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Abstract

Boron is an ‘electron deficient’ element which has a rather fascinating chemical ver-
satility. In the solid state, the elemental boron has neither a pure covalent nor a
pure metallic character. As a result, its vast structural dimensionality and peculiar
bonding features hold a unique place among other elements in the periodic table. In
order to understand and properly describe these unusual bonding features, a detailed
and systematic theoretical study is needed. In this work, I will show that some of
the qualitative features of boron nanostructures, including clusters, sheets and nan-
otubes can easily be extracted from the results of first principles calculations based
on density functional theory. Specifically, the size-dependent evolution of topological
structures and bonding characteristics of boron clusters, B,, will be discussed. Based
on the scenario observed in the boron clusters, the unique properties of boron sheets
and boron nanotubes will be described. Moreover, the ballistic electron transport
in single-walled boron nanotube relative to that of single-walled carbon nanotubes
will be considered. It is expected that the theoretical results obtained in the present
thesis will initiate further studies on boron nanostructures, which will be helpful in

understanding, designing and realizing boron-based nanoscale devices.
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Chapter 1

Introduction

1.1 Nanostructures: Fundamental Perspectives

From my personal perspectives, there is one thing we can say about the N-body

problem in the nanoscopic world:
“More is Different, and Small is Weird"!

The first term refers to particle correlation, the second term refers to the intrinsic

scale of the physical size of the system.

Nanotechnology allows scientists to manipulate individual atoms, molecules and nanos-
tructures, making it possible to build machines smaller than the size of human cells
with dimensions of the order of a few nanometers. It is a field that holds much promise
for treating disease, building smaller electronic devices, and creating efficient alterna-
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tive energy devices, among other things|l]|. Nanosystems are functional systems that
make atomically precise structures, components, and devices under a programmable
control. At present, there is, however, a huge gap between the basic nanostructured
materials being manufactured and the potential of productive nanosystem as we envi-
sioned. As a result, manufacturing of nanosystem poses great challenges, the biggest
being size of the system. Objects this small don’t always behave the way the standard
macroscopic laws of physics predict. Therefore, the quest to discover, understand and
control how materials behave properly on the nanoscale is currently a challenge to

scientists.

Within this context, nanostructured materials are usually defined as a system made
out of atoms in their common forms, with the atoms are arranged in nanometer or
sub-nanometer size units. These units can be consisted of a few to thousands of
atoms, and may extend to the larger microscopic size before approaching the bulk
matter|2|. These tiny grains, atomic aggregates or clusters, in which the surface plays
a paramount role, respond to external stimuli such as light, mechanical stress, and
electromagnetic fields quite differently from the bulk matter. In many instances, at
sufficiently small sizes (usually in nanoscopic regime), dependence of the material
property on the system size becomes non-scalable. Thus, small is different in an
essential way, that is, the exhibited behavior is characteristic of the assembly of
particles rather than being a property of the individual constituents|2, 3]. Hence,
identification and understanding of these series of microscopic origins and phenomena

associated with nanostructures, are of fundamentally importance.



We now would like to highlight some recent developments in the areas pertaining to
physical and chemical properties of a system, namely boron nanostructures. This
thesis is not intended as a general review. Instead, it is more like a ‘brief” summary
based on my experience on the subject which I gained at Michigan Technological
University|4, 4, 6, [, &, 9, [10, 11, 12, 13]. Thus, I will use some examples based on
some of my work as illustrations. In summary, the properties of the boron nanostruc-
tures considered are predicted by the computational model. Of course, the ultimate
confirmation of these theoretical syudies is still to be determined by future empirical

evidences.

1.2 Overview

“ There is plenty of room at the bottom in boron research. "

Boron nanostructures have attracted the attention due to the remarkable properties
of the elemental boron which is defined as ’electron-deficient’ [14, [15] (i.e. the number
of available valence electrons, 2s22p' is less than the available orbitals in the electronic
configuration of atomic valence shell). The consequences for the nature of the chemical
bonds of electron-deficient materials are well-known, and they may be summarized
as follows|16]. First, the ligancy of electron-deficient materials is higher than the
number of valence atoms, and even higher than the number of stable valence orbitals.
Second, electron-deficient materials cause adjacent atoms to increase their ligancy to
the values larger than the orbital numbers|16, [17]. In general, the ’electron deficient’

3



nature does not suggest that it is inferior in bonding, but simply that novel structures
based on the elemental boron are expected to be adopted in nature. With insufficient
electrons to support a structure by conventional '2-electron two-center’ bonds, the
boron-based compounds generally tend to adopt a novel mechanism to resolve its
‘electron-deficiency’ through ’2-electron multi-center’ bonds topologically connected

in a complex networks [14, [15].

On the other hand, boron and carbon differ dramatically in many aspects, though
they are neighbors in the periodic table. Studies about the analogies between boron
and carbon can be very interesting. Nevertheless, many similarities exist between
the chemistry of boron and carbon, and this account adds novel relationships among
these neighboring elements|18&, B, , 211, 122, Ig, |- In this aspect, carbon is a
key player in much of the current novel materials research, namely fullerenesj;],
and nanotubes|26]. Yet the bonding in carbon is elegantly simple. In contrast, the
structure and bonding of boron alltropes present extreme complexity. The electronic

structure and relative stability that stems from it remain to be fully understood.

There are reports of numerous alltropes of boron, only few of them are compar-
atively Well—characterizedu, , 27]. Under ambient pressure, solid boron exists
in various complex crystalline structures, which utilize the icosahedral B, cluster
as a common structural component. The Bj, icosahedrons can be interlinked by
strong covelent bonds in variety ways to form several ell known polymorphs such

as: a-rhombohedral By, (a-Bjs) a-tetragonal Bsg

(T-B5o)u] or -rhombohedral Bigs (3-Bios) E B Q IQ Q, |. Moreover, the



striking findings on nonmetal—metalu, Q] and nonmetal—superconductor@, B, EI]

transition were made and proposed. Within this context, the ground state modifi-
cation in high-pressure phase of boron is yet unknown. On the other hand, so far
there is no definite experimental evidence for the phase transition between the o and
[ phases. In contrast to carbon alltropes, the phase diagram of boron alltropes so far

is not well-established.

Similar to its complex bulk polymorphs, a large diversity of studies on the topo-
logical configurations of boron nanostructures, especially boranesu D
Ij, the hydrocarbon equivalents, continue to emerge. Consequently together with
the discovery of ‘magic numbers’ in metallic clusters |, carbon fullerenes and
nanotubes ﬂ a series of slzjlthesm and characterization studies of boron

"
clusters ,EJ Q EI,
b

|, nanowires, nanoribbons, nanowhiskers,
and nanotubes Q IQ] have been performed. However relative to carbon nanos-
tructures, studies in the boron nanostructures are few and lag far behind. Further-
more, the reported studies in boron nanostructures are mostly related to small sized
boron clusters, while the studies in other nanostructures, nanowires, nanoribbons,
nanowhiskers, and nanotubes, remain at the infant stage. The growth mechanism
and actual structural morphology of boron nanotubes are still unknown|56]. Overall,
both experimental and theoretical works suggest that the existence of boron nan-
otubes and clusters are closely related |3, 6, I;jg |, and can be categorized as a new

class of topological structure in boron|10], in contrast to boron nanowires and nanorib-

bons which are more closely related to the boron bulk sohdsﬂ m IJ] In summary,



many subtle unsolved questions and problems remain to be addressed regarding the
physics and chemistry of the boron nanostructures. Therefore, we believe, that there
is an acute need for a more systematic studies on various possible phases of elemental
boron within a different structural motif, based on the state-of-the-art computational

tool, e.g. simulations based on first principles method.



Chapter 2

Methodology

2.1 Theoretical Foundation

“Quantum mechanics is a set of laws of physics which, to the best of our knowledge,
provides a ‘complete’ account of the microworld from the available physical theories
todates. However, solving a quantum mechanical many-body problem is never an

easy task ! "

Quantum mechanics is at the core of our present understanding of the laws of physics,
besides the theory of relativity. It is the most fundamental physical theory, and it
is inherently probabilistic. This means that all predictions derived from quantum
mechanics are of a probabilistic character and that there is, as far as we know, no un-
derlying classical deterministic theory from which the quantum probabilisties could
be deduced. Thus, the statistical interpretation of quantum mechanics ultimately
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implies that predictions are being made about the behavior of ensembles, i.e. about
collections of a large number of independent, individual systems, and that the state-
ments of quantum theory are tested by carrying out measurements on large samples
of such systems. Therefore, quantum mechanical systems must be regarded as open
systems[5&]. On the one hand, any realistic system, like in classical physics is sub-
jected to a coupling to an uncontrollable environment which influences it in a non-
negligible way. In order to effect the occurence of chance events a quantum system
must be subjected to interactions with its surroundings. Any empirical test of the
statistical predictions on a quantum system requires one to couple it to a measuring
apparatus which generally leads to non-negligible influences on the quantum objects
being mesured. Thus quantum mechanics in itself involves an intimate relationship

to the notion of an open system through the action of the measurement process.

As a consequence of this inherent probabilistic nature, the limits of applicability
and even the interpretation of the predictions of modern quantum theory are lively
areas of debate amongst phyicists and philosophers|39]. Questions such as "How
do we interpret the probabilistic nature of wave functions?", "What constitutes a
measurement?", "How much can we ever know about the state of a system?", and
"Can quantum mechanics describe consciousness?" are fundamentally important for
our understanding of the physical laws of nature. Despite the fact that these problems
are still controversial, it is clear that whether or not a more complete description of
the world is possible, the accuracy of the predictions made based on modern quantum

theory is incredible. So far, in every instance of its application to date, the equations



of quantum mechanics have yet to be shown to fail. Therefore, we have every reason to
assume that an understanding of all physical phenomenon in nature can be achieved

by continuing to solve these equations.

As far as we know, nearly all physical properties of a physical system are related
to the total energies or to the differences between total energies. With this regard,
the quantum mechanical rules, or Hamiltonians, for calculating the total energy of
a ‘simple’ one-atom systems have provided some of the most precise tests of the
theory. It is therefore eminently reasonable to assume quantum mechanics to predict
accurately the total energies of aggregates of atoms as well. So far, this assumption
has been confirmed many time by experiments. To put this argument in a historical
perspective, let us recall here a famous statement made by P.M. Dirac in 1929 shortly
after the introduction of the Schrodinger equation and it’s successful validation for
simple systems like Hy and He: “ The fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of chemistry are thus completely
known, and the difficulty lies only in the fact that application of these laws leads to
equations that are too complex to be solved". This was a cry both of triumph and
of despair. It marked the end of the process of fundamental discovery in quantum
chemistry, but left a collossal mathematical task of implementation. In retrospect,
the implied finality of the claim seems excessively bold|60]. There is no doubt, the
main expectation made by this famous statement is still valid today. Though the
grand vision is already been there since decades ago, but the similar grand challenges

remain to date. However, the good news is that the ultimate search and confirmation



for this elegant expectation is no longer a mere idle philosophical musing, but rather

a practical methodology in symbiosis with the rapid advances in computers.

One of the accurate yet practical methodology we mentioned here, is usually referred
to as first principles study (or an ab initio study). The term ab initio (Latin for
"from the begining") means from first principles, in which all the physical proper-
ties we studied on a system can be calculated using nothing but the nonrelativistic
Schrodinger equation (Eq. 2.1) , the values of the fundamental constants and the

specification of atomic numbers of the atoms present in the system|61].

ov
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(2.1)

However, this does not mean that we are solving the Schrodinger equation exactly,
where the ¥ is the many-body wave function (or state function). Instead, it simply
means that we are selecting this as a method that in principle can lead to a rea-
sonable approximation to the solution of the Schrodinger equation with appropriate

approximations implemented within this method.

2.2 Approximations

Before continuing into the details from different well-established methodologies, a
little more must be said about Eq. 2.1 and the relation of its solutions (Eq. 2.1

and 2.2) to the ezperimentally observed physical properties. First, any experimental

10



observation is performed not on a single molecule but on a macroscopic aggregate of
molecules (i.e. a nanoscopic system). Second, any observation involves some kind of
interaction with the system. Very often it can be assumed that the environment of an
aggregate of molecules has little effect on some given physical property of interest. In
the conventional spectroscopy, the radiation field merely provides a weak perturba-
tion, inducing transitions from one state to another, and properties of the individual
molecular states usually can be accurately inferred from the available stationary states

of a system.

HY = EV (2.2)

Therefore, we usually take no account of these facts when setting up the Schrodinger
equation or its corresponding hamiltonian as shown in Eq. 2.1. Instead, commonly
a time-independent Schridinger equation (Eq. 2.2) will be used as a basis for the
study of physical properties of a system in stationary states, with the corresponding

Hamiltonian, H (Eq. 2.3) given below.

=3 (5 (G

i=1 a=1

)y (_)Z_ZR 29

i=1 a=1 v a<p

where M, is the ratio of the mass of nucleus « to the mass of an electron, and H— ﬁe

+ H, + H., is the sum of the electronic, nuclear, and interaction (electron-nuclear)
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term respectively. To make all the equations look simpler, atomic units (in which all
electromagnetic equations are written in cgs form, and the fundamental constants h,

2, 4mey and m, are set to unity) have been used throughout this thesis.

We shall now deal almost exclusively with stationary states, without considering the
effects of time-dependent perturbations in a system. Whereas in conventional chem-
ical reactions, however, more drastic changes occur as a result of ionization, collision
and scattering processes within particular physical phases (i.e. gas, liquid, solid or
mixed phases) is involved. Therefore even at the molecular level, such processes are
time-dependent, and their analysis requires solving the time-dependent Schrédinger

equation (Eq. 2.1).

Returning to the time-independent Schréodinger equation (Eq. 2.2), it must be stressed
that the Hamiltonian in Eq. 2.3 is still somewhat idealized, even for an isolated
system. In this case, we have assumed that the interactions among the nuclei and
electrons as regular classical electrostatic Coulombic interactions. Therefore the more
general electromagnetic interactions and spin-orbit couplings are ignored in this case

study as an approximation|62].

2.2.1 Born-Oppenheimer Approximation

Strictly speaking, a complete description of a system requires solving the full time-
independent Schrodinger equation (Eq. 2.2 and 2.3) including both electronic and

nuclear degrees of freedom, is a formidable computational task which is in fact al-
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together unfeasible at present, especially for systems consisting of an aggregates of
atoms and more than one electronic state[63]. In fact, there are several features
that contribute to this difficulty. First, this is a multicomponent many-body system,
where each component (i.e. each nuclear species and electrons) obey a particular
statistics. Moreover, the complete wave function cannot be easily factorized because
of Coulombic correlations. In other words, the full Schrodinger equation cannot be
easily decoupled into a set of equations such that, in general, we have to deal with
(3M +3N) coupled degrees of freedom. Therefore in order to study the dynamics and
ground state of the vast majority of chemical systems, several further approximations,

have to be imposed.

Due to the large differences in mass between the electrons and nuclei, and the fact that
the forces on the interacting particles are the same, the electron cloud can be assumed
to respond essentially instantaneously to the motion of the nuclei or the changes
in the nuclear configuration. This approximation ignores the possibility of having
non-radiative transitions between different electronic eigenstates. Hence within this
approximation, the nuclear dynamics has no means to cause electronic transitions, and
electrons remain always in the same adiabatic state (i.e. ground or excited state).
In this case, we define the dynamics to be ‘adiabatic’. Therefore by assuming the
electron-nuclei coupling to be purely classical electrostatic in origin and their motion
can be treated independently, which will eventually lead to a separation of electronic
and nuclear coordinates (i.e. decoupling of the nuclear and electronic degrees of

freedom) in the many-body wave function, within the so-called Born-Oppenheimer
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Approzimation or adiabatic approzimation (Eq. 2.4).

U(r,R) = ¥%(r, R)®(R) (2.4)

where the function ¥(r,R) is the electronic wave-function, and the function ®(R)
is the nuclear wave-function. Based on this approximation, we can assume that the
term ETVEI\I!@Z@(T, R) from Eq. 2.3 is negligible. As a result, the main task of the
electronic structure calculations is now reduced to solving the electronic Schrodinger
equation, with electrons under the external electrostatic field of fixed nuclei written

as:

HYVU(r,R) = E“U“(r, R) (2.5)

Tic

_\72
where Hée = SN ( Z’) DDA D (Za> + %Zf\;] % Furthermore, by ex-
cluding the consideration of simulating the quantum molecular-dynamics|61] of this

system by assuming a strict zero temperature treatment, i.e. no zero-point motion of

_vi

the nuclei is included, the remaining kinetic energy of nuclei: 575

appearing in Eq.

2.3 can be completely omitted.

As a result, this “adiabatic principle" reduces the many-body problem to the solution
of the dynamics the electrons in the frozen-in configuration of the nuclei (as a collec-

tion of classical particles|64|) with the total energy of the system finally simplified as
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follows:

Y 7.7

E = Eele_l_
Rog

a<pf

(2.6)

The Born-Oppenheimer Approzimation is used to vary adiabatically the positions
of the nuclei, letting the electrons adjust their motion at any time to the instan-
taneous external field of the nuclei, until the total static energy is minimized. As
a consequence, nuclear motion evolves on a single potential energy surface (PES),
associated with a single electronic quantum state, which is obtained by solving the

time-independent Schrodinger equation for a series of fixed nuclear geometries.

As a result, a ground state configuration with lowest total energy of one system can
be obtained through structural optimization when the forces on the a-th nucleus from
the k-component:

—

Fop = —VarE (2.7)

(i.e. with E defined as Eq. 2.6) vanish, with the aid of Hellmann-Feynman Theorem|61,
65, 66]. However, even with this important simplication, the many-body problem
of interacting electrons within one system remains formidable. Further appropriate
simplications are necessary in order to allow full quantum mechanical total energy

calculations to be preformed accurately and efficiently.
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2.2.2 Many Electron Systems

In short, the essence and the greatest challenge of many-body problem of interacting
electrons within one system is presented by the underlying electron correlation|61, 62,
65, 67]. Due to this main challenge, tremendous progress has been made in condensed
matter physics and quantum chemistry, especially in the field of electronic structure
studies. The underlying theoretical approximations are solely determined by the de-
gree of electronic correlation (i.e. weakly correlated Vs. strongly correlated electrons)
within a system. For the electrons in the weak coupling regime, the kinetic energy
rules the physics and the system remains qualitatively similar to a noninteracting
electron gas. For the strong coupling regime, the potential energy dominates, and the

electrons display the collective behavior characteristic in the system|67, 168, I69].

As a critical step towards the understanding of weakly correlated electrons in a sys-
tem, the realization of the nature of ‘independent’ non-interacting electrons in solids
within the band theory, is a hallmark scientific achievement. Within this regime, elec-
trons can be described as correlated with one another through the Pauli Exclusion
Principle, and interacting only via the effects of some average potential. However,
for quantitatively more accurate descriptions, one must go beyond the simple effec-
tive independent-electron approximations due to substantial correlations in localized

systems and characteristic chemical bonds|67, 69].

Compared to weak coupling regime dominant in chemistry, the studies in condensed

matter physics are more frequently associated with strong correlated system, such as
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Mott metal-insulator transitions|70, 71, [72], superconductivity[73], Wigner crystals|74],
quantum Hall liquid[6§], etc. In general, these physical pheneomena are distinct from
the Pauli repulsion which dominates ordinary matter within an independent-electron
picture, but rather manifested as a collective behavior that emerges in long-range

order, as the consequences of many-body electron-electron interactions|75].

However in this thesis, most of the systems and their physical properties fall into
the weakly correlated system. Therefore the remainder of this chapter is devoted to
the theoretical basis and its formalism on ground state studies on electronic struc-
ture of boron nanostructures. Therefore, the major portion of the discussion will be
based on independent-particle approaches that are largely based upon the current
well-established first-principles study, which is the theoretical basis for approximate

inclusion of many-body effects in the mean-field independent-particle methods.

2.2.2.1 The Independent-Electron Approximation

Currently, the field of electronic structure is at a momentous stage, with rapid ad-
vances in basic theory, new algorithms, and computational methods. Therefore, an
exhaustive overview which incorporates detailed discussion of all the theoretical meth-
ods available in current scientific community is never an easy task. In a broad def-
inition, there are two basic independent-particle approaches that may be classified
as “non-interacting" and “Hartree-Fock". They are similar in that each assumes the
electrons are uncorrelated except that they must obey the Pauli exclusion princi-

ple. However, they are different in that Hartree-Fock includes the electron-electron
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Coulomb interaction in the energy, while neglecting the correlation that is introduced
in the true wave-function due to those interactions. This approach is often referred
to as “Hartree" or “Hartree-like", after D.R. Hartree|76] who included an average
Coulomb interaction in a rather heuristic way. In general, “non-interacting" theories
have some effective potential that incorporates some effect of the real interaction,
but there is no interaction term explicitly included in the Hamiltonian. More to
the point of modern electronic structure calculations, all calculations following the
Kohn-Sham method (DFT) involve a non-interacting hamiltonian with an effective

potential chosen to incorporate exchange and correlation effects approximately.

2.2.2.2 Hartree-Fock Theory

In the preceding section, it was mentioned that under the weakly coupling regime
in electron correlation of a system, the observables of the many-body (i.e. many-
electron) problem can be mapped into equivalent observables in a single-particle
(i.e. one-electron picture) problem under an effective ‘mean-field’ theory. Among
the mean-field theories which are used to solve the many-electron system, the most
popular initial attempts to solve Eq. 2.5 is based on Hartree-Fock Theory within
the independent electron approximation within a self-consistent field[76, (77, [78]. As
a result, the assumption of independently moving electrons implies that the total
wave-function of the N-electron system, W(r, R) — W(r) (i.e. we will omit explic-
itly writing the parametric dependence of wave-function on the nuclei coordinates for

simplicity) can be approximated as an antisymmetrized product of N orthonormal

18



single-electron wave-function, 1;(x;) in a single Slater determinant:

%(331) 1/12(331) wN(SCl)

Yr(ze)  Pa(ze) o Yn(x2)
ie(r) = (2.8)

Yr(zn)  Yalzn) o Yn(zn)

where each 1;(z;) is a product of a spatial orbital ¢, (r) and a spin function o(s) =

a(s) or [(s).

In brief, the Hartree-Fock (HF) approzimation|79| is the method whereby the or-
thonormal orbitals v; are found that minimize E¢[¥] for this determinantal form of

U.[65] The energy of a state of many electrons in the Hartree-Fock approximation,

N N
. . 1 . .
< VUyp|H[Vyp > = Z < Yilhavi > +§ Z[< Vivjlhalthith; > — <Yl halthih; >]
i=1 ij=1
(2.9)
with le = —%V2+Vm(r) and iig = |r——1r’\’ is the best possible wavefunction made from a

single determinant (or a sum of a few determinants in a multi-reference Hartree-Fock

function needed for degenerate cases)|8(].

Improvement of the wavefunction to include electron correlation introduces extra
degrees of freedom in the wavefunction and therefore always lowers the energy for

any state, ground or excited, by a theorem attributed to MacDonald[81]. The low-
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ering of the energy is termed the “correlation energy", E.. However, this is defi-
nitely not the only possible definition of F.. Indeed, it could also be defined as the
difference between the exact energy from some other reference calculation which is
beyond Hartree-Fock|8(]. But in general, the Hartree-Fock method always leads to
the smallest possible value of FE., among the others. As a matter of fact, the HF
approximation doesn’t take into account the short-range (dynamical) correlation be-
tween the electrons. This is due to the fact that by assuming each electron moves
in each orbital independently, the wave-function W is represented by a single Slater
determinant, in which the electrons only interact with an average effective poten-
tial due to the existence of other electrons, instead of the actual pairwise interac-
tions. So in order to include the dynamical correlation term beyond Hartree-Fock,
the many-body wave-function can be represented by a linear combination of Slater
determinants|62, 67, 8(]. Here, the Configuration Interaction (CI) method, the multi-
configuration SCF method (MC-SCF), and the Coupled-cluster method|66, 80] are
well-known by including these multi-determinantal wave-functions. However, due to
the large number of the configurations, it becomes computationally very expensive to
employ this post-Hartree-Fock method to large many electron systems. Thus in or-
der to overcome this difficulty, with the balance of computational cost and accuracy,
several promising approximations have been developed, and one of them is Density

Functional Theory (DFT), the main theoretical formalism used in this thesis.
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2.2.2.3 Density Functional Theory

Thomas-Fermi Model

As we know, the many-electron wavefunction ¥ contains a great deal of information:
all we could ever have, but more than we usually want. For the practical point of
views, often what we want is no more than the total energy, E (and its changes),
or perhaps also electron density distribution for the ground state of a system. How-
ever, in the view of the difficulties in solving quantum many-body problems as men-
tioned in the previous section, the notion that ground state properties of quantum
many-particle systems can solely be characterized in terms of the ‘simple’ one-particle

density, p(r) is not so obvious.

Instead of thinking of the solution of the complicated N-electron wave-function,
U(ry, 79, ...,7,), a drastically simpler idea based on statistical considerations to ap-
proximate the distribution of electrons in a system, can help us to derive the equivalent
solution of Eq. 2.4 in a remarkable way. The underlying ingenious idea and assump-
tion can be traced back to 1927 from Thomas and Fermi (i.e. the Thomas-Fermi
model), soon after the birth of modern quantum theory[82, 83, 84, RH]. Therefore,
this begins to expound a series of related theoretical models that allows one to re-
place the complicated N-electron wave function: W(ry, 79, ....,7x) and the associated
Schrédinger equation by the much simpler electron density, p(r) and its calculation

scheme|85, 186].

Assuming that for the ground state of the system of interest, the electron density
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p(r) is a solution of the stationary (i.e. variational) principle by minimizing the
energy functional Err(p(r)]: 0{Errlp] — prr([ p(r)dr — N)} = 0, where urp is a
Lagrange multiplier under the constraint N = N[p(r)] = [ p(r)dr, where N is the total
number of electrons in the system. By taking into consideration the pure electrostatic
interaction of electron-nucleus attraction, and electron-electron repulsion, an energy

functional for a system in terms of electron density alone can be defined as:

Erplp(r)] = Tlp(r)] +/p(7“)1/(7“)d7’+%e[p(7“)] (2.10)

where T'[p(r)] is the kinetic energy, v(r) is electron-nucleus interaction energy, and
Veelp(r)] = Jlp] - K[p] is the electron-electron interaction energy which includes the
exchange-energy formula, K[p| first proposed by Dirac|85]. Based on the homoge-
neous free electron gas|87, 88|, the kinetic energy term of these non-correlated elec-
trons can be derived as: Trp[p] = Cp fpa )dr, with Cp = (37?2)% = 2.8712, which
is known as Thomas-Fermi kinetic energy formula. Consequently, the exchange en-
ergy can be obtained similarly, as: Kp[p] =-Cx fpa Ydr, with C'x = %(§)§ —(.7386,
which known as Dirac exchange-energy formula. By inserting the term: Trr[p| and
Kplp] into Eq. 2.9, we obtain the Thomas-Fermi-Dirac energy functional, Erpp|p]

accordingly defined as follows:

ol

Ereplp(r)] = C'F/ g( )dr—i—/p(r)u(r)dr—l—J[p(r)] —C’X/p (r)dr  (2.11)
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Based on this approach, several modifications and improvements of the Thomas-Fermi
theory have been made over the years. Unfortunately, this elegant yet primitive model
is not accurate in making much significant quantitative predictions and improvements
in atomic, molecular or solid state physics calculations|86, 89, 9(]. However, this
situation changed with the publiction of the landmark paper on Density Functional
Theory (DFT) by Hohenberg and Kohn|91l] in 1964, which provides the fundamental
theorems showing that for ground states the Thomas-Fermi model may be regarded as
an approximation to an exact theory. As a matter of fact, DF'T constitutes a method
in which, without loss of rigor, one works with the electron density, p(r) as the basic
variable, instead of the wave function W. Thus, the simplification is immense. The
restriction to ground states is what makes density functional theory possible, with the
minimum energy principle for ground states playing a vital role. This is reminiscent of
thermodynamics, which is largely a theory of equilirium states. The Hohenberg-Kohn
theorems provide a formalistic proof for the correctness of Thomas-Fermi model, but
do not provide any practical schemes for calculating ground state properties from the
electron density. This was on the other hand, provided by the approach later proposed
by Kohn and Sham|92] (1965). Henceforth, DFT offers a practical computational
scheme: the Kohn-Sham equations, which are similar to Hartree-Fock equations, yet

they include both exchange and correlation effects in principle.

Theorems

In brief, there are two essential statements on which DFT is based:
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1 Every observable in a quantum system can be calculated from the electron den-

sity of the system alone.

1 The density of the interacting system can be approximated by the density of
an auxiliary system of noninteracting particles which do not interact with each

other, and just move in an effective external field.

These two statements are known as Hohenberg-Kohn and Kohn-Sham theorems.

Hohenberg-Kohn Theorem

As a matter of fact, the original proof and derivation of Hohenberg-Kohn theorem
was based upon “reductio as absurdum" |65, 91|, and later refined and extended for
degenerate ground states under the “constrained search" formulation under the Levy-
Lieb formulation[93, 94, 97, 96]. To be more specific, the theorem can be divided into

two parts:

T 1%t Theorem: The external potential is uniquely determined by the electronic

density, except for a trivial additive constant.

Corollary: Since p(r) uniquely determines V(r), then it also determines the

ground state wave function, Ugg.
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t 274 Theorem: For any trial density, p'(r), such that p/(r) > 0 and [ p'(r)dr = N
(i.e. p'(r) be a non-negative density normalized to N). Then with the variational

princip]e, Eground S EV [pl (T)]i for

Evlo) = Tl + U]+ [ #oVirir (2.12)

with Ulp'] = 3 ffMdrdr’ + E.[p] + Ep]

|r—r"|

Here, the implications of the Hohenberg-Kohn theorem can be summarized in the

following three points:

1 There is a one-to-one correspondence between the external one-particle potential

V(r) and the ground state density of the system, p(r):

V(r) «— p(r) (2.13)

This tells us that if we know p(r) we can determine uniquely the potential V (r)
which can be viewed as a functional of density V' = V[p(r)]. Then, we can solve
the Schrodinger equation (Eq. 2.2) with this effective potential. Therefore, all
the eigenstates, and the corresponding energies (eignevalues) of the system are

then determined by this ground state density, p(r) of the system.
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T There is a variational principle E,,ound < Ev [p' (r)] that requires that the ground

state density satisfy the stationary principle:

65]%})( = 0 for p(1) = Pexact (1) such that:

&mm—@ﬁmmuNuzo (2.14)

which gives the Euler-Lagrange equation:

0Fuk[p]

= Veulr) 5p(r)

(2.15)

with the quantity p is the chemical potential of the system|65]. It states that
the total energy, Fyx as a functional of the electron density, Eyv[p], and it has

its minimum at the exact ground state density pezact(7)-

1 The last point of the Hohenberg-Kohn theorem provides a way to express this

functional. It can be written as:

%MMZEmM+/W%%WW (2.16)

which the Fiyx[p] is a universal functional of p(r), independent of the external
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potential V_.;(r). Once we have an explicit form (approximate or accurate) for
Fri[p], we can apply this method to any system, with the Eq. 2.14 as the basic

working equation of DFT.

2.3 A Generic Kohn-Sham Approach

One particular way of exploiting the Hohenberg-Kohn theorem is the well-known
Kohn-Sham scheme|92], which expresses the ground state density of the interacting
particles of a material in terms of the orbitals of auxiliary non-interacting particles
moving in an effective external local potential, V,,;. Here, the outline of this section
is to give a brief technical overview on how to solve the Kohn-Sham equations (i.e.
the main theoretical scheme used in this thesis) as mentioned in the previous section.
In spite of their differences among the conventional DFT codes available, all codes

are designed to try to solve the Kohn-Sham equations:

2

D) + vkslp(r)lei(r) = eipi(r), (2.17)

as shown in the simple flow-chart of Fig. 2.1 which this notation, vxg[n(r)] is the
Kohn-Sham potential with a functional dependence on p, the electronic density. Here,

the corresponding electronic density, p is defined in terms of the Kohn-Sham wave-
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function by:

1) = > Iai(r)P (218)

The potential vxg[p(r)] is defined as the sum of the external potential (here normally
referred to as the electrostatic potential generated by the nuclei), the Hartree potential

and the exchange-correlation (xc) potential:

vics[p(r)] = Vearlp(r)] + Virartree [p(r)] + vaclo(r)] (2.19)

Due to the functional dependence on the density, these equations normally form a
set of nonlinear coupled equations, and the standard procedure to solve it is through

iterating until self-consistency is achieved|61] (Fig. 2.1).

In principle, any positive function normalized to the total number of electrons would
work, but using an appropriate guess for py(r), to start the iterative procedure can
speed up convergence dramatically. For example, for a molecule or a solid-state

system, one could construct py from a sum of superposition of atomic charge densities:

po(r) = Z,Oa(T — Ry) (2.20)

where R, and p, represent the position and atomic charge charge density of the
nucleus a. While for an atom, a favorable choice will be the Thomas-Fermi density.

We then evaluate the Kohn-Sham potential, vxg with this density, and each of the
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Figure 2.1: A flow-chart depicting a generic Kohn-Sham calculation through

a self-consistency process.[97]
components of vxg is calculated separately. Here, the first component of the Kohn-
Sham potential, v, is typically a sum of nuclear potentials centered at the atomic
positions, Ve, (1) = >, Vo (r— Ry), with v, typically is a Coulombic attraction among

the electrons and nucleus. The next term, vgqe (i.e. Hartree potential) is then is

defined as: Vigrtree — f Br' L) with several techniques can be used to evaluate this

=]’
integral, either b@direct integration or solving the equivalent differential Poisson’s
)

equationH,

|. Finally, the exchange-correlation (zc) potential which formally
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defined as:

(2.21)

is perhaps the most subtle part for the numerical calculation.

Among the approximate xc functionals which have appeared in the literature over
the years, the first to be proposed and, in fact, the simplest of all, is the local-
density approximation (LDA). Besides, other possible, yet suitable choices will be
the generalized gradient approximations (GGA), which has a similar form, but not
only depends on the density, p, but also on its gradient V|61, 65, 166, 97]. Then, as
we obtained the Kohn-Sham potential, we can solve the Kohn-Sham equation, with
the goal to obtain the p lowest eigenstates of the Hamiltonian Hgg, where p is half
the number of electrons (for spin unpolarized calculation). Then as shown in the
Fig. 2.1, the self-consistency cycle is stopped when some convergence criterion are
reached: i.e. when |[E® — EC-V| < g or [d3r|p® — pl=V| < 5, where E) and
p are the total energy and density at iteration i, and 7z and 1, are user defined
tolerance cut-off value. If, on the contrary, the criteria have not been fulfilled, then

one needs to restart the self-consistency cycle with a new density.
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2.4 Molecular Orbital Theory (Linear Combination

of Atomic Orbitals (LCAO))

Based on the Kohn-Sham calculation scheme, an essential ingredient of many DFT
calculations is the representation of basis functions of the wave-function (i.e. Kohn-
Sham wave-function), ¢. For dealing with the problems of molecular quantum me-
chanics as we stated in the previous section, two methods of approximation have been
developed which are capable of handling many-electron system since the early days
of developments in quantum chemistry, towards a qualitative and quantitative un-
derstanding of chemical bonding. The first approach: the valence bond (VB) method
originally from a chemical point of view, was introduced and developed based on the
concept of resonance and resonance structures. This method is essentially using the
Heitler-London picture|l16, 99, [100] in solving the Hy molecule treating electrons as
being strongly-correlated particles from the first. The second one, the Molecular Or-
bital Theory (also known as Linear Combination of Atomic Orbitals, i.e. the LCAO
approach), was first developed by Hund, Mulliken, and then elaborated by Slater,
Hiickel, Roothaan and others|79, 101, [102, {103, 104, [105, [L06], is an extension of the
Bohr theory of electron configurations from atoms to molecules. Here, although both
approaches described are equivalent, the Molecular Orbital Theory which is based on
the idea of independent-electron approximation as mentioned in Sect. 2.2.3, has had
great success over the years, since most chemical bonds of materials are relatively

weakly correlated. Therefore in a common application, the LCAO approach proves
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to be an appropriate starting point, and henceforth will be adopted in this thesis.

2.4.1 Basis Functions or Basis Sets

There is a huge amount of information contained in the typical ground state electronic
structure calculations. An efficient computational scheme must be able to manipulate
this information economically with regard to CPU time, storage requirements and the
number of input/output (IO) operations. Hence, in deciding on a particular set of
basis functions, a compromise will have to be made between high-accuracy results,
which requires a large basis set, and computational costs, which favor small basis sets.
Therefore, similar arguments hold with respect to the functional forms of ¢. In gen-
eral, besides considering the size of the system in this study, those functional forms are
of particular of concern in terms of numerical accuracy, stability, and robustness from
the computational points of view. Accordingly, linear representations of one-electron
functions are usually adopted under the LCAO approach. Henceforth, different func-
tional forms have been proposed over the years. Within the LCAO scheme, either the
Hartree-Fock equation or the Kohn-Sham equation, the one-electron wave function,

© can be expanded in terms of a certain set of basis functions as follows:

N
o = Cuxi (2.22)
pn=1

with the orbitals ¢; are represented as a linear combination of a finite set of prede-

fined N one-electron functions, which are known as the basis functions, x, as first
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suggested by Roothaan|79|, while the C),; are the molecular orbital expansion coef-
ficients. Under the LCAO approximation, atomic orbitals of constituent atoms are
used as basis functions. However, any set of appropriately defined functions may
be used for the basis set expansion. For the mathematical completeness of an exact
wave function, it requires N — oo, while in practice, only a finite number of N basis
functions can be included in a calculation to approximate the ‘completeness’ with
certain accuracy. Therefore, when using linear representations, the problem of the
errors related to the use of an incomplete expansion set in basis functions (i.e. finite
basis sets) arises. Thus, there is the need of making such errors as small as possi-
ble, while using manageable basis sets. Each application requires a careful analysis,
i.e. the art of devising a ‘good’ basis sets is very important, and usually it is based
on experience and competence. In this respect, depending on the different interests
of studies, several alternatives for the representation of the basis functions are now
available in todays electronic structure simulation codes. With their own advantages
and disadvantages, these basis functions can be either analytic or numerical functions,

with localized or delocalized in the basis expansion, given in Eq. 2.22.

2.4.1.1 Gaussian Types Orbitals

In general, two kinds of basis functions have been traditionally used in molecular quan-
tum chemistry: Slater Type Orbitals (STOs) and Gaussian Type Orbitals (GTOs),
where both are the product of spherical harmonics Y},,(6, ¢) and a radial function.

Based on the intuition of Hydrogen-like orbitals, the earliest attempt proposed by
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Slater[103] used exponential functions of the form: x(r,0,¢) = Nr" 1e="Y (0, ¢),
and the (STO) is the commonly known as the earliest version of analytical localized
basis functions of molecular orbitals. Here, the Y, ,,(6, ¢) is the coneventional spheri-
cal harmonics, the NV; is the normalization factors defined as [(2n)!]_% (2¢;)"*2, where
the value ¢ can be determined from some empirical rules after considering the screen-
ing of the nucleus[103]. In spite of the fact that STOs are normalized and reproduce
much better the cusps of the wave function in the proximity of the nuclei, its usage
has been somewhat limited. The STOs do not possess nodes in the radial functions,
however it can be included by linear combination of STOs. Besides less flexibility in
the bonding descrption, their disadvantages is that the one and two-electron integrals
are cumbersome to calculate, and can hardly be handled analytically with high accu-
racy at computation|107|. Hence, the appropriate solution will be using (GTOs) as
suggested by Boys|[10&]. Here, the GTOs can be represented either in terms of polar

or cartesian coordinates as:

X(r,0,¢) = NYi (0, ¢)r* > e=< (2.23)

x(z,y,2) = Naleylvlee " (2.24)

where the sum of [/, [, and [, determines the angular part of the orbital, ¢ represents

the radial extent of the function. With the introduction of GTOs, the evaluation
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of the three- and four- center integrals of the two-electron integrals, is essentially
much simpler as all gaussian integrals are analytic in nature[109] for both cartesian
and polar gaussian basis. On the other hand, it should be noted that GTOs itself
cannot describe the physics of orbitals correctly for both the tails of orbitals and in the
vicinity of nucleus: i.e. the e’ dependence in GTO, results in a zero slope at nucleus,
instead of cusp. Consequently, a single GTO cannot properly describe the behavior of
an Atomic Orbital (AO). Thus, Contracted Gaussian Functions (CGFs), x{“" which
includes a fixed series of linear combinations of primitive Gaussian Functions, y&¥
characterized by the same center (usually coincide with a nucleus), with same angular

numbers but different exponents. This basis functions (i.e. CGFs) is thus defined as:

CGF = deXz Cz;m ) (225)

where d;, is a contraction coefficient, L is the length of the contraction expansion. So

now, the ¢ defined before can be written as:

N
= Y Cnger (2.26)
=1

where usually only the coefficients to the contracted Gaussian functions, C,; are

optimized in SCF (i.e. self-consistent iteration) calculations.

In practice, there are a wide range of basis sets available, with the basis functions
made up either by STOs and GTOs to represent the physics and chemistry of elec-

tron orbitals. If only one basis function is used to represent an occupied AQO, it
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is called minimal basis set and usually they are applied to very large molecules, as
the number of basis functions are small. With regarding to this, one of the popu-
lar minimal basis set widely used is STO-3G[110]. However, due to its limitations
in flexibility in bonding features descriptions, the split valence basis sets is the bet-
ter choice. In these basis sets, each valence AO is represented by two basis basis
functions, typically the first one contracted, and the second uncontracted, common
examples are the: 3-21G[111, 112, 113, 114, [115, 116], 4-31G|117, 118, 1119, 120],
and 6-31G|117, 118, 119, 120, 121, 122| basis set. Here it is noteworthy to point
out that gaussian functions are generally derived from atomic calculations. On the
molecular environments, the AOs involved can deform, due to asymmetric electronic
charge distributions. Hence, the contracted Gaussian cannot fully describe the or-
bitals in molecular environments. So in order to accomodate this deformation effect
and describe the molecular environments accurately, basis functions of higher angular
momenta than the valence electrons are needed to be included in the basis sets, which
called polarization functions. Here, one of the typical popular examples of the po-
larized basis sets are: 6-31G(d), 6-31G(d,p). Moreover, highly diffuse (small orbital
exponent) basis functions can be included in the split-valence basis sets, to mimic
the orbital character of molecules with lone pairs and anions. With this regard, the
6-31+G basis set (with diffuse functions s,p are added to non-Hydrogen atoms in
6-31G), and the 6-314+G basis set (diffuse functions added to hydrogen atoms also)

are introduced|123].

Here, the computation tool we utilize these basic features (i.e. STOs and GTOs)
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in DFT calculations is the program package called Gaussian98/03, which adopt both
LCAO-HF and LCAO-DFT schemes. All the technical details and simulation features
can be obtained via the manual[123] and the official website: http://www.gaussian.com/.
Mostly this quantum chemistry program package will be used in first-principles stud-

ies on boron clusters which will be discussed in more details in chapter 3.

2.4.1.2 Crystal Orbitals

In this section, it is noteworthy to point out that conventional quantum chemistry and
quantum solid states physics should share the same ‘language’ : quantum mechanics
in principle. Therefore theoretically their underlying formalism should be equivalent.
However in real implementations and developments, ‘they’ (i.e. quantum chemistry
and quantum solid state physics) tend to have different ‘flavors’. As a result, quantum
chemistry and quantum mechanical simulation of solids have followed substantially
independent paths and strategies for many years, with almost no reciprocal influences.
In the implementation of computational schemes and formalisms, they started from
different elementary models, especially on the representations of the basis functions
for many-electron wave-function, and the underlying parameterization of electron cor-
relation functionals|67]. Compared to quantum chemistry which evolved for molecular
studies, the approach to solve many-electron problems in the solid state was rather
different. Instead of focusing on molecular orbitals and chemical bonds, conventional
solid state computational codes are mostly focused on fundamental properties such as

the band structure, effective mass, Fermi surface, defects, impurities, electrical and
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magnetic and optical properties of a material. Henceforth, various computational
schemes on quantum simulation are adopted, such as the X-a method|124], Slater-
Koster tight-binding[125], planewave basis with pseudopotentials|126, 127|, Korringa-
Kohn-Rostoker (KKR)[128, [129], orthogonalized planewaves (OPW)[130], augmented
planewaves (APW)[131], [132], linear augmented planewaves (LAPW) and linear muf-

fin tin orbitals (LMTO)[133], etc.

In spite of the computational schemes mentioned above, a natural extension of molec-
ular quantum chemistry into a periodic system with the local analytical basis sets (i.e.
GTOs) through the generalization of the Hartree-Fock and Kohn-Sham equations for
crystalline solids is not impossible[134] and unique among the planewave basis func-
tions. Within this scheme, we can represent each Crystalline Orbital (CO), 1;(r, k)
as a linear combination of Bloch functions (BF), ¢,(r, k), defined in terms of local

functions, @, (1) (here referred to as Atomic Orbitals, AOs):

Vil k) = Y aui(k)gu(r k) (2.27)

¢u(r> k) = Z qu(r - Au - G)eik'G (2.28)
G

with A,,, denotes the coordinate of the nucleus in the zero reference cell on which
Ymy is centered, and the sum is extended to the set of all lattice vectors, GG. Here,

the local functions can be expressed as linear combinations of a certain number, ng,
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of individually normalized Gaussian type functions (GTO) characterized by the same

center, with fixed coefficients, d; and exponents, o, defined in the input,

ng
pulr — A, —G) = Zde(O‘j;T_Au_G) (2.29)
J

which is similar to what we defined in previous section on GTOs in the Gaussian98/03
program package. Here, it should be emphasized that in the actual application of
solid state calculations, the standard molecular basis sets cannot be used unmodified,
even if they both share the same GTOs in architecture. Except for some molecular
crystals|135], a variational basis set usually consists of contractions of GTFs (linear
combination of GTFs with constant coefficients) needed to be carried out, with the
contraction coefficients for the inner shells being defined at the isolated atom level

usually used as it is, however, for the valence electrons, the coefficients needed to be

modified.

Accordingly for the typical periodic codes (i.e. solid states simulation codes) which
are based on the same basic schemes as conventional molecular quantum chemistry
package (i.e. Gaussian98/03), the proper use of periodicity and symmetry needed
to be addressed. Here, the conventional solid state physics simulation is based upon
a periodic procedure expression which is infinite and translation invariant, with the
assumption of a perfect crystal. As a matter of fact, this translation invariance has a
series of interesting properties with many important consequences for simplification

of the problem, and the implementation of efficient algorithms. In this case, for all

39



direct space program, all the relevant quantities (i.e. the Fock and overlap matrices)
are evaluated in direct space (i.e. in the AO basis). In this basis, the Fock (or

Kohn-Sham or overlap) matrix which has the form:

Fu(k) = exp(ik.G)F,,(G) (2.30)

FMV(G) = TMV(G) + C/W(G) + XMV(G) (2'31)

where F,,(G) is the matrix element corresponding to the interaction between the
pu-th AO located in the zero cell and the v-th AO located in the G cell. The row
index can be limited to the zero cell for translational invariance, however the G
summation extends in principle to all direct lattice vectors. T, C, and X are the
kinetic, Coulomb, and exchange contributions to the Fock matrix in direct space.
Here, Hartree-Fock and Kohn-Sham equations differ in the last term only, further
technical details about treating the integrals of Coulomb, exchange series, and DFT
grid can be obtained elsewhere within this calculation scheme[135, [136]. Matrices in
k space take a block diagonal form, as Bloch functions are bases for the irreducible
representations of the translation group. Each block has the dimension of the AO
basis in the unit cell. Fortunately, only a finite and usually small subset of these
blocks, corresponding to a suitable sampling of £ points, needs to be diagonalized

because interpolation techniques|[137] can be used for eigenvalues and eigenvectors in
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the first Brillouin zone. Thus, the eigenvectors of the F'(k) matrix are then combined
and anti-Fourier transformed to give P((), the density matrix in direct space, that is
used to build F(G) at the next cycle in a self-consistent loop (Fig. 2.1) for iterative

process.

With this respect, we apply the well-established ab initio program code: CRYS-
TAL03/06 to simulate the periodic system of boron nanostructures: 2D boron sheets
(Chapter 4), 1D boron nanotubes (Chapter 5), and 3D crystalline boron nanotube
bundles (Chapter 6) and boron bulk solids (Chapter 7). Therefore, the corresponding

computational details will be discussed separately in Chapters 5, 6 and 7.

2.4.1.3 Planewaves and Pseudopotentials

Besides representing the basis functions of a wave function in terms of localized basis
sets (i.e. GTOs), the representation using planewaves basis sets is the other popular
choice, due to Bloch’s theorem|61l], which states that in a periodic solid each electronic
wave function, 1;(r) can be written as the product of a cell-periodic part and a

wavelike part[13§].

vi(r) = fi(r)exp(ik.r) (2.32)

Here, the cell-periodic part of the wave function can be expanded using a basis set

consisting of a discrete set of planewaves whose wave vectors are reciprocal lattice
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vectors of the crystals,

fi(r) = Zci7gexp(iG.r) (2.33)

where the reciprocal lattice vectors G defined by G.I = 2mmx for all [ is a lattice
vector of the crystal and m is an integer. Whereas each electronic wave function can

be wriiten as a sum of planewaves,

Yi(r) = > ciprcerpli(k + G).r] (2.34)

In a perfect periodic crystalline system, the infinite number of electrons in the solid
are encountered for by an infinite number of £ points, and usually only a finite num-
ber of electronic states are occupied at each k point. The Bloch’s theorem changes
the problem of calculating an infinite number of electronic wave functions to one
of calculating a finite number of electronic wave functions at an infinite number of
k points. Therefore, this means the occupied states at each k point contribute to
the electronic potential in solid, in principle, an infinite number of calculations are
needed to compute this potential. However, usually the electronic wave function at k
points which are very close together will be almost identical. Therefore in this case,
the electronic states at only a finite number of k£ points are required to calculate the
electronic potential, and hence determine the total energy of the solid. Consequently,
there are methods that have been devised for obtaining very accurate approximations

to these values (i.e. electronic potential and total energy) at special sets of k& points
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in the Brillouin zone, which known as k-point sampling schemes|1317, 139, [140, 141].
Hence based on these schemes, the magnitude of any error in the total energy which
due to ‘inadequacy’ of the k-point sampling can always be reduced by using a denser
set of k points. In principle, a coverged electronic potential and the total energy can
always be obtained provided that the computational time is available at sufficiently

dense k points.

As stated by Bloch’s theorem, the electronic wave functions at each k-point can be
expanded in terms of a discrete planewave basis sets. When planewaves are used as
a basis set for the electronic wave function, v;(r), the Kohn-Sham equations assume

the following form|61]:

Z[%\k + G?06ar + Vin(G — G') + Vi (G — G') + Vxc(G — GN]ciria: = EiCinia
I

(2.35)
In this secular equation, the kinetic energy is diagonal, and the various potentials can
be described in terms of their Fourier transforms. Then, the solution of this equa-
tion can be obtained by the diagonalization of a Hamiltonian matrix whose matrix
elements, Hy ¢kt are defined by the terms in the brackets in the equation above.
Here, it is noteworthy to point out that, for a planewave basis set, the coefficients
Cik+c With small kinetic energy %\k + G|? are typically more important than those

with large kinetic energy. Thus the planewave basis set can be truncated to include

only planewaves that have kinetic energies less than some particular cutoff energy.
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Together with the introduction of an energy cutoff to the discrete planewaves basis
set, it produces a finite basis set. As a result, this truncation of the planewave basis
set will lead to an error in computed total energy. Although in principle, it is possible
to reduce the magnitude of this error by increasing the value of cutoff energy, how-
ever, in real practice, this comes along with the expense of vast computational time
in the diagonalization of a huge matrix, since the dimension of the matrix, Hj g r+¢

is determined by the choice of the cutoff energy %U{: + G|?.

On the other hand, it is important to note that the calculations including inner-shell
electrons demands a significantly higher cutoff energy, which prevents us from imple-
menting any practical simulations based on planewaves. Furthermore, a planewave
basis set in general is very poorly suited to the electronic wave function expansion,
because vast numbers of planewaves are needed to expand the tightly bound core
orbitals, besides of the rapid oscillations of wave functions of valence electrons in the
core region. As a matter of fact, from the physics points of view, it is well known that
the behavior of inner-shell electrons in molecules and crystals is similar to that of
core electrons in isolated atoms, wheareas the outer-shell valence electrons in atoms
constituting a material determine mostly the physics and chemistry of the materials.
Hence as a way out, this problem can be overcome by the use of the pseudopotential
approzimation|121, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154],
through removing the core electrons and by replacing them and their corresponding

strong-ionic potential with a weaker pseudopotential, that acts on a set of pseudo
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wqve functions, rather than the true wave functions as shown in Fig. 2.2 H

Figure 2.2: Schematic illustration of all-electron (solid lines) and pseudo-
electron (dashed lines) potentials and their corresponding wave functions.
The radius at which all-electron and pseudoelectron values match is desig-
nated rcﬂ].

In this regard, in order to have both proper local[142, {144, 146] and nonlocal pseudopotential|[127

145, (147, [148, 149, [152| properties, capable of describing the scattering due to ions

in a variety of atomic environments (i.e. transferability property), the most fre-

quently used pseudopotential in the conventional first-principles calculations: the

norm-conserving pseudopotential technique[127, [149, 154] has been proposed. Ac-

*Remark: The pseudopotential methods is not just applicable to planewave basis sets. In fact, it can
also be found in localized basis sets, e.g. GTOs, STO, and projected augmented waves, PAW
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cordingly, the pseudo wave-function which used these pseudopotentials in general

must have the following characteristics:

1 There are no nodes in the pseudo wave-function.

1 The pseudo wave-function agrees with the all-electron wave function outside the

inner-shell radius of r..

1 The eigenvlues of the valence electron state using the pseudopotentials is in

accordance with the eigenvalue calculated including the inner shell electrons.

t The norm [ |u}*(r)|*dr up to the inner shell radius of 7. of the pseudo wave-
function coincides with the norm of all-electron wave function up to r.. Here,

w(r) is equal to ry;(r), which the radial component ¢;(r) is from the wave

function vy, (r) = @i(r)Yn (0, ¢).

With respect to these features, the main advantages of using a truncated planewaves
basis set as suggested above is rather significant. The terms which involve the Fourier
transforms in the matrix elements, Hj. ¢ r+¢ of Kohn-Sham equation mentioned in
previous, can be solved very efficiently using Fast Fourier Transform (FFT) tech-
niques. Besides, the calculation of the energy, forces on the orbitals, forces on the
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nuclei, and stress terms are simpler to solve using planewaves. There are no additional
forces on the nuclei that arise from the derivative of the basis functions. This is a
consequence of the fact that the Hellmann-Feynman theorem can be strictly applied
only when the basis set is very well converged, or when the basis functions do not
depend on the nuclei coordinates. Therefore, the correction for the finiteness of basis

set which give rise to “Pulay forces" as found in localized basis sets will not exist|61].

With this respect, we test this powerful scheme and its underlying algoritms imple-
mented within a popular simulation package called VASP (i.e. Vienna ab initio simu-
lation package)[153, 1156, [157] on the periodic and semi-periodic system of particular
boron nanostructures: 2D boron sheets (Chapter 4), 1D boron nanotubes (Chapter
5), and 3D boron bulk solids. In particular, the reliability of these numerical results
is compared with those obtained using localized basis sets based on CRYSTALO03/06.
Furthermore, the accuracies of the numerical parameters chosen are compared to each
other among the LDA and GGA, based on both ultrasoft pseudopotentials[153] and

projected augmented waves (PAW)[158].

47



Chapter 3

Boron Nanoclusters: Embryo of

Boron Nanotubes

3.1 Introduction

3.1.1 What are nanoclusters ?

Clusters are a finite system with a collection of atoms. Due to its ‘finiteness’, it is
unique from its bulk constituents. In terms of the system size, clusters are inter-
mediates between molecules and solids. Usually, they consist of only one or several
types of atoms, with more than a few atoms so that that they cannot be considered
as 'normal’ molecules, but still small if compared to 'normal’ solids|66]. Thus, as a

natural extension, nanoclusters should definitely defined within a nanoscopic regime.
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We now discuss a meaningful and distinct classification of nanoclusters given by
Huberland[159]. This classification was based on the unique property of the clusters,
namely the size- and shape-dependent variations in the properties of clusters. In
small clusters, though the properties vary with the size, no smooth variations with
size and shapes can be found, whereas in the medium-sized clusters the properties
vary smoothly with the size. In large clusters, however, the properties are more similar
to that of the bulk and are more or less independent of the size. Experimentally, it is
also possible to determine the relative abundance of the clusters as a function of NV
(i.e. number of atoms). This means that one measures the number of clusters that
have a specific size. One might initially expect that this leads to a rather smooth
function, but it turns out that there exist the so-called magic number, i.e. values
of N for which particularly many cluster configurations are found to be stable|66].
Hence, due to its loosely defined ‘size’ and topological structure, a lot of wonders can

be found in such finite systems.

The study of clusters can also be based on the composition and the type of chemical
bonding between the atoms forming the cluster. A cluster of a given composition may
have a large number of stable structures, referred to as local minima. Likewise, there
are homogeneous and heterogeneous clusters, based on the kind of atoms forming
the clusters. Heterogeneous clusters can exist in two forms, namely, stoichiometric
non-stoichiometric clusters. The stoichiometric clusters have the same composition
as that of the corresponding bulk but exhibit properties which may be different from

that of the crystal. The nature of bonding in these clusters is quite different in each
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case and can vary from ionic (NaCl),, to covalent (Cg), to Van Der Waals (rare gas
clusters) bonding, and to hydrogen bonding (HyO clusters). Moreover, for a given
cluster, the nature of bonding can vary with the cluster size. For example, the nature
of the chemical bonds in small H g, clusters is Van der Waals, whereas for larger Hg,

clusters, it is dominated by metallic-bonding|159)].

Hence, there is a lot of challenges ahead in this finite size nanoscopic system for both
experimentalists and theorists to outline and fill out all the possible gaps in the new

‘phase-diagram’ of these nanoscopic objects in varied aspects.
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3.1.2 Why Boron Nanoclusters ?

Experimental studies on elemental boron clusters received relatively little attention
in the early 1990s, though the earlier experimental observation of a prominent By
cluster has stimulated a number of theoretical investigations on the structures of
small boron clusters|45, 46, 47, U8, 49, 50, 51]. In the mid 1990s, B}, and B;j;, as well
as their neutral counterparts, have been shown to be planar or quasiplanar|57, 160,
161, 162, [163]. and the 3D icosahedral bulk-like cluster topology is not stable[49, |5(0].
Later, a series of photoelectron spectra succeeded in verifing these predictions|52, [164,
164, 1166, 1167, [168]. Henceforth, it is generally expected that boron and carbon form
a set of complimentary chemical systems: the bulk carbon is stable in 2D graphitic
structure and carbon clusters are characterized by 3D cages, whereas bulk boron is
characterized by 3D cages and boron clusters are characterized by 2D structures.
But how far does this statement hold remains an open question in the boron cluster

science.

Synthesis of single-walled boron nanotubes has recently been reported showing an
extreme sensitivity to the high-energy electron exposure. This experimental study
opened up many unanswered questions on the stability, energetics, and the electronic
properties of the nanotubular boron structures[56|. Stimulated by this experimen-
tal finding, a recent experimental study, together with computational simulations
revealed that boron clusters seemed to only to favor planar (2D) structures up to
18 atoms, and prefer 3D structures beginning at 20 atoms[53]. Using the global op-
timization methods, they found that By, neutral clusters has a double-ring tubular
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structure which is shown to be isoenergetic to 2D planar structures, which were ob-
served and confirmed by the photoelectron spectroscopy. The 2D-to-3D structural
transition observed at By, reminiscent of the ring-to-fullerene transition at Cyg in
carbon clusters[169, 170, 171], suggests it may be considered as the embryo of the

thinnest single-wall boron nanotubes.

Based on these reports, one can easily conclude that the studies of boron clusters
within the small cluster regime, i.e. B, with n < 15, are rather well-established.
Despite the dynamics and kinematics constraints of the growth environments, the
findings to support the high stability of 2D planar structures over the 3D structures
are well-supported[52, [172, [173]. However, a lot of unknowns remain unexplored in
the bigger boron cluster regime, specifically the genuine relations between clusters
size and the boron nanotubular structures are awaited for further studies. Thus
before understanding the stability and electronic properties of a boron nanotubules
like inifinite single-walled boron nanotubes, it becomes necessary to understand the
physics and chemistry of medium-size and large boron clusters within a systematic

study.

Our primary focus in boron nanoclusters research is clear: “a size-dependent study
and its correlation with boron nanotubes". To achieve this objective, we have initiated
such a study of neutral of B,, clusters within three different cluster size regimes: small
(i.e. Bg, B12)[4], medium (i.e. Byy)[d|, and large clusters (i.e. Bgo)[f], in order to

have an overview on their physical and chemical properties.
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We will present most of our theoretical results based on Density Functional Theory
(DFT) with a focus on the understanding of the trend of size-dependent structural
transitions observed in boron clusters. Furthermore as recently been pointed out that
the ground state configuration of neutral and ionized state of a given cluster may
not be the same[174], we will investigate the ionization-induced structural changes
in B,. In particular, we have analyzed molecular orbitals of several conformers of
B,, B} and B, to establish a general pattern of physics and chemistry of boron
clusters. It is expected that such an analysis will reveal an interplay between the
the degree of localization of molecular orbitals and the coordination number for the
cluster atoms in predicting the stability of configurational isomers of B,, in general.
Besides, we will also calculate, for the first time, the vibrational stability and static
dipole polarizability of several isomeric configurations of B, and B to assess the
variation in the vibrational frequencies, and polarizability with different structural

arrangement of boron atoms under the different ‘charged’ states.

The presentation of this chapter is organized as follows: In Section B2 we briefly
describe the details of the computational methods. Results and discussion of the
geometrical features, cluster stability and energetics, chemical bonding, vibrational
stability, and static dipole polarizability of boron clusters, are presented in Section

3.3 accordingly. In Section B4l conclusions are given.
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3.2 Computational Method

The electronic structure calculations were performed on several neutral, anionic, and
cationic isomers of By, using the Gaussian 98 code[123]. All calculations were carried
out by solving Kohn-Sham equations in the framework of density functional theory.
We employed the generalized gradient approximations (GGA) using the functionals of
Becke’s 3-parameter hybrid exchange functional and Lee, Yang and Parr correlation
functional (B3LYP)[174, [176] and a double-zeta basis set (i.e. 6-31G(d,p) or 6-31G**
) in these calculations (Appendix 1). We have considered the reliability and accuracy
of the 6-31G(d,p) basis set in our previous study of Bis|4|. It was found that the use of
a larger basis set, e.g. the 6-311G(df) basis set does not introduce significant changes
in structural energetics and electronic properties of Bj, obtained by the 6-31G(d,p)

basis set.

All the structures have been fully optimized by employing the gradient and updated
Hessian. The convergence criteria for the gradient and energy were set to 10~*
hartree/f\ and 107° hartree respectively. The stability of the isomers considered
was addressed by computing the vibrational frequencies under the harmonic approx-
imation with analytical force constants. We have also calculated the static dipole
polarizability of all the structures by applying an external electric field of strength

0.001 a.u. along the x, y and z axes separately.
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3.3 Results and Discussion

3.3.1 Structural Stability and Energetics

3.3.1.1 Size Dependent Structural Transition

Firstly, it is important to note that there is a correlation between the boron nan-
oclusters and other boron nanostructures (e.g. boron nanotubes, boron sheets, etc.).
Therefore, a study on the size-dependent structural evolution of boron nanoclusters
is one of the possible way to uncover this correlation. Based on the reported works
since the 1990s, it was predicted that the ground state structural configurations of
small boron clusters do not resemble the fragments of either crystalline or amor-
phous lattice of the boron. They were predicted to be planar, convex, or quasi-planar
structures|[5d, 160, 161, 162, [163]. Furthermore, instability of the By icosahedral
cluster was predicted [49, 50], though the bulk boron consists of the Bjs-icosahedral
networks. In order to have a more comprehensive understanding of the small boron
clusters, recent theoretical work [4, 172, 173, 177, 178, [179, [180] have been focused
on peculiar bonding features, static polarizability, and the vibrational properties of
both the neutral and ionized clusters. In the meantime, the stability of the previ-
ously proposed planar, convex and quasi-planar structures of the neutral and ionized
B,, clusters, with n = 3 - 15, has been probed and also confirmed experimentally
by a series of photoelectron spectroscopy measurements|52, [164, 165, [166, [167, 168&].

Here, the reason for the high stbility of 2D planar topology found in small B,, clus-
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ters is rather intriguing, and can be related to its unique bonding characteristics as

suggested.

Analogous to hydrocarbons, it was also proposed that the concepts of aromaticity
and anti-aromaticity (Figure 3.1), can be applied to explain the cluster stability in
conjunction with the planar topology found in small boron clusters regime (e.g. espe-
cially for B,,, where 6 < n < 15)[52, [166, 167, 16&, [181, [182]. In order to explain the
high stability due to these peculiar bonding, a tentative explanation is given based on
the concepts of the Hiickel rule. The number of m-electron in the occupied molecular
orbitals of boron clusters can be define as aromatic as (4n + 2) or anti-aromatic as
(4n), where n is the positive integer which defines the number of sets of degenerate
bonding orbitals in the molecular orbitals (MOs) diagram. Accordingly for the stable
“closed-shell" system, the By, Bj; and Bjs clusters possessing six m-electrons are aro-
matic, while Bj; and Bj4 possessing eight m-electrons are anti-aromatic. B;; which

possess ten m-electrons, is again aromatic|52|.

However, when we consider larger boron clusters, obviously one can ask the question
whether the Hiickel rules hold for the larger boron clusters leading to the preferrence
of planarity in the ground state configurations. If planarity is not preferred, then one
would like to determine the cluster size where the transition to 3D structures is likely
to occur. However, there are relatively few experimental or theoretical studies that
have been performed in the cluster regime of (B, n >15). Recently, Zhai et al. have
shown that the m-orbitals appear start to be localized or 'fragmented’ into different

parts of By, and Bis clusters. Therefore, it appears that the Hiickel rules which work
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Figure 3.1: Selected occupied m-molecular orbitals of benzene together with
those of the By cluster. d

quite well in explaining the high stability of planarity in the small clusters may not be
applicable in the large clusters. The 2D-3D transition in the structural configuration
is therefore expected for the bigger cluster regime where the unsaturated dangling

bonds in planarity become overwhelming.

Here, instead of performing an exhaustive exploration of all possible configurations

and isomers on the potential energy surface which is very onerous, several distinctive

shapes of configurations are being proposed in the bigEr clusters regime. For the

medium and large boron clusters (e.g. Bao|53, 183], Boy|5, [184|, Bss|185], Beolf] and
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Byg|186]), the possible stable geometries of the clusters are considered in the literature
for electronic structure calculations are: ring, chain, tubular, spherical cages, convex,

quasiplanar, and bulk fragments as shown in Figure 3.2.

The calculated results predict that the large clusters (i.e., Boy[f, [184], B32|183], Beolf]
and Bogg[186]) favor a 3D tubular structure over the 2D planar structure regardless
of the charged states of the cluster[5], with the binding energy (or cohesive energy)
increase and approaching bulk limit, as size of the clusters increased. Therefore,
the exact 2D-3D structural transition shown in Figure 3.3 should occur somewhere
in the regime of By5 < B,, < B4, and indeed the proposed range of the transition
has also been suggested through the most recent experimental photoelectron spectra
on By [53]. In this case, the calculated results based on density functional theory
at the B3LYP/6-311+G* level found the double-ring (tubular) configuration to be
the ground state for both By, and B,,, but analysis of the photoelectron spectra
appears to favor the planar structures. In fact, such incongruity can be explained
by the difficulties associated with the experimental and computational techniques.
Numerically, first principles calculations find the double-ring (tubular) and planar
configurations to be degenerate (with AG = 0.02 eV). Furthermore in the case of
By, the four low-lying isomers are merely separated by less than 0.015eV /atom,
which is the order of the precision of the quantum chemistry methods employed in
the study [53]. On the other hand, experimentally it is known that the production
of clusters is mainly controlled by kinematics, and is dependent on experimental

techniques employed, as found in the case of Cy [171].
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In this context, the carbon clusters have been reported to have a very interesting
size-dependent structural evolution starting from chains to rings to fullerenes[169].
However, such an evolution is not predicted for the boron clusters where a linear
chain or a ring configuration is never found to be the preferred configuration (e.g.
the monocyclic ring configuration in neutral By, is at 1.00 eV /atom higher than the
double-ring configuration[184]). In general, the double-ring configuration in Bs, clus-
ters with n > 6 is preferred in the staggered arrangements which facilitate the sp?
hybridization, with the coordination number of four for each B atom|f]. We note
that the double-ring without the staggered configuration, and with the coordination
number of three for each B atom found to be less stable[4, 5, fl]. Though both carbon
and boron clusters are found to exhibit the 2D-3D structural transition around a
20-atom cluster [53, [171], the dissimilar bonding characteristic determines the com-
position of the 3D configuration. The boron clusters prefer the 3D configuration to
be a double-ring (tubular), while the carbon clusters prefer it to be a 3D cage-like
configuration. We therefore believe that the stable cage structures, similar to those
of Cyy, Cs3p and Csg [169, 170, [187], are not likely to be found for the large boron

clusters|d].

Here, the energetics and stability for the competition among 2D and 3D structures
in boron clusters via the variation of clusters size can be defined as follows|[6]. Figure
3.4 shows the size-dependent stability of the 3D configuration relative to the 2D con-
figuration in terms of AEpp defined as Epgr(8D) - Epg(2D) for each lowest energy

configuration. In the small cluster regime (e.g. Bis) where the 2D planarity is pre-
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ferred, AEpg is -0.19 eV /atom [4]. When we double the cluster-size to Bay, the 3D
double-ring configuration gains about 0.26 €V /atom in energy yielding AEgzg to be
0.07 eV/atom[5]. Similarly, a consistent trend can also be seen in the large clusters
regime for Bsy, Bgo and Bog clusters [6, 187, [186]. As also mentioned in the previous
section, the emergence of preference over 2D planarity boron clusters can be compre-
hended as a consequence of effective charge delocalization from Hiickel Rules. Here,
the trend in the stability of the 2D Vs. 3D configurations defined in AEgg as shown
in Figure 3.4, can be better explained in terms of a energetics competition between the
curvature strain (favoring 2D planarity) and elimination of dangling bonds(favoring

3D staggard double-ring)|4, 6, [185].

Here it is worthwhile to mention that for the B,, (i.e. n > 20) clusters, the experimen-
tal studies are not available, and first principles calculations are rather limited. So
far, only the Hartree-Fock calculations which used the standard STO-3G basis set to-
gether with the symmetry-constrained optimization being used, predict the low-lying
structures to be quasi-planar and tubular configurations for B3y and Byg|185, [186] In
the case of Bsy, the double-ring (tubular) isomer in D symmetry with a diameter of
8.1 A is predicted to be more stable than Cy, quasi-planar and Dy, spherical cage
by 0.29 and 0.36 eV /atom, respectively. The preferred topological structure of the
Bss cluster suggested that the interplay between curvature-strain and elimination of
dangling bonds determine the stability among these 2D and 3D configurations. A
similar argument can be applied to tubular and quasi-planar configurations of Byg.

The Hartree-Fock calculations [186] reported that the segments of tubular and quasi-
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planar sheet turn out to be more stable than the fragments of a-boron solid. In Bgol6],
density functional theory calculations using the standard STO-3G basis set predict
the Cgo-like spherical cage to be about 1.0 eV /atom less stable in energy relative to
the tubular structure of diameter of about 1.53 nm. Similarly, the C5, boron bulk
fragment (Figure 3.2) and the 2D convex (in Cy symmetry) configurations are at 0.67

and 0.23 eV /atom relative to the tubular isomer.

On the other hand, the 3D bulk fragment (i.e. a-boron unit-cell cluster) of By is
almost degenerate with the 2D quasi-planar sheet, though the tubular isomer with
a diameter of 2.35 nm is predicted to be the ground state. Hence, it is noteworthy
to point that the bulk fragments of boron can become a competitive isomeric config-
uration with the increase in the cluster-size, instead of 3D spherical cages observed
in carbon clusters. We believe that as the delocalized m MOs which are responsible
in eliminating the dangling bonds of the 2D planar boron clusters, expected to be
more 'fragment’ and ’localized’ in different parts of the clusters in the so-called boron
‘supercluster’ regime, consequently this will cause the 2D planarity less favorable in
this regime. Therefore, the emergence of all possible boron bulk fragments based on
the Bjs icosahedral networks, cannot be ignored as a probable competitive isomer
for large boron clusters. We may therefore conclude that the key role in determining
the structural configuration is played by the delocalized m bonds in the small cluster
regime, while the inter-icosahedral and intra-icosahedral bonds which coincide with
the possible interlink of B;5 icosahedrons are expected to play an important role in

determining the configurations in the large cluster regime of the elemental boron|6].
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3.3.1.2 Neutral and Ionized States: B, and B

Compared to the size-dependent structural transition of boron clusters, sometimes the
extra theoretical studies on its ionized clusters, B< may provide an useful supplemen-
tary information on the corresponding clusters for future experimental findings, e.g.
photoelectron spectroscopy. In cluster science research, a photoelectron spectroscopy
experiment is known to provide accurate information on the electronic structure of
mass-selected negative cluster ions|[188]. Instead of neutral clusters, here one can start
with an anionic cluster and analyze the energy of the photodetached electron with a
fixed-frequency laser. Assuming that F(X, ) and E(X,,) are, respectively, the total
energies of the anionic cluster, X, and neutral cluster, X,,, the following equation

n

must hold:

E(X,)+hp = E(X,)+ Ex (3.1)

where hp is the energy of the photon, and Ej is the kinetic energy of the ejected
electron. The peaks in the photoemission spectra then correspond to the various
transitions from the ground state of the anion to the neutral cluster at the ground
state energy. If the ground state geometries of both anion and neutral clusters do not
differ much from each other, the transition peaks are narrow. Thus the broadening of
the peaks provides a measure of how different the geometries of the anion and neutral
cluster could be. In addition, the photoemission peaks also carry information about

the vibrational, electronic excitations, etc. Hence, theoretical studies on these ionized

62



clusters are never a trivial task. Here, instead of giving exhaustive details of all sizes
of the ionized boron clusters, specifically only B; and Bj; will be discussed. The
details of the compiled results on electron affinity (EA) and ionization potential (IP)

will be given in the following section.

The isomers of Bjy considered for studies, can be categorized into planar (2D) and
3D configurations. The calculated results find the neutral isomers to be in the singlet
spin state. Total energy of the 3D structures are always higher than that of the planar
structures. The most stable configuration is a convex structure with C; symmetry
(i.e. Bio-I), which is in contrast to the reported Cs, structure as the most stable
configuration of By3[h2, 57, 161] The C; configuration (i.e. Bio-I) consists of three By,
units which are reported|167] to be the most stable structure of B;. While, the double-
ring isomer is the forth lowest-energy structure (i.e. Bj2-IV). Even though it is less
stable relative to the convex C structure of Bjs, it is predicted to be extremely stable
for large boron clusters as mentioned in the previous section. The B, icosahedra unit
which is a fragment of the bulk is found to be more than 3 eV higher in energy than

the ground state of Bjs.

Here, the ionization-induced changes in ordering of the lowest-energy isomers of B,
are found to be small. The ground state of Bj; remains in the convex () structure, as
predicted. The ordering of next two lowest energy isomers of B, clusters are almost
same as that in the neutral clusters. In this case, double-ring with C'; symmetry and
3D cage-type Cyy, structure are nearly degenerate with energy difference (AE) of 0.03

eV. The optimized geometry of the B, icosahedra is slightly distorted from its I,
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symmetry and is found to be 2.78 eV higher in energy relative to the ground state.
Overall, the ionization introduces small changes in the bond lengths and bond angles

of the ionized clusters as compared to their corresponding neutral species.

Similar to its neutral species, the stability of the isomeric configurations of ionized By,
can be assessed in terms of the binding energy per atom (BE) as: Ey|B,] = -(E[B,]
- nE(B))/n, where E is the total energy of the system and n is the total number of
atoms. For the lowest-energy structure of Bjo, BE is 4.81 eV /atom. Our calculations
shows that BE increases from Bg (3.95 eV /atom) to Bj. This is consistent with the
increasing trend of BE with the cluster-size approaching the cohesive energy of about
6.0 eV for the bulk boron.[189] In this case, the calculated binding energy per atom
for the ground state of B, is 4.11 eV /atom, found to be less stable than its neutral

species due to its electronic open-shell structure.

The lowest energy configuration of the neutral By, cluster is the double-ring structure
(Byy-1) with Cy, symmetry and 'A; electronic state (Fig. 3.5). Two rings of twelve
boron atoms, each of diameter with 6.25 A and 1.68 A apart are arranged in a
staggered configuration. The binding energy (BE) of this structure is 5.04 eV /atom,
consistent with the increasing trend as we suggested for bigger boron clusters. The
next low-lying isomer is an elongated quasi-planar configuration (Bgy-IT) which is 1.60
eV above the double-ring isomer. After the optimization, Cy, configuration leads to
C; symmetry. It is worth mentioning that a competition between the double-ring
and elongated quasi-planar structures in becoming the ground state configuration

can be understood on the basis of curvature strain (favoring quasi-planar structure)
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and elimination of dangling bonds (favoring double-ring structure).[184] Two possible
tubular structures, namely 3x Bg and 4x Bg were also considered here. Total energy
calculations without the symmetry-constraint optimization for Dy, configuration of
3x Bg tubular structure yields a ‘square-shape’ tube with C; symmetry. It is also
the case with Dgy configuration of 4x Bg tubular structure (Bas-IV) which goes to C,
symmetry after the geometry optimization. The 3D isomeric configurations, such as a
Dgq cage or a spherical configuration are found to be more than 3 eV higher than the
calculated ground state of Byy. It therefore suggests that the reported|169, 170, 187
stable spherical cage structures of Cyy, Cszs and Css are not likely to be preferred

configurations for the large boron clusters.

As we add one extra electron into the corresponding neutral species, By, all the
anionic isomeric configurations of B,, are found to be in doublet spin state, and are
more stable in energy than their respective neutral species. The ordering of these
configurations in terms of total energy is almost similar to what was calculated for
the neutral Bs,. Addition of an electron tends to induce a larger distance between
the rings during the structural optimization. The lowest energy configuration is the
double-ring (By;!-I) structure in C; symmetry. We note that the symmetric Cy,
double-ring structure is only 0.06 €V higher in energy, making it to be nearly de-
generate with the C; double-ring configuration. The next isomer is the elongated
quasi-planar configuration which is about 0.47 eV higher in energy with respect to

the C; double-ring isomer.

As the case with the anionic By, the removal of an electron does not alter the ordering
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of cationic By, isomers, as shown in Fig. 3.5. The lowest energy configuration is still
the C; double-ring structure (B-I) with a diameter of about 6.20 A, around 0.06 eV

more stable than cationic Cy4, double-ring structure.

In order to assess the effect on the ionization onto the neutral species of clusters, one
has to consider the electron affinity and ionization potential of BE. The vertical ion-
ization potential is defined as the energy difference between the cationic and neutral
clusters with both at the optimized geometry of the neutral cluster, (i.e. IP crticar =
E,—0 - E4=11, where E is the total energy of the cluster and ¢ is the charge on the
cluster). The adiabatic ionization potential is defined as the energy difference be-
tween the cationic and neutral clusters at their own respective optimized geometries.
The calculated vertical and adiabatic IP values are 8.52 and 8.40 eV, respectively.
The experimental IP value|46] is reported to be 8.20 eV. The high value of the IP for
B1s is mainly due to the closed-shell electronic configuration in its ground state that

provides a high stability of the cluster configuration.

3.3.2 Electronic Properties

3.3.2.1 Electron Affinity and Ionization Potential

As shown in Chapter 2, it is known that the DFT is valid for the lowest energy states
in each particular symmetry (i.e. spatial and spin) channel. Since we have performed
extensive structural relaxation beginning with different spatial configurations for each

spin multiplicity for both B,, and BT series (e.g. m = 12 and 24), we believe that
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the ground state configurations are identified unambiguously. Therefore, comparison
of properties of these states with experimental data (i.e. photoelectron spectra) can

provide a further confirmation for our prediction.

Consider an anionic cluster to have N number of unpaired electrons, and, hence, the
relationship between the spin multiplicity M = 25 + 1 = N +1, with the number of

electrons in the spin-up (n,) and spin-down (ng) representations is given by:

25+1 = /[pa(r) —pP°(r)] = ng —ng+1 (3.2)

where p® and p° are the densities of electrons with « and 3 spins and the total
electron density is p®+p°. The direct product of symmetries of partially occupied
Kohn-Sham molecular orbitals defines the spatial symmetry of a state described by a

given electronic configuration.

In order to access the effect on the ionization onto the neutral species of clusters,
one has to consider the electron affinity and ionization potential of BE. The vertical
ionization potential (VIP) which are responsible for the features in photodetachment
spectra, can be evaluated as the energy difference between the cationic and neutral
clusters with both at the optimized geometry of the neutral cluster, (i.e. IPcrtical
= E,—0 - E4—11, where E is the total energy of the cluster and ¢ is the charge on
the cluster). While the adiabatic ionization potential (AIP) is defined as the energy
difference between the cationic and neutral clusters at their own respective optimized

geometries. Similary, the values of electron affinity (EA) are obtained as follows: EA
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= E(4=0) - E(4=-1), where E is the total energy of the cluster and q is the charge on
the cluster. In this way, the vertical electron affinity (VEA) or vertical detachment
energy (VDE)[190] is defined as the energy difference between the anionic and neutral
clusters with both at the optimized geometry of the anionic cluster. While adiabatic
electron affinity (AEA) is defined as the energy difference between the anionic and

neutral clusters at their own respective optimized geometries.

For Bf,, the calculated vertical and adiabatic IP values using the 6-31G(d,p) basis
sets are 8.52 and 8.40 eV, respectively. The experimental IP value[46] is reported to
be 8.20 V. To test the reliability and accuracy of the 6-31G(d,p) basis set used in this
study, we also performed DF'T calculations for the first two low-energy geometries of
Bi; and By, using the 6-311G(df) basis set. With 6-311G(df), the calculated values of
vertical and adiabatic IP come out to be 8.81 and 8.68 eV, respectively. The high value
of IP for B, is mainly due to the closed-shell electronic configuration in its ground
state that provides a high stability of the cluster configuration. Similarly, by using
the 6-31G(d,p) basis set, the VIP and AIP values of the lowest energy configuration
(double-ring, Bys-I) is 6.88 €V and 6.80 eV respectively. For elongated quasi-planar
structure (Bgy-11), the VIP and AIP values are 7.19 and 7.06 €V, respectively. While
for convex structure (Byy-III), its VIP and AIP is 7.12 and 6.98 eV. A comparison
of VIP and AIP values of these cationic isomers with those of small cationic boron
clusters, B;" (n = 2 - 14) |4, [160] indicates that the IPs of By, is showing a decreasing

trend towards the bulk boron work function|46] of 4.6 eV.

To calculate VDE, we use the 6-311+G(d) basis set for the equilibrium structure
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obtained using the 6-31G(d,p) basis set with an aim to obtain a more accurate value
of energies, knowing that the calculated equilibrium structure of double-ring (Bay-
I) remains nearly the same for both basis sets|4]. Employing the similar approach,
we also calculate the vertical attachment energy (VAE) which defined as the energy
difference between the neutral and anionic clusters with both at the optimized ge-
ometry of the neutral cluster. The calculated VAE and VDE values come out to be
2.67 and 2.81 eV, respectively. Thus, if the nuclear configuration of the negative ion
does not drastically differ from that of the uncharged parent species, the VAE and
VDE will provide lower and upper bounds, respectively[190] for the electron affinity
of the double-ring Bsy,. Hence, by applying the concept of quantification of chemical
hardness|[191] of a particular system as n ~ (IP - EA)/2 where IP and EA are the first
vertical ionization energy and electron affinity of the chemical species, the double-ring
By, is found to be the most chemically inert among the other By, isomers by having

the highest value of 7, besides it is energetically the most stable.

3.3.2.2 Chemical Bonding

In boron clusters, the chemical bonding is dominated by the ‘electron-deficient’ char-
acter in a sense that more atomic orbitals are available for the bonding than electrons
associated with atoms. Thus, multi-center bonds such as the delocalized bonding on
three-center triangular B— B — B units, are expected to become a key bonding feature
in boron compounds to accommodate their electron deficiency|14]. It then results in

the tendency of the boron atoms to prefer configuration based on a polyhedral unit
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(e.g. Byg icosahedral unit) in which the triangular faces prevail. However, at the clus-
ter level, calculations predict the preference of planar isomers over three-dimensional
isomers, including the icosahedral unit. To understand the difference in the preferred
configurations at the cluster and bulk level, we have performed analysis of molecular
orbitals for 2D planar, 3D double-ring, and other isomers for both small and large
clusters. Similar to the previous section, we will dicuss the bonding properties only

on Bjs and By, in this section.

In general, in order to analyse the bonding characters in a clusters, several theoret-
ical techniques are available[66, [123]. Based on the Natural Bond Orbital (NBO)
analysis|192], we find that the isomeric configurations of boron clusters we considered
generally prefer sp?-like hybridization, as the case with Bg in small clusters|d]. For
example, the lowest-energy configuration (i.e. 2D planar Bjo-I), the natural electron
configuration for the atoms are (core)2s%#82p?%3  (core)25%822p?% and (core)2s%-552p*66,
While for the 3D double-ring structure (i.e. Bj2-IV), the natural electron configura-
tion for the atoms is (core)2s%72p?22. On the other hand, the natural electron con-
figurations of the the icosahedra isomer are(core)2s%%#2p*12  (core)2s%62p?31 and

0672230 Besides NBO analysis, the general qualitative trend of bonding

(core)2s
characters in B,, can also be accessed via Mulliken Population|66]. Here, Mulliken-
partitioned atomic charge analysis generally suggests a negligible charge transfer
among atoms in the B, isomers, showing the significant electron sharing feature

found in typical covalent bonding. Thus based on these two bonding analysis, one

can suggest that the mixing of 2s and 2p orbitals among boron atoms in the clusters
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is expected to play an important role in forming the covalent bond which stabilizes

the atomic binding, irrespective to its structural configurations.

Here, for an example in By, the unique bonding features of boron clusters can also
be visualized through the electron distribution on each molecular orbitals (MOs). In
Fig. 3.6, we present the analysis of the molecular orbitals (MOs) for the ground state
of By, B,,;, and Bj,. This analysis reveals the interesting features of delocalized T,
o, and multi-centered ¢ bonds between the boron atoms in these clusters. Instead of
giving exhaustive description of these MOs, we will only extract general features of
the bonding orbitals using the notation HOMO-n to represent the (60-n)"* occupied

molecular orbital in the neutral cluster.

As shown in Fig. 3.6, the highest occupied molecular orbital (HOMO) shows the 7
bond between the atoms of each ring, while the lowest unoccupied molecular orbital
(LUMO) shows a lateral p — p overlap between the atoms of both rings. The HOMO
and (HOMO-1) are doubly-degenerate giving rise to an effective delocalization. On
the other hand, (HOMO-2) and (HOMO-3) orbitals show localized m-bonding in B,
state. The (HOMO-6) and (HOMO-7) degenerate orbitals show a delocalized 7-
bonding at the sides in £ state. The full-delocalization of benzene-like 7 bonds
between the two staggered rings is achieved in A; state of the (HOMO-8) orbital.
Being facilitated by the delocalized m bonds which are perpendicular to the plane of
the double-ring structure, the benzene-like delocalized 7 bonding in plane is shown in
the double-degenerate (HOMO-11) and (HOMO-12) orbitals. A strong multi-centered

o bonds is shown in the (HOMO-25) and (HOMO-29) orbitals in E state which are
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formed by the hybridization of s— and p—type bonds, also seen in the neutral Bis[4].

The anionic double-ring configuration shows the similar features to those seen in the
neutral case (Fig. 3.6). The HOMO is, in fact, the LUMO of the neutral cluster.
Addition of an extra electron to LUMO of the neutral Bss shifts the anionic HOMO
to the lower energy relative to the energy of the neutral HOMO. It has also resulted
in a shifting of the localized m bonds and the ‘benzene-like’ delocalized 7 bonds
to (HOMO-3), (HOMO-7) and (HOMO-9) orbitals, respectively in the anionic Ba,.
Although the cationic double-ring configuration is found to have a similar features
in their MOs, the magnitude of the electron delocalization is relatively less than
that of either neutral or anionic configurations. For example, the electron density
plots of the (HOMO-7) and (HOMO-15) a-orbitals appear to be less dense and less
delocalized. Furthermore, the ‘benzene-like’ delocalized 7 bonding is not seen in MOs
of the cationic By;. We believe that absence of these features in MOs of the cationic
B4 may explain why the cationic double-ring configuration is energetically less stable

than its corresponding neutral and anionic configurations.

Analysis of MOs of the other isomers of By, also reveals that the delocalized = and
multi-centered ¢ bonds between boron atoms of the quasi-planar and convex isomers
are ‘fragmented’ into different parts of the cluster configurations. On the other hand,
the dominant features in MOs of 3D isomers are mainly associated with the localized
orbitals. We may therefore conclude that the presence of delocalized 7 and multi-
centered o bonds plays an important role in stabilizing the double-ring configuration

over the 2D quasi-planar and other 3D configurations for the neutral and ionized By,
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clusters.

3.3.3 Vibrational Properties

The initial part of this section will focus on a quick overview on how we calculate the
atomic vibrations of boron clusters, which is implemented in Gaussian98/03 program

suit, before the results and discussion on this section will be given.

By assuming the interaction among the individual cluster is minimal in determining
the vibrational properties, within the Born-Oppenheimer approximation (i.e. adi-
abatic approximation in Chapter 2), we calculate the total electronic energy for a

fixed nuclear coordinates for each clusters, by neglecting the nuclear spin. As given

in Chapter 2, the total energy £ — E¢¢ | % Z/iw:l Rik—zll%l is a function of X:

with X in the representation of cartesian coordinates. For the optimized structure
X ¢, E has a minimum. By expanding F to second order about the minimum (i.e.

15t-order derivatives will be vanish at minimum), we find

M -
> . 0PE(Xe) . .
E(X) = E(X ) _'_ 5 Z Z aRkl,al Rk2’a2 X (Rkhal - kl,al)(Rk2,a2 - szpcz)

k1,ko=1 a1,a2=x,y,2

(3.4)
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In principle, the series can include also higher-order terms but in most practical cases,

the approximation above (i.e. also called as harmonic approzimation) is a good and

quite reliable[123, [193| for our interest, and we can obtain the Hessian matriz, H

defined as (%) for a stable configuration, which give non-negative H. Then

with the Hessian, this leads naturally to the so-called dynamical matriz defined as:

5 _ 1 PE(X¢)
\/Mkl Mkz aRkl a1 sz a2

(3.5)

in mass weighted cartesian coordinates (MWC) as implemented in Gaussian98/03.
Then, the principal axes of inertia of the system will be determined to generate
coordinates in the rotating and translating frame. The dynamical matrix, D will be
transformed into internal coordinates and diagonalized. Consequently, this will yield
3N —6 or 3N —5 (i.e. for linear clusters) modes for vibrational modes leaving out the
translation and rotation modes from the original 3N vibration modes. At this point,
each eigenvalues from the diagonal matrix will be used to calculate the corresponding
frequency. Then, the reduced mass, force constants, and the corresponding cartesian
displacements for each vibrational modes will be calculated accordingly. Later, these
quantities will be useful for prediciting a series of spectroscopic properties, including

infrared (IR) intensities, Raman activities, dipole polarizability, etc[123, [193].
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3.3.3.1 Vibrational Spectrum

It is noteworthy to point out that vibrational study on clusters is crucial in locating
the real minima, which gives all real vibrational modes in the spectra. For a transition
state or a metastable structure, a series of imaginary vibrational modes can be found.
Overall for the 3N — 6 vibrational modes given by a 3D structural configuration,
the addition or removal of an electron onto a boron cluster only shifts the values
of each individual vibrational modes, and does not induce any significant changes
in their spectra, unless a significant structural reconstruction of the corresponding
anionic or cationic cluster is taking place. Therefore, one can suggest that the local
geometrical configuration of a cluster is a main factor to determine the vibration
spectra accordingly to its corresponding vibrational modes: bending, stretching (i.e.

symmetric and asymmetric), etc.

As the vibrational properties of small boron clusters can be found elsewhere[52, 164,
165, 1166, 1167, [168], here we will only focus on the results and discussion in bigger
clusters: Byy. The analysis of vibration spectrum of lowest energy structure: Bgy
double-ring (tubular) and other tubular isomer (i.e. 4 x Bg) reveals the characteristic
vibrational modes typically observed in carbon nanotubes, together with its corre-
sponding IR spectrum. Hence, this suggest that double-ring and tubular isomer can
be considered as the building blocks of small radii boron nanotubes, besides being a
signature of 2D-to-3D structural transition in boron clusters, as we mentioned in the

previous section.
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Fig. 3.7 shows the distribution of the calculated vibrational frequencies of neutral,
anionic and cationic By, which lie in the range of 30-1500 cm ™. In general, addition
or removal of an electron only shifts the values of the frequencies, and does not
induce any significant changes in their spectra. It is noteworthy to point out that
the calculated spectra of the double-ring and (4% Bg) tubular structures are almost
similar. The tubular structure can be considered as a segment of the boron nanotube,
and has the vibrational properties which are similar to those of carbon and boron
nitride nanotubes.|194, 195]. For example, the frequency region below 500 cm™' in

the (4x Bg) tubular structure are associated with different ‘radial buckling modes’,

such as E, By, By, A; and A; modes, as the case with carbon nanotubes. [195]

In the neutral and ionized double-ring By, the low-frequency modes (v < 500 cm™)
correspond to vibrations in the ‘radial modes’. In the neutral case, the lowest ‘radial
mode’, Vipwest, i at 77 cm™! which is associated with two nearly degenerate B, and
B, modes. The ‘radial breathing modes’ at 381 and 389 cm~! are A; modes. It is to
be noted here that the radial modes in the region ranging from 200 to 500 cm ™! have

recently been identified in the boron nanotubes by Raman experiments. 56|

The ‘longitudinal modes’ along the ring (tubular) axis are found to be in the region
of 600-900 cm ™!, while the ‘tangential modes’ due to stretching of the stronger B — B
covalent bonds along the ring circumference are associated with frequencies above 900

1'in neutral

cm™'. The highest frequency of the tangential mode, vpighes is 1325 cm™
By, double-ring. Addition of an electron to the neutral double-ring By, reduces both

Viewest a0d Vpighest t0 68 and 1323 cm~! respectively. On the other hand, the removal
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of an electron reduces vjuest t0 41 cm ™!, while increasing Vhighest 10 1259 cm™ L

The frequency spectrum of the (4xBg) tubular structure shows the same unique
features in the vibrational modes which were seen in the double-ring configuration.
The low-frequency region below 500 cm ™! is dominated by the ‘radial buckling modes’;
the lowest ‘radial mode’ being at 139 cm~'. The ‘radial breathing mode’ associated
with the open ends is at 207 cm~'. On the other hand, the breathing modes associated
with the center of the tube are at 292 and 299 cm™'. The ‘tangential modes’ are
dominant in the frequency region of 500 - 900 cm ™!, while the ‘longitudinal modes’
via vibrations along the tubular axis are at about 1248 cm™. Since both double-ring
and (4x Bg) tubular structures exhibit the vibrational modes, which are known to
be typical characteristic vibrational modes reported in C' and BN nanotubes, these
tubular structures can be considered as a basic building block of boron nanotubes.
For example, (4Xx Bg) structure can be considered as a segment of a boron nanotube

with a radius of 0.33 nm.

Compared to the double-ring and other tubular structures of By, the elongated quasi-
planar structure (Boyy-IT) is associated with a distinctively different distribution of

frequencies, as shown in Fig. 3.7. The lowest frequency of the neutral isomer, v, est

1

is 36 cm™". The high frequency region is dominated by the symmetric and asym-

metric stretching modes. The highest vibrational frequency, vhignes is at 1535 cm™!

associated with the asymmetric stretching of atoms along the edge of the plane.
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3.3.3.2 Infrared (IR) spectra

The calculated (Lorentzian-broadened) infrared (IR) spectra of some of the isomeric
configurations of neutral, and ionized Bs, clusters are shown in Fig. 3.8. We note that
the prediction of infrared intensities can be accomplished by using the mixed second
derivatives of energy with respect to geometric motion and an external electric field by
permitting estimation of changes in the dipole moment as a function of the vibrations.
Therefore the intensity (km/mole) of an infrared absorption band is proportional to

the square of change in molecular electric dipole moment 4 in the normal coordinates

2
(i.e. I; = const. X (;&) ).

The double-ring B, configuration shows the IR-active E modes at 512 and 852 cm ™!
arising from its Cy, symmetry. The peak at 512 cm~! is due to the ‘tangential mode’

while the strongest peak at 852 cm™!

corresponds to the ‘longitudinal mode’. In
the ionized By, distribution of the IR intensities is altered due to dissimilar atomic

charges. The noticeable IR peaks are at 515 and 1184 cm™! in B,,, while they are at

822, 1198 and 1273 cm™' in BJ,.

In the (4xBg) tubular structure, the IR peaks are more evenly distributed than
those in the double-ring structure. In the low-frequency region, the IR peak at 469

cm~!

is associated with the ‘radial buckling mode’. There are two nearly degenerate
‘tangential modes’ at 911 and 913 cm~!. The other two distinctive IR peaks located

at 1042 and 1201 cm ™! are associated with the ‘longitudinal modes’ along the tubular

axis. The neutral quasi-planar and convex (Bay-II and Byy-I11) structures, in general,
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have relatively more widely distributed IR peaks due to their 2D extended planar

configurations.

3.3.4 Static Dipole Polarizability

Measurements of static dipole polarizability are frequently used by experimentalists
to characterize the nature of atomic, molecular and cluster species. Physically, it
describes the response of the electronic cloud of the given cluster in the presence of
an external static electric field. Instead of giving an exhaustive description of differ-
ent characters in each isomers, we are presenting some of the features predicted by
calculations in this study. Similar to their corresponding vibrational properties, in
general, the calculated dipole moments, p; (i.e. fiz, f4y, p. corresponds to E;, E;,
and E, direction) of the neutral, anionic and cationic B,, show a close relationship
with structural symmetry of the cluster. For a cluster which does not have a center
of symmetry, it will have a nonzero dipole moments (e.g. 2D By convex structure),
whereas for 3D cage-type and double-ring structure (i.e. By and By, regardless of
cluster size) which have a center of symmetry, a zero dipole moment is found. Ac-
cordingly, the ionization induced changes in the dipole moments become noticeable
only for some of the isomers. For example, the added electron to the neutral tubular
structure (e.g. Bayy) appears to be shared by all the atoms. In the cationic tubu-
lar structure, however, the ionized electron appears to come from only few atoms.

Therefore, no general trends is observed or can be concluded.
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From electrodynamics, it is known that if a molecular cluster in which an electric
dipole moment 4 is induced is isotropic, then the relation between p and the external
applied electric field vector £ of the incident radiation is simply defined as: y = ag
where « is a constant called the polarizability of the cluster. In general, however, for
an anisotropic cluster, the relation mentioned above has to be replaced by a more

complex expression as follows:

= 3.6
Hy Qyz Oy Qe €y (3.6)
[LLZ azm azy aZZ 82

in which the quantities «;; are independent of the components of the electric vec-
tor, but are dependent upon the orientation of the corresponding cluster relative to
the nonrotating axes, X, Y, Z. These quantities o;; are called the components of
a polarizability tensor by virture of their transformation under the changes of the
coordinates system. Consequently under an external applied static electric field[123)],
a direct comparison with the parallel (), transverse (), and perpendicular ()
components of the static dipole polarizability of different isomers in the B,, series
reported in the previous studies|177, [L78, 179] in small B, clusters is not possible
because of the different orientations of x, y and z-axes chosen in calculations. Thus,
we have calculated the directional averaged static polarizability, agug = (Qzr + vy +
«,,)/3 to extract a general trend with the increase in the cluster-size. Table 3.1 shows

the calculated dipole moments and the static polarizability tensor along x, y and z
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directions with the total dipole moment and directional averaged static polarizability

of the low-energy configurations of By, and B3;.
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Figure 3.2: Several distinctive families of the possible configurations pro-
posed in elemental boron clusters: ring, tubular, spherical cages, convex,
quasiplanar, and hypothetical boron bulk fragments.
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Figure 3.3: Size-dependent 2D planar to 3D tubular structure transition in
elemental boron clusters. The figures of a-Bis and [3-Bjg5 crystalline phases
are taken as the references for boron bulk solid.
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Figure 3.4: The size dependence of the relative stability of boron clusters
(e.g. 2D planarity Vs. 3D double-ring (tubular)). The AEpg is defined as
Epg(3D)- Epg(2D). The respective values of the energy are taken from the
references [4, 15, 16, 53, 1185, [186]
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singlet spin state, ((} =0} doublet spin state, (¢} = —1} doublet spin state, (@} = +1)

Cu, BarT
AE = 0.00
BE = 5.04 &V /atom

C1y Bay 1T
AE = 1.60
BE = 4.97 &V jatom

C1, BapITT
AE =1.85
BE = 4.96 &V fatom

Gy, Ba TV
AE = 2.36
BE = 4.94 &V fatom

Cy, By I
AR = 0.00
BE = 5.138 &V fatom

C., B3, 11
AE = 04T
BE = 5.11 &V fatom

Cy, By, 1T
AR =1.13
BE = 5.08 &V /atom

Ci, B3, TV
AE = 2.66
BE = 5.02 &V fatom

Cy, BH1
AR = 0.00
BE = 4.75 &V fatom

Cy, B II
AE = 1.86
BE = 4.68 &V jatom

¢y, B I
AR = 2.04
BE = 4.67 &V fatom

¢y, BH-IV
AE = 3.10
BE = 4.62 &V fatom

Figure 3.5: Energy differences (AE in eV), binding energy (eV/atom), and
symmetry for some of the low-lying isomers of neutral, anionic and cationic

By, clusters.
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MOz of double-ring, (Q = -1} MOs of double-ring, {(Q = 0) MOx= of double-ring. (Q = +1)

LUMO LUMO
HOMO HOMO
HOMO-1 HOMO-2
HOMO-3 HOMO-§
HOMO-7 HOMO-7
HOMO-9 HOMO-11
HOMO-15 HOMO-15
HOMO-17 HOMO-235
HOMO-26 HOMO-29 HOMO-29

Figure 3.6: The selected molecular orbitals (MOs) of neutral, anionic and
cationic double-ring Byy configuration.
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Figure 3.7: The calculated vibrational frequencies of the double-ring (Bagy-
I) and elongated quasi-planar (Bay4-II) structures in the neutral, positive- and
negative charge states.
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Figure 3.8: Infrared (IR) spectra for different isomers of the neutral, anionic
andcationic By clusters.
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Table 3.1: Dipole moment (4; in Debye), diagonal components of static polarizability tensor(a;; in a.u.), and average
static polarizability (ag, in a.u.) for the neutral, anionic and cationic isomers of Bay.

Properties Bg4, Q: 0 324, Q: -1 324, Q: +1

Bot 1 | Bogll | Bor-XI1 | Boy-V1 | Byl | By Il | By, 1001 | By, VI | Bi, 1 | ByIl | By 1T | By,-VI
Mo 0.0000 | -0.0040 | 0.0000 | -0.0002 | -0.0047 | 0.0080 | 0.0046 | -0.001 7 | 0.0039 | -0.0075 | -0.0093 | -0.0008
Ly 0.0000 | -0.0006 | 0.0000 | -0.0009 | -0.0054 | 0.0072 | 0.0000 |-0.00 14 | 0.0001 | -0.0022 | 0.0004 | -0.1420
e 0.0001 | 0.0077 | 0.4982 | -0.0003 | 0.0078 | 0.0064 | 1.1546 | -0.0017 | -0.0199 | 0.0010 | 0.4701 | 0.0161
Kot 0.0001 | 0.0087 | 0.4982 | 0.0009 | 0.0106 | 0.0125 | 1.1546 | 0.00 28 | 0.0203 | 0.0079 | 0.4702 | 0.1429
Oy 413.43 | 934.89 | 479.67 | 280.64 | 420.35 | 984.37 | 549.22 | 303 .66 | 407.09 | 943.75 | 471.21 | 291.77
Qyy 413.43 | 292.67 | 386.05 | 230.46 | 420.25 | 303.73 | 426.77 | 249 .40 | 406.80 | 291.40 | 371.59 | 225.03
Q, 199.62 | 115.94 | 124.68 | 230.37 | 206.94 | 114.77 | 128.40 | 249 .33 | 194.97 | 112.81 | 123.13 | 225.24
Qg 342.16 | 447.83 | 330.13 | 247.16 | 349.18 | 467.62 | 368.13 | 267 .46 | 336.29 | 449.32 | 321.98 | 247.35




By extending from small to bigger clusters regime, the a,,, increase as the size of
B, increase. However, the directional averaged static polarizability per atom (i.e.
Qavg/M, Where n is the total number of boron atoms in the cluster), shows overall
decrease from 17.63 a.u. to 12.23 a.u. in going from B3|178] to Byy|d]. The addition
or removal of an electron onto the clusters, does not introduce any significant changes
in gy of clusters (Table 3.1). The electron distribution which determine the chemical
bonding in clusters, appears to be a main factor to affect the polarizability, . For
example, the ground state of the neutral cluster (i.e. Bis-I) has a significantly less
polarizability (a,, = 146.79 a.u.) as compared to that of the chain-like structure (v,
= 241.60 a.u.) reported in a previous study|179]. It suggests that the delocalization
of the charge distribution in a given cluster configuration plays an important role
in reducing the static dipole polarizability. The large difference in «,,, between the
chain-like and convex planar structure may therefore be attributed to the localized
m-electron population along chain direction|179] as compared to delocalized 7 and o
bonds in the covex planar configuration of By,. Similarly this observation is persistent
in By, regime. The double-ring By, is found to be significantly less polarizable than
the elongated quasi-planar By, suggesting that delocalization of charge distribution
plays an important role in reducing the static dipole polarizability. In the elongated
quasi-planar structure, the m-electron population is expected to be localized along the

chain direction.

90



3.4 Summary

The rich features of physics and chemistry of boron nanoclusters are often found
dominated by its structural dimensionality and chemical bonding from which some
of the qualitative features of boron clusters can easily be extracted. In this work, we
review such features to discuss size-dependent structural properties of B, clusters,
which covers both small-cluster regime (n < 20) and large-cluster regime (n > 20).
Based on the recent observation of photoelectron spectra on By, the significant size-
dependent structural transition can be very obvious based just on several sets of our
calculations using density functional theory within a different cluster size regime:
Bg, Bia, Ba, and Bgy. From this size-dependent structural transition of B,, clusters,
we suggest that the preferred topological structures are the result of the interplay
between bonding factors related to the delocalized m bonds and the emergence of
inter-icosahedral and intra-icosahedral bonds. The bulk fragments of boron are also
expected to become a competitive isomeric configuration with the increase in the
cluster-size, in contrast to 3D spherical cages observed in the large carbon clusters.
Overall, small structural changes in B,, is observed within the corresponding anionic
and cationic clusters. Specifically, the removal or an addition of an electron onto B,
clusters is found not to induce any significant variation in electronic, vibration and

dipole polarizability properties of these clusters.

Here it is noteworthy to point out that the emergence of tubular structures in B,

nanoclusters is rather unique, compared to other elemental clusters, especially on the
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equilibrium geometries, energetics, stability, electronic and vibrational properties,
and static polarizability of By, and Bj; clusters. First principles calculations based
on density function theory predicts the staggered double-ring (tubular) configuration
to be the ground state for Boy, B, and Bj, , in contrast to the 2D quasi-planar
structure observed in small neutral and ionized B,, clusters with n < 15. Furthermore,
the (4x Bg) tubular structure is found to be relatively stable in comparison to the
three-dimensional cage structure. Analogous to boron crystalline solids, the presence
of delocalized m and multi-centered ¢ bonds appears to be the cause of the stability
of the double-ring and tubular isomers. Besides, analysis of the frequency spectrum
of the double-ring and tubular isomers reveals the characteristic vibrational modes
which are typically observed in carbon nanotubes. The corresponding IR spectrum
also reflects the presence of some of these characteristic modes in the neutral and
ionized Byy, suggesting that double-ring and tubular structures can be considered as

the building blocks of boron nanotubes.
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Chapter 4

Boron Sheets: A Precursor For Boron

Nanotubes

4.1 Why Boron Sheets ?

As a continuation to the work discussed in the previous sections (Chapter 3) on the
emergence of the nanotubular configurations, a search for the possibility of the forma-
tion of boron nanotubes has become an overwhelming important. So far, there is only
one experimental paper reported on the syntheses of single-walled boron nanotubes
(SWBNTs)[56] within the diameter of ~ 3 nm using Mg-MCM-41 catalyst. However,
the tubular structures were found to be extremely sensitive to the high-energy elec-
tron beam. Therefore, details of the structural morphology are still unknown, and

consequently their properties have not yet been fully elucidated. With this respect,
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a systematic study based on a reliable computational model (i.e. first-principles sim-

ulation) is required.

As we know, carbon nanotubes are a structural paradigm for all nanotubular ma-
terials, and they can be seen as cylindrical modifications of graphite, which may
geometrically be constructed by cutting a rectangular piece out of a single graphene
sheet and rolling it up to form a tube. However, not a single direct clue can be found
in boron nanotubes and boron sheets, because there is no boron sheet or graphitic
like boron layers in nature. If we assume the formation of SWBNTs can be analo-
gous to SWCNTs, which formed only under kinetically-constrained conditions on 2D
graphene sheets, study on the possible stable structures of 2D boron sheets becomes
necessary. Here, one can even further conjecture that: “ one of the main difficulties
in synthesizing boron nanotubes appears to be the instability of a graphene-like boron
sheet". Accordingly, since the elemental boron compounds neither have a purely co-
valent nor a purely metallic character, we can then argue that in contrast to carbon,
multi-centered bonds and electron-deficient features of boron [14, [15] are energetically
more competitive and stable than bonding features with only the sp? hybridization

as found in carbon graphitic system.

Analogous to SWCNTs, the correlation on the structural basis among the proposed
SWBNTs and their corresponding 2D boron sheets can be very obvious based on
the so-called ‘folding mechanism’[196]. Following the same analogy, as shown in
Figure 4.1, one can easily model the possible geometry of a 2D boron sheet based

on the extension from the unique characteristic structural basis of Byy clusters|3].
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The two low energy tubular configurations in By, clusters: 2 x Bjy (double-ring),
and 4 x Bg (tubular) basically can be comprehended as a basic building block of a
small radius SWBNT/[3]. Consequently, if we extend these two tubular units along the
tubular axes infinitely long, two different species of infinite SWBN'Ts will be formed.
Subsequently, if we ‘unfold’ the two SWBN'Ts into two-dimensional structures, two
distinct 2D boron sheets: idealized {1212} (triangular boron sheet) and reconstructed
{1221} (reconstructed triangular boron sheet) are formed (Figure 4.1). In spite of this
fact, similar yet slightly distinct model were proposed[51]. According to Boustani|57],
one can construct a SWBNT by folding a hypothetical triangular boron sheet (i.e.
idealized {1212} boron sheet in our model) which was constructed by the hexagonal
pyramidal B; units based on a general ‘Aufbau principle’ for boron clusters. It is to
be noted here that stability and electronic properties of such a triangular boron sheet
has so far not been verified by experiments. Therefore, so far it remains a theoretical

prediction based on first-principles simulation.

We have recently performed a theoretical study to investigate energetics and elec-
tronic properties of a boron sheet and the corresponding boron nanotubes|d]. The
results based on density functional theory (DFT) within the generalized gradient ap-
proximation (GGA) show the relative stability of the sheet reconstructed from the
planar triangular lattice|[d]. On the other hand, the calculations based on local den-
sity approximation (LDA) in density functional theory find the ground state of a
boron sheet to consist of a buckled triangular lattice [197, 198, [199]. Since neither

GGA-DFT nor LDA-DFT calculations have resulted in an exhaustive search for the
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Figure 4.1: The ‘folding-mechanism’ of 2D boron sheet to construct a boron
nanotube, based on our By, clusters

geometric configurations which can be considered for the stable configurations, the
nature of the ground state of a 2D boron sheet still remains an open question, which

we would like to address in the present study.

Henceforth, we have organized the rest of this chapter as follows. The computational
method used in this work is presented in the following section. In the section of results
and discussion, we present and discuss our results on structural stability, energetics,
chemical bonding, and electronic properties of different 2D boron sheets. Then, finally

a summary of the results will be given in Section
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4.2 Computational Methodology

Electronic structure calculations were performed under the framework of density func-
tional theory with the Perdew-Wang (PW91) exchange and correlation functionals|20(]|
within the generalized gradient approximation of electron densityl]. To utilize its 2D
periodicity in its infinite extended geometrical congurations, a planewave basis set,
mentioned in Chapter 2, was used. The valence-core interaction was described by the
ultrasoft Pseudopotential (US-PP)[153] as implemented in the Vienna ab initio sim-
ulation package (VASP) [157]. In the course of both the cell parameters and atomic
positions optimization, the A-space integrations were carried out using the method
of Methfessel and Paxton|201] in the first order, with employed smearing width of
0.05 eV. An energy cutoff of 260 eV in the planewave expansion and of 443 eV for
the augmented charge was used. The sizes of the k-point sampling for different sys-
tems with different unique cells were individually converged, with a precision of 5
meV /atom. For each optimized structure, total energy was again calculated by using
the tetrahedron method with Blochl corrections|15&] using the cut-off energy value of

320 eV in the planewave expansion as used in VASP.

The reliability and accuracy of the computational model employed was tested on
the well studied boron crystalline solid, a-Bjs, which occurs in the rhombohedral
phase at ambient pressure and temperature. Table 4.1 shows that the model param-

eters used in the current study have successfully reproduced the results of previous

*The compatibility among the planewave basis set and GTOs basis sets as we mentioned in Chapter
3 is shown in Appendix 211
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Table 4.1: «a-Bjs boron solid : binding energy (BE (eV/atom)) and geo-
metrical parameters. d;,;., is the intra-icosahedral bond length, d;,e, is the
inter-icosahedral, and a is the lattice parameter. The unit is A.

Model Oé—Blg
BE dintra dinter a
LDA [This Work| 7.10 | 1.72, 1.76, 1.77 | 1.65, 1.97 | 4.97
Ref.[198] 6.84 - - -
Ref.[197] 7.37 - - -
GGA [This Work] 6.18 | 1.74, 1.77, 1.80 | 1.66, 2.00 | 5.04
Ref.[198] 6.22 - - -
Ref.[33] 6.95 - 1.67, 1.99 | 4.98
Ref.[31] - 1.72,1.76, 1.78 | 1.65, 1.98 | 4.98
Experiment[202, 203| | 5.81 - 1.71, 2.02 | 5.06

theoretical|31), 33, [197, [198] and experimental[202, 203| studies on «a-Bj, solid. Both
LDA (i.e. using Perdew-Zunger-Ceperley-Alder exchange-correlation functional) and
GGA results predict very similar values of the structural parameters, though the LDA

overestimates the binding energies.

We have used the same set of model parameters for calculations of the boron sheet
which were used for elemental structure calculations of a-Bj,. For the monolayer
boron sheet, a supercell was constructed by placing a basic unit of the sheet in
the zy-plane inside a rectangular grid with a surface-to-surface separation of ~ 10
A in the z-direction, which ensures a negligible interaction between the sheet and
its image|61]. In general, the configurations considered for the sheet were built by
repeating the basic unit which is composed of 8 to 12 boron atoms depending on a
given configuration. The Brillouin zone was sampled using a 8 x 8 x8 Monkhorst-Pack
grid for the integration in the reciprocal space. Calculations were deemed converged

when changes in total energy were less than 10~ eV and those in the inter-atomic
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forces were less than 0.01 eV /A,

4.3 Results and Discussion

Owing to its vast variety of structures and complexity in bonding features, a full
understanding of properties of boron nanostructures is not likely to be an easy task.
Boron has three valence electrons and a short covalent radius. It can undergo sp?
hybridization in forming atomic clusters that leaves one unoccupied 2p, atomic or-
bital rendering boron to be electron-deficient. [14] Consequently, the 2D planar and
quasi-planar boron clusters benefit from m-delocalization due to the unoccupied 2p,
orbitals. In fact, the anomalous stability of these planar boron clusters is attributed
to aromaticity arising from 7m-electrons [4, 52, 160, 172, [173, 204]. However, the ex-

tension of this study in an infinite 2D boron sheet, is rather limited |7, 197, [198, 199]

Due to its electron-deficient character, multi-centered bonds are expected to help in
understanding the way boron atoms tend to interact with each other. For example,
dominance of three-centered bonds in boron compounds precludes the formation of
chains or rings in boron clusters|6, [184], and leads to the importance of a B-B-B unit in
boron chemistry. In this case, a three-center bond generally involves two electrons in
a localized molecular orbital formed by three atomic orbitals (AOs) directed towards
the center of the triangle[14, [15]. Realizing that the boron atoms tend to assume
the geometries that are based on polyhedra or fragments of a polyhedra in which

triangular faces prevail, our choice of sheet configurations for DFT calculations will
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be based on the interplay of these bonding features, overlap of the atomic orbitals,
and geometrical features in the formation of the 2D boron sheet with respect to the

3D boron crystal.

Since the previous studies|, 197, 198, 199] on the boron sheet were limited in sampling
the potential energy landscape, calculations were performed considering a diverse
and extensive set of initial configurations with and without symmetry constraints.
The resulting optimized configurations are then classified into different categories to

provide a better representation of the potential energy landscape of the boron sheet.

4.3.1 Structural Stability and Energetics

Figure 4.2 displays the several sheet configurations divided into several distinct cat-
egories, namely hexagonal graphene-like sheet, idealized and buckled {1212} sheets,
reconstructed {1221} sheets, sheets based on the icosahedral configuration, low sym-
metry sheets, and hybrid sheets. It is to be noted that our previous preliminary work

considered only idealized {1212} and reconstructed {1221} sheet configurations.|q|

Expecting the polymorphism of boron crystalline solids to resemble that of boron
sheets, some of the structural features can be extracted from the configurational
parameters given in Table 4.2. Most of the sheet geometries have ~ 90-92 % of
the binding energy of the a-B;s solid, and the atomic arrangements can be found
to have variations of those in the triangular {1212} lattice. The flat {1212} sheet

has a six-fold coordination of boron atoms which is uniformly repeated in a basic
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Figure 4.2: Boron sheets: (a) hexagonal graphene-like, (b) idealized {1212},
(c) reconstructed {1221} , (d) icosahedral, (e) low symmetry, and (f) hybrid
sheets.

triangular three-atom unit. In fact, this terminology can be derived through a planar
projection of the Aufbau princz’pleH} where the motifs consisting of a pentagonal
pyramidal Bg and the hexagonal pyramidal B; are found to be the basic unit to form
elemental boron clusters. The calculated cohesive energy of the flat {1212} sheet
is 5.48 eV /atom, higher than that of the sp?-bonded hexagonal graphene-like boron
sheet, which is only 4.96 eV /atom (Table 4.2). When symmetry of the flat sheet is
broken, we find several degenerate meta-stable buckling configurations depending on

the degree and direction of buckling.

101



Among the several candidates in the ‘broken-symmetry’ of flat {1212} boron sheet,
the calculated results find the buckled {1212} sheet to be the most stable configura-
tion with cohesive energy 5.70 eV /atom, achieving ~ 92 % of stability of the a-Bjy
solid. The buckling has induced stability with AE = 0.22 eV /atom over the flat
{1212} sheet. The order of the stabilization energy introduced by the buckling is in
agreement with the previous theoretical studies[197, 198, [199] as shown in Table 4.3.
The optimized puckering height of 0.93 A, is also comparable with the reported LDA

height of 0.82-0.85 A[198, 199].

Among all the planar isomers, the reconstructed {1221} boron sheet turns out to
be the most stable configuration. It is ~ 0.10 eV /atom more stable than its next
competitive planar isomer, the idealized {1212} sheet. Instead of favoring the pure
sp? graphene-like structure, the reconstructed configuration settles down to a ‘dis-
torted’ hexagonal unit yielding a triangular-square-triangular unit network. Such a
network facilitates the charge transfer, thereby forming a strong localized o-bond
with a bond length 1.63 A. In contrast to the case of the flat {1212} sheet, buckling
of reconstructed {1221} boron sheet does not appear to enhance its stability (Table

4.2).

We also find several stable configurations, other than those in the {1212} category.
Despite the predicted instability of the isolated By icosahedral configuration[49| in
the small boron cluster regime, the 2D sheet consisting of the icosahedral network
of boron atoms (i.e. icosahedral-I in Table 4.2) is the second lowest isomer with the

binding energy of ~ 5.60 eV /atom. The icosahedral boron sheet mimics its bulk struc-
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ture, and the average inter-icosahedral, (Rj,.,) and intra-icosahedral bond, (Rintrq)
are nearly the same as in the a-Bj5 solid. Another competitive isomer arising due to

a different cluster orientation, (i.e. icosahedral-II) is separated by only 0.09 eV.

Knowing that the nearly flat energy surface requires the use of more accurate meth-
ods for total energy calculations, Table 4.3 shows the calculated results obtained
using the projector augmented wave (PAW) method for three representative sheet
configurations. Briefly speaking, the projector augmented wave (PAW) method is
analogous to pseudopotentials, that introduces projectors acting on smooth valence
functions "t that are the primary objects in the calculation. It also introduces aux-
iliary localized functions like the “ultrasoft" pseudopotential method. However, the
localized functions actually keep all the information on the core states like the OPW
and APW methods|69, [158]. Thus, many aspects of the calculations are identical to
pseudopotential calculations, e.g. all the operations on smooth functions with FFTs,
generation of the smooth density, etc., are the same. However, the difference is that
the PAW approach keeps the full all-electron wavefunction in a form similar to the

general OPW expression|69, [158].

Since the full wavefunction varies rapidly near the nucleus, all the integrals are eval-
uated as a combination of integrals of smooth functions extending throughout space
plus the localized contributions evaluated by radial integration over the muffin-tin
spheres, as in the augmented planewave (APW) approach|69]. Although the PAW
method is computationally intensive, it is known to provide relatively more accurate

energy than the ultrasoft pseudopotentials[153] (US-PP) within DFT.[157, 158 In or-
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der to get a consistent comparison among different schemes (i.e. US-PP and PAW),
we have used the same set of model parameters for all calculations as we mentioned
in Section II. The GGA-DFT calculations either in terms of US-PP or PAW predict
the reconstructed-{1221} sheet to be energetically preferable ( AE ~ 0.10 eV /atom)
over the flat idealized {1212} sheet. At the LDA-DFT level, however, both methods
(i.e. US-PP and PAW) find the reconstructed-{1221} sheet to be nearly degenerate

with the idealized {1212}.

On the basis of some obvious structural similarities among boron nanoclusters (i.e.
in Chapter 3), we note that the reconstructed-{1221} boron sheet can be visualized
as an assembly of the ground state configuration of Bg unit in D, symmetry[57, [166]
with aromaticity in bonding which facilitates extra stability over the other planar
configurations, such as the idealized {1212} sheet.|166] To enhance the extra stability
of the planar {1212} boron sheet, ‘buckling’ has to be induced to break the symmetry
of perfect triangular lattice, to facilitate stronger localized bonds in the network. Ta-
ble 4.3 also collects the LDA and GGA results for the buckled {1212} sheet which are
consistent in both US-PP and PAW models, and are in agreement with the previous

LDA studies.[197, 198, [199]
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Table 4.2: Buckled and idealized {1212}, and reconstructed {1221} sheet configurations: binding energy BE (eV/atom)
and the bond lengths (Rp_p).

Model idealized {1212} | buckled {1212} | reconstructed-{1221}
BE Rp_p BE Rp_p BE Rp_p
(A) (4) (4)

60T

[This work| LDA 6.36 1.69 6.54 | 1.60, 1.83 | 6.33 | 1.62, 1.64, 1.92
PAW-LDA | 6.39 1.70 6.57 | 1.60, 1.83 | 6.37 | 1.62, 1.65, 1.97

|This work| GGA 5.48 1.71 5.70 | 1.61, 1.89 | 5.57 | 1.63, 1.66, 2.00
PAW-GGA | 5.69 1.71 5.92 | 1.61, 1.88 | 5.78 | 1.63, 1.66, 2.01

[Ref21] LDA | 6.53 _ 6.79 _ _ _
[Ref.23] LDA  |6.06| 1.70 |6.27]1.63 1.81| - ;
[Ref.24] LDA |6.76| 1.69 |6.94]|1.60, 1.8 - _
[ ]

GGA 5.49 1.71 0.72 1 1.64,1.82 | - -




4.3.2 Chemical Bonding

We will now begin analysis of the chemical bonding knowing that stability of a given
sheet configuration is controlled by an interplay of the valence electrons with its
atomistic configuration. Indeed, we find that the atomic coordination index, Z (i.e.
number of nearest neighbors of a given atom in the 2D network) essentially determines
the bonding features and stability of a given sheet. Furthermore, a combination of
the localized two-center (2c) and delocalized three-center (3c) covalent bonds network
which threads through atoms on the icosahedron surface to stabilize the lattice of a
conventional 3D boron crystalline solid[14, [15, 24, 31, 132, 33, 35| plays a vital role in
determining the stability of the boron sheet. Interestingly, these bonding features are
accessible through the comparative study within the electron density distribution of
the corresponding system. Similarly, the relative strength of the bonding can also be

studied accordingly.

In order to analyse these bonding features in a consistent way, we start our bonding
analysis based on our benchmark case study: «a-Bjs boron solid. In a-B;s, boron
atoms tend to form multi-center bonds in addition to two-center two-electron covalent
bonds between neighboring icosahedra which typically appear at high electron density
region ~ of 0.95 e/A® (Fig. 4.3-AI). There are intra-cluster 3¢ bonds on the twenty
triangular planes of an icosahedron at low density region of 0.77 e/A® (Fig. 4.3-All
), and a relatively weaker inter-cluster (3c¢) bond at low density region of ~ 0.60 e/A3
(Fig. 4.3-AlIII) among three icosahedra on a (111) plane of rhombohedral lattice.|[14,
31,132,133, 35] It therefore helps us in explaining why the isolated By, icosahedral unit
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Figure 4.3: The equidensity surfaces of electron density with the section
contour maps of the icosahedral based a-Bjs solid (left-AI, AIl and AIII),
and the icosahedral-I boron sheet (right-BI,BII and BIII). The red region
represents the high electron density contour, while the low electron density
contour is shown by the blue region. The bonding is represented by the
grey isosurfaces. AI-2c inter-icosahedral bond at 0.95 e/A3. AII- 3c intra-
icosahedral bond at 0.77 e/A3. AIII-3¢ inter-icosahedral bond at 0.60 e/A3.
BI-2¢ inter- and intra-icosahedral bond at 0.94 e¢/A3. BII-3¢ intra-icosahedral
bOEd at 0.91 e/A®. BIII-3¢ inter-icosahedral bond cannot be found at 0.63
e/A3.

is not stable in the small cluster regimeu, u, E] without the coexistence of both intra-

and inter-icosahedron bonds. Indeed, such subtle bonding characters are present in
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the 2D icosahedral-based (i.e. icosahedral-I and II) boron sheets.

Being one of the energetically competitive isomers among the boron sheets (see Table
4.2), the icosahedral-I sheet is being stabilized by both inter- and intra-icosahedral
2¢ o-bonds with comparable strength (Fig. 4.3-BI). In addition, a stronger intra-
icosahedral 3¢ bond (Fig. 4.3-BII) appears which can be interpreted as the preserva-
tion of the intrinsic stability of each individual icosahedron by the unusual 3¢ bonds
, where the electron-deficient nature of bonding forces electrons to be shared at the
triangular surfaces of the icosahedron. However, in contrast to a-B1s, the icosahedral-
I sheet has no inter-icosahedral 3¢ bonds (Fig. 4.3-BIII) at low electron density of
0.63 e/ A3, as compared to the solid which possess fairly strong inter-icosahedral 3¢
bonds at 0.60 e/A?’ shown in Fig. 4.3-AIll. Therefore, it might explain why the 2D
icosahedral boron sheet cannot be the lowest energy isomer due to the absence of
the inter-icosahedral 3¢ bond which utilizes the 3D space configuration, despite the

unsaturated dangling bonds on its surface.

In the {1212} category, the atomic coordination index, Z essentially determines the
bonding features and stability of a given boron sheet. In the flat idealized {1212}
sheet, presence of the degenerate p-orbitals makes the highly symmetrical planar
{1212} sheet be less energetically stable (Table 4.2). Here, the atomic environment
with the high coordination number (i.e. Z = 6) together with the electron-deficient
character yield the nearly homogeneous delocalized bonds (Fig. 4.4-Al) with metallic-
like bonds character, appear in this typical covalent bonded element. A homogeneous

charge density distribution associated with delocalized 7-electrons is dominant, as
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Figure 4.4: The equidensity surfaces of electron density with the section
contour maps for the idealized {1212} (left-AI, AII), buckled {1212} (center-
BI, BII), graphene-like (top right-CI) and reconstructed {1221} (right-center
and bottom-CII, CIII). The red region represents the high electron density
contour, while the low electron density contour is shown by the blue region.
The bonding is represented by the grey isosurfaces. The isosurfaces are at
0.82 e/A3 (AI), 0.65 e/A® (AII), 0.95 /A% (BI), 0.61 e/A3 (BII), 0.87 e/A3
(CI), 0.98 ¢/A3 (CII) and 0.87 e/A3 (CIII).

shown in Fig. 4.4-All, for the density region around 0.65 e/ As.

When the symmetry of the planar sheet is broken by inducing a buckling height of

0.90 A, the buckled {1212} sheet becomes the lowest energy configuration by gaining
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extra stability of 0.22 eV/atom with Z = 2 and Z = 4 for the first and second
nearest neighbors. Here, the puckering stabilizes the triangular sheet by inducing a
strong directional o-bond along the infinite boron chains (Fig. 4.4-BI) which breaks
the degeneracy of p-orbitals. Also, the infinite long boron chains along the ‘hill’ and
‘valley’ rows are each connected by a more delocalized weaker ¢ — 7 bond between
the adjacent rows (Fig. 4.4-BII), despite the chain-like configurations are not stable
on their own in the cluster regime|5, [184]. Therefore, similar to the B;, icosahedral
clusters based configurations (i.e. a-Bjs solid), the buckled {1212} sheet prefers a
mixture of localized and delocalized covalent bonds, which is analogous to dominant

features of a mixed 2¢ and 3¢ covalent bonded network.

Regarding the most stable planar 2D boron sheet, the reconstructed {1221} sheet
can be viewed as a ‘distorted’ hexagonal ring as compared to the graphene sheet. By
altering the symmetry, the reconstructed {1221} sheet has the atomic coordination
index Z =1 and Z = 2 for its first and second nearest neighbors in the ‘triangular-
square-triangular’ (i.e. {1221} lattice) network, in contrast to Z = 3 for the sp*-
dominant (Fig. 4.4-CI) hexagonal graphene-like sheet. In a planar configuration, it
has been pointed out by Evans et. al[197|, boron has one less electron than carbon,
which makes the bonding in the graphene-like sheet be dominated by both sp? and
7 bonds energetically unfavorable. It is likely to be the main reason why one cannot

find the analogous graphene sheet for boron in nature.

In the reconstructed {1221} sheet, there exists anisotropic chemical bonding|, 9] with

significant contributions from the both in-plane localized directional covalent (i.e. o-
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bond) and delocalized 3¢ bonds spreading along the triangular lattice networks. The
electron density distribution, shown in Figure 4.4-CIII, reveals that the charge transfer
between the delocalized 3¢ bonds at 0.87 e/A3 in the network can be accommodated
by the formation of directional covalent bonds (i.e. o-bond) that interconnect these
triangular units (Fig. 4.4-CII). Analogous to the case of the solids (i.e. «a-Bi»)
[14, 31, 32, 133, 34| and the buckled {1212}, it therefore appears that the co-existence
of three-center and two-center covalent bonds makes the reconstructed {1221} sheet
more stable relative to the pure sp?>-bonded graphene-like boron sheet. Hence, we
believe, that the mixture of 2¢ and 3¢ bonds found in several lower energy 2D sheet
configurations in the present study might give us an insight in understanding and

designing of the boron-based novel nanostructures.
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4.3.3 Electronic Properties

As we know, all 2D boron sheets are semi-periodic system, and can be properly treated
within a periodic supercell technique under a continuous planewave basis. Here, all
the electronic properties of 2D infinite boron sheets resemble the basic features of
a surface. It has periodicity in the plane of the surface (i.e. boron sheet in this
case), and non-periodic perpendicular to the surface. Therefore, for all the single-
layered boron sheets mentioned in this study, their electronic properties can only be
defined on the Brillouin zone in %, and k, plane, as defined by their corresponding
x- and y- geometrical planes. Due to their varied distinction in bravais lattice and
symmetry point in 2D Brillouin zone, we will study their electronic bands only on
0 to 0.5 from I' point spanning in k, and k, plane. The electronic properties of
the sheet configurations considered depend on their unique atomic arrangements and
bonding features. The icosahedral-I and buckled ‘twisted-helix’ boron sheets are

semiconductors, while the rest of the boron sheets are metallic.

The semiconducting icosahedral-I boron sheet yields different features in its band
diagram as compared to the metallic {1212} and reconstructed {1221} boron sheet.
It possesses a rather flat band dispersion (Fig. 4.5) for both valence and conduction
bands. The icosahedral-I boron sheet has an indirect band gap of ~ 0.50 eV at
I' (Fig. 4.5). Knowing that the conventional 3D boron crystalline solid (i.e. -
Bj2) and boron nanowires [54| are semiconducting, the semiconducting nature of the
icosahedral sheet can be attributed to similarity of the atomistic and bonding features
in the icosahedral-based configurations. Accordingly, the rich features of the p-states
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Figure 4.5: Band structure (from top to bottom) of the idealized {1212},
buckled {1212}, reconstructed {1221} and icosahedral-I boron sheets. Zero
is aligned to the Fermi energy. The red and green lines represent the valence
and conduction bands, respectively.

around the top of the valence band (Fig. 4.5) can be attributed to the localized
directional inter-icosahedral o-bonds. Whereas in the close proximity of the bottom
of the conduction bands, contributions of the overlap of s and p-states can be seen in

the projected density of states.

In contrast to the icosahedral-I boron sheet, dispersion of electronic bands is rather
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significant in the idealized {1212} sheet. The nearly homogeneous distribution of the
electron cloud of the {1212} sheet leads to the isotropic metallic character in the band
structure. A partially filled conduction band and strong overlap among valence and
conduction bands can be seen in Fig. 4.5 which also displays the isotropic features
of metallic character in the band dispersion along the Kx and Ky directions. Total
density of states shown in Fig. 4.6 indicates the appearance of the non-vanishing
states near the vicinity of Fermi level, suggesting that the high electron conductivity
is accessible in the {1212} sheet. From the calculated [-projected DOS, it can be
seen that s and p-states contribute equally to the conduction bands, and thereby
indicate the occurrence of the s and p hybridization. Since the conduction bands
are unoccupied, the no s-states occupied feature found in the idealized {1212} sheet
might be the cause of why it is energetically less favorable as compared to the others.
Buckling of the {1212} sheet induces anisotropy in the band dispersion along Ky and
Ky directions (Fig. 4.5). In Kx direction, the conduction bands are partially filled
suggesting a metallic-like character for the buckled {1212} sheet. The [-projected
DOS identifies top of the valence band and bottom of the conduction bands to be

associated with 7 and 7*-states, respectively.

In the reconstructed {1221} sheet, the anisotropic nature of the chemical bonding
yields different dispersions along Ky and Ky directions (Fig. 4.5) in its band struc-
ture. In contrast to the planar {1212} sheet, the [-projected DOS shows dominant
features associated with the p-state (i.e. p, and p, characteristics) in the proximity

of Fermi level (Fig. 4.6). Accordingly, the rich features of the p-states around top
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Figure 4.6: Total density of states, DOS (top panel), and [-Projected s and
p-orbital in separated cases (bottom panel). (top left) idealized {1212} sheet,
(top right) buckled {1212} sheet, (bottom left) reconstructed {1221} sheet
and (bottom right) the icosahedral-I boron sheet. Zero is aligned to the
Fermi energy. The orange color shaded region on top panel represents the
occupied states in DOS, while the red color shaded region on the bottom
panel represents the s-orbital in [-Projected DOS.

of the flat valence band are attributed to the localized directional o-bonds along the
Y -direction. They open up the gap (~ 0.8 eV) at I along the Ky -direction by lifting
the degeneracy of the bands. On the other hand, the low-lying conduction bands are

associated with the delocalized p,-type m-bonding with bands crossing at Fermi level
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in the K y-direction. Similar to the buckled {1212} sheet, anisotropic features of the
chemical bonding together with its band dispersion in the reconstructed {1221} sheet
suggest a strong variation in the electronic and mechanical properties of the corre-
sponding nanotubes, when the sheets are rolled into different chirality of single-walled

boron nanotubes.
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4.4 Summary

In summary, first principles planewave calculations were performed to study the sta-
bility, morphology and electronic properties of several sheet configurations of boron.
We suggest the 2D boron sheets can be stable, and can achieving ~ 92 % of the

stability of a-Bis solid.

Similar to the 3D boron solids, calculations predict a varied polymorphism in the 2D
boron sheets, categorized into hexagonal graphene-like, idealized {1212}, icosahedral-
like, reconstructed {1221}, low symmetry amorphous-like, and the hybrid 2D sheets.
From all the varieties of boron sheets in study, we found there are three promis-
ing candidates of boron sheets: idealized {1212}, buckled {1212} and reconstructed
{1221}, can be utilized to form a boron nanotube, if an appropriate growth con-
dition is available. Among the planar sheet configurations, GGA-DFT calculations
predict the stability of a novel reconstructed {1221} boron sheet over the idealized
{1212} triangular sheet. Instead of having nearly homogeneous electron density on
the 2D plane as the case of the planar {1212} sheet, the reconstructed {1221} sheet
is stabilized by co-existence of the localized o-bonds and the delocalized three-center

bonds.

The unique features in geometry and electronic properties of both {1212} and {1221}
configurations suggest that a strong variation of electronic and mechanical properties
is expected to occur when the plane is rolled into different chirality of single-walled

boron nanotubes. Furthermore, the emergence of icosahedral-based boron sheet as
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one of the low-lying configurations suggests the stability of inter-icosahedral and intra-
icosahedral bonds, despite the fact that the discrete units of By icosahedral unit are
not stable on their own in the small cluster regime. The most stable buckled {1212}
sheet is found to be stabilized by the anisotropic bond properties due to the interplay
between the localized o- and the delocalized superimpose o — 7-like bonds between

the boron atoms in adjacent rows of boron chains.

118



Chapter 5

Single-Walled Boron Nanotubes:

Pristine and Crystalline Bundles

5.1 Introduction

5.1.1 Why Boron Nanotubes ?

Following the immeasurable impact of carbon related nanostructures and the high ex-
pectations from B,C, N, hybrid nanostructures|205|, and their corresponding B,C, N,
ternary crystalline compounds, boron is expected to hold a very unique place, by play-
ing vital role in the synthesis of these novel materials. Compared to the roles played
by carbon, boron nitride, boron carbide, and carbon nitride, the roles played by the

boron itself remains ambiguous, either in crystalline phases or in nanostructures.
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Due to the versatility in its chemistry[14, [157, [1&, [19] as neither being a purely cova-
lent nor a purely metallic character, the elemental boron nanostructures itself can be
remarkably interesting. So far in experiments, the studies in elemental boron nanos-
tructures: such as nanowires, nanoribbons, nanowhiskers, and nanotubes remain at
the infant stage[54, 55, 56]. In particular, the nanotubes is the most unique candi-
date for study, because the details of their structural morphology remain unknown,
while the rest (i.e. nanowires, nanoribbons, nanowhiskers), are all bulk-like either
in crystalline or amorphous phase[54, 55]. Therefore, one of the alternatives to re-
sort to these problems will be theory and simulation, and the reliable theoretical tools
which allow for a proper description of its chemistry, will be the first-principles (DFT)

calculations.

We will discuss the basic properties of boron nanotubes (BNTs) based on DFT calcu-
lations. Specifically, we will try to establish such a basic connection between 2D boron
sheets and 1D boron nanotubes, based on our results|, I, 9], together with some re-
lated work in the previous studies[197, 198, [199]. The presentation of this chapter is
organized follows: In Section B2 a brief mathematical decsription of the model of
BN'Ts will be given, followed by the computation methodology in Sec The results
and discussion covering several different aspects will be given in the following section,
such as structural stability and energetics of both pristine and crystalline bundles
of boron nanotubes, chemical bonding, electronic, mechanical and thermodynamical

properties. A summary of these results will be presented in Section
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5.2 Mathematical Description of An Ideal Boron Nan-

otube

As mentioned in Sec. BTl the structure of BNTs is strongly related to the configura-
tions of the corresponding 2D boron sheet. There are three competing boron sheets
which can be wrapped to form a nanotube, similar to the construction of carbon
nanotubes from a wrapped graphene sheet|196]. Therefore, in general, analogous to
the case of carbon nanotubes (CNTs), the wrapping in BNTs can be described by a
chiral vector (wrapping vector) W = na + mb, denoted as (n,m), where n and m are
integers. The BN'Ts can form a ‘zigzag’, ‘armchair’ and ‘chiral’ structures, depending

upon the values of n and m|[196].

Among the three possible candidates of boron sheets (Figure 5.1): the idealized
{1212}, buckled {1212} and the reconstructed {1221}, the energetically least stable
idealized {1212}. The {1212} sheet consists of six equal coordinated (Z = 6) boron
atoms in a perfect triangular lattice which is a common structural basis of among the
boron polymorphs, is the earliest proposed candidate[206]. Based on a generalization
of the Euler-Poincaré formula for a cyclinder[206]: P — C + F = 0, where P is the
number of vertices, C' is the number of contacts, and F' is the number of faces, an
ideal boron nanotubes (BNTs) can be constructed by the appropriate ‘wrapping’ of

an ‘idealized’ triangular boron sheet (i.e. idealized {1212} boron sheet).

Later, as the more stable buckled {1212} was found from DFT results|9, 197, 198, 199

121



zigzag = ammchair Zig:'ﬂg
X

NN A NS
NVAANANY
NN
Y
WA AYAYS
WAAA

Idealized {1212} Buckled {1212} Reconstructed {1221}

Figure 5.1: Three most promising candidates of 2D boron sheets to form
boron nanotubes in our study, namely: idealized {1212}, buckled {1212},
and reconstructed {1221}.

through the ‘breaking’ of symmtery of the idealized {1212} boron sheet, a more

proper classification scheme for the mathematical description of BNTs have been

proposed[197, 198, [199]. By following the mathematical description proposed by

’

Kunstmann et al.[199], the basic tubular structure of a BNT is characterized by a

wrapping vector, W. From a rectangular area of a boron sheet (Figure 5.2), a BNT

with its radius R can be defined as %, which W will become the circumference

of the nanotube when the boron sheet is rolled up. Instead of triangular| and

honeycomb-derived|198| primitive cells (Figure 5.2), we therefore adopt the rectangu-
lar primitive cell which is shown to be more universal by including BNTs constructed

from both idealized and buckled {1212} boron sheets. Accordingly, the wrapping

vector W7 is defined as|199]

W' = (k1) = kaj + laj (5.1)
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with &, [ being integers, and a] = A(1,0) and a}, = B(0,1) are the primitive vectors
of the rectangular lattice, where the A and B are the lattice constants shown in Sec

armchair

(A)

Figure 5.2: (A) The triangular (t), the rectangular (r), and the honeycomb-
derived (h) primitive cells that are used to characterize boron nanotubes.
They contain one, two, and three atoms, respectively. Only the rectangular
cell may properly describe the geometrical features of buckled {1212} boron
sheet. The puckering of the boron sheet is indicated by black and grey
atoms in the background. (B) The geometrical construction of an ideal boron
nanotube from a boron sheet: red (gray) area is cut and rolled up such that
W7 will become the circumference of the nanotube. O is the origin, W7
is the wrapping vector, T is the translation vector, € is the chiral angle
measured with respect to the zigzag direction, a; 2 are the primitive vectors
of the underlying rectangular lattice, and A and B are the lattice constants.
The puckering of the boron sheet is indicated by black and gray atoms in
the b‘aﬁround. Zigzag and armchair directions are perpendicular to each
other[199]

In order to advoid confusion, here the a] and a} can be defined according to the local

bonding features of buckled {1212} boron sheet. The armchair direction (i.e. a}) is
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defined corresponding to the o bond direction, while the zigzag direction (i.e. af) is
associated with the delocalized bonds along the direction of triangular lattice within
the boron sheet. Following the analogy to the Dresselhaus construction for carbon
nanotubes[196], we define the chiral angle 6 as the angle between the vectors W" and
ay, i.e. 6 is measured with respect to the zigzag direction coinciding with a”. With
this respect, the zigzag BNTs will correspond to § = 0° with (k,l) = (k,0), while the
armchair BNTs will correspond to 6 = 90° and (k,[) = (0,1). Similarly, the BNTs
which constructed from the idealized {1212} (i.e. the perfect triangular boron sheet
in Figure 5.1), both zigzag and armchair BN'Ts are found to be equivalent, as the a}
= ab. While for the reconstructed {1221} boron sheet (Figure 5.1), the distinction
among the corresponding zigzag and armchair BNTs will remain the same, and its
classification can be defined according to the zigzag, a] and armchair direction, a’,
from its delocalized bonds and local o bonds lying on the separated direction, within

the ‘triangular-square-triangular’ lattice.
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5.3 Computational Methods

First principles calculations were performed on the crystalline bundles of SWBNTSs
and their corresponding pristine SWBN'Ts in the framework of all-electron density
functional theory (DFT) with the Perdew-Wang 91 exchange-correlation functional
form[200]. The periodic linear combination of atomic orbitals (LCAQO) approximation
as embedded in the CRYSTALO03[207] program was employed. A linear combination
of Gaussian-type orbitals (GTOs) was used to construct a localized atomic basis
from which Bloch functions were constructed by a further linear combination with

planewave phase factors.

A split-valence basis set with polarization functions (i.e. 6-31G(d,p)) was considered
for boron atoms whose exponents of the most diffusewEU and d-shells were reoptimized.

The optimized diffuse Gaussian exponents are belowtl:

Standard basis: 6-31G(d,p)

S 6 1.00

0.2068882250E+04 0.1866274590E-02
0.3106495700E+03 0.1425148170E-01
0.7068303300E+-02 0.6955161850E-01

0.1986108030E+02 0.2325729330E+-00

*The basis set given is following the format used by the Gaussian98 and Crystal03 program. The 1°¢
column specify the exponents, while the 2"¢ (2"¢ and 3"¢ column for SP shells) column specify the
contraction coefficients of the Contracted Gaussian Type Orbitals (CGTOs). The SP shells share
the same exponents for s and p functions.
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0.6299304840E+01 0.4670787120E+-00

0.2127026970E+01 0.3634314400E+-00

SP 3 1.00

0.4727971071E+01 -0.1303937970E+00 0.7459757990E-01

0.1190337736E+01 -0.1307889510E-+00 0.3078466770E-+00
0.3594116829E+00 0.1130944480E+-01 0.7434568340E+-00
SP 1 1.00

0.1600000000E+00 0.1000000000E+-01 0.1000000000E+01

D 1 1.00

0.6000000000E-+00 0.1000000000E+-01

Here the accuracy of the optimized basis sets on the outer diffuse SP and D orbitals
are optimized within the convergence of ~ 1 mili Hartree. The accuracy on this

optimized basis sets is around 0.03 eV /atom.

The Brillouin zone was sampled using a 8 x 8 x 8 Monkhorst-Pack grid for the in-
tegration in the reciprocal space. The total energy tolerance with 10~7 Hartree, and
eigenvalue tolerance with 107¢ Hartree in the iterative solution of the Kohn-Sham
equations were set. Additional details of the calculations can be found from us. The
reliability and accuracy of the computational model employed was successfully tested
on the well-studied boron crystalline solid, a-Bjs, whose structural and electronic
properties|31, 33, 202, 203] were reproduced by the modeling elements employed in

the present study in Table 5.1.

126



Table 5.1:

rical parameters.

eV) and experimental[209] (~ 1.9 €V) values

a-Bja boron: binding energy (BE (eV/atom)) and geomet-
dintre 18 the intra-icosahedral bond length, d;jie, is the
inter-icosahedral, and a is the lattice parameter. The unit is A. Note: The
calculated lattice constant of a-Bjs is 5.05 Aas compared to the experimen-
tal value of 5.06 A[QOQ, 203]. The calculated indirect band gap 1.64 €V agrees
well with the previous theoretical[30, 33, 208] (within range of 1.43 - 1.72

Model a-Bis

BE dintra dinter a
GGA [This Work] | 6.18 | 1.74, 1.78, 1.80 | 1.67, 2.01 | 5.05
[Ref. 3] 6.18 | 1.74, 1.77, 1.80 | 1.66, 2.00 | 5.04

[Ref. 4] 6.22 - - -
[Ref. 18] 6.95 - 1.67,1.99 | 4.98
[Ref. 19] - 1.72,1.76, 1.78 | 1.65, 1.98 | 4.98

LDA |Ref. 6] 7.51 - - -
Experiment | 5.81 - 1.71, 2.02 | 5.06

Additionally, the same set of model parameters were used to get a consistent compar-
ison among previous studies|197, 198, [199] on boron sheets. The boron sheets form-
ing the competing low-lying configurations considered are idealized {1212}, buckled
{1212} and reconstructed-{1221} sheet configurations|d, 9, 197, 198, 199]|. As shown
in Table 5.2, the results of the present study for idealized and buckled {1212} sheet
configurations are essentially found to be consistent with the structure models of pre-

vious studies|d, [197, 198, [199] indicating the reliability of the model elements of the

present study.

127




Table 5.2: Boron Sheet Configurations: Buckled and idealized {1212}, and reconstructed {1221} configurations: binding
energy BE (eV/atom) and the bond lengths (Rp_p).

Ref. Model idealized {1212} | buckled {1212} | reconstructed-{1221}
BE Rp_p BE Rp_p BE Rp_p
(A) (A) (A)
[This work] GGA 5.37 1.71 5.62 | 1.62,1.84 | 5.48 | 1.63, 1.69, 2.18

8¢l

[VASP] (Chapter @) | LDA | 6.36 | 169 | 6.54|1.60,1.83]6.33 | 1.62, 1.64, 1.92
PAW-LDA | 6.39 | 1.70 | 6.57 | 1.60, 1.83 | 6.37 | 1.62, 1.65, 1.97

[VASP[ (Chapter @) | GGA | 548 | 1.71 |5.70 | 1.61, 1.89 | 5.57 | 1.63, 1.66, 2.00
PAW-GGA | 569 | 1.71 |592|1.61,1.88 |5.78 | 1.63, 1.66, 2.01

[Ref1] LDA | 653 - 6.79 - - -
[RefA] LDA |6.06| 170 |6.27|163,1.81| - -
[Ref.6] LDA |676| 1.69 |6.94|160,1.82| - -
[Ref.A]

GGA 5.49 1.71 0.72 | 1.64,1.82 | - -




5.4 Results and Discussion

It is well known that some of the interesting properties of carbon nanotubes (CNT)
which can be synthesized as pristine nanotubes appear only in the condensed phase|210,
211] in which they tend to form close-packed bundles[211]. Therefore, it is of great
interest to understand how boron nanotubes can be assembled into stable form via
inter-tubular interactions in the condensed phase, knowing that the chemical bonding
in the boron nanotube is quite different from that in the carbon nanotubel|d, &, 199]

even in pristine condition.

In a recent theoretical study|199], it was suggested that the strain energy together
with inter-tubular interaction of single-wall boron nanotubes are diameter and chi-
rality dependent, in contrast to carbon nanotubes. Following this suggestion, we
have considered a specific case of SWBNTs with small diameter to investigate their
morphological evolution in the close-packed bundles in the crystalline phase. Specifi-
cally in the following chapters, we will study bonding, stability, thermodynamic, and
electronic properties of SWBNT bundles using the state-of-the-art density functional
theory. The calculated results show that the subtle interplay between two-centered
o and three-centered 7™ bonds found in the idealized and reconstructed boron sheet
configurations yields a different morphological features in the corresponding bundles
of both zigzag and armchair chiralities, and the presence of a relatively stronger
inter-tubular interaction modifies stabilities, structural and electronic properties of

SWBNTs of small diameter in the crystalline bundles.
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5.4.1 Structural Stability and Energetics

5.4.1.1 Pristine SWBNTs

We noted that the local geometric structure of these SWBNTs are different from that
of icosahedral clusters based boron solids|14|, and the surface-passivated 1D boron
nanowires[54, [55]. In this respect, the pristine SWBNTs can be characterized by
one lattice parameter: ¢, which represents the 1D periodicity along the tubular axis,
together with its corresponding symmetry which defined by its rod group (i.e. the
subset of the 230 space group) within CRYSTAL code. Analogous to conventional
definition of crystallographic cell, each unit cell of the SWBNTs can well-represented
by distinct numbers of crystallographically non-equivalent B atoms, which depends

on its structural configuration and chirality of the nanotubes as we mentioned in Sec.

For the small radii SWBNTs, we have considered several possible configurations,
shown in Fig. 5.3, of pristine SWBNTs, namely: the (6,0) zigzag Type-1, (0,6) arm-
chair Type-II, (0,6) armchair type III, (0,6) zigzag type IV, and sp?-like tetragonal
SWBNT for electronic structure calculations. Here, we have used the convention
established for CNTs[196, 212] as we mentioned in Sec. to describe SWBNTs

chiralities derived from the corresponding 2D sheet configurations.

It must be pointed out that all the prototypes of single-walled boron nanotubes (SWB-

NTs) proposed in our current study have not been observed experimentally. However,
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Figure 5.3: The possible configurations of pristine single-wall boron nan-
otubes which represent the various allotropes of elemental boron nanotubes:
(A) (6,0) zigzag Type-1, (B) (0,6) armchair Type-II, (C) (0,6) armchair Type-
III (also can be referred as (6,0) zigzag Type-I1I), (D) (0,6) armchair Type-
IV, and (E) sp3-like tetragonal SWBNTS.

their relative structural stability can be estimated quite accurately based on the cur-

rent DFT results. The (6,0) zigzag type I SWBNT (Figure 5.3) can be characterized

by a six-fold axis symmetry within the rod group|207] P6/mmm. Similarly, the (0,6)

armchair type II SWBNT (Figure 5.3) is associated with the rod group P31m and

D3, symmetry. Both of these SWBNTs can be constructed from the reconstructed

{1221} boron sheet|[9].

For the triangular-lattice based idealized and buckled {1212} boron sheet derived

SWBNTs, the structure model with well-defined classification schemes has been given

recently[199]. For the highly symmetrical configuration of the idealized {1212} boron
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sheet in a perfect triangular lattice[7, 9, 197, 198, 1199], the (n,0) zigzag and (0, m)
armchair type III (Fig. 5.3) should be an equivalent configurations. However when
the puckering is induced to break the symmetry of the idealized {1212} boron sheet|9,
197, [19&, 199] to form a buckled {1212} boron sheet, the proper classification scheme
is proposed by Kunstmann et al[199]. Both type III and type IV SWBNTs belong
to the rod group of P6/mmm, but are different in terms of the crystallographically
non-equivalent B atoms. Note that the diameter of all the tubular configurations
considered here is about 4 - 6 A. Following the suggestion of Kunstmann et al.,
we do not consider zigzag type IV SWBNT configurations which is less likely to be

stable|[199].

Besides the 2D idealized {1212}, buckled {1212}, and the reconstructed {1221} boron
sheets derived SWBNTs, other possible configurations of SWBNTs have been ex-
plored, and one of the candidate is the sp3-like tetragonal (Figure 5.3) SWBNT.
Resembling the features of elemental single-wall silicon nanotubes (SWSiNT)[213,
214, 215], the sp3-like tetragonal SWBNT (i.e. P31m in rod group) can be visualized
as a hypothetical self-assembled stacked hexagonal rings, which favors the sp3-like hy-
bridization after structural and cell relaxation. For the most stable pristine SWBNT
in current study, the (6,0) zigzag-type I SWBNT with optimized diameter about 3.96
Alis achieving ~ 90 % of the stability of a-Bj, rhombohedral phase, despite its high
curvature strain within the small diameter regime. This value is particularly intrigu-
ing, as compared to the SWSiNTs which is merely ~ 82 % of stability for Si bulk

in diamond structure in large diameter at approximately 12 A[216, 217]. Therefore,
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we suggest the SWBN'Ts can be realized and are feasible as other homo-nuclei nan-
otubes which resemble carbon and silicon (i.e. SWCNTs and SWSINTs), if certain

appropriate growth environment is achieved.

Electronic structure calculations were performed on the tubular configurations opti-
mizing their lattice parameter as well as the internal coordinates at each fixed value
of crystallographic unit-cell volume. The calculated results show that all SWBNTSs
considered are stable, except the (0,6) armchair type IV SWBNT which makes tran-
sition to (6,0) armchair type III SWBNT during the optimization process. This is
consistent with the fact that puckering of the boron sheet is not favorable in forming
a small diameter armchair SWBNT due to its high curvature strain energy. This
result agrees well with the earlier studies|197, [199| in predicting a smooth surface for
the armchair SWBN'Ts in small radii regime. Here within these small radii regime,
we found that the type-I SWBNT is stable over the type-III by nearly 0.46 eV /atom
(Table 5.3). Knowing the fact that inter-tubular interactions are expected to play an
important role in determining the stability of the system[199|, we therefore carry on

our studies of SWBNT bundles based on these two distinct BNTs species.
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Table 5.3: System, symmetry (space group), number of atoms (N-atoms/cell), nanotube’s diameter (A), bond length,
R%tra (A), and cohesive energy, E.,, (6V/atom) of the pristine single-wall boron nanotubes and nanotubes crystalline
bundles. *The diameter of (0,6) armchair Type-IV is given in average value is due to its buckling configuration which
derived from 2D-buckled {1212} boron sheet. However in this case, this nanotube is found to be metastable. *The (0,6)
armchair Type-III is found to be equivalent to (6,0) zigzag Type-III for this nanotube configuration, due to the equal
coordination of each boron atom in the 2D idealized {1212} boron sheet|7, [9]. After the full structural relaxation, the
(0,6) armchair Type-IV converged to (0,6) armchair Type-III.

System Symmetry N Diameter | R%H78 (A) Econ
(Space Group) | (atoms/cell) (A) (eV/atom)

(6,0) zigzag P6/mmm 24 3.96 1.64,1.67,1.98 5.53
Type-1

(0,6) armchair P31m 24 9.57 1.64, 1.67, 2.04 5.25
Type-II

(0,6) armchair* P6/mmm 24 3.70 1.74,1.85 5.07
Type-I11

sp3-like tetragonal P31m 12 4.17 1.61, 1.91, 2.25 5.02

(0,6) armchair*x P6/mmm 24 4.21 1.85, 1.86 4.87*

Type-1V (average)




5.4.1.2 Crystalline Bundles

Considering the fact that inter-tubular interactions are expected to play an important
role in determining the stability of the SWBNT bundles|199], two distinct morpholo-
gies of SWBNT bundles consisting of type I (6,0) zigzag and type III (0,6) armchair
SWBNTs with small diameter are considered for electronic structure calculations. The
crystalline bundles of SWBNTs were represented by arrays of identical nanotubes ar-
ranged in a hexagonal lattice. The tubes are of infinite length and not capped. In a
hexagonal unit cell, a is defined as the sum of the diameter of the nanotube and its
inter-tubular distance, and c represents the periodicity of a SWBN'T along its tubular

axis.

Figure 5.4 shows the calculated potential energy surface (i.e. total energy vs. volume)
of the bundles where the lattice parameters as well as the internal coordinates of the
tubular configuration were optimized at the each value of the unit-cell volume on
the energy surface. It was followed by the optimization of the tubular configuration
without using any symmetry constraint during the optimization. As shown in Fig.
5.4, the sparse configuration on the energy surface is defined as a configuration where
a bundle consists of weakly interacting SWBNTs with R%*. > 3 A. On the other
hand, the equilibrium configuration is associated with the lowest total energy of a
given type of bundles. The calculated equilibrium volume is 200 and 165 A3 for type
I and type III bundles, with cell density 2.22 and 2.69 g/cm? respectively. Table 5.3
collects structural and geometrical features of the bundles associated with the sparse
and equilibrium configurations on the energy surface shown in Fig. 5.4.
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Figure 5.4: (A) The energy surface represented by total energy vs cell
volume in different regime, namely the sparse and equilibrium configurations
of both type I and type III SWBNTs bundles. In the sparse region, the
cell volume is > 240 A3 associated with Rigfe]g > 30 A. A straight line
represents the total energy of isolated boron nanotubes. (B) A top view
of type I and type III crystalline bundles of SWBNTS in the sparse and
equilibrium configurations.

There appears to be a cross-over of the stability of bundles as the inter-tubular inter-

action becomes stronger between SWBN'Ts with small diameter. As the overall trend,
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type I bundles are more stable in the sparse configuration due to their high stability
in static energy as pristine nanotubes (Sect. ITI-A). Whereas type IIT bundles become
more stable in the equilibrium configuration by settling down in a rather compacted,
interlinked bundles as shown in Fig 5.4. This fact is reflected in a relatively larger
change of the cohesive energy of type III bundles (~ 0.59 eV /atom) in going from
the sparse configuration to the equilibrium configuration (Table 5.3, Fig. 5.4), gain-
ing almost 10 % of cohesive energy relative to a-Bjs solid. For the small diameter
SWBNTs, it is noteworthy to point out that type III SWBNT is not energetically
preferable relative to type | SWBNT, though a relatively stronger inter-tubular inter-
action within the bundles is crucial in stabilizing type III bundles over type I bundles.
In fact, our prediction is consistent with the results of a previous study|199| predict-
ing the same order of gain in energy ( AE.; ~ 0.30 eV/atom) for a larger diameter
(i.e. ~6-12 A) armchair SWBNT bundles. Such a large gain in cohesive energy
clearly point out to the fact that inter-tubular interaction in the SWBNT bundles is
different from that in the carbon nanotube bundles, which are bonded by weak Van

der Waals interactions.
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Table 5.4: Structural parameters and cohesive energy (Eeop) of the SWBNT bundles. R%*% and RBT4 are inter-tubular

and intra-tubular distances, and V; is the primitive cell volume. €*~512 ig stability of the system relative to the cohesive
energy of a-B1s boron solid.

System Configuration Structural Parameters Stability
(SWBNT-bundles) space group | lattice Vo Rz, R Econ ¢~ Bu
a,c(d) A ] A (A) (eV/atom) | (%)
(6,0) zigzag Sparse P6/mmm | 6.92,5.93 | 246 2.96 1.65, 1.98 5.51 89
Type 1 Equilibrium P6/mmm | 6.21,5.93 | 198 1.94 1.63, 1.91 5.58 90
(0,6) armchair Sparse P6/mmm | 7.19, 5.86 | 262 3.06 1.75, 1.83 5.09 82
Type 111 Equilibrium | P6/mmm | 5.68,5.86 | 163 | 1.74, 1.98 | 1.65, 1.79, 1.97 5.68 92




5.4.2 Chemical Bonding

In general, the bonding features found in SWBN'Ts are similar to its corresponding
2D boron sheet, regardless of the curvature strain acting on these tubes. When
all the SWBNTs weakly interact among themselves within the sparse configuration
of the crystalline bundles, the individual SWBNTs within the bundles are found
share the same bonding features as their corresponding pristine SWBNTs. In type
I SWBNT, the chemical bonding is dominated by the localized two-centered (2c)
o bonds along the tubular direction, whereas the delocalized three-centered (3c) m
bonding features with nearly homogeneous electron distribution describe the bonding
in type III SWBNT (Fig 5.5). Similarly, consistent bonding features of these SWBNTs
can also be found in 3D electron charge density plot based on the planewave basis
functions, as we applied in our previous preliminary study[d]. The ‘three-centered’
bond (3c¢) generally involves two electrons in a molecular orbital (MO) formed by three
atomic orbitals (AOs), which renders triangular faces configurations (i.e. a triangular
B — B — B unit)[14, [15]. In order to extract this unique feature of bonding in boron
nanostructures, we use Mulliken population analysis, together with electronic charge

density map for the SWBNTs and crystalline bundles considered.

In the sparse configuration of the crystalline bundles, there is almost no total charge
density distribution at the inter-tubular region as shown in Fig 5.6. The total charge
density is nearly equivalent to the superposition of charge density of individual pris-
tine nanotubes. For bundles in the equilibrium configuration, we use the Mulliken
population analysis to estimate the strength of the intra-tubular and inter-tubular
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Figure 5.5: (A) The side view of the electronic charge density maps on the
2D plane along the tubular axis of pristine SWBN'Ts and crystalline bundles
at the equilibrium configurations. Top: (Left) (6,0) zigzag type I SWBNT,
(Right) (0,6) armchair type III SWBNT. Bottom: (Left) (6,0) zigzag type I
and (Right) (0,6) armchair type III SWBNTs based crystalline bundles . The
red dotted lines represent the outline of the side view of each tubules. (B)
The 3D charge distribution of the segments of pristine SWBNT: (Left) (6,0)
zigrag type I SWBNT, (center) (0,6) armchair type II, (right) (0,6) armchair
type III SWBNT.

bonds in terms of the degree of overlap population b(A°, B®) in the units of e among

the nearest neighbors.
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Table 5.4 collects the values of b(A°, B?) associated with the atoms in either intra-
tubular or inter-tubular bonding regions of the crystalline bundles. In type I bun-
dles, there exists a dominance of the o-bonds which interconnect the ‘triangle-square-
triangle’ along the tubular axis over the m bonds associated with the boron atoms
along the triangular network in the intra-tubular region. The 2¢ bonds in the crys-

talline bundles, therefore, appear to be as rigid as those in isolated nanotubes.
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Table 5.5: b(A°, B%)intra and b(A%, B)ier are the overlap populations associated with the intra-tubular and inter-
tubular bonds, respectively. The 2c¢ and 3c are referred as ‘two-centered’ and ‘three-centered’ bonds respectively. The

overlap population among the nearest neighbors is obtained from the Mulliken charge analysis.

System

two-centered (2c¢)

three-centered (3c)

b(AO7 Bo)intraa (6)

b<AO7 Bo)intera (6)

b(A07 BO)intraa (6)

b<AO7 Bo)intera (6)

(pristine SWBNT /bundle)
(6,0) zigzag | pristine nanotube 0.66 - 0.34 -
Type 1 bundle 0.68 0.33 0.35 -
(0,6) armchair | pristine nanotube - - 0.41 -
Type 111 bundle 0.32 0.52 0.35 0.36




For type III bundles, the inter-tubular interaction is described by both 2¢ and 3c
bonds; both having significant strength. Interestingly, the strength of 3¢ bonds is
nearly the same in both inter- and intra-tubular regions (Table 5.4). Furthermore,
a presence of the ‘buckling’ induced two-centered o-bonds in the intra-tubular and
inter-tubular region of the bundles is confirmed, though they were not present in the
isolated type III SWBN'Ts. This is also reflected in a rather large value of about 0.92
of the degree of polygonization (i.e. n = ry/r;, where ry and 7, are the short and the
long radial dimensions of the nanotube cross section, respectively) of SWBNTS in

type III bundles. H

The difference between the inter-tube interactions between type I and type I1I bundles
is mainly due to differences in their bonding features in the respective pristine SWB-
NTs. In type I SWBNT, the bonding is dominated by two-centered (2¢) o bonds with
b(A°, B®) = 0.66 e, whereas the bonding features in type IIl SWBNTs are dominated
by three-centered (3c) m bonds with nearly homogeneous electron distribution with
b(A° B%) = 0.41 e (i.e. Table 5.4 and Fig. 5.6). When we bring the small-diameter
SWBNTs together to form a bundle, the rigid two-centered ¢ bonds along tubule ax-
ial direction in type I SWBNTs can not easily be deformed, leading to a weaker (i.e.
b(A°, B) = 0.33 e from Table 5.4) inter-tube interactions in type I bundles. On the
other hand for type IIT SWBNTs bundle, a relatively weaker two-centered o bonds

lies along the circumferential direction are found easily distorted to yield a stronger

T Although SWBNTSs assume a circular cross section in an isolated state, they are not likely to remain in
the circular shape in bundles where the inter-tubular interactions are not negligible. Quantitatively,
the radial deformation can be expressed in terms of the degree of ’polygonization’, n = r,/r;, where
rs and r; are the short and the long radial dimensions of the nanotube cross section, respectively.
When the value of 7 is 1, a perfect circular cross section of a cylindrical nanotube is expected.
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Figure 5.6: A top view of the electronic charge density maps on the 2D
plane of type I and type III SWBNTs crystalline bundles in the sparse and
equilibrium configurations. (Top): type I bundles. (Bottom): type III bun-
dles. The red colored hexagonal box in each figure represents the outline of
the top view of SWBNT within the bundle. For type III SWBN'Ts crystalline
bundles in equilibrium configuration, the electronic charge density maps are
showing ‘two-centered’ and ‘three-centered’ bonds, respectively.

inter-tubular 2¢ and 3c bonds (i.e. b(A% B®) = 0.52 and 0.36 e respectively). This
unique bonding character is consistent with the previous study [199] suggesting that
distortion of the circumferential o bonds is expected to enhance the surface chemical

reactivity attributed mainly to the unsaturated dangling bonds on the tubular surface
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for type IIT SWBN'Ts.

Our results, therefore, suggest that a larger gain in the cohesive energy of type III
bundles in going from the sparse to equilibrium region (Fig 5.6) can be attributed to
the presence of a stronger interaction in the inter-tubular region of type III bundles.
The buckling of SWBN'Ts in bundles due to the presence of the flexible or “softer” 3c
bonds formed on the tubular surface facilitates the release of the strain of the tubular
configurations in bundles. Specifically, the enhanced stability of this system (i.e.
AFE., = 0.59 eV /atom for small radii SWBNT bundles vs. AFE.,, ~ 0.30 eV /atom
for large radii SWBNTs bundle[199]) via stronger inter-tubular interactions, can be
attibuted to an enhanced reactivity of small diameter armchair type III SWBN'Ts as

hypothesized in the recent study|199].

5.4.3 Electronic Properties

All the pristine SWBNTs in current study are found to be metallic. The electronic
band dispersion of SWBNTs studied in this work are found to be consistent with
our predictions in previous work, which based on first-principles pseudopotential
planewaves method[i|, specifically on Type-I, II and III pristine SWBNTs. For all
1D infinite SWBN'Ts which is periodically repeated along x-axis in tubular direction,
all the band dispersions (Fig. 5.7) are plotted within the £3 eV range of Fermi level
at (300) relative to I' in the Brillouin zone. Specifically, the the symmetry path

(000)-(300) defined as I'-A in Brillouin zone, is equivalent to (000)-(003) (i.e. I-A)
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in hexagonal bravais lattice, along z-axis in tubular direction of their corresponding

crystalline bundles.
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Figure 5.7: The band structure along tubular axis associated with the
I'-A symmetry line, together with total density of states (DOS) and intrin-
sic quantum conductance plot of both type I SWBNT (top), and type III
SWBNT (bottom). All plots are plotted within the range of + 3 €V around
Fermi level Ey, with Ey aligned at zero.

The crystalline SWBNT bundles show metallic features, similar to the pristine boron

nanotubes regardless of composition and chirality. This in contrast to the case of

146



carbon nanotubes where chirality determines the electronic properties to be metallic
or semiconducting. It is to be noted here that the elemental boron nanowires exhibit
the semiconducting features|54|. The difference between the electronic properties of
bundles and nanowires can be attributed to the distinct local geometric structures of

SWBNTs as compared to the By, icosahedral clusters based nanowires.

The dispersion of the bands associated with the crystalline bundles in the Brillouin
zone response to the degree of inter-tubular coupling, as expected. It is important to
note that the number of the available states near Fermi energy can affect the electron
transport, properties significantly, either in macroscopic and mesoscopic systems|218].
Accordingly, in the sparse configuration, the band diagram and DOS of the crystalline
bundle can be well-represented by that of a pristine SWBNT. As the inter-tubular
interaction becomes dominant, multiple bands associated with intra-tubular and inter-

tubular bonds cross at the Fermi level in type I bundles (Fig. 5.8).

Considering the ballistic transport[196] consisting of single electron conduction with
no phase and momentum relaxation, the intrinsic quantum conductances of a nan-
otube can be extracted from its band structure. Therefore, the conductance G is given
by Landauer formula[196]: G = %M T=22 ij[ |t;;]?, where T is the transmission
probability for a channel, and is given by the sum of transmission probability from
i-th to j-th channel, |¢;;|*>. Assuming that T is constant near the Fermi energy with no
electron scattering, the quantized conductance G is proportional to M, which defines

the number of channels available for coherent electron propagation in the nanotube.
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Figure 5.8: The band structure along the I'-A-M-L-I" symmetry line, to-

gether with total density of states (DOS) plot of both type I SWBNT (top),

and typelll SWBNT bundles (bottom). All plots are plotted within the

range of £ 3 eV around Fermi level Ey, with Ef aligned at zero. The inset in

the figures of DOS shown are the DOS of sparse crystalline bundles of both

configurations, which mimic the DOS of pristine SWBNTS in both cases.
Accordingly, the ballistic conductance G of each SWBNT considered in the present
study can be determined by the number of bands M crossing the Fermi level defined

as G = MGy, where Gy = % Thus, in the ballistic limit, the conductance of metallic

type I SWBNT|g] is 2Gy, similar to that associated with the metallic SWCNTs, and
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our previous findings based on pseudopotential planewaves calculations|d]. A higher
value of conductance of 5G| associated with type III SWBN'Ts can be attributed to the
valence electrons of boron which are shared uniformly forming a delocalized 3c-bonds,

thereby enhancing the probability of electron conduction in the axial direction.

By taking into account of the presence of neighboring nanotubes in a SWBNT bundle,
the intrinsic conductance in the ‘bulk-like’ crystalline bundles is expected to occur
along the tubule axial direction (i.e. along I'-A), similar to that in the corresponding
pristine nanotube. Here, the conductance of type I and type III bundles are found
to be 4G and 3Gy, respectively. In type I bundles, the enhanced conductance with
four conducting channels ~ 4G, along the tubular direction are attributed to two
partially occupied degenerate inter-tubular ¢ and 7-like conduction bands. While
the three conducting channels of type III correspond to partially occupied p type
non-bonded orbitals crossing the Fermi level. It is also important to note that the
intrinsic conductance of a system is purely based on the number of the available
states crossing the Fermi level[21&], and not necessarily proportional to the strength
of interaction. In contrast to type I bundle, the strong inter-tubular 2¢ and 3¢ bonds
found in type III bundle are mostly located in the occupied valence bands below

Fermi level making no contribution to the intrinsic conductance.
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5.4.4 Mechanical Properties

5.4.4.1 Pristine SWBNTs

Analogous to SWCN'Ts, we assume all the mechanical properties of SWBN'Ts can be
derived from continuum model. Based on the assumptions of isotropic and homoge-
neous behavior of the materials within the framework of conventional linear elastic
solid model, several important elastic constants of SWBNTs, such as: Y (Young’s
modulus or modulus of elasticity), v (Poisson ratio), and B (bulk modulus or mod-
ulus of compression) can be predicted through a constitutive stress-strain relations
within a set of dual independent elastic constants (i.e. (Y,r))[219]. By varying the
crystalline lattice constant of a nanotube, the Poisson ratio v defined as a ratio of

lateral strain and axial strain as defined[219, 220)]:

—1R— R
€ R

vV =

(5.2)

the € is the axial strain, R,, is the equilibrium nanotube radius, R is nanotube radius
at strain e, is obtained by the variation of the radius of SWBNT resulting from
longitudinal deformations along the tubular axis based on CRYSTALO3 result. We
find in all cases the Poisson’s ratio is positive, namely an elongation of the nanotube
reduces its diameter. For the both SWBNTs which rolled by 2D reconstructed {1221}
boron sheet, (6,0) zigzag type-I SWBNT has v = 0.14, and (0,6) armchair type-II

SWBNT has v = 0.10. While the (6,0) zigzag type-III SWBNT (i.e. also euivalent to
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(0,6) armchair type-IIT SWBNT) which rolled by 2D idealized {1212} boron sheet,
the v is 0.17, and is close to the values obtained by Evans. et. al. for (7,0) and
(8,0) which is 0.2 and 0.1 respectively[197]. All the v obtained in current study
for elemental SWBNTs are found to be smaller than SWCNTs, BN, and B,C,N,
composite single-wall nanotubes|22(, 221, 222], which are distributed in the range of

0.23 - 0.30.

Regarding to the other important mechanical characteristics of nanotubes, the mod-

ulus of elasticity or Young’s modulus, its conventional definition|[219, 220)] is:

1 O°F

e
%862| 0

(5.3)

where Vj is the equilibrium volume, and F is the total energy of the system. However,
in the case of singl-wall nanotubes, the walls of our SWBN'Ts are only a single atom
thick, therefore it is rather controversial to define the nanotube volume, by adopting
an ad hoc convention to define the nanotube shell thickness for a hollow cyclinder. In
order to have a better justification on this elastic properties, we adopted a 'modified’

Young’s modulus Y;, which is independent of any shell thickness:[22()].

1 9*°E

Y, = ———|=
50862| 0

(5.4)

with Sy is the surface defined by the tube at equilibrium. Within this definition, the

Y

SR’ and

value of the Young modulus for a given convention value 0 R is given by ¥V =
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we can define V| for a hollow cyclinder as 2r LR)R, where L is the length, R is the
radius, and 0 R is the shell thickness. By using the polynomial fitting, the calculated
Y, for the (6,0) zigzag Type-I SWBNT is predicted to be 0.15 TPa nm, while for (0,6)
armchair Type-II tube which rolled into different chiral angle, the Y, is merely 0.03
TPa nm, significantly reduced in magnitude due to the curvature strain acting on
the o-bond ‘bent’ along the tube circumference, in contrast to the (6,0) zigzag type-I
which o-bond is along the tubular axis. In this case, the (0,6) armchair type-III
SWBNT which uniformly governed by delocalized 3¢ bonds is found with Y, = 0.04
TPa nm, close to (0,6) armchair Type-II nanotube. This suggests that the mechanical
properties of SWBNTs crucially depends on its variations of chirality, due to its
anisotropic and mixed covalent bonds (i.e. 2c and 3¢) on the nanotubes, unlike carbon
nanotubes which are bounded in uniform sp? bonds|196, 220, 221]. In order to have a
better justification of the predicted values of Y given with the conventional Young’s

modulus, Y available in experiments on bulks and other nanotubes, we further predict

Ye

the ‘actual’ Young’s modulus (ie. Y = 53

as given). By adopting the convention
0R to be 0.20 nm as an approximation, we found the Young’s modulus of SWBNTs
being studied here, namely type-I, II and III are 0.75, 0.15 and 0.2 TPa respectively,
generally smaller than C', BN, BC3 and BCy;N nanotubes which typically fall in the

range of Y ~ 0.78 — 1.10 TPa[220, 221, 223].

In the simplest case, assuming these isotropic nanotubes subjected to hydrostatic

pressure (i.e. under uniform normal stress with all shear stress to be zero), the state
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of stress for this case can be given by[219]:

-p 0 0
Oij = 0 —p O = —pdy; (5.5)
0 0 —p

1;,2”1) 0 0
gij = 0 vy, 0 (5.6)
0 0 P

Thus, by calculating the change in nanotube volume from strain ey, the elastic
constant which could be referred to as the volumetric stiffness of the nanotube, can
be represented by the bulk modulus B (i.e. ratio of hydrostatic pressure to the relative

volume change) shown as below:

Y
B = si—m (5.7)

Hence, by using the values of Y and v obtained from previous under this approxima-
tion, the bulk modulus B for (6,0) zigzag Type-1, (6,0) armchair type-II, and (0,6)
armchair type-III SWBNTs is predicted to be 347.2, 62.5 and 101 GPa respectively.
Similar to the Young’s modulus, the bulk modulus of these 3 SWBNTs show distinct

variation depend on their configurations and chiralities, especially when compared
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to SWCNTs. In this case, all carbon nanotubes are predicted to have B within the
range of ~ 130 - 260 GPa regardless of chiralities within the comparable diameters

range[221, 224, 225, 226)].

In addition, in order to better account for the distinct geometrical and bonding fea-
tures of these SWBNTs when response to the applied pressure in real case[221], the
geometrical part of the pressure dependence from the cyclindrical shape of nanotubes,
needed to be addressed. Therefore, instead of assuming uniform isotropic stress and
strain in all components as we mentioned previously, different strain components in
axial, tangential, and radial directions are needed to be properly taken into account.
Within the continuum model[225, 227|, we approximate each SWBNT as a rolled
up hollow cyclinder with finite wall thickness made out of their corresponding boron

sheet. Then, we can define the axial MY and radial M linear moduli as below:

., YA
MZ —_— m (5-8)
. . YA (1+v)R2\ "
M{ = M° = ) <1+7(1_2V>T2) (5.9)

R2—R? . . . . .
—+, Y is Young’s modulus, v is Poisson’s ratio, r is the SWBNT
o

where A —
radius, and R; and R, are inner and outer radii of the cyclinder, which can be given

by subtracting and adding half of the wall-to-wall distance between the tubes in

bundles (e.g. we take 2 A in current study based on Table 5.4). Accordingly, all
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the calculated values of axial and radial linear moduli for SWBNTs studied in this
work are summarized in Table 5.4, analogous to similar size of carbon nanotube.
Inspite of the big difference in wall-to-wall distance among SWBNT (~ 2.0 A at
covalent bonded regime) and SWCNT (~ 3.3 A at vdW regime), both (6,0) Type-
I SWBNT and SWCNT (i.e. (6,6),(10,0) and (8,4) in Ref.[225]), show the highly
unaxial structure of the nanotube yields a higher linear compressibility in the radial
than in the axial direction. In contrast, the (6,0) Type-III SWBNT which possess
a rather similar moduli in both radial and axial direction (~ 27% difference), might
attributed to its delocalized 3¢ bonds which cover the whole structure. Specifically,
the low value of M of (0,6) Type-II SWBNT, might be possibly caused by its rather

‘weak’ o-bond which is under strain along the tube circumferences.
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Table 5.6: The calculated values of axial and radial linear moduli according to the continuum model of SWBNTs together

with SWCNT [225].

Elastic Moduli (GPa)

Elemental Single-Wall Nanotubes

(6,0) Type-1 | (0,6) Tpe-IT | (6,0) Type-III | SWONT with r — 4A
M? 929 146 276 1100
M¢ = My 669 93 201 750




5.4.4.2 Crystalline Bundles

Similar to the pristine SWBNTs, the mechanical properties such as the bulk modulus,
By of their corresponding crystalline bundles can be derived based on a linear elastic
solid model, besides fitting to the equations of states of one material. Assuming
very weak intertubular interactions in the initial model of our hexagonal crystalline
bundles (i.e. sparse configurations in both type-I and III SWBNTs as shown in Table
5.4), one can expect these bundles to be flexible in the basal plane, yet very stiff
along the axial direction (i.e. high M¢ in general) similar to the individual tubules.
Therefore, based on the conventional classical continuum model[21(0] by assuming
extreme disparity between the intertube and intratube interactions, together with
neglecting the coupling between the two interactions in our model initially when
inter-tubular separation are large, accordingly we can define B which analogous to

the deformations in the plane perpendicular to the tubular axis as|210]:

(011+012) . A_382E

By = = — 1
o = L (510)

where the Ay and Vj are corresponding equilibrium cross-section and cell volume of
the system. Here from this method, the predicted By of type I and type III SWBNTs

crystalline bundles are to be 52 and 135 GPa respectively.

On the other hand, these properties can also be extracted by fitting to an equation
of states (EOS) of one material, i.e. SWBNTs bundles. We use a quasi-harmonic

approximation to obtain thermodynamic properties of the SWBNT bundles in which
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the Debye temperature (©p) is taken to be dependent upon the volume of the crys-
talline bundles[228]. Accordingly, the calculated potential energy surface (Fig. 5.4)
is fitted to the well-known Vinet’s equation of state (EOS)[229] as shown in Fig 5.9.
It yields the bulk modulus (B, =) of 84.9 GPa for type I and 110.5 GPa for type
IT bundles. Interestingly, these values are found to be consistent with the predicted
values of By which we obtained from linear elastic solid model with predicted By to
be: 52 GPa for type I, and 135 GPa for type III, as we mentioned. Thus, it is im-
portant to note that the consistency of these two set values of B, for type I and type
III SWBNTs bundles, obtained from two different models, can be compared with B,
of carbon nanotubes bundles at the same footing, since the validity of these models

applied to the latter have been well justified|210, 221, 225, 230].
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Figure 5.9: Vinet’s equation of states plots for type I and type III bundles.
The inset figure shows the calculated Gibbs energies at 0K and 300K for
both type I and type III bundles.
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The calculated results therefore find the modulus of compressibility for SWBN'T crys-
talline bundles to be significantly higher than that of carbon nanotubes-based bundles
having the bulk modulus of about 42 GPa|23(0]. In this case, a relatively higher mod-
ulus of compressibility of SWBNT bundles over SWCNT bundles can be attributed
to the dissimilar strength of the inter-tubular interactions in BNTs and CNTs. For
CNT bundles consisting of SWCNTs with radii ~ 3.8 - 7.0 A bundles. The previous
studies predict that the pristine CNTs interact weakly at separation ~ 3.1 A, rel-
ative to that of graphite layers separated at 3.35 A[?Qﬁ, 230]. On the other hand,
the equilibrium configuration of small-diameter SWBNT bundles indicates the inter-
tube distance, Ry ~ 1.7 - 2.0 A, and the inter-tube interaction is dominated by a

relatively stronger 2¢ and 3¢ bonds as mentioned in the Sec

5.4.5 Thermodyanamical Properties

In this section, we analyze the thermodynamic properties of SWBN'Ts at finite tem-
perature using a Debye-type model|228|. The input for this model is a set of (E.., V)
points which cover a volume range ~ —30% - ~ +50% of the static equilibrium vol-
ume at zero pressure, V. In this model, we take into account the vibrational motion
of the lattice, follows a quasi-harmonic approximation, making the Debye tempera-
ture ©p dependent upon the the volume of the crystalline bundles. At every volume
V, ©(V) is rigorously defined in terms of the elastic constants through a spherical
average of the three components of the sound velocity, which the latter may be ob-

tained by solving the Christoffel equations of the crystal. Computationally, however
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this procedure would imply the accurate calculations of all the independent elastic
constants of the crystals at every pressure of interest. So this highly demanding task
has been simplified through the isotropic approximation, which allows to evaluate O p

using the expression|22§]

Op = % [67T2V1/2r}1/3

Ve (511)
where A is the reduced Planck constant, kg is the Boltzmann constant, M is the
molecular mass of the compound, » the number of atoms per molecular unit, B, the
adiabatic bulk modulus of the crystal, and the v the Poisson ratio we obtained for
the SWBNT. The details of the explicit expression for the f(v) in the equation can
be found elsewhere[228]. In order to evaluate the effect of the v-dependence of the
Op in the explored temperature region, the computed values of V and Bj found by
less than 0.3% and 1.8%, respectively, from v = 0.10-0.20. In Eq. 10, B, depends on

V and T'. In order to balance computational demand and accuracy, we use a further

approximation that reduces ©g to a function of V:

(5.12)

BPE.n(V
Bs = Bstatic =V <¢)

dv?

where B 1s the static bulk modulus under hydrostatic conditions.

Therefore, this relevant feature of the model makes it fully independent of any partic-

ular crystalline structure, where a set of pairs (E..p, V') is sufficient to run the model

160



under these approximations. Hence, the main drawback of this model might be the
fact the geometrical parameters are functions of the volume only, which equivalent
to assuming that thermal dilatation changes the structural parameters of a crystal is
in the same way as a hydrostatic expansion does. In order to obtain the equilibrium
volume at constant p and 7', we minimize the Gibbs function with respect to V. The

nonequilibrium G is given by

G*(ViT,p) = Eiau(V) +pV + Fou(T,0(V)) (5.13)

where F,; is the vibrational Helmholtz function including zero-point contributions,
as given by the Debye model. Then the V(7' p) curve or equation of states (EOS) is

implicitly defined by the relation:

(—dG*(C‘l/‘}T’ L >) =0 (5.14)

and the isothermal bulk modulus is given by

= (5.15)

A*G*(V: T,
To analyse the V(p) behavior of the two SWBNTs based bundles (i.e. Type-I and
Type-III as shown in Fig. 5.4), we use the V (T, p)/Vo(T) = V/Vi versus p diagram.

To derive their thermodynamic properties, the calculated energy surface for the both

crystalline bundles structure (shown in Fig. 5.4) are fitted to the two different, and
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well checked empirical EOS[228, 229, 231]: the Vinet EOS and Birch-Murnaghan
EOS. We find that these two functional forms yield almost coincident values along
the explored V'(p)/V; range, with similar trend of pressure dependence for the V/V
ratio. So for the later discussion, only the results based on Vinet EOS will be given.
The Gibbs function is now minimized with respect to V' to obtain the equilibrium
volume of the crystalline bundles at constant p and 7. As shown in the subset of Fig
5.9, type III bundles become relatively stable with respect to type I bundles as the
pressure is increased. The Gibbs free energy difference between type I and type 111
bundles increases from ~ 270 to 690 kJ/mol (i.e. ~ 2.80 to 7.15 €V) as we increase
the pressure from zero to 20 GPa at 0 K. This trend persists even at 300/K. Overall,
a close-packed condensed crystalline phase for the SWBNTs bundles is predicted to

be thermodynamically stable in the present study.

Based on the Debye model[22]], the Debye temperature (O ) was calculated using the
second derivative of E.,,. It is predicted to be 957 and 731 K at zero temperature, and
945 and 704 K at room temperature for type I and type III bundles, respectively. For
both crystalline bundles, the calculated ©p are found to be less than that of 1219 K for
(-boron solid[37], but higher than that of 402 K for graphite|232, 233]. Interestingly,
within the Debye’s model, the temperature dependence of the heat capacity can be
well-defined by Debye temperature ©p related to maximum phonon frequency, vp in
the phonon spectrum. Since the vibrational frequency is always proportional to the
square root of the stiffness within the harmonic approximation, ©p can be used to

characterize the stiffness of a solid, referred to as ‘Debye stiffness’|233]. The Debye
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stiffness (which o< ©p) is then related to the hardness (in terms of resistance to plastic
deformation) of a material expressed quantitatively by the bulk modulus By. Our
results for the Debye temperature ©p are consistent with the order of the calculated
values for the bulk modulus for both type I and type III BNT bundles (B, = 84.9
and 110.5 GPa respectively), graphite[225, 233] (B, ~ 28 - 39 GPa) and boron solids

( By ~ 185 and 178 - 220 GPa for o and /3 phases, respectively[3€, 202]).
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5.5 Summary

It is shown that the SWBNTs can be feasible and should be all metallic irrespective
of their chiralities and diameters. SWBN'Ts could therefore be an ideal conducting
nanowire, comparable to carbon nanotubes. The metallic crystalline bundles of small
diameter single-walled boron nanotubes are predicted to be thermodynamically stable
with novel properties. Similar to their corresponding 2D boron sheets with distinct
variations in chemical bonding (Chapter 4), the dominance of inter-tubular interac-
tions involving two-centered and three-centered bonding features in SWBNT bundles
relative to the Van der Waals interactions yield different structural, mechanical, and
electronic properties relative to those associated with isolated SWCNTs. Within the
small radii regime, it is predicted that if isolated or sparse bundles of small diameter
SWBNTs are grown, type I bundles based on the reconstructed {1221} boron sheet
configuration will be energetically preferred. On the other hand, the close-packed type
III bundles based on the idealized {1212} boron sheet configuration are preferred in
the equilibrium configuration. Based on the current study on small diameter SWBNT
bundles, together with the previous findings from Kunstmann et al.[199], scenario of
chiralities and diameters dependent in BN'Ts growth are found to be rather unique
compared to other nanotubular systems. Finally, a subtle competition among the
intra- and inter-tubular bonds (i.e. among type I and type III SWBNTs) appears to
lead to polymorphism associated with the boron nanotubes suggesting that it may

be one of the causes of the difficulty in synthesizing SWBN'Ts.

164



Chapter 6

Electron Transport of SWBNTs: A
Preliminary Study With A

“Toy-Model"

6.1 Introduction

An ever increasing need for smaller, denser, and faster processors has led to focused
efforts toward developing and identifying novel one dimensional (1 — D) systems as
the basic building blocks for nanoscale electronic devices. Among others, the car-
bon nanotubes (CNTs) have emerged as prototypical 1 — D system and have been
the subject of intense research in recent years for their applications in nanoelectron-

ics. However, despite their excellent mechanical and electrical characteristics, the
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CNTs suffer from serious limitations due to a lack of the availability of high-purity
materials[234]. Therefore, attention is now turned to alternatives to CN'Ts that can be
bulk produced in high purity and can be easily processed and integrated with existing
Si-based processes. Toward that, elemental boron nanotubes (BNTs) are recognized
as a potential candidate material due to their uniform electronic properties. A recent
experiment[56] reporting the synthesis of single-wall boron nanotubes (SWBNTs) has

further evoked the interest and expectations for their applications in nanoelectronics.

In this chapter, we report the results of our quantum mechanical study of electron
transport in SWBN'Ts using the Landauer-Biittiker multichannel approach in con-
junction with a tight-binding model. We note here that a number of theoretical
studies|7, [10, 185, 197, [199, 206] were directed toward understanding the formation
and structure of BNTs. Our calculated results find a higher conductivity associated
with SWBNT relative to the conductivity of SWCNT of similar geometry. Further-
more, our calculations suggest that between 1-5.0 nm, the electron transport in a

BNT is ballistic in nature.

Specifically, this chapter will be our very first step towards a detailed study of the
electron transport properties of boron based nanostructures. The presentation of this
chapter is organized as follows: A brief overview of ballistic electron transport will be
given in Sec. LTl followed by the brief introduction of Landauer-Biittiker Formal-
ism in SeclEL.TIl In Sec. the basic formalism of Non-Equilibrium Green’s
Functions, NEGF (which also known as: Keldysh method) will be addressed. In

the following section (i.e. Sec. B.I.2)), we will discuss the basic notion of electronic
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structures theory using the tight-binding method which we employed for the matrix
elements in the calculations, before the computational details (Sec. 6.2)) and discus-
sion of the theoretical results (Sec. B3) in this work will be mentioned. Finally, the

importance of this work will be concluded as a summary at Sec.

6.1.1 Ballistic Electron Transport

The mechanism of electron conduction in a macroscopic system has been studied
for years. In solids, such as metals and semiconductors, electrons in the vicinity
of the Fermi level are accelerated by an applied electric field, and undergo inelastic
scattering with energy dissipation caused by lattice vibrations (i.e. phonons) and
collisons with impurities. If we repeat the process in which electrons are accelerated
and inelastically scattered, electrons in general will proceed in the direction of the
electric field via ‘drift conduction’ and reach drift speed, which is proportional to the
magnitude of the electric field. As a result, for a conductor wire which is much longer
than the ‘mean free path’ of the electrons (i.e. which is the average distance that
electrons proceed without subjected to scattering: typicaly ~ 10 - 50 nm for metallic
bulk at room temperature)[235], Ohm’s law holds. In this case, electric conductance is
inversely proportional to the length of the wire and proportional to its cross-sectional

area.

In contrast, for nanostructures in which fine nanowires shorter than the ‘mean free

path’ are connected to electrodes, most of the electrons will proceed without inelastic
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scattering, and entering the nanowires ‘ballistically’ from one end to the other. This
type of the conduction is called ‘ballistic electron transport’|218, 236, 237|. Hence in
the case of the ballistic transport, the conductances are independent of the length of
the nanowires, suggesting that the Ohm’s law will not hold in this regime. Further-
more, when the diameter of the cross section of the nanowires becomes as small as the
Fermi wavelength, Ar of electrons (e.g. the Fermi wavelength for gold is 0.52 nm),
electrons can pass through the nanowires only via the quantized energy levels|237].
Therefore, a conduction phenomenon that is significantly different from that having
the general macroscopic diffusive electron transport characteristic of solids, should be
observed in this regime, namely conductance quantization, unusual current-voltage
characteristics, Coulomb blockade effect, etc. Within this regime, theories developed
by Landauer[23&, 239] and Kubo|240] make up the basic theory of electronic trans-
port which is widely used today. However, the former is physically more intuitive,
and powerful for low dimensional problems, particularly one-dimensional problems
(e.g. nanotubes). Hence in this chapter, we will mostly focus on the description of

the Landauer formalism as the main tool in our study.

We will therefore restrict ourselves in considering the elastic scattering as the domi-
nant mechanism that has, in fact, been studied in conventional nanodevice junctions.
Thus, the electrons never actually localize on the molecules or nanowires. Instead,
there is a coherent tunneling process from one electrode to another electrode through
the molecule or nanowire, in which the switching, inelastic scattering and vibronic

coupling are ignored. Therefore, one can say that the conventional Landauer formal-

168



ism only holds within the elastic scattering limit. In general, we expect the elastic
scattering to be dominant for low temperatures, short junctions, and low bias volt-

ages, as long as the Landauer’s theory holds.

6.1.1.1 The Landauer-Biittiker Formalism

Figure 6.1 illustrates the Landauer’s model which treats the current as a transmis-
sion function obtained from quantum mechanics. The general extension of the Lan-
dauer’s model, which was proposed in 1957, is currently known as Landauer-Biittiker
formalism|241], partly contributed by Fisher and Lee[242] in 1981. In fact, this formal-
ism establishes the fundamental relation between the wave functions (i.e. scattering
amplitudes) of a noninteracting quantum system and its conducting properties. It
can be generally applied to find the current through a noninteracting quantum system
or through an effectively noninteracting quantum system, as long as the conventional
mean-field description is valid and inelastic scattering features are not essential. As
a result, it is now widely accepted as a basic model of coherent transport within the

quantum regime.

The Landauer’s model consists of three parts (Figure 6.1): reservoirs (e.g. metal con-
tacts), quantum leads, and the scattering region. Basically the set up of this model
is close to the real situation. What drives the current is the difference of chemical
potentials, p;, and ug, of the left and right electrodes, respectively. We assume that

the electrodes are ‘ideal’ electron reservoirs having the following characteristics:
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Leads

Lefi / x Right
resServolr FEServolr

{Ccontact) | T | (Ccontact)

Scattermg
region

Figure 6.1: A scattering region is connected to the reservoirs through quan-
tum leads

T Any electron with energy E < uy (ug) is supplied to the left (right) lead from

the left (right) electrode.

1 All the electrons entering the electrodes from the leads are accepted by the

electrodes.

1 Inside the electrodes, inelastic scattering frequently occurs and thermal equi-
librium is achieved rapidly. The capacity of the electron reservoir is so large
that the chemical potentials of the electrodes are maintained at py; and g,

independently of the input and output of electrons through the leads.

1 The leads are ideal such that electrons are not scattered inside the leads, but

merely pass through the leads. In the scattering region, only elastic scattering
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can take place and hence electrons move coherently between the electrodes.

The main property of the quantum leads is that they have known mode structure,
incoming, ¥, (r) (i.e. from contacts to scattering region), and outgoing modes, ¢_(r)
which can be defined. Scattering region can be as simple as one tunneling barrier, or
as complex as an interacting nonequilirium molecule/junction. The elastic scattering
process of electrons in the scattering region considered, can be expressed by the trans-
mission probability, 7', and reflection probability, R, which 7"+ R = 1. Accordingly,
the transmitted electrical current is given by I = I;,7. Using the definition / = qJ,
the incoming current [;,, can defined as [;,, = -evp. To estimate the velocity, v and the
density, p of the incoming electrons, the vp can be given by the simple expression: vp
AV

= e = —%, which AV is the potential drop. As a result, the transmitted current

now is defined as: Iy = %U T. Hence, the conductance G now can be defined as:

G = ﬁT = T (6.1)

which known as the single-channel Landauer formula|218&|, with the fundamental

quantum conductance, Gy = ;—2 ~ 7.75 x 107°Q~!. Similarly the fundamental quan-
tum resistance, Ry = GLO ~ 12.9 k€. Subsequently, the Eq. 6.1 for the conductance of
a single channel can be extended to the case of zero temperature multichannels|241,

249|. By postulating the transmission coefficient ¢;; to be the probability amplitude

at which electrons are transmitted from an initial mode ¢ to a final mode j inside the
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conductor, one finds that the conductance is expressed by

2e? oo 2¢? s 267

which  is the transmission matrix, and 7}, are the eigenvalues of the matrix #¢*.
Whereas in the multi-channel case at finite voltage and finite temperature, the follow-

ing generalized Landauer’s formula for current (i.e. the general two-terminal formula)

will be

1) = ¢ [ TRV V) - e (63)

e}

where T(E,V) = Tr(tt) is the effective transmission function for the electrons with
the energy E. Here, it is important to note that the most significant advantage of
this formula is, that the transmission function can be calculated from the quantum
scattering theory. Thus, the quantum kinetic problem can be reduced to the pure
quantum mechanical problem of a single particle in a static potential. Similarly for
the generalized multi-terminal Landauer’s formula (extended by Biittiker)[241], the

current from the ¢-th contact to the system will be:

L=t [T T VIAE V) - fyE)aE (6.4
T i)

where V;; is the voltage between the contacts 7 and j.

Here once we have Landauer’s formula as mentioned, the way to represent the trans-
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mission function needed to be addressed. In this respect, a large majority of the
theoretical work in this field is centered around this coherent transport regime, to
try to relate the transmission function with scattering matrix (S-matrix). In this
case, the Green’s function G#(r,7’') can be viewed as a generalized S-matrix that
allows us to describe the response at any point  due to an excitation or perturbation
at point 7’ in general. It provides a convenient way for calculating the S-matrix of
arbitrarily shaped conductors, especially when a device (e.g. a molecule or a nan-
otube) is connected to two contacts (reservoirs) with two different Fermi level E, and
Ets, which consequently cause an electron flow under a nonequilibirium steady-state

condition|218].

6.1.1.2 Non-Equilibrium Green’s Functions, NEGF

The focus here is on the nonequilibrium Green’s function (NEGF), which is one of the
ways to deal with the complexities introduced by the coupling between the discrete
states of the molecule and the continuous states of the electrodes within a two probe
model. It is also the most common way in which this problem has been addressed by
the community. One fundamental understanding is that the conductance is not the
conductance of a molecule, or a nanowire, but rather the conductance of a composite
system containing the molecule, two interfaces, and two continuum electrodes. The

ways to calculate it will be shown briefly as following|218, 243].

Here, the Green’s function of the device (G4) can be calculated separately without

calculating the whole Green’s function (G). From the definition of the Green’s func-
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tion:

(B - H)G(E) = I (6.5)

similarly we can define the Green’s function of the device as following:

E— H1 —T1 0 G1 Gld G12 I 0 0
+ + =

-7 E—H, Ty Gan Gq¢ Gg 0O I O

0 —Ta E— H2 G21 ng G2 0 0 I
(6.6)

Selecting the three equations in the second column:

(£ —H1)Gig—1iGa = 0 (6.7)
—T1+G1d -+ (E — Hd)Gd — T;_ng =17 (68)
(E - Hg)GQd - Tng =0 (69)
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Here, we can solve Eq. 6.7 and 6.9 for G4 and Gayy:

G = 917'1Gd (6-10)

Gaa = g27m2Ga (6.11)

Hence, if we substitute these G4 and G4 into the Eq. 6.8, it gives

_Tf_nglGd + (E - Hd)Gd - 7—;927—2Gd =1 (6.12)

from which we can define G, as:

Gd == (E - Hd - 21 - 22)_1 (613)

where Y1 = 7,7 9171 and ¥y = 7,7 go7; are the so-called self-energies, which play an im-
portant role by including the effect of the infinite contacts (reservoirs) to the molecule

or nanowires, which are coupled to it.

Here, in the nonequilibrium case we are often interested in another important quan-

tity: the current which is given by Landauer’s formula. To calculate it, we need an

expression for the current from the wavefunction via probability current. In steady-

state, the probability to find an electron on the device (i.e. >, [¢;|* where the sum
X, |wil?

spans over the device subspace) is conserved, ==4~- — 0. Therefore for an arbi-
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trary contact j, the electric current (at one energy) will be the charge (-e) times the

probability current:

b5 = —olrha) — (Wl 19s) (6.14)

where i; is defined as a current from the contacts into the device. Thus the current
into the device from a incoming wave of one energy (£) in contact 1 (|¢y,)) through

the coupling defined by 7 is:

iafroml = = —E((Pa|72ltha) — (Yal75 |1ha))
= —2((Y1amG T g3 Gari W1 n) — (WG 1 gamaGari [0 [102)
= —E WGy (95 — 92) TGt |¥1m)

= %<¢1,n|T1G$F2GdT1—I—|1/}1,n>
(6.15)

with Ty = 757 (g5 — go)72 = #(32 — X7 ), which describes the coupling at the contact
2. Similarly, 'y = 7" (g1 — g1)71 = i(X; — XT), represents the coupling at the contact

1. If we sum over the modes n and noting that the levels are filled from the reservoir
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connected to contact 1 gives (2 for spin):

Lfrom = ¥ [ AEf(E,En) Y, 0(E — Ep) (1| Gy ToGari [t 0)
= ¥ Joe W AEf(E, Epn) Y, 0(E — En){Yun|mim)(m|GyTaGari [t 0)
= X[ AEf(E En) 3, (m|GiToGari (32, 0(E — Ey) [ n) ($1,n])7i|m)
= % Joe o dEf(E, Ep) 32, (m|GiT2Gary 5t m|m)

= c o dEf(E, Efl)Tr(ijngfl)

Th JE=—c0

(6.16)
To get the total net electric current through the device, the current from contact two

have to be substracted away:

1= /E _AE{f(B.Ep) ~ [(B.Ep))Tr(GIT.GL) (617

which is exactly the Landauer’s formula for the current as we shown before. Hence,
the next step will be we use the conventional quantum chemistry techniques to obtain

the matrix elements needed for Eq. 6.13 and Eq. 6.17 to calculate the current.

6.1.2 Electronic Structures Theory: Tight-Binding Method

It is noteworthy to point out that the matrices appearing above depend on the basis
functions that are used for the electronic structure calculation for the scattering region

and contacts. In order to model this ‘big’ molecular device (i.e. number of atoms in
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scattering region: ~ 500 - 1000 atom), we resort to use the localized atomic orbitals
based on tight-binding method, insetad of the state-of-the-art all electron calculations,
to reduce the computational cost. All of the tight-binding calculations we used are
based on two-center tight-binding method using the nonorthogonal basis[125], and
the parameters being used are obtained based on the fitting to the first-principles

band structures at high symmetry points[244].

Hence, this ‘semi-empirical’ method is particular simple and fast, only the matrix
elements of the overlap and the hamiltonian are needed to carry out the electron
transport calculation. Basically, all the matrix equation mentioned within the NEGF
method are still valid, except that the matrix elements in Eq. 6.13, which needed
to be modified by Gy = (E'S — Hq — X1 — ¥3) ™!, where the S represent the overlap

matrix of the basis functions ¢, (r):

Son = /d?’rgbfn(r)qbn(r) (6.18)

For the orthogonal bases, S, = 0., so that S is the identity matrix as stated earlier
(Eq. 6.13). More details of the parameters and computational techniques which we

used, will be given in the following section.
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6.2 Computational Methodology

In the present study, all the geometry of the SWBNTSs, namely the (6,0) zigzag type-
I, (0,6) armchair type-II, and (0,6) armchair/zigzag type-III, were taken from our
previous work|, E The geometrical arrangement used to calculate the electron
transport properties of the SWBNT is shown in Figure 6.2. Based on a two-probe
device architecture, the device scattering region consists of a SWBN'T, with varying

length which was sandwiched between two gold layered electrodes at each side as

shown.

Y

Figure 6.2: A schematic diagram of two probe device architecture with
SWBNT sandwiched between two gold electrodes. The region with the rect-
angular box is taken to be the simulation cell for transport calculations.

In this work, the current-voltage (I — V') characteristics of SWBNTs was calculated

by nonequilibrium Green’s function (NEGF) method|218| utilizing the Landauer-
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Biittiker formalism[218&, 239, 241, [245] as:

2¢ [ErteV/2 eV eV
=z T(EV)U(B, By~ S) ~ (B, By + S ME (619)
Ep—eV/2

I —
In Equation 6.19, T'(E, V) is the transmission function, F is the injection energy, and

Ey represents the Fermi energy of Au-electrode. The transmission function, T'(E, V)

is calculated as,

T(E,V) = Tr{l .G*TrG"} (6.20)

The Green’s function, G in the present study was obtained in the framework of
nonorthogonal tight-binding model. Within this scheme, four valence (s,p.,py,p-)
orbitals for the boron atom, and only an s orbital for the gold atom were included in

the calculation.

Although the nanotube is attached to a layer of gold atoms at either side, however,
it does not include the infinite gold contacts which effectively turn the ‘isolated’
scattering region (i.e. nanotube plus two gold layers at both side) into an open
system, which is capable of electron transport. Therefore, we include the effect of the
infinite contacts (reservoirs) through the self-energy functions 3; and 3, (shown as
7,7g171 and 7, go7> in Eq. 6.13). Here, the 71 and 7, are the matrices which describe
the coupling of the nanotube to the gold electrode, and ¢g; and g, are the Green’s

functions for the isolated gold layer at each side. To adopt this procedure to real
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calculations, a coupling factor 0.50 was used as a fitting parameter[246] in all the
calculations reported here. This factor was adopted mainly on intuitive geometrical
grounds by assuming a planar shape whose volume is about 50% of what it would
be if the ideal continuum were able to hypothetically be connected to a nanotube.
From surface physics studies, it is known that around the Fermi energy of gold the
locl density of states (DOS) is s-band dominated and has a nearly constant local
DOS of ~ 0.07/(eV-atom). Therefore for simplicity, we assume the Green’s function
to be a diagonal matrix with the diagonal elements equal to (-7i) times the local
DOS|246] as: giangz = -0.072 7i/eV-atom. Consequently, from the Green’s function,
we can calculate the spectral function A (A = i(G — GT)), which later will be used
to calculate the total density of states, N(F) obtained from the trace of the spectra

function.

6.3 Results & Discussion

In brief, a SWBNT, with varying length was sandwiched between gold electrodes
represented by a single layer consisting of 49 gold (Au) atoms at each side. In order
to test the convergence of calculated current with respect to the placement of the
equilibrium Fermi level (Ey), the number of the Au layers was varied from one to six
at each side, as shown in the Fig. 6.2. The Au layers were separated by 2.16 A[202].
For a 35 Along SWBNT, the calculated current () and E; of Au (1-layer)-SWBNT-

Au (1-layer) converged within ~ 7.5 % and ~ 1.3 % with respect to Au (6-layer)-
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SWBNT-Au (6-layer), when E; was placed in the middle of the highest occupied
(HOMO) and the lowest unoccupied (LUMO) molecular orbitals of the nanotube-Au
system. In the subsequent calculations, we therefore place the equilibrium Fermi level
E¢ in the middle of the HOMO and the LUMO of the Au (1-layer)-SWNT-Au (1-
layer) system. The Au-B separation at the electrode-tube interface was taken to be

1.7 A, which is approximately the calculated equilibrium distance for diatomic Au-B.

The calculated I-V characteristics for (6,0) zigzag type-I SWBNT of different lengths
between 16 and 47 A are shown in Figure 6.3. Also shown in Fig. 6.3 is the trans-
mission spectrum for a 35 A (6,0) zigzag type-I SWBNT. The transmission spectra
are found to mimic the shape of density of states (DOS). It should be mentioned
that the qualitative features of density of states (DOS) of the metallic (6,0) zigzag
type-I SWBNT calculated in the present study agree very well with those calculated
from the first principles methods as mentioned in Chapter 5. It is clear from Figure
6.3 that the calculated current in SWBNT is independent of the length of the tube,

indicative of the ballistic nature of electron transport, as we mentioned in Sec [6.T.1]

In order to verify the accuracy of the predicted results for SWBN'TSs, for which no
experimental data exist for comparison, we performed similar calculations on metallic
SWCNT, for which experimental and theoretical data exist[247, 248 249, 250, 251,
252, 253]. Calculations were performed in the similar geometry as shown for the
SWBNT in Figure 6.2. In the case of SWCNT, the configuration was taken to be
that of armchair (6,6) SWCNT and the electrodes were represented by 81 Au atoms

per layer on each side, due to larger in the diameter of SWCNT. The C-Au distance
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Figure 6.3: I-V characteristics of (6,0) zigzag type-I SWBNT in a strong
gold-nanotube-gold coupling regime, with the corresponding figures showing
the transmission spectra of the system.

at the metal-molecule interface was taken to be 1.7 A as approximately the calculated
equilibrium geometry for Au-C dimer. Asin the case of SWBN'T, we take this distance
as the strong coupling regime between electrode and nanotube. The calculated I-V
characteristics of (6,6) SWCNT of varying lengths between 10 and 53 A along with
the transmission spectrum for one of the tubes (of 26 A length) are shown in Figure

6.4.

As evident from the figure, the present calculations clearly show a length-independent

I-V characteristic for SWCNT, as known from previous experimental and theoretical

studies|247, 248, 249, 25

? Y

5)

, 1252, 1253]. This gives confidence in our calculations
and predicted results for SWBNT. The resistance of (6,0) zigzag type-I SWBNT is
estimated to be 7 kilohms to be compared with the corresponding value of about 20
kilohmsi’AfJfor SWCNT. Here, it is noteworthy to point out that from our previous

DFT based band structures, the corresponding intrinsic conductance of the SWBNT
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is ~ 2Gy, where Gy = % (with Gy is one unit of quantum conductance defined
in Sec. LTI at the Fermi level. Therefore, the calculated difference in total
resistance between the gold-BNT-gold and gold-CNT-gold systems appears to be due
to their respective contact resistances, assuming the total resistance of the system
to be, Rita ~ Bnt + R,y + R,., which the Ryr are intrinsic resistance of a
nanotube, R,,; and R,,. are the contact resistance attributed to left and right metal
(Au) contact, respectively. An analysis of transmission spectra given in Fig. 6.3
and 6.4, respectively, suggests that both sub-bands of (6,0) type-I SWBNT carrying
current couple well to the metal (Au) as compared to only one of the two sub-bands of

(6,6) SWCNT due to the scattering at the interface. This difference, perhaps accounts

for the calculated difference in the conductance of SWBNT and SWCNT.
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Figure 6.4: I-V characteristics of (6,6) armchair SWCNT in a strong gold-
nanotube-gold coupling regime, with the corresponding figures showing the
transmission spectra of the system.

Further understanding of the conductance in SWBNT can be obtained from an anal-

ysis of the nature of the chemical bonds. In our previous study|, IJ] (as mentioned in
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Chapter 5), it was noted that the bonding in (6,0) zigzag type-I SWBNT can be de-
scribed as mixed metallic-like and covalent-type, in contrast to pure sp>-type covalent
bonding in the (6,6) armchair SWCNT. Thus, we believe that a mixture of two-center,
directional covalent (o-type) bonds along the tubular axis and multicenter metallic-
like (m-type) bonds along the circumference of the tube provides conduction channels
for the electron transport in SWBNTs. Hence, to explore into depth of this issue, cal-
culations using state-of-the-art real space, nonequilibrium Green’s function (NEGF)
formalism combined with density functional theory (DFT) based simulation[254| are
in progress to confirm the role played by the bonding in the electron transport in

SWBNTs relative to SWCNTs.

It is important to note that in addition to the bonding features and electronic struc-
tures of the nanotubes, the nature of the metal-tube contact can also influence the
calculated /observed resistance of the system. Our calculations suggest that the con-
tact resistance can also be altered by changing Rjnterface (i.6. Au-NT separation at
the gold electrode-tube interface) from 1.7 Ato 3.5 A. In both Au-CNT-Au and
Au-BNT-Au systems, a significant decrease in magnitude of current together with a
nonlinear variation of current with applied bias is seen (Figure 6.5). In the strong cou-
pling regime (Rinter face = 1.7 A) at 0.5 V, a significantly higher current was predicted
in both BNT and CNT-systems, as compared to that in the weak coupling regime
(Rinter face = 3.5 A) at 0.5 V. The decrease in current in the weak coupling regime
may be attributed to a shift of the Fermi energy toward the valence band leading to

a higher resistance relative to the case of the strong coupling regime where the Fermi
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energy shifts toward the conduction band. Also, the discretized energy spectra in
density of states of gold-nanotube-gold systems may be attributed to the predicted

nonlinear I-V characteristics in the weak gold-nanotube-gold coupling regime.
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Figure 6.5: Conductance (G) of (6,6) SWCNT and (6,0) zigzag type-I
SWBNT in strong (top) and weak (bottom) gold-nanotube-gold coupling
regime.

In order to gain further insights into the electron transport in nanotubes, we have
calculated the conductance (G) in both the cases of strong and weak coupling regimes

(Figure 6.6). In the strong coupling regime, a strong oscillation in conductance (i.e.

%) is predicted for CNT as compared to a nearly constant slope in current for BNT

indicating its ohmic-like I-V characteristics. A similar feature in conductance for
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BNT relative to CNT is predicted in the weak coupling regime.

Finally, we consider metallic (0,6) armchair type-Il SWBNT for electron transport
calculations to explore the effect of chirality on the I-V characteristics. The calculated
results suggest that chirality does not appear to play a significant role in determining
the I-V characteristics of (0,6) armchair type-II SWBNT. It can be attributed to the
similarity of bonding features in (6,0) and (0,6) SWBNTs as noted in our previous

study, due to similar bonding features of their 2D reconstructed {1221} boron sheets.

6.4 Summary

In summary, we have calculated the I-V characteristics of small radii SWBNTs us-
ing tight-binding approach and the Landauer-Biittiker multichannel formalism. The
calculations predict a ballistic nature of electron transport in SWBNT. Furthermore,
the conductivity in SWBNT is calculated to be higher than that in SWCNT, which
is attributed to a mixture of two-center, directional covalent (o-type) bonds and mul-
ticenter metallic-like (m-type) electron-deficient nature of boron bonds in SWBNT.
Metal-tube interface coupling appears to strongly influence the I-V characteristics of
the nanotubes. The chirality of boron nanotubes does not appear to play a significant
role on determining the I-V characteristics of a BNT. The present study is expected

to stimulate further investigations of electronic properties in BN'Ts.
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Chapter 7

The ‘Grand’ Summary

7.1 Concluding Remarks

This work has expanded the scope of the studies on boron nanostructures based on
the well-established theoretical model: first-principles study. Strictly speaking, the
studies in boron nanostructures remain elusive, and so far, only the studies (i.e. both
experimental and theoretical studies) of boron nanoclusters are comparatively more
established, while the rest remains in the infant stage. Following is the list of the
accomplishments achieved in this study, when we started involved in this field since

2004.

1. The size-dependent structural transition of B, nanoclusters can be found as
other elements (e.g. carbon). However, it is unique for each different elements.
So far, the emergence of 2D planar to 3D tubular configuration is obvious
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in By, regime, though this structural transition remains inconclusive in By
regime. In this context, the emergence of tubular structures in B, nanoclusters
is particularly interesting, and can be comprehended as an important signal for
the ‘embryo’ of boron nanotubes (BNTs). Specifically, analysis of the frequency
and IR spectrum of these clusters (i.e. B, and BZ) was predicted. Consequently,
for the first time, it is revealed that the characteristic vibrational modes which
are associated with the boron clusters, are also typically observed in carbon
nanotubes (CNTs). These metastable tubular cluster configurations can be

considered as the building blocks of the boron nanotubes.

. A series of new hypothetical 2D boron sheets have been explored from first-
principles calculations. Above all, we found all the 2D boron sheets are metal-
lic, except the sheet based on the Bi5 icosahedral configuration associated with
a finite band gap. On the other hand, the emergence of the icosahedral-based
boron sheet as one of the low-lying configurations suggests the enhanced sta-
bility of inter-icosahedral and intra-icosahedral bonds, despite the fact that
the discrete units of Bjs icosahedral unit are not stable on their own in the
small cluster regime. It is suggested that there are only three possible com-
peting planar configurations which can be considered as the candidates to form
a nanotubes, namely: the idealized {1212}, reconstructed {1221} and buck-
led {1212}. The unique features in geometry and electronic properties of both
{1212} and {1221} configurations suggest that a strong variation of electronic

and mechanical properties is expected to occur when the plane is rolled into
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different chirality of single-walled boron nanotubes.

. The results suggested that the formation of the SWBNTs can be feasible en-
ergetically. The SWBNTs should be all metallic irrespective of their chiralities
and diameters. This suggests that the SWBNTs could therefore be another
unique ‘homo-nuclear’ nanotubes, besides carbon nanotubes (SWCNTs) and
silicon nanotubes (SiNTs). Unlike carbon nanotubes, the crystalline bundles of
boron nanotubes are found to be dominated by strong inter-tubular interactions
involving two-centered and three-centered bonding features, relative to the Van
der Waals interactions in SWCN'Ts. Hence, this yields a different structural,
mechanical, and electronic properties relative to those associated with isolated
SWCNTs. Based on the current study on small diameter SWBNT bundles,
together with the recent findings from Kunstmann et al.[199]|, a scenario of
chiralities and diameters dependent on BNTs growth are found to be rather
unique among other nanotubular systems. Finally, a subtle competition among
the intra- and inter-tubular bonds (i.e. among type I and type III SWBNTs) ap-
pears to lead to polymorphism associated with the boron nanotubes suggesting

that it may be one of causes of the difficulty in synthesizing SWBNTs.

. Following our results based on tight-binding calculations on electron transport
studies of SWBNTs, we predict between 1-5.0 nm, the electron transport in a
SWBNT is ballistic in nature. This important finding could therefore suggest
that SWBNT can be an ideal conducting nanowire, comparable to SWCNT.

Specifically, we found the chirality of boron nanotubes does not appear to play
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a significant role on determining the I-V characteristics of a SWBNT. The pre-
liminary results also found that SWBNT coupled better with an Au-electrode
than SWCNT, therefore giving higher conductivity compared to carbon nan-

otube.

Up to this point, we still believe “There is plenty of room at the bottom in boron
research ". Indeed, there is still alot of important problems can be explored at this
stage, and these problems will be discussed into more details in next chapter. Simi-
larly, the conclusions found in this chapter do not mark ‘grand finale’ in this study,

but rather another ‘new begining’ in this field. So, let us carry on.
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Chapter 8

The Outlook, but Not the End!

8.1 What we have learnt, and What is not yet ?

“The ability to reduce everything to simple fundamental laws
does not imply the ability to start from those laws and reconstruct the universe".

So, that’s why we always stuck with more problems!

The theoretical study we performed here is a reconstruction of a solid state material [255]
(i.e. boron nanostructures) from our knowledge based on the first-principles method.
In fact, this work would be as difficult as, if not more so, as we come to understand

those features from analysis of the experiments, when available.

Every theoretical method has its own limit. Similarly as a theorist, we have to make

many approximations and assumptions in principle deductions, model reconstruc-
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tions, theoretical formalism, calculation techniques, and numerical evaluations. Even
if each of these approximations is reliable, it is of great difficulty to guarantee that
all those accuracies persist through all conditions in which they are involved. Hence,
cross-checking and estimation of the possible errors from the established theoretical
methodologies, are always important to know their limitations, and to make further

progress in understanding of the physics and chemistry of a system.

8.1.1 Limitations

Following our theory and methodology introduction in Chapter 2, and its applica-
tions in Chapter 3 onwards, we may conclude that first-principles calculations are
many-faceted complex theoretical architectures. To simplify our problem, let us now
just focus on the iterative minimization techniques for total-energy calculations we
employed in this work. By following the factors which are involved in total energy
calculations, several possible causes of the underlying errors in total energy (E) are

expected.

8.1.1.1 Hamiltonian (H)

A

Hamiltonian (H) is the key equation governing the dyanmics of a many-body system.
Based on the logic of methodology dedeuction, usually the hamiltonian is approx-
imated or idealized, in order to carry out calculations for the practical purposes.

However, the main approximations being used in this study can roughly be sum-
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marized into two parts: the Born-Oppenheimer (or adiabatic) approximation (Sec.
2ZZT)), and the independent-electron approximation (Sec. ZZ2.2.T]). Strictly speaking,
the first approximation is tougher and not well-established. The problems have been
studied (e.g. multi-state system, multi-state quantization, molecular field, etc.)|256]

so far are rather limited, and might not be relevant in our current study.

Therefore, we will mostly focus on the possible errors which might have arisen from
the second approximation: the knowledge of the eract exchange-correlation (xc) en-
ergy functional E,.[n] in DFT (in Sec. ZZZZ3). So far, the exchange-correlation (zc)
energy functional forms which we employed are based on the standard LDA and GGA
approximation (Chapter 4 and 5). Fortunately, these approximations are sufficient in
determining the basic structural properties based on the ground-state total energy of
the system. However, these approximations might not be appropriate for the ‘electron-
hole’ excitation energies, especially when we want to study how the nanostructures
respond to some external probe, e.g. photoemission experiments. Regarding to these
excited states study, the use of many-body perturbation theory is necessary. Hence,
one of the most practical technique will be Hedin’s GW approximation[257, 258|.
Interestingly, this technique can also be applied in improving our theoretical predic-
tion on the band gap of a-Bj, bulk and its corresponding 2D boron sheet (Chapter
4 and 5), based on both LDA and GGA approximation, or the other possible op-
tion: B3LY P exchange-correlation functional in quantum chemistry (Chapter 3, and

Appendix A).
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8.1.1.2 Basis Functions (v)

The wave function (V) is the key for every possible information to physical observ-
ables, within the quantum regime. Usually, all the underlying approximation of the
wave function, which are based upon the mathematical representation of basis func-
tions (¢) (Sec. ZAT), can be systematically analysed. The many-body wave function
is often expanded in the Slater determinants constructed from a set of single-particle
orbitals, i.e. from a finite and hence incomplete basis set (Sec. Z4Tl). Therefore, the
errors or limitations due to the basis functions we employed should be a systematic

error in our calculation.

Basically, these ‘basis sets errors’ can be categorized into three parts: (first) type or
form of the basis function, (second) basis set truncation errors, and (third) environ-
ment effects. As we mentioned before, the selection of GTOs (Chapter 3 and 5) is
due to the reason of ease and efficiency in computation, not due to the physical ‘cor-
rectness’ of its basis functions, compared to STOs. Even among the different forms
of GTOs, the basis set errors can be rather substantial (Appendix A). As a trade-off
between the accuracy and computational cost, usually for a large system (e.g. Bgo
clusters), we used the smaller basis sets, e.g. STO-3G and 3-21G|f], instead of the
standard 6-31G(d,p) which has more primitive gaussians in the valence shell. Sec-
ondly, efforts to reduce the errors due to truncation of the basis set can be a major
cost of a calculation because of the basis set enlargement. In the planewave basis set
(Sec. and Chapter 4, it is attributed to energy cutoff, %U{: + G|? (Appendix
B). In particular for the LCAO (or LCGTO in CRYSTALO03/06 at Sec. and
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Chapter 5) approach with GTOs, the truncation of the infinite series in CRYSTAL
code is effective for relatively sharp Gaussian functions. Typically for a covalent-like
compounds like boron, the exponents of the most diffuse Gaussians in a double-zeta
type basis set (e.g. 6-31G(d,p) in Chapter 3 and 5) are relatively high (~ 0.13-0.16
bohr=2), and the corresponding computational cost is not too large, compared to to
a metal (i.e. ~ < 0.1 bohr=?). Similarly for the third part of the basis set errors, the
effects cannot be negligible. As shown in Appendix A, there is substantial difference
among 6-31G and 6-31G(d,p) plus the diffuse functions, which practically are adopted

for an extra flexibility in different chemical environments.

Strictly speaking, all these three parts of the basis set errors cannot be corrected ab-
solutely. However, some of the errors can be narrowed by the basis set optimization
procedure, which utilizes the variational principle with respect to the total energy
(Sec. B3)). This procedure is decided by the quality and the applicability of the
selected basis set. As long as the changes in basis sets (or the energy gain) are negli-
gible compared to energy gain from geometry optimization procedure, the electronic

structures can be considered as ‘reasonable’.

8.1.1.3 Numerical Techniques

The numerical approximation is inevitable and crucial, as we go from a theoretical
model to an actual simultion of real materials. Therefore, the possible errors which
arise from the numerical approximation must be a factor in the discussion of the lim-

itations of methodology. In fact, developments of the numerical techniques can be as
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complicated as the work spent in buiding up the Hamiltonian, H and basis functions,
1, from the integration of motion algorithm to the energy minimization[61]. Also,
the errors involved in the reciprocal space integration and in the k-point sampling
within the Brillouin zone is particularly common (either in planewaves (Chapter 4)
or periodic GTOs (Chapter 5)), since it is involved at each stage of the self-consistent
procedure, in determining the Fermi energy (Ey), and in reconstructing the one-
electron density matrix. Usually, this error can be minimized, and the limitation
required is therefore determined by a balance among the computational cost and ac-
curacy. In this case, as long as the error (AEj,pm:) from the k-point sampling is
negligible, compared to the energy gain (AF) in structural relaxation, we can claim
that our results are reliable. For example in a-B;5 boron solids, the size of the k-point
sampling for this system is converged within a precision of ~ 1 meV /atom (Appendix

B) within a reasonable computational cost.

One of the common numerical inefficiencies found in the conventional study on the
structural determination of the ground state configuration, is due to limitation upon
the global energy minimization algorithms we employed, namely the conjugated gra-
dient method|123, 157, 207]. Although accurate forces on the ions can be calculated
relatively fast when the conjugated gradient method is applied, this technique is ba-
sically a zero-temperature quench because the ions do not acquire any kinetic energy
during the relaxation procedure. At the end of this process, the system will be in
a local energy minimum. Therefore, using this technique to acquire a global energy

minimum structure is not a guarantee, and it can be very onerous to find it. Hence,
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it is important to point out that all the nanostructures we proposed so far can only
be true as a local minima, not an ‘absolute’ ground state in the global energy surface.
To improve the prediction, one has to consider more powerful numerical techniques:
e.g. molecular dynamics, simulated annealing, metadynamics, basin hopping, genetic

algorithm, or evolutionary algorithm.

8.1.2 Suggestions For Future Study

In this work, we have tried to cover much of the topics in our study of boron nanos-
tructures for the past three years. However, new problems always come along with
new discovery, if we insist on not to stop questioning. To name a few, future studies

can be extended or expanded as follows:

1. Boron nanoclusters: Study on the thermodynamical properties of these clusters

can be done using first-principles or ab initio molecular dynamics.

2. 2D Boron Sheets: Study on the vibrational properties (i.e. IR and Raman

spectra) using first-principles method.

3. Single-Walled Boron Nanotubes: Study on the vibrational properties (i.e. IR
and Raman spectra) using first-principles method. Since all the metastable
structure will have imginary frequencies, therefore the vibrational study will
help us to locate a stable configuration of a nanotube and its corresponding

boron sheet.
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4. All electron density functional theory approximation for the electron transport

calculation in the boron nanostructures

5. Phases stability of boron polymorphms: crystalline bulk and ensembles of

nanostructures

8.2 Epistemology

First of all, we would like the reader to retain just one idea. This is that the fu-
nadamental ideas of ab initio or first-principles methods is almost as old as quantum
mechanics. Although it is not yet an century old knowledge, their impact covers
a wide range of scientific disciplines. Nowadays it is more like an espistemology in
science, in physics to be more specific. Hence, our study in boron nanostructure is
merely a very little, tiny test example of this methodology. Since the methodology
itself is always evolving, we can expect that all the underlying understanding (e.g.
boron nanostructures) and the physical picture dependent upon it will do the same
thing, just like our understanding about atoms. Whenever we know better about
it, we will at the same time, encounter more problems. Consequently, the problems
can be tougher, more complicated, and grander. Hence, this is how the conventional

science evolved, and progress is made.

In this conjunction, it is always to be very interesting for us to ask ourselves what we
are doing, and to ask about the fundamental questions about what have we learnt,
besides the results and credits of what we obtained. As a matter of fact, if we
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look back from the direction which we are always heading, we can always find some
new things. For example, several generations of efforts and endeavors have been
devoted in solving the Schrodinger equation in electronic structure theories. However,
the inverse problem towards these techniques seemed might not be as obvious as it
expected to be, although both problems seemed to be reversible. Hence, no matter
in "top-down" or "bottom-up" model in the efforts to reconstructing our knowledge,
‘dilemma’ in this epistemology remains ! Therefore as the sentence quoted in the
beginning of this section suggests, building up the reality from the fundamental motif
of our understanding might be more complex than analyze things the other way
around. Similarly, it also holds in reverse. So as a scientist, it is not totally hopeless,
but rather it is a pleasure to continue to find it out. The important thing is not to

stop questioning.
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Appendix A

A Comparison of Total Energy

Calculation of Single Boron Atoms

As we mentioned in Chapter 2, there are two main factors: H and ¥ affecting the
accuracy of total energy calculation of a system within a ‘standard model’ of electronic
structure theory. Asshown in the Table I and II below, the total energy for the ground
state (2P§) of a single boron atom (B) will be given based on the J.A. Pople’s ansatz
in quantum chemistry, compared to the usage of approximate exchange-correlation

energy functionals employed in density functional theory (DFT).
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Table 1.1: The total energy comparison of a single atom within the Hartree-
Fock framework. As a reference, all calculations are based on 6-31G(d,p)
basis set (except the DF* and RCI**), as we used in the calculation which
mentioned in Chapter 3. All the calculations here are based on Gaussian03
program suite, except DF* (i.e. single-configuration using Desclaux’s code)
and RCI*™ which obtained under a courtesy by Lin Pan. All the values are
in Hartree.

Total Energy (Hartree)

The Hamiltonian, H under ab initio method

~24.5220371858 HF
-24.5587185906 MP2
-24.570965520 MP3
24575944275 MP4
-24.580135297 CI(SD)
~24.5351092531 DF*
-24.6533704240 RCI*

-24.65379151
-24.6591448

Non-relativistic|259)
Relativistic[259]

Table 1.2: The total energy comparison of a single atom within the Density
Functional Theory (DFT) framework. As a reference, all calculations are
based on 6-31G(d,p) basis set. All the values are in Hartree. The Slater here
is with exchange functional p% with theoretical coefficient of %, and is also
referred to as Local Spin Density exchange[123]. The X — « is with exchange
functional p% with the empirical coefficient of 0.7[123]. In particular, the
details of all the approximate exchange-correlation energy functionals: E,[p],
E.c[p] and Egc_pypridlp], can be obtained at the following. Some of the
explicit forms of LSDA and GG A functionals are given in Appendix B, page
479-481 from Ref. 69. The rest can be obtained from the corresponding cited

references mentioned in the Gaussian03 manual at page 73-78.

Total Energy (Hartree) H (DFT)
Eylp] Eaclp] Live—nybridlp]
-24.0532437512 Slater - -
-24.2174900675 X -« - -
-24.5145415379 Becke — 88 -

-24.4372346060

- SVIWN (LSDA) -

-24.6296663151 - BPBE (GGA) -
-24.6412989906 - BPW91 (GGA) -
-24.6412762220 - BLY P -
~24.6364932777 - - B3PW91
-24.6543548367 - - B3LY P
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Table 1.3: The total energy comparison of a single atom using B3LYP (i.e.
Becke Three Parameter Hybrid Functionals with correlation functional of
Lee-Yang-Parr)[123, (175, 1176] as the Hamiltonian by varying the basis set
using Gaussian program suite.

Basis Sets Total Energy (Hartree)
(H using B3LYP)

STO-3G -24.2815406518
3-21G -24.5186296772
4-31G -24.6204644595
6-21G -24.6485907028
6-31G -24.6528150232
6-31G(d,p) -24.6543548367
6-311G(df) -24.6624412522
6-331+G(df) -24.6630075694
6-311++G(3df,3pd) -24.6634830812
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Appendix B

Benchmark Calculations

All the calculation results shown here are performed on RAMA (a Linux Beowulf
Cluster) with one CPU using Dual Intel Xeon 2.8G, and 2GB RAM in each slave
nodes. Since we are using different codes with different basis functions and hamilto-
nian on diferent chapters in this work, therefore some benchmark calculations as a

comparison for different codes are necessary.

2.1 Compatibility Among GTOs and Planewaves
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B1E | (convex) Bﬁ IV (double-ring)

BE = 4.81 eV/atom BE = 4.62 eV/atom
(5.66 eV/atom) (5.51 eV/atom)

Figure 2.1: The comparative study among the Gaussian-type orbitals (i.e.
6-31G(d,p) basis set) with B3LYP exchange-correlation functional (using
Gaussian98 program) and ultrasoft-pseudopotential planewave using PW91
exchange-correlation functional (using VASP code) on Bjs cluster: Bjs-1
(2D convex structure) and Bia-IV (3D double-ring structure). The values
in black color is the Gaussian98 result, while the values in red color is the
VASP result. All the bond length values are in A.

2.2 Performance of Different k-point Mesh: A Case

Study
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Table 2.1: 3D «-Bjs crystalline solid: benchmark calculation on the con-
vergence test of total energy Vs. k-point mesh in Monkhorst-Pack (MP) grid
for the total energy comparison within the Generalized Gradient Approxima-
tion (GGA-PW91) within ultrasoft pseudopotential planewave with Eeysof ¢
~ 260 eV. For the actual total energy of a system, Fj., it is defined as: Fyo
= F - 846.64370562. All the energy values are in €V.

Total Energy, E (eV) MP-grid | CPU time (s)
-83.071658 Ix1x1 68.906
-80.354098 2x2x2 86.927
-80.404850 3 X3 x3 191.360
-80.345372 4x4x4 295.924
-80.351949 X DI XD 045.774
-80.353570 6 x6x6 768.305
-80.353439 8 X 8% 8 1607.321
-80.353325 10 x 10 x 10 3116.994
-80.353320 12 x 12 x 12 5026.041
-80.353329 14 x 14 x 14 7698.080

Table 2.2: Benchmark calculation on the convergence test of total energy Vs.
k-point mesh in Monkhorst-Pack (MP) grid for the total energy comparison
of 2D {1221} boron sheet within the Generalized Gradient Approximation
(GGA-PW91) within ultrasoft pseudopotential planewave with Eeyorf ~
260 eV. For the actual total energy of a system, Fi., it is defined as: Eipr =
E - 564.43853960. All the energy values are in eV.

Total Energy, £ (eV) | MP-grid | CPU time (s)
-51.712479 Ix1x1 140.612
-48.429251 2x2x1 130.314
-47.534449 3x3x1 301.906
-48.100854 4x4x1 295.163
-48.530145 6x6x1 525.748
-48.650650 §x8x1 835.761
-48.533601 10 x 10 x 1 1310.896
-48.541092 12x12x 1 1830.863
-48.569862 14 x14x1 2396.165
-48.579754 16 x 16 x 1 2973.431
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Appendix C

The List of The Selected Publications

1. K.C. Lau, M.D. Deshpande and R. Pandey
Int. J. Quantum Chem. (Special Issue: Dedicated to the Memory of John A.

Pople), 102, 656 (2005)

2. K.C. Lau, M.D. Deshpande, R. Pati and R. Pandey

Int. J. Quantum Chem., 103, 866 (2005)

3. K.C. Lau and R. Pandey
Computing Letters. (Special Issue: Clusters: From a few atoms to nanoparti-

cles), 1, 259-270 (2005).

4. K.C. Lau, R. Pati, R. Pandey and A.C. Pineda
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Chem. Phys. Lett., 418, 549 (2006)

. K.C. Lau, R. Pandey, R. Pati and S.P. Karna
Appl. Phys. Lett. 88, 212111 (2006).
(Selected for Virtual Journal of Nanoscale Science & Technology Vol. 13, Issue

23 (2006)).

. K.C. Lau and R. Pandey

J. Phys. Chem. C, 111, 2906 (2007).

. K.C. Lau, R. Orlando and R. Pandey

Phys. Rev. B, (In Review).
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