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PREFACE 
Chapter 1 (Introduction) presents various growth techniques of carbon nanotubes (CNTs) 

which includes arc discharge, laser ablation and chemical vapor deposition (CVD) 

techniques. Growth of CNTs by our dual radio frequency plasma enhanced CVD is 

described in detail. Finally the optimization of various growth parameters is discussed.   

Chapter 2 (Investigation methods) discusses various experimental techniques for the 

characterization of CNTs and the device fabrication, including scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, 

Fourier transform infra-red spectroscopy, and electrochemical techniques.  

Chapter 3 (Enhanced Field emission from CNTs) provides the basics of electron field 

emission. Thereafter, the issues involved in field emission of as grown CNTs are 

discussed. This is followed by the experimental details and discussion of our approaches 

in overcoming some of these issues. 

Chapter 4 (Glucose biosensors based on PMMA-CNT Matrices) introduces glucose 

biosensors based on our PMMA-CNT matrices. The biosensor was developed using 

immobilization of glucose oxidase (GOx) on CNTs. The durability, stability and 

sensitivity of the biosensor were also studied. In order to understand and improve the 

performance of miniaturized glucose biosensors we have then investigated the effect of 

working electrode area on the sensitivity and current level of our biosensors. 

Chapter 5 (Energy Generation and Storage using Functionalized PMMA-CNT Matrices) 

introduces the concept of energy sensing, generation and storage (SGS) devices using 



xvi 
 

functionalized PMMA-CNT matrices. At the beginning, this chapter introduces the 

concept of biofuel cells (BFCs) for energy generation using PMMA-CNT matrices. The 

construction of these BFCs and the effect of the electrode area on the power density of 

these BFCs are then described. Then, we have investigated the use of PMMA-CNT 

matrices as supercapacitors for energy storage devices. The performance of these 

supercapacitors and ways to enhance their performance are discussed. 

Chapter 6 (Future work on SGS based on PMMA-CNT matrices) discusses the future 

work of the proposed SGS devices.  
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Abstract 
Carbon nanotubes (CNTs) are interesting materials with extraordinary properties for 

various applications. Here, vertically-aligned multiwalled CNTs (VA-MWCNTs) are 

grown by our dual radio frequency plasma enhanced chemical vapor deposition 

(PECVD). After optimizing the synthesis processes, these VA-MWCNTs were fabricated 

in to a series of devices for applications in vacuum electronics, glucose biosensors, 

glucose biofuel cells, and supercapacitors In particular, we have created the so-called 

PMMA-CNT matrices (opened-tip CNTs embedded in poly-methyl methacrylate) that 

are promising components in a novel energy sensing, generation and storage (SGS) 

system that integrate glucose biosensors, biofuel cells, and supercapacitors. The content 

of this thesis work is described as follows: 

1. We have first optimized the synthesis of VA-MWCNTs by our PECVD technique. 

The effects of CH4 flow rate and growth duration on the lengths of these CNTs were 

studied.  

2. We have characterized these VA-MWCNTs for electron field emission. We noticed 

that as grown CNTs suffers from high emission threshold, poor emission density and 

poor long-term stability. We attempted a series of experiments to understand ways to 

overcome these problems. First, we decrease the screening effects on VA-MWCNTs 

by creating arrays of self-assembled CNT bundles that are catalyst-free and opened 

tips. These bundles are found to enhance the field emission stability and emission 

density. Subsequently, we have created PMMA-CNT matrices that are excellent 

electron field emitters with an emission threshold field of more than two-fold lower 

than that of the as-grown sample. Furthermore, no significant emission degradation 

was observed after a continuous emission test of 40 hours (versus much shorter tests 

in reported literatures). Based on the new understanding we learnt from the PMMA-

CNT matrices, we further created PMMA-STO-CNT matrices by embedding opened-

tip VA-MWCNTs that are coated with strontium titanate (SrTiO3) with PMMA. We 

found that the PMMA-STO-CNT matrices have all the desired properties of the 
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PMMA-CNT matrices. Furthermore, PMMA-STO-CNT matrices offer much lower 

emission threshold field, about five-fold lower than that of as grown VA-MWCNTs. 

The new understandings we obtained are important for practical application of VA-

MWCNTs in field emission devices. 

3. Subsequently, we have functionalized PMMA-CNT matrices for glucose biosensing. 

Our biosensor was developed by immobilized glucose oxidase (GOx) on the opened-

tip CNTs exposed on the matrices. The durability, stability and sensitivity of the 

biosensor were studied. In order to understand the performance of miniaturized 

glucose biosensors, we have then investigated the effect of working electrode area on 

the sensitivity and current level of our biosensors.  

4.  Next, functionalized PMMA-CNT matrices were utilized for energy generation and 

storage. We found that PMMA-CNT matrices are promising component in 

glucose/O2 biofuel cells (BFCs) for energy generation. The construction of these 

BFCs and the effect of the electrode area on the power density of these BFCs were 

investigated. Then, we have attempted to use PMMA-CNT matrices as 

supercapacitors for energy storage devices. The performance of these supercapacitors 

and ways to enhance their performance are discussed. 

5. Finally, we further evaluated the concept of energy SGS system that integrated 

glucose biosensors, biofuel cells, and supercapacitors. This SGS system may be 

implantable to monitor and control the blood glucose level in our body. 

 

 

 

 



1 
 

Chapter 1 

1. Introduction 

1.1.Motivation 
 

“Nano” a small word but technology associated with it, has changed the world 

in an incredible way.  Now a days nanotechnology has affected and is changing the 

existing technology in a farfetched way. The research in the domain of CNTs has 

contributed significantly towards the potential aspects of Nanotechnology. Keeping 

this stimulus to contribute in this domain, I have decided to study the applications of 

CNTs. The project was started on the optimization of growth conditions of MWCNTs 

using our PECVD system. And then I moved on to the potential electronic, biological 

and energy applications. At first, I focused on using CNTs as field emission devices. 

These devices are suffering from various issues including high threshold voltage and 

low stability. To overcome these deficiencies, I used CNTs embedded in PMMA 

(PMMA-CNT matrices) to enhance the field emission properties. Another application 

for potential use of CNTs is in glucose biosensors. Functionalized PMMA-CNT 

matrices act as excellent biosensors with high enzyme lifetimes and long term 

stability. An exciting application explored is biofuel cell.  Functionalized PMMA-

CNT matrices act as excellent biofuel cells with high power density and efficiency. As 

described, major portion of this work is based on the use of PMMA-CNT matrices in 

various applications. 
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1.2. Background and classification of carbon nanotubes 
 

The atomic number of Carbon is six and has lowest atomic number in column 

four of the periodic table. CNTs are seamless cylinders of graphitic carbon with 

extraordinary properties. Tremendous increase in interest in CNTs is a consequence of 

synthesis of buckminsterfullerene C60, and other structures in 1985. Later in another 

experiment by W. Krätschmer and D. Huffman discovered to produce macroscopic 

quantities of fullerenes. Since the invention CNTs have attracted great interest in 

diverse applications because of their excellent properties [1-3]. 

1.2.1. Structure and properties 
 

Carbon-based nanomaterials are distinctive and versatile in various ways. 

Carbon can form different possible structures by combining two or more covalently 

bonded atoms, which is known as the hybridization of atomic orbitals. Therefore, 

three types of hybridizations occur in carbon: sp, sp2 and sp3. In Carbon, the inner 

atomic orbitals are absent and (only 1s orbital is present) because of the absence of 

inner atomic orbitals the hybridizations in carbon involves only valence s and p 

orbitals [2, 3]. Carbon nanotubes are the most suitable nanoscale materials for 

nanotechnology applications.  
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Figure 1.1: Single walled carbon nanotubes 

As the name suggests, a single walled carbon nanotubes (SWCNTs) can be 

described as a rolled up graphene sheet into a form of cylinder. Figure 1.1 shows the 

end-view of a SWCNT. A multi-walled carbon nanotube (MWCNT) consists of a 

series of co-axial concentric SWCNTs as shown in Figure 1.2.  

 

Figure 1.2: Multi-walled carbon nanotubes 

A nanotube is usually characterized by its diameter d and chiral angle  (0 

1.3). The chiral vector Ch is defined with the two integers (n, m) and 

the basis vectors of the graphene sheet [3]. Typical diameter of SWCNTs is of the 
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order of 1.5 nm. The manner in which the graphite sheet rolls up is called the 

“Chirality”. The chiral vector is given by the two integers (n, m) and the basis vectors 

of the graphene sheet and is given by:  Ch = na1+ ma2 = (n, m)

The size of the nanotubes and their properties are determined by the “Chiral 

Vector” where, Ch = circumference of the CNT, a1 and a2 are the unit vectors and n 

and m are the integers. CNTs can be either metallic or semiconducting depending on 

their geometry. SWNTs are metallic when n – m = 3p, where p is integer. With all 

other values of n and m it will be semiconducting.   

 

 

 

 

 

Figure 1.3: A Representation of rolling single walled carbon nanotubes in different ways 
 

The chiral angle is defined as the angle between the chiral vector Ch and the 

so-called “zigzag” direction (n, 0). The integers (n, m) determine d and as follows: 

 

              anmmnd 221 ,         and        
nmmn

m
222
3sin   
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When graphene sheet is rolled up in one direction of the chiral vector Ch one gets a (n, 

m) nanotube. This gives us two special classes of nanotubes and is called “armchair” 

nanotubes (n, n) and the “zigzag” nanotubes (n, 0). All the others are “chiral” 

nanotubes (n, m) with n m and m 1.3). The rectangle which is formed in 

Figure 1.4 defined translation vector T and the chiral vector Ch define the unit cell of a 

nanotube that can be translated in only one direction. The intersection of the vector 

‘OB’ with the first lattice point determines one dimensional lattice vector (T).  

 

 

Figure 1.4: A graphene sheet showing different terms used in defining single walled carbon 
nanotubes 

The area enclosed by the vectors ‘OB’ and ‘Ch’ defines the unit cell of the 

CNT. A CNT is produced by joining two ends of the chiral vector ‘Ch’, and the 

cylindrical shape is made with joining two lines ‘OB’ and ‘AB’’. SWNTs are often 

found in bundles that are formed by a triangular arrangement of individual SWNT [4-

6]. 
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1.2.2. Physical properties of carbon nanotubes 
Carbon nanotubes possess exceptional physical properties. Key points of these 

physical properties of CNTs are noted below: 

 Electrical: Electrical properties of CNTs can be determined by the chiral 

vector (chirality) and diameter. Depending on chirality CNTs can be metallic, 

semi metallic or semiconducting.  MWCNTs are always conducting. Electron 

field emission from CNTs and the prototype of CNTs based flat panel displays 

have been demonstrated [7]. These CNTs have high aspect ratios and they can 

emit electrons at relatively lower electric field values. This makes CNTs ideal 

candidate for the electron field emission.  

 Optical: CNTs are optically active. Raman spectroscopy of CNTs reveal 

graphitic order “G” peak and defect order “D” peak. Additionally, SWCNTs 

show radial breathing mode (RBM) peak corresponding to their diameters [8]. 

 Thermal: CNTs possess excellent thermal conductivity due to its structure. 

Composite material of CNTs with epoxy at only a 1% loading showed 

excellent thermal conductivity [9].  

 Mechanical: CNTs have extraordinary mechanical properties. CNTs have high 

young’s modulus of 1 TPa [10]. This property of CNTs implications for the 

development of a wide variety of products, such as light weight bullet proof 

vests, composite material to be used for space elevator and other safety devices 

etc. [9-11]. 
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1.3. Synthesis methods of carbon nanotubes 
 

There are numerous methods by which we can produce carbon nanotubes. 

Among those methods it is possible to grow carbon nanotubes with different 

properties and with different shapes. Some of the commons methods are: 

 Arc discharge 

 Laser Ablation 

 Chemical vapor deposition (CVD) 

 Thermal Chemical vapor deposition 

 Plasma Enhanced Chemical Vapor Deposition (PECVD) 

1.3.1. Arc Discharge 
 

First report on multi-walled carbon nanotubes was published by S. Iijima in 

1991 at the NEC Laboratory in Japan. The carbon-soot made by their group used arc 

discharge method [1]. In arc-discharge, carbon atoms can be evaporated by helium gas 

plasma. This technique provides the high temperature needed for the evaporation of 

 

With the arc-discharge method both multi- and single walled carbon nanotubes 

can be obtained. MWNTs can be grown by optimizing the growth parameters such as 

the pressure, temperature and the arcing current [12]. A view of an apparatus is shown 

in Figure 1.5. It consists of two carbon electrodes; the cathode on which the deposit 

forms is separated from the anode by ~1 mm. During the deposition the anode is 

consumed. 
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Figure 1.5: Illustration of an arc-discharge apparatus for the production of nanotubes [13]. 
 

A voltage of 20-25 V is applied between the electrodes and the current is 

between 50-120A. The optimal pressure for producing nanotubes is around 500 torr of 

He (fullerenes are efficiently produced at a pressure below 100 torr). For the synthesis 

of MWCNT no catalyst is necessary [13-19]. 

1.3.2. Laser Ablation 
 

The picture of set-up of laser ablation is shown in Figure 1.6. In the laser 

ablation method a laser evaporates a graphite target material which is placed in an 

C. The ablated carbon atoms 

segregate in the form of CNTs and flowing argon gas (~500 torr) takes away the 
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nanotubes from the high temperature zone to the low temperature collector outside 

the furnace [20-21]. 

 

 

 

 

 

 

Figure 1.6: Picture of a laser ablation apparatus 
 

If a pure graphite target is used MWNT are produced like in the arc-discharge 

process but if the target is composed for example of 1.2 atom% Co/Ni with equal 

amounts of Co and Ni added to the graphite then SWNT are synthesized [21]. High 

yields with >70-90% alteration of graphitic carbon to SWNTs were reported in the 

condensing vapor of the heated tube. The produced material consists of ropes of 

SWNT with a diameter between 15 

The average nanotube diameter and the diameter distribution can be adapted by 

varying the synthesis temperature and the composition of the catalyst [22]. The 

diameters of the SWNT have strongly peaked distributions.  
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1.3.3. Chemical vapor deposition technique (CVD) 
 

CVD growth of CNTs is three step processes. First step is the deposition of 

catalyst on silicon (Si) substrate. There are many methods to deposit catalyst on Si 

substrates [23-25]. We use pulsed laser deposition techniques to deposit Ni catalyst 

films as shown in Figure 1.6.  

 

 

 

 
 

 

Figure 1.7: Picture of a horizontal CVD furnace used to grow carbon nanotubes 
 

Transition metals such as Ni, Fe, Co, Mo are used as catalyst for CNTs growth. 

Selection of right catalyst is very important for the CNTs growth. With regard to 

CNTs formation most important properties of the catalysts are their solubility and 

ability to decompose the carbon containing molecules [26]. 

The second step is the pretreatment step. In this step the Si substrates with 

deposited metal particles is transferred to the furnace with high temperature. The 

catalyst film at this temperature undergoes heat-induced surface diffusion, and collides 

with each other to form nano-particles. Therefore, pretreatment transforms the 
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continuous catalyst film into nano-sized particles that are suitable for CNTs growth 

[25]. 

The third step is the actual growth. Picture of CVD chamber in our laboratory 

is shown in Figure 1.7. For the growth of CNTs precursor gas is supplied into the hot 

quartz tube. Along with the precursor gas a buffer gas, such as N2, H2 or NH3, can also 

be co-supplied to dilute the precursor, if needed. The carbon precursor undergoes 

catalytic decomposition, and releases carbon atoms upon heating. CNTs are grown on 

the catalyst nano-particles, and are collected after cooling the chamber to a room 

temperature in some inert gas environment. 

1.3.4. Plasma enhanced chemical vapor deposition (PECVD) 
 

 Figure 1.8 shows the schematic diagram of PECVD system. In the PECVD-

method, CNTs can be deposited on a Si substrate that is coated with a catalyst film 

prior to the deposition. Usually one of the following plasmas is used: RF- (radio 

frequency), MW- (micro wave) or a DC-plasma (direct-current). In our case we use 

methane (CH4) as precursor gas. PECVD is a two step process. In the first step we 

deposit Ni catalyst on low resistance Si substrates. After that those Si substrates are 

placed inside the chamber shown in Figure 1.8. 
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Figure 1.8: (a) Schematic diagram of PECVD system (b) Actual picture of PECVD system 
[Schematic diagram is reprinted with permission from Ben Ulmen] 

 

The substrate temperature is ramped up to 4500C for the growth of nanotubes. 

The purpose of the top plasma is to decompose the hydrocarbon gases into its 

components i.e. ions and other free radicals. The bottom plasma provides the bias 

voltage to the substrates and controlling the ion bombardment on the substrates. We 

control the top and bottom plasma voltages in our experiments. Bottom plasma also 

controls the kinetic energy of the growth species which undergoes collisions with the 

substrates which is held at the some potential by a conducting wire [27, 28]. Some of 

the standard growth parameters which were used throughout this work are listed in the 

table below. 

 

 

(a) 

(b) 
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Table 1.1: Growth parameters of MWCNTs 

1.4. Growth modes and optimization of growth parameters 

1.4.1 Effect of flow rate on the growth of CNTs  
One of the critical growth parameters of PECVD is the gas flow rate. We 

studied the effect of methane flow rate on the growth of carbon nanotubes by PECVD. 

In this study all other parameters (like temperature, pressure and catalyst thickness) 

were fixed and we varied the methane flow rate from 10sccm to 120 sccm in 

increment of 10sccm.  

 

 

 

 

 

 

 

Figure 1.9: Variation of methane flow rate with the length of CNTs 
 

Figure 1.9 shows the effect of methane flow rate on the length of carbon 

nanotubes. We observe from the graph that as methane flow rate increases, the length 

Substrates Temperature Flow rate Deposition 

time 

Top 

plasma 

Bottom 

plasma 

L.R. Si 4500C 100sccm 1hour -150W 150V 
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of MWCNTs increases initially due to more supply of carbon feedstock. But as the 

flow rate increases further, deposition of amorphous carbon poisons the catalyst and 

hinders the growth of MWCNTs. 

1.4.2. Role of growth time on length of CNTs 
 

The exact trend in the growth rate is not known for this growth method. We 

investigated the effect of growth time with the length of carbon nanotubes. Again we 

fixed all other parameters and varied the growth time starting from 15minutes to 90 

minutes. The length of the samples was measured using SEM images from S4700-

FESEM. Figure 1.10 shows the plot of average CNTs length vs growth time of carbon 

nanotubes.  

 

 

 

 

 

 

 

 

 

Figure 1.10: Variation of growth time with the length of CNTs 
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It can be seen in the figure that the growth rate is not linear. As we increase the growth 

time, the lengths of the CNTs increase slowly. For a growth duration longer than 90 

minutes, the growth rate decreases as catalyst particles become inactive due to 

amorphous carbon coatings. This indicates that less carbon is absorbing into the 

catalyst nanoparticles and they are over-coated with amorphous carbon forming a 

barrier which prevents absorption of any more carbon atoms. 

1.4.3. Growth modes of CNTs 
 

There are two different growth modes of CNTs [29]. They are as follows: 

 Tip growth mode: In this mode the adherence of catalyst nanoparticles to the 

substrate surface is week. Therefore, carbon precipitation occurs at the bottom 

and it lifts the catalyst particle as it grows. In this case the tips are decorated 

with catalyst particle and are called as tip growth mode. It is shown in the 

Figure 1.11 (a). 

 Base growth mode: In this case the adherence of catalyst nanoparticles to the 

substrate surface is strong. The carbon precipitates from the top surface of the 

catalyst particle and it continues to grow with the particle attached to the 

substrate. This growth is called base growth mode. It is shown in Figure 1.11 

(b). 
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Figure 1.11: Illustration of (a) tip growth mode and (b) base growth mode [29] 
 

Details of growth mechanism of PECVD CNTs can be found in Ben Ulmen’s master’s 

thesis (Michigan Tech).  

1.5. Potential applications of carbon nanotubes 
 

Due to their extraordinary properties, CNTs can be used in many applications. 

Some of them are in microelectronics, field emitters, biosensors, biofuel cells and 

molecular electronics. Here applications related to the scope of this thesis are 

discussed.  

1.5.1 Field Emission 

One of the most popular applications of CNTs as utilizing the small size of 

SWNTs is field electron emitters. Because of the tiny cross sections of SWNTs, the 

electrical fields around the tips are high value when a potential is applied between 
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SWNTs and the ground. This high field facilitates the electron tunneling process. This 

kind of emitters can be used to extract electrons to generate lights via florescence, and 

even X-ray (portable and high resolution X-ray machine).  Being an attractive source 

for electrons as compared to thermionic emission, field emission is a quantum 

phenomenon. When sufficiently high electric field is applied then the electrons near 

the Fermi level have enough energy to tunnel into the energy barrier and escape to the 

vacuum level [30-33].  

1.5.2. Electrochemical biosensors 
 

MWNTs are chemically inert, especially when no defects are present. This 

makes them chemically stable and biologically compatible. CNTs have ability to 

promote fast electron transfer with different redox active proteins such as glucose 

oxidase [34] and horseradish peroxidase [35]. For practical use of CNTs in biomedical 

applications the ability to functionalize these CNTs (without changing their properties) 

with biomolecules is very important. Various techniques have been demonstrated for 

functionalization of CNTs with biomolecules. These CNTs are important functional 

material for development of biosensors but device fabrication and design also play an 

important role in controlling biosensor performance. This work studies the CNTs 

based biosensors in detail and is described in chapter 4.  
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1.5.3. Bio-fuel Cells 
 

Since MWNTs are chemically stable and biologically compatible so they can 

be used for the detection of biological molecules. In this work MWNTs were used for 

biosensors and biofuel cells. Chapter 5 describes the detailed study of CNTs based 

biofuel cells. These examples are only a small subset of potential applications due to 

the small sizes of MWNTs [35-37]. 

1.6. Organization of the thesis 
 

Chapter 1 is an Introduction to CNTs, their applications and optimization of 

growth parameters.  

Chapter 2 briefly described all the experimental techniques used in this work.   

Chapter 3 provides a description of the field emission measurements of the 

CNTs and our new discoveries on improving the field emission characteristics of 

CNTs.  

Chapter 4 compiles our investigation on using CNTs as glucose biosensors. 

Detailed in this chapter are introduction to the biosensors and the experimental 

procedures used to obtain successful functionalization. This chapter also contains the 

description of amperometric response and the effect of electrode area on the 

performance of glucose biosensors. 
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Chapter 5 describes a novel concept of energy sensing, generation, and storage 

(SGS) system that integrate glucose biosensors, bio fuel cells (BFCs), and 

supercapacitors into a potentially implantable device system. The development of a 

bio-fuel cells (BFCs) using our CNT samples is then described. We have investigated 

the effects of miniaturizing the device area of the BFCs. Finally, the use of our CNT 

samples in supercapacitors will be discussed. 

Chapter 6 concludes the thesis and incorporates a discussion on possible future 

experiments to improve and consolidate the work on the proposed energy SGS system. 

The future work on electron field emission, glucose biosensors, BFCs and 

supercapacitors are provide at the end of Chapter 3, 4, and 5, respectively. 

1.7.Conclusion 
Brief introductions on CNTs were discussed at the beginning of this chapter. 

They are cylinders of hexagonal graphene sheets and they can be either SWNTs or 

MWNTs. Different growth techniques and growth modes were also discussed. The 

potential application of CNTs in field emission, biosensors and biofuel cell was also 

presented in this chapter. Finally, this chapter provides the organization of the thesis 

work.  
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Chapter 2 

2. Investigation methods 

2.1. Electron microscopy 
When the electron beam with high energy is impinged upon sample surface 

then a wide range of secondary signals are formed each of which can give interesting 

information of the sample (Figure 2.1). A scanning electron microscope (SEM) 

analyzes the backscattered electrons (BSE), secondary electrons (SE), and 

characteristic X-rays (EDX).  

 

 

 

Figure 2.1: Signals generated when high energy electron beam interacts with a thin specimen 
[1]. 

When the sample is ultrathin enough then transmitted electrons such as 

elastically scattered electrons can be analyzed in a transmission electron microscope 

(TEM) to give a much higher atomic scale resolution [1]. 
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2.1.1 Scanning electron microscopy (SEM) 
 

SEM can provide high resolution and large depth of field.  In SEM an electron 

beam generated by field emission is irradiated on the specimen. The backscattered or 

secondary electrons coming out from the specimen are counted with a detector and are 

imaged on a screen. The different properties of the secondary and backscattered 

electrons from the specimen can be reveled  in SEM. Energy of the secondary 

electrons is low and they are attracted with a positively charged grid on the secondary 

electron detector. The energy of the backscattered electrons is too high to be attracted 

by the grid. The secondary electrons provide topographic information of the 

morphology of the specimen. The energy of the backscattered electrons is high enough 

to create electron-hole pairs in a semiconductor detector. Hence secondary electrons 

provide information about the chemical composition of the specimen.   

Figure 2.2: Two major components of SEM: microscope column and control console. 
Reprinted with permission from [1] 
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Important parts of SEM are shown in Figure 2.2 such as microscope column 

and control console.  The microscope column consists of electromagnetic lenses and 

an electron gun. The electromagnetic lenses are used to control the paths of electrons 

moving in the vacuum tube [2]. Example of SEM image of as grown CNTs obtained 

by Hitach S-4700 SEM is shown in Figure 2.3. 

 

 

 

 

 

 

 

Figure 2.3: SEM image of as grown carbon nanotubes 
 

Morphology imaging of as grown MWCNTs is easy. MWCNTs are vertically 

aligned and estimation of their diameters can also be made using SEM. Our MWCNTs 

have Ni nanoparticles on their tips which suggest that they followed the tip growth 

mode.  

2.1.2 Transmission electron microscopy (TEM)  
 

TEM as the name suggests is based on imaging elastically scattered and 

transmitted electrons from an ultrathin specimen. TEM has advantage of much higher 

resolution down to the atomic scale. The imaging optics in a TEM is similar to that of 

an optical microscope [2].  
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Figure 2.4: The two basic operations of a TEM: projecting the diffraction pattern on the 
viewing screen (left) or projecting the image on the screen (right). The intermediate lens 
selects the back focal of the objective lens as its object. Reprinted with permission from [3] 
 

The operation of the electromagnetic lens allows the imaging of the object in 

the corresponding image plane by focusing ultra-thin beam of electrons starting with 

different directions from individual object points to the corresponding image points 

(Figure 2.4). As shown in Figure 2.4 on left, in the back focal plane of the objective all 

electrons are focused to one point, which started in the same direction from any point 

in the object which leads to formation of the diffraction pattern of the object.  
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Figure 2.5: TEM image of as grown carbon nanotubes 
 

A bright field image contrast can be obtained by arranging a contrast aperture 

in the back focal plane to eliminate all electrons, which are scattered and diffracted, 

respectively into large angles. Depending on the setting of the lenses one may image 

the back focal plane as well as the image plane of the objective lens on the image 

plane of the projector lens. Thus one obtains either the diffraction pattern or the image 

of the specimen on the viewing screen. The image contrast in TEM arises mainly from 

the elastic scattering process [3]. Example of TEM image of CNTs obtained by is 

shown in Figure 2.5. It can be that CNT is multi-walled with nickel nanoparticles on 

top. 

2.2. Raman spectroscopy 
When light beam is incident on molecules on a surface, it is scattered in 

different directions. A large portion of the incident beam of light is scattered 

elastically, which mean scattered light rays possess photons of energy and wavelength 

same as those of incident photon. This process of elastic scattering is known as 

Rayleigh scattering. 
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Only very few scattered photons (~1 in 107 photons) have different energy and 

wavelength. When light is incident on a molecule, the incident light will interact with 

the electric dipole of that molecule. The photon of light (light quantum), excites one of 

the electrons in the molecule into a virtual state. Since this virtual state is unstable so 

the electron decays back to its lower state releasing another photon. This process 

occurs in few femto-seconds. This kind of scattering is inelastic where the incident 

light photon either gives or takes energy from scattering molecules is known as Raman 

scattering. Rayleigh and Raman scatterings can be represented by electron transitions 

as shown in Figure 2.6. 

A fraction of incident light is scattered inelastically by the specimen. Intensity 

and wavelength of this in-elastically scattered light is measured by Raman 

spectroscopy. Inelastically scattered light occurs has a different wavelength when 

compared from the wavelength of the incident light. Molecular vibrations shift the 

energies of incident light thereby producing in-elastically scattered light which has a 

different wavelength.  Difference in the energies of incident light photon and 

inelastically scattered photon corresponds to vibration energy of scattering chemical 

bond or molecule. This difference or shift in energy is unique for different bonds or 

molecules [4]. 
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Figure 2.6: Different kinds of scattering of light photons [4] 
 

The plot of intensity of scattered light versus the Raman shift is known as a 

Raman spectrum. Raman shift can be given by  

                   Raman shift = energy difference between incident and scattered photon 

= energy difference between initial and final vibrational levels 

of scattering molecule -1
incident - scattered 

Energy absorbed by molecules, which is very less, is dissipated as heat. 

2.2.1. Stokes and Anti-Stokes Scattering 

When photon energy of the scattered light is less than that of the incident 

photon, this process is called Stokes scattering. When the incident light photon is 

scattered from a molecule which is already in excited state, the molecule will be 

further excited by absorbing the incident photon. When the molecule relaxed to the 
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ground state, the scattered light photon has energy higher than the incident light 

photon which is known as Anti-Stokes scattering [4]. 

2.2.2. Raman spectroscopy of multi-walled carbon nanotubes (MWCNTs) 
Raman spectrum from a CNT sample gives a lot of information about their 

structures such as diameters, type (SWNTs or MWNTs) and chirality of the 

nanotubes. It is because CNTs with different diameters, types and quality cause the 

incident photon to scatter differently. Their energy after scattering is determined by 

the CNTs. So the intensity and the location of the characteristic peaks on the spectra 

(Raman shift) is different for different types of nanotubes. Hence, the wavenumber

and intensity of the peaks present in the Raman spectrum gives information about 

CNTs. Among the six vibrational modes in graphite only the two E2g vibrational 

modes are Raman active. 

 

 

 

 

 

Figure 2.7: “Vibration modes in Raman spectroscopy of carbon nanotubes: Hexagonal shape 
formed by carbon atoms shows an in-plane vibration (a) and (b). The arrows show the 
direction of vibrational motion of carbon atoms. (a) G-band (E2g) mode (common to graphite) 
(b) D-band mode (common to disorder carbons and polycrystalline graphite) (c) RBM mode 
(unique to SWNTs, fullerenes)” [5] 
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Raman spectrum of a MWNT sample consists mainly of two peaks. The first 

peak around wave number 1350 cm-1 is known as defect induced peak or D-peak in 

short. Defect peak arises due to in-plane substitutional hetero-atoms, defects at the 

grain boundaries, defects in CNTs walls and deposited amorphous carbon etc. Higher 

intensity of D-peak indicates that the tubes are more defective. Possible Raman 

vibrational modes in carbon nanotubes can be seen Figure 2.7. The second peak is 

graphitic or G-peak for short is around wavenumber 1590cm-1. The G peak represents 

the graphitic order and crystallinity of the CNTs walls. G-peak occurs due to the in-

plane or tangential vibration of carbon atoms [5-6].The higher the quality of the CNTs, 

the higher is the ratio of intensities of G-peak upon D-peak.  

In SWCNTs radial breathing mode (RBM) is induced due to the vibration of 

carbon atoms along radial directions. In MWCNTs it is absent due to cancellation by 

vibration of concentric tubes. Radial breathing mode can tell us about the diameter of 

SWCNTs. The Raman shift is related to the diameter of SWCNT as  

                                         -1)=248/ d (nm) 

Again, mathematically also it can be seen that due to the large diameters, the RBM 

Raman shift is very small in MWNTs.  
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Figure 2.8: Raman spectrum of multi-walled CNTs. 
 

The characteristic Raman spectrum of SWCNTs is the presence of RBM. 

Moreover, the G-peak is very narrow and intense with splitting. So the presence of 

RBM mode and intense G peak with splitting confirms the presence of SWCNTs in 

specimen. A typical spectrum of MWCNTs can be seen in Figure 2.8. In the Raman 

spectra, broad G peak represents large diameter distribution in the CNT specimen. 

RBM peaks can be found in Raman spectra of SWCNTs. Different diameters of CNTs 

have different magnitude of scattering so they have different Raman shift and make 

the peaks broad [6-9]. 
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2.3 Fourier Transform Infrared (FTIR) Spectroscopy  
FTIR is the favorable method of infrared spectroscopy. In FTIR spectroscopy, 

infrared radiation is allowed to pass through a sample. Some of the radiation is 

transmitted and some of the infrared radiation is absorbed by the sample. The resultant 

spectrum corresponds to the molecular fingerprint of the sample and provides 

information about the different chemical groups and chemical bonds present in the 

sample. Two molecular structures never generate the same infrared spectrum like 

fingerprints are unique for every person [10]. This is why FTIR spectroscopy is 

practical for many types of investigation.  

2.3.1. FTIR of CNTs 

An example of FTIR spectrum obtained is shown in Figure 2.9. 

 

 

Figure 2.9: FTIR spectra of (a) the as grown and (b) electrochemically treated VA-MWCNTs 

Figure 2.9 compares the FTIR spectra of as grown CNTs (Figure 2.8(a)) and 

electrochemically treated CNTs (Figure 2.9 (b)) which have attached with the –COOH 

group. The difference can be clearly seen in Figure 2.9.  
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2.4 Cyclic Voltammetry (CV) 
 

Cyclic Voltammogram (CV) is an extremely useful technique in 

electrochemical characterization. CV is obtained by using a potentiostat to vary the 

voltage between electrodes dipped in an electrolyte solution and recording the current 

output. In electrochemistry CV is extensively used for studying the oxidation and 

reduction properties of various chemicals and interfaces. 

2.4.1 What is CV? 
 

In a typical CV experiment, linearly varying potential is applied using a 

potentiostat at a known rate. The faradic current output or response is measured. 

Current obtained from a redox reaction is known as Faradic current. In the forward 

scan potential is linearly varied starting from an initial value to a limiting value at a 

known scan rate. Scan rate (v) is defined as the rate of change of potential with time. 

When potential reaches its limiting value, direction of the potential scan is reversed. In 

the reverse scan again potential is linearly scanned back to its starting value.  

Electrolyte provides a medium (usually liquid) for electrochemical reactions to 

occur at the interface of electrolyte and electrode. Conduction through electrolyte is 

ionic which involves movement of ions in the medium. 
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2.4.2 Electrochemical cell and electrodes used in CV experiments  

In a CV measurement three electrodes and an electrolyte is used. The first 

electrode is called working electrode.  At this electrode the electrochemical 

phenomena being examined takes place. A number of noble metal electrodes and 

carbon electrodes are available for use as working electrode in CV measurements, 

including platinum, gold, silver and glassy carbon. Carbon electrode is useful in both 

aqueous and non aqueous solutions (for both oxidation and reduction reactions).  In 

this work we use CNT-PMMA matrices as working electrodes.  

The second electrode is known as the reference electrode. Potential of the 

reference electrode is constant. Therefore, potential of reference electrode is taken as 

the standard value.  Potentials of the other electrodes in the cell can be measured by 

comparing it with reference electrode.  

 

 

 

 

 

 

 

 

 

Figure 2.10: Typical cell and electrode setup used for cyclic voltammetry 
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The ideal reference electrode should be reversible and obey the Nernst equation. Its 

potential should not change much with time. In our case we use silver (Ag)/silver 

chloride (AgCl) as a reference electrode. 

The third electrode is known as the counter electrode. It acts as a source or 

sinks for electrons. This allows the current to flow from the external circuit through 

the cell.  Platinum (Pt) wire or Gold (Au) target is used as a counter electrode 

throughout this work. The set up of these electrodes in a typical electrochemical cell 

for CV measurements is shown in Figure 2.10. A Potentiostat is used to control the 

voltage and its rate of change applied on the working electrode and measures the 

current of the working electrode. The Potentiostat applies a desired potential to the 

working electrode with respect to reference electrode. The current flows between the 

working and the counter electrode are collected as the CV signals.  

2.4.3 Measurements 
 

The basic shape of the current-potential curve for a CV measurement is shown 

in Figure 2.11. Consider a fundamental reversible redox reaction between oxidized 

species O and its reduced form R involving n electrons:          

                                              RneO  
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Figure 2.11: Current potential curve for a cyclic voltammetry measurement. 
 

The relation between the equilibrium concentration of O and R species and the 

potential is governed by Nernst equation: 

                                                 
R

O

C
C

nF
RTEE ln

'0              

where E is the applied potential, E0’ is the redox potential for the redox couple, CO is 

surface concentration of oxidized species and CR is the surface concentration of 

reduced species adjacent to the electrode. 

The basic shape of the cyclic voltammogram for such a redox couple is shown 

in Figure 2.11. When the applied potential of the working electrode is more positive 

than that of a redox couple presents in the solution, the corresponding species may be 

oxidized (i.e. loss of electrons from the solution to the electrode) and produces an 

anodic current. Again, on the return scan, as the applied potential on working 
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electrode potential becomes more negative than the reduction potential of a redox 

couple, a reduction process (i.e. gain of electrons by the solution from the electrode) 

occurs to cause a cathodic current. By IUPAC convention, anodic currents are positive 

and cathodic currents are negative. 

The CV shown in Figure 2.11 starts at a slightly negative potential, (A) up to 

some positive switching value, (C) at which the scan is reversed back to the starting 

potential. As the potential increase to a value high enough to cause oxidation, an 

anodic current will be generated. As the potential continue to increase, the anodic 

current will increase and reach to the anodic current peak at B (Ipa) when all the 

reduced form of species at the electrode surface is consumed at corresponding 

potential Epa. Due to oxidation, the concentration of the reduced species (CR) at the 

electrode surface decreases as compared to bulk of the solution. This will create a 

concentration gradient which causes more transport of reduced species towards the 

electrode by diffusion. The rate of this mass transport is governed by Fick’s first law 

of diffusion and determined the magnitude of current. At point C, the rate of mass 

transport reached to a maximum due to largest concentration gradient. When potential 

are further increased, current will decrease due to the decrease in the concentration 

gradient. The potential reaches the preset upper limit at C, and reverses its direction. In 

the reverse direction reduction will occur the applied potential is sufficient and will 

reduce the oxidized species. When the applied potential gets closer to Epc, ithe 

reduction process will be initiated and generate the cathodic current. As the potential 
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decrease further, the cathodic current will increase to its peat at D (Ipc) as all the 

oxidized form of species at the electrode surface is consumed at corresponding 

potential Epc. The potential scans back to the preset lower limit [10-11].  

Given that a redox reaction is reversible, and that the redox products are stable, 

for such a system it can be shown that: 

1. The corresponding peak potentials Epa and Epc are independent of scan rate and,  

2. The formal potential for a reversible couple E0' is centered between Epa and Epc:  

E0'= (Epa + Epc)/2 

2.5 Amperometry 
 

  The performance of biosensors can be characterized by the measurement of 

amperometric response. The amperometric response curves of our glucose biosensors 

are obtained by using a potentiostat (CHI 660C) in a three electrode setup similar to 

the CV measurement discussed above. In this measurement a constant potential is 

applied at the working electrode using the potentiostat. Dependence of current output 

response at the working electrode on time is measured. This potential must have a 

magnitude sufficient to initiate the related redox process. More details are discussed in 

chapter 4.   
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2.6 Polarization measurements 
 

  The performance of biofuel cells can be characterized by measuring the 

polarization curves. Polarization curves of glucose/O2 biofuel cells are obtained using 

a galvanostat/ potentiostat (CHI 660C) in a two electrode setup. For two electrode 

measurements reference and counter electrodes are shorted. In this case, the potential 

difference between the two electrodes (biocathode and bioanode) is measured across a 

series of resistance, i.e., as a function of current. More details are discussed in chapter 

5. 

2.7. Conclusions 
 

  Brief introduction of various characterization techniques used was presented in 

this chapter. This includes SEM, TEM, Raman, FTIR, CV, Amperometry and 

polarization measurements. 
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Chapter 3  
3. Enhanced Field emission from CNTs 

3.1. Introduction 
CNTs are promising materials for electron field emission due to their small tip 

radius, high aspect ratio, and robust mechanical and chemical properties [1-4]. 

Although field emissions from CNTs are known for more than a decade [5], reliable 

commercial products are yet to be realized. Obviously, the basic science for stable 

field emission with high emission density is still not clear. Most reported work focus 

on demonstrating low emission threshold fields (Eth) of various types of CNTs [6-9] 

and their device configuration [10]. In this work we tried to improve the issues 

involved in field emission of as grown CNTs. 

3.1.1. Field emission theory 
Electron field emission is the extraction of electrons from the metal surface 

under the application of very high external electric field. It involves the tunneling 

through the surface potential barrier. Figure 3.1 shows a schematic diagram of 

tunneling process in metals under the influence of high electric field. When there is no 

external applied electric field, the potential barrier is rectangular. When the negative 

potential is applied to the metal surface it becomes triangular. The slope of later 

depends on the amount of the local electric field just above the surface. This local 

electric field is radically enhanced when the emitter tip is very sharp and has high 

aspect ratios especially in the case of CNTs [11].  
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Figure 3.1: Potential energy diagram [11] 
 

The emission current from a metal surface is determined by the Fowler-

Nordheim (F-N) equation which is: 

J = 2E2 exp ( 3/2  and is often use to describe field emission, where A, B are 

constants, E is the applied electric field in V cm 1, and  is the work function in eV, 

is the field enhancement factor. 

The F-N equation gives the relationship between the emission current density J, 

assumptions: 

 Free electron approximation applies inside the metals only. 

 Metal temperature is 00K. 

 No irregularities should be present at the metal surface. 

Smooth surface of metals, with a given value of work function have extremely high 

threshold electric field (~104 V/μm). Now, work function of a material cannot be 

altered significantly. Hence, field emission sources rely on sharp tips instead of flat 
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surfaces. Local electric field enhancement at an ultra-sharp sharp tip is extremely high 

due to its sharp curvature. This is the reason for high electric field field enhancement 

d voltage for 

field emission.  

3.2. Current state of research in field emission from CNTs 
Numerous techniques have been studied to enhance the performance of multi-

walled carbon nanotubes (MWCNTs) for electron field emission [12-14]. Many 

reported that after etching the tips of the CNTs, the field emission properties enhanced 

[15-16]. However there is controversy among those reported literatures [17-18].  

Various research groups also attempted to modify the properties of CNTs by coating 

of conductive oxide (In2O3), wide band gap materials, polymer, MgO and Barium 

Strontium oxide [19-23]. Most of these works focused on reducing the threshold 

electric field for field emission. However, device lifetime, long-term emission 

stability, and emission density are scarcely discussed. Poor device lifetime due to 

resistive heating and mechanical failure at the interface of CNTs/substrate has been 

reported [24]. Recently, we started to investigate factors that determine the emission 

stability of CNTs and found that the graphitic order of CNTs is one of the key factors 

for stable emission [25]. Our recent works also evaluate the fundamental factors 

behind stable field emission and high emission density. In this chapter, we found that 

both screening effects and catalyst removal are important for improving the emission 

stability and density of VA-MWCNTs. Although screening effect was known to 
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determine the emission density, its contribution to emission stability is not clear [26]. 

However field emission from CNTs suffers from high emission threshold voltage, 

poor emission density and poor long term emission stability. To enhance field 

emission from CNTs, I fabricated three types of devices using VA-MWCNTs: a) 

Etched and bundled MWCNTs, b) Opened tip MWCNTs embedded in PMMA matrix 

and c) SrTiO3 (STO) coated and opened tip MWCNTs embedded in PMMA matrix. 

These new assemblies now open the door for commercial and practical application of 

CNTs in field emission display devices.  

3.3. Experimental methods to enhance the field emission properties from as 
grown CNTs 

In this section experimental procedure of different methods to enhance the 

field emission from as grown CNTs is discussed.  

3.3.1. Fabrication of etched and conical self-assembled bundles of CNTs 
 

The samples were prepared by dual radio frequency PECVD techniques [27]. In brief, 

Ni films (10 nm thick) were first deposited on p-type Si substrates (1- cm) by RF 

magnetron sputtering. These substrates were then used for the growth of VA-

MWCNTs at 4500C by using pure methane gas. Our VA-MWCNTs were grown 

within a circular area (7mm in diameter). The morphology of the as grown CNTs 

sample can be seen in Figure 3.2 (a) and (b). PECVD growth produces CNTs with Ni 

catalyst particle on top of carbon nanotubes as can be seen in Figure 3.2 (b). The 

length of these CNTs is of the order of few micrometers (3-4μm) and diameter of 
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these CNTs is of the order if few nanometers (40-60nm). These CNTs are defective 

because of plasma used in the growth process.  

  

Figure 3.2:  SEM image of as grown CNTs (a) low magnification (b) high magnification and 
(c) Etched and Bundled CNTs 
 

Three identical samples were prepared in each growth process. The residual Ni 

catalytic nanoparticles in the samples can be removed from the tips of VA-MWCNTs 

by etching in nitric acid (HNO3) (70 vol. %, for ~5 min). The etched samples were 

then rinsed with de-ionized water and toluene. These processes lead to catalyst-free 

MWCNTs. Figure 3.2 (c) shows the morphology after etching and bundling of CNTs. 

3.3.2. Fabrication of PMMA-CNTs matrices 
  In this method we have created PMMA-CNT matrices by embedding opened-

tip VA-MWCNTs with PMMA. The details are described below. The fabrication 

scheme of the PMMA-CNT matrices using PMMA solution is summarized in Figure 

3.3. The PMMA solution was prepared by diluting PMMA with the developer solution 

(Microchem) in a volume ratio of 1:1. As-grown VA-MWCNTs samples (Figure 3.3 

(a) (b) (c) 
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(a)) were dipped into the solution for 15 minute and followed by an annealing process 

-3 minutes.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Schematic for the fabrication of PMMA-CNT matrices. (a) As-grown VA-
MWCNTs on a Si substrate with Ni nanoparticles at their tips. (b) VA-MWCNTs embedded 
with PMMA. (c) A PMMA-CNT matrix with opened-tip VA-MWCNTs after mechanical 
polishing. (d) Schematic of the field emission set-up. Appearances of the (e) as-grown sample 
and the (f) PMMA-CNT matrix. Reprinted with permission from [28] 
 

The cured samples (Figure 3.3 (b)) were then mechanically polished by using 

fiber-free lapping cloth and a colloidal silica (0.02 μm in diameter) solution to expose

the tips of the CNTs. The PMMA-CNT matrices with opened-tip CNTs will finally be 

formed (Figure 3.3 (c)) and ready for the field emission measurements.  

(c) 

(d) 

(f) (e) 

Si substrate

(a) 

(b) PMMA 
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Figure 3.3 (d) shows the schematic of our field emission set-up with indium 

thin oxide (ITO) coated on alumina-silicate glasses as the anode. For the 

characterization of electron field emission, all samples were attached on the brass 

cathode in a planar diode configuration by applying a thin layer of silver paste. The 

spacing between the ITO anode and the tips of the CNTs was maintained at 1000 ± 10 

μm. Electron emission was tested at a base vacuum pressure of ~1.5 x 10-8 Torr. The 

appearance of the as-grown sample and the PMMA-CNT matrices are shown in Figure 

3.3 (e) and (f) respectively. 

3.3.3. Fabrication of PMMA-SrTiO3-CNTs matrices 
 

In this section the as grown CNTs was coated with SrTiO3 (STO) and PMMA. 

The fabrication scheme of the PMMA-STO-CNTs matrices is summarized in Figure 

3.4. The STO-CNT samples were prepared by coating SrTiO3 (~20nm thick) on as-

grown VA-MWCNTs by pulsed-laser deposition at room temperature.  

The preparation of PMMA-STO-CNT matrices was carried out by dip coating 

SrTiO3 coated VA-MWCNTs by PMMA and then followed by mechanical polishing. 

The PMMA solution was prepared by diluting PMMA with the developer liquid 

(Microchem) in a volume ratio of 1:1. 

The STO-CNT samples were dipped into the solution for 15 minute and 

followed by annealing ( -3 minutes). The cured samples were then 

mechanically polished by using fiber-free lapping cloth and a colloidal silica (0.02 μm 
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(a (b) (c) (d) 

(e) (f) (g) 

in diameter) solution to expose the tips of the CNTs. The appearance of the as-grown 

sample, STO coated CNTs sample and the PMMA-STO-CNT matrix are shown in 

Figure 3.4 (e)-(g) respectively.

 

Figure 3.4: Schematic for the fabrication of PMMA-STO-CNT matrices. (a) As-grown VA-

MWCNTs on a Si substrate with Ni nanoparticles at their tips. (b) VA-MWCNTs coated with 

SrTiO3. (c) STO coated VA-MWCNTs embedded with PMMA. (d) A PMMA-STO-CNT matrix 

with opened-tip VA-MWCNTs after mechanical polishing. Appearances of the (e) as-grown 

sample, (f) STO coated sample, (g) PMMA-STO-CNT matrix after polishing. 

3.4. Results and discussion

3.4.1. Field emission from etched and conical self-assembled bundles of CNTs  
All of our samples were characterized by field emission scanning electron 

microscopy (FESEM) and Raman spectroscopy (laser wavelength ~632 nm, laser spot 

size ~1 μm in diameter). The field emission measurements were conducted in a planar 

diode configuration at a base vacuum pressure of 10-7 mbar [13]. The spacing between 

the anode (Indium Tin Oxide/ITO film on glass) and the tips of the VA-MWCNTs 

was maintained at 1000 ± 10 μm without using dielectric spacer.  
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All measurements were re-confirmed by repeating measurement on the same 

sample as well as another set of sample prepared in the same growth process and 

treatment. As shown in Figure 3.5 (a) and (b), we found that rinsing of toluene after 

acid etching can maintain the vertical alignment of the opened-tips MWCNTs. 

Tentatively we think that this is due to the lower surface tension of toluene than water 

(~0.0287 versus 0.0735). 

 

 

Figure 3.5: Typical appearance of opened-tip VA-MWCNTs (a and b) and arrays of opened 
tip, conical bundles and low (c) and high (d) magnification. Reprinted with permission from 
[16] 

Lower surface tension will reduce the van der Waals forces between CNTs and 

toluene that will pull away CNTs to each other during the drying process. However, 

toluene alone is insufficient to maintain the vertical alignment of VA-MWCNTs that 
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are smaller in diameters. As shown in Figure 3.5 (c) and (d), VA-MWCNTs with 

diameters <60 nm will self assembled into conical bundles after etching. Obviously, 

the function of toluene (versus water) on maintaining the vertical alignment of these 

VA-MWCNTs would be an interesting topic for future investigation. We have first 

compared as grown MWCNTs with the opened-tip, catalyst-free VA-MWCNTs. 

 

Figure 3.6: (a) Raman spectra for the first set of samples. The as grown and the etched VA-
MWCNTs are shown in the insets. (b) Raman spectra for the second set of samples. The as 
grow and the etched and bundled samples are shown in the insets. Reprinted with permission 
from [16] 

The SEM image of the as grown sample (left inset) and their Raman spectra

are shown in Figure 3.6 (a). These VA-MWCNTs were ~4 μm in length and ~80 nm 

in diameter. The graphitic order of these MWCNTs was examined by comparing the 

intensity of the graphitic (G) and defective (D) Raman bands. The G and D bands 
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represent the zone center phonons of E2g symmetry and the K-point phonons of A1g 

symmetry, respectively [14]. The intensity ratio (IG/ID) for the as grown and the etched 

VA-MWCNTs are ~0.88 and ~0.78, respectively as shown in Figure 3.6 (a). The 

difference is within the measurement deviation within a sample. 

For the second set of samples, the IG/ID ratios for the as grown and the etched 

and bundled samples remain at ~0.75 as shown in Figure 3.6 (b). From these results, 

we conclude that etching will not change the graphitic order of MWCNTs since 

carbon are inert to acids.  

Figure 3.7 (a) shows the current density (J) versus electric field (E) 

characteristics for as grown VA-MWCNTs sample. The Fowler-Nordheim (F-N) 

equation [15], J = 2E2 exp ( 3/2  is often use to describe field emission, 

where A, B are constants, E is the applied electric field in Vcm-1, and  is the work 

function in eV,  is the field enhancement factor. A linear F-N plot (inset of Figure 3.7 

(a)) verified that the detected currents are due to quantum tunneling. The threshold 

electric field, Eth (applied electric field for generating a current density of 1 μA/cm2) is 

3.10 V/μm for the as grown sample. The J-E and corresponding F-N plots for the 

etched VA-MWCNTs are also shown in Figure 3.7 (a). This etched sample has 

identical Eth and showing linear F-N relation. The emission stability of these two 

samples was then compared. As shown in Figure 3.7 (b), the etched VA-MWCNTs 

seem to have smaller degradation in current density after ~1200 min of emission test. 
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Apparently, the removal of residual catalyst particles from the tips of VAMWCNTs 

does not reduce Eth but can improve the long-term emission stability. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: (a) The field emission characteristic curves for the as grown and the etched VA-
MWCNTs shown in Figure 3.5(a). The related Fowler–Nordheim (FN) plots are shown in the 
insets. (b) The related emission current stability curves. (c) The field emission characteristic 
curves for the as grown and the etched and bundled MWCNTs shown in the insets of Figure 
5(b). The related Fowler–Nordheim (FN) plots are shown in the insets. (d) The related 
emission current stability curves. Insets in (d) show the florescence on the ITO electrode as 
induced by the emitted electrons fromthe as grown (Inset 1) and the etched and bundled (Inset 
2) CNTs. Reprinted with permission from [16] 
 

We think that residual metallic catalytic particles that have lower melting point 

than CNTs (~14520C for bulk nickel versus >36500C for graphite) may create some 
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unknown effects on the emission stability when significant Joule heating was 

introduced during the prolong emission stability test. The actual mechanism is not 

clear at present and is subjected for future investigation. 

We have tested the second set of samples (tube diameter ~60 nm) to 

understand the effect of bundling. As shown in Figure 3.7 (c), Eth ~2.60 V/μm are 

detected from both the as grown and the etched and bundled samples. The linear F-N 

relations (inset of Figure 3.7 (c)) were also revealed. Current saturation at high applied 

fields is detected in these samples. We think that electron supply is limited by the 

impedance (mostly resistance, but may include some capacitance and inductance) 

present especially along the CNTs and at the contacts between the CNTs and the 

substrate. These limiting factors become obvious at high current density probably due 

to Joule heating and/or current-induced dislocation [11]. As shown in inset of Figure 

3.6 (a) the distances between the as grown VA-MWCNTs are small (~50-300 nm) and 

will initiate screening effect that reduced the  factors. This means not all the as grown 

VAMWCNTs will contribute to the collected current except those are longer in 

lengths or located at the edges of the larger spacing. For the etched and bundled 

sample shown in Figure 3.5 (c), the distances between bundles are more than one 

micrometer. Thus, each bundle can be considered as a larger emission pyramid. We 

have compared these samples for their emission stability. As shown in Figure 3.7 (d), 

the etched and bundled sample is stabilized at a current density >800 μA/cm2 after 

continuous 20-h operation, while the as grown sample has reduced its current density 
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to <400 μA/cm2. As shown in the insets of Figure 3.7 (d), the emission density for the 

etched and bundled sample (inset 2) is higher than that of the as grown sample (inset 

1). Apparently, lower screening effects on the bundled sample offers more emission 

sites. Since the emission loads (heat and mechanical stress from Joule heating) is now 

shared by more CNTs, the emission stability is thus improved. Theoretical simulation 

(to be discussed hereafter) suggests that lower local electric field is applied on these 

bundles. As indicated by the F-N equation, a lower local field on each emitter will lead 

to the emission of lower current density per emitter. This will reduced Joule heating 

and stresses on these emitters and thus produce stable emission. It is interesting to see 

that both the as grown and bundled samples are by chance having identical Eth. This is 

explained as follows. The measured emission current from a sample is actually 

depends on both the current emitted from each emitters and the emitter density. Thus 

Eth is also depends on these factors. As our bundled sample has an Eth identical to that 

of the as grown sample, its higher emitter density suggests that the current emitted 

from each emitter in the bundled sample should be lower than that in the as grown 

sample. This interpretation is consistent to the results generated from our simulation to 

be described hereafter.  

To further support our discussion, we have performed simulation by using the 

COMSOL MULTIPHYSICS software (Parameters: diameter of CNTs, DCNTs = 40 

nm; Length of CNTs, LCNTs = 4 μm; edge to edge spacing between CNTs, S = 40 

nm; applied electric field between top and bottom boundaries, Eappl = 5 V/μm).  
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Figure 3.8: Schematic of the simulated potential maps for (a) an array of VA-MWCNTs, (b) 
two arrays of VA-MWCNTs with a 120 nm spacing in between, (c) two arrays of VA-MWCNTs 
with a 280 nm spacing in between, (d) a conical bundle, and (e) three conical bundles. 
Reprinted with permission from [16] 

Simulation for an array of VA-MWCNTs (Figure 3.8 (a)) shows that CNT at 

the center has lowest local electric field due to the screening effects from the 

surrounding CNTs (6.713 x 106 V/m at point 2 versus ~1.035 x 107 V/m and ~1.038 x 
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107 V/m at points 1 and 3, respectively). We further simulate the effect of the gap (S) 

between two small arrays of VA-MWCNTs. 

Figure 3.8 (b) shows two arrays of VA-MWCNTs with S = 120 nm. We 

observe that the local fields at both sides of the gap (point 3: ~9.15 x 106 V/m, and 

point 4: ~8.91 x 106 V/m) are higher than those at the centers of the two arrays (points 

2: ~5.55 x 106 V/m, and point 5: ~5.48 x 106 V/m). Highest field is still observed at 

points 1 and 6 (~1.037 x 107 V/m and ~1.027 x 107 V/m), i.e., edges close to the 

boundaries where no CNTs (and no screening effect) is found at one side. We have 

compared this to the case with S = 360 nm. We observe that the local fields at points 3 

and 4 (~1.041 x 107 V/m and ~1.064 x 107 V/m) is higher than those at points 2 and 5 

(~6.30 x 106 V/m and ~7.65 x 106 V/m) and comparable to those at points 1 and 6 

(~1.022 x 107 V/m and ~1.068 x 107 V/m). We thus conclude that screening effect has 

reduced as the gap between CNT arrays increased to 360 nm. 

We have simulated the local electric field for one conical bundle of CNTs as 

shown in Figure 3.8 (d). The local field at point 2 (~5.9743 x 104 V/m) is more than 

those at points 1 and 3 (~4.058 x 104 V/m and ~3.712 x 104 V/m). This means, 

emission is more likely from CNTs located near the center of the bundles. Also, these 

values are two-order of magnitude lower than those discussed earlier for CNT arrays. 

As suggested by the F-N equation, lower local fields on the bundles means lower 

current density will be emitted from each bundle, as consistent to our earlier 

interpretation. This means, heat and mechanical stresses introduced on CNTs due to 
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Joule heating are lower for the case of nanotube bundles. Finally, we have simulated 

electric field applied on an array of CNT bundles. As shown in Figure 3.8 (e), electric 

fields are ~6.2182 x 104 V/m, ~5.2582 x 104 V/m, and ~6.789 x 104 V/m at bundle 1, 2 

and 3, respectively. Since the local field at bundle 2 is approaching that simulated in 

Figure 3.8 (d) (which has minimum screening effect), this means, the investigated gap 

(S = 2 μm) between bundles is sufficient to reduce the screening effects and enabled 

emission from most bundles. This is consistent with the higher emission density 

shown in Figure 3.8 (d). As the collected current is contributed by more emission sites, 

the current loading on individual bundles is lower as compared to the loading on 

individual CNTs in the case of CNT arrays.  

3.4.2. Field emission from PMMA-CNTs matrices 
 

  Figure 3.9 shows the scanning electron microscope (SEM) images and the 

related raman spectroscopy for all the samples. All these samples are having VA-

MWCNTs of ~4 μm in length and ~ 40 nm in diameter (Figure 3.9 (a)). 

Figure 3.9 (b) shows that the as-grown VA-MWCNTs can be fully embedded 

in PMMA after the dip coating, and curing processes. Opened-tip VA-MWCNTs are 

exposed on the top surface of the PMMA-CNT matrix after polishing (Figure 3.9 (c)). 

The corresponding Raman spectra for the as-grown sample, the PMMA embedded 

sample, and the PMMA-CNT matrix, are shown in Figure 3.9 panels (d)-(f) 

respectively. These Raman spectra were obtained by a confocal Raman microscope 

using a laser excitation wavelength of 632 nm.  
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Figure 3.9: SEM images of (a) the as-grown sample, (b) ample embedded in PMMA, and (c) 
PMMA-CNT matrix with exposed CNT tips. (d), (e) and (f) are the corresponding Raman 
spectra. Reprinted with permission from [28] 
 

The graphitic, G (1580 cm-1) and the disorder, D (1330 cm-1) peaks for VA-

MWCNTs in the as-grown sample are shown in Figure 3.9 (d). These peaks are 

diminishes in the PMMA embedded sample and only the PMMA Raman peaks are 

detected (Figure 3.9 (e)) [16].  The G and D peaks reappeared in the PMMA-CNT 

matrix as evident in Figure 3.9 (f).  

Figure 3.10 (a) and (b) shows the emission current density (J) versus the 

applied electric field (E) for the as-grown sample and the PMMA-CNT matrix. The 

threshold electric field, Eth, for the as-grown sample was found to be 3.898 V/ m  
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Figure 3.10: The emission current density (J) as a function of the applied electric field (E) for 
(a) the as-grown sample and (b) the PMMA-CNT matrix. The corresponding F-N plots for (c) 
as-grown sample and (d) the PMMA-CNT matrix. Image of the emission sites for (e) as-grown 
sample and (f) the PMMA-CNT matrix. The simulated potential maps for (g) the as-grown 
sample, and (h) the PMMA-CNT matrix with exposed CNT tips. Reprinted with permission 
from [28] 
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(Figure 3.10 (a)). This threshold was reduced to 1.675 V/ m for the PMMA-CNT 

matrix (Figure 3.10 (b)). 

The corresponding Fowler-Nordheim (F-N) plots for these samples can be seen 

in Figure 3.10 (c) and (d). The linearity of these F-N plots confirms the phenomena of 

field emission. The emission site densities as collected from the fluorescence on the 

ITO electrode are shown in Figure 3.10 panels (e)-(f) for the as-grown and the 

PMMA-CNT matrix, respectively. 

As shown, the emission site density is much higher for the PMMA-CNT 

matrix despite the fact that it was collected from the ITO anode 1 cm above the CNT 

tips. The actual density would appear to be higher if the electrode gap is smaller since 

these electron beams are diverging from the VA-MWCNT tips. The circular shapes of 

the emission sites show that the electron field emission was occurring only from the 

areas where VA-MWCNTs were grown.  

We attempt to understand the reduced Eth and enhance emission density from 

the PMMA-CNT matrix. Both Eth and emission density depends on the aspect ratio of 

the CNTs and their inter-tube spacing (screening effects). Since both the as-grown 

sample and the PMMA-CNT matrix are having VA-MWCNTs with identical aspect 

ratios and inter-tube spacing, the lower Eth and the enhance emission density detected 

from the PMMA-CNT matrix are related to the PMMA filling. A possible explanation 

is that the dielectric properties of PMMA have helped to reduce the screening effect 

between the CNTs. In order to verify this argument, we have simulated the screening 

effect of CNTs using the COMSOL Multiphysics software. The simulation parameters 
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are as follows: diameter of CNTs, DCNTs = 40 nm; Length of CNTs, LCNTs= 4 μm; edge 

to edge spacing between CNTs, S = 40 nm; applied electric field between top and 

bottom boundaries, Eappl = 5V/μm). Simulation for an array of as-grown VA-

MWCNTs (Figure 3.9g) shows that CNT at the center has lowest local electric field 

due to the screening effects from the neighboring CNTs (~9.89 x 106 V/m at point 1, 

~6.21 x 106 V/m at point 2 and ~9.42 x 106 V/m at point 3, respectively). Next, we 

simulate for the case of PMMA-CNT matrix. The spaces between VA-MWCNTs are 

now simulated to have a dielectric constant, k = 3.4 [17]. As shown in Figure 3.10 (h), 

the local field at the centre of the PMMA-CNT matrix is ~45% higher as compared 

with those of as grown VA-MWCNTs (point 2: ~7.76 x 106 V/m). The local fields at 

the edges of the matrix (point 1: ~1.04 x 107 V/m, point 3: ~1.06 x 107 V/m) are also 

slightly increased (~4.9% and ~11.3%, respectively). Apparently PMMA filling can 

reduce the screening effects especially for areas where MWCNTs are closely packed. 

This may also contribute to the higher emission site density from the PMMA-CNT 

matrix. However, since these enhancements are moderate, we think that the reduced 

screening effect is not the only reason for enhanced emission properties described so 

far.   

In fact, a reduced Eth was also detected by Watts et. al, but the mechanism 

behind was not explained [11]. On the other hand, Tanaka et al. studied the effect of 

an insulator barrier (amorphous carbon) on individual CNTs [18]. They found that the 

barrier layer increases the work function and the Eth. Apparently the reduced Eth 

detected from our PMMA-CNT matrix is a different case. Thus we propose the 
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following model to explain our results. Consider two MWCNTs a distance r apart 

from each other. The electric field imposed by an electron located in a nanotube on 

another electron located at a neighboring nanotube is given by  

 

                                                                                                      (1) 

where is the permittivity of vacuum and q is the charge of electrons. When the 

spacing between these MWCNTs is filled by PMMA with a dielectric constant k = 3.4, 

the electric field E will become E’  

 

                                                                                   (2) 

 

where =  Hence the electric field between two electrons in two neighboring 

nanotubes is reduced by the factor of k = 3.4 for the case of the PMMA-CNT matrix.  

Figure 3.11 panels (a)-(b) indicate the schematic drawing of electron flows during 

electron field emission from the as-grown sample and the PMMA-CNT matrix, 

respectively.  

In this model, we consider that electron flows are driven by the electric forces 

(FE) generated by the applied electric field between the anode and the cathode. In 

addition, we also consider that electric field imposed by electrons in the neighboring 

MWCNTs will produce a columbic repulsion forces, Fe (= qE, E = electric field in 

equation 1), in directions perpendicular to the driving force FE. This means, electron 
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flows in individual MWCNT will not simply from the cathode to the anode (upward), 

but will be drifted left and right along the graphene sheets of the nanotubes due to the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Schematic of electron flows in (a) the as grown sample, and (b) the PMMA-CNT 
matrix. Effective electron paths along (c) an isolated CNT, (d) an as-grown CNT with 
neighboring nanotubes, and (e) a nanotubes in the PMMA-CNT matrix. Emission current 
stability curves as a function of time for (f) the as-grown sample and (g) the PMMA-CNT 
matrix at various initial current densities. Reprinted with permission from [28] 
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surrounding columbic forces. For the case of the PMMA-CNT matrix, the drifting will 

be smaller due to the smaller Fe
’ (= eE’, E’ = electric field in equation 2). The effective 

path length travel by electrons before they reached to the tips of nanotubes is 

explained here. For an isolated nanotube, electrons are driven only by the upward 

electric forces (FE) between the anode and the cathode as shown in Figure 3.11 (c). 

In this case, the total distance traveled by the electrons before field emission is 

equal to the length of the nanotube. For nanotube films in our case, neighboring 

nanotubes are separated by ten of nanometers. In these cases, electric field E imposed 

by electrons in the neighboring MWCNTs will produce a columbic forces, Fe, in 

directions perpendicular to the driving force, as shown in Figure 3.11 (d) and 3.11 (e). 

For the as-grown sample, electrons flowing in a nanotube will be drifted following the 

dashed trajectory (l) in Figure 3.11 (d) if there are electrons flowing in the neighboring 

nanotubes located on the right side. In this case, the actual distance traveled by the 

electrons before they reached to the tip of the nanotube will be longer than the length 

of the nanotube. For the PMMA-CNT matrix, electric field E’ E’ E

imposed by electrons in the neighboring nanotubes and produce a columbic force, Fe
’ 

as shown in Figure 3.11 (e) Fe
’ Fe

trajectory path shorter (l’) than that in the case of the as-grown sample illustrated in 

Figure 3.11 (d). 

In reality, all MWCNTs are not defect free. This means, electron flows along 

MWCNTs will be scattered by defects and generate Joule heating. Thus the longer the 

electron drifting distance in nanotubes, the more Joule heating will be generated. Due 
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to the smaller drifting and shorter effective travel distances, electrons in the PMMA-

CNT matrix will generate less Joule heating. As previously reported, the emission 

stability depends on the electron scattering process along the nanotubes [19].  For the 

present study, since electron scattering is reduced for the PMMA-CNT matrices, better 

field emission stability is expected.  

 In order to verify this hypothesis, we have evaluated the emission stability of 

our samples. Figure 3.11 (f) shows the emission stability curves measured from the as-

grown sample at different initial current densities (~860, ~1140, ~1350 A/cm2). As 

shown, the emission current densities are degraded with time. Figure 3.11 (g) shows 

the typical emission stability curves for the PMMA-CNT matrix. As shown, PMMA-

CNT matrices are stable electron emitters as negligible degradation is detected within 

the 40-hour continuous test. We think that the improvement in the emission stability of 

the PMMA-CNT matrix is due to both the reduction in screening effect and electron 

scattering (Joule heating). As the screening effect from surrounding CNTs is reduced, 

CNTs in PMMA-CNT matrix can offer more emission sites and thus contribute to 

higher emission current and lower emission threshold field. The reduced Joule heating 

means reduced defect scattering along MWCNTs and thus enhance the current 

stability. 

3.4.3. Field Emission from PMMA-SrTiO3-CNTs matrices 
 

All samples were characterized by field emission scanning electron 

microscopy (FESEM) and Raman spectroscopy (laser wavelength ~632 nm, laser spot 
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size ~1 m in diameter under a confocal microscope). The STO-CNT samples were 

also characterized by Transmission Electron Microscopy (TEM) and X-ray 

Photoelectron Spectroscopy (XPS). The monochromatic focused Al K  X-ray (1486.7 

eV) source was used for the XPS measurement. The field emission measurements 

were conducted in a planar diode configuration at a base vacuum pressure of 10-8 mbar 

[19-21]. The spacing between the anode (Indium Tin Oxide/ITO film on glass) and the 

tips of the VA-MWCNTs was maintained at 1000±10 μm without using dielectric 

spacer. All measurements were re-confirmed by repeating measurements on the same 

sample as well as additional sets of samples prepared in the same growth process and 

treatment.  

  

Figure 3.12:  SEM images of (a) as grown VA-MWCNTs, (b) STO-CNT sample, and (c) 
PMMA-STO-CNT sample. Raman spectra of (d) as grown VA-MWCNTs, (e) STO-CNT 
sample, and (f) PMMA-STO-CNT sample.  
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Figure 3.12 (a) shows the SEM image of as-grown VA-MWCNTs. The 

diameters of these CNTs are 30-50nm and their lengths are ~4μm. The diameters of 

the CNTs are larger for the STO-CNT sample as shown in Figure 3.12 (b) indicating 

successful coating of SrTiO3. 

Figure 3.12 (c) shows the typical morphology at the top surface of PMMA-

STO-CNT matrices. As shown, the tips of CNTs are opened and exposed. Figures 3.12 

(d), (e) and (f), are the Raman spectra of the as-grown, STO-CNT, and PMMA-STO-

CNT samples, respectively. For all samples, the graphitic (G) and defective (D) 

Raman bands are detected indicating the laser induced Raman scattering occurred on 

all samples. The G and D bands represent the zone center phonons of E2g symmetry 

and the K-point phonons of A1g symmetry of the VA-MWCNTs, respectively. The 

intensity ratio (IG/ ID) for the all samples are merely identical (~0.89±0.1), indicating 

similar structural properties of the VA-MWCNTs.  

XPS spectra of the as-grown sample (Figure 3.13 (a)) showing the present of 

C1s signal. Figure 3.13 (b) shows the XPS spectra of the STO-CNT samples. The 

present of SrTiO3 is confirmed by the composition Sr:Ti:O ~1.0:1.0:3.0. Figure 3.13 

(c) and (d) showing the TEM images of the as-grown and STO-CNT samples. As 

shown, the overall thickness of the SrTiO3 coated MWCNT is larger than the typical 

diameters of our as-grown VA-MWCNTs, consistent with the SEM images in Figure 

3.12 (a) and (b). 
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Figure 3.13:  XPS spectra and TEM images of the as-grown (a and c) and SrTiO3 coated (b 
and d) MWCNTs. 

 

Figures 3.14(a), (b), and (c), showing the field emission characteristics [current 

density (J) versus electric field (E)] of the as-grown, STO-CNT, and PMMA-STO-

CNT samples, respectively. The Fowler–Nordheim (FN) equation [22], J = 2E2 exp

( 3/2  is often use to describe electron field emission, where A, B are constants, 

E is the applied electric field in V cm 1, and  is the work function of the emitters in 

eV,  is the field enhancement factor. Insets of these figures showing the 

corresponding linear F-N plots, which verified that the detected currents are due to 

quantum tunneling. As shown, the threshold electric field, Eth (applied electric field 

for generating a current density of 1μA/cm2) is 3.8 V/μm, 2.0 V/μm and, and 0.8 
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V/μm for the as-grown, STO-CNT, and PMMA-STO-CNT samples, respectively. 

This means, STO coating can reduce Eth of the as-grown VA-MWCNTs. Local 

removal of the SrTiO3 coating at the tips of VA-MWCNTs have further reduced the 

Eth of the PMMA-STO-CNT sample. While we can explain the reduced Eth of the 

STO-CNT sample by the reduced work function of the SrTiO3 coating, however, it is 

not clear why the opened tip PMMA-STO-CNT sample shown further reduction of Eth 

after the removal of SrTiO3 coatings. 

To further investigate our observation, we have examined the emission site 

densities as obtained from the fluorescence on the ITO electrode due to electron 

bombardment. As shown, the emission density for the as-grown sample is poor (inset 

of Figure 3.14 (a)). This is due to screen effect in the CNT forest as consistent with 

our previous observation [16]. Emission density from the STO-CNT sample (inset of 

Figure 3.14 (b)) is higher. This cannot be solely explained by the reduced work 

function as this will mainly increase the current density from each emitter and not 

increasing the number of emitters in the STO-CNT sample. This means, the SrTiO3 

coating has also reduced the screening effect.  

Now, let us examine the effect of removing the SrTiO3 coated from the CNT 

tips. As shown in the inset of Figure 3.14 (c), the emission density of the PMMA-

STO- CNT matrix is even higher than that of the STO-CNT sample. This means, the 

filling of STO-CNT with PMMA followed by the exposure of the CNT tips have  
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Figure 3.14: Electron field emission properties (a, b, and c) and the simulated potential maps 
(d, e, and f) of the as-grown (a and d), STO-CNT (b and e) and PMMA-STO-CNT (c and f) 
samples. 
further reduce the screening effect in the matrix. In short, PMMA-STO-CNT matrix 

offers lowest Eth and highest emission density. 
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Since, the distance between anode-cathode was ~1mm; the actual density would have 

been higher at distance closer to the sample surface. Form the sizes of the sample and 

the overall fluorescence image, the divergence angle of the emission was estimated as 

 

We have then simulated and compared the local electric field strength at the 

tips of CNTs for all samples by the COMSOL Multiphysics software. This will allow 

us to understand the effect of conformal SrTiO3 coating on the whole surfaces of 

MWCNTs, as well as the local removal of these SrTiO3 coating at the tips of the 

nanotubes. The simulation parameters are as follows: diameter of CNTs, DCNTs = 40 

nm; Length of CNTs, LCNTs= 4 μm; edge to edge spacing between CNTs, S = 60 nm; 

applied electric field between top and bottom boundaries, Eappl = 5V/μm. The 

simulated potential map for an array of a-grown VA-MWCNTs is shown as Figure 

3.14 (d). As shown, the CNT located at the center of the array (point 2) experienced 

highest screening effect from the surrounding nanotubes and thus posses lowest 

electric field (~9.898 x 106 V/m at point 1, ~5.326 x 106 V/m at point 2 and ~9.97 x 

106 V/m at point 3, respectively). The effect of SrTiO3 coatings was simulated by 

setting the 20-nm of the spacing next to the surfaces of each CNT with a dielectric 

constant k~ 475 (instead of vacuum k~1). The potential map for the simulated STO-

CNT sample is illustrated in the Figure 3.14 (e). Again, CNT at the center (point 2) 

experienced largest screening effect and lowest local field (~8.878 x 106 V/m at point 

2). This local field is increased by ~66.7% as compared to that in the as-grown 
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sample. The local fields at the tips of CNTs located at the edges of the array (~1.559 x 

107 V/m at point 1, and ~1.119 x 107 V/m at point 3) are also slightly increased by 

~57.5% and 12.2%, respectively. These are due to the reduced screening effect as the 

“vacuum” surrounding the CNTs is now partially replaced by “SrTiO3 coatings” that 

has much higher dielectric constant. Simulation for the PMMA-STO-CNT sample was 

conducted by setting the remaining vacuum spacing between the STO-CNT with 

PMMA coatings (dielectric constant, k = 3.4) [24]. In this case, only the sides of the 

CNTs are simulated with the SrTiO3 coatings but not at the top surface of the 

nanotubes tips. As shown in Figure 3.14 (f), the local field at the center of the PMMA-

STO-CNT matrix (~9.366 x 106 V/m at point 2) is now ~75.9% high than that in the 

as-grown sample due to the additional PMMA filling. The local fields at the edges of 

the matrix (~1.298 x 107 V/m at point 1 and ~1.155 x 107 V/m at point 3) are also 

found to be slightly increased (~31.1% and ~15.9%, respectively). 

 From these simulations, it is obvious that SrTiO3 coating can reduce the 

screening effects especially for areas where MWCNTs are closely packed. 

Consequently, the reduced screening effect has the contribution towards lower Eth and 

higher emission site density of STO-CNT sample detected here. However, the 

additional filling of PMMA did not further enhance the local field on the fully filled 

PMMA-STO-CNT sample. This is expected since the dielectric constant of PMMA is 

two-order of magnitude smaller than that of SrTiO3 while their thicknesses on 

PMMA-STO-CNT sample are similar. In fact, there is one factor which was not 
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considered in the simulation, i.e., the effect of work function ( ) on the tunneling 

process. Although coatings of wide band gap materials were in the past claimed to 

reduce the work function of CNTs and allow easier electron field emission. However, 

Tanaka et al. studied the effect of an insulator barrier (amorphous carbon) on 

individual CNTs [25]. They found that the barrier layer increases  and the Eth. If this 

is true, the removal of PMMA and SrTiO3 coatings from our PMMA-STO-CNT will 

reverse our sample with the original CNT work function while having reduced 

screening effects from the PMMA and SrTiO3 coatings at spaces between CNTs. This 

means, SrTiO3 coatings on our STO-CNT sample improve the performance of CNTs 

by reducing the screening effect more than reducing the work function. The exposure 

of the CNT tips thereafter retains the reduced screening effect and removes the barrier 

layer. Of course, we cannot totally rule out the possibility that our CNT tips are not 

fully exposed. They may have a very thin layer of SrTiO3 coatings at the tips. Since 

such coating is thin, the added potential barrier is thin and still allows effective band 

bending and tunneling process.  

While we have explained our observation in Figures 3.14 (a), (b) and (c), the 

enhanced local field due to the reduced screening effect is not really significant 

according to our simulation in Figures 14 (d), (e) and (f). Therefore, we are putting 

forward the following model to explicate our results. In the present model, we are 

considering two MWCNTs with a distance r apart from each other. The electric field 

imposed by an electron located in a nanotube on another electron located at a 
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neighboring nanotube is given by equation (1). When the spacing between these 

MWCNTs is filled by materials with a dielectric constant k, the electric field is given 

by the equation (2). Hence the electric field between two electrons in two neighboring 

nanotubes is reduced by the factor of k. In principle, if we fill up the spaces between 

VA-MWCNTs by SrTiO3, Coulomb repulsion forces between electrons located at 

adjacent CNTs in such a STO-CNT sample will be reduced by a factor as high as 475-

time. 

Assuming that such a fully-filled STO-CNT sample exists, electron flows on 

CNTs during field emission can be represented by Figures 3.11 (a) and (b). In the 

current model, electron flows along CNTs are driven by the electric forces (FE) 

generated by the applied electric field between the anode and the cathode. In addition, 

we assume that columbic repulsion forces, Fe (= qE, E = electric field in equation 1), 

are generated by electrons in the neighboring CNTs in directions perpendicular to the 

driving force FE. This means, electrons will not simply from the cathode to the anode 

(upward) but will be drifted left and right on the graphene sheets of the nanotubes due 

to the surrounding Columbic forces (Figure 3.11 (a)). In the case of a fully-filled STO-

CNT sample, the drifting will be smaller due to the smaller repulsion forces Fe
’ (= eE’, 

E’ = electric field in equation 2). 

 Let us consider the effective path length travel by electrons under different 

Coulomb repulsion forces. Figure 3.11 (c) represents the case of an isolated nanotube, 

where the upward electric force (FE) between the anode and the cathode is the only 
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driving force for the electron flow. In this case, an electron will travel by a distance 

equal to the length of the nanotube prior to field emission. 

Figure 3.11 (d) represents the case of a nanotube within a typical as-grown 

sample. In this case, electric field E imposed by electrons in the neighboring CNTs 

will produce repulsion forces, Fe, in directions perpendicular to the driving force. This 

will cause drifting of the electron following the dashed trajectory (l) if there are 

electrons flowing in the neighboring nanotubes located on the right side. Thus, the 

distance travelled by the electron will be longer than the length of the nanotube before 

they reached to the tip of the nanotube. For a nanotubes located in a fully-filled STO-

CNT sample, electric field E’ ( E’  < E  will be imposed by electrons in the 

neighboring nanotubes and produce repulsion forces, Fe
’ as shown in Figure 3.11 (e). 

Since Fe
’  < Fe electrons in this nanotube will travel in a trajectory path shorter (l’) 

than that in the case of the as-grown sample illustrated in Figure 3.11 (d). 

In practical, CNTs are not defect free. This means, electron flows along 

MWCNTs will be scattered by defects and generate Joule heating. Due to the shorter 

effective path length travel by electrons, Joule heating in a fully-filled STO-CNT 

sample is expected to be lower as compared to the case for an as-grown sample. As 

reported in our earlier papers, electron scattering and Joule heating are responsible for 

poor emission stability. In fact, we have attempted to fully fill up the spaces between 

CNT by SrTiO3 coating to match the simulated STO-CNT sample. However, thicker 
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Figure 3.15: Emission current stability curves for (a) the as grown, (b) the STO-CNT sample, 
and (c) the PMMA-STO-CNT matrix.   

SrTiO3 coating results in a brittle and void structure and cannot be use for our 

experiments. We have thus decided to fill up the spaces in our STO-CNT sample by 

PMMA, which has enabled the tip removal experiments described so far. According to 

our model, the coating of SrTiO3 in the STO-CNT sample and the PMMA-STO-CNT 

matrix can reduce electron scattering and Joule heating and thus are expected to emit 

electron with high stability. 

 In order to verify the above mentioned hypothesis, we have evaluated the 

emission stability of our samples. Figures 3.15 (a), (b), and (c) show the changes of 
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emission current density with time for the as-grown sample, the STO-CNT sample, 

and the PMM-STO-CNT matrix. All samples were tested with two different initial 

current densities (~600 and ~880 A/cm2). As shown in Figure 3.15 (a), the emitted 

current from the as-grown sample were degraded with time, especially at higher tested 

current density. The STO-CNT sample show very stable emission current with time, 

~5-8% degradation after 2,400 min testing (Figure 3.15 (b)). The PMMA-STO-CNT 

matrix shows remarkable emission stability without significant degradation after the 

continuous 40-hour test.   

3.5. Conclusions 
In conclusions, we were able to demonstrated different ways to improve the 

field emission from as grown CNTs. In summary,  

1) We found that opened-tip VA-MWCNTs can produce more stable emission. 

Bundling of these VA-MWCNTs can further reduce the screening effects, increase 

the emission density, and improve the emission stability. These results are 

confirmed by theoretical simulation, which further suggests that a two-order of 

magnitude lower electric field loading are applied on these bundles that reduce 

current loading, thermal and mechanical stresses and thus enhance the emission 

stability.  

2) We found that PMMA-CNT matrices are excellent electron field emitters. The 

emission threshold field for 1 μA/cm2 was reduced to 1.675 V/μm in comparison 

with 3.898 V/μm of the as-grown samples. The emission densities from the 
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PMMA-CNT matrices are high, merely filled up the entire growth surface of the 

sample. We discussed the possible reasons behind this field emission improvement 

and attributed these enhancements to 1) the reduction in the screening effect from 

the neighboring CNTs due to dielectric properties of PMMA as suggested by our 

theoretical simulation, and 2) reduced defect scattering and Joule heating due to 

the shorter effective transport distance of the electrons in MWCNTs. We have 

demonstrated stable emission at a level of 1350 μA/cm2 continuously for 40 hours. 

It is evidenced here that filling the spaces between CNTs with dielectric materials 

will lead to lower Eth, higher emission density, and better emission stability. This 

approach can be a promising method for fabricating practical electron field 

emitters. 

3) Field emission properties of as-grown VA-MWCNTs were improved due to the 

reduced screening effect between CNTs after the coating of SrTiO3 that has high 

dielectric constant. Such an enhancement on our STO-CNT samples can be further 

improved by the exposure of the CNT tips after PMMA filling and mechanical 

polishing. The Field emission threshold electric field decreased from 3.8 V/μm in 

the as-grown sample to ~0.8 V/μm for the PMMA-STO-CNT sample. We propose 

that the coating of SrTiO3 could have also reduce the Coulomb repulsion forces 

between electrons in neighboring CNTs. This has lead to lower drifting of electron 

flows in CNTs and thus reduce electron-phonon scattering and Joule heating. Such 

a shorter effective transport distance of the electrons in CNTs helps improve the 

emission stability as proven later experimentally.  
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3.6. Future work on Field Emission 
A lot of progress has been demonstrated towards the enhancement of field 

emission parameters from carbon nanotubes (CNTs) using different techniques. This is 

an ongoing work and a lot more can be done. For example  

1) One important study is variation in field emission properties of the device at 

low/poor vacuum. Another area to explore is for making flexible field emission 

devices by transferring as grown CNTs on a flexible substrate and studying or 

enhancing its field emission behavior.  

2) For any working devices to be applicable in real world the stability of CNT based 

devices should be more than 1000 hours. Therefore devices must be tested for more 

than longer hours.  

3) Different and higher dielectric materials can also be tested for coating CNTs for 

longer stability and better field properties. 

4) Also in-situ studies of field emission from a single CNT STM inside TEM can also 

help us unravel the change in structure of CNTs during field emission process. 
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Chapter 4 

4. Glucose Biosensors Based on PMMA-CNT 
Matrices 

4.1. Introduction: Basics of Biosensors 

A biosensor is a device which utilizes a biochemical reaction to produce a 

biological response and convert them to an electrical signal. Usually, a biological 

response/signal cannot be examined visually therefore it has to be converted into a 

signal which can be easily detected. We use electrochemical techniques to study the 

reduction-oxidation (redox) reactions at the electrode-solution interface which convert 

biological signals into detectable electrical signal. Electrochemical techniques are 

methods that study reactions at the electrode-solution interface.  

 

 

 

 

 

Figure 4.1: Components of biosensor 
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In analytical electrochemistry, biocatalyst and transducer constitute a 

biosensor, which is also considered as an electrode. Transducer is the main component 

which converts the response to measurable electrical signals. Then, the amplifier, 

processor and display (as analytical electrochemical equipment) convert these signals 

to detectable signals.   

4.1.1. Components of biosensors 

  Biosensors have three major components: biological element which detects the 

analyte, transducer and signal processors. Biological element can be complex proteins, 

peptides, glucose or any other complex molecules. The transducer is a device which 

converts the biological signal into measurable electrical signal. Figure 4.1 

schematically shows the components of a biosensor. For glucose biosensor, the 

glucose oxidase (GOx) enzyme is the biological element that detects the analyte 

(glucose molecules). Here, CNTs act as the transducer and electrochemical cell setup 

and potentiostat is the signal processor.  Biosensors can be classified in many different 

ways [1]. If sorted according to biocatalyst, biosensors are classified into enzyme 

electrodes, immune-sensors, DNA sensors and microbial sensors etc. If categorized by 

transducers, they can be sorted into electrochemical sensors, electrical sensors, optical 

sensors, mass sensitive sensors and thermal sensors based on signal transduction [2]. 

 

 



89 
 

4.1.2. Glucose oxidase (GOx) 
 

Glucose oxidase was first discovered by Müller [3]. It was established in 1928 

that the enzyme glucose oxidase acts as a catalyst and causes the oxidation of glucose 

to gluconic acid in the presence of dissolved oxygen [4-5]. The structure of GOx 

molecule is illustrated in Figure 4.2.  

GOx is a dimeric protein. Dimeric consists of two similar subunits called 

monomers. The molecular weight of GOx is ~160kDa (1 Da = 1 g/mol) with one 

Flavin adenine dinucleotide (FAD) per monomer as a cofactor. Co-factors are non-

protein in nature and they are bound to a protein for its biological activities [6]. The 

monomers are connected via non-covalent bond. The monomeric molecule is a 

compact spheroid with approximate dimensions of 60 Å x 52 Å x 37 Å.  

 

 

 

 

 

 

Figure 4.2: Overall topography of GOx enzyme with FAD at the center. Reprinted with 
permission from reference [7] 
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FAD is part of GOx where redox reaction takes place. This FAD/FADH2 redox 

center is encapsulated deep inside the protein shell. Therefore the reactive enzyme site 

is a distance (13Å) away from the electrode surfaces [7]. Thus the major concern for 

fabricating glucose biosensors is to establish an efficient direct electron transfer (DET) 

between the FAD center and electrode surface. 

4.2. Current state of research in biosensors based on CNTs 
 

Diabetes mellitus is one of the foremost causes of various neurovascular and 

retinopathy diseases. The survey of world health organization (WHO) shows that the 

sole therapy which can be used as a preventive technique is not to raise the blood 

glucose level i.e. apposite control of the blood glucose as a clinical diabetes therapy 

[8-9]. There are many blood glucose level detection techniques available in market 

which comprises offline detection of blood glucose by extracting blood from the 

capillaries or veins of the fingertip such as commercially available blood glucose 

monitors. For many diabetic patients continuous monitoring of blood glucose is 

required. The existing technologies in market for continuous glucose monitoring are 

few and expensive. Biosensor based on carbon nanotubes has been proved to be a 

more reliable and promising to be used for continuous glucose application which 

represents a most conceivable and exciting application area for nano-biotechnology. 

These biosensors can be embedded in the body of the patient which will act as a 
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regular glucose monitoring system because biosensors are approved sensitive, 

selective and responsive medium.   

Carbon nanotubes possess excellent chemical and physical properties to be 

used as biosensor as demonstrated in literature [10-16]. While preparing the CNTs 

based glucose biosensors, the most common and extensively used enzyme, glucose 

oxidase (GOx), is amalgamated with CNTs [17-20]. Since, CNTs possess the 

incredible electro- catalytic and exhibit fast electron transfer rate therefore, it is a 

common assumption that CNTs can capture the electrons from the deeply embedded 

FAD redox centres in GOx and act as transducers in CNTs based glucose biosensors 

[21]. For the fabrication of biosensors, Wang et al. [21] used CNTs as an electrode 

material. Simultaneously they filled the mixture of CNTs and GOx in a polyamide tube 

and sealed the other end with the nafion coating and recorded the current response of 

the sensor [21]. Since then various techniques such as cross-linking [22], physical 

adsorption [23], and decoration of CNT modified glassy carbon electrode (GCE) with 

metallic nanoparticles [24-25] etc. has been used to improve the immobilization of 

GOx onto surface of different electrodes including CNTs. However, these techniques 

are complicated and involve non-compatible reagents which produce biosensors that 

do not exhibit good stability and longer life time. Although stability, sensitivity and 

low limit of detection and response time of CNTs based biosensors are important, 

there are not many reports discuss about durability, reusability, and lifetime of GOx-

CNTs based biosensors. In most cases, the dispersion of CNTs (which is the key 
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element for making CNT based biosensors) affects the immobilization of enzyme and 

limits its performance. It is evident that as grown CNTs have closed shell and it does 

not allow high degree of functionality. Keeping this in mind Lin et al. employed open 

end CNTs and fabricated glucose biosensors based on aligned CNT nanoensembles 

[26]. The glucose biosensor based on CNTs nanoensembles showed highly selective 

detection of glucose and maintained a linear response up to a glucose concentration of 

20 mM [26].  

For real application of these CNTs-based glucose biosensors, it is important to 

study the durability, reusability and stability of the GOx enzyme. This chapter reports a 

durable glucose biosensors based on GOx-PMMA-CNT matrices. We found that 

PMMA-CNT matrices are reliable electrodes to immobilize GOx for sensors that are 

sensitive, robust and durable. The reusability factor of our sensors was also evident 

when we kept these sensors for longer than eight months in proper storage conditions. 

Furthermore, we found that our sensors have a glucose reaction rate of 

0.0104nmol/seconds. Details of these results are discussed in this chapter. 

4.3. Experimental procedure: Fabrication of glucose biosensors based on PMMA-
CNT matrix 

4.3.1. Growth of VA-MWCNTs 
 

VA-MWCNTs were grown using plasma enhanced chemical vapor deposition 

technique (PECVD). In brief, Ni nanoparticles were deposited using magnetron 
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sputtering system on silicon (Si) substrates. VA-MWCNTs were then grown by 

PECVD using pure CH4 gas.  

 

 

 

 

 

Figure 4.3: (a) Schematic diagram of as grown vertically aligned multi-walled CNTs (VA-
MWCNTs) (b) corresponding SEM image of as grown VA-MWCNTs with Ni catalyst on top  
 

Figure 4.3(a) shows the schematic diagram of as grown VA-MWCNTs. The 

corresponding scanning electron microscopic (SEM) image of as grown VAMWCNTs 

is shown in Figure 4.3(b). Ni catalytic particles are remained at the tips of the as-

grown CNTs as can be seen from the SEM image. 

4.3.2. Fabrication of PMMA-CNT matrix- Polishing procedure to expose the tips 

The PMMA solution was prepared by diluting PMMA with the developer 

solution (Microchem) in a volume ratio of 1:1. The as-grown VA-MWCNTs were 

then dip coated by poly methyl methacrylate (PMMA) followed by annealing at 

-3 minutes. The schematic diagram of PMMA coated sample is shown in 

Figure 4.4(a). Samples were then polished to expose the tips of CNTs. We call these 

PMMA-CNT matrices and they are ready for immobilization of GOx. The exposed 
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VA-MWCNTs tips were modified following the procedure used by Lin et al [26]. The 

corresponding SEM image of CNTs dipped in PMMA is shown in Figure 4.4(b).  

 

 

 

 

 

 

 

 

Figure 4.4: (a) Schematic diagram of as grown vertically aligned multi-walled CNTs (VA-
MWCNTs) dipped in Poly (methyl methacrylate) (PMMA) (b) corresponding SEM image of 
dipped VA-MWCNTs (c) schematic diagram of polished CNTs to expose the tips of CNTs and 
(d) Corresponding SEM image of the polished tips 
 

It can be observed that after dipping no CNTs can be seen. The cured samples 

(Figure 4.4(b)) were then mechanically polished by using fiber-free lapping cloth and 

a colloidal silica (0.02 μm in diameter) solution to expose the tips of the CNTs. The 

fabrication scheme of the PMMA-CNTs matrices using PMMA solution is 

summarized in Figure 4.4. After mechanical polishing the Ni catalyst particles were 

removed. Figure 4.4(c) shows the schematic of polished CNTs. The corresponding 

SEM image is shown in Figure 4.4(d). The removals of catalyst particles from the tip 
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of CNTs open all the dangling bonds which will be further used to attach the GOx 

enzyme.   

In our method we use covalent attachment approach to immobilize GOx onto 

tips of CNTs. The advantage of direct anchoring of enzymes by covalent 

immobilization is that it enables direct electron transfer to the active sites of the 

enzyme. 

4.3.3. Preparation of biosensor with different working electrode area 

The synthesis of CNTs is same as discussed in above section. In our PECVD 

chamber we can grow three identical CNT samples (each sample with Si substrate of 

1cm x 1cm in size) at a time. The area of the circular CNTs growth region is 0.385 

cm2 on Si substrate. For the study of the area effect, a total of eight CNT samples were 

prepared. The variation in working electrode area is schematically shown in Figure 

4.5. 

 

Figure 4.5: The schematic diagram of CNTs with the areas of (i) 0.096 cm2, (ii) 0.193 cm2, 
(iii) 0.298 cm2, (iv)0.385 cm2 (v) 0.481 cm2, (vi) 0.578 cm2, (vii) 0.674 cm2 and (viii)0.77 cm2 
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At first four CNTs samples (Si substrate of 1cm x 1cm in size) were grown 

within a circular area of 0.385 cm2. After that the samples were scratched according to 

the required area: for one-fourth area (0.096 cm2), half area (0.193 cm2) and three 

fourth area (0.0.298 cm2). Si substrate size of 2cm x 1cm was used to grow CNTs 

samples for the areas more than 0.385 cm2. Again four CNTs samples were grown 

using 2 cm x 1cm silicon substrates. After that the rest of the deposited CNTs were 

scratched from the substrate to achieve the required area as depicted in Figure 4.5.  

4.3.4. Functionalization of exposed tips of PMMA-CNT matrices with carboxylic          
(-COOH) group 
 

Before immobilization of GOx, PMMA-CNT matrices were pretreated 

electrochemically with 1M sodium hydroxide (NaOH) at 2.8V for 5min. The modified 

electrodes were dried for 30 minutes in air. This step was done in order to attach 

carboxylic group (-COOH) on tips of CNTs. Figure 4.6(a) shows the schematic of the 

set-up which was used for the functionalization of polished CNTs to attach –COOH 

group. Figure 4.6(b) shows the schematic of the -COOH functionalized CNTs. 

Existence of the carboxylic acid group (~1730 cm-1) was confirmed by FTIR 

spectroscopy [27]. Figure 4.6(c) shows the fourier transform infrared spectroscopy 

(FTIR) of as-grown sample which shows that there was no carboxylic group present 

before electrochemical treatment. Once the CNTs tips were opened electrochemical 

treatment was done by NaOH. 
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Figure 4.6: Schematic diagram of (a) functionalization of VA-MWCNTs with carboxylic 
groups (b) functionalization of -COOH on tips of CNTs and (c) FTIR spectra of as grown 
CNTs and (d) FTIR of –COOH functionalized CNTs. 

Figure 4.6(d) shows the FTIR of electrochemically treated CNTs. The bands at 

1759 cm-1 and 1160 cm-1 were attributed to the C=O and C-O stretching vibrations 

mode of the carboxylic groups respectively. This result confirms the attachment of 

carboxylic groups on the broken bonds of CNTs tips [27]. 
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4.3.5. Immobilization of GOx on PMMA-CNT matrices 
 

 We use deionized (DI) water for all the experiments described here.  The

immobilization was done using standard water soluble coupling agent EDC (1-ethyl-3-

3-dimethylaminopropyl carbodiimide) and sulfo-NHS (N-hydroxy-sulfo-succinimide) 

as reported by Lin et al [26]. At first PMMA-CNT matrices functionalized with –

COOH groups were immersed in 10ml of EDC aqueous solution (10mg/ml). Next, 

300mg of sulfo-NHS was added to the above solution with stirring. Chemical 

reactions were allowed to occur at room temperature for 3 hours. Finally the above 

samples were washed in DI water and immersed in degassed GOx solution (2mg/ml) 

prepared in 20ml of 0.1M phosphate buffer solution (pH 7.2). GOx immobilization 

was allowed to occur at room temperature for 3 hours. The glucose biosensors based 

on PMMA-CNT matrices were stored at 40C in PBS solution when not in use. The 

possible reactions involved are given in the scheme in Figure 4.7.  

  

 

 

 

 

 

Figure 4.7: Reaction involving EDC and Sulfo-NHS 
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4.3.6. Assembling glucose biosensor and its measurement

The glucose biosensor was incorporated into a three-electrode electrochemical 

cell (EC cell) as the working electrode as shown in Figure 4.8(a). Phosphate buffer 

solution (PBS, pH 7.2) was used as the solvent.  

Figure 4.8: Picture of (a) electrochemical cell (EC cell) and (b) schematic diagram showing 
three electrodes 

A gold target (and platinum wire) was used as the counter electrode with an 

Ag/AgCl reference electrode. Amperometric response was obtained using a computer 

controlled potentiostat CHI 660C. The EC cell  allowed to stabilize for at least 500 s 

before adding the glucose solution (analyte) to the system for sensing measurement / 

current changes induced by glucose -GOx binding.  Figure 4.8(b) shows the schematic 

diagram of three electrodes in EC cell. 
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4.4. Results and Discussion 

4.4.1. Cyclic Voltammetry (CV) measurements 
 

CV of PMMA-CNT matrixes without GOx are flat and show no redox peaks. 

This indicates that there is no leakage current and the PMMA-CNT matrices are sealed 

completely. Next we performed CV of GOx immobilized on PMMA-CNT matrices as 

shown in Figure 4.9(a). CV was performed in deaerated (purging with nitrogen gas for 

10min) PBS (pH 7.2). Direct electron transfer (DET) behavior of GOx immobilized on 

PMMA-CNTs matrices is obtained. Figure 4.9(a) shows the CV of GOx-PMMA-CNT 

electrodes in PBS (pH 7.2). CV curve for GOx-PMMA-CNTs biosensor shows a pair 

of well defined redox peaks with the anodic and cathodic peak potentials at -316mV 

and -311mV respectively at a scan rate of 100mV/sec. The pair of redox peaks in 

Figure 4.9(a) corresponds to DET reaction of GOx as follows: 

Reduction: GOx (FAD) + 2e- + 2H+         GOx (FADH2)              (1) 

Oxidation: GOx (FADH2)         GOx (FAD) + 2e- + 2H+               (2) 

In the forward scan (from A to B to C in Figure 4.9(a)) GOx (FAD) is reduced 

to GOx (FADH2). This results in reduction peak or cathodic current peak at B (-

311mV). In the reverse scan (from C to D to A in Figure 4.9(a)) GOx (FADH2) is 

oxidized back to GOx (FAD). This results in oxidation peak or anodic current peak at 

D (-316mV). This confirms that GOx immobilized on VA-MWCNTs nano-electrode 

surface is electro-active and is stable.  



101 
 

Figure 4.9(b) shows the CV of GOx-PMMA-CNT with glucose addition. After 

the addition of 12ml of 0.22mM glucose solution to 218 ml of PBS the shape of the 

CV of GOx-PMMA-CNT electrodes changes significantly and is characterized by a 

large anodic current peak at -195mV without any cathodic peak current. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Cyclic voltammogram of (a) GOx-PMMA-CNTs biosensor and (b) GOx-PMMA-
CNTs biosensor after glucose addition respectively at scan rate of 100mV/s. (c) Amperometric 
(current-time) response of GOx-PMMA-CNTs matrices with successive stepwise addition of 
2ml of 0.22mM glucose solution to 218 ml PBS (pH 7.2) (d) Calibration curve of Current 
response vs. Glucose concentration. 
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The increase of glucose concentration leads to the enhancement of the anodic 

current. The electro-catalytic reactions occurring at the working electrode can be 

written as follows: 

Reduction: GOx (FAD) + glucose GOx (FADH2) + gluconolactone (from A   

           to B to C)                                                                                                          (3) 

Oxidation: GOx (FADH2) GOx (FAD) + 2e- + 2H+ (from C to D to A)     (4) 

Therefore, GOx immobilized on PMMA-CNTs can be used as biosensors for 

glucose sensing.  As shown in equations (1)-(4), our BFCs involved three possible 

reactions. Equations (1), (2) and (4) are electrochemical reactions and equation (3) is 

an enzymatic reaction. An enzymatic reaction does not produce any peak which can be 

observed in CV graph. When the glucose is added to the solution only reactions (1) 

and (3) are competing with each other. Since the enzymatic reaction is much faster and 

dominated, we observe that GOx (FAD) is reduced in GOx (FADH2) and glucose is 

oxidized to gluconolactone. This reaction (equation 3) produced GOx (FADH2) in 

large amount. When the reduced form of GOx (FADH2) is oxidized back to GOx 

(FAD) we observe (equation 4) the reduction peak decreases but oxidation peak 

increases.  

Figure 4.9(c) shows the amperometric response of GOx-PMMA-CNT 

biosensor to the successive addition of 2ml of 0.22mM glucose solution to 218 ml 

PBS at -0.4 V and it shows the highest electro-catalytic activity towards glucose. 

Immediately after the addition of glucose the current response decreases and reaches a 
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steady state within ~30 seconds suggest that the electrode responds rapidly to the 

change of the substrate concentration. As shown in Figure 4.9(d), a linear response of 

the biosensor can be obtained for glucose concentration up to ~20μM. The sensitivity 

of the sensors (gradient of linear region of Figure 4.9(d) sensor area) was found to be 

1.0342 μA/μM /cm2 for a sensor of area 0.385 cm2.  

To test whether biosensor can be used for continuous monitoring of glucose, I 

studied the continuous amperometric current response of glucose biosensor with one 

step glucose addition. For this, first the biosensor was stabilized/equilibrated in PBS 

(pH 7.2) for few hours and then the 20 ml of 0.22 mM glucose solution was added to 

the 218 ml of PBS and current response was recorded continuously for ~22 hours at -

0.4 V. Figure 4.10(a) shows the amperometric response of the single step addition of 

glucose to GOx-PMMA-CNTs biosensor. 

Figure 4.10: (a) i-t response of GOx-PMMA-CNT biosensor with single step glucose addition 
for ~22 hours. Only partial recovery (~ 65 %) is observed and (b) Stability curve of GOx-
PMMA-CNT biosensors. Stability of enzyme was monitored at regular intervals of 5-6 days. 
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Clearly it is observed from Figure 4.10(a) that even after long period of time 

the biosensor partially recovers its activity (~65% in 22 hours). Initial order of 

magnitude calculations from area under the curve indicate that the rate of glucose 

consumption for the biosensor is 0.0104 nanomol/s.  Details of this calculation are 

shown in Appendix A-1.  

Our GOx-PMMA-CNT glucose biosensor shows stability and maintains the 

activity of the GOx enzyme for more than nearly eight months. The stability of the 

GOx-PMMA-CNT biosensor was investigated under the storage condition, PBS, pH 

7.2, 40C, using the same glucose concentration (20 ml of 0.22 mM glucose solution 

was added to the 218 ml of PBS) and the result of variation in amperometric response 

at -0.4 V is shown in Figure 4.10(b). As can be seen from the graph after ~8 months 

the response current is still retained at 70% of the initial value. The decrease of the 

current response can be due to the result of the decrease in the enzyme activity or 

denaturation of enzyme (unfolding) during storage. Compared to the reported glucose 

biosensors based on CNTs paste electrodes [20] which could maintain stability within 

3 to 120 days, the usability of our biosensors is much longer ~8 months. Based on our 

result shown in Figure 4.10(b) we can conclude that the opened tip PMMA-CNT 

matrices of the GOx-PMMA-CNT electrode is biocompatible with the immobilized 

enzyme and is able to maintain the activity of the enzyme GOx for a long period of 

time.  
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4.4.2. Effect of electrode area on performance of biosensors 
 

As emphasized in previous section that sensitive detection of biomolecules is 

very important in numerous biomedical applications. These applications of biosensors 

require miniaturization from micro-to-nano scale sensors for all the implantable 

devices. Miniaturization is also very important in fields such as point of care bio-

diagnostics, lab on a chip application for sensitive detection of small concentration of 

biomolecules with improved sensitivity and biocompatibility. The use of 

functionalized PMMA-CNT matrices (act as working electrode) can fulfill this 

demand due to its small size and providing enough surface area for enzyme 

immobilization. 

In this section the effects of working electrode area on performance of glucose 

biosensor are discussed. The different working electrode areas used for this study were 

0.096 cm2, 0.193 cm2, 0.289 cm2, 0.385 cm2, 0.481 cm2, 0.578 cm2, 0.674 cm2 and 

0.77 cm2 as detailed in section 4.3.3. 

All the experiments were performed using our CHI 660 electrochemical 

workstation and the three-electrode setup with Ag/AgCl reference electrode. A gold 

plate (area ~6.00 cm2) was used as the counter electrode and GOx immobilized on 

PMMA-CNT were used as working electrode as discussed in the earlier section.  
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Figure 4.11: Cyclic voltammogram of (a-h) GOx-PMMA-CNT biosensor show two 
symmetrical peaks with anodic and cathodic peaks for areas of 0.096 cm2, 0.193cm2, 0.289 
cm2, 0.385 cm2, 0.481 cm2, 0.578cm2, 0.674 cm2 and 0.77 cm2 respectively at scan rate of 
100mV/s.  
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Figure 4.12: Cyclic voltammogram of (a)-(h) GOx-PMMA-CNT biosensor after adding 
glucose solution for areas of 0.096 cm2, 0.193cm2, 0.289 cm2, 0.385 cm2, 0.481 cm2, 0.578cm2, 
0.674 cm2 and 0.77 cm2 respectively at scan rate of 100mV/s.  
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Figure 4.13: Amperometric response (a)-(h) (i-t) of GOx-PMMA-CNT biosensor with 
successive addition of 1mM glucose in PBS (pH 7.2) for areas 0.096 cm2, 0.193cm2, 0.289 
cm2, 0.385 cm2 0.481 cm2, 0.578cm2, 0.674 cm2 and 0.77 cm2 respectively. 
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Figures 4.11(a)-(h) shows the CV of GOx immobilized PMMA-CNT with 

different areas of 0.096 cm2, 0.193 cm2, 0.289 cm2, 0.385 cm2, 0.481 cm2, 0.578 cm2, 

0.674 cm2 and 0.77 cm2, respectively without adding glucose. For all the cases a pair 

of two symmetrical peaks can be clearly seen on these GOx immobilized PMMA-CNT 

matrices as already described for Figure 4.9(a). 

Figure 4.12 (a)-(h) show CV of GOx-PMMA-CNT biosensors with areas of 

0.096 cm2, 0.193 cm2, 0.289 cm2, 0.385 cm2, 0.481 cm2, 0.578 cm2, 0.674 cm2 and 

0.77 cm2 respectively, after addition of 12 ml (0.22 mM) glucose solution in 218 ml of 

PBS. Anodic peak increases whereas the cathodic peak decreases for all the areas 

which are similar to the behavior described previously. As shown in Figures 4.12(a)-

(h), the areas under the anodic peaks increase as the device area increases. This is 

understandable since as area increases more number of GOx enzyme immobilized sites 

contribute to the current.  

Figures 4.13(a)-(h) shows amperometric (i-t) response of GOx-PMMA-CNT 

biosensors with successive addition of 2ml glucose solution (0.22 mM) in 218 ml PBS 

(pH 7.2) at    -0.4 V for device areas of 0.096 cm2, 0.193 cm2, 0.289 cm2, 0.385 cm2 

and 0.481 cm2, 0.578 cm2, 0.674 cm2 and 0.77 cm2, respectively. For each addition 

droplet of glucose solution, a sharp decrease in current was observed.  

 The response reached steady state value in ~30sec. As the cumulative glucose 

concentration in the PBS was increased with time, the current responses decreased in 

magnitude. As shown, at higher glucose concentration, the step size of the current 
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response is decreasing and approaching saturation. In addition, the glucose 

concentration for such saturation to occur is higher for sensors with larger areas (those 

in a, and b are higher than those in g and h).   

Figure 4.14 shows the combined calibration curve of cumulative current 

response vs. cumulative glucose concentration for different electrode areas. It is 

observed clearly that as electrode area increases the linear range of current response 

also increases and it saturates at a higher glucose concentration.  This behavior is 

expected since as area increases more number of GOx enzyme immobilized sites are 

available to sense glucose and contribute to the current. 

 

 

 

 

 

 

 

 

 

Figure 4.14: Calibration curve of cumulative current response vs. cumulative glucose 
concentration for GOx-PMMA-CNT biosensor for areas 0.096 cm2, 0.193cm2, 0.289 cm2, 
0.385 cm2 0.481 cm2, 0.578cm2, 0.674 cm2 and 0.77 cm2 respectively. 
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 Table 4.1 summarizes the variation of slope and sensitivity values with 

different areas. From Table 4.1 we can observe that the slope of current response vs. 

glucose concentration increases with the increase of sensor area. This can be 

understood because the number of electroactive GOx sites is increased and available 

for the immobilization of GOx. Hence we obtain a faster response (higher current-

concentration gradient) for sensors with larger area. 

Table 4.1: Variation of biosensor parameters with different electrode areas 
 

Area 

 (cm2) 

Slope 

(μA/μM) 

Sensitivity 

(μA/μM/cm2) 

0.096 0.1825 1.901 

0.193 0.2598 1.3461 

0.298 0.3565 1.1963 

0.385 0.3627 0.9421 

0.481 0.4297 0.8935 

0.578 0.4590 0.7941 

0.674 0.57181 0.8484 

0.77 0.6524 0.8473 
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Limit of detection was calculated by fitting the linear region of a current vs. 

concentration curve. Linear region was fitted with a straight line and limit of detection 

was determined. Fitted calibration curves are given in Appendix-B, Figure B.1 and 

B.2. For all the areas the limit of detection is close to zero.  

Variation of sensitivity versus area is given in Table 4.1. Sensitivity slowly 

decreases with increase in area. Although range of current for linear response 

increases as area increases but increase in current lags behind increase of area. In other 

words number of electroactive GOx sites does not increase as much as area increases. 

Therefore, even if the current increases because of increase in area it does not 

overcome the area effect as area is doubled each time. Since area is inversely 

proportional therefore the overall combined effect of both the factors is that sensitivity 

decreases as area increases.  

In fact, we found that the counter electrode area will affect the measurement of 

current response discussed so far. In another set of experiments, Pt wire was used as 

counter electrode for the study of sensor area effect. We found that the current 

response vs. glucose concentration curve are almost similar for sensors with areas 

0.385 cm2 ,0.481 cm2, 0.578cm2, 0.674 cm2 and 0.77 cm2 (Appendix B, Figure B.3, 

B.4 and B.5  gives CV data and calibration curves).  

These can be explained if we consider the area of our Pt wire counter electrode 

dipped in the buffer solution (0.4374 cm2). Electrons between the sensor and the Pt 

wire will conduct through the electrolyte/PBS to complete the circuit. Since the 
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motion of ions in the PBS buffer solution near the Pt counter electrode is a diffusion 

limited process, the amount of electrons/ions involve in each complete circuit flow 

will depends on the area of the Pt wire. For sensors with area less than the area of the 

Pt wire, the whole current from the sensor can be picked up by the Pt wire. This is not 

the case for sensors with larger areas as the Pt wire can only pick up a portion of 

electrons from the sensors. This is especially true as the actual Pt area facing the 

sensor is less than 0.4374 cm2. 

4.5. Conclusions 
 

The use of PMMA-CNTs matrices in glucose biosensor was very useful in 

fabricating effective biosensors. This chapter presents three work altogether: 

(1) Glucose biosensor based on GOx immobilized on PMMA-CNTs matrices were 

fabricated for glucose detection. This biosensor exhibits a strong response to 

glucose. It also shows a high stability of ~70% of the initial activity after 

several months in proper storage. Opened tip PMMA-CNT matrices of the 

GOx-PMMA-CNTs electrode are biocompatible with the immobilized enzyme 

and are able to maintain the activity of the enzyme GOx for a long period of 

time.  

(2) The next result is effect of electrode area on BFCs performance. As electrode 

area increases the linear range of current response also increases and it 

saturates at a higher glucose concentration. Limit of detection is close to zero 
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for all the areas. We found that the sensitivity of our biosensor decreases with 

increase in area. The reason behind this is the inverse dependence of sensitivity 

on area of the electrode.  

4.6. Future Work on Glucose Biosensors 
Glucose biosensor based on GOx immobilized on PMMA-CNTs matrices can 

be further improved by optimizing the testing conditions such as pH of the electrolyte, 

temperature of testing. Also testing on real blood sample and comparing it with 

existing technologies can help to understand its performance better.  We can also 

employ better immobilization techniques to increase the number of electroactive 

enzymes as we increase the area of the electrodes. We can also use different and better 

techniques to coat VA-MWCNTs with nanoparticles uniformly with different sizes to 

optimize and enhance the properties of these biosensors.  
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Chapter 5 
5. Energy Generation and Storage using 

Functionalized PMMA-CNT Matrices 

5.1. Introduction to the Energy Sensing, Generation and Storage (SGS) System 

SGS is an abbreviation of sensing, generation and storage system. This was 

proposed by my advisor, Dr. Yoke Khin Yap, to integrate some of the components of 

my work using PMMA-CNT matrices including the glucose sensors, glucose biofuel 

cells, and supercapacitors. SGS is very simple but powerful concept which might be 

applicable as implantable medical devices in human being. Schematic representation 

of the SGS concept is shown in Figure 5.1.  

 

 

 

 

 

 

 

 

Figure 5.1: Schematic representation of SGS concept 
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This system consists of three components: 1) glucose sensors discussed in 

previous chapter for energy (glucose) “sensing”, 2) glucose BFCs for energy (glucose) 

“generation”, and 3) supercapacitor for energy “storage”. The operational concept of 

SGS is that when the sensors detected a normal blood glucose level, the biofuel cells 

will not be activated. When the sensors detects a higher than normal blood glucose 

level, the system will activate the BFCs and convert excessive glucose into energy. 

The BFCs will stop generating energy when the glucose level returned to a 

normal level. The energy generated by the BFCs can be stored in the supercapacitors 

(or other miniature batteries) to power the glucose sensors and assisting electronics. 

Alternatively, it can be used to power other implanted devices including pace makers, 

artificial organs etc. 

Thus SGS can help in maintaining normal glucose level in our blood as any 

excessive glucose will be converted into energy. For those who need extra energy to 

power other implanted devices, they will need to take the prearranged amount of extra 

glucose to charge up the supercapacitors. For practical uses, an external monitoring 

system will be needed to allow users to set alarms to alert them when the blood 

glucose levels and the energy storage in the supercapacitors are too low or too high. 

We have already showed that PMMA-CNT matrices can be used as an 

excellent glucose biosensor. In this chapter we will show the preliminary results on the 

other two components of the SGS device energy generation using BFCs and energy 
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storage using supercapacitors based on functionalized PMMA-CNT matrices. The 

details are discussed below. 

5.2. Biofuel cells: A Brief Look 
 

In view of rising energy demand and due to limited availability of non-

renewable energy resources, there are strong desires to design more efficient sources 

of alternative renewable energy.  This has led to more intense research in alternative, 

clean and green sources of energy such as BFCs. Renowned Italian scientist Luigi 

Galvani was the first to observe the twitching of a frog’s leg when an electric current 

was applied [1]. Michael Cresse Potter created the microbial fuel cell by placing a 

platinum electrode into cultures and created a potential difference [2]. Cohen created 

high voltage microbial fuel cells [3]. Recently, due to impending energy crisis there 

has been a spurt in research in BFCs as reported in published excellent reviews on the 

topic [4]. The next few sections discuss more details about BFCs. 

5.2.1. Introduction: What is biofuel cells (BFCs)  
 

BFCs are defined as fuel cells where biocatalysts such as microorganisms or 

enzymes were employed to convert chemical energy into electrical energy by 

electrochemical routes. In BFCs enzymes are used as a biocatalyst and they can 

operate under ambient conditions such as 20-300C and neutral pH. The biocatalysts 
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can be either protein, enzyme or whole organism and this also offer cost advantage 

over metallic catalyst such as Pt which is expensive rare earth metal [5].  

For decades, microorganisms, which convert foods into electron flows, were 

only biological interesting. Major interest in BFCs research arose when National 

Aeronautics and Space Administration in 1960s explored in converting human waste 

into electricity during their space flights missions. During that period many BFCs 

which generate power from various organic substances such as urea and methane were 

demonstrated. Algae and bacteria were among the first organisms used in biological 

fuel cells. The first enzyme BFC was reported in 1964, which uses an enzyme glucose 

oxidase (GOx) as biocatalyst for anode and glucose as fuel [6]. Many exciting 

developments have been reported since that time [7-10] but the performance of BFCs 

in terms of power density, lifetime, and operational conditions, are far below and lags 

behind that of conventional fuel cells. Now-a-days instead of viewing BFCs as a 

device for power generation the studies are more directed towards specific 

applications such as biosensors and implantable devices [11-12].  

Advances in nanotechnology have led to a new field of nanomaterials 

functionalized with biocatalysts such as enzymes. Along with the chemistry of 

materials many nanostructures evidenced their potential use in activating the enzymes 

with excellent physical and chemical properties. These nanomaterials have advantage 

of large surface to volume ratio which is advantageous for immobilization of enzymes 

and increases the enzyme loading. Enzymes have further advantage of selectivity 
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which can eliminate the need for separator membrane. Enzymatic BFCs have 

disadvantages of having inadequate life time due to the brittle nature of enzyme. A 

schematic of CNT based enzymatic biofuel cell using glucose and oxygen gas as fuel 

is shown in Figure 5.2. A typical BFC consists of two electrodes: bioanode and 

biocathode. Bioanode consist CNTs functionalized with enzyme GOx. Biocathode 

consist CNTs functionalized with enzyme Laccase. Oxidation occurs at the bioanode 

and the electrons released in the process are then transferred to the biocathode from 

the external circuit where reduction occurs at the biocathode.  

 

Figure 5.2: Schematic of Enzymatic Biofuel Cells 

Among various nanomaterials tested for enzymatic BFCs, CNTs are at the 

forefront due to their exceptional physical and electrochemical stability. In 2006, it 

was first reported that GOx immobilized MWCNTs can be used as the bioanode in 

BFCs [13]. The authors demonstrated direct electron transfer between GOx enzyme 

and MWCNTs grown on porous carbonaceous matrix with a potential of developing 

miniaturized membrane-less BFCs. Later, the use of single walled CNTs (SWCNTs) 
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based glucose-oxygen BFC with glucose dehydrogenase (GDH) enzyme and laccase 

enzyme was reported [14]. The authors demonstrated BFCs using paste of GDH 

functionalized SWCNTs with improved open circuit voltage. Similarly 

glucose/oxygen BFCs based on paste of GOx functionalized MWCNTs on glassy 

carbon electrode and paste of laccase functionalized MWCNTs has been demonstrated 

[15]. Enzymatic BFCs based on SWCNTs modified carbon fiber microelectrodes as a 

substrate for biocathode and bioanode has also been reported [16].  The authors report 

high power output and tissue implantable features. Very recently hybrid CNT 

microwires have been reported for high power BFCs in nature communications [17]. 

So far most of the efforts in using CNTs have relied on using paste of functionalized 

CNTs. Based on these nanotubes pastes, promising power density and performance of 

BFCs have been demonstrated [17]. This chapter presents the use of poly-methyl 

methacrylate–carbon nanotube (PMMA-CNT) matrices in BFCs and demonstrated the 

enhanced performance as well.  

5.2.2. Enzyme based BFCs: Related Issues 
 

Microorganism or enzymes are used as the biocatalysts in enzymatic BFCs. An 

important development in BFCs was bioanode and biocathode that utilize direct 

electron transfer (DET) instead of mediated electron transfer from active site of 

enzyme to electrode [18]. DET between the enzyme and electrode have been observed 

in many enzymes such as GOx, laccase, peroxidase, and hydrogenases [19-21]. The 

close communication between enzyme active site and the surface of electrode is very 
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important in order to achieve DET. The cofactor is located ~ 13Å deep inside the 

enzyme [22-23] hence it is desirable to have the nanoscale electrode so that it can 

penetrate deep inside the enzyme active site for fast transfer of electrons.  Larger 

distances will degrade the DET efficiency. Enzymes have a complex folded structure 

which is made of proteins. The electron-transfer unit of the enzyme, called the apo-

enzyme and the cofactor, are deeply covered inside its complex structure. Due to this 

in several cases DET is limited and hence the electrical communication between the 

electrode substrate and the enzyme biocatalyst can be difficult.  

Low power density and short enzyme life times are two major issues in 

realization of practical BFCs. Several research groups have addressed these issues. For 

example, GOx and peroxidase-11 were used on gold electrodes and gold-cumin BFCs 

was fabricated. Power density of 520μW/cm2 was observed [24]. Significant 

improvements were achieved by choosing precise electrode materials and effective 

means of enzyme immobilization to enhance the transport of electrons between 

enzyme and the electrode. Enzyme immobilization has been demonstrated using two 

pathways: physical adsorption and chemical adsorption. Physical adsorption is the 

most common pathway employed by researchers to immobilize the enzymes on 

conductive electrode surfaces such as graphite or carbon black. Tarasevich et al. [24] 

adsorb hydrogenase and laccase on carbon black particles to fabricate glucose/H2O2 

BFC using ferrocene composite electrode. Minteer et al. [25] used a different approach 

to immobilize the enzyme on the electrode. The enzyme was entrapped in nafion 
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membrane and the enzyme activity was retained using this approach as compared to 

surface adsorption. These studies emphasized that electron transfer from the enzyme 

active center to the electrodes is an important factor in improving the power density of 

BFCs. 

  One of the other factors which affect the lifetime of BFCs is enzyme stability. 

Most of the enzymatic fuel cells reported so far can only last for few days [24, 27-29]. 

Another major issue in demonstration of practical BFC device is power density which 

is measured by generated power per surface area of the electrode. Higher enzyme 

loading is very crucial for high power output. This chapter addresses these issues and 

emphasize on enhancing the parameters for better BFCs. 

Excellent chemical and physical properties of CNTs allow them to be used as 

supports for enzymes to transfer electrons from enzyme to electrode surface. Using 

VA-MWCNTs can have several advantages over using random CNTs or paste of 

CNTs. The exposed tips of VA-MWCNTs in our PMMA-CNT matrices allow each 

CNTs to be functionalized and immobilized with enzymes and enhancing the 

performance of BFCs. The opened CNT edges may penetrate deep inside the enzyme 

molecule and reach to the redox active center (co-factor) and provide more efficient 

transfer of electrons. PMMA-CNT matrices are cleaner and avoid contamination that 

may degrade the lifetime of the enzymes. PMMA also provides an effective sealing 

against leakage current from the substrates etc. This also prevent CNTs from disperse 
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into the electrolyte solution thereby enhancing the life of the electrode as already 

demonstrated by use of PMMA-CNT matrices as glucose biosensor in chapter 4.  

5.2.3. Enzyme used-Laccase 
 

Our biocathode consist of PMMA-CNT matrices functionalized with enzyme 

Laccase. Laccase belongs to the enzyme family consisting of multi-copper oxidases. 

Figure 5.3 shows the overall structure of laccase enzyme obtained from mushroom 

Trametes versicolor.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Structure and active sites of Laccase from T. versicolor. 

Reprinted with permission from [30] 
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Laccase contains many types of copper sites. It has one type-1 (T1) copper site, which 

functions as the primary oxidation site. Again it has one type-2 (T2) copper site and 

two type-3 (T3) copper sites. These sites are arranged in a trinuclear fashion as shown 

in Figure 5.3. Molecular mass of laccase is ~70 kDa. Laccase enzyme can reduce 

oxygen to water [30]. In the process T1 copper site in laccase gains the electrons first 

and they are transferred to subsequent to T2 and T3 copper sites as indicated by as the 

arrows in Figure 5.3. 

5.3. Key performance characteristics and terms for BFCs 
 

In this chapter many different terms have been used which are associated with 

the BFCs. The description of these terms is as follows: 

VCell : Potential of the cell or Cell Voltage 

PCell: Power output of the cell. 

Isc: Short circuit current. A short circuit current is one that permits the flow of current 

to travel along a path where there is no or very less electrical impedance is present.  

VOC: Open circuit voltage (OCV). OCV is defined as difference of electrical potential 

between two ends of a device when the external circuit is open and no current is 

flowing. 

For any kind of fuel cell the power output, PCell is an important parameter in 

evaluating the performance [32]. 
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If I is the current then Power output is given by IVP CellCell                                 (1)                                 

Again the power density can be calculated as: Power Density   (P) 
A

PCell               (2)     

where “A” is the area of the electrode.  

Current Density = Current per unit area  
A

ICell                                                                      (3)  

Now electrical work done “W” by an electric charge of “q” coulombs moving through 

a potential difference “V” is: qVW                                                                          (4) 

Again charge “q” can be expressed in terms of “n” number of moles of electrons 

transferred by   nFq                                                                                              (5)  

where F is Faraday’s constant (the magnitude of electric charge per mole of electrons. 

F = eNA = 96485.3399 C mol -1, where charge on single electron is e = 1.602x10-19 C 

and NA is the Avogadro’s number. 

Therefore using equation (5), equation (4) now becomes nFVW                          (6) 

From thermodynamics we know that maximum electrical energy BFCs can deliver 

GW                                            (7) 

Hence thermodynamically predicted voltage output of BFCs, 
nF

GV                  (8) 

The typical polarization curve for any BFCs can be described by Figure 5.4. 

The fuel cell voltage is on the y-axis and the current density is plotted on the x-axis. 
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The voltage output of the real BFC is less than thermodynamically predicted voltage 

output (see description hereafter) due to irreversible and various other losses. As 

shown, there are three major types of biofuel cell losses, which give a biofuel cell i-V 

curve its characteristics shape.  Losses in region (1) are due to activation losses. These 

losses are due to electrochemical reaction.  

 

 

 

 

 

 

 

Figure 5.4: Polarization curve 
 

Losses in region (2) are due to ohmic losses. Ohmic losses occur due to the 

ionic and electronic conduction. Region (3) is concentration losses. These are due to 

the mass transport. More discussion on losses is given in coming sections [32]. It is 

observed that as more current is drawn from the cell, the greater these losses and cell 

potential decreases. 
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5.4. Experimental details-Assembling Membrane-less BFCs 
 

  All the VA-MWCNTs used in this work were grown in circular area of 7mm in 

-1) using PECVD technique. 

The VA-MWCNTs have diameter of 50-60nm and length is ~4 μm. After growth of 

VA-MWCNTs, they were dip coated by Poly methyl methacrylate (PMMA) followed 

by annealing at ~1000C. Samples were then polished to expose the tips of CNTs, 

forming the needed PMMA-CNT matrices as the electrodes of our BFCs. More details 

on fabrication of PMMA-CNT matrices are given in chapter 3 and chapter 4.  

5.4.1. Fabrication of PMMA-CNT bioanode for BFCs  
 

The enzyme used for the bioanode was glucose oxidase (GOx). The detailed 

structure of the GOx and immobilization process is already described in chapter 4. 

Before immobilization of GOx on CNTs, the PMMA-CNT matrices were pretreated 

electrochemically with 1M NaOH at 2.8V for 5 minutes. This step was done in order 

to attach carboxylic group (-COOH) on tips of CNTs. Existence of the carboxylic acid 

group (~1730 cm-1) was confirmed by FTIR spectroscopy. The functionalized matrices 

were dried for 30minutes in air. Deionized water was used for all the experiments in 

this work.  For the immobilization of GOx, we use standard water soluble coupling 

agents EDC (1-ethyl-3-3-dimethylaminopropyl carbodiimide) and Sulfo-NHS (N-

hydroxy-sulfo-succinimide). At first pretreated PMMA-CNT matrices were immersed 

in 10ml of 10mg/ml aqueous solution of EDC. Next, 300mg of sulfo-NHS was added 
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to the above solution with stirring. The reaction was allowed to occur at room 

temperature for 3 hours. Finally the above samples were washed in DI water and 

immersed in degassed GOx solution (2mg/ml) prepared in 20ml of 0.1M phosphate 

buffer solution (pH 7.2). GOx immobilization was allowed to occur at room 

temperature for 3 hours. The bioanodes were stored at 40C when not in use.  

5.4.2. Fabrication of PMMA-CNT biocathode for BFCs 
 

  The biocathode of the BFCs was prepared by first dissolving 2 mg of the 

purified laccase enzyme in 1ml of PBS. PMMA-CNT matrices were then dipped into 

this laccase enzyme solution for 2 hours and dried under ambient temperature for 

about 30 min and stored at 40C in a refrigerator. 

5.4.3. Biofuel cell fabrication and characterization 
 For assembling a glucose/O2 BFC, the PMMA-CNTs based bioanode and biocathode 

were placed in a beaker cell containing 0.1M PBS under ambient air as shown in 

Figure 5.5. 

 

 

 

 

 

  

Figure 5.5: Schematic diagram of BFC 
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At the anode the electrons are being transferred from glucose to GOx and from 

GOx to the external circuit (or electrode). At the bio-cathode the electrons are 

transferred from CNTs to laccase and from laccase to oxygen.  

Cyclic Voltammetry (CV) measurements were carried out with a computer-

controlled potentiostat (CHI 660A, CHI, Austin TX) in three electrode set-up for both 

bioanode and biocathode separately. In the three electrodes setup working electrode 

was the bioanode (or the biocathode), the reference electrode was Ag/AgCl, and 

platinum wire was used as counter electrode. 0.1M Phosphate buffer solution (pH = 

7.2) was used as supporting electrolyte. All the electrochemical measurements were 

performed at ambient temperature. Current-Voltage polarization measurements on the 

assembled BFCs were done using CHI 660C potentiostat with the addition of 40ml of 

0.22mM glucose for all the experiments. 

5.4.4. Fabrication of BFCs with different area 
 

  BFCs with varying electrode area were also fabricated to study the effect of 

area on performance of BFCs. The details on fabrication of PMMA–CNT matrices 

with varying electrode area used for bioanode and bio cathode can be found in chapter 

4, section 4.3.3. The different electrode areas used in this work are as follows: 

0.385cm2, 0.481cm2, 0.587cm2 and 0.77cm2. 
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5.5. Results and Discussion:  BFCs 

5.5.1. CV of laccase functionalized PMMA-CNT matrices used as biocathode  

  
Figure 5.6 shows the CV for oxygen reduction at the laccase immobilized 

PMMA-CNT matrices in PBS (pH 7.2). As shown, oxygen reduction of laccase occurs 

at a potential of 0.59V versus the Ag/AgCl reference electrode. On the hand, the CV 

of GOx immobilized PMMA-CNT matrices for use as bioanode in BFCs are already 

described in detail in chapter 4. 

 

 

 

 

Figure 5.6: CV of Laccase immobilized PMMA-CNT matrices in 0.1M PBS at a scan rate of 5 
mVs-1 (Area of working electrode = 0.385 cm2) 
 

5.5.2. Polarization measurements of assembled BFCs   
 

In our biofuel cell, Glucose and oxygen was used as fuel. The redox reaction at 

the bioanode and biocathode can be described according to the following equation: 

Bioanode (oxidation of glucose): GOx + 2Glucose            2gluconolactone + 4H+ + 4e-               (1)            

Biocathode (reduction of oxygen): O2 + 4H+ + 4e-             2H2O                                  (2) 
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Overall redox reaction is: 

                   2Glucose + O2                  2 Gluconolactone + 2H2O                          (3) 

In glucose/O2 BFC, glucose is oxidized at the bioanode according to equation (1). At 

the biocathode the oxygen is reduced to the water according to equation (2). The 

overall redox equation is given in equation (3).  

The typical polarization curve, and the dependence of the power output on the 

current density of our glucose/O2 BFCs are shown in Figure 5.7 (a) and (b), 

respectively. As shown in Figure 5.7 (a), the open circuit voltage (at Jcell = 0) obtained 

was 0.54 V. A short circuit current density (ISC) of 154μA/cm2 was obtained (at 

Vcell=0). The characteristic shape of the polarization curve is due to various 

irreversible losses.  

 

 

 

 

Figure 5.7: (a) Polarization curve and (b) Power output of glucose/O2 BFCs with GOx-
PMMA-CNT matrices as anode and Laccase-PMMA-CNT matrices as cathode respectively.   

 
As shown in Figure 5.7 (b), the maximum power density was 48.9μW/cm2. The 

initially zero power density increases as the current density increases up to a 
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maximum density and decreases beyond that due to ohmic and various other losses. 

More detailed discussion on various losses is given in next section. 

5.5.3. Effect of different electrode area on performance of BFCs 
 

In order to see the effect of device area on performance of BFCs, we have 

fabricated bioanodes and biocathodes with different areas. The different areas used in 

this work are as follows: 0.385cm2, 0.481cm2, 0.587cm2 and 0.77cm2. Figure 5.8 

shows the CV for oxygen reduction at the laccase immobilized PMMA-CNT matrices 

for areas (a) 0.481 cm2, (b) 0.587 cm2 and (c) 0.77cm2 respectively in PBS (pH 7.2). 

Shape of CV remains the same with slight increase in anodic current level. This is 

understandable since due to increase in area more number of Laccase functionalized 

sites is available for reduction of oxygen.  

 

 

Figure 5.8: CV of Laccase immobilized PMMA-CNT matrices used as biocathode for areas 
(a) 0.481 cm2, (b) 0.587 cm2 and (c) 0.77cm2 
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Figure 5.9: (a) Polarization curves and (b) Power output  of PMMA-CNT matrices based 
glucose/O2 BFCs for varying electrode areas 0.385cm2, 0.481cm2, 0.587 cm2 and 0.77 cm2.   

 

Figures 5.9 (a) and (b) shows the variation of polarization and power density 

for the assembled glucose/O2 BFCs for increasing electrode area. It is observed that 

both VOC and JSC decrease with the increase of device area. This is due to increase in 

various losses with increase in device area and also due to the fact that number of 

electroactive sites does not increase in same ratio as area increases. 

Table 5.1 shows the variation in performance parameters of BFCs as a function 

of device area. As shown, the open circuit voltage, the short circuit current density, 

and the maximum power density decrease with the decrease of device area. This can 

be attributed to increase in losses and relative decrease in number of electroactive 

enzyme sites per unit area as electrode area is increased. In a fuel cell three types of 

losses can occur. 
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Table 5.1: Variation in performance parameters of BFCs with different electrode 
areas 
 

Area 

(cm2) 

Open circuit 
voltage 

(V) 

Short circuit current 
density 

μA/cm2 

Maximum Power 
density 

μW/cm2 

0.385 0.54 154 48.9 

0.481 0.53 151 43.5 

0.587 0.49 148 42.4 

0.77 0.47 139 38.8 

 

First type is loss due to reaction kinetics which is known as activation loss.  

Second type of loss is known as Ohmic loss due to resistances to conduction. Third 

type of loss is due to mass transport known as concentration loss.  We will consider 

the effect of each type losses on cell Voltage when electrode area is increased one by 

one.  

(1) Activation loss: Electrochemical reactions involve the transfer of charges 

between an electrodes and chemical species. Thus current evolved in 

electrochemical reactions is a direct measure of the rate of electrochemical 

reaction.  Since the rate of an electrochemical reaction is finite and hence the 
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current produced is also limited. The reactants can convert into current only 

after crossing an energy barrier also known as activation energy barrier. In 

fact, an electrochemical reaction occurs in a series of steps for example 

electrochemical reaction occurring on laccase biocathode involves electron 

transfer from the electrode to laccase enzyme site T1 and then to T2/T3 etc. 

The net rate of a reaction is given by the difference between forward and 

reverse reaction rates on the bioanode and biocathode.  Activation loss in BFCs 

refers to the voltage loss which occurs to overcome the activation barriers of 

the electrochemical reactions on both the electrodes. Now the magnitude of 

activation loss depends on current density and exchange current density [32].  

     
0

ln
J
J

nF
RT

act                                         (9) 

Where  is transfer coefficient, act activation loss, J is current density and J0 is 

exchange current density.   

Exchange current density is the current density at thermodynamic 

equilibrium when forward and reverse reaction rates are same and equal to 

exchange current density. One of the suggested ways to increase exchange 

current density is to increase the number of reaction sites per unit area [32]. In 

our case, although the device areas were increased but the number of reaction 

sites per unit area would nearly remain the same as they are functionalized in 

the same way. Hence as the area increases activation loss remains nearly the 
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same. This interpretation is consistent to the identical gradients on all the 

curves as shown within the range of 0-15 A/cm2 in Figure 5.9. 

(2) Ohmic Loss: Compared to activation loss ohmic loss is more straightforward.  

Ohm’s law which relates potential (V) to current (i) and resistance (R) is 

defined as  

                                 iRV                                           (10) 

Now electrochemical reactions take place at the electrode–electrolyte 

interfaces so current obtained is directly proportional to the area. Hence, when 

comparing fuel cells current density is more appropriate for specification than current. 

Therefore we can modify ohm’s law to represent current density (j) as follows: 

                                            )(ARjAR
A
iV                         (11) 

Quantity “AR” is known as area specific resistance i.e. resistance multiplied by area. 

Now area specific resistance increases with the increase of device area.  However 

resistance is inversely proportional to area according to the equation 

                                                                                                                                      (12) 

Therefore the area specific resistance for fuel cells with different electrode areas is 

the same.  This interpretation is consistent to the identical gradients on all the curves 

as shown within the range of ~25-100 A/cm2 in Figure 5.9. 

)(
A
LR



141 
 

(3) Concentration Loss: Concentration loss occurs mainly at high current densities and 

is related to rate of mass transport and diffusion. Electrochemical reaction occurs 

at the interface of catalyst layer on electrode and electrolyte. This leads to reactant 

depletion and product accumulation at the catalyst surface and sets up a 

concentration gradient. Concentration leads to diffusive mass transport of reactant 

to the catalyst layer from surrounding electrolyte solution and vice-versa for the 

products. Eventually a steady state is reached.  This can be represented in terms of 

current density obtained by the following equation: 

                                              diffnFJj                         (13) 

Where j is current density obtained from the fuel cell, “Jdiff “is diffusion flux of 

reactants towards catalyst, n is number of electrons transferred in the 

electrochemical reaction and F is Faraday constant 

 Now Fick’s first law of diffusion can be applied for diffusive mass transport flux. 

Therefore, 

                                             
dx
dcDJ diff                     (14) 

Where D is reactant diffusivity and dc/dx is concentration gradient of reactant. 

Concentration gradient can be expressed as reactant concentration (glucose 

concentration) at the catalyst layer (CR) and in bulk (CR
0), diffusion layer thickness (d) 
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(thickness across which the concentration gradient exists) and D is reactant diffusivity. 

Therefore equation (4) can be rewritten as: 

                               
d

CCDJ RRdiff
10                                 (15) 

Combining equation (10) and (13) and reorganizing we get: 

                            nFDjdCC RR /)(0                                      (16) 

  Hence as current density, j increase with the increase of reactant depletion, i.e. 

CR decrease more rapidly and more is the concentration loss. Hence concentration loss 

is dependent on the diffusive mass transport properties rather than the area of the 

working electrode. This interpretation is consistent to the identical gradients on all the 

curves as shown within the range of ~115-150 A/cm2 in Figure 5.9. 

Apart from the abovementioned losses we also observed that VOC decrease 

slightly with increase in electrode area which might be due internal current leakage 

from the electrodes and other losses as well.   

Apparently, all the possible losses described earlier cannot explain results 

shown in Figure 5.9. In fact, one can observe that all the curves in Figure 5.9 (a) are 

merely differentiated by the decrease of VOC with the increase of electrode area. Thus 

we attempt to explain this as follows. As discussed, the redox processes occurring in 

the cell is described in equations (1) and (2), which involve oxidation/reduction of 

glucose/O2 fuel molecules at an enzyme active site. Obviously, these processes depend 



143 
 

on the access of glucose and O2. As illustrated in Figure 5.10, the functionalized CNTs 

at the centre of the electrodes have the access to glucose/O2 fuel molecules in solution 

from one direction. On the other hand, the functionalized CNTs at the edges of the 

devices have additional access of glucose/O2 fuel molecules from other directions.  

 

 

 

 

Figure 5.10: Schematic of fuel flow from different directions towards the electrodes (a) 3D 
view and (b) cross section view 

As shown, the flux of fuel to the centre of the electrode at point 1 is 

unidirectional whereas for CNTs on the side at points 2 & 3 fuel flow is from various 

directions. This means, the electrochemical reaction will be more intense at the edges 

of the BFCs. Since devices with smaller area have higher portion of CNTs at the edges 

than CNTs at the centre. This provides less internal impedance for the redox process to 

occur on smaller devices. This means, the potential drop due to this internal 

impedance is will be higher for BFCs with larger electrode area. Thus increasing the 

electrode area of the BFCs will decrease the Vcell and power density as observed in 

Figure 5.9. Overall polarization curve is the combination of all the losses. Hence the 

overall performance of the assembled biofuel cell decreases with increase in electrode 

area [32].  
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5.6. Supercapacitors as Energy Storage Devices: An Introduction 
 

Supercapacitors comprises of two conducting electrodes which are separated 

by a semi-permeable membrane and immersed in an electrolyte. Semi-permeable 

membrane separates ions and avoids electrical short circuit between the two 

conducting electrodes.  

 

 

 

 

Figure 5.11: Schematic diagram of supercapacitor 

Figure 5.11 shows the component of a supercapacitor. It is also known as 

Electrochemical Double Layer Capacitors (EDLC). Supercapacitors refer to a class of 

efficient energy storage devices which utilize extremely high active surface area of 

conducting electrodes separated by a separator and an ultrathin layer of electrolyte. 

Supercapacitors have extremely high capacitances when compared with the 

conventional capacitors [33-40]. Three kinds of supercapacitors have been studied 

most: metal oxide based [41-42], conducting polymer based [43], and carbon based 

supercapacitors [44]. Carbon based supercapacitors have been studied most widely 

because of their lower cost, longer life cycles and higher value of capacitance.  
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EDLC uses an electrochemical double layer of charges or ions to store 

electrical energy. When external voltage is applied between electrodes, opposite 

charges accumulate on the surfaces. Attraction between opposite charges causes the 

ions present in the electrolyte solution to move across the separator and collect into the 

electrodes of the opposite polarity. Electrostatic interface has a double layer between 

charges (Q) on electrode and ions. The capacitance (denoted by “C”) of any material is 

given by the formula: 

V
QC                                                                     (17) 

where V is the potential on the electrode. For the conventional parallel plate capacitor, 

C is directly proportional to the area of the electrode and inversely proportional to the 

distance between the electrodes. So equation 15 can be rewritten as:  

          D
.A.C Electroder0                                                                       (18) 

Where Aelectrode is the area of the electrode, 0 is the permittivity of the free space, r is 

the relative permittivity of the dielectric material and D is the distance between the 

two electrodes. Energy (E) stored in a capacitor is  

Given by the formula:
2

2CVE                                                           (19) 

There are many reasons why CNTs based supercapacitors might outperform 

activated carbon in conventional capacitors [45].  CNTs have good conductivity, large 
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surface area (1 to >2000 m2/g), high temperature stability, and percolated pore 

structure that can be modified to optimize their properties. Multi-walled CNTs have 

specific capacitances of 4 to 135 F/g as determined by CV and dc-discharge using 

KOH as an electrolyte [46-47]. Supercapacitors with CNTs [48] can be operated at 

high current level with fast charge-discharge rate [49]. Niu et al. [50] reported the use 

of CNTs in making electrochemical supercapacitors with high capacitance and high 

power density. Many researchers have reported the excellent electrochemical 

supercapacitors with the use of CNTs [52-57]. All these reports show that with the use 

of CNTs has led to supercapacitors that have a high capacitance and high energy 

density.  

Not only pure MWCNTs or SWCNTs but composites of CNTs coated with 

metal oxides such as Ruthenium oxide [57], Cobalt Oxide [58], Manganese oxide [59], 

Nickel hydroxide [60], Vanadium pentoxide [61] and Titanium oxide [62], Tin oxide 

[62] with excellent capacitance values have also been reported.  

Composites of polymer and CNTs were used for supercapacitors in the past 

few years. In one of the early works, poly(3,4-ethylenedioxythiophene) 

(PEDOT)/CNT composite for supercapacitors [63-64] was reported with a high 

capacitance of 60 F/g to 160 F/g with good cycling performance. Again supercapacitor 

made from composite of MWCNTs and Polyacrylonitrile (PAN) polymer blend have 

also been reported with remarkable capacitance properties with high energy density 

[65]. On a similar note Polyaniline (PANI) has been frequently reported for use as 
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composite with CNTs for supercapacitors. PANI/MWCNTs composites have been 

fabricated with different techniques such as oxidative polymerization [66-67] and 

microwave assisted synthesis [68]. High capacitance values of 328 F/g [66], 322 F/g 

[68] and 224 F/g [67] with excellent energy density have been reported. Again 

PANI/SWCNT composites have also been reported with a high values of 485 F/g [69] 

and 311.7F/g [70] with excellent energy density and power density values. Another 

conducting polymer reported for use as composite with MWCNTs for supercapacitor 

is Polypyrrole (PPy). High specific capacitance of 192 F/g is reported with 

PPy/MWCNT composites [71]. PPy/SWCNT composite has been reported with a high 

capacitance of 265 F/g [72]. Supercapacitors with PPy/MWCNTs as negative and 

PANI/MWCNTs as positive electrodes with high capacitance of 320 F/g have also 

been reported [73]. But PMMA has never been tested for use as composite with CNT 

for supercapacitor since they are not conducting. In the following section I will present 

my results on use of PMMA-CNT matrices as an electrode for supercapacitor. Our 

approach is different from other CNT composites as we are using opened-tip VA-

MWCNTs that have good electric contact with the substrates. 

5.7. Experimental: Fabrication of PMMA-CNT matrices based supercapacitor 
 

Detailed growth of CNTs using PECVD is discussed in previous chapters. 

PMMA-CNTs based supercapacitors basically have three components: Two 

electrodes, separator and current collector. 
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Figure 5.12: (a) Schematic diagram of PMMA-CNTs based supercapacitor and (b) different 
components of the supercapacitors 
 

Figure 5.12(a) shows the schematic diagram of the PMMA-CNT matrices 

based supercapacitor. Figure 5.12(b) shows all the components used in the 

supercapacitor. Two samples of PMMA-CNT matrices were used as active electrodes. 

Aluminum sheet (2cm x 1cm) was used as the current collector and Whatman filter 

paper (# 42) was used as separator material for supercapacitor. The electrolyte used in 

this experiment was phosphate buffer solution (pH 7.2).  

 

 

 

Figure 5.13: (a) Picture showing different component of the supercapacitors (b) Picture of 
PMMA-CNT supercapacitor and (c) Enlarged picture showing different components of the 
supercapacitor 
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The aluminum foil was stick in the back side of the PMMA-CNT electrode 

using a drop of silver paste. Next the Whatman filter paper separator soaked in 0.1 M 

PBS electrolyte (pH 7.2) was sandwiched between the two electrodes. The entire 

assembly was pressed and wrapped around the sides with teflon tape as shown in 

Figure 5.13(a), (b) and (c). 

For electrochemical measurements of the PMMA-CNTs supercapacitor, cyclic 

voltammetry (CV) and Galvanostatic charge-discharge was analyzed in two electrode 

setup using the potentiostat/galvanostat, CHI 660C instrument.  

5.8. Results and Discussion: Performance of PMMA-CNT Supercapacitors 
 

CV of PMMA-CNT based electrochemical supercapacitor was measured. The 

PMMA-CNT supercapacitor shows near-rectangular CV behavior which is typical of 

capacitive systems as shown in Figure 5.14.  

The potential scan range was 0 V to 1.0 V with varying scan rates of 100 

mV/s, 250 mV/s, 500 mV/s and 1000 mV/s. CV shapes show a rapid current response 

when voltage is reversed and is able to maintain capacitive behavior even at high 

potential scan rates. Capacitance “C” can be estimated from these curves by the 

following formula [73]:  

                
s

I
C avg                                                 (20)   
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Figure 5.14: CV of the PMMA-CNT matrices based supercapacitors with scan rate of (a) 
100mV/sec, (b) 250mV/sec, (c) 500mV/sec and (d) 1000mV/sec.  

 
where Iavg.is the average current in either forward scan or reverse scan and “s” is the 

scan rate. Estimate of C from curves in Figure 5.14 gives value from 14-  

Current charge/discharge behavior of the PMMA-CNT supercapacitor was 

observed in the galvanostatic charge-discharge cycling as shown in Figure 5.15. The 

charge-discharge measurement was carried out at a constant current of 10μA and an 

operational voltage varying from 0 V to 1V. The slope of the discharge curve can be 

used to calculate the specific capacitance (capacitance per gram) by using the formula 

below [55]: 
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mdtdV

IC 2
/

                                       (21)       

where, I is the discharge current, dV/dt is the slope of the discharge curve, and m is 

the weight of the active material of PMMA-CNT electrodes. Approximate weight of 

CNTs is ~3.6 mg. This was calculated by comparing mass of Ni coated 1 X 1 cm2 Si 

substrate before and after the after the growth of CNTs. Again the actual weight of 

CNTs in PMMA-CNT matrices is even lower after the polishing step since tips of 

CNTs are polished away. Therefore approximately m = 3.6 mg - just for the CNTs. 

The slope of discharge curve is = 0.819 V/sec. The specific capacitance 6.7 mF/g was 

calculated using the above formula. This is close to what was estimated from the CV 

14-20 μF per 3.6 mg = 3.9-5.6mF/g. The specific energy density at V =1 V is from 

calculated equation (19) to be 3.35 mJ/g. 

 

 

 

 

 

 

Figure 5.15:  Galvanostatic charge-discharge curve of the PMMA-CNT matrices based 
supercapacitor at a constant current of 10μA. 
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Power density can be calculated using the following equation 

 
t

EP                                                            (22) 

The 

seconds. These values are less appealing when compared to other CNT based 

supercapacitors and other supercapacitor reported in literature [56-73].  There are 

several reasons for this low performance.  

First, most of the reported CNT based supercapacitors are based on paste of 

CNTs or randomly grown CNTs covering the whole area of the electrode. In our case 

only very small portion of the electrode was covered with CNTs (only 0.385 cm2 of 

CNTs on 1cm2 substrate). Therefore contribution of CNTs towards enhancement of 

capacitance was much less. 

Secondly, the capacitance contribution from the remaining area (1cm2 – 0.385 

cm2 = 0.615 cm2) is not enhanced as the area is plain and no increase in surface area 

due to absence of CNTs. 

Thirdly the amount of CNTs in each electrode was only 3.6 mg when 

compared to the total weight of the electrode. More CNTs loading will lead to 

enhancement in surface area and more EDLC. Furthermore, only the tips of these 

CNTs are exposed to charges and thus offered significantly small portion of surface 

area.  



153 
 

Also small leakage currents and high contact resistances can also cause 

poor performance. So although this proves that PMMA-CNT matrices can be 

used for supercapacitors but in its present form PMMA-CNT matrices are not 

optimized for supercapacitors. There are several ways to enhance the 

performance which is discussed in future works section. However, the major 

advantage offered by PMMA-CNT matrices is that CNTs are securely attached 

to the substrate and become more bio-compatible as the chances to have 

loosely bonded CNTs are low. 

5.9. Conclusions 
 

(1) We demonstrated the use of PMMA-CNT matrices functionalized for use in 

glucose/O2 BFCs with GOx and laccase enzymes as the biocatalysts. The use of 

MWCNTs facilitates direct electron transfer of laccase based cathode. We also studied 

the effect of active electrode area on the performance of BFCs parameters. Overall 

performance of the assembled biofuel cell decreases with increase in electrode area. 

This has lead to two important conclusions: 1) miniature BFCs are optimum for future 

implantable devices for the energy SGS system we proposed here; 2) scaling up the 

active area of the BFCs for large scale energy generation is not the most efficient way 

to improve performance unless we increase the electro active enzyme per unit area and 

reduce the losses.  
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(2) PMMA-CNT matrices for use as a supercapacitor for an energy storage device 

were demonstrated. In its present form performance of PMMA-CNT matrices are not 

optimized for high-performance supercapacitors but may be more suitable for bio-

compatible component for our SGS system. There are several ways to enhance the 

performance of these supercapacitors. 

5.10. Future Work 
 

For BFCs based on PMMA-CNT matrices a number of things can be done in 

the future to enhance its performance. First issue to be tackle is better immobilization 

of enzymes through more effective functionalization techniques. This will lead to 

more enzyme loading, enzyme activity, more active sites and improved performance. 

The performance of BFCs can also be optimized further by tuning the operational 

temperature and pH of the PBS electrolyte [15]. Similarly a better electrolyte with 

higher ionic conduction and biocompatible with enzymes can be used to enhance the 

performance [15, 75].  

Performance of supercapacitor based on PMMA-CNT matrices can be 

improved in several ways. Better electrolyte instead of PBS such as KOH can be used 

[55]. Leakage currents can be reduced through better sealing, better separator such as 

[74] can be used instead of Whatman filter paper, and contact resistances can be 

reduced. Finally, the surface of PMMA can be made more porous by treatment and 
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finally composite of PMMA and other polymers such as PANI, PDMS, PPy etc may 

improve the specific capacitance.  
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Chapter 6 
6. Future work on energy SGS system based on 

PMMA-CNT matrices 
 

This thesis focused on investigating the performances of PMMA-CNT 

matrices for application in vacuum electronics (electron field emission, Chapter 3), 

glucose sensing (Chapter 4), biofuel cells (BFCs) and supercapacitors (Chapter 5).  

Future works these applications were proposed at the end these chapters. In chapter 5 

we proposed for an energy sensing, generation and storage (SGS) system that integrate 

glucose biosensors, BFCs and supercapacitors.  Such a SGS system may be 

implantable and help, to some extents, in controlling the glucose level, especially 

patients suffering from type-I diabetes which requires more stringent monitoring and 

control of blood glucose level 

This chapter provides some evaluations on possible design of the SGS system. 

The major challenge lies ahead in integrating glucose sensors, BFCs and 

supercapacitors to form the SGS system. The working principle of proposed system is 

described as follows. The glucose sensor continuously monitors the blood glucose 

level. When it senses excess glucose level it will activate the biofuel cells to convert 

the excessive glucose into energy. The generated energy is then stored in the 

supercapacitor since it can charge and discharge quickly. The block diagram of the 

SGS system is presented in Figure 6.1.  
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Apart from the three components, other signal processing and control units will 

also need to be integrated into the SGS system for regulating the function of each 

component. In addition, each component in the SGS system will need to have fluidic 

channels that allow body fluid such as blood to flow through them. Finally the whole 

SGS system will need to be encapsulated in a biocompatible polymer material to 

prevent the buildup of tissue around it once implanted.  

 

 

Figure 6.1: Circuit block diagram for SGS 
 

 

 

 

 

 

Figure 6.2: Circuit component diagram for charging and discharging of SGS device showing 
various components: BFC, supercapacitor, biosensor with low power electronics to monitor 
current flow through junction “j”. 
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Here, we outline the possible arrangement of the circuit components in Figure 

6.2. In principle, we can use the supercapacitor to power the biosensor during the 

glucose monitoring state. Here, current will flow from the charged supercapacitor to 

the biosensor at junction “J” as controlled by the electronics of the control units. When 

the biosensor detects glucose level above threshold, it will order the electronics to 

modify the connections at junction “J” to connect BFC to the supercapacitor. 

Thereafter, the BFCs will start to generate energy and store the generated current to 

the supercapacitor, while the biosensor continues in the monitoring state. When the 

glucose level falls below the threshold or when the supercapacitor is fully charged, the 

electronics will disconnect the BFCs and the supercapacitor, while maintaining the 

monitoring state. In another scenario when supercapacitor is depleted of charge and 

unable to power biosensor then the electronics will initiate an alarm so that more 

foods/glucose be taken. It can be seen already that electronics will play a major role in 

modulating the current paths at junction “J”.  

Future work will thus be focused on designing a highly efficient and low 

powered electronic control unit to regulate and control the current flow through the 

junction “J”.  Combination of such control unit with the sensing, generation and 

storage components will lead to a working SGS device. It goes without saying that 

SGS can not only power biosensor but modifications to this device can be used to 

power heart pacemakers and other implants.   
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APPENDIX-A 
 

Appendix A1: Calculation for Glucose Consumption Rate:   

At first the area from i-t curve (Figure 4.10(a) in Chapter 4) was calculated. Area 
under curve gives amount of charge. 

Calculated Area from i-t curve: 0.1247 Coulomb 

 Chemical reaction:             glucose - + 2H+  

Also, Charge on 1e- = 1.6 x 10-19 Coulomb 

0.1247C = number of electrons electrons (as there are two electrons 
released from consumption of one molecule of glucose as seen in reaction) 
of glucose molecule consumed 

So the number of electrons =       
Cx

C
19106.1

1247.0  = 7.794 x1017 

Therefore, number of glucose molecule consumed = 17
17

10897.3
2

10794.7 xx  

One mole of a substance has 6.023x1023 molecules. 

Number of moles of glucose = 23

17

10023.6
10897.3

x
x  = 0.647μmoles of glucose 

Time taken for consumption from i-t curve = 6.2x104 seconds 

Hence, glucose consumption Rate = 4

6

102.6
10647.0

x
x  

     = 0.104 x 10-10 mol/sec or 0.0104 nano-mol/sec 
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APPENDIX-B 
 

Appendix B-1: Calibration curves for different areas 

Linear fitting of Current vs. concentration curves obtained from amperometric 
response using Au target as counter electrode: 

Figure B.1: Linear fitting of calibration curves of Figure 4.18 in chapter 4 for areas 
0.096cm2, 0.193 cm2, 0.281cm2 and 0.385cm2 
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Figure B.2: Linear fitting of calibration curves of Figure 4.18 in chapter 4 for areas 
0.481cm2, 0.578 cm2, 0.674cm2 and 0.77cm2 
 

 

 

 



173 
 

 

The results shown here is the CV and amperometric results of biosensor using 
platinum wire as the counter electrode.  
 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

Figure B.3: Cyclic voltammogram of (a-d) GOx-PMMA-CNTs biosensor show two 
symmetrical peaks with anodic and cathodic peaks for areas of 0.096 cm2, 0.193cm2, 0.289 
cm2, 0.385 cm2, 0.481 cm2, 0.578cm2, 0.674 cm2 and 0.77 cm2 respectively at scan rate of 
100mV/s using platinum wire as the counter electrode.  
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Figure B.4: (a)-(h):  Cyclic voltammogram of GOx-PMMA-CNTs biosensor after adding 
glucose solution for areas of 0.096 cm2, 0.193cm2, 0.289 cm2,0.385 cm2 0.481 cm2, 0.578cm2, 
0.674 cm2 and 0.77 cm2 respectively at scan rate of 100mV/s using platinum wire as the 
counter electrode.  
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Figure B.5: Calibration curve of Current response vs. Glucose concentration for GOx-PMMA-
CNT biosensor for areas 0.096 cm2, 0.193cm2, 0.289 cm2, 0.385 cm2 0.481 cm2, 0.578cm2, 
0.674 cm2 and 0.77 cm2 respectively using Pt wire as counter electrode 
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Appendix-C: Permissions 
 

C.1 Benjamin Ulmen, Chapter 1, Reference [28], Figure 1.8 (a) 
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C.2 Springer, Chapter 2, Reference [1], Figure 2.2 
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C.3 Springer, Chapter 2, Reference [3], Figure 2.4 
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C.4.Permission from Elsevier for figures 3.5, 3.6, 3.7, and 3.8 in Chapter 
3, Reference [16]. 
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C.5 Permission from American Chemical Society for figures 3.3, 3.9, 3.10 
and 3.11 in Chapter 3, Reference [28]. 
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C.6. Permission from American Chemical Society for figure 4.2 in 
Chapter 4, Reference [7], and figure 5.3 in Chapter 5, Reference [30] 
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