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One of the distinguishing features of fungal cells is their highly polarized model 

of growth. Both yeast cells and hyphal cells grow by cell surface expansion at specified 

cortical sites. Although the same general mechanisms are likely to be involved in 

controlling the establishment of hyphal polarity in budding yeast and filamentous fungi, it 

is noticeable that hyphal cells are organized in a fundamentally different manner to yeast 

dells. For example, hyphal cells organize formins, septins and actins at the division site 

while simultaneously retain the same machinery at the tip; whereas yeast cells undergo a 

transient period of isotropic growth with mitosis and cell cycles. Among filamentous 

fungi, Aspergillus nidulans had been proven to be a particularly valuable model. The 

genetic tractability of this fungus coupled with the availability of sophisticated post-

genomics resources has enabled the identification and characterization of numerous genes 

involved in hyphal morphogenesis. One objective of this study was to determine the 

extent to which components of the S. cerevisiae bud site selection module were 

conserved in filamentous fungi.  We have identified and examined the function of bud 

site selection homologues of Bud3 (AN0113.3), Bud4 (AN6150.3), and Axl2 (AN1359.3) 

in A. nidulans, even though the sequence conservation is largely limited to domains that 

are presumed to be functionally important (i.e., the GEF domain of Bud3, and the anillin-

like and PH domains of Bud4). We also identified homologues of Msb2 (An4701.3) and 

Rga1 (An1025.3), which are the small GTPase Cdc42 related proteins. In this article, 



their unique functions for hyphal morphogenesis were characterized towards 

understanding the function of these genes and the mechanisms involved in polarized 

hyphal growth, septation and secondary developments in A. nidulans. I also highlight 

important areas for future investigation. 
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Chapter I Hyphal morphogenesis in Aspergillus 
 

Overview 

Despite their apparent simplicity, fungal hyphae are remarkable structures that 

allow filamentous fungi to colonize a diverse array of habitats. The characteristic feature 

of a hypha is the localization of growth to the extreme tip, leading to the formation of an 

elongated tube capable of impressive extension rates. The formation of apical and lateral 

branches increases the surface area colonized by a hyphal network. The partitioning of 

hyphae into cellular units by cross-walls known as septa permit compartmentalization of 

functions and is thought to play a key role in supporting the development of reproductive 

structures that bear spores. A deeper understanding of the molecular basis of hyphal 

morphogenesis is important at two levels. First, it would yield meaningful insight that 

could be exploited to allow better control of fungal growth, whether limiting the growth 

of a pathogen or optimizing the growth of an industrial strain that produces valuable 

compounds. Second, it would permit comparison to analogous processes in animals and 

plants. This might be particularly relevant to other highly polarized cell types in these 

kingdoms, including neurons and pollen tubes, with a view towards the elucidation of 

common principles underlying this unique mode of growth. Accordingly, there is 

increasing interest in the identification and characterization of functions required for the 

establishment and maintenance of hyphal polarity, the formation of branches, and 

septation. One of the fungi that has proven to be a veritable “workhorse’ in this effort is 

Aspergillus nidulans, which is a widely recognized model fungus known for its genetic 

tractability and ease of manipulation. In this review, we summarize progress towards 

understanding the molecular basis of hyphal morphogenesis in A, nidulans. 
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A. nidulans as a model organism 

A. nidulans (teleomorph Emericella nidulans) is an ascomycete fungus that 

belongs to the class Eurotiomycetes and the order Eurotiales. Over the past ~50 years, the 

seminal efforts of a long list of notable research scientists have elevated A. nidulans to 

the status of a model organism. Befitting this status, numerous methods have been 

developed to facilitate the efficient analysis of gene function in A. nidulans. Foremost 

amongst these is the ability to use classical genetic approaches to identify and 

characterize interesting sets of mutants (Todd et al, 2007ab), including conditional 

mutations that affect essential functions. Additional methods, such as PCR-mediated gene 

replacement and heterokaryon rescue, permit the targeted analysis of specific genes, 

including those whose deletion might be lethal (Osmani et al., 2006; Szewczyk et al., 

2006). Finally, a diverse collection of fluorescent reagents and probes (i.e., GFP-based 

markers) enable the real-time imaging of several important proteins in growing hyphae. 

Collectively, through the use of these methods, numerous A. nidulans proteins have been 

functionally implicated in some aspect of hyphal morphogenesis (Harris, 2008; Fischer et 

al., 2008). In many cases, these proteins were selected based on their homology to 

proteins known to be involved in the polarized morphogenesis of other organisms, 

primarily the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. In other 

examples, the proteins were identified as a result of unbiased genetic screens that focused 

on mutants that exhibit defects in polarity establishment, polarity maintenance, septum 

formation, or nuclear division. Notably, these screens often lead to the identification of 

proteins with no previously suspected role in hyphal morphogenesis.  
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Features of hyphal morphogenesis in A. nidulans 

 Like most filamentous fungi, A. nidulans initiates a new round of growth through 

the process of spore germination. The events underlying the germination of asexual 

conidiospores leading to the growth of a mature hypha have been characterized 

extensively (Trinci; Harris1997; d’Enfert1997; OsherovMay2001, Momany2002, 

Harris2006). It is presumed that a similar sequence of events accompanies the 

germination of sexual ascospores, though this has not been investigated in any detail.  

In A. nidulans, the first step in spore germination is the breaking of dormancy, 

which is accompanied by spore re-hydration, initiation of translation, resumption of 

metabolic activity, and isotropic expansion of the cell surface. The next step is the 

establishment of a polarity axis upon which subsequent cell surface expansion and cell 

wall deposition are directed. The stabilization of this axis results in the maintenance of 

polarity and enables the formation of a germ tube that ultimately matures into a hypha.  

Hyphae are populated by multiple nuclei due to a series of parasynchronous 

nuclear divisions (note that conidiospores are uninucleate, whereas ascospores are 

binucleate). Nuclear division is coordinated with growth such that each division is 

coupled to a doubling of cell mass, and the entire process is referred to as the duplication 

cycle (Trinci; Harris1997). Once hyphae reach a certain volume, which appears to vary 

depending on growth conditions, they are partitioned by the formation of the first septum. 

Notably, septation is coordinated with nuclear division and the first septum typically 

forms nears the basal end of a hypha near the junction with the conidiospore. Following 

the first septation event, each passage through the duplication cycle is terminated by the 
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formation of septa in the hyphal tip compartment. On the other hand, sub-apical 

compartments enter a period of mitotic quiescence that is eventually broken by the 

formation of a branch that generates a new hypha. Branch formation requires the 

establishment and maintenance of a new polarity axis, and likely recapitulates many of 

the events involved in spore germination. 

 For the remainder of this review, we will focus on specific features of hyphal 

morphogenesis in A. nidulans, with emphasis placed on what is known about the 

underlying mechanisms. 

Isotropic growth 

The primary trigger for conidiospore germination in A. nidulans appears to be 

glucose, whereas nitrogen and phosphorus are dispensable (it is not known if this is also 

true for ascospores). The presence of glucose is seemingly sensed by a G protein-coupled 

receptor (GPCR), because a constitutively active (i.e. GTP bou

causes precocious germination of conidia, even in the absence of a carbon source (Chang, 

Chae et al. 2004).  One downstream effector of GanB is likely to be CyaA, an adenylate 

cyclase necessary for cyclic AMP (cAMP) production.   cAMP acts as a secondary 

messenger that binds to the regulatory subunit of protein kinase A (PKA), thereby 

activating the catalytic subunit.  In A. nidulans, both CyaA and PKA are required for 

efficient spore germination (Fillinger, Chaveroche et al. 2002). Additional studies also 

implicate a Ras signaling pathway in glucose sensing. In particular, a dominant activating 

mutation in the Ras homologue RasA enables conidiospores to initiate germination in the 

absence of a carbon source.  Although mutant spores undergo isotropic expansion and 

nuclear condensation/division, they do not proceed to germ tube emergence (Osherov and 



5 
 

May 2000). This implies that the level of active RasA must diminish for later stages of 

germination to proceed, and suggests that Ras activity might determine the extent of 

isotropic expansion based on nutrient conditions. The upstream activator of RasA 

remains unknown, though likely candidates include GPCRs as well as glucose 

transporters (Fig 1-1).  

What are the physiological responses necessary for isotropic expansion that rely 

on the above signaling pathways? During the isotropic growth phase of conidiospores, 

water uptake is likely necessary to increase the volume of the spore and maintain turgor 

pressure.  However, the mechanisms underlying the transport of water, and whether 

aquaporins are specifically involved, have not yet been investigated. One strategy that 

fungi use to increase water uptake is the synthesis or uptake of compatible solutes 

(osmolytes) that increase the water potential of the spore.  Trehalose metabolism has been 

linked to glycerol accumulation in germinating spores of A. nidulans, suggesting the 

possibility that glycerol serves as an osmolyte (d'Enfert and Fontaine 1997; d'Enfert, 

Bonini et al. 1999; Fillinger, Chaveroche et al. 2002).  However, glycerol cannot be the 

sole osmolyte contributing to the water potential of swelling conidia because the deletion 

of glycerol dehydrogenase genes and subsequent reduction in intracellular glycerol levels 

does not preclude isotropic expansion and spore germination (Fillnger, Ruitijter et al. 

2001; de Vries, Flitter et al. 2003).  Cellular mannitol, trehalose, and perhaps proline may 

serve as additional osymolytes.  Indeed, a gene encoding the proline transporter prnB is 

upregulated during conidial germination (Tazebay, Sophianopoulou et al. 1995; Tazebay, 

Sophianopoulou et al. 1997).  
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Common housekeeping functions also appear to be strongly associated with 

isotropic expansion. Multiple genetic screens for conditional polarity mutants have 

revealed that disruption of protein translation and folding arrests conidiospore 

germination during the isotropic expansion phase (OsherovMay; OsherovMay; 

LinMomany). Similar effects are observed when conidiospores are treated with inhibitors 

of translation (OsherovMay). These observations suggest that increased metabolic 

activity is needed to support isotropic expansion. The TOR signaling pathway is an 

attractive candidate for mediating this effect. In S. cerevisiae, TOR appears to act in 

combination with PKA to regulate the growth response to nutrient repletion 

(Slattery2008). Coupled with the known capacity of TOR to regulate actin organization 

(REF), this observation hints at a possible mechanism for the coordination of cell surface 

expansion with metabolism in germinating conidiospores.  

Establishment of a polarity axis 

 A prerequisite for the successful emergence of a germ tube from a swollen spore 

is the establishment of a polarity axis. Polarity establishment encompasses the processes 

of specifying a new polarity axis and using the resulting positional information to 

spatially organize the morphogenetic machinery. This results in the termination of 

isotropic expansion, such that cell wall deposition no longer occurs around the entire 

circumference of the spore, and is instead confined to a specific site that will eventually 

become the hyphal tip. Despite considerable interest in the mechanisms underlying 

polarity establishment in A. nidulans, they remain poorly defined. Nevertheless, genetic 

analyses have provided some insight into how new polarity axes are specified and have 

also implicated several cellular functions in the establishment of polarity. 
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 The best understood paradigm for the specification of a polarization site in fungi 

is the S. cerevisiae bud site selection system. This system is based on the use of distinct 

cortical markers that specify one of two possible budding patterns. The resulting 

positional information is subsequently relayed to the GTPase Cdc42 via a Ras-related 

GTPase Rsr1/Bud1. Locally active Cdc42 then promotes recruitment of the 

morphogenetic machinery to the presumptive bud site. Critical components of this 

regulatory system are either absent from the A. nidulans genome (e.g., Bud8, Bud9) or, if 

present, are very poorly conserved (i.e., Axl2, Bud3, Bud4, Axl1). Furthermore, 

functional characterization of the poorly conserved homologues shows that they have no 

obvious role in the establishment or maintenance of hyphal polarity (H. Si and S. Harris, 

manuscript submitted). Based on this evidence, the bud site selection system does not 

appear to perform an analogous function during spore germination in A. nidulans. 

Nevertheless, results from studies using A. fumigatus implicate a Ras GTPase, RasB, in 

the spatial regulation of polarized hyphal growth, and cortical markers that generate 

positional information in A. nidulans have also been identified (i.e., TeaR; see below for 

more detail). Accordingly, a cortical marking system might yet specify the polarity axis 

in swollen A.  nidulans spores, though the potential involvement of RasB and TeaR, as 

well as the identification of other vital components, remains to be investigated (Figure 1-

2). 

 An alternative paradigm for the specification of the polarity axis is provided by 

the S. cerevisiae mating pheromone response, Binding of mating pheromone to its 

cognate GPCR leads to activation of an associated heterotrimeric G protein, such that the 
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components of the Cdc42 GTPase module. Local activation of Cdc42 then reorganizes 

the morphogenetic machinery in a manner that overrides existing bud site selection 

signals. Most components of the pheromone response pathway are conserved in A. 

nidulans, and furthermore, at least one GPCR and a heterotrimeric G protein have been 

implicated in the regulation of spore germination. Thus, it is entirely conceivable that a 

GPCR involved in glucose detection could also mark the eventual polarization site. At 

this time, there is no experimental evidence that supports this idea, though heterotrimeric 

G proteins do regulate the orientation of hyphal growth and control lateral branch 

formation in other filamentous fungi.  

 Although the preceding models implicate specific landmarks (i.e., bud site 

selection proteins, GPCRs) in the selection of new polarity axes, studies of polarity 

establishment in S. cerevisiae suggest that these markers are not needed per se. Notably, 

yeast cells can still switch from isotropic expansion to polarized growth despite the 

absence of all known landmarks. Under these circumstances, polarity establishment 

becomes reliant upon a set of positive and negative feedback loops that reinforce initially 

stochastic fluctuations in local Cdc42 levels until they exceed a given threshold at a 

random site. Key elements of these feedback loops include filamentous actin and the 

modular scaffold protein Bem1, which act in a complementary manner to promote 

localized vesicle exocytosis towards the presumptive polarized site, whereas endocytosis 

enables retrieval of “polarity factors” from other sites. A similar spontaneous polarization 

mechanism could conceivably operate during spore germination and/or branch formation 

in A. nidulans. For example, current evidence implies that the polarity axis that directs 

formation of the first germ tube from swollen spores is randomly selected. One the other 
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hand, the second germ tube almost always emerges from the pole opposite the first (i.e., 

the bipolar germination pattern), which would be consistent with the idea that a specific 

marking system only comes into play once the first polarity axis is specified. Candidate 

landmarks for this system could include cortical markers or GPCRs, though the possible 

role of the mitotic spindle and its resident proteins should perhaps be considered as well. 

 Surprisingly few functions are known to be required for polarity establishment in 

A. nidulans. It is generally thought that the actin cytoskeleton and vesicle trafficking 

machinery (i.e., the morphogenetic machinery) are needed to establish a polarity axis. In 

the latter case, the phenotypes of mutants such as copA and podB, which affect proteins 

required for normal organization of the Golgi apparatus, support this view. By contrast, 

there is no direct evidence that demonstrates actin filaments are required for polarity 

establishment in A. nidulans. Mutations that block formation of a sub-class of actin 

filaments (i.e., mutations affecting the formin SepA) only delay polarity establishment. 

Deletions of gen -actinin and Bud6 are 

lethal, but it is not known whether this reflects a failure to establish polarity. Treatment 

with cytochalasin A dramatically affects polarity maintenance (see below), but its effects 

on polarity establishment have not been reported. Although functional actin filaments 

would seem to be an obvious requirement for the localized delivery of regulatory factors 

(i.e., landmark proteins?) and components needed for cell wall deposition to the 

polarization site, it is not inconceivable that cytoplasmic microtubules provide a back-up 

mechanism that enables polarity establishment in their absence. The observation that 

microtubules become essential for polarity establishment in the absence of SepA provides 

some evidence for this idea. 
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 A theme that has emerged from genetic screens for polarity mutants in A. nidulans 

is the importance of post-translational modification of proteins to the process of polarity 

establishment. The observation that a temperature sensitive (Ts) mutation affecting the N-

myristoyltransferase SwoF prevents the establishment of a polarity axis implies that at 

least one protein requires this modification to perform its morphogenetic function. 

Because of their known requirement for lipid modification, obvious candidates include 

GTPases such as RasA, Cdc42, and Rac1, which are each involved in some aspect of 

polarity establishment in A. nidulans. However, a bioinformatics approach identified 

several additional potential targets (i.e., the”myristoylome”), of which the most 

interesting are the Arf GTPases. A combination of genetic and biochemical evidence 

suggests that ArfA and ArfB are indeed targets of SwoF, The lethality of an arfA gene 

disruption precluded analysis of its role in polarity establishment, which nevertheless 

seems likely given its localization to endomembranes and its presumed role in vesicle 

transport. On the other hand, genetic analysis of an insertion mutation in arfB 

documented clear defects in both the establishment and maintenance of polarity axes, and 

further showed that these are likely caused by reduced endocytosis.  

Nuclear division is generally not viewed as a strict requirement for successful 

establishment of a polarity axis during spore germination in A. nidulans, primarily 

because most never-in-mitosis (nim) and blocked-in-mitosis (bim) mutants are able to 

form germ tubes, albeit after a delay in some cases. However, three mitotic mutants, nimL, 

nimM, and nimN, fail to establish polarity under all conditions tested. Notably, these 

mutants each exhibit sensitivity to the DNA replication inhibitor hydroxyurea (HU), and 

moreover, exposure of wildtype conidiospores to HU also prevents polarity establishment. 
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These observations raise the possibility that once DNA replication is initiated, it must be 

completed for polarity establishment to occur. This effect does not appear to be due to the 

action of DNA replication or DNA damage checkpoints (S. Harris, unpublished). Instead, 

it is intriguing to consider the possibility that passage through a specific point in S phase 

of the cell cycle is required for the establishment of a polarity axis. This might be 

conceptually similar to “new end take-off” (NETO) in S. pombe, which is a point during 

S phase that must be passed before the new polarity axis is established to enable bipolar 

growth. 

 

Maintenance of a polarity axis 

 Once a polarity axis has been established, it must be stabilized in order for a germ 

tube or branch to emerge and form a mature hypha that grows by apical extension. Indeed, 

it is this ability to maintain a polarity axis for a considerable distance that defines 

filamentous fungi such as A. nidulans. Both forward and reverse genetic approaches have 

resulted in the identification and characterization of numerous genes required for polarity 

maintenance in A. nidulans. Important functions revealed by these studies include protein 

O-glycosylation, sphingolipid biosynthesis and organization, the Spitzenkorper, and 

vesicle trafficking. 

 In addition to revealing the importance of post-translational modification to 

polarity establishment, genetic screens for Ts morphological mutants also showed that 

they have a role in maintaining polarity axes. In particular, results from temperature shift 

experiments suggest that the swoA mutant is able to establish polarity when grown at the 
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restrictive temperature, but cannot maintain the signals required to sustain polar growth 

(Momany, Westfall et al. 1999). The swoA phenotype was shown to be complemented by 

the pmtA O-mannosyltransferase gene (Shaw and Momany 2002).  Accordingly, it seems 

likely that one or more yet-to-be identified surface protein(s) that contribute to polar 

growth are modified by O-glycosylation in a manner that affects their function. 

 The first evidence of the importance of sphingolipids in polarity maintenance 

came from the characterization of serine palmitoyltransferase (SPT) function in A. 

nidulans. SPT catalyzes the first committed step in sphingolipid biosynthesis, and is 

thereby required for the formation of all sphingolipid derivatives (i.e., sphingoid bases, 

ceramides, etc.). Mutational or chemical (i.e., myriocin) inactivation of SPT prevented 

polarity establishment without adversely affecting growth or nuclear division. It was also 

found that the absence of sphingolipids terminates existing polarity axes and leads to 

profuse branching of the hyphal tip. This study highlighted the key role of compounds 

such as sphingoid bases and ceramides in multiple aspects of polarized hyphal 

morphogenesis. Subsequent studies have further analyzed the respective roles of these 

two compounds. BasA, which is a homologue of S. cerevisiae Sur2, is a sphinganine 

hydroxylase responsible for the synthesis of sphingoid bases. Deletion of basA causes 

severe defects in polarity establishment and maintenance. LagA and BarA are two 

distinct ceramide synthases whose combined function is required for the maintenance of 

polarity axes, but not their establishment. Notably, BarA appears to generate a pool of 

glucosylceramides that promote localization of the formin SepA at hyphal tips (Rittenour 

et al., unpublished). Taken together, these studies suggest that the surface of hyphal tips 

might consist of a patchwork of lipid domains that differ in ceramide composition and 
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mediate recruitment of different complexes that stabilize polarity axes (e.g., Viag and 

Harris 2006a). Sphingoid bases may have an additional set of functions, presumably 

involved in lipid signaling, that separately promote polarity establishment. 

 The Spitzenkorper (SPK) is a phase-dark structure present at the extreme apex of 

fungal hyphae that has been shown to have an intimate role in promoting efficient polar 

growth. The concept of the SPK as a vesicle trafficking center and the modeling of its 

function have been previously described. The polarisome is a seemingly distinct structure 

at the hyphal tip that regulates formin-based assembly of actin filaments. In A. nidulans, 

localization of the formin SepA suggests that the polarisome exists as a surface crescent 

at the hyphal tip, whereas the SPK sits just behind the tip and appears as a spot. Further 

refinement of hyphal tip organization has emerged from a recent study that describes the 

“tip growth apparatus” of A. nidulans. Results from this study suggest that the SPK and 

polarisome are components of a dynamic apparatus that localizes to the tip and mediates 

the delivery of exocytic vesicles to the apex. This apparatus consists of an apical actin 

cluster embedded within a larger cluster of vesicles that are presumably delivered by 

kinesin-dependent transport on cytoplasmic microtubules. Within the apparatus, vesicles 

are likely transferred from microtubules to actin filaments that are nucleated by SepA, 

followed by transport to a discrete exocytic zone at the extreme apex. Although it has yet 

to be demonstrated, it seems possible that the polarisome might play a role in formation 

of the SPK. 

 Results from several recent studies have highlighted the importance of 

endocytosis in the maintenance of polarity axes in A. nidulans.  Whereas exocytosis relies 

on filamentous actin cables for delivery of vesicles to the apex, endocytosis has been 
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shown to rely on branched actin patches for internalization of vesicles from a distinct 

cylindrical region located just behind the apex, but still within the “tip growth apparatus” 

(Araujo-Bazan, Penalva et al. 2008; Taheri-Talesh, Horio et al. 2008; Upadhyay and 

Shaw 2008). A number of conserved endocytic marker proteins (i.e., AbpA, SlaB, FimA) 

have been shown to interact with and to stabilize these actin patches. Mutations that 

eliminate these proteins cause severe defects in polarity maintenance, and in some cases, 

polarity establishment as well (Araujo-Bazan, Penalva et al. 2008; Taheri-Talesh, Horio 

et al. 2008; Upadhyay and Shaw 2008). These observations demonstrate that the presence 

of an endocytic zone flanking the apex is just as critical for polarity maintenance as is 

vesicle exocytosis. It is quite likely that plasma membrane components and important cell 

surface proteins are recycled via endocytosis within this zone as hyphae expand. It is 

tempting to speculate that the septins, which have a known role in the 

compartmentalization of distinct cell surface domains, might play a role in demarcating 

the endocytic and exocytic zones within the “tip growth apparatus”. Furthermore, the 

localization and characterization of MesA, a predicted cell surface protein initially 

identified on the basis of genetic interaction with SepA, suggests that it could facilitate 

organization of the endocytic zone.  

An elegant series of experiments have described a microtubule-dependent 

regulatory complex that contributes to the maintenance of polarity axes in A. nidulans by 

stabilizing the position of the position of SPK within hyphal tips. In particular, deletion of 

the kinesin KipA perturbs the position and size of the SPK, as well as the distribution of 

microtubules. Whereas the plus ends of microtubules converge at one point in the tips of 

wildtype hyphae, they often end in two or more points in the tips of kipA mutants, 
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suggesting that kipA delivers proteins that contribute to the organization of microtubules 

at hyphal tips and stabilize the SPK.  Indeed, KipA is required for the proper localization 

of cortical marker TeaR, which is a putative prenylated membrane protein that interacts 

with and is required for proper localization of TeaA (Takeshita, Higashitsuji et al. 2008). 

TeaA is also required for proper convergence of microtubules at the hyphal tip and for 

SPK stabilization, though it does not appear to depend upon KipA for its localization.  In 

addition, TeaA interacts with and co-localizes with the formin SepA. These observations 

outline a pathway by which a cortical marker directs the organization of both 

microtubules and actin filaments, and thereby stabilizes the position of the SPK. It will be 

interesting to determine what role different lipid domains might play in the localization of 

TeaR at the hyphal tip. 

Septum formation 

A. nidulans hyphae are partitioned by septa via a process that shares similarity with 

cytokinesis in animal cells (Harris et al 1994; Harris 2001). This includes the formation 

and constriction of a cytokinetic actin ring (CAR) in a manner that is coordinated with 

the completion of nuclear division (Momany and Hamer 1997). Deposition of the septum 

occurs concomitant with constriction of the CAR, which in all likelihood provides a 

landmark for recruitment of the vesicle trafficking machinery as well as chitin 

synthetases. Notably, septa do not form a complete barrier between hyphal cells, as a 

pore (i.e., the septal pore, Tenney et al 2000) remains that presumably facilitates 

intercellular communication and nutrient translocation within a hypha. Woronin bodies 

positioned near the pore provide a mechanism for sealing hyphal cells should they 

experience osmotic or other forms of stress capable of causing lysis. Septum formation 
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shares certain functions in common with hyphal tip growth (e.g., formin-mediated actin 

nucleation, localized chitin synthesis), and the two processes can even occur 

simultaneously in the hyphal tip cell (Harris 1997). At the same time, there are important 

distinctions, of which the most important might be tight temporal and spatial coordination 

with nuclear division (Figure 1-3). 

 The multinucleate nature of hyphal cells in A. nidulans implies that unlike 

uninucleate yeast cells, not every nuclear division is associated with cytokinesis. Indeed, 

it was established very early on that multiple rounds of nuclear division precede 

formation of the first septum in germinating conidiospores (Clutterbuck1970; Harris et al 

1994). This appears to reflect the operation of a size control mechanism that regulates 

activation of the cyclin-dependent kinase NimX (Wolkow et al 96; Kraus and Harris 

2001). Once the size threshold has been exceeded, each subsequent round of nuclear 

division in the hyphal tip cell is followed by the formation of one or more septa within its 

basal half (Clutterbuck 1970). The positioning of each septum is largely guided by 

mitotic nuclei (Wolkow et al 1996); there is no evidence yet for the existence of cortical 

markers that specify septation sites independent of nuclei (though the recently 

characterized TeaC represents an attractive possibility; Higashitsuji et al 2009). Evidence 

suggests that as in animal cells, the mitotic spindle generates a signal that is relayed to the 

cortex and triggers assembly of the CAR. However, because hyphae are not uninucleate, 

this cannot occur for every spindle. Whether this means that only certain cortical regions 

are competent to receive the mitotic signal, or, randomly specified sites are able to 

suppress signal reception in flanking regions, remain important ideas for future 

investigation. In addition, the basis for suppression of septum formation in the apical 
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region of hyphal tips cells, which can be subverted by activation of developmental 

programs (Sewall 1994), is not known. 

 The septation initiation network (SIN) is a well-characterized signaling pathway 

that regulates assembly and constriction of the CAR in S. pombe (Simanis 2003). The 

analogous pathway in S. cerevisiae, the mitotic exit network (MEN), controls the exit 

from mitosis in addition to formation of the CAR (Simanis 2003). The first SIN 

component characterized in A. nidulans is SepH, which is a homologue of S. pombe Cdc7 

that is essential for CAR assembly but not for any apparent feature of mitosis (Bruno et al 

2001). Accordingly, as in S. pombe, SIN function appears to be restricted to septation in 

A. nidulans. Recent studies have characterized additional components of the A. nidulans 

SIN and confirmed their role in regulating the assembly and constriction of the CAR 

(Kim et al 2006). Surprisingly, the scaffolds that anchor SIN components to the spindle 

pole bodies (SPBs) are not required for septation in A. nidulans (Kim et al 2009). 

Moreover, neither the terminal SIN kinase SidB nor its associated regulator MobA needs 

to associate with the SPB prior to their recruitment to the septation site (Kim et al 2009). 

Therefore, unlike S. pombe, where SPB localization represents a key step in activation of 

the SIN (Simanis 2003), the A. nidulans SIN is likely activated in the cytoplasm. It 

remains to be determined whether a Tem1/Spg1-like GTPase activates the A. nidulans 

SIN as in either yeast, and if the localization of this GTPase changes during passage 

through mitosis. In addition, the identity of the relevant SIN target(s) required for CAR 

assembly and constriction has yet to be discovered. 

The CAR is assembled at the septation site and undergoes constriction 

simultaneously with centripetal deposition of the septum. In S. pombe, the anillin-like 
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protein Mid1 plays a pivotal role in the spatial and temporal coordination of CAR 

assembly with nuclear division (Chang et al 1996; Glotzer 2005). However, there is no 

obvious Mid1 homologue in A. nidulans, and the only anillin-like protein, Bud4, appears 

to function at a later stage of septation (Si and Harris, unpublished). Instead, by analogy 

to the filamentous fungus Neurospora crassa, it seems likely that a Rho GTPase module 

may act downstream of nuclear signals to direct CAR assembly. In N. crassa, Rho-4 is 

necessary for CAR assembly and its inappropriate hyper-activation triggers the formation 

of spurious CARs (Rasmussen 2005). Although the nature of the nuclear signals that 

might lead to activation of Rho-4 are not known, the SIN network represents an obvious 

and attractive candidate. Several components of the A. nidulans CAR have been 

identified and characterized, including the formin SepA (Sharpless and Harris 2002), the 

-actinin AcnA  (Wang et al 2009), the myosin 

I MyoA (McGoldrick et al 1995), the formin-associated protein Bud6 (Virag and Harris 

2006), and multiple chitin synthases (see below). The order in which these components 

are recruited, and the dynamics of their interactions within the CAR, have not yet been 

investigated. For example, it would be interesting to determine whether they initially 

form multiple small nodes that coalesce into a ring as observed in S. pombe (Pollard 

2008). In addition, it will be important to understand how these proteins are recruited to 

the CAR when many of them function concurrently at the hyphal tip to build a different 

set of actin polymers. The possible role of localized translation in mediating the 

formation of spatially distinct pools of these proteins should be considered. 

The septins are a conserved family of proteins with well-established roles in yeast 

cytokinesis (Longtine et al 1996). A. nidulans possesses at least five septins (Momany et 
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al 2001), one of which, AspB, has been characterized in detail (Westfall and Momany 

2002). AspB initially localizes as a ring that co-localizes with the CAR at septation sites. 

Notably, formation of this ring is dependent upon the SIN pathway as well as the 

presence of the CAR. The AspB ring subsequently splits into two rings that flank the 

septum. It is tempting to speculate that these rings may define a membrane compartment 

that facilitates the targeting of chitin synthases and other components needed for 

deposition of the septum. Finally, the basal AspB ring (relative to the hyphal tip) 

disappears, whereas the apical ring persists following the completion of septation. This 

observation leads to the intriguing suggestion that the latter ring might serve as a 

directional marker in hyphal cells (Westfall and Momany 2002). Functional 

characterization of a Ts aspB mutant revealed that the apparent absence of AspB does not 

block septum formation per se, but does lead to the formation of faint abnormally thin 

septa. It will be important to determine whether the other A. nidulans septins exhibit the 

same function and localization patterns as AspB.  

Chitin synthesis represents the final step in septum formation, and requires the 

activity of chitin synthases, which are membrane-associated enzymes that catalyze the 

polymerization of N-acetylglucosamine. A, nidulans possesses eight distinct chitin 

synthases, including at least one member from each of the seven classes of this enzyme 

known to exist in fungi. Of these eight chitin synthases, ChsA, ChsC, CsmA and CsmB 

have each been implicated in septum formation. ChsA and ChsC appear to function in a 

redundant manner during septation, as inactivation of both chitin synthases (but neither 

alone) leads to defects in the ultrastructure of the septum as well as its aberrant placement 

(Ichinomiya et al., 2005). Results from localization studies are consistent with the notion 
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that ChsA and ChsC associate with the CAR as it constricts, though they do not strictly 

co-localize with each other (Ichinomiya et al., 2005). CsmA and CsmB are novel chitin 

synthases that possess an N-terminal myosin motor-like domain implicated in interactions 

with actin filaments (Takeshita et al 2005; Takeshita et al., 2006). Both enzymes localize 

to septa in a pattern that suggests they associate with the CAR. Nevertheless, although 

their localization is indistinguishable from each other, there is no evidence that they 

physically interact. Instead, it has been proposed that they belong to distinct classes of 

exocytic vesicles that localize to septa (Takeshita et al., 2006). The combined inactivation 

of CsmA and CsmB does not prevent septum formation, but might compromise proper 

formation of the septal pore (Takeshita et al., 2006). According to this model, ChsA and 

ChsC are primarily responsible for synthesis of the septum, whereas CsmA and CsmB 

have a more specific function in regulating chitin deposition around the septal pore 

(Takeshita et al., 2006; Horiuchi 2008). 

 

Perspectives 

 Due to their highly polarized mode of growth and their importance to the fungal 

lifestyle, hyphae have long attracted the interest of fungal researchers. With the 

increasing availability of sophisticated post-genomics tools and resources, new insights 

into the mechanisms underlying different aspects of hyphal morphogenesis are emerging 

with much greater frequency. Many of these advances have been achieved using 

filamentous fungi other than A. nidulans, including Candida albicans, Ashbya gossypii, 

and N. crassa. Indeed, because different fungi possess different attributes that make them 
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useful for the study of hyphal morphogenesis, the best chance for making real progress 

towards understanding processes such as polarity establishment, polarity maintenance, 

and septum formation is to exploit as diverse a set of fungi as is practical. Nevertheless, A. 

nidulans should continue to serve at the vanguard of these efforts. For example, the 

regularity of the duplication cycle in A. nidulans should make it relatively easier to 

characterize the mechanisms that coordinate the aforementioned processes with growth 

and nuclear division.  

 Although there are a myriad of interesting questions pertaining to hyphal 

morphogenesis that warrant deeper investigation, a somewhat biased sample is presented 

below. Notably, the answers to many of these questions will not necessarily emerge from 

studies that use the yeasts S. cerevisiae and S. pombe as a guiding model. In many cases, 

it might be more fruitful to consider observations made using migrating animal cells or 

neurons as a source for relevant ideas. Some of the more important questions include; 

 

1. What is the composition and dynamics of the SPK? Given the importance of the SPK 

to polarized hyphal growth, a detailed description of its components, their functions, and 

their interactions is needed. In addition, the functional relationship of complexes such as 

the polarisome and exocyst to the SPK remains a mystery. 

 

2. How is the polarity axis first established in germinating spores? Is there a set of 

specific landmark proteins that await identification, or is this an example of spontaneous 

polarization? 



22 
 

 

3. What roles do mRNA transport and localized translation play in the spatial 

coordination of hyphal morphogenesis? For example, do these processes generate distinct 

spatially segregated pools of SepA that are used for hyphal extension and septum 

formation? 

 

4. How is septum formation spatially and temporally coordinated with nuclear division? 

Does the SIN specify when and where the CAR is assembled, and how is assembly at 

other sites prevented? 

 

It should not be long before attempts to answer these and other questions yield exciting 

new insights that significantly advance our understanding of hyphal morphogenesis in A. 

nidulans. Because many related Aspergilli impact humans as pathogens and producers of 

useful compounds, these insights should also have immense practical value. 
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Figure 1-1 

 

 

 

 

 

 

Fig. 1-1  Genes that contribute to isotropic growth, polarity 

establishment and polarity maintenance during the germination of 

Aspergillus nidulans conidiospores. Conidiospores undergo a period of 

isotropic expansion before a polarity axis is estab- lished (black spot) 

upon which the incipient germ tube will be  released. The release of 

the germ tube and its subsequent growth are dependent upon the 

ability of A. nidulans to maintain several protein complexes at the 

point of polarity establishment (see text for  details). 
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Figure 1-2 
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Fig.  1-2 Molecular model of hyphal growth in Aspergillus nidulans. 

Vesicles are delivered from the Golgi-like organelles to the apical 

vesicle cluster (i.e.  Spitzenkö rper) along microtubules. Vesicular 

transport on microtubules is powered by  motor proteins in the 

kinesin (anterograde direction) and dynein (retrograde direction) 

families. From the apical vesicle cluster, the vesicles are transported 

along actin cables to the plasma membrane. The actin cables at the 

hyphal tip are nucleated by  the formin SepA, which may be  activated 

by  small GTPases Cdc42 and/or RacA.  Vesicle fusion with the 

membrane is mediated by  t-SNARE and v-SNARE proteins. The 

hyphal tips of several fungi contain sterol-rich membrane domains. 

Although the protein content of sterol-rich domains is unclear, they 

likely represent signaling complexes that contribute to the molecular 

mechanisms to hyphal growth. The extreme apex of hyphal tips 

undergoes extensive exocytosis, whereas flanking regions undergo 

endocytosis to recycle membrane components. Endocytosis at the 

hyphal tip is dependent upon actin patches, actin binding protein, 

and fimbrin. 
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Figure 1-3 
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Fig.  1-3  Pathways underlying septum formation. Gene products 

involved in cell  cycle regulation (red), the SIN (green), CAR assembly 

and function (black), and chitin synthesis (brown) are indicated. NimX 

is proposed to work in conjunction with mitotic signals and a possible 

cortical landmark to activate the SIN via  AsgA and SepH. SnaD and 

SepK anchor the SIN to spindle pole bodies (SPB). The SIN is proposed 

to regulate the assembly and constriction of the CAR, which in turn 

likely serves as a landmark to direct deposition of the septum. See 

text for details. 
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Chapter II Regulation of septum formation by Bud3-Rho4 GTPase 

module in Aspergiluus nidulans 
 

ABSTRACT 
 
The ability of fungi to generate polarized cells with a variety of shapes likely reflects 

precise temporal and spatial control over the formation of polarity axes. The bud site 

selection system of Saccharomyces cerevisiae represents the best-understood example of 

such a morphogenetic regulatory system. However, the extent to which this system is 

conserved in the highly polarized filamentous fungi remains unknown. Here, we describe 

the functional characterization and localization of the Aspergillus nidulans homologue of 

the axial bud site marker Bud3. Our results show that AnBud3 is not required for 

polarized hyphal growth per se, but is involved in septum formation. In particular, our 

genetic and biochemical evidence implicates AnBud3 as a guanine nucleotide exchange 

factor for the GTPase Rho4. Additional results suggest that the AnBud3-Rho4 module 

acts downstream of the septation initiation network to mediate recruitment of the formin 

SepA to the site of contractile actin ring assembly. Our observations provide new insight 

into the signaling pathways that regulate septum formation in filamentous fungi. 

Introduction 

 

The filamentous fungi form mycelial colonies that consist of networks of 

branched hyphae that grow by apical extension. In the higher fungi (i.e., Ascomycota and 

Basidiomycota), hyphae are compartmentalized by the formation of cross-walls, or septa. 

It has long been suspected that the presence of septa allows filamentous fungi to partition 

cellular environments within a hypha to support colony homeostasis and reproductive 

development (GULL 1978). The process of septum formation is similar to cytokinesis of 



34 
 

animal cells, in that it is coordinated with mitosis and requires formation of a contractile 

actin ring (CAR; BALASUBRAMANIAN et al 2004). By analogy to the yeasts 

Saccharomyces cerevisiae and Schizosaccharomyce pombe, the CAR likely provides a 

landmark that guides deposition of the septal wall material. However, unlike these yeasts, 

the septum is not subsequently degraded and cells remain attached. Furthermore, in most 

filamentous fungi, a small pore is retained to enable communication between adjacent 

hyphal compartments. Septum formation has been studied in several filamentous fungi, 

including Aspergillus nidulans (HARRIS 2001; WALTHER and WENDLAND 2003). 

Upon germination of asexual conidiospores in A. nidulans, the first few rounds of 

parasynchronous nuclear division are not accompanied by septation until cells reach an 

appropriate size/volume (HARRIS et al 1994; WOLKOW et al 1996). Subsequently, the 

first septum forms near the junction of the spore and germ tube (HARRIS et al 1994). 

Deposition of the septal wall material is tightly coupled to assembly and constriction of 

the CAR, which in turn requires persistent signals from mitotic nuclei (MOMANY and 

HAMER 1997). As A. nidulans hyphae continue to grow by apical extension, each 

parasynchronous round of mitosis in multinucleate tip cells is followed by formation of 

septa in the basal region of the compartment (CLUTTERBUCK 1970). Because tip and 

intercalary hyphal cells are multinucleate, not all of the individual mitotic events within 

the tip cell are capable of triggering septation. 

Genetic analyses have identified several functions required for septum formation 

in A. nidulans, including the septation initiation network (SIN), the septins, and a formin 

(HARRIS 2001). The SIN is a cascade of three protein kinases that is activated by a small 

GTPase (KRAPP and SIMANIS 2008). In A. nidulans, the component kinases of the SIN 
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are arranged in the pathway SepH→SepL→SidB, with SepM amd MobA serving as co-

factors that regulate SepL and SidB, respectively (KIM et al 2006; KIM et al 2009). 

Although SIN components localize to the spindle pole bodies, this does not appear to be a 

pre-requisite for their subsequent recruitment to the septation site (KIM et al 2009). 

Functional analysis of SepH, ModA, and SidB demonstrate that the SIN is required for 

assembly of the CAR (BRUNO et al 2001; KIM et al 2006). Nevertheless, the upstream 

activators of the SIN and its downstream effectors remain unknown. However, 

localization of the septin AspB and the formin SepA to the septation site have been 

shown to require SepH (WESTFALL and MOMANY 2002; SHARPLESS and HARRIS 

2002). AspB initially appears as a single ring that does not constrict, but splits into a 

double ring flanking the septum (WESTFALL and MOMANY 2002). AspB is not 

required per se for assembly of the CAR (WESTFALL and MOMANY 2002). On the 

other hand, SepA is a dynamic component of the CAR that is required for its assembly 

(SHARPLESS and HARRIS 2002), presumably because of its ability to nucleate actin 

filaments. 

 
In S. cerevisiae and S. pombe, formins such as SepA are typically activated by Rho 

GTPases, such as Rho1 and Cdc42 (e.g., DONG et al 2003, MARTIN et al 2007). 

However, neither Cdc42 nor Rac1 is required for septum formation in A. nidulans, and 

Cdc42 does not localize to septation sites (VIRAG et al 2007). One promising candidate 

for a GTPase that could activate SepA is Rho4, which appears to be specific to 

filamentous fungi (RASMUSSEN and GLASS 2005). In Neurospora crassa, Rho4 is a 

dynamic component of the CAR; its absence prevents CAR assembly, whereas 

constitutive activation permits spurious formation of extra CARs (RASMUSSEN and 
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GLASS 2005). Based on these results, it was suggested that Rho4 is a likely activator of 

formins such as SepA at septation sites. Because SepA simultaneously localizes to 

hyphal tips and septation sites in A. nidulans (SHARPLESS and HARRIS 2002), we 

have been interested in the identification of functions that determine patterns of cell 

wall deposition in hyphal cells. In this context the bud site selection system of S. 

cerevisiae provides an important paradigm. S. cerevisiae cells display two distinct 

budding patterns that are controlled by mating type (FREIFELDER 1960; CHANT 

1999). Mating type a or α cells employ an axial budding pattern whereby the previous 

bud site serves as a template or the next bud. As a result, a chain of chitinous bud scars 

decorates the cell surface. In contrast, mating type a/α cells employ a bipolar budding 

pattern whereby buds emerge from either the distal or proximal pole of the cell (the 

proximal pole is defined by the presence of the birth scar, CHANT and PRINGLE 

1995). Accordingly, bud scars cluster at either pole but are not necessarily adjacent to 

each other. Extensive genetic analyses have provided a fairly detailed understanding of 

the molecular mechanisms that underlie the axial and bipolar budding patterns. For the 

axial pattern, the cell wall protein Axl2 serves as a landmark whose function is 

facilitated by its association with Axl1 and the septin-interacting proteins Bud3 and 

Bud4 (CHANT and HERSKOWITZ 1991; CHANT et al 1995; CHANT 1999; LORD 

et al 2002; GAO et al. 2007; PARK and BI 2007). For the bipolar pattern, the 

paralogous cell wall proteins Bud8 and Bud9, which bear no homology to Axl2, serve 

as distal and proximal pole markers, respectively (CHANT 1999; HARKINS et al 2001; 

KANG et al 2004; PARK and BI 2007). Furthermore, the membrane proteins Rax1 and 
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Rax2 form complexes with Bud8 and Bud9 that facilitates their function (KANG et al 

2004). The positional information generated by the landmark proteins Axl2, Bud8, or 

Bud9 is subsequently relayed to the Ras-like Bud1/Rsr1 GTPase module via the 

guanine nucleotide exchange (GEF) factor Bud5 (KANG et al 2001; KANG et al 2004; 

KRAPPMANN et al 2007). This results in localized activation of the Rho-like GTPase 

Cdc42, which acts via multiple effectors to recruit components of the morphogenetic 

machinery to the specified bud site (CHANT 1999; PARK and BI 2007). 

Despite the importance of the bud site selection regulatory module in specifying 

the budding pattern of S. cerevisiae yeast cells, it remains unclear whether it is used for a 

similar regulatory purpose in other fungi. Ashbya gossypii is a hemiascomycete fungus 

closely related to S. cerevisiae that is only capable of forming hyphae (PHILIPPSEN et al 

2005). The A. gossypii Bud3 homologue, which can function in S. cerevisiae, appears to 

function as a landmark for septum formation and also controls the position of the 

contractile actin ring (WENDLAND 2003). In A. gossypii and Candida albicans, another 

hemiascomycete capable of forming true hyphae, Bud1/Rsr1 homologues appear to 

function at the hyphal tip to specify the direction of hyphal extension (BAUER et al 

2004; HAUSAUER et al 2005). Although limited to hemiascomycetes, these studies 

suggest that the components of the bud site selection regulatory module may have 

broader functions within the fungal kingdom.  

Here, we investigate the possibility that homologues of the bud site selection 

proteins may provide positional information that marks the hyphal tip and/or septation 

sites in A. nidulans. We characterize an apparent homologue of Bud3 and show that it is 

required for assembly of the CAR at septation sites. Our results provide new insight into 
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the regulation of septum formation by suggesting that AnBud3 functions downstream of 

the SIN as a GEF for Rho4. 

 

 

MATERIALS AND METHODS 
 
Strains, media, growth conditions and staining 
 
Aspergillus nidulans strains used in this study are listed in Table 1. MNV (minimal + 

vitamins) media were made according to KAFER (1977). MNV-glycerol and MNV-

threonine fructose media were made as described in PEARSON et al (2004). MAG (malt 

extract agar) and YGV (yeast extract glucose + vitamins) media were made as described 

previously (HARRIS et al 1994). 5-Fluoroorotic acid (5-FOA; US Biological, 

Swampscott, MA) was added to media at a concentration of 1mg/ml after autoclaving. 

For septation and hyphal growth studies, conidia from appropriate stains were grown at 

28°C for 12h on coverslips. Hyphae attached to the coverslip were fixed using a modified 

standard protocol (HARRIS et al 1994) [fixing solution contained 3.7% formaldehyde, 25 

mM EGTA, 50 mM piperazine-N,N-bis(2 ethanesulfonic acid) (PIPES), and 0.5% 

dimethyl sulfoxide] for 20 min and then stained with staining solution containing both 

273 nM fluorescent brightener 28 (Sigma-Aldrich Corporation, St. Louis, MI) and 160 

nM Hoechst 33258 (Molecular Probes, Eugene, OR). 

 

Construction of gene replacement strains 

 

The bud3, rho4, and msb1 genes from strains AHS3, AHS4, and AHS7, respectively, 

were replaced with the pyroA
A.f.

 marker from A. fumigatus. All gene replacements were 

generated using the gene targeting system developed by NAYAK et al (2006) and the 

gene replacement generation strategy developed by YANG et al (2004). 
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Oligonucleotides used in this study are listed in Suppl. Table 1. The pyroA
A.f.

 DNA 

marker fragment was PCR amplified from plasmid pTN1 (NAYAK et al 2006). DNA 

fragments upstream and downstream of bud3 and rho4 were amplified from the wild-

type strain FGSC28 (available through the Fungal Genetics Stock Center, Kansas City, 

MO). High Fidelity and Long Template PCR systems (Roche Diagnostics Corporation, 

Indianopolis, IN) were used for amplifications of individual and fusion fragments, 

respectively, using a Px2 Hybaid or an Eppendorf Mastercycler gradient thermal cycler. 

The amplification conditions were according to the manufacturer's recommendations. 

PCR products were gel purified using the QIAquick gel extraction kit (QIAGEN Inc., 

Valencia, CA). The gene replacement constructs were transformed into strain TNO2A3, 

and plated on supplemented minimal medium with 0.6 M KCl. Transformations were 

performed according the protocol described by OSMANI et al. (2006). Transformation 

candidates were tested for homologous integration of the gene replacement construct 

and the absence of the wild-type gene by diagnostic PCR as described by YANG et al 

(2004). The same strategy was used to replace bud3 with the pyr-4 nutritional marker 

from N. crassa. The pyr-4 DNA marker fragment was amplified from plasmid pRG3. 

The resulting constructs were transformed into TNO2A3. The bud3 gene replacement 

construct with pyroA
A.f

 marker was transformed to strain AAV123 to generate strain 

AHS30. 

 
Genetic interaction experiments 

 

The cdc42 (ANID_07487.1), racA (ANID_04743.1) and rho4 (ANID_02687.1) gene 

sequences, including upstream (~500bp) and downstream regions (~300bp), were 

retrieved from the A. nidulans genome at the Broad Institute 
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(http://www.fgsc.net/aspergenome.htm). These sequences were amplified (primers 

described in Suppl. Table 1) and cloned into the pCR2.1-TOPO vector (Invitrogen 

Corporation, Carlsbad, CA) to generate plasmids pHS11, pHS12 and pHS13 

respectively. For overexpression experiments, strain AHS3 was cotransformed with 

pRG3-AMA1 and each of the plasmids pHS11, pHS12, pHS13. 

 
Construction of GFP fusions to Anbud3 and Rho4 
 

To localize AnBud3, we fused GFP to the N-terminus using the five piece fusion 

PCR approach recently described by TAHERI-TALESH et al. (2008). In addition to the 

retention of native promoter sequences, final constructs also contained a short linker of 

five glycines and alanines inserted between the GFP and AnBud3 coding sequences. In 

brief, the following five fragments were amplified (1) a 1.3-kb sequence upstream of 

bud3, (2) the GFP coding sequence (minus the stop codon) derived from plasmid 

pMCB17apx, (3) the bud3 gene plus 400-bp of downstream sequence, (4) the N. crassa 

pyr-4 selectable marker, also derived from pMCB17apx, and (5) a 1.3-kb sequence 

extending from 400 to 1700-bp downstream of bud3. Fragments (1), (3), and (5) were 

amplified by specific primers with 30bp tails that were reverse complements of the 

adjacent fragments. Finally, the forward primer used to amplify fragment (1) and the 

reverse primer used to amplify fragment (5) were used to fuse the entire five-fragment 

gene replacement construct. The High Fidelity and Long Template PCR systems (Roche 

Diagnostics Corporation, Indianopolis, IN) were employed to amplify individual and 

fusion fragments, respectively, on a Px2 Hybaid or an Eppendorf Mastercycler gradient 

thermal cycler. PCR products were gel purified using the QIAquick gel extraction kit 
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(QIAGEN Inc., Valencia, CA). The resulting gfp::bud3::pyr-4 cassette was used to 

replace wildtype bud3 in strain TNO2A3 using the approach described by NAYAK et al. 

(2006). The plasmid pHS31, containing alcA(p)::gfp::rho4, was constructed in two steps. 

An N-terminal sequence from rho4 that corresponds to amino acids 1-261 was amplified 

from wildtype strain A28. Cloning sites for AscI and PacI were incorporated onto the 

ends of the amplified fragment. The PCR product was gel purified and cloned into 

pCR2.1-TOPO to generate pHS30. The resulting plasmid was digested with AscI and 

PacI (New England Biolabs, MA), and the liberated rho4 fragment ligated into 

pMCB17apx (EFIMOV 2003) to generate pHS31. Thereby, the N-terminus of rho4 was 

fused to GFP, which in turn is expressed under the control of alcA(p). Upon 

transformation into strain TNO2A3, homologous integration of this construct generates a 

single full-length copy of rho4 regulated by alcA(p), plus a truncated version controlled 

by native promoter sequences. 

 
AnBud3 guanine nucleotide exchange assays 
 
MBP-tagged AnBud3 and Rho4 constructs were cloned by RT-PCR using the primers 

along with cDNA prepared from vegetative hyphae. Total RNA was obtained by TRIzol 

extraction (Invitrogen) and cDNA prepared using RevertAid M-MuLV Reverse 

Transcriptase (Fermentas). cDNA was subcloned into pJet1.2/blunt vector (Fermentas). 

AnBud3 and Rho4 constructs were digested with either NcoI and NotI (bud3) or NcoI 

and HindIII (rho4) and inserted into a modified pMalc2x vector (VOGT and SEILER 

2008), which was digested accordingly to generate plasmids pMal_AnBUD3 and 

pMal_AnRHO4. MBP-AnBud3 and MBP-Rho4 fusion proteins were expressed and 
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purified as previously described (VOGT and SEILER 2008). 

 
Guanine nucleotide exchange assays were performed by fluorometric 

determination of mant-GDP (a flourescently labeled GTP analog) incorporation as 

described (ABE et al 2000) using a Tecan Infinite 200 spectrophotometer at 21oC. The 

reaction was started by adding 0.1 mM mant-GDP and 1 mM MBP-Bud3 to 1 mM Rho4 

in 30 mM Tris, pH 7.5, 5 mM MgCl2, 10 mM NaH2PO4/K2HPO4, 3 mM DTT, which 

was pre-equilibrated for 5 min at 21oC. Fluorescence intensity (λexc=356nm, λem=448 

nm) was monitored over 16 min.The change of fluorescence over time was used to 

assess mant-GDP incorporation into Rho4 in the presence and absence of the GEF. 

Similar conditions were also used in recent publications by YEH et al (2007) and 

HLUBEK et al (2008). The latter authors also used equal amounts of GEF and GTPase. 

In the kinetics presented in Fig. 2-5B, the mixing of Bud3 and mant-GDP with Rho4-

GDP is defined as time-point zero. After 16 min the measurement was stopped and the 

resulting emission curves were further analyzed. To allow comparison between 

independently prepared biological samples of each GEF and GTPase, we used the linear 

range of the slope from each indicidual experiment. The kinetics of two independent 

GEF and of two independent GTPase preparations each performed in duplicate 

measurements was determined and the background fluorescence of mant-GDP without 

added proteins was subtracted. The mean value of the slopes calculated for Rho4 in the 

absence of Bud3 represents the intrinsic activity of Rho4 and was set to 100%. To 

determine the exchange activity of Rho4 in the presence of the GEF relative to its 

intrinsic activity, the mean slope value calculated for emission curves of Rho4 in the 

presence of the GEF was divided by the mean slope value calculated for the intrinsic 
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activity of Rho4 and the resulting value was multiplied by 100 to obtain the relative 

value displayed in Fig. 2-5A (relative exchange activity of Rho4 in the presence of Bud3 

= (mean value of slopeRho4+slopeBud3 /mean value of slopeRho4*100). 

 

Conidiation experiments 
 

Conidiophore development was monitored using the sandwich coverslip method 

described by LIN and MOMANY (2003). Briefly, 1ml of melted MAGUU media was 

placed on a coverslip that was then transferred to the surface of a 4% water agar plate. 

The coverslip was inoculated with spores once the media had solidified, whereupon a 

second coverslip was placed on top. After 3-4 days, conidiophores had formed and 

become attached to the top coverslip, which was then dipped into 100% ethanol and 

mounted for DIC microscopy. For Calcofluor staining, the coverslips were fixed and 

stained after ethanol treatment. 

sepA1 and sepH1 experiments 

The sepA1 GFP-AnBud3 strain AHS51 was generated by crossing the GFP-

AnBud3 strain AHS41 with the sepA1 strain ASH630 and screening at restrictive 

temperature (42ºC) on selective media. The sepH1 GFP-AnBud3 strain AHS62 was 

generated by transforming the sepH1 strain AHS61 with the same GFP fusion construct 

used to generate AHS41. The DNA replication inhibitor hydroxyurea (HU) was used to 

arrest the nuclear division cycle. 50 mM HU was added to liquid cultures one hour prior 

to shiftdown, and cultures were maintained in the presence of HU for an additional two 

hours once returned to 28
o
C. The strain AHS53 (sepA1 tpmA::gfp) was used assess the 

effect of the sepA1 mutation on the formation of contractile actin rings at the semi-

permissive temperature of 37
o
C.  
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Microscopy 
 

Digital images of plates were collected with an Olympus C-3020ZOOM digital 

camera. Differential interference contrast (DIC) and fluorescent images were collected 

with either an Olympus BX51 microscope with a reflected fluorescence system fitted 

with a Photometrics CoolSnap HQ camera or an Olympus Fluoview confocal laser-

scanning microscope. Images were processed with IPLab Scientific Image Processing 

3.5.5 (Scanalytics Inc., Fairfax, VA) and Adobe Photoshop 6.0 (Adobe Systems 

Incorporated, San Jose, CA). 

 

Δbud3 suppressor screen 
 
A suspension of 10

6
 conidia from the strain AHS3 was plated on MNUU plates and 

irradiated with UV to a survival rate of ~10%. Plates were incubated for 6 days at 28
o
C. 

The faint green colonies that emerged were patched in grids on master MNUU plates 

and for re-testing. In addition, retention of the Δbud3 mutation was verified by PCR. 

Candidates for further study were picked based on restoration of septum formation (as 

observed by Calcofluor staining). Standard genetic analysis was used to determine that 

suppressor mutations were not linked to Bud3 and defined a single gene. 

 

RESULTS 
 
The A. nidulans homologue of Bud3 is required for septum formation 
 

Our original annotation of the A. nidulans genome revealed the existence of 

potential homologues of the axial budding markers Bud4 and Axl2 (HARRIS and 

MOMANY 2004; GALAGAN et al., 2005). Subsequent annotation using the cognate 

proteins from Ashbya gossypii (AgBud3; WENDLAND 2003) and Candida albicans 
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(CaO19.7079) as additional queries for BLASTp and PSI-BLAST searches also 

uncovered a potential homologue of Bud3. AnBud3 (ANID_00113.1) is a predicted 1538 

amino acid (AA) protein with a RhoGEF domain located between AAs 250 and 450 (Fig. 

2-1). Homologues of AnBud3 (>40% identity over their entire lengths) exist in all 

sequenced euascomycete genomes (e.g., Fig. 2-1). AnBud3 only possesses limited 

homology to S. cerevisiae and A. gossypii Bud3 (21% identity over the first ~550 AAs, 

which corresponds to the predicted RhoGEF domain). Our description and functional 

characterization of the Bud4 and Axl2 homologues will be presented elsewhere. 

 
To determine the possible function of AnBud3 during hyphal morphogenesis, a 

mutant possessing a complete gene deletion was generated using recently described 

protocols (YANG et al 2004; NAYAK et al 2006). Anbud3::pyroA
A.f.

 deletion mutants 

(hereafter referred to as bud3) formed colonies that were slightly smaller than wildtype 

and were notably devoid of conidia (Fig. 2-2 A,B). On minimal media, ΔAnbud3 

mutants produced ~520-fold fewer conidia/ml compared to its parental strain TN02A3. A 

similar effect (i.e., ~75-fold reduction compared to TN02A3) was observed on rich 

media. To determine the possible basis of the conidiation defect, conidiophores from the 

mutant as well as wildtype controls were imaged using a previously described “sandwich 

slide” protocol (LIN and MOMANY 2003). A range of defects was noted, included 

elongated metulae and phialides, as well as conidiospores that apparently failed to 

undergo cytokinesis (Fig. 2-2 E,F). Because a stage-specific arrest was not observed, it 

seems likely that AnBud3 is required at multiple steps during conidiophore development. 

Coverslip cultures were used to examine ΔAnbud3 mutants for defects in hyphal 

morphogenesis. The timing and pattern of spore polarization was indistinguishable from 

wildtype, and the resulting hyphae displayed no obvious defects in polarized growth (Fig. 
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2-2 G,H). On the other hand, septum formation was completely abolished, as no septa 

were observed in ΔAnbud3 mutants (Fig. 2-2 G,H; n>1000 hyphae grown on YGVUU). 

To gain further insight into the nature of the septation defect in ΔAnbud3 mutants, strains 

possessing a SepA-GFP fusion were analyzed. As noted previously (SHARPLESS and 

HARRIS, 2002), SepA is a component of the contractile actin ring (CAR) that forms at 

septation sites (Fig. 2-2 D). In ΔAnbud3 sepA::gfp strains (AHS30), SepA-GFP exhibited 

normal localization at hyphal tips, but no rings were observed (n>1000 hyphae grown on 

YGV; Fig. 2-2 C). Accordingly, AnBud3 appears to be required for an early step in 

septum formation that precedes the formation of the contractile actin ring. 

 
These observations demonstrate that AnBud3 is not required for the 

establishment or maintenance of hyphal polarity, but is needed for normal septation. 

Notably, the defects in septum formation may account for the abnormal development 

observed in ΔAnbud3 mutants, as reduced conidiation has previously been associated 

with defects in septum formation (HARRIS et al. 1994). 

 

AnBud3 functions as a GEF for Rho4 

 

The presence of a predicted Rho-GEF domain in AnBud3 suggested that its role 

in septation might be to locally activate a Rho GTPase by promoting GDP-GTP 

exchange. A genetic approach was used to identify candidate Rho GTPase targets for 

AnBud3. This approach is based on the premise that increased levels of a target GTPase 

can compensate for defects in its associated GEF. For example, in S. cerevisiae, the 

GTPases Cdc42 and Rho1 function as dosage suppressors of mutations affecting their 

cognate GEFs, Cdc24 and Rom1, respectively (BENDER and PRINGLE 1989; OZAKI 
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et al. 1996). Accordingly, we predicted that one of the six annotated Rho GTPases from 

A. nidulans (HARRIS et al, 2009) might function as a dosage suppressor of Anbud3. We 

were particularly interested in ANID_02687.1, a predicted homologue of Neurospora 

crassa rho-4, which is required for septum formation and assembly of the contractile 

actin ring (RASMUSSEN and GLASS 2005). Candidate GTPases were amplified and co-

transformed into a ΔAnbud3 pyrG89 strain along with the autonomously replicating 

plasmid pRG3-AMA1. For each GTPase, multiple Pyr
+
 transformants were picked and 

tested for suppression of the conidiation defects caused by deletion of Anbud3 and all 

small GTPases mentioned below are A. nidulans homologues without the “An” initial. 

Neither cdc42 nor racA could suppress ΔAnbud3; however multi-copy rho4 was capable 

of restoring conidiation (Fig. 2-3 A-C). In addition, these transformants were also able to 

form septa (Fig. 2-3D,E). Two observations demonstrate that suppression was due to the 

presence of rho4. First, the entire rho4 coding region could be amplified from pRG3-

AMA1-based plasmids rescued from the original transformants. Second, re-

transformation experiments showed that rescued plasmids containing rho4 were able to 

suppress ΔAnbud3.  

Based on this genetic evidence, we conclude that AnBud3 likely functions as a 

GEF for the Rho GTPase Rho4. Because GEFs activate their target GTPase, mutational 

inactivation of the GTPase would typically be expected to cause the same phenotypes as 

loss of its GEF. Accordingly, we generated a Δrho4 deletion and tested for defects in 

septum formation and conidiation that resemble those observed in ΔAnbud3 mutants. As 

shown in Fig. 2-4A and B, rho4 mutants displayed similar colony morphology as 

ΔAnbud3 mutants. Furthermore, rho4 mutants were completely defective in septation and 
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formed aberrant conidiophores (Fig. 2-4C-G). These observations implicate Rho4 in the 

same morphological processes as AnBud3. To test this, we generated ΔAnbud3::pyrG
A.f. 

Δrho4::pyroA
A.f.

 double mutants (AHS25) by a standard cross, and found that they 

exhibited the same phenotype as the two parent single mutants (Fig. 2-4H,I). This 

epistatic interaction provides additional support for the notion that AnBud3 and Rho4 

function in the same pathway that regulates septum formation. 

To provide further evidence for the relationship between AnBud3 and Rho4, we 

used in vitro assays to determine if AnBud3 exhibited GEF activity towards Rho4 (see 

Materials and Methods). As shown in Fig. 2-5, a fragment that encompasses the 

predicted GEF domain of AnBud3 specifically stimulated the GDP-GTP exchange 

activity of Rho4. Furthermore, the same fragment was also capable of promoting the 

exchange activity of the heterologous Rho4 from N. crassa (Fig. 2-6). Accordingly, when 

coupled with the genetic interactions and phenotypic similarities displayed by the 

respective mutants, these results strongly implicate AnBud3 as a Rho4 GEF in A. 

nidulans. 

 

AnBud3 and Rho4 localization patterns at septa 
 

As a further test for the function of AnBud3, we used a GFP fusion protein to 

characterize its localization pattern. We constructed strains in which the sole functional 

source of AnBud3 was supplied by a GFP::AnBud3 fusion expressed under control of 

native promoter sequences. As expected, GFP-AnBud3 localized to septation sites, 

where it formed a constricting ring (FIG. 2-7A,B). Notably, GFP-AnBud3 first 

localized to incipient septation sites prior to the appearance of any detectable 
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Calcofluor-stained septum (i.e., 21/109 GFP-AnBud3 rings were not associated with a 

septum; FIG. 2-7C,D). GFP-AnBud3 localization at septation sites remained unchanged 

as septa first appeared (i.e., 22/109 rings co-localized with a thin septum; FIG. 2-7E,F) 

and then as they began to thicken (i.e., 54/109 rings co-localized with a thick septum; 

FIG. 2-7G.H). However, GFP-AnBud3 rings ultimately constricted (i.e., 12/109 rings 

were constricted and co-localized with a thick septum; FIG.2- 7I,J), suggesting that 

AnBud3 is a likely component of the contractile actin ring. 

Because our genetic evidence implicates AnBud3 as a putative GEF for Rho4, we 

surmised that Rho4 would also localize to septa. Accordingly, we constructed a strain in 

which the sole functional copy of rho4 was fused at its 5’ end to GFP and was expressed 

under control of the inducible alcA(p) promoter. As expected, the alcA(p)::gfp::rho4 

strain displayed a growth defect on repressing glucose media, though not as severe as that 

caused by deletion of rho4. On the other hand, the strain grew no worse than wildtype on 

inducing threonine media. Under these conditions, GFP-Rho4 localized to septa and 

appeared to undergo constriction (FIG.2-8). This observation suggests that like AnBud3, 

Rho4 is also a component of the contractile actin ring. 

Our genetic analysis supports a model whereby AnBud3 acts as a GEF that 

locally activates Rho4, which in turn leads to localized recruitment of SepA and 

assembly of the CAR. According to this model, localization of AnBud3 to septation 

sites would precede formation of the CAR. To test this prediction, we took advantage of 

the temperature-sensitive sepA1 mutation. At both restrictive (42
o
C) and semi-

permissive temperatures (37-39
o
C), this mutation abolishes assembly of the CAR 

(SHARPLESS and HARRIS 2002; Fig. 2-9). We thus determined if AnBud3 localizes 
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to septation sites in sepA1 mutants incubated under these conditions. As expected, GFP-

AnBud3 localized to rings in wildtype hyphae at 37
o
C (FIG. 2-10A,B). Notably, in 

sepA1 mutants, GFP-AnBud3 localization was also observed at septation sites (FIG. 2-

10C-H). In most cases, GFP-AnBud3 accumulated at cortical sites or appeared to form 

incipient rings (FIG. 2-10E-H), though rare examples of a complete ring were 

occasionally observed (FIG. 2-10C-D). These results suggest that assembly of the CAR 

is not a pre-requisite for the recruitment of AnBud3 to septation sites. 

 

Roles of nuclear division and the SIN in AnBud3 localization 
 

We have previously demonstrated that the sepA1 septation defect is reversible. In 

particular, a shift back to permissive temperature (i.e., 28
o
C) triggers rapid and 

synchronous formation of septa with appropriate spacing in a manner that is dependent 

upon nuclear division (HARRIS et al 1997; also see TRINCI and MORRIS 1979). We 

exploited the reversibility of the sepA1 mutation to determine if nuclear division is 

required for the appearance of AnBud3 rings. In particular, sepA1 hyphae that express 

GFP-AnBud3 were shifted to 28
o
C after incubation at 37

o
C. As expected, numerous 

AnBud3 rings appeared within 2 h, and in many cases, multiple rings formed in a single 

hypha (FIG. 2-10I-J). However, when shifted down in the presence of 50 mM 

hydroxyurea, which blocks DNA replication and subsequent nuclear division, the 

localized recruitment of AnBud3 and the formation of rings were abolished (Fig. 2-11). A 

similar treatment is known to prevent formation of septa upon shift-down of sepA1 

mutants (HARRIS et al 1997). Thus, nuclear division appears to be generally required for 

the localization of AnBud3 to septation sites and the subsequent formation of rings. 

A potential pathway that might link nuclear division to AnBud3 localization is 
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the septation initiation network (SIN), which is required for assembly of the CAR in A. 

nidulans (BRUNO et al 2001; KIM et al 2006) and functions upstream of SepA 

(SHARPLESS and HARRIS 2002). To test this notion, we transformed our GFP::bud3 

construct into a strain possessing the temperature sensitive sepH1 mutation. This 

mutation, which affects the A. nidulans homologue of the S. pombe Cdc7/S. cerevisiae 

Cdc15 protein kinase, abolishes CAR assembly and septation at restrictive and semi-

permissive temperatures (BRUNO et al 2001; SHARPLESS and HARRIS 2002). At 

permissive temperature (28
o
C), AnBud3 localization and septum formation were 

indistinguishable from wildtype in the sepH1 mutant (Fig. 2-12A,B). However, under 

semi-permissive conditions (39
o
C), no evidence for AnBud3 recruitment to septation 

sites was observed (Fig. 2-12C,D). Note that although the presence of AnBud3-GFP 

clearly altered the morphology of sepH1 mutants, hyphae were large enough to form 

septa. These data suggest that the SIN could coordinate CAR assembly via recruitment 

of AnBud3 to septation sites. Nevertheless, if indeed this is the case, it is not the sole 

mechanism by the SIN acts, because rho4 could not function as a dosage suppressor of 

the sepH1 mutation in the same manner as it suppresses Anbud3 (H. SI and S. D. 

HARRIS, unpublished observation). 

 

The presumptive GAP Msb1 does not regulate septum formation 

Annotation of the A. nidulans genome revealed almost all predicted Rho 

GTPase activating proteins (Rho GAPs) could be matched to a Rho GTPase by analogy 

to known modules in S. cerevisiae and S. pombe (Lab unpublished data). The sole 



52 
 

exception is ANID_02983.1, which is a presumptive homologue of S. cerevisiae Msb1. 

Both proteins are predicted to possess full-length Rho-GAP domains at their N-

terminus. Furthermore, results from genetic analyses in budding yeast implicate Msb1 

in both Cdc42 and Rho1 signaling pathways (BENDER and PRINGLE 1989; SEKIYA-

KAWASAKI et al 2002), though it is not known if it possesses GAP activity. 

Accordingly, we reasoned that AnMsb1 might function as a GAP for Rho4, and tested 

this idea by deleting it in both wildtype and ΔAnbud3 strains. Our expectation was that 

loss of a Rho4 GAP would lead to a hyperactive Rho GTPase, which would result in 

increased septum formation in a wildtype background and would also be potentially 

capable of suppressing the loss of septation in AnΔbud3 mutants. However, deletion of 

Anmsb1 only had minor effects on colony growth (i.e., reduced conidiation) and did not 

affect septum formation (Fig. 2-13). Furthermore, ΔAnmsb1 did not restore septation to 

any extent to bud3 mutants (data not shown). These observations suggest that AnMsb1 

alone is not likely to function as a GAP for Rho4. 

As an alternative approach to the identification of candidate GAPs for Rho4, we 

 isolated a set of extragenic suppressors of ΔAnbud3 (Fig. 2-14), which were then tested 

to determine whether they harbored mutations in any of the annotated Rho GAPs 

(HARRIS et al 2009). However, no predicted GAP was capable of complementing the 

suppressor mutation (i.e., restoring the original ΔAnbud3 phenotype) when amplified and 

co-transformed with the pRG3-AMA1 plasmid. Thus, the nature, or even the existence, 

of the Rho4 GAP remains unresolved. 

DISCUSSION 

The formation of septa in A. nidulans hyphae requires the formin-dependent 



53 
 

assembly of a CAR (SHARPLESS and HARRIS 2002). Although Rho GTPases are 

known to activate formins (e.g., DONG et al 2003; MARTIN et al 2007), the identity of 

the relevant GTPase(s) that direct CAR assembly has remained unknown. Whereas our 

previous results show that Cdc42 has no detectable role in septation (VIRAG et al 

2007), the results presented here demonstrate that a Bud3-Rho4 GTPase module is 

required for CAR assembly and formin recruitment to septation sites. 

 

The Bud3-Rho4 GTPase module 
 

Our observations demonstrate that AnBud3 and Rho4 are required for septum 

formation in A. nidulans hyphae. The loss of either protein abolishes septation; in the 

case of bud3 mutants, this appears to be caused by the failure to recruit the formin SepA, 

which is required for CAR assembly, to septation sites. Furthermore, both proteins 

localize to septation sites, where they form constricting rings. Characterization of the 

AnBud3 localization pattern in particular reveals that it first appears prior to the 

formation of a detectable septum, then constricts in a manner consistent with the notion 

that it is a component of the CAR. Finally, our genetic and biochemical analyses clearly 

establish that AnBud3 serves as a GEF that promotes activation of Rho4. A similar 

relationship between Bud3 and Rho4 has recently been described for another filamentous 

ascomycete fungus, N. crassa (JUSTA-SCUCH et al 2010). In this case, Bud3 also acts 

as a GEF for Rho4, which in turn directs assembly of the CAR at septation sites 

(RASMUSSEN and GLASS 2005). Collectively, these results define Bud3 and Rho4 as 

essential components of the GTPase modules that direct CAR assembly during septation 

in those filamentous fungi that belong to the euascomycetes. Amongst the questions that 

still need to be addressed is the identity of the relevant Rho4 GAP. Although AnMsb1 
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appeared to be a reasonable candidate, our results suggest that even if it does have GAP 

activity, it is not the sole GAP for Rho4. Instead, it seems likely that multiple GAPs 

might act in a redundant manner to regulate Rho4. 

 
In addition to A. nidulans and N. crassa, Bud3 and Rho4 homologues have been 

implicated in septum formation in filamentous fungi that belong to the hemiascomycetes. 

In A. gossypii, Bud3 serves as a landmark for future septation events and also functions 

to properly position the CAR (WENDLAND 2003). It remains unknown whether this 

Bud3 homologue, or for that matter the founding S. cerevisiae homologue, possess GEF 

activity. In C. albicans, Rho4 appears to regulate deposition of the septum during both 

yeast and hyphal phases of growth (DUNKLER and WENDLAND 2007). At this time, 

no relationship between Bud3 and Rho4 has been described for any hemiascomycete. We 

speculate that Bud3 activation of Rho4 may represent an ancestral interaction that was 

lost in the hemiascomycete lineage. This could presumably account for lack of 

pronounced sequence similarity between euascomycete Bud3 homologues and S. 

cerevisiae Bud3, and for the observation that the euascomycete Rho4 homologues form a 

distinct clade of fungal Rho GTPases that apparently lack hemiascomycete members 

(RASMUSSEN and GLASS 2005; though the relationship of C. albicans Rho4 to this 

clade is uncertain, DUNKLER and WENDLAND 2007). An investigation of the possible 

interaction between Bud3 and Rho4 homologues in archiascomycetes such as the yeast 

Schizosaccharomyces pombe might help to further clarify how the Bud3-Rho4 GTPase 

module has evolved in fungi. 
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The Bud3-Rho4 pathway 
 

Our results show that the Bud3-Rho4 GTPase module controls assembly of the 

CAR during septation in A. nidulans. A likely effector of Rho4 that mediates this 

function is the formin SepA, which is no longer recruited to septation sites in Anbud3 

mutants even though its localization at hyphal tips is unaffected. Furthermore, our results 

show that AnBud3 still accumulates at septation sites in the absence of SepA, thereby 

implying that its function lies upstream of SepA. We envision the following scenario 

based upon our observations. In response to signals emanating from the nucleus (see 

below), AnBud3 localizes to presumptive septation sites, where it activates Rho4 to 

initiate the process of assembling the CAR. Activated Rho4 accomplishes this task by 

locally recruiting SepA and other regulators of actin filament dynamics. Moreover, 

AnBud3 and Rho4 remain associated with the assembled CAR during the process of 

constriction. By doing so, AnBud3, and by inference activated Rho4, may control 

additional steps beyond recruitment of SepA, such as maintenance of the CAR or 

coordination of septum deposition with ring constriction. (e.g., SANTOS et al. 2003; 

NAKANO et al. 2003). 

 
One of the distinct features of septum formation in filamentous fungi such as A. 

nidulans is the uncoupling of cell division from nuclear division (CLUTTERBUCK 

1970; HARRIS 2001; WALTHER and WENDLAND 2003), which implies the existence 

of unique regulatory mechanisms that coordinate CAR assembly with mitosis (i.e., not 

every dividing nucleus is capable of triggering formation of a CAR). Because Rho4 

appears to serve as a pivotal regulator of CAR assembly during septation, it seems likely 

that it would be responsive to signals emanating from dividing nuclei. Moreover, by 
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analogy to the well-characterized Rho/Cdc42 GTPase modules in S. cerevisiae (PARK 

and BI 2007), the GEFs and/or GAPs that regulate Rho4 are potential targets for these 

signals. Our observations that nuclear division and a functional SIN pathway are required 

for AnBud3 localization at septation sites are consistent with this idea. Future efforts will 

focus on determining whether the protein kinase constituents of the SIN (SepH, SepL, 

SidB; BRUNO et al 2001; KIM et al 2006; KIM et al 2009) interact directly with 

AnBud3 to control its localization and/or activity. Notably, in S. pombe, Orb6, which like 

SidB is a member of the NDR kinase family, spatially regulates polarized growth by 

restricting the localization of the Cdc42 GEF Gef1 (DAS et al 2009). Finally, it should 

also be noted that our data imply that the Bud3-Rho4 module is not the sole target of the 

SIN. Instead, we envision the SIN acting via multiple targets to coordinate CAR 

assembly and function with nuclear division. 
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Table 2-1 

 

Strain Genotype 

    

    

A28 pabaA6 biA1   FGSC (accession no. A28)  

GR5 pyrG89 wA3 pyroA4  
FGSC (accession no. 

A773)  

TNO2A3 

pyrG89; argB2; pyroA4 

nkuA::argB    

AHS2 pyrG89; argB2; bud3::pry-4  pyroA4 nkuA::argB This study  

AHS3 pyrG89; argB2; bud3::pyroA pyroA4 nkuA::argB This study  

AHS5 pyrG89; argB2; rho4::pyroA pyroA4 nkuA::argB This study  

AHS7 pyrG89; argB2; msb1::pyroA pyroA4 nkuA::argB This study  

AHS25 

pyrG89; argB2; 

rho4::pyroA      bud3::pyrG; 

pyroA4 This study  

nkuA::argB 

    

AHS30 

  

This study 

 
sepA::gfp::pyr-4; pyrG89 

pabaA1; bud3::pyroA;  

yA2 

    

AHS252 

  

This study 

 

yA2; argB2; pyroA4   

AAV123.1 

pyrG89 sepA::gfp::pyr-4; argB2; pyroA4    

nkuA::argB Virag et al, 2007  

ASH630 sepA1;  pyrG89; wA3  Lab stock  

ACP115 

tpmA::GFP::pyr-4; pyrG89; 

wA3  Pearson et al, 2004  

AKS70 sepA::gfp::pyr-4; pyrG89 pabaA1; yA2 
Sharpless and Harris, 

2002  

AHS41 

pyrG89; argB2; gfp::bud3::pyr4; pyroA4; 

nkuA::argB This study  

AHS43 pyrG89;argB2;alcA::gfp::rho4; pyr-4; nkuA::argB This study  

AHS51 

pyrG89; argB2;gfp::bud3::pyr4; pyroA4; sepA1 This study  

nkuA::argB 

    

AHS53 

  

This study 

 
sepA1; 

tpmA::GFP::pyr4;pyrG89   

AHS3C2 

bud3 

suppressor   This study  

AJM34 sepH1; pabaA6; lysB5; chaA1    

AHS61 pyrG89; sepH1   This study  

AHS62 

pyrG89; gfp::bud3::pyr4; sepH1  This study  
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Figure 2-1. Organization and phylogenetic analysis of AnBud3. A. Schematic 

organization of AnBud3 depicting location of the GEF domain (red). B. Phylogenetic 

analysis of AnBud3. Predicted coding regions of putative Bud3 homologues were aligned 

using ClustalW (MacVector v7.0). The tree was constructed using the neighbor joining 

method with bootstrap support (1000 repetitions) and Poisson correction. All sequences 

are designated according to their annotation format or known protein name. Ehis = 

Entamoeba histolytica, DEHA = Debaryomyces hansenii, Ca = Candida albicans, CAGL 

= C. glabrata, Sc = Saccharomyces cerevisiae, KLLA = Kluyveromyces lactis, Ag = 

Ashbya gossypii, YALI = Yarrowia lipolytica, DD = Dictyostelium discoideum, SP = 

Schizosaccharomyces pombe, CN = Cryptococcus neoformans, An = Aspergillus 

nidulans, NC = Neurospora crassa, Mg = Magnaporthe grisea, and Fg = Fusarium 

graminearum. 
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Figure 2-2. Effects of the Anbud3 deletion on colony morphology, septum formation 

and conidiation. A-B. Colony morphologies of strains TNO2A3 (wildtype; A) and 

AHS3 (ΔAnbud3; B) grown on minimal medium (MNUU) for nine days. C. SepA-

GFP localizes to hyphal tips, but not septa, in ΔAnbud3 mutants. D. SepA-GFP 

localization at septa in wildtype hyphae. For C and D, ΔAnbud3 and wildtype strains 

possessing sepA::gfp (AHS30 and AKS70, respectively) were grown in YGV media 

for 12 hours prior to imaging. E. Wildtype conidiophore. F. ΔAnbud3 conidiophore. 

Fused metulae and phialides bearing a few spores were observed. G and H.  Wildtype 

(G) and ΔAnbud3 (H) hyphae grown in YGVUU for 12 hours. Note the absence of 

septa in the ΔAnbud3 mutant. Septa and nuclei were visualized in fixed hyphae using 

Calcofulor and Hoechst 33258, respectively. Arrows indicate septa. Bar=10µm. 
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Figure 2-3. Dosage suppression of bud3 growth and septation defects by rho4. A-C. 

Colony morphology of bud3 strain AHS3 transformed with multiple copies of cdc42 (A), 

rac1 (B), or rho4 (C) and grown on selective MN media. Only rho4 functions as a dosage 

suppressor and restores conidiation. Hyphal morphology of  ΔAnbud3 strain AHS3 

transformed with vector control (D) or rho4 (E). Hyphae were grown on YGV medium 

for 14 hours and stained with Calcofluor and Hoechst 33258 to visualize septa and 

nuclei, respectively. The presence of Δrho4 restored septum formation (arrows) to the   

Anbud3 mutant. Bar=10µm. 
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Figure 2-4. Effects of the Δrho4 mutation on growth, hyphal morphology, and 

development. A and B. Colony morphology of wildtype (TNO2A3; A) and Δrho4 (AHS5; 

B) strains following growth on MNUU medium for nine days. C and D. Hyphal 

morphology of wildtype (TNO2A3; C) and Δrho4 (AHS5; D) strains following growth 

for 14 hours on YGVUU at 28ºC. Arrows indicate septa. Bar=10µm. E-G. Conidiophore 

morphology of wildtype (TNO2A3; E) and rho4 (AHS5; F-G) strains following growth 

for three days on MAGUU. Arrow in panel F indicates abnormal formation of a 

secondary conidiophore. Arrows in panel G indicate fused metulae and phialides. H. 

Hyphal morphology of ΔAnbud3 Δrho4 double mutant strain (AHS25) after 14 hours of 

growth in YGVUU at 28˚C. I. Conidiophore morphology of ΔAnbud3 Δrho4 double 

mutant strain (ASH25) following growth for three days on MAGUU. The arrow indicates 

abnormal formation of a secondary conidiophore generated from a phialide fused to its 

subtending metulae. Bars=10µm except for E-G, where bars=3µm. 
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Figure 2-5. AnBuD3 is a Rho4 exchange factor. In vitro guanine nucleotide exchange 

activity was determined by measuring binding of mant-GDP to purified Rho4 in the 

presence or absence of the putative GEF AnBud3 construct containing the GEF domain. 

The diagram indicates the mean values ±SD of at least two independent Rho protein and 

two GEF purifications with each experiment performed in duplicate. The intrinsic Rho 

activity is set to 100% (A). An example of in vitro kinetics for mant-GDP binding to 

purified AnRho4, AnBud3 and both is shown. The exchange activity of AnRho4 is 

stimulated by AnBud3 (B). 
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Figure 2-6 
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Figure 2-6. AnBud3 is able to stimulate the GDP-GTP exchange activity of N. crassa 

Rho4. The diagram indicates the mean values ±SD of at least two independent Rho 

protein and two GEF purifications with each experiment performed in duplicate. The 

intrinsic Rho activity is set to 100%. 
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Figure 2-7. Localization of GFP-AnBud3. A and B. GFP-AnBud3 rings (A, white 

arrows) and corresponding septa (B, black arrows) following growth of strain AHS41 on 

YGVUU for 15 hours at 28˚C. The dashed arrow indicates a thick ring in the process of 

constricting. C-J. Coordination of GFP-AnBud3 ring dynamics with septum deposition. 

C, E, G, and I. GFP-AnBud3 localization. D, F, H, and J. Calcofluor staining to visualize 

septa and cell walls. C and D. GFP-AnBud3 localization at septation site prior to 

appearance of visible septum. E and F. GFP-AnBud3 rings associated with thin septum. 

G and H. Thicker AnBud3 ring associated with more prominent septum. I and J. 

Constricting AnBud3 ring and associated septum. Bar=3µm, except A and B, where 

bar=10µm.  
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Figure 2-8. Localization of GFP-Rho4. A and B. GFP-Rho4 localization (A) and 

corresponding septum (B; observed using DIC optics) following 13 hours growth of 

strain AHS43 at 28˚C on alcA(p) inducible threonine-MNV. Arrow indicates a GFP-

Rho4 ring at the septation site. C and D. A constricting GFP-Rho4 ring (C; white arrow) 

and corresponding septum (D; black arrow). Bar=3µm. 
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Figure 2-9. Absence of contractile actin rings in sepA1 mutant hyphae grown at 37˚C. 

Wildtype (ACP115; A) and sepA1 (AHS53; B) hyphae were grown at 37˚C for 11-13 h. 

Contractile actin rings were visualized using a TpmA-GFP fusion protein. Arrows 

indicate rings in wildtype hyphae. Note the absence of rings in sepA1 hyphae despite the 

stronger background. 
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Figure 2-10. Recruitment of AnBud3 to septation sites does not require presence of the 

contractile actin ring. A and B. GFP-AnBud3 localization in wildtype hyphae (AHS41) 

grown at 37
o
 (A) or 28˚C (B). C-H. GFP-AnBud3 localization in the sepA1 mutant 

(AHS51) at 37˚C (C,E,G) and corresponding DIC images (D,F,H). Dashed arrow (C) 

indicates a rare example of an intact GFP-AnBud3 ring, whereas solid arrows mark the 

more prevalent examples of incomplete rings or cortical patches. I-J. GFP-AnBud3 

localization (I) and corresponding DIC image (J) in sepA1 mutant hyphae 2 h following 

a shift from 37 to 28
o
C. Solid arrows indicate GFP-AnBud3 rings. Bars=3µm. 
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Figure 2-11 GFP-AnBud3 localization when nuclear division is blocked. Formation of 

GFP-AnBud3 rings does not occur in wildtype (A-D) or sepA1 (E-H) hyphae when 

nuclear division is blocked by treatment with hydroxyurea (HU). Hyphae grown at 28˚C 

(A,B,E,F) or 37˚C (C,D,G,H) were treated with HU as described in the Materials and 

Methods. GFP (A,C,E,G) and corresponding DIC (B,D,F,H) images are shown. 

Bars=3μm. 
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Figure 2-12. Localization of GFP-AnBud3 in the sepH1 mutant. GFP-AnBud3 

localization at 28˚C (A) and 42˚C (C) following 14 hours growth of strain AHS62 on 

YGV. GFP-AnBud3 localization to septation sites was not observed at 42
o
C. B and D are 

corresponding DIC images. Arrows indicate septation sites. Bar=5µm. 
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Figure 2-13. Effects of the msb1 mutation on growth and hyphal morphology. A, B. 

Colony morphology of wildtype (TNO2A3; A) and msb1 (AHS7; B) strains following 

growth on MNVUU medium for six days and seven days respectively. C, D. Hyphal 

morphology of wildtype (TNO2A3; C) and msb1 (AHS7; D) strains following growth for 

13 hours on MNVUU at 28˚C. Arrows indicate septa. Bar=10µm. 
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Figure 2-14. Δbud3 suppressors. A. Wild type TNO2A3; B. Δbud3 mutant AHS3; and C. 

Δbud3 suppressor AHS3C2. 
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Chapter III Characterization of yeast bud site selection homologues 

Axl2 and Bud4 

 

ABSTRACT 

The bud site selection system of Saccharomyces cerevisiae represents the best-

understood example of budding morphogenetic regulatory system. Axl2 and bud4 are two 

of factors that are required for the axial budding pattern. How conservative the function 

of the two proteins in Aspergillus nidulans is still unclear since the low similarity in 

protein sequence to their related budding pattern proteins. Here, we describe the 

functional characterization and localization of A. nidulans homologues of the axial bud 

site markers Axl2 and Bud4. Both AnBud4 and AnAxl2 are not required for polarized 

hyphal growth, but AnBud4 is involved in septum formation. Insterestingly, AnAxl2 only 

functions at the tip of phialides and has a unique function in sexual development. 

Additional promoter swap experiments suggest that proper expression of both genes is 

essential for their localization. On the other hand, AnBud4 and AnAxl2 are predicted to 

play a role in septin organization.  

 

INTRODUCTION 

Cell morphology is a critical feature for proper cellular function in many 

eukaryotic cells. For A. nidulans, the mechanisms involved in septum formation, 

conidiophore development and fruiting body formation are still far from clear. During 

vegetative growth, the partitioning of hyphae into cellular units by cross-walls known as 

septa permit compartmentalization of functions and is thought to play a key role in 
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supporting the development of reproductive structures that bear spores. Spore chain 

formation on the top of phialides can be considered as multi-nuclear divisions from stem 

cell and they are precisely regulated by proper expression and re-localization of 

landmarks. During sexual development, function of landmarks may also affect the timing 

of hülle cell (nursing cell) and cleistocium formation. In this chapter, my work focused 

on the functional characterization and localization of homologues of the yeast axial bud 

site markers Bud4 and Axl2 for morphological function in A. nidulans 

 

 Summary of bud4 and axl2 in Saccharomycetes cerevisiae 

Bud4 and Axl2 are two axial budding pattern factors in S. cerevisiae. Like Δbud3, 

both Δaxl2 and Δbud4 can switch from axial budding to bipolar pattern in haploid cells of 

budding yeast. For the axial pattern, the cell wall protein Axl2 serves as a landmark 

whose function is facilitated by its association with Axl1 and the septin-interacting 

proteins Bud3 and Bud4 (CHANT 1999; LORD et al 2002; GAO et al. 2007; PARK and 

BI 2007). In S. cerevisiae, Bud4 forms rings encircling the mother-bud neck in a septin-

dependent manner (Sanders and Herskowiz, 1996). Axl2 was first found to be a 

multicopy suppressor of the Δspa2 cdc10-10 double mutants (Roemer, Madden et al. 

1996) to rescue the lethality of S. cerevisiae. Spa2 (spindle pole associated) is a scaffold 

protein that interacts with other yeast polarisome components and bud selection. Spa2 

deletion mutants significantly reduced the capacity of cells to generate pheromone-

induced shmoos (Sheu, Santos et al. 1998; van Drogen and Peter 2002).  Cdc10 is the one 

of the seven septins found in budding yeast (Longtine, DeMarini et al. 1996).  In addition, 
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Axl2p is a membrane protein and expressed throughout the cell cycle (Halme, Michelitch 

et al. 1996; Roemer, Madden et al. 1996).  

 

Axl2-GFP localization is determined by the cell cycle in yeast.  

Axl2 expression peaks at G1 and changing the timing of expression by promoter 

exchange resulted in uniform membrane localization of Axl2p. Artificially induced 

pulses of Axl2 around late G1 corrected localization of Axl2p to the incipient bud site 

and to the bud neck (Roemer, Madden et al. 1996; Lord, Yang et al. 2000). When Axl2 

was placed under either constitutive MET3 promoter or periodic BUD3 promoter (S/G2), 

Axl2-GFP lost its precise localization to the bud necks, and instead it had uniformly 

distributed throughout the plasma membrane. However, pulsed expression of BUD10 

(Axl2) in late G1 phase restores the correct localization of Bud10p (Lord, Yang et al. 

2000). Because of distinct differences in the organization and regulation of cell division 

in budding yeast versus filamentous fungi, the bud site selective markers will have their 

unique function on morphology of the latter regulating cell division.   

 

Secondary development in Aspergillus nidulans 

A.nidulans differentiates by two morphologically distinct stages: vegetative and 

secondary structures (Casselton and Zolan 2002). It propagates efficiently by producing 

asexual spores called conidia and sexual spores called ascospores during secondary 

development. Conidia are formed on specialized structures called conidiophores. 

Conidiophore formation is initiated from a thick-walled foot cell forming a stalk. The tip 

of the stalk swells and forms a vesicle where elongated cells called sterigmata develop 
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(Fig. 3-1). Sterigmata include two types of distinct cells: metulae and phialides. Metulae 

are generated from vesicles in 3-4 hours and each metula produces two philades in 

optimal growth condition. On the top of phialides, multiple cycles of mitosis occur and 

long chains of airborne conidia are produced. In this process, since phialides undergo 

repeated divisions to produce chains of spores and compel the older spores upwards, a 

shuttle of landmark localization and re-localization happens by an unclear mechanism to 

ensure the correct polarity of new spores.  

During sexual development, vegetative hyphae coil and fuse to form the 

ascogenous hyphae. Reproductive ascogenous hyphae then proliferate to generate 

ascospore-containing asci within the cleistothecia. In addition, large thick-walled cells 

called Hülle cells nurse the cleistothecial primordia contributing to the formation of 

the cleistothecium wall (Alexopoulos, 1962; Yager, 1992; Axleopolos et al., 1996).  

 

Transcriptional factors on conidiophore development  

BrlA and AbaA are two key transcriptional factors which regulate the 

condiophore development. BrlA is a transcriptional factor which is required for the 

expression of a series of proteins in all developmental steps (Prade and Timberlake 1993). 

Null BrlA mutant can start stalk formation but only fail to vesiculate. When inducing 

BrlA expression in the conditional mutant during induction, differentiating hyphal tips 

can be transformed into reduced conidiophores that produced spores in submerged 

cultures (Chang and Timberlake 1993). AbaA is upregulated by BrlA and acts as a 

positive feedback regulator of BrlA during conidiation.  AbaA is required 

for phialide differentiation and its null mutant will reiterate metular development, which 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118541764/main.html,ftx_abs#b1
http://www3.interscience.wiley.com/cgi-bin/fulltext/118541764/main.html,ftx_abs#b2
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will generate a chain of abnormal metulae to form abacus structures (Sewall, Mims et al. 

1990).  Without BrlA, abaA mutants fail to accumulate numerous developmentally 

regulated transcripts (Boylan, Mirabito et al. 1987), and also make abnormal reduced 

conidiophores in submerged culture. 

 

Septins in S. cerevisiae and A. nidulans 

Septins are GTPase that form filaments and rings in fungi and animal and were 

first found in cell cycle defect mutants of S. cerevisiae. They play key roles in cellular 

organization process ranging from cytokenesis to surface growth (Fares, Goetsch et al. 

1996; Longtine, DeMarini et al. 1996). Members of the septin family have been found in 

all eukaryotic model system including yeast, fruit fly, worm and human. In S. cerevisiae, 

there are seven septins, including Cdc3, Cdc10, Cdc11, Cdc12, Spr3, Sep7 and SPR28. 

The core septin proteins (Cdc3, Cdc10, Cdc11, and Cdc12) localize to the mother/bud 

neck, where they assemble into heteropolymers that organize proteins necessary to 

complete cytokinesis and ensure proper coordination between bud formation and nuclear 

division (Cid, Adamikova et al. 2001; Gladfelter, Bose et al. 2002).  

AspA, AspB, AspC, AspD and AspE are five septins found 

in Aspergillus nidulans. They localize in three basic patterns in fungi including projects at 

tips or branchs, septa and septin filaments (Momany, Zhao et al. 2001). AspA and AspC 

are orthologs of CDC11 and CDC12 respectively and their localization appears to be 

mutually dependent (Lindsey and Momany 2006). AspB has the higher expression level 

to the others and is required for viability. AspD is classified in Cdc10 group and AspE 

may participate in a more specialized, non-essential function (Momany, Zhao et al. 2001) 
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because deletion of AspE results in a slightly defect in development (Momany, 

unpublished data). 

Axl2 and Vac8 belongs to Cadherin and catenin families respectively. 

In S. cerevisiae, Vac8p is a phosphorylated and palmitoylated vacuolar membrane 

protein with armadillo catenin repeats, which are super-helix of helices proposed to 

mediate interaction of β-catenin with its ligands. Vac8p is required for the cytoplasm-to-

vacuole targeting (Cvt) pathway in budding yeast (Scott, Nice et al. 2000). Interestingly, 

when analyzing the AnAxl2 protein sequence in NCBI by BLASTp, two tandem cadherin 

domains were found at the N-terminus.  

Cadherins and catenins were first found to form cytoplasmic complexes at cell-

cell junction in mammalian cells. Cadherins (Calcium dependent adhesion molecules) are 

a class of type-1 transmembrane proteins and dependent on Ca
2+

 to function. In structure, 

they share cadherin repeats, which are the extracellular Ca
2+

-binding domains. Cadherins 

play important roles in cell adhesion by associating with catenins, ensuring that cells 

within tissues are bound together (Burford, Baloch et al. 2009; Hage, Meinel et al. 2009).  

Catenins have to form complexes through physical connection (Weis and Nelson 

2006). The first two catenins identified (Peyrieras, Louvard et al. 1985) were α-catenin 

and β-catenin. α-catenin can bind to β-catenin and actin filaments. β-catenin binds to the 

cytoplasmic domain of some cadherins. Additional catenins such as gamma- and delta-

catenin have also been identified. In addition
 
to adhere to junctions, catenins also function 

at desmosomes, which are cell structures specialized for cell-to-cell adhesion, to 

intermediate filaments and stress fibers (Garrod and Kimura 2008). Catenin-cadherin 

http://en.wikipedia.org/wiki/Transmembrane_protein
http://en.wikipedia.org/wiki/Binding_domains
http://en.wikipedia.org/wiki/Cell_adhesion
http://en.wikipedia.org/wiki/Actin
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Cell_adhesion
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complexes also function in the modulation of cadherin endocytosis and small GTPases 

(McCrea and Gu 2010). Catenin Armadillo regions engage in protein-protein interactions 

and promote the association of β-catenin with cadherins (Nelson and Nusse 2004). Even 

though some proteins contain Armadillo domains but do not associate with cadherins, 

they cannot be classified as catenins by definition. We believe the cadherin (AnAxl2) and 

the catenin (AnVac) proteins will have some parallel morphogenetic functions through 

their hypothetical interaction. 

MATERIALS and METHODS 

Strains, media, growth conditions and staining 

Aspergillus nidulans strains used in this study are listed in Table 2-1. MNV (minimal + 

vitamins) media were made according to Kafer (1977).  MNV-glycerol and MNV-

threonine fructose media were made as described in PEARSON et al (2004). MAG (malt 

extract agar) and YGV (yeast extract glucose + vitamins) media were made as described 

previously (Harris et al 1994). 5-Fluoroorotic acid (5-FOA; US Biological, Swampscott, 

MA) was added to media at a concentration of 1mg/ml after autoclaving. 

For septation and hyphal growth studies, conidia from appropriate stains were grown at 

28°C for 12h on coverslips. Hyphae attached to the coverslip were fixed using a modified 

standard protocol (HARRIS et al 1994) [fixing solution contained 3.7% formaldehyde, 

25 mM EGTA, 50 mM piperazine-N,N-bis(2 ethanesulfonic acid) (PIPES), and 

0.5% dimethyl sulfoxide] for 20 min and then stained with staining solution containing 

both 273 nM fluorescent brightener 28 (Sigma-Aldrich Corporation, St. Louis, MI) and 

160 nM Hoechst 33258 (Molecular Probes, Eugene, OR). 
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Construction of gene replacement strains 

The Bud4 and Axl2 genes from strains AHS4, AHS6 were replaced with the pyroA
A.f. 

marker from A. fumigates and the pyroA
A.n.

 marker from A. nidulans respectively. All 

gene replacements were generated using the gene targeting system developed by 

NAYAK et al (2006) and the gene replacement generation strategy developed by YANG 

et al (2004). Oligonucleotides used in this study are listed in Table2- 3. PyroA
A.n.

 DNA 

marker, the DNA fragments upstream and downstream of Axl2 were amplified from 

wild-type FGSC strain GR5 (available through the Fungal Genetics Stock Center, Kansas 

City, MO). PyroA
A.f.

 DNA marker fragment was PCR amplified from plasmid pTN1 

(available through the Fungal Genetics Stock Center, Kansas City, MO) and the DNA 

fragments upstream and downstream of Bud4 were amplified from the wild-type strain 

FGSC28. High Fidelity and Long Template PCR systems (Roche Diagnostics 

Corporation, Indianopolis, IN) were used for amplifications of individual and fusion 

fragments, respectively, using a Px2 Hybaid or an Eppendorf  Mastercycler gradient 

thermal cycler. The amplification conditions were according to the manufacturer's 

recommendations. PCR products were gel purified using the QIAquick gel extraction kit 

(QIAGEN Inc., Valencia, CA). The gene replacement constructs were transformed into 

strain TNO2A3 or GR5, and plated on supplemented minimal medium with 0.6 M KCl. 

Transformations were performed according the protocol described by OSMANI et al. 

(2006). Transformation candidates were tested for homologous integration of the gene 

replacement construct and the absence of the wild-type gene by diagnostic PCR as 

described by YANG et al (2004). 

Construction of GFP fusions to Axl2 and Bud4 
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        To localize Axl2, a GFP-pyr4 fragment was amplified from plasmid pFNO3 

(available through the Fungal Genetics Stock Center, Kansas City, MO). A 1.5kb Axl2 

fragment and a 1.5kb Axl2 downstream fragment were amplified from strain 

TN02A3.  The same approach described by NAYAK et al. (2006) was used to make the 

gene targeting system. The fusion PCR construct was transformed to strain TNO2A3 and 

the transformants were verified by PCR to ensure the homologous gene insertion. 

To localize Bud4, we fused GFP to the N-terminus using the five piece fusion PCR 

approach recently described by Taheri-Talesh et al. (2008). In addition to the retention of 

native promoter sequences, final constructs also contained a short linker of 

five glycines and alanines inserted between the GFP and Bud4 coding sequences. In brief, 

the following five fragments were amplified (primers described in Table 2-2); (1) a 1.3-

kb sequence upstream of the target gene, (2) the GFP coding sequence (minus the 

stop codon) derived from plasmid pMCB17apx, (Scott, Nice et al.) (3) the target gene 

plus 400-bp of downstream sequence, (4) the N. crassa pyr-4 selectable marker, also 

derived from pMCB17apx, and (5) a 1.3-kb sequence extending from 400 to 1700-bp 

downstream of target gene. Fragments (1), (Scott, Nice et al.), and (5) were amplified by 

specific primers with 30bp tails that were reverse complements of the adjacent fragments. 

Finally, the forward primer used to amplify fragment (1) and the reverse primer used to 

amplify fragment (5) were used to fuse the entire five-fragment gene replacement 

construct. The High Fidelity and Long Template PCR systems (Roche Diagnostics 

Corporation, Indianopolis, IN) were employed to amplify individual and fusion fragments, 

respectively, on a Px2 Hybaid or an Eppendorf Mastercycler gradient thermal cycler. 

PCR products were gel purified using the QIAquick gel extraction kit (QIAGEN Inc., 
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Valencia, CA). The resulting gfp::Bud4::pyr-4 cassettes was used to 

replace its respective wildtype gene in strain TNO2A3 using the approach described by 

NAYAK et al. (2006). 

 

The Axl2 and Bud4 promoter swap and alcA::Axl2 construct 

        The promoter regions of both Axl2 and Bud4 were approximately determined by the 

adjacent upstream gene sequence acquired from Aspergillus genome database 

(http://www.broadinstitute.org/annotation/genome/Aspergillus_group/multihome.html). 

For making pbud4::Axl2-GFP strain, four fragments were amplified: (1) A 1.5Kb 

sequence upstream of Axl2 from TNO2A3, (2) pyroA
A.f.

 marker from pTN1 (Nyak et al., 

2006), (3) a 1043bp sequence upstream of Bud4 from TNO2A3, (4) a 1.5kb sequence 

from the start codon of Axl2 from TNO2A3.  Fragments (1), and (4) were amplified by 

specific primers (listed in table 2-2) with 30bp tails that were reverse complements of the 

adjacent fragments. Finally, the forward primer used to amplify fragment (1) and the 

reverse primer used to amplify fragment (4) were used to fuse the entire four-fragment 

gene replacement construct. The amplification system is the same with N-terminal GFP 

fusion protocols described above. The construct was transformed to AHS65 to achieve 

pBud4-Axl2-GFP and verified by both PCR and sequencing through the promoter region. 

Two strains (AHS657 and AHS659) were finally chosen out of 10 sequenced strains 

since there are only two nuclei changes from wild type on the pbud4 sequence. The same 

method was used to make alcA-Axl2-GFP, except for the fragment alcA promoter 

amplified from pMCB17apx (Efimov 2003). The similar strategy was used to make the 

pAlx2-Bud4 construct with (1) a 1.5kb sequence upstream of Bud4, (2) pryoA
A.f. 

http://www.broadinstitute.org/annotation/genome/Aspergillus_group/multihome.html
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marker from pTN1, (3) a 907bp sequence upstream of Axl2 and the fragment (4) was 

amplified from strain AHS41 through start codon of GFP sequence to 1.5kb inside of 

Bud4. The fusion PCR construct was transformed to TNO2A3 to achieve pAxl2-GFP-

Bud4. 

  

Conidiophore observation 

        Conidiophore development was monitored by using the sandwich coverslip method 

described by LIN and MOMANY (2003). Briefly, 1ml of melted MAGUU media was 

placed on a coverslip that was transferred to the surface of a 4% water agar plate. The 

coverslip was inoculated with spores once the media had solidified, whereupon a second 

coverslip was placed on top. After 3-4 days, conidiophores had formed and become 

attached to the top coverslip, which was then dipped into 100% ethanol and mounted for 

DIC microscopy. For Calcoflour staining, the coverslips were fixed and stained after 

ethanol treatment. 

Spore counting for sexual development  

100µl conidium suspension was spread to minimal media with the concentration 

around 10
4
/ml. After incubated for 8 days at 28°C (dark) and 24°C (light), agar squares 

with spore lawn on the top were sampled every day with a borer of 1 cm diameter until 

19 days. The agar squares were crushed in 1.5ml eppendoff tubes, mixed with 1ml 0.5% 

Tween20 and vertex at mid-speed for one hour to shake off conidia and hülle cell and 

break cleistothecia. The spore suspension is diluted 100 times and counted with 

hemocytometer (Fisher Scientific). 
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Examining GFP localization on conidiophores 

        To localize GFP-Bud4 and Axl2-GFP, cellophane stripes were used to synchronize 

and helped to handle conidiation from plates. Briefly, sterilized cellophane stripes (~1cm 

*7cm) were placed on MAG plates, and then diluted spore suspension (10
4
/ml) was 

spread on the top of stripes (~100 spores). After 24 hrs incubated at 28°C, stalks start to 

form on the surface of cellophane stripes. Every one to two hours, a stripe a time can be 

peeled from the plates and mounted with YGV liquid media for fluorescent screening for 

Axl2 localization at each developmental stage. 

 

RT-PCR from RNA extracted from normal and induced culture    

        All strains were grown in glucose media for biomass overnight as non-induced 

condition. Mycelia was collected by vacuum-filtering on Whatman filter paper and 

washed with 1x PBS buffer. Half of the biomass was transfered to minimal media using 

threonine as solo carbon source as induced condition. For monitoring gene expression 

during conidiation, filter papers with biomass on top were cut in half and placed on 

glucose and threonine plates for 1day and 4 days respectively to inducing conidiation. We 

grew TPM1 and TTA1 in MNV-glucose overnight for normal expression of BrlA and 

AbaA for biomass. The biomass then was transfered to MNV-thrieonine for induction of 

both genes. Samples were taken at 0, 2, 4, 6 hours respectively. The cultures with 

conidiophores were then harvested and ground in liquid nitrogen. RNA was extracted by 

using Trizol (Invitrogen) and purified by RNAeasy Clean Kit (Qiagen) as described in 

lab protocol. RT-PCR was performed using the Ambion RETROscript Kit with the 3’ 

primer oligoDT.  
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Microscopy 

Digital images of plates were collected with an Olympus C-3020ZOOM digital camera. 

Differential interference contrast (DIC) and fluorescent images were collected with either 

an Olympus BX51 microscope with a reflected fluorescence system fitted with a 

Photometrics CoolSnap HQ camera or an Olympus Fluoview confocal laser-scanning 

microscope. Images were processed with IPLab Scientific Image Processing 3.5.5 

(Scanalytics Inc., Fairfax, VA) and Adobe Photoshop 6.0 (Adobe Systems Incorporated, 

San Jose, CA). 

 

RESULTS 

Identification of A. nidulans Axl2 and Bud4 

The original annotation of the A. nidulans genome revealed the existence of 

potential homologues of the axial budding markers Bud4 and Axl2 (Harris and Momany 

2004; Galagan et al., 2005). AnBud4 (AN6150.3) is a predicted 1433 AA protein that 

contains a C-terminal anillin-like (DUF1709) domain followed by a single pleckstrin-

homology (PH) domain (Fig. 3-2A). Homologues of AnBud4 (>38% identity over their 

entire length) exist in all sequenced euascomycete genomes. Similarity between AnBud4 

and its hemiascomycete homologues is solely confined to the DUF1709 and PH domains, 

and ranges from 41 to 51%. AnAxl2 (AN1359.3) is a predicted 929 AA protein that 

contains two Dystroglycan-type cadherin-like domains (CADG) close to its N-terminus 

(Fig. 3-2B). These two cadherin-homologous domains are suspected to bind calcium. It 

has 29% similarity with its S. cerevisiae homologue and is relatively highly conserved at 

the N-terminus. 
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Role of Axl2 in A. nidulans morphogenesis 

To determine possible function of AnAxl2, ΔAnaxl2 mutants were made by PCR 

mediated gene replacement from the wild type GR5 strain. After 7 days of growth on 

minimal plates, colonies of AHS6 (ΔAnaxl2::pyroA
A.n

, hereafter referred to as ΔAnaxl2), 

appeared restricted growth compared to wild type GR5 which produced about 5 times 

less condia than GR5 on MNUU(Fig. 3-3 and Table 3-3). On MAGUU, the colony size 

was similar between ΔAnaxl2 mutants and GR5. Notably, ΔAnaxl2 mutants had an early 

entry into sexual cycle as yellowish color (hülle cells) and black dots (fruiting bodies) are 

visible compared with GR5 on both minimal and rich media. Coverslip cultures were 

used to examine Δaxl2 mutants for defects in hyphal morphogenesis. No significant 

morphological defect was found during vegetative growth. 

To determine the possible basis of the conidiation defects, conidiophores from 

ΔAnaxl2 mutants as well as wildtype controls were imaged using a previously described 

“sandwich slide” protocol (LIN and MOMANY 2003). Matulae and phialides of 

ΔAnaxl2 are normal but only bear one layer of spores on the tops of phialides (Fig. 3-4). 

This is in contrast with wildtype conidiophores with long chains of spores.  

 

Axl2 localizes to the top of phialides. 

To localize AnAxl2, a C-terminal AnAxl2-GFP stain (AHS65) was generated 

with the same strategy as gene replacement. In this strain, the sole functional source of 

AnAxl2 was supplied by the AnAxl2::GFP fusion protein expressed under the control of 

native promoter sequences (Fig. 3-5A). For localization of AnAxl2-GFP in vegetative 

growth, spores were inoculated on coverslips in liquid MNUU for 12h and the coverlip 
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was mounted and examined under the fluorescent microscope. AnAxl2-GFP could not be 

localized on hyphal surface, hyphal tips and septation site during vegetative growth. To 

further examine the localization on conidiophores, conidia of AnAxl2-GFP strain were 

inoculated on cellophane stripes placed on MAG plates to synchronize condiophore 

growth. After 20 hours, conidiophore stalks started to form from cellophane stripes and 

one stripe at a time was peeled and mounted with YGV and examined for Axl2-GFP 

localization every hour. The timing of conidiation on cellophane stripes was also 

dependent on inoculum density. AnAxl2-GFP localization was neither found 

in hyphae nor on the top of vesicles and metulae during the early stages of conidiophore 

development.  After about 30 hours, conidiophores were fully developed and bright 

AnAxl2-GFP rings were solely localized between phialides and the nascent conidia on 

mature conidiophores but not the top of phialides before generating conidia (Fig. 3-6). 

The results suggest that AnAxl2 does not function in vegetative growth but only in the 

last step of conidiation and its expression is regulated during cytokinesis.  

 

Roles of Bud4 in A.nidulans morphogenesis 

To determine the possible of function AnBud4 during hyphal morphogenesis, 

mutants possessing complete gene deletions were generated using protocols discussed 

above (YANG et al 2004; NAYAK et al 2006). The Bud4::pryoA
A.f.

 deletion 

mutants (AHS4, hereafter referred to as ΔAnbud4) formed colonies that were slightly 

smaller than wild type and were notably devoid of conidia (Fig. 3-7A.C). On minimal 

media, ΔAnbud4 mutants produced ~1850-fold fewer conidia/mL compared to their 

parental strain TN02A3. A similar effect (i.e., ~710-fold reduction for Δbud4 compared 
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to TN02A3) was observed on rich media. “Sandwich slide” protocol was also used to 

determine the possible defect of conidophore.  A range of defects was noted, including 

elongated metulae and phialides, as well as conidiodpores that apparently failed to 

undergo cytokinesis (Fig 3-7E, F, G.). Because a stage-specific arrest was not observed, 

it seems likely that AnBud4 is required at multiple steps 

during conidiophore development. 

              Coverslip cultures were used to examine ΔAnbud4 mutants for defects in hyphal 

morphogenesis. The timing and pattern of spore polarization in ΔAnbud4 mutants were 

indistinguishable from wildtype, and the resulting hyphae displayed no obvious defects in 

polarized growth (Fig. 3-8). On the other hand, septum formation was compromised. 

Although ΔAnbud4 mutants were capable of forming septa (Fig.3-8B the small panel), 

they did so only after a pronounced delay (Table 3-4). 

In S. cerevisiae, genetic analysis demonstrated that Bud3 and Bud4 function 

together to specify the axial budding pattern (Marston, Chen et al. 2001). To determine if 

a similar epistatic relationship underlies the roles of AnBud3 and AnBud4 in septum 

formation, we generated Δbud3::pyrG
A.f.

;Δbud4::pyroA
A.f.

 double mutants (AHS24) by a 

standard cross. Because these mutants displayed a synthetic slow growth phenotype (Fig. 

3-7B, C, and D), we conclude that AnBud3 and AnBud4 have at least one distinct 

function and are thus not obligate partners. 

 

Localization of Bud4 in A. nidulans 

              To localize AnBud4, we generated strains in which the sole functional source of 

AnBud4 was supplied by a GFP::bud4 fusion gene expressed under the control of native 



104 
 

promoter sequences. AnBud4 formed constricting rings that localize to septation sites 

(Fig 3-9. A and B). Furthermore, AnBud4 rings appeared at incipient septation sites prior 

to the formation of any detectable septum (i.e., 40/200 GFP-AnBud4 rings were not 

associated with a septum; FIG 3-9 C-E.). However, unlike AnBud3, AnBud4 rings split 

in two as septum formation progressed. For those cases where we observed a double 

AnBud4 ring, the Calcofluor-stained septum overlay one of the rings (FIG 3-9 F-H.), 

though there was no obvious preference as to which ring it co-localized with. We also 

observed that one of the double AnBud4 rings was subsequently lost. As shown 

in FIG. 3-10, we followed four double AnBud4 rings, two of which were associated with 

a detectable septum (observed using DIC). In each case, one of the two rings had 

disappeared within 20 minutes, and all the remaining rings were now associated with a 

septum. Because of photo bleaching, we could not follow the fate of these remaining 

rings. Nevertheless, they presumably constrict, since all constricting AnBud4 rings that 

we observed were single rings that co-localized with a septum. 

              To examine the localization of GFP-Anbud4 on developmental structure, 

cellophane strip have been used to synchronize condiophore development. Anbud4 

formed bright rings between nascent metular buds and vesicles, then it localized between 

metulae and phialides. Finally, it formed relative weak rings between phialides and 

nascent spores like AnAxl2 (Fig. 3-11). These results suggest that Anbud4 has a 

ubiquitous function during conidiophore development.  

Axl2 was upregulated when AbaA and BlrA expression were induced 

As the key transcription factor that regulates condiphore development, BrlA binds 

to C/A-G/A-AGGG-G/A on the promoter sequence to initiate vesicle formation and 
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further regulate all stages of conidiation. The later transcription factor AbaA binds to 

CATTCC/T to initiate phialide formation. According to distance from the upstream gene 

(An1358.3), we scaned 867nt upstream of AnAxl2 as the promoter region; two AbaA and 

one BrlA binding sites were found in this region (pAxl2). Combing the result with the 

sole localization on top of phialides during conidiation, expression of Axl2 might be 

regulated in a BrlA and AbaA dependent manner. To induce the expression of AbaA and 

BrlA, strains TPM1 (alcA::BrlA; BrlA ) and TTA1 (alcA::AbaA; AbaA ) strains were 

used to examine the expression of Axl2 at induced conditions. Both strains have two 

copies of BrlA or AbaA respectively: one copy under its endogenous promoter and the 

other under alcA promoter control. Total RNA was extracted from A28, TPM1 and TTA1, 

and then half quantified RTPCR was used to determine AnAxl2 expression in induction 

conditions (Fig 3-12). AnAxl2 expression started to increase after two hours of induction 

and reached a maximum at 4 hours.  These results indicate that Axl2 expression is 

regulated by BrlA and AbaA at the transcriptional level. 

   

Axl2 localization under Bud4 and alcA promoter control 

Cell cycle-dependent transcription is prevalent in yeast and the periodic transcription 

serves as a general mechanism of regulation within the cell cycle. In S. cerevisiae, Bud4 

expression occured at M phase (Cho, Campbell et al. 1998; Spellman, Sherlock et al. 

1998) and Bud10 (Axl2) is expressed at late G1 (Lord, Yang et al. 2000).  As shown 

above, Axl2-GFP localization has solely been found between phialides and nascent 

spores but GFP-Bud4 was found prevalent on conidiophores. If bud4 and axl2 were 

solely transcriptional controlled, promoter swap experiment would change their protein 
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localization pattern. The length of pAxl2 and pBud4 were decided by the distance 

between the upstream genes and AnAxl2 or AnBud4 from the database of the Aspergillus 

Genome at the Broad Institute. Sequences of pAxl2 and pBud4 are 994bp and 1019 

respectively. The four ways PCR, which was similar to the five way PCR used for N-

terminal GFP construction, was used to synthesize the constructs for transforming the 

Axl2-GFP strain and TNO2A3 strain. The pBud4-Axl2-GFP (AHS651) and pAxl2-GFP-

Bud4 (AHS451) strains were achieved by inserting pyroA-pbud4 and pyroA-paxl2 

constructs to replace the endogenous promoters of Axl2 and Bud4 respectively (Fig. 3-

13).  For better controlling the expression of AnAxl2, the inducible alcA promoter was 

used to replace endogenous promoter of AnAxl2 in AnAxl2-GFP strains in the same way 

(Stain AHS652).  

The RNA expression under normal (glucose) and induced (threonine) condition 

was shown on figure (Fig. 3-14). RNA level increased in both pBud4::Axl2 and aclA(p)-

::Alx2 strains, which were expected, after 12 hours of induction during vegetative growth 

in threonine media. The same results have been found during conidiophore development 

on threonine plates.  

Coverslip culture and cellophane stripes were used to examine pBud4::Axl2-GFP 

localization in hyphae and conidiophores. Surprisingly, pbud4::Axl2-GFP localized to 

vacuoles or other organelles (Fig. 3-15A,B) inside of cells during vegetative growth, 

which was not found in the wildtype. During asexual development, pBud4::Axl2-GFP 

could not properly localized between phialides and nascent spores, and on the contrary, it 

formed bright dots inside of conidophore cells (Fig. 3-15C, D ), which was similar 

in hyphae. These results suggested that earlier expression of Axl2 (in hyphae) and 
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improper expression timing (early stage of conidation) were not required and that the 

excessive Axl2 was dumped into vacuoles for degradation. Moreover, we used the 

submerged culture to examine AnAxl2-GFP on reduced conidiophores of pBud4::Axl2-

GFP strain for better views. In most cases, Axl2-GFP accumulated as patches at cortical 

sites between phialides and spores or uniformly distributed throughout spore surface (Fig 

3-15E, F), though rare examples of a complete ring were occasionally observed (Fig 3-

15G, H).  

We also used alcA promoter for better control of AnAxl2 expression. alcA::Axl2 

expression was shut down in glucose media and increases in threonine media as sole 

carbon source. alcA::Axl2-GFP stains formed colonies slightly smaller than wildtype but 

had dramatically decreased conidiophore density on MN-threonine (Fig 3-16A, B). A 

sandwich method was used to examine condiophore structure. The organization of 

metulae and phialides on vesicles was close to normal with long spore chains. This 

showed that excessive expression of AnAxl2 did affect the density of asexual 

development but had little effect on conidiophore structure.  

Both cellophane strips and submerged culture were used to determine the 

alcA::Axl2-GFP localization during induction in MN-Thr media.  By both methods, 

Axl2-GFP could not localize anywhere on the cortical of conidiophores but formed bright 

localizations inside vegetative cells (Fig 3-16C, D). Accordingly, expression of AnAxl2 

is regulated by both spatial and timing during asexual development. Excessive copies of  

AnAxl2 may disrupt its subtle interaction with partner proteins for proper localization 

between phialides and nascent spores. 
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Bud4 localizaion under AnAxl2 promoter control 

We failed to identify the pAxl2-GFP-Bud4 mutants from transformation plates since the 

transformants appeared dramatically sick and they formed tiny colonies notably devoid of 

conidia. Interestingly, this phenotype was not consistent with the ΔAnbud4 mutants. This 

suggested that proper expression of AnBud4 might have essential function for the 

viability of A. nidulans. I suspected that paxl2-Bud4 stains could conidiate better on rich 

media. Thus, fourteen tansformants were transferred to MAGUU by dissecting colony 

chunks from original transformation plates and the spores could be harvested for further 

morphological examination. 

 

 Interaction between septins and Axl2 in A. nidulans 

Axl2 was first found to suppress the double mutation of Spa2 and Cdc10-10 in 

budding yeast. Cdc10p is one of the septin ring components (Longtine, DeMarini et al. 

1996; Roemer, Madden et al. 1996). In S. cerevisiae, overexpression of Axl2p can induce 

elongated bud morphology and mislocalization of septins to the bud-tip region and 

disorganization at the bud neck. In addition, multicopy Axl2 can suppress cdc42
V36G 

cells 

which have pronounced defects in septin organization (Gao, Sperber et al. 2007). Other 

reports showed that Bud4 co-localized with septins in a septin dependent manner in S. 

cerevisiae (Sanders and Herskowitz 1996; Gladfelter, Kozubowski et al. 2005). In A. 

nidulans, septin AspD is classified to the Cdcd10 group (Momany, Zhao et al. 2001).   

 We wanted to determine the interaction between both Axl2/Bud4 and septins by 

making double mutants through a normal sexual cross. ARL144, ARL146, ARL148 and 

ARL150 were null mutants of AspA, AspC, AspD, AspE (provided by Dr. Momany’s lab, 



109 
 

AspD and AspE are unpublished strains). Δaxl2 Δseptins double mutants were achieved 

by crossing AHS6 (Δaxl2) to septin null mutants. After growth on minimal media for 3 

days, colony phenotypes of double mutants showed the following variations to wildtype. 

Δaxl2 ΔaspE mutants and Δaxl2 ΔaspC mutants indicated a single septin deletion 

phenotype (both ΔaspC and ΔaspE are epistatic to Δaxl2). Only Δaxl2 ΔaspD showed a 

Δaxl2 phenotype, indicating that Δaxl2 was epistatic to ΔaspD (Fig 3-17). These results 

suggest that Axl2 may directly interact with AspD during conidiophore development.  

 

Vec8 and Axl2 are involved in sexual development. 

Vac8 is a phosphorylated and palmitoylated vacuolar membrane protein that 

interacts with Atg13p and is required for the cytoplasm-to-vacuole targeting (Cvt) 

pathway in autophages. When using yeast Vac8p sequence to do BLASTp search in the 

Aspergillus genome database, AnVac8 was sequenced on two different contigs (1.114 and 

1.237). After aligning the two sequences into one large 6065bp sequence, the AnVac8 

locus was deleted from the genome by gene replacement with the pyroA
A.f.

 marker. 

Notably, ΔAnvac8 had no conidiation defect on MAG but decreased spore production on 

minimal media, which was consistent with its possible function on nitrogen source 

utilization during autophages (Kikuma, Ohneda et al. 2006). Using BLASTp in the NCBI 

database, we noticed that AnVac8 had three ARM domains which stand for 

Armadillo/beta-catenin-like repeats. Moreover, we found that AnAxl2 was the only 

protein with two cadherin domains on its N-terminus in A. nidulans. Interestingly, 

asexual cycles (golden hulle cells and black fruiting bodies) were observed early on 

ΔAnvac8 and ΔAnaxl2 colonies compared to wild type (Fig. 3-18). Thus, in order to 
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determine the function of AnVac8 and AnAxl2 during the sexual cycle, conidia, hülle 

cells and ascospores were counted from 9 to 19 days grown both in dark and light.  The 

countings were repeated twice and averaged.  The findings were three fold (Table 3-3): 

 First, both ΔAnaxl2 and ΔAnvac8 mutants produced more sexual spores than 

wildtype in dark and light. In dark at 28°C, the number of hülle cells peaked at the tenth 

day in ΔAnaxl2 mutants and ΔAnvac8 mutants. Whereas the peak of hülle cells in 

wildtype was half that of ΔAnaxl2 and 1/5 that of ΔAnvac8 and peaked at the twelfth day. 

Notably, ΔAnvac8 mutants produced about 3 times the number of hülle cells as the 

ΔAnaxl2 mutants. 

Second, the number of ascospores in ΔAnaxl2 mutants kept increasing up to 19 

days but stabilized after 14 days. One explanation for this result was that ΔAnaxl2 

mutants produced more cleistothecia than wildtype and would reach a much higher peak 

after all the cleitothecia mature. Notably, the ascospore production was blocked or at 

least severely delayed in ΔAnvac8 mutant strains.   

Third, all three strains have a wildtype VeA gene (a gene whose product activates 

the sexual cycle in dark) but early entry into the sexual cycle was not affected by light in 

both ΔAnxl2 and ΔAnvac8 mutant strains, even though light did increased conidium 

production in ΔAnaxl2 and ΔAnvac8 mutant strains and decreased the generation of hülle 

cells and ascospores. 

Accordingly, these results suggest that AnAxl2 and AnVac8 can suppress sexual 

development in a both light and VeA independent manner.  

 

Discussion 
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The purpose of this chapter is to characterize the function of the A. nidulans 

homologues of the yeast axial bud site selection markers Axl2 and Bud4. Our 

observations implicate AnAxl2 and AnBud4 in septum formation and secondary 

development. In particular, AnBud4 appears to function in septum formation and might 

facilitate septin organization at septation sites. During secondary development, AnAxl2 

functions solely at the late stage of conidiophore development, whereas AnBud4 is active 

at the whole conidiophore structure. Both AnAxl2 and AnBud4 are regulated by 

transcription factors (BrlA and AbaA), but the timing of proper expression is required for 

their right localization and function. Our results also suggest that Axl2 may be involved 

in sexual development through the cadherin domain interaction with the catenin domain 

of AnVac8. 

 

The roles of Bud4 in septum formation 

Our analysis of AnBud4 is consistent with the notion that it associates with the 

septins and facilitates their function during septum formation. In particular, the AnBud4 

localization pattern during septum formation is almost identical to that of AspB. Both 

proteins initially form a single ring that converts to a double ring, followed by the loss of 

one of the two rings. Because of the proximity of the remaining AnBud4 ring to the 

septum in living hyphae, we could not determine if the basal ring was preferentially lost 

as is the case for AspB. (note that AspB was localized following fixation, which tends to 

spread the contractile actin ring; SHARPLESS and HARRIS, 2002). In addition to S. 

cerevisiae, Bud4 homologues in Candida albicans (Int1) and Schizosaccharomyces 

pombe (Mid2) also associate with septins and have been implicated in the organization of 
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septin rings (GALE et al. 2001; BERLIN et al. 2003; TASTO et al. 2003). Thus, it seems 

likely that septin organization is a conserved function of Bud4 homologues. Indeed, 

based on their domain organization, these proteins may represent the fungal analogues of 

the animal septin organizing protein anillin (HICKSON and O’FARRELL 2008). 

Nevertheless, the observation that loss of AnBud4 did not prevent, but only delayed, 

septum formation suggests that A. nidulans septins are capable of organizing a ring in the 

absence of Bud4. Alternatively, as noted in S. pombe, septins may be dispensable for 

septation in A. nidulans.   

 Although AnBud3 and AnBud4 both function in septum formation, our results 

show that they do not have an epistatic relationship. The synthetic slow growth 

phenotype observed in Δbud3 Δbud4 double mutant strains implies that at least one of 

these proteins has an additional function that is not shared with the other (BOONE et al. 

2007). The nature of this function is not known but, assuming that AnBud4 does promote 

septin organization, it might be related to the roles of A. nidulans septins in additional 

functions beyond their involvement in septum formation (WESTFALL and MOMANY 

2002). Nevertheless, this observation does not eliminate the possibility that AnBud3 and 

AnBud4 directly interact during the process of septation. Indeed, we strongly suspect that 

AnBud4 and the septins serve as a scaffold that enables the Bud3-Rho4 GTPase module 

to direct assembly of the CAR, and are currently undertaking experiments to test this idea. 

  

Collectively, these observations imply that neither AnBud3 nor AnBud4 are 

required for the establishment or maintenance of hyphal polarity, but do show that they 

are needed for normal septation. Notably, the defects in septum formation may account 
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for the abnormal development observed in Δbud3 and Δbud4 mutant strains, as 

reduced conidiation has previously been associated with defects in septum formation 

(HARRIS et al. 1994). Finally, these results suggest that AnBud3 and AnBud4 may not 

regulate septation via the same mechanism. 

The role of Bud4 and Axl2 in conidiophore development 

According to their localization patterns, AnAxl2 solely localizes between 

phialides and nascent spores, whereas AnBud4 localizes to all developmental stages of 

the conidiophore (Fig 3-19). These localizations have been proved by observing 

conidiophore structures in the corresponding deletion mutant strains. Because of the yeast 

Alx2 homologue is the suppressor of ΔSpa2 and Cdc10-10 double mutant strains, by 

analogy, AnAxl2 may function at the top of phialides through interaction with AspD, the 

CDC10 ortholog.  The reasoning is as follows. First, in S. cerevisiae, one third yeast Axl2 

sequence close to the C-terminus can partially restore the septin organization defect, 

which sequence is conservative in AnAxl2. Second, Axl2 may directly interact with 

AspD because ΔAnaxl2 ΔaspD double mutant strains suggest a ΔAnaxl2 phenotype 

which is different with other AnAxl2 and septin double deletion mutants. This suggests 

that AnAxl2 may directly organize AspD to the sporulation neck. An in vivo protein-

protien can be done to test this hypothesis in the future. 

 

Proper expression of Axl2 and Bud4 is required for their localization 

Axl2-GFP cannot localize to the right position after promoter swap with Bud4. This 

result is consistent with disruption of Axl2 localization to the neck in budding yeast when 

Axl2 was under bud3 promoter control (Gao, Sperber et al. 2007). Thus, timing of Axl2 
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expression is critical for its proper localization and is not solely transcriptional 

determined. pBud4-Axl2-GFP can localize to vacuoles or Golgi during vegetative growth, 

which is not found in wildtype. This indicates that excessive axl2 is not required and is 

therefore dumped for degradation. Similar to the Axl2-GFP localization in budding yeast 

with promoter swap, pBud4-Axl2-GFP is uniformly distributed to surface of spores and 

formed thick deposition to the neck walls in reduced conidiophores. This suggests a pulse 

of exotic Axl2 at a proper mitotic stage will restore the correct localization between 

phialides and spores. Interestingly, high expression of Axl2 under the alcA promoter will 

decrease the number of conidiophores, but not affect the conidiophore structure.  

 

The role of Axl2 and Vac8 in sexual development 

We have observed that both ΔAnaxl2 and ΔAnvac8 mutant strains have early 

entry into the sexual cycle, and have the higher ratio of sexual spores to condia compared 

to wildtype. The suppression of asexual development shows difference between the two 

mutants. Compared with wildtype, ΔAnaxl2 mutant strains demonstrate a high 

production of ascospores with two fold the number of hülle cells compared to wildtype. 

Interestingly, ΔAnvac8 mutant strains produce much higher (around 5-10 times) number 

of hülle cells but almost was blocked in ascospore generation. The VeA gene is proposed 

to be a negative regulator of asexual development and its function can be inhibited by 

light (Mooney and Yager 1990; Timberlake 1990; Kim, Han et al. 2002). When grown in 

light, ΔAnaxl2 mutant strains produce four fold more condia in the dark compared to 

wildtype, which can be expected since VeA is inhibited. However, early entry into the 

sexual stage is observed 5-7 days early, even though production of both sexual cells is 
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reduced. Thus AnAxl2 represses sexual development in a light and VeA independent 

manner. 

As the possible mechanism, cadherin and beta-catenin interaction may be 

involved in this process through Cdc42 and RacA. Cdc42 and Rac1 have been well 

characterized as key player for polarity eshtablishment in A.nidulans (Virag, Lee et al. 

2007). A recent report shows that the Rho-family GTPase Cdc42 may play a critical role 

by controlling cadherin-based intercellular junctions and cell polarity in many species 

(Chen, Ha et al. 2006). In addition, E-cadherin can negatively regulate cell proliferation 

and migration by reducing the level of the predominant GTP bound form of Rho family 

protein RhoA or Cdc42 in mammal cells (Asnaghi, Vass et al. 2010). Since both AnAxl2 

and AnVac8 have common function in sexual development, AnAxl2 could interact with 

AnVac8 (catenin) as a cadherin through Cdc42 and RacA to repress sexual development.  
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Figure 3-1. The life cycle of Aspergillus nidulans  
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Figure 3-2. Amino acid (AA) sequence and domains of AnBud4 and AnAxl2. A. AA 

sequence of AnBud4 sequence, DuFdomain (pink) span from ~800-1100 and PH domain 

(blue) is adjacent to the DuFdomain. B. AA seqeuence of AnAxl2, the two cadherin 

domains are in the C-terminus.  
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Figure 3-3. Effects of the ΔAnaxl2 deletion on colony morphology. A and B. Colony 

morphologies of strain TNO2A3 grown on MNUU (A) minimal media and MAGUU (B) 

rich media for 7 days. C and D. Colony morphologies of strain AHS6 (ΔAnaxl2) grown 

on MNUU (C) and MAGUU (D) for 7 days. Notice the black dots (cleistothecia) on C 

and yellow patches (hülle cells) on D in the red circles. 
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Figure 3-4. Effect of ΔAnaxl2 on condiophore morphology. Both ΔAnaxl2 and TNO2A3 

(wildtype) were stained with calcofluor and photoes were taken at 60X and 40X 

respectively.  Arrows indicate septa of foot cells on wild type. Notice only one layer of 

spores from conidiophore of ΔAnaxl2. 
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Figure 3-5. Drawing for AnAxl2::GFP C-terminal fusion (A) and GFP::AnBud4 N-

terminal fusion (B). 
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Figure 3-6. Localization of AnAxl2-GFP. A, C and D. AnAxl2-GFP rings (white arrows) 

following growth of strain AHS65 on YGVUU (top with cellophane) for 27 hours at 

28°C. B. DIC photo corresponding to A. 
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Figure 3-7. Effects of the ΔAnbud4 deletion on colony morphology and conidiation. A-C. 

Colony morphologies of strains TNO2A3 (wild type; A), AHS3 (ΔAnbud3; B), and 

AHS4 (ΔAnbud4; C) grown on minimal medium (MNUU) for 9 days. D. 

ΔAnbud3::pyrG
A.f.

 ΔAnbud4::pyroA
A.f.

 double mutants (AHS24) exhibit a synthetic slow 

growth phenotype. E. Wildtype conidiophore. F and G. ΔAnbud4 conidiophores. Fused 

metulae and phialides (F), as well as an abnormal secondary conidiophore (G) were 

observed. Bar=10μm. 
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Figure 3-8. AnBud4 is involved in septum formation. A. Wildtype. B. ΔAnbud4 . Both 

hyphae were grown in YGVUU for 12 hours. Note the absence of septa in the ΔAnbud4 

mutants. Anbud4 hyphae grown on YGVUU for 16 hours, at which time septa are now 

present. A close-up of a septation site is shown in the inset. Septa and nuclei were 

visualized in fixed hyphae using Calcofulor and Hoechst 33258, respectively. Arrows 

indicate septa. 
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Figure 3-9. Localization of GFP-AnBud4 in hyphae. Constricting GFP-AnBud4 ring (A) 

and corresponding septum (B) following growth of strain AHS42 on YGV for 15 hours at 

28°C. C-K. Coordination of GFP-AnBud4 ring dynamics with septum deposition. C, F, 

and I. GFP-AnBud4 localization. D, G, and J. Calcofluor staining to visualize septa and 

cell walls. E, H, and K. Merged images. C-E. GFP-AnBud4 localization at septation site 

prior to appearance of the visible septum. F-H. Double GFP-AnBud4 rings. Co-

localization of associated septum with the apical ring. I-K. Double GFP-AnBud4 rings. 

Co-localization of associated septum with the basal ring. Red arrows indicate the co-

localization of septum and rings. Bars=3µm. 
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Figure 3-10. GFP-AnBud4 ring dynamics. Double GFP-AnBud4 rings were identified 

and images captured at times zero (A,B,E,F) and 20 mins. (C,D,G,H). A-D. The double 

GFP-AnBud4 rings were not associated with a septum. Following 20 min, one of the 

rings had disappeared and a septum was now visible (black arrows). E-H. The double 

GFP-AnBud4 rings were associated with a septum. Following 20 min, one of the rings 

had disappeared and a septum was now visible (black arrow). Bar=3µm. 
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Figure 3-11. Localization of GFP-AnBud4 during asexual development. GFP-AnBud4 

rings localized between vesicle and nasenct metulae (A.), then between metulae and 

nascent phialides (C.) finally, the rings appeared between phialides and nascent spores 

(E.). B.D.F. DIC images correspond to A, C, E respectively. 
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Figure 3-12. RT-PCR of AnAxl2 expression During BrlA (TTA1) and AbaA (TPM1) 

induction compared with A28 (Wildtype). The red cycles indicates the high level of 

AnAxl2 expression at 2 and 4 hours in both TTA1 and TPM1 compared with wildtype. 
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Figure 3-13. Constructs for AnAxl2 and AnBu4 promoter swap and AnAxl2 under alcA 

promoter 
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Figure 3-14. AnAxl2 expression under different promoters during hyphal growth. 

Upper gel indicates RT-PCR of AnAxl2 expression in glucose (lane 1-6) and in threonine 

(lan7-12). The lower gel is RT-PCR of tubulin C (tubC) expression as input control. 

AnAxl2 has a high level expression under alcA promoter (lane 9, 10) and under pBud4 

promoter (lane 11, 12) compared to wild type (lane 7, 8). 
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Figure 3-15. Localization of AnAxl2-GFP under pAnbud4 promoter control. A and C. 

localized into vacuoles in hyphae(A, white arrows) and conidiophores (C, white arrows). 

B and D. DIC images corresponding to A and C respectively. E and G. localization of 

AnAxl2-GFP in reduced conidophores grown in MN-Thr for 4 days. Dashed arrow (G) 

indicates a rare example of an intact AnAxl2-GFP ring, whereas solid arrows mark the 

more prevalent examples of uniform distribution on spore surface and cortical patches at 

neck (E). F and H. DIC images corresponding to E and G respectively. 
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Figure 3-16. Effects of hyper-expression of AnAxl2 on colony morphology. A. 

alcA::Axl2 grown on MN-Thr for 9 days compared wth wildtype (B). Notice the low 

density of conidiation on (A). Hyper induced AnAxl2 fromed bright localization (dots) in 

hyphae (C, red arrows) after growth in MN-Thr for 15 hours. D. DIC image 

corresponding to C.  
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Figure 3-17. Colony morphology of septin mutants, ΔAnaxl2 deletion mutants and their 

crossed double mutants. The arrange of patched colonies is in the table below. Colonies 

were grown on minimal media for 3 days.  ΔAnAxl2 AspD double mutants (the row 

indicated by the black arrow) has a similar phenotype to ΔAnAxl2 (the red arrow). 

 

 

 

 



142 
 

 

 

Figure 3-18. Sexual spore production of WT, ΔAnvac8  and ΔAnAxl2 grown on minimal 

media for 9 days in dark. Black arrows indicate hülle cells prevalent on ΔAnvac8 and 

sporadic on WT.  The red arrow indicates a mature cleistothecium (fruiting body) on 

ΔAnAxl2. 
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Figure 3-19. Schematic illustration of AnAxl2-GFP and GFP-AnBud4 localization. Red 

arrows indicate GFP-AnBud4 asnd the green arrow indicates AnAxl2-GFP. 
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Table 3-1 

Strain Genotype Source or reference 

A28 pabaA6 biA1 FGSC (accession no. 

A28) 

GR5 pyrG89 wA3 pyroA4 FGSC (accession no. 

A773) 

TNO2A3 pyrG89; argB2; pyroA4 nkuA::argB   

AHS4 pyrG89; argB2; Δbud4::pyroA; pyroA4; nkuA::argB This study 

AHS41 pyrG89; argB2; gfp::bud4::pyr4; 

pyroA4; nkuA::argB 

This study 

AHS6 pyrG89; Δaxl2::pyroA; pyroA4;  wA3 This study 

AHS65 pyrG89; argB2; Axl2::GFP; pyroA4; nkuA::argB  This study 

AHS61 pyrG89; argB2; pyroA4; 

Axl2::GFP::pyr4; nkuA::argB 

This study 

AHS651 pyrG89; argB2; pBud4::Axl2::GFP; pyroA4; 

nkuA::argB 

This study 

AHS652 pyrG89; argB2; pryoA; alcA(p)::Axl2::GFP; pyroA4; 

nkuA::argB 

This study 

AHS252 yA2; argB2; pyroA4 This study 

AAV123.1 pyrG89 sepA::gfp::pyr-4; argB2; 

pyroA4 ΔnkuA::argB 

Virag et al, 2007 

ACP115 tpmA::GFP::pyr-4; pyrG89; wA3 Pearson et al, 2004 

AHS52 pyrG89; argB2;gfp::Bud4::pyr4; pyroA4; 

sepA1 nkuA::argB 

This study 

AHS53 sepA1; tpmA::GFP::pyr4;pyrG89 This study 

AHS7 pyrG89; argB2; Δmsb2::pyroA; pyroA4; nkuA::argB This study 

AHS8 pyrG89; argB2; Δrga1::pyroA; pyroA4; nkuA::argB This study 

AHS81 pyrG89; argB2; 

Rga1::GFP::pyr4; pyroA4;nkuA::argB 

This study 
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Table 3-3 

Start 

Sep 12 

9d (Sep 

21th) 

10d 11d 12d 14d 16d 17d 19d 

28°C in dark 

TN 4300 

6.5 

2 

3138 

2.5 

0 

 

4323 

7.5 

5.5 

3858 

11.5 

20.5 

3575 

5 

48.5 

3253 

11 

47 

3613 

11.5 

49 

3195 

9 

50 

Axl2 168 

9.5 

9.4 

475 

19 

17 

465 

18 

62 

472 

16 

177 

469 

13.25 

97.5 

738 

16.5 

219 

648 

14.5 

233 

770 

19.5 

247 

Vac8 707 

24.5 

0 

470 

32.5 

0 

412 

31 

0 

686 

25 

0 

536 

55 

0 

570 

65 

1 

448 

51.5 

2.25 

555 

33 

3 

24°C with light 

TN 2958 

1.5 

0 

1910 

0 

0 

1850 

0 

0 

2783 

0 

0 

2422 

0 

0 

3970 

0 

0 

3308 

2.5 

0 

3698 

0.5 

0.5 

Axl2 2058 

11 

0 

2213 

5.5 

0 

1584 

6 

8.75 

2218 

5.25 

25.75 

1808 

8.5 

43 

1895 

7.5 

47 

2313 

7 

33.75 

2087 

13.75 

49.5 

Vac8 231 

7 

0 

675 

22.5 

0 

819 

18 

0 

1158 

13.75 

0 

1308 

16 

0 

1308 

12 

0 

1701 

16.75 

0 

1503 

18.5 

0.5 
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Table 3-4 

13h 16h 

septa 0 1 2 3 >4 0 1 2 3 >4 

TN02A3 103 92 5 0 0 21 69 60 24 26 

100 96 4 0 0 24 72 57 24 25 

106 91 3 0 0 24 82 59 14 22 

average 103 93 4 0 0 23 74 59 21 24 

ΔBud3 200 0 0 0 0 200 0 0 0 0 

200 0 0 0 0 200 0 0 0 0 

200 0 0 0 0 200 0 0 0 0 

average 200 0 0 0 0 200 0 0 0 0 

ΔRho4 200 0 0 0 0 190 10 0 0 0 

200 0 0 0 0 192 8 0 0 0 

199 1 0 0 0 188 12 0 0 0 

average 200 <1 0 0 0 190 10 0 0 0 

ΔBud4 185 15 0 0 0 81 69 38 11 1 

188 11 1 0 0 98 58 33 10 1 

188 12 0 0 0 98 69 24 8 1 

average 187 13 <1 0 0 92 65 32 10 1 

All strains are grown in YGVUU media. At each time course, septa have been counted in 

200 hyphae with similar length. All hyphae counted grew directly from spore, no 

branches were counted. 
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Chapter IV Functional characterization of Cdc42 regulators in 

Aspergillus nidulans 
 

The Cdc42 GTPase plays a central role in signal transduction pathways at controls 

multiple aspects of cellular behavior, including global changes to the cell wall integrity, 

cell polarity, and stress response. Upstream transmembrane landmark proteins guide the 

subsequent signal to Cdc42 to organize and establishment a polarity axis. The Locally 

activated Cdc42 then promotes recruitment of the morphogenetic machinery localization 

during cell surface expansion and cell wall deposition. For its important roles in multiple 

signaling pathways, Cdc42 activity is precisely regulated by Cdc24 (GEF, Guanine 

exchange factors) and GAPs (GTPase activating proteins) including Bem3, Rga1 and 

Rga2. In addition, MSb2 was first found as multicopy suppressor of Cdc24 in yeast. In 

this chapter, some pilot experiments have been performed to examine functions of the 

Cdc42 regulators AnMsb2 and AnRga1 in hyphal and conidiophore morphogenesis. 

 

Introduction 

Cdc42 GTPase signaling and the GTPase activating protein Rga1 

CDC42 is a small GTPase of the Rho-subfamily, which regulates signaling 

pathways that control diverse cellular functions including cell morphology, migration, 

endocytosis and cell cycle progression in many fungi such as Saccharomycetes cerevisiae, 

Ashbya gossypii, Penicillium marneffei and Aspergillus nidulans (Johnson 1999; 

Wendland and Philippsen 2001; Momany 2002; Virag, Lee et al. 2007). In yeast S. 

cerevisiae, Cdc42 and its related proteins act as molecular switches and regulate many 
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cellular processes by mediating the transfer of positional information to the 

morphogenetic machinery. The active form of yeast Cdc42p (GTP-Cdc42p) and inactive 

form (GDP-Cdc42p) have to reach a dynamic balance regulated by its GEF(s) and GAP(s) 

respectively. In its active GTP-bound form, Cdc42p functions via multiple effectors to 

recruit components of the morphogenetic machinery. In S. cerevisiae, Cdc42p localizes to 

sites of growth, including the bud tip, bud, and mother-bud neck. In A. nidulans, the 

cdc42 homologue has first been reported as ModA (Harris and Momany 2004). To 

establish polarity, Cdc42p needs to be recruited to the cell cortex and activated (Chant 

1999; Virag, et al. 2007).  In filamentous fungi, Cdc42 is required for the establishment 

of hyphal polarity in Ashbya gossypii and Candida albicans, however, it is only required 

for the maintenance of hyphal polarity in A. nidulans and Penicillium marneffei (Boyce, 

Hynes et al. 2001; Virag, Lee et al. 2007). Moreover, proper regulation of Cdc42 activity 

is required to form a stable axis of hyphal polarity since a hyperactive form of Cdc42 

(Cdc42
G14V

) and overexpression of Cdc42 resulted in reduced hyphal growth, swollen 

hyphal tips and conidiophore defects (Virag 2007).  

 

Rga1 functions as a GAP of Cdc42  

In S. cerevisiae, there are one GEF (Cdc24) and three GAPs of Cdc42p including 

Rga1p, Bem3p, and Rga2p (Smith, Givan et al. 2002). Each GAP appears to regulate a 

specific function of Cdc42p. Bem3p plays a role in septin organization at the mother-bud 

neck for cytokinesis, whereas Rga1p and Rga2p, which have high sequence similarity, 

mediate interactions between Ste20p (p21-activated kinase, PAK) and Cdc42p for 

haploid invasive growth (Smith et al. 2002).  Rag1p (Rho GTPase activating protein) has 
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two LIM domains at N-terminus and the GAP domain at C-terminus (Stevenson, 

Ferguson et al. 1995). Mutation of Lys-872 in the GAP domain of Rga1p can drastically 

decrease the direct interaction between Rga1p and Cdc42, and decrease its GTPase 

activating protein function (Gladfelter, Bose et al. 2002). Moreover, deletion of Rga1 will 

decrease the interaction between Cdc42 and Ste20 (PAK of the MAP3K Ste11). 

Gladfelter’s lab also proved that Rga1p
K872A

 was unable to suppress the septin-specific 

cdc42 alleles as loss of GAP activity and the lack of suppressor function of Rga1p
K872A

 

might simply reflect its inability to interact normally with Cdc42p.  Moreover, non-axial 

budding patterns have been found for ΔRga1 but not for ΔBem3 and ΔRga2, which 

indicates Rga1 has a distinct function in bud site selection that is not shared by Rga2 and 

Bem3 (Smith, Givan et al. 2002).  

 

Effectors of Cdc42p for MAP kinase pathway 

Cdc42 is the general component which functions upstream of MAP kinase 

pathways for cell wall integrity, pheromone response, osmolarity stress, and invasive 

hyphal growth. Moreover, the MAP kinase pathways are also involved in production of 

secondary metabolism, oxidative stress and sexual development (Csank, Schroppel et al. 

1998; Gustin, Albertyn et al. 1998; Wei, Requena et al. 2003; Cullen, Sabbagh et al. 2004; 

Bardwell 2006; Tatebayashi, Yamamoto et al. 2006; Valiante, Heinekamp et al. 2008). 

When Cdc42p is activated, it signals effector proteins including septins, actins and the 

upstream kinases Ste50 and Ste20 for MAP kinase pathways.  Cdc42p interacts with the 

effector proteins through an eight amino acid CRIB binding motif (Posas, Witten et al. 

1998). PAK family members share a CRIB sequence motif (Peterson, Penkert et al. 2004). 
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In fungi, the PAK kinase family includes yeast homologous of Cla4p and Ste20p. Cla4p 

is involved in vegetative growth and Ste20p is involved in the mating pathway 

(Tatebayashi, Yamamoto et al. 2006; Abdullah and Cullen 2009).  

Locally recruiting components of the Cdc42 GTPase module by G protein sensing 

is required for the S. cerevisiae mating pheromone response (Park and Bi 2007). The 

mating landmark, pheromone reception, signals to Cdc42p through Far1p. Far1p recruits 

Bem1p, Cdc24p and Ste20p (PAK, p21-activated kinase) to Cdc42p and polarizes the 

actin cytoskeleton (Butty et al. 1998; Leeuw et al. 1998; Nern et al. 1999). Ste50 acts as 

an adaptor that links the G protein-associated Cdc42p-Ste20p complexes to the effector 

Ste11p (Posas, Witten et al. 1998; Jansen, Buhring et al. 2001). The interaction between 

Ste50 and Cdc42 could be detected in both the two-hybrid system and the pull-down 

assay (Ramezani-Rad 2003). Cdc42 GAPs Rga1 and Rga2 may facilitate the interaction 

between Ste20 and Cdc42-GTP (the active form), which has been proved by two-hybrid 

interaction (Smith, Givan et al. 2002). In addition, Rga1 functions negatively between the 

G protein sensing pathway and the MAP kinase pathway in the pheromone response 

pathway (Saito, Fujimura-Kamada et al. 2007). 

 

MAPkinase pathway in yeast and filamentous fungi 

The MAPK (mitogen-activated protein kinase) signaling pathway is found in 

almost all eukaryotic organisms including animal, fungi and plants. The MAPK cascade 

is a set of three sequentially acting protein kinases starting from the top MAP3K (MAPK 

kinase kinase) which phosphorylates MAP2k or MAPKK (MAPK kinase), which in turn 
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phosphorylates the terminal protein kinase in the cascade, which is MAP kinase, 

regulates cellular responses to environmental change. 

The yeast S.cerevisiae MAP kinase pathways are the most clearly studied model 

which contains three fully elaborated MAPK cascades (Bardwell 2006). They have 

established functions in mating-pheromone responses, maintaining cell wall integrity, 

responding to changes in osmolarity and nutrient sensing. Ste11MEKK is activated by 

PAK Ste20 and is shared by all three pathways: the Mkk1/2 Slt2 (Mpk1
MAPK

), Pbs2

Hog1 and Ste7 Fus3/Kss1 cascades (Gustin, Albertyn et al. 1998). Mpk1
MAPK

 regulates 

the integrity of the yeast cell wall, and Hog1
MAPK

 regulates the response to high 

osmolarity and various other stresses (Gustin, Albertyn et al. 1998). Fus3
MAPK

 and 

Kss1
MAPK

 both participate in the mating pheromone response, with Fus3 playing the 

major role (Farley, Satterberg et al. 1999; Sabbagh, Flatauer et al. 2001). However, Kss1 

regulates the filamentous invasive growth programme (Cook, Bardwell et al. 1997) (Fig 

4-1).The three pathways share key components, for example, Ste7 is activated during 

mating and invasive growth, and activates both Fus3 and Kss1 during mating, but only 

Kss1 during invasive growth.  

When exposed to hyperosmotic extracellular environments, the budding yeast 

activates the HOG (high osmolarity glycerol) signaling pathway, which culminates in 

phosphorylation, activation, and nuclear translocation of the Hog1 MAP kinase (MAPK). 

As the upstream regulator of the HOG pathway, Cdc42 not only binds and activates the 

PAK-like kinases Ste20 and Cla4 but also binds to the Ste11–Ste50 complex to bring 

activated Ste20/Cla4 to their substrate Ste11. In the HOG pathway, the Ste11–Ste50 

complex binds to the cytoplasmic domain of Sho1 and then activates the MAPK Pbs2. 



156 
 

Thus, Cdc42, Ste50, and Sho1 act as adaptor proteins that control the flow of the 

osmostress signal from Ste20/Cla4 to Ste11, then to Pbs2 (Tatebayashi, Yamamoto et al. 

2006). 

Genome sequencing analyses revealed that Aspergillus has orthologous genes to 

almost all of the mitogen-activated protein kinase (MAPK) pathway genes in S. 

cerevisiae (Ma, Qiao et al. 2008; Hagiwara, Asano et al. 2009). Other than the function in 

yeast, many reports showed that MAP kinase pathway function with more diversity in 

filamentous fungi. For example, the pheromone response kinase MpkB is involved in 

secondary metabolism by regulating Lae1 (Atoui, Bao et al. 2008; Chang, Yu et al. 2009). 

In A. nidulans, the central MAPKK kinase SteC, a homologous to yeast Ste11, has been 

shown to regulate growth rate, hyphal branching, conidiophore morphology, and ΔsteC 

deletion mutants can inhibit heterokaryon formation and block cleistothecium 

development (Wei, Requena et al. 2003). MAP kinase pathways that respond to osmotic 

stress in Aspergillus fumigatus are also involved in nutritional sensing (Pitoniak, Birkaya 

et al. 2009). MPKA regulates conidial germination in response to the nitrogen source and 

is activated upon starvation for either carbon or nitrogen during vegetative growth 

(Fujioka, Mizutani et al. 2007; Valiante, Heinekamp et al. 2008). Fujioka, et al also show 

that the mitogen-activated protein (MAP) kinase pathway that responds to osmotic stress 

conserved in Aspergillus fumigatus, is also involved in nutritional sensing(Fujioka, 

Mizutani et al. 2007). Moreover, this MAP kinase pathway negatively regulates conidial 

germination and is activated in response to starvation for nitrogen or carbon sources (Xue, 

Nguyen et al. 2004).  
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Msb2 and Sho1 is upstream of MAP kinase pathway  

In yeast, Msb2p is a glycosylated membrane protein which was first identified as 

a multicopy suppressor of cdc24ts mutant (Bender and Pringle 1992) and interacts with 

Sho1 and Cdc42 (Tatebayashi, Tanaka et al. 2007) . Sho1 is an adaptor membrane protein 

that attaches the kinase complex to regions of polarized growth at the plasma membrane 

(Cullen, Schultz et al. 2000; Roman, Nombela et al. 2005). Msb2 and Hkr1 are the 

putative osmosensors of the HOG pathway in S. cerevisiae and act coordinately with 

Sho1 to promote osmotic adaptation (Tatebayashi, Tanaka et al. 2007). Recently, Msb2 

and Sho1 have been shown to function together upstream of PAK Ste20p for the 

filamentous growth (FG) pathway in S. cerevisiae and for invasive hyphal response in C. 

albicans (Roman, Cottier et al. 2009). Although it is not entirely clear how nutritional 

information connects to FG pathway signaling, activation of the FG pathway requires 

processing and release of the extracellular inhibitory domain of Msb2p by the aspartyl 

protease Yps1p, which occurs preferentially under nutrient-limiting conditions (Vadaie, 

Dionne et al. 2008).  

The Cullen lab uses Msb2* to mimic hyperactive Msb2. Msb2* protein lacks its 

mucin domain, thus it is underglycosylated and migrates more rapidly than wild type. 

Phosphorylation of Kss1 is Msb2 dependent and induced by both Msb2* and the 

overexpression of Sho1. However phosphorylation of Fus3 (the MAPK works with Kss1 

in the mating pathway) was not influenced by Msb2* or Sho1. This indicates that Msb2 is 

solely required for FG pathway where it works through Kss1 by associated with Sho1 and 

activated Cdc42 (Cullen, Sabbagh et al. 2004).  
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In Candida albicans, Cek1 MAPK (phosphorylated by Hst7 MAPKK) is 

homologous to Kss1 and involved in invasive hyphal growth response (Csank, Schroppel 

et al. 1998; Chen, Lane et al. 2002). A recent report indicated that Candida Msb2 is not 

involved in the HOG pathway for the oxidative stress response, but plays an important 

role in FG (filamentous growth) and cell wall biogenesis by controlling the 

phosphorylation of the Cek1 MAPK in cooperartion with Sho1.  In addition, 

overexpression of Cdc42
G12V 

(the hyperactive form) can also result in hyper-

phosphorylation of  Cek1 in a Sho1/Msb2/Hst7-dependent manner (Roman, Cottier et al. 

2009). 

MATERIALS and METHODS 

Strains, media, growth conditions and staining 

Aspergillus nidulans strains used in this study are listed in Table 1. MNV 

(minimal + vitamins) media were made according to KAFER (1977).  MNV-glycerol and 

MNV-threonine media were made as described in PEARSON et al (2004). MAG (malt 

extract agar) and YGV (yeast extract glucose + vitamins) media were made as described 

previously (HARRIS et al 1994). For septation and hyphal growth studies, conidia from 

appropriate stains were grown at 28°C for 12h on coverslips. Hyphae attached to 

the coverslip were fixed using a modified standard protocol (HARRIS et al 1994) for 20 

min and then stained with staining solution [fixing solution and staining solution were 

made according to the recipe in the previous chapters]. 

 

Construction of gene replacement strains 
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The Rga1 (An1025.3) and Msb2 (An7041.3) genes from strains AHS11, AHS14 

were replaced with the pyroA
A.f. 

marker from A. fumigates. All gene replacements were 

generated using the gene targeting system developed by NAYAK et al (2006) and the 

gene replacement generation strategy developed by YANG et al (2004). Oligonucleotides 

used in this study are listed in table 2. pyroA
A.n.

 DNA marker, the DNA fragments 

upstream and downstream of AnRga1 and  were amplified from the wild-type strain 

FGSC28. pyroA
A.f.

 DNA marker fragment was PCR amplified from plasmid pTN1 

(available through the Fungal Genetics Stock Center, Kansas City, MO) and the DNA 

fragments upstream and downstream of High Fidelity and Long Template PCR systems 

(Roche Diagnostics Corporation, Indianopolis, IN) were used for amplifications of 

individual and fusion fragments, respectively, using a Px2 Hybaid or an Eppendorf 

Mastercycler gradient thermal cycler. The amplification conditions were according to the 

manufacturer's recommendations. PCR products were gel purified using 

the QIAquick gel extraction kit (QIAGEN Inc., Valencia, CA). The gene replacement 

constructs were transformed into strain TNO2A3, and plated on supplemented minimal 

medium with 0.6 M KCl. Transformations were performed according the protocol 

described by OSMANI et al. (2006). Transformation candidates were tested for 

homologous integration of the gene replacement construct and the absence of the wild-

type gene by diagnostic PCR as described by YANG et al (2004).  

 

Construction of GFP fusions to AnRga1 

        To localize AnRga1, a GFP-pyr4 fragment was amplified from plasmid pFNO3 

(available through the Fungal Genetics Stock Center, Kansas City, MO). A 1.2kb 
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AnRga1 fragment and a 1.5kb AnRga1downstream fragment were amplified from strain 

TN02A3.  The same approach described by NAYAK et al. (2006) was used to make the 

gene targeting system. The fusion PCR construct was transformed to strain TNO2A3 and 

the transformants were verified by PCR to ensure the homologous gene insertion. 

An N-terminus GFP- AnRga1 stain was also been construct using the five-piece 

fusion PCR approach described in the previous chapters. In addition to the retention of 

native promoter sequences, final constructs also contained a short linker of five glycines 

and alanines inserted between the GFP and AnRga1 coding sequences. In brief, the 

following five fragments were amplified (primers described in Table 2); (1) a 1.3-kb 

sequence upstream of the target gene, (2) the GFP coding sequence (minus the 

stop codon) derived from plasmid pMCB17apx, (Scott, Nice et al.) the target gene plus 

400-bp of downstream sequence, (4) the N. crassa  pyr-4 selectable marker, also derived 

from pMCB17apx, and (5) a 1.3-kb sequence extending from about 400 to 1700-bp 

downstream of target gene. Fragments (1) and (5) were amplified by specific primers 

with 30bp tails that were reverse complements of the adjacent fragments. Finally, the 

forward primer used to amplify fragment (1) and the reverse primer used to amplify 

fragment (5) were used to fuse the entire five-fragment gene replacement construct. The 

resulting gfp:: AnRga1::pyr-4 cassettes was used to replace its respective wild type gene 

in strain TNO2A3.  

Conidiophore observation and GFP localization on conidiophores 

        Conidiophore development was monitored by using the sandwich coverslip method 

described in the previous chapters. To localize GFP-AnRga1, cellophane stripes were 

used to synchronize and prepare conidiophore observation from solid medium culture. 
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Briefly, sterilized cellophane stripes were placed on MAG plates, and then diluted spore 

suspension (10
4
/ml) was spread on the top of stripes. After 24 hrs incubating at 28°C, 

conidiophores start to form on the surface of cellophane stripes. Every one to two hours, 

a stripe can be peeled from plates and mounted with YGV liquid media for fluorescent 

microscope for each developmental stage. Submerged merged culture also been used to 

localize AnRga1-GFP on reduced conidiophores grown in liquid media since the 

localization is relatively easy to be observed. Briefly, the same coverslip culture method 

was used to grow spores in MNV with glucose substituted by 100mM threionine. After 

incubating at 28°C for 3 days, hyphae and reduced conidiophores attached to coverslips 

were observed by the fluorescent microscope every 24 hours. 

Microscopy 

Digital images of plates were collected with an Olympus C-3020ZOOM digital 

camera. Differential interference contrast (DIC) and fluorescent images were collected 

with either an Olympus BX51 microscope with a reflected fluorescence system fitted 

with a Photometrics CoolSnap HQ camera or an Olympus Fluoview confocal laser-

scanning microscope. Images were processed with IPLab Scientific Image Processing 

3.5.5 (Scanalytics Inc., Fairfax, VA) and Adobe Photoshop 6.0 (Adobe Systems 

Incorporated, San Jose, CA). 

Results 

Identification of A. nidulans Msb2 and Rag1 

Gene sequence annotation uncoverd the potential homologues of MSb2 and Rga1 

by BLASTp search in Aspergillus genome database (broad institute genome database) 
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using the cognate proteins from Saccharomycetes cerevisiaeas query. AnMSb2 

(An7041.3) is a predicted 822 amino acid (AA) protein with no protein domains were 

found. AnBud3 possesses limited homology to S. cerevisiae (33% identity over the 

predicted HMH domain about 132 AAs and about 60 AAs in the C-terminus as predicted 

transmembrane domain). AnRga1 (AN1025.3) is a predicted 1076 AA protein that 

contains an N-terminal LIM domain and a C-terminal GAP domain (Fig. 4-2). Similarity 

between AnRga1 and its S. cerevisiae homologue is relatively high (60% identity) and is 

confined to the LIM and GAP domains at each ends and about 90 AAs in the middle of 

protein sequence. 

 

Rga1 is not required for vegetative growth but is essential for normal conidiophore 

development. 

Coverslip cultures were used to examine AnRga1 knock out mutant for defects in 

hypal morphogenesis. The timing and pattern of spore germination and polarity were not 

affected in ΔAnrga1 deletion mutants. On minimal media, the colony of the ΔAnrga1 

deletion mutant was slightly smaller, and spore production severely reduced compared to 

wildtype (Fig. 4-3). To determine the possible basis of the conidiation defects, 

conidiophores of ΔAnrga1 mutants and wildtype controls were imaged using the 

“sandwich slides” protocol. A variety of defects were found, including fused and 

elongated metulae and phialides (Fig 4-4E), loss of vesicles, and large sterigmata (Fig 4-

4D). The sterigmata were larger and longer than wildtype (about two times longer and 

wider). Notably, septa were found in sterigmata (Fig 4-4C) and phialides branched in a 
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row (Fig 4-4B). These results indicate that AnRag1 is required for normal vesicle 

generation and the organization of metulae and phialides. 

Rga1 localize to the top of phialides before the spore generation. 

As a further test for the function of AnRga1, I used GFP fusion proteins to 

characterize its localization pattern. I constructed strains in which the sole functional 

source of AnRga1 was supplied by AnRga1-GFP or GFP-AnRga1 fusions expressed 

under the control of the native promoter sequence. No AnRga1-GFP localization was 

found in hyphae. The cellophane stripe method was used to examine the localization in 

conidiophores. AnRga1-GFP localized to the top of phialides, where it formed a ring, but 

the localization is not prevalent and disappeared before spores generated (Fig. 4-5A.B). 

The submerged culture had also been used to localize AnRga1-GFP to the reduced 

conidiophores. Bright AnRga1-GFP rings localized to the top of phialide as expected in 

MNV-Thr submerged culture (Fig. 4-5E). As expected, AnRga1-GFP localization 

disappeared after the first spore generated (Fig. 4-5C.D).  

ΔAnMsb2 affects timing and structure of hyphal growth and cell wall integrity. 

 To determine the possible role of AnMsb2 during hyphal and conidiophore 

morphogenesis, Anmsb2::pyroA
A.f.

 strains were generated using gene replacement. On 

minimal media, colonies of ΔAnmsb2 mutants have restricted growth and dramatically 

reduced spore production (Fig 4-6). The coverslip culture was used to determine hyphal 

morphology. We found ΔAnmsb2 spore germination had been delayed for about 4-5 

hours, but no later hyphal development defects were observed. In Candida albicans, 

Δmsb2 mutants had low tolerance for Congo red (a compound that interacts with chitin 
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and interferes with cell wall construction) and caspofungin (an inhibitor of β-glucan 

synthase) (Roman, Cottier et al. 2009).  To gain further insight into the possible nature of 

cell wall defects in the ΔAnmsb2 mutant strain, we tested the strain for defects in the cell 

wall such as increased sensitivity toward elevated Calcofluor white (CFW) and Congo 

red (CR) (Ram and Klis 2006).  Gradient diluted conidia were inoculated to MNV plate 

with 10, 50 and 100mg/ml of CFW or CR to test susceptibility of cell wall integrity. We 

found the sensitivity of ΔAnmsb2 cell wall to both CFW and Congo red increased with 

treatment concentration and spore inoculum (Fig 4-7). Accordingly, these results suggest 

that AnMsb2 must be involved in cell wall integrity. 

DISCUSSION 

In our study, Msb2 has been shown to have essential function for cell wall 

integrity, and the deletion of the Msb2 gene can severely delay spore germination which 

may result from the defect of chitin organization in the cell wall. In the next experiment, 

a test of capsofungin will give us more information for cell wall component change in 

Δmsb2. Moreover, cell wall integrity defects in Δmsb2 may also be correlated with the 

small GTPases Cdc42, Rac and Ras through the MAP kinase pathway because the direct 

regulation between Cdc42 and Msb2 for the FG pathway has been reported in budding 

yeast. In  S. cerevisiae, MMK1/2  Mpk1 pathway is related to cell wall stress response 

which is activated by Rho1 GTpase (Zarzov, Mazzoni et al. 1996; Chen and Thorner 

2007) and a recent report indicates MpkA, the Mpk1
MAPK

 homolog (68% similarity), 

regulates cell wall assembling in A. fumigates (Valiante, Jain et al. 2009). In addition, the 

interaction of Msb2 with the Rho-like GTPase Cdc42 may also suggest an intimate 

relationship between the control of polarity and the function of membrane mucins 
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(Clevers 2004). Thus the possible function of Msb2 for regulating small GTPases on cell 

wall integrity could be examined by testing multicopy suppression of small GTPases to 

ΔAnmsb2 mutants.  

In yeast, upstream signaling of the HOG and filamentous growth (FG) pathway is 

functionally redundant including Sln1 and Sho1 signaling branches (O'Rourke and 

Herskowitz 2002). For the Sho1 branch, Msb2 and and Hkr1 are the two most upstream 

osmosensors belong to the highly glycosylated mucin family, which bind Sho1 but 

function differently (Tatebayashi, Tanaka et al. 2007). According to this, AnMsb2 may 

also be involved in the HOG pathway response for osmotic stress. High osmotic 

condition such as sorbital and high salt media can be used to test this hypothesis. In 

addition, deletion of the mucin domain (Msb2*) have been used to mimic hyperactive 

Msb2 (Cullen, Sabbagh et al. 2004).  Interestingly, both Hkr1 and Msb2 share the 

common Hkr1-Msb2 Homology (HMH) domain, which is the only essential protein part 

for osmosening (Tatebayashi, Tanaka et al. 2007). By doing a preliminary two sequence 

alignment with yeast Msb2, the conserved HMH region also exists in the AnMsb2, but 

may not be the mucin and STR (Ser-Thr rich) domains. Fraction from different regions of 

AnMsb2 will be tested for their interaction with Cdc42 and Sho1 on the top of the MAPK 

pathways. 

Since there are three Cdc42 GAPs in S. cerevisiae, GAP regulation of Cdc42 in A. 

nidulans could be complex. Seven GAPs have been found by BLASTp from our 

preliminary study. As one of the Cdc42 GAP, deletion of AnRga1 is expected to increase 

the Cdc42-GTP bound active form. Smith et al. reported that Δrga1 displayed an 

elongated yeast cell, and the Δrga1 Δbem3 double mutant strain will exacerbate the 
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phenotype. Moreover, Δrga1 also causes yeast hyperinvasive growth and septin 

disorganization paralleled by disorganization of the type II myosin
 
Myo1p (Caviston, 

Longtine et al. 2003; Gladfelter, Zyla et al. 2004). In our research, we found ΔAnrga1 

displayed unique defects on conidiophores with elongated sterigmata, which may result 

from defects in septin organization due to the aberrant Cdc42-GTP level. On the other 

hand, Rga2 and Bem3 may also have specific functions through regulating the activity of 

Cdc42. Thus double mutation of Cdc42 and GAPs will help to examine morphological 

development in A. nidulans. 

Interestingly, Lrg1, Rga1 and Rga2 all have a similar pattern of domain 

organization: tandemly arranged two LIM domains on the N-terminus and a GAP domain 

on the C-terminus. LIM domains are Zinc finger domains which act in protein-protein 

interactions. Our lab data also show that deletion of AnLrg1 in A. nidulans results in 

hyper-branching hyphal development. Making truncated GAPs with LIM domain 

deletion will help to understand their GAP function and interaction pattern with other 

proteins. 
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Figure 4-1. Function and regulation in MAPK signaling pathways 
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Figure 4-2. Amino acid sequence of AnRga1.  
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Figure 4-3. Effect of the Anrga1deletion on colony morphology. A. (wildtype) and B. 

(ΔAnrga1) were grown on minimal medium for nine days. 
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Figure 4-4. Effect of the Anrga1 deletion on conidiophore development. ΔAnrga1 

deletion strains were grown on minimal medium for three days by the “sandwich” 

method. Red arrows indicate a branching metula (B) and a septum on sterigmata (C). 
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Figure 4-5. Localization of AnRga1-GFP in conidiophore development. The AnRga1-

GFP strains were grown on cellophane (A and B) for 24 hours and MNV-Thr submerged 

culture (C-E) for 3 days. White arrows indicate AnRga1-GFP localization. 
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Figure 4-6. Effect of the Anmsb2 deletion on colony morphology. A. (wildtype) and B. 

(ΔAnmsb2) were grown on minimal medium for nine days. 
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Figure 4-7.  Cell wall integrity test on Anmsb2 deletion mutants.  
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Chapter IV Future Directions 

GAP(s) of the Bud3-Rho4 module 

We have proved AnBud3 is the guanine exchange factor (GEF) that activates 

AnRho4 into GTP bound form.  However, the AnRho4 GAP(s) still need to be identified. 

We have found seven hypothetical GAPs in the A. nidulans genome by BLASTp with the 

conservative GAP domain. Unfortunately, none of these hypothetical GAPs can be 

identified by multicopy suppression of the ΔAnbud3 suppressor strain which is suspected 

to have a mutation in the Rho4 GAP. This suggests that the regulation of Rho4 is 

complicated and it can be more than one GAP exists for AnBud3-Rho4 module. Thanks 

to the Illumina sequencing for the ΔAnbud3 suppressor strain, we can narrow down the 

Rho4 GAP(s) to a few candidates. We intend to knock out these candidate genes and 

make double mutants with ΔAnbud3 in order to genetically identify the GAP because the 

double mutants should exhibit a near wildtype phenotype. A hyperactive mutant Rho4 

constructed by point amino acid substitution can be also constructed to trap Rho4 in the 

GTP-bound active form.  This hyperactive GTP-Rho4 can be used to pull down its 

interacting GAP(s) partners by small GTP-GTPase beads. The yeast two-hybrid method 

might be used to test the interaction between hyperactive Rho4 and its GAP candidates. 

The roles of AnAxl2 and Anbud4 in septin organization 

 Septins play key roles in cytokinesis , organize contractile actin rings (CAR) and 

SepA localization during septum formation. As reported in Chapter II, we proved an 

interaction occurs between septins and Anbud4 or AnAxl2, but further studies need to be 

done to elucidate their specific interactions. As I showed in the discussion, Anbud4 can 
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specifically interact with AspE for cell viability. An N-terminal S-Tag-Anbud4 fusion 

protein can be used to pull down components that interact with it during both hyphal and 

asexual growth. A tagged AspE can be then detected by western blot. Moreover, if 

AnBud4 functions as a scaffold to organize septins, expressing multicopies of AspE may 

suppress the ΔAnbud4 phenotype and restore septation and conidiation.  

The specific interaction between AspD and AnAxl2 also needs to be determined. 

Unfortunately, AnAxl2 is a transmembrane protein and only expressed during conidiation, 

thus purification of AnAxl2 is a challenge. Before performing an in vitro assay to detect 

the possible interaction of AspD-AnAxl2, a pilot experiment can be done to first examine 

the hypothesis. In yeast, AnAxl2 had been identified as the multicopy suppressor of the 

Δspa2 ΔCdc10 double mutant. A similar ΔspaA ΔaspD double mutant can be constructed 

by normal sexual crosses from lab stocks (ΔaspD is provided by Momany’s lab). 

Multicopies of AnAxl2 can be transformed into the ΔspaA ΔaspD double mutant and be 

capable of suppressing the double mutation phenotype as in budding yeast. We can also 

localize AnAxl2-GFP in the septin gene deletion mutants, especially in ΔaspE and ΔaspD 

mutants since they have less of a defect in conidiation compared with the others.  

Mislocalization of AnAxl2-GFP in any of the muants will give a genetic proof for the 

possible direction of interaction. In the same way, Septin-GFP(s) can be localized in the 

ΔAnAxl2 background.  

In yeast, Cla4 is a p21-activated kinase (PAK) involved in septin ring assembly 

by phosphorylating Cdc3p (AspB) and Cdc10p (AspD). Thus AnCla4 may also be 

involved in AnAxl2 assembly with septins at the incipient site of conidiation. AnCla4-

GFP and ΔAncla4 can be used to test its function during conidiophore development. 
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Since Cla4 phosphorylates Cdc3p, the key septin, its localization can be universal but the 

localization pattern on conidiophore in ΔAnAxl2 background will help us to understand 

the organization of septins at the neck between phialides and nascent spores. ΔAncla4 

ΔAnAxl2 double mutants can also be generated to examine conidiophore morphogenesis.  

Cell cycle related AnAxl2, Bud3 and Anbud4 expression 

We have indicated that contractile actin ring (CAR) assembly is associated with 

mitosis and nuclear division. A functional SIN pathway is required for AnBud3 

localization to the septation site. These results suggest AnBud3 expression can be cell 

cycle related. Moreover, results from promoter swap experiments between AnAxl2 and 

Anbud4 also indicate that proper expression of Anbud4 and AnAxl2 during cell division 

may be required for their correct localization and even cell viability. I suspect that not 

only the spatial signal involved in the organization of Bud3, Anbud4 and AnAxl2, but 

also timing of delivery during cell division will be important.  

A series of experiments can be done to investigate the timing of their expression. 

Microarray experiments can achieve this but will be expensive. Then, northern blot 

analysis can be used to examine expression levels during cell cycle arrest in the SIN 

pathway mutants. For example, cell cycle is arrested at G2/M in NIMA mutants and 

arrested at G1/S in bimE7 mutants. Other nuclear division mutants can also be 

constructed to precisely arrest the cell cycle. Placing AnBud3, Anbud4 and AnAxl2 under 

the control of inducible promoters, such as alcA(p), can introduce a pulsed expression 

during induction. If their pulsed expression can restore correct localization or normal 

growth in cell cycle arrest mutants, the timing of their delivery will help us to learn 
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precisely the role of cell cycle-specific transcription as landmark proteins in fungal 

morphogenesis. 

In addition, proper expression of Anbud4 is essential for cell viability since wrong 

timing of delivery under the AnAxl2 promoter resulted in a near lethal phenotype. Pulsed 

expression will generate high local concentration of Anbud4, which can be used to 

precisely investigate its interaction with septins, SepA and actin rings by pull down assay 

and co-immunofluorescence. 

 

Roles of Vac8 and AnAxl2 during sexual development 

Our results suggest AnAxl2 may be involved in sexual development through its 

cadherin domain which interacts with the catenin domain of AnVac8. The upregulated 

genes in sexual development should be determined in ΔAnAnAxl2 and ΔAnVac8 mutants 

by microarray or Illumina sequencing. The expression of several key genes needs to be 

analyzed: VeA, the transcriptional factor for sexual development, may not be expressed 

in the dark; nsdD, the transcriptional factor for asexual development, may be down-

regulated; other sexual related genes RosA (Resprssor of sexual development), NosA 

(Number of sexual spores), SteA (MAPK) and StuA (transcriptional factor) should also 

be analyzed for expression. 

To test the hypothesis of an AnAxl2-AnVac8 interaction, an AnAxl2 intracellular 

fraction can be cloned and their interactions determined by in vitro assay in E.coli or 

yeast two-hybrid, since the β-catenin binds to the cytoplasmic domain cadherins. 

Noticeably, AnVac8 and AnAxl2 block sexual development at different stages; double 
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mutants are also worth generating, which may abolish asexual development. As discussed, 

the signal through AnAxl2-AnVac8 may transduce to the small GTPases Cdc42 and 

RacA; thus sexual development in the double or triple mutants of Axl2, Vac8 and 

Cdc42/RacA will be also interesting to explore. Since Δcdc42 has a systematic defect, 

conditional mutants such as alcA(p)::cdc42
G14V

 can be used for that purpose.  

 

Further testing the function of Msb2 in cell wall integrity 

Functions of Msb2 for cell wall integrity and osmolarity should be tested further 

by other cell wall inhibitors and osmotic stress chemicals such as caspofungin, 1M 

sorbitol, 0.8M NaCl, and 1M KCl. As the co-regulator with AnMsb2, AnSho1 is worth 

investigating as well by gene deletion, localization of GFP fusion protein and protein 

interaction assay with Msb2. Sho1 can be expected to co-localize with AnMsb2 and 

ΔAnsho1 would increase the cell wall sensitivity to the integrity inhibitor and osmotic 

stress like Δmsb2.  When I aligned AnMsb2 and yeast Msb2, the conserved HMH region 

can be found in AnMsb2, which is the only essential sequence for osmosensing. After the 

HMH region is identified in AnMsb2, it should be cloned and tested for protein-protein 

interactions with Cdc42 and AnSho1 under osmotic stress.  

Cell wall integrity defects in ΔAnmsb2 may be correlated with the small GTPases 

Cdc42, Rac and RhoA, which activate the corresponding HOG and FG MAP kinase 

pathway. For testing this hypothesis, the intracellular portion of Msb2 can be identified 

and tested in vivo for the direct interaction between Cdc42 and Msb2. CoIP analysis can 

also be employed to confirm their interaction by labeling Msb2 and its suspected 

associating proteins with different peptide tags.  
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Functions of GAPs in Aspergillus morphogenesis 

A. nidulans homologues of Rga2 and Bem3 may also have specific function 

through regulating the activity of Cdc42. Knockout mutants, GFP fusion and double 

mutants can be generated for examining the morphological defects in A. nidulans. 

Lrg1, Rga1 and Rga2 have a similar pattern of domain organization: tandemly 

arranged two LIM domains at the N-terminus and GAP domain at the C-terminus. The 

future study can focus on examining functions of their Aspergillus ancestral homologues 

in both hyphal branching and conidiophore mophogenesis. The three GAPs can bind with 

other proteins through their LIM domains and activate small GTPase in a similar pattern. 

Since the interaction between GAPs and small GTPase is dynamic, truncated GAPs 

without LIM domain can be easier to manipulate for detecting their specific targets. And 

the LIM domain may also be cloned to for examining interaction pattern with other 

proteins by the protein pull down assay. 
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