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Abstract  

The research presented in this dissertation investigates whether an increased coercivity of 

Neodymium-Iron-Boron (Nd2Fe14B) based bulk magnets at elevated temperature (160°C), 

which is now only obtainable by substituting ~7wt% dysprosium (Dy) for a portion of 

neodymium (Nd), can be achieved through specific microstructural modifications with 

decreased Dy concentrations. The approach is to reduce the size of individual 

crystallographically-aligned grains in the magnet so that each grain can only support a 

single magnetic domain and to simultaneously dilute the Nd-Fe inter-granular phase 

present in conventional magnets with a non-Fe-containing, Nd-rich phase (Nd-Cu alloy) in 

an attempt to partially magnetically isolate the individual crystallites. The results of this 

research show that hot-deformed bulk magnets with the microstructural features described 

above have similar coercivity to commercially sintered magnets that are used in traction 

motor of electric and hybrid vehicles. The increase in coercivity due to the modification of 

intergranular phase is analyzed in the framework of what would be expected from the 

partially magnetic isolation of the individual grains. 
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Chapter 1                                   

Introduction  

1.1 Research Goal 

The overall goal of this research is to determine whether the coercivity of bulk rare-earth 

magnets could approach the maximum value possible for RE2TM14B (Rear Earth-

Transaction Metal-Boron), if the rare-earth bulk magnets are comprised of 

crystallographically-aligned, submicron (RE2TM14B) grains and the original Fe-containing 

Nd-rich intergranular phase is diluted by other non-ferromagnetic phase. In such a case, 

each grain would only support a single magnetic domain, and would be partially 

magnetically isolated from neighboring grains. The coercivity would then be large enough 

to eliminate the need for dysprosium (Dy) in the magnets used in traction motors of electric 

and hybrid vehicles. There are several tasks that must be performed to satisfy the overall 

research goal.  
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1. Determine the minimum amount of dysprosium needed in Nd2Fe14B-based magnets 

to operate in transaction motors of hybrid and electric vehicles based on currently 

commercial manufacturing processes. 

2. Determine the impact of hot-deformation parameters on the microstructural and 

magnetic properties of magnets.  

3. Determine whether it is possible to produce hot-deformed bulk magnets that are 

comprised of crystallographically-aligned, submicron Nd2Fe14B grains when the 

inter-granular phase is diluted by non-ferromagnetic Nd-rich phase. 

4. Determine whether the developed hot-deformed magnets whose microstructure is 

dramatically different from that of commercial sintered magnets can still satisfy the 

requirement for transaction motors used in hybrid and electric vehicles but with less 

amount of dysprosium. 

5. Analyze the physical mechanism behind the phenomena that the coercivity is 

increased by modifying the inter-granular phase with a non-ferromagnetic phase. 

 

1.2 Motivations for Research 

The technological motivation for this research is to reduce the amount of Dy needed in 

magnets used for traction motors of electric and hybrid vehicles. About 4.5 million hybrid 

and electric vehicles were sold worldwide in 2012, and each requires ~1kg of Nd2Fe14B-

based permanent magnets. Dy, substituted for some of the neodymium in Nd2Fe14B 

magnets to retain high coercivity ( 0 CHµ ) at elevated temperature (~160°C), is more 

expensive than Nd. In commercially manufactured sintered Nd2Fe14B-based magnets, 
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~7weight percent of Dy is added to increase the coercivity up to ~0.9T (the required value 

for traction motors) at 160°C. This increases the cost of the materials from ~$35/kg to 

~$140/kg. The high price and low availability of Dy lead to a large and growing demand 

among auto manufacturers for magnets with less or no Dy that exhibit sufficient coercivity 

and remanence (Br).  

 

The scientific motivation for the proposed research is to improve our current understanding 

of demagnetization physics in these bulk rare-earth magnets, and to improve our 

understanding of the selective dissolution and re-precipitation phenomena operating during 

the hot deformation process to make Nd2Fe14B-based magnets. Though there are bulk rare-

earth magnets reported recently that have increased coercivity after the non-magnetic Nd-

rich phase diffusion process, the amount or Nd-rich phase is significantly larger than that 

used in the process reported in this research and the physical mechanism behind the 

phenomena is poorly understood. The work in this research produces Nd2Fe14B-based 

magnets by a more simplified approach and analyzes the microstructural properties and 

demagnetization curves of those magnets in the framework of a phenomenological model 

and stray field theory. This information will be a significant addition to the scientific body 

of knowledge.  

 

1.3 Organization of the Dissertation 

The following chapters will first give the reader a general background in the intrinsic 

magnetic properties of bulk Nd2Fe14B-based magnets, general demagnetization physics 
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and a brief description of current commercial manufacturing processes and hot-

deformation process. A phenomenological model used to analyze the effect of 

microstructural properties on coercivity of magnetic materials will be introduced.  

Secondly, the experimental techniques used in this research to characterize the 

microstructural and magnetic properties of materials will be described. Thirdly, the 

minimum amount of Dy currently needed in RE2TM14B magnets to operate in the 

transaction motors of hybrid and electric vehicles will be determined. Fourthly, the optimal 

parameters for hot-deformation process that produces bulk magnets with 

crystallographically-aligned submicron crystallites by means of a selective dissolution and 

re-precipitation mechanism will be determined. Finally, the effect of diluting the inter-

granular phase by adding non-ferromagnetic Nd-rich phase on the magnetic properties of 

materials and the physics mechanism behind this phenomena will be discussed.    
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Chapter 2                                      

Background  

In this chapter, the physics background of magnetic materials will be introduced. The 

effects of chemical composition and microstructural properties on the magnetic 

performance of Nd2Fe14B-based permanent magnets will be discussed. Two major 

processes to manufacture bulk Nd2Fe14B-based permanent magnets will be introduced and 

the differences in microstructural properties of these bulk magnets will be compared. A 

phenomenological model used to analyze the effect of microstructural properties on 

coercivity of magnetic materials will be introduced. 

 

2.1 Intrinsic Magnetic Properties 

Saturation magnetization (MS), magnetocrystalline anisotropy (K1), and the exchange 

constant (A) are three intrinsic magnetic properties of permanent magnetic materials. 

Magnetization is the vector sum of atomic magnetic moments per unit volume. When an 
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external magnetic field is applied to a magnet, the atomic magnetic moments inside the 

magnet rotate to align with the external field to reduce the magnetostatic energy. This 

increases the magnetization of the magnet in the direction of the externally applied field. 

If this external field is large enough, the magnetization of the material becomes saturated 

and does not increase with the increasing external magnetic field. This maximum value is 

called the saturation magnetization (MS). At saturation, all of the magnetic moments are 

mutually aligned along the external field. 

 

If the magnetic properties of a material vary with the directions in which they are measured, 

this magnetic material is considered to be magnetically anisotropic. Magnetocrystalline 

anisotropy is an intrinsic property of a material. Anisotropic magnetic materials have a 

magnetocrystalline easy direction(s) and a magnetocrystalline hard direction(s). The 

magnetocrystalline easy and hard directions represent the energetically favorable and 

unfavorable directions of spontaneous magnetization, respectively. These directions are 

determined by the specific crystal structure of the material and the interactions between the 

atomic moments of the atoms in the crystal structure. The physical origin of 

magnetocrystalline anisotropy is the spin-orbital coupling, and the strength of it is 

represented by the anisotropy constant, K1. Since K1 only depends on the crystal structure 

and the atoms in the crystal structure, it is not sensitive to the microstructure of the material. 

 

The crystal anisotropy field (HK) is a virtual field that would have to be applied parallel to 

the hard direction to demagnetize a single domain particle by rotating the MS vector against 

the crystallographic anisotropy that tends to keep it oriented in the magnetocrystalline easy 



7 

direction. This anisotropy field is expressed in terms of MS and K1 by the following 

equation: 

 12
K

S

KH
M

=   (2.1) 

 

Exchange energy, exE , which describes the exchange coupling between two adjacent 

atoms is responsible for ferromagnetism.  

 22 cosex ijE JS ϕ= −   (2.2) 

J  is the exchange integral and represents the exchange effect. ijϕ  is the angle between 

the two adjacent atoms with same spin S . In ferromagnetic materials ( 0J >  ), when the 

two neighboring atomic magnetic moments are aligned parallel, the exchange energy 

decreases to the minimum. The exchange constant (A) is used when the exchange energy 

is expressed in a continuum form. 

 2 cos( )ex
dE A
dx
ϕ

= −   (2.3) 
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2.2 Effect of Chemical Compositions on MS and HK 

 

Figure 2-1 The tetragonal unit cell of the Nd2Fe14B crystal structure, image created 

with Pearson’s Crystal Data software using a crystallography data base[1]. 

 

Both saturation magnetization (MS) and the crystal anisotropy field (HK) are sensitive to 

the chemical compositions of the materials. The extension of Vegard’s law is used to 

estimate the effect of chemical compositions on changing MS and HK of magnetic materials. 

Figure 2-1 displays the tetragonal unit cell of an Nd2Fe14B crystal structure. Many other 

elements can replace the Nd, Fe, and B of an Nd2Fe14B compound without changing the 

crystal structure. Different substitutive elements have different impacts on the magnetic 
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properties. For example, if Dy is substituted for some of the Nd in an Nd2Fe14B material, 

MS will decrease and HK will increase. The reason for the decrease in MS is that Nd and Fe 

magnetic moments are coupled ferromagnetically, while Dy and Fe magnetic moments are 

coupled antiferromagnetically[2]. The increase in HK is due to the larger value of HK in 

Dy2Fe14B as compared to Nd2Fe14B. It has been shown that MS and HK of [DyxNd1-x]2Fe14B 

vary linearly with “x”  between the values of MS and HK for the end compounds 

Nd2Fe14B and Dy2Fe14B; MS and HK of Nd2[FemCo1-m]14B vary linearly with “m” 

between the values of  MS and HK for the end compounds Nd2Fe14B and Nd2Co14B[3, 4]. 

Then, the saturation magnetization and anisotropy field of [DyxPryNd1-x-y]2[Fe1-mCom]14 

materials can be estimated by applying Vegard’s law to the MS and HK of the end 

compounds RE2Fe14B (RE=Nd, Pr, Dy). The relationships are shown in Equation (2.4) and 

(2.5).  

 
1 2 1 14 2 14 2 14 2 14

2 14 2 14

2 14 2 14

[ Pr ] [ ] [ ] [ ] [ ]

[Pr ] [ ]

[ ] [ ]

( )

( )

( )

x y x y m mS Dy Nd Fe Co B S Nd Fe B S Dy Fe B S Nd Fe B

S Fe B S Nd Fe B

S Nd Co B S Nd Fe B

M M x M M

y M M

m M M

− − −
= + × −

+ × −

+ × −

  (2.4) 

 
1 2 1 14 2 14 2 14 2 14

2 14 2 14

2 14 2 14

[ Pr ] [ ] [ ] [ ] [ ]

[Pr ] [ ]

[ ] [ ]

( )

( )

( )

x y x y m mK Dy Nd Fe Co B K Nd Fe B K Dy Fe B K Nd Fe B

K Fe B K Nd Fe B

K Nd Co B K Nd Fe B

H H x H H

y H H

m H H

− − −
= + × −

+ × −

+ × −

  (2.5) 

The effect of Co substituted for some of the Fe on varying MS and HK can be calculated 

by: 

 
2 14 2 14 2 1 14 2 14[ ] [ ] [ [ ] ] [ ]( )

m mS Nd Co B S Nd Fe B S Nd Fe Co B S Nd Fe Bm M M M M
−

× − = −   (2.6) 

 
2 14 2 14 2 1 14 2 14[ ] [ ] [ [ ] ] [ ]( )

m mK Nd Co B K Nd Fe B K Nd Fe Co B K Nd Fe Bm H H H H
−

× − = −   (2.7) 

Figure 2-2 shows the temperature dependence of MS and HK for the end compounds 

RE2Fe14B (RE=Dy, Nd, Pr) obtained from literature[5]. The temperature dependence of 
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MS and HK of Nd2[Fe1-mCom]14B material are gathered from Matsuura’s experimental 

results[6], which are illustrated in Figure 2-3.  

 

Figure 2-2 Saturation magnetization and anisotropy field of pure RE2Fe14B magnet as 

a function of temperature.[5]  

 

Figure 2-3 Saturation magnetization and anisotropy field of Nd2[Fe1-mCom]14B  at 

different temperatures.[6] 
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2.3 Effect of Volume Percent of Hard Phase on MS and HK 

In addition to chemical compositions, MS and HK also depends on the volume percent of 

effective magnetic hard phase. The RE2TM14B phase is called magnetic hard phase and the 

secondary phase surrounds the grains is called intergranular phase. Usually bulk magnets 

consist of both effective magnetic hard phase and also intergranular phases. A low melting 

point RE-rich eutectic phase is found along grain boundaries and at the triple junctions[7] 

of RE2TM14B materials. This intergranular phase allows the process to result in a fully-

dense bulk magnet but will lower the saturation magnetization by decreasing the volume 

percent of effective RE2TM14B phase. The volume percent of hard phase can be calculated 

based on the stoichiometry of the magnet and the phase diagram. As a result, the overall 

saturation magnetization and anisotropy field can be expressed as: 

 
2 14 2 14[ ] [ ]%Soverall RE TM B S RE TM BM Vol M= ⋅   (2.8) 

 
2 14 2 14, [ ] [ ]%K overall RE TM B K RE TM BH Vol H= ⋅   (2.9) 

where 
2 14[ ]% RE TM BVol is the volume percent of magnetic hard phase.  

 

2.4 Demagnetization Curves and the Definition of Coercivity 

and Remanence  

Coercivity and remanence are two of the most important quantities characterizing the 

magnetic performance of a permanent magnet. For a ferromagnetic material, when the 

external field is removed, the magnetization of the material decreases to a large fraction of 

MS, which is called the remanence. The remanence represents the maximum flux projected 
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by the magnet under operating conditions. Coercivity is a measure of the reverse field under 

which the magnets become fully demagnetized. These values can be obtained from the 

demagnetization curve, which is the second quadrant of the hysteresis loop (shown in 

Figure 2-4). The intersection of a demagnetization curve with the vertical axis is the 

remanence, and the intersection of the demagnetization curve with the horizontal axis is 

the coercivity. Both coercivity and remanence decrease as temperature increases. This is 

because the increase in temperature leads to an increase in the amplitude of the thermally 

induced deviations of the atomic magnetic moments in the material. As a result, the 

magnetic dipole moments will be less aligned at higher temperatures than at the lower 

temperatures. Both the coercivity and remanence of a specific material are determined by 

two intrinsic magnetic properties, the saturation magnetization (MS) and anisotropy field 

(HK). Larger saturation magnetization and anisotropy field typically results in larger 

remanence and coercivity. Other than MS and HK, remanence and coercivity are also 

influenced by the microstructural properties of materials. The effect of microstructural 

properties on remanence and coercivity are discussed in the following section.  
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Figure 2-4 A typical hysteresis loop of a permanent magnet. 

2.5 Effect of Microstructure on HC and Br 

The remanence of bulk Nd2Fe14B magnets is an appreciable fraction (70%-85%) of MS [8-

10]. In contrast, experimentally observed coercivity of a bulk material is only a small 

fraction of the anisotropy field. In general HC/HK ratio in conventionally manufactured 

magnets is on the order of ~0.1 or ~0.2. This is due to the microstructural properties of 

materials. Bulk Nd2Fe14B magnets are polycrystalline materials which consist of many 

crystallites of varying size and orientation. Each crystallite is surrounded by the inter-

granular phase. The size of crystallites and chemical compositions of the inter-granular 

phase affect the remanence and coercivity. 
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2.5.1 Magnetic Domain  

Magnetic domains are the regions in which all of the magnetic moments of atoms are 

aligned in the same direction. For Nd2Fe14B single domain particles with uniaxial 

anisotropy, their easy directions are [001] or[001] . The magnetization of a single domain 

is equal to the saturation magnetization, MS. The overall magnetization of the bulk magnet 

is equal to the vector sum of magnetization of the individual magnetic domains. Typically, 

there will exist multiple magnetic domains in a single crystalline volume, resulting in a 

lower overall magnetization and reducing the volumetric magnetostatic energy of the body, 

shown in Figure 2-5. Each domain is separated from the others by a domain wall, a region 

where the orientation of the magnetization rotates by 180° over a small distance. The 

increase in potential energy per area of domain wall due to the presence of this domain 

wall is offset by the decrease in magnetostatic energy resulting from a body consisting of 

multiple domains.  

 

 

Figure 2-5 The formation of magnetic domains. 
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There exists a critical size below which a crystallite will not split into multiple smaller 

domains. This is because the reduction of the magnetostatic energy resulting from splitting 

into two domains cannot offset the energy of the domain wall between these two domains. 

The critical diameter for a spherical crystallite can be expressed in terms of MS, K1 and A: 

 1
2

0

70c
S

AK
d

Mµ
≈   (2.10) 

For Nd2Fe14B material at room temperature, 0 1.63SM Tµ = , 127.7 10 /A J m−= ×  and 

6 3
1 4.3 10 /K J m= × [11]. The calculated critical diameter is ~0.2 µm. Sagawa’s 

experimental measurements estimate the critical diameter is ~0.3 µm[12]. 

 

The magnetization of a bulk magnet is the sum of the magnetizations attributed to each 

domain. There are two ways to change the magnetization of a bulk material: (1) domain 

wall motion and (2) domain rotation. The energy needed for rotating a domain against the 

anisotropy force is larger than that required to move a domain wall. For a polycrystalline 

material, if the grain size is larger than the critical diameter, each grain may contain 

multiple domains, and the change of magnetization is mainly due to the domain walls’ 

motion. If the polycrystalline material is comprised of single-domain crystallites, higher 

energy is needed to rotate each domain, which would result in a larger coercivity. The 

coercivity in a polycrystalline magnet can also be reduced if the magnetization of 

neighboring grain can add to the applied demagnetizing field. This occurs if the individual 

crystallites are magnetically coupled to each other via a ferromagnetic inter-granular 

material.  
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2.5.2 The Phenomenological Model for Understanding the Impact of 

Microstructure on Hc 

The mechanisms that reduce coercivity from anisotropy field HK can be characterized as 

falling into two categories: (1) those that are proportional to HK and (2) those that are 

proportional to MS. The general framework[13] describing how the experimentally 

observed coercivity ( 0 CHµ ) is affected by microstructure can be represented by the 

following formula: 

 0 C 0 K eff 0 SH H N Mµ = αµ − µ   (2.11) 

α characterize the reduction of the ideal anisotropy field. Since the grains in the hot-

deformed or sintered magnets are not contact each other directly, which means that there 

exists grain boundary phase to segregate the neighboring grains, a more detailed 

analysis[14] distinguishes α into three independent microstructure factors: 

 K exψα α α α=   (2.12) 

Kα describes the reduction of the magneto-crystalline anisotropy near the outer shell of 

grains and it is a function of thickness of this inhomogeneous region 0r . It is determined 

by [15-17]: 
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  (2.13) 

Where A is the exchange constant, Bδ is the Bloch wall width given by 1/B A Kδ π=  and 

K∆ denotes the decrease of 1K in the inhomogeneous region. Bloch wall is the region 

where the magnetization rotates from the first domain to the second and the rotation is 

perpendicular to the plane of domain wall. If the magnets have thicker inhomogeneous 
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region or the materials in this inhomogeneous region have lower anisotropy constant, then 

Kα will decrease. ψα represents the reduction of ideal coercivity due to the effect of 

misaligned grains. According to the Stoner-Wohlfarth model, which ignores the higher 

anisotropy terms ( 2K , 3K ), ψα equals to 0.5 when the misalignment ψ is 45° and 1.0 when 

ψ is 90° or 0°. exα considers the reduction of ideal coercivity due to the inter-granular 

exchange interactions, which is typical for nanoscale permanent magnets. If the magnets 

are comprised of grains perfectly exchange decoupled, then 1exα = . Stronger exchange 

coupled effect between neighboring grains results in lower exα . For Nd2Fe14B magnet, the 

domain wall width, Bδ , is 4.2nm and the exchange length, 0/( )SA MexL µ= , is ~2nm. The 

exchange interaction is a short-range effect and it tries to align the magnetic moment of 

neighboring grains parallel to each other. Fischer and Kronmüller point out that exα should 

be exactly unity for grain diameter is large compared to the range of the exchange 

interaction[14] and their modeling results show that 0.8exα = for 35grainD nm≈  and 

0.7exα = for 20grainD nm≈ . In that ideal case, the short-range exchange effect is 

negligible. Since there are no magnets are perfectly decoupled, short-range exchange 

coupling are happened in the hot-deformed and sintered magnets.  

 

Neff takes into account for the internal demagnetization field (stray field) of the sample. 

The internal demagnetization field depends on the magnetic polarization of the whole 

sample, thereby it is considered as a long-range interaction. If the grains are coupled with 

ferromagnetic phase, the altered magnetization of neighboring grains can serve as the 
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source of an additional field to the demagnetization field, then Neff will increase. The total 

magnetic energy GΦ  is made up of crystal anisotropy energy KΦ  , exchange energy AΦ , 

stray field energy SΦ , and magnetostatic energy HΦ  in the external field H. It can be 

expressed as: 

 G K A S HΦ = Φ +Φ +Φ +Φ   (2.14) 

The stray field energy SΦ is: 

 31
2S S dM H d rΦ = − ⋅∫
 

  (2.15) 

Where dH  represents the demagnetization field due to the magnetic volume charge inside 

the grains or surface charge on the grain surface. In general, dH  consists of macroscopic 

stray field macroH , stray field of isolated grain gH , structural stray field stH and stray field 

SH inside the crystallites[17]: 

 d macro g st SH H H H H= + + +   (2.16) 

The macroscopic stray field depends on the macro sample size: 

 macro m SH N M= −   (2.17) 

gH corresponds to the microscopic size of a single crystallite: 

 g g SH N M= −   (2.18) 

stH is due to the hole or non-magnetic participates in the magnet: 

 st st SH N M=   (2.19) 

SH depends on the distribution of surface charges of the grains.  
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2.6 Methods of Manufacturing RE2TM14B Magnets  

2.6.1 Sintering Process 

The current commercially manufactured sintered magnets are made by aligning the 

Nd2Fe14B-based particles (1~10µm) in a magnetic field during compaction into a partially 

dense solid at room temperature (shown in Figure 2-6). The green compact is then sintered 

at a higher temperature until it is near full density. A composition that is slightly Nd-rich 

and Fe-rich with respect to Nd2Fe14B stoichiometry is used in manufacturing these  

magnets. A low melting point Nd-rich (Nd-Fe) eutectic phase (grain boundary phase) is 

found along grain boundaries and at the triple junctions[7]. This phase allows the process 

to result in a fully-dense bulk magnet. It has been proven that the Nd2Fe14B grains are 

magnetically coupled by this grain boundary phase[18]. The SEM image in Figure 2-7 

shows the microstructure of the commercially manufactured sintered magnets. The grain 

size is in the range of 5-10µm, which is large enough to support multiple domains. If the 

grains in the bulk magnet are large enough to contain multiple domains, an external field 

which is less than HK can subsequently demagnetize the grains by moving the domain  

walls. Typically, Dy is used to substitute for some of the Nd in Nd2Fe14B to increase the 

anisotropy field, which leads to an increase in the coercivity of these commercial magnets. 

Recently a post-sinter Dy diffusion process is used to increase the coercivity with less 

amount of Dy elements compared to normal sintering process. The post-sinter diffusion 

process, shown in Figure 2-8, is a vapor deposition of Dy-rich compounds on the surface 

of Nd2Fe14B-based magnets followed by a heat treatment to diffuse Dy-rich compounds 
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along the outer shell of the grains. The general idea for the diffusion process is to increase 

the Dy content in the surface/boundary of the Nd2Fe14B grain while keeping the grain core 

at a lower content of Dy. The mechanism by which this is believed to increase coercivity 

is to “magnetically harden” the periphery of the grain where reverse magnetic domain are 

believed to nucleate. 

 

 

Figure 2-6 Sketch of magnetic press part in the magnetic sintering process 
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Figure 2-7 Cross-sectional SEM image of sintered magnets. 

 

 

 

Figure 2-8 Surface Dy diffusion process patterned by Hitachi. 
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2.6.2 Hot-Deformation Process  

The hot deformation approach was first demonstrated by Lee[19] to result in 

crystallographically-aligned Nd2Fe14B magnets. A metallurgical approach is used to 

achieve alignment of grains. No magnetic field is needed. This process results in magnets 

with submicron grains that are sufficiently small to only support single domains. Hot-

deformed magnets have platelet-shaped grains so that [001] direction (easy direction) is 

perpendicular to the surface of the platelet and parallel to the direction of the applied 

uniaxial pressure.  

 

Figure 2-9 illustrates the three general steps for manufacturing hot-deformed Nd2Fe14B-

based magnetic materials. They are (1) melt-spinning, (2) hot pressing and (3) hot 

deformation. The high cooling rate of the inductively-melted ingot as it is ejected onto the 

surface of a spinning Cu wheel results in starting ribbon fragments with submicron 

randomly oriented grains. The submicron grained ribbons are then consolidated into a solid 

by applying a pressure of 15-25MPa and heated up to 500°C-600°C in vacuum. The 

previous two steps result in fully-dense cylinders comprised of randomly oriented 

submicron grains. The crystallographic alignment of these submicron grains happens 

during the hot deformation step. A uniaxial pressure ranging from 20MPa to 50MPa is 

applied to deform the cylinder, which is held at a higher temperature (600°C-800°C) in a 

larger die to reduce the height of the cylinder by 60% to 80%, while increasing the cross-

sectional area. Figure 2-10 compares the microstructure of bulk magnets made by sintering 

and hot-deformation process. The microstructure of hot-deformed magnets is dramatically 

different from that of the sintered magnets. It is obvious that hot-deformed magnets consist 



23 

of grains which are an order of magnitude smaller than that in sintered magnets. The 

mechanism by which crystallographic alignment occurs depends critically on the presence 

of the Nd-Fe intergranular eutectic phase. This mechanism is described in the following 

section. 

 

 

Figure 2-9 General steps of hot-deformation process: (1) melt-spining, (2) hot pressing 

and (3) hot deformation 
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Figure 2-10 Microstructures of (a) sintered magnets and (b) hot-deformed magnets 

measured by SEM. 

 

2.6.3 Preferential Dissolution/Re-precipitation Mechanism 

The particular microstructures of hot-deformed magnets, the degree of alignment, the 

driving force and the phenomena’s kinetics can be explained by the preferential 

dissolution/re-precipitation mechanism proposed by Li and Graham[20]. Nd2Fe14B grains 

whose [001] directions are not aligned along the direction of the applied uniaxial pressure 

will dissolve into the Nd-rich eutectic liquid at the hot deformation temperature, then 

diffuse and precipitate onto the sides of the aligned Nd2Fe14B grains whose [001] directions 

are aligned along the direction of the applied pressure. The driving force is the difference 

of elastic energy ( µ∆ ) between aligned and non-aligned Nd2Fe14B grains due to the 

crystallographic anisotropy in the elastic modulus of Nd2Fe14B at elevated temperatures. 

Non-aligned grains have higher total elastic energy than aligned grains. The large energy 
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difference between these two types of grains causes more non-aligned grains to diffuse into 

the Nd-rich eutectic phase, which will improve the crystallography texture of the magnets. 

As a result, non-aligned isotropic grains will dissolve into the liquid phase and then 

precipitate on the surface of aligned isotropic grains to form the platelet structure. This 

results in a characteristic aspect ratio of the platelet-shaped grains is ~3:1. As diagramed 

in Figure 2-11, only about 1 out of every 27 isotropic crystals in a randomly oriented 

material has its [001] direction along the direction of the applied uniaxial pressure and thus 

does not dissolve.  

 

The energy difference are proportional to the square of stress ( 2σ ): 

 
2µ σ∆ ∝   (2.20) 

When the strain rate is constant, the stress is exponentially proportional to the temperature. 

Their relationship is expressed as: 

 exp( )
2

visG
RT

σ ∆
∝   (2.21) 

where visG∆  (>0) is the activation energy of viscosity.  
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Figure 2-11 Under uniaxial pressure at elevated temperatures, the non-oriented 

Nd2Fe14B crystals in the randomly oriented solid have higher strain energy and so 

preferentially dissolve in the liquid Nd-rich eutectic and re-precipitate on the sides of 

the nearest un-dissolved [001] oriented grain resulting in a magnet comprised of self-

aligned [001] platelet submicron magnets 

 

This model concludes that in order to increase the texture of the magnets, high stress and 

low temperature should be considered. Kwon and Yu[21] also find that if the temperature 

is too high, the elastic energies of both grains will be reduced and the energy difference 

may also be decreased. Under these circumstances, fewer unfavorable grains can be 

dissolved into the eutectic phase and it will result in a low alignment of the grains and 

therefore inferior magnetic properties. However, Nd2Fe14B-based magnets are brittle due 

to their crystallographic structure. Excessively high stress at low temperature can cause 

cracks in the magnets. Thus, the stress, strain rate, temperature and loading time should be 

balanced to optimize the alignment of grains and hot workability. 
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Temperature not only has obvious effect on the deformation process and the hot 

workability, but also on the grain size of the magnets. The grain size has an impact on the 

diffusion path of the grains. A larger grain size will make non-aligned grains less likely to 

dissolve into the eutectic phase. Therefore, initially melt spun ribbons with small grain 

sizes are a prerequisite. Additionally, the temperature of hot deformation and loading time 

should be constrained to slow down the growth speed of the grains. Proper temperature and 

higher pressure are very important to control the microstructure of the hot-deformed 

magnets.  

 

In summary, there are five process variables that may influence the degree of alignment of 

the transformed material: (1) deformation temperature, (2) applied uniaxial pressure, (3) 

volume fraction of eutectic phase, (4) melting point of the eutectic phase, (5) grain size of 

un-deformed magnets. 

 

2.7 The Effect of Intergranular Phase on Magnetic Properties 

Table 2-1 Other research work on analyzing the impact of intergranular phase on 

magnetic properties of Nd2Fe14B-based materials 

Materials Eutectic phase Nd2Fe14B size α Neff 

Thin film[22] Nd-Fe ~50-100nm 0.26 0.42 

Thin film[22] Nd-Ag ~50-100nm 0.41 0.05 

 

The work done in this section will show the existing experimental evidence that non-Fe-

containing eutectic phase can improve coercivity. Cui[22] et al investigated the effect of 
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the non-ferromagnetic inter-granular phase on increasing the coercivity. They deposited an 

Nd-Ag/Nd-Cu layer into the Nd2Fe14B-based thin film comprised of single-domain grains. 

Due to its lower melting point than Nd2Fe14B, Nd-Ag/Nd-Cu infiltrates the grain boundary 

phase at the temperature above the eutectic melting point. Data in Table 2-1 clearly 

illustrates that the Neff of a thin film with the non-ferromagnetic intergranular phase Nd-Ag 

decreases dramatically from the value seen in the film with ferromagnetic intergranular 

phase. This indicates that the self-demagnetization field in Nd2Fe14B grains is reduced by 

the decrease of surface defects where the nucleation of reverse domains are believed to 

occur. The increase of α may be due to the decrease of exchange coupling between the 

neighboring grains. Their work is found as evidence that magnetic isolation of single-

domain grains caused by non-magnetic grain boundary phase can effectively increase α 

and decrease Neff. 
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Figure 2-12 Cui's thin film Dy-free material exhibits an HC comparable to that of the 

conventionally manufactured bulk material with 10%wt Dy only when the constituent 

submicron magnets are magnetically isolated by a thin layer of the inter-granular non-

Fe-containing eutectic. 

 

The room temperature demagnetization curves from Cui’s thin films with and without the 

Nd-Ag eutectic phase are compared to those from commercially manufactured sintered 

magnets containing 10wt% Dy and 0wt% Dy in Figure 2-12. The coercivity and remanence 

of Dy-free thin film with magnetically isolated grains are comparable to those of the 

commercially manufactured sintered magnet with 10wt% Dy, which is currently used in 

traction motors. Cui’s result shows that the non-ferromagnetic inter-granular phase can 

dramatically increase the coercivity. If magnetic isolation of single-domain crystallites 
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could be achieved in bulk material, a large increase in coercivity would be expected as seen 

in the thin film. There are some other research work [23-27] indicate that preventing 

magnetic coupling through the use of a non-magnetic inter-granular phase may be effective 

in increasing the coercivity of bulk magnets and powders [28]. In these cases, the degree 

to which the coercivity was enhanced was likely limited by the non-uniformity of the 

intervening inter-granular phase, or the large size of the constituent Nd2Fe14B crystallites. 

At the time this research was performed, none of the methods resulted in a bulk magnet 

consisting of single-domain crystallites that are magnetically isolated from each other. 

 

Recent work done by Akiya[29, 30] and Sepehri-Amin[31] showed that coercivity can be 

improved by infiltrating Nd-Cu alloy into the grain boundary regions for the hot-deformed 

Nd2Fe14B-based material. As the grain size for hot-deformed magnets are nanoscale, and 

the area of grain boundary per unit volume is very high, it needs a large amount of Nd-rich 

alloy to cover the magnet and be diffused into the grain boundary regions. Instead of using 

the grain boundary diffusion process, a more effective manufacturing process based on hot-

deformation process is used in this work to improve the coercivity with reduced Dy content.  

 

To obtain bulk materials with the lowest impact of microstructure on the reduction in HC 

from HK, there are three characteristics that are important: (1) small enough grains must be 

generated in the bulk materials so that each grain is capable of supporting only a single 

magnetic domain; (2) the individual grains must be crystallographically-aligned; and (3) 

the neighboring grains cannot be magnetically coupled by a Fe-rich inter-granular eutectic 

phase.  
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Chapter 3                                 

Experimental Techniques   

The microstructural properties of magnets play an important role in remanence and 

coercivity of materials. In this chapter, the experimental techniques used to characterize 

the grain size and crystallographic alignment will be described. The instrument used to 

measure the magnetic properties of materials at different temperatures will be introduced.  

 

3.1 Grain Size Measurement  

The intercept technique (Figure 3-1) is used to estimate the grain size from SEM 

micrographs.  In this method, one or more random lines are drawn on the SEM  

micrographs. Then, the average grain size can be determined by dividing the number of 

grains that intersect those lines by the true line length. Grains that intersects with the end 

of the line count as half grains. 
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Figure 3-1 The intercept technique used to measure the grain size of the magnets 

 

3.2 Developing a Quantitative Metric of Crystallographic 

Alignment  

In this section, a method is described to quantify the crystallographic alignment for 

RE2TM14B-based permanent magnets by analyzing the Bragg-Brentano X-ray diffraction 

data. Crystallographic alignment is essential to the resulting remanence (Br) of a permanent 

magnet. The X-ray pole figure approach[32] is a conventional way to fully reveal the 

crystallographic alignment information of the polycrystalline materials. However, the time 

required for data collection for this method is prohibitive. Crystallographic alignment of 
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magnets has also been characterized by many research groups by using the diffracted 

intensity of (006) peak and the peak width at half maximum intensity [33-37]. However, 

with this method there exists large variations of peak intensities when the sample is rotated 

about the alignment axis. Some groups only analyze the effect of aligning field on the 

remanence of the sample. All results show that higher crystallographic alignment results in 

higher remanence, but the exact percentage of alignment and the mathematical relationship 

between the crystallographic alignment and remanence are not clear. The method used in 

this work quantitatively estimates the crystallographic alignment by analyzing XRD data.  

 

X-ray diffraction (XRD) techniques are used to characterize the crystallographic alignment 

information of the polycrystalline magnetic materials. The relative intensities of diffraction 

peaks in the 2θ range for each sample are measured by a symmetric Bragg-Brentano 

diffraction geometry using Cu Kα radiation. The 2θ step size of 0.025° and counting time 

of 8sec/step are used to precisely measure the intensities of each peak. The lattice constants 

are initially determined by analyzing the peak positions of two major peaks. Then, the peak 

position of each individual peak is calculated according to the lattice constants and Bragg’s 

law. The peak fitting analysis is completed by using Lorentz peak shapes, and the resulting 

R-squared value is larger than 0.98.  

 

For Nd2Fe14B-based material, the uniaxial magnetocrystalline easy direction of 

magnetization is in the [001] crystallographic direction (c-axis), and the directions 

perpendicular to [001] are the magnetocrystalline hard directions. The Powder Diffraction 

File (PDF) for Nd2Fe14B (card #88-2285) shows that there are 23 (hkl) peaks in the 34°~46° 
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2θ range, which cover the majority of the reflection peaks. Thus, this 34°~46° 2θ range is 

selected as the XRD scan range. In an unaligned polycrystalline Nd2Fe14B material, 

illustrated in Figure 3-2, the easy direction of each single crystallite deviates from the 

surface normal of the sample by an unknown amount. In an aligned polycrystalline 

Nd2Fe14B magnets, there are usually two major peaks (105) and (006) shown in the XRD 

data. The normal of (006) planes are parallel to the easy direction and the normal of (105) 

planes are tilted ~16° from the easy direction. Those two planes are considered well aligned 

planes and the intensities of the two corresponding (hkl) reflection peaks are used to 

estimate the degree of crystallographic alignment of polycrystalline samples in the 

subsequent analysis. 

 

. 

Figure 3-2 A polycrystalline sample with a single crystallite shown whose easy axis 

is Ψ degree off the surface normal of the sample.  
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In a symmetric Bragg-Brentano diffraction measurement from a polycrystalline sample, 

the intensity observed for a particular (hkl) diffraction peak is proportional to the product: 

 2 %obs hkl T hklI F LP F vol∝   (3.1) 

where hklF  is the structure factor, LP is the Lorentz-polarization factor, TF  is the 

temperature factor, and %hklvol  is the volume percentage of the sample with the (hkl) plane 

situated with respect to the surface normal. 

 

In a randomly oriented polycrystalline sample, the (hkl) families of planes resulting in a 

diffraction peak are proportional to the multiplicity factor hklm . The intensities for (hkl) 

peaks would be observed in a diffractor from a randomly oriented sample and are 

proportional to: 

 2
ICDD hkl T hklI F LP F m∝   (3.2) 

The vol% of the randomly oriented material with their magnetically easy directions [001] 

within ψ  degrees of the surface normal should therefore be estimated by the ratio of 

multiplicities: 
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For a randomly oriented polycrystalline Nd2Fe14B material, the vol% of oriented crystalline 

grains calculated based on Equation (3.3) is: 
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36 

In a randomly oriented polycrystalline sample, the vol% of crystallite with any particular 

direction ψ  is proportional to the surface area dA , illustrated in Figure 3-3. For Nd2Fe14B 

materials, the crystallites whose normal is within ~16° to the [001] direction are taken into 

account. The vol% of oriented crystallites in the magnet can be calculated as: 

 
16 16

2
0 0

2 sin% sin 1 cos(16 ) 3.9%
2

oriented

all

V r rVol d d
V r

ϕ ϕ
π ϕ ϕ ϕ ϕ
π

= ° = °
⋅ ⋅

= = = = − ° =∫ ∫   (3.5) 

Equation (3.5) yields that only ~3.9vol% of the sample would be so oriented. This result 

indicates that the ratio between the sum of multiplicities for (hkl) peaks within ~16° of the 

(001) peak and the sum of all (hkl) peaks is a robust estimation for the degree of 

crystallographic alignment.  

 

 

Figure 3-3  Volume percent of crystallite with any particular direction ψ is 

proportional to the area dA. 
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A magnet with sufficient remanence and coercivity ( 0 CHµ ) is desired to have an order of 

magnitude higher vol% oriented than that of randomly oriented magnet. If a polycrystalline 

Nd2Fe14B magnet has a preferred orientation, then the degree of alignment can be assessed 

from the intensities of the observed diffraction peaks: 
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  (3.6) 

Since the value of relative intensities ( PDFI  ) in the powder diffraction file are proportional 

to 2
hkl T hklF LP F m , the degree of crystallographic alignment can be written in terms of obsI , 

PDFI and hklm : 
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3.3 Measuring Remanence and Coercivity with VSM 

A vibrating sample magnetometer (VSM), invented by Simon Foner at Lincoln Laboratory 

MIT, operates based on Faraday's Law of Induction to measures magnetic properties of 

samples. As shown in Figure 3-4, a small cubic sample (< 3mm3) is attached to one end of 

the vibrating nonmagnetic rod. The electromagnet gives a large enough magnetic field to 

magnetize the sample. The magnetic dipole moment of the sample will produce a magnetic 

field near it. When the sample is vibrating, the change of magnetic flux will induce an 

alternating electromotive force (emf) in the pick-up coils. The induced electromotive force 
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is proportional to the magnetization of the sample. Larger magnetization of the sample 

results in larger electromotive force. The VSM measurement is very sensitive and it can 

measure the magnetic properties of both strong and weak magnets. Since only the sample 

and rod will be heated or cooled, a VSM instrument can measure the magnetic properties 

of samples at different temperatures.  

 

 

 

Figure 3-4 Sketch of VSM instrument 
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Chapter 4                              

Characteristics of RE2TM14B Magnets 

Used in Traction Motors of Hybrid and 

Electric Vehicles 

The work described in this chapter is designed to address task #1, to determine the 

minimum amount of  Dy needed in bulk RE2TM14B magnets based on currently 

commercially manufacturing processes. It examines the temperature-dependent 

demagnetization of sintered RE2TM14B magnets with different stoichiometries. A subset 

of the commercially manufactured magnets has been subjected to diffusion processes that 

have been claimed to lead to a higher resistance to demagnetization than would otherwise 

be the case. This report first examines the extent to which the wt% (weight percent) of Dy 

in the magnet determines the high temperature coercivity ( 0 CHµ ) given the range of other 
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differences in stoichiometry and degree of crystallographic alignment between the magnets 

examined. Second, the data is analyzed to determine whether the diffusion process has a 

measurable impact on the 0 CHµ of the magnets. Third, the minimum amount of Dy needed 

in non-diffused and diffused magnets which could potentially be used in traction motors of 

electric and hybrid vehicles is estimated. 

4.1   Structure of the Experiments  

Seven commercially manufactured sintered magnets (three non-diffusion processed and 

four diffusion processed) from three vendors are examined in this work. The chemical 

compositions of these magnets measured by ICP (Inductively Coupled Plasma) are 

represented in Table 4-1. The degree of crystallographic alignment is estimated by 

analyzing X-ray diffraction data, which was described in the previous chapter. The 

demagnetization curves of these magnets at three different temperatures (25˚C, 100°C, 

160°C) is measured by using a Vibrating Sample Magnetometer (VSM). The magnetic data 

is then analyzed in light of the differences in stoichiometry and crystallographic alignment 

to prove whether or not Dy content and having undergone a diffusion process are the 

primary indicators of the high temperature coercivity. 
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Table 4-1The chemical compositions of the materials examined in this work 

 

 

4.2   Results and Discussion 

As can be seen in Table 4-1, the Dy content of commercially manufactured magnets varies 

from 0.1wt% to 6.0wt%. The other noticeable variations include Pr and Co content varying 

from 4.7wt% to 6.7wt% and 0.4wt% to 2.5wt%, respectively. The variations in the wt% of 

Co and Pr and in crystallographic alignment do not coincide with the variations in wt% of 

Dy. The X-ray diffraction data of each sintered magnet are shown in Figure 4-1, in which 

the intensity of the sixth order diffraction peak from the (001) planes, labeled (006), and 

the first order diffraction peak from the (105) planes, labeled (105), both increase with 

volume percent (vol%) of aligned grains in the bulk magnet. The results show that vol% 

of crystallographic alignment of samples varies from 55vol% to 78vol%. According to a 

geometric result estimated in Chapter 3, if  the grains in the material are randomly 

orientated, only 3.9vol% of the material has their c-axes within ~16° of the press direction.  
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The demagnetization curves recorded from the seven sintered magnets at different 

temperatures are illustrated in Figure 4-2. Figure 4-3 gathers the magnetic data of those 

sintered magnets as a function of wt% of Dy content. The circular data points are the 0 CHµ

of commercially manufactured magnets made without an added Dy diffusion process and 

the square data points correspond to the commercially manufactured magnets produced 

with a post-sinter Dy diffusion process. 
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Figure 4-1 X-ray diffraction data of seven commercially manufactured magnets.  
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Figure 4-2 Demagnetization curves of seven commercially manufactured magnets. 
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Despite the differences in other elements used in the magnets (Table 4-1), and the 

differences in crystallographic alignment, the coercivity has a linear relation with the wt% 

of Dy content. The lines drawn through the data points are a linear regression of the data 

based on least square fitting method. Apparently, the impact on coercivity of increasing “x” 

in 2 14 2 14(1 )x Nd Fe B xDy Fe B− −  due to the higher anisotropy coefficients of 2 14Dy Fe B  is 

much more pronounced than the impact of other stoichiometric variations. This 

relationship is evident at all temperatures. Dy-diffusion treatments can clearly be seen to 

have an impact on coercivity in addition to the impact of just adding more Dy as can be 

noticed by the different linear relationship observed for Dy-diffused samples and non-

diffused samples. For non-diffused samples: 

 0 ,160 ( ~ 0.08 ) 0.14 11.2 %C CH T T wt Dyµ ° ± = + ×   (4.1) 

And for diffused samples: 

 0 ,160 ( ~ 0.01 ) 0.32 14.9 %C CH T T wt Dyµ ° ± = + ×   (4.2) 

Nevertheless, the remanence decreases as the wt% of Dy increases. The reason for that is 

the magnetic moment orientation of Dy-Fe coupling is in the opposite direction of Fe-Fe 

coupling and Fe-Nd coupling. Both coercivity and remanence decrease as temperature 

increase because of thermal fluctuations. 
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Figure 4-3 Coercivity and remanence of commercially manufactured magnets with 

and without a subsequent Dy diffusion process at varying temperature. 

 

Diffusion treatment of the sintered magnets clearly reduces the amount of Dy needed for 

magnets used in the traction motors of electric and hybrid vehicles. The application 

requires magnets to have 0 ~ 0.9CH Tµ = and ~ 1.0rB T= at 160°C. In order to visualize the 

extent of Dy reduction in the commercially manufactured magnets made by different 

process, a horizontal line of 0 0.9CH Tµ =  is superimposed on the 160°C coercivity data, 

shown in Figure 4-4. The intersection is the amount of Dy needed in the magnets 

corresponding to different processes. It can be concluded that the minimum amount of Dy 

needed for sintered magnets to be used in the traction motors of electric and hybrid electric 

vehicles is reduced from ~7wt%Dy to ~4wt% Dy if a post-sinter diffusion process is 

applied. The rB for non-diffused magnets containing ~7wt% Dy and diffused magnet 
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containing ~4wt% Dy are 1.02T and 1.06T at 160°C. The remanences for both magnets 

satisfied the requirement for the electric and hybrid vehicles application.  

 

Figure 4-4 Coercivity of commercially sintered magnets at 160°C. 

 

4.3   Conclusions  

The conclusions drawn from this report are summarized as follows. First, the wt% of Dy 

is the primary indicator of high temperature coercivity. The morphological variations in 

degree of magnetic alignment and that the variations in the amount of Co, Pr, and Tb, 

eutectic phase, and  fluxing agents over the ranges examined have a small to negligible 

impact on the high temperature resistance to demagnetization of these magnets. Second, 

quantitative expressions to predict the high temperature coercivity and remanence of these 

magnets have been formulated for both diffusion treated and non-diffusion treated   
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magnets. Third, the diffusion process clearly reduces the amount of Dy needed for 

increasing high temperature coercivity.   
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Chapter 5                                            

Impact of Hot-deformation Parameters on 

Microstructural and Magnetic Properties 

of RE2TM14B Magnets  

The goal of the research shown in this chapter is to manufacture bulk RE2TM14B magnets 

consisting of crystallites which are small enough to support single domains. In this chapter, 

the impact of hot-deformation parameters on grain size, coercivity and remanence of each 

sample (Task #2) is discussed. Hot-deformation is a thermomechanical process used to 

produce fully dense crystallographically aligned magnets from melt-spun ribbons. 

Temperature and stress are the key parameters for the hot-deformation process. 

Optimization of the hot deformation process parameters can improve the microstructure of 

the magnets and thereby enhance the magnetic properties. The work shown in this chapter 
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first examines the microstructural properties of magnets that were hot-deformed at different 

deformation temperatures. The hot-deformation mechanism is studied based on the model 

of preferential dissolution/re-precipitation mechanism. This work also analyzes the effect 

of hot-deformation parameters on the magnetic properties of the magnets. Finally, the 

optimal hot-deformation parameters that apply to the manufacture of RE2TM14B magnets 

consisting of submicron crystallites are determined. 

 

5.1   Experimental Design 

The initial melt-spun ribbon particles used for the hot-deformation process were made by 

the Magnequench Company. The chemical composition of the ribbon is 2.6wt% Dy, 

7.0wt%Pr, 20.9wt% Nd, 0.9wt%B, 4.0wt% Co, 0.5wt%Ga, and 64.1wt% Fe. The ribbon 

particles are first consolidated under vacuum to >95% theoretical density at ~610°C by 

applying approximately 45MPa of pressure for 10 minutes. Then, the ~1cm tall × 1.9cm 

diameter fully dense cylinders are designed to be reduced by ~70% of their initial height 

over a few minutes, again in vacuum, by applying a uniaxial pressure ranging from ~20 to 

~63MPa at temperatures between ~680°C to ~900°C. The strain rate for all the samples are 

controlled between 0.014s-1 and 0.020s-1. The resulting hot-deformed magnets are discs 

approximately 3mm in height and 4cm in diameter. Cubes with dimension of ~ 3mm3 were 

cut from the center of bulk magnets using electric discharge machining (EDM). 

Demagnetization curves at three different temperatures (25°C, 100°C, and 160°C) were 

recorded using a Vibrating Sample Magnetometer (VSM). Crystallographic alignment 
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distributions are evaluated by X-ray diffraction and microstructure investigations are 

determined by Scanning Electron Microscope (SEM). 

 

5.2   Results and Discussion 

Microstructural and magnetic properties of hot-deformed magnets vary with hot-

deformation parameters. Table 5-1 lists the hot-deformation temperature, strain rate and 

maximum stress for each sample during the hot-deformation process. The following two 

sections will discuss the influence of hot-deformation parameters on microstructural and 

magnetic properties of the magnets. 

 

Table 5-1Hot deformation parameters for each sample 

Sample Hot-deformation 
Temperature 

Maximum Stress 
(σ)/MPa Strain rate (ε ) 

M1 680°C 63±4 0.020s-1 

M2 750°C 42±4 0.014s-1 

M3 800°C 34±4 0.017s-1 

M4 850°C 33±4 0.017s-1 

M5 900°C 20±4 0.020s-1 
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5.2.1   Hot Deformation Parameters on Microstructural Properties of Magnets  

Higher deformation temperatures usually lead to magnets consisting of larger grains. 

Figure 5-1and Figure 5-2 shows the cross-sectional SEM images and distribution of grain 

dimensions for each sample. Figure 5-3 summarizes the effect of hot-deformation 

temperature on the average grain size of the magnets. When the temperature reaches 

~900°C, the dimensions of crystallites in the magnet are ~1100 200nm nm× , which is large 

enough to support multiple magnetic domains. When the deformation temperature 

decreases to ~680°C, the size of each crystallite decreases to ~ 230 90nm nm× , which is 

comparable to the single domain size of Nd2Fe14B material (~300nm). The results show 

that the low temperature prevents the growth of grains and it also decreases the aspect ratio 

from ~5.5 to ~2.6. Usually, stripes of large grains with dimension of ~1 µm are periodically 

distributed in the hot-deformed magnets, which is shown in Figure 5-4 (a) and (b). 

However, when the hot-deformation temperature decreases to ~680°C, an interesting 

phenomenon occurs where the stripes of large grains disappear and only grains that are 

small enough to support single domains remain (shown in Figure 5-4 (c)). 

 

Figure 5-5 illustrates the X-ray diffraction data of all the samples along with the degree of 

crystallographic alignment for each sample, calculated by the method described in Chapter 

3. The degree of crystallographic alignment ranges from 32vol% to 59vol%. The low 

alignment of sample M5 can be explained by the hot-deformation mechanism discussed in 

the next paragraph. In addition, literature [23, 38] pointed out that the crystallographic 

alignment is related to the deformation ratio. Although the deformation ratio of each 

sample is designed to be kept constant (~70%), experimental results show that the actual 
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deformation ratio varies from 67% to 85% and that there is no significant linear relation 

between the deformation ratio and the degree of crystallographic alignment.  

 

 

Figure 5-1 The cross-sectional SEM images and grain size distributions of the magnets 

hot-deformed at 680°C, 750°C and 800°C. 
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Figure 5-2 The cross-sectional SEM images and grain size distributions of the magnets 

hot-deformed at 850°C and 900°C. 
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Figure 5-3 The dependence of grain dimensions of hot-deformed magnets on 

temperature. 

 

Figure 5-4 The cross-sectional SEM images of the magnets hot-deformed at (a) 

900°C, 16MPa (b) 800°C, 34MPa and (c) 680°C, 63MPa.  
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Figure 5-5 X-ray diffraction data of magnets hot-deformed at different temperature. 

 

According to Li’s model introduced in Chapter 2, exp( )
2

visG
RT

σ ∆
∝ and the experimental 

results show that 2.5ε σ∝  [39]. The crystallographic alignment for anisotropic hot-

deformed magnets depends on the solution–precipitation–creep mechanism, and the 

general model for the creep mechanism is expressed as:  

 exp( )n
creep

QA
RT

ε σ ∆
= −   (5.1) 
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In this equation, creepA  is a constant that depends on the materials and creep mechanism 

and Q∆  is the activation energy for the creep mechanism. Combing Li’s model and the 

general equation for creep mechanism[39]: 

 2.5 exp( )vis
creep

GA
RT

ε σ ∆
= −   (5.2) 

When the strain rate ε is constant, then lnσ  is a linear function of 1 / T : 

 1 1ln (ln ln )
2.5 2.5

vis
creep

G A
R T

σ ε∆
= ⋅ + ⋅ −   (5.3) 

This relationship shows that lower temperatures will results in a higher stress acting on the 

magnet when the strain rate is kept constant. The low comparative crystallographic 

alignment of M5 is due to the low hot-deformation stress caused by the relatively high 

temperature (~900°C). 

 

Figure 5-6 shows the relationship between the stress and temperature, where the y-axis is 

the natural logarithm of the stress and x-axis is the reciprocal temperature (1000/T). The 

linear regression line is fitted by the least square method and it gives that: 

 1000ln (5.29 0.81) (1.41 0.77)
T

σ = ± × − ±   (5.4) 

Based on the regression results, the constant 1 2.5ln 0.56 1.91creepA s MPa− −= − ±  and the 

activation energy of viscosity visG∆ for this material is 110 17 /kJ mol± , which is close 

to the value of Nd-Fe-Co-B alloys estimated in the literature[39], 115 /kJ mol . Higher 

melting temperature usually results in high activation energy of viscous flow[40]. The 

melting temperature for pure Fe is ~1800K, which is higher than that of Nd-Fe alloy. 

However, the activation energy of viscous flow ( visG∆ ) for pure Fe is ~ 41.4 /kJ mol  [40]. 
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The estimated activation energy of viscous flow for the eutectic Nd-Fe phase is much 

higher than that for pure Fe, even though the melting temperature is lower. This indicates 

that the creep model does not accurately estimate the activation energy of viscous flow for 

the eutectic phase.  

 

Figure 5-6 The relationship between maximum stress and hot-deformation 

temperature.  
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5.2.2   Hot Deformation Parameters on Magnetic Properties of Magnets 

Figure 5-7 shows the temperature-dependent demagnetization curves for each sample. The 

effect of hot-deformation temperature on coercivity and remanence at three different 

temperatures is illustrated in Figure 5-8. The room temperature coercivity of the magnets 

increases from 1.56T to 2.11T and the remanence increases from 1.15T to 1.22T when the 

hot-deformation temperature decreases from 900°C to 680°C. The improvement of 

coercivity may be due to the refinement of grain size, which results from the low hot-

deformation temperature. This also leads to high remanences of the magnets because the 

remanence depends on the crystallographic alignment. The driving force for the alignment 

in the hot-deformation process is proportional to stress, and at lower temperatures, a higher 

stress is required to achieve the same strain rate. Therefore, lowering the hot-deformation 

temperature is predicted to improve the crystallographic alignment of magnets. 
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Figure 5-7 Demagnetization curves of magnets hot-deformed at different 

temperatures. 
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Figure 5-8 The dependence of coercivity and remanence on hot-deformation 

temperature. 

 

5.3   Conclusions  

It has been shown that bulk RE2TM14B magnets consisting of crystallites which are small 

enough to support single domains can be manufactured by hot-deformation processing. 

The effect of hot-deformation parameters on the microstructural and magnetic properties 

of magnets are analyzed. The regression results indicate that the solution-precipitation 

creep model does not accurately estimate the activation energy of viscous flow for the 

eutectic phase. The VSM results show that the coercivity of the magnets decreases with an 

increase in hot-deformation temperature. The coercivity and remanence of hot-deformed 

magnets can be increased to 2.11T and 1.22T, respectively, at room temperature when they 

are hot-deformed at ~680°C. 
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Chapter 6                                              

Effect of Modifying Inter-granular Phase 

on Microstructural and Magnetic 

Properties of RE2TM14B Magnets 

The work done in this chapter is to resolve Tasks #3, #4 and #5. The first goal is to examine 

whether the submicron crystallites in the magnets can be aligned via hot-deformation 

processing with a modified intergranular phase. The second goal is to investigate whether 

the coercivity of hot-deformed RE2TM14B magnets can be increased to satisfy the 

requirement for traction motors used in hybrid and electric vehicles when the ferromagnetic 

inter-granular phase (Nd-Fe phase) is diluted by a non-magnetic phase (Nd-Cu phase). 

Experimental results show that the developed hot-deformation process can produce bulk 

magnets with the microstructural features described above, and that these magnets, which 
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only contain ~2.5wt% Dy, have similar coercivity to commercially sintered magnets 

containing ~7wt% Dy. The demagnetization behaviors are analyzed based on a 

phenomenological model, and the effect of the modified intergranular phase on the 

magnetic interaction between neighboring grains is discussed.  

6.1   Experimental Design 

Two types of hot-deformed magnets are examined in this chapter. The first type consists 

entirely of the commercial ribbon particles described in Chapter 5. The ribbon particle has 

a composition of 2.6wt% Dy, 7.0wt%Pr, 20.9wt% Nd, 0.9wt%B, 4.0wt% Co, 0.5wt%Ga, 

and 64.1wt% Fe. The second type differs from the first in that 5.0wt% of the magnet 

consists of a rapidly solidified Dy-free 70at%Nd, 30at%Cu alloy powder that is mixed with 

the commercial ribbon particles prior to consolidation. The Nd0.7Cu0.3 ribbons are obtained 

by melt-spinning onto a large copper wheel within an argon atmosphere. The linear speed 

of the wheel is 30m/s. The ribbons are then crushed into powders with an average particle 

size of approximately 300 microns. As discussed in Chapter 5, the optimal hot-deformation 

temperature is ~680°C. All of the magnets analyzed in this chapter are hot-deformed at this 

temperature and the strain rates are kept between 0.013s-1 to 0.020s-1. These two types of 

magnets are referred to as A0, B0, and C0; and A5, B5, and C5 respectively. In order to 

analyze the cause of the increase in coercivity according to the phenomenological model, 

demagnetization curves of each sample are measured at five different temperatures (25°C, 

70°C, 100°C, 130°C, and 160°C) by using a Vibrating Sample Magnetometer (VSM).  
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6.2   Results and Discussion 

6.2.1 Microstructural Properties of Hot-deformed Magnets with Modified 

Intergranular Phase 

Whether a non-Fe-containing eutectic phase can serve as a media to dissolve, transport, 

and re-precipitate Nd2Fe14B grains may influence the alignment of the magnets. It has been 

shown that the required selective dissolution and reprecipitation mechanism operates 

during hot deformation even when the Nd-Fe phase is diluted by Nd-Cu alloy. The X-ray 

diffraction data of these two types of hot-deformed magnets shown in Figure 6-1 indicates 

that the modification of the intergranular phase does not weaken the crystallographic 

alignment of the magnets. The comparison between the microstructures of hot-deformed 

magnets with and without modified intergranular phase, shown in Figure 6-2, also 

illustrates that both bulk magnets exhibit the aligned platelet-shaped structure, which is 

characteristic of selective dissolution and precipitation. For all the 6 hot-deformed magnets, 

the mean and standard deviation of the size distribution in crystallite dimensions along the 

magnetically easy direction vary from 90 30nm nm±  to 60 20nm nm± ; the mean and 

standard deviation in the dimensions of the crystallites for the direction perpendicular to 

the magnetically easy direction vary from 230 80nm nm±  to 180 70nm nm± . These 

dimensions are on the order of the critical size for a single domain (~300nm). It can be 

concluded that both hot-deformed magnets, with and without diluting the intergranular 

phase by Nd0.7Cu0.3 alloy, consist of submicron grains which are small enough that they 

can only support single domains. 
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Figure 6-1 X-ray diffraction data for hot-deformed magnets containing 0wt% and 

5wt% Nd0.7Cu0.3 additives.  
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Figure 6-2 Cross-sectional SEM images and grain size distribution for hot-deformed 

magnets containing 0wt% and 5wt% Nd0.7Cu0.3 additives. 
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6.2.2 Magnetic Properties of Developed Hot-deformed Magnets 

The developed hot-deformed magnets with reduced amounts of Dy (~2.5wt% Dy) have 

comparable magnetic properties to the Dy-diffused sintered magnets containing ~4wt% Dy 

and non-Dy-diffused sintered magnet containing ~7wt% Dy. Traction motors of electric 

and hybrid vehicles require both the coercivity of their magnets to be ~0.9T and remanence 

to be ~1T at 160°C. Figure 6-3 shows the temperature-dependent demagnetization curves 

of these two types of hot-deformed magnets (A0, B0, and C0; and A5, B5, and C5) and 

Figure 6-4 plots the temperature dependent coercivity and remanence for these six magnets. 

At an elevated temperature of 160°C, the coercivity and remanence of hot-deformed 

magnets with diluted intergranular phase are 0.88T and 0.99T, respectively, which satisfy 

the requirement for the traction motors of electric and hybrid vehicles. A visualized 

comparisons of magnetic properties between hot-deformed magnets with modified 

intergranular phase and commercial sintered magnets at 160°C is shown in Figure 6-5. The 

dashed line with 0 0.9CH Tµ =  is the requirement of electric and hybrid vehicles 

application. The red dots present the magnetic properties of hot-deformed magnets with 

diluted grain boundary phase. As described in Chapter 4, the amount of Dy in the magnets 

can be decreased from ~7wt% to ~4wt% after a complex and expensive Dy diffusion 

process. Hot-deformed magnets with modified intergranular phase and ~2.5wt% Dy have 

approximately the same coercivity. Additionally, compared with the sintering approach, 

hot-deformation eliminates hydrogen embrittlement and the need for a strong magnetic 

field for alignment. Cold compaction and high temperature sintering is replaced with 

consolidation followed by deformation under moderate pressure at lower temperatures 

(~680°C). Although the remanence of the hot-deformed magnets is slightly lower than that 
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of the sintered magnets, they still satisfy the requirements for the application of traction 

motors in electric and hybrid vehicles.  

 

 

 

Figure 6-3 Temperature-dependent demagnetization curves for six hot-deformed 

magnets.  
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Figure 6-4 Temperature dependence of coercivity and remanence for hot-deformed 

magnets without Nd0.7Cu0.3 additives, hot-deformed magnets with 5wt% Nd0.7Cu0.3 

additives. 

 

 

Figure 6-5 Comparisons of magnetic properties between sintered and hot-deformed 

magnets.  
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6.2.3 Impact of Diluting Intergranular Phase on Magnetic Properties of Hot-

deformed Magnets 

As shown in Figure 6-4, the coercivity of hot-deformed magnets increases from 2.09T to 

2.26T and remanence decreases from 1.22T to 1.15T at room temperature by adding 5wt% 

of the non-ferromagnetic Nd0.7Cu0.3 alloy. The decrease in remanence may result from the 

decreased amount of effective magnetic hard phase. Based on the stoichiometry of the 

materials, the weight percent of magnetic hard phase and intergranular phase can be 

calculated. For A0, B0 and C0, they consist of 93wt% magnetic hard phase 

([Dy0.08Pr0.24Nd0.68]2[Fe0.94Co0.06]14B) and 7wt% intergranular phase 

([Dy0.08Pr0.24Nd0.68]0.7[Fe0.94Co0.06]0.3). Samples A5, B5 and C5 have 88wt% magnetic hard 

phase ([Dy0.08Pr0.24Nd0.68]2[Fe0.94Co0.06]14B), 7wt% grain boundary phase 

([Dy0.08Pr0.24Nd0.68]0.7[Fe0.94Co0.06]0.3) and 5wt% Nd0.7Cu0.3. The density of commercial 

ribbon particles is 7.625±0.002g/cm3 and it is 6.993±0.004g/cm3 for Nd0.7Cu0.3 ribbons. 

Then, an assumption is made that the volume percent of each phase is approximated by the 

weight percent. The volume percent of grain boundary phase increases from 7% to 12% 

when 5wt% of Nd0.7Cu0.3 alloy is added to the grain boundary region. As a result, the 

volume percent of hard phase decreases from 93% to 88% and ~36% of the grain boundary 

phase are diluted by this non-ferromagnetic Nd0.7Cu0.3 alloy. The stoichiometry of the grain 

boundary phase changes from [Dy0.08Pr0.24Nd0.68]0.7[Fe0.94Co0.06]0.3 to 

[Dy0.08Pr0.24Nd0.68]0.7[Fe0.57Cu0.37Co0.06]0.3, and 40% of the Fe is diluted by Cu. The ratio of 

hard phase between magnets with and without adding Nd0.7Cu0.3 alloy is 93% 1.06
88%

=  and 

the ratio of room temperature remanence between magnets with and without adding 
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Nd0.7Cu0.3 alloy is 1.22 1.06
1.15

T
T
= . The results show that the decrease of remanence is 

potentially caused by adding additional non-ferromagnetic Nd0.7Cu0.3 alloy.   

 

 

Figure 6-6 A single platelet-shaped grain (2a × 2a × 2δ) is surrounded by a grain 

boundary phase of thickness 2d. 

 

Figure 6-6 illustrates that the platelet-shaped grain which is surrounded by a thin layer of 

grain boundary phase. The dimensions of the platelet-shaped grain are 2 2 2a a δ× × , and 

the thickness of the grain boundary phase is 2d . Thus the volume percent of grain boundary 

phase can be estimated as: 
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2 2

2
(2 2 ) (2 2 ) 8%

(2 2 ) (2 2 )
a d d aVol

a d d
δ δ

δ
+ × + −

=
+ × +

  (6.1) 

Submitting the dimension of crystallites and volume percent of grain boundary phase into 

Equation (6.1), the grain boundary thickness ( 2d ) increases from ~3nm to ~5nm. The grain 

boundary thickness of the hot-deformed magnets in this study without adding Nd0.7Cu0.3 is 

in agreement with experimental measurements from literature [41]. 

 

As described in Chapter 2, the mechanisms that reduce the coercivity from the anisotropy 

field HK can be characterized by the following formula: 

 0 0 0C K eff SH H N Mµ αµ µ= −   (6.2) 

In this expression, MS is the saturation magnetization for the magnetic hard phase [13, 31, 

42-44]. The values of α and Neff can be determined by firstly measuring the HC of a 

particular material at different temperatures. Then, α and Neff can be extracted from the 

slope and intercept of a plot of HC/MS vs HK/MS if HK and MS are known. The estimation 

of HK and MS for [Dy0.08Pr0.24Nd0.68]2[Fe0.94Co0.06]14B is made based on the extension of 

Vegard’s law described in Chapter 2. The calculated MS and HK values of this material at 

different temperatures are listed in Table 6-1. The dependence of HC/MS on HK/MS for hot-

deformed magnets, with and without Nd0.7Cu0.3 additives, are plotted from room 

temperature to 160°C, illustrated in Figure 6-7. The fitted values of parameters α and Neff 

for each sample are calculated based on the least square regression method. Since there are 

only three duplicate samples for each experiment, the 95% confidence intervals for the 

mean of α and Neff are calculated based on the t-distribution instead of assuming the sample 

follows the normal distribution: 
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 ( )x t
n
σ

± ×   (6.3) 

In this equation, t is a coefficient dependent on the degree of freedom (n-1), σ  is the 

standard deviation based on the experimental data and n is the sample size (n=3). The 

resulting values for α and Neff shown in Table 6-2. 

 

Table 6-1 Calculated value of MS, HK for [Dy0.08Pr0.24Nd0.68]2[Fe0.94Co0.06]14B and 

experimental value of MS, HK for Nd2Fe14B 

 

 

 

 

 

 [Dy0.08Pr0.24Nd0.68]2[Fe0.94Co0.06]14B Nd2Fe14B 

Temperature MS/Tesla HK/Tesla MS/Tesla HK/Tesla 

25°C 1.53 7.78 1.61 6.56 

70°C 1.50 6.82 1.53 6.03 

100°C 1.47 6.15 1.46 5.63 

130°C 1.41 5.45 1.41 5.09 

160°C 1.34 4.75 1.32 4.42 
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Figure 6-7 The dependence of HC/MS on HK/MS for hot-deformed magnet with 5wt% 

Nd0.7Cu0.3 additives (blue line) and without Nd0.7Cu0.3 additives (black line) at 

different temperatures. 

 

Table 6-2 Values of parameters α and Neff for hot-deformed Nd2Fe14B-based 

magnetic materials. 

Materials α Neff 

Hot-deformed magnets without 
Nd0.7Cu0.3 additives in this work 0.54±0.02 1.39±0.05 

Hot-deformed magnets with 5wt% 
Nd0.7Cu0.3 additives in this work 0.53±0.03 1.26±0.08 
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The regression data clearly shows that there is no significant change in α, while Neff 

decreases from 1.39 to 1.26 when 5 wt% of Nd0.7Cu0.3 alloy is added. The results of the 

phenomenological model show that adding 5 wt% Nd0.7Cu0.3 alloy into the grain boundary 

phase does not influence the exchange coupling between the neighboring grains but that it 

does decrease the internal stray field. The internal field of a single grain can be determined 

if the distribution of magnetization M


inside the grain is known. If there is no free current 

inside the grains, the stray field can be determined from a scalar potentialΨ : 

 SH = −∇Ψ


  (6.4) 

According to Maxwell’s equation 0B∇⋅ =


, and 0( )B M Hµ= +
  

, thus  

 SH M∇⋅ = −∇ ⋅
 

  (6.5) 

Similar to the bound charge in the electric polarized object, the effective magnetic charge 

density can be given by: 

 Mρ = −∇ ⋅


  (6.6) 

Combining Equation (6.4), (6.5) and (6.6), it gives that: 

 
2 ρ∇ Ψ = −   (6.7) 

The scalar potential Ψ  can be obtained by solving this Poisson’s equation: 

 
1 ( ') '( )

4 '
r dr
r r

ρ τ
π

⋅
Ψ =

−∫



    (6.8) 

and the stray field can be calculated based on Equation (6.4). In the hot-deformed magnets, 

it is assumed that the platelet-shaped grains with dimensions of 2 2 2a a δ× × are uniformly 

magnetized in the z direction ( ˆSM M z=


 ), which is shown in Figure 6-8. The uniform 
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magnetization M


creates surface charge densityσ  without creating volume charge density 

ρ . This surface charge density is expressed as follows: 

 ˆM nσ = ⋅


  (6.9) 

This gives a scalar potential Ψ of: 

 
1 ( ') '( )

4 '
r dfr
r r

σ
π

⋅
Ψ =

−∫



    (6.10) 

Both positive surface charge at ( ', ', )r x y δ=
 and negative surface charge at 

( '', '', )r x y δ= −
  should be considered to calculate the scalar potentialΨ . According to 

Kronmüller’s work[17], the most probable occurrence of the nucleation of reverse domains 

usually occurs in the region where the anisotropy constant 1K  is low such as the inter-

granular phase, in the vicinity of non-magnetic participates or pores. The stray field 

initiates the nucleation of reverse domains.  

 

Figure 6-8 Sketch of a single platelet-shaped grain aligned along the z-axis and the 

cross-sectional image of the grain.  
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The integration over the surface of a platelet-shaped grain is complex. For simplicity, the 

stray field along the central z-axis (easy axis) will be estimated as follows. Instead of 

rectangular prism, a cylinder with dimensions 2 2 ,  ( )r r aπ δ× =  is used here (shown in 

Figure 6-9). The scalar potential is: 

 

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2

1 1 1 1(0,0, ) ' ''
4 4' ' ( ) ' ' ( )
1 2 ' ' 1 2 '' ''

4 4' ( ) '' ( )

( ( ) ( ) ( ) ( ) )
2

[ ( ) ( ) )
2

S S

S S

S

S

z M df M df
x y z x y z

r dr r drM M
r z r z

M R z z R z z

M R z z R z z

π πδ δ
π π

π πδ δ

δ δ δ δ

δ δ δ δ

Ψ = ⋅ − ⋅
+ + − + + +

= −
+ − + +

= ⋅ + − − − − + + + +

= + − − − − + + + +

∫ ∫

∫ ∫
 

 (6.11) 

And the stray field is: 

 

2 2 2 2

2 2 2 2

(0,0, ) ( [ ( ) ( ) )
2

[ 2] ,  
2 ( ) ( )

S
S

S

MH z R z z R z z z
z

M z z z z
R z R z

δ δ δ δ

δ δ δ
δ δ

∂
= −∇Ψ = − + − − − − + + + + ⋅

∂
− +

= − − + ⋅ <
+ − + +





 

 (6.12) 

By substituting these parameters 115 ,  45r nm nmδ= =  into Equation (6.12), Figure 6-10 

shows the distribution of (0,0, ) /S SH z M
 

 along the central axis of the cylinder. The stray 

field increases slightly near the edge of the cylinder, which is in agreement with the 

simulation results done by Schmidts and his co-workers[45]. However, the stray field 

calculated based on Equation (6.12) only gives the information along the central axis and 

it cannot give the information about the stray field near the corner. The simulation model 

in the literature[45] shows that the stray field increase abruptly near the corners of grains 

and the torque caused by the stray field rotates the spontaneous magnetization out of its 
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easy axis even though there is no external magnetic field applied. This reversible rotation 

continues growing if a reverse external field is applied. However, the anisotropy field and 

exchange interaction will against this rotation. When the reverse external field is large 

enough, and overcome the anisotropy field and exchange interaction, the magnetization 

rotates to its reverse direction. Adding Nd0.7Cu0.3 alloy into the grain boundary phase has 

a large potential to round the corners of the grains and results in lower stray field, which is 

illustrated in Figure 6-11.  

 

 

Figure 6-9 Sketch of a single cylindrical grain with dimensions of 2 2 ,aπ δ×  aligned 

along the z-axis 
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Figure 6-10 The distribution of Hs/Ms along the central axis of the cylindrical grain. 

 

 

Figure 6-11 Adding Nd0.7Cu0.3 in the intergranular phase may decrease the stray field 

by rounding the corners of the grains. 
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Simulation result also shows[46, 47] that if the neighboring grains are magnetic isolated 

with each other by a nonmagnetic layer phase, then the effect of the nucleus of reverse 

domains on the neighboring grains can be suppressed. Diluting ~36% of the grain boundary 

phase by non-ferromagnetic Nd0.7Cu0.3 alloy may be not enough to magnetically segregate 

each of the grains. A simulation[48] for nanoscale permanent magnets ( 120d nm≈ ) 

considered the effect of grain boundary phase on the magnetic properties of materials.  It 

shows that when the exchange constant A  in the grain boundary region decreases, there is 

no significant changes in coercivity or in remanence; when the anisotropy constant 1K  in 

the grain boundary region decreases, the coercivity decreases; when the saturation 

magnetization SM  in the grain boundary region decreases, the coercivity increases and 

remanence slightly decreases. The third case is in agreement with our experimental data. 

Thus, the increase of coercivity in the hot-deformed magnets may be due to the decrease 

of SM in the grain boundary region by adding non-ferromagnetic Nd0.7Cu0.3 additives. 

However, the causality between coercivity force and lower SM  in the grain boundary 

phase is not clear. 

 

6.3   Conclusions  

It is shown that the crystallographic alignment of hot-deformed magnets is not influenced 

by adding non-ferromagnetic Nd0.7Cu0.3 additives. The change in microstructure can result 

in magnets with sufficient coercivity that can satisfy the requirement for the traction motors 

used in the electric and hybrid vehicle but with lower amounts of Dy as compared to 
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commercially sintered magnets. Adding 5wt% Nd0.7Cu0.3 additives into the grain boundary 

region does not magnetically isolate the grains, but it does decrease the stray field near the 

corner of the grains.  
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Chapter 7                                       

Summary 

The hypothesis investigated in this work states that if bulk, rare-earth magnets are 

comprised of crystallographically-aligned, submicron Neodymium-Iron-Boron grains, 

separated from each other by a modified inter-granular phase, then each grain will only 

support a single magnetic domain and will be partially magnetically isolated from 

neighboring grains. This effect would cause the bulk magnet’s coercivity to approach the 

maximum value possible for Nd2Fe14B. However, the experimental results have disproved 

this hypothesis. The conclusions drawn from each task are summarized as follows. 

 

Quantitative expressions to predict the minimum amount of Dy needed for sintered 

magnets used in traction motors of electric and hybrid electric vehicles were developed. 

They show that the amount of Dy needed can be reduced from ~7wt% to ~4wt% if a post 

sintering Dy-diffusion treatment is implemented. The weight percent of Dy is the primary 
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indicator of high temperature coercivity, and the morphological variations in degree of 

magnetic alignment have a small to negligible impact on the high temperature resistance 

to demagnetization of these magnets. 

 

Five hot-deformed magnets were manufactured at different temperatures (680°C, 750°C, 

800°C, 850°C, 900°C) to analyze the effect of hot-deformation parameters on the 

microstructural and magnetic properties of magnets. The results show that the grain size 

increases and the stress decreases with an increase in hot-deformation temperature when 

the strain rate is kept constant. When the temperature reaches to 900°C, the grain size 

increases to ~ 1100  ~ 200nm nm× , which is large enough to support multiple domains in a 

single crystallite. It demonstrates that ~680°C is the optimal deformation temperature for 

manufacturing Nd2Fe14B-based magnets that are comprised of crystallographically-aligned 

submicron Nd2Fe14B grains. 

 

It also demonstrates that it is possible to fabricate bulk magnets that are comprised of 

crystallographically-aligned, submicron Nd2Fe14B grains even though the inter-granular 

phase is diluted by non-magnetic Nd0.7Cu0.3 phase. The microstructure described above can 

result in magnets with sufficient coercivity to satisfy the requirement for traction motors 

used in the electric and hybrid vehicle while decreasing the amount of Dy required to 

~2.5wt%. The change in inter-granular phase weakens the stray field but does not appear 

to magnetically isolate the grains. Adding 5wt% Nd0.7Cu0.3 additives into the grain 

boundary region may not be enough for magnetically isolation.  
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The work done in this research suggests that producing magnets with the hot-deformation 

process developed at MTU in order to reduce the amount of Dy required is potentially more 

cost-effective than using the Dy surface diffusion approach patented by Hitachi. Further 

investigation is required to determine both the mechanism by which the elevated 

temperature magnetic properties of RE2TM14B magnets can be maintained with reduced 

Dy, and the extent to which this mechanism allows for the further reduction of Dy.   

 

 

 

  



86 

 

References  

[1] K.C. P. Villars, Pearson's Crystal Data: Crystal Structure Database for Inorganic 

Compounds (on CD-ROM), Release 2013/14, ASM International®, Materials Park, Ohio, 

USA, (2013/14). 

[2] J.F. Herbst, Rev. Mod. Phys., 63 (1991) 819-898. 

[3] S. Hirosawa, K. Tokuhara, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, 

Journal of Magnetism and Magnetic Materials, 61 (1986) 363-369. 

[4] M. Sagawa, S. Hirosawa, K. Tokuhara, H. Yamamoto, S. Fujimura, Y. Tsubokawa, R. 

Shimizu, Journal of Applied Physics, 61 (1987) 3559-3561. 

[5] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi, Jpn. 

J. Appl. Phys. Part 2 - Lett., 24 (1985) L803-L805. 

[6] Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa, Applied Physics 

Letters, 46 (1985) 308-310. 

[7] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, K. Hiraga, IEEE Trans. Magn., 

20 (1984) 1584-1589. 

[8] R.K. Mishra, V. Panchanathan, J.J. Croat, Journal of applied physics, 73 (1993) 6470-

6472. 



87 

[9] P.G. McCormick, W.F. Miao, P.A.I. Smith, J. Ding, R. Street, Journal of applied 

physics, 83 (1998) 6256-6261. 

[10] H. Nakamura, K. Hirota, M. Shimao, T. Minowa, M. Honshima, IEEE Trans. Magn., 

41 (2005) 3844-3846. 

[11] R. Fischer, T. Schrefl, H. Kronmuller, J. Fidler, Journal of Magnetism and Magnetic 

Materials, 153 (1996) 35-49. 

[12] M. Sagawa, S. Fujimura, Y. Yamamoto, Y. Matsuura, S. Hirosawa, K. Hiraga, 

Proceedings of the Eighth International Workshop on Rare-Earth Magnets and their 

Applications and the Fourth International Symposium on Magnetic Anisotropy and 

Coercivity in Rare Earth- Transition Metal Alloys, (1985) 587-611. 

[13] J. Bauer, M. Seeger, H. Kronmuller, Journal of Magnetism and Magnetic Materials, 

139 (1995) 323-334. 

[14] R. Fischer, H. Kronmuller, Phys. Status Solidi A-Appl. Mat., 166 (1998) 489-511. 

[15] A. Zern, M. Seeger, J. Bauer, H. Kronmuller, Journal of Magnetism and Magnetic 

Materials, 184 (1998) 89-94. 

[16] H. Kronmuller, K.D. Durst, M. Sagawa, Journal of Magnetism and Magnetic Materials, 

74 (1988) 291-302. 

[17] H. Kronmuller, Phys. Status Solidi B-Basic Res., 144 (1987) 385-396. 

[18] K. Hono, H. Sepehri-Amin, Scripta Materialia, 67 (2012) 530-535. 

[19] R.W. Lee, Applied Physics Letters, 46 (1985) 790-791. 

[20] L. Li, C.D. Graham, IEEE Trans. Magn., 28 (1992) 2130-2132. 



88 

[21] H.W. Kwon, J.H. Yu, IEEE Trans. Magn., 45 (2009) 4435-4438. 

[22] W.B. Cui, Y.K. Takahashi, K. Hono, Acta Materialia, 59 (2011) 7768-7775. 

[23] Y. Liu, Y. Ma, J. Li, C. Li, F. Xie, L. Chu, IEEE Trans. Magn., 46 (2010) 2566-2569. 

[24] K.G. Knoch, B. Grieb, E.T. Henig, H. Kronmuller, G. Petzow, IEEE Trans. Magn., 

26 (1990) 1951-1953. 

[25] D.N. Brown, B. Smith, B.M. Ma, P. Campbell, IEEE Trans. Magn., 40 (2004) 2895-

2897. 

[26] K. Ohmori, L. Li, C.D. Graham, IEEE Trans. Magn., 28 (1992) 2139-2141. 

[27] H. Sepehri-Amin, J. Liu, T. Ohkubo, K. Hioki, A. Hattori, K. Hono, Scripta Materialia, 

69 (2013) 647-650. 

[28] H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, K. Hono, Scripta Materialia, 

63 (2010) 1124-1127. 

[29] T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, K. Hono, Scripta 

Materialia, 81 (2014) 48-51. 

[30] T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, K. Hono, Journal 

of Applied Physics, 115 (2014). 

[31] H. Sepehri-Amin, T. Ohkubo, K. Hono, Acta Materialia, 61 (2013) 1982-1990. 

[32] W.C. Chang, T.B. Wu, K.S. Liu, Journal of Applied Physics, 63 (1988) 3531-3533. 

[33] S.Z. Zhou, Y.X. Zhou, C.D. Graham, Journal of Applied Physics, 63 (1988) 3534-

3536. 



89 

[34] T. Kawai, B.M. Ma, S.G. Sankar, W.E. Wallace, Journal of Applied Physics, 67 (1990) 

4610-4612. 

[35] P. Tenaud, A. Chamberod, F. Vanoni, Solid State Communications, 63 (1987) 303-

305. 

[36] G.P. Meisner, E.G. Brewer, Journal of Applied Physics, 72 (1992) 2659-2664. 

[37] T.S. Chin, M.P. Hung, D.S. Tsai, K.F. Wu, W.C. Chang, Journal of Applied Physics, 

64 (1988) 5531-5533. 

[38] R. Zhao, W.C. Zhang, J.J. Li, H.J. Wang, M.G. Zhu, W. Li, Journal of Magnetics, 16 

(2011) 294-299. 

[39] Y. Yoshida, Y. Kasai, T. Watanabe, S. Shibata, V. Panchanathan, J.J. Croat, Journal 

of applied physics, 69 (1991) 5841-5843. 

[40] L.F. Francis, Materials Processing: A Unified Approach to Processing of Metals, 

Ceramics and Polymers, Elsevier Science, 2015. 

[41] H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, 

K. Hono, Acta Materialia, 61 (2013) 6622-6634. 

[42] K.D. Durst, H. Kronmuller, Journal of Magnetism and Magnetic Materials, 68 (1987) 

63-75. 

[43] S. Bance, B. Seebacher, T. Schrefl, L. Exl, M. Winklhofer, G. Hrkac, G. Zimanyi, T. 

Shoji, M. Yano, N. Sakuma, M. Ito, A. Kato, A. Manabe, Journal of Applied Physics, 116 

(2014). 



90 

[44] D. Goll, M. Seeger, H. Kronmuller, Journal of Magnetism and Magnetic Materials, 

185 (1998) 49-60. 

[45] H.F. Schmidts, H. Kronmuller, Journal of Magnetism and Magnetic Materials, 94 

(1991) 220-234. 

[46] T. Schrefl, J. Fidler, H. Kronmuller, Journal of Magnetism and Magnetic Materials, 

138 (1994) 15-30. 

[47] T. Schrefl, H.F. Schmidts, J. Fidler, H. Kronmuller, Journal of Magnetism and 

Magnetic Materials, 124 (1993) 251-261. 

[48] R. Fischer, H. Kronmuller, Phys. Rev. B, 54 (1996) 7284-7294. 

 

 


	Michigan Technological University
	Digital Commons @ Michigan Tech
	2016

	INVESTIGATION OF THE RESISTANCE TO DEMAGNETIZATION IN BULK RARE-EARTH MAGNETS COMPRISED OF CRYSTALLOGRAPHICALLY-ALIGNED, SINGLE-DOMAIN CRYSTALLITES WITH MODIFIED INTERGRANULAR PHASE
	Jie Li
	Recommended Citation


	Dissertation Advisor: Peter D. Moran
	Committee Member: Ravindra Pandey
	Committee Member: Stephen Hackney
	Committee Member: Stephen Kampe
	Committee Member: Yongmei Jin
	Department Chair: Ravindra Pandey
	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	Chapter 1                                   Introduction
	1.1 Research Goal
	1.2 Motivations for Research
	1.3 Organization of the Dissertation

	Chapter 2                                      Background
	2.1 Intrinsic Magnetic Properties
	2.2 Effect of Chemical Compositions on MS and HK
	2.3 Effect of Volume Percent of Hard Phase on MS and HK
	2.4 Demagnetization Curves and the Definition of Coercivity and Remanence
	2.5 Effect of Microstructure on HC and Br
	2.5.1 Magnetic Domain
	2.5.2 The Phenomenological Model for Understanding the Impact of Microstructure on Hc

	2.6 Methods of Manufacturing RE2TM14B Magnets
	2.6.1 Sintering Process
	2.6.2 Hot-Deformation Process
	2.6.3 Preferential Dissolution/Re-precipitation Mechanism

	2.7 The Effect of Intergranular Phase on Magnetic Properties

	Chapter 3                                 Experimental Techniques
	3.1 Grain Size Measurement
	3.2 Developing a Quantitative Metric of Crystallographic Alignment
	3.3 Measuring Remanence and Coercivity with VSM

	Chapter 4                              Characteristics of RE2TM14B Magnets Used in Traction Motors of Hybrid and Electric Vehicles
	4.1   Structure of the Experiments
	4.2   Results and Discussion
	4.3   Conclusions

	Chapter 5                                            Impact of Hot-deformation Parameters on Microstructural and Magnetic Properties of RE2TM14B Magnets
	5.1   Experimental Design
	5.2   Results and Discussion
	5.2.1   Hot Deformation Parameters on Microstructural Properties of Magnets
	5.2.2   Hot Deformation Parameters on Magnetic Properties of Magnets

	5.3   Conclusions

	Chapter 6                                              Effect of Modifying Inter-granular Phase on Microstructural and Magnetic Properties of RE2TM14B Magnets
	6.1   Experimental Design
	6.2   Results and Discussion
	6.2.1 Microstructural Properties of Hot-deformed Magnets with Modified Intergranular Phase
	6.2.2 Magnetic Properties of Developed Hot-deformed Magnets
	6.2.3 Impact of Diluting Intergranular Phase on Magnetic Properties of Hot-deformed Magnets

	6.3   Conclusions

	Chapter 7                                       Summary
	References

