependence of 

refractive indices of flame soot, Proceedings of the Royal Society of London. 

Series A: Mathematical and Physical Sciences, 430, 577-591, 1990. 

Colbeck, I., Appleby, L., Hardman, E., and Harrison, R. M.: The optical properties and 

morphology of cloud-processed carbonaceous smoke, Journal of Aerosol 

Science, 21, 527-538, 1990. 

Cziczo, D. J. and Froyd, K. D.: Sampling the composition of cirrus ice residuals, 

Atmospheric Research, 142, 15-31, 2014. 

Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M. A., Smith, J. 

B., Twohy, C. H., and Murphy, D. M.: Clarifying the dominant sources and 

mechanisms of cirrus cloud formation, Science, 340, 1320-1324, 2013. 

DeMott, P. J., Chen, Y., Kreidenweis, S. M., Rogers, D. C., and Sherman, D. E.: Ice 

formation by black carbon particles, Geophys. Res. Lett., 26, 2429-2432, 1999. 

Draine, B. T. and Flatau, P. J.: Discrete-dipole approximation for scattering 

calculations, JOSA A, 11, 1491-1499, 1994. 

Draine, B. T. and Flatau, P. J.: User guide for the discrete dipole approximation code 

DDSCAT 7.3, arXiv preprint arXiv:1305.6497, 2013. 2013. 

Dymarska, M., Murray, B. J., Sun, L., Eastwood, M. L., Knopf, D. A., and Bertram, A. 

K.: Deposition ice nucleation on soot at temperatures relevant for the lower 

troposphere, Journal of Geophysical Research: Atmospheres, 111, D04204, 

2006. 

Friedman, B., Kulkarni, G., Beránek, J., Zelenyuk, A., Thornton, J. A., and Cziczo, D. 

J.: Ice nucleation and droplet formation by bare and coated soot particles, 

Journal of Geophysical Research: Atmospheres, 116, D17203, 2011. 

Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H. L., and Toumi, R.: Ice 

nucleation on soot particles, Journal of Aerosol Science, 32, 199-215, 2001. 

Hansson, H. C. and Ahlberg, M. S.: Dynamic shape factors of sphere aggregates in an 

electric-field and their dependence on the Knudsen number, Journal of Aerosol 

Science, 16, 69-79, 1985. 



 

108 
 

Heymsfield, A., Baumgardner, D., DeMott, P., Forster, P., Gierens, K., and Kärcher, B.: 

Contrail Microphysics, Bulletin of the American Meteorological Society, 91, 

465-472, 2010. 

Hobbs, P. V.: Ice physics, Oxford: Clarendon Press, 1974, 1, 837, 1974. 

Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a 

review of results from laboratory experiments, Atmos. Chem. Phys. Discuss., 

12, 12531-12621, 2012. 

Huang, P.-F., Turpin, B. J., Pipho, M. J., Kittelson, D. B., and McMurry, P. H.: Effects 

of water condensation and evaporation on diesel chain-agglomerate 

morphology, Journal of aerosol science, 25, 447-459, 1994. 

Jacobson, M. Z.: Effects of Externally-Through-Internally-Mixed Soot Inclusions 

within Clouds and Precipitation on Global Climate†, The Journal of Physical 

Chemistry A, 110, 6860-6873, 2006. 

Kanji, Z. A., DeMott, P. J., Möhler, O., and Abbatt, J. P. D.: Results from the 

University of Toronto continuous flow diffusion chamber at ICIS 2007: 

instrument intercomparison and ice onsets for different aerosol types, Atmos. 

Chem. Phys., 11, 31-41, 2011. 

Kärcher, B., Busen, R., Petzold, A., Schröder, F. P., Schumann, U., and Jensen, E. J.: 

Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles: 2. 

Comparison with observations and sensitivity studies, Journal of Geophysical 

Research: Atmospheres, 103, 17129-17147, 1998. 

Kärcher, B., Möhler, O., DeMott, P. J., Pechtl, S., and Yu, F.: Insights into the role of 

soot aerosols in cirrus cloud formation, Atmospheric Chemistry and Physics, 7, 

4203-4227, 2007. 

Kärcher, B., Peter, T., Biermann, U. M., and Schumann, U.: The Initial Composition of 

Jet Condensation Trails, Journal of the Atmospheric Sciences, 53, 3066-3083, 

1996. 

Knopf, D. A. and Koop, T.: Heterogeneous nucleation of ice on surrogates of mineral 

dust, Journal of Geophysical Research: Atmospheres, 111, D12201, 2006. 



 

109 
 

Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B., Petters, M. D., 

Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and Shonija, N. K.: Cloud 

condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic 

soot particles, Physical Chemistry Chemical Physics, 11, 7906-7920, 2009. 

Köylü, Ü. Ö., Faeth, G. M., Farias, T. L., and Carvalho, M. G.: Fractal and projected 

structure properties of soot aggregates, Combustion and Flame, 100, 621-633, 

1995. 

Kulkarni, G., Pekour, M., Afchine, A., Murphy, D. M., and Cziczo, D. J.: Comparison 

of experimental and numerical studies of the performance characteristics of a 

pumped counterflow virtual impactor, Aerosol Science and Technology, 45, 

382-392, 2011. 

Lee, C. and Kramer, T. A.: Prediction of three-dimensional fractal dimensions using the 

two-dimensional properties of fractal aggregates, Advances in Colloid and 

Interface Science, 112, 49-57, 2004. 

Li, Z., Song, C., Song, J., Lv, G., Dong, S., and Zhao, Z.: Evolution of the 

nanostructure, fractal dimension and size of in-cylinder soot during diesel 

combustion process, Combustion and Flame, 158, 1624-1630, 2011. 

Liu, Mishchenko, M. I., and Arnott, W. P.: A study of radiative properties of fractal 

soot aggregates using the superposition T-matrix method, Journal of 

Quantitative Spectroscopy & Radiative Transfer, 109, 2656-2663, 2008. 

Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. 

Phys., 5, 715-737, 2005. 

Luo, C.-H., Grace Lee, W.-M., Lai, Y.-C., Wen, C.-Y., and Liaw, J.-J.: Measuring the 

fractal dimension of diesel soot agglomerates by fractional Brownian motion 

processor, Atmospheric Environment, 39, 3565-3572, 2005. 

Mikhailov, E., Vlasenko, S., Podgorny, I., Ramanathan, V., and Corrigan, C.: Optical 

properties of soot–water drop agglomerates: An experimental study, Journal of 

Geophysical Research: Atmospheres (1984–2012), 111, 2006. 



 

110 
 

Mishchenko, M. I., Liu, L., Cairns, B., and Mackowski, D. W.: Optics of water cloud 

droplets mixed with black-carbon aerosols, Opt. Lett., 39, 2607-2610, 2014. 

Mohler, O., Linke, C., Saathoff, H., Schnaiter, M., Wagner, R., Mangold, A., Kramer, 

M., and Schurath, U.: Ice nucleation on flame soot aerosol of different organic 

carbon content, Meteorologische Zeitschrift, 14, 477-484, 2005. 

Oh, C. and Sorensen, C. M.: The effect of overlap between monomers on the 

determination of fractal cluster morphology, Journal of Colloid and Interface 

Science, 193, 17-25, 1997. 

Persiantseva, N. M., Popovicheva, O. B., and Shonija, N. K.: Wetting and hydration of 

insoluble soot particles in the upper troposphere, Journal of Environmental 

Monitoring, 6, 939-945, 2004. 

Petzold, A., Döpelheuer, A., Brock, C. A., and Schröder, F.: In situ observations and 

model calculations of black carbon emission by aircraft at cruise altitude, 

Journal of Geophysical Research: Atmospheres, 104, 22171-22181, 1999. 

Petzold, A., Ström, J., Ohlsson, S., and Schröder, F. P.: Elemental composition and 

morphology of ice-crystal residual particles in cirrus clouds and contrails, 

Atmospheric Research, 49, 21-34, 1998. 

Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black 

carbon, Nature Geoscience, 1, 221-227, 2008. 

Richard, D., Glenar, D., Stubbs, T., Davis, S., and Colaprete, A.: Light scattering by 

complex particles in the Moon's exosphere: Toward a taxonomy of models for 

the realistic simulation of the scattering behavior of lunar dust, Planetary and 

Space Science, 59, 1804-1814, 2011. 

Rothenbacher, S., Messerer, A., and Kasper, G.: Fragmentation and bond strength of 

airborne diesel soot agglomerates, Particle and fibre toxicology, 5, 2008. 

Samson, R. J., Mulholland, G. W., and Gentry, J. W.: Structural-analysis of soot 

agglomerates, Langmuir, 3, 272-281, 1987. 

Scarnato, B., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W.: Effects of internal 

mixing and aggregate morphology on optical properties of black carbon using a 



 

111 
 

discrete dipole approximation model, Atmos. Chem. Phys. Discuss., 12, 26401-

26434, 2012. 

Schumann, U., Jeßberger, P., and Voigt, C.: Contrail ice particles in aircraft wakes and 

their climatic importance, Geophysical Research Letters, 40, 2867-2872, 2013. 

Targino, A. C., Krejci, R., Noone, K. J., and Glantz, P.: Single particle analysis of ice 

crystal residuals observed in orographic wave clouds over Scandinavia during 

INTACC experiment, Atmos. Chem. Phys., 6, 1977-1990, 2006. 

Tritscher, T., Jurányi, Z., Martin, M., Chirico, R., Gysel, M., Heringa, M. F., DeCarlo, 

P. F., Sierau, B., Prévôt, A. S., and Weingartner, E.: Changes of hygroscopicity 

and morphology during ageing of diesel soot, Environmental Research Letters, 

6, 034026, 2011. 

Twohy, C. H. and Poellot, M. R.: Chemical characteristics of ice residual nuclei in anvil 

cirrus clouds: evidence for homogeneous and heterogeneous ice formation, 

Atmos. Chem. Phys., 5, 2289-2297, 2005. 

Visagie, P.: Pressures inside freezing water drops, J. Glaciol, 8, 301-309, 1969. 

Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties of carbon 

and diesel soot particles, Atmospheric Environment, 31, 2311-2327, 1997. 

 

 

 

 

 

 

 



 

112 
 

6. Heterogeneous Ice Nucleation and Water 
Uptake by Free Tropospheric Particles 

 

Heterogeneous ice nucleation plays a major role in cloud microphysics. The effect of 

particle morphology and mixing state on heterogeneous ice nucleation is not well 

understood. During long-range transport, particles experience several atmospheric aging 

processes that alter their morphology and mixing state. Here, we report heterogeneous 

ice nucleation and water uptake activities of aged particles after long-range transport 

over the Atlantic Ocean. The onset (first observed nucleation event) conditions for 

heterogeneous ice nucleation and water uptake are investigated as a function of particle 

temperature (Tp) and relative humidity with respect to ice (RHice). Overall, at 223 K, ice 

nucleation occurred below homogeneous ice nucleation limit, suggesting that aged 

particles are efficient ice nuclei. Particles that nucleated ice are mostly mineral dust but 

often internally mixed with other material. 

 

6.1 Introduction 

In cloud ice nucleation directly affects the climate system, Earth’s atmosphere and the 

hydrological cycle by affecting precipitations, cloud electrification and atmospheric 

radiative transfer (Cantrell and Heymsfield, 2005). More than 50% of Earth’s 

precipitation originates via ice phase (Lau and Wu, 2003). Ice forms in the atmosphere 

through homogeneous or heterogeneous pathways. Heterogeneous ice nucleation occurs 

in presence of aerosol particles acting as ice nuclei (IN) at warmer temperature 

compared to homogeneous ice nucleation that occurs for water droplets below ~238 K 

(Pruppacher and Klett, 1997). Heterogeneous nucleation can occur at relatively lower 

relative humidity with respect to ice (RHice) whereas homogeneous ice nucleation 

requires highly supersaturated conditions with RHice~150-170% (DeMott et al., 2003a; 

Pruppacher and Klett, 1997). Heterogeneous ice nucleation plays an important role in 

the formation of mixed-phase clouds (mixture of supercooled liquid droplets and ice 
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crystals) and cirrus clouds (containing ice crystals) by altering ice crystal concentrations 

and shape (Avramov and Harrington, 2010; Morrison et al., 2012). These clouds further 

impact atmospheric radiative fluxes and the energy balance (Kärcher and Ström, 2003; 

McFarquhar et al., 2007). 

Heterogeneous nucleation can occur in the atmosphere by the following modes: 1) 

deposition in which water vapor in supersaturated conditions deposits on an IN and an 

ice crystal forms directly on it, 2) immersion freezing in  which an IN is immersed 

within a liquid droplet that freezes forming an ice crystal, 3) condensation freezing in 

which water in supercooled conditions condenses on an IN acting as a CCN and 

immediately freezes, or 4) contact freezing in which ice formation initiates at the water 

surface by collision between a supercooled droplet and an aerosol particle (Vali, 1985). 

A recent study summarized field measurements of ice crystal residues (the leftover 

aerosol after the ice is sublimated) and found that mineral dust is typically the most 

abundant residue in cirrus-forming regions (Cziczo and Froyd, 2014). Similarly, a 

previous ice nucleation study on free tropospheric particles, collected at Storm Peak 

Laboratory, located on Mt. Werner (elevation 3,200 m amsl) in western Colorado 

suggested that mineral dust or fly ash particles (33%) and metallic particles (25%) are 

major constituents of ice nuclei with contribution from both natural (~80%) and 

anthropogenic (~20%) sources (DeMott et al., 2003a). In some cases mineral dust 

particles were mixed with biological material as found in IN residues during some field 

studies (Pratt et al., 2009). Sulfate and organic aerosols were also found in tropical 

tropopause cirrus ice crystal residues (Froyd et al., 2010). While in other studies, ice 

crystal residuals from cirrus and mixed phase clouds showed the presence of metal-

bearing particles, organic material, sulfate, sea salt, carbonaceous and Ca-rich particles 

(Chen et al., 1998; Ebert et al., 2011). Some other field campaigns, soot and biomass 

burning particles in cirrus ice crystal residuals were found to be scarce (Cziczo and 

Froyd, 2014; Twohy and Poellot, 2005); however, in a different study a significant 
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fraction of soot has been observed in contrail residuals (Petzold et al., 1998). This field 

studies point out complex mixtures of ice nuclei that are present in the atmosphere. 

Laboratory experiments showed that anthropogenically emitted particles collected in 

Mexico City and dominated by an organic composition can efficiently initiate ice 

nucleation under conditions relevant for cirrus cloud formation (Knopf et al., 2010). 

Organic species can be present as liquids but also as amorphous solid particles 

(Virtanen et al., 2010). In the upper troposphere, at lower temperatures, organic species 

can be transformed into glasses. It was suggested that glassy aerosols may resist water 

uptake and may not initiate ice nucleation below ice saturation levels. However, other 

studies suggested that glassy aerosols likely influence heterogeneous ice nucleation in 

tropical tropopause cirrus clouds (Froyd et al., 2010; Murray, 2008). 

During long range transport, particles experience several aging processes including 

condensation of volatile organic compounds and hydrophilic material, oxidation by 

atmospheric oxidant such as O3, OH, NO3, and coagulation and mixing with other 

organic and inorganic materials (George and Abbatt, 2010; Liu et al., 2011; Seinfeld 

and Pandis, 2006; Wang et al., 2011). A laboratory study showed that the efficiency of 

deposition ice nucleation could be reduced by organic particles after exposure to O3 

(Wang and Knopf, 2011). Another laboratory study suggested that sulfate and organic 

coatings on mineral dust make them less effective ice nuclei (Cziczo et al., 2009). 

However, field measurements suggested that dust from North African and Asia can act 

as efficient ice nuclei even after long range transport (DeMott et al., 2003b; Sassen, 

2005).  

In this study, we report the onset conditions (first observed nucleation event) for 

heterogeneous ice nucleation in deposition and immersion modes, and the water uptake 

at four different temperatures by long-range transported and aged particles. These 

particles were collected in the free troposphere on top of the Pico Mountain, in the 

Azores, in the North Atlantic Ocean. We investigated four samples with different 

airmass ages and transport patterns, as modeled by the FLEXPART lagrangian transport 
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model. After the ice nucleation and water uptake experiments were concluded, the same 

substrates were used for morphological and elemental composition analysis of the 

particles deposited on them using scanning electron microscopy. We identified and 

characterized total 20 nucleated particles in two out of four samples.     

 

6.1.1 Experimental  

6.1.2 Sample collection 

Particle samples were collected at Pico Mountain Observatory (PMO) during summer 

2013. PMO (2225 m asl) is located in the summit caldera of the Pico mountain in Pico 

Island, in the Azores, Portugal (38.47°N, 28.40°W). Samples were deposited on silicon 

nitride coated discs (3 mm diameter, PELCO®, Ted Pella, Inc.) using a four-stage 

cascade impactor (MPS-4G1). Samples used for this study were collected on the second 

stage of the imapctor with a 50% cut off diameter of 0.50 m. In addition, particle 

concentrations were measured using a 2 channels (0.3-5m; 0.4-5m) laser particle 

counter (MetOne GT521). Four high-volume samplers (Hi-Vols; EcoTech HiVol 3000) 

were used to collect PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 μm) 

aerosol on quartz filters (Whatman, 8x10 inch Quartz Microfibre Filters, CAT No. 

1851-865) for detailed chemical characterization. Organic carbon (OC) and elemental 

carbon (EC) content was determined from the quartz filters using an OC: EC analyzer 

(Sunset Laboratory Inc., Model 4) that uses a thermo-optical transmittance method; the 

reported results were an average over at least 3 measurements. We also collected 

additional samples on nucleopore filters (100 nm pore, Whatman) and Transmission 

electron microscope (TEM) lacey formvar grids (300 mesh, Ted Pella, Inc.) using a 

custom made sequential sampler for microscopy analysis. Note that additional 

microscopy samples and samples from high-volume samplers were collected around 

same time and duration but from different sampling line. Table 1 reports the sampling 

times and conditions. 
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Table 6-1: Sampling date, duration, plume age and mean particle concentrations (MPC) 
for two size-channels (PM0.3 for particles between 0.3m and 5m; and PM0.4 for 
particles between 0.4m and 5m). 

Sample# 
Sampling date  

(2013) 
Sampling 

times 
Sampling 

duration (hr) 
Plume age 

(day) 
MPC (# cm-3) 

PM0.3 PM0.4 

S1 Aug 23 20:49-22:18 1.5 11.6 13.2 1.4 

S2 Aug 27-28 19:55-14:15 18.3 12.3 6.6 0.7 

S3 Sept 07-08 16:25-15:32 23.1 12.0 1.1 0.2 

S4 Sept 19-20 16:48-14:00 21.2 17.3 0.4 0.1 

 

6.1.3 Retroplume analysis 

Retroplume analysis were conducted using the Lagrangian particle dispersion model 

FLEXPART (Stohl et al., 2005). Plots in Figure 6-1 show a total of 10 days of transport. 

The left panel shows a height vs. time plot. The dashed lines indicate the mean transport 

height and ± 1 standard deviation. The right-hand plot exhibits the column-integrated 

horizontal transport from all height levels. The average location at each upwind time is 

indicated by the black numeral on this panel as well. We also computed average plume 

age using CO tracer concentration. The CO tracer concentration were computed using 

retroplumes and anthropogenic CO emission inventories. Total 20 day CO 

concentrations were divided into 80 age bins. Average plume age was estimated as total 

contribution of CO concentrations in each bin divided by total CO concentrations.  The 

air mass that reached PMO during the collection of sample S1 originated in North 

America (mostly Canada). Sample S2 was also affected by North American air masses, 

but probably those air masses were mixed with marine air (see height vs.time plot) as 

the air reaching PMO spent a significant amount of time over the Atlantic Ocean. Airm 

asses for S2 were mostly from the Northern part of USA.  The air masses correspondent 

to the collection peridod for sample S3 was also from North America, with 

contributions from the entire USA. S3 is also influenced by marine air. The air mass S4 
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was collected from, is the  most aged (~ 17.3 days) with evident air recirculation over 

the ocean.  Table 6-1 reports the average estimated plume age for each sample. 

 

 

Figure 6-1: Retroplumes from FLEXPART for the time periods of collection of the 
four samples discussed in this paper. 

(S1) Aug 23 

(S2) Aug 27-28 

(S3) Sept 07-08 

(S4) Sept 19-20 
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6.1.4 Single particle analysis 

Single particle analysis was carried out using scanning electron microscopy (SEM) on 

the same silicon nitride substrates, but only after having concluded the ice nucleation 

experiments. This sequence was chosen to avoid affecting the IN findings by potential 

modifications of the particles by the microscope vacuum and/or the electron beam 

energy. Particles were imaged using a field emission SEM (FE-SEM) (Hitachi S-4700). 

Later SEM images were processed to determine the particle morphology (shape and 

size) and the mixing state. In this study, the diameter of each particle is expressed in 

terms of the projected area equivalent diameter (DAeq) that is defined as the diameter of 

a spherical particle of the same projected area. Energy dispersive X-Ray spectroscopy 

(EDS) analysis was conducted on selected particles to analyze the elemental 

composition and assess the particle mixing. In addition to silicon nitride substrates TEM 

grids were also examined to investigate particle morphology and mixing state. 

 

6.1.5 Ice nucleation apparatus 

Ice nucleation and water uptake experiments were conducted using a custom built 

apparatus developed at Stony Brook University. The apparatus consists of an ice 

nucleation cell (INC) and an optical microscope. The experimental set up and methods 

have been discussed in previous studies in details (Knopf et al., 2010; Wang and Knopf, 

2011). Here we provide a brief description. The optical microscope was operated in 

reflected light mode and was coupled with a digital camera and imaging software that 

monitors the entire sample area and any change in particle size and phase. The cell is 

<0.8 cm3 in volume and 1 mm in diameter. Once the substrate was placed onto the 

cooling stage of the INC, particles were exposed to humidified nitrogen gas (N2, ultra-

high purity) flowing at 1 standard liter per minute. Humidified N2 flow was generated 

by passing N2 gas through a temperature controlled water reservoir. The partial pressure 

of water within the humidified N2 gas was adjusted by changing the temperature of the 

water reservoir and mixing the humidified flow with another N2 dry flow. The 
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temperature of the cooling stage was controlled by a heating foil while a constant flow 

of liquid nitrogen was supplied. The temperature of the cooling stage was measured by 

a temperature sensor (Pt100). The particle temperature (Tp) as low as 200 K and RHice 

up to water saturation can be achieved inside the INC. The dew point (Td) was measured 

by a chilled mirror hygrometer (GE Sensing) at the outlet of the INC in a range between 

203 and 293 K with an uncertainty better than ±0.15 K (Knopf et al., 2010). The Tp and 

Td values were used to calculate the relative humidity with respect to water (RH) and 

the relative humidity with respect to ice (RHice) using the following equations 

ܪܴ                                          ൌ
௣ಹమೀ
బ ሺ்೏ሻ

௣ಹమೀ
బ ሺ ೛்ሻ

                                                                        (1) 

௜௖௘ܪܴ                                    ൌ
௣ಹమೀ
బ ሺ்೏ሻ

௣ಹమೀ
೔೎೐ ሺ ೛்ሻ

                                                                    (2) 

Where ݌ுమை
଴ ሺ ௗܶሻ  is the saturation vapor pressure at Td and ݌ுమை

௜௖௘ ሺ ௣ܶሻ  and ݌ுమை
଴ ሺ ௣ܶሻ 

represent the saturation vapor pressure over ice and water, respectively at Tp. ݌ுమை
௜௖௘ ሺ ௣ܶሻ, 

ுమை݌
଴ ሺ ௣ܶሻ and  ݌ுమை

଴ ሺ ௗܶሻ were calculated using the parameterizations by Murphy and 

Koop (2005). 

 

6.1.6 Ice nucleation and water uptake experiments 

First, Td was set to a desired temperature by adjusting the dry and humidified N2 gas 

flow; then the ice nucleation experiments started, at least after 30 minutes of stable Td. 

Once Td was stable, RHice was increased by cooling Tp at a rate of 0.1 K/min. Four Td 

(223, 238, 248 and 258 K) were selected for this study to cover typical temperature 

ranges of cirrus and mixed phase clouds. The RHice was continuously increased until ice 

formation or water uptake was observed (Dymarska et al., 2006; Wang and Knopf, 

2011; Wang et al., 2012).  

Optical images of the sample, as well as Td and Tp were simultaneously recorded every 

0.02 K (i.e. every ~12 s). The optical microscope allows the visual identification of 



 

120 
 

water uptake and ice nucleation by monitoring the particle size and phase for particles 

larger than 0.2 and 1 m when using a magnification of 1130x and 230x, respectively. 

We counted a freezing event as an immersion freezing if water uptake by the particle 

was observed prior to formation of ice, while we counted the event as deposition 

nucleation if no water uptake was observed before the ice formation. We report the 

onset conditions (first particle observed to nucleate ice) of RHice and Tp. Note that in 

some cases, more than one particle nucleated ice simultaneously. In those cases, one ice 

nucleation event was considered and we report the first observed ice formation, but all 

the ice nuclei were counted.   

After each ice nucleation event, the microscope objective was focused on to the ice 

crystal and a calibration experiment was conducted. Tp was calibrated against Td 

(measured by the hygrometer) by measuring the projected surface area (SA) of the ice 

crystal. At the beginning of the calibration experiment, RHice was set to below 100%, 

(Tp > Td) so initially the ice crystal would shrink (decrease in SA of ice crystal). 

Subsequently, Tp was set to decrease at 0.1K /min to increase RHice. Constant SA of ice 

crystal represents 100% RHice, indicating that Td is equal to the temperature of the 

substrate. After RHice exceeds 100%, the ice crystal starts growing (increase in SA of 

ice crystal). The difference between Tp and Td at 100% RHice (constant SA of ice 

crystal) represents the temperature offset for which Tp has to be calibrated. 

Experimental uncertainties were calculated from the uncertainties of ΔTd < ±0.15 K and 

ΔTp < ±0.0.3 K, resulting in ΔRHice < ±9 % for 223K and ΔRHice < ±3 % for 260 K 

(Knopf et al., 2010; Wang and Knopf, 2011). Error bars presented in the plots are the 

standard deviation of the observed RHice or experimental uncertainties, whichever is 

larger. 
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6.2 Results and Discussions 

6.2.1 Particle concentrations 

Figure 6-2 shows particle concentrations time series of 5-minute averaged data during 

the times of collection of the aerosol samples used for the ice nucleation experiments. 

Particle concentrations were higher during S1 and S2 compared to S3 and S4. The 

highest number concentration was found during S1, on average #13.2/cm3 and #1.4/cm3 

in channel 1 and channel 2 respectively. Note that the sampling duration for S1 was 

only 1.5 hrs, while the other samples were collected for 18-23 hrs. Sampling duration 

and mean particle concentration are reported in Table 6-1. Relatively smaller particles 

were present during the time that S1 was collected, while larger particles dominated at 

least half of the time period in which S4 was collected.  

 

  

Figure 6-2: Particle concentrations from a 2-channel (0.3-5m; 0.4-5m) optical 
particle counter. 
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6.2.2 Particle morphology and mixing state 

The mean DAeq ranged from 0.56 m to 1.15 m. The average number density of 

particles (Nd) repoted in Table 6-2, was calculated using low magnification SEM 

images obtained from different portions (15 locations) of the substrate. The mean Nd 

ranged from 1.2×105 mm-2 to 5.4×105 mm-2.  The surface area (Ns) avilable for ice 

nucleation expeiments on the substrate was calculated from Nd, DAeq and the sample 

area observed in the ice nucleation experiments. The value of Ns ranged from 0.06 to 

0.23 mm2. 

Table 6-2: Sample ID, number of single particles analyzed at the electron microscope 
(n), mean area equivalent diameter (DAeq), mean particle number density (Nd) on the 
substrate exposed during the ice nucleation experiments and total surface area of the 
particles (Ns) available for ice nucleation. The numbers in parentheses represent the 
standard deviations for DAeq and Nd and uncertainties for Ns propagated from DAeq and 
Nd. 

Sample# n DAeq [m] Nd [×105 mm-2] Ns [mm2] 
S1 324 0.56 (0.63) 3.0 (3.3) 0.06 (0.03) 
S2 1315 0.68 (1.13) 5.4 (1.8) 0.15 (0.02) 
S3 431 0.98 (1.29) 3.9 (2.6) 0.23 (0.06) 
S4 464 1.15 (1.48) 1.2 (1.8) 0.10 (0.05) 

 

Figure 6-3 shows typical SEM images of the four samples. S1 was dominated by 

smaller particles (mostly soot). However, soot particles were substantially coated with 

other material. S2 was dominated by salt particles and dust mixed with salt particles. In 

S3 we observed various internally mixed particles of mineral dust, salt, soot and sulfate. 

S4 was dominated by dust and soot particles and we observed internally mixed soot and 

dust particles here as well. In general, most of the particles in all the samples were 

coated and most of the particles were internally mixed. For example, TEM images 

(Figure 6-4 ) of S3 shows coated dust, organic particles, and soot and sulfate paticles 

embedded within organic particles.  
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Figure 6-3: Typical SEM images of the four samples.  

 

Table 6-3: Organic carbon (OC), elemental carbon (EC) and estimated organic mass 
(OM) from aerosol samples collceted over periods partially overlapping with the 
collection times of the samples used in the ice nucelation analysis. 

Sample# OC [g m-3] EC [g m-3] OM [g m-3] 
S1 2.48 (0.13) 0.041(0.003) 4.47 (0.24) 
S2 1.30 (0.09) 0.049 (0.002) 2.35 (0.16) 
S3 0.43 (0.04) 0.067 (0.004) 0.77 (0.08) 
S4 0.20 (0.03) 0.011(0.003) 0.36 (0.06) 

 

 

S1 S2 

S3 S4 
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Figure 6-4: TEM images of S3. a) mineral dust coated with organic material b) organic 
particle c) soot coated with organic material and d) sulfate particle trapped inside 
organic particle. 

 

Table 6-3 shows the measured organic carbon (OC) and elemntar carbon (EC) 

concentrations. The mean EC concentraion was in the range of 0.011g m-3  to 0.067 g 

m-3
.
 From OC, we estimated the organic mass (OM) assuming and OM:OC ratio of 1.8 

(Pitchford et al., 2007). The estimated OM ranged from 0.36 g m-3 to 4.47 g m-3 with 

the highest concentration found during S1 and the lowest concentration found during S4 

that was dominated by dust particles. Note that concentration of OM in IN samples may 

not completely represent the concentration measured by EC/OC analyzer as quartz 

filters were collected over different time duration with partial overlap with IN sample 

collection times.  

a) b) 

c) d) 
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6.2.3 Onset conditions for deposition ice nucleation  

The mean onset conditions of the deposition nucleation experiments were determined as 

a function of Tp and RHice as shown in Figure 6-5. Each data point is the mean of at least 

three onset condition values. At 223 K, particles nucleated via deposition mode at mean 

RHice values of 112%-128%, lower than water saturation and the homogeneous freezing 

limits (Koop et al., 2000). S1 exhibited higher RHice of 128%, whereas all the other 

samples nucleated within a very close range of RHice values (112%-116%).  

The SEM analysis shows that S1 was mostly dominated by a higher abundance of soot 

particles (which typically is co-emitted during combustion processes together with 

organic compounds) compared to other samples which were dominated by dust and salt 

particles. In addition, particles in S1 were smaller in size than for all the other samples. 

These might be possible reasons for the slightly higher mean RHice observed for S1 with 

respect to the other samples. Wang et al. (2012) suggested that marine influenced 

samples have higher propensity to initiate ice nucleation via deposition mode compared 

to samples containing anthropogenic organics. However, the differences of RHice 

between the samples are not significant and lie within the experimental uncertainties. 

SEM and TEM images provided evidences that the majority of the particles were coated 

with organics in S3 (Figure 6-4). SEM images for other samples show substantial 

coating on particles but TEM analysis is required to verify presence of organic coating. 

It is possible that most of the organic coatings or pure organic particles turned into 

glassy state at the low temperatures used in our experiment. This might have resulted in 

the small range of RHice values observed for the different samples, even when the 

relative abundance of particle types and their sizes showed significant variability from 

sample to sample.  
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Figure 6-5: Mean onset conditions for ice nucleation via deposition mode (Dep.Mode), 
immersion mode (Imm.mode) and water uptake (WU). Total 54 ice nucleation events 
(25 deposition mode and 29 in immersion mode). Error bars are the standard deviation 
of the observed RHice or experimental uncertainties, whichever is larger. (Note that WU 
for S1 at 238 K is not available).  

 

6.2.4 Onset conditions for water uptake and immersion nucleation 

The mean onset conditions of immersion freezing and water uptake by particles on the 

four samples are also presented in Figure 6-5. The dotted lines show saturation (100%), 

90%, 80%, 70%, 60% and 50% RH. The solid line indicates the RHice thresholds for 

homogeneous ice nucleation. Water uptake by four samples occurred between 42% and 

66% RH for temperatures between 238 K and 267 K. On average, S2 is consistently the 

most effective in up-taking water in the entire temperature range. Sample S2 took up 

water at lower RH values in the range of 42-47% compared to S1 at RH of 57-61% at 

warmest temperature investigated (267 K) here. S3 and S4 typically took up water at 
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intermediate RH values 53-56% and 49-53% respectively. This suggests that particles 

of S2 were more hydrophilic compared to the ones of S1. This may be due to the 

presence of a higher number of carboxylic groups on particles from the S2 than particles 

from the S1 samples (Wang et al., 2012). The mean onsets of water uptake by S2 

samples increased by ~4% from ~44% to 48% within 24 K range, when Tp decreased 

from 267 K to 242 K. 

Water uptake was observed at 258 K but no ice formation was observed before reaching 

water saturation for all four samples. Ice nucleation occurred via immersion freezing at 

238 K and 248 K. Overall, ice nucleation occurred below water saturation. Results 

showed no significant differences in RHice between the samples in the immersion 

freezing mode.   

 

6.2.5 Identification of ice nuclei 

Out of four samples, we were able to identify a total of 20 ice nuclei from 2 samples (S2 

and S4). Precisely, we identified 11 and 9 ice nuclei from S4 and S2 samples, but we 

were not able to identify ice nuclei from the other 2 samples (S1 and S3) in part due to 

the fact that the middle portion of the substrate of S1 was damaged after the ice 

nucleation experiment while taking it out from INC. Some of the ice nuclei identified 

nucleated multiple times, in those cases, one ice nucleation event was considered, but 

all the ice nuclei were counted. Table 6-4 explains the pattern of ice nucleation for the 

identified particles, meaning how many particles nucleated ice at different temperatures 

and if same particle nucleated multiple times as well as different temperatures. It is 

interesting to note that in some cases one particle nucleated multiple times at two 

different temperatures (238 K and 248 K) in immersion mode. However, not a single 

particle that nucleated at 223 K by deposition mode was observed to initiate nucleation 

either at 238 K or 248 K by immersion freezing.  
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Table 6-4: Pattern of ice nucleation for identified particles. In parenthesis is the number 
of nucleation events. P represents particle. 

Sample 223 K (dep. mode) 238 K (imm. mode) 248 K (imm. mode) 
S1 All different (7) 1 P 3 times (3) 1 P same as -35C 2 times (3) 

S2 
1 P 4 times; 

2 Ps 3 times (6) 
All different (4) 1 P same as -35C 2 times (3) 

S3 
1 P 5 times; 
1 P 3 times; 

3 Ps 2 times (7) 

1 P 2 times (4) 
 

2 Ps same as -35C 
and 1 of them nucleated 2 times 

(4) 

S4 2 Ps 2 times (5) 1 P 2 times (5) 1 P same as -35C (3) 

 

Examples of ice nuclei observed in S2 are exhibited in Figure 6-6. The diameter (DAeq) 

of the ice nuclei were in the range of 0.84 m to 5.54 m with a mean of 2.88 m. The 

mean aspect ratio and roundness of the ice nuclei were 1.36 and 0.67 respectively. 

Figure 6-7 shows some example of ice nuclei from sample S4. The DAeq of the ice 

nuclei of S4 sample were in the range of 1.94 m to 6.32 m with a mean of 3.52 m. 

The mean aspect ratio and roundness of the ice nuclei observed at S4 were 1.56 and 

0.56 respectively. 

Particles were mostly composed of Si, Al, O and in some case, Na, S and K, C, Fe, Cl. 

The elemental compositions are shown in Figure 6-6 and 6-7 for the particles identified 

as ice nuclei.  

   

Figure 6-6: Examples of identified ice nuclei from S2 sample. The asterisk (*) indicates 
particles that nucleated more than once.  

 

S2 (223 K) * 

[Ca,O,S,Si,Al,Na] 

S2 (238 K)  

[Al,Si,O,K,S] 

S2 (238 and 248 K)*  

[O,Al,Si,S,Na] 
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Figure 6-7: Examples of identified ice nuclei from S4 sample. The asterisk (*) indicates 
particles that nucleated more than once. 

 

6.3 Conclusions 

This study reports on the ice nucleation and water uptake by aged free tropospheric 

paticles and discusses their onset conditions in terms of relative humidity with respect 

to ice and tempeature. Almost all the particles in the investigated samples were 

internally mixed with both organic and inorganic material. Results suggested that aged 

particles sampled at Pico mountain were possibily more hydrophilic, and thus very 

efficient in water uptake at low relative humidity. Our results suggest that in the specific 

case of our sample conditions free tropospheric aged particles are efficient ice nuclei in 

deposition mode at 223K and can serve as efficient ice nuclei for cirrus formation.  

 

6.4 Future work 

The results presented in this chapter are preliminary at this time. So far we investigated 

the elemental composition of a limited number of particles on the substrates collected 

and analyzed for IN and water uptake. We plan to investigate a significantly higher 

number of particles and to classify them based on their elemental composition. 

Detailted chemical analyses are needed to better understand the chemical characteristics 

of the particles such as quantification of inorganic and organic anions as well cations in 

terms of bulk properties from high volume quartz samples that were collected around 

same time. Future work will develop further this analysis, and include an in depth 

interpretation of the results and a discussion of their implications. 

S4 (238 and 248 K)* 

[O,Si,Al,S,Ca,Mg,Fe,N,C

S4 (238 K) 

[O,Si,S,Al,Mg,C,N,Fe] 

S4 (223 K)* 

[O,Si,Al,S,K,Na,Cl,Fe,Mg] 
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For this study (2013 samples), particles were collected on silicon nitride coated discs. 

Future studies will be conducted at the PMO site by collecting samples on thin silicon 

nitride window, this will facilitate the TEM analysis aimed at identifying the ice nuclei. 

A significant advantage of using TEM instead of SEM is that TEM can provide 

valuable information about organic coatings and the particle internal structure. In 

addition, using silicon nitride windows will allow our colleagues at Lawrence Berkeley 

National Labolatory to investigate the samples using scanning transmission X-ray 

microscopy with near edge X-ray absorption fine structure spectroscopy 

(STXM/NEXAFS). STXM/NEXAFS can provide a spatial mapping of soot, organic 

carbon and inorganic components with chemical bonding information within inividual 

particles.  

In this study, we investigated ice nucleation by particles in the size range of 0.5 -2.0 m 

(aerodynamic diamter) for four temperatures (223, 238, 248 and 258 K). Future study 

will also investigate ice nucleation by relatively smaller particles (0.5-0.15 m)  and 

also at a larger number of temperatures (possibly 6 additional temperatures); this will 

allow to expand the investigation to conditions relevant to the upper troposphere and ice 

cloud formation.  
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Appendix 

 

A.1 Permission for Chapter 2 

Permission to use copyrighted material from the Environmental Science & Technology 
journal. 
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A.2 Permission for Chapter 3 

Permission to use copyrighted material from the Nature Communications journal. 
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