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This dissertation is based on my PhD (Engineering Physics) research work conducted 
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correlations using single-photon spatial compass state and operational 
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I (Yong Meng Sua) have coauthored all the articles listed above I have obtained the 

necessary copyright permission from publishers (see Appendix G) to reproduce text, 

figures and data from the above listed journal articles in the present dissertation titled:  

“QUANTUM CORRELATIONS OF LIGHTS IN MACROSCOPIC 

ENVIRONMENTS” 

In the first publication in “Physical Review A” (Chapter 3), we demonstrated 

bipartite correlations of two weak coherent states over a distance of 10 km which can 

be used as a supplemental resource to the existence QKD protocols such as coherent 

state DPS-QKD and decoy state BB84 protocol. I designed and demonstrated this 

experiment in our laboratory. The data analysis was carried out by me and my 

advisor, Dr. Kim Fook Lee. Three former undergraduate students from department of 

Physics which are Erin Scanlon, Travis Beaulieu and Viktor Bollen contributed in 

data acquisition and instrumentation.  

In the second article published in “Physical Review A” (Chapter 2), we 

proposed a measurement scheme for observing quantum correlations and 

entanglement in the spatial properties of two macroscopic mirrors. We showed that 

realistic motions of measuring the propensity in the imaging system can extract the 

Einstein-Podolsky-Rosen correlations of two mirrors. I carried out the mathematical 

derivation and calculation. Dr. Kim Fook Lee and me analyzed the calculation results 

and proposed the measurement scheme. 

In the third work published in “Optics Letter” (Chapter 4), we generated 

correlated and entangled photon pairs at telecom wavelengths through four-wave 

mixing in a 10 m highly nonlinear fiber. The 10 m highly nonlinear fiber was 
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fabricated and characterized by our collaborator Mr. Massaki Hirano from Sumitomo 

Electric, Japan. I designed and conducted the experiment. I designed and built single 

photon detection and coincidence detection system. The data analysis was carried out 

together by me and Dr. Kim Fook Lee with technical input of Mr. John Malowicki 

from Air Force research Laboratory.  

In the last work (Chapter 5) which is currently in peer-review process, we 

demonstrated that both standard losses and multiple scattering in transmission 

channel are detrimental to the quantum correlation of photon-pair. We also found that 

Raman noise photons in fiber source will enhance the depolarization effect in 

multiple scattering. This is extension of our work published in “Optics Letter”, 

addressing the issue in long distance quantum key distribution. I designed and 

performed the experiment with helpful discussion from Mr John Malowicki. Data 

analysis was carried out together by me and Dr. Kim Fook Lee. Subsequently, we 

proposed a model to explain our discoveries in this work.  

Chapter 1 is the introduction to this Dissertation; Chapter 6 summarizes the 

important findings of this Dissertation and provides suggestions for the future work. 
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Abstract 

This dissertation presents a detailed study in exploring quantum correlations 

of lights in macroscopic environments. We have explored quantum correlations of 

single photons, weak coherent states, and polarization-correlated/polarization-

entangled photons in macroscopic environments. These included macroscopic 

mirrors, macroscopic photon number, spatially separated observers, noisy photons 

source and propagation medium with loss or disturbances. 

We proposed a measurement scheme for observing quantum correlations and 

entanglement in the spatial properties of two macroscopic mirrors using single 

photons spatial compass state. We explored the phase space distribution features of 

spatial compass states, such as chessboard pattern by using the Wigner function. The 

displacement and tilt correlations of the two mirrors were manifested through the 

propensities of the compass states. This technique can be used to extract Einstein-

Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the 

discrete-like property of the propensity 	 ௕࣪ሺ݉, ݊ሻ,  which can be used to explore 

environmental perturbed quantum jumps of the EPR correlations in phase space. 

With single photons spatial compass state, the variances in position and momentum 

are much smaller than standard quantum limit when using a Gaussian TEM00 beam. 

We observed intrinsic quantum correlations of weak coherent states between 

two parties through balanced homodyne detection. Our scheme can be used as a 

supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. 

We prepared four types of bipartite correlations േܿ2ݏ݋ሺߠଵ േ  ଶሻ that shared betweenߠ



 

xxi 
 

two parties. We also demonstrated bits correlations between two parties separated by 

10 km optical fiber. The bits information will be protected by the large quantum 

phase fluctuation of weak coherent states, adding another physical layer of security to 

these protocols for quantum key distribution. 

Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed 

coincidence to accidental-coincidence ratio of 1305 for correlated photon-pair and 

Two-Photon Interference visibility >98% entangled photon-pair. We also verified the 

non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-

Shimony-Holt Bell’s inequality by more than 12 standard deviations. With the HNLF 

at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m 

dispersion-shifted fiber is observed. Then, we studied quantum correlation and 

interference of photon-pairs; with one photon of the photon-pair experiencing 

multiple scattering in a random medium. We observed that depolarization noise 

photon in multiple scattering degrading the purity of photon-pair, and the existence 

of Raman noise photon in a photon-pair source will contribute to the depolarization 

affect. We found that quantum correlation of polarization-entangled photon-pair is 

better preserved than polarization-correlated photon-pair as one photon of the 

photon-pair scattered through a random medium. Our findings showed that high 

purity polarization-entangled photon-pair is better candidate for long distance 

quantum key distribution. 
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Chapter  1 

Introduction 

 

1.1 Overview 

First and foremost, I shall embark on my dissertation by a brief introduction on 

Quantum Information Science and describe the motivations of this work. In 

following section, I will discuss on the definition of the macroscopic environments 

from history point of view and how we define it in our work. Then, I will proceed by 

introducing the fundamental features of quantum mechanics, which are quantum 

superposition and entanglement. The nonlocal behavior of the entanglement was 

once the controversial prediction of quantum mechanics that strongly opposed by 

Einstein. Finally, I will outline the organization of this dissertation. 

1.2 Background and Motivations 

Quantum Information Science (QIS) is an up-and-coming field that exploits the 

quantum superposition and entanglement by using quantum objects such as atoms, 

molecules, electrons, photons and phonons [1-7]. Successful implementation of QIS 
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has the potential in offering revolutionary applications beyond the capability of 

classical devices.  

In classical treatment of information theory, the fundamental unit of 

information is a single bit which can have two possible discrete values either 0 or 1. 

A single bit can be realized by any two levels physical system such as two distinct 

voltage or current levels generated by a circuit, two polarization states and etc. In 

analogues to the classical counterpart, the fundamental unit of quantum information 

is quantum bit or so called “qubit”. A qubit can be implemented by using two levels 

quantum system such that its state is prepared in superposition of two quantum states. 

For instance, the state of qubit can be expressed as |߰〉 ൌ 〈0|ߙ ൅  where the , 〈1|ߚ

probability amplitude ߙ and ߚ are the complex numbers that related as |ߙ|ଶ ൅ ଶ|ߚ| ൌ

1 . The key feature of quantum system is that information can be encoded in 

superposition of 0 and 1 states. This is in contrast with the classical systems where 

information must be encoded in one of the two possible states. 

In general, major applications of Quantum Information Science are branched 

into Quantum Computing and Quantum Communication. Quantum Computing is 

devoted to enhance the computational power by employing quantum phenomena. 

Several quantum computational algorithms has been indentified to have great 

advantage over classical computing in certain tasks such as Grover’s algorithm in 

searching in a unsorted database and Shor’s algorithm in Fourier transform operation 

and factoring large number [8, 9]. Quantum Communication is an application that 

involved the transfer of quantum states or information between two distant parties. 



 

3 
 

The best known examples in Quantum Communication include Quantum Key 

Distribution (QKD) and Quantum teleportation [10-14]. Quantum Communication 

incorporates uncertainty principle, quantum non-cloning theorem and non-locality to 

allow the detection of eavesdropper, thus provides unconditionally secured 

communication [15]. 

Photons are considerably the most promising candidate for the applications of 

QIS. As photons interact weakly with their environment and relatively robust against 

environmental disturbance, their quantum mechanical effects such as quantum 

nonlocality can be well preserved for real world application. Various applications in 

QIS have been demonstrated by using quantum states of light ranging from quantum 

imaging and metrology to quantum computing and communication; scaling from 

single photons to millions of photons [12, 13, 16-21].   

Quantum correlations of photons are often threatened by its deficiencies in 

preparation, propagation and detection. The preservation of quantum correlations of 

photons in macroscopic environments will be the key for practical realization of 

quantum information science. This dessertation is motivated to understand the 

quantum correlations of photons in macroscopic environments, mainly in concerned 

with its application in quantum metrology and quantum communications. 

Nonetheless, the concepts and knowledge developed in this work may have 

applications in broader context of quantum information processing such as quantum 

imaging and microscopy with non-classical light [22, 23]. 
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In quantum metrology, quantum phenomena of light such as entanglement 

and squeezing are used to enhance the optical phase measurement by suppressing the 

uncertainty measured physical parameters. The application of quantum metrology 

can be further extended in surpassing the shot-noise-limited sensitivity for weak 

force measurements and graviton detection [24, 25]. In optomechanics, non-classical 

light is used in developing sensitive position and momentum detection via 

macroscopic mechanical correlations measurement [26]. However, the main obstacle 

for quantum metrology is the difficulty of the experimental realization due to 

stringent requirement in isolation from environmental noise and delicate control of 

experiment. Thus, investigating quantum correlation of photons in macroscopic 

environments is important in exploring the possibility of extracting the quantum 

correlations of macroscopic object and also the development of quantum devices to 

achieve unprecedented precision optical phase measurement. 

Explosive growth of quantum information science is the main driver of the 

demand on single photon and entangled photon sources [27]. Quantum states of the 

single photon in different degree of freedom such as polarization, momentum, energy 

can be used to encode the qubit for quantum information processing. For quantum 

key distribution protocols such BB84 and Ekert91, single photon and entangled 

photon sources are particularly critical to ensure the unconditional security of 

communication [13, 28]. Direct generation of single photon and entangled photon 

sources in optical fiber is a rather attractive option due to its inherent compatibility 

with existing fiber optics technologies for practical application. Nevertheless, the 
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emergence of differential phase-shift quantum key distribution (DPS-QKD) and 

decoy-states BB84 protocols relaxing the requirement of single photon source [14, 

29]. As DPS-QKD and decoy-states protocols can be realized by using macroscopic 

number of photons. Hence investigating bipartite correlations of weak coherent states 

with the manipulation of linear optics can contribute to the exploration of 

supplemental resource for realization of DPS-QKD and decoy state BB84 protocols. 

Global scale unconditionally secured quantum communication is one of the 

ultimate goals in quantum information science. Two options are available to achieve 

long distance quantum communication with current technology; one is through the 

optical fiber network and another is through free space channel. Even though long 

distance quantum key distribution in optical fiber and free space channel has been 

demonstrated [30, 31], the practicality of global scale quantum communication is still 

in doubt. For free space channel, major limitations are atmospheric scattering, 

turbulence and propagation losses [32, 33]. Likewise, linear propagation and 

connection loss with current optical fiber technology limiting the fiber network 

distance for quantum communication.  Hence, quantum correlations of different 

photons propagate over long distance and lossy environments are great interest from 

the perspective long distance quantum communication. 

In the following section, I will explain how the macroscopic environments are 

defined in this dessertation. 

 



 

6 
 

1.3 Macroscopic environments 

According to orthodox interpretation of quantum mechanics- the Copenhagen 

Interpretation, quantum mechanical description of a large systems will be similar to 

corresponding its classical description [34]. This is one of the main features of the 

Copenhagen Interpretation; which appears to be the dividing line between classical 

(macroscopic) physics and quantum (microscopic) physics. Namely, in microscopic 

environments events are probabilistic while in the macroscopic environments events 

appear to be deterministic.  

The definition of the macroscopic environments can be extended over a range 

of physical quantities such as mass, size(volume), spatial separation(length), 

temperature and number of particles. Well defined criterion to sharply distinguish 

between macroscopic and macroscopic worlds seems to be an elusive goal. 

Identification of the macroscopic with the classical physics; and microscopic with the 

quantum physics has been commonly accepted [35].  

However, as a result of advancement in experimental physics, this proposition 

in defining the boundary of microscopic and macroscopic worlds is proven to be 

inappropriate and under much scrutiny. Macroscopic objects that are typically well-

described by classical physics can demonstrate quantum behavior provided it is well 

isolated from their ambient environment [36]. Recently, much progress has been 

achieved in demonstrating quantum behavior in macroscopic environment despite its 

challenging nature. In gravitational wave detection, resonant bar detector that weighs 
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few hundred kilograms behaves similarly to a quantum mechanical oscillator [37, 38].  

In optomechanics, experiments for the demonstration of quantum superposition of 

two macroscopic masses such as mirrors have been proposed [39]. The mechanical 

motions of mass have been observed as close to pure quantum states by employing 

the quantum correlations between the probe light and macroscopic mass [40]. In 

quantum optics, squeezed states that do not have the classical corresponding 

counterpart can be prepared with macroscopic numbers of photons [41]. Recently, 

quantum teleportation has been realized with a new record of 143 kilometers in 

distance, paving the way for long distance or even global scale quantum 

communication [42, 43]. 

Since macroscopic systems are not necessarily classical and it is almost 

impossible to draw a definite boundary line between macroscopic and microscopic. 

Hence, macroscopic environment in this work is defined as the environments that 

cause disappearance of the quantum correlation of a physical system rather than 

defined on an absolute scale. The macroscopic environments that we explore in this 

dissertation include noise photon in the light source, macroscopic photons number, 

spatial separation of the photons, macroscopic mirror, loss and dynamics of 

propagation channel, intrinsic noise in detection and so on. 

1.4 Quantum Superposition and Entanglement 

Principle of Superposition is a fundamental property of physic which also lay down 

the cornerstone for peculiar quantum phenomena. Specifically, provided that the 
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wave functions |߰ଵ〉 and |߰ଶ〉 both satisfy the Schrödinger equation for a physical 

system, then the linear superposition of the wave functions given as |߰〉 ൌ 〈ଵ|߰ଵߙ ൅

 ଶ areߙ ଵ andߙ  ଶ|߰ଶ〉 also satisfies the Schrödinger equation. The complex numbersߙ

the probability amplitude of the wave functions. Quantum Superposition can be 

further generalized to say that the physical states of a quantum system can be 

described by superposition of more than one wave function instead of a single wave 

function. The superposition of the wave functions is written as |߰〉 ൌ ∑ ௜|߰௜〉௜ߙ , 

where the probability of finding the system in particular stats|߰௜〉 is  |ߙ௜|ଶ. Quantum 

Superposition evidences to probabilistic nature of quantum mechanics. In addition, it 

also holds the key for quantum information science as fundamental unit of quantum 

information is solely based on the superposition of quantum states. 

As a result of quantum superposition, entanglement is the most intriguing and 

counterintuitive concept in quantum mechanics. A two-particle system with wave 

function that cannot be factorized into a product state of individual wave functions is 

the simplest form of entangled states. Considering a physical system emitting a 

correlated pair of photons with the probability of having the individual photon in 

horizontal (H) or vertical (V) polarization states is 50% each and the occurrence is 

random. The entangled states of this system can be written as 

                                                |߰േ〉 ൌ ଵ

√ଶ
ሺ|ܪଵܪଶ〉 േ | ଵܸ ଶܸ〉ሻ                                   (1.1) 

                                                 |߶േ〉 ൌ ଵ

√ଶ
ሺ|ܪଵ ଶܸ〉 േ | ଵܸܪଶ〉ሻ                                  (1.2) 
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These are four correlated and anti-correlated Bell’s states with the subscripts 

referring to each individual photon of photon pair. 

Assuming that the system is in entangled state |߰ା〉 , when photon 1 is 

detected horizontal polarization states, ܪଵ  the wave function of entangled state 

collapsed into the product state |ܪଵܪଶ〉 . Therefore the photon 2 must be in the 

horizontal polarization states, ܪଶ even if no measurement is made, and vice versa if 

photon 1 in vertical polarization states. Similar, same explanation can be applied to 

all other entangled states |߰ି〉 , |߶ା〉  and |߶ି〉 . This implies that even though 

polarization measurement results of photon 1 is random and unpredictable; they 

allow us to predict the results of polarization measurement of photon 2 with absolute 

accuracy. Surely, quantum entanglement is not limited to two particles system. For 

instance, Greenberger–Horne–Zeilinger state which is a polarization entangled state 

involving more than 2 photons that proposed and demonstrated by Zeilinger’s group 

[44-46]. In fact, it is predicted that multi-particle entanglement to offer richer non-

classical correlations and access to more intriguing applications [47]. In addition, 

entanglement with different degree of freedom such as momentum entanglement, 

time-energy entanglement, and polarization entanglement or entanglements with 

multi degrees of freedom such as Hyper-entanglement have been demonstrated [48-

51]. 

The term entanglement (Verschränkung in German) was first introduced by 

Schrödinger when he uses the famous “Schrödinger’s cat” to illustrate entangled 

states, which was mystifying during that time. This thought experiment pointed out 
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that phenomenon of entanglement clearly contradicting the common belief as a cat 

cannot be dead or alive at the same time. Schrödinger did made a good point with 

this example as this perplexing paradox rarely observed in macroscopic world, 

because quantum systems interact with the noisy macroscopic environment and lose 

their correlations. The concept of entanglement was not accepted plainly by 

physicists. Its debate can be traced back to as early as 1935 when Einstein, Podolsky, 

and Rosen published a paper on EPR paradox [52]. The EPR trio illustrated a 

quantum system that consists of two spatially separated particles where the 

position/momentum measurement of either particle would instantly determine the 

position/momentum measurement outcome of the other particle. They saw that the 

instantaneous influence of one particle on another one as a superluminal effect which 

is forbidden by special relativity and called it as “spooky action at a distance”. As a 

result, they went on to claim that the Copenhagen interpretation on quantum theory is 

incomplete and “local hidden variables” are required to fully describe physical state 

of a system [52]. Several months later, Bohr reply to EPR paper by arguing that EPR 

treatment of two-particles quantum system is inappropriate as they assumption on 

locality means that an act of measurement on particle 1 (which is a part of that 

particular quantum system) will not disturb the quantum system [53]. Then, Bohr 

went further to insist that quantum mechanics is complete. 

In 1964, John Bell derived the famous Bell’s theorem and formulated Bell’s 

inequality [54]. According to Bell’s theorem, if the correlation of two particles can be 

described by “local hidden variables” then the Bell’s inequality is always obeyed. In 
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contrast, Bell’s inequality would be violated if Quantum mechanics prevails and its 

interpretation on non-locality of EPR paradox is true. Bell’s theorem is significant as 

it shows that “local hidden variables” cannot reproduce the prediction by Quantum 

mechanics on about strongly correlated two-particle system. The emergence of the 

Bell’s theorem established the benchmark to experimentally test the existence of 

“local hidden variables”. Indeed, Bell’s work brings hopes in concluding Einstein-

Bohr philosophical exchange on quantum theory and verifies the concept of quantum 

entanglement. In 1969, John Clauser and his co-worker proposed an experiment to 

test a more generalized “local hidden variables” theory with a modified Bell’s 

inequality (which is much known as CHSH inequality) by considering actual 

experimentation system [55]. Since then, all experimental results astonishingly 

pointed to the triumph of Quantum mechanics [56-58]. 

1.5 Dissertation Organization 

 Most of the materials presented in this dissertation have been published in 

journal article or is in the peer review process for publication. The presentation style, 

contents and figures in this manuscript in each chapter are often extracted from a 

published or in-review paper. Further elaboration and proper modifications are done 

to ensure the consistency of presentation style, notation and references so that the 

dissertation can be read fluently.  

This dissertation is organized as follows: In chapter 2, we present a 

measurement scheme for observing quantum correlations and entanglement in the 
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spatial properties of two macroscopic mirrors by employing single spatial compass 

states through direct propensity measurement. Chapter 3, we demonstrated that 

intrinsic quantum correlations of weak coherent states are observed between two 

parties over a distance of 10 km transmission fiber through a novel detection scheme. 

For chapter 4, we generate polarization correlated and entangled photon pair at 

telecom wavelength through spontaneous four-wave mixing process in a short 10m 

of highly nonlinear fiber. Following in chapter 5, we present a study on quantum 

correlation and interference of fiber based photon-pairs with one photon experiencing 

standard loss or multiple scattering in a random medium. Finally, the summary and 

outlook of this work will be rolled out in chapter 6. 
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Chapter  2 

Macroscopic Mechanical Correlations 
of Two Mirrors1 
 

2.1 Overview 

In this chapter, we propose a measurement scheme for observing quantum 

correlations and entanglement in spatial properties of two macroscopic mirrors using 

single photons spatial compass states. 

First, we begin with a short introduction on some previous studies on the 

macroscopic mechanical correlations and quantum decoherence by using non-

classical states such as quantum superposition of coherent states, entanglement and 

squeezed states of light. In addition, we will discuss the Wodkiewicz’s idea of 

measuring two non-commuting variables of quantum states with propensity. Direct 

measurement of propensity or operational probability density distribution can be 

employed to study the mechanical correlations of the two mirrors [59]. 

                                                            
1 The material contained in this chapter was previously published in Physical Review A. 
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Then, we discuss the properties of the Wigner phase space distribution about 

negativity of Wigner function in certain regions of the phase space distribution. The 

wave-particle duality characteristic of the Wigner function allows us to characterize 

spatial compass states that are generated from the superposition of single Gaussian 

transverse electromagnetic (TEM)00 mode of single photons in phase space 

distribution. 

An experiment setup with realistic parameters is proposed for the generation 

of spatial compass states. Two spatial versions of compass states are generated by 

using single Gaussian mode of single photons in a simple interferometer. The detail 

of proposed experiment will be discussed thoroughly and the phase space distribution 

features of spatial compass states such as chessboard pattern will be illustrated by 

using Wigner function.  

In next section, we will discuss the concept of propensity ௕࣪൫	݀௫, ݀௣൯ and 

how to carry out measurement of propensity in our proposed experiment. In addition, 

we will reveal the relation between the Wigner function and propensity. Then, we 

follow up with explanations on the dynamical process of propensity and the 

realization Einstein-Podolsky-Rosen (EPR) correlation in two mirrors’ experimental 

coordinates. The displacement and tilt correlations of the two mirrors are manifested 

by single photons and projection measurements through a measuring device which 

measures the propensity of the compass states. The technique can extract mechanical 

correlations of the two mirrors and lock them into the EPR correlation by the means 

of maintaining maximum propensity. Furthermore, we calculated the variances in 
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position and momentum of the proposed imaging system and visualize the EPR 

entanglement region. The criteria for EPR entanglement of these mirrors can also 

verified by sub-Planck structures in the propensity. 

We then formulate the discrete-like property of the propensity	 ௕࣪ሺ	݉, ݊ሻ. The 

discrete phase-space spot in ௕࣪ሺ݉, ݊ሻcan be used to explore environmental perturbed 

quantum jumps of the EPR correlations in phase space, hence, enables discrete 

phase-space quantum computing and information processing. 

2.2 Introduction 

Entanglement between macroscopic oscillators has drawn much attention recently 

because its physics can help us to study decoherence in quantum systems and 

enhance robustness in quantum metrology [60-62]. The classical and quantum 

decoherence associated with environmental perturbation on a quantum system can be 

determined using Wigner function through its sub-Planck phase-space structure. 

Zurek has proposed a compass state based on superpositions of coherent states to 

explore the orthogonality between perturbed and unperturbed quantum states [63]. 

The idea is then further pursued for achieving Heisenberg-limited sensitivity in weak 

force measurements by motional degree of freedom of a trapped ion [25, 64]. 

Mechanical correlations for macroscopic object such as cooled mirror and membrane 

have been observed in the area of optomechanics for developing sensitive position 

and momentum measurements [65-68]. In quantum optics, entanglement and 

squeezing are often the quantum tools that used to surpass the standard quantum limit 
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(SQL) via quantum nondemolition measurements and the backaction-evasion 

technique of measuring devices [69-71]. 

 The concept of propensity was first proposed by Wodkiewicz for measuring 

two non-commuting observables of a quantum state simultaneously with realistic 

motions of a measuring device [72]. The propensity or operational probability 

density distribution is the convolution (overlapping) of the Wigner function of the 

detected state and the Wigner function of the filtering state provided by the 

measuring device. If the detected and the filtering states are the identical quantum 

state, then the propensity will provide the information of orthogonality between the 

quantum state and its phase-space-disturbed quantum state. The propensity is the 

generalized function of the two-particle Wigner function wherein there are no 

correlations between the particles, i.e., by means of the product of two single particle 

Wigner functions [73]. With the help of the spatial compass state, single photons, and 

the dynamical process of measuring propensity, our phase-space imaging system can 

project the interference terms (chessboard pattern) of the product Wigner function 

through direct measurement. This leading to the observation of spatial Einstein-

Podolsky-Rosen (EPR) correlations of two mirrors in contrast to the case considered 

by O’Connell and Walls [73]. 

2.3 Wigner Function 

Given that spatial compass state is proposed to observe the spatial EPR correlations 

of two mirrors, one would like to visualize and characterize its properties. In this 
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work, we explore the phase space properties of the spatial compass state by using the 

Wigner function.  

Wigner function is a quasiprobability distribution function in phase space 

(position and momentum) that was originally introduced by Eugene Wigner in 1932, 

where quantum corrections to classical statistical mechanics were of interest [74]. To 

date, Wigner function founds plenty of applications in both classical and quantum 

optics [75-78]. The Wigner distribution ࣱሺݔ,  ሻ for a one dimensional spatial wave݌

function	߰ሺݔሻ is defined as: 

                           ࣱሺݔ, ሻ݌ ൌ ଵ

ଶగ
׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ ቀݔ െ ఌ

ଶ
ቁ                         (2.1) 

Here ݔ indicates position and ݌ indicates momentum in phase space.  

In classical mechanics, state of a physical system can be characterized by its 

phase space trajectory and the possible states of the physical system are uniquely 

represented in the phase diagram. Given an ensemble of similarly prepared physical 

system, the probability of finding a physical system in a particular state (position and 

momentum pair) is described by using classical phase space density function. 

Naturally one might consider Wigner function 	ࣱሺݔ, ሻ݌  to have similar 

characteristics as classical phase space density function. However, in contrast to 

classical probability density function, the Wigner function may exhibits negative 

values at certain domains and thus cannot be interpreted as a probability function. In 

fact, only the Gaussian Wigner function illustrates positive definite distribution as 

shown in Fig. 2.1 [79].  
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Figure 2.1. Gaussian Wigner function: (Left) 2 dimensional contour plot; (Right) 3-
dimensional contour plot. 

 

The distinctive feature of negativity in Wigner function stirred up 

considerable interest and was exploited by physicists to explore the nonclassical 

properties of light such as entanglement and squeezing [80-82]. However, the 

negativity in Wigner function is not an exclusive signature of the non classical 

property of light. In fact, negative values in the Wigner function of the classical field 

has been demonstrated; simulating the quantum properties of light in its own right 

[76]. The negative value of the Wigner function for the classical field represents 

destructive phase space interference in terms of classical waves optics, in analogy to 

nonclassical properties of light [82]. 

The wave-particle duality characteristic of the Wigner function is described in 

its definition in Eq. 2.1. The particle-like behavior of the Wigner function arises from 

position and momentum domain in its definition, which characterize the particle 

characteristics of the light by the means of geometrical ray optics. On the other hand, 

the wave-like behavior of the Wigner function originates from the spatial wave 
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function	߰ሺݔሻ in its definition which is a solution of wave equation. The wave-like 

feature of Wigner function lays down the foundation for us to explore the properties 

of spatial compass state in this work. The spatial compass state is constructed from 

the coherent interference structures from a pair of transverse electromagnetic 

(TEM)00 mode of single photons in phase space. Furthermore, the wave-particle 

duality characteristic of the Wigner function provides complete information on the 

properties of wave functions and related mutual coherence function [83]. The 

interesting wave-particle duality features of Wigner function has also been used to 

study coherence and propagation of light in different propagation media [84-86].  

2.4 Single Photons Spatial Compass state 

In this work, we propose to generate two spatially separated spatial compass states, 

⊙ଵ  and ⊙ଶ  using a single Gaussian transverse electromagnetic (TEM)00 mode of 

single photons through a simple interferometer. These spatial compass states are 

displaced and tilted by classical and quantum spatial fluctuations of two independent 

mirrors. Then, the spatial compass states are directed into an imaging system which 

performs projection measurements on spatial compass states with a single-photon 

detector. The proposed experimental setup is shown in Fig.2.2.  
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Figure 2.2. The proposed experimental setup for measuring the propensity of two 
spatial compass states and spatial correlations of two mirrors. (SMF=single mode 
fiber, BS=beam splitter, L=lense, M= mirror, SPD=single photon detector) 

 
A well defined and collimated single Gaussian TEM00 beam of single photons 

is obtained from a collimated single-mode fiber (SMF). The spatial wave function 

߰ሺݔሻ	of the TEM00 beam is given as, 

                                                   ߰ሺݔሻ ∝ exp ቂെ ௫మ

ଶఙೌ
మቃ                                               (2.2)    

where ߪ௔ is the spatial width of the SMF. Then, the TEM00 beam is split into two 

beams with the distance between them about 2ܽ  creating two spatially separated 

TEM00 beam with wave function, 

                                ߰ሺݔሻ ∝ exp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ.                                 (2.3) 
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The wave function ߰ሺݔሻ is split into two components by using a 50-50 beam splitter 

(BS1). The reflected wave function is denoted as  ߰௥ሺݔሻ and the transmitted wave 

function is denoted as	߰௧ሺݔሻ. Then, the reflected wave function at BS1 ߰௥ሺݔሻ	is 

Fourier transformed to 

                                                     	߰௥ሺ݌ሻ ∝ exp ቂെ ௣మఙೌమ

ଶ
ቃ cosሺܽ݌ሻ,                          (2.4) 

in the Fourier plane through a lens with a focal length of ݂. The derivation of this 

Fourier transform is given in Appendix A. 	߰௥ሺ݌ሻ  is then combined with the 

transmitted wave function 	߰௧ሺݔሻ  through another 50-50 beam splitter (BS2), 

creating the superposition 

                                                       ⊙ଵ	∝ ߰ଵ
௧ሺݔሻ ൅ ߰ଵ

௥ሺ݌ሻ                                        (2.5) 

which is called the spatial compass state at output 1 of BS2. We generate two 

spatially separated spatial compass sates, ⊙ଵ and ⊙ଶ, at each output of the beam 

splitter (BS2) as shown in Fig. 2.2.  

The second compass state at output 2 of BS2 is given as  

                                                     ⊙ଶ	∝ ߰ଶ
௧ሺݔሻ ൅ exp	ሾ݅߶ሿ߰ଶ

௥ሺ݌ሻ                            (2.6) 

where the relative phase ߶ is provided by a linear phase shifter to compensate the 

phase difference between ߰ଶ
௧ሺݔሻ  and ߰ଶ

௥ሺ݌ሻ . Ideally, we can generate the spatial 

compass states, ⊙ଵ and ⊙ଶ to be exactly identical. 
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The wave function ߰ଵ,ଶ
௥ ሺ݌ሻ in the Fourier plane can be rewritten in position 

coordinates as 

                                         ߰ଵ,ଶ
௥ ሺݔሻ ∝ exp	ሾെ ௫మ

ଶఙ್
మሿ cosሺܦݔ௣ሻ                                     (2.7) 

where we have used the substitutions of  ݌ ൌ ߠ݇ ൌ ௞௫

௙
௣ܦ ,  ൌ

௞௔

௙
 , and ߪ௕

ଶ ൌ ௙మ

ଶ௞మఙೌ
మ . ߠ 

is the incident angle of the photons with respect to optical axis and ݇ ൌ ଶగ

ఒ
 is the 

wave vector. With the help of the phase shifter to set ߶ ൌ 0, the spatial compass 

states ⊙ଵ and ⊙ଶ can be written in position coordinates in a identical form as  

                         ⊙ଵ,ଶ	∝ ߰ଵ,ଶ
௧ ሺݔሻ ൅ ߰ଵ,ଶ

௥ ሺݔሻ                                                             (2.8a) 

                                  ∝ exp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ ൅ exp	ሾ ௫

మ

ଶఙ್
మሿ cosሺܦݔ௣ሻ.   (2.8b) 

We explore the spatial compass states by using the Wigner function as given by  

                    ࣱሺݔ, ሻଵ,ଶ݌ ∝ ׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ⊙ଵ,ଶ

∗ ቀݔ ൅ ఌ

ଶ
ቁ ⊙ଵ,ଶ ቀݔ െ

ఌ

ଶ
ቁ                      (2.9) 

By substituting the ⊙ଵ in Eq. 2.8 to Eq. 2.9, we obtain the Wigner function is such a 

way that, 

                                  ࣱሺݔ, ሻଵ,ଶ݌ ∝ ׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ 	߰ଵ,ଶ

∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ,ଶ

௧ ቀݔ െ ఌ

ଶ
ቁ        (2.10a) 

                                                      ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ,ଶ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ,ଶ

௥ ቀݔ െ ఌ

ଶ
ቁ        (2.10b) 

                                                      ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ,ଶ

∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ,ଶ

௥ ቀݔ െ ఌ

ଶ
ቁ        (2.10c) 
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                                                      ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ,ଶ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ,ଶ

௧ ቀݔ െ ఌ

ଶ
ቁ        (2.10d) 

The Wigner functions for the generated spatial compass states are shown in Fig. 2.4. 

Spatial Wigner function that we obtain has almost similar structure as the compass 

state in the coherent state representation proposed by Zurek [63]. The chessboard 

pattern of the Wigner function is composed from the interference of 

components 	߰ଵ,ଶ
∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ,ଶ

௧ ቀݔ െ ఌ

ଶ
ቁ and ߰ଵ,ଶ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ,ଶ

௥ ቀݔ െ ఌ

ଶ
ቁ of the compass 

states. The Wigner functions of these two components are given by 

ଵࣱ,ଶሺݔ, ሻ௧௧݌ ∝ න ௜ఌ௣ି݁ߝ݀
ஶ

ିஶ
	߰ଵ,ଶ

∗௧ ቀݔ ൅
ߝ
2
ቁ ൅ ߰ଵ,ଶ

௧ ቀݔ െ
ߝ
2
ቁ 

                                          ∝ exp ቂെ
ሺ௫ା௔ሻమ

ఙೌ
మ െ ௔ଶቃߪଶ݌ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ఙೌ
మ െ   ௔ଶቃߪଶ݌

                                          ൅2exp ቂെ ௫మ

ఙೌ
మ െ ௔ଶቃߪଶ݌ cosሺ2ܽ݌ሻ                                   (2.11) 

and 

ଵࣱ,ଶሺݔ, ሻ௥௥݌ ∝ න ௜ఌ௣ି݁ߝ݀
ஶ

ିஶ
	߰ଵ,ଶ

∗௥ ቀݔ ൅
ߝ
2
ቁ ൅ ߰ଵ,ଶ

௥ ቀݔ െ
ߝ
2
ቁ 

                                     ∝ exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ൫݌ ൅ ௣൯ܦ

ଶ
௕ߪ
ଶ൨ ൅ exp ൤െ

ሺ௫ሻమ

ఙ್
మ െ ൫݌ െ ௣൯ܦ

ଶ
௕ߪ
ଶ൨  

                                          ൅2exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ௕ߪଶ݌

ଶ൨ cosሺ2ܦݔ௣ሻ                              (2.12)  
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respectively. The cosine terms in Eq. 2.11 and Eq. 2.12 indicating interference of the 

spatial wave functions due to the wave properties of single photons. Plots of 

ଵࣱ,ଶሺݔ, ,ݔሻ௧௧ and ଵࣱ,ଶሺ݌  .ሻ௥௥ are depicted in Fig. 2.3 (a) and (b)݌

The summation of the interference terms exp ቂെ ௫మ

ఙೌ
మ െ ௔ଶቃߪଶ݌ cosሺ2ܽ݌ሻ  and 

exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ௕ߪଶ݌

ଶ൨ cos൫2ܦݔ௣൯will produce the chessboard pattern in the Wigner 

function of compass states as shown in Fig. 2.4. Spatial frequencies of both 

interference terms are proportional to ܽ and ܦ௣ respectively. Thus, the distance ܽ in 

ࣱሺݔ,  ሻ௧௧ will determine the sensitivity for measuring the momentum or tilt of the݌

mirrors while the parameter ܦ௣ in ࣱሺݔ,  ሻ௥௥ determine the sensitivity for measuring݌

the position of the mirrors. Note that the position and momentum coordinates of the 

chessboard pattern in the Wigner function do not directly correspond to real physical 

spatial coordinates of the proposed imaging system.  

In addition to chessboard pattern which is the primary interest in this work. 

The remaining two components, 	߰ଵ,ଶ
∗௧ ቀݔ ൅ ఌ

ଶ
ቁ ൅ ߰ଵ,ଶ

௥ ቀݔ െ ఌ

ଶ
ቁ  and ߰ଵ,ଶ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ ൅

߰ଵ,ଶ
௧ ቀݔ െ ఌ

ଶ
ቁ contribute to the four corner fringes that exist between two lumps of 

ࣱሺݔ, ,ݔࣱሺ	ሻ௔௔ and݌  ሻ௕௕ as depicted in Fig.2.5. These corner fringes are due to the݌

superposition of spatial wave functions in a similar way as the interference structure 

of two spatial wave functions as seen in Fig. 2.3. Derivation on the Wigner 

distribution of Spatial Compass state is given in Appendix C. 
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Figure 2.3. The phase space plots of a spatial compass state with realistic parameters: 
,ݔ௔= 100 μm, a = 1.0 cm, f = 5.0 cm, and λ = 632 nm. ଵࣱ,ଶሺߪ 	ሻ௧௧, (b)݌ ଵࣱ,ଶሺݔ,  ሻ௥௥݌

 

(a) 

(b) 
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Figure 2.4. The phase space plots of a spatial compass state with realistic parameters: 
௔ߪ  = 100 μm, a = 1.0 cm, f = 5.0 cm, and λ = 632 nm. (a) 2 dimension plot of 
chessboard pattern, (b) 3 dimension plot of chessboard pattern 

 

(a) 

(b) 
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Figure 2.5. Phase space distribution of the four corner fringes between the two 
lumps of ࣱሺݔ, ,ݔሻ௧௧, and ࣱሺ݌  ሻ௥௥݌

2.5 Propensity  

Since we use single photons for generating the spatial compass states, the Wigner 

distribution corresponding to probability for the photon to be at the center of the 

chessboard is low, and hence, the probability of detecting the photon at that spot is 

extremely low. To enhance the probability of finding the photon at the center of the 

chessboard, we use an imaging system (L1,L2) for collecting the entire ⊙ଵ,ଶ beam or 

single photons into a single-photon detector while selectively projecting the position 

and momentum of the center spot into the detector. The imaging system has been 

used to measure a smoothed Wigner function and a true Wigner function including 

the sub-Planck structure of an optical beam [76, 87].  
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As shown in Fig.2.2, each spatial compass state passes through the lenses 

(L1,L2) and obtains the quadrature-phase term	exp ቂ݅ ௞௫
మ

ଶ௙
ቃ. Then, the spatial compass 

states will be collected on the single-photon detector. The detector measures the 

interference of these spatial compass states as a function of the relative displacement 

݀௫ and momentum or tilt ݌ߜ ൌ
௞ௗ೛
௙

, where ݀௣ is the displacement associated with the 

tilt or the displacement of the lenses The interference signal as a function of ݀௫ and 

݀௣ is given by  

						 ஻ܸ൫݀௫, ݀௣൯ ∝
௞

௙
exp ቀ݅

୩ௗ೛మ

ଶ௙
ቁ ׬ ᇱݔ݀

ஶ
ିஶ exp ቀ݅

୩௫ᇲௗ೛
௙
ቁ ⊙ଶ

∗ ሺݔᇱ െ ݀௫ሻ ⊙ଵ ሺݔᇱሻ.     (2.13) 

The relative displacement and momentum or tilt can be caused by random spatial 

fluctuations of the mirrors at temperature T that can be controlled or locked by 

moving lenses and mirrors. Applying the squarer X2 after the single-photon detector, 

the squared modulus interference signal (propensity) is given by 

               ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
ൌ ௕࣪൫	݀௫, ݀௣൯ 

                                        ∝ ׬ ݌݀ݔ݀
ஶ
ିஶ ࣱቀݔ െ ݀௫, ݌ ൅

௞ௗ೛
௙
ቁ
⊙మ

ࣱሺݔ, ሻ⊙భ݌
          (2.14)  

Eq. 2.14 essentially lays out the relation between the Wigner function and realistic 

phase-space probability distribution, which can be obtained directly from the 

measurement of ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
. The value of propensity at ௕࣪൫	݀௫, ݀௣൯ is obtained by 

displacing the origin of ࣱ⊙మ
 to that particular point ൫	݀௫, ݀௣൯, multiplying by ࣱ⊙భ

 

and then integrating over both ݔ and ݌. This means that the propensity is a positive 
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definite phase-space probability distribution that measures the overlap (convolution) 

of  ࣱ⊙మ
 and ࣱ⊙భ

. Detail derivation of the relation between the Wigner function and 

஻ܸ൫݀௫, ݀௣൯ in Eq. 2.13 and Eq. 2.14 is given in Appendix B. 

In accordance with concept of propensity that proposed by Wodkiewicz, the 

detected state ⊙ଵ is associated with mirror 1, and the filtering state ⊙ଶ associated 

with mirror 2 [72, 88]. The filtering state ⊙ଶ has the functionality of resolving the 

position and momentum of the detected state ⊙ଵ. Through the chessboard pattern, 

the filtering state ⊙ଶ can provide sub-Planck phase-space resolution to map out the 

detected state ⊙ଵ  [25]. Direct measurement of the propensity provides the 

information on the orthogonality of the perturbed and unperturbed spatial compass 

states. By using the imaging system, we can project the center of the chessboard for 

the maximum beat of ௕࣪൫݀௫, ݀௣൯ at around ݀௫~0  and ݀௣~0. The spatial coordinates 

of the chessboard pattern in the propensity exactly correspond to the coordinate 

system of the imaging system. To illustrate the dynamical process of the propensity 

extracting the EPR correlations of two mirrors, we discuss the convolution process in 

Eq. 2.14 by using the physical transformations 

௕ݔ                                 ൌ ݔ െ ݀௫ ൌ ௔ݔ െ ݀௫                                              (2.15) 

௕݌                                ൌ ݌ ൅
௞ௗ೛
௙
ൌ ௔݌ ൅

௞ௗ೛
௙

                                            (2.16) 

in the imaging system. The system is initially at the common zero position and 

momentum,	⊙ଵ is projected to ݔ௔ ൌ 0 and ݌௔ ൌ 0, and similarly, ⊙ଶ is projected to 
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௕ݔ ൌ 0 and ݌௕ ൌ 0. If mirror 1(2) moves to the position ݔ௔ᇱ ൌ 0 െ ݀௫ ൌ ܽ, mirror 2(1) 

must move to ݔ௕
ᇱ ൌ 0 െ ݀௫ ൌ െܽ  in order to maintain the maximum beat signal 

௕࣪൫݀௫, ݀௣൯ as shown in Fig. 2.6 so that ݔ௔ᇱ ൅ ௕ݔ
ᇱ ൌ 0 is fulfilled. This is due to the 

fact that the system has to make sure the detected state overlaps with the filtering 

state in the detector plane. 

As for the momentum, if mirror 2(1) is tilted at the angle ݌௔ᇱ ൌ 0 ൅  mirror ߠ݇

1(2) must tilt to ݌௕
ᇱ ൌ 0 ൅ ߠ݇ ൌ 0 ൅

௞ௗ೛
௙

 , or the lens L1(L2) must move up ݀௣  in 

order to maintain the maximum beat ௕࣪൫݀௫, ݀௣൯  as shown in Fig.2.7 so that ݌௔ᇱ െ

௕݌
ᇱ ൌ 0 is fulfilled.  

 

Figure 2.6. The geometrical dynamic picture of the imaging system for achieving the 
EPR position correlations in measuring the propensity 

-a

a

-

+
BS

L1

L2
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Figure 2.7. The geometrical dynamic picture of the imaging system for achieving the 
EPR momentum correlations in measuring the propensity. 

 

We denote ߕ ൌ ௔ᇱݔ ൅ ௕ݔ
ᇱ   and  ߏ ൌ ௔ᇱ݌ െ ௕݌

ᇱ  for the realization of the EPR 

correlations in the experimental coordinate. The relations of experimental 

coordinates ݔ  and ݌  are formulated from the geometrical dynamic picture of the 

imaging system that explained before.  In real practice, the variances of position 

ሺ∆ߕሻଶ and momentum ሺ∆ܲሻଶ of the EPR correlations are not zero. These variances 

can be obtained later through the evaluation of 	 ௕࣪൫	݀௫, ݀௣൯, which is given by 

                    ௕࣪൫	݀௫, ݀௣൯ ∝ ห ஻ܸ൫	݀௫, ݀௣൯ห
ଶ
 

                         ∝ ฬexp ൤ ଵ

ସఙ್
మ ൫݀௫ଶ െ ௕ߪ௣ଶߜ

ସ െ 2݅݀௫ߜ௣ߪ௕
ଶ൯൨ cos൫݀௫ܦ௣൯ 

                             ൅exp ቂ ଵ

ସఙೌ
మ ൫݀௫

ଶ െ ௔ସߪ௣ଶߜ െ 2݅݀௫ߜ௣ߪ௔ଶ൯ቃ cos൫ܽߜ௣൯ቚ
ଶ
 

BS

L1

L2

dp

+
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                                           ~หcos൫݀௫ܦ௣൯ ൅ cos൫ܽߜ௣൯ห
ଶ
                                        (2.18)  

                                      ~ ቚcos ቀሺݔ௔ᇱ ൅ ௕ݔ
ᇱ ሻܦ௣ቁ ൅ cos൫ሺ݌௔ᇱ െ ௕݌

ᇱ ሻܽ൯ቚ
ଶ
                   (2.19) 

where we assume a very small displacement or tilt (݀௫~0 and ߜ௣~0). The derivation 

of ௕࣪൫	݀௫, ݀௣൯ is given in Appendix D. 

Through the geometrical dynamic picture of the variables ߕ ൌ ௔ᇱݔ ൅ ௕ݔ
ᇱ   and  

ߏ ൌ ௔ᇱ݌ െ ௕݌
ᇱ  as shown in Fig. 2.6 and Fig. 2.7, we obtain ௕࣪൫	݀௫, ݀௣൯ in term of ߕ 

and  ߏ given by  

                                  ௕࣪൫	݀௫, ݀௣൯~หcos൫ܦߕ௣൯ ൅ cosሺܽߏሻห
ଶ
                               (2.20)  

Since we can perform direct measurements of the propensity, the system can 

be used to observe EPR correlations of two independent mirrors in a random manner 

or to lock mirror 1(2) in the EPR correlation with mirror 2(1). To lock the mirror into 

EPR correlation one of the mirrors has to be cooled down to isolate it from 

environmental disturbance and work as the reference mirror. We plot ௕࣪  as a 

function of ݀௫ and ߜ௣ at the region of the chessboard near the center spot as shown in 

Fig. 2.8(a) and a three-dimensional (3D) plot of the center spot as shown in 

Fig.2.8(b). From Eq. (19), the displacement ݀௫ with a magnitude of  
ଶగ

஽೛
 and tilt ߜ௣ 

with a magnitude of  
ଶగ

௔
  will cause the system decoherence. We plot the 3 

dimensional  ௕࣪൫	݀௫, ݀௣൯  as shown in Fig. 2.8(b) for the center spot with the 

assumption that ݀௫ and ߜ௣ are random variables, simulating the fact that the mirrors 
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are independent and subjected to a high-temperature environment. As expected, the 

random peaks in the ௕࣪  plot indicate that the mirrors did exhibit EPR correlations in 

a random manner. In other words,  ௕࣪ can be used to extract the EPR correlations of 

two mirrors or physical systems that associated with them. 

In a similar fashion, ௕࣪ can be used to lock the mirrors so that they do not fall 

outside the coherence regions. The existence of other spots around the center spot in 

the chessboard provides the possibility of quantum jumps in the phase space of the 

mirrors. To make sure the EPR correlations of mirrors 1 and 2 are quantum 

correlated, the propensity ௕࣪൫	݀௫, ݀௣൯  must fall inside the regions in which their 

variances in position and momentum satisfy the EPR criterion for entanglement [89].  

From Eq. 2.20, we calculate the variance for position as 

ሺ∆ߕሻଶ ൌ 〈ଶߕ〉 െ  ଶ〈ߕ〉

                                                   ൌ
ଵ

ଶ
൬

ଵ

ଶ஽೛
మ 	൅

గమ

ଷ஽೛
మ൰                              (2.21) 

and variance for momentum as 

ሺ∆ܲሻଶ ൌ 〈ܲଶ〉 െ 〈ܲ〉ଶ 

                                                     ൌ
ଵ

ଶ
ቀ

ଵ

ଶ௔మ
	൅

గమ

ଷ௔మ
ቁ                               (2.22) 

The calculation of ሺ∆ߕሻଶ and ሺ∆ܲሻଶ are given in Appendix E.  
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Figure 2.8. (a) The 2D (b) 3D chessboard patterns of the propensity in position ݀௫ 
and momentum ݀௣ (c) The 3D plots of the center spot 
 

(a) 

(b) 

(c) 

௕࣪൫	݀௫, ݀௣൯ 

௕࣪൫	݀௫, ݀௣൯ 
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Figure 2.9. (a) 3D propensity plots of the random-numbers position ݀௫  and 
momentum ݀௣. (b) Side view of random-numbers propensity plots. 

 

In addition, we plot the product of ሺ∆ߕሻଶሺ∆ܲሻଶ as a function of ܦ௣ and ܽ as 

shown in Fig. 2.10. We indicate the set of (ܦ௣,	ܽ) that satisfies the criterion for EPR 

entanglement, ሺ∆ߕሻଶሺ∆ܲሻଶ ൑ 1  [89]. For a beam waist of ߪ௔ ൌ 100	μm   and 

wavelength of ߣ ൌ 632	nm, a distance of		ܽ ൌ 1	ܿ݉, and a focal length of ݂ ൌ 5	ܿ݉, 

we obtain ∆ߕ ൌ 1.5	݊݉  and ∆ܲ ൌ 4	 ൈ 10ଷ/݉  or ൌ 4	 ൈ 10ିଷ	݀ܽݎ . The standard 

quantum limits of measuring displacement and momentum or tilt of a Gaussian 

(b) 

(a) 

௕࣪ሺ݉, ݊ሻ 

௕࣪ሺ݉, ݊ሻ 
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TEM00 beam that proposed by Delaubert are ݀ௌொ௅ ൌ
ఙೌ
ଶ√ே

 and  ݌ௌொ௅ ൌ
ଵ

ఙೌ√ே
 , 

respectively, where ܰ  is the number of photons [90]. To achieve ݀ௌொ௅ ൌ ߕ∆ , the 

required number of photons to arrive on a detector is about ܰ ൌ 10ଽ . For single 

photons ܰ ൌ 10ଽ ߕ∆ ,  of our imaging system is about a 3 ൈ 10ସ  factor better 

sensitivity than ݀ௌொ௅ while ∆ܲ has about a 2.4 factor better sensitivity than ݌ௌொ௅.  

By using ௕࣪൫	݀௫, ݀௣൯  as the EPR pointer and the locking region of ∆ߕ ൌ

1.5	݊݉ equal to ݔ௥௠௦ ൌ ට௞ಳ்

௠ఠమ for an object at thermal equilibrium [91]. We can lock 

or detect two mirrors at room temperature (300 K) with individual masses of 5 ൈ

10ିଵଷkg at a mechanical frequency of ∼10 kHz. In real practice, we can cool mirror 

2 to the vibration ground state as a reference for locking mirror 1 in a hot 

environment through  ௕࣪൫	݀௫, ݀௣൯ such that the product of the variances V (ݔ௛௢௧ ൅

௛௢௧݌) ௖௢௟ௗ) and Vݔ െ  .௖௢௟ௗ) falls within the criterion of EPR entanglement݌

 

Figure 2.10. The plot of ሺ∆ߕሻଶሺ∆ܲሻଶ as a function of ܽ and ܦ௣, showing the 
criterion for the EPR entanglement in the region <1. 

ሺ∆ߕሻଶሺ∆ܲሻଶ 
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2.6 Discrete Propensity 

We can discretize the propensity ௕࣪൫	݀௫, ݀௣൯by substituting ݉ܺᇱ ൌ ݀௫
ሺ௠ሻ and ݊ܲᇱ ൌ

௣ߜ
ሺ௡ሻ  where ݉, ݊ ൌ 0,1,2,3. . . . , ܰ െ 1  are the integers, for ܺᇱ ൌ ଶగ

஽೛
  and ܲᇱ ൌ ଶగ

௔
 

respectively. Now the propensity ௕࣪൫	݀௫, ݀௣൯ can be written in a function of ݉ and ݊ 

as 

                         ௕࣪൫	݀௫, ݀௣൯ → ௕࣪ሺ	݉, ݊ሻ~|cosሺ݉ߨሻ ൅ cosሺ݊ߨሻ|ଶ                       (2.23) 

In Fig. 2.8(a), ܺᇱ	is the distance spacing between three spots (left, center, and 

right), and ܲᇱ is the distance spacing between the bottom, center, and top spots. The 

product of  ܺᇱܲᇱ ൌ ଶగ

௔

ଶగ

஽೛
ൌ

ሺଶగሻమ

஺
ൌ  corresponds to the sub-Planck area in phase 	ߙ

space that covers one EPR correlation spot in the propensity of ௕࣪. This area ߙ can 

be treated as the phase-space action and the sensitivity of a quantum system to 

perturbations [25, 64]. Since we have many of these correlation spots, the 

perturbation from the environment on one of the mirrors may not destroy the 

quantum correlations between the mirrors but instead jump into other spots. For each 

set of (݉, ݊), we have a pair of EPR correlations such that the variances of the 

position ൫∆ߕሺ௠ሻ൯
ଶ
ൌ ቀ∆ቂݔ௔

ሺ௠ሻ ൅ ௕ݔ
ሺ௠ሻቃቁ

ଶ
 and the momentum ൫∆ܲሺ௡ሻ൯

ଶ
ൌ

ቀ∆ቂ݌௔
ሺ௡ሻ െ ௕݌

ሺ௡ሻቃቁ
ଶ
 fulfill the EPR entanglement.  
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We can form the finite-dimensional Hilbert space of the propensity  ௕࣪ by 

introducing base of ܰ orthogonal normalized vectors |݀௫
ሺ௠ሻ〉 and |݀௣

ሺ௡ሻ〉 . These bases 

pair are discrete Fourier transforms of each other such that [92, 93]  

                                 |݀௫
ሺ௠ሻ〉 ൌ ଵ

ே
∑ ሺെ݅ܺᇱܲᇱ݉݊ሻ݌ݔ݁ |݀௣

ሺ௡ሻ〉ேିଵ
௡ୀ଴                               (2.24) 

and 

                                 |݀௣
ሺ௡ሻ〉 ൌ ଵ

ே
∑ ሺ݅ܺᇱܲᇱ݉݊ሻ݌ݔ݁ |݀௫

ሺ௠ሻ〉ேିଵ
௡ୀ଴ .                                 

(2.25) 

We can convert ܺᇱܲᇱ ൌ ଶగ

ே
 by dividing the area A (classical action) by 2ߨ to obtain ൌ

஺

ଶగ
 . Then the discrete form of the propensity can be established as  

                               ௕࣪ሺ݉, ݊ሻ ൌ ∑ ࣱ⊙మ
ሺ݇ െ ݉, ݈ െ ݊ሻࣱ⊙భ

ሺ݇, ݈ሻ௞,௟ .                    (2.26) 

for exploring the macroscopic mechanical correlations. The discrete phase-space spot 

in ௕࣪ሺ݉, ݊ሻ can be used to explore environmental perturbed quantum jumps of the 

EPR correlations as was predicted in stochastic random telegraph jumps between two 

individual spins [94]. 
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Figure 2.11. Chessboard pattern of discretized propensity ௕࣪ሺ	݉, ݊ሻ~|cosሺ݉ߨሻ ൅
cosሺ݊ߨሻ|ଶ in random number ݉ and ݊. 

 

2.7 Discussions 

The spatial compass states can be displaced and tilted by classical and quantum 

spatial fluctuations of two independent mirrors. After these mirrors, the spatial 

compass states were directed into an imaging system which performs projection 

measurements on them with a single-photon detector. By detecting single photons, 

we created the entanglement of these two mirrors in terms of the position states 

,ଵݔ| ,ଶݔ ,ଷݔ …〉௔ ൅ ,ଵᇲݔ| ,ଶᇲݔ ,ଷᇲݔ …〉௕  or momentum states |݌, ,ଶ݌ ,ଷ݌ …〉௔ ൅

,ଵᇲ݌| ,ଶᇲ݌ ,ଷᇲ݌ …〉௕ as we described in the geometrical dynamic process of two mirrors. 

Here, the product states of the position (translation) and momentum (tilt or angle) of 
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these mirrors are attributed to the chessboard pattern of the spatial compass states, 

which are then realized through the discrete properties of the propensity. 

The chessboard pattern of the spatial compass states reflects the spatial 

properties of a mirror. We can treat a mirror as if it is composed of N quantum 

mirrors with quantized position ሺݔ௜, ݅ ൌ 1,2,3,…ܰሻ  and momentum ሺ݌௜, ݅ ൌ

1,2,3, …ܰሻ. We then performed a direct projection measurement on the chessboard 

pattern of two spatial compass states via the propensity, i.e.	 ஻࣪ ∝ ׬ ݌݀ݔ݀׬ ⊙ܹమ
ሺݔ െ

,଴ݔ ݌ െ ଴ሻ݌ ⊙ܹభ
ሺݔ,  ሻ, The spatial EPR correlations of these mirrors were realized݌

through the dynamical transformation, i.e., ሺݔ௕ ൌ ݔ െ ଴ݔ ൌ ௔ݔ െ ௕݌			,଴ݔ ൌ ݌ ൅ ଴݌ ൌ

௔݌ ൅  .଴ሻ, in the process of measuring the propensity݌

We could also extract the EPR correlations of these mirrors in terms of 

position and momentum (tilt) coordinates. If two independent mirrors were subjected 

to random spatial fluctuations, the appearance of the random maximum peak of ஻࣪ is 

the indication that the two mirrors were EPR correlated. In addition, the imaging 

system can lock these mirrors in the EPR correlations through the interference of the 

compass states. To justify that these macroscopic mechanical correlations are 

quantum in nature, the criteria for EPR entanglement of the two mirrors were then 

obtained through the sub-Planck structure of the propensity. 

The proposed optical phase-space imaging system based on spatial compass 

states and single photons can be used for observing macroscopic mechanical 

quantum correlations of two mirrors in terms of position and momentum (angle or tilt) 
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coordinates. The realistic motions of measuring the propensity in the imaging system 

can extract the EPR correlations of two mirrors. Since the propensity ௕࣪	can be 

discretized and formulated in finite-dimensional Hilbert space, direct detection of the 

discrete propensity is a quantum measurement that observes the quantum jumps of 

spatial EPR correlations of two mirrors and, hence, enables discrete phase-space 

quantum computing and information processing [95-97]. 
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Chapter  3 

Intrinsic Quantum Correlation of Weak 
Coherent States2 
 

3.1 Overview 

In this chapter, we demonstrated a proof of principle experiment in utilizing intrinsic 

quantum correlations of weak coherent states for quantum communication. 

First of all we present a brief review on the development of the quantum 

communication. We highlight the challenges in the implementation of both discrete 

and continuous quantum variables based quantum communication. Followed by a 

discussion on the various quantum key generation schemes using weak coherent 

states.  

In next section, we will discuss on how to implement 4 bipartite correlation 

functions between two distant observers by using two orthogonal light fields with a 

balanced detection scheme. After that we go through briefly on detection apparatus 

that utilized in our experiment such as photo detector and transimpedance amplifier, 

                                                            
2  The material contained in this chapter was previously published in Physical Review A. 
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electrical spectrum analyzer, digital oscilloscope and lock-in amplifier. Then, we will 

describe in detail about the balanced homodyne detector that employed as detection 

scheme for the weak coherent states. Balanced homodyne detector is crucial in 

obtaining bipartite correlations of weak coherent states.  

In the following section, we will present the experiment setups to generate 

four types of bipartite correlations function between two distant observers by two 

weak coherent states. In addition, we will walk through the derivation in obtaining all 

four bipartite correlations functions	,ିߖ	ߖା,	߶ିand	߶ା. We reveal that information 

of the interference signal will be protected by the large quantum phase noise 

fluctuation of weak coherent states. 

In the experiment results section, first we present both two weak coherent 

states interference that obtained by each observers by using balanced homodyne 

detector. Then we obtain the bipartite correlations between of two observers by 

multiplying the interference signal of both observers. Also, experimental 

measurements of all four bipartite correlations functions are obtained in this section. 

As for the use of quantum communication between two distant observers, we 

establish the bipartite correlations and demonstrate bits correlations measurement of 

each bipartite correlation at detectors A and B by using lock-in amplifier. 

3.2 Introduction 

Quantum entanglement and superposition are foundations for the emerging field of 

quantum communication and information processing. These two fundamental 
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features of quantum mechanics have made quantum key distribution unconditionally 

secure compared to communication based on classical key distribution [15].  

 Currently, implementation of an optical quantum communication is mainly 

based on discrete and continuous quantum variables. They are usually generated 

through optical nonlinear interaction processes via second and third order 

susceptibilities [58, 98] of the media. Discrete-variable qubit based implementations 

using polarization and time-bin entanglement are difficult to obtain unconditional 

security [99, 100]. Sustained optical data-rate are limited because of post-selection 

technique with low probability of success in a low efficiency single photon detector 

at telecom-band [101]. In addition, an entanglement-based key generation such as 

Ekert’s protocol is hard to implement in a real-world optical fiber network because 

bipartite correlations of entangled photon-pairs are sensitive to loss and decoherence 

[13]. 

 Continuous-variable implementations using quadrature entanglement and 

polarization squeezing could have achieved high efficiency and high optical data-rate 

because of available high speed and efficient homodyne detection techniques [102, 

103]. However, the quality of quadrature entanglement is very sensitive to loss, 

which makes it difficult to implement entanglement based quantum protocols over 

long distance. Continuous-variable protocols, that do not rely on entanglement, for 

instance, coherent-state based quantum communication, are perfect for long distance 

optical communication [104, 105]. 
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 Quantum key distribution using weak coherent states, such as coherent state 

differential phase-shift quantum key distribution (DPS-QKD) and decoy-states 

Bennett-Brassard 1984 (BB84) protocols, have been proven to be unconditionally 

secure against a photon-number splitting attacks (PNS) [14, 29, 106]. The DPS-QKD 

uses intrinsic correlations between the relative phase shifts {0,π} of two consecutive 

pulses to achieve unconditional security between two parties by constructing 

equivalent states for the entanglement-based protocol [106]. The decoy state quantum 

key distribution uses intrinsic correlations between the relative mean photon numbers 

of two sets of weak coherent states to detect the PNS attack in BB84 protocol [107]. 

Meanwhile, an alternatives Y00 protocol uses intrinsic correlations between phase 

and mean photon number fluctuations of weak coherent states to provide 

cryptographic service of data encryption between two parties. Intrinsic quantum 

correlations of coherent states can be prepared, measured, and shared between two 

parties for quantum cryptography [108]. We propose here a scheme based on weak 

coherent states for generating intrinsic bipartite correlations as a supplemental 

resource to the existence protocols such as coherent state DPS-QKD and decoy state 

BB84 protocol. 

3.3 Weak Coherent states Bipartite Correlations 

A proof-of-principle experimental setup to demonstrate the bipartite correlations of 

two weak coherent states is shown in Fig.3.1. A continuous wave laser at telecom 

band wavelength (1534 nm) is used to provide two orthogonally polarized weak 

coherent states |ߙ〉 and |ߚ௅ை〉. We use a piezoelectric transducer (PZT) to ramp the 
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phase ߶ఉ  of the |ߚ௅ை〉 weak coherent states which the weak local oscillator (LO) 

beam. We use a 50/50 beam splitter to optically mix the vertically polarized weak 

coherent state |ߙ〉 and horizontally polarized weak coherent state	|ߚ௅ை〉. The beam 1 

from the output port 1 of the beam splitter is a superposition of the vertically and 

horizontally polarized weak coherent states |ߙ〉	 and	|ߚ௅ை〉, similarly for beam 2 from 

output port 2 of the beam splitter. We couple beam 2 into the 10 km long 

transmission fiber. A quarter-wave plate and a half-wave plate are used at the output 

of the transmission fiber to compensate the birefringence. The transformation matrix 

for quarter-wave plate and half-wave plate that were used in our experiment are 

given as  

                                                     TQWP45° =	
ଵ

√ଶ
ቂ 1 ∓݅
∓݅ 1

ቃ                                        (3.1) 

and  

                                                           THWP0° =	ቂെ݅ 0
0 ݅

ቃ.                                          (3.2) 

The input field operators ොܽ and ෠ܾ at the beam splitter are the annihilation operators 

for the weak coherent state |ߙ〉 ൌห݁ߙ௜థഀ〉	and |ߚ௅ை〉 ൌ หߚ௅ை݁
௜థഁ〉, respectively. The 

the output field operators in beam 1 at the beam splitter splitter are 

                               ܿ̂ଵ ൌ
ଵ

√ଶ
൫ ොܽܠ ൅ ݅ ෠ܾܡ൯ ൌ ଵ

√ଶ
ቀ ොܽ ቂ૚

૙
ቃ ൅ ݅ ෠ܾ ቂ૙

૚
ቃቁ                                (3.3) 

and 
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                                መ݀ଵ ൌ
ଵ

√ଶ
൫݅ ොܽܠ ൅ ෠ܾܡ൯ ൌ ଵ

√ଶ
ቀ݅ ොܽ ቂ૚

૙
ቃ ൅ ෠ܾ ቂ૙

૚
ቃቁ.                              (3.4) 

in beam 2. Where, ܠ and ܡ indicate horizontal and vertical axis in conjunction to the 

polarization of the weak coherent states.  

We are able to establish four types of bipartite correlations with this 

experiment setup by using linear phase shifters on either beam 1 or beam 2. In the 

context of quantum communication, we keep setup for beam 2 unchanged and vary 

the linear phase shifter of beam 1 locally to change the coherent state bipartite 

correlation function shared between two observers. 

 
Figure 3.1. Experiment setup for demonstration of Correlation function 	ିߖ ൌ
െܿ2ݏ݋ሺߠଵ െ  ଶሻ with weak coherent states. BS (beam splitter); PBS (polarizationߠ
beam splitter); HWP and QWP (half- and quarter-wave plates); D (photodiode). 
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3.3.1 Correlation function ିࢸ ൌ െ࢙࢕ࢉ૛ሺࣂ૚ െ  ૛ሻࣂ

A quarter-wave plate was inserted at 45° into beam 1 to transform the linearly 

polarized states to circularly polarized states. The quarter wave plate transforms the 

field operators ܿ̂ଵ into ܿ̂ଵ
ᇱ  as, 

ܿ̂ଵ → ܿ̂ଵ
ᇱ ൌ

1

√2
ቂ 1 െ݅
െ݅ 1

ቃ
1

√2
ቀ ොܽ ቂ૚

૙
ቃ ൅ ݅ ෠ܾ ቂ૙

૚
ቃቁ 

                                                   ൌ ଵ

ଶ
൛൫ ොܽ ൅ ෠ܾ൯ܠ ൅ ݅൫ ෠ܾ െ ොܽ൯ܡൟ.                                 (3.5) 

Field operator ܿ̂ଵ
ᇱ 	 is a homogeneous superposition of left circularly polarized and 

right circularly polarized weak coherent states. Similarly, field operators መ݀ଵ in beam 

2 will be transformed by a QWP at 45° as,   

መ݀
ଵ → መ݀

ଵ
ᇱ ൌ

1

√2
ቂ 1 െ݅
െ݅ 1

ቃ
1

√2
ቀ݅ ොܽ ቂ૚

૙
ቃ ൅ ෠ܾ ቂ૙

૚
ቃቁ 

                                               ൌ ଵ

ଶ
൛݅൫ ොܽ െ ෠ܾ൯ܠ ൅ ൫ ොܽ ൅ ෠ܾ൯ܡൟ.                                     (3.6)                            

A polarization analyzer that consists of a half-wave plate (HWP1) and a 

polarization beam splitter cube (PBS1) was inserted in beam 1. The unit vector that 

associated with the polarization analyzer is given as: 

                                                      ݁̂ଵ ൌ ܠଵߠݏ݋ܿ ൅  (3.7)                                      .ܡଵߠ݊݅ݏ	

Now the field operator for the transmitted component of PBS1 can be written as  
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        ܿ̂ଵ
ᇱ → ܿ̂ଵ

ᇱᇱ ൌ ܿ̂ଵ
ᇱ ∙ ݁̂ଵ ൌ

ଵ

ଶ
൛൫ ොܽ ൅ ෠ܾ൯ܠ ൅ ݅൫ ෠ܾ െ ොܽ൯ܡൟ ∙ ሺܿߠݏ݋ଵܠ ൅                 .ሻܡଵߠ݊݅ݏ	

                                ܿ̂ଵ
ᇱᇱ ൌ ଵ

ଶ
ൣ ොܽሺܿߠݏ݋ଵ െ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾሺܿߠݏ݋ଵ ൅       ଵሻ൧.                (3.8)ߠ݊݅ݏ݅

Similarly for beam 2, field operator for the transmitted component at PBS2 is 

given as 

መ݀
ଶ
ᇱ → መ݀

ଶ
ᇱᇱ ൌ መ݀

ଶ
ᇱ ∙ ݁̂ଶ 

                          መ݀ଶ
ᇱᇱ ൌ ଵ

ଶ
ൣ ොܽሺ݅ܿߠݏ݋ଶ ൅ ଶሻߠ݊݅ݏ ൅	 ෠ܾሺߠ݊݅ݏଶ െ  ଶሻ൧.                     (3.9)ߠݏ݋ܿ݅

Where ݁̂ଶ ൌ ܠଶߠݏ݋ܿ ൅  ଶis projection angle of the polarization analyzerߠ and ܡଶߠ݊݅ݏ	

at beam 2. The photon number operator of the transmitted component at PBS 1 can 

be written as  

ܿ̂ଵ
ᇱᇱறܿ̂ଵ

ᇱᇱ ൌ
1
2
ൣ ොܽறሺܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾறሺܿߠݏ݋ଵ െ ଵሻ൧ߠ݊݅ݏ݅

ൈ
1
2
ൣ ොܽሺܿߠݏ݋ଵ െ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾሺܿߠݏ݋ଵ ൅  ଵሻ൧ߠ݊݅ݏ݅

                                ൌ ଵ

ସ
ൣ ොܽற ොܽ ൅ ෠ܾற ෠ܾ ൅ ොܽற ෠ܾ݁௜ଶఏభ ൅ ෠ܾற ොܽ݁ି௜ଶఏభ൧.                            (3.10) 

Photon number operator of the transmitted component at PBS 2 becomes 	

መ݀
ଶ
ᇱᇱற መ݀

ଶ
ᇱᇱ ൌ

1
2
ൣ ොܽሺെ݅ܿߠݏ݋ଶ ൅ ଶሻߠ݊݅ݏ ൅	 ෠ܾሺߠ݊݅ݏଶ ൅ ଶሻ൧ߠݏ݋ܿ݅

ൈ
1
2
ൣ ොܽሺ݅ܿߠݏ݋ଶ ൅ ଶሻߠ݊݅ݏ ൅	 ෠ܾሺߠ݊݅ݏଶ െ  ଶሻ൧ߠݏ݋ܿ݅

                                ൌ ଵ

ସ
ൣ ොܽற ොܽ ൅ ෠ܾற ෠ܾ െ ොܽற ෠ܾ݁௜ଶఏమ െ ෠ܾற ොܽ݁ି௜ଶఏమ൧.                            (3.11) 
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Considering the weak coherent state |ߙ〉 ൌ ห݁ߙ௜థഀ〉	 and weak LO field 

〈௅ைߚ| ൌ ห݁ߚ௜థഁ〉, the beat intensities of transmitted component at PBS1 and PBS2 

that were measured by detectors ܣ∥ and ܤ∥	 can be expressed as 

ଵ∥ሻߠ஺∥ሺܫ                                             ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ,   〈ߚ

                                        ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| ൅ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ൟ        (3.12) 

and 

ଶ∥ሻߠ஻∥ሺܫ                           ൌ ,ߙ〉 |ߚ መ݀ଶ
ᇱᇱற መ݀

ଶ
ᇱᇱ|ߙ,                                              〈ߚ

                                        ൌ ଶ|ߙ|஻൛ߟ ൅ ଶ|ߚ| െ ଶߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ൟ.        (3.13) 

஺ߟ  and ߟ஻  are the photocurrent conversion  efficiency (Optical power → electric 

current) for detection electronics of  detector A and B. The first two terms |ߙ|ଶ ൅

	ଶ|ߚ| are intensities of the two weak coherent states and the last term 

ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ is the interference term consisting of polarization 

angle	ߠଵ, the phases of LO (߶ఉ), and the weak coherent state (߶ఈ). The beat intensity 

 ଶሻ because of the π-phase shift induced by the 50-50ߠ஻∥ሺܫ		is anticorrelated to	ଵሻߠ஺∥ሺܫ

beam splitter. 

The reflected component measured of PBS1 at ߠଵୄ ൌ ∥ଵߠ ൅ 90° by detector 

  is given as ୄܣ
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ଵୄሻߠ஺఼ሺܫ ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ, 〈ߚ

ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| ൅ ଵߠ൫2ሺݏ݋ܿ|ߚ||ߙ| ൅ 90°ሻ ൅ ߶ఉ െ ߶ఈ൯ൟ 

                                   ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| െ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ൟ.             (3.14) 

While the reflected component that measured of PBS2 at ߠଶୄ ൌ ∥ଶߠ ൅ 90° detector 

  is given as	ୄܤ

ଶୄሻߠ஻఼ሺܫ ൌ ,ߙ〉 |ߚ መ݀ଶ
ᇱᇱற መ݀

ଶ
ᇱᇱ|ߙ, 〈ߚ

ൌ ଶ|ߙ|஻൛ߟ ൅ ଶ|ߚ| െ ଶߠ൫2ሺݏ݋ܿ|ߚ||ߙ| ൅ 90ሻ ൅ ߶ఉ െ ߶ఈ൯ൟ 

                                  ൌ ଶ|ߙ|஻൛ߟ ൅ ଶ|ߚ| ൅ ଶߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ൟ.              (3.15) 

The balanced homodyne detectors A and B measured beat intensities that were,  

஻ு஽ܣ                ൌ ଵ∥ሻߠ஺∥ሺܫ െ ଵୄሻߠ஺఼ሺܫ ൌ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ|஺ߟ2 ൅ ߶ఉ െ ߶ఈ൯,          (3.16) 

஻ு஽ܤ                ൌ ଵ∥ሻߠ஻∥ሺܫ െ ଵୄሻߠ஻఼ሺܫ ൌ െ2ߟ஺|ݏ݋ܿ|ߚ||ߙ൫2ߠଶ ൅ ߶ఉ െ ߶ఈ൯.       (3.17) 

The individual intensities of the two coherent states |ߙ|ଶ ൅  .were subtracted	ଶ|ߚ|

Information 2ߠଵ ൅ ߶ఉ and 2ߠଶ ൅ ߶ఉ  are protected by quantum phase noise ߶ఈ with 

phase fluctuation of		∆߶ఈ ൌ
ଵ

∆௡
. The low mean photon number fluctuation ∆݊  of 

weak coherent state naturally induces large phase fluctuation.  

The balanced homodyne beat intensities measured by detectors A and B were 

multiplied to obtain 
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஻ு஽ܣ ∙ ஻ு஽ܤ ൌ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ|஺ߟ2 ൅ ߶ఉ െ ߶ఈ൯ ∙ െ2ߟ஻|ݏ݋ܿ|ߚ||ߙ൫2ߠଶ ൅ ߶ఉ െ ߶ఈ൯ 

                    ൌ െ4ߟ஺ߟ஻൛|ߙ|ଶ|ߚ|ଶܿ2ݏ݋ሺߠଵ െ ଶሻߠ ൅ ଶߠ2൫ݏ݋ܿ ൅ ଵߠ ൅ ߶ఉ െ ߶ఈ൯ൟ. (3.18) 

The multiplied balanced-homodyne beat intensities ܣ஻ு஽ ∙ ஻ு஽ܤ  did not provide 

bipartite correlation functions directly. However, by taking the mean value of these 

multiplied beat intensities, the last term is averaged to zero due to the slowly varying 

local oscillator phase ߶ఉ from {0 → 2π}.  

          Hence, we obtained the expectation value of two detectors or coherent state 

bipartite correlation function as: 

஻ு஽ܣ〉 ∙ 〈஻ு஽ܤ ൌ െ4ߟ஺ߟ஻|ߙ|ଶ|ߚ|ଶܿ2ݏ݋ሺߠଵ െ  ଶሻߠ

                                                     ∝ െܿ2ݏ݋ሺߠଵ െ  ଶሻ.                                            (3.19)ߠ

Note that, the quantum phase noise ߶ఈ cannot randomly provide phase shift 

from {0 → 2π}. Therefore, bipartite correlation function െܿ2ݏ݋ሺߠଵ െ ଶሻߠ  is 

protected by the term		ܿ2ݏ݋൫ߠଶ ൅ ଵߠ ൅ ߶ఉ െ ߶ఈ൯, which was averaged to zero. In 

practice, the product of mean photon numbers |ߙ|ଶ|ߚ|ଶ can be obtained by setting the 

correlation function to its maximum obtainable value, that is, ߠଵ ൌ  ଶ. The raw dataߠ

of the multiplied beat intensities are then normalized with the product of 

ଵߠ2ሺݏ݋ଶܿ|ߚ|ଶ|ߙ|஻ߟ஺ߟ4 െ ଵߠ2ሺݏ݋െܿ	ଶሻ to obtain correlation functionߠ െ  .ଶሻߠ
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3.3.2 Correlation function ࢸା ൌ ૚ࣂ૛ሺ࢙࢕ࢉ െ  ૛ሻࣂ

In order to prepare the second correlation function	ߖା ൌ ଵߠ2ሺݏ݋ܿ െ  ଶሻ, we insert aߠ

HWP at 0° into beam 1 as shown in Fig.3.2. The field operators ܿ̂ଵ before the QWP 

will be transformed into ,   

ܿ̂ଵ → ܿ̂ுௐ௉ ൌ ቂെ݅ 0
0 ݅

ቃ
1

√2
ቀ ොܽ ቂ૚

૙
ቃ ൅ ݅ ෠ܾ ቂ૙

૚
ቃቁ 

                                                   ൌ ଵ

√ଶ
ቀ ොܽ ቂെ࢏

૙
ቃ ൅ ݅ ෠ܾ ቂ ૙

െ૚
ቃቁ.                                     (3.20) 

After the QWP the field operators ܿ̂ଵ will be transformed into,   

ܿ̂ுௐ௉ → ܿ̂ଵ
ᇱ ൌ

1

√2
ቂ 1 െ݅
െ݅ 1

ቃ
1

√2
ቀ ොܽ ቂെ࢏

૙
ቃ ൅ ݅ ෠ܾ ቂ ૙

െ૚
ቃቁ 

                                                   ൌ ଵ

ଶ
൛൫െ݅ ොܽ ൅ ଓ෡ܾ ൯ܠ ൅ ൫െ෠ܾ െ ොܽ൯ܡൟ.                       (3.21) 

 

Figure 3.2. Experiment setup used for demonstration of Correlation function 	ߖା ൌ
ଵߠ2ሺݏ݋ܿ െ  ଶሻߠ

 

After the polarization analyzer, the field operator for the transmitted 

component of PBS1 is given as:  
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ܿ̂ଵ
ᇱ → ܿ̂ଵ

ᇱᇱ ൌ ܿ̂ଵ
ᇱ ∙ ݁̂ଵ ൌ

1
2
൛൫െ݅ ොܽ ൅ ଓ෡ܾ ൯ܠ ൅ ൫െ෠ܾ െ ොܽ൯ܡൟ ∙ ሺܿߠݏ݋ଵܠ ൅  ሻܡଵߠ݊݅ݏ	

                                   ܿ̂ଵ
ᇱᇱ ൌ ଵ

ଶ
ൣ ොܽሺെ݅ܿߠݏ݋ଵ െ ଵሻߠ݊݅ݏ ൅	 ෠ܾሺ݅ܿߠݏ݋ଵ െ  ଵሻ൧.        (3.22)ߠ݊݅ݏ

The photon number operator of the transmitted component of at PBS 1 can be written 

as  

ܿ̂ଵ
ᇱᇱறܿ̂ଵ

ᇱᇱ ൌ
1
2
ൣ ොܽறሺܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾறሺܿߠݏ݋ଵ െ ଵሻ൧ߠ݊݅ݏ݅

ൈ
1
2
ൣ ොܽሺܿߠݏ݋ଵ െ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾሺܿߠݏ݋ଵ ൅  ଵሻ൧ߠ݊݅ݏ݅

                             ൌ ଵ

ସ
ൣ ොܽற ොܽ ൅ ෠ܾற ෠ܾ െ ොܽற ෠ܾ݁௜ଶఏభ െ ෠ܾற ොܽ݁ି௜ଶఏభ൧.                               (3.23) 

Detector ܣ∥ measured the beat intensity of the transmitted component at PBS1 as:  

ଵ∥ሻߠ஺∥ሺܫ                                           ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ,   〈ߚ

                                   ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| െ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ൟ.             (3.24) 

The reflected component where ߠଵୄ ൌ ∥ଵߠ ൅ 90° at PBS1 and were measured by 

detector ୄܣ can be written as  

ଵୄሻߠ஺఼ሺܫ									 	ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ, 〈ߚ 	

ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| ൅ ଵߠ൫2ሺݏ݋ܿ|ߚ||ߙ| ൅ 90°ሻ ൅ ߶ఉ െ ߶ఈ൯ൟ 

                                   ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| ൅ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| ൅ ߶ఉ െ ߶ఈ൯ൟ              (3.25) 

The balanced homodyne detector A measured beat intensity as   
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஻ு஽ܣ            ൌ ଵ∥ሻߠ஺∥ሺܫ െ ଵୄሻߠ஺఼ሺܫ ൌ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ|஺ߟ2 ൅ ߶ఉ െ ߶ఈ൯               (3.26) 

Since the ܤ஻ு஽ remained unchanged for the beam 2 as shown in Fig. 3.1, we 

obtained the second bipartite correlation function by multiply the balanced 

homodyne beat intensities of detectors A and B as, 

஻ு஽ܣ〉																							 ∙ 〈஻ு஽ܤ ൌ ଵߠ2ሺݏ݋ଶܿ|ߚ|ଶ|ߙ|஻ߟ஺ߟ4 െ      ଶሻߠ

                                             ∝ ଵߠ2ሺݏ݋ܿ െ  ଶሻ                                                        (3.27)ߠ

 

3.3.3 Correlation function ࣘି ൌ െ࢙࢕ࢉ૛ሺࣂ૚ ൅  ૛ሻࣂ

Third bipartite correlation function ߶ାcan be obtained by using the same setup for 

bipartite correlation function ߖା with now the QWP is rotated at -45° as shown in 

Fig. 3.3. 

 

Figure 3.3. Experiment setup used for demonstration of Correlation function 	߶൅ ൌ
ଵߠ2ሺݏ݋ܿ െ  ଶሻߠ

 

After the QWP the field operators ܿ̂ଵ will be transformed as,   
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ܿ̂ுௐ௉ → ܿ̂ଵ
ᇱ ൌ

1

√2
ቂ1 ݅
݅ 1

ቃ
1

√2
ቀ ොܽ ቂെ࢏

૙
ቃ ൅ ෠ܾ ቂ ૙

െ૚
ቃቁ 

                                                   ൌ ଵ

ଶ
൛݅൫െ ොܽ െ ෠ܾ൯ܠ ൅ ൫ ොܽ െ ෠ܾ൯ܡൟ.                            (3.28) 

After the polarization analyzer, the field operator for the transmitted component of 

PBS1 becomes  

ܿ̂ଵ
ᇱ → ܿ̂ଵ

ᇱᇱ ൌ ܿ̂ଵ
ᇱ ∙ ݁̂ଵ ൌ

1
2
൛݅൫െ ොܽ െ ෠ܾ൯ܠ ൅ ൫ ොܽ െ ෠ܾ൯ܡൟ ∙ ሺܿߠݏ݋ଵܠ ൅  ሻܡଵߠ݊݅ݏ	

                                     ܿ̂ଵ
ᇱᇱ ൌ ଵ

ଶ
ൣ ොܽሺെ݅ܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ ൅	 ෠ܾሺെ݅ܿߠݏ݋ଵ െ   ଵሻ൧   (3.29)ߠ݊݅ݏ

Photon number operator of the transmitted component of at PBS1 is written as  

ܿ̂ଵ
ᇱᇱறܿ̂ଵ

ᇱᇱ ൌ
1
2
ൣ ොܽሺെ݅ܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ ൅	 ෠ܾሺെ݅ܿߠݏ݋ଵ െ ଵሻ൧ߠ݊݅ݏ

ൈ
1
2
ൣ ොܽሺ݅ܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ ൅	 ෠ܾሺ݅ܿߠݏ݋ଵ െ  ଵሻ൧ߠ݊݅ݏ

                              ൌ ଵ

ସ
ൣ ොܽற ොܽ ൅ ෠ܾற ෠ܾ ൅ ොܽற ෠ܾ݁ି௜ଶఏభ ൅ ෠ܾற ොܽ݁௜ଶఏభ൧                              (3.30) 

Detectors ܣ∥  and ୄܣ  measured the beat intensities of the transmitted and 

reflected components at PBS1  

ଵ∥ሻߠ஺∥ሺܫ                                 ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ,   〈ߚ

                                              ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| ൅ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| െ ߶ఉ ൅ ߶ఈ൯ൟ   (3.31)    

and   
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ଵୄሻߠ஺఼ሺܫ                                ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ,  〈ߚ

                                              ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| െ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| െ ߶ఉ ൅ ߶ఈ൯ൟ.  (3.32) 

The balanced homodyne detector A measured beat intensity   

஻ு஽ܣ             ൌ ଵ∥ሻߠ஺∥ሺܫ െ ଵୄሻߠ஺఼ሺܫ ൌ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ|஺ߟ2 െ ߶ఉ ൅ ߶ఈ൯.             (3.33) 

Now, multiplying the balanced homodyne beat intensities of detectors A and B as, 

஻ு஽ܣ〉	                             ∙ 〈஻ு஽ܤ ൌ ଵߠ2ሺݏ݋ଶܿ|ߚ|ଶ|ߙ|஻ߟ஺ߟ4 ൅      ଶሻߠ

                                                  ∝ െܿ2ݏ݋ሺߠଵ ൅  ଶሻ.                                               (3.34)ߠ

Which is third bipartite correlation function	߶ି ൌ െܿ2ݏ݋ሺߠଵ ൅  .ଶሻߠ

3.3.4 Correlation function ࣘା ൌ ૚ࣂ૛ሺ࢙࢕ࢉ ൅  ૛ሻࣂ

The last bipartite correlation function ߶ା can be obtained by simply removing the 

HWP at 0° in front of the QWP is depicted in the Fig.3.4.  

 

Figure 3.4. Experiment setup used for the demonstration of Correlation function 
	߶െ ൌ ଵߠ2ሺݏ݋ܿ െ  ଶሻߠ
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After the QWP the field operators ܿ̂ଵ will be transformed as,   

ܿ̂ଵ → ܿ̂ଵ
ᇱ ൌ

1

√2
ቂ1 ݅
݅ 1

ቃ
1

√2
ቀ ොܽ ቂ૚

૙
ቃ ൅ ݅ ෠ܾ ቂ૙

૚
ቃቁ 

                                                   ൌ ଵ

ଶ
൛൫ ොܽ െ ෠ܾ൯ܠ ൅ ݅൫ ොܽ ൅ ෠ܾ൯ܡൟ.                               (3.35) 

After the polarization analyzer, the field operator for the transmitted component of 

PBS1 is transformed into  

ܿ̂ଵ
ᇱ → ܿ̂ଵ

ᇱᇱ ൌ ܿ̂ଵ
ᇱ ∙ ݁̂ଵ ൌ

1
2
൛൫ ොܽ െ ෠ܾ൯ܠ ൅ ݅൫ ොܽ ൅ ෠ܾ൯ܡൟ ∙ ሺܿߠݏ݋ଵܠ ൅  ሻܡଵߠ݊݅ݏ	

                                     ܿ̂ଵ
ᇱᇱ ൌ ଵ

ଶ
ൣ ොܽሺܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾሺെܿߠݏ݋ଵ ൅  ଵሻ൧.      (3.36)ߠ݊݅ݏ݅

The photon number operator of the transmitted component at PBS1 becomes  

ܿ̂ଵ
ᇱᇱறܿ̂ଵ

ᇱᇱ ൌ
1
2
ൣ ොܽሺܿߠݏ݋ଵ ൅ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾሺെܿߠݏ݋ଵ ൅ ଵሻ൧ߠ݊݅ݏ݅

ൈ
1
2
ൣ ොܽሺܿߠݏ݋ଵ െ ଵሻߠ݊݅ݏ݅ ൅	 ෠ܾሺെܿߠݏ݋ଵ െ  ଵሻ൧ߠ݊݅ݏ݅

                             ൌ ଵ

ସ
ൣ ොܽற ොܽ ൅ ෠ܾற ෠ܾ െ ොܽற ෠ܾ݁ି௜ଶఏభ െ ෠ܾற ොܽ݁௜ଶఏభ൧                                (3.37) 

Detectors ܣ∥ and ୄܣ measure the beat intensities of transmitted and reflected 

components at PBS1 as  

ଵ∥ሻߠ஺∥ሺܫ                                   ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ,   〈ߚ
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                                                ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| െ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| െ ߶ఉ ൅ ߶ఈ൯ൟ, (3.38)    

and 

ଵୄሻߠ஺఼ሺܫ                                  ൌ ,ߙ〉 ଵ̂ܿ|ߚ
ᇱᇱறܿ̂ଵ

ᇱᇱ|ߙ,  〈ߚ

                                                ൌ ଶ|ߙ|஺൛ߟ ൅ ଶ|ߚ| ൅ ଵߠ൫2ݏ݋ܿ|ߚ||ߙ| െ ߶ఉ ൅ ߶ఈ൯ൟ. (3.39) 

 Then, the balanced homodyne detectors A measured beat intensity as   

஻ு஽ܣ       ൌ ଵ∥ሻߠ஺∥ሺܫ െ ଵୄሻߠ஺఼ሺܫ ൌ െ2ߟ஺|ݏ݋ܿ|ߚ||ߙ൫2ߠଵ െ ߶ఉ ൅ ߶ఈ൯                 (3.40) 

Now, multiplying the balanced homodyne beat intensities of detectors A and B we 

obtained fourth bipartite correlation function	߶ି as: 

஻ு஽ܣ ∙ ஻ு஽ܤ ൌ െ2ߟ஺|ݏ݋ܿ|ߚ||ߙ൫2ߠଵ െ ߶ఉ ൅ ߶ఈ൯ ∙ െ2ߟ஻|ݏ݋ܿ|ߚ||ߙ൫2ߠଶ ൅ ߶ఉ െ ߶ఈ൯ 

஻ு஽ܣ〉	 ∙ 〈஻ு஽ܤ ൌ ଵߠ2ሺݏ݋ଶܿ|ߚ|ଶ|ߙ|஻ߟ஺ߟ4 ൅      ଶሻߠ

                         ∝ ଵߠ2ሺݏ݋ܿ ൅  ଶሻ                                                                            (3.41)ߠ

3.4 Detection apparatus 

3.4.1 Photodetectors and Transimpedance amplifier 

The optical weak coherent states is detected and converted into photocurrent by using 

two p-i-n photodiodes with active area diameter of 0.5 mm. Both photodiodes (D1 

and D2) are connected in balanced detection setup. These p-i-n photodiodes were 
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chosen due to their advantages in low intrinsic dark current (12 nA), small intrinsic 

capacitance (35 pF), high linearity at low optical power, and excellent responsivity 

(0.95 A/W) at wavelength, near 1.55 μm region. The photodiodes are each reverse-

biased by 3V batteries in order to improve their response time. The photodiodes are 

fitted through an aluminum casing and mounted on the circuit board together with 

other electronic components. Then, the subtracted photocurrent was be fed to a 

transimpedance amplifier and converted into voltage as shown in Fig. 3.5.  

We employed a low noise operational amplifier to build the transimpedance 

amplifier circuit, which was used to convert the photocurrent into voltage. Fig. 3.5 

shows our circuit design using a 2 pF feedback capacitance and a 15 kΩ 

transimpedance gain which is estimated to produce the 3db gain and a bandwidth of 

about 20 Mhz. The 2 pF capacitance also helped to eliminate the resonance noise and 

stabilize the circuit by balancing the photodiode’s intrinsic capacitance. The output 

DC voltage fluctuation of the circuit is minimized by connecting the 50 Ω resistor 

between ground and non- inverting input.  

 
Figure 3.5. Schematic diagram of balanced detection and transimpedance amplifier 
circuit 
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3.4.2 Oscilloscope and Spectrum analyzer 

The transimpedance amplifier output is then fed to a digital oscilloscope (500 MHz 

bandwidth) for the data acquisition. The data acquisition systems on the outputs from 

both observers in the experiment were synchronized and triggered by the same 

source. This was crucial to measurement the correlation of both observers. The 

electronic noise level and shot noise of the optical field in frequency spectrum was 

measured by spectrum analyzer (2 GHz bandwidth).  From electronic noise level and 

shot noise measurements, we can determine the minimum optical power for weak 

coherent states’ and weak LO field. This will ensure information of weak coherent 

states’ correlations was concealed by the electronic noise and quantum phase noise.   

3.4.3 Lock in amplifier 

An analog lock-in amplifier (dual phase) was used for the implementation of the bit 

correlation between two observers. The transimpedance amplifier output was fed 

directly into lock-in amplifier. The lock-in amplifier was referenced from the driver 

of the piezoelectric transducer that modulated the local oscillator field. The same 

reference signal will be used for all bit correlation measurements. 
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3.5 Balanced Homodyne detection 

Balanced homodyne detector was utilized in the detection scheme for the weak 

coherent light fields for optical communication. The term homodyne means that local 

oscillator is derived from the same source as the signal before the modulating process.  

 

Figure 3.6. Balanced Homodyne detection. 

Balanced homodyne detector consists of a 50/50 beam splitter, two photo 

detectors, a local oscillator field and a transimpendance amplifier. It has two input 

ports. The signal field was sent into one of the input port, while local oscillator field 

was sent through another port. The signal and LO fields were optically mixed at the 

beam splitter. Normally, the local oscillator field can be derived from the same laser 

source as signal field, having the same frequency and a well-defined phase with 

respect to the signal field. Mixing the local oscillator field and signal field allowed to 

enhance the signal field detection. Superimposed local oscillator field and weak 

coherent states were detected by photodiodes D1 and D2. The photodiodes are 
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connected together in such a way that the output is equals to the difference of the 

photocurrents generated by photodiodes D1 and D2. The emerging output fields ߝଵ 

and ߝଶ are the superposition of signal and local oscillator field: 

ଵߝ                                                  ൌ
ଵ

√ଶ
൫ߝ௅ை ൅	ߝ௦௜௚௡௔௟൯                                         (3.42) 

ଶߝ                                                 ൌ
ଵ

√ଶ
൫ߝ௅ை െ	ߝ௦௜௚௡௔௟൯                                          (3.43) 

where ߝ௅ை  and ߝ௦௜௚௡௔௟  are the local oscillator and signal field respectively. 

Photocurrents produced by the output fields ߝଵ and ߝଶ were given as  

ଵܫ                                                      ൌ ଵ|ଶߝ| ൌ  ଵ∗                                              (3.44)ߝଵߝ

ଶܫ                                                     ൌ ଶ|ଶߝ| ൌ  ଶ∗.                                             (3.45)ߝଶߝ

Hence, the output of the balanced homodyne detector is given as, 

ଶܫ                                                       െ ଵܫ ൌ  ௅ை                                               (3.46)ߝ௦ߝ2

The signal and local oscillator fields were derived from the same laser source 

with relative phase ߶ . By considering only the real part of the signal and local 

oscillator fields, it can be written as,  

௦ߝ                                                          ൌ ఌೞܣ cosሺ߱ݐሻ                                           (3.47) 

௅ைߝ                                                        ൌ ఌಽೀܣ cosሺ߱ݐ ൅ ߶ሻ                                 (3.48) 
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Where ܣఌೞ  and ܣఌಽೀ  are the amplitude for signal and local oscillator fields, ߱  is 

optical frequency,	߶  is relative phase between the fields. Hence the output of the 

balanced homodyne detector is given by 

ଵܫ                              െ ଶܫ ൌ หܣఌೞหหܣఌಽೀหሼcosሺ߶ሻ ൅ cosሺ2߱ݐ ൅ ߶ሻሽ.                      (3.49) 

The second term in the Eq.(47) is the fast varying term beyond the detection 

bandwidth of the oscilloscope. Therefore, the output of the balanced homodyne 

detector is phase dependence, which is given by, 

ଵܫ                                              െ ଶܫ ∝ หܣఌೞหหܣఌಽೀห cosሺ߶ሻ.                                    (3.50) 

One of the main advantages of using balanced homodyne detector is the 

higher signal to noise ratio compared to a single detector. For example, intensity 

fluctuations of the laser would affect the measurement by a single detector. Contrary, 

any changes in intensity will be canceled by the subtraction of the photocurrent with 

an ideal balanced homodyne detector.  

 

Figure 3.7. Frequency spectrum of balanced homodyne detector indicating the 
electronics noise  level without any light and  the shot noise level with the presence 
of the local oscillator field. 
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Due to the Poissonian statistics of the coherent light, polarization dependence 

of the beam splitter and random splitting process in the 50/50 beam splitter; 

fluctuations in intensity cannot be completely removed. Therefore, even with the 

presence of only local oscillator field, the balanced homodyne detector will have a 

shot noise level above the electronics noise level as depict in Fig.3.7, limiting the 

signal to noise ratio. 

3.6 Results 

3.6.1 Weak Coherent States Interference  

To verify the above analysis and measurement method for weak coherent states, we 

first perform the experiment by using a strong LO field and a weak coherent state 

with average power of 1 mW and 0.03 mW, respectively. Fig.3.8 (a) shows the 

spectrum of the shot noise of the strong LO field and weak coherent state, and the 

electronic noise of our detection system. In this experiment, the relative angle 

between Alice’s and Bob’s analyzers was equals to zero. The beat signal intensities 

at detectors A and B are shown in Fig.3.8 (b) and Fig.3.8 (c). The discontinuities of 

the beat signals are due to the ramping of the PZT.  

With these large mean photon fluxes, the interference signals are stable as 

predicted by the coherent states with large mean photon number. The product of the 

beat intensities is shown in Fig.3.8 (d), which is negative in averaged. This indicates 

single-field interferences at detectors A and B are anticorrelated. In the experiment, 

the beat intensities at detectors A and B are recorded in computers were recorded by 
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computer connected to the digital oscilloscope. The data acquisition of detectors A 

and B was synchronized and triggered at the same time in order to obtain the 

meaningful correlation from the multiplied signals. Next, the laser was attenuated to 

obtain weak LO field and weak coherent state with average power of 0.001 mW each. 

Fig. 3.9 (a) depicts the spectrum of the shot noise levels of the weak LO field and 

coherent state, and the electronic noise of our detection system. All the average 

optical powers reported in this work are measured just before the PBS1 (PBS2). Fig. 

3.9 (a) shows that the shot noise of weak LO field. It falls almost on the same level as 

electronic noise spectrum. We observed that the beat intensities at detectors A and B 

as shown in Fig. 3.9. (b) and Fig. 3.9. (c) with the interference signals hidden or 

protected by the noises of the signal. These include shot noise of the LO field, 

quantum phase noise ߶ఈ  of the weak coherent state, and electronic noises as 

predicted by Eqs. 3.16 and 3.17. Quantum phase noise ߶ఈ  is due photon number 

fluctuation of weak coherent state. 

 

Figure 3.8. (a) Shot noise (blue solid line) of the weak LO field (1 mW) plus  
coherent state (0.03 mW) and electronic noise level (red dots); the corresponding 
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beat signals for θ1 = θ2 at detector A (b) and detector B (c), and their multiplied 
signal (d) 

 

Figure 3.9 (a) Shot noises (blue solid line) of the weak LO field (0.001 mW) plus 
weak coherent state (0.001 mW) and electronic noise level (red dots); the 
corresponding beat signals for θ1 = θ2 at detector A (b) and detector B (c), and their 
multiplied signal (d) 

The raw data are multiplied together and shown in Fig. 3.9(d). Fig. 3.9(d) 

shows that the multiplied signal is are anticorrelated. This is predicted by  correlation 

function െܿ2ݏ݋ሺߠଵ െ ଶሻߠ ൌ െ1 when the relative angle is set to ߠଵ െ ଶߠ ൌ 0. 

The multiplied beat intensity consists of two parts: coherent and noise 

interferences. The coherent interference part contains the term 

െ4ߟ஺ߟ஻ሼ|ߙ|ଶ|ߚ|ଶܿ2ݏ݋ሺߠଵ െ .ଶሻሽߠ Noise interference part contains the term 

ଶߠ2൫ݏ݋஻൛ܿߟ஺ߟ4 ൅ ଵߠ ൅ ߶ఉ െ ߶ఈ൯ൟwhich is averaged to zero because of the periodic 

of the LO phase, ߶ఉ = {0 → 2π}. The multiplied beat intensity is protected by the 

quantum phase noise ߶ఈ  [108]. Electronic noise in our measurement created 

statistical errors in the mean-value measurement of the coherent part of the 

multiplied signal.  
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Figure 3.10. The experimental observation of the correlation functions i) ିߖ	 ൌ
െܿ2ݏ݋ሺߠଵ െ  ଶሻ for the case θ1 = θ2. The observed random noise beat signal in (a)ߠ
detector A, (b) detector B. (c) Multiplied beat signals. ii)	ିߖ ൌ ଵߠ2ሺݏ݋ܿ െ  ଶሻ forߠ
the case θ1 = θ2. The observed random noise beat signal in (d) detector A, (e) detector 
B, (f) Multiplied beat signals  
 

As an illustration of our experimental observation for the correlation 

function	ିߖ ൌ െܿ2ݏ݋ሺߠଵ െ  ଶሻ, we take a single measurement of the anti-correlatedߠ

beat intensities at detectors A and B for θ1 = θ2 as shown in Fig. 3.10.(a) and Fig. 

3.10.(b)  respectively. The mean value of beat intensities at detectors A and B are 
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zero as expected. The multiplied anti-correlated signal is shown in Fig. 3.10.(c) and 

has the maximum obtainable mean value in the experiment, which is a negative value. 

The positive spikes, observed in the multiplied signal are possibly induced by the 

additional noise from the ambient environment or detection apparatus, which will 

affect the bipartite correlation. For the case of correlation function ାߖ	 ൌ

ଵߠ2ሺݏ݋ܿ െ  .ଶሻ and θ1 = θ2, the beat intensities in detectors A and B are shown in Figߠ

3.10. (d) and Fig. 3.10. (e) respectively. For this case, the multiplied signal is shown 

in Fig. 3.10. (f), where its mean value is positive. 

3.6.2 Weak Coherent states Bipartite correlations (CSBC) 

By using the experiment setup as decribed in section 3.3, we are able to generate 4 

types of bipartite correlation, given as 

ିߖ						 ൌ െܿ2ݏ݋ሺߠଵ െ  ଶሻߠ

ାߖ			 ൌ ଵߠ2ሺݏ݋ܿ െ  ଶሻߠ

						߶ି ൌ െܿ2ݏ݋ሺ1ߠ ൅  2ሻߠ

                                          			߶ା ൌ 1ߠ2ሺݏ݋ܿ ൅  2ሻ                                        (3.51)ߠ

To verify the analysis discussed in section 2, we performed systematic 

analysis of the proposed experiment. We used a piezoelectric transducer (PZT) to 

modulate the phase of a weak light field. Then, all 4 types of correlation function 

were obtained by manipulation of experiment setup as discussed in previous section. 

We normalized each correlation function 	ିߖ ൌ െܿ2ݏ݋ሺߠଵ െ ଶሻߠ  to its maximum 

obtainable value, when ߠଵ ൌ  ଶ. Fig.3.11 shows the normalized correlation functionߠ
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േܿ2ݏ݋ሺߠଵ േ  ଶሻ as a function of the relative projection angle of the analyzer A andߠ

B.  The blue line is the predicted theoretical value while the red circle with the error 

bar is the experimental data. For each data point, we took ten data points of the 

multiplied signal and obtain the average mean value. Each measurement was 

obtained by setting the polarization angle of the analyzer A unchanged and varies the 

polarization angle of analyzer B. The error bar is mainly due to the electronic noise 

and temperature dependence of polarization optics. The deviation of experimental 

data from theoretical prediction is mainly due to the resolution of the rotation angle 

of the polarization analyzer and imperfection of polarization optics. 

 

Figure 3.11. Experimental measurement of Bi-partite correlation functions (a) 
െܿ2ݏ݋ሺߠଵ െ ଵߠ2ሺݏ݋െܿ	ଶሻ, (b)ߠ ൅ ଵߠ2ሺݏ݋ܿ	ଶሻ, (c)ߠ െ ଵߠ2ሺݏ݋ܿ ଶሻ, (d)ߠ ൅  ଶሻߠ
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3.6.3 Bit correlations measurement 

After we establish or choose one of the coherent state bipartite correlation functions 

between observer A and B, we measured bits correlations between them. To perform 

this measurement for the established correlation function of	ିߖ ൌ െܿ2ݏ݋ሺߠଵ െ  ,ଶሻߠ

we modulated the piezoelectric transducer to modulate the phase of the local 

oscillator field at 0.03 mW to obtain one period of interference signal as shown in 

Fig.3.12 (a).  

 
Figure 3.12. a) Single period of interference signal measured at observer A (red solid 
line) compared to b) piezoelectric driving voltage (blue dashed line), which is used as 
reference phase in the lock-in amplifier. 
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From this interference signal we can determine the reference signal for the 

lock-in amplifier to measure bits correlations between observer A and B. Then, we 

reduced the average power of the weak LO field and weak coherent state to 0.00013 

mW. As shown in Fig 3.12 (b), the interference signal and phase information is 

protected by random noise and was explained in previous section. 

For the bits correlation measurement, the output of the balanced homodyne 

beat intensity at detector A is directly connected to a lock-in amplifier. Fig.8 depicts 

the experimental setup for bit measurement for observer A and B. To perform this 

measurement for the established correlation function of െܿ2ݏ݋ሺߠଵ െ ଶሻߠ , we 

measured quadrature phases of weak coherent state with the step size of nπ/2 (n = 

integer). The results are shown in Fig. 4(a) (blue line). Using the same lock-in 

reference phase in the lock-in amplifier, we measure the quadrature phases of weak 

coherent state at detector B as shown in Fig. 3.14(a) (dashed red line). In analogous 

to correlation function of െܿ2ݏ݋ሺߠଵ െ  ଶሻ, detector A and B is anticorrelated as theyߠ

have opposite bit correlation at the same LO phase as depicted in Fig. 4(a). The 

positive (negative) quadrature signal is encoded as keys/bits ‘1’ (‘0’).  

By using the same lock-in reference signal, we established four types of 

bipartite correlation functions and performed bits correlations for each shared 

correlation function between two parties. The other three types of correlation 

functions െܿ2ݏ݋ሺߠଵ ൅ ଶሻߠ , ଵߠ2ሺݏ݋ܿ	 ൅ ଶሻߠ , and ܿ2ݏ݋ሺߠଵ െ ଶሻߠ as shown in Figs. 

3.14(b), (c), and (d), respectively. 
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Figure 3.13. Experiment setup for demonstration of the bit generation and 
measurement 

 

 

Figure 3.14. Bit correlation of two weak light fields a) െܿ2ݏ݋ሺߠଵ െ  ,ଶሻߠ
(b)	െܿ2ݏ݋ሺߠଵ ൅ ଵߠ2ሺݏ݋ܿ	ଶሻ, (c)ߠ െ ଵߠ2ሺݏ݋ܿ ଶሻ, (d)ߠ ൅  ଶሻߠ
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3.7 Discussions 

In this work, we employ a weak local oscillator field in a coherent state to extract 

intrinsic correlations of weak coherent states between two parties using a balanced 

homodyne measurement. Briefly, we first prepare a weak coherent state using a 

highly attenuated laser at telecom wavelength. The weak coherent state is split by a 

50-50 beam splitter and sent to Alice and Bob, each has a balanced homodyne 

detection scheme for measuring his or her coherent state with a weak local oscillator 

field.  

We employ nonlinearity of the post measurement method by multiply two 

single-field interferences from an individual balanced homodyne measurement. Then, 

the mean value of the multiplied signal provides raw the correlations of weak 

coherent states. We normalize the raw data with the mean photon numbers of a weak 

coherent state and LO field to obtain the coherent state bipartite correlation function. 

As explained in experiment setup, four types of correlation functions േܿ2ݏ݋ሺߠଵ േ

 ଵߠ ଶሻ can be prepared by using linear optics devices in Alice or Bob alone, whereߠ

and ߠଶ are the projection angles of the analyzers at Alice and Bob. In the context of 

quantum communication, this means that Alice can keep her copy of the coherent 

state and send another copy to Bob. By locally changing the relative phases between 

her coherent state and weak local oscillator field, her acts will change the correlation 

functions shared with Bob. Apparently, stability and accurate control of phase and 

polarization turned out to be the main challenge for the practical implementation 
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quantum communication by weak coherent states. The polarization state of the light 

is not preserved in the typical transmission fiber. Dynamic control of the state of 

polarization of the light is critical to ensure the reliability the proposed optical 

communication scheme. Each dynamic polarization controller is bulky and expensive, 

severely limits the practicality of our scheme [110]. 

Once we establish one of the four correlation functions between Alice and 

Bob over a distance of 10 km through a transmission fiber, we change the phases of 

the weak local oscillator field {0,π} for implementing bits correlations between them. 

For reliable measurement of the encoded signal, both phase and polarization of the 

weak light field must be stable. Phase locking is another challenging obstacle as well. 

Phase locking is required between the two orthogonal weak light fields that used to 

implement the bit correlation between two observers. Without the phase locking, 

quadrature phases measurement performed by lock-in amplifier is meaningless. 

Therefore, optical phase-locked loops must be employed for the phase locking of two 

weak light fields. However, for high data rate optical communication, the delays 

allowed in the phased-locked loop are so small that phase locking becomes an 

enormous challenge [111, 112]  

As a supplement to the DPS-QKD, the phase of the weak LO field can be 

randomly modulated as {0,π} at certain frequency. Then the bit-key correlations can 

be realized based on the established CSBC shared by both parties. Since the 

established CSBC is normalized with the product of mean photon numbers |α|2|β|2, a 

photon number splitting attack can be detected by adding a weak LO beam in the 
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decoy-state BB84 protocol to check the CSBC shared between two partites. Intrinsic 

correlations of the coherent light field have been utilized to implement entanglement, 

Grover search algorithm, and quantum lithography through different well-designed 

interference measurement methods [113]. Intrinsic correlations of coherent states do 

not exhibit nonlocality as a two-photon source. The realization of the intrinsic 

quantum correlation of a weak coherent state by using the measurement method is a 

first step toward linear-optics quantum computing with weak light fields and single-

photon source. 
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Chapter  4 

Quantum Correlation and Entanglement3 

 

4.1  Overview 

In this chapter, we discuss the generation of polarization-correlated and polarization-

entangled photon pair at telecom wavelength via spontaneous four-waves mixing 

(SFWM) using a 10 m long highly nonlinear fiber (HNLF).  

We first present an introduction on the development of heralded single photon 

sources and entangled photon sources along with brief discussion on the merits and 

drawbacks of different sources. We will review the origin and properties of SFWM 

as a third order parametric process in optical fiber. The nonlinearity the optical fiber 

that leads to the parametric process will be discussed, followed by the mechanism of 

creating a photon pair through the SFWM process. In addition, we will discuss the 

phase matching condition which is critical for the occurrence of SFWM and explain 

how to achieve optimum phase matching with the HNLF in our experiment. Next, we 

explore the origin of spontaneous Raman scattering (SRS) that competing with 

                                                            
3 The material contained in this chapter was previously published in Optics Letters. 
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SFWM in optical fiber and discuss the methods to minimize and suppress SRS 

process. 

After that, we proceed to give detail description of the single photon detection 

and coincidence detection system that we built for this work. Single photon detection 

and coincidence detection is indispensable in characterizing correlated and entangled 

photon source. We provide a detail illustration on how to precisely detect a single 

photon by the means of single photon detection and a photon pair by the means of 

coincidence detection. We also define the coincidence count and accidental-

coincidence count which are important to determine the purity of fiber based photon 

pair source. Then, we move on to present our experimental setup for generation of 

correlated and polarization-entangled photon pair. The properties of the HNLF and 

optical components of the experimental setup will be given in details. 

In the experimental results section, first we present the result of single photon 

count measurement of signal and idler photon. For characterization of correlated 

photon source, we plot the coincidence count and accidental count as a function of 

pump photon per pulse with the HNLF at 300 K and 77 K. Followed by coincidence 

to accidental-coincidence ratio (CAR) to obtain the optimum pump power for highest 

CAR value, which is at 7x107 photon per pulse (430 μW in average power) for both 

temperatures. For characterization of polarization-entangled photon source we 

measure two-photon interference (TPI) and obtained the visibility of TPI at 300 K 

and 77 K. We present the proof for non-locality behavior of polarization-entangled 

photon pair generated with HNLF by measuring the Clauser-Horne-Shimony-Holt 
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(CHSH) Bell’s inequality violation of >12 (≈5) standard deviation at 77 K (300 K), 

respectively.  

4.2 Introduction  

4.2.1  Heralded Single Photon source 

Over last few decades the developments of single photon source and entangled 

photon source have experienced explosive growth due to the enormous demand for 

quantum communication and potential application in quantum information science. 

For quantum key distribution (QKD), single photon ensures secure communication 

as eavesdropping on single photon is impossible without exposing the presence of 

eavesdropper to other [15]. Additionally, single photons are excellent candidates as 

quantum bits in optical quantum computing [6]. In the case of quantum metrology, 

elimination of classical noise at single photon level promises noise reduction and 

precision enhancement of physical measurement [114]. 

The easiest way for single photon generation is by attenuating a laser pulse to 

single photon level. However, this method is fundamentally limited due to the 

Poissonian nature of photon number in the laser beam, where probability of having 

multiple photons is significant even though the laser is attenuated to average of 1 

photon per pulse. In vice versa, when the multi photons effect is suppressed by using 

a weaker single photon pulse with average photon number of «1, the probability of 

getting single photon will be extremely low.  
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Another approach to produce single photon is by using single quantum 

emitter as trigger for single photon source through the single radiative transition.  

However, single quantum emitters such as trapped single atom, molecule, quantum 

dots, and Nitrogen Vacancy Centers in Diamond diamond require highly complex 

experimental setup, formidable fabrication technique or cryogenics condition in order 

to produce single photons [115-117]. 

Hence, another method of producing single photons by probabilistic 

generation of correlated photon pair is called into place. This method also known as 

heralded single photon source as detecting one photon of a photon pair assures the 

presence of the other photon. To date, generation of photon pair by χ(2) parametric 

down conversion in non-linear birefringent crystals and periodically poled lithium 

niobate (PPLN) waveguides [50, 118]; and χ(3) spontaneous four-wave mixing 

(SFWM) in various type of optical fibers, silicon nanowires, chalcogenide As2S3 

waveguide have been demonstrated [119-121]. 

4.2.2  Entangled Photon source 

Generation of probabilistic correlated photon pair lay down the foundation for the 

creation of entanglement. Ideally, entangled states can be created by combining two 

correlated photon pair sources. For example, polarization entanglement can be 

created by combining two indistinguishable, orthogonally polarized correlated 

photon pair source. The photon pair sources are constructed in such a way that when 

one photon of a photon pair is detected, the observer unable to predict the 
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polarization of the photons but only convinced that the photon pair must be co-

polarized or anti-polarized.  

Initial efforts using two photon emission of cascaded atomic calcium to 

produce entangled pairs of photons was successfully demonstrated [122]. Amid the 

success of producing entangled photon pair, it is conceded that many drawbacks exist 

in these systems. These include complex experiment setup, inconsistent and broad 

emission angle which severely limit the detection efficiency of the photon pair [123]. 

Consequently, a vastly improved method of optical parametric down conversion 

through χ(2) nonlinearity in crystal is used to convert a pump photon into a pair of 

photon [50, 58]. Although the photon pair production rate using optical parametric 

down conversion is much higher, stringent phase matching condition affects the  

photons emission angle and results in multimode emission of photon pair. Thus, 

necessarily reduces the collection efficiency and limits its application in single mode 

preferred quantum information processing such as quantum metrology [124]. 

4.2.3  Fiber based Correlated and Entangled Photon source 

Correlated and entangled photon-pair sources are essential for 

implementation of quantum cryptography and quantum key distribution. Particularly, 

correlated and entangled photon-pair at telecom wavelengths are coincide with the 

low-loss transmission window (1.3 μm and 1.5 μm) of the optical fiber. Therefore, 

have the potential in realizing the global scale QKD through currently available 

optical fiber networks. 
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Direct generation of correlated and entangled photon-pair in optical fiber 

attracted great interest due to its better spatial mode definition and inherent 

compatibility with existing fiber optics technologies for long distance transmission, 

storage and processing. Correlated and entangled photon-pair generation in 

dispersion-shifted fiber (DSF), and highly nonlinear microstructure fiber (HNMSF) 

are realized using spontaneous four-waves mixing (SFWM) through χ(3) nonlinearity 

[120, 125]. HNMSF has the advantage of high nonlinearity (≈100 W/km) due to its 

much smaller core size, therefore required shorter interaction length, where  is third 

order nonlinear coefficient of a medium. However, smaller core size, asymmetric 

mode profile and inhomogeneous microstructure limit its compatibility with single 

mode fiber. In contrast, DSF is compatible with standard optical fiber, even though 

has much lower nonlinearity (≈2 W/km). Therefore, several hundred meters of 

interaction length is needed for photon pair generation in DSF.  

In this work, we generate correlated and entangled photon-pair using a short 

dispersion shifted, highly nonlinear fiber (HNLF), which has advantage of high 

nonlinearity and yet highly compatible with the standard optical fiber. Hence, HNLF 

could be an outstanding candidate for fiber based correlated and entangled photon 

pair source at telecom wavelengths. 
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4.3  Spontaneous Four-wave Mixing  

In this section, we review the origin and mechanism of spontaneous four-wave 

mixing (SFWM) in optical fiber to present a clear physical picture on this 

phenomenon.  

SFWM process in optical fiber is a parametric process involving nonlinear 

interaction of four optical waves due to the third-order order susceptibility of a 

material [126]. Parametric process originates from the nonlinear response of bound 

electrons in the interaction medium to an applied optical field. Nonlinear polarization 

of the bound electrons that induced by the applied optical field is dependent to the 

nonlinear susceptibilities of the material. In optical fiber, second order susceptibility 

χ(2) vanishes due to the isotropic nature of silica glass [127]. In contrast, third order 

susceptibility χ(3) or Kerr nonlinearity is the dominant nonlinearity that leads to third-

order parametric processes in optical fiber including SFWM [128].  

When an intense electromagnetic field propagating in an optical fiber, the 

induced polarization can be described by using wave equation derived from of 

Maxwell’s equations, given as: 

,ܚଶ۳ሺ׏                      tሻ െ
ଵ

ୡమ
δ۳

δ୲మ
ൌ μ଴

δۺ۾
δ୲మ

൅ μ଴
δۺۼ۾
δ୲మ

                       (4.1) 

Where ۳ሺܚ, tሻ is the electromagnetic field, μ଴ is the linear vacuum permeability, and 

c is the speed of light in vacuum. The induced linear polarization is given by, 

୐۾			                                         ൌ ε଴χ
ሺଵሻ ∙ ۳ሺܚ, tሻ.                                                       (4.2) 
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The induced third-order nonlinear polarization is given by, 

ۺۼ۾                                          ൌ ε଴χ
ሺଷሻ ∙ ۳ሺܚ, tሻ۳ሺܚ, tሻ۳ሺܚ, tሻ,                                 (4.3) 

with  ε଴ is the permittivity in vacuum. 

 Consider four electromagnetic fields, with optical frequencies 

߱ଵ,߱ଶ, ߱ଷ, and	߱ସ that are copolarized in x-axis involved in the SFWM process, the 

total electric field propagating in the optical fiber is given as, 

                ۳ሺܚ, tሻ ൌ ଵ

ଶ
xො ∑ ൫݅ൣ݌ݔ௝݁ܧ ௝݇ݖ െ ௝߱ݐ൯൧

ସ
௝ୀଵ ൅ ܿ. ܿ,                            (4.4) 

where the ௝݇ ൌ
௡ೕఠೕ

௖
, ௝݊  is the refractive index of the propagating medium at 

frequency ௝߱  for the j-th electromagnetic field ܧ௝  and c.c stands for complex 

conjugate. 

Using Eq. 4.4, the induced third-order nonlinear polarization vector can be 

expressed as  

୒୐۾			               ൌ
ଵ

ଶ
xො ∑ ௝ܲ݁݅ൣ݌ݔ൫ ௝݇ݖ െ ௝߱ݐ൯൧

ସ
௝ୀଵ ൅ ܿ. ܿ.                                (4.5) 

Where ௝ܲ  is the nonlinear polarization induced by electromagnetic fieldܧ௝ . For 

instance, the third-order nonlinear polarization for the electromagnetic field	߱ସ, can 

be written as, 

									 ସܲ ൌ
ଷεబ
ସ
χሺଷሻሼሾ|Eସ|ଶ ൅ 2ሺ|Eଵ|ଶ ൅ |Eଶ|ଶ ൅ |Eଷ|ଶሻሿEସ ൅ 2EଵEଶEଷ expሺ݅ߠାሻ ൅

																			2EଵEଶEଷexp	ሺ݅ିߠሻ},                                                                               (4.6) 
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where 

ିߠ																 ൌ ሾ݇ଵ ൅ 	݇ଶ ൅ 	݇ଷ െ 	݇ସሿݖ െ ሾ߱ଵ ൅ 	߱ଶ ൅ 	߱ଷ െ 	߱ସሿ(4.7)                        ,ݐ 

ାߠ																 ൌ ሾ݇ଵ ൅ 	݇ଶ െ 	݇ଷ െ 	݇ସሿݖ െ ሾ߱ଵ ൅ 	߱ଶ െ 	߱ଷ െ 	߱ସሿ(4.8)                       .ݐ 

The term proportional to Eସ in Eq. 4.6 is corresponding to other nonlinear processes 

such as self-phase modulation, and cross-phase modulation [126, 129]. The term 

containing ିߠ   is responsible for the third harmonic generation or frequency 

conversion. The term involving ߠା is responsible for SFWM.  

Effective parametric coupling of SFWM process requires ߠା ൌ 0 for all ௝ܲ 

for	݆ ൌ 1 െ 4, whereߠାis identical for all		 ௝ܲ . Accordingly, effective SFWM takes 

place if the following conditions are satisfied 

																																																					݇ଵ ൅ 	݇ଶ ൌ 	݇ଷ ൅ 	݇ସ,																				                                     (4.9) 

																																																			߱ଵ ൅ 	߱ଶ ൌ 	߱ଷ ൅ 	߱ସ.                                              (4.10) 

Eq. 4.9 is the matching of the wave vectors, which is the well-known phase matching 

condition, while Eq. (4.10) reflects the requirement of specific choice of frequencies 

in SFWM process, which is the energy conservation requirement. 

In quantum-mechanical term, Eq. (4.10) means that two photons at ߱ଵ and ߱ଶ 

are annihilated and two photons at ߱ଷ and ߱ସ are created in SFWM process. The 

output photon at higher frequency (߱ସ) is signal photon and output photon at lower 

frequency (߱ଷ) is idler photon. Eq. 4.10 can be fulfilled by careful selection of the 

frequencies ߱ଷ  and 	߱ସ . In the case of degenerate SFWM where 	߱ଵ ൌ ߱ଶ , two 
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photons at ߱ଵ will be annihilated and creates two photons located symmetrically in 

frequency space at ߱ଷ and	߱ସ. The frequency shift	Ω is given by 

                                               						Ω ൌ ߱ଵ െ 	߱ଷ ൌ 	߱ସ െ 	߱ଵ                                (4.11) 

as illustrated in Fig. 4.1. 

 

Figure 4.1. Illustration of degenerate Spontaneous four wave mixing process where 
two photons at ߱ଵ are annihilated and two photons at ߱ଷ and ߱ସ are created. 

 

    The optimum phase matching condition in Eq. 4.9 can be rearranged and 

written as ∆݇ ൌ 0, where the net wavevector mismatch ∆݇ is given by 

                                        ∆݇ ൌ 	݇ଷ ൅ 	݇ସ		 െ 	݇ଵ െ 	݇ଶ.                               (4.12) 

The net wavevector mismatch consists of the phase mismatch resulting from the 

summation of material dispersion	∆݇ெ, waveguide dispersion	∆݇ௐ, and the nonlinear 

effects 	∆݇ே௅ [126], 

                                         ∆݇ ൌ ∆݇ெ ൅ ∆݇ௐ ൅ ∆݇ே௅	,                               (4.13) 

Where, the three contributions in Eq. (4.13) are given as [126], 



ω1

ω3ω4

Ω Ω
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∆݇ெ ൌ ݊ଷ߱ଷ ൅ ݊ସ߱ସ െ 2݊ଵ߱ଵ,                                                 (4.14) 

∆݇ௐ ൌ ሾ∆݊ଷ߱ଷ ൅ ∆݊ସ߱ସ െ ሺ∆݊ଵ ൅ ∆݊ଶሻ߱ଵሿ ܿ⁄ ,                      (4.15) 

∆݇ே௅ ൌ ሺߛ ଵܲ ൅ ଶܲሻ.                                                                    (4.16) 

∆ is the nonlinear coefficient of propagating medium and  ߛ	 ௝݊ is the change in the 

refractive index due to waveguiding. One of these three contributions should be 

negative in order to achieve the phase matching condition	∆݇ ൌ 0.  

In the single mode fiber, the contribution of the ∆݇ௐ to the net wavevector 

mismatch, ∆݇ is negligible as ∆ ௝݊ is similar for all waves in SFWM process. ∆݇ே௅ in 

Eq. 4.13 is always positive as ߛ  , 	 ଵܲ , and ଶܲ  ( 	 ଵܲ ൌ 	 ଶܲ  for partially degenerate 

SFWM ) are all positive. The negative dispersion is attained from the material 

dispersion ∆݇ெ  by using the pump wavelength larger than the zero dispersion 

wavelength of the fiber where	ߣଵ ൌ ଶߣ ൐  ஽ [126]. Ideally, the pump wavelength isߣ

selected in vicinity to the	ߣ஽ so that the magnitude of the 	∆݇ெ  is very small and can 

be compensated by adjusting the pump power	 ଵܲ and ଶܲ to achieve optimized phase 

matching	∆݇ ൌ 0. 

In next section, we discuss the undesirable Spontaneous Raman Scattering, 

which is the competing phenomenon to SFWM. 
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4.4  Spontaneous Raman scattering 

Spontaneous Raman Scattering (SRS) occurs simultaneously with SFWM process in 

HLNF as the pump photons for the SFWM will also work as pump photons for SRS 

[126]. In SRS process, an incident photon propagating in a medium scattered by a 

molecule to produce a lower or higher energy photon, with the molecule makes 

transition between vibration states. In contrast to the SFWM process, the energy of 

the photon involved in SRS is not conserved as it gains or losses energy in the 

scattering process. The photon can be shifted to higher frequency (energy) ߱௔௦ as 

anti-Stokes Raman photon or shifted to lower frequency (energy) ߱௦  as Stokes 

Raman photon given as 

                                                          ߱௦ 		ൌ ߱௢ െ Ω                                              (4.17) 

                                                          ߱௔௦ 		ൌ ߱௢ ൅ Ω		                                           (4.18) 

 where Ω is the frequency shift which is dependent on the molecule vibrational states. 

The energy diagram of SRS is shown in Fig. 4.2. 

 

Figure 4.2. Energy level diagram of Stokes and anti-Stokes spontaneous Raman 
scattering  
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Raman spectrum of silica fiber can be coincides with the signal and idler 

channels of photon-pairs generated by SFWM [130]. The presence of Stokes and 

anti-Stokes Raman photons induce undesirable accidental coincidences and 

deteriorate the correlation characteristics of the photon-pair source. As the Raman 

photons threaten the purity of fiber based photon–pair source, considerable efforts 

have been devoted to reduce the Raman photons. One of the approaches is using 

microstructure fiber to generate photon-pair widely separated in wavelength beyond 

the Raman scattering spectrum [125]. However, this option is less appealing as the 

photon-pair generated by this method is not in the low-loss transmission bandwidth 

of optical fiber. Another feasible option to reduce the Raman photon is by selecting 

the detection bands of signal and idler photon-pair closely to the pump wavelength 

where the Raman scattering is less probable [130].  Moreover, the Raman photon can 

be suppressed by reducing the temperature of the fiber [131]. Stokes and anti-Stokes 

Raman photons are proportional to thermal population factors 	݊௧௛ ൅ 1 and n୲୦ [132]. 

The thermal population factor is given as, 

                                                        ݊௧௛ ൌ
ଵ

௘௫௣൬
೓೎∆ഊ
ೖಳ೅ഊ

మ൰ିଵ
                                     (4.19) 

 where ∆ߣ  is the detuning from the pump wavelength, 	ߣ is the pump wavelength, ܶ 

is the HNLF’s absolute temperature in Kelvin, c is speed of light, h is Planck’s 

constant, and ݇஻  is Boltzmann’s constant. Given that  ∆ߣ ൌ6.5 nm, theoretical 

calculation of thermal population factor for Stokes (anti-Stokes) Raman photons is 
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about 8.2 (7.2) at 300 K and 2.5 (1.5) at 77 K. Hence, Raman photons are expected to 

be reduced as we cool the fiber from 300 K to 77 K in our experiment. 

4.5  Detection Apparatus 

4.5.1  Single Photon detection 

Single photon detection is crucial in this work. Without appropriate single 

photon detectors, we will not be able to characterize the photon pair source. Signal 

and idler photon-pairs are detected by fiber coupled InGaAs/InP avalanche 

photodiodes operated in gated Geiger mode at room temperature. The APDs were 

reversed biased with 64 V DC voltage and gated by 1 ns full width half maximum 

(FWHM) gate pulses with 10 V in amplitude at the rate of 726 kHz. The gate pulses 

were triggered and 1/64 frequency-divided from the mode-locked pump laser pulses. 

For the detection of single photons, gated photon counter was synchronized by 

electrical gate pulses that coincide with incoming single photons. The timing of gate 

pulses for each APD was independently adjusted by a multi-channels digital delay 

generator and coincides with the arrival of the signal and idler photons at the APDs 

as illustrated in Fig. 4.3.  
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Figure 4.3. Illustration of electrical gate pulses precisely coincides with incoming 
single photon pulses for the single photon detection. 
 

In Fig. 4.4, we show a plot of the quantum efficiency versus the dark count 

probability for the two single photon detectors that we built.  Dark count probability 

is defined as the probability of the single photon detector to register a count when no 

photon arrived at the detector.  

 
Figure 4.4. Plot of quantum efficiency versus the dark count probability of single 
photon detector at different biased voltages above the breakdown voltage. 
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For the single photon detector to operate with sufficient stability in optimum  

condition; the quantum efficiency, dark counts probability, and FWHM detection 

window of APD1 (APD2) were about 10.3% (9.8%), 2.5×10-3 (2.2×10-3) and 280 ps 

(250 ps). The dual channel gated photon counter was used to register single photon 

count from each APD separately. The electrical pulses from the output of the APDs 

were fed to the photon counter, where its gate timing system was triggered by the 

same 1/64 down counter circuit. The photon counter always received the electrical 

pulses from the APDs. The discriminator were set at a level to to distinguish the 

“avalanche pulse” (single photon detected) and “no avalanche pulse” (no photon 

detected). A single photon count was registered by the photon counter with the 

detection of an “avalanche pulse” on each APDs. Both single photon detectors and 

photon counter were triggered by the same pump laser used to generate photon pair, 

thus eliminating the possible phase jittering between optical pulse and detection 

system.  

4.5.2  Coincidence detection 

Every single photon count registered in each channel (A and B) of the photon counter 

independently triggered an electrical pulse which was transmitted to the multichannel 

scaler for the coincidence detection. The electrical pulse from one of the channel (A) 

in photon counter was used as trigger input and electrical pulse from channel (B) was 

used for signal input for the scaler. A delay pulse generator was used to delay the 

electrical pulse of channel (B). The time delay was set to match the rise time of the 
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detection circuit in the scaler after a trigger. At each trigger, the scaler registered 

signal pulses at different arrival time for a preset total time bin and accumulated a 

histogram of detection events over an integration time. A typical histogram obtained 

in our experiment is depicted in Fig. 4.5.  

The coincidence count recorded from the same gated time interval can be 

distinguished as the time bin with the highest number of recorded count. The rest of 

the time bins are accidental coincidence counts which arise from the coincidence 

detection between adjacent pulses. 

 

 
Figure 4.5. A typical histogram acquired by the multichannel scaler. The time bin 
with highest counts is the Coincidence count, and the rest of the bins are each 
accidental coincidence count. 

 

A coincidence count was recorded when both APDs detected a photon at the 

same gated time interval, while an accidental coincidence count was recorded when 

both APDs detected a photon at the adjacent gated time interval as illustrated in Fig. 
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scattering and detector dark count all contributed to the coincidence count. 

Accidental coincidence count was attributed to un-correlated noise photon from 

Raman scattering and detector dark count. Information of both coincidence count and 

accidental coincidence count were indispensable for characterization the purity of the 

correlated photon source in our experiment. 

 
Figure 4.6. Diagram shows timing correlation of coincidence count and accidental-
coincidence count from the pulse sequences in APD1 for idler photon and APD2 for 
signal photon. 

 

Figure 4.7. Schematic Layout of single photon detection and coincidence detection 
system 

 

APD2

APD1

Accidental coincidence Coincidence 

1/64 Down counter Circuit

48 MHz mode-locked 
fiber laser 

Multi Channel Delay Generator 

1 ns FWHM  pulser1 ns FWHM  pulser

InGaAs/InPAPD InGaAs/InPAPD

Dual Channel Gated 
Photon Counter

Multi Channel Scaler

Delay 
generator

Counter 
Propagating Scheme 

(CPS)

Signal Idler

Trigger
Single counts

Coincidence counts

DC 
bias

DC 
bias

Optical path

Electrical path

10 V gating pulse10 V gating pulse



 

97 
 

A complete schematic layout of single photon detection and coincidence 

detection system that was setup in this work is shown in Fig. 4.7. 

4.6  Experiment Setup 

We use a 10 m long HNLF, fabricated by Sumitomo as a nonlinear interaction 

medium for the photon pair generation [133]. The HNLF with the core diameter of 4 μm was 

fusion spliced to a single mode fiber for a measured total loss of less than 1dB. It has 

excellent compatibility with standard transmission fiber. The HNLF’s zero dispersion 

wavelength was engineered at 1554 nm, and has a high nonlinear coefficient  of 30 W/km, 

attenuation of 0.9 dB/km, and effective area of 8.5 μm2. The  value of this HNLF is 

significantly higher than both the of conventional nonlinear fiber (≈10 W/km) and 

dispersion-shifted fiber (≈2 W/km) [130]. The characteristic data sheet of the HNLF is 

attached in Appendix F. 

The pump pulse at 1554.1 nm (FWHM spectral width≈ 0.8 nm, pulse duration ≈ 5 

ps and repetition rate of 46.5 MHz) was spectrally carved out from a mode-locked 

femtosecond fiber laser by using a Dense Wavelength Division Multiplexer (DWDM) filter 

with 1 nm bandwidth and was further amplified using an Erbium-doped-fiber-amplifier. The 

amplified spontaneous emission from the Erbium-doped-fiber-amplifier was suppressed by 

utilizing two cascaded DWDM filters. The suppression of the amplified spontaneous 

emission is critical for our experiment. The residual spontaneous emission of EDFA that 

coincides with signal-idler wavelengths will add to the accidental coincidence count and 

prohibit accurate characterization of the photon-pair source. The amplified pump pulses were 
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launched via fiber-to-free space collimators and go through a quarter wave plate (QWP) and 

a half wave plate (HWP) to compensate changes of polarization states of pump pulses 

caused by the fiber birefringence. The combination of the HWP, QWP and the PBS1 

produced a horizontally polarized pump pulse. Both the correlated photon pair and entangled 

photon pair could be generated using the same experimental setup by manipulating the 

polarization angle of the of linearly polarized pump pulses. 

For the generation of correlated photon-pair, the HWP1 in front of the PBS2 was set 

at 0° to maintain pump pulse in horizontal polarization. Horizontally polarized pump pulses 

propagated through the HNLF in clockwise direction, and emerged at the output port of the 

PBS2 along with the probabilistically generated co-polarized signal and idler photon-pairs .  

For the generation of the polarization entangled photon, HWP1 was oriented at 22.5° 

to project pump pulse at 45° polarization angle. After passing through the PBS2, the pump 

pulse was divided equally into horizontally and vertically polarized components. Both pump 

pulses propagated through the HNLF in clockwise and counterclockwise directions, 

respectively. This configuration for generation polarization entangled state is also known as 

counter propagating scheme (CPS). Each component of the polarized pump pulse 

probabilistically generated its own signal-idler photon pair (Hs Hi and Vs Vi) respectively. The 

photon pairs were created via SFWM process and emerged from the same output port of the 

PBS2. The PBS2 is the principal component in CPS as it allows the two orthogonally 

polarized pump pulses to propagate in a common path. The signal-idler photon pairs 

superimposed at the output to generate Bell’s (polarization entangled) state |Ψା〉 ൌ

ଵ

√ଶ
〈௦ܪ௜ܪ|ൣ ൅ ݁ିଶ௜థ೛| ௜ܸ ௦ܸ〉൧, where ߶௣ is the relative phase between the horizontally and 
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vertically polarized pump pulses. In addition, half of the un-polarized Raman noise photons 

were blocked from exiting the output of the PBS, hence improve the purity of the entangled 

photon pair. The common path nature of CPS and low polarization dispersion (-0.1 ps/nm-

km) in a 10 m HNLF established the timing indistinguishability, and phase stability between 

the horizontally and vertically polarized signal-idler photon pairs at the output of the PBS. In 

addition to |Ψା〉 ൌ ଵ

√ଶ
ሾ|ܪ௜ܪ௦〉 ൅ | ௜ܸ ௦ܸ〉ሿ, CPS  was employed to produce all other Bell 

states. Bell state |Ψି〉 ൌ ଵ

√ଶ
ሾ|ܪ௜ܪ௦〉 െ | ௜ܸ ௦ܸ〉ሿ was achieved by inserting a QWP at 0° after 

the HWP1 to adjust the relative phase between two pump pulses to p = 90°. While Bell 

states |Φା〉 ൌ ଵ

√ଶ
ሾ|ܪ௜ ௦ܸ〉 ൅ | ௜ܸܪ௦〉ሿ  and |Φି〉 ൌ ଵ

√ଶ
ሾ|ܪ௜ ௦ܸ〉 െ | ௜ܸܪ௦〉ሿ  were obtained by 

adding a HWP at 45° in signal channel of the configurations for the aforementioned Ψേ	Bell 

states. 

The quarter wave plate and half wave plate in the CPS were used to 

compensate for the birefringence induced polarization changes of signal-idler. In 

order to measure the signal-idler photon-pair, remaining pump photons must be 

blocked to prevent them from reaching APDs. Since only about 0.1 photon is 

scattered by a typical 5-ps-duration pump pulse that contains approximately 108 

photons, a pump photon rejection ratio in excess of 100 dB is required. Hence, 

DWDM filters with 1 nm FWHM bandwidth at 1560.6 nm and 1547.7 nm were used 

to separate the signal and idler photons with 6.5 nm detuning from the pump 

wavelength. The DWDM filters were used to suppress the pump pulse with isolation 

of more than 110dB [130, 134]. 
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Figure 4.8. Layout of experiment setup. FC (fiber-to-free space collimators); PBS 
(polarization beam splitter); HWP and QWP (half- and quarter-wave plates); DWDM 
(dense wavelength division multiplexer); APD (Avalanche photodiode). 
 

The transmission spectrum of the signal and idler photon is shown in Fig. 4.9. The 

rejection ratio of about 100 dB was obtained with the cascaded DWDM filter. The 

total insertion losses of the cascaded DWDM filters for signal and idler were 

measured to be about 0.9dB. The selection of signal and idler wavelengths at small 

detuning (6.5 nm) from the pump wavelength was chosen to minimize the co-

polarized Raman scattering photons. However, the selection of signal and idler 

wavelengths too close to pump wavelength was not permitted. This is due to the 
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broadening of pump pulses, which commenced from the self-phase modulation as its 

traveled along the HNLF [129].  

 

Figure 4.9. Transmission spectrum of cascaded DWDM filters for signal (1547.4 nm) 
and idler channel (1560.6 nm) 

 

The outputs photons from the signal and idler channels were guided through 

the polarization analyzers consisting of a quarter-wave plate, a half-wave plate and a 

polarizing beam splitter. Note that the polarizing beam splitter in the polarization analyzers 

further suppressed the remained cross-polarized scattered Raman photons. However, the co-

polarized Raman photons still passed through polarizing beam splitter and reached the 

detectors. Signal and idler photons were detected by single photon detection and 

coincidence detection system that was described in previous section. Total detection 

efficiencies of signal and idler photon were about 4.99% and 4.87% respectively. The 

detection efficiencies included propagation losses of optical components in CPS and 

-20

-40

-60 

-80

-90 

-110  
1.535     1.54    1.545    1.55   1.555   1.56     1.565     1.57    1.575

Wavelength (μm)

P
ow

er
 (

d
B

m
)



 

102 
 

polarization analyzer, splicing losses of the HNLF and the APDs quantum 

efficiencies. We will present the experimental results for the characterization of 

correlated and entangled photon source using HNLF next. 

4.7  Results  

4.7.1  Single Photons Count 

We generated correlated photon-pair and measured the single photon count per pulse 

for both signal (1547.7 nm) and idler (1560.6 nm) channel as a function of number of 

pump photon per pulse at two temperatures. With the highly non-linear fiber in room 

temperature (300 K) and when it is cooled to liquid nitrogen temperature (77 K). The 

HNLF in plastic buffer coating was cooled to 77 K by immersing it into liquid 

nitrogen. We observed advancement of photons arrival times by about 130 ps, 

indicated contraction in fiber length when the HNLF was cooled to 77 K. It is also 

noted that the zero dispersion wavelength of the HNLF was shifted toward shorter 

wavelengths at 77 K. The polarization analyzers were adjusted in such a way that 

horizontally polarized signal and idler photons will pass to APD1 and APD2.  

The single photon count per pulse for signal and idler is proportional to the 

number of pump photon (Npump), and is given by, 

                                                                           .                                      (4.17) 

Where S1 is the coefficient of the Raman scattering and S2
 is the coefficient of the 

four wave mixing process. The measurement of single photon count per pulse, for 

2
21)( pumppumpis NSNSN 
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both signal and idler channel as a function of number of pump photon per pulse are 

depicted in Fig. 4.10 and Fig. 4.11. The dashed lines are the curve fitting using Eq. 

4.17. In the data presented in Fig. 4.10 and Fig. 4.11, the intrinsic detector dark count 

was subtracted from the single count measurement, thus every count registered 

indicates the detection of FWM photon or SRS photon. The difference in single 

photon counts per pulse between the signal and idler photon are mainly due to the 

unequal detection efficiencies for signal (4.99%) and idler channel (4.87%) in our 

experiment setup.  

 

Figure 4.10. A graph showing single photon counts per pulse of Signal (Blue dot) 
and Idler (Black square) photon as a function of number of pump photon per pulse 
when the HNLF is in room temperature (300 K). 
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Figure 4.11. A graph showing single photon counts (per pulse) of Signal (Blue dot) 
and Idler (Black square) photon as a function of number of pump photon per pulse 
when the HNLF is cooled to 77 K by immersing in liquid nitrogen.  

 

Comparing the plots in Fig. 4.10 and 4.11 for the HNLF in 300 K and 77 K, 

one can see that single photon count for both signal and idler decreased when the 

HNLF was cooled to 77 K. The decrease in single photon count at 77 K was mainly 

due to suppression of Raman photons at 77 K. In addition, the propagation loss of the 

HNLF was increased by 3 to 4 % when it is cooled to 77 K. 
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0.000012 for idler. It was observed that the ratio of S2 to S1 improved to about 9.6 

when the HNLF was cooled to 77 K, which means that most of the detection events 

resulted from the correlated photons generated from SFWM. The improvement of S2 

to S1 ratio is attributed to the suppression of Raman scattering at 77 K as discussed in 

section 4.4. 

4.7.2   Characterization of Correlated Photon Source 

I. Coincidence Count and Accidental-coincidence Count 

Measurement of total coincidence count and accidental-coincidence count through 

the histogram plot in Fig. 4.5 is carried out at different pump photon per pulse. The 

results of coincident count and accidental coincidence count as a function of number 

of pump photon per pulse with HNLF at 300 K and 77 K are shown in Fig. 4.12 and 

Fig. 4.13, respectively. Total coincidence count and accidental-coincidence count 

increased with increasing number of pump photon per pulse. It was attributed to fact 

that the generation of both correlated photon-pairs by SFWM and noise photons by 

Raman scattering increased with the number of total pump photons. The net 

coincidence count that represents the detections of correlated photon-pairs generated 

by SFWM was obtained by subtracting the accidental coincidence count from total 

coincidence count. 
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Figure 4.12. A plot of total coincidence counts (Blue dot) and accidental coincidence 
counts (Red diamond) as a function of number of pump photon per pulse with the 
HNLF in room temperature (300 K). 

 

Figure 4.13. A plot of total coincidence counts (Blue dot) and accidental coincidence 
counts (Red diamond) as a function of number of pump photon per pulse with the 
HNLF in 77 K. 
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Comparing the plots for the HNLF in 300 K and 77 K, total coincidence 

count and accidental-coincidence count decreased when the HNLF was cooled to 77 

K. Decrease in total coincidence count and accidental-coincidence count were mainly 

due to the suppression of Raman photon and additional propagation loss of the 

HNLF when it was cooled to 77 K. Nonlinear dependence of accidental coincident 

counts was observed at high pump photon number regime. This is contradicting with 

Raman scattering, which is linearly dependent on pump power. At high pump photon 

number, multiple photon pairs were generated and caused the nonlinear increase in 

accidental coincident count.  

The quality of the correlated photon source is determined by the purity of the 

correlated photon-pairs. It is important to determine the optimum ratio of the 

correlated photon-pairs (by SFWM) to the noise photons (Raman scattering). Hence, 

we use the data from Fig. 4.12 and Fig. 4.13 to plot out the coincidence count to 

accidental coincidence count ratio in next section.  

II. Coincidence to Accidental-coincidence Ratio 

Coincidence to accidental-coincidence ratio (CAR) plot was used as the figure of merit to 

determine purity of a photon-pair generated in a HNLF. Fig.4.14 shows the measurement of 

CAR for different number of pump photon per pulse at 300 K and 77 K. High CAR value 

means most of the recorded coincidence events arised from correlated photon-pairs by 

SFWM and Raman noise photons which induce accidental-coincidence are relatively 

limited.  
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Figure 4.14. Coincidence to accidental coincidence ratio (CAR) versus number of 
pump photon per pulse with HNLF at 300 K (Blue dot) and 77 K (Red triangle). 
 

Cooling the HNLF to 77 K significantly improved the CAR, indicating higher purity 

of correlated photon-pair was generated with lower temperature. Optimum CAR values of 

about 29 and 130 were obtained at 300 K and 77 K respectively, both with number of pump 

photons per pulse at about 7x107. This optimum phase condition was achieved with the 

pump, signal, and idler wavelengths that used in our experiment. The CAR value of 130 at 

77 K was significantly higher than the CAR value of 29 at 300 K.  

Using CAR plot, we determined the optimum condition for the generation of high 

purity correlated photon pair with 10 m long HNLF. The optimization studies of correlated 
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photon- pair will provide the cornerstone for polarization-entanglement experiments in next 

two sections.  

4.7.3   Characterization of Entangled Photon Source  

I.  Two-photon Interference 

For two photon interference (TPI) experiment, we created the polarization-entangled two 

photon state  

                                         |Ψା〉 ൌ ଵ

√ଶ
ሾ|ܪ௜ܪ௦〉 ൅ | ௜ܸ ௦ܸ〉ሿ                                        (4.18) 

as described in experimental setup section. The optimum number of pump photons per pulse 

was used as determined in last section for both horizontally and vertically polarized pump 

pulses. In this experiment, we set 1 = 0° (and later 1 = -45°) in signal channel and varied 2 

in idler channel, and recorded the coincidence counts for integration time of 68 s. The results 

of two-photon interference (TPI) measurements as a function of relative angle 2 - 1 with 

HNLF at 300 K and 77 K are shown in Fig. 4.15 and Fig. 4.16 respectively. 

The fidelity of the two-photon polarization-entangled state was examined by 

measuring the visibility of two-photon interference fringe of signal and idler photons. We 

defined the visibility as, 

                                           ௘ࣰ௡௧ ൌ
େେሺ೘ೌೣሻିେେሺ೘೔೙ሻ

େେሺ೘ೌೣሻାେେሺ೘೔೙ሻ
                                              (4.19) 

where CCሺ௠௔௫ሻ is the maximum coincidence and CCሺ௠௔௫ሻ is the minimum coincidence. 

When the HNLF was at 300 K, two-photon interference fringe with the visibility > 92% was 

observed. The visibility of TPI > 98% was obtained when HNLF was cooled to 77 K. 
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All these measurements were obtained without subtracting the accidental 

coincidence counts due to Raman or any background noise photons. Only detector 

dark counts were subtracted from the coincidence counts. The coincidence detection 

rate was mainly limited by the slow detection rate of the single photon detectors and 

coincidence detection system that was used in our experiment.  

 

 

Figure 4.15. Two-photon interference fringes with HNLF at 300 K with (i) θ1 = 0° 
(Blue dot) and (ii) θ1 = -45° (Red dot). The solid lines are the theoretical curve fitting. 
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Figure 4.16. Two-photon interference fringes with HNLF at 77 K (i) θ1 = 0° (Blue 
dot) and (ii) θ1 = -45° (Red dot). The solid lines are the theoretical curve fitting 

  

II.  Violation of CSHS Bell’s inequality 

Bell’s inequality violation test was performed to verify the non-locality behavior of 

the polarization-entangled photon pair generated in the HNLF. In our experiment, we 

prepared the polarization-entangled state  
ଵ

√ଶ
ሾ|ܪ௜ ௦ܸ〉 െ | ௜ܸܪ௦〉ሿ by inserting a QWP at 0° 

after HWP1. An additional of a HWP at 45° in signal channel rotates the polarization of 

signal photon from horizontal (vertical) to vertical (horizontal). Then, we measured the |S| 

parameter using Clauser, Horne, Shimony, and Holt (CSHS) form of Bell’s inequality, |S| ≤ 

2 [55]. CSHS form of Bell’s inequality provides the upper bound of |S| parameter 

measurement of local physical system as 2. A violation (|S| > 2) of this inequality implies 

that polarization-entangled photon pair generated in the HNLF does not behave locally. 
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Coincidence counts of 16 different combination analyzer settings with 1 = 0°, 1= -

45°, 1
= 90°, 1= 45°, and 2 = 67.5°, 2= 22.5°, 2

= -22.5, 2 = 112.5 were recorded 

for polarization-entangled state |ܪ௜ ௦ܸ〉 െ | ௜ܸܪ௦〉 with HNLF at both 300 K and 77 K. The 

measurement of Bell’s inequality violation with HNLF at 300 K and 77 K are shown in 

Table 4.1. At 300 K we obtained|S| = 2.267 ± 0.054 , which violates Bell’s inequality by 

close to 5 standard deviations. When the HNLF was cooled to 77 K,  |S| = 2.788 ± 0.064, the 

violation of Bell’s inequality by more than 12 standard deviations was observed. Larger 

violation of Bell’s inequality was observed at 77 K as the coincidences were mostly 

contributed from the non-locally correlated photon pair and not other noise photon. The 

standard deviation was derived from the Poisson statistic error of the single photon detection. 

Violation of Bell’s inequality attests that the polarization-entangled two-photon states 

generated in our experiment cannot be described by local hidden variable theory.  

 

Table 4.1 Violation of Bell’s inequality for entangled state |࢙ࢂ࢏ࡴ〉 െ  〈࢙ࡴ࢏ࢂ|
 
 

 

 

4.8 Discussions  

We demonstrated the generation of correlated and polarization-entangled photon pair 

at telecom wavelength via spontaneous four-waves mixing using a 10 m long highly 

nonlinear fiber in a counter propagating scheme.  

 

Temperature (K)                    |S|                      Violation 

           300                        2.267 ± 0.054              4.95   

            77                         2.788 ± 0.064              12.31   
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We observed coincidence to accidental coincidence ratio (CAR) of 29±3 at 

room temperature (300 K) and as high as 130±5 when the fiber is cooled to liquid-

nitrogen temperature (77 K). The improvement factor obtained in experiment is 

comparable to the theoretical value that we calculated based on the temperature 

dependence of Raman photon in section 4.4. The photon-pair production rates at 

these optimum CAR values are about 0.03 (300 K) and 0.02 (77 K) per pulse. They 

were higher than production rate obtained in 300 m long dispersion shifted fiber 

[120]. The trend observed for CAR measurements at both temperatures are similar to 

those obtained by different type of entangled photons sources [98, 121, 135]. Low 

CAR values at low pump photon number were due to non optimum phase matching 

condition. At high pump photon number, multi-photon pairs effect that aroused from 

generation of more than a photon-pair increased the accidental-coincidence count 

thus led to low CAR values.  

For the two photon interference experiment, we obtained two-photon interference 

fringe with the visibility > 92%  in HNLF at 300 K, while the visibility of TPI > 98% was 

observed when HNLF was cooled to 77 K. The lower visibility at 300 K is likely due to the 

contamination of Raman photons, which give rise to accidental coincidence counts. On the 

other hand, higher visibility at 77 K was primarily limited by the poor detection efficiencies 

of the detectors and the remaining background noise photons. The normalized coincidence 

count that we obtained in the two-photon interference experiment is equivalent to 

expectation value of two-photon detection for polarization-entangled states |Ψା〉. 
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Consider that the x-direction as horizontal component and y-direction as vertical 

component, the polarization-entangled two photon state can be written as, 

                         |Ψା〉 ൌ ଵ

√ଶ
ൣห1௦,௫, 0௦,௬, 1௜,௫, 0௜,௬〉 ൅ ห0௦,௫, 1௦,௬, 0௜,௫, 1௜,௬〉൧                     (4.20) 

where ห1௦,௫〉 denotes the state in which the signal photon is linearly polarized in x-direction 

(horizontal) and ห1௜,௬〉 denotes the state in which the idler photon is linearly polarized in y-

direction (vertical), etc. Given that the projection angle of polarization analyzers for signal 

and idler photon are ߠଵ and ߠଶwith respect to x-direction. After the polarization analyzers, 

the annihilation operators in x and y directions for signal and idler photon are given as [136], 

                                      aොଵ ൌ aො௦,௫ܿߠݏ݋ଵݔො ൅ aො௦,௬ߠ݊݅ݏଵ	ݕො,                                              (4.21) 

                                      aොଶ ൌ aො௜,௫ܿߠݏ݋ଶݔො ൅ aො௜,௬ߠ݊݅ݏଶ	ݕො .                                             (4.22) 

From Eqs. 4.20, 4.21 and 4.22, the probability signal and idler photon to be detected 

by of APD1 and APD2 are, 

                                         ଵ࣪ሺߠଵሻ ൌ αଵൻΨ
൅หaොଵ

றaොଵหΨ
൅ൿ ൌ ଵ

ଶ
αଵ,                                      (4.23) 

                                         ଶ࣪ሺߠଶሻ ൌ αଶൻΨ
൅หaොଶ

றaොଶหΨ
൅ൿ ൌ ଵ

ଶ
αଶ.                                     (4.24) 

Where, 1 and 2 are quantum efficiencies of APD1 and APD2. The joint probability 

that both signal and idler photon are detected by APD1 and APD2 with the projection 

angle of polarization analyzers at 1 and 2 are,  

  ଵ࣪ଶሺߠଵ, ଶሻߠ ൌ αଵαଶൻΨ
൅หaොଵ

றaොଶ
றaොଶaොଵหΨ

൅ൿ                                     

                  ൌ ଵ

ଶ
αଵαଶ cosଶሺߠଶ െ     ଵሻߠ

                                                               ∝ cos2ሺ2ߠ െ  1ሻ.                                               (4.25)ߠ
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Then, the joint probability of two-photon detection for polarization-entangled is dependent 

on the relative projection angle of two polarization analyzers at signal and idler channel. It 

can be predicted that maximum probability of the two-photon detection can be obtained at 

{ሺߠଶ െ ଶߠଵሻ= 0 and {ሺߠ െ  ଵሻ= 180}. Minimum probability of two-photon detection canߠ

be obtained at {ሺߠଶ െ  .ଵሻ= 90}. The two photon interference fringes obtained in the Figߠ

4.15 and Fig. 4.16 matches well with the theoretical prediction. 

We verified the non-locality of the polarization entangled photon pairs by 

observing the violation of Bell’s inequality by >12 standard deviations at 77 K and 

≈5 standard deviations at 300 K, respectively. The |S| parameter measured in our 

experiment is given by 

                          2),(),(),(),( '
2

'
12

'
1

'
2121   EEEES ,                        (4.26)  

),( 21 E is expressed as 

              ),(),(),(),(

),(),(),(),(
),(

21212121

21212121
21




 








RRRR

RRRR
E ,                   (4.27) 

where 902,12,1    and ),( 21 R  is the coincidence count that we measure in 

experiment when the analyzers projection angle set to 1,2 .  
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Chapter  5 

Photon-pairs Propagate Through Loss and 

Scattering Media4 

 

5.1 Overview 

In this chapter, we investigate the quantum correlation and interference of fiber based 

photon-pair at telecom wavelengths with one photon experiencing standard loss or 

multiple scattering in a random medium.  

 We will begin with a short introduction on motivation of our work in this 

chapter. Then we propose a model on the evolution of annihilation operator with one 

photon of the photon pair goes through multiple scattering in random medium, where 

the annihilation operators for signal photon propagates in normal channel aොଵand idler 

photon scattered through random media ( aොଶᇲ) are described in detail. Also, we going 

to introduce the operators associated with the coherent ሺaො୭ሻ and incoherent ሺcොሻ	part 

of the scattering process in random medium. 

                                                            
4 The material contained in this chapter has been submitted to Optics Letters. 
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In the following section, the joint probability of two-photon detection ଵ࣪ଶ ൌ

〈ψหaොଵ
றaොଶᇱ

ற aොଶᇱaොଵหψ〉 for both polarized polarization-correlated/-entangled photon pair 

will be explained in detail. We will disclose how the visibility of polarization-

entangled photon pair ( ௘ࣰ௡௧ ) and predicted visibility of polarization-correlated 

photon pair ( ௖ࣰ௢௥ ) are associated with the transmission amplitude 	࣮  and 

depolarization amplitude		ࣦ of the scattered photon in a random medium. ( ௖ࣰ௢௥) is 

the predicted visibility if the polarization-correlated photon pair is used to generate 

polarization-entangled state.  

Then, we describe the preparation of multiple scattering random media that 

were used in our experiment. The multiple scattering samples in a quartz cuvette are 

prepared by dispersing uniform polystyrene microspheres in oil suspension. In our 

experiment, oil suspension medium is used due to the high absorption of water in 

photon-pair’s wavelengths around 1.55 μm. Details of samples preparation by mixing 

the polystyrene microspheres in oil are described and physical properties of the all 

random media are tabulated in this section. 

Experiment setup for generation and detection of polarization-correlated/-

entangled photon-pair is the same as described in section 4.6. Therefore, in this 

section we focus on the description of experimental setup in sending one photon of 

the photon pair through a normal channel and the other photon experiencing standard 

loss or multiple scattering in a random medium. We measure joint probability of two-

photon detection that discussed in Section 5.4 by the means of coincidence detection. 
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In the coming section of experiment results, we first present results on the 

effect of standard loss on quantum correlation and interference of photon-pair. We 

obtain ௘ࣰ௡௧ and ௖ࣰ௢௥as a function of standard losses (1dB, 3dB and 5dB). We found 

that ௘ࣰ௡௧ and  ௖ࣰ௢௥ are decreasing in line with attenuation proves that standard loss in 

transmission channel. It is also observed that both polarization correlated and 

entangled photon pair are equally sensitive to the standard losses. For investigation 

on the scattering media, ௘ࣰ௡௧ and ௖ࣰ௢௥ as a function of mean free-path ൫ℓଵ,ଶ,ଷ,ସ	൯ of 

0.019 m, 0.010 m, 0.004 m, and 0.003 m are presented. We show that  ௘ࣰ௡௧ and ௖ࣰ௢௥ 

are decreasing with shorter scattering mean free path of the random media. In 

addition, our results prove that quantum correlation of polarization entangled photon 

pair is better preserved than polarization-correlated photon-pair as one photon of the 

photon-pair experiences random scattering process in the random medium. Then, we 

study the role of Raman photon in depolarization of the idler photon in scattering 

process, where our results evident that Raman noise photon in photon-pair source 

before entering a random medium will enhance the depolarization effect. 

5.2 Introduction 

Since its introduction by Bennett and Brassad in 1984 [12], quantum key distribution 

has attracted great interest among researchers. The prospect of secured 

communication based on laws of quantum mechanics spurs on its eccentric progress 

over the years. Correlated or entangled photon pair have been proposed and 
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extensively investigated as the information carriers for quantum key distribution [137, 

138].  

Despite the success of demonstrating entanglement based quantum key 

distribution over 100 km of fiber and 144 km of free space channel the practicality of 

using correlated or entangled photon pair for long distance or eventually global 

quantum key distribution (QKD) remained in doubt [30, 42]. For free space channel, 

question on the feasibility of global scale QKD arises due to major limitations such 

as atmospheric scattering, turbulence and propagation losses [32, 33]. On the other 

hand, linear propagation and connection loss with current optical fiber technology are 

limiting the fiber network distance for quantum key distribution. In short, it requires  

the quantum correlations to be preserved over the disturbances in transmission 

channel when separating the photon pair over large scale.  

Hence, explicit investigation on the propagation of the correlated or entangled 

photon pair through scattering medium and linear losses is a great interest from the 

perspective of fundamental quantum physics. It is also equally pivotal for the 

implementation of various entanglement based QKD. Various computational and 

theoretical studies have been carried out in order to provide insight on the effects of 

scattering medium and linear losses on the quantum correlation of photons [139, 140]. 

Recent theoretical treatments of quantum light and entanglement in the turbulent 

atmosphere did not include the depolarization effect of the scattered photon [141]. It 

is the goal of this work to describe an experimental study on the effect of scattering 

medium and standard loss on quantum correlation of correlated or entangled photon 
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pair. We experimentally investigated the propagation of polarization-correlated and 

polarization-entangled photon pair at telecom wavelength through a non-absorbing, 

multiple scattering random medium. In addition, we also measured the deterioration 

of quantum correlation of photon pair due to the linear optical attenuation in the 

transmission channel. In particular, our experimental setup was modeled in analogues 

to the entanglement based QKD demonstrated by other research groups, where one 

photon from the entangled pair was measured locally and second photon was sent via 

a transmission channel with loss or disturbances [30, 43]. Fiber based correlated and 

entangled photon sources at telecom wavelength was chosen due to its well defined 

spatial mode and excellent transmittance in both atmospheric channel and optical 

fiber for long distance distribution, storage and processing [142].    

5.3 Evolution of Annihilation Operator  

In the proposed model with one photon (idler) of the photon pair passed through the 

multiple scattering in random medium. The signal photon of the photon pair was 

propagating in the normal channel with negligible loss. 

When the idler photon scatters through a random medium, annihilation 

operator  ොܽ௜ of the idler photon will evolve into coherent and incoherent parts. The 

coherent part is associated with the operator aො୭ and incoherent part is associated with 

operator cො as shown in Fig 5.1. 
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Figure 5.1. A simple model for one photon of polarization-correlated/-entangled 
photon-pair propagating through a random medium, where annihilation operator  ොܽ௜ 
of the idler photon goes through coherent ሺaො୭ሻ  and incoherent ሺcොሻ	 part of the 
scattering process in random medium. 
 
 

The operator aො୭  corresponds to the ballistic photon that undergoes no 

depolarization. For a polarization-correlated photon, aො୭  is operator for the photon 

that will preserve the input of horizontally (vertically) polarized light. The 

polarization state change in the output light can be compensated by using a 

combination of a quarter-wave plate and a half-wave plate. For a polarization-

entangled photon, aො୭  is for the photon that will preserve no information of 

polarization state of the input photon. While cො  is noise annihilation operator 

corresponding to photon that undergoes depolarization. This operator accounts for 

incoherent part of the incoming photon through multiple scattering events in the 

random medium. Therefore, the operator cො  is for the photon that will undergo 

depolarization in the case of polarization-correlated photon; and for the photon that 

will experience decoherence in the case of polarization-entangled photon. For 

coherent component, the operator aො୭ is given as 

iâ ĉ Incoherent: depolarized photon

Coherent: polarized photonoâ
iâ ĉ Incoherent: decoherence of  

entangled photon

Coherent: preserve no 
information about polarizationoâ

Polarization-correlated photon

Polarization-entangled
Photon (no information about 
polarization)
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                                                  aො୭ ൌ ࣮aො௜,                                                  (5.1) 

where ࣮ is the transmission amplitude of the idler photon.  

The depolarization amplitude associated for operator cො is defined as  ࣦ ൌ ࣛ

ℓ
, 

where ℓ is scattering mean free-path of the random medium and ࣛ is depolarization 

constant in the unit of meter. The depolarization constant ࣛ  can be inferred from 

our experimental data which consists of depolarization photons and Raman noise 

photons.  

After pass through random medium, the output annihilation operator can be 

decomposed into orthogonal x-y polarization axis, given by 

                                          aොଶ୭ᇲ ൌ aොଶ௫ᇲݔො ൅ aොଶ௬ᇲݕො,                                        (5.2) 

Where “2” corresponds to the idler photon passed through channel 2. The 

annihilation operator in x and y axis including coherent and incoherent component 

are given as 

                                                         aොଶ௫ᇲ ൌ ௫࣮aො௜,௫ ൅ ࣦ௫cො ,                                       (5.3) 

                                                          aොଶ௬ᇲ ൌ ௬࣮aො௜,௬ ൅ ࣦ௬cො.                                       (5.4) 

The operator cො  is annihilation operator for depolarization which can be operated 

independent of polarization axis. For a homogenous random medium, the 

depolarization amplitude in the x-y polarization axis are equal and given as  
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                                                            ࣦ௫ ൌ ࣦ௬ ൌ
ଵ

√ଶ
ࣦ .                                          (5.5) 

Similarly the transmission amplitude in the x-y polarization axis are given by, 

                                                             ௫࣮ ൌ ௬࣮ ൌ
ଵ

√ଶ
࣮.                                           (5.6) 

Then the output annihilation operator in Eq. 5.2 can be written accordingly  

                               aොଶ୭ᇲ ൌ ൫ ௫࣮aො௜,௫ ൅ ࣦ௫cො൯ݔො ൅ ሺ ௬࣮aො௜,௬ ൅ ࣦ௬cොሻݕො                          

                                      ൌ ଵ

√ଶ
ൣ൫࣮aො௜,௫ ൅ ࣦcො൯ݔො ൅ ሺ࣮aො௜,௬ ൅ ࣦcොሻݕො൧.                             (5.7) 

Now, suppose a polarizer is placed after the random medium and inclined at 

projection angle 2 to project the scattered photon to the polarization state 

                                                  Ղො ൌ	 ොݔଶߠݏ݋ܿ ൅  ො.                                           (5.8)ݕଶߠ݊݅ݏ

 The photon annihilation operator after the polarizer becomes, 

                             aොଶᇱ ൌ aොଶ୭ᇲ ∙ Ղො ൌ ௫࣮aො௜,௫ܿߠݏ݋ଶ ൅ ௬࣮aො௜,௬ߠ݊݅ݏଶ ൅ ሺࣦ௫ ൅ ࣦ௬ሻcො          

                                             ൌ ଵ

√ଶ
ൣ࣮ሺaො௜,௫ܿߠݏ݋ଶ ൅ aො௜,௬ߠ݊݅ݏଶሻ ൅ ሺ2ࣦሻcො൧                  (5.9) 

The  cො  is not associated with ܿߠݏ݋ଶ and ߠ݊݅ݏଶ terms as the depolarization effect is 

independent of projection angle of the polarizer.  

As for the signal photon which is propagating in the normal channel with the 

assumption of experiencing negligible loss, the photon annihilation operator of the 

signal photon after a polarizer with the projection angle 1 is, 
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                                                     aොଵ ൌ aො௦,௫ܿߠݏ݋ଵݔො ൅ aො௦,௬ߠ݊݅ݏଵ	ݕො.                        (5.10) 

 

5.4 Joint Probability of Two-photon Detection 

Suppose two single photon detectors are placed after the polarizer at both the normal 

channel and scattering random medium channel. The joint probability two-photon 

detection can be written as [136], 

                                                        ଵ࣪ଶ ൌ 〈ψหaොଵ
றaොଶᇱ

ற aොଶᇱaොଵหψ〉                                 (5.11) 

where aොଵ and aොଶᇱare the photon annihilation operators for both channels and aොଵ
ற along 

with aොଶᇱ
ற  are the photon creation operators.  

5.4.1 Polarization-correlated Photon Pair 

The two-photon state of horizontally polarized polarization-correlated photon pair is 

given by  

                                            |Ψ௖௢௥〉 ൌ ห1௦,௫, 0௦,௬, 1௜,௫, 0௜,௬〉.                                    (5.12) 

Where xs,1  denotes the state in which the signal photon is linearly polarized in x-

direction (horizontal) and yi,1 denotes the state in which the idler photon is linearly 

polarized in y-direction (vertical), etc. 

The joint probability of two-photon detection for |Ψ௖௢௥〉 can be written as 
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                                              ୡ࣪୭୰ ൌ ൻΨ௖௢௥หaොଵ
றaොଶᇲ

ற aොଶᇲaොଵหΨ௖௢௥ൿ.                               (5.13) 

Suppose the polarizers in normal channel and scattering random medium channel are 

oriented at projection angle 1 and 2 with respect to horizontal axis. Then the joint 

probability Pୡ୭୰ can be obtained in term of 1 and 2 as, 

                              ୡ࣪୭୰ ൌ
࣮మ

ଶ
cosଶθଶcosଶθଵ ൅ 2ࣦଶ ൅ 2࣮ࣦcosθଶcosθଶ.               (5.14) 

The terms involving ࣦଶ and ࣮ࣦ are corresponding to contribution from noise photons 

in joint probability of two-photon detection.  

From experimental point of view, a coincidence count will be recorded when 

both APDs detected a photon at the same gated time interval. The accidental 

coincidence count is recorded when both APDs detected a photon at the adjacent 

gated time interval. By setting the polarizer projection angle 1=0° and 2=0°, the Eq. 

5.14 is reduced to 

                                                  ୡ࣪୭୰ ൌ
࣮మ

ଶ
൅ 2ࣦଶ ൅ 2࣮ࣦ.                                      (5.15) 

The Eq. 5.15 corresponds to the coincidences that recorded by the detection system, 

which is contributed by a photon-pair and depolarized noise photon. The terms 2ࣦଶ 

and 2࣮ࣦ are contributing to accidental coincidence which corresponds to depolarized 

noise photon. Hence the coincidence (ܥܥ) to accidental (	ܥܣ) ratio (ܴܣܥ) in given as  

ܴܣܥ                                                   ൌ ஼஼

஺஼
ൌ ࣮మାସࣦమାସ࣮ࣦ

ସࣦమାସ࣮ࣦ
.                                      (5.16) 
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In addition to the depolarization photon,  ࣦ contains the contribution from Raman 

noise photon in fiber based photon-pair source. The contribution of Raman noise 

photon in ࣦ was included in the CAR measurement. From the Eq. 5.16, we defined 

the visibility of the two-photon interference as  

                                                     ௖ࣰ௢௥ ൌ
஼஼ି஺஼

஼஼ା஺஼
ൌ ࣮మ

࣮మା଼ࣦమା଼࣮ࣦ
.                             (5.17) 

The accidental coincidence sets the limit for the achievable minimum visibility of the 

two-photon interference when correlated photons were used to generate entangled 

state. 

5.4.2 Polarization-entangled Photon pair 

The two-photon state of polarization-entangled photon pair can be written as  

                   |Ψ௘௡௧〉 ൌ
ଵ

√ଶ
ൣห1௦,௫, 0௦,௬, 1௜,௫, 0௜,௬〉 ൅ ห0௦,௫, 1௦,௬, 0௜,௫, 1௜,௬〉൧,                  (5.18) 

with the similar notation as described in previous section. 

The joint probability two-photon detection for |Ψ௘௡௧〉 is given as   

                                            ௘࣪௡௧ ൌ ൻΨ௘௡௧หaොଵ
றaොଶᇲ

ற aොଶᇲaොଵหΨ௘௡௧ൿ.                                 (5.19) 

Similarly, ௘࣪௡௧ can be written as a function of 1 and 2 as, 

                   ௘࣪௡௧ ൌ
ଵ

ଶ
ቂ࣮

మ

ଶ
cosଶሺθଶ െ θଵሻ ൅ 8ࣦଶ ൅ 4࣮ࣦ	cosሺθଶ െ θଵሻቃ.                 (5.20) 
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The ௘࣪௡௧  in Eq.5.20 is two-photon interference as a function of relative 

polarizer projection angleሺθଶ െ θଵሻ. P௘௡௧ contains two maximum interference points 

and one minimum interference point. ௘࣪௡௧at the first maximum point at ሼሺθଶ െ θଵሻ ൌ

0°ሽ and second maximum point at ሼሺθଶ െ θଵሻ ൌ 180°ሽ are given as 

                            ௘࣪௡௧ሺ௠௔௫ଵሻ ൌ ௘࣪௡௧ሺ஘మି஘భୀ଴°ሻ ൌ
ଵ

ଶ
ቂ࣮

మ

ଶ
൅ 8ࣦଶ ൅ 4࣮ࣦ	ቃ,               (5.21) 

                        ௘࣪௡௧ሺ௠௔௫ଶሻ ൌ ௘࣪௡௧ሺ஘మି஘భୀଵ଼଴°ሻ ൌ
ଵ

ଶ
ቂ࣮

మ

ଶ
൅ 8ࣦଶ െ 4࣮ࣦ	ቃ.                (5.22) 

The average of these two maximum points is obtained as 

࣪௘௡௧ሺ௠௔௫ሻ ൌ
௘࣪௡௧ሺ௠௔௫ଵሻ ൅ ௘࣪௡௧ሺ௠௔௫ଶሻ

2
 

                                                        ൌ ଵ

ଶ
ቂ࣮

మ

ଶ
൅ 8ࣦଶ	ቃ.                                              (5.23) 

The only minimum interference point is obtained at ሼሺθଶ െ θଵሻ ൌ 90°ሽ, with the joint 

probability given as  

                                      ௘࣪௡௧ሺ௠௜௡ሻ ൌ ௘࣪௡௧ሺ஘మି஘భୀଽ଴°ሻ ൌ 4ࣦଶ.                                (5.24) 

Consequently, we can calculate the visibility of the polarization-entangled two-

photon state as given by, 

                                                 ௘ࣰ௡௧ ൌ
࣪೐೙೟ሺ೘ೌೣሻି࣪೐೙೟ሺ೘೔೙ሻ

࣪೐೙೟ሺ೘ೌೣሻା࣪೐೙೟ሺ೘೔೙ሻ
                                     (5.25) 

                                                         ൌ
࣮మ

࣮మାଷଶࣦమ
.                                                   (5.26) 
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5.5 Multiple Scattering Random Media 

The multiple scattering random media are prepared by dispersing uniform 

polystyrene microspheres (Duke Standards) in plant oil suspension and kept in a 

quartz cuvette with thickness of 10 mm. The oil suspension was chosen instead of 

aqueous suspension due to the high absorption in water of 1.55 μm [143]. We used 

the plant oil instead of paraffin oil specific for Infrared (IR) spectroscopy as the 

density of plant oil (0.92 g/cm3) is closer to the density of the scatterer (1.05 g/cm3) 

[144-146]. Therefore, the scatterers suspended in plant oil will have close to neutral 

buoyancy and better homogeneity compared to paraffin oil. The refractive index of 

the oil and polystyrene microspheres are 1.47 and 1.59 respectively. We considered 

that the scatterers in oil suspension were isotropic and uncorrelated. 

The samples prepared in this work are in weak scattering regime, where the 

scattering mean free path is much larger than the wavelength of the photon [147]. 

The mean diameters (NIST traceable) of the polystyrene microspheres that were used 

in this work are 0.5 μm, 0.8 μm, 1.6 μm and 5.0 μm.  As the polystyrene 

microspheres are packaged in aqueous suspension, we dilute the desired amount of 

polystyrene microspheres in aqueous suspension with ethanol and evaporate all the 

liquid solution. Then, the remaining polystyrene microspheres were mixed with the 

oil. Before each measurement was made, the mixture was carefully stirred to ensure 

the polystyrene microspheres were well dispersed and avoid trapped air bubbles in 

the sample. The presence of trapped air bubbles will cause large fluctuation in photon 
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counting statistic, therefore induces significant uncertainty in the measurements. We 

used different scatterer diameters with different concentrations for changing the 

mean free-path while keeping the total loss of 3dB (including free space to fiber 

coupling loss). We explored bi-partite quantum correlation and interference with one 

of the photon-pair in the random medium and compare the results obtained from the 

standard loss of 3dB (neutral density filter). 

In order to achieve 3 dB loss for each samples, we prepare random media 

with concentration of 1.22×1014 m−3, 1.13×1014 m−3, 0.58×1014 m−3, and 0.08×1014 

m−3 for scatterers with diameters ൫߶ଵ,ଶ,ଷ,ସ	൯ of 0.5 μm, 0.8 μm, 1.6 μm and 5.0 μm 

Thess corresponds to the scattering mean free-path	൫ℓଵ,ଶ,ଷ,ସ	൯ of 0.019 m, 0.010 m, 

0.004 m, and 0.003 m, respectively. The full-width-half-maximum (FWHM) of the 

scattering angle for all samples was measured to be around 6°−7.4°. It is noted that 

the random medium with scatterer in smaller diameter tends to scatter light over 

broader angle than the larger one, and reduced the coupling efficiency from free 

space and fiber. In our experiment, the scattering polystyrene spheres in oil 

suspension, were subject to Brownian motion [148]. However, the statistical 

fluctuation due to the Brownian motion is negligible due to the long integration time 

of the single photon count and coincidence count. The properties of the random 

medium samples that prepared in our experiment are listed in Table 5.1.  
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Table 5.1 Properties of the random medium samples 

 Sample 1 Sample 2 Sample 3 Sample 4 

Scatter diameter (μm) 0.5 0.8 1.6 5 

Concentration(/m3) 1.22×1014 1.13×1014 0.58×1014 0.08×1014 

Mean free path (m) 0.019 0.010 0.004 0.003 

Scattering angle (°) 7.4 7.3 6.7 6.0 

 

5.6 Experiment Setup 

The correlated and polarization-entangled photon pair was created via spontaneous 

four wave mixing by adopting a compact counter propagating scheme (CPS) using 

10 m of highly nonlinear fiber (HNLF) as described in chapter 4.  

As shown in Fig. 5.2, the photon-pair emerging from the CPS was separated 

by cascaded dense wavelength division multiplexing (DWDM) filters with 1 nm 

bandwidth at 1560.6 nm (idler) and 1547.7 nm (signal), providing the pump pulse 

suppression of more than 100dB.  The insertion losses of cascaded DWDM for signal 

and idler bands were measured to be about 0.9dB each. The outputs photons from the 

signal channel were guided through the polarization analyzers consisting of a quarter-

wave plate, a half-wave plate and a polarizing beam splitter. The collimated idler 

photon was sent through similar setup with neutral density filter or random medium 

inserted before the PBS. The combination of a quarter-wave plate and a half-wave 
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plate was used to compensate for the birefringence of coherent component of the 

idler photon.  

Figure 5.2. Experiment setup for measuring CAR and two-photon interference of the 
signal photon in a normal channel and the idler photon experiencing multiple 
scattering events.  FC (fiber-to-free space collimators); PBS (polarization beam 
splitter); HWP and QWP (half- and quarter-wave plates); DWDM (dense wavelength 
division multiplexer); APD (Avalanche photodiode). 

 

We first prepared and measured the purity of polarization-

correlated/polarization-entangled photon-pair with attenuation in idler channel. We 

investigated the effect of standard loss on the photon-pair. In addition, we 

investigated the propagation of polarization-correlated/polarization-entangled photon 

pair through a multiple scattering random medium. The neutral density filter in idler 

channel was replaced with a random medium sample. Further details for the 

preparation of the polarization-correlated/polarization-entangled have been discussed 

in section 4.6.  
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The scattered photons emerging from the random medium were collected by 

fiber-to-free space collimators (NA=0.25), which were placed closely right after the 

PBS. Considering the effect of the constant loss on the quantum correlation of the 

photon pair, we made sure the attenuation (about 3 dB) of ballistic beam is almost 

similar for all scattering samples. The coupling efficiency of the fiber-to-free space 

collimator was included for attenuation measurement.  

Both signal and idler photons were detected by fiber coupled InGaAs/InP 

avalanche photodiodes operated in gated Geiger mode at room temperature.  

5.7 Results 

5.7.1 Standard Loss 

For the polarization-correlated photon-pair, we measured the Coincidence to 

accidental-coincidence ratio (CAR) with the idler photon propagating through the 

neutral density filter with attenuation of 1dB, 3dB and 5dB. In CAR measurement, 

the polarization analyzer was oriented so that the co-polarized (horizontally) signal 

and idler photons will pass through to APD1 and APD2. The error bars of the plots 

are derived from Poisson statistic error of the single photon detection. The intrinsic 

dark count of single photon detectors and its fluctuation contributed to the size of the 

error bar. 
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At different attenuations, we measured the CAR as a function of average 

pump power as shown in Fig. 5.3. The maximum CAR value for attenuation of 1dB, 

3dB and 5dB at idler channel were equal to 26, 23, and 16 respectively.  

 

Figure 5.3. The Coincidence to accidental coincidence ratio (CAR) versus pump 
power with different attenuations. (Green square = 1dB), (Blue diamond = 3dB) and 
(Red dot = 5dB). 

At higher standard loss, higher pump power was needed to achieve maximum 

CAR value. This is mainly because more photon counts were needed to compensate 

the loss and accumulate significant photon counts above the intrinsic dark count of 

single photon detectors. The predicted visibility of correlated photon pair for 

different standard losses can be calculated from CAR measurement and is given as,  

                                                        ௖ࣰ௢௥ ൌ
஼஼ି஺஼

஼஼ା஺஼
ൌ ஼஺ோ೘ೌೣିଵ

஼஺ோ೘ೌೣାଵ
                              (5.27) 

௖ࣰ௢௥ is the predicted visibility of two photon interference when the correlated photon 

pair was used to generate polarization-entangled state. The ௖ࣰ௢௥ of correlated photon-
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pair for attenuation of 1dB, 3dB and 5dB in idler channel were calculated to be 

92.6%, 91.4% and 88.2% as depicted in Fig. 5.4. The observed decreasing maximum 

CAR value as a function of attenuation is shown in Fig. 5.4. It proves that standard 

loss in transmission channel degrades the quality of correlated photon pair. 

 
Figure 5.4. The measured CAR estimates visibility (Blue box) and maximum CAR 
(Solid circle) as a function of standard loss. 

We then prepared the polarization entangled state |Ψ௘௡௧〉 ൌ
ଵ

√ଶ
ሾ|ܪ௜ܪ௦〉 ൅

| ௜ܸ ௦ܸ〉ሿ  and measured the two-photon interference (TPI) as a function of relative 

analyzer polarization angle of signal-idler photons. A typical two-photon interference 

plot as a function of relative analyzer polarization angle is shown in Fig. 5.5. For 

polarization-entangled photon pair, TPI’s visibility is defined by  

                                            ௘ࣰ௡௧ ൌ
஼஼೘ೌೣି஼஼೘೔೙

஼஼೘ೌೣା஼஼೘೔೙
                                             (5.28) 

where ܥܥ௠௔௫ is maximum coincidence and ܥܥ௠௜௡ is the minimum coincidence in the 

TPI plot.  
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Figure 5.5. Two-photon interference fringes as a function of analyzer relative angle 
for the standard loss of 5 dB with HNLF at 300 K. (Blue dot) and (ii) θ1 = -45° (Red 
dot). The solid lines are the theoretical curve fitting. 
 
 

The measured visibility for polarization entangled photon pair ௘ࣰ௡௧  for 

attenuation of 1dB, 3dB and 5dB were 93.3%, 91.8% and 89.1%, respectively. We 

found that ௘ࣰ௡௧ and  ௖ࣰ௢௥ are in good agreement for each attenuation. This implies 

that quantum correlation and interference for both polarization correlated and 

entangled photon pair are equally sensitive to the standard losses in transmission 

channel. 
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Figure 5.6. The measured two-photon interference visibility ௘ࣰ௡௧ (Red box) and 
predicted visibility ௖ࣰ௢௥	(Solid circle) versus standard losses. 

 

5.7.2 Multiple Scattering Random Media  

We used the photon-pair generated in the HNLF at room temperature for exploring 

depolarization effect on the photon-pair. First, we measured CAR value as a function 

of pump power for different scattering mean free-paths for the horizontal 

polarization-correlated photon-pair with the idler photon scattering through the 

samples.  Results of CAR measurement is shown in Fig.5.7. We obtained maximum 

CAR values of 20.3, 19.8, 18.3 and 16.9 for the mean free-path of path	൫ℓଵ,ଶ,ଷ,ସ	൯ of 

0.019 m, 0.010 m, 0.004 m, and 0.003 respectively. The maximum CAR values 

decreased as the idler photon propagated through a random medium with shorter 

scattering mean free-path and experienced more scattering events. When neutral 

density filter was used at attenuation, we obtained CAR value of about 23 for a 

standard loss of 3dB, which was higher than the CAR values obtained with multiple 

scattering random media. This could be predicted from the Eq. 5.6. The CAR values 
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with random media was lower than the CAR values obtained with standard loss 

(where the L = 0). We plotted the predicted visibility  ௖ࣰ௢௥ as a function of mean free 

path obtained from the CAR measurement in Fig. 5.8. In addition to the detection 

system, the Brownian motion of the random media caused the fluctuation in single 

photon counts and contributed to the size of error bars. 

 

Figure 5.7. The Coincidence to accidental coincidence ratio (CAR) of correlated 
photon pair versus pump power for different scattering mean free path. (Black circle, 
ℓ = 0.010 m)(Green diamond, ℓ = 0.010 m), (Blue dot ℓ =0.004 m) and (Red box ℓ 
=0.004 m).  
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Figure 5.8. The predicted visibility for correlated photon pair,  ௖ࣰ௢௥ as a function of 
scattering mean free path. 

 

Next, we measured two-photon interference of the polarization-entangled 

photon pair with the idler photon scattered by a random medium. The two-photon 

interference plot for the random media of ℓ = 0.019m is shown in Fig.5.10. We fitted 

the two-photon interference fringe with the Eq. 5.20 (shown as the dotted line). Two 

maxima conditions ሼሺθଶ െ θଵሻ ൌ 0°, 180°ሽ  fall within in the error bars of our 

experimental data. We then obtained the ௘ࣰ௡௧, or the average visibility as discussed 

in Eq. 5.26. We repeated the measurement of two-photon interference for all samples 

and plot the visibility as a function of scattering mean free-path in Fig.5.10. Similar 

to the ௖ࣰ௢௥, it was observed that ௘ࣰ௡௧ was increasing with the scattering mean free 

path of the random media.  
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Figure 5.9. The ௘ࣰ௡௧ (Red dot) versus scattering mean free path. 

 
Figure 5.10. Two-photon interference fringes (Blue square) as a function of relative 

polarization angle, the dotted red line are curve fitting. Coincidence counts was 

accumulated for 68 seconds. 
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5.7.3 Influence of Raman photons in Fiber Source 

In order to identify and separate the Raman photon from the noise photon induced by 

depolarization of the idler photon, we reduced the Raman photon by cooling the 

HNLF to 77 K. To identify and separate the Raman photon, we analyzed CAR 

measurement for the standard loss of 3dB and the scattering medium (ℓ = 0.019 m, ߶ 

= 0.5 μm) with the HNLF source at 300 K and 77 K. In this experiment, similar 

average pump power of 0.5 mW was used. 

For the standard loss of 3dB and average pump power of 0.5 mW, the 

CAR3dB values were 14.1 (300 K) and 56.5 (77 K). For the scattering medium (ℓ = 

0.019 m, ߶  = 0.5μm), the CARRM values were 12.8 (300 K) and 48.4 (77 K) 

respectively. Comparing the CAR values obtained for the 3dB standard loss and 

scattering medium (ℓ = 0.019 m, ߶ 1 = 0.5 μm) with HNLF at 300 K, the CAR value 

reduced to, 

ሺܴܣܥଷௗ஻ሻଷ଴଴	௄ െ ሺܴܣܥோெሻଷ଴଴	௄ ൌ 14.1 െ 12.8 

                           ൌ 1.3.           

 The reduction in CAR value in scattering medium is mainly due to 

depolarization noise photon in scattering as amount of Raman photons remain the 

same for both cases.. Similarly, when the HNLF in 77 K the CAR reduced to 

ሺܴܣܥଷௗ஻ሻ଻଻	௄ െ ሺܴܣܥோெሻ଻଻	௄ ൌ 56.5 െ 48.4 
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                                                                      ൌ 8.1 

One can see that the reduction in CAR is about 8.0 with the HNLF at 77 K.  

From the results that were obtained at both temperatures, we investigated the 

contribution of Raman photon and depolarization photon on CAR values in more 

detail. We denote the contribution of Raman noise photon by substitute “1” and 

denote the contribution of the depolarization photon as		 ଵࣲ . The reduction of the 

CAR value for the scattering medium compared to standard loss can be written as,  

                                              ሺܴܣܥோெሻ ൌ
ሺ஼஺ோయ೏ಳሻ

ଵାࣲభ
.                                    (5.29) 

From the CAR value measurement with HNLF at 300 K, the Eq. 5.29 is equal 

to  

                 ሺܴܣܥோெሻଷ଴଴	௄ ൌ
ሺ஼஺ோయ೏ಳሻయబబ	಼

ଵାࣲభ
ൌ ଵସ.ଵ

ଵାࣲభ
ൌ 12.8,                         (5.30) 

where we can solve for 		 ଵࣲ ൌ 0.1. The contribution of depolarization noise photon 

was about 10 times smaller than the Raman photon. When the HNLF was cooled to 

77 K, the Raman photons were reduced by a factor of 4 [98, 131]. On the other hand, 

the contribution of depolarization noise photon was expected to remain the same. 

Substituting the CAR results with HNLF at 77 K into Eq. 5.29 one obtains 

                   ሺܴܣܥோெሻ଻଻	௄ ൌ
ሺ஼஺ோయ೏ಳሻళళ	಼

ଵାࣲభ
ᇲ ൌ ହ଺.ହ

ଵାࣲభ
ᇲ ൌ 48.4,                          (5.31) 

where, ଵࣲ
ᇱ ൌ 0.04, which indicates contribution of depolarization photon is reduced 

as well. The presence of Raman noise photon in photon-pair source before entering a 
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random medium enhanced the depolarization effect. Comparing ଵࣲ
ᇱ and 		 ଵࣲ, we can 

calculate the reduction factor of the depolarization photon at 77 K as , 

ଵࣲ

ଵࣲ
ᇱ ൌ 2.4 

Our observation proved that the purity of the photon-pair source plays an important 

role in increasing and decreasing depolarization effect by scattering process.  

5.8 Discussions 

The ௘ࣰ௡௧ and ௖ࣰ௢௥ as a function of mean free path are plotted in Fig. 5.11. 

First, we observed that TPI’s visibility ௘ࣰ௡௧ is better than the visibility ௖ࣰ௢௥ obtained 

from the CAR measurement. Also shown in Fig. 5.11 is TPI’s visibility of 91.8% for 

a standard loss of 3dB, which is higher than both ௖ࣰ௢௥  and ௘ࣰ௡௧ . This is in 

conjunction to the observation in standard loss as shown in Fig. 5.7, where the CAR 

estimate visibility agrees with the measured TPI’s visibility. The fitting curves of the 

visibility ௖ࣰ௢௥  and ௘ࣰ௡௧  are obtained from Eq. 5.17 and Eq. 5.26, respectively. 

Quantum correlation of polarization entangled photon pair was better preserved than 

polarization-correlated photon-pair as one of the photon-pair experiences random 

scattering process in the random medium. From the fitting of Eq. 5.17 and Eq. 5.26, 

we obtained the average of transmission amplitude  ࣮ = 0.77 i.e. ࣮ଶ = 0.6. With the 

approximation 80% of photons were coupled into the fiber, we have 0.8×0.6 = 0.48, 

which is close to 3dB loss that we claimed for all samples. 
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Figure 5.11. The ௘ࣰ௡௧  (Blue square) and ௖ࣰ௢௥ (Red dot) versus mean free path, the 

solid lines are fitting curves for ௘ࣰ௡௧  and 	 ௖ࣰ௢௥ . The dashed line is the visibility 

measured with 3dB standard loss. 

 

With the similar average pump power of 0.5 mW and the HNLF at 300 K, we 

have had the CARRM values of 11.5 (ℓଶ=0.010 m), 11.1 (ℓଷ=0.004 m) and 9.5 (ℓସ 

=0.003 m). Using the standard loss of 3dB with the CAR3dB=14.1 and CARRM for 

ℓଶ,ଷ,ସ, we calculated 	 ଶࣲ,ଷ,ସ	for each sample by using equation 

                                ሺܴܣܥோெሻ ൌ
ሺ஼஺ோయ೏ಳሻ

ଵା ೔ࣲ
, ሺ݅ ൌ 1,2,3,4ሻ.                          (5.32) 

We obtained 	 ଶࣲ ൌ 	0.22, ଷࣲ ൌ 	0.28 and 	 ସࣲ ൌ 	0.48 . 	 ௜ࣲ , the ratio of depolarized 

photon to Raman photon was higher with the sample of shorter mean free path (more 

scattering events). 
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Since all measurements have the contributions from Raman noise photon and 

depolarization noise photon, we denote the experimentally measured noise amplitude 

as		ࣦᇱ,  

                                            ࣦ → ࣦᇱ,                                                           (5.33) 

                                       ࣦᇱଶ ൌ ࣬ଶ ൅ ࣦୢ
ଶ.                                                   (5.34) 

Where ࣬  and ࣦୢ  are the strength of noise amplitudes for Raman photon and 

depolarization photon in the random medium.  Since the ratio of depolarization 

photon to Raman noise photon was obtained in Eq. 5.30. We can express the noise 

amplitude for depolarization photon as 

                                                     	ࣦୢభ ൌ ඥ ଵࣲ࣬,                                                    (5.35) 

and use the Eq.  5.35 to substitute ࣬ in Eq. 5.34 to obtain 

                                               ࣦᇱଶ ൌ ቀ1 ൅ ଵ

ࣲభ
ቁ ࣦୢభ

ଶ .                                                 (5.36) 

From the fitting curves in Fig. 5.12, where ࣦ ൌ 	ࣛᇲ

ℓ
 , we obtained the 

experimentally measured depolarization coefficient	ࣛᇱ ൌ ࣦଵ,ଶ,ଷ,ସ
ᇱ ℓଵ,ଶ,ଷ,ସ ൌ 0.0003	m. 

We then extract the depolarization constant associated with the noise operator		cො, 

which is originated from the multiple scattering for the sample with scatter diameter 

(ℓ = 0.019m, ߶ = 0.5μm) given as  

                                                         	ࣛଵ ൌ 	ࣦୢభℓଵ                                                 (5.37) 
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Substituting 	ࣦୢభin Eq. 5.36 and		ℓଵ ൌ
	ࣛᇲ

ࣦᇲ
, we get 

                                                   	ࣛଵ ൌ
ࣦᇲ

ටଵା
భ
ࣲభ

∙ 	ࣛ
ᇲ

ࣦᇲ
                                          

                                                         ൌ ࣛᇲ

ටଵା
భ
ࣲభ

ൌ 9.0 ൈ 10ିହm                               (5.38) 

Now with the 	ࣛଵ ൌ 9.0 ൈ 10ିହm, we can also calculate 	ࣦୢభ ൌ 0.0047 from Eq. 

5.37.  

Similarly, we can obtain 	ࣛଶ ൌ 12.0 ൈ 10ିହm , ࣛଷ ൌ 14.0 ൈ 10ିହm , and 

ࣛସ ൌ 17.0 ൈ 10ିହm, for the scattering mean free-path ℓଶ,ଷ,ସ corresponding to the 

depolarization amplitude of 	ࣦୢమ ൌ 0.012 , 	ࣦୢయ ൌ 0.035 , and 	ࣦୢర ൌ 0.056 , 

respectively. Our results showed that the idler photon is less depolarized in the 

medium with larger scattering mean free-path (fewer scattering events). 

Table 5.2 Summary of the results for the scattering random media.  

 Sample 1 
(0.5 μm) 

Sample 2 
(0.8 μm) 

Sample 3 
(1.6 μm) 

Sample 4 
(5.0 μm) 

               ℓ		(m) 0.019 0.010 0.004 0.003 

 ௘ࣰ௡௧ (%) 88.4 87.8 81.7 77.9 

௖ࣰ௢௥ (%) 82.2 80.0 75.2 73.1 

Maximum CAR 20.3 19.8 18.3 16.9 

௜ࣲ 0.1 0.22 0.28 0.48 

                 ࣛ୧ (m) 9x10
-5

 1.2x10
-4

 1.4x10
-4

 1.7x10
-4

 

	ࣦୢ೔ 0.0047 0.012 0.035 0.056 
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Chapter  6 

Summary and Outlook 
 

In this dissertation, we have explored quantum correlations of single photons, 

weak coherent states, and polarization-correlated/-entangled photons in macroscopic 

environments. This included: macroscopic mirrors, spatially separated observers, 

noisy photons sources and propagation medium with loss or disturbances. 

 In chapter 2, we proposed a measurement scheme for observing quantum 

correlations and entanglement. The experiment measured spatial properties of two 

macroscopic mirrors using single photons spatial compass states. Two spatial 

versions of compass states were generated by single photons in a simple 

interferometer. The single photons were in single Gaussian mode. Wave-particle 

duality characteristic of the Wigner function was used to characterize spatial compass 

state in phase space. The chessboard pattern of spatial compass states determined the 

sensitivity for measuring the displacement and tilt of the mirrors. The proposed 

imaging system could measure displacement and tilt correlations of two mirrors 

under real experimental condition. A single photon detector and a squarer were 

needed to measure the interference of two spatial compass states, and then obtain the 

propensity	 ௕࣪. One of the compass states operates as detected state and another one 
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as filtering state. Variances in position and momentum of the proposed imaging 

system were calculated. The EPR entanglement regions were visualized in propensity 

plot. In addition, we formulated the discrete-like properties of the 

propensity 	 ௕࣪൫	݀௫, ݀௣൯ , where the correlation spots were identified by a pair of 

discrete numberሺ݉, ݊ሻ. The discrete correlation spots in ௕࣪ሺ݉, ݊ሻ	can be used to 

explore environmental perturbed quantum jumps of the EPR correlations in phase 

space.  

Our results showed that variances in position and momentum are much 

smaller than standard quantum limit when using a Gaussian TEM00 beam [90]. The 

potential application of the proposed imaging system could be quantum-enhanced 

metrology for macroscopic objects, such as the test mass for graviton detection. In 

addition, the proposed imaging system can be used to observe macroscopic 

entanglement. We can cool one mirror and use it as a reference for the other mirror 

that is coupled to ambient environment. Then propensity ௕࣪൫	݀௫, ݀௣൯ measurement 

can be used to determine whether the mirrors correlation satisfies the EPR criterion 

for entanglement. Since the propensity ௕࣪	can be discretized and formulated in finite-

dimensional Hilbert space, correlation spots are potentially useful for demonstrating 

discrete phase-space quantum computing and information processing. 

In chapter 3, we investigated intrinsic quantum correlations of weak coherent 

states. We demonstrated a proof of principle experiment in utilizing intrinsic 

quantum correlations of weak coherent states for quantum communication. In this 

work, we employed a weak local oscillator field to extract intrinsic correlations of 
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weak coherent states between two parties using a balanced homodyne measurement. 

We implemented four types of bipartite correlation functions between two distant 

observers separated by 10 km optical fiber. The bipartite correlations between two 

observers were obtained by the product of interference signals measured by both 

observers. Our results revealed that information of the interference signal will be 

protected by the large quantum phase fluctuation. It is associated with low mean 

photon number fluctuation of weak coherent state. For practical quantum key 

distribution, we demonstrated bits correlations measurement of each bipartite 

correlation at detectors A and B. The lock-in amplifier was used to measure 

quadrature phase of weak coherent state. Then, positive (negative) value of measured 

quadrature signal was encoded as keys/bits ‘1’ (‘0’), respectively. Every bit 

measurement can be the raw quantum key shared by both observers. 

The realization of intrinsic quantum correlation of weak coherent state can be 

a stepping stone toward linear-optics quantum computing with weak coherent states. 

The proposed scheme can be used as a supplement to the existence decoy-state 

Bennett-Brassard 1984 protocol and differential phase-shift quantum key distribution 

(DPS-QKD) protocol. The interference signal of weak coherent states and local 

oscillator was concealed by quantum phase fluctuations. This could add another 

physical layer of security to these protocols. However, intrinsic correlation of weak 

coherent states does not exhibit nonlocality as compared to entangled-photon source. 

Therefore, classical amplification of optical signal using current available technology 

such as optical amplifier can easily extends the range of quantum key transmission 
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[149].  Another important feature of our scheme is that only linear optics was 

required to establish the correlations between two observers. Hence, it is possible to 

implement the proposed scheme with integrated photonics circuit [150].  

In chapter 4, we explored quantum correlation and entanglement of photon-

pairs that exhibit quantum nonlocality. Generation of correlated and polarization-

entangled photon pair at telecom wavelength using highly nonlinear fiber (HNLF) 

was demonstrated. We used counter propagating scheme to generate correlated and 

entangled photon pair in this work. We obtained optimum coincidence to accidental-

coincidence ratio (CAR) with 7x107 photons per pump pulse. We observed CAR of 

29 3 at 300 K and as high as 130 5 at 77 K. For characterization of polarization-

entangled photon source, we prepared the polarization-entangled two photon state

 
sisi VVHH ||

2

1
|  and measured two-photon interference (TPI) visibility. 

When the HNLF was at 300 K (77 K), TPI visibility >92% (>98%) was observed. 

Photon-pair production rate about factor 3(2) higher than using a 300 m dispersion-

shifted fiber was observed. Excellent visibility and high photon pair production rate 

are two crucial factors for the application of quantum key distribution. Later on, we 

proved the non-local behavior of polarization-entangled photon pair by violating 

Clauser-Horne-Shimony-Holt (CHSH) Bell’s inequality. At 300 K, Bell’s inequality 

was violated by close to 5 standard deviations; while violation of Bell’s inequality by 

more than 12 standard deviations was observed when the HNLF was cooled to 77 K.  
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Direct generation of entangled photon-pairs in HNLF has pointed to the great 

potential of global scale entanglement based quantum communication. This is due to 

its inherent compatibility with existing fiber-optics technologies for long-distance 

transmission, storage, and processing. Another interesting experiment to perform 

with HNLF would be the generation of broadband polarization-correlated and 

entangled photon-pair at telecom wavelengths. Our preliminary study showed that 

the 10 m long HNLF has the potential as an ultra broadband entangled photons 

source. The experimental setup to generate broadband entangled photons is similar to 

the setup in Fig. 4.8. However, multiple-pairs of cascaded DWDM filters are needed 

to fully utilize all the photon-pair at different wavelengths. So far, studies on telecom 

wavelengths entangled photon-pair sources are limited to narrowband operation. 

Broadband source of telecom wavelengths entangled photon-pairs for wavelength 

division multiplexing entanglement distribution will be a breakthrough in realizing 

multi-user quantum network. Short HNLF can cover up to 200 nm in wavelength, 

which is better than current available entangled photon source [133]. One of the 

limitation to achieve better performance is Raman scattering in HNLF [130]. We 

propose to investigate the Raman gain of HNLF for small detuning on both Stokes 

and anti-Stokes side of pump wavelength by using photon counting technique. The 

experiment can be carried out by using the CPS scheme that is shown in Fig. 4.8. The 

cascaded DWDM filters of the signal and idler photon being replaced with cascaded 

tunable optical filters. Both co-polarized and cross-polarized Raman gain at small 

detuning will be measured. Raman gain at different temperatures (300 K and 77 K) 

can be measured to study the temperature dependence of Raman scattering at 
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different detuning wavelength. The results from this work will provide information 

on the intrinsic photon noise of the HNLF based entangled photon source. 

In chapter 5, we investigated the quantum correlation and interference of fiber 

based photon-pair (Signal and Idler) at telecom wavelengths. One photon of a photon 

pair experienced standard loss or multiple scattering in a random medium. We 

proposed a semi-empirical model, where the depolarization amplitude 	ࣦ  was 

included in the annihilation operator for idler photon that scattered through random 

medium. We derived the joint probability of two-photon detection ଵ࣪ଶ ൌ

〈: aොଵ
றaොଶ′

ற aොଶ′aොଵ: 〉  for both polarization-correlated/-entangled two-photon state. We 

discussed on how the visibilities, ௘ࣰ௡௧  and ௖ࣰ௢௥  were associated with transmission 

amplitude 	࣮ and depolarization amplitude		ࣦ of scattered photon in random medium. 

In our experiment, we measured joint probability of two-photon by the means of 

coincidence detection. We found that ௘ࣰ௡௧ and  ௖ࣰ௢௥ were decreasing as a function of 

attenuation; this proved that standard loss in transmission channel was degrading 

quantum correlation of the photon pair. As loss is almost inevitable, the development 

of quantum repeater in telecommunication wavelength is likely to hold the key for 

long distance quantum communication [151]. Furthermore, we observed that ௘ࣰ௡௧ 

and ௖ࣰ௢௥ were decreasing with shorter scattering mean free path of the random media. 

Our results also proved that quantum correlation of polarization entangled photon 

pair is better preserved than polarization-correlated photon-pair. Therefore, entangled 

photon pair will be a better candidate for free space long distance quantum key 

distribution compared to correlated photon-pairs. Our results also showed that 
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Raman photon noise will contribute to the depolarization effect in scattering process, 

thus increase the accidental coincidence count. Hence, the purity of two-photon state 

is crucial for entanglement based QKD such as Eckert 91 protocol.  
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Appendix A 

Fourier Transform  

 
 

For two spatially separated TEM00 beam with a distance about 2ܽ between them, the 

wave function can be written as 

                                      ߰ሺݔሻ ∝ exp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ.                          (A.1) 

Given that spatial wave function ߰ሺݔሻ	propagates through a lens with focal length f , 

the ߰ሺݔሻ in spatial domain can be transformed in to spatial frequency domain by, 

                                               ߰ሺ݌ሻ ∝ ׬  (A.2)                                    .	ݔሻ݀ݔሻ߰ሺݔ݌ሺ݅݌ݔ݁

Substituting the ߰ሺݔሻ in Eq. (A.1) into Eq. (A.2), the wave function can be expressed 

in spatial frequency domain as, 

                     ߰ሺ݌ሻ ∝ ׬ ሻݔ݌ሺ݅݌ݔ݁ ቄexp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃቅ  (A.3)                .ݔ݀

By using  ݁݌ݔሺ݅ݔ݌ሻ ൌ cosሺݔ݌ሻ ൅ ݅ sinሺݔ݌ሻ and given that the integration involving 

the term ݅ sinሺݔ݌ሻ amounts to zero, we can rewrite the above equation as, 

      ߰ሺ݌ሻ ∝ ׬ cosሺݔ݌ሻ ቄexp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃቅ ݔ݀ ൅ ׬ cosሺݔ݌ሻ ቄexp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃቅ  (A.4)       .ݔ݀
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By using the variables transformation, ݔᇱ ൌ ݔ ൅ ܽ and ݔᇱ ൌ ݔ െ ܽ for the first and 

second term in Eq. (A.4) respectively, we rewrite the equation as 

߰ሺ݌ሻ ∝ නcosሺݔ݌ᇱ െ ሻܽ݌ ቊexp ቈെ
ᇱଶݔ

௔ଶߪ2
቉ቋ  ᇱݔ݀

                                          ൅׬cos൫ݔ݌ᇱ െ ሺെܽ݌ሻ൯ ൜exp ൤െ ௫ᇲ
మ

ଶఙೌ
మ൨ൠ ݔ݀

ᇱ.                    (A.5) 

By applying the following trigonometry identities 

                      cosሺݔ݌ᇱ െ ሻܽ݌ ൌ cosሺݔ݌ᇱሻ cosሺܽ݌ሻ ൅ sinሺݔ݌ᇱሻ sinሺܽ݌ሻ,                (A.6) 

             cos൫ݔ݌ᇱ െ ሺെܽ݌ሻ൯ ൌ cosሺݔ݌ᇱሻ cosሺെܽ݌ሻ ൅ sinሺݔ݌ᇱሻ sinሺെܽ݌ሻ,            (A.7) 

                                                  cosሺെܽ݌ሻ ൌ cosሺܽ݌ሻ,                                           (A.8) 

and again considering integrations involving the term sinሺݔ݌ᇱሻ yield to zero, the 

equation Eq. (A.4) can be expressed as, 

߰ሺ݌ሻ ∝ cosሺܽ݌ሻන cosሺݔ݌ᇱሻ ቊexp ቈെ
ᇱଶݔ

௔ଶߪ2
቉ቋ  ᇱݔ݀

                                          ൅cosሺܽ݌ሻ ׬ cosሺݔ݌ᇱሻ ൜exp ൤െ
௫ᇲ

మ

ଶఙೌ
మ൨ൠ ݔ݀

ᇱ.                      (A.9) 

Finally by integrating over the	ݔᇱ, we obtain 

                                                          ߰ሺ݌ሻ ∝ exp ቂെ ௣మఙೌమ

ଶ
ቃ cosሺܽ݌ሻ.                     (A.10)    

By substituting  
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݌ ൌ
ݔ݇
݂
, ௣ܦ ൌ

݇ܽ
݂
, ௕ߪ

ଶ ൌ
݂ଶ

2݇ଶߪ௔ଶ
,where		݇ ൌ

ߨ2
ߣ

 

into Eq. (A.10),  We can express ߰ሺ݌ሻ in spatial coordinate ݔ as, 

                                          ߰ሺݔሻ ∝ exp ൤െ ௫మ

ଶఙ್
మ൨ cos൫ܦݔ௣൯.                                    (A.11) 
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Appendix B 

Relation of Compass States and Beat signal 
 

To enhance the probability of measuring spatial compass states at center of the 

chessboard of propensity, we use an imaging system (L1,L2) for collecting the whole 

spatial compass states ⊙ଵ,ଶ into a single-photon detector. Then, we can selectively 

projecting the position and momentum of the center spot into the detector. The 

detector measures the convolution of these spatial compass states as a function of the 

relative displacement ݀௫ , and momentum or tilt ݌ߜ ൌ
௞ௗ೛
௙

; where ݀௣  is the 

displacement associated with the tilt of the lenses M1 and M2 as depicted in Fig. B.1. 

The interference signal is directly proportional to the convolution (overlap) of 

Wigner distribution for spatial compass states ⊙ଵ,ଶ at the input lens L1,L2 of imaging 

system. The amplitude of  ஻ܸ can be determined by the spatial overlap of the ⊙ଵ,ଶ at 

the detector plane ܼ ൌ ऊ஽, which is given as, 

                  						 ஻ܸ ∝ ᇱݔ݀׬ ⊙ଶ ሺݔᇱ, ऊ஽ሻ ⊙ଵ
∗ ሺݔᇱ, ऊ஽ሻ.                                (B.1) 

Where ݔᇱ  is the transverse position in detector plane. Translating the M2 by a 

distance		݀௫, the compass state has shifted accordingly to give, 

                  ஻ܸ ∝ ׬ ᇱݔ݀ ⊙ଶ
∗ ሺݔᇱ െ ݀௫, ऊ஽ሻ ⊙ଵ ሺݔᇱ, ऊ஽ሻ.                            (B.2) 
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Fig. B.1 The proposed experimental setup for measuring the propensity of two spatial 
compass states and spatial properties of two mirrors. (SMF=single mode fiber, 
BS=Beam splitter, L=lense, M= mirror, SPD=single photon detector) 

 As shown in Fig. B.1, each spatial compass state passes through the lenses 

(L1,L2) and picks up the quadrature-phase term 	exp ቂെ݅ ௞௫
మ

ଶ௙
ቃ . From paraxial 

approximation of the compass states ⊙ଵ,ଶ	at the input plane ܼ ൌ 0 after the lenses 

can be described as, 

                 ⊙ଵሺ௅భሻ ሺݔ, ܼ ൌ 0ሻ ൌ exp ቂെ݅ ௞௫
మ

ଶ௙
ቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ,                      (B.3) 

        ⊙ଶሺ௅మሻ ሺݔ െ ݀௫, ܼ ൌ 0ሻ ൌ exp ቂെ݅ ௞௫
మ

ଶ௙
ቃ ⊙ଶ ሺݔ െ ݀௫, ܼ ൌ 0ሻ.            (B.4) 

When the lens L1 is scanned by a distance ݀௣, the spatially varying phase acquired by 

the ⊙ଵሺ௅భሻ shifted and expression for ⊙ଵሺ௅భሻ in (B.3) is given as, 
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                      ⊙ଵሺ௅భሻ ሺݔ, ܼ ൌ 0ሻ ൌ exp ቂെ݅ ௞

ଶ௙
൫ݔ െ ݀௣൯

ଶ
ቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ.             (B.5) 

After the lenses, each compass state ⊙ଵ,ଶ  propagates a distance of ݂ to reach the 

single photon detector. The compass state ⊙ଵ,ଶ  at detector plane ܼ ൌ ऊ஽ , can be 

obtained using Fresnel’s diffraction integral as, 

                                 ⊙ଵ ሺݔᇱ, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
ሺݔ െ  ᇱሻଶቃݔ

                                                      ൈ ݌ݔ݁	 ቂെ݅ ௞

ଶ௙
ሺݔ െ ݀௣ሻଶቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ,          (B.6) 

                       ⊙ଶ ሺݔᇱ െ ݀௫, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
ሺݔ െ  ᇱሻଶቃݔ

                                                    ൈ ݌ݔ݁	 ቂെ݅ ௞

ଶ௙
ଶቃݔ ⊙ଶ ሺݔ െ ݀௫, ܼ ൌ 0ሻ,               (B.7) 

As detector plane is coincides with the focal planes of the lenses (L1,L2), the 

quadratic phases involving ݔଶ cancel in these equations above and simplified as, 

                                 ⊙ଵ ሺݔᇱ, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
ሺݔᇱଶ െ ݀௣

ଶሻቃ 

                                                      ൈ ݌ݔ݁	 ቂെ݅ ௞
௙
ᇱݔሺݔ െ ݀௣ሻቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ,          (B.8) 

                         ⊙ଶ ሺݔᇱ െ ݀௫, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
 ᇱଶቃݔ

                                                      ൈ ݌ݔ݁	 ቂെ݅ ௞
௙
ᇱቃݔݔ ⊙ଶ ሺݔ െ ݀௫, ܼ ൌ 0ሻ,             (B.9) 
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By substituting the equations above into Eq. (B.2), quadratic phases involving ݔᇱଶ 

vanish and we obtain the interference amplitude as  

஻ܸ൫݀௫, ݀௣൯ ൌ
݇
݂ߨ2

݌ݔ݁ ൬െ݅
k
2݂

݀௣ଶ൰න݀ݔᇱ	න݀ݔଵ	݁݌ݔ ൤െ݅
݇
݂
ᇱ൨ݔݔ ⊙ଶ ሺݔଵ െ ݀௫, ܼ ൌ 0ሻ 

                             ൈ	׬ ݌ݔ2݁ݔ݀ ቂെ݅
௞

௙
ᇱݔ2ሺݔ െ ݀௣ሻቃ ⊙ଵ ሺ2ݔ, ܼ ൌ 0ሻ.                        (B.10) 

The integrating over ݔᇱ yields a delta function as  

݌ݔ݁′ݔ݀׬                                        ቂെ݅ ݇
݂
ଵݔሺ′ݔ െ ଶሻቃݔ ൌ ଵݔሺߜߨ2 െ  ଶሻ.                        (B.11)ݔ

 .ଶ are dummy variables for integration involving the compass states ⊙ଶ and ⊙ଵݔ ଵ andݔ

Then, we rewrite the Eq.(B.10) as  

஻ܸ൫݀௫, ݀௣൯ ൌ
݇
݂
݌ݔ݁ ൬െ݅

k
2݂

݀௣ଶ൰	න݀ݔଶ݁݌ݔ ቈെ݅
݇
݂
ଶ݀௣቉⊙1ݔ ሺݔଶ, ܼ ൌ 0ሻ																								 

                      	ൈ ׬ ଵݔ݀ 	⊙ଶ ሺݔଵ െ ݀௫, ܼ ൌ 0ሻߜሺݔଵ െ  ଶሻ.                                          (B.12)ݔ

Now, integrating over	ݔଵ, the Eq.(B.12) becomes, 

஻ܸ൫݀௫, ݀௣൯ ൌ
݇
݂
݌ݔ݁ ൬െ݅

k
2݂

݀௣ଶ൰න݀ݔଶ݁݌ݔ ൤െ݅
݇
݂
ଶ݀௣൨ݔ ⊙ଶ ሺݔଶ െ ݀௫, ݖ ൌ 0ሻ ⊙ଵ ሺݔଶ, ܼ ൌ 0ሻ. 

                                                                                                                                (B.13) 

By changing the variable ݔଶ by ݔ and dropping the	ܼ ൌ 0, the mean square amplitude is 

given as, 

              		ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ቚ׬ ݔ݀ ⊙ଶ ሺݔ െ ݀௫ሻ ⊙ଵ ሺݔሻ݁݌ݔ ቂെ݅

௞ௗ೛
௙
ቃቚݔ

ଶ
.             (B.14) 
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We can rewrite the above equation as, 

        							ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ݔ݀׬ ⊙ଶ

∗ ሺݔ െ ݀௫ሻ ⊙ଵ ሺݔሻ݁݌ݔ ቂെ݅
௞ௗ೛
௙
              ቃݔ

                                      ൈ ᇱݔ݀׬ ⊙ଶ ሺݔᇱ െ ݀௫ሻ ⊙ଵ
∗ ሺݔᇱሻ݁݌ݔ ቂ݅

௞ௗ೛
௙
 ᇱቃ.                (B.15)ݔ

By using the variables transformation,  

ݔ ൌ ௢ݔ ൅
ߟ
2
, 

ᇱݔ ൌ ௢ݔ െ
ߟ
2
, 

and since the Jacobian of this transformation is 1. The Eq.(B.15) can be written in 

term of these variables as, 

							ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ௢ݔ݀׬ ׬ ߟ݀ ⊙ଶ

∗ ቀݔ௢ ൅
ఎ

ଶ
െ ݀௫ቁ⊙ଶ ቀݔ௢ െ

ఎ

ଶ
െ ݀௫ቁ              

                                      ൈ⊙ଵ ቀݔ௢ ൅
ఎ

ଶ
ቁ⊙ଵ

∗ ቀݔ௢ െ
ఎ

ଶ
ቁ ݌ݔ݁ ቂെ݅

௞ௗ೛
௙
 ቃ.                 (B.16)ߟ

From the definition of the Wigner function, 

                               ࣱሺݔ, ሻ݌ ൌ ଵ

ଶగ
׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ ቀݔ െ ఌ

ଶ
ቁ,               (B.17) 

where its inverse transform is given by, 

                                    ߰∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ ቀݔ െ ఌ

ଶ
ቁ ൌ ׬ ௜ఌ௣ି݁݌݀

ஶ
ିஶ ࣱሺݔ,  ሻ.               (B.18)݌

Then, we can write  
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⊙ଵ ቀݔ௢ ൅
ߟ
2
ቁ⊙ଵ

∗ ቀݔ௢ െ
ߟ
2
ቁ ൌ න ௜ఎ௣ି݁݌݀

ஶ

ିஶ
ࣱሺݔ,  ,ሻ⊙భ݌

and obtain Eq. (B.16) as 

							ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ௢ݔ݀׬ ׬ ߟ݀ ⊙ଶ

∗ ቀݔ௢ ൅
ఎ

ଶ
െ ݀௫ቁ⊙ଶ ቀݔ௢ െ

ఎ

ଶ
െ ݀௫ቁ              

                                      ൈ ݌ݔ݁݌݀׬ ቂെ݅
௞ௗ೛
௙
ቃߟ ,ݔሿࣱሺ݌ߟሾെ݅݌ݔ݁  ሻ⊙భ.                 (B.19)݌

Again, by the definition of the Wigner function we can write, 

         ࣱቀݔ െ ݀௫, ݌ ൅
௞ௗ೛
௙
ቁ
⊙మ

ൌ ׬
ௗఎ

ଶగ
݌ݔ݁ ቂെ݅ ቀ݌ ൅

௞ௗ೛
௙
ቁ  ቃߟ

                                              ൈ 	⊙ଶ
∗ ቀݔ௢ ൅

ఎ

ଶ
െ ݀௫ቁ⊙ଶ ቀݔ௢ െ

ఎ

ଶ
െ ݀௫ቁ.               (B.20) 

Substituting Eq.(B.20) in Eq.(B.19), the mean square interference signal amplitude 

can be expressed as 

                 ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ࣱ݌݀ݔ݀׬ ቀݔ െ ݀௫, ݌ ൅

௞ௗ೛
௙
ቁ
⊙మ

ࣱሺݔ, ሻ⊙భ݌
.             (B.21) 

Where ࣱሺݔ, ሻ⊙భ݌
is the Wigner distribution of the compass states ⊙ଵ in the input 

plane of the L1 and ࣱቀݔ െ ݀௫, ݌ ൅
௞ௗ೛
௙
ቁ
⊙మ

 is the Wigner distribution of the compass 

states ⊙ଶ in the input plane of the L2. 
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Appendix C 

Wigner distribution of Spatial 
Compass state 

 

The spatial compass states ⊙ଵ and ⊙ଶ can be expressed in position coordinates in a 

identical form as  

                         ⊙ଵ,ଶ	∝ ߰ଵ,ଶ
௧ ሺݔሻ ൅ ߰ଵ,ଶ

௥ ሺݔሻ,                                                              (C.1) 

                                  ∝ exp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ ൅ exp	ሾ ௫

మ

ଶఙ್
మሿ cosሺܦݔ௣ሻ.    (C.2) 

Where the first and second terms are corresponding to ߰ଵ,ଶ
௧ ሺݔሻ; the third term is 

corresponding to		߰ଵ,ଶ
௥ ሺݔሻ. According to the definition given in Eq. 3.1, the Wigner 

function of the spatial compass states ⊙ଵ is given as  

                         ࣱሺݔ, ሻଵ݌ ∝ ׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ⊙ଵ

∗ ቀݔ ൅ ఌ

ଶ
ቁ⊙ଵ ቀݔ െ

ఌ

ଶ
ቁ.                      (C.3) 

By substituting ⊙ଵ in Eq. (C.1) to Eq. (C.3), we obtain the Wigner function as, 

                                ࣱሺݔ, ሻଵ݌ ∝ ׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ 	߰ଵ

∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ                  (C.4) 

                                                  ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ                  (C.5) 
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                                                  ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ

∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ                  (C.6) 

                                                  ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ.                 (C.7) 

Chessboard pattern  

The chessboard pattern of the Wigner function is contributed from the 

components	߰ଵ
∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ and ߰ଵ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ in Eq. (C.4) and Eq. 

(C.5). The Wigner function of the first component is given by 

                               ࣱሺݔ, ሻ௧௧݌ ∝ ׬ 	߰ଵ
௧∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ ௜ఌ௣ି݁ߝ݀

ஶ
ିஶ ,                  (C.8) 

From Eq. (C.2), we can rewrite the above equation as 

ࣱሺݔ, ሻ௧௧݌ ∝ ׬ ቆexp ቈെ
ቀ௫ା௔ାഄ

మ
ቁ
మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ቀ௫ି௔ାഄ
మ
ቁ
మ

ଶఙೌ
మ ቉ቇ

ஶ
ିஶ   

                                                  ቆexp ቈെ
ቀ௫ା௔ାഄ

మ
ቁ
మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ቀ௫ି௔ାഄ
మ
ቁ
మ

ଶఙೌ
మ ቉ቇ  ௜ఌ௣,  (C.9)ି݁ߝ݀

                   ∝ ׬ ቆexp ቈെ
ଶሺ௫ା௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ଶ௫మାଶቀ௔ାഄ
మ
ቁ
మ

ଶఙೌ
మ ቉

ஶ
ିஶ   

                                     ൅exp ቈെ
ଶ௫మାଶቀ௔ିഄ

మ
ቁ
మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ଶሺ௫ି௔ሻమାഄ
మ

మ

ଶఙೌ
మ ቉ቇ  ௜ఌ௣.    (C.10)ି݁ߝ݀

Integrating the first term in Eq. (C.10), we obtain 
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׬        exp ቈെ
ଶሺ௫ା௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ൌ exp ቂെ ଶሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ׬ exp ቈെ

ഄమ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ    .௜ఌ௣ି݁ߝ݀

By using  ݁݌ݔሺ݅݌ߝሻ ൌ cosሺ݌ߝሻ ൅ ݅ sinሺ݌ߝሻ and the integration involving the term 

݅ sinሺ݌ߝሻ  amounts to zero, we can rewrite the above equation as,                                    

׬ exp ቈെ
ଶሺ௫ା௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ൌ exp ቂെ ଶሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ׬ exp ቈെ

ഄమ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ

ሺcosሺ݌ߝሻሻ݀ߝ,   

                                                  ∝ exp ቂെ ଶሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ expሾെ݌ଶߪ௔ଶሿ.                           (C.11) 

By similar fashion, we can obtain the Wigner function for the fourth term in Eq. 

(C.10) as 

׬                 exp ቈെ
ଶሺ௫ି௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ∝ exp ቂെ ଶሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ expሾെ݌ଶߪ௔ଶሿ.           (C.12) 

On the other hand, the Wigner function for the second term in Eq. (C.10) is given as 

׬ exp ቈെ
ଶ௫మାଶቀ௔ାഄ

మ
ቁ
మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ൌ exp ቂെ ௫మ

ఙೌ
మቃ ׬ exp ቈെ

ቀ௔ିഄ
మ
ቁ
మ

ఙೌ
మ ቉

ஶ
ିஶ   ௜ఌ௣ି݁ߝ݀

                                                    ൌ exp ቂെ ௫మ

ఙೌ
మቃ ׬ exp ቈെ

ቀ௔ିഄ
మ
ቁ
మ

ఙೌ
మ ቉

ஶ
ିஶ

ሺcosሺ݌ߝሻሻ݀ߝ.  (C.13) 

By using the variables transformation,  

ᇱߝ

2
ൌ ܽ െ

ߝ
2
, 

The Eq.(C.13) can be written in term of ߝᇱ as, 
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                           ∝ exp ቂെ ௫మ

ఙೌ
మቃ ׬ exp ൥െ

ቀఌ
ᇲ
ଶൗ ቁ

మ

ఙೌ
మ ൩

ஶ
ିஶ

ሺcosሺߝ݌ᇱ െ  (C.14)              .ߝሻሻ݀ܽ݌2

By applying the following trigonometry identities 

               cosሺߝ݌ᇱ െ ሻܽ݌2 ൌ cosሺߝ݌ᇱሻ cosሺെܽ݌ሻ ൅ sinሺߝ݌ᇱሻ sinሺെܽ݌ሻ,              (C.15) 

                                                  cosሺെܽ݌ሻ ൌ cosሺܽ݌ሻ,                                          (C.16) 

and considering integration involving the term sinሺߝ݌ᇱሻ yield to zero, the Eq. (C.14) 

can be expressed as, 

                           ∝ exp ቂെ ௫మ

ఙೌ
మቃ cosሺ2ܽ݌ሻ ׬ exp ൥െ

ቀఌ
ᇲ
ଶൗ ቁ

మ

ఙೌ
మ ൩

ஶ
ିஶ

ሺcos   ,ߝᇱሻ݀ߝ݌

                          ∝ exp ቂെ ௫మ

ఙೌ
మቃ expሾെ݌

ଶߪ௔ଶሿ cosሺ2ܽ݌ሻ,                                           (C.17) 

Similarly, we can obtain the Wigner function for the 3rd term in Eq. (C.10) as 

                                         ∝ exp ቂെ ௫మ

ఙೌ
మቃ expሾെ݌

ଶߪ௔ଶሿ cosሺ2ܽ݌ሻ.                            (C.18) 

Finally the summation of Wigner functions for all four terms in Eq. (C.10) yields, 

                     ࣱሺݔ, ሻ௧௧݌ 	∝ exp ቂെ
ሺ௫ା௔ሻమ

ఙೌ
మ െ ௔ଶቃߪଶ݌ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ఙೌ
మ െ   ௔ଶቃߪଶ݌

                                          ൅2exp ቂെ ௫మ

ఙೌ
మ െ ௔ଶቃߪଶ݌ cosሺ2ܽ݌ሻ.                                 (C.19) 

The Wigner function of the ߰ଵ
∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ is given by 
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                               ࣱሺݔ, ሻ௥௥݌ ∝ ׬ 	߰ଵ
௥∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ .௜ఌ௣ି݁ߝ݀

ஶ
ିஶ                (C.20) 

From Eq. (C.2), we can rewrite the Eq. (C.20) as 

                     ࣱሺݔ, ሻ௥௥݌ ∝ ׬ ቈexp	ሾ
ቀ௫ାഄ

మ
ቁ
మ

ଶఙ್
మ ሿ cosሺቀݔ ൅ ఌ

ଶ
ቁܦ௣ሻ቉

ஶ
ିஶ   

                                                ቈexp	ሾ
ቀ௫ିഄ

మ
ቁ
మ

ଶఙ್
మ ሿ cosሺቀݔ െ ఌ

ଶ
ቁܦ௣ሻ቉  ,௜ఌ௣ି݁ߝ݀

                                       ∝ ׬ ቈexp	ሾ
ቀ௫ାഄ

మ
ቁ
మ

ଶఙ್
మ ሿexp	ሾ

ቀ௫ିഄ
మ
ቁ
మ

ଶఙ್
మ ሿ቉

ஶ
ିஶ   

                                            ቂcosሺቀݔ ൅ ఌ

ଶ
ቁܦ௣ሻ cosሺቀݔ െ

ఌ

ଶ
ቁܦ௣ሻቃ  ௜ఌ௣.            (C.21)ି݁ߝ݀

By simplifying the exponential terms and applying the trigonometric identity  

cosሺቀݔ ൅ ఌ

ଶ
ቁܦ௣ሻ cosሺቀݔ െ

ఌ

ଶ
ቁܦ௣ሻ ൌ

ଵ

ଶ
ቄcos ൬ቀݔ ൅

ఌ

ଶ
ቁܦ௣ െ ቀݔ െ ఌ

ଶ
ቁܦ௣൰  

                                                            ൅cos ൬ቀݔ ൅
ఌ

ଶ
ቁܦ௣ ൅ ቀݔ െ ఌ

ଶ
ቁܦ௣൰ቅ,            (C.22) 

we can rewrite Eq. (C.20) as  

∝ exp	ሾെ
ଶݔ

௕ߪ
ଶሿ cosሺܦݔ௣ሻන exp	ሾെ

ଶߝ

௕ߪ4
ଶሿ

ஶ

ିஶ
 ௜ఌ௣ି݁ߝ݀	

                             ൅exp ൤െ ௫మ

ఙ್
మ൨ ׬ cos൫ܦߝ௣൯ exp ൤െ

ఌమ

ସఙ್
మ൨

ஶ
ିஶ     ௜ఌ௣.                    (C.23)ି݁ߝ݀	
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By using  ݁ି௜ఌ௣ ൌ cosሺ݌ߝሻ ൅ ݅ sinሺ݌ߝሻ  and the integration involving the term 

݅ sinሺ݌ߝሻ amounts to zero, we can rewrite the above equation as,     

                             ∝ exp	ሾെ ௫మ

ఙ್
మሿ cosሺܦݔ௣ሻ ׬ exp	ሾെ ఌమ

ସఙ್
మሿ

ஶ
ିஶ cosሺ݌ߝሻ  ߝ݀	

                             ൅exp ൤െ ௫మ

ఙ್
మ൨ ׬ exp ൤െ ఌమ

ସఙ್
మ൨ cos൫ܦߝ௣൯

ஶ
ିஶ 	cosሺ݌ߝሻ     (C.24)               .ߝ݀

Again, we expand the equation above using trigonometric identity to obtain 

∝ exp	ሾെ
ଶݔ

௕ߪ
ଶሿ cosሺܦݔ௣ሻන exp	ሾെ

ଶߝ

௕ߪ4
ଶሿ

ஶ

ିஶ
cosሺ݌ߝሻ  ߝ݀	

                             ൅ଵ

ଶ
exp	ሾെ ௫మ

ఙ್
మሿ ׬ cosሺߝ൫݌ ൅ ௣൯ሻܦ exp	ሾെ

ఌమ

ସఙ್
మሿ

ஶ
ିஶ           ߝ݀	

                              ൅ଵ

ଶ
exp ൤െ ௫మ

ఙ್
మ൨ ׬ cos ቀߝ൫݌ െ ௣൯ቁܦ exp ൤െ

ఌమ

ସఙ್
మ൨

ஶ
ିஶ     (C.25)              .ߝ݀	

Integrating over ߝ	for all three terms in Eq. (C.25), we can obtain 

             ࣱሺݔ, ሻ௥௥݌ ∝ exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ൫݌ ൅ ௣൯ܦ

ଶ
௕ߪ
ଶ൨ ൅ exp ൤െ

ሺ௫ሻమ

ఙ್
మ െ ൫݌ െ ௣൯ܦ

ଶ
௕ߪ
ଶ൨  

                              ൅2exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ௕ߪଶ݌

ଶ൨ cosሺ2ܦݔ௣ሻ.                                         (C.26)  

The chessboard pattern in the Wigner function arises from the summation of the 

interference terms exp ቂെ ௫మ

ఙೌ
మ െ ௔ଶቃߪଶ݌ cosሺ2ܽ݌ሻ  and exp ൤െ

ሺ௫ሻమ

ఙ್
మ െ ௕ߪଶ݌

ଶ൨ cosሺ2ܦݔ௣ሻ 

in Eq. (C.19) and Eq. (C.26). 
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Appendix D 

Propensity ௕ ௫ ௣   

 

The propensity is the mean-square interference signal that measured after the squarer, 

X2. Direct measurement of the propensity measures the orthogonality of the compass 

states ⊙ଵand ⊙ଶ. By using the imaging system, we can project the center of the 

chessboard for the maximum beat of ௕࣪൫݀௫, ݀௣൯ at around ݀௫~0 and ݀௣~0. The 

spatial coordinates of the chessboard pattern in the propensity exactly correspond to 

the coordinate system of the imaging system. 

The interference signal as a function of ݀௫ and ݀௣ is given by  

						 ஻ܸ൫݀௫, ݀௣൯ ∝
௞

௙
exp ቀ݅

୩ௗ೛మ

ଶ௙
ቁ ׬ ᇱݔ݀

ஶ
ିஶ exp ቀെ݅

୩௫ᇲௗ೛
௙
ቁ⊙ଶ

∗ ሺݔᇱ െ ݀௫ሻ ⊙ଵ ሺݔᇱሻ.   (D.1) 

Where  

           ⊙ଵ ሺݔᇱሻ ∝ exp ൤െ
൫௫ᇲା௔൯

మ

ଶఙೌ
మ ൨ ൅ exp ൤െ

൫௫ᇲି௔൯
మ

ଶఙೌ
మ ൨ ൅ exp	ሾെ ௫ᇲ

మ

ଶఙ್
మሿ cosሺݔᇱܦ௣ሻ     

                         ∝	⊙ଵ۷൅⊙ଵ۷۷൅⊙ଵ۷۷۷ ,                                                                 (D.2) 

              ⊙ଶ
∗ ሺݔᇱ െ ݀௫ሻ ∝ exp ൤െ

൫௫ᇲିௗೣା௔൯
మ

ଶఙೌ
మ ൨ ൅ exp ൤െ

൫௫ᇲିௗೣି௔൯
మ

ଶఙೌ
మ ൨  



 

179 
 

                                       ൅exp	ሾെ
൫௫ᇲିௗೣ൯

మ

ଶఙ್
మ ሿ cosሺሺݔᇱ െ ݀௫ሻܦ௣ሻ                                 

                                    ∝	⊙ଶ۷
∗൅⊙ଶ۷۷

∗൅⊙ଶ۷۷۷
∗,                                                      (D.3) 

As the interference signal ஻ܸ൫݀௫, ݀௣൯  is directly proportional to the spatial 

overlapping of the compass states ⊙ଵ and ⊙ଶ
∗ . The product terms in Eq. (D.1) that 

will contribute to the interference signal ஻ܸ൫݀௫, ݀௣൯ are ⊙ଶ۷
∗⊙ଵ۷, ⊙ଶ۷۷

∗⊙ଵ۷۷, and 

⊙ଶ۷۷۷
∗⊙ଵ۷۷۷ .  

The contribution from  ⊙ଶ۷
∗⊙ଵ۷ can be expressed as  

           ஻ܸ۷൫݀௫, ݀௣൯ ∝ ׬ ᇱݔ݀
ஶ
ିஶ exp ቀെ݅

୩௫ᇲௗ೛
௙
ቁ exp ൤െ

൫௫ᇲିௗೣା௔൯
మ

ଶఙೌ
మ ൨ exp ൤െ

൫௫ᇲା௔൯
మ

ଶఙೌ
మ ൨ . 

(D.4) 

By using the variable transformation,  

ݑ ൌ ᇱݔ ൅ ܽ, 

we rewrite Eq. (D.4) as  

        ஻ܸ۷൫݀௫, ݀௣൯ ∝ exp ቀ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ ׬ ݑ݀

ஶ
ିஶ exp ቂെ ଵ

ఙೌ
మ ሺݑ

ଶ ൅  ሻቃ           (D.5)ܤݑ

                ∝ exp ቀ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ ׬ ݑ݀

ஶ
ିஶ exp ൤െ ଵ

ఙೌ
మ ቀݑ ൅

஻

ଶ
ቁ
ଶ
൨   

               ∝ ඥߪ௔ଶߨexp ቀ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ .                                        

(D.6) 
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where ܤ ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙೌమ

௙
. 

Similarly, the contribution from  ⊙ଶ۷۷
∗⊙ଵ۷۷ is given as  

       ஻ܸ۷۷൫݀௫, ݀௣൯ ∝ ׬ ᇱݔ݀
ஶ
ିஶ exp ቀെ݅

୩௫ᇲௗ೛
௙
ቁ exp ൤െ

൫௫ᇲିௗೣି௔൯
మ

ଶఙೌ
మ ൨ exp ൤െ

൫௫ᇲି௔൯
మ

ଶఙೌ
మ ൨ .    (D.7) 

By using the variables transformation,  

ݑ ൌ ᇱݔ െ ܽ, 

we rewrite Eq. (D.7) as  

        ஻ܸ۷۷൫݀௫, ݀௣൯ ∝ exp ቀെ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ ׬ ݑ݀

ஶ
ିஶ exp ቂെ ଵ

ఙೌ
మ ሺݑ

ଶ ൅         ሻቃܤݑ

(D.8) 

                ∝ exp ቀെ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ ׬ ݑ݀

ஶ
ିஶ exp ൤െ ଵ

ఙೌ
మ ቀݑ ൅

஻

ଶ
ቁ
ଶ
൨   

               ∝ ඥߪ௔ଶߨexp ቀെ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ .                                     

(D.9) 

where ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙೌమ

௙
 . 

Furthermore the contribution from  ⊙ଶ۷۷۷
∗⊙ଵ۷۷۷ is given as 

஻ܸ۷۷۷൫݀௫, ݀௣൯ ∝ ׬ exp ቀെ݅
୩௫ᇲௗ೛
௙
ቁ exp	ሾെ

൫௫ᇲିௗೣ൯
మ

ଶఙ್
మ ሿexp	ሾെ ௫ᇲ

మ

ଶఙ್
మሿ

ஶ
ିஶ      

                             cos ቀሺݔᇱ െ ݀௫ሻܦ௣ቁ cosሺݔᇱܦ௣ሻ  ᇱ,                                           (D.10)ݔ݀
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                     ∝ exp	ሾെ ௗೣ
మ

ଶఙ್
మሿ ׬ exp	ሾെ

ቀ௫ᇲ
మ
ା௏௫ᇲቁ

ఙ್
మ ሿ

ஶ
ିஶ     

                             ൛cos൫2ݔᇱܦ௣ െ ݀௫ܦ௣൯ ൅ cosሺെ݀௫ܦ௣ሻൟ݀ݔᇱ.                              (D.11) 

Where ܸ ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙ್

మ

௙
. Then, we rearrange Eq. (D.11) as  

    ஻ܸ۷۷۷൫݀௫, ݀௣൯ ∝ exp	ሾെ ௗೣ
మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ ׬ exp	ሾെ

ቀ௫ᇲାೇ
మ
ቁ
మ

ఙ್
మ ሿ

ஶ
ିஶ cos൫2ݔᇱܦ௣ െ ݀௫ܦ௣൯݀ݔᇱ    

                          ൅exp ൤െ ௗೣ
మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ cos൫െ݀௫ܦ௣൯ ׬ exp ൥െ

ቀ௫ᇲାೇ
మ
ቁ
మ

ఙ್
మ ൩

ஶ
ିஶ  ᇱ.   (D.12)ݔ݀

By using the variables transformation,  

ᇱݔ ൌ ݔ ൅
ܸ
2
	, 

We obtain the first term in Eq. (D.12) as  

       ∝ exp ൤െ ௗೣ
మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ ׬ exp ൤െ ௫మ

ఙ್
మ൨

ஶ
ିஶ cos൫2ܦݔ௣ െ ሺܸ ൅ ݀௫ሻܦ௣൯݀ݔ.          (D.13) 

By applying the following trigonometry identities 

cos൫2ܦݔ௣ െ ሺܸ ൅ ݀௫ሻܦ௣൯ ൌ cos൫2ܦݔ௣൯ cos൫െሺܸ ൅ ݀௫ሻܦ௣൯ ൅ sin൫2ܦݔ௣൯ sin൫െሺܸ ൅ ݀௫ሻܦ௣൯, (D.14) 

                                      cos൫െሺܸ ൅ ݀௫ሻܦ௣൯ ൌ cos ቀሺܸ ൅ ݀௫ሻܦ௣ቁ .                           (D.15) 

We can rewrite Eq. (D.13) as  

     ∝ exp	ሾെ ௗೣ
మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ cos ቀሺܸ ൅ ݀௫ሻܦ௣ቁ ׬ exp	ሾെ ௫మ

ఙ್
మሿ

ஶ
ିஶ cos൫2ܦݔ௣൯݀ݔ.      (D.16) 
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By integrating over x and using ܸ ൅ ݀௫ ൌ ݅
୩ௗ೛ఙ್

మ

௙
, we obtain Eq. (D.16) as 

                               ∝ exp ൤െ ௗೣ
మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ expൣെܦ௣

ଶߪ௕
ଶ൧ cos ൬݅

୩ௗ೛ఙ್
మ

௙
      ௣൰.        (D.17)ܦ

∝ exp ൤െ
ௗೣ

మ

ଶఙ್
మ൨ exp ൦

ቆെ݀ݔ൅݅
kܾ݀ߪ݌

2

݂ ቇ

2

ସఙ್
మ ൪ expൣെܦ௣

ଶߪ௕
ଶ൧ ൬exp ൤

୩ௗ೛ఙ್
మ

௙
௣൨ܦ ൅ exp ൤െ

୩ௗ೛ఙ್
మ

௙
 ௣൨൰.(D.18)ܦ

For the second term in Eq. (D.12), integrating over ݔᇱ we obtain 

                           ∝ ඥߪ௕
ଶߨ exp ൤െ ௗೣ

మ

ଶఙ್
మ൨ exp ൦

ቆିௗೣା௜
ౡ೏೛഑್

మ

೑
ቇ
మ

ସఙ್
మ ൪ cos൫݀௫ܦ௣൯.                (D.19) 

By summation of e Eq. (D.18) and (D.19),	 ஻ܸ۷۷۷൫݀௫, ݀௣൯ is obtained as	

            ∝ exp ൤െ
ௗೣ

మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ expൣെܦ௣

ଶߪ௕
ଶ൧ ൬exp ൤

୩ௗ೛ఙ್
మ

௙
௣൨ܦ ൅ exp ൤െ

୩ௗ೛ఙ್
మ

௙
      ௣൨൰ܦ

																									൅ටܾߪ
expߨ2 ൤െ ݔ݀

2

ܾߪ2
2൨ exp ൤

௏2

ܾߪ4
2൨ cos൫݀݌ܦݔ൯.                                           (D.20) 

However, the first term in above equation vanishes to zero leaving  

                 					 ஻ܸ۷۷۷൫݀௫, ݀௣൯ ∝ ඥߪ௕
ଶߨexp	ሾെ ௗೣ

మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ cos൫݀௫ܦ௣൯.                  (D.21) 

Summation of Eq. (D.6), Eq. (D.9) and Eq. (D.21) leads to the interference 

signal, 	 ஻ܸ൫݀௫, ݀௣൯ . Then, we can obtain propensity which is the mean-square 

interference signal interference signal as 

        ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ห ஻ܸ۷൫݀௫, ݀௣൯ ൅ ஻ܸ۷۷൫݀௫, ݀௣൯ ൅ ஻ܸ۷۷۷൫݀௫, ݀௣൯ห

ଶ
,                   (D.22) 
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                               ∝ ቚቄexp ቀ݅
௔୩ௗ೛
௙
ቁ ൅ exp ቀെ݅

௔୩ௗ೛
௙
ቁቅ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ  

                                              ൅exp	ሾെ ௗೣ
మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ cosሺ݀௫ܦ௣ሻฬ

ଶ

.                      (D.23) 

Substituting ܤ ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙೌమ

௙
 , ܸ ൌ ݅

୩ௗ೛ఙ್
మ

௙
െ ݀௫ ௣ߜ , ൌ

୩ௗ೛
௙

 and applying the  

trigonometry identity exp൫݅ܽߜ௣൯ ൅ exp൫݅ܽߜ௣൯ ൌ cos൫ܽߜ௣൯, we obtain 

  ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ฬexp ൤ ଵ

ସఙ್
మ ൫݀௫ଶ െ ௕ߪ௣ଶߜ

ସ െ 2݅݀௫ߜ௣ߪ௕
ଶ൯൨ cos൫݀௫ܦ௣൯ 

                             ൅exp ቂ ଵ

ସఙೌ
మ ൫݀௫

ଶ െ ௔ସߪ௣ଶߜ െ 2݅݀௫ߜ௣ߪ௔ଶ൯ቃ cos൫ܽߜ௣൯ቚ
ଶ
 

                                           ~หcos൫݀௫ܦ௣൯ ൅ cos൫ܽߜ௣൯ห
ଶ
.                                      (D.24) 
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Appendix E 

Variances of Position and Momentum 

 

The variances of position ሺ∆ߕሻଶ and momentum ሺ∆ܲሻଶ of the EPR correlations can 

be obtained later through the evaluation of  ௕࣪ሺ	ܺ, ܲሻ, which is given by 

                                               ௕࣪ሺ	ܺ, ܲሻ ∝ | ஻ܸሺ	ܺ, ܲሻ|ଶ,                                          (E.1) 

                                                                 ~หcos൫ܦߕ௣൯ ൅ cos൫ߜߏ௣൯ห
ଶ
.                    (E.2) 

The variance for position is expressed as 

                                              ሺ∆ߕሻଶ ൌ 〈ଶߕ〉 െ  ଶ,                                                (E.3)〈ߕ〉

where 〈ߕଶ〉	 is expectation value for ߕଶ  and 〈ܺ〉	 is expectation value for ܺ . 

Expectation value for ߕଶ is given as, 

〈ଶߕ〉                                         ൌ
஽೛
ଶగ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

| ஻ܸሺ	ܺሻ|ଶ݀ܺ,                                     

                                                ൌ
஽೛
ଶగ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

หcos൫ܦߕ௣൯ห
ଶ
݀ܺ,                                   (E.4) 
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                                              ൌ
஽೛
ଶగ
ቊଵ
ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

݀ܺ ൅ ଵ

ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ,         (E.5) 

                                           ൌ
஽೛
ଶగ
ቊ గయ

ଷ஽೛
య ൅

ଵ

ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ.                        (E.6) 

Solving the second term using integration by part, leaving 

ଵ

ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺ ൌ ଵ

ଶ
൤
௑మ ୱ୧୬ ଶఄ஽೛

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ െ ଵ

ଶ
׬

ୱ୧୬൫ଶఄ஽೛൯ଶ௑

ଶ஽೛
݀ܺ,

ഏ
ವ೛
షഏ
ವ೛

  

                                       ൌ 0 െ ଵ

ଶ
׬

ୱ୧୬൫ଶఄ஽೛൯ଶ௑

ଶ஽೛
݀ܺ.

ഏ
ವ೛
షഏ
ವ೛

                                               (E.7) 

Again, solving by integration by parts to obtain 

െ ଵ

ଶ஽೛
׬ sin൫2ܦߕ௣൯ܺ ݀ܺ

ഏ
ವ೛
షഏ
ವ೛

ൌ െ ଵ

ଶ஽೛
ቐ൤

ି௑ ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ ൅ ׬ െ

ഏ
ವ೛
షഏ
ವ೛

ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
݀ܺቑ,   

                                         ൌ െ ଵ

ଶ஽೛
ቐ൤

ି௑ ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ ൅ ଵ

ଶ஽೛
൤
ୱ୧୬ ଶఄ஽೛
ଶ஽೛

൨
షഏ
ವ೛

ഏ
ವ೛ቑ,   

                                                    ൌ ଵ

ଶ஽೛
൜ గ

஽೛
మൠ.                                                           (E.8) 

Finally, we obtain 

〈ଶߕ〉                                ൌ 1
ߨ2
ቆ ߨ

݌ܦ2
2 	൅

3ߨ

݌ܦ3
2ቇ                                                (E.9) 

Similar, expectation value for ܺ is given as, 
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                     〈ܺ〉 ൌ
஽೛
ଶగ
׬ ܺ
ವ೛
ഏ

షವ೛
ഏ

| ஻ܸሺ	ܺሻ|ଶ݀ܺ ൌ
஽೛
ଶగ
׬ ܺ
షഏ
ವ೛
షഏ
ವ೛

หcos൫ܦߕ௣൯ห
ଶ
݀ܺ                (E.10) 

ൌ
஽೛
ଶగ
ቊଵ
ଶ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

݀ܺ ൅ ଵ

ଶ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ,  

                                  ൌ
஽೛
ଶగ
ቊ0 ൅ ଵ

ଶ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ,                                     (E.11) 

Solving using integration by parts, we obtain 

ଵ

ଶ

஽೛
ଶగ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺ ൌ ଵ

ଶ

஽೛
ଶగ
ቐ൤

ି௑ ୱ୧୬൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ െ ׬

ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
݀ܺ

ഏ
ವ೛
షഏ
ವ೛

ቑ,  

                                            ൌ ଵ

ଶ

஽೛
ଶగ
ቐ݋ െ

ଵ

ଶ஽೛
൤
ିୱ୧୬൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ቑ ൌ 0.                        (E.12) 

The variance for position as 

                                              ሺ∆ߕሻଶ ൌ 〈ଶߕ〉 െ                  ,ଶ〈ߕ〉

                                                 ൌ
ଵ

ଶ
൬

ଵ

ଶ஽೛
మ 	൅

గమ

ଷ஽೛
మ൰.                                    (E.13)  

In a similar fashion, variance for momentum can be calculated as,  

ሺ∆ܲሻଶ ൌ 〈ܲଶ〉 െ 〈ܲ〉ଶ, 

                                                     ൌ
ଵ

ଶ
ቀ

ଵ

ଶ௔మ
	൅

గమ

ଷ௔మ
ቁ.                              (E.14) 
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Appendix F 

Properties of Highly Non-linear fiber 
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1. Copyright permission from the American Physical Society (APS) to 
reproduce texts, figures and data published in Chapter 2 and Chapter 3 of this 
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2. Copyright permission from the Intech to reproduce published texts, figures 
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3. Copyright permission from the Optical Society of America (OSA) to 
reproduce texts, figures and data published in Chapter 4 of this dissertation. 

 



 

190 
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