
Michigan Technological University
Digital Commons @ Michigan

Tech
Dissertations, Master's Theses and Master's Reports
- Open Dissertations, Master's Theses and Master's Reports

2009

Proteins in silico-modeling and sampling
Parimal Kar
Michigan Technological University

Copyright 2009 Parimal Kar

Follow this and additional works at: http://digitalcommons.mtu.edu/etds

Part of the Physics Commons

Recommended Citation
Kar, Parimal, "Proteins in silico-modeling and sampling", Dissertation, Michigan Technological University, 2009.
http://digitalcommons.mtu.edu/etds/108

http://www.mtu.edu/?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.mtu.edu/?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtu.edu?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtu.edu?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtu.edu/etd?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.mtu.edu%2Fetds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages


PROTEINS IN SILICO- MODELING AND SAMPLING

By

PARIMAL KAR

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

(Physics)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2009

c© 2009 Parimal Kar





This dissertation, "Proteins in Silico- Modeling and Sampling", is hereby approved

in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSO-

PHY in the field of Physics.

DEPARTMENT:

Physics

Signatures:

Dissertation Advisor

Dr. Ulrich H.E. Hansmann

Committee

Dr. Max Seel

Dr. Ranjit Pati

Dr. Marta Wloch

Department Chair

Dr. Ravi Pandey

Date





Dedication

To My Maa o Baapi



.



Contents

List of Figures xv

List of Tables xxii

Acknowledgments xxiii

Abstract xxvii

1 Introduction 1

1.1 Biochemistry of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Protein Organization Level . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Protein Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

i



1.3 Protein Folding Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 My Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Forcefields and Simulations 21

2.1 Forcefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Bonded Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Nonbonded Interactions . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Popular Forcefields . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Replica Exchange Method . . . . . . . . . . . . . . . . . . . . . . 38

3 Solvent Model 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ii



3.2 Explicit Solvent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Implicit Solvent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Decomposition of Solvation Free Energy . . . . . . . . . . . . . . 49

3.3.2 Polar Solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Generalized Born Model . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Non-polar Solvation . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Our Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Boundary Composition in Poisson Boltzmann Calculations 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Sample Selection, Preparation and Set Up of Structures and Com-

putation of Molecular Surfaces with Different Programs . . . . . . 66

4.2.2 Computation of Polarization Free Energies, ∆GPol , Based on solu-

tions to the Poisson Boltzmann Equation . . . . . . . . . . . . . . 68

iii



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Stage I: Rather small-sized BEs are Needed to Obtain Consistently

Convergent Polarization Free Energies ∆GPol . . . . . . . . . . . . 69

4.3.2 Stage II: Systematic Geometric Comparison to High Level Quan-

tum Chemistry Calculations Suggests a Uniform Scaling of AM-

BER van der Waals Radii by a Factor of 1.07 . . . . . . . . . . . . 71

4.3.3 Stage III: Charge Scaling is Not Required . . . . . . . . . . . . . 73

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Implementation and Analysis of Dispersion Term 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Theoretical Concepts . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 90

iv



5.2.3 Study of Size- and Charge Dependence . . . . . . . . . . . . . . . 91

5.2.4 Computational Aspects . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 A universal scaling factor applied to Caillet-Claverie dispersion

coefficients leads to good overall agreement with experimental sol-

vation free energies of amino acid side-chain analogues in water . . 94

5.3.2 Component-wise juxtaposition of PB/BEM and PCM approaches

reveals a difference in individual contributions but similarity in net

effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 The identified scaling factor of 0.70 applied to Caillet-Claverie dis-

persion coefficients yields good quality estimates of the solvation

free energy in water for many molecules . . . . . . . . . . . . . . 98

5.3.4 The scaling factor of 0.70 applied to Caillet-Claverie dispersion

coefficients in the case of water is not of a universal nature but

must be re-optimized for any other type of solvent. . . . . . . . . . 101

5.3.5 Switching from Caillet-Claverie-style of dispersion to AMBER-

style requires a re-adjustment of scaling factors. . . . . . . . . . . 103

v



5.3.6 Replacement of static AMBER partial charges with semiempirical

PM5 charges introduces a rise in solvation free energies by about

20 % of the classic result regardless of the size or total charge state

of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Algorithmic Refinement & Application 115

6.1 Algorithmic Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.4 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.1 Electrostatic Potential . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



6.2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.4 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . 123

7 Enhanced Sampling- Microcanonical Replica Exchange 127

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.1 Statistical physics of microcanonical molecular dynamics . . . . . 130

7.2.2 Microcanonical replica exchange . . . . . . . . . . . . . . . . . . 134

7.2.3 Technical Details and Setting . . . . . . . . . . . . . . . . . . . . . 135

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Summary & Future Directions 151

A List of Publications 159

vii



B Hardware Used in My Research 161

C List of Abbreviations and Symbols 163

D Copyright 167

E Dispersion 171

Bibliography 189

viii



List of Figures

1.1 Structure of twenty different amino acids with their 3-letter and single letter

codes [1]. Copyright notice can be found in Appendix D. . . . . . . . . . . 3

1.2 Condensation of two amino acids to form peptide bond [2]. Copyright

notice can be found in Appendix D. . . . . . . . . . . . . . . . . . . . . . 4

1.3 The general structure of an α-amino acid with amino group on the left and

carboxyl group on the right [3]. Copyright notice can be found in Appendix

D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Structural levels of proteins [4]. c© National Human Genome Research

Institute, the arm of NIH, USA. . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Funnel shaped free energy landscape of proteins [5]. Reproduced with

permission (See appendix D, Fig D.4). . . . . . . . . . . . . . . . . . . . . 12

ix



2.1 The harmonic oscillator potential (green) and Morse potential (blue) [6].

Copyright notice can be found in Appendix D. . . . . . . . . . . . . . . . . 24

2.2 Graphical representation of empirical potential energy function [7]. Repro-

duced with permission (see Appendix D, Fig D.3). . . . . . . . . . . . . . 25

3.1 Different explicit water models [8]. Copyright notice can be found in Ap-

pendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 PB/BEM derived ∆GPol as a function of BE obtained from two independent

programs MSROLL [9] and SIMS [10]. The example represents results for

PDB structure 1C5E [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Comparison of employed molecular surfaces in the PB/BEM series based

on scaling the AMBER default vdW radii by a factor α to the reference

data obtained from PCM calculations [11]. . . . . . . . . . . . . . . . . . 71

4.3 Comparison of employed molecular volumes in the PB/BEM series based

on scaling the AMBER default vdW radii by a factor α to the reference

data obtained from PCM calculations [11]. . . . . . . . . . . . . . . . . . 72

x



4.4 Comparison of PB/BEM polarization free energies ∆GPol based on scaling

the AMBER default charges by a factor β to the reference data obtained

from PCM calculations [11] . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Graphical representation of the geometrical elements needed for computing

the dispersion energy [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Deviation of the PB/BEM ∆Gsolv from experimental values tabulated in

[13] as a function of λ [12]. . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Ethanol: Deviation of the PB/BEM ∆Gsolv from experimental values tabu-

lated in [14] as a function of λ [12]. . . . . . . . . . . . . . . . . . . . . . 103

5.4 n-Octanol: Deviation of the PB/BEM ∆Gsolv from experimental values tab-

ulated in [14] as a function of λ [12]. . . . . . . . . . . . . . . . . . . . . 104

5.5 Classic versus semi-empirical charge assignments to atoms of proteins of

various size used in PB/BEM calculations [12]. . . . . . . . . . . . . . . . 110

6.1 Numerical sensitivity of the employed enhanced Poisson-Boltzmann ap-

proach to the threshold criterion used for termination of the iterative se-

quence to calculate the polarization term, ∆Gpol [15]. . . . . . . . . . . . . 120

xi



7.1 Root-mean-square deviation (rmsd) to the experimentally determined struc-

ture as function of time for (a) a canonical molecular dynamics simulation

at T = 250 K, and (b) a microcanonical molecular dynamic simulation at

the corresponding energy Etot = −368.5 kcal/mol. [16] . . . . . . . . . . . 137

7.2 Root-mean-square deviation (rmsd) to the experimentally determined struc-

ture as function of time. The data are from a canonical replica exchange

simulation with a temperature distribution given in table 7.1, and measured

at T = 250 K [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Walk of a specific replica (a) through temperature in a canonical replica ex-

change molecular dynamic simulation (CREMD); and (b) through energy

in a microcanonical replica molecular dynamics simulation (MREMD) with

the updates proposed in Ref. [17]. Note that he large number of roundtrips

observed for the later case allowed us only to show a short segment of the

10ns run [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Radius of gyration < rgy> as function of temperature in a canonical replica

exchange molecular dynamics simulation (CREMD); and the correspond-

ing energy levels in a microcanonical replica molecular dynamics simula-

tion (MREMD) with the updates proposed in Ref. [17] [16] . . . . . . . . 141

xii



7.5 Difference between canonical temperature, see Table 7.1, and microcanon-

ical temperature, calculated from the kinetic energy via Eq. (7.10), as func-

tion of total energy. The figure shows this quantity as measured in canoni-

cal replica molecular dynamics simulations (CREMD) as well as in the mi-

crocanonical replica molecular dynamics simulation (MREMD) with up-

dates proposed in Ref. [17] [16]. . . . . . . . . . . . . . . . . . . . . . . . 142

7.6 Frequency of native-like configurations (rmsd < 3.7 Å) as function of sim-

ulation time as measured in a microcanonical relpica molecular dynamics

simulation with the updates proposed in Ref. [17] [16] . . . . . . . . . . . 143

7.7 Walk of a specific replica through energy in a microcanonical replica molec-

ular dynamics with trial of exchange moves given by Eq. 7.8[16] . . . . . . 144

7.8 Frequency of configurations with a rmsd smaller than 3.7 Å as measured

in canonical (CREMD) and various versions of microcanonical replica ex-

change molecular dynamics [16]. . . . . . . . . . . . . . . . . . . . . . . 145

7.9 Frequency of native-like configurations as measured according to two cri-

teria (see text), and specific heat capacity, as measured in simulations with

our weighted microcanonical replica exchange molecular dynamics [16]. . 146

xiii



7.10 Histograms of configurations as function of rmsd calculated for four differ-

ent energy levels [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.11 The two dominant low-energy structures (color), shown in overlay with the

native structure (red) [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.1 ACS’s copyright policy on theses and dissertation . . . . . . . . . . . . . . 167

D.2 Copy right permission letter from Wiley for Chapter 4. . . . . . . . . . . . 168

D.3 Permission letter for Fig 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.4 Permission letter for Fig 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . 170

E.1 Methanol: Comparison of employed molecular surfaces (L) and Molecular

volumes (R) in the PB/BEM series based on scaling the AMBER default

van der Waals radii by a factor α to the reference data obtained from PCM

calculations [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

E.2 Ethanol: Comparison of employed molecular surfaces (L) and molecular

volumes (R) in the PB/BEM series based on scaling the AMBER default

van der Waals radii by a factor α to the reference data obtained from PCM

calculations [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xiv



E.3 n-Octanol: Comparison of employed molecular surfaces (L) and molecular

volumes (R) in the PB/BEM series based on scaling the AMBER default

van der Waals radii by a factor α to the reference data obtained from PCM

calculations [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

E.4 Graphical representation of introduced changes when switching from a

small probe sphere (blue) to a larger probe sphere (red) [12]. . . . . . . . . 186

E.5 Graphical representation of the total energies determined at different levels

of semiempirical theory using the program LocalSCF [12]. . . . . . . . . . 186

E.6 Deviation of the PB/BEM solvation free energies ∆Gsolv from experimental

values as a function of λ , a scaling factor uniformly applied to all AMBER

vdW potential well depths εi [12]. . . . . . . . . . . . . . . . . . . . . . . 187

E.7 Ethanol (L) & n-Octanol (R) : Deviation of the PB/BEM solvation free en-

ergies ∆Gsolv from experimental values as a function of λ , a scaling factor

uniformly applied to all AMBER vdW potential well depths εi [12]. . . . . 187

xv



xvi



List of Tables

3.1 Different water models and corresponding distances. . . . . . . . . . . . . 43

4.1 PDB codes of studied structures and the number of BEs needed to reach

converged PB/BEM results using molecular surface algorithms MSROLL

[9] and SIMS [10] respectively [11]. . . . . . . . . . . . . . . . . . . . . . 77

4.2 Comparison of average molecular surfaces based on unscaled and scaled

AMBER vdW radii with data from PCM calculations [11]. . . . . . . . . . 78

4.3 Comparison of average molecular volumes based on unscaled and scaled

AMBER vdW radii with data from PCM calculations [11]. . . . . . . . . . 79

4.4 Comparison of average PB/BEM polarization free energies ∆GPol using

AMBER default charges to corresponding data obtained from PCM calcu-

lations [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvii



5.1 Summary of the data used for Caillet-Claverie style of dispersion treatment

as outlined in eq. 5.2 [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 PDB codes and structural key data of a series of proteins used for compar-

ison [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Comparison of PB/BEM-computed versus experimental total solvation free

energies, ∆Gsolv, of amino acid side-chain analogues in water. A scaling

factor, λ , of 0.70 has been uniformly applied to all dispersion coefficients,

κi, in eq. 5.2 [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Analysis of individual contributions to the net solvation free energy for

solvent water as computed by PB/BEM or by PCM [12]. . . . . . . . . . . 98

5.5 Individual contributions to the water net solvation free energy as computed

from PB/BEM or PCM for a series of arbitrary small molecules [12]. . . . 100

5.6 Comparison of PB/BEM computed solvation free energies of zwitterionic

amino acids in water against data by Chang et al. [13] obtained from Monte

Carlo Free Energy simulations [12]. . . . . . . . . . . . . . . . . . . . . . 101

5.7 Comparison of PB/BEM-computed versus experimental total solvation free

energies, ∆Gsolv, of various substances in ethanol [12]. . . . . . . . . . . . 105

xviii



5.8 Comparison of Poisson-Boltzmann/Boundary Element Method (PB/BEM)-

computed versus experimental total solvation free energies, ∆Gsolv, of var-

ious substances in the solvent n-octanol [12]. . . . . . . . . . . . . . . . . 106

5.9 Summary of optimized parameters to be used in Poisson-Boltzmann/Boundary

Element Method (PB/BEM) for different types of solvents. Average sizes

of boundary elements (BEs) are given as pairs of values employed for cal-

culation of ∆Gpol and ∆Gdisp respectively [12]. . . . . . . . . . . . . . . . 107

5.10 Effect on total solvation free energies for water as Poisson-Boltzmann/Boundary

Element Method (PB/BEM)-computed with AMBER style of dispersion

(eq. 5.3) versus Caillet-Claverie style of dispersion (eq. 5.2) and compari-

son to the experimental value [12]. . . . . . . . . . . . . . . . . . . . . . 108

5.11 Analysis of partial term contributions to Poisson-Boltzmann/Boundary El-

ement Method (PB/BEM)-computed solvation free energies for a series of

proteins of increasing size using either molecular dynamic package AM-

BER [18] standard partial charges or semi-empirical PM5 charges obtained

from program LocalSCF [19, 12]. . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Sensitivity to total system size, total charge and renormalization attempts

[15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xix



6.2 Electrostatic Potential (ESP) maps for the antifungal protein EAFP2 (pdb

code). Major structural elements are shown in (a) and a corresponding rep-

resentation of the molecular surface is shown in (b). The ESP mapped onto

the molecular surface after solution of the PB equation based on AMBER

charge assignment is shown in (c). Blue patches correspond to the +5 kT/e

level, green regions represent neutral ESP and red domains indicate -5 kT/e

level. The marginal change when including 4 explicit Cl− counter ions is

shown in (d). A differential ESP map representing the difference between

ESP(AM1) and ESP(AMBER) is shown in (e) with the same color-coding

scheme used in (c). Further differential maps are ESP(AM1)-ESP(MNDO)

(f), ESP(PM3)-ESP(AMBER) (g) and ESP(PM5)-ESP(AMBER) (h) [20] . 124

7.1 18 replicas and their corresponding total energies and temperatures used in

our simulations [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

E.1 Comparison of average PB/BEM solvation free energies ∆Gsolv of homo-

dipeptides in water to corresponding data obtained from PCM reference

calculations [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

E.2 Comparison of the average PB/BEM ∆Gdisp contribution, to ∆Gsolv, of

homo-dipeptides in water to corresponding data obtained from PCM cal-

culation [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xx



E.3 Methanol: Comparison of average molecular surfaces based on scaled AM-

BER vdW radii used in PB/BEM (rCH3OH
probe = 1.9Å) with data from PCM

calculations (rCH3OH
probe = 1.855Å) [12]. . . . . . . . . . . . . . . . . . . . . 174

E.4 Methanol: Comparison of average molecular volumes based on scaled

AMBER vdW radii used in PB/BEM (rCH3OH
probe = 1.9Å) with data from PCM

calculations (rCH3OH
probe = 1.855Å) [12]. . . . . . . . . . . . . . . . . . . . . 175

E.5 Ethanol: Comparison of average molecular surfaces based on scaled AM-

BER vdW radii used in PB/BEM (rC2H5OH
probe = 2.2Å) with data from PCM

calculations (rC2H5OH
probe = 2.180Å) [12]. . . . . . . . . . . . . . . . . . . . . 176

E.6 Ethanol: Comparison of average molecular volumes based on scaled AM-

BER vdW radii used in PB/BEM (rC2H5OH
probe = 2.2Å) with data from PCM

calculations (rC2H5OH
probe = 2.180Å) [12]. . . . . . . . . . . . . . . . . . . . . 177

E.7 n-Octanol: Comparison of average molecular surfaces based on scaled

AMBER van der Waals radii used in PB/BEM (rC8H17OH
probe = 2.945Å) with

data from PCM reference calculations ( rC8H17OH
probe = 2.945Å) [12]. . . . . . 178

E.8 n-Octanol: Comparison of average molecular volumes based on scaled

AMBER van der Waals radii used in PB/BEM (rC8H17OH
probe = 2.945Å) with

data from PCM reference calculations (rC8H17OH
probe = 2.945Å) [12]. . . . . . 179

xxi



E.9 Ethanol: Effect on total solvation free energies as PB/BEM-computed with

AMBER style of dispersion ( λ=0.94) versus Caillet-Claverie style of dis-

persion ( λ=0.82) and comparison to the experimental value [12]. . . . . . 180

E.10 n-Octanol: Effect on total solvation free energies as PB/BEM-computed

with AMBER style of dispersion (λ=2.60) versus Caillet-Claverie style of

dispersion ( λ=0.74) and comparison to the experimental value [12]. . . . . 181

E.11 Comparison of computed versus experimental total solvation free energies,

∆Gsolv, of amino acid side-chain analogues in water.[12]. . . . . . . . . . . 182

E.12 Performance evaluation of the components involved in the calculation of

the dispersion term, ∆Gdisp, according to eq. 3 (AMBER/TIP3P) [12]. . . . 183

xxii



Acknowledgments

During my time as a PhD student I have come to realized that a graduate student can not

finish his PhD thesis alone. Several individuals play a vital role during his graduate study.

I would like to take this opportunity to thank all those individuals who have played a role

in my doctoral life. First and foremost, I would like to thank my advisor Prof. Ulrich H.

E. Hansmann (Uli). It has been a previleged to be his student. He has helped me learn

the subject of protein folding and has extended my knowledge beyond the scope of this

subject. When I joined his group I knew nothing about proteins. Now I am writing my PhD

thesis on proteins. Without his help and guidance this would never have been possible. He

is truly a great researcher and is very enthusiastic in his works. He always has time for his

students. Whenever I stopped by his office to ask any silly questions, he listened carefully

and answered my questions. He is very organized and is a perfectionist in his research.

I would also like to thank all of my previous and current group members- Dr. Yanjie Wei,

Liang Han, Dr. Siegfried Höfinger, Dr. Walter Nadler, Dr. Maksim Kouza, Priya Anand,

Nari Kang. They all deserve high gratitude of me. During my PhD study I collaborated

with Dr. Höfinger, Dr. Nadler and Dr. Wei. I learnt a lot from their faculties. We had

stimulating and interesting discussions. I would like to especially emphasize Dr. Höfinger’s

name here. I collaborated with him on three projects and learned a lot from him. He taught

me programming and scripting. He also provided me with a script for canonical REMD,

which I modified for Microcanonical REMD. He is always ready with his helping hands.

xxiii



Additionally he is a friend, philosopher and mentor to me.

I would also like to convey my sincere gratitude to my PhD committee members- Dr. Max

Seel, Dr. Ranjit Pati, and Dr. Marta Wloch for their advice, constant encouragement, and

helpful suggestions concerning my research. Their wise suggestions helped me a lot to

improve my dissertation.

I want to take this opportunity to express my gratitude to our Physics Department Chair,

Dr. Ravi Pandey for his help, support, and constant encouragement during my doctoral life.

I am also thankful to Mike, Andrea, Kathy and Marg. In my first year as a PhD student, I

was a teaching assistant. I was very scared and nervous to accept this position, but because

of Mike’s and Wil’s help and tips, I had a sweet experience in teaching. Thank you very

much Mike and Wil!

I would also like to thanks my batch-mates, office-mates, and department-mates – Mad-

husudan, Archana, Abhisekh, Pradeep, Neluka, Joy, Dr. Wang, and Chee. I would also

like to reserve a special thanks to the Bengali Community in Houghton. Without them, life

would be pretty boring in Houghton. They have never let me recognize awarness of the

fact that I am several thousands miles away from my home. Thank you very much Sila-

ditya, Banasree, Partha, Colina, Ananyo, Saikat, and Subhasish. Your collective friendship

is invaluable to me.

I would like to devote a special thought to my parents for their never-ending support. They

xxiv



are my constant source of inspiration and energy. If I achieve anything in my life, it is all

due to them. Thank you very much my dear Maa (mother) and Bapi (father) for ensuring

my education and constantly inspiring me to achieve my goals. I Love you so much !

Finally, I would like to thank my sweet wife Jayeeta. All I can say is that it would take

another thesis to express my love for you. You have always upheld me with your love,

patience, and encouragement. You were always there with me even in those days when

I spent more times in front of my laptop than with you. Pursuing my PhD has been a

long journey. There have been many ups and downs throughout this journey, but you have

smoothened those ripples and made my journey easy. I love you !

xxv



xxvi



Abstract

Proteins are linear chain molecules made out of amino acids. Only when they fold to their

native states, they become functional. This dissertation aims to model the solvent (environ-

ment) effect and to develop & implement enhanced sampling methods that enable a reliable

study of the protein folding problem in silico.

We have developed an enhanced solvation model based on the solution to the Poisson-

Boltzmann equation in order to describe the solvent effect. Following the quantum me-

chanical Polarizable Continuum Model (PCM), we decomposed net solvation free energy

into three physical terms– Polarization, Dispersion and Cavitation. All the terms were im-

plemented, analyzed and parametrized individually to obtain a high level of accuracy.

In order to describe the thermodynamics of proteins, their conformational space needs to

be sampled thoroughly. Simulations of proteins are hampered by slow relaxation due to

their rugged free-energy landscape, with the barriers between minima being higher than

the thermal energy at physiological temperatures. In order to overcome this problem a

number of approaches have been proposed of which replica exchange method (REM) is the

most popular. In this dissertation we describe a new variant of canonical replica exchange

method in the context of molecular dynamic simulation. The advantage of this new method

is the easily tunable high acceptance rate for the replica exchange. We call our method

Microcanonical Replica Exchange Molecular Dynamic (MREMD). We have described the

theoretical frame work, comment on its actual implementation, and its application to Trp-
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cage mini-protein in implicit solvent. We have been able to correctly predict the folding

thermodynamics of this protein using our approach.
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Chapter 1

Introduction

Proteins are essential bio-macromolecules and the building blocks of all cells. Genetic

information is encoded into DNA (deoxyribonucleic acid), but must be translated into pro-

teins. To produce a protein, a corresponding gene is first transcribed into mRNA (messen-

ger Ribonucleic Acid) and then translated into a chain of amino acids in the ribosome. This

nascent polypeptide folds to its native structure within a very short time frame.

Proteins are cell’s work-horse. As enzymes, they catalyze many biochemical reactions,

as structural elements they are the founding elements of blood vessels, epidermal keratin

etc. As antibodies, they fight with the infection [21]. The mechanism of all these bio-

physical processes depend on the correct fold of their respective polypeptide chains into

3-dimensional native structure.
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1.1 Biochemistry of Proteins

The basic unit of a protein is an amino acid. There are twenty different types of amino

acids found in proteins. All of them have a central carbon atom (Cα) and hydrogen atom,

amino group (NH2) and carboxyl groups (COOH) are attached to it. The side chain which

is attached to the Cα differentiates various amino acids. The twenty naturally occurring

types of amino acids are shown in Fig.1.1. Amino acids are linked together by a peptide

bond to form a protein. A peptide bond is formed when the carboxyl group (COOH) of

the first amino acid reacts with the amino group of the next releasing water. The formation

of a peptide bond is shown in Fig.1.2. The protein chain runs from amino (N) terminus

to carboxyl (C) terminus. The formation of a peptide bond generates a "main chain" or

"backbone" from which various "side chains" point outwards.

The backbone atoms of a polypeptide are composed of Cα to which the side chain is at-

tached, a NH group bound toCα , and a carbonyl groupC =O, where the carbon atomC is

attached toCα . Therefore, the basic repeating unit along the backbone is (NH−CαH-CO).

Based upon the chemical structure of the side chains, amino acids are classified into three

categories:

† The first class comprises of hydrophobic side chains– Ala (A), Val (V), Leu (L), ILE

(I), Phe (F), Pro (P), and Met (M).
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Figure 1.1: Structure of twenty different amino acids with their 3-letter and single
letter codes [1]. Copyright notice can be found in Appendix D.

† The second class is made of charged residues—Asp (D), Glu (E), Lys (K), and Arg

(R).

† The third class is made of those with polar residues– Ser (S), Thr (T), Cys (C), Asn
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Figure 1.2: Condensation of two amino acids to form peptide bond [2]. Copyright
notice can be found in Appendix D.

(N), Gln (Q), His (H), Tyr (Y), Trp (W).

The amino acid Glycine (G) is the simplest amino acid among all the twenty naturally

occurring amino acids, since it has only a hydrogen atom as the side chain. The amino acid

Proline (P) differs from the others as both ends of the side chain are covalently bound to

the main chain forming a ring structure.

Apart from glycine, all amino acids are chiral molecules. They can exist in two different

forms with different hands, known as L or D. During the protein synthesis process, only
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L-forms are found. The general structure of an α-amino acid is shown in Fig 1.3.

Figure 1.3: The general structure of an α-amino acid with amino group on the left
and carboxyl group on the right [3]. Copyright notice can be found in Appendix D.

1.1.1 Protein Organization Level

Proteins are made up in combination of twenty different types of amino acids. There are

four different structural hierarchy present in proteins. These are shown in Fig.1.4. Primary

Structure: The sequence of amino acids is called the primary structure. It starts from the

amino-terminal (N-terminal) end to the carboxyl-terminal (C-terminal) end.

Secondary Structure: Secondary structure is the local arrangements of amino acids in pro-

teins and occurs due to the hydrogen bonding interactions between adjacent amino acids.
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Figure 1.4: Structural levels of proteins [4]. c© National Human Genome Re-
search Institute, the arm of NIH, USA.

The hydrogen bonds in proteins form between the backbone carboxyl oxygens and amide

hydrogens. The patterns of backbone hydrogen bonds define the secondary structures– α-

helices, β -sheets and turns and loops [22, 23, 24].

α-helix: α-helices are spring-like structures. The inner part of the helix is formed by the

coiled backbone and the side chains project outwards in a helical array. The structure is

stabilized by hydrogen bonds between NH and CO groups of the backbone four residues
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earlier. Each residue is 0.15 nm long along the helix axis and a rotation of 100◦. This gives

3.6 amino acid residues per turn of helix, in a clockwise direction resulting in a pitch of

0.54 nm. The helix is about 0.6 nm in diameter with all of the side chains sticking outwards

[25]. Helix can be right handed or left handed. Since there is a less steric clash between

the side chains and the main chain, right handed helices are energetically more favorable,

and all α-helices found in proteins are right handed (except glycine-based helix).

β -sheet: A β -sheet is formed by linking two or more β -strands by hydrogen bonds. In a

β -sheet, a β strand is almost fully extended rather than being coiled as in α-helices. The

distance between adjacent amino acids along β -strand is ∼ 0.35 nm (3.5 Å) whereas a dis-

tance of 0.15 nm (1.5 Å) is observed along α-helix. Beta sheets can be parallel (adjacent

chains run in the same direction) or anti-parallel (adjacent chains run in opposite direction).

In parallel arrangement, for each amino acid, the NH group is hydrogen bonded to the CO

group of one amino acid on the adjacent strand, whereas theCO group is hydrogen bonded

to the NH group on the amino acid two residues further along the chain. In anti-parallel

arrangement, the NH group and theCO group of each amino acid are bonded to theCO and

NH group of a partner on the adjacent chain. β -sheets are formed by many strands with

minimum being two (e.g., β -hairpin) and maximum being ten (e.g., β -barrel).

Tertiary Structure: Tertiary structure is the compact three dimensional structure of a sin-

gle polypeptide at which they are functional. This structure is formed by assembly of sec-

ondary structural elements along with turns and loops into a 3-dimensional arrangement.

Tertiary structures are stabilized by weak interactions such as hydrophobic interactions, hy-
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drogen bonding, ionic interactions and by a covalent bond called the disulfide bond. This

structure is very compact due to the efficient packing of amino acid side chains [26, 23, 22].

This structure often consists of a hydrophobic core with charged residues on the surface of

the protein. The charged residues on the surface gives the protein its biological activity,

thus making it biologically functional.

Quaternary Structure: Sometimes more than one tertiary structures of independent folded

chains self assemble themselves under physiological conditions to perform specific func-

tions. These structures are known as Quaternary structures (e.g., hemoglobin). This is

the fourth level structural organization present in a protein. Non-covalent interactions,

hydrophobic interactions, disulfide bonds are responsible for the stabilization of the qua-

ternary structure [23, 22].

1.2 Protein Functions

Proteins are essential macromolecules in all living organisms. They perform virtually all

the works in a cell. A specific protein performs a specific function. The function of a protein

depends on its structure. Some proteins act as enzymes while others either fight with the

infection or provide structural support. Several types of proteins and their functions are

described below.

Enzymes are the largest class of proteins. All the biochemical reactions are controlled by
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the enzymes. Enzymes help to speed up the biochemical reactions significantly by lower-

ing the activation energy of the reactions. Hence they are called biological catalysts. In

presence of an enzyme in a cell, a biochemical reaction can be 1017 times faster than the

same reaction in absence of that particular enzyme [27]. They are very specific to the bio-

chemical reactions. A specific enzyme can only perform to its corresponding substrate.

The functions of enzymes are influenced by their environmental factors, such as tempera-

ture and pH.

Structural proteins are fibrous and stringy in nature and they provide strength and support

to cell and tissues. They are insoluble in water. Examples include keratin, elastin, and col-

lagen. Keratins are found in the form of hair, nail, wool, feather, horn etc. while collagens

and elastins provide support for connective tissues such as tendons and ligaments.

Storage proteins act as a reservoir for some essential nutrients. Ferritin is a kind of storage

protein. It stores iron and controls the iron level in the body.

Transports proteins are carrier proteins which move particles (ions, proteins etc.) across

intracellular compartments and membranes. Examples include hemoglobin, myoglobin,

and cytochromes. Hemoglobin and myoglobin are responsible for transportation of oxygen

molecules through blood. Cytochromes act as a electron carrier proteins.

Antibodies are specialized proteins which fight with the foreign invaders (antigen) into our

bodies. They help our immune system to fight against the bacteria and viruses. They are

found in blood or other bodily fluids [25].

Hormonal proteins are regulatory proteins which regulate the function of other proteins
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under physiological conditions and help to coordinate certain bodily activities. Examples of

some regulatory proteins are insulin, oxytocin, and somatotropin. Insulin regulates glucose

metabolism in our body by controlling blood-sugar concentration. Oxytocin stimulates

contractions in female during child-birth while somatotropin is a growth hormone that stim-

ulates protein production in muscle cells. The gene expression also needs to be regulated

by regulatory proteins such as repressors which block gene transcription [24, 23, 22, 25].

Contractile proteins are responsible for movement. Actin and myosin are two contractile

proteins. Both are involved in muscle contraction and movement.

1.3 Protein Folding Problem

Proteins are linear chain molecules of amino acids. To perform their own work, proteins

need to adopt their correct three dimensional structure, known as native structure. This

process of self-assembly is known as ’protein folding’. Proteins fold themselves into their

3-dimensional functional form within a very short time frame ranging from milliseconds

(ms) to microseconds (µs) [26, 28]. But this time frame is very large with respect to com-

puter time (cpu time) which makes it a grand challenge to study folding of proteins in

silico. So far, the detailed knowledge of the folding mechanism is missing [29]. But in last

few years, this field has seen tremendous progress and a general picture of protein folding

mechanism is appearing [30].

Protein folding is a rapid and unique process. According to Christian Anfinsen, for any
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protein’s native structure (final 3-dimensional structure) is determined solely by its amino

acid sequence [31]. This is known as Anfinsen’s dogma. Anfinsen’s dogma suggests that

at physiological conditions (pressure, temperature, solvent etc.), at which protein folding

takes place, the final native configuration is a unique, stable and kinetically accessible

minimum of the free energy.

How the proteins adopt their native structure from amino acid sequence in a reasonable

time frame is a central question in the protein folding problem. For a 100 residues protein,

there are nearly 1018 conformations available. Even if we have access to the world’s fastest

search algorithm, still it will take 1030 years to find to structure corresponding to the lowest

energy. This apparent contradiction is known as Levinthal Paradox [32, 33]. This makes

protein folding problem a computationally difficult to study on the computer.

To overcome these problems, many folding mechanisms have been proposed: the frame-

work model [26], the hydrophobic collapse model [34], the diffusion-collision model [5],

and the funnel theory [35]. The funnel theory (see Fig. 1.5) is the most popular theory to

describe the protein folding process. According to this theory, proteins have very rugged

free-energy landscape with multi local-minima (corresponds to unfolded, random state)

and a single global minimum, which corresponds to the folded native structure. There are

many protein folding pathways.

Protein folding can be studied either by experiment or simulation methods. Different ex-

perimental techniques are used to study the folding of a protein. Protein could be unfolded

in high concentrations of a chemical denaturant (e.g., urea) and then could be refolded by
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Figure 1.5: Funnel shaped free energy landscape of proteins [5]. Reproduced with
permission (See appendix D, Fig D.4).

diluting the solution. During the refolding process, many experimental techniques are used

to study the structural changes of the protein. NMR is an experimental technique which

provides high time resolution and spatial resolution [36]. Protein engineering methods can

be used to probe the role of individual role of residues during the folding and unfolding

processes [25]. This way we can study the mutated proteins and the effects of mutation on

the stability of proteins [37].
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Structure determination is a very important research topic, since structure determines the

function of a protein. Much efforts have been put in this area which can be seen from the

creation of the protein data bank (PDB) [38] maintained by Brookheaven National Labora-

tory (BNL). Approximately 50,000 structures have been deposited so far. These structures

are determined either by NMR method or by X-ray crystallography [39] or other methods.

It is very hard to determine the structures of membrane proteins. NMR has a protein size

limit that allows it to be studied [25, 21]. We can also study the protein folding problem in

silico [40]. Two most important simulation methods are molecular dynamic (MD) simula-

tion [41] and Monte Carlo (MC) method [42]. In MD simulation, we solve the Newton’s

equation and get the trajectory of the system. While in MC, we sample the configuration

space of the protein randomly according to designated criteria [43]. Computer simulations

are limited by insufficient computational resources, inefficient algorithms, and several ap-

proximations in the force-fields.

1.4 My Contributions

Protein folding is a mysterious process. The mechanism of folding is not yet unraveled.

Although a general picture of folding is becoming clearer and a tremendous progress in

this area has been made in last decades. Still many questions are remained unsolved. Ex-

amples include the role of environment (solvent) in folding, folding/misfolding and related

diseases, protein-protein interaction etc. During the folding process, proteins may not fold
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to their correct 3-dimensional structure. This is called protein misfolding. Protein misfold-

ing is associated with many diseases, such as Alzheimer’s disease, madcow disease and

many other prion related diseases. This kind of study can lead us to design rational drugs

to fight with these diseases.

Proteins can work only when they adopt their specific 3-dimensional structures. So to

understand the function, we need to study the structure. If we unravel this mystery of

sequence-structure relationship, then we can design protein of our desired function which

will be extremely useful for medical purposes and in nano-biotechnology industries. Pro-

tein adopts its native structure in its native environment. This native environment influences

the folding process. It is essential to model this environment (solvent) to understand the

folding. This thesis mainly deals with modeling this environment (solvent).

Roughness in free energy landscape (see Fig. 1.5) makes it hard to study via computer sim-

ulations. Conventional simulation methods (e.g., molecular dynamics and Monte Carlo)

are not good enough to study the protein folding problem. So we need to design efficient

algorithms to study protein folding problem in silico. In my doctoral studies, I have worked

on development and implementation of enhanced sampling methods and applied it to study

the folding thermodynamics of a Trp-cage mini-protein in an implicit solvent.

There are different factors that govern the protein folding process, such as (i) mechanical

factors– temperature, pressure, etc. (ii) biological factors– molecular chaperons which as-

sist in protein folding, and (iii) chemical factors– pH, salt effect, solvent etc.

Most of the proteins can achieve their 3-dimensional form in their native environment. Sol-
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vent plays a vital role in the folding and dynamical process. In my doctoral work I studied

extensively the design, implementation and parameterization of an enhanced implicit sol-

vation model. Initial work of my dissertation concentrated on modeling the solvent effect

reliably and accurately.

Solvent effects could be incorporated in simulations in two ways. We can treat the sol-

vent in their full atomic details or we can represent the solvent as a structureless dielectric

continuum medium. First approach is known as explicit solvent model while the later is

called implicit solvent model. Explicit models are much more accurate but computationally

costly. On the other hand, implicit models are relatively less accurate but computational

cost is smaller than the explicit model. This model can enable us to study protein of rela-

tively larger size. This dissertation deals with an enhanced implicit solvent.

In the implicit solvent model, the solute of interest is represented in their full atomic de-

tail whereas the surrounding medium (solvent) is characterized by structureless contin-

uum, interacting primarily via polarization, dispersion, repulsion, and cavitation effects

[44, 45, 46, 47, 48]. The polarization term is obtained by solving the Poisson-Boltzmann

(PB) equations [49, 50, 51, 52, 53, 54, 55]. The Poisson-Boltzmann (PB) equation is solved

either by finite difference method (FDPB) [49, 50, 51, 52] or by boundary element method

(PB/BEM) [54, 55]. Our model is based upon the solution of the Poisson-Boltzmann equa-

tion within boundary element framework. This method reduces a 3-dimensional volume

integral to a two-dimensional surface integral, which helps us to save computational time.

Our model follows quantum mechanical model of implicit solvent, known as Polarizable
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Continuum Model (PCM) [46]. Following PCM, we also decompose the total solvation

free energy into three terms:

∆Gsolv = ∆Gpol+∆Gdisp+∆Gcav,rep (1.1)

Each term is treated separately and parameterized to obtain the highest level of accuracy.

This dissertation work is dealt with the first two terms- polarization and dispersion. The

third term, Cavitation is extensively studied by Mahajan et al. [56]. ∆Gpol is obtained by

solving the Poisson-Boltzmann equation using boundary element method. For the disper-

sion term, we use the Caillet-Claverie [57, 58] approach in the context of boundary element

formalism. We also have implemented popular molecular dynamics package AMBER-

style [18] of representation to incorporate the dispersion effect. The cavitation term is

expressed via the revised Pierotti approximation (rPA) [11, 59, 56], which is based on the

Scaled Particle Theory (SPT) [60, 61]. Once this model is parameterized, we apply our

method successfully to estimate the electro static potential (ESP) of an anti-fungal protein.

ESP maps are very useful in structural biology. We parameterized our model for various

solvents–water, methanol, ethanol, cyclohexane etc. We compare our results to quantum

mechanical results as well as experimental results.

The second part of my dissertation is concerned with the sampling algorithm to explore the

configurations space of proteins. The most popular enhanced sampling method is Replica

Exchange [62]. We have implemented a variant of the replica exchange method, which we
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call Microcanonical Replica Exchange Molecular Dynamic (MREMD) method.

This dissertation is organized in the following way. In chapter 2, I describe different domi-

nant forces acting on proteins and how to model these interactions. I will also describe the

different popular forcefields and simulation methods often used in biomolecular simula-

tions. In particular I will explain different terms in AMBER, CHARMM, OPLS forcefields

and briefly describe simulation methods such as molecular dynamics (MD), Monte Carlo

(MC), simulated annealing (SA), and Replica Exchange method (REMD).

In chapter 3, I give a brief introduction to different solvation models. First, a brief de-

scription of explicit solvent models is provided. Then I describe the formalism of implicit

solvent model from potential of mean force standpoint. I will also discuss different popular

implicit models used in biomolecular simulations. We comment on their shortcomings and

limitations.

In chapter 4, we investigate the influence of boundary elements on the outcome of polariza-

tion free energy. We have used two popular surface computation programs– SIMS [10] and

Connolly’s MSROLL program [63] for surface discretization. We have found that SIMS is

faster than Connolly’s program, since we need less number of boundary elements in case

of SIMS to reach to the same level of accuracy. We describe a three-stage procedure to an-

alyze the dependence of Poisson-Boltzmann calculations on the shape, size, and geometry

of the boundary between the solute and solvent. Our study is carried out within the bound-

ary element formalism, but our results are also of interest to finite difference techniques
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of Poisson-Boltzmann calculations. At first, we identify the critical size of the geometri-

cal elements for discretizing the boundary, and thus the necessary resolution required to

establish numerical convergence. In the following two steps we perform reference calcu-

lations on a set of dipeptides in different conformations using the Polarizable Continuum

Model (PCM) and a high-level Density Functional as well as a high-quality basis set. Af-

terwards, we propose a mechanism for defining appropriate boundary geometries. Finally,

we compare the classic Poisson-Boltzmann (PB) description with the Quantum Chemical

description, and aim at finding appropriate fitting parameters to get a close match to the

reference data. Surprisingly, when using default AMBER partial charges and the rigorous

geometric parameters derived in the initial two stages, no scaling of the partial charges is

necessary and the best fit against the reference set is obtained automatically.

In chapter 5, implementation and parameterization of the dispersion term is described.

We implement a well-established concept to consider dispersion effects within a Poisson-

Boltzmann approach of continuum solvation of proteins. We consider Caillet-Claverie [57,

58] approach for our purpose. The theoretical framework is particularly suited for boundary

element methods. Free parameters are determined by comparison to experimental data as

well as high level Quantum Mechanical reference calculations. The method is general and

can be easily extended in several directions. We have tested our model on various chemical

substances and found to yield good quality estimates of the solvation free energy without

obvious indication of any introduced bias. Once optimized, we applied our model to a series

of proteins and then we studied factors, such as protein size or partial charge assignments.
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Further optimization and application of our model to estimate the electrostatic potential

(ESP) for various charge assignments is discussed in chapter 6.

We have also developed an enhanced sampling method which is a variant of canonical

replica exchange molecular dynamic simulation. Instead of temperature ladder (for canon-

ical REMD), an energy ladder is used in our approach. We call our method as Microcanical

Replica Exchange Molecular Dynamic simulation. We describe in chapter 7, the theoreti-

cal framework of our model and its application to a Trp-cage protein in an implicit solvent.

We also have studied the folding thermodynamics of this protein using our method.

Chapter 8 summarizes my dissertation and sketches future directions.
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Chapter 2

Forcefields and Simulations

2.1 Forcefields

Proteins are the most chemically, structurally and functionally diverse biological macro-

molecules. Proteins can perform their function only if they attain their compact 3-dimensional

structure. This structure is called the native structure. To study this problem in silico, we

need two ingredients:

† mathematical models that can describe the free energy force fields accurately and

† reliable computational algorithms that will enable us to explore the protein configu-

rations space efficiently and quickly.
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The success of the simulation depends on how accurate our forcefield is. For smaller sys-

tems, quantum mechanical calculations (e.g, DFT, ab initio) can be performed in the gas

phase. But proteins are large macromolecules. They have thousands of atoms plus the sol-

vent atoms. So quantum mechanical calculations are not feasible here. In this case, force

field simulations have to be done. In atomistic models, atoms are the smallest particles in

the system rather than the electrons and nuclei in quantum mechanical models. Empiri-

cal energy function includes relatively simple terms to describe the physical interactions

that dictate the structure and dynamics of proteins. These empirical forcefields allow us to

study proteins for a longer time. A forcefield refers not only to the functional form, but

also the parameter sets associated with this function. These parameter sets are generally

obtained from experimental results or from high-level quantum mechanical calculations.

Forcefield could be all-atom, united-atom or coarse-grained. In all-atom forcefields, the

parameters for all the atoms in the system are assigned while in united-atom, the hydrogen

and carbon atoms in methyl and methylene groups are treated as single interaction group.

Coarse-grained forcefields use an even more reduced presentation of the system and this is

used for a very long time simulation of biomolecules.

The basic functional form of a forcefield consists of two terms: bonded term related to

atoms linked by covalent bond and nonbonded terms describing the long-range electro-

static interactions and short-range van der Waals force. So we can write

VTot =Vbonded+Vnonbonded (2.1)
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We can further decompose both terms into the following terms:

Vbonded =Vbond+Vangle+Vdihedral (2.2)

Vnonbonded =Velectrostatic+VvanderWaals (2.3)

Some forcefields include out-of-plane dis-torsions (improper torsion) and cross-terms such

as stretch-stretch, stretch-bend, etc.

2.2 Bonded Interactions

Bond Stretching: In a classical forcefield, we treat both the bond and angle terms as a

harmonic oscillator. But the bond breaking is not allowed. The mathematical form of the

potential energy associated with the bond stretching is given by the following equation

Vbond = Kl (l− l0)2 (2.4)

where Kl is the force constant, l0 is the equilibrium bond length. This model is valid

when l does not deviate much from l0. If l deviates much from l0 and if we want to

calculate the molecular structures and vibrational frequencies more accurately, then we

should go beyond harmonic approximations and higher terms should also be included in

such situations. A more realistic and accurate way of treating covalent bond at higher
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stretching is to incorporate Morse Potential [64]. This is a much more expensive model.

The functional form of Morse potential is

V (r) = De

(

1− e−a(r−re)
)2

(2.5)

where r is the distance between atoms, re is the equilibrium bond distance and De is the

well-depth and a=

(
ke

2De

)1/2

. The two functions are shown in Fig.2.1. Typically molec-

ular dynamics and Monte Carlo simulations are performed at room temperature. It is suf-

ficient to use harmonic oscillator potential for both the terms– bond stretching and angle

bending.

Angle Bending: Angle bending terms are also modeled with a harmonic oscillator poten-

Figure 2.1: The harmonic oscillator potential (green) and Morse potential (blue)
[6]. Copyright notice can be found in Appendix D.

tial. The functional form can be written as

Vangle = Kθ (θ −θ0)
2 (2.6)
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where Kθ is the force constant and θ0 is the equilibrium bond angle. Accuracy can be

improved by considering higher order terms. Kθ is much lower than Kl since the energy

needed to distort an angle from its equilibrium is much less compare to the energy needed

to distort a bond length from its equilibrium.

Figure 2.2: Graphical representation of empirical potential energy function [7].
Reproduced with permission (see Appendix D, Fig D.3).

Torsional Term: Two types of torsional potentials are used in biomolecular forcefields.

They are the dihedral angle potential and improper torsional potential. Both potentials

depend on a quartet of atoms, bonded in one way or the other. A proper dihedral angle

potential depends on four consecutive bonded atoms, while the improper torsion potential

relies on three atoms centered around a fourth atom. The proper dihedral angle potential

is mostly used to constrain the rotation around a bond while the improper torsion term is
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used to maintain chirality on a tetrahedral extended heavy atom or to maintain planarity

of certain atoms. The main difference between both torsion potentials is the definition of

the torsional angle and the functional form of the potential function (see Fig.2.2). The

functional form of both potentials are given by Eqn.2.7 and Eqn.2.8.

Vtorsion = ∑
n=0

Vn

2
[1+ cos(nφ −δ )] (2.7)

where φ is the torsional angle and δ is the phase and Vn is the barrier height [43] and n is

the multiplicity. Multiplicity is a positive, nonzero integer number.

Vimproper = Kω (1− cos2ω) (2.8)

where ω is the improper torsion angle and Kω is the force constant [43]. Most of the

variation in structure and relative energies is due to the complex interplay between the

torsional and non-bonded contributions [43].

2.2.1 Nonbonded Interactions

In the previous section, I have described different covalent or bonded interactions and their

mathematical models. These covalent forces provide stabilization to the primary struc-

tures of proteins. But for higher structural levels of proteins, the stabilizing forces are

nonbonded in nature. Non-covalent or nonbonded forces include electrostatic interaction,
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van der Waals interaction and hydrogen bonding and hydrophobic interaction. Sometimes

disulfide bonds provide stabilization to the tertiary/quaternary proteins. Since nonbonded

forces are numerous, they are predominant forces in proteins. So it is essential to model

these nonbonded forces for successful biomolecular simulations. These interactions range

from 4 to 30 kJ/mol that can not bind two atoms together. They are usually modeled as a

function of some inverse power of distance [23, 22, 43, 25].

Electrostatic Interaction: The electrostatic interaction term involves the interaction be-

tween two partial atomic charges qi and q j separated by a distance ri j. We know that like

charges repel and opposite charges attract each other. The interaction potential is given by

Coulomb’s law

VC =
qiq j

εri j
(2.9)

where ε is the dielectric constant of the medium.

The strength of an electrostatic force depends on the environment. In vacuum the dielectric

constant is 1 and the interaction force is the highest. For water the dielectric constant is

80 and the force is 80 times weaker than vacuum. Much computational power is devoted

to compute this term. In molecular dynamics, a Particle Mesh Ewald method is used to

compute this term efficiently.

van der Waals Interaction

The van der Waals interaction and static repulsion are treated with the Lennard-Jones (LJ)
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6-12 potential of the form

VLJ = 4εi j

[(
σi j
ri j

)12

−
(

σi j
ri j

)6
]

(2.10)

The LJ 6-12 potential contains just two adjustable parameters: the collision diameter σi j

(the separation for which the energy is zero) and the well depth εi j [43]. The Lennard-Jones

potential is characterized by two parts: an attractive part that is proportional to r−6 and a

repulsive part that varies as r−12 [43]. The r−6 variation is the same power-law relationship

found for the leading term in theoretical treatment of the dispersion energy such as the

Drude model [43]. Although the r−12 is reasonable for rare gases, but is too steep for

other systems such as hydro carbons [43]. However, the LJ 6-12 potential is widely used

in biomolecular forcefields.

Hydrogen Bonding: In proteins, a hydrogen bond is formed when a donor (hydrogen) is

bonded to a strong electronegative partner like oxygen in water or nitrogen in the backbone

of a polypeptide chain. Hydrogen bonds are directional. It is extremely important for

protein folding since it stabilizes the formation of secondary structures such as α-helices

and β -sheets. The positively charged hydrogen can interact with a negatively polarized

partner like oxygen or nitrogen. This interaction is often modeled as pure electrostatic or

as a dipole-dipole interaction [43, 65]. Some of the functional forms are as following

VHB1 =
qiq j

εri j
(2.11)
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VHB2 =
A

r12
i j

− B
r10
i j

(2.12)

VHB3 = cos(θ)

(

A

r12
i j

− B
r6i j

)

+(1− cos(θ))

(

C

r12
i j

− D
r10
i j

)

(2.13)

where qi and q j are the charges on atoms i and j, ri j is the distance between atoms i & j, θ

is the angle of hydrogen bonds and A, B, C, D are parameters determining the strength of

the potential [65, 43].

Apart from these forces, solvent interactions are also included in forcefields. I have de-

scribed these solvent interactions and their modeling in the next chapter.

2.2.2 Popular Forcefields

Some of the popular forcefields which are commonly used in biomolecular simulations are–

Assisted Model Building with Energy Refinement (AMBER) [18], CHemistry at Harvard

Macromolecular Mechanics (CHARMM) [33], Optimized Potentials for Liquid Simula-

tions (OPLS) [66] and GROningen MOlecular Simulation (GROMOS) [67]. Here we will

show the functional form of forcefields for AMBER only .

AMBER is a family of force fields developed by Kollman’s group. It can also refers to

the simulation package that also uses these forcefields (FF). The latest version is AMBER

10. For my study, I used AMBER 9 molecular dynamic package. The AMBER force field

consists of five energy terms in which the first term represents the covalent bond stretching

energy; the second term is the angle bending energy ; the third term represents the energy
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barrier for rotating a bond; the fourth term describes the van der Waals energy; and the last

term is the electrostatic energy. The functional form of CHARMM is similar to AMBER

but with a different parameter set. CHARMM forcefields are also included in NAMD [68]

molecular dynamic package.

EAMBER = Ebond+Eangle+Etorsional+Eelectronic+Evdw

= ∑
bond

kb(r− r0)2/2+ ∑
angle

ka(θ −θ0)
2/2

+ ∑
torsion

Vn[1+ cos(nω − γ)]/2

+
N−1

∑
j=1

N

∑
i= j+1

(4εi, j[(
δi j
ri j

)12 − (
δi j
ri j

)6])

+
N−1

∑
j=1

N

∑
i= j+1

qiq j

4πε0ri j
(2.14)

OPLS force field has been developed by Jorgensen’s group and is implemented in the soft-

ware packages-BOSS (molecular dynamic package), MCPRO (Monte Carlo based protein

simulation package), GROMACS (molecular dynamic package) [69] and TINKER (molec-

ular dynamic package) [70].

Scheraga and his coworkers have developed the ECEPP (Empirical Conformational Ener-

gies of Polypeptide and Proteins) forcefield for peptides and proteins [71]. Here the fixed

geometries of amino acid residues are used to simplify the potential energy surface. Energy

minimization is carried out in protein torsional angle space. This forcefield is also used in

the protein simulation software package SMMP [72]. The ECEPP force field describes
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the energy function of a protein as a sum EECEPP consisting of electrostatic energy EC,

Lennard-Jones energy ELJ , hydrogen-bonding energy EHB and a torsional energy ETor:

EECEPP = EC+ELJ+EHB+ETor

= ∑
(i, j)

332qiq j
εri j

+ ∑
(i, j)

(

Ai j

r12
i j

− Bi j
r6i j

)

+ ∑
(i, j)

(

Ci j

r12
i j

− Di j
r10
i j

)

+∑
l

Ul(1± cos(nlξl)) , (2.15)

where ri j is the distance between the atoms i and j, ξl is the l-th torsion angle. The pre-

factor 332 in the electrostatic energy term follows from the fact that the units of the energy

terms are in kcal/mol. Apart from these force fields, there are also many other forcefields–

MM2 [73], MM3 [74], CFF [75], polarizable force fields [76, 77].

2.3 Simulation Method

The energy landscape of a protein is generally very rough with a lot of high barriers and low

regions. This rugged free energy landscape (FEL) makes it difficult to sample the energy

space thoroughly. Simulations are hampered due to slow relaxation. Numerous simulation

methods have been developed to address this protein folding problem. All the methods are
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based on either deterministic method (molecular dynamics) or stochastic (Monte Carlo) ap-

proach. Here we will discuss only conventional molecular dynamics, Monte Carlo (MC),

and replica exchange methods (REM).

Simulations are performed at microscopic level. But we are interested in macroscopic

observable such as pressure, temperature, energy and heat capacities etc. Statistical me-

chanics helps us to calculate these macroscopic properties from microscopic simulations.

A microscopic state of N-particle system refers to a point in phase space. Phase space has

6N dimension and is characterized by 3N coordinates of position~rN and 3N coordinates of

momentum ~pN .

An ensemble is defined as a sum of all possible systems which have different microscopic

states but the macroscopic/thermodynamic states are identical. Four common ensembles

are listed below.

Microcanonical Ensemble (NVE): This ensemble is described by the fixed number of par-

ticles (N), constant volume (V) and constant energy (E). This refers to an isolated system.

Canonical Ensemble (NVT): As the name suggests, it refers to an ensemble where the

total number of particles N, the volume V and the temperature T are kept constant. Tem-

perature is kept constant by a heat bath. At equilibrium, the probability of being in a

microscopic state with energy Ei is

PC =
e−βEi

∑ j e
−βE j

(2.16)
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where the denominator is called the canonical partition function Z [78, 79] and β = 1/kBT .

kB is the Boltzmann constant and T is the absolute temperature. Equilibrium is character-

ized by the minimum Helmholtz free energy. Helmholtz free energy is given by following

equation.

F = −kBT ln(Z) (2.17)

Entropy (S) of the system can be obtained from the Helmholtz free energy.

S= −
(

∂F

∂T

)

V,N

(2.18)

The internal energy and the heat capacity are obtained from following two formulas.

U = F+TS (2.19)

CV =

(
∂U

∂T

)

V

(2.20)

where U is the internal energy and CV is the heat capacity. Generally, protein simulations

are performed in NVT ensemble.

Isobaric-Isothermal Ensemble (NPT): In this ensemble, not only the total number of

particles N is fixed,but also pressure and temperature of the system are kept constant. The

equilibrium state of the system is characterized by the minimum of Gibbs free energy [25,

43].

Grand Canonical Ensemble (µVT): In grand canonical ensemble the total number of
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particle N is allowed to change, but volume V, temperature T and chemical potential µ are

kept constant. The probability of finding the system in a microscopic state i characterized

by energy Ei is given by following equation

PG =
e−(Ei−µN j)/kBT

ZG
(2.21)

where ZG is grand canonical partition function [79, 78]. The entropy and grand canonical

potential are given by

SG = (E−µN)/T + kBlnZG (2.22)

and

Φ = −kBT lnZG = E−TSG−µN (2.23)

respectively. In statistical mechanics, we express average values by their ensemble aver-

ages. The ensemble average of an observable A is given by Eqn.2.24

A =
∫ ∫

d~pNd~rNA(~pN ,~rN)ρ(~pN ,~rN) (2.24)

where the probability density of the ensemble is given by the following eqn.2.25

ρ(~pN ,~rN) =
1
Z
e−βH(~pN ,~rN) (2.25)

where β = 1/KBT , KB is the Boltzmann’s factor, Z is the partition function and H is the

Hamiltonian of the system.
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The partition function Z is given by the eqn.2.26

Z =
∫ ∫

d~pN~rNe−βH(~pN ,~rN) (2.26)

In molecular dynamics simulation, the points in ensemble are calculated sequentially in

time. So in molecular dynamics, we calculate the time average properties only. The time

average of an observable A is

< A>= lim
τ→∞

∫ τ

t=0
dtA(~rN ,~pN) (2.27)

When τ approaches to infinity, the value of Eqn.2.27 will be the true average of A. This is

called the ’Ergodic Theory’. This theory tells us that ensemble average is equal to the time

average, i.e., < A>ensemble=< A>time.

2.3.1 Molecular Dynamics

Molecular dynamics (MD) simulation is deterministic in nature. In MD, Newton’s equa-

tions are solved. From the knowledge of force, we can calculate the potential of each

particle of the system. Integration of the equation then gives us a trajectory that describes

the position, velocity and acceleration of the particles as a function of time. From this tra-

jectory, the average properties of the system are estimated. Molecular dynamic simulations

are computationally expensive compared to Monte Carlo.
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The force acting on a particle of mass mi is

~Fi = mi~ai (2.28)

where ~ai and ~Fi are the acceleration and force of the ith particle of mass mi. In MD simu-

lation, the potential energy function is provided. Force is just the gradient of the potential

energy.

~Fi = −∇iV (2.29)

Combining Eqn.2.28 and Eqn.2.29 we get

mi
d2~ri
dt2

= −dV
d~ri

(2.30)

So by integrating the above equation, we get the time evolution of position and velocity.

This integration is done by many algorithms. Here I will describe the mathematical for-

mulation of only one integrator– Leapfrog algorithm. This algorithm is most popular and

is used in AMBER molecular dynamics package also. In this algorithm, we first evaluate

velocities at time t + dt/2. These velocities are then used to calculate the positions ~r at

time t+dt. This means that the velocities leap over the position, then positions leap over the

velocities, hence, the name leapfrog.

~r(t+dt) =~r(t)+~v(t+dt/2)dt (2.31)
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~v(t+dt/2) =~v(t−dt/2)+~a(t)dt (2.32)

It is to be noted here that positions and velocities are not calculated at the same time. There

is dt/2 time-step difference between them. The velocity at time t is approximated by the

following equation.

~v(t) =
1
2

[~v(t−dt/2)+~v(t+dt/2)] (2.33)

Other popular integrators are velocity Verlet’s and Beeman’s integrator. Both algorithms

enable us to calculate positions and velocities at the same time. But both methods are

complex and computationally expensive compared to leapfrog.

2.3.2 Monte Carlo

Monte Carlo (MC) is based on exploring the energy landscape by random changes in the

geometry of the molecule under study. Monte Carlo enables us to search larger configura-

tion space of the system. Monte Carlo can be described in following steps:

1. First choose a start conformation randomly (current state i) and calculate its energy

Ei.

2. Generate a new configuration (j) just by making random changes to the initial con-

formation (i). Estimate the energy E j of the new conformation (j).

3. Compare E j with Ei. If ∆E = E j−Ei is less than zero, choose the new conformation
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(j) as the current conformation and go back to step 2.

4. If ∆E = E j−Ei is greater than zero, then accept the state j as current state only if

exp[−∆E/(kBT )] is greater than a random number r (between 0 and 1). Otherwise

reject the new state j, and take the state i as the current state again and go back to step

2.

5. Iterate until the total conformations generated are sufficient.

It is to be noted here that the simple Monte Carlo method underestimates the contribu-

tions from the configurations with extremely small Boltzmann factors (corresponding to

low temperature), and overestimates the contributions from the configurations with larger

Boltzmann factors (corresponding to high temperatures). To avoid this problem, impor-

tance sampling strategy is used. This strategy allows us to sample the configurations not

completely at random, but is preferentially biased towards the equilibrium conformations

at temperature T by sampling the phase space according to their importance. This was

proposed by Metropolis et al. and is thus named as Metropolis Monte Carlo algorithm

[42].

2.3.3 Replica Exchange Method

The replica exchange method (REM) [80, 81] is the most popular method to study the

protein folding problem. Replica exchange method is also known as parallel tempering
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[80, 81, 82, 17, 83, 84]. The system for replica exchange method (REM) is composed of

M non-interacting replicas of the original system in the canonical ensemble at M different

temperatures Tm where m runs from 1 to M [85]. Each replica corresponds to a particular

temperature. Replicas and temperatures are related by one-to-one correspondence. This

method can be realized into two steps:

i. each replica corresponding to their fixed temperature is simulated simultaneously and

independently for a certain Monte Carlo or molecular dynamics steps, and

ii. Choose a pair of replicas and exchange them with the acceptance rate given by the

Metropolis criterion.

Paccept = min
(

1,e−∆E/T
)

(2.34)

Detailed balance is ensured in replica exchange method. In replica exchange/parallel tem-

pering method, exchanges are attempted between neighboring temperatures only to get

good acceptance rate. Random walk in temperature space is realized in this method. Ran-

dom walk in temperature space (hence potential energy landscape) helps us to avoid local

minima and reach to the global minima faster compared to conventional canonical Monte

Carlo or molecular dynamics. Large computational power is needed for this method. The

number of replicas increase with the system size and hence limit the system size that we

can study with this method. Now-a-days large scale of computational power is accessible.

So we can think of simulating proteins of larger size with this replica exchange method.

The acceptance is low for this method. To increase the acceptance rate, large set of replicas

should be used. To overcome this problem we have developed a new variant of parallel
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tempering method. We call our method as MREMD (Microcanonical Replica Exchange

Molecular Dynamics). Our method is described in Chapter 7.
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Chapter 3

Solvent Model

3.1 Introduction

Many important processes (e.g., folding, binding, etc.) in biochemistry involve proteins in

solution. The surface of the proteins separates between solvent and solute. The interior of

the protein has a low dielectric constant and a large set of peptide charges, often found in

an arranged manner, such as α -helices and β -sheets. The outside of the molecule has a

high dielectric constant. If we want to understand the structural and mechanical basis of

these biophysical processes theoretically, then we need to consider solvent properly. Other

wise the system under study will become unphysical and will produce unreliable results.

Electrostatic interactions play a crucial role in determining the structure, dynamics and
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functional properties of bio-polymers, particularly for charged molecules, such as DNA

and other poly-electrolytes. When we insert a solute in a solvent of high dielectric constant,

the solvent is polarized by the solute’s charge, dipole or higher multi-pole moment, which

in turn produces a field at the solute which is known as the reaction field. In the absence of

a solvent with high dielectric constant, the interaction between charges is described by the

direct Coulomb term. But in the presence of a solvent with high dielectric constant (e.g.,

water, ε = 80), a reaction field is produced at the solute which modifies the interactions

between charges significantly beyond the direct Coulomb term [55]. Solubility properties

are also influenced by the reaction field realized by Max Born [86]. For an electrolyte

solution, ions follow the Boltzmann distribution and hence, additional screening occurs due

to the charge density in the medium. In 1938 Kirkwood first by using simple geometries

apply the screened reaction field to model the solvation of molecules [87, 88] and proteins

[89, 90].

Treating the electrostatic interactions in a proper way is critical for molecular dynamics or

Monte Carlo simulations of solvated macromolecules. We can treat the solvent effect in

two ways. We can add sufficiently large numbers of explicit solvent molecules at the cost

of large computer power or we can treat it implicitly, which is less accurate but demands

much less computational power.

In my doctoral research, I concentrated on developing reliable, accurate and fast implicit

solvation model. In the following sections, I will briefly describe different explicit and
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implicit solvent models. In later chapters my contributions to the development of Poisson-

Boltzmann based implicit solvent model are described.

3.2 Explicit Solvent Model

Explicit solvation models are much more accurate but computationally costly. There are

several models which capture the solvent effects explicitly. These models differ from each

other depending on the factors, such as number of points used to define the model (atom &

dummy sites), whether the structure is flexible or rigid, whether the polarization effect is

included in the model.

In general water models could be 3-site, 4-site, 5-site, and 6-site. It is worth mentioning

that the computational cost increases with the number of interaction sites. For a 3-site

model, 9 distances are required for each pair of water molecules while a 10 distances are

required for a 4-site model. While a 5-site model requires 17 distances, for a 6-site model,

26 distances are required. This is tabulated in Table 3.1 In a molecular dynamic simulation,

Water Model Distances

3-site 9
4-site 10
5-site 17
6-site 26

Table 3.1: Different water models and corresponding distances.
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if we use a rigid water model then we may introduce additional cost just by constraining

the structure. However, by constraining the bond lengths we may be able to use a larger

time-step which reduces computational time.

3-Site Model: The simplest water model is the 3-site. This model has three interaction

Figure 3.1: Different explicit water models [8]. Copyright notice can be found in
Appendix D

sites and each site corresponds to each atom of the water molecule. Each atom is assigned a

point charge and Lennard-Jones (LJ) parameters are assigned to oxygen atoms. Since 3-site

models are very simple and computationally efficient, they are widely used in molecular

dynamic simulations. Popular 3-site models are- TIPS [91], SPC [92], TIP3P [66] and

SPC/E [93]. Apart from the SPC model, most of the 3-site water-models consider rigid

geometry of water that matches with the known geometry of the water molecule. The

SPC model is based on the assumption of an ideal tetrahedral shape (∠HOH = 109.47◦),

although we observe an angle of 104.5◦.

The potential function in TIP3P and TIP4P is modeled as

Eab = ∑
i

∑
j

kCqiq j

ri j
+
A

r12
oo

− B
r6oo

(3.1)

where kC = 332.1 Å kcal/mol, an electrostatic constant; qi and q j are partial charges relative
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to the charge of an electron; ri j = distance between two atoms or charge sites; A& B are LJ

parameters; roo = distance between two oxygen atoms.

The charged sites may be on the atoms or on dummy sites. In most water models, LJ

terms are applied only to the interaction between oxygen atoms, except the TIP3P model

implemented in CHARMM [94]. In CHARMM, the Lennard-Jones parameters are placed

on hydrogen atoms, although charges are unmodified.

The molecular dynamics package GROAMCS uses SPC and SPC/E water models for ex-

plicit solvation. The SPC/E water model adds the following polarization correction term to

the potential energy function:

Epol =
1
2 ∑
i

(µ −µ0)2

αi
(3.2)

where µ = 2.35 D, the dipole of the effectively polarized water molecule; µ0 = 1.85 D,

the dipole moment of an isolated water molecule; and αi = 1.608×10−40Fm, an isotropic

polarizability constant. Compared to SPC model, the SPC/E model gives better density and

diffusion constant.

4-Site Water Model: In a 4-site water model, the negative charge is placed on the dummy

atom placed near the oxygen atom along the bisector of the HOH angle. Better electro-

static distribution is achieved through this arrangement. Different 4-site models are BF

[95], TIPS2 [96], TIP4P [66], TIP4P-Ew [97], TIP4P/Ice [98] and TIP4P2005 [99]. The

4-site model was initially adopted by Bernal-Fowler in the year 1938. However, that model
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(BF) failed to reproduce the bulk properties of water, such as density and heat of vaporiza-

tion. Other TIP4P models are just subsequently reparameterized with the aim of specific

application.

5-Site Water Model: In the 5-site water model, the negative charge is placed on dummy

atoms representing the lone pairs of the oxygen atom with a tetrahedral-like geometry. Dif-

ferent 5-site water models are BNS [100], ST2 [100], TIP5P [101] and TIP5P-E [102].

Ben-Naim and Stillinger first proposed [100] this 5-site model, known as the BNS model,

in 1971. Then Stillinger modified [100] this model and proposed the ST2 model in 1974.

TIP5P model, proposed by Mahoney and Jorgensen [101] in 2000, gives better results in

improvements in the geometry of water dimmer, and the experimentally obtained radial

distribution functions are also reproduced quite well by this model. Experimentally ob-

tained the temperature of maximum density of water is also reproduced by TIP-5P model.

The TIP5P-E model was developed for use with the Ewald sums.

6-Site Water Model: This model was developed by Nada and van der Eerden [102]. This

model combines all the sites of the 4- and 5- site models. The structure and melting of ice

are described better by this model compared to the rest of the explicit water models.

3.3 Implicit Solvent Model

The goal of continuum solvent models is to approximate the solute potential of mean force

(PMF) [47]. The statistical weight of solute conformations is determined by potential of
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mean force. The weight can be obtained by averaging over the degrees of freedom (DOF)

of the solvent [47]. In this section we describe the different implicit models and their un-

derlying statistical mechanics basis. Roux and Simonson [47] have provided a rigorous

formulation of implicit solvent from the perspective of statistical mechanics. Let us con-

sider a protein (solute) immersed in a solvent and the temperature is T . The system will

fluctuate over a large number of conformations. The statistical properties of the system can

be best characterized by the probability function given by [103]

P(X,Y) =
e−U(X,Y)/kBT

∫
dXdYe−U(X,Y)/kBT

(3.3)

where X & Y represent the conformations of the solute (protein) and solvent atoms respec-

tively. The potential energy U is decomposed into three terms:

U(X,Y) =Up(X)+Us(Y)+Ups(X,Y) (3.4)

where Up(X) = intramolecular solute potential; Us(Y) = potential due to solvent-solvent

interactions; andUps(X,Y) = potential due to solute-solvent interactions.

For a molecular system, all the physically relevant properties are related to averages weighted

by the probability function P(X,Y). The expectation value of any physical quantity A(X,Y)

is obtained from the relation

< A>=
∫

dXdYQ(X,Y)P(X,Y) (3.5)
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But we are mainly interested in the protein’s behavior, not the solvent’s. We can define a

reduced probability function P̄(X) that depends solely on the solute protein’s configuration.

The probability distribution for the protein is given by the following equation:

P̄(X) =
∫

dYP(X,Y) (3.6)

It is clear from the expression of P̄(X) that we have been able to get rid of explicit depen-

dence on solvent degrees of freedom. However, at the same time the average influence of

the solvent is considered. So we can see that here the solvent coordinates have been ’in-

tegrated out’. For a canonical ensemble, the reduced probability P̄(X) takes the following

form

P̄(X) =
e−W (X)/kBT

∫
dXe−W (X)/kBT

(3.7)

where

e−W (X)/kBT =
∫

dYe−[Up(X)+Us(Y)+Ups(X,Y)]/kBT (3.8)

The functionW (X) is known as the Potential of Mean Force (PMF). Kirkwood first intro-

duced this concept of PMF to describe the average structure of liquids [104]. It is to be

noted that the Potential of Mean Force (PMF) is not simply equal to the mean potential

energy, i.e., W (X) 6= < U >(x), rather, PMF is the reversible work done by the average

force [47]. The average force can be obtained from the gradient of W(X).

∂W (X) = < ∂U/∂xi > = − < Fxi >(x) (3.9)
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where xi denotes the position of the ith solute atom and the symbol < ... >(x) is for the

average over all coordinates of the solvent [47].

All the solvent effects are taken into account in W (X) as well as in P̄(X). If we want to

express the average of a quantity A(X) which depends only on the solute configurations,

then we can write

< A>=
∫

A(X)P̄(X) =
∫

dXdYA(X)P(X,Y) (3.10)

which is the same as equation 3.5. This equation ensures that an effective potentialW (X)

exists which makes no explicit reference to the degrees of freedom of the solvent, and

the influence of the solvent on the equilibrium properties of the solute is also captured.

Generally we can write W (X) as W (X) = Up(X) + ∆W (X), where Up(X) is the solute-

solute potential and ∆W (X) accounts implicitly but exactly for the solvent’s effect on the

protein (solute). The primary goal and challenge of any implicit model is how accurately

and efficiently we can model ∆W .

3.3.1 Decomposition of Solvation Free Energy

Among the different intermolecular forces, the dominant ones are– i) short-range repulsive

interactions, and ii) long-range electrostatic interactions. Short range forces arise from the

Pauli’s exclusion principle and the long-range forces arise from the non-uniform distribu-
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tion of solute charges. Solute-solvent interactions are represented by solvation energies—

the free energy of transferring the solute from vacuum to the solvent. This is a three step

process:

(i) solute gradually becomes neutral in the vacuum,

(ii) uncharged solute is immersed into solvent, and

(iii) solute gains the normal values of the charges in solvent.

We call the free energy change in step [ii] as nonpolar solvation energy and the sum of the

energies associated with the step [i] and [ii] is known as charging or polar solvation free energy

and describes the solvent’s effect on the solute charging process. By decomposing the

solute-solvent potential, we can write for a solute in conformation X

Ups(X,Y) =Unpps (X,Y)+Uelecps (X,Y) (3.11)

and the total PMF as

W (X) =Up(X)+∆W np(X)+∆W elec(X) (3.12)

The net solvation energy is a sum of nonpolar contribution and electrostatic component. In

general, the polar and nonpolar solvation terms have opposing effect. The polar solvation

favors the maximum solvent exposure for all polar groups in the solute, while nonpolar

solvation favors compact structures with small areas and volumes. The nonpolar solvation
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contribution can be written as

e−∆W np(X)/kBT =

∫
dYe−[Uss(Y)+U

np
ps (X,Y)]/kBT

∫
dYe−Uss(Y)/kBT

(3.13)

and the electrostatic component can be expressed as

e−∆W elec(X)/kBT =

∫
dYe−[Uss(Y)+U

np
ps (X,Y)+Uelecps (X,Y)]/kBT

∫
dYe−[Uss(Y)+U

np
ps (X,Y)]/kBT

(3.14)

The potential energy can also be written as in terms of thermodynamic coupling constants

λ1 and λ2 [47].

U(X,Y : λ1,λ2) =Up(X)+Uss(Y)+Unpps (X,Y : λ1)+Uelecps (X,Y : λ2). (3.15)

where I. λ1 = λ2 = 0 =⇒ non-interacting reference system, II. λ1 = λ2 = 1 =⇒ fully inter-

acting system, and III. λ1 = 1, λ2 = 0 =⇒ no solute-solvent electrostatic interactions.

From the perspective of thermodynamic integration (TI), we can express both the contribu-

tions for a solute at conformation X

∆W np(X) =
∫ 1

0
dλ1〈

∂U (np)

∂λ1
〉(x,λ1,λ2=0) (3.16)

and

∆W elec(X) =
∫ 1

0
dλ2〈

∂U (elec)

∂λ2
〉(x,λ1=1,λ2) (3.17)
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It is noteworthy that free energy decomposition is path-dependent [105, 106]. For example,

we need to first create the non-polar cavity into the solvent and then perform electrostatic

charging of the solute. The reverse order will give diverging results. The decomposition

of net solvation free energy in this way is very helpful to understand the role of different

microscopic factors in solvation.

3.3.2 Polar Solvation

The Poisson-Boltzmann (PB) equation is the most popular choice for describing the con-

tinuum electrostatics for biomolecular system. We can derive the PB equation in several

way, but we will describe here the method which starts from the Poisson’s equation.

−~∇.
[

ε(~x)~∇φ(~x)
]

= ρ(~x) (3.18)

for x ∈ Ω and φ(x) = φ0(x) for x ∈ δΩ. Here φ(~x) is the potential at position ~x due to

a charge distribution ρ(~x) and the position dependent dielectric constant of the medium is

ε(~x). Now ρ(~x) = ρ f (~x) + ρm(~x) where ρ f (~x) represents the solute charge distribution and

ρm(~x) is the aqueous mobile ions distribution. The solute charge distribution is a summation

of a set of delta functions and is given by the following equation:

ρ f (~x) = ∑
i

Qiδ (~x−~xi) (3.19)

where Qi is the solute atom’s charge and ~xi is the solute atom’s position. If we neglect

the explicit interactions between aqueous ions, the mobile charges can be modeled as a
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continuous "charge cloud" described by the Boltzmann distribution. For m ion species

with charges q j, bulk concentrations c j and steric potential V j(~x), the mobile ion charge

distribution is written as

ρm(~x) =
m

∑
j

c jq jexp[−q jφ(~x)/kBT −V j(~x)/kBT ] (3.20)

where kB is the Boltzmann’s constant and T is absolute temperature. Therefore, we can

write

−~∇.
[

ε(~x)~∇φ(~x)
]

=
N

∑
i=1
Qiδ (~x−~xi)+

m

∑
j=1
c jq jexp[−q jφ(~x)/kBT −V j(~x)/kBT ](3.21)

Now if we expand the term exp[−q jφ(~x)/kBT ] in Taylor series and retain only the first

term, and assuming V j = V for all j, then we will get the Linearized Poisson-Boltzmann

(LPB) equation:

−~∇.
[

ε(~x)~∇φ(~x)
]

+ ε(~x)κ2(~x)φ(~x) =
N

∑
i=1
Qiδ (~x−~xi) (3.22)

where

κ2(~x) = exp[−βV (~x)].2Iβe2c/ε(~x) (3.23)

where β = 1/kBT and

I =
1
2

m

∑
j

c jq
2
j/e

2
c (3.24)
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is the ionic strength and ec is the unit electric charge. Now by solving this equation, we will

get the electrostatic potential for the entire system. Once we have access to the electrostatic

potential, we can calculate the electrostatic free energy by a variety of integral formulations.

For the LPB equation, the electrostatic free energy is

∆Welec =
1
2

N

∑
i=1
Qiφ(~xi) =

1
2

∫

ρ fφ(~x)d~x (3.25)

The Poisson-Boltzmann equation is solved numerically, since the analytical solution is not

available for biomolecules with realistic shape and charge distributions. For the Nonlinear

Poisson-Boltzmann (NPB) equation, the electrostatic free energy is given by

G [φ ] =
∫ [

ρ fφ − ε

8π
(∇φ(~x))2 −2κT n̄e−βV (cosh(

ecφ

κT
)−1)

]

d~x (3.26)

For small φ(~x), this equation will give the free energy due to LPB equation:

G [φ ] =
∫ [

ρ fφ − ε

8π
(∇φ(~x))2 − κ̄2

2
φ(~x)2

]

d~x (3.27)

Now if we differentiate the free energy expressions in Eq. 3.27 with respect to atomic

displacements, we will get the expressions for electrostatic forces [107, 108]. It is known

from the saddle-point approximation made in deriving the PB equation that δG [φ ]/δφ =
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0. Therefore, the force on atom i while we consider the nonlinear PB equation, is

~Fi [φ ] = −
∫ [

φ(
∂ρ f
∂~yi

)− (∇φ)2

8π
(

∂ε

∂~yi
)+2n̄e−βV (cosh(βecφ)−1)(

∂V

∂~yi
)

]

d~x (3.28)

and if we consider the linearized PB equation, then the force on atom i is

~Fi [φ ] = −
∫ [

φ(
∂ρ f
∂~yi

)− (∇φ)2

8π
(

∂ε

∂~yi
)− φ 2

2
(
∂ κ̄2

∂~yi
)

]

d~x. (3.29)

It is to be noted that both the nonlinear PB and linearized PB equations are approximations.

We can not apply this method blindly to the biomolecular systems. Care should be taken

for highly charged systems. The Poisson-Boltzmann equation is based upon the mean field

approximation (MFA) of the counter-ion in which we neglect the counter-ion correlations

and fluctuations. But at high ion concentration and valencies, ion correlations and fluctua-

tions become important factors. We should also keep in mind that the PB equation is based

on the assumption of local and linear polarization of the solvent with respect to the applied

field which can be broken down under high electric fields or in highly-ordered systems of

water [47]. In a nutshell, PB equations and other implicit models work best for describ-

ing the electrostatic effects on biomolecules with low linear charge density in solutions of

monovalent ions at low concentration [47].

There are couple of software available that treat the Poisson-Boltzmann equation efficiently.

Examples include APBS [52], Delphi [109], GRASP [110], MEAD [111], ZAP [112],

UHBD [113], MacroDox, Jaguar [114, 115], CHARMM [116] and AMBER [18].
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3.3.3 Generalized Born Model

Generalized Born Model or GB Model is a very popular implicit solvent model. This model

is widely used in molecular dynamics simulation. This model is very efficient and reliable.

AMBER [18] uses GB model [117].

For a simple spherical ion of radius Rion and charge Qion, the electrostatic component of

the solvation free energy is given by the well-known Born formula [86]

∆W elec = ∆Gpol = − Q
2
ion

2Rion

(

1− 1
εs

)

(3.30)

where εs is the dielectric constant of the solvent. Now let us consider a molecule consisting

of charges Q1...QN embedded in spheres of radii, a1....aN and we also assume that the

separation ri j between any two spheres is sufficiently large in comparison to the radii.

Then the electrostatic component of the solvation free energy is given by

∆Gpol ≃
N

∑
i

−Q
2
i

2ai

(

1− 1
εs

)

+
1
2

N

∑
i

N

∑
i 6= j

QiQ j

ri j

(
1
εs

−1
)

(3.31)

where the first term corresponds to the sum of individual Born terms and the second term

corresponds to pairwise Coulombic terms [47]. Coulombic interactions are rescaled by a

pre-factor
(

1
εs

−1
)

because of change of dielectric constant upon going from the vacuum

to solvent.

The general goal of the GB model is to get a closed form semi-analytical formula that will
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mimic equation 3.31 and capture the essential physics of the Poisson equation for a realistic

protein geometries. The GB theory says that

∆Gpol ≃−
(

1− 1
εs

)
1
2 ∑
i j

QiQ j

fGBi j
. (3.32)

For i = j, fGB can be thought of as "effective Born radii," and for off-diagonal terms, it

could be thought of as an effective interaction distance. The most common formula for

fGBi j is given by Still et. al [118].

fGBi j (ri j) =









r2i j+RiR je




−

r2i j

4RiR j














1
2

(3.33)

Here Ri are the effective Born radii of the atoms, which depends on the radius (ai) of the

atom i and also is influenced by radii and relative position of all other atoms. An effective

way of calculating the approximated Born radii rapidly is now needed. In terms of electric

displacement vector D, we can write

Gpol =
1
2

∫

Ω
ρ f (x)φ(x)dx=

1
8π

∫

Ω
E.Ddx (3.34)

Now using the Coulomb Field Approximation (CFA), we can write the displacement due

to the charge of atom i is,

Di ≈
Qir

r3
. (3.35)
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Gi =
1

8π

∫

(D/ε).Ddx≈ 1
8π

∫

interior

Q2
i

r4εp
dx+

1
8π

∫

exterior

Q2
i

r4εs
dx. (3.36)

The electrostatic component of the solvation free energy is

∆Gpol,i =
1

8π

(
1
εs

−1
)∫

exterior

Qi

r4
dx (3.37)

Now comparing this equation with the Born formula, one can write

R−1
i =

1
4π

∫

exterior

1
r4
dx (3.38)

This could also be written as

R−1
i = a−1

i − 1
4π

∫

interior,r>ai

1
r4
dx. (3.39)

For monatomic ion, Ri = ai and the Born formula is restored exactly. If we consider the

molecule is composed of a set of non-overlapping spheres of radius a j at positions ri j

relative to atom i, then the above equation can be rewritten as

R−1
i = a−1

i − 1
4π ∑

j

∫

|r−rij|<a j

1
r4
dx. (3.40)

The integrals over spheres can then be calculated analytically giving

R−1
i = a−1

i −∑
j

a j

2
(

r2i j−a2
j

) − 1
4ri j

log
ri j−a j
ri j+a j

(3.41)
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Hawkins et al. [119] have proposed a formula to calculate the effective Born radii Ri, as

R−1
i = a−1

i −∑
j

H
(
ri j,S ja j

)
, (3.42)

where H is a complex function.

Several variations of the GB model are also available now of which GB/SA (General-

ized Born/Surface Area) and GB/MV (Generalized Born/Molecular Volume) [120, 121]

are most frequently used in molecular dynamics simulations. AMBER [18] uses both vari-

ants. GB/SA and GB/MV are created to take into account both polar and non-polar effects

in solvation free energies. GB/SA is the most popular choice for biomolecular simulation

in implicit solvent.

3.3.4 Non-polar Solvation

When we insert a solute in a solvent, we need to create a cavity in the shape of the solute

to accommodate the solute protein. The energy associated with this creation of a cavity is

known as the cavitation energy. The attractive van dan Waals solute-solvent interaction

gives rise to the dispersion term. These are the two non-polar terms we should consider in

implicit model. In the context of non-polar molecules, these two terms become dominant

in solvation free energies. A common way to treat these non-polar terms is to introduce

a Solvent Accessible Surface Area (SASA)-term. But this SASA approach is a subject of
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debate. It can capture neither cavitation nor dispersion terms. We need to treat both terms

individually. The cavitation term can be best treated by scaled particle theory (SPT) [60,

61, 122]. SPT is a statistical mechanics based approach proposed by Reiss, Stillinger and

Pierotti to estimate the free energy associated with inserting a non-polar repulsive sphere

into a solvent [47]. The radius of the repulsive sphere is scaled in this approach and hence,

the name SPT [47].

We can estimate the required reversible workW (R) to create a spherical cavity for a hard-

sphere liquid of bulk density ρ̄ as

W (R) = −kBT ln
(

1− 4
3

πR3ρ̄

)

(3.43)

for 2R ≤ a and a = 2.75 Å for a non-polar solute in liquid water [122, 47]. According to

Tolman [123], in the limit of a large cavity, eqn. 3.43 takes the form

W (R) =
4
3

πR3p+4πR2γv

(

1− 4δ

R

)

+ ..... (3.44)

where p is the isotropic pressure, γv is the surface tension of the solvent and δ is a molecular

length scale. For water, the value of δ is approximately 0.5 Å[122]. The value of γv could

be obtained from the experiments.

From the concept of Scaled Particle Theory (SPT), we can easily relate the non-polar free

energy contribution to the solvent-exposed surface area. From eqn. 3.44, we can see that
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the microscopic surface tension coefficient depends on the radius of curvature, i.e.,

γ(R) = γv

(

1− 4δ

R

)

(3.45)

The length scale δ is chosen such a way that the curvature dependency becomes prominent

only if the radius R is very small [47]. Ignoring the curvature effect, one can write

∆W np(X) = γvAtot(X) (3.46)

Such a treatment of the non-polar contribution to the solvation free energy is very popular

in biophysical applications and has been used extensively [124, 125, 105, 126, 127, 128]

because of its simplicity. There are several models which are just a slight variation of

the solvent-exposed area model. Among those models are the shell model of Scheraga

[129, 130], the solvent excluded-volume model of Colonna and Sander [131, 132] and

the Gaussian model of Lazaridis and Karplus [133]. Computation of accurate molecular

surface and its analytical derivative with respect to atomic position is computationally de-

manding. Motivated by this, Janin and Wodak [134] developed an approximate expression

for the molecular surface area in macromolecules and this has been parameterized by Fra-

ternali et.al. for MD simulations of proteins [128].
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3.4 Our Model

To treat the solvent implicitly we decompose the net solvation free energy into three terms

following the quantum mechanical Polarizable Continuum Model (PCM)[46]

∆Gnet = ∆Gpol+∆Gdisp+∆Gcav (3.47)

We solve the Poisson-Boltzmann (PB) equation to compute the polarization term. The dis-

persion term is computed using the Caillet-Claverie [57] formula. For the cavitation term,

we adopt rPA [61] (revised Pierotti Approach) formalism. We call our model Enhanced

Solvation Model since our approach adopts polar as well as non-polar terms also. Many of

the continuum models contain only the polarization term. This model is developed within

the Boundary Element Method [54] (BEM) framework. For my doctoral studies, I concen-

trated on the first two terms– ∆Gpol and ∆Gdisp. My contributions to this field are described

in next three chapters.
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Chapter 4

Boundary Composition in Poisson

Boltzmann Calculations

This chapter is reproduced from our original paper - P. Kar, Y. Wei, U. H. E. Hansmann,

S. Höfinger. 2007. Systematic Study of the Boundary Composition in Poisson Boltzmann

Calculations, J. Comp. Chem., 28, 2538-2544. Copyright Wiley (2007).

4.1 Introduction

A common way of describing solvation effects to biomolecular structure is to treat the

solvent as a continuum of characteristic dielectric constant. The biomolecule of interest,
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i.e. a protein, DNA, RNA, glycolipid, etc. is considered in full atomic detail, while the

surrounding medium is represented as structureless continuum interacting primarily via

polarization, dispersion, repulsion and cavitation effects [44, 45, 46, 47, 48]. The under-

lying physics concerned with polarization is then often expressed in terms of solutions to

the Poisson-Boltzmann equation (PB) [49, 50, 51, 52, 53, 67, 54, 55]. Approximations to

the PB — motivated by simplified computational protocols — are standard practice e.g.

the Generalized Born model (GB) [118, 117]. However, PB and GB are dealing with the

polarization term only, and the other above mentioned interactions are usually treated by

either first-principle [135] or semi-empirical [66] character.

Solutions to the PB are computed either by the finite difference method (FDPB) [49, 50,

51, 52] or by the boundary element method (PB/BEM) [54, 55]. The latter is particularly

intriguing since it reduces a three-dimensional integral over the entire volume to a two-

dimensional surface integral, leading to considerable savings in computational time. Both

approaches depend fundamentally on the exact definition of the boundary between solute

and solvent. All definitions are based on the area of the atoms exposed to the solvent,

for instance the solvent accessible surface area (SASA), the solvent excluded volume, or

the molecular surface [9], which all depend on a chosen set of van der Waals (vdW) radii

[136, 137, 138, 139] assigned to the center of the atoms.

Given the dependence on the exact geometry and quality of the boundary it appears neces-

sary to study the geometric factors that influence the outcome of PB calculations in greater
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detail. This is particularly appropriate for semi-quantitative approaches [140] where the

demand on accuracy is a very sensitive issue [141]. Particularly we draw our attention

to the following factors such as i) surface type and surface resolution, ii) dependence on

atomic model parameters, i.e. van der Waals radii, iii) generality and physicochemical sig-

nificance.

In this present work we provide such an analysis by focusing on each of these three points

separately. At first, we employ different surface generation algorithms to a subset of ran-

domly chosen protein structures of variable size and shape. PB/BEM calculations are car-

ried out with increasing resolution of the boundary. Optimal surface resolution and surface

generation parameters that guarantee numerical convergence and methodic stability are de-

rived. Next, we use these optimized parameters for a set of model peptides and vary the

van der Waals radii in a systematic way. The reference set of model peptides is consid-

ered at a high level of quantum chemical theory, i.e. PCM [46] using the Becke-98 density

functional [142] and the basis set of Sadlej [143]. The aim of this second step is to iden-

tify optimal van der Waals radii within the PB/BEM approach that will lead to boundaries

and solute geometries of similar size and shape as those used in the high-level PCM cal-

culations. Finally, with the optimized parameters determined in the initial two stages we

compute actual PB/BEM polarization energies in order to obtain a close match with the

quantum chemical results obtained from the reference set.
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4.2 Methods

4.2.1 Sample Selection, Preparation and Set Up of Structures and Com-

putation of Molecular Surfaces with Different Programs

A set of different protein structures is randomly selected from the Protein Data Bank [38].

The actual download site used is the repository PDB-REPRDB [144]. Default options are

applied with the following exceptions: i) Number of residues less than 40 excluded –

NO, ii) Include MUTANT – NO, iii) Exclude COMPLEX, iv) Exclude FRAGMENT,

v) Include NMR – NO, vi) Include Membrane Proteins – NO. A total of 28 structures

of different protein sizes and shapes (see Table 4.1) are chosen. The PDB codes of the

samples are, 2ERL, 1P9GA, 1FD3A, 1N13E, 1BRF, 1PARB, 1K6U, 1AVOA, 1SCMA,

1OTFA, 1DJTA, 1KU5, 1K3BC, 1R2M, 1CC8, 1L9LA, 1ZXTD, 1GYJA, 1T8K, 1XMK,

1YNRB, 1EZGA, 1C5E, 1SAU, 1WN2, 1JBE, 1C7K and 1WKR.

Two different programs to calculate molecular surfaces have been employed: the Connolly

programMSROLL [9] and the SIMS program [10].

Downloaded PDB structures are cleaned from multichain entries, HETATM lines CON-

NECT lines, ANISOU lines, counter ions, water molecules and the footer section. Program

MOLDEN [145] is used to visualize the downloaded PDB structures after cleaning and the

force field Tinker Amber is selected before a new PDB file is written out from within
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MOLDEN using option ’Write_With_Hydrogens’. Since MOLDEN always uses the de-

fault HIP type in AMBER jargon, HIS residues need to be converted to HIP types, as well

as CYS residues engaged in disulfide bonds need to be converted to CYX-type residues.

Occasional cases with PRO being the initial residue are manually edited and initial PROs

removed. AMBER non-bonded parameters [146], i.e. charges and van der Waals radii

are assigned to all the atoms in the protein structures. In this first part of the study, the

vdW-radii are increased by a factor of 1.12 and atomic partial charges are scaled down by

another factor of 0.9 [59].

The MSROLL program is used with varying choices of the fineness value (the -f command

line argument) which defines the resolution of the surface. With smaller values the resolu-

tion of the surface becomes better but computational cost will increase. The probe radius

(the -p command line argument) is set to 1.5 Å. Analytically calculated SASA and molec-

ular volumes are recorded, and the data file containing triangulation details is translated

into a human readable format, and critical items (for example almost coinciding trian-

gles) removed. The SIMS program is used with identical arguments to those employed in

MSROLL. Similarly, varying the resolution of the surface triangulation into small sized

triangles means adjusting the dot-density parameter in SIMS. Higher values for this pa-

rameter will yield higher surface resolutions but also increase the computational demand.

We record the number of BE, number of iterations, SASA and volume for comparison.
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4.2.2 Computation of Polarization Free Energies, ∆GPol, Based on so-

lutions to the Poisson Boltzmann Equation

Inner/outer dielectric constants at the molecular boundary are set to 1.0 and 80.0 respec-

tively. The serial version of the PB/BEM program POLCH [147] is used. Critical cases

with additional secondary cavities located in the interior part of the proteins are excluded.

AMBER van der Waals radii and partial charges [146] are applied. Using our own tool

chain for the assignment allows us to conveniently scale these data, as well as to write out

in the same instance the corresponding parameter files required by the molecular surface

programs.

The most prominent combinations of peptidic Φ,Ψ-angles [148] are used to construct dif-

ferent conformations of dipeptides. We only consider homodimers. All 20 types of dif-

ferent amino acids are used for this combinatorial approach. Zwitterionic forms are built

and 9 conformations per class of amino acid are taken into account leading to all in all 180

structures. Program “protein.x” from the TINKER package version 4.2 is employed [70].

Each of these reference structures is subjected to Polarizable Continuum Model (PCM)

[149] calculations at the Becke-98 [142] level of density functional theory (DFT) using

the high-quality basis set of Sadlej [143] within the Gaussian-03 suite of programs [150].

Geometric properties, i.e. the molecular volume and the molecular surface area, as well as

polarization free energies are extracted from the reference calculations and used as a base
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line when comparing to PB/BEM data. The computational demand of these reference cal-

culations is significant. For example, WW-conformations require on the order of 6 weeks

(and beyond) single-processor time on modern computing architectures.

4.3 Results

4.3.1 Stage I: Rather small-sized BEs are Needed to Obtain Consis-

tently Convergent Polarization Free Energies ∆GPol

We start with PB/BEMA calculations for a set of protein structures (PDB codes summa-

rized in Table 4.1). The boundary discretization is achieved with two independent pro-

grams, MSROLL [9] and SIMS [10]. Boundary resolution into BEs is steadily increased

with either program and independent PB/BEM results are computed for each particular

boundary decomposition. A typical plot of the trend of ∆GPol as a function of number of

BEs is shown in Figure 4.1 for the protein structure with PDB code 1C5E. Both approaches

converge to identical results in the limit of large numbers of BEs. The importance of well-

resolved boundaries becomes clear from Figure 4.1. Errors on the order of ±40 kcal
mol

are

easily introduced when working in the non-converged domain. Connolly’s MSROLL pro-

gram (red triangles in Figure 4.1) reaches a plateau value in a continuous manner, while

the SIMS program (blue spheres in Figure 4.1) finds its limit value within an alternating
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Figure 4.1: PB/BEM derived ∆GPol as a function of BE obtained from two inde-
pendent programs MSROLL [9] and SIMS [10]. The example represents results
for PDB structure 1C5E [11].

sequence. The SIMS program reaches convergence much faster than the Connolly pro-

gram. The quality of the computed molecular boundaries is comparable, see, for instance,

the values of molecular surfaces and volumes (final two columns in Table 4.1) obtained

with either program. SIMS seems to overestimate the volume by a small margin of roughly

1%. The recommended average size of BEs for converged results using MSROLL is on the

order of 0.11 Å2 while SIMS would require an average size of 0.31 Å2. Both numbers are

close to the value of 0.4 Å2 advocated in Quantum Chemistry [151].
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Figure 4.2: Comparison of employed molecular surfaces in the PB/BEM series
based on scaling the AMBER default vdW radii by a factor α to the reference data
obtained from PCM calculations [11].

4.3.2 Stage II: Systematic Geometric Comparison to High Level Quan-

tum Chemistry Calculations Suggests a Uniform Scaling of AM-

BER van der Waals Radii by a Factor of 1.07

A reference set of dipeptides in different conformations (9 per species) is constructed. Only

homodipeptides comprising all 20 types of naturally occurring amino acids are considered.

Thus a total number of 180 dipeptidic reference structures is set up. The zwitterionic form

is used throughout. Each of these structures is computed at the Becke-98 level of theory

[142] using the basis set of Sadlej [143] and the PCM model [149] for solvation free en-
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Figure 4.3: Comparison of employed molecular volumes in the PB/BEM series
based on scaling the AMBER default vdW radii by a factor α to the reference data
obtained from PCM calculations [11].

ergies. Geometric properties such as the cavity volume and the cavity surface area are

extracted from each of the reference calculations. All 180 structures are also computed

within the PB/BEM approach using optimized parameters for the boundary resolution de-

termined in Stage I of this study. However, only the SIMS program is used. We define a

global deviation from the reference data by

∆Sur f =
1
20

20

∑
i=1

1
9

9

∑
j=1

√

(Sur f PCMi, j −Sur f PB/BEMi, j,α )2 (4.1)
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where j runs over the conformations and i over the different types of homodipeptides,

i.e. GG, AA, VV, etc. The parameter α refers to a specific scaling factor used when

constructing the boundaries within the PB/BEM approach. In particular this scaling makes

the van der Waals radii larger or smaller by a certain fraction. The AMBER default set

of van der Waals radii is used [146]. A similar criterion is used for comparing molecular

volumes,

∆Vol =
1
20

20

∑
i=1

1
9

9

∑
j=1

√

(VolPCMi, j −VolPB/BEMi, j,α )2 (4.2)

and the dependence on the scaling factor α is shown in Figures 4.2 and 4.3.

As becomes clear from Figures 4.2 and 4.3 the best match to the reference data is obtained

when scaling the AMBER van der Waals radii by a factor of 1.07. Detailed data with respect

to conformational averages per type of dipeptide are shown in Table 4.2 and Table 4.3.

4.3.3 Stage III: Charge Scaling is Not Required

Using the optimized parameters obtained in the previous two stages leads us to the final

step of directly comparing polarization free energies ∆GPol computed within the PB/BEM

approximation and at the PCM level of theory. The idea is to identify another uniform scal-

ing factor β which applied to the AMBER default charges would result in an optimal match

to the reference polarization free energies. Thus another deviation criterion is introduced,

∆∆GPol =
1
20

20

∑
i=1

1
9

9

∑
j=1

√

(∆GPol,PCMi, j −∆G
Pol,PB/BEM
i, j,β )2 (4.3)
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that allows to identify the optimal value of β . The dependence of the PB/BEM polarization

free energies on the charge scaling factor β is shown in Figure 4.4.

Figure 4.4: Comparison of PB/BEM polarization free energies ∆GPol based on
scaling the AMBER default charges by a factor β to the reference data obtained
from PCM calculations [11]

The trend shown in Figure 4.4 suggests an optimal value of β very close to 1.0, hence no

charge scaling is required. This result i) emphasizes the broad applicability of AMBER

partial charges and ii) circumvents conceptual difficulties that would arise when charges

had to be scaled, i.e. modified net charges in proteins, non-neutral forms, etc. A detailed
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analysis with respect to the magnitude of the average deviation of each particular type of

dipeptide studied is shown in Table 4.4.

4.4 Discussion

Motivated by recent high-performance solution to Poisson Boltzmann calculations [147]

we have tested the influence of the many critical parameters involved. One obvious issue

is the exact choice and composition of the boundary between solute and solvent. At first,

we have to ensure the numerical stability within the selected level of approximation. In

order to address this problem we have carried out PB/BEM calculations on a large sample

of different proteins. When using different programs to create the boundary surface and in-

creasing systematically the resolution of these surfaces into small-sized boundary elements,

a recommended threshold size of about 0.31 Å2 for the average BE is identified when us-

ing program SIMS [10] which showed faster convergence than the well-known Connolly

program [9]. Although giving rise to very fine-resolved boundary surfaces, hence large

numbers of BEs, this value is close to the corresponding value of 0.4 Å2 frequently ad-

vised in Quantum Chemical models [151]. As a consequence, even proteins of modest size

thus require consideration of vast numbers of BEs (see for example Table 4.1), and the

importance of efficient means of solving the computational problem is underlined again.

After having established the necessary degree of boundary partitioning in the first stage,

we performed a systematic comparison against a reference set of dipeptides computed at a
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high level of Quantum Chemical theory. Consideration of geometric factors revealed that

when applying a scaling factor of about 1.07 to AMBER default van der Waals radii, rather

good agreement can be reached between the reference geometries and the geometries in

the PB/BEM approach. The recommended value of 1.07 is somewhat smaller than a factor

found previously by Höfinger et.al. (1.12 of ref [59]) and reflects the much finer resolved

boundary surfaces used in this present work.

The final step was to compare actual calculations of the polarization free energies to each

other. Following previous attempts, we wanted to derive another scaling factor that, when

applied to AMBER partial charges, would yield a close match to the reference polarization

free energies. The trend visible in Figure 4.4 indicates that no scaling of the charges is

necessary: they are already close to optimal. This is an unexpected — but very welcome

— result, as it eliminates potential secondary problems that would emerge with modifying

charges. Again, this is another consequence of the much finer resolved boundary surfaces

in this present work as opposed to previous results by Höfinger [59] where a scaling factor

of 0.9 had been found.

4.5 Conclusion

Combined employment of small-sized BEs (≈ 0.3 Å2 on average), slightly increased AM-

BER van der Waals radii (by a factor of 1.07), and default AMBER partial charges leads

to good quality estimates of the polarization free energy, ∆GPol , for proteins within the

PB/BEM framework.
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Table 4.1: PDB codes of studied structures and the number of BEs needed to reach
converged PB/BEM results using molecular surface algorithms MSROLL [9] and
SIMS [10] respectively [11].

PDB No. of No. of BEs No. of BEs Molecular Molecular
Residues Using Using Surface Area Volume

MSROLL SIMS (Difference) (Difference)
[9] [10] [Å2] [Å3]

2ERL 40 15661 9807 2370 (+1) 5653 (-43)
1P9GA 41 22302 5751 2091 (-5) 5055 (-72)
1FD3A 44 25865 6699 2408 (+7) 5819 (-56)
1N13E 52 18419 10353 3750 (+11) 6542 (-69)
1BRF 53 33879 11810 2796 (-7) 7734 (-77)
1PARB 53 42336 11006 3968 (-8) 8509 (-108)
1K6U 58 24220 13406 3195 (+12) 8603 (-65)
1AVOA 60 43916 13335 4777 (-3) 9325 (-186)
1SCMA 60 54464 14603 5131 (-13) 10601 (-179)
1OTFA 62 40128 10610 3767 (+6) 8942 (-86)
1DJTA 64 35828 9134 3331 (+26) 9422 (-43)
1KU5 66 46390 12208 4310 (+3) 10153 (-133)
1K3BC 69 61667 16297 5768 (+19) 18193 (-165)
1R2M 71 39316 13659 3244 (-1) 9596 (-74)
1CC8 73 27668 15091 3644 (+2) 11094 (-65)
1L9LA 74 20278 11636 4182 (+5) 11728 (-112)
1ZXTD 76 37335 11259 4089 (+8) 10809 (-93)
1GYJA 76 44770 13665 4885 (-3) 11464 (-118)
1T8K 77 35978 13846 3925 (+4) 11410 (-119)
1XMK 79 56033 16468 4294 (+9) 12288 (-98)
1YNRB 80 31529 12630 4417 (+16) 11911 (-157)
1EZGA 84 34628 9122 3258 (+3) 10103 (-95)
1C5E 95 48306 19880 4480 (0) 13285 (-110)
1SAU 115 47613 17765 5197 (+25) 17897 (-116)
1WN2 121 51325 21555 5614 (+15) 17836 (-118)
1JBE 128 58119 16729 5409 (+22) 18905 (-188)
1C7K 132 54104 16675 5389 (0) 18858 (-182)
1WKR 340 74167 55378 11008 (-41) 47105 (-299)
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Table 4.2: Comparison of average molecular surfaces based on unscaled and
scaled AMBER vdW radii with data from PCM calculations [11].

Dipeptide Mean Surface Mean Surface Mean Surface
Type AMBER Unscaled AMBER Scaled PCM Reference

[Å2] [Å2] [Å2]
AA 191.764 (5.205) 204.388 (3.697) 214.747 (4.955)
CC 214.592 (4.622) 229.274 (5.461) 232.910 (6.522)
DD 228.687 (6.032) 242.724 (5.972) 240.839 (6.776)
EE 273.402 (5.835) 287.557 (6.951) 283.025 (5.766)
GG 150.255 (4.460) 161.637 (4.936) 167.764 (3.249)
II 279.535 (10.274) 294.402 (11.331) 302.173 (12.233)
KK 314.712 (6.273) 332.593 (7.677) 340.545 (7.599)
LL 276.435 (10.012) 290.497 (12.440) 293.172 (10.465)
MM 301.384 (6.691) 318.033 (8.261) 329.815 (8.374)
NN 232.466 (6.072) 247.553 (7.325) 247.040 (7.310)
QQ 276.939 (5.957) 293.663 (7.531) 292.648 (6.582)
RR 354.636 (6.925) 377.310 (7.568) 380.408 (6.739)
SS 196.528 (4.982) 207.904 (4.610) 212.107 (4.695)
TT 224.181 (8.047) 238.570 (8.359) 239.112 (10.124)
VV 251.913 (8.574) 265.008 (8.296) 276.423 (8.140)
YY 340.272 (17.100) 356.042 (17.293) 346.378 (14.704)
FF 329.058 (17.123) 343.245 (17.402) 326.947 (15.489)
WW 355.790 (26.425) 377.209 (27.865) 361.573 (25.182)
HH 282.802 (13.007) 299.235 (12.829) 296.885 (11.461)
PP 224.999 (10.768) 237.525 (10.500) 233.118 (9.900)
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Table 4.3: Comparison of average molecular volumes based on unscaled and
scaled AMBER vdW radii with data from PCM calculations [11].

Dipeptide Mean Volume Mean Volume Mean Volume
Type AMBER Unscaled AMBER Scaled PCM Reference

[Å3] [Å3] [Å3]
AA 191.804 (4.553) 215.661 (3.355) 228.591 (2.885)
CC 223.713 (3.799) 252.135 (4.069) 255.902 (3.594)
DD 242.406 (4.242) 270.928 (5.037) 260.904 (4.723)
EE 296.037 (4.888) 327.303 (3.864) 311.645 (3.810)
FF 381.346 (5.875) 417.696 (7.992) 388.363 (6.223)
GG 136.315 (3.565) 154.314 (2.631) 164.287 (2.048)
HH 317.309 (3.605) 353.465 (5.228) 340.591 (5.324)
II 323.590 (6.689) 357.080 (7.564) 367.182 (6.520)
KK 343.720 (3.747) 382.391 (4.384) 388.641 (3.903)
LL 313.537 (5.063) 346.507 (6.450) 344.950 (7.458)
MM 325.073 (5.069) 363.563 (5.484) 377.789 (3.905)
NN 248.729 (4.628) 278.449 (4.968) 271.305 (5.415)
PP 242.861 (8.154) 269.561 (9.116) 263.128 (9.957)
QQ 301.279 (3.985) 336.468 (5.590) 325.660 (5.591)
RR 384.833 (4.089) 431.811 (4.444) 424.874 (3.559)
SS 198.981 (3.533) 221.590 (3.162) 225.193 (2.964)
TT 244.397 (5.673) 272.848 (7.051) 273.546 (6.533)
VV 282.296 (6.114) 311.383 (6.895) 330.378 (8.172)
WW 431.248 (14.910) 480.974 (17.118) 447.693 (15.019)
YY 393.622 (5.433) 433.845 (7.433) 407.695 (5.466)
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Table 4.4: Comparison of average PB/BEM polarization free energies ∆GPol using
AMBER default charges to corresponding data obtained from PCM calculations
[11].

Dipeptide Mean ∆GPol,PB/BEM Mean ∆GPol,PCM Mean ∆∆GPol Number of
Type AMBER Default Charges PCM Reference Deviation References

[kcal/mol] [kcal/mol] [kcal/mol]
AA -91.36 ( 8.56 ) -83.89 (10.12 ) 7.47 9
CC -115.11 (11.02 ) -96.80 (12.83 ) 18.31 9
DD -296.25 (17.08 ) -285.27 (18.24 ) 10.98 9
EE -266.54 (14.09 ) -259.29 (13.76 ) 7.25 9
GG -96.52 (10.09 ) -89.41 (11.36 ) 7.11 9
II -82.72 ( 7.49 ) -75.97 ( 8.70 ) 6.77 9
KK -249.63 (16.51 ) -236.37 (19.64 ) 13.26 9
LL -85.54 ( 7.20 ) -64.51 ( 8.64 ) 21.03 9
MM -88.82 ( 7.55 ) -82.10 ( 9.42 ) 6.72 9
NN -105.11 ( 8.19 ) -101.80 (12.20 ) 4.25 9
QQ -119.08 (10.88 ) -115.33 (12.60 ) 3.89 9
RR -235.39 (17.79 ) -228.71 (21.45 ) 6.68 6
SS -112.78 (13.38 ) -105.47 (13.90 ) 7.32 9
TT -106.87 (12.06 ) -100.61 (12.88 ) 6.55 9
VV -85.17 ( 7.44 ) -77.46 ( 8.73 ) 7.70 9
YY -93.35 ( 4.36 ) -90.11 ( 8.48 ) 3.59 5
FF -89.92 (10.55 ) -82.51 (13.94 ) 7.41 6
HH -237.74 (19.08 ) -236.06 (22.15 ) 3.66 9
PP -79.15 ( 5.73 ) -82.71 ( 7.50 ) 3.56 9
WW -100.50 ( 4.27 ) -88.11 (12.93 ) 12.39 2
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Chapter 5

Implementation and Analysis of

Dispersion Term

This chapter is reproduced in part from our paper- P. Kar, M. Seel, U. H. E. Hansmann, S.

Höfinger. 2007. Dispersion Terms and Analysis of Size- and Charge- Dependence in an

Enhanced Poisson-Boltzmann Approach, J. Phys. Chem. B, 111, 8910-8918. Copyright

American Chemical Society (2007).
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5.1 Introduction

The stabilizing effect of water on biomolecules is an intensively studied area in contempo-

rary biophysical research. This is because many of the key principles governing biological

functionality result from the action of the solvent, and thus water is often regarded as the

“matrix of life”.

In theoretical work, the important factor “solvent” needs to be taken into account too, or

the studied system will be unphysical. There are two main ways of solvent treatment in

biophysical research. One is to embed the biomolecule of interest into a box of explicit

solvent molecules resolved into full atomic detail [66, 93, 152]. The alternative form

is to consider the solvent as a structureless continuum and describe the response of the

environment with implicit solvation methods [46, 48, 47, 153, 45]. Basics of both ap-

proaches are discussed in Chapter 2. Both approaches have their own merits and demer-

its. While explicit solvent approaches are much more accurate than the implicit solvent

approach but implicit solvent requires less computational power compared to explicit mod-

els. Much effort has been devoted to describing the electrostatic component within im-

plicit solvation models. Efficient solutions have become popular in the form of General-

ized Born (GB) models [118, 117, 154, 155] as well as Poisson-Boltzmann models (PB)

[49, 50, 51, 52, 53, 67, 54, 55]. Solutions to the PB are computed either by the finite dif-

ference method (FDPB) [49, 50, 51, 52] or by the boundary element method (PB/BEM)

[54, 55]. Considerable computational savings are expected from the latter because the prob-
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lem can be reduced from having to solve a volume integral in FDPB to solving a surface

integral in PB/BEM. Either approach is sensitive to the degree of discretization into grid

elements or boundary elements [156, 11, 157].

Aside from the electrostatic component there are also apolar contributions to consider

[46, 158]. Especially in the context of nonpolar molecules, such factors often become the

dominant terms in the solvation free energy. A common way to treat these nonpolar contri-

butions is to introduce a SASA-term, which means measuring the solvent accessible surface

area (SASA) and weighing it with an empirically determined factor. Although commonly

employed, this procedure has become the subject of intensive debates [159, 160, 161, 162].

Not only were SASA terms found to be inappropriate for representing the cavitation term

[59, 162], but also is the weighing factor — usually associated with surface tension —

completely ill-defined in an atomic scale context [56]. While the short range character

of dispersion and repulsion forces occurring at the boundary between solute and solvent

would imply that SASA can describe these kinds of interactions, a recent careful analysis

has shown that, at least for dispersion, such a relationship is not justified [159].

The discrepancy arising with SASA-terms has been recognized by many groups and its per-

sistent employment may be largely due to the sizeable cancellation of error effects. Wag-

oner and Baker [162] have divided the non-polar contributions into repulsive and attractive

components and compared their approach to the mean forces obtained from simulation data

on explicitly solvated systems. The specific role of the volume to account for repulsive in-
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teractions (cavitation) was clearly identified. Further inclusion of a dispersion term resulted

in a satisfactory model of high predictive quality. Levy and Gallicchio devised a similar

decomposition into a SASA-dependent cavitation term and a dispersion term within a GB

scheme [163, 164, 165]. Their model makes use of atomic surface tensions and a rigor-

ous definition of the molecular geometry within the GB framework. Particularly attractive

is their efficient implementation and straightforward interfacing with Molecular Dynamics

codes. Zacharias has already noted that a decompositon into a dispersion term and a SASA-

based cavity term greatly benefits the quality of predictions of apolar solvation [158]. His

approach uses distinct surface layers for either contribution. Hydration free energies of a

series of tested alkanes agreed very well with data from explicit simulations [166] and from

experiment. The striking feature in this approach is the improvement in hydration free ener-

gies of cyclic alkanes. Methodic advancement has recently been reported within the newest

release of AMBER [18] where GB was augmented by a volume term [167] and the inclu-

sion of dispersion terms was found to significantly improve the general predictive quality of

PB. Of particular interest are systematic and physics-based decompositions that allow for

separate consideration of each of the terms involved. In Quantum Mechanics (QM) such a

technique has long been established with the Polarizable Continuum Model (PCM) [46]. It

therefore seems advisable to use techniques like PCM (Polarizable Continuum Model) as a

reference system whenever additional method development is performed, especially when

regarding the multitude of technical dependencies continuum solvation models are faced

with [156, 11].
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In the present work we describe a systematic process to introduce dispersion terms in the

context of the PB/BEM approach. The PCM model, that treats dispersion and repulsion

terms from first-principles, is used as a reference system along with experimental data.

Different ways of calculating dispersion-, repulsion contributions in PCM have recently

been compared [135]. For our purposes the Caillet-Claverie method [57, 58] was imple-

mented since it seems to offer a good compromise between accuracy and computational

overhead. This method was also chosen in earlier versions of PCM [168] and thus repre-

sents a proven concept within the BEM framework. The fundamental role of dispersion

and the potential danger of misinterpreting hydrophobicity related phenomena by ignoring

it has been underlined recently [169, 170].

Given the fundmental nature of hydrophobicity and the potential role of dispersion within it,

together with the current diversity seen in all the explanatory model concepts [171, 172], it

seems to be necessary to advance all technical refinements to all solvation models (implicit

as well as explicit) just to facilitate an eventual understanding of the factors governing these

basic structure-forming principles.

After determination of appropriate dispersion constants used in the Caillet-Claverie ap-

proach, we apply our model to a series of proteins of increasing size. In this way we can

analyze the relative contribution of the individual terms as a function of system size. More-

over, we have carried out semi-empirical calculations on the same series of proteins and

can therefore compare effects resulting from different charge assignments to each other.
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The semi-empirical program LocalSCF [19] also allowed for estimation of the polarization

free energies according to the COSMO model [173], which could be readily used for direct

comparison to PB/BEM data.

5.2 Methods

5.2.1 Theoretical Concepts

We use the following decomposition of the solvation free energy

∆Gsolv = ∆Gpol+∆Gcav+∆Gdisp (5.1)

where the individual terms represent polarization, cavitation and dispersion contributions.

Explicit consideration of repulsion is not necessary as the cavitation term includes these in-

teractions. PB/BEM methodology is used for ∆Gpol at the boundary specification described

previously [174]. The cavitation term is expressed via the revised Pierotti approximation

(rPA) [59, 56] (rPA), which is based on the Scaled Particle Theory [60, 61]. The major ad-

vantage with this revised approximation is a transformation property involving the solvent

excluded volume. Hence after having identified the basic rPA-coefficients from free energy

calculations the rPA-formula may be applied to any solute regardless of its particular shape

or size [59]. ∆Gdisp is computed from the Caillet-Claverie formula [57, 58] projected onto
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the boundary elements as suggested by Floris et al. [168]

∆Gdisp =
I

∑
i

ρslvωi
J

∑
j

K

∑
k

−0.214κiκ j
64(RWi )3(RWj )3

Ri j
6

︸ ︷︷ ︸

Caillet−Claverie

1
3

(

~Ri j ·~nk
)

∆σk (5.2)

where the first sum is over different atom types, i, composing one molecule of solvent,

the second sum is over all solute atoms, j, and the sum over k is over all surface elements

resulting from an expansion of the molecular surface by the dimension of radius RWi of a

particular solvent atom, see Figure 5.1 for a graphical representation. Here solvent atoms

Figure 5.1: Graphical representation of the geometrical elements needed for com-
puting the dispersion energy [12].

are shown in grey and solute atoms are represented as white circles. The scheme corre-

sponds to one particular choice of i. For example, if the solvent molecule in Figure 5.1 is
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water, then the scenery depicts the first of two possibilities where i refers to the oxygen

atom. After i is set, all atom radii of the solute are increased by the amount of the atomic

radius of oxygen and the molecular surface (dashed line in Figure 5.1) is reconstructed.

Next, the inner double sum is carried out where J is the total number of solute atoms and K

is the total number of BEs forming the interface. Note that index j serves for a double pur-

pose, looping over all solute atoms as well as defining the type of atomic radius to use. At

every combination j,k of solute atoms with BEs, the expression emphasized by the curly

bracket in eq. 5.2 must be evaluated. Here κi and κ j are dispersion coefficients and RWi ,

RWj are atomic radii, all of them determined empirically by Caillet-Claverie [57, 58]. The

corresponding values are summarized in Table 5.1.

Table 5.1: Summary of the data used for Caillet-Claverie style of dispersion treat-
ment as outlined in eq. 5.2 [12].

Caillet-Claverie Dispersion Coefficients, κ , and Atomic Radii, RW , in Å[57, 58]

κH κC κN κO κF κNa κP κS κCl κK κBr κJ
1.00 1.00 1.18 1.36 1.50 1.40 2.10 2.40 2.10 2.90 2.40 3.20

RWH RWC RWN RWO RWF RWNa RWP RWS RWCl RWK RWBr RWJ
1.20 1.70 1.60 1.50 1.45 1.20 1.85 1.80 1.76 1.46 1.85 1.96

Ri j is the distance between the center of some BE, k, and the center of a solute atom, j.
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After the expression in the curly bracket of eq. 5.2 has been evaluated, it must be multiplied

with a scalar product between the vectors ~Ri j and ~nk, the inwards pointing normal vector

corresponding to the kth BE. The remainder of eq. 5.2 is multiplication with a constant

factor 1
3 and multiplication with ∆σk, the partial area of the BE, k. After all possible com-

binations j,k have been considered, the procedure is repeated with an incremented i, now

referring to the H-atom, the second type of atom in a molecule of water. The molecular

surface is recomputed, extended by the dimension of the atomic radius of hydrogen, and

the entire inner double sum will be repeated as outlined for the case of oxygen. However,

since both H-atoms in the solvent molecule are identical, this step needs to be done only

once and ωi, the number of occurrences of a particular atom type i, will take care of the rest

(in the case of water ω1 = 1 for oxygen and ω2 = 2 for hydrogen). Finally, ρslv in eq. 5.2

represents the value of number density (ρslv = 0.033 for water at 298 K) of the solvent. We

have restricted the approach to just the 6th-order term in the expression derived by Floris

et al. [168]. Note that we consider molecular surfaces as defined by Connolly [9]. The

partial term listed after the curly bracket in eq. 5.2 is the actual consequence of mapping

the classical pair interaction terms onto a boundary surface [168]. The partial expression

enclosed in the curly bracket can be substituted with any other classic pair potential, for

example using AMBER style of dispersion [18],

∆Gdisp =
I

∑
i

ρslvωi
J

∑
j

K

∑
k

−2
√

εiε j

(

RWi +RWj
Ri j

)6

︸ ︷︷ ︸

AMBER

1
3

(

~Ri j ·~nk
)

∆σk (5.3)
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with similar meanings of the variables used above and εi being the van der Waals well depth

corresponding to homogeneous pair interaction of atoms of type i.

5.2.2 Model Calibration

The algorithm covering computation of dispersion is implemented in the PB/BEM program

POLCH [147] (serial version). Proper functionality was tested by comparing dispersion

results of 4 sample molecules, methane, propane, iso-butane and methyl-indole, against

results obtained from GAUSSIAN-98 [175] (PCM model of water at user defined geome-

tries). Deviations were on the order of ± 1.8 % of the G98 value, so the procedure is

assumed to work correctly. The small variations are the result of employing a different

molecular surface program in PB/BEM [10]. Next, the structures of amino acid side-chain

analogues are derived from standard AMBER pdb [38] geometries by making the Cα -atom

a hydrogen atom, adjusting the C-H bond length and deleting the rest of the pdb structure

except the actual side chain of interest. In a similar process, zwitterionic forms of each type

of amino acid are constructed. PB/BEM calculations are carried out and net solvation free

energies for solvent water are stored. A comparison is made against the experimental val-

ues listed in [13] as well as results obtained from the PCM model in GAUSSIAN-03 [150].

AMBER default charges and AMBER van der Waals radii increased by a multiplicative

factor of 1.07 are used throughout [11]. Initial deviation from the reference set is succes-

sively improved by introducing a uniform scaling factor to the dispersion coefficients κi of
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eq. 5.2. The optimal choice of this dispersion scaling factor is identified from the minimum

mean deviation against the reference data set. The initially derived optimal scaling factor is

applied to the zwitterionic series, a subset of molecules for which experimental values have

been compiled [14], and a set of 180 dipeptide conformations studied previously. When

new molecules are parameterized, we use ANTECHAMBER from AMBER-8 and RESP

charges based on MP2/6-31g* grids of electrostatic potentials [146]. Molecular geometries

are optimized in a two-step procedure, at first at B3LYP/3-21g* and then at MP2/6-31g*

level of theory and only the final optimized structure becomes subject to the RESP calcu-

lation.

Extensions are pursued in two directions. First, the PB/BEM approach is used with solvents

other than water, and the question is raised whether the optimized scaling factor for disper-

sion in water is of a universal nature or needs to be re-adjusted for each other type of solvent

considered. Secondly, we tested the introduced change when the Caillet-Claverie specific

formalism of dispersion treatment is changed to AMBER-style dispersion as indicated in

eqs. 5.2 and 5.3.

5.2.3 Study of Size- and Charge Dependence

Crystal structures of 10 proteins of increasing size are obtained from the Protein Data

Bank [38]. The actual download site is the repository PDB-REPRDB [144]. Structures are



purified and processed as described previously [11, 157]. The PDB codes together with a

characterization of main structural features of the selected test proteins are summarized in

Table 5.2. Two types of calculations are carried out using the semi-empirical model PM5

Table 5.2: PDB codes and structural key data of a series of proteins used for
comparison [12]

Shape Sketch PDB-Code Number of Number of Charge
Residues Atoms [a.u.]

1P9GA 41 517 +3

2B97 70 981 +1

1LNI 96 1443 -5

1NKI 134 2082 +5

1EB6 177 2570 -11

1G66 207 2777 -2

1P1X 250 3813 0

1RTQ 291 4287 -16

1YQS 345 5147 +2

1GPI 430 6164 -12

[176] and the fast multipole moment (FMM) method [177]. A single point vacuum energy
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calculation is followed by a single point energy calculation including the COSMO model

[173] for consideration of solvent water. The difference between the two types of single

point energies should provide us with an estimate of the solvation free energy. Furthermore,

the finally computed set of atomic partial charges is extracted from the PM5-calculation and

feeded into the PB/BEM model to substitute standard AMBER partial charges. In this way

we can examine the dependence on a chosen charge model as well as compare classic with

semi-empirical QM approaches to the solvation free energy.

5.2.4 Computational Aspects

The sample set of 10 proteins listed in Table 5.2 is analyzed with respect to computational

performance regarding the calculation of the dispersion term as defined in eq. 5.3. It is

important to note that for this particular task the surface resolution into BEs may be lowered

to levels where the average size of the BEs becomes ≈ 0.45 Å2. CPU times for the two

steps, ie creation and processing of the surface and evaluation of the expression for ∆Gdisp

are recorded and summarized in Table E.12 of the Appendix E. As can be seen clearly

from these data, the major rate-limiting step is the production of the surface, which can

reach levels of up to 20 % of the total computation time. Evaluation of the dispersion term

itself is of negligible computational cost. Since the surface used for the polarization term is

defined according to Connolly (see section 5.2.1), we could not use this molecular surface

directly for a SASA-based alternative treatment of the non-polar contributions. Rather
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we had to compute a SASA from scratch too, and were facing identical computational

constraints as seen with the approach chosen here.

5.3 Results

5.3.1 A universal scaling factor applied to Caillet-Claverie dispersion

coefficients leads to good overall agreement with experimental

solvation free energies of amino acid side-chain analogues in wa-

ter

Since our main focus is on proteins, our first goal is to optimize our approach for proteins

in aqueous solution. We can resort to the experimental data for amino acid side-chain ana-

logues (see [13] and references therein). At first we seek maximum degree of agreement

between experimental and PB/BEM values of the solvation free energy, ∆Gsolv, by multi-

plying a scaling factor, λ , to the Caillet-Claverie dispersion [57, 58] coefficients, κi. The

remaining terms in eq. 5.1 are computed at the optimized conditions reported previously

[174, 56]. We define a global deviation from the experimental data by

∆∆Gsolv =
1
13

13

∑
i=1

√
(

∆G
solv,Exp
i −∆G

solv,PB/BEM
i,λ

)2
(5.4)
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where i refers to a particular type of amino acid side-chain analogue included in the ref-

erence set of experimental values and λ is the introduced scaling factor applied to the

Caillet-Claverie dispersion [57, 58] coefficients. The trend of ∆∆Gsolv for different choices

of λ is shown in Figure 5.2. As becomes clear from Figure 5.2, a scaling factor of 0.70

Figure 5.2: Deviation of the PB/BEM ∆Gsolv from experimental values tabulated
in [13] as a function of λ [12].

establishes the best match to the experimental data. A detailed comparison of individual

amino acid side-chain analogues at this optimum value is given in Table 5.3. We achieve

a mean unsigned error of 1.15 kcal
mol

, hence come close to the accuracy reported recently by
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Chang et al. [13], a study that agreed very well with earlier calculations carried out by

Shirts et al. [178] and MacCallum et al. [179].

Table 5.3: Comparison of PB/BEM-computed versus experimental total solvation
free energies, ∆Gsolv, of amino acid side-chain analogues in water. A scaling factor,
λ , of 0.70 has been uniformly applied to all dispersion coefficients, κi, in eq. 5.2
[12].

Species ∆Gsolv,PB/BEM ∆Gsolv,Exp Deviation
[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

acetamide -10.97 -9.68 1.29
butane 1.92 2.15 0.23
ethanol -4.58 -4.88 0.30
isobutane 1.74 2.28 0.54
methane 0.72 1.94 1.22
methanethiol -3.57 -1.24 2.33
methanol -6.58 -5.06 1.52
methyl-ethyl-sulfide -0.30 -1.48 1.18
methylindole -4.19 -5.88 1.69
p-cresol -3.56 -6.11 2.55
propane 1.72 1.99 0.27
propionamide -9.34 -9.38 0.04
toluene 1.05 -0.76 1.81

Several computed solvation free energies in Table 5.3 still show significant deviation from

the experimental value, e.g. p-cresol and methanethiol. A comparison to results with a

simple SASA-based model is included in the Appendix E (Table E.11). This comparison

reveals a certain improvement for the most critical components, but no indication of a
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general amelioration of the situation. The somewhat special character of methanethiol has

been noticed before [160].

5.3.2 Component-wise juxtaposition of PB/BEMand PCMapproaches

reveals a difference in individual contributions but similarity in

net effects

As interesting as total solvation free energies are the constituting partial terms and how

they compare to their analogous counter parts in a high-level QM model such as PCM. We

therefore studied all amino acid side-chain analogues with PCM [46] calculations at the

Becke-98 [142] level of density functional theory (DFT) using the high-quality basis set

of Sadlej [143] and program GAUSSIAN-03 [150]. A summary of these data is given in

Table 5.4.

Since in PB/BEM we do not consider repulsion explicitly, the PB/BEM dispersion term is

compared to the sum of ∆Gdisp and ∆Grep of PCM. It becomes clear from Table 5.4 that

there is rather general agreement in polarization terms but sizeable divergence in the apolar

terms. However, the sum of all apolar terms, ie. ∆Gcav and ∆Gdisp, appears to be again in

good agreement when comparing PB/BEM with PCM. The reason for the difference in the

apolar terms is largely due to a different cavitation formalism used in PB/BEM, which we

currently believe to represent a very good approximation to this term [56].
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Table 5.4: Analysis of individual contributions to the net solvation free energy for
solvent water as computed by PB/BEM or by PCM [12].

Species ∆Gcav ∆Gcav ∆Gdisp ∆G
disp
rep ∆Gpol ∆Gpol ∆Gsolv ∆Gsolv

PB/BEM PCM PB/BEM PCM PB/BEM PCM PB/BEM PCM
[
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

acetamide 5.10 12.71 -4.26 -7.45 -11.81 -14.13 -10.97 -8.88
butane 7.05 15.46 -4.41 -8.48 -0.72 -0.45 1.92 6.54
ethanol 4.89 11.79 -3.71 -6.74 -5.76 -6.42 -4.58 -1.37
isobutane 7.17 15.94 -4.44 -8.12 -0.98 -0.55 1.74 7.28
methane 3.08 9.98 -2.10 -3.03 -0.26 -0.07 0.72 6.88
methanethiol 4.19 10.95 -4.12 -6.77 -3.64 -4.35 -3.57 -0.17
methanol 3.39 9.53 -3.05 -4.88 -6.91 -6.02 -6.58 -1.37
methyl-

ethyl-sulfide 7.00 16.37 -5.30 -9.49 -2.00 -3.02 -0.30 3.86
toluene 8.54 17.40 -5.51 -11.17 -1.98 -3.73 1.05 2.51
methylindole 10.00 20.67 -7.09 -14.10 -7.10 -10.07 -4.19 -3.50
p-cresol 8.92 18.93 -6.11 -12.16 -6.37 -10.48 -3.56 -3.70
propane 5.80 13.58 -3.68 -6.92 -0.40 -0.34 1.72 6.31
propionamide 6.34 14.56 -4.83 -9.05 -10.84 -13.05 -9.34 -7.54

5.3.3 The identified scaling factor of 0.70 applied to Caillet-Claverie

dispersion coefficients yields good quality estimates of the solva-

tion free energy in water for many molecules

In order to test the PB/BEM approach further we used the initially determined scaling

factor for dispersion coefficients of 0.70 to compute water solvation free energies of a

98



series of other molecules. The procedure for obtaining atomic partial charges is described

in section 5.2.2. It is important to note that the electron density used for RESP fitting

must be of MP2/6-31G* quality to achieve maximum degree of compatibility to standard

AMBER charges, which have been found to mimic high quality calculations very well

[174]. Experimental reference values have been obtained from the extensive compilation

by Li et al. [14]. The data comprising 18 arbitrarily selected molecules are summarized in

Table 5.5. The mean unsigned error of 1.18 kcal
mol

for this set of molecules comes close to

PCM quality and must be considered very satisfactory again. Another class of molecules

we looked into are amino acids in their zwitterionic form, where due to the charges at the

amino/carboxy groups the net solvation free energies become larger by about an order of

magnitude. A comparison against the recently reported data by Chang et al. [13] is given

in Table 5.6. The degree of agreement is still considerably high and there is no obvious

indication of a systematic deviation. A final comparison is made against a series of 180

molecules that has been used in a previous study [174]. These structures include all 20

types of naturally occurring amino acids in 9 different conformations (zwitterionic forms

assumed). The set of dipeptides has been subjected to PCM [46] calculations at the Becke-

98 DFT level [142] using Sadlej’s basis set [143]. Average net solvation free energies

are formed from all 9 different conformations per type of amino acid (or the number of

available reference calculations) and the results are presented in Table E.1 of the Appendix

E. Considering the variation with respect to conformational flexibility the match must still

be considered to be reasonably good. It is interesting to note that the variability of the
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Table 5.5: Individual contributions to the water net solvation free energy as com-
puted from PB/BEM or PCM for a series of arbitrary small molecules [12].

Species ∆Gcav ∆Gcav ∆Gdisp ∆G
disp
rep ∆Gpol ∆Gpol ∆Gsolv ∆Gsolv

PB/BEM PCM PB/BEM PCM PB/BEM PCM PB/BEM PCM
[
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

propanal 6.04 13.26 -3.92 -7.67 -4.32 -6.35 -2.21 -0.76
butanoic acid(a) 7.54 16.98 -5.31 -10.3 -8.18 -10.85 -5.94 -4.16
cyclohexane 8.77 16.45 -5.29 -11.56 0.00 -0.58 3.48 4.31
acetone 5.77 14.30 -3.96 -7.04 -4.67 -6.05 -2.85 1.21
propene 5.55 12.60 -3.58 -6.48 -0.98 -1.24 0.99 4.88
propionic acid(a) 6.31 14.57 -4.60 -8.73 -8.38 -10.42 -6.67 -4.59
propyne 4.87 12.07 -3.14 -5.75 -2.36 -3.33 -0.62 2.99
hexanoic acid(a) 9.97 -6.76 -8.33 -5.12
anisole 8.66 -6.12 -3.27 -0.73
benzaldehyde 8.47 17.26 -5.74 -11.99 -5.05 -9.38 -2.32 -4.12
ethyne 4.16 9.78 -2.76 -4.92 -0.96 -1.05 0.44 3.81
butanal 7.18 15.75 -4.63 -9.33 -4.55 -6.77 -2.00 -0.36
benzene 7.24 14.21 -4.84 -10.27 -2.76 -4.04 -0.36 -0.10
bromobenzene 8.67 16.96 -5.91 -12.73 -2.46 -4.76 0.29 -0.53
acetic acid(a) 4.89 12.38 -3.92 -7.02 -8.41 -10.49 -7.44 -5.13
bromoethane 5.95 13.09 -4.25 -8.35 -1.61 -2.77 0.09 1.98
ethylbenzene 9.57 19.57 -6.11 -12.68 -1.92 -3.62 1.54 3.27
diethylether 7.49 17.71 -5.12 -9.47 -1.41 -2.48 0.97 5.76

(a) protonated form

dispersion contributions alone, considered isolated per se as a function of conformational

flexibility is much less pronounced than what we see for the net solvation (see Table E.2 of

the Appendix E).
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Table 5.6: Comparison of PB/BEM computed solvation free energies of zwitteri-
onic amino acids in water against data by Chang et al. [13] obtained from Monte
Carlo Free Energy simulations [12].

Species ∆Gsolv,PB/BEM ∆Gsolv,MC Deviation
[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

Gly -55.73 -56.80 1.07
Ala -51.75 -57.70 5.95
Val -48.79 -56.20 7.41
Leu -49.05 -57.30 8.25
Ile -47.55 -55.70 8.15
Ser -60.82 -55.30 5.52
Thr -61.33 -54.40 6.93
Cys -60.86 -54.70 6.16
Met -50.88 -57.30 6.42
Asn -58.63 -60.10 1.47
Gln -65.82 -59.60 6.22
Phe -51.46 -55.90 4.44
Tyr -55.16 -61.60 6.44
Trp -58.00 -64.60 6.60

5.3.4 The scaling factor of 0.70 applied to Caillet-Claverie dispersion

coefficients in the case of water is not of a universal nature but

must be re-optimized for any other type of solvent.

An important aspect of the PB/BEM approach is how the identified scaling factor for

Caillet-Claverie dispersion coefficients — 0.70 in the case of water — translates into other

situations of non-aqueous solvation. We have therefore repeated the studies for identifying
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optimal boundaries [174] for solvents methanol, ethanol and n-octanol. Again we consider

PCM cavities of the set of 180 dipeptide structures as reference systems and search for the

best match in volumes and surfaces dependent on slightly enlarged or shrinked standard

AMBER van der Waals radii. We again employ the molecular surface program SIMS [10].

Detailed material of this fit is included in the Appendix E (Table E.3-E.8 and Figure E.1-

E.3). We find to have to marginally increase AMBER van der Waals radii by factors of 1.06

in solvents methanol and ethanol and 1.05 in solvent n-octanol. Based on these conditions

for proper locations of the solute-solvent interface we then repeat the search for appropri-

ate scaling factors of dispersion coefficients that result in close agreement to experimental

solvation free energies (see section 5.3.1). Results are presented in Figures 5.3 and 5.4.

It becomes clear that the factor of 0.70, optimal for water, is not universally applicable.

Rather, we find for ethanol 0.82 and for n-octanol 0.74 to be the optimal choices. A detailed

comparison against experimental values at optimized conditions is given in Tables 5.7 and

5.8. We achieve mean unsigned errors of 1.38 kcal
mol

for ethanol and 1.27 kcal
mol

for n-octanol.

Cavitation terms of similar quality to the ones presented in [56], which are needed in

PB/BEM, are available for methanol and ethanol (unpublished work in progress) or ob-

tained from [180]. Unfortunately, we cannot do the calculations for methanol because of

the lack of experimental values and the non-systematic trend in dispersion scaling factors of

the other alcoholic solvents. All optimized parameter sets for the various types of solvents

are summarized in Table 5.9.
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Figure 5.3: Ethanol: Deviation of the PB/BEM ∆Gsolv from experimental values
tabulated in [14] as a function of λ [12].

5.3.5 Switching from Caillet-Claverie-style of dispersion to AMBER-

style requires a re-adjustment of scaling factors.

An obvious question is how the described approach will change when substituting the

Caillet-Claverie formalism with the corresponding AMBER-dispersion formula, ie replac-
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Figure 5.4: n-Octanol: Deviation of the PB/BEM ∆Gsolv from experimental values
tabulated in [14] as a function of λ [12].

ing eq. 5.2 with eq. 5.3. We therefore implemented a variant where we use eq. 5.3 together

with standard AMBER van der Waals radii (slightly increased as done for the definition

of the boundary and indicated in table 5.9) and standard AMBER van der Waals potential

well depths. Similar to the Caillet-Claverie treatment we find that a uniform scaling factor,

λ , applied to the AMBER van der Waals potential well depths, εi, is sufficient to lead to
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Table 5.7: Comparison of PB/BEM-computed versus experimental total solvation
free energies, ∆Gsolv, of various substances in ethanol [12].

Species ∆Gsolv,PB/BEM ∆Gsolv,Exp Deviation
[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

n-octane -0.70 -4.23 3.53
toluene -3.30 -4.57 1.27
dioxane -6.03 -4.68 1.35
butanone -4.83 -4.32 0.51
chlorobenzene -3.52 -3.30 0.22

good agreement with experimental data. An identical strategy to the one presented in sec-

tion 5.3.1 for determination of appropriate values of λ may be applied. The optimal choice

of λ turns out to be 0.76 for solvent water as indicated in Figure E.6 of the Appendix E.

Corresponding detailed data is shown in Table 5.10.

The mean unsigned error amounts to 1.01 kcal
mol

at optimized conditions. While in the case

of water similar scaling factors are obtained for Caillet-Claverie as well as AMBER type of

dispersion, for the remaining types of solvents a less coherent picture arises (see Table 5.9).

Identification of scaling factors for solvents ethanol (λ=0.94) and n-octanol (λ=2.60) is

shown in Figure E.3 of the Appendix E and corresponding detailed data listed in Tables

E.9 and E.10 of the Appendix E. Mean unsigned errors are 1.21 kcal
mol

for ethanol and 1.00

kcal
mol

for n-octanol respectively. Either approach is competitive and comes with its own
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Table 5.8: Comparison of Poisson-Boltzmann/Boundary Element Method
(PB/BEM)-computed versus experimental total solvation free energies, ∆Gsolv, of
various substances in the solvent n-octanol [12].

Species ∆Gsolv,PB/BEM ∆Gsolv,Exp Deviation
[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

acetone -5.28 -3.15 2.13
anisole -4.80 -5.47 0.67
benzaldehyde -6.16 -6.13 0.03
benzene -3.87 -3.72 0.15
bromobenzene -3.75 -7.47 3.72
butanal -5.02 -4.62 0.40
butanoic acid(a) -8.74 -7.58 1.16
cyclohexane -0.64 -3.46 2.82
acetic acid(a) -8.96 -6.35 2.61
ethylbenzene -2.94 -5.08 2.14
ethylene -1.57 -0.27 1.30
hexanoic acid(a) -8.89 -8.82 0.07
propanal -4.71 -4.13 0.58
propionic acid(a) -8.75 -6.86 1.89
propene -1.61 -1.14 0.47
propyne -2.81 -1.59 1.22
bromoethane -2.69 -2.90 0.21

(a) protonated form

merits. Caillet-Claverie coefficients are more general and specific to chemical elements

only, hence no distinction between for example sp3-C atoms and sp2-C atoms needs to be

made. Employment of AMBER parameters on the other hand appears to be straightforward

in the present context since the geometry of the boundary is already based on AMBER van

der Waals radii.
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Table 5.9: Summary of optimized parameters to be used in Poisson-
Boltzmann/Boundary Element Method (PB/BEM) for different types of solvents.
Average sizes of boundary elements (BEs) are given as pairs of values employed
for calculation of ∆Gpol and ∆Gdisp respectively [12].

Parameter Class Water Methanol Ethanol n-Octanol

BE Average Size [Å2] 0.31/0.45 0.31/0.45 0.31/0.45 0.31/0.45
Probe Sphere Radius [Å] 1.50 1.90 2.20 2.945
AMBER vdW Radii Scaling 1.07 1.06 1.06 1.05
AMBER Partial Charges Scaling 1.00 1.00 1.00 1.00
Caillet-Claverie Dispersion
Coefficients Scaling 0.70 – 0.82 0.74
AMBER vdW Potential
Well Depth Scaling 0.76 – 0.94 2.60

5.3.6 Replacement of static AMBER partial charges with semiempir-

ical PM5 charges introduces a rise in solvation free energies by

about 20 % of the classic result regardless of the size or total

charge state of the system.

A series of proteins of different size, shape and total net charge (see Table 5.2) is computed

within the PB/BEM approach at optimized conditions for aqueous solvation, that is using

a Caillet-Claverie dispersion coefficient scaling factor of 0.70, slightly increased AMBER

van der Waals radii by a factor of 1.07 and standard AMBER partial charges. In addition to
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Table 5.10: Effect on total solvation free energies for water as Poisson-
Boltzmann/Boundary Element Method (PB/BEM)-computed with AMBER style
of dispersion (eq. 5.3) versus Caillet-Claverie style of dispersion (eq. 5.2) and
comparison to the experimental value [12].

Species ∆GsolvCaillet−Claverie ∆GsolvAMBER ∆GsolvExp[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

propanal -2.21 -1.71 -3.44
butanoic acid(a) -5.94 -6.00 -6.47
cyclohexane 3.48 -1.33 1.23
acetone -2.85 -2.42 -3.85
propionic acid(a) -6.67 -6.57 -6.47
propyne -0.62 -2.09 -0.31
hexanoic acid(a) -5.12 -5.81 -6.21
anisole -0.73 -3.49 -2.45
benzaldehyde -2.32 -3.22 -4.02
butanal -2.00 -1.86 -3.18
benzene -0.36 -2.78 -0.87
bromobenzene 0.29 -1.63 -1.46
acetic acid(a) -7.44 -6.76 -6.70
bromoethane 0.09 -0.32 -0.70
ethylbenzene 1.54 -1.25 -0.80
diethylether 0.97 -0.68 -1.76

(a) protonated form

this classic approximation we also carry out semi-empirical QM calculations with the help

of program LocalSCF [19] using the PM5 model. From the semi-empirical calculation we

extract atomic partial charges and use these instead of AMBER partial charges within the

PB/BEM approach. Results of these calculations are presented in Table 5.11 and Figure 5.5.

In general one can observe rather a constant change of about 20 % of the classic AMBER
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Table 5.11: Analysis of partial term contributions to Poisson-
Boltzmann/Boundary Element Method (PB/BEM)-computed solvation free
energies for a series of proteins of increasing size using either molecular dynamic
package AMBER [18] standard partial charges or semi-empirical PM5 charges
obtained from program LocalSCF [19, 12].

Species Sur f ace
Volume

∆Gcav ∆Gdisp ∆G
pol
AMBER ∆GsolvAMBER ∆G

pol
PM5 ∆GsolvPM5[1] [

kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

1P9GA 0.42 114.6 -66.2 -339.9 -291.6 -251.6 -203.3
2B97 0.34 181.3 -91.3 -548.0 -457.9 -517.5 -427.4
1LNI 0.34 237.5 -126.8 -1418.6 -1307.9 -1140.3 -1029.6
1NKI 0.37 305.4 -199.2 -1652.1 -1546.0 – –
1EB6 0.28 353.0 -182.7 -2571.9 -2401.7 -2312.2 -2141.9
1G66 0.26 369.0 -187.5 -1193.6 -1012.1 -881.5 -700.0
1P1X 0.25 459.3 -235.4 -2434.6 -2210.7 -2106.8 -1882.9
1RTQ 0.22 506.4 -238.2 -4077.5 -3809.3 -3172.4 -2904.1
1YQS 0.23 566.9 -286.4 -2133.4 -1852.9 -1680.8 -1400.3
1GPI 0.24 651.8 -342.6 -3961.3 -3652.1 -3252.0 -2942.8

based ∆Gsolv estimate when switching to PM5 charges. This is independent of the size,

shape or net charge of the system (compare red bars with purple bars in Figure 5.5). The

polarization term constitutes the major contribution but apolar terms are far from negligible

(compare magnitude of blue and black bars to green and grey bars in Figure 5.5). When

using the COSMO approximation within the semi-empirical method and deriving solvation

free energies from that we get entirely uncorrelated results for the solvation free energy,

∆Gsolv (data not shown). It is important to note that the surface to volume ratio drops to a

value around 0.25 with increasing protein size, whereas typical values in the range of 0.80
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Figure 5.5: Classic versus semi-empirical charge assignments to atoms of proteins
of various size used in PB/BEM calculations [12].

to 1.0 are maintained in the initial calibration phase, hence care must be taken with large

scale extrapolations from small molecular reference data.

5.4 Discussion

Motivated by the recent high-performance implementation of Poisson-Boltzmann calcula-

tions [147] we now complement this approach with a systematic inclusion of apolar effects.

In particular the important dispersion contribution is introduced and fine-tuned against

available experimental data. This is based on physics-based terms, that have long been

considered in a similar fashion within QM models [46]. The resulting model is applied to

a series of protein structures, and size and charge effects are examined.

Direct assessment of the predictive quality of the PB/BEM approach after calibration has
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revealed rather good performance indicators for PB/BEM. This was based on suggested

scaling factors applied to Caillet-Claverie dispersion coefficients. Since the original aim

of Caillet-Claverie was to explain crystal data, we would expect a need for re-adjustment

in this present implementation. Moreover, since the boundary and the rest of the PB/BEM

model is based on AMBER parameterization it does not come as a surprise that one has

to adjust a non-related second set of van der Waals parameters in order to achieve general

agreement to a reference data set. Related to this point it seems particularly encourag-

ing that when replacing the scaled Caillet-Claverie part with standard AMBER-dispersion

terms for water no further refinement is necessary and similar levels of precision are estab-

lished automatically. In the case of water, this brings in a second advantage. Because the

employed TIP3P model assigns van der Waals radii of zero to the H-atoms, so the effective

sum over i in eq.5.3 may be truncated already after the oxygen atom. The second cycle

considering H-atoms in water would add only zeros.

A somewhat critical issue is the determination of missing parameters or the estimation of

solvent probe sphere radii for different types of solvents. In this present work we found it

convenient to make use of electron density grids and corresponding iso-density thresholds

to define the boundary of molecules. For example to determine the probe sphere radius

of methanol we compute the volume of a single molecule of methanol up to an electron

density threshold of 0.0055 a.u. and derive an effective radius assuming spherical rela-

tionships. The same threshold criterion is applied to all other solvents leading to the data

summarized in Table 5.9. Electron grids are based on B98/Sadlej calculations. Similarly
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we determine atomic van der Waals radii for Cl- or Br-containing substances from iso-

density considerations. However in these latter cases the threshold criterion is adapted to

a level that re-produces proper dimensions of well-known types, ie neighboring C-, O-,

N-atoms and at this level the unknown radius is determined. In the case of n-octanol the

assumption of spherical geometry is certainly not justified. On the other hand the concept

of an over-rolling probe sphere representing approaching solvent molecules will remain a

hypothetical model construct anyway. Complying with this model construct it may be ar-

gued that over time the average of approaching solvent molecules will hit the solute with

all parts (head, tail or body regions of the solvent molecule) equally often and thus the

idealized spherical probe is not entirely unreasonable.

Another interesting aspect is the fact that the present PB/BEM approach is all based on

molecular surfaces rather than SASAs. This is of technical interest and the consequence

of that is a greatly reduced sensitivity to actual probe sphere dimensions. A graphical

explanation is given in the Appendix E (Figure E.4). While SASA based surfaces would

see significant changes when probe spheres are slightly modified (blue sphere replaced by

red sphere in Figure E.4 of the Appendix E) the molecular surface itself faces only a minor

change in the reentrant domain (green layer indicated in Figure E.4 of the Appendix E).

Large scale extrapolations resulting from a calibration process done with small sized refer-

ence structures have to be taken with care. Because of the drop of surface to volume ratios

the most important requirement for such a strategy is to have the individual terms properly
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analyzed whether they scale with the volume, or the surface. For PB/BEM the question

reduces to the cavitation term, since the remainder is mainly a function of Coulombic in-

teractions. As that particular aspect has been carefully analyzed in previous studies [59]

we are confident that a large-scale extrapolation actually works in the way suggested in eq.

5.1.

A final remark may be relevant with regard to the discrepancy seen in using classic AMBER

partial charges versus semi-empirical PM5 charges. Intuitively, one is tempted to believe

stronger in the PM5 results. There might however also be a small drift in energies intro-

duced by PM5/PM3 models as has been observed within an independent series of single

point calculations (see Appendix E).

5.5 Conclusion

Consideration of dispersion effects within a physics-based continuum solvation model sig-

nificantly improves accuracy and general applicability of such an approach. The proposed

method follows a proven concept [168] and is easily implemented into existing models.

Generalization to different treatments of dispersion as well as extension to non-aqueous

solvents is straightforward.
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Chapter 6

Algorithmic Refinement & Application

This chapter is reproduced in part from my following two publications–1. P. Kar, M.

Seel, U. H. E. Hansmann, S. Höfinger. Algorithmic refinements to an Enhanced Poisson-

Boltzmann Approach Used in Biomolecular Simulations. NIC Publication Series, Vol. 36,

173-176(2007) [15] and 2. P. Kar, M. Seel, U. H. E. Hansmann, S. Höfinger. Comparing

Semiempirical versus Classical Charge Assignments in Biomolecules and Their Effect on

Electrostatic Potentials. NIC Publication Series, Vol. 36, 155-158 (2007) [20]

115



6.1 Algorithmic Refinements

6.1.1 Introduction

Biological molecules typically reside in aqueous environments. Reliable consideration of

the effect of water on structure and dynamics of biomolecules is among the key factors

governing accurate descriptions of biological matter [50]. Here we focus on an implicit

solvation model. Among other methods, e.g. SASA, GB, FDPB, the Poisson - Boltzmann

(PB) approach [49] within the Boundary Element Method (BEM) [54] is frequently chosen

due to its intermediate position regarding computational cost versus achievable accuracy.

In our recent series of publications [11, 12] we have outlined a generalization of the Po-

larizable Continuum Model (PCM) [46] applied to biomolecular structure. Each of the

considered terms represents a separate portion of distinct physical interaction,

∆Gsol = ∆Gpol+∆Gdisp,rep+∆Gcav (6.1)

which are polarization, dispersion and cavitation. The latter plays an important role in

hydrophobicity related phenomena [181]. Care has been taken to operate the model at

conditions that guaranteed a maximum level of numerical accuracy. However, a number of

internal parameters could still profit from further optimization.
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6.1.2 Aim

In this present study, we address the following factors and examine their consequences on

run-time performance with regard to a series of test proteins of increasing size that we have

studied earlier [12],

(i) the exact value of the exit criterion used to terminate the calculation of the polarization

term, ∆ Gpol ,

(ii) the array dimension regulating the allowed number of consecutive DIIS [182] steps,

(iii) the switch criterion used to move from the pre-DIIS stage to the DIIS stage,

(iv) the dependence on system size of the number of necessary iterations to achieve con-

vergence,

(v) the dependence on renormalization factors applied to the net sum of polarization charges,

(vi) the influence of very small-sized boundary elements (BEs), or the introduced change

when merging these very small-sized elements to larger ones from the neighborhood,

(vii) the necessary degree of surface resolution for accurate calculation of the dispersion

term, ∆ Gdisp.

6.1.3 Procedure

We select 10 proteins of different size ( number of residues reaching from 41 to 430 ).

Initially we run the PB/BEM program POLCH [59] at default conditions. The run time
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for all the 10 cases is recorded and forms a reference set. At first, we adjust the parameter

MAXNIT which defines the maximum number of successive DIIS steps, hence determines

the size of the DIIS matrix, and compute the run time deviation from the reference set for

all the 10 proteins. Once parameter MAXNIT is optimized, we rerun the entire test set and

extract net solvation free energies, ∆ Gsol , which serve as a new reference. ACCURA is the

second parameter to be optimized. It defines the threshold criterion used for termination

of the iterative process when computing the polarization term, ∆ Gpol . For optimizing AC-

CURA we require the deviation from the reference set not to exceed ± 0.05 kcal/mol for

any of the proteins. Once ACCURA is optimized we redo the whole set of test proteins at

optimized conditions for either parameter, ACCURA as well as MAXNIT. We extract the

number of iterations needed for completion and use these as a new reference. In our next

step we optimize the parameter DSNTRC. This parameter sets the switch criterion used to

move from a pre-DIIS stage to the DIIS stage. It represents the mean square deviation of

two successive sets of polarization charges. We keep changing DSNTRC and optimize for

a minimum number of necessary iterations. The next point is concerned with the renormal-

ization of the polarization charges according to Gauss’ Law. We study the effect this has on

the net solvation free energies. The solvation free energies obtained after renormalization

form another reference set for our next investigation. Here, we study the influence of very

small-sized BEs. We will merge these very small-sized elements to larger ones from the

neighborhood. We change the parameter REQSZ (the required minium size of a BE) and

compute the deviation of solvation free energies from the reference set. We again do not
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Table 6.1: Sensitivity to total system size, total charge and renormalization at-
tempts [15].

Protein No. of Molecular No. of ∆ Gsol ∆ Gsol ∆ Gsol

PDB Residues Charge Iterations Without Including Deviation
Code (a.u.) Norm. Norm. (unsigned)

(kcal/mol) (kcal/mol) (kcal/mol)
1P9GA 41 +3 9 -319.73 -321.54 1.81
2B97 70 +2 8 -40.22 -39.26 0.96
1LNI 96 -5 10 -534.64 -536.39 1.75
1NKI 134 +5 10 -456.20 -454.94 1.26
1EB6 177 -11 10 -1224.17 -122.75 1.42
1G66 207 -2 9 -118.26 -119.01 0.75
1P1X 250 +3 11 -636.41 -636.41 0.00
1RTQ 297 -16 11 -1998.72 -2011.23 12.51
1YQS 345 +2 11 -217.22 -217.22 0.04
1GPI 430 -12 12 -1259.54 -1271.59 12.05

allow the energy to change more than by ± 0.05 kcal/mol in all test runs. Finally, we use

all previously optimized parameters for a final test focusing on the dispersion term. We

change the resolution of the boundary used for calculation of ∆ Gdisp which need not be

maintained at such rigorous levels as identified for the polarization term [11].

6.1.4 Results and Conclusions

Sensitivity to total system size, total charge and renormalization attempts is represented in

Table 6.1. Variation of the termination criterion is graphically represented in Figure 6.1. In

summary we find that the following parameters lead to a reasonable degree of numerical

accuracy.

(1) Best performance is achieved when the DIIS matrix is dimensioned 7x7,
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Figure 6.1: Numerical sensitivity of the employed enhanced Poisson-Boltzmann
approach to the threshold criterion used for termination of the iterative sequence to
calculate the polarization term, ∆Gpol [15].

(2) Using a threshold criterion of 4.0x10−6 for termination of the iterative sequence occur-

ring in ∆Gpol computation leads to stable numerical results.

(3) The best switch criterion to move from the pre-DIIS stage to the DIIS stage is given

when the root mean square deviation between two successive sets of polarization charges

falls below 0.05 a.u.

(4) The number of iterations necessary to achieve convergence does not depend on system

size.

(5) A renormalization process will affect the net solvation free energies, ∆Gsol , on the or-

der of ± 1-2 % of their total values. Systems with large net charges are more sensitive to

renormalization.

(6) If we merge small sized BEs to larger ones then no significant changes will occur when

this procedure is limited to elements smaller than 8 % of the mean size (0.31 Å2). A reduc-

tion in number of BEs will lower the computational cost and foster numerical stability.
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(7) For calculation of the dispersion term, ∆Gdisp, we can reduce the discretization of the

boundary into BEs of average size 0.45 Å2 without loss of accuracy.

6.2 Applications

Poisson-Boltzmann based implicit solvent models have numerous applications in biomolec-

ular simulations. We have applied our enhanced solvent model to estimate the Electrostatic

Potential (ESP) of an antifungal protein. We have described the importance of electrostatic

potential in structural biology and our findings.

6.2.1 Electrostatic Potential

6.2.2 Introduction

Electrostatics plays an integral part in the study of structure and function of proteins at

physiological conditions [50]. Theoretical considerations of the electrostatics in proteins

are usually based on solutions to the Poisson-Boltzmann (PB) equation [49, 54]. All these

theoretical descriptions will involve a certain type of charge assignment to the atoms of

the protein. Since the result of the PB calculation will inevitably depend on the particular

choice made for the charges, it might be of interest to study the influence and variation
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resulting from different charge assignments. Of particular interest will be the comparison

between a set of classic charges, ie from force fields commonly employed in the simulation

of biomolecules, and charges derived from ab-inito calculations performed at a certain level

of Quantum Mechanical (QM) theory.

A convenient method to compare different charge assignments to each other is to study

the shape and appearance of electrostatic potential (ESP) maps. These ESP maps describe

the way the protein will represent itself to its environment in electrostatic terms. Since the

solution to the PB equation is included, ESP maps render a reasonably complete picture of

the protein in its native environment, ie at physiological conditions. Moreover, ESP maps

are a useful tool with many direct applications in structural biology. For example, from

ESP maps we can learn whether a protein,

(i) is likely to migrate to the membrane [183],

(ii) will potentially bind RNA or DNA [184, 185],

(iii) belongs to a certain family [186, 187, 188],

(iv) offers a chemically attractive binding site to ligands and other proteins. In this present

study, we, therefore, comepare ESP maps based on classic charge assignments using AM-

BER paramters [146] with ESP maps resulting from semi-empirical charges computed with

program LocalSCF [19] at several levels of semi-empirical theory, ie AM1, MNDO, PM3

and PM5. The PB program POLCH [147] is used throughout.
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6.2.3 Methods

After download of the protein with pdb code EAFP2 from the pdb data bank, a PB cal-

culation is performed using program POLCH [147] and classic AMBER partial charges

[146]. Inner/outer dielectric constants are set to 1 and 80 respectively. The net charge is +4

due to the four Arg residues. ESP maps are computed on the molecular surface and on a

cubic grid superimposing the protein. Only ESP maps directly mapped onto the molecular

surface are used for further analysis. Semi-empirical calculations are then carried out on

the protein EAFP2 using LocalSCF [19] and finally computed partial charges are extracted

from the output. The net charge is +2 due to different treatment of lone-pairs in the semi-

empirical models. AM1, MNDO, PM3 and PM5 methods are applied. Classic AMBER

partial charges are then replaced with either charge set derived from the semi-empirical cal-

culations and PB calculations are repeated with the changed charge assignment. Resulting

ESP maps are compared in the form of difference ESP maps.

6.2.4 Results and Conclusions

A structural sketch of the antifungal protein EAFP2 is shown in Table 6.2 (a) with corre-

sponding representation of the molecular surface (b). Here the N-terminal end is colored in

red while the C-terminus is given in blue. The ESP map based on classic AMBER charge

assignment after PB calculation is represented in Table 6.2 (c). ESP levels are color-coded
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Table 6.2: Electrostatic Potential (ESP) maps for the antifungal protein EAFP2
(pdb code). Major structural elements are shown in (a) and a corresponding rep-
resentation of the molecular surface is shown in (b). The ESP mapped onto the
molecular surface after solution of the PB equation based on AMBER charge as-
signment is shown in (c). Blue patches correspond to the +5 kT/e level, green re-
gions represent neutral ESP and red domains indicate -5 kT/e level. The marginal
change when including 4 explicit Cl− counter ions is shown in (d). A differen-
tial ESP map representing the difference between ESP(AM1) and ESP(AMBER)
is shown in (e) with the same color-coding scheme used in (c). Further differ-
ential maps are ESP(AM1)-ESP(MNDO) (f), ESP(PM3)-ESP(AMBER) (g) and
ESP(PM5)-ESP(AMBER) (h) [20]
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as +5 kT/e (blue), 0 kT/e (green) and -5 kT/e (red). It becomes clear that the major ap-

pearance of EAFP2 in aqueous solution is that of a macroscopic particle of largely positive

ESP, hence the tendency to migrate to the membrane can be explained straightforwardly

[183] (which also implies the antifungal mode of action). An initial test regarding the sen-

sitivity to counter ions is shown in Table 6.2 (d). Here explicit Cl− counter ions have been

included in the PB calculation and corresponding ESP maps produced. The change in ma-

jor ESP patterns introduced by counter ions is only marginal, thus the rest of the analysis

is performed without consideration of counter ions. A differential ESP map representing

ESP(AM1) - ESP(AMBER) is shown in Table 6.2 (e). Identical color-coding is used as

mentioned above. It becomes clear that the AM1-based ESP map is comparable in sign,

but significantly different in magnitude (individual ESP values have become less positive).

Extended red patches mark off regions of most severe difference. Contrary to the change

seen in the AM1-AMBER differential map, when comparing AM1 with MNDO we obtain

essentially only green patches (see Table 6.2 (f)). Thus AM1 and MNDO deliver essentially

the same ESP properties. Comparison of PM3 with AMBER is represented in the differ-

ential ESP map shown in Table 6.2 (g). The trend is similar to the one seen with AM1,

but the difference is less severely pronounced (ie certain extended red regions turn yellow

or green). Switching further to PM5 description is continuing the trend, ie lessening the

deviation from the AMBER-based map again (see Table 6.2 (h)). Closer examination of the

residues lying beneath the red-colored patches (indicating most severe deviation) reveals

a specific role of Arg residues and the charges assigned to the N-atoms of Asn and Gln.
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In summary, semi-empirical charge assignments deliver a consistent picture of significant

differences seen for the charged residues. However, individual semi-empirical models dif-

fer considerably amongst each other. With increasing sophistication of the semi-empirical

model the deviation from the classic AMBER results becomes less severe.
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Chapter 7

Enhanced Sampling- Microcanonical

Replica Exchange

This chapter is reproduced from our paper– P. Kar, W. Nadler and U. H. E. Hansmann;

Microcanonical Replica Exchange Molecular Dynamic Simulation of Proteins, Phys. Rev.

E 80, 056703(2009). Copyright Americal Physical Society (2009). The author has the right

to use the article or a portion of the article in a thesis or dissertation without requesting

permission from APS, provided the bibliographic citation and the APS copyright credit

line are given on the appropriate pages (htt p : // f orms.aps.org/author/copy f aq.html).
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7.1 Introduction

In the last years we have seen remarkable progress in modeling the folding, aggregation

and interaction of proteins. For instance, a recent investigation of a 49-residue C-terminal

fragment of the artificial protein TOP7, relying on an all-atom force field and an implicit

solvent, found not only a lowest energy configuration within 2 Å to the experimentally

determined structure, but also a novel folding mechanism that relies on “caching” of a N-

terminal “chameleon” segment [189]. These successes are mainly due to the advances in

sampling techniques. Generalized-ensemble and replica exchange techniques [80] are now

routinely used to enhance the sampling of low-energy configurations, and — especially

in their optimized forms [81, 82, 17, 83, 84] — have led to much faster convergence at

physiological temperatures than achieved in regular Monte Carlo or molecular dynamics

simulations.

While these techniques have alleviated the sampling problem, a number of difficulties re-

main. Most prominent here are simulations of proteins with explicit water. This is because

in replica exchange the probability for an exchange between two temperatures decreases

not only with the temperature difference ∆T between two replicas but also with the number

of degrees of freedom N. Hence, because of the large number of water molecules needed

in protein simulations, the temperature intervals ∆T have to be chosen small, and therefore

a large number M of replicas is needed to cover the range between the temperature of in-

terest (the lowest one) and the highest temperature which should correspond to the largest
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relevant barrier in the system. On the other hand, the number of round trips between lowest

and highest temperature, and back, defines a lower bound on the number of independent

configurations sampled at the lowest temperature (i.e. the one of interest). However, the

number of round trips decreases as
√
M with the number of replicasM. As a consequence,

protein simulations with explicit water do not only require a large number of replicas but

also long simulation times for each replica in order to reach equilibrium and obtain suffi-

cient statistics.

In a recent brief communication [17] Nadler and Hansmann suggested to circumvent this

problem of low acceptance rate and resulting large number of replicas through use of a

novel microcanonical replica exchange method that is rejection free, and therefore opti-

mizes the flow along the temperature ladder. Molecular dynamics simulations are usu-

ally done in the canonical ensemble (T = const) instead of a microcanonical ensemble

(E = const). One reason is that the canonical ensemble is often more closer to the ex-

perimental settings (albeit not always, constant energy surface simulations are of interest

in their own right [190, 191], e.g. for comparison with recent molecular beam experi-

ments [192]). The other reason is that integration errors can accumulate in microcanonical

molecular dynamics and easily lead to numerical instabilities and uncontrolled behavior;

the use of a thermostat usually washes out the effect of these errors. Our assumption is that

these integration errors are also averaged out in microcanonical replica exchange molecu-

lar dynamics through the exchange moves and velocity re-weighting. As it is possible in

principle to connect back from a microcanonical ensemble to the canonical ensemble, the
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rejection-free microcanonical replica exchange molecular dynamics becomes a promising

alternative in cases such as simulations in explicit solvent that otherwise suffer from low

acceptance rates.

The purpose of the present work is to test the suitability of this idea in a practical appli-

cation. We have chosen as our system the trp-cage protein [193, 194] as it has become

a common model to test numerical methods [195, 181]. As the present work describes a

proof-of-concept study, we simulate the molecule with an implicit solvent allowing for a

faster evaluation of our approach. In the following section we first describe our method in

detail before presenting our results. We finally discuss possible applications and modifica-

tions of our approach.

7.2 Methods

7.2.1 Statistical physics of microcanonical molecular dynamics

In microcanonical molecular dynamics the equations of motion are solved numerically for

a particular system, generating states of constant energy E for that system. Assuming

ergodicity, the hypersurface of states with constant energy E is connected and all states on

the constant energy hypersurface are sampled uniformly. For observables that depend only
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on kinetic and potential energy, M(Epot ,Ekin), the microcanonical averages are given by

〈M〉E =
1

|Ωtot(E)| ×
∫

dE1

∫

dE2 δ (E−E1 −E2)×

Ωpot(E1)Ωkin(E2)M(E1,E2) , (7.1)

with Ωpot(E) and Ωkin(E) being the respective densities of states for the potential energy

and for the kinetic energy; the total state space volume of the energy shell at E is used as

normalization

|Ωtot(E)| =
∫

dE1

∫

dE2 δ (E−E1 −E2)×

Ωpot(E1)Ωkin(E2) . (7.2)

Usually we are interested in canonical averages, i.e.

〈M〉β = Z−1
∫

dE M(E)Ωpot(E)e−βE , (7.3)

with β the inverse canonical temperature, and the partition function Z is used as normal-

ization,

Z =
∫

dE Ωpot(E)e−βE . (7.4)

In order to evaluate such properties from microcanonical simulations, we need to estimate

the density of states for the potential energy Ωpot(E) from them. Since the distribution of
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potential energies observed in a microcanonical simulation is given by

P(Epot ;E) ∝

∫

dE1

∫

dE2 δ (E−E1 −E2)×

Ωpot(E1)Ωkin(E2)δ (Epot−E1)

= Ωpot(Epot)Ωkin (E−Epot) , (7.5)

the density of potential energies has to be separated from the kinetic energy part. This is

straightforward as the kinetic energy is given by

Ekin =
N

∑
i=1

p2
i

2mi
, (7.6)

with pi the momentum vector and mi the mass of atom or group i; the density of states for

the kinetic energy therefore can be determined analytically:

Ωkin(E) ∝ E
3N− f−2

2 , (7.7)

where f counts the constraints on the system (i.e. the true number of degrees of freedom

is not 3N−2 but reduced by f ) Hence, up to the normalization constant the distribution of

potential energies observed in a microcanonical simulation is given by

P(Epot ;E) ∝ Ωpot(Epot)(E−Epot)
3N− f−2

2 (7.8)
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Since both functions on the rhs grow strongly with their arguments, P(Epot ;E) is a sharply

peaked function. Consequently, microcanonical averages of the energies are given by the

most probable value, e.g.

〈
Epot

〉

E
≈ Êpot , (7.9)

note that Êpot+ Êkin=E holds. A saddle point approximation of Eq. (7.8) leads to the well-

known relation between kinetic energy and microcanonical temperature (βE = 1/kBTE ≡

d lnΩpot(E)/dE)

Êkin =
M

2
TE , (7.10)

whereM = 3N− f −2 is the number of degrees of freedom in the system, and one obtains:

P(Epot ;E) ∝ Ωpot(Epot)exp

{

−βEEpot

+β 2
E

(
Epot− Êpot
Êkin

)2

+O

[

β 3
E

(
Epot− Êpot
Êkin

)3
]}

.

(7.11)

Therefore, to leading order, the microcanonical energy distribution is given by the Boltz-

mann distribution, with the canoncial temperature equal to the microcanonical temperature.
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7.2.2 Microcanonical replica exchange

In canonical replica exchange [196, 197, 62] two configurations with energies E1 and E2,

sitting at temperatures T1 and T2, are exchanged with probability exp(∆β∆E), with the

inverse temperature β = 1/kBT . In microcanonical replica exchange one uses that

E(x,v) = Epot(x)+Ekin(v) (7.12)

with

Ekin(v) =
1
2 ∑
i

miv
2
i (7.13)

where the potential energy Epot depends only on the coordinates x, and the kinetic energy

Ekin solely on the velocities v. Scaling all velocities by a factor r therefore changes the

kinetic energy by:

Ekin(rv) = r2Ekin(v) (7.14)

Hence, assuming E(1) < E(2) and choosing suitable scaling parameters r1 and r2, one can

exchange the two configurations with probability one:

E(1)(x(1),v(1)) = Epot(x
(1))+Ekin(v

(1))

−→ E(2)(x(1),r1v
(1)) = Epot(x

(1))+Ekin(r1v
(1))

= Epot(x
(1))+ r21Ekin(v

(1))

(7.15)
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and

E(2)(x(2),v(2)) = Epot(x
(2))+Ekin(v

(2))

−→ E(1)(x(2),r2v
(2)) = Epot(x

(2))+Ekin(r2v
(2))

= Epot(x
(2))+ r22Ekin(v

(2))

(7.16)

where the two rescaling factors r1 and r2 are given by

r1,2 =

√

E(2),(1)−Epot(1,2)

E(1),(2)−Epot(1,2)
. (7.17)

Such moves are possible for Epot(2) < E(1), a restriction that does not violate detailed

balance. On the other hand, ergodicity is ensured because of the regular microcanonical

molecular dynamics between exchange moves. The acceptance probability for an allowed

move is always one, since both weight functions are constant.

7.2.3 Technical Details and Setting

We test the efficiency of this microcanonical replica exchange molecular dynamics in all-

atom simulations of the 20-residue trp-cage miniprotein which has become a commonly

used test system for evaluation of new sampling schemes. The AMBER9 package is used
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with the ff99SB forcefield, approximating the interaction between protein and surround-

ing solvent by the Generalized Born implicit solvent. 18 replicas are used with the total

energies - and corresponding temperatures - given in Table 7.1. After generating linear

configurations with the module xLEAP, and minimizing these with 500 steps of steepest

descent followed by another 500 steps of conjugate gradient, we heat the molecule to the

respective target temperatures of Table 7.1. Here, and in the canonical replica exchange

Energy Shell Total Energy (kcal/mol) T (K)

E1 -368.5 250
E2 -360.9 260
E3 -340.0 273
E4 -311.2 290
E5 -271.7 315
E6 -252.3 325
E7 -223.2 350
E8 -192.2 373
E9 -151.2 393
E10 -119.8 413
E11 -81.9 433
E12 -46.9 450
E13 -15.2 473
E14 19.2 493
E15 51.6 513
E16 91.3 533
E17 130.3 555
E18 184.3 580

Table 7.1: 18 replicas and their corresponding total energies and temperatures used
in our simulations [16].

simulations with that we compare our results, we use SHAKE and a Berendsen thermostat

for temperature control (coupling constant 1.0 ps). The resulting 18 structures serve as
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our initial starting configurations for both microcanonical and canonical replica exchange

molecular dynamics simulations. Each structure consist of 304 atoms; however, the num-

ber of degrees of freedom is not 3N− 2 = 910 but 757 as SHAKE constraints the length

of certain bonds. For each algorithm, we perform runs of 15 ns, with an exchange move

attempted every 5ps. We had written an external driver script for the replica exchange

scheme. Only the last 10 ns are used for analysis.

7.3 Results

The inherent roughness of protein free energy landscapes leads to slow sampling at low

temperatures (or in microcanonical simulations at low energies). In order to demonstrate
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Figure 7.1: Root-mean-square deviation (rmsd) to the experimentally determined
structure as function of time for (a) a canonical molecular dynamics simulation at
T = 250 K, and (b) a microcanonical molecular dynamic simulation at the corre-
sponding energy Etot = −368.5 kcal/mol. [16]

this sampling problem, we have performed for our test system canonical molecular dynam-

ics runs at T = 250 K, and microcanonical molecular dynamics at the corresponding energy
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(Etot = −368.5 kcal/mol). The two runs are over a time of 270 ns which corresponds to

the total effort in the replica exchange simulations (18× 15 ns). In Figure 7.1 we show

as function of time the root-mean-square deviation (rmsd) of the actual configuration to

the experimentally determined one (Protein Data Bank Id: 1L2Y). Over the whole length

of the simulation, the rmsd is around or larger than 6 Å indicating that the simulations

never thermalized and got stuck in local minima structurally very different from the native

configuration.

A common approach to overcome this sampling problem is parallel tempering, also known

as replica exchange sampling [196, 197, 62]. In Fig. 7.2 we display the resulting time series

of rmsd at T = 250 K from a replica exchange simulation of the trp-cage protein with

the temperature distribution given by Table 7.1. As in the canonical and microcanonical

runs of Fig. 7.1 the rmsd starts at around 7 Å, indicating a starting configuration very

different from the native one. However, the replica exchange sampling process leads soon

to configurations that are within 3 Å rmsd, and therefore similar to the experimentally

determined structure. Our results are comparable to the ones obtained by Simmerling et al

[194] who have performed 50 ns long all-atom, fully unrestrained folding simulation of this

protein at 325 K in implicit GB solvent [118, 117] using the AMBER ff99SB force field

[198]. Without showing data we also remark that the transition temperature of ≈ 413 K (see

also Fig. 7.9) is comparable to the melting temperatures of ≈ 400 K found by Pitera and

Swope [199]. Albeit diverging from the experimentally determined transition temperature

of 315 K [200], both results show that our data are comparable with previous simulations
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Figure 7.2: Root-mean-square deviation (rmsd) to the experimentally determined
structure as function of time. The data are from a canonical replica exchange sim-
ulation with a temperature distribution given in table 7.1, and measured at T = 250
K [16].

relying on the Amber force field and an implicit solvent.

The reason for the enhanced sampling of low energy configurations are the excursions to

high temperatures that allow a replica to escape from local minima. As an example, in

Fig. 7.3a we show this walk through temperature space for one of the 18 replicas. A lower

limit for the number of independent structures observed at lowest temperature T = 250 K

is the number of round trips between this temperature and the highest temperature (in our

case, T = 580 K), and back. In our example, only one such round trip is observed, and only

a total of three round trips for all replicas together. The difficulty in ensuring a sufficient

number of round trips (and therefore sufficient statistics), especially for the case of protein

simulations in explicit solvent, has been described in the introduction, and is the starting

point for our investigation. Our proposed new algorithm replaces a replica exchange in

temperature by an exchange of replicas between different energy levels in microcanonical
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Figure 7.3: Walk of a specific replica (a) through temperature in a canonical replica
exchange molecular dynamic simulation (CREMD); and (b) through energy in a
microcanonical replica molecular dynamics simulation (MREMD) with the updates
proposed in Ref. [17]. Note that he large number of roundtrips observed for the later
case allowed us only to show a short segment of the 10ns run [16].

molecular dynamics. As the exchange move is rejection-free, it leads to much faster round

trip times. This can be seen also in Fig. 7.3b where we show the walk of one replica

through energy space. Note that the various energy levels correspond to the temperatures

of the canonical replica exchange run, and are also listed in Table 7.1. Because of the large

number of round trips we could show here only 2 ns of the 10 ns long run, for otherwise

the figure would no longer be readable.

However, while the microcanonical replica exchange molecular dynamics method (MREMD)

of Ref. [17] leads to a 50-fold decrease in round trip times when compared to the canon-

ical replica exchange molecular dynamics method (CREMD), this gain in efficiency does

not translate into improved sampling. This is obvious from Fig. 7.4 where we plot the av-

erage radius of gyration < rgy > as function of temperature T when calculated from the

canonical replica exchange molecular dynamics; and as function of the corresponding total

energies when calculated from the microcanonical replica exchange molecular dynamics.
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Figure 7.4: Radius of gyration < rgy > as function of temperature in a canon-
ical replica exchange molecular dynamics simulation (CREMD); and the corre-
sponding energy levels in a microcanonical replica molecular dynamics simulation
(MREMD) with the updates proposed in Ref. [17] [16]

As a measure for the compactness of protein structures and its change this quantity in-

dicates structural transitions. Clearly, the two curves differ considerably. Together with

similar behavior for other physical quantities (data not shown) the difference between the

two curves indicates sampling problems in the new approach.

The difference between the two simulations is puzzling as the microcanonical replica ex-

change method is formally correct, and therefore should yield the same results as the

canonical replica exchange. Hence, this difference indicates that despite the increased flow

through temperature space the sampling is still slower than in the canonical case, not faster

as was expected.

A fundamental assumption behind the idea of optimizing a replica exchange simulation

through maximizing the flow through temperature space is that relaxation at a given temper-
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Figure 7.5: Difference between canonical temperature, see Table 7.1, and micro-
canonical temperature, calculated from the kinetic energy via Eq. (7.10), as func-
tion of total energy. The figure shows this quantity as measured in canonical replica
molecular dynamics simulations (CREMD) as well as in the microcanonical replica
molecular dynamics simulation (MREMD) with updates proposed in Ref. [17] [16].

ature is fast compared with the time scale of flow through temperatures. In the present case

this seems not to be the case. An indicator for this lack of kinetic energy equilibration is

the difference between the microcanonical temperature and the canonical temperature. We

have plotted this quantity in Fig. 7.5 as a function of total energy, comparing data from the

canonical replica exchange molecular dynamics simulation with those from microcanon-

ical replica exchange approach. While the temperature difference fluctuates around zero

for the canonical run, it differs strongly in the case of microcanonical replica exchange.

Hence, the assumptions behind Eq. 7.8 and Eq. 7.11, do not hold on the time scales of

our simulations. The equivalence can be expected to be restored for very long simulation

times, see, for instance, in Fig. 7.6 the time evolution of the frequency of native-like con-

figurations with simulation time; however, the required long simulation times would defy

142



 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 250  300  350  400  450  500  550

-400 -300 -200 -100  0  100

%
 N

at
iv

e 
C

on
fi

gu
ra

tio
ns

Temperature [K]

Total Energy [Kcal/mol]

2 ns
4 ns
6 ns
8 ns

10 ns
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of simulation time as measured in a microcanonical relpica molecular dynamics
simulation with the updates proposed in Ref. [17] [16]

.

the purpose of our investigation. In order to overcome this bottleneck one can think of

two approaches. The microcanonical replica exchange molecular dynamic leads for finite

times to quasi cyclic motions in phase space. Introducing randomness in the system will

destroy these deterministic motions and allow for sampling of a wider area in phase space.

One possibility to introduce this randomness is by periodic refreshing of the velocities at

the highest energy shell. This is justified as the underlying assumption of replica exchange

methods is that a given replica can cross any relevant barrier, and therefore looses history,

once it reaches the highest temperature/energy. As our data show, this is not the case in

the microcanonical replica exchange molecular dynamics (MREMD), but can be enforced

by such randomization of velocities at this energy shell. We call this version randomized

microcanonical replica exchange molecular dynamics (RMREMD). By the definition of

the method, the walk of replicas through the various energy shells for RMREMD is still
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Figure 7.7: Walk of a specific replica through energy in a microcanonical replica
molecular dynamics with trial of exchange moves given by Eq. 7.8[16]

deterministic, and does not differ from that of the original method (MREMD), displayed in

Fig. 7.3b.

A second possibility to introduce randomness in the motion is by way of the replica ex-

change move, i.e. giving up the rejection-free exchange moves in microcanonical replica

exchange molecular dynamics. A possible approach is to enforce validity of Eq. 7.8 by

exchanging replicas between energy shells according to this distribution. We name this

version of our approach weighted microcanonical replica exchange molecular dynamics

(WMREMD). The resulting random walk through the energy shells is displayed in Fig. 7.7.

We have performed simulations of both variants with same statistics as in the case of

canonical replica exchange molecular dynamics and the original version of microcanon-

ical replica exchange molecular dynamics. For a comparison of the various methods we

show in Fig. 7.8 the percentage of native-like configurations for all four methods. Note the

difference between the original MREMD and RMREMD on one side, and canonical replica
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sured in canonical (CREMD) and various versions of microcanonical replica ex-
change molecular dynamics [16].

exchange molecular dynamics and WMREMD on the other side. While the first two lead at

lowest energy (and corresponding temperature) to less than 20% of native-like structures,

the weighted microcanonical replica exchange molecuar dynamics leads essentially to the

same frequency as the canonical replica exchange molecular dynamics, i.e about 90% of

native like configurations. However, while the data in canonical replica exchange molecu-

lar dynamics rely on solely 3 round trips, WMREMD let to 9 round trips, i.e. three times

higher statistics.

So far, our investigation has shown that the weighted, i.e. modified, microcanonical replica

exchange molecular dynamics (WMREMD) leads to correct averages, and exhibits an at

least three times faster sampling than canonical replica exchange molecular dynamics.

Having demonstrated the improved sampling, we want to show now how this allows us

to study in detail the thermodynamics of the trp-cage protein. In Fig 7.9 we show the
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frequency of configurations with a rmsd smaller than 3.7 Å and those with rmsd smaller

than 2.5 Å. Approaching from high energies (temperatures) a critical energy (temperature)

of ≈ −120 kcal/mol (corresponding to T ≈ 413 K), the frequency of configurations with

rmsd smaller than 3.7 Å increases dramatically, and stays constant after approaching its

maximum. On the other hand, configurations with rmsd smaller than 2.5 Å, i.e. those very

close to the experimentally determined one, also first increase rapidly, but decrease again

after reaching its maximum value at ≈−272 kcal/mol (T ≈ 315 K). Note that the increase

in both curves is correlated with the position of the peak in specific heat capacity

C =
< E2

pot > − < Epot >
2

kBT 2 (7.18)

shown also in Fig. 7.9. The decrease observed for the frequency of configurations with

rmsd smaller than 2.5 Å seems to be correlated with a shoulder in the specific heat capacity

146



 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14

P R
M

SD
 [

%
]

RMSD [Å]

Probability distribution of RMSD

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14

P R
M

SD
 [

%
]

RMSD [Å]

Probability distribution of RMSD

(b)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14

P R
M

SD
 [

%
]

RMSD [Å]

Probability distribution of RMSD

(c)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14

P R
M

SD
 [

%
]

RMSD [Å]

Probability distribution of RMSD

(d)

Figure 7.10: Histograms of configurations as function of rmsd calculated for four
different energy levels [16].

curve. A natural interpretation for the steep increase in native-like configuration (according

to both definitions) and the peak in specific heat capacity is that of a folding transition.

The decrease in frequency of configurations, whose similarity to the native structure is

measured according to the more stringent criteria of an rmsd smaller that 2.5 Å, requires a

more detailed analysis. For this purpose, we show in Fig. 7.10 histograms of configurations

as function of rmsd for four values of energy. At the highest energy shell (184.3 kcal/mol,

Fig. 7.10a) we observe a broad single-peaked distribution centered around a rmsd of ≈ 6−7

Å, indicating that at this energy (and corresponding temperature) configurations have little

resemblance with the native structure. The distribution shown in (b) is drawn for Etot =

−119.8 kcal/mol, the energy level corresponding to the peak in specific heat capacity. Here,

we find a distribution centered around a rmsd of ≈ 4 Å that covers both structures with large
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rmsd and such that resemble the native one (small rmsd). Hence at this energy level, which

corresponds to a microcanonical folding temperature of ≈ 413 K, we have an equilibrium

of unfolded and folded configurations (these with rmsd smaller than 3.7 Å). The third

distribution (Fig. 7.10c) is calculated for Etot = −271.7 kcal/mol (T = 315 K), i.e. the

position of the shoulder in specific heat capacity and maximum of the curve in Fig. 7.7 that

displays the frequency of configurations with rmsd smaller than 2.5 Å. Again, we observe

a single peaked distribution centered around ≈ 3 Å that is almost exclusively made up of

native-like structures (such with a rmsd smaller than 3.7 Å). Surprisingly, this distribution

does not become narrower when going to the lowest energy level Etot = −368.5 kcal/mol,

nor does its center moves to smaller values of rmsd. Instead, the distribution becomes

double-peaked with one peak around a rmsd of ≈ 2.5 Å, and the second and larger one

centered around a rmsd of 3.3 Å, indicating an equilibrium between configurations with

rmsd around and smaller than 2.5Å, and such with rmsd between 3 Å and 4 Å. An example

for both types of configurations is shown in Fig. 7.11.

In connection with Fig. 7.9 we interpret the series of histogram as follows. At tempera-

ture of ≈ 413 K we have a folding transition that separates unfolded configurations from

an ensemble of configurations that are to similar to the native structure. This ensemble is

made up of two clusters of structures shown in Fig. 7.10. Both configurations are stabi-

lized by a salt bridge between ASP9 and ARG16 that is responsible for the fast folding

kinetics of this protein. Decreasing the temperature further the frequency of the config-

urations of Fig. 7.11a increases. The overlay with experimentally determined structure
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Figure 7.11: The two dominant low-energy structures (color), shown in overlay
with the native structure (red) [16].

emphasizes how closely the configuration resemble the native structure (≈ 2 Å ), not only

in the backbone but also in the orientation of the tryptophan side chain. However, below

a certain temperature, the frequency of configurations of this type decreases again, and

dominant now are the slightly different configurations of Fig. 7.11b. These configurations

differ from the native structure by rmsd about 3−4 Å and are characterized by a wrongly

positioned tryptophan side chain and divergent backbone orientation at residue 9 that leads

to this structure. Unlike in the native structure, the chain terminals are connected by hy-

drogen bonds that energetically favors this structure over the native form. The increase

in frequency of these structure in lieu of the native one with decreasing temperature may

indicate limitations in the accuracy of our energy function (see also Ref. [201]), but could

also indicate a partial “cold unfolding”. In the later case this would demonstrate again the

well-known fact that the native state of a protein is the global minimum in free energy at
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physiological temperatures, but not necessarily the global minimum in potential energy.

7.4 Conclusions

We have tested a recently proposed microcanonical replica exchange molecular dynamics

approach in simulations of the trp-cage protein in implicit solvent. We evaluated the per-

formance of this method, and introduced a variant that lead to improved sampling for this

protein. Using this new sampling technique we could not only find the native structure of

this protein within 2 Å rmsd, but also show that the folding thermodynamics of this protein

is surprisingly rich, with not only a folding transition but also indications for a partial cold

unfolding.
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Chapter 8

Summary & Future Directions

In this doctoral dissertation, an enhanced implicit solvation model based on the Poisson-

Boltzmann equation within boundary element method (PB/BEM) framework has been

studied. We also discuss an enhanced sampling method to study the protein folding prob-

lem and its application to a Trp-cage protein in an implicit solvent.

Following the quantum mechanical Polarizable Continuum Model [46], the net solvation

free energy is decomposed into three distinct physics-based terms: polarization, dispersion

and cavitation.

∆Gnet = ∆Gpol+∆Gdisp+∆Gcav (8.1)

The cavitation term is obtained via the revised Pierotti approximation (rPA) [11, 59, 60,

61]. The polarization free energy is estimated by solving the Poisson-Boltzmann equation
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[59, 50, 49, 54]. The dispersion term is handled either via the Caillet-Claverie [57, 58]

approach or a revised Lennard-Jones formulation using AMBER [18] parameters.

Each term is treated individually and parameterized independently to get the maximum

level of accuracy. We investigate the influence of surface type and surface resolution and

dependence on atomic model parameters, such as van der Waals radii & partial atomic

charges [174]. Our study shows that an error on the order of 40 kcal/mol is introduced if

one does not resolve the surface properly, and work in the nonconvergent domain [174].

Our investigation also reveals the fact that rather small-sized boundary elements (BEs) (0.3

Å2) are needed to obtain consistently convergent polarization free energies ∆GPol [174].

Consideration of geometric factors revealed that when applying a scaling factor of about

1.07 to AMBER default van der Waals radii, a good agreement can be reached between the

reference geometries (PCM results) and the geometries in the PB/BEM approach [174].

With this small BEs and slightly increased van der Waals radii and unchanged AMBER

partial charge, we can achieve a good estimate of the polarization free energy ∆Gpol when

compared to other studies in the literature [13, 178, 179]. This part of my work has been

published in the Journal of Computational Chemistry (see Ref. [174]).

We systematically implemented the dispersion term using the Caillet-Claverie [57, 58] ap-

proach, and found it to offer good compromise between accuracy and computational over-

head. Free parameters are determined by comparison to experimental data as well as high-

level quantum mechanical reference (PCM) calculations. Our study shows that the Caillet-
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Claverie dispersion coefficients should be multiplied by a scaling factor of 0.70 in order

to achieve close matching with the experimental solvation free energies [12]. The model

is tested on various chemical substances and found to yield good quality estimates of the

solvation free energy without obvious indication of any introduced bias. We find that when

substituting the Caillet-Claverie formalism with the corresponding classical Lennard-Jones

term using AMBER [18] parameters, a readjustment of scaling factors (0.76 for water) is re-

quired [12]. Either approach is competitive and comes with its own merits. Caillet-Claverie

coefficients are more general and specific to chemical elements only. On the other hand,

employment of AMBER parameters appears to be straightforward in the present context

since the geometry of the boundary is already based on AMBER van der Waals radii.

After determining appropriate scaling factors for different solvents (e.g., water, methanol,

ethanol, n-octanol, cyclohexane etc.), we applied our model to a series of proteins of in-

creasing size and analyzed the relative contribution of the individual term as a function of

system size. Moreover, we have carried out semi-empirical calculations on the same se-

ries of proteins, and compared effects resulting from different charge assignments to each

other. Our investigations show that the replacement of static AMBER partial charges with

semi-empirical PM5 charges introduces a rise in solvation free energy by about 20% of the

classic results regardless of the size or total charge state of the systems [12]. The polariza-

tion term constiutes the major contribution, but apolar terms are far from negligible (see

Fig. 5.5). This work on the dispersion free energy has been published in the Journal of

Physical Chemistry B (see Ref. [12]).
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Our study suggests that slightly larger BEs (0.45 Å2) in comparison to BEs used in calcula-

tion of the polarization term (0.31 Å2) could be used for the computation of the dispersion

term without loosing any accuracy [15]. The best performance is achieved when the DIIS

(Direct Inversion of the Iterative Subspace) matrix is dimensioned 7×7. We also find that

the number of iterations necessary to achieve the convergence does not depend on the sys-

tem size. These results have been published in a conference proceeding (see Ref. [15]).

Once optimized, the solvation model is employed to estimate the electrostatic potential

(ESP) map of an anti-fungal protein (PDB code: 1P9G). It becomes clear that the major

appearance of the protein in an aqueous solution is that of a macroscopic particle of largely

positive ESP; hence the tendency to migrate to the membrane can be explained straightfor-

wardly [183]. We compared ESP maps based on classic charge assignments using AMBER

parameters [146] with ESP maps resulting from semi-empirical charges computed with pro-

gram LocalSCF [19] at several levels of semi-empirical theory, ie AM1, MNDO, PM3 and

PM5. Our investigation reveals the fact that semi-empirical charge assignments deliver a

consistent picture of significant differences seen for the charged residues. However, indi-

vidual semi-empirical models differ considerably amongst each other. These findings are

published in a conference proceeding (see Ref. [20]).

Development and implementation of a new variant of the regular replica exchange method

(REMD) is described in this dissertation. The new sampling method is called as Micro-

canonical Replica Exchange Molecular Dynamics (MREMD). We study the folding ther-
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modynamics of a Trp-cage mini-protein in an implicit solvent using MREMD simulation

protocol. Although this exchange scheme is rejection free, it leads to slower sampling

compared to the regular REMD simulation. To circumvent this problem we give up the

rejection-free scheme, and do importance sampling with the following weight function.

P(Epot ;E) ∝ Ωpot(Epot)(E−Epot)
3N− f−2

2 (8.2)

We call this variant of MREMD as Weighted Microcanonical Replica Exchange Molecular

Dynamics (WMREMD). At lowest energy shell, the WMREMD method leads to the same

frequency (90%) of native structure as the canonical REMD simulation. We show that the

WMREMD performs three times more round trips compared to the canonical REMD simu-

lation. This suggests that the WMREMD method samples faster than the regular canonical

REMD, and yields better statistics compared to its canonical equivalent. Using this new

sampling technique we could not only find the native structure of the Trp-cage protein

within 2 Å rmsd, but also show that the folding thermodynamics of this protein is surpris-

ingly rich, with not only a folding transition but also indications for a partial cold unfolding.

This part of my work has been published in the journal Physical Review E (see Ref. [16]).

Our enhanced implicit solvation model has broad impacts in several areas of biomolecu-

lar simulations, such as (i) simulation of diffusional processes to determine ligand-protein

and protein-protein binding kinetics [202, 203], (ii) molecular dynamics simulations of

biomolecules in an implicit solvent [16, 199, 204, 205], (iii) titration studies of biomolecules
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[206, 207], (iv) determining ligand-protein and protein-protein equilibrium binding con-

stants required for rational drug design [202, 184, 185], (v) simulation of large biomolecules

with increasing demands on high performance solutions [208], and (vi) simulation of com-

plex environments of central biological importance [209]. Our newly developed algorithm

samples faster compared to the canonical replica exchange molecular dynamics method.

This means that the new sampling algorithm (WMREMD) will enable us to reliably study

the folding of proteins of relatively larger size in an explicit solvent, which is currently

prohibited due to the high computational demand.

Currently our enhanced implicit solvation model is valid for the solvation of proteins and

organic molecules. Further work needs to be done to extend our model to study the sol-

vation of nucleic acids (DNA, RNA). However, there are no fundamental restrictions that

would preclude such an extension. In our model we solve the Poisson equation to obtain

the electrostatic component of the solvation free energy. The effects of ions and salt are

not captured implicitly in our approach. The Boltzmann term needs to be included into

our model if we want to account for the charged background. Further parameterization as

described for organic substances can be extended to nucleic acids in a straightforward way.

Most of the existing implicit solvation models have been developed for room tempera-

ture only. However, many simulation methods that optionally apply implicit models (e.g.,

Monte Carlo, molecular dynamics, parallel tempering, simulated annealing, etc) treat tem-

perature as an adjustable system parameter. How such solvation terms will change with
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varying temperature needs to be addressed. One can think of using temperature-dependent

dielectric constant ε (T ) in order to capture the temperature dependence in the polarization

free energy term. The temperature dependence in the dispersion term can be introduced

if we replace AMBER classic attractive 6-term of the Lennard-Jones potential with the

London equation of dispersion [210]

E
London,disp
i, j = −3

4
αiα j

IiI j

Ii+ I j
R−6
i, j (8.3)

where I is the ionization potential and α is the dipole polarizability. Here α is sensitive to

temperature [211, 212, 213]. The cavitation free energy is obtained from the equation

∆Gcav = k0 + k1r+ k2r
2 (8.4)

where r is the effective radius (Å) which can be derived from solvent excluded volume

(V exl.vol).

r =

(
3V exl.vol

4π

)1/3

(8.5)

Mahajan et.al [56] have determined coefficients k0, k1, and k2 for several discrete temper-

atures that may allow us to incorporate T -dependent cavitation term. Linear interpolation

can be made to derive the appropriate coefficients for intermediate temperatures.

In WMREMD, all the exchange moves are not accepted. This limits the size of the protein

that can be studied using our algorithm. Although the WMREMD samples faster than the
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canonical REMD, we still need to optimize the flow of replicas along the temperature/en-

ergy ladder for achieving faster equilibration, and reliably simulate larger proteins in an

explicit solvent.
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List of Publications

Following papers are included in this dissertation.

1. P. Kar, Y. Wei, U. H. E. Hansmann, S. Höfinger, Systematic Study of the Boundary

Composition in Poisson Boltzmann Calculations, J. Comput. Chem., 28(16): 2538-

2544 (2007)

2. P. Kar, M. Seel, U. H. E. Hansmann, S. Höfinger; Dispersion Terms and Analysis

of Size- and Charge- Dependence in an Enhanced Poisson-Boltzmann Approach, J.

Phys. Chem. B, 111 (2007) 8910

3. P. Kar, W. Nadler, U. H. E. Hansmann; Microcanonical Replica Exchange Molecular

Dynamic Simulation of Proteins, Phys. Rev. E 80, 056703 (2009).
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4. P. Kar, M. Seel, U. H. E. Hansmann, S. Höfinger. Comparing Semiempirical ver-

sus Classical Charge Assignments in Biomolecules and Their Effect on Electrostatic

Potentials. NIC Publication Series, Vol. 36, 155-158 (2007)

5. P. Kar, M. Seel, U. H. E. Hansmann, S. Höfinger. Algorithmic refinements to an

Enhanced Poisson-Boltzmann Approach Used in Biomolecular Simulations. NIC

Publication Series, Vol. 36, 173-176(2007)

6. P. Kar, Y. Wei, U. H. E. Hansmann, S. Höfinger. The Influence of Molecular Sur-

face Composition on the Outcome of Poisson-Boltzmann Calculations Performed to

Obtain Solvation Free Energies. NIC Publication Series, Vol. 34, 205-209 (2006)
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Appendix B

Hardware Used in My Research

I have used two clusters for my research purpose. They are NICole (jon von Neumann Insti-

tute for Computing, Forschungszentrum Jülich, Germany) and Hal (http://hal.phy.mtu.edu).

The architecture of both clusters are discussed below.

NICole:

• Number of Processors: 384

• Overall peak performance: 1.6 Teraflops

• Operating System: SuSE Linux 10.1

• Cluster management: ParaStation

• Operating mode: batch (TORQUE/Maui)

• Main memory: 72 × 8 GB (aggregate 576 GB)
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• Processortype : AMD Opteron, 2.6 GHz

• Network: Infiniband

• Disc capacity: 4 TB

Hal:

• Number of Processors: 64

• Number of nodes: 8

• Processortype: Intel Xeon E5405, 2.00 GHz

• Disc capacity: 0.5 TB

• Network: ethernet

• Cluster management: Sun Grid Engine (SGE)

• Memory: 8GB per node
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Appendix C

List of Abbreviations and Symbols

† ACE: Analytical Continuum Electrostatics

† AGB: Analytical Generalized Born

† AMBER: Assisted Model Building with Energy Refinement

† BE: Boundary Element

† BEM: Boundary Element Method

† BF: Bernal-Fowler (an explicit water model)

† BNS: Ben-Naim Stillinger

† CHARMM: Chemistry at HARvard Molecular Mechanics

† CREMD: Canonical Replica Exchange Molecular Dynamics
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† DFT: Density Functional Theory

† DNA: Deoxyribonucleic Acid

† ECEPP: Empirical Conformational Energy Program for Peptides

† ESP: Electrostatic Potential

† FDPB: Finite Difference Poisson-Boltzmann

† GB: Generalized Born

† GB/MV: Generalized Born/Molecular Volume

† GB/SA: Generalized Born/Surface Area

† GROMACS: GROningen MAchine for Chemical Simulations

† LPB: Linearized Poisson-Boltzmann

† MC: Monte Carlo

† MD: Molecular Dynamic

† MREMD: Microcanonical Replica Exchange Molecular Dynamic

† mRNA: messenger Ribonucleic Acid

† MSROLL: Molecular Surface ROLL

† NPB: Nonlinear Poisson-Boltzmann
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† OPLS: Optimized Potential for Liquid Simulations

† PB: Poisson Boltzmann

† PB/BEM : Poisson Boltzmann/Boundary Element Method

† PCM: Polarizable Continuum Model

† PDB: Protein Data Bank

† REM: Replica Exchange Method

† REMD: Replica Exchange Molecular Dynamics

† RMREMD: Random Microcanonical Replica Exchange Molecular Dynamics

† RMSD: Root Mean Square Deviation

† RNA: Ribonucleic Acid

† SA: Simulated Annealing

† SASA: Solvent Accessible Surface Area

† SIMS: Smooth Invariant Molecular Surface

† SMMP: Simple Molecular Mechanics for Proteins

† VMD: Visual Molecular Dynamics

† WMREMD: Weighted Microcanonical Replica Exchange Molecular Dynamics

165



166



Appendix D

Copyright

Figure D.1: ACS’s copyright policy on theses and dissertation
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Figure D.2: Copy right permission letter from Wiley for Chapter 4.

Copyright notice for Fig 1.1, Fig 1.2, Fig 1.3, Fig 2.1, Fig 3.1: "I, the copyright holder

of this work, hereby publish it under the following licenses: Permission is granted to copy,

distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.2 or any later version published by the Free Software Foundation; with
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no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the

license is included in the section entittled "GNU Free Documentation License" [1, 2, 3, 6,

8].

Figure D.3: Permission letter for Fig 2.2.
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Figure D.4: Permission letter for Fig 1.5
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Appendix E

Dispersion

In this chapter, some additional plots and tables from our investigations on dispersion term

are reproduced from our paper– P. Kar, M. Seel. U. H. E. Hansmann and S. Höfinger,

Dispersion Terms and Analysis of Size- and Charge- Dependence in an Enhanced Poisson-

Boltzmann Approach, J. Phys. Chem. B, 111 (2007) 8910. Copyright c©2007, American

Chemical Society. All the figures are tables are reproduced without any changes of our

original paper.
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Table E.1: Comparison of average PB/BEM solvation free energies ∆Gsolv of
homo-dipeptides in water to corresponding data obtained from PCM reference cal-
culations [12].

Dipeptide Mean ∆Gsolv,PB/BEM Mean ∆Gsolv,PCM Mean ∆∆Gsolv Number of
Type PCM Reference Deviation References

[kcal/mol] [kcal/mol] [kcal/mol]

AA -85.01 ( 9.33 ) -73.84 ( 9.72 ) 11.17 9
CC -101.37 ( 12.31 ) -89.29 ( 13.08 ) 12.08 9
DD -292.81 ( 18.18 ) -275.36 ( 18.64 ) 17.45 9
EE -260.66 ( 15.05 ) -247.40 ( 13.87 ) 13.26 9
GG -92.83 ( 10.13 ) -82.85 ( 11.70 ) 9.98 9
II -75.41 ( 7.57 ) -61.80 ( 9.45 ) 13.62 9
KK -241.39 ( 18.12 ) -223.55 ( 20.59 ) 17.84 9
LL -77.14 ( 7.48 ) -52.58 ( 7.78 ) 24.56 9
MM -81.66 ( 7.94 ) -67.93 ( 8.89 ) 13.73 9
NN -96.78 ( 7.87 ) -92.56 ( 11.58 ) 5.24 9
QQ -111.53 ( 11.25 ) -103.86 ( 13.11 ) 7.66 9
RR -227.26 ( 18.48 ) -215.16 ( 21.51 ) 12.10 6
SS -108.11 ( 14.60 ) -97.42 ( 14.28 ) 10.69 9
TT -100.48 ( 11.81 ) -90.90 ( 13.60 ) 9.58 9
VV -78.04 ( 7.38 ) -63.94 ( 8.57 ) 14.10 9
YY -85.18 ( 4.75 ) -76.66 ( 7.83 ) 8.51 5
FF -79.28 ( 4.59 ) -67.95 ( 6.61 ) 11.33 6
HH -229.71 ( 22.32 ) -225.59 ( 21.34 ) 4.14 9
PP -57.30 ( 5.65 ) -74.07 ( 8.86 ) 16.77 9
WW -96.14 ( 9.14 ) -81.19 ( 17.29 ) 14.95 3
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Table E.2: Comparison of the average PB/BEM ∆Gdisp contribution, to ∆Gsolv,
of homo-dipeptides in water to corresponding data obtained from PCM calculation
[12].

Dipeptide Mean ∆Gdisp,PB/BEM Mean ∆Gdisp+rep,PCM Mean ∆∆Gdisp Number of
Type PCM Reference Deviation References

[kcal/mol] [kcal/mol] [kcal/mol]

AA -7.82 ( 0.21 ) -15.05 ( 0.24 ) 7.23 9
CC -10.83 ( 0.26 ) -20.59 ( 0.28 ) 9.76 9
DD -9.80 ( 0.22 ) -19.92 ( 0.26 ) 10.12 9
EE -10.91 ( 0.25 ) -22.84 ( 0.60 ) 11.94 9
GG -7.11 ( 0.08 ) -13.51 ( 0.28 ) 6.41 9
II -10.72 ( 0.24 ) -21.57 ( 0.51 ) 10.85 9
KK -14.05 ( 0.34 ) -27.85 ( 0.68 ) 13.80 9
LL -10.83 ( 0.24 ) -22.61 ( 0.50 ) 11.78 9
MM -12.57 ( 0.30 ) -24.85 ( 0.66 ) 12.28 9
NN -10.59 ( 0.17 ) -21.18 ( 0.20 ) 10.60 9
QQ -11.88 ( 0.35 ) -24.18 ( 0.79 ) 12.30 9
RR -16.04 ( 0.43 ) -31.89 ( 0.59 ) 15.85 6
SS -9.17 ( 0.19 ) -17.88 ( 0.27 ) 8.71 9
TT -9.80 ( 0.29 ) -19.50 ( 0.31 ) 9.69 9
VV -9.76 ( 0.19 ) -19.02 ( 0.27 ) 9.26 9
YY -13.53 ( 0.17 ) -28.49 ( 0.50 ) 14.96 5
FF -12.48 ( 0.13 ) -26.81 ( 0.40 ) 14.34 6
HH -12.74 ( 0.17 ) -25.72 ( 0.58 ) 12.98 9
PP -9.10 ( 0.19 ) -19.71 ( 0.22 ) 10.62 9
WW -14.75 ( 0.34 ) -31.29 ( 0.93 ) 16.54 3
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Table E.3: Methanol: Comparison of average molecular surfaces based on scaled

AMBER vdW radii used in PB/BEM (rCH3OH
probe = 1.9Å) with data from PCM calcu-

lations (rCH3OH
probe = 1.855Å) [12].

Dipeptide Mean Surface Mean Surface Deviation
Type AMBER Scaled (1.06) PCM Reference

[Å2] [Å2] [Å2]

AA 203.53 ( 3.68 ) 211.08 ( 5.04 ) 7.55
CC 225.90 ( 5.14 ) 224.37 ( 6.03 ) 1.69
DD 241.22 ( 8.15 ) 239.96 ( 7.07 ) 1.54
EE 286.49 ( 7.84 ) 282.40 ( 6.45 ) 4.08
GG 163.77 ( 3.89 ) 167.53 ( 3.37 ) 3.76
II 293.76 ( 11.97 ) 301.17 ( 12.63 ) 7.41
KK 336.59 ( 8.08 ) 339.73 ( 8.01 ) 3.14
LL 290.53 ( 12.57 ) 292.25 ( 10.66 ) 1.84
MM 314.12 ( 8.51 ) 328.82 ( 9.08 ) 14.70
NN 244.26 ( 7.63 ) 245.88 ( 7.25 ) 1.62
QQ 291.05 ( 7.54 ) 291.91 ( 6.55 ) 1.17
RR 375.38 ( 7.21 ) 379.73 ( 7.37 ) 4.35
SS 208.32 ( 3.94 ) 211.61 ( 4.96 ) 3.29
TT 236.26 ( 9.96 ) 238.25 ( 10.50 ) 2.07
VV 264.63 ( 7.55 ) 275.52 ( 9.31 ) 10.89
YY 355.92 ( 15.10 ) 344.65 ( 14.65 ) 11.27
FF 341.45 ( 14.99 ) 325.22 ( 14.00 ) 16.23
HH 296.70 ( 11.78 ) 295.41 ( 12.01 ) 1.65
PP 234.58 ( 10.08 ) 232.42 ( 9.81 ) 2.16
WW 369.30 ( 26.98 ) 359.16 ( 24.50 ) 10.14
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Table E.4: Methanol: Comparison of average molecular volumes based on scaled

AMBER vdW radii used in PB/BEM (rCH3OH
probe = 1.9Å) with data from PCM calcu-

lations (rCH3OH
probe = 1.855Å) [12].

Dipeptide Mean Volume Mean Volume Deviation
Type AMBER Scaled (1.06) PCM Reference

[Å3] [Å3] [Å3]

AA 218.52 ( 2.65 ) 230.50 ( 3.13 ) 11.98
CC 252.11 ( 5.05 ) 245.04 ( 4.05 ) 7.07
DD 273.54 ( 5.66 ) 263.20 ( 5.74 ) 10.34
EE 331.37 ( 6.13 ) 314.95 ( 5.58 ) 16.41
GG 159.71 ( 2.78 ) 165.34 ( 1.94 ) 5.64
II 362.81 ( 9.49 ) 369.93 ( 7.06 ) 7.12
KK 393.01 ( 6.45 ) 392.01 ( 6.08 ) 1.67
LL 352.63 ( 9.14 ) 347.51 ( 7.76 ) 5.12
MM 365.52 ( 5.39 ) 381.78 ( 5.78 ) 16.26
NN 278.91 ( 8.78 ) 273.94 ( 5.77 ) 4.97
QQ 339.98 ( 6.49 ) 329.91 ( 7.30 ) 10.06
RR 433.26 ( 5.96 ) 428.44 ( 5.41 ) 4.82
SS 226.09 ( 3.61 ) 227.08 ( 2.82 ) 1.02
TT 274.80 ( 9.52 ) 275.55 ( 7.01 ) 1.51
VV 316.00 ( 5.48 ) 332.94 ( 8.52 ) 16.94
YY 439.88 ( 8.00 ) 412.28 ( 6.71 ) 27.61
FF 421.05 ( 8.64 ) 392.43 ( 6.81 ) 28.61
HH 356.34 ( 6.00 ) 343.87 ( 5.54 ) 12.47
PP 268.97 ( 9.02 ) 264.79 ( 10.71 ) 4.18
WW 478.49 ( 18.15 ) 453.04 ( 16.78 ) 25.45
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Table E.5: Ethanol: Comparison of average molecular surfaces based on scaled

AMBER vdW radii used in PB/BEM (rC2H5OH
probe = 2.2Å) with data from PCM cal-

culations (rC2H5OH
probe = 2.180Å) [12].

Dipeptide Mean Surface Mean Surface Deviation
Type AMBER Scaled (1.06) PCM Reference

[Å2] [Å2] [Å2]

AA 204.97 ( 4.93 ) 210.87 ( 4.77 ) 5.90
CC 226.79 ( 5.20 ) 224.03 ( 5.83 ) 2.76
DD 240.79 ( 8.29 ) 239.53 ( 6.89 ) 1.47
EE 285.56 ( 9.04 ) 281.88 ( 6.44 ) 3.68
GG 164.30 ( 4.51 ) 167.49 ( 3.46 ) 3.20
II 293.16 ( 15.47 ) 300.40 ( 12.81 ) 7.25
KK 337.35 ( 9.04 ) 339.50 ( 7.99 ) 2.36
LL 289.47 ( 10.05 ) 291.74 ( 10.96 ) 2.40
MM 314.80 ( 8.80 ) 328.59 ( 9.29 ) 13.80
NN 244.51 ( 7.59 ) 245.49 ( 7.11 ) 1.02
QQ 291.32 ( 8.92 ) 291.08 ( 7.39 ) 1.39
RR 375.21 ( 7.42 ) 379.43 ( 7.12 ) 4.22
SS 209.14 ( 4.35 ) 211.31 ( 5.05 ) 2.16
TT 236.06 ( 9.37 ) 237.89 ( 10.49 ) 1.83
VV 262.57 ( 9.85 ) 275.17 ( 9.22 ) 12.60
YY 354.25 ( 14.33 ) 344.01 ( 13.96 ) 10.23
FF 339.32 ( 13.94 ) 324.40 ( 14.52 ) 14.92
HH 296.78 ( 11.99 ) 294.80 ( 11.73 ) 2.03
PP 233.88 ( 11.20 ) 232.11 ( 9.56 ) 1.77
WW 371.10 ( 26.73 ) 358.23 ( 24.44 ) 12.87
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Table E.6: Ethanol: Comparison of average molecular volumes based on scaled

AMBER vdW radii used in PB/BEM (rC2H5OH
probe = 2.2Å) with data from PCM cal-

culations (rC2H5OH
probe = 2.180Å) [12].

Dipeptide Mean Volume Mean Volume Deviation
Type AMBER Scaled (1.06) PCM Reference

[Å3] [Å3] [Å3]

AA 222.32 ( 3.54 ) 231.95 ( 3.67 ) 9.62
CC 255.42 ( 4.94 ) 246.50 ( 4.51 ) 8.92
DD 275.65 ( 6.27 ) 264.60 ( 5.45 ) 11.05
EE 334.55 ( 6.38 ) 317.10 ( 7.04 ) 17.45
GG 161.17 ( 4.03 ) 166.07 ( 2.13 ) 4.89
II 365.48 ( 10.21 ) 372.08 ( 7.14 ) 6.60
KK 400.13 ( 6.74 ) 394.36 ( 6.63 ) 5.78
LL 355.61 ( 8.64 ) 349.47 ( 8.09 ) 6.14
MM 371.57 ( 8.47 ) 384.59 ( 6.88 ) 13.02
NN 281.96 ( 7.47 ) 275.44 ( 6.19 ) 6.52
QQ 344.23 ( 7.09 ) 332.30 ( 7.72 ) 11.93
RR 438.11 ( 9.96 ) 431.38 ( 7.89 ) 6.74
SS 229.28 ( 3.55 ) 228.46 ( 2.92 ) 1.04
TT 277.64 ( 7.60 ) 276.95 ( 7.37 ) 1.91
VV 316.82 ( 9.30 ) 334.66 ( 8.97 ) 17.84
YY 442.09 ( 8.74 ) 415.33 ( 6.62 ) 26.76
FF 422.93 ( 9.19 ) 395.15 ( 7.77 ) 27.78
HH 360.78 ( 6.09 ) 346.26 ( 5.67 ) 14.52
PP 270.54 ( 9.96 ) 266.02 ( 10.44 ) 4.52
WW 486.78 ( 18.77 ) 456.45 ( 18.69 ) 30.34
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Table E.7: n-Octanol: Comparison of average molecular surfaces based on scaled

AMBER van der Waals radii used in PB/BEM (rC8H17OH
probe = 2.945Å) with data from

PCM reference calculations ( rC8H17OH
probe = 2.945Å) [12].

Dipeptide Mean Surface Mean Surface Deviation
Type AMBER Scaled (1.05) PCM Reference

[Å2] [Å2] [Å2]

AA 202.11 ( 5.74 ) 210.82 ( 4.73 ) 8.70
CC 226.01 ( 5.49 ) 223.80 ( 6.29 ) 2.21
DD 239.04 ( 6.31 ) 239.28 ( 7.36 ) 1.28
EE 282.23 ( 7.88 ) 281.70 ( 6.73 ) 1.17
GG 162.96 ( 4.44 ) 167.52 ( 3.64 ) 4.56
II 290.48 ( 10.88 ) 299.73 ( 13.15 ) 9.25
KK 334.37 ( 9.81 ) 340.07 ( 12.74 ) 5.70
LL 287.06 ( 11.27 ) 291.21 ( 10.81 ) 4.23
MM 314.52 ( 8.80 ) 328.24 ( 9.34 ) 13.73
NN 242.92 ( 8.11 ) 245.07 ( 7.66 ) 2.15
QQ 289.02 ( 9.69 ) 290.89 ( 7.47 ) 2.50
RR 371.52 ( 8.05 ) 379.87 ( 10.01 ) 8.35
SS 207.15 ( 5.90 ) 211.18 ( 4.98 ) 4.03
TT 234.20 ( 10.29 ) 237.46 ( 10.34 ) 3.25
VV 260.13 ( 9.22 ) 274.78 ( 9.04 ) 14.65
YY 347.57 ( 14.32 ) 343.46 ( 14.35 ) 4.14
FF 335.63 ( 14.76 ) 323.66 ( 14.54 ) 11.97
HH 295.00 ( 11.34 ) 294.17 ( 11.88 ) 1.77
PP 232.87 ( 13.19 ) 231.68 ( 9.71 ) 1.31
WW 368.60 ( 23.31 ) 356.92 ( 24.09 ) 11.68
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Table E.8: n-Octanol: Comparison of average molecular volumes based on scaled

AMBER van der Waals radii used in PB/BEM (rC8H17OH
probe = 2.945Å) with data from

PCM reference calculations (rC8H17OH
probe = 2.945Å) [12].

Dipeptide Mean Volume Mean Volume Deviation
Type AMBER Scaled (1.05) PCM Reference

[Å3] [Å3] [Å3]

AA 221.75 ( 5.74 ) 234.29 ( 4.06 ) 12.54
CC 257.60 ( 5.08 ) 249.12 ( 4.82 ) 8.47
DD 276.64 ( 6.03 ) 267.32 ( 5.21 ) 9.31
EE 335.59 ( 7.64 ) 322.45 ( 8.78 ) 13.14
GG 160.76 ( 2.82 ) 167.45 ( 2.29 ) 6.69
II 367.89 ( 7.76 ) 376.29 ( 7.76 ) 8.40
KK 403.23 ( 7.18 ) 401.12 ( 6.86 ) 2.74
LL 356.68 ( 9.22 ) 353.55 ( 8.66 ) 3.13
MM 377.61 ( 6.62 ) 391.07 ( 8.27 ) 13.46
NN 283.89 ( 6.03 ) 278.66 ( 6.71 ) 5.23
QQ 346.36 ( 7.96 ) 338.62 ( 8.84 ) 7.74
RR 442.46 ( 12.86 ) 439.20 ( 12.55 ) 3.25
SS 229.66 ( 4.77 ) 230.90 ( 3.92 ) 1.25
TT 278.95 ( 7.47 ) 279.20 ( 7.82 ) 1.77
VV 318.05 ( 9.29 ) 338.23 ( 9.80 ) 20.18
YY 440.24 ( 11.50 ) 421.48 ( 9.26 ) 18.76
FF 424.07 ( 13.18 ) 400.56 ( 11.15 ) 23.51
HH 362.43 ( 7.62 ) 350.96 ( 7.18 ) 11.46
PP 272.69 ( 10.68 ) 268.18 ( 10.22 ) 4.51
WW 490.61 ( 19.88 ) 463.21 ( 21.20 ) 27.40
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Table E.9: Ethanol: Effect on total solvation free energies as PB/BEM-computed
with AMBER style of dispersion ( λ=0.94) versus Caillet-Claverie style of disper-
sion ( λ=0.82) and comparison to the experimental value [12].

Species ∆GsolvCaillet−Claverie ∆GsolvAMBER ∆GsolvExp[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

n-octane -0.70 -1.56 -4.23
toluene -3.30 -4.53 -4.57
dioxane -6.03 -6.74 -4.68
butanone -4.83 -3.88 -4.32
chlorobenzene -3.52 -4.16 -3.30
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Table E.10: n-Octanol: Effect on total solvation free energies as PB/BEM-
computed with AMBER style of dispersion (λ=2.60) versus Caillet-Claverie style
of dispersion ( λ=0.74) and comparison to the experimental value [12].

Species ∆GsolvCaillet−Claverie ∆GsolvAMBER ∆GsolvExp[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

acetone -5.28 -4.35 -3.15
anisole -4.80 -6.74 -5.47
benzaldehyde -6.16 -6.25 -6.13
benzene -3.87 -5.54 -3.72
bromobenzene -3.75 -4.93 -7.47
butanal -5.02 -4.19 -4.62
butanoic acid(a) -8.74 -8.14 -7.58
cyclohexane -0.64 -2.02 -3.46
acetic acid(a) -8.96 -7.84 -6.35
ethylbenzene -2.94 -4.84 -5.08
hexanoic acid(a) -8.89 -8.84 -8.82
propanal -4.71 -3.63 -4.13
propionic acid(a) -8.75 -8.03 -6.86
propene -1.61 -2.44 -1.14
propyne -2.81 -3.86 -1.59
bromoethane -2.69 -2.58 -2.90

(a) protonated form
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Table E.11: Comparison of computed versus experimental total solvation free
energies, ∆Gsolv, of amino acid side-chain analogues in water.[12].

Species ∆Gsolv,PB/BEM+SASAγ(a)
∆Gsolv,Exp Deviation

[
kcal
mol

] [
kcal
mol

] [
kcal
mol

]

acetamide -10.55 -9.68 0.87(+)
butane 0.84 2.15 1.31(-)
ethanol -4.51 -4.88 0.37(-)
isobutane 0.57 2.28 1.71(-)
methane 0.62 1.94 1.32(-)
methanethiol -2.53 -1.24 1.29(+)
methanol -5.91 -5.06 0.85(+)
methyl-ethyl-sulfide -0.55 -1.48 0.93(+)
methylindole -5.14 -5.88 0.74(+)
p-cresol — -6.11 —
propane 1.00 1.99 0.99(-)
propionamide — -9.38 —
toluene — -0.76 —
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Table E.12: Performance evaluation of the components involved in the calculation
of the dispersion term, ∆Gdisp, according to eq. 3 (AMBER/TIP3P) [12].

PDB Number of Number of CPU Time Mol. Surf. CPU Time
Residues Atoms [sec] [sec]

1P9GA 41 517 5 (10 %) 1 (2 %)
2B97 70 981 30 (21 %) 1 (1 %)
1LNI 96 1443 50 (14 %) 2 (1 %)
1NKI 134 2082 67 ( 9 %) 5 (1 %)
1EB6 177 2570 108 (18 %) 5 (1 %)
1G66 207 2777 127 (20 %) 5 (1 %)
1P1X 250 3813 185 (15 %) 10 (1 %)
1RTQ 291 4287 214 (17 %) 11 (1 %)
1YQS 345 5147 247 (14 %) 16 (1 %)
1GPI 430 6164 200 ( 8 %) 21 (1 %)
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Figure E.1: Methanol: Comparison of employed molecular surfaces (L) and
Molecular volumes (R) in the PB/BEM series based on scaling the AMBER de-
fault van der Waals radii by a factor α to the reference data obtained from PCM
calculations [12].
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Figure E.2: Ethanol: Comparison of employed molecular surfaces (L) and molec-
ular volumes (R) in the PB/BEM series based on scaling the AMBER default van
der Waals radii by a factor α to the reference data obtained from PCM calculations
[12].

Figure E.3: n-Octanol: Comparison of employed molecular surfaces (L) and
molecular volumes (R) in the PB/BEM series based on scaling the AMBER de-
fault van der Waals radii by a factor α to the reference data obtained from PCM
calculations [12].
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introduced alterations

SASA 2

SASA 1

Molecular Surface

Figure E.4: Graphical representation of introduced changes when switching from
a small probe sphere (blue) to a larger probe sphere (red) [12].

Figure E.5: Graphical representation of the total energies determined at different
levels of semiempirical theory using the program LocalSCF [12].
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Figure E.6: Deviation of the PB/BEM solvation free energies ∆Gsolv from experi-
mental values as a function of λ , a scaling factor uniformly applied to all AMBER
vdW potential well depths εi [12].

Figure E.7: Ethanol (L) & n-Octanol (R) : Deviation of the PB/BEM solvation
free energies ∆Gsolv from experimental values as a function of λ , a scaling factor
uniformly applied to all AMBER vdW potential well depths εi [12].
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