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Abstract 

Relativistic Configuration Interaction (RCI) method has been used to investigate 

atomic properties of the singly ionized transition metals including Nickel (Ni II), 

Vanadium (V II), and Tungsten (W II). The methodology of RCI computations was also 

improved. Specifically, the method to shift the energy diagonal matrix of the reference 

configurations was modified which facilitated including the effects of many electronic 

configurations that used to be difficult to be included in the energy matrix and speeded-

up the final calculations of the bound and continuum energy spectrum. RCI results were 

obtained for three different cases: 

i. Atomic moments and polarizabilities of Ni II; 

ii. Hyperfine structure constants of V II; 

iii. Lifetime, Lande g-values, and Oscillator strength of W II. 

Four atomic quantities of Ni II were calculated; scalar dipole polarizability, off-

diagonal electric dipole polarizability, non-adiabatic scalar dipole polarizability, and 

quadrupole polarizability of Ni II. These quantities appear as effective parameters in an 

effective potential model. These quantities are computed for the first time. 

The two hyperfine structure (HFS) constants ; magnetic dipole interaction 

constant, A, and the electric quadrupole interaction constant, B,  have been calculated for 

the V II  3d4, 3d3 4s, and 3d2 4s2 J=1 to 5 even parity states . Analysis of the results 

shows the sum of HFS A of nearby energy levels to be conserved. The Lande g-value and 

the vector composition percentages for all the wavefunctions of those configurations have 

also been calculated. RCI results are in good agreement with most of the available 

experimental data.  

Lifetimes of 175 decay branches in W II have been calculated. Also, Lande g-

values have been calculated for all measured W II odd parity levels J=1/2-11/2. The RCI 

oscillator strengths and branching fraction values of the lowest 10 energy levels for each 

odd parity J are presented. The calculated results are only in semi-quantitative agreement 

with experiment for the oscillator strength and branching fractions. However the 

calculated lifetimes and Lande g-values are in very good agreement with the available 
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measured quantities. We found the sums of lifetimes and the sums of Lande g-values of 

the nearby levels were almost independent of the calculation stage. 

The calculated atomic properties for Ni II, V II, and W II fill in many gaps in the 

available atomic data for these three ions. Also, they are expected to facilitate the 

fundamental understanding of electric and magnetic behaviors of most of the transition 

metal ions and atoms with similar electronic configurations.  



1 

Introduction 

This is a computational study of some atomic properties of the singly positive 

ions of Nickel, Vanadium, and Tungsten using the relativistic configuration interaction 

methodology that is implemented in the computer programs created by Beck and his 

group. The selection of these ions was based on three criteria; it was interesting to the 

scientific community, as only a few recent accurate measurements were available on 

these ions, more accurate data was needed because of large errors were present in the 

available calculations, and to further develop the atomic relativistic correlation 

methodology used by Beck’s research group. Work on each of these extended for more 

than 1 year and led to two referred papers and three poster presentations in two annual 

meetings. 

This dissertation includes four chapters. The first one gives a general background 

about the relativistic configuration interaction method and how it was developed and 

implemented by Beck in a series of computer programs. Most of the computational 

studies recently are done using computer packages that hide the mathematical details 

from the user and focus on the final results. One main advantage of the widely used 

computer packages is the employment of large matrix sizes for calculations. The 

disadvantage is the loss of most of the physics during the process of the intermediate 

calculations, where only the input and final output have physical interpretations.  The 

RCI programs that we use employ matrix sizes of 20K with 60 eigenvalues at most, 

which is small in comparison to many available programs. The advantage of using our 

RCI programs is the very direct relations between the physics and most of the steps of 

calculations. This gives room for improving each step of calculations based on 

understanding the physics details in each problem. Also, the physical and computational 

details which might be lost because of the small matrix size can be compensated through 

different approaches. One approach is by doing separate calculations and using their 

results to shift the diagonal matrix elements in the final energy matrix. A second 

approach is splitting the calculation into multiple steps (e.g. splitting the Rydberg states 

into two parts in Ni II where one set of calculation included 4p to 8p the other included 
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9p to 14 p sub-shells). Thus the limited number of eigenvalues obtained does not stop us 

from doing the required physics and getting to the required accuracy. 

Singly ionized Nickel, Ni II was studied previously by our group and by 

Lundeen’s experimental group [details and references in chapter 2]. The electronic 

configuration of this ion makes it a good example for a transition metal that can be used 

for developing sophisticated computational, empirical, and semi-empirical studies that 

can be applied for more complex ions (e.g. Th I). By studying Ni II we helped Lundeen’s 

group in developing their potential model. Also, we improved our methodology for 

including both the localized and continuum parts of the energy spectrum. The potential 

model includes quantities of small values that result from cancelation of other big 

quantities. For example assume the three quantities A, B, and C, where A - B = C and C 

<< |A|, |B|. Both of A and B are the main physical quantities that need to be determined. 

Theoretically we can calculate A and B directly. Experimentally C is the measured 

quantity.  This creates a great stress on the computations as very high accuracy is needed. 

But since the model itself is empirical it does not provide a direct test for evaluating the 

accuracy of the theoretical results.  

Vanadium atom and positive ions are of high interest to the astrophysics 

community. We calculated the hyperfine structure constants A and B.  Analyzing the 

spectrum of V II (as one of iron group elements) helps in determining how the 

Chemically Peculiar stars were formed [more details and references in chapter 3]. To do 

this requires several accurate oscillator strengths which involve hyperfine structure 

effects. Hyperfine structure of dn atomic levels may be strongly affected by the presence 

of nearby dn-1 s levels, as Beck noted in 1992. V II exhibits this effect, which requires 

accurate computation of the energy differences between the neighboring levels. Through 

these calculations we improved our calculations with usage of the shift method, chapter 

3. 

Tungsten ion, W II is another interesting ion for astrophysicists and for the plasma 

fusion community. Because it is quite refractory it is important for many applications. 

One of the most important is in plasma fusion devices, as a wall material. During 

operation W ions are boiled off from the wall and enter the plasma as impurities which 

affect the efficiency of the device. The efficiency is strongly dependent on W II oscillator 
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strengths.  It is one of the most complex transition metals to study computationally as 

most of its energy levels are composed of many electronic configurations. Also, it 

involves strong relativistic and correlation effects. The most required quantity for W II is 

its oscillator strength (or f-value) which can be obtained either directly or through two 

other quantities; the lifetime and branching fractions. Accurate energy level 

measurements of W II were provided only in 2010 (contrary to most other atoms and ions 

that had their energy levels available much earlier). Looking at the literature, from the 

mid-1980s to 2010, only 28 lifetime measurements are available. This made studying  W 

II interesting for our group as we could provide lifetime values that were (and still are) 

needed by the scientific community. Producing our results is not as expensive 

(considering time and financial costs) as experiments. We studied W II and presented our 

results of the lifetimes of 175 decays in DAMOP conference June 2012.  Our results were 

welcomed by the community as there was good agreement with most of the available 

experimental data. In the process of assembling a manuscript for publication we found a 

recently published paper that included experimentally measured branching fractions for 

nine decays. Although our calculated lifetimes for those nine decays have very good 

agreement with the measured lifetimes (published in 2010) our calculated branching 

fractions disagree some with the measured ones (published in 2011). So our group 

decided not to publish the calculated lifetimes at that time. We think the branching ratios 

may be improved by improving the even parity wavefunctions, which should not affect 

our lifetime value very much (see chapter 4).  

Although the three projects in this dissertations are completely different there was 

a common theme in all of them; that is to develop the use of shifts (of diagonal matrix 

elements) in order to replace some of the correlation effects that are computationally 

difficult. This work also serves to partially formally justify the semi-empirical Cowan 

fitting method frequently used by experimentalists and semi-empirical researchers for 

complex atoms. 
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1.1 Development of RCI code 
1.1.1 Earlier Models and Introduction of RCI code 

Reliable computational models have been always needed in order to provide realistic 

quantum mechanical descriptions of atoms and atomic ions in different conditions; 

ground states, excited states, highly ionized states, etc., and to form physically 

meaningful treatments of some problems in atomic physics experiments, e.g. accounting 

for the Auger cascading process in which inner-shell vacancies are being filled which 

leads to highly charged atomic states.  

In classical mechanics it is well known that the 3-body problem has no formal 

solution in terms of known functions. So in quantum mechanics we may also expect that 

for "its" 3 body problem-the He atom there is also no exact formal solution. So some 

useful approximation scheme that is universal, rapidly convergent (if possible), and easy 

to computationally implement needed to be found. 

Such a scheme was proposed by Hartree in a series of ground breaking papers [1], in 

the late 1920s [shortly after the Schrödinger equation was put forward!]. It is based on the 

concept that each electron moved in a potential created from the average field of the other 

electrons. Mathematically, this was expressed by the operator  

ℎ� = −1
2

 ∇2 +  𝑉𝑉(𝑟𝑟) = 𝑒𝑒                                                          (1.1). 

Operating on a one particle wavefunction  

𝜓𝜓(𝑟𝑟) = 𝑅𝑅(𝑟𝑟)𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) ∗ 𝜂𝜂𝑙𝑙𝑚𝑚 (𝜎𝜎)                                                        (1.2). 

Where “e” is a Lagrange parameter introduced to insure normalization, and 𝜂𝜂𝑙𝑙𝑚𝑚 is a 

function of the spin (𝜎𝜎)  , the spin-orbital form was taken the hydrogen atom, and V(r) is 

due to the Columb repulsion and nuclear attraction term; 

 
−𝑍𝑍
𝑟𝑟2

+ � �𝑘𝑘1 𝑖𝑖2 �
1
𝑟𝑟12

�𝑘𝑘1 𝑖𝑖2�
𝑁𝑁

𝑘𝑘≠𝑖𝑖
 

 the subscript “i” for the one particle function being determined. The N-electron 

wavefunction was a product of single particle wavefunction,Ψ𝑁𝑁 (1, 2, … . . ,𝑁𝑁) =

 𝜓𝜓1(𝑟𝑟1,𝜎𝜎1) ∗  𝜓𝜓2(𝑟𝑟2,𝜎𝜎2) ∗ … … … ∗ 𝜓𝜓𝑁𝑁(𝑟𝑟𝑁𝑁,𝜎𝜎𝑁𝑁), ,𝜎𝜎  where the spin which did not make a 

difference in Hartree approximation because anti-symmetry was not included. This 
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coupled set of integro-differential eigenvalue radial equations required the potential 

integrals and differential equations be solved "self-consistently". Though no computers 

existed at the time, Hartree along with his retired book keeper father was able to 

manually solve the equations for some few electron problems. Since the boundary 

conditions for the 2nd order differential equations were "two-point" (r = 0 and r = ∞), 

with an unknown constant (e) , they integrated outwards from the origin to a midpoint, 

and inward from "infinity" to the midpoint, using the midpoint "mismatch" to adjust “e” 

(and the slope of R at r = 0). Great care was needed to avoid numerical errors in the 

outward integration, as small errors could lead to exponentially increasing terms, as “r” 

increased. 

It is fair to say that the work of Hartree and his father [1] forms a common foundation 

of all quantum calculations on atoms and molecules done from that point until today. His 

wavefunction approximation, and various extensions (Hartree- Fock [2], Hartree-Fock-

Slater [3], etc.) are known as Independent Particle Models (IPM). IPM deal only with the 

average potential seen by each electron, not its specific potential, i.e. correlation is 

neglected. 

1.1.2 Computation of Bound State Properties 

The non-relativistic IPM models, e.g. Hartree-Fock, were inadequate for producing 

accurate results because they neglected the relativistic and correlation effects. Even in 

smaller atoms correlation effects cannot be ignored. In He ground state the energy 

contribution due to correlation is ~ 1.2 eV. Another example is the energy contribution 

due to exchanging a 3d and a 4s electron in Sc I which ~ 0.1 eV per exchange [4]. 

For atoms there are few competitive relativistic-correlation methodologies that 

have been developed and widely applied. The two1 most common are a relativistic many 

body perturbation theory approach (Johnson [5])-RMBPT and a relativistic configuration 

interaction (RCI) approach (Beck and others [6-8]). Each of the two methods has its 

strengths and weaknesses. Concentrating on the weaknesses, RMBPT has no upper 
                                                      
1 Large scale MCDF calculations are now being done as well. Though these are frequently competitive in 
accuracy, they make larger computational demands (energy matrix > 200 K can arise) tend to obscure the 
physics (e.g. patterns), and are still difficult to apply for many open sub-shell electron cases.  
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bound property, while methods based on the energy variation principle do, and also is 

difficult to apply to cases involving more than 2-3 open sub-shell electrons. RCI, on the 

other hand, has convergence difficulties, i.e. size inconsistency problems [9] which may 

start to appear when second and higher order effects must be included in the 

wavefunctions, and treatment of continuum effects is still incomplete. Some work on this 

last point (Ni II, chapter 2) is presented in this dissertation. 

Full application of relativistic methods for molecules is still under development 

and full application to the condensed matter is more remote. This is because of the extra 

complications arising from a multi-center problem which essentially precludes the use of 

numerical (tabular) wave-functions and the reduction in symmetry. Instead more 

inefficient expansions of radial functions into Gaussian functions (GTOs) are commonly 

used. 

There are two approaches to including relativistic effects in atoms. Both start with 

the same Hamiltonian. That is the one-electron Dirac operators (Bethe and Salpeter [10]) 

and the two particle Coulomb operator 〈 1
𝑟𝑟𝑖𝑖𝑖𝑖
〉. The two particle relativistic Breit operator 

[10] may also be included. While QED effects (Lamb shift, vacuum polarization, etc.) 

[10] need to be included for very accurate work on small atoms (e.g. H, He) or for highly 

stripped high Z atoms (e.g. Al-like gold [11]), QED treatments are still unable to include 

exchange effects at the independent particle level [12, 13]. 

Very early (1935) Bertha Swirles [14] set up the independent particle equations 

arising from the Dirac-Coulomb operator. Over the decades from the 1930-1960s a very 

limited amount of applications were done (no computers; a World War and depression2). 

More progress was made in modernizing and extending the formalism by the Oxford 

Group (Grant and Mayers) [15 and references therein] and in starting to develop a robust 

RIPM algorithm which would handle exchange, open sub-shells, and orthogonality. All 

this was limited to bound states [16, 17]. Although Mayers worked on the algorithm for 

some time, he was unable to deliver it publically even as late as 1969 [15, 16]. 

Developing such a numerical independent particle model (RIPM) code requires a lot of 

not immediately publishable work, as decisions must be made as to which algorithms to 

                                                      
2 Significant federal funding of research began during WW II for military research.  
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use to evaluate the integrals, solve the differential equations, choose the numerical mesh 

(compact, yet accurate), to avoid collapse into the positron sea, etc. But all of these 

decisions, once made, can be carried over into RCI or RMBPT. To show how the 

relativistic treatment adds some difficulty to the calculations we can consider the example 

of mercury (Hg). It has six s sub-shells and eight p+ d+ f sub-shells. So in the relativistic 

treatment there are 44 first order integro-differential, pseudo-eigenvalue radial equations 

to be calculated. While non-relativistically there are only 14 second order equations for 

the radials. Although the second order differential equations are more difficult than the 

first order ones the extra number of equations makes calculations more complicated. The 

techniques for solving these were summarized in Hartree's book [1] and his last student's 

(Charlotte Froese Fischer) book [2]. 

Including the Breit operator, at least to first order, is necessary to account for the 

relativistic electromagnetic interactions between the electrons. Another approach 

involved expanding3 (low Z Pauli approximation) the Hamiltonian in powers of α and Z 

(α = fine structure constant) ([10] p.181) so as to maintain the use of non-relativistic 

wave-functions [18].The expansion gave rise to 8 complicated operators [10]. The 

formalism (i.e. evaluation of matrix elements involving these operators) was completed 

by Beck for two open sub-shell electrons in his thesis work [18]. The application was to 

the Tl II ion in a Na I host, appearing as a substitutional impurity. The best known low-Z 

Pauli operators are one-electron spin-orbit, mass variation with velocity, and the Darwin 

effect4. However, for Tl II the effective Z (~15 for the 6s, 6p valence electrons) was 

simply too large for the expansion to be viable. Note that the low Z Pauli approximation 

(one particle terms) is still in use in condensed matter studies because of its relative 

simplicity. Extension of the low Z Pauli approach, with correlation, to three open sub-

shell electrons was done by Beck and published in 1971 [20]. The formalism can only be 

described as nightmarishly complicated, although it was capable of explaining a long 

unresolved problem of the inversion of the 2D fine structure levels of Na I.  

                                                      
3 This expansion is formally incorrect for a point nuclear model beyond the first terms in the expansion. 
 
4 An early example of one electron low Z Pauli operators used with an IPM function (Hartree-Fock-Slater 
approximation) is given in the work of Herman and Skillman [19] of their condensed matter studies. 
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Because of the inaccuracy of the low Z Pauli approximation for medium to high 

effective Zs and the highly complicated formalism connected to the low-Z Pauli operators 

Beck chose to terminate his work along these lines. Conveniently his career took a bit of 

a jog at this time (1970) into learning about and developing a more efficient means of 

dealing with correlation effects, as practiced by the Sinanoglu research group [21]. An 

extensive amount of coding was done to develop efficient algorithms for Configuration 

Interaction (CI) treatment of atoms, including the effects of non-orthogonality. Code for 

several properties such as oscillator strengths and hyperfine structure were written. 

Nicolaides, a member of this research group, developed a comprehensive method of 

treating resonances (with correlation) for any "non-relativistic" atom [22] in 1972. 

In 1975, J. P. Desclaux published a comprehensive atomic RIPM code (in 

FORTRAN) [23] that addressed many of the issues that are required to develop a 

foundational RCI algorithm. His work was built on the work of Grant and Mayers [15]. 

The main deficiency was how one would provide the required structure information, as 

well as lesser deficiencies related to dimension limitations, ability to extrapolate to non-

integer Z (for the purposes of providing good input data to the difficult to converge 

neutral and negative ion cases), and no estimate of quantum electro-dynamical effects 

(QED) 

The Desclaux code (which implements a multi-configurational Dirac-Hartree-

Fock [MCDHF] formalism) constructs an energy matrix to which the variational 

principle is applied, which leads to coupled radial equations which now additionally 

involve the configurational coefficients w of the wavefunction.  

𝐸𝐸𝑇𝑇 =  �𝑤𝑤𝜈𝜈 
𝜈𝜈,𝜇𝜇

𝐸𝐸𝑎𝑎𝑎𝑎𝜈𝜈 +  � 𝑤𝑤𝜇𝜇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑛𝑛=1

𝑤𝑤𝜈𝜈 𝐶𝐶𝑛𝑛𝑘𝑘(𝑖𝑖, 𝑗𝑗; 𝑙𝑙,𝑚𝑚)𝑅𝑅𝑛𝑛𝑘𝑘(𝑖𝑖, 𝑗𝑗; 𝑙𝑙,𝑚𝑚)                                  (1.3) 

Equation 1.3 gives the total function ET [23]. Eav is the average energy of each 

configuration in jj coupling, i, j, l, and m are the index of the one-electron wavefunctions, 

ν and μ represent two different configurations. 𝐸𝐸𝑎𝑎𝑎𝑎𝜈𝜈  depends only on the configuration, but 

not on the particular level which is being considered. The angular coefficients 𝐶𝐶𝑛𝑛𝑘𝑘 do 

depend on the level and must be given as input data along with i, j, l, m, and k. They 



10 

constitute the structure to be added to 𝐸𝐸𝑎𝑎𝑎𝑎𝜈𝜈 . NFGR is the total number of structure terms to 

be provided 

The radial integral 𝑅𝑅𝑛𝑛𝑘𝑘 7 in [23], for a given n it is; 

𝑅𝑅𝑘𝑘(𝑖𝑖, 𝑗𝑗, 𝑙𝑙,𝑚𝑚) =  �� 𝑃𝑃𝑖𝑖(𝑟𝑟) 𝑃𝑃𝑗𝑗(𝑟𝑟) +  𝑄𝑄𝑖𝑖(𝑟𝑟) 𝑄𝑄𝑗𝑗(𝑟𝑟)�  
𝑟𝑟<𝑘𝑘

𝑟𝑟>𝑘𝑘+1
 [𝑃𝑃𝑙𝑙(𝑠𝑠) 𝑃𝑃𝑙𝑙(𝑠𝑠)

+  𝑄𝑄𝑙𝑙(𝑠𝑠) 𝑄𝑄𝑙𝑙(𝑠𝑠)]𝑑𝑑𝑟𝑟𝑑𝑑𝑠𝑠   

(1.4), 

 𝑟𝑟<  = min (r,s) and 𝑟𝑟>  = max (r, s) The P and Q are the major and minor components of 

the one electron radial function. Inclusion of the Breit operator (that accounts for 

magnetic interaction and retardation) adds its own structure with angular coefficients 

𝐶𝐶𝐵𝐵𝑘𝑘and new radial integrals as in equations 10 and 11 of [23]. 

When applying the energy variational principle, all configurational coefficients w 

and all the Ps and Qs are to be varied. Varying the ws leads to a familiar diagonalization of 

the energy matrix. Varying Ps and Qs leads to coupled first order integro-differential 

pseudo-eigenvalue equations. Generation of the reference radial functions starts with an 

estimate of all ws, Ps and Qs. The Ps and Qs are solved for self-consistently in the presence 

of a fixed set of ws, after which the ws are adjusted by diagonalizing the energy matrix 

using the new set of Ps and Qs. The process only ceases when the "input and output" ws, 

Ps and Qs satisfactorily agree, i.e. are adequately self-consistent. 

The ground state RIPM wavefunction for the Carbon atom in terms of the jj 

coupling scheme, which is most convenient for the Dirac-Coulomb (or Dirac-Breit) 

Hamiltonian, would be written as  

w1 1s2 2s2 (2p1/2)2 + w2 1s2 2s2 (2p3/2)2 + w3 1s2 2s2 2p1/2 2p3/2 . 

This is a 3 configuration problem, whereas non-relativistically, with the formation of S2, 

L2 eigenstates, it is a 1 configuration problem. With the spin-angular (spinors) functions 

fixed (as in the Hydrogen atom), each matrix element becomes a linear combination of 

radial integrals which enter the variation. 

Diagonal matrix elements have the most complicated structure, but Slater [24] 

introduced the concept of average energy, which allowed diagonal matrix elements to be 

expressed in terms of the average energy (for which he gave a general formula) plus a 
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"few" residual two particle radial integrals (arising from the Coulomb and Breit 

operators). So the residual integrals 𝑅𝑅𝑛𝑛𝑘𝑘 and the determination of their coefficient 𝐶𝐶𝑛𝑛𝑘𝑘 in 

equation 1.3 (that is equation 6 in [23]) were left for the user to supply, i.e. the structure.  

For the rare earth atoms, there can be over 500K (the NFGR in equation 1.3) integrals to 

be specified. Starting in 1978, Beck began creation of the RCI code which supplied the 

structure for the Desclaux code. Formally, the wavefunction was divided into a few 

reference functions [e.g. 1s2 2s2 2p2 in the Carbon case] and correlation functions. 

Desclaux's program is used to create the radial functions needed in the reference 

functions, i.e. 1s, 2s, 2p1/2 and 2p3/2 in the Carbon case, which is then input to the RCI 

code. 

 Most of the correlation configurations generated involve one or two sub-shells 

not appearing in any reference function. Their radial functions are relativistic screened 

hydrogenic functions or RSH (equation 14.37 of [10]) with an effective charge Z*. These 

radials are called "virtuals" designated "vl", e.g. "vf" . Their Z* is estimated by matching 

their 〈𝑟𝑟〉 to the 〈𝑟𝑟〉 of the reference radial they are replacing. For example, in the pair 

excitation 3d2 to vf2 we take 〈𝑟𝑟𝑎𝑎𝑣𝑣〉 = 〈𝑟𝑟3𝑑𝑑〉. Z* is then varied to minimize the energy of the 

root of interest in the full RCI energy matrix. This choice for the virtual is unique to the 

Beck group and has the following advantages- (i) it is computationally efficient, as 

compared to doing a full MCDF calculation, (ii) by having the major and minor 

components of the virtual determined by a single parameter (Z*) whose estimate is 

determined by the 〈𝑟𝑟〉 match (see above), we prevent variational collapse into the 

"positron" sea. This conclusion is based on the thousands of calculations we have done, 

and careful studies done on Hg78+ 1s2 when we first introduced the concept [6]. 

First order perturbation theory (FOPT) tells us that single and pair excitations 

from the reference functions should provide the largest correlation parts [e.g. 2s2 to 2p2]. 

However, FOPT has no way of selecting which parts are most important. That selection is 

done on the basis of prior experience with non-relativistic calculations because the 

presence of relativistic effects does not greatly affect the role of correlation, which occurs 

mainly due to the Coulomb operator. This concept may not yet be fully appreciated by 
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researchers doing RCI or MCDHF calculations. It certainly was not when Beck first 

noted it in 1982 [25, 26]. 

The RCI code was completed in 1988 [27] and first applied to electron affinities 

(EA) of Zn [6]. Shortly thereafter a transition probability code (RFE) was constructed and 

applied to transitions in Tl II [7]. At that time, this was state of the art. It should be 

emphasized that the philosophy and strategy of the RCI and RFE code constructions (as 

explained above) could (and did) closely follow the philosophy and strategy used in the 

prior non-relativistic coding, as mentioned above. 

1.2 Computing Atomic Quantities 

The RCI algorithm gives the wave functions and it also calculates the Hyperfine 

structure and g-values for each state. The wave functions are used in the f-value program 

[28] to calculate the transition probabilities. 

1.2.1 Transition Properties and coding 

The RFV program includes non-orthonormality because the initial and final states 

will have different radials. We prefer to use the experimental transition energies, if they 

are available [29]. So that the computational focus is placed solely on producing accurate 

transition matrix elements. This program produces the length and velocity gauges of the 

transition matrix element. We prefer the length gauge because it emphasizes the outer, 

better correlated, regions of the atom, (L α r). The velocity gauge require excitations 

from the shallow core, as suggested by Beck and Nicolaides in [30] in First Order Theory 

of Oscillator Strength (FOTOS), (V α 1/r). Although the gauge agreement is a necessary 

condition it is not sufficient and in our calculations ~ 5% gauge spread is typical.  There 

are three types of transitions that can be calculated; electric dipole, electric quadrupole, 

and magnetic dipole. 

The non-relativistic code was originated by Westhaus et al [31]. A novel feature, state 

of the art at that time, was the inclusion of non-orthogonality effects, using the methods 

of King et al [32]. This required individual evaluation of each determinantal matrix 
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element, e.g. ⟨𝐷𝐷|𝑟𝑟|𝐷𝐷′⟩ where D and D' are determinants from the two states which have 

different (non-orthogonal) radial basis sets. The process involved diagonalizing 2 N X N 

(N = the number of active electrons) matrices for each pair of determinants. Since even 

then (1969) each wavefunction could have ~1000 determinants ,one could face up to 2 x 

1000 x 1000 diagonalizations on a slow computer (e.g. an IBM 7094). CPU times of 

more than 30 minutes were common. 

In current RCI applications wavefunctions may have as many as 1M determinants, so 

improved hardware and much more efficient coding was required. Among the most 

effective improvements were the following: 

1. Maximizing the use of symmetry, e.g. for an electric dipole transition, the 

configurations 1s2 2s2 2p2 and 1s2 2s2 2p 5g do not interact, so their contribution is 

zero (by "inspection") 

2. Realizing that core radials [e.g. for W II, this can be 1s...4f ] are nearly identical 

in the two states which reduces N, the number of "active electrons" , which  

reduces the dimensions of the matrices which must be diagonalized [from N = 73 

to N = 14 ] 

3. Using the angular symmetry of the one electron functions to screen out zeros, and 

avoid diagonalization for a determinantal matrix element. 

4. Doing all transitions in one "shot", i.e. to distribute the result for ⟨𝐷𝐷|𝑟𝑟|𝐷𝐷′⟩ to all 

transitions (multiple levels are done for each parity). 

Implementing all of these which are described in more detail elsewhere [33,34] made 

the codes at least 1000x faster. These codes also can treat magnetic dipole and 

electric quadrupole transition probabilities. 

Development of the relativistic version of the code [28] was done using the 

formalism of Grant [15] for matrix elements, with the strategy and techniques of the 

non-relativistic work noted above. One notable variation is that it is only possible to 

distribute ⟨𝐷𝐷|𝑟𝑟|𝐷𝐷′⟩ results across all the transitions for optical transitions, because it 

is only for such cases that the energy difference can be removed from the radial 

integral [15], i.e. X-ray transitions must be computed individually. Figure 1-1 shows 
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the computational steps in brief (These programs (except MCDF) were created by 

Beck and his research group).  

 

 
 

Figure 1-1: A schematic representation of the calculation steps in RCI program used by 

Beck and his group. Ψi and Ψf are output wave-functions generated by two separate RCI 

calculations. 

(a) Beck RCI program unpublished 

(b)  Desclaux, Comput. Phys. Comm. 9 31 (1975)  

(c) Beck RFV program unpublished 

 

  



15 

1.2.2 Relativistic Treatment of Continuum Properties 

  The above codes are for bound states only. To treat continuum properties such as 

auto-ionization relativistically, it was essential to have a relativistic code capable of 

generating continuum radial functions. Very fortunately the Ph.D. work of Dr. Warren 

Perger [35] included the basis for developing a code which could be meshed with the 

existing relativistic bound state codes. Through the work of Drs. Perger and Beck and 

their graduate students Cai, Dinov, Tews, O'Malley and Karighattan and colleagues 

Halabuka and Trautmann, such a code was produced [36-38]. Initially it was applied by 

Cai, Beck and Perger [8] to study auto-ionization in Hg I.  

 

1.2.2.1   Relativistic Evaluation of df/dE 

In the photo-ionization calculations, instead of calculating the f-value (oscillator 

strength), df/dE (E is energy) is calculated. The transition operators are the same, but the 

bound excited one particle function is replaced by the energy normalized continuum 

function. Stewart and Wilkinson’s non-relativistic He I work [39] provide the formalism 

and results, which was used as a test case during the development of the relativistic code 

RPI [40]. This closely follows the philosophy and structure of the relativistic bound states 

code RFV [28]. More details may be found in Cowan [3]. The RPI code has been 

extensively employed to calculate the properties of Ni II [41]. Computational issues 

addressed in the Ni II work include: 

1. Means of extrapolating bound Rydberg state properties contributions up to the 

continuum threshold. 

2. Means of extrapolating from the lowest energy continuum computed down to the 

threshold. 

3. Means of extrapolating from the highest energy calculated value to infinity. 

4. Means of splitting the bound calculated part into pieces with little loss of 

accuracy. For example, the RCI code is currently limited to 60 energy levels 

(fixed J and parity). Some Ni II properties required twice this number. We found 
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that as long as all lower radial functions were present, the lower energy N-

electron bound Rydberg wavefunctions could be removed when calculating the 

contributions of the upper levels N-electron wavefunctions. For example, 

Rydberg series members; 4p-15p can be divided in two parts- 4p-8p and 9p-15p, 

as long as all p radials (2p-15p) are present to impose the proper orthogonality. 

 

1.2.3 Hyperfine Structure Formalism 

 The hyperfine structure constants are calculated in the RCI stage. Details of the 

formalism do not appear in any of the published work of the Beck research group. The 

formulae used in this dissertation is given in appendix, section 6.2. 
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of Singly Ionized Nickel and Parameters of Effective 

Potential for Ni atom Rydberg States 
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2.1 Introduction 

This is a relativistic configuration interaction study of dipole and quadrupole 

polarizabilities of the singly ionized Nickel, Ni II. Four quantities have been calculated 

[1]; the scalar dipole polarizability of the first excited state Ni II (3d9 2D3/2), 𝛼𝛼𝐷𝐷,0( 𝐷𝐷3/2)2 , 

the non-adiabatic scalar dipole polarizability of the ground state Ni II (3d9 2D5/2), 

𝛽𝛽𝐷𝐷,0( 𝐷𝐷5/2
2 ), the quadrupole  polarizability 𝛼𝛼𝑄𝑄,0 ( 𝐷𝐷5/2)2 , and the off diagonal electric 

dipole polarizability 𝛼𝛼𝐷𝐷,2( 𝐷𝐷5/2
2 ). These quantities also appear as parameters in an 

effective potential for the Nickel atom Rydberg states [2].  

The Lundeen experimental group has been using the resonant excitation stark 

ionization spectroscopy (RESIS) method in which measurements are made on high 

energy Rydberg levels to determine core properties, specifically polarizabilities and  

moments of ions and atoms [3].  

A few years ago the Lundeen experimenters group began to measure properties of 

Rydberg states of Ni I which has a residual ionic core Ni II with configuration of 1s2 

…… 3d9 [4]. These properties are used to develop an effective potential for atoms (or 

ions) which then can be used to determine the effectiveness of these atoms or ions as an 

atomic clock or optical frequency standards [2]. The coefficients in this effective 

potential model are expressed in terms of matrix elements [2]. This allowed them to use 

measurements to fit into the effective potential model to obtain polarizabilities and 

moments of the ionic core [4, 5]. The derivation of this effective potential was done 

completely non-relativistically (which is fine because the relativistic effects in Ni are 

moderate, e.g. the relativistic energy difference between a 3d and a 4s electron is about 

0.1 eV [6]). Ni I was chosen to test the effective potential and to demonstrate the results. 

Their goal was to use the same method to study more complicated atoms, e.g. U and 

different actinide ions [3].   

On the other hand Beck’s research group studied electric and magnetic 

characteristics of Ni I and other positive ions previously [7]. So the Beck research group 

was asked to provide computational results for Ni II polarizabilities and moments in 

order to check the accuracy of the effective potential model proposed by the experimental 
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group. This led to cooperation of our group with Lundeen’s in calculating some of the 

parameters in the effective potential. These parameters represented some of the electric 

properties of Ni II. Our computational interest in the project was to develop the RCI 

techniques for treating the continuum states in order to produce more accurate results. 

This work led to two publications in 2012 and 2014 [8 and 1]. The first publication 

included calculations of an atomic hexadecapole moment, and developed some 

systematic methods (e.g. shifts) for treating any atomic moments [8].   

In general electric and magnetic properties of Ni II, as an example of positive 

ions, are important in many fields, e.g. the long range interaction between atoms, van der 

Waals forces, in the areas where atoms interact with external fields as in the precision of 

optical frequency standards, and in optical clocks. 

Rydberg states are the states where only one electron is excited to a high principle 

quantum number, n. Properties of Rydberg states can be described as hydrogenic in 

nature. To first order they may be described by an effective “n” which is nearly integer 

and/or effective charges close to 1.0 for a neutral atom [9]. Experimental studies of the 

electric and magnetic properties of neutral atoms have been shown to be fairly difficult. 

In 1933 Mayer and Mayer [10] introduced the idea of using spectroscopy of high-L 

Rydberg atoms where the Rydberg electron is considered as a probe to obtain the 

properties of the core. The dominant interaction between the ionic core and the Rydberg 

electron is the screened Columbic interaction. The presence of other long range 

interactions leads to the non-degeneracy of Rydberg electrons with the same principle 

quantum number “n” and produces binding energy patterns, “fine structure pattern” [9, 

11]. These patterns reflect the properties of the ionic core, e.g. electric properties and 

permanent moments. The simplicity of the Rydberg states made them an attractive probe. 

The measurement of the properties of such states can yield information about the residual 

core more simply than direct measurements of ground or low excited states [10]. 

Beginning in late 1970s there was a lot of experimental work on such states and 

summaries may be found in the work of Connerade [9], Gallagher [12], and in Drake’s 

handbook [6]. Also there have been many attempts at developing effective potentials [11, 

14] that account for the weak long ranged interactions between the core and the Rydberg 
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electron. The expectation value of such a potential is approximately equal to the fine 

structure patterns in the energy measurements on the high L Rydberg states [5]. 

RCI method has been used to calculate the reduced matrix elements of four 

quantities; the scalar dipole polarizability 𝛼𝛼𝐷𝐷,0( 𝐷𝐷3/2 
2 ), the non-adiabatic scalar dipole 

polarizability 𝛽𝛽𝐷𝐷,0( 𝐷𝐷5/2)2 , the quadrupole polarizability 𝛼𝛼𝑄𝑄,0( 𝐷𝐷5/2
2 ), the off diagonal 

electric dipole polarizability 𝛼𝛼𝐷𝐷,2( 𝐷𝐷5/2
2 ) of Ni II. Both of the bound and continuum 

contributions are included in the calculations. These quantities have not been computed 

previously. These results gain their importance form two facts; first they are pure ab-

initio calculations without any experimental fit. Second, they are directly done on Ni II 

which is the ionic core of Ni I.  

2.2 Theory  

The four quantities which are considered in this study can be expressed 

mathematically in two ways; first the algebraic form in terms of matrix elements, which 

is more convenient for experimental measurements and fit. Second is the analytical form 

as integration or summation in terms of f-value. As mentioned in chapter 1 that RCI 

algorithm can be used to compute the electric dipole and quadrupole transition 

probabilities with good accuracy. This section shows a presentation of the two 

expressions and the derivations that were implemented in our calculations. 

Dipole and quadruple polarizabilities represent the strongest factors for the 

deviation of the energy of the ion core- Rydberg electron system, from its hydrogenic 

values. The scalar dipole polarizability, Dalgarno’s formula [15] in au 

𝛼𝛼𝐷𝐷,0(𝑖𝑖) = ∑ 𝑣𝑣𝑖𝑖𝑖𝑖
(𝐸𝐸𝑖𝑖−𝐸𝐸𝑖𝑖)2 + ∫

(𝑑𝑑𝑣𝑣 𝑑𝑑𝐸𝐸⁄ )
(𝐸𝐸𝑖𝑖−𝐸𝐸)2

∞
𝐼𝐼1𝑘𝑘 𝑑𝑑𝐸𝐸                                                   (2.1). 

The first term represents the discrete (bound state) contributions of oscillator strengths fik 

and energy differences .The energies are taken from experiment when available [16]. The 

second term represents the continuum contributions, where E is the change of the kinetic 

energy of the continuum electron.  

Scalar quadrupole polarizability, αQ,0, could be calculated from equation 34 in [2], 
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𝛼𝛼𝑄𝑄,0 =  
2
5

 
1

2𝐽𝐽𝑐𝑐 + 1
 �

〈𝜁𝜁𝐽𝐽𝑐𝑐�𝑀𝑀(2)�𝜆𝜆`𝐽𝐽𝑐𝑐 
` 〉2

Δ𝐸𝐸(𝜆𝜆`𝐽𝐽𝑐𝑐` )
𝜆𝜆`,𝐽𝐽𝑐𝑐`

                                                  (2.2). 

the angular momentum of the ionic core is Jc and  𝑀𝑀(2) is the quadrupole moment 

operator that acts on the core ion wave function. | 𝜁𝜁 𝐽𝐽𝑐𝑐〉 and  | 𝜆𝜆` 𝐽𝐽𝑐𝑐` 〉 represent the ground 

state and an excited state for wave functions that are eigenfunction of J and parity,  𝜁𝜁 and 

λ stand for any extra quantum  numbers required to define the wave function, and ∆E is 

the difference of the two states energies. For computational wavefunctions we convert 

this expression that uses the reduced matrix element into another that uses f-value or df 

/dE table 10.6 of Martin and Wiese’s article [17] can be used to get 

𝛼𝛼𝑄𝑄,0(𝑖𝑖) =
2

5 𝑔𝑔𝑖𝑖 ∗ 1.119918
�

𝑔𝑔𝑖𝑖𝜆𝜆5𝐴𝐴𝑖𝑖𝑖𝑖
𝐸𝐸𝑖𝑖−𝐸𝐸𝑖𝑖𝑖𝑖

                                        (2.3) 

, 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑘𝑘  are statistical weights of the states i and k. This was used to calculate αQ,0 for 

the bound states, and Aki is the transition probability. 

For the continuum states the integral was used  

𝛼𝛼𝑄𝑄,0(𝑖𝑖) = 2.253818 ∗ 105  �
(𝑑𝑑𝑑𝑑 𝑑𝑑𝐸𝐸⁄ ) 𝑑𝑑𝐸𝐸
(𝐸𝐸𝑘𝑘   − 𝐸𝐸𝑖𝑖)4

∞

𝐼𝐼1
                           (2.4) 

 

, as derived using [18]. αQ,0 in equations (2.3) and (2.4) is in a.u. 

A third parameter is the non-adiabatic scalar dipole polarizability βD,0 that was 

first introduced to account for the dynamic effects of the Rydberg electrons. Earlier 

models considered a stationary electron and assumed that the core adjusts adiabatically to 

the motion of the Rydberg electron. It can be calculated using eq. 36 in [2], which is 

𝛽𝛽𝐷𝐷,0(𝑖𝑖) =  
1

3(2𝐽𝐽𝑖𝑖 + 1)�
〈𝜁𝜁𝑖𝑖  𝐽𝐽𝑖𝑖�𝑀𝑀(1)�𝜁𝜁𝑘𝑘  𝐽𝐽𝑘𝑘〉2

(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑘𝑘)2
𝑘𝑘

                                      (2.5). 

M (1) is the dipole moment operator, | 𝜁𝜁 𝐽𝐽〉 are wave functions that are eigenfunctions of 

angular momentum, parity, and the Hamiltonian. The sum is done over all the possible 

branches of transitions in the bound state calculations and it was replaced by an integral 

for the continuum calculations.  Equation 6.81 in Johnson [6] can be used to compute the 

dipole matrix element in equation (2.5). 
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𝐴𝐴𝑎𝑎𝑎𝑎 =  
2.02613 × 1018

𝜆𝜆3
 
𝑆𝑆𝐸𝐸1
[𝑙𝑙𝑎𝑎] 𝑠𝑠−1                                                                  (2.6). 

𝐴𝐴𝑎𝑎𝑎𝑎  is the coefficient of spontaneous emission in sec-1 , it is computed by RCI, 𝑆𝑆𝐸𝐸1 is the 

line strength, that is defined as 𝑆𝑆𝐸𝐸1 =    |< 𝑎𝑎||𝑟𝑟||𝑏𝑏 >|2,  𝜆𝜆 is the wavelength in Angstrom, 

[la] = 2la +1. 

The off-diagonal tensor dipole polarizability is another quantity that appears in 

the effective potential, equation 77 in [2].  

𝛼𝛼𝐷𝐷,2�𝐽𝐽𝑐𝑐` �

= 2�10
3    � 𝐽𝐽𝑐𝑐 2 𝐽𝐽𝑐𝑐

−𝐽𝐽𝑐𝑐 0 𝐽𝐽𝑐𝑐
�  (−1)𝐽𝐽𝑐𝑐`− 𝐽𝐽𝑐𝑐`  

∗ � (−1)2𝐽𝐽𝑐𝑐′′  �𝐽𝐽𝑐𝑐
′′ 1 𝐽𝐽𝑐𝑐
2 𝐽𝐽𝑐𝑐′ 1�  

〈 𝜁𝜁 𝐽𝐽𝑐𝑐�𝑀𝑀(1)� 𝜆𝜆′′  𝐽𝐽𝑐𝑐′′〉 〈 𝜆𝜆𝑐𝑐′′ 𝐽𝐽𝑐𝑐′′ �𝑀𝑀(1)�𝜁𝜁 𝐽𝐽𝑐𝑐′〉
Δ𝐸𝐸�𝜆𝜆′′  𝐽𝐽𝑐𝑐′′�

                     (2.7).
𝜆𝜆′′,𝐽𝐽𝑐𝑐′′ 

 

This equation includes mixing the dipole transitions from the ground state  | 𝜁𝜁 𝐽𝐽𝑐𝑐〉 and the 

first excited state, | 𝜁𝜁 𝐽𝐽𝑐𝑐` 〉 to common excited states |𝜆𝜆𝑐𝑐′′ 𝐽𝐽𝑐𝑐′′〉, {} is the 6j symbol. Contrary 

to the previous 3 quantities where the sums are positive definite, calculations of 𝛼𝛼𝐷𝐷,2 

require knowing the relative phases of each of reduced matrix element, since the dipole 

operator acts differently on the ground state and the excited state. The Johnson expression 

provides the magnitude only. Applying the Wigner-Eckart theorem (eq. 1.89 in [6]) on a 

matrix element gives its sign, as shown in equation (2.8),  

�𝐽𝐽1,𝑚𝑚1�𝑇𝑇𝑞𝑞𝑘𝑘�𝐽𝐽,𝑚𝑚2� =  (−1)𝑗𝑗1−𝑙𝑙1  � 𝐽𝐽1 𝑘𝑘 𝐽𝐽2
−𝑚𝑚1 𝑞𝑞 𝑚𝑚2

� 〈𝐽𝐽1‖𝑇𝑇𝑘𝑘‖𝐽𝐽2〉                             (2.8). 

It produces a reduced matrix element, of the tensor operator Tk that does not depend on 

the magnetic quantum numbers m1, m2, and q. In our case Tk stands for the dipole 

moment operator M1. ( ) is the 3 j symbol that is relabeled to Clebesch-Gordon 

coefficients. As mentioned in [1] the relative overall phase of 𝜓𝜓(𝜁𝜁 𝐽𝐽𝑐𝑐)∗ 𝜓𝜓�𝜁𝜁 𝐽𝐽′𝑐𝑐�  

determines the sign of 𝛼𝛼𝐷𝐷,2. 

2.3 Method and procedure  

Dipole and quadrupole polarizabilities of singly ionized nickel (Ni II) can be 

studied through two different approaches. The first is considering nickel atom (Ni I) in a 
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Rydberg state, where the core of the atom is the positive ion, Ni II, and one electron is 

excited to high principle quantum number. This approach is used experimentally [2, 12], 

where measurements are done on the Rydberg electron that is used as a probe for finding 

out about the core.  The second approach is a direct study of Ni II, which is what we did 

using the RCI method. Computing each atomic property of Ni II is done in three steps; (i) 

bound state calculations on Ni II where we start with Ni II in its ground state and 

consider excitations of electrons to higher states below the ionization energies, (ii) 

excitations above ionization are considered, here the Ni II changes into a Ni III core and a 

continuum electron, (iii) step is to combine these two calculations and to reach a final 

value. RCI computations can be summarized in these steps: 

 Bound state calculations: 

 Obtaining the wavefunctions of each J and parity of Ni II, 

 Calculating the probability of transition (dipole or quadrupole). 

 Continuum state calculations: 

 Obtaining the wavefunctions of each J and parity of Ni III, 

 Obtaining the wavefunction of each (Ni III + ε) for each J and parity, 

 Calculating the probability of transition (dipole or quadrupole). 

 Dipole and Quadrupole Polarizabilities calculations: 

 Adding the continuum and bound state transition probabilities for each J, 

 Interpolating between the highest bound and lowest continuum RCI results and 

extrapolation to infinity. 

 Calculating αs/β (equation in section 2.2) for each J, 

 Adding αs/β for all Js. 

Dirac-Coulomb Hamiltonian was used to generate the radial wavefunctions from the 

program of Desclaux [19]. The Rydberg functions are also generated by Desclaux 

program. The Breit effect is added during the RCI calculations. The reference 

configurations were Ni II 1s2 ….3d9 2D5/2 or 2D3/2; these are the ground and first excited 

states of Ni II. Correlation was added to the Rydberg states via shifts (see appendix 

section 6.3). 
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Excited states from 3d to higher Rydberg levels, which give 3d8 (Jcore) nlj were 

calculated using Desclaux program.  The nlj is the Rydberg electron, that is np and nf for 

dipole transitions and to ns, nd, and ng for quadrupole transitions, “n” is principle 

quantum number and “j” is the angular momentum of the electron. Also, a few 

excitations from the shallow core were examined; the most important ones were 3p to 3d, 

dipole, and 3s to 3d, quadrupole. Excitations from the inner core were not included 

because the parameters being considered in this study depend on high inverse powers of 

energy difference, i.e. 1/dEm, m ≥ 2. The excitation energy, dE, from the core is much 

larger than that from the valence shells. For example E(3p3/2) – E (3d3/2) ~ 6 au, E(2p3/2) – 

E (3d3/2)  ~ 65 au, E(3s1/2) – E (3d3/2)  ~ 8 au, E (2s1/2) – E (3d3/2)  ~ 68 au, and E (1s1/2) – 

E (3d3/2)  ~ 377 au.  

In the bound states a significant number of Rydberg levels (n = 13) were included for 

each symmetry (e.g. p or f for a dipole excitation or s, d, or g for quadrupole transitions) 

[1]. Adding these Rydberg levels helped to reduce the interpolation range, as explained in 

section 2.3.5. The RCI program being used is limited to maximum of 60 excited levels in 

one run, but we may need as twice as many. So the calculations for each symmetry (for a 

given total J, e.g. 3d8 np Jtotal =5/2) were split into two parts; n = 4 - 8 and n = 9 – 13. The 

full set of np (n = 4 -13) radials were kept in each section to avoid the collapse of the 

higher levels (n = 9-13). To see the effect of the split of the Rydberg series on the final 

results a test run with 8p wavefunction in the second piece (so the highest n in the first 

piece was n =7) was found to give the same total contribution. It was noticed that for the 

high n Rydberg levels the radial wavefunctions did not always behave smoothly. 

Sometimes wavefunctions of Rydberg electron with the same n and l, e.g. nf5/2 and nf7/2, 

have very different 〈𝑟𝑟〉, which reflected that one of the two functions dominated the total 

wavefunctions and the other was acting as a correlation effect. This led us to have 

different calculations for each type of valence electron, e.g. separate runs for nf5/2 and 

other runs for nf7/2 [1]. The final step in the RCI calculations of the bound states 

wavefunctions included shifts to the energy diagonal matrix elements. For more details 

on the shift please see appendix section 6.3 and references [7-8]. 

The transition probabilities between bound states (dipole or quadrupole) were 

calculated using the RFVIS code [20] which makes maximal use of symmetry and 
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includes the effects on non-orthonormality of the radials [1]. At this step we use the 

experimental energy values [16] (if they are available) because they are more accurate 

than the calculated energies. The transition matrix elements are ab-initio calculations with 

one of the inputs, energy levels, taken from experiment. The transition probabilities are 

calculated using the velocity and length gauges. Only the results of the length gauge 

results were used for further calculations, because the velocity operator emphasizes the 

mid-range values of r (distance from the origin) and it requires correlations due to the 

core excitations (those were not directly included). The length gauge emphasizes the long 

range of “r”, which emphasizes the Rydberg electron. 

The continuum calculations account for those transitions that include a Ni III core 

and a continuum electron. The wavefunctions of the core were generated by the program 

of Desclaux [19] and RCI program [21]. Then the continuum radials were generated by 

the program of Tews and Perger [22].  The continuum states are highly excited, Ni III 3d8 

εl, so the small energy contribution due to the interaction between the core, Ni III 3d8 and 

the continuum electron, εl,  was neglected. Wave functions for each channel, e.g.  3d8 

((2S+1L J )core) εlj , ε is the continuum electron, were calculated separately. So the total 

energy was considered as E (3d8) + E (εl), where E (3d8) were the experimentally 

measured values [16]. The transition probabilities were obtained by the RPI program 

[23]. The methodology used in this program is similar to that in the RFV1S, mentioned 

above. The main difference is that it calculates df/dE; the change of the oscillator strength 

with the change of the energy of the continuum electron. More details on the procedure of 

the continuum calculations are given below. 

2.3.1 Dipole Polarizability of Ni II 3d9 2D3/2, α D,0 (2D3/2) 

Ni II 3d9 2D3/2 is a meta-stable state of Ni II with a life time of 18.1 s [1]. We are 

studying it for two reasons; first its long life time may allow it to be important in different 

physical phenomena. Second, the value2D3/2 wavefunctions are required for calculating α 

D,2 of the ground state, equation (2.1). 

The transition considered here is: 
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NiII 3d9 2D 3/2 + photon (Energy)   
𝐸𝐸𝑙𝑙𝐸𝐸𝑐𝑐𝐸𝐸𝑟𝑟𝑖𝑖𝑐𝑐 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑙𝑙𝐸𝐸 𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑚𝑚𝑖𝑖𝐸𝐸𝑖𝑖𝐷𝐷𝑛𝑛 
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ni III 3d8(p +f)  Jfinal = 1/2, 

3/2, 5/2 

When initial state, Ni II 3d9 2D3/2, is supplied with energy that exceeds the 

ionization limit an electron ejects from the outer most shell. The result is Ni III 3d8 core 

and a p or f continuum electron, while the fields of the ion and the electron are affecting 

each other. The free electron can take any energy (it is not restricted to discrete energies 

as in the bound states) and this is the reason for calling this part of calculations 

continuum calculations. The produced core, Ni III 3d8, and the free electron together have 

Jfinal =1/2, 3/2, and 5/2 with an odd parity. So the dipole polarizability is calculated 

through the combination of Js as in table 2-1. 

Table 2-1: Combinations of single (continuum) electron (εj) with a Ni III core (Jcore) to 

give Ni II in continuum state (Jfinal). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Labels and energies of Ni III 3d8 levels of interest are shown in figure 2-1. This produced 

63 excited state channels. A complete list of channels is given in table 2-3. To explain the 

εj Jcore Jfinal 

p1/2 0 ½ 

p3/2 1, 2 ½ 

f5/2 2,3 ½ 

f7/2 3,4 ½ 

p1/2 1, 2 3/2 

p3/2 0, 1, 2, 3 3/2 

f5/2 1, 2, 3, 4 3/2 

f7/2 2, 3, 4 3/2 

p1/2 2, 3 5/2 

p3/2 1, 2, 3, 4 5/2 

f5/2 0, 1, 2, 3, 4 5/2 

f7/2 1, 2, 3, 4 5/2 
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labels of the channels consider this example: 3P0.p1.J1. Here 3P0 refers to the Ni III 3d8 
3P0 coupling of the core, p1 stands for a p electron with j=1/2, and J1 for a final J=1/2.  

This method for labeling the channels was followed throughout all the tables.  

Calculating the integration term in Dalgarno’s expression, equation (2.1), was 

done by the trapezoidal rule for (df/dE)/ (E0-E) 2.  

 

 

Figure 2-1:  A schematic representation to Ni III levels [15] included in this study, 

energy in cm-1. 

2.3.2 Off diagonal electric dipole polarizability of Ni II 3d9 2D5/2, 

αD,2(2D5/2) 

Referring to equation (2.7) we see that calculating αD,2(2D5/2) requires computing 

matrix elements of  the dipole transitions of both Ni II 3d9 2D5/2 and 2D3/2  with a common 

state (Jc’’). This is why here we considered the transitions of 2D5/2 and 2D3/2 to J=3/2 and 

5/2, only. 

Contrary to the scalar dipole polarizability in which only the magnitude of the 

matrix element was required αD,2(2D5/2) does include the phase of the matrix elements 

transitions. These were huge cancelations between some terms which consequently 

required extra accuracy in the calculations. Determining the phases was done by using 
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Wigner Eckart Theorem on each single transition, as mentioned in theory section 2.2, 

during the bound state calculations. Then the same phases were valid for the continuum 

channels. The transitions here are 

Ni II 3d9  2D5/2  
𝐸𝐸𝑙𝑙𝐸𝐸𝑐𝑐𝐸𝐸𝑟𝑟𝑖𝑖𝑐𝑐 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑙𝑙𝐸𝐸 𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑚𝑚𝑖𝑖𝐸𝐸𝑖𝑖𝐷𝐷𝑛𝑛 
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�     Ni III 3d8 (p + f )     J=3/2, 5/2 

, and 

Ni II 3d9  2D3/2   
𝐸𝐸𝑙𝑙𝐸𝐸𝑐𝑐𝐸𝐸𝑟𝑟𝑖𝑖𝑐𝑐 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑙𝑙𝐸𝐸 𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑚𝑚𝑖𝑖𝐸𝐸𝑖𝑖𝐷𝐷𝑛𝑛 
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�    Ni III 3d8 (p + f)     J=3/2 , 5/2 

There were old calculations for the continuum wave functions of Ni II 3d9 (2D5/2) 

done by Dr. Lin Pan [7]. The transition probabilities (df/dE verses E) between Ni II 3d9 

(2D5/2) and the continuum states Ni III 3d8 (p + f ) J = 3/2 and 5/2 were also available, as 

those were used to calculate some parameters for Ni II as in [7]. The transition 

probabilities for those old calculations were done at a different energy mesh (less dense). 

The transition probabilities between Ni II 3d9 (2D3/2) and the continuum states Ni III 3d8 

(p + f ) J = 3/2 and 5/2  were prepared at much denser mesh. In order calculate αD,2  the 

transition probabilities from (2D5/2)  and (2D3/2)   had to be on calculated on the same 

mesh. This was done by two methods; 

The first method was to interpolate df/dE of 2D3/2 (that was produced by a denser 

energy mesh) to the energy mesh that was used by Dr. Pan. Then the trapezoidal rule was 

used to integrate df/dE (of both 2D5/2 and 2D3/2) versus the energy. We also had two 

ranges of extrapolations; one from the highest calculated point to infinity and another one 

from the lowest calculated continuum point to the highest calculated discrete levels, those 

were 6p and 8f. 

The second method was reproducing df/dE of 2D5/2 using the same energy mesh 

that was used for 2D3/2. Then the integration was done using Simpson Rule. Performing 

integration with Simpson rule requires equal energy spacing which we did not have. In 

order to overcome this barrier the three contiguous points were fit by a parabola and the 

middle point interpolated from the fit. Simultaneously more Rydberg states were added to 

the discrete part. We extrapolated the product of the two matrix elements from the lowest 

E (~ 0.0008 eV above the threshold) to the threshold using a power function, and another 

extrapolation was done to infinity.   
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The results of the two methods looked different, αD,2 = 0.963 au using the first 

method and 5.592 x 10-2 au using the second method. Since this calculation included 

large cancelation due to the phase difference between 46 different channels, very slight 

change in the result of each individual channel could cause a big difference in the final 

value. It was important to analyze the calculations carefully to find the reason behind this 

big difference of (0.907 au) in final value. If the reason for this difference was the change 

of the mesh of the transition probability this would imply very poor continuum 

wavefunctions and instable calculations. By looking at the details of the calculations of 

each channel more closely we found that the difference was due to the change in the 

range of the interpolation between the continuum and discrete states. We saw that using 

Trapezoidal verses Simpson’s rules for integrations did not make a noticeable difference. 

Also, changing the mesh in the transition probability calculations was not the reason. So 

we conclude that including more Rydberg states was necessary for this calculation. 

Calculating αD,2 for the continuum range was pretty stable regardless of the method of 

integration. Computing αD,2 included 46 channels of transitions, which are in table 2-5.  

2.3.3 Non-Adiabatic scalar dipole polarizability of Ni II 3d9 2D5/2, 

βD,0(2D5/2) 

The f-value for the discrete part was calculated using method-B, in section 2.3.5. 

Also, here the effects of the shallow core 3p to 3d excitation on βD,0 was significant, see 

table 2-6. The continuum calculation included a transition of 

Ni II 3d9 2D5/2  
𝐸𝐸𝑙𝑙𝐸𝐸𝑐𝑐𝐸𝐸𝑟𝑟𝑖𝑖𝑐𝑐 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑙𝑙𝐸𝐸 𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑚𝑚𝑖𝑖𝐸𝐸𝑖𝑖𝐷𝐷𝑛𝑛 
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�     Ni III 3d8 (p + f)            J=3/2, 5/2, and J=7/2. 

Calculating βD,0 as in equation s (2.5) and (2.6) included integrating (df/dE)/(E-E0)3  which 

was done using the trapezoidal rule with two ranges of extrapolation were added, one to 

infinity and one to the threshold. There were 72 continuum transition channels included 

in this calculation, see table 2-7. 
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2.3.4 Quadrupole polarizability of Ni II 3d9 2D5/2, αQ,0 (2D5/2) 

The αQ,0 (2D5/2) was calculated from the following transitions of the ground state 

through the quadrupole operator; 

Ni II 3d9 2D5/2    
𝐸𝐸𝑙𝑙𝐸𝐸𝑐𝑐𝐸𝐸𝑟𝑟𝑖𝑖𝑐𝑐 𝑞𝑞𝑞𝑞𝑎𝑎𝑑𝑑𝑟𝑟𝑞𝑞𝐷𝐷𝐷𝐷𝑙𝑙𝐸𝐸 𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑚𝑚𝑖𝑖𝐸𝐸𝑖𝑖𝐷𝐷𝑛𝑛 
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  Ni III 3d8 (s + d + g)     Jfinal = 1/2, 3/2, 5/2, 

7/2, and 9/2. 

Both the initial and final states have even parity. 

The f-value for the bound states was calculated using method-B in section 2.3.5. 

Here the excitations of the shallow core 3s to 3d were found important. All the 

excitations of 3d to s + d + g were studied.  

The continuum part included 133 transition channels.  The list of channels is in 

table 2-9 in the results section. Calculating αQ,0 as in equations (2.3) and (2.4) included 

integration of df/dE / (E-E0)4 that was done using the trapezoidal rule. 

2.3.5 Interpolating the bound and the continuum states 

In order to have accurate calculation of the dipole and quadrupole polarizabilities 

we need to  include all the range of energies starting from the ground state to the 

ionization level (bound or discrete states) and from the ionization limit to infinity 

(continuum states). Each of these two parts are infinite sums so some approximation is 

needed. Since we were seeking the most accurate results possible we compared two 

methods for the calculations, methods A and B below. 

Method-A 

The bound state calculations included Rydberg states up to 8p and 7f. The 

continuum spectrum started at about 0.01 eV and ended at about 200 eV. An interpolation 

was done from the top calculated bound state up to the first calculated continuum level 

and an extrapolation from the end of the calculated continuum to infinity using an inverse 

power law, (df/dE) / (E0  - E)2 = A/En. This method was used only for calculating the 

scalar dipole polarizability of Ni II 2D 3/2, because that did not have a cancelation effect 

due to phase changes 
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Method-B 

The bound state calculations included Rydberg states up to 13p and 12f, which 

meant there were about 100-120 Rydberg levels of each type (e.g. 3d8 np J). The 

continuum spectrum started at about 0.0001 eV with a denser mesh than that used in 

method A, and extended to 500 eV. There were two ranges of interpolation; from the top 

of the bound state to the threshold, and from the threshold to the bottom of the 

continuum, and there was n extrapolation from the highest continuum energy to infinity. 

All these integrations were done using Simpson rule.  

2.4 Results and Discussion 

2.4.1 Scalar Dipole Polarizability of Ni II 3d9 2D3/2, α D,0 (2D3/2) 

We computed α D,0 (2D3/2) to be 7.6859 au. The meta-stability of this excited state 

should make the dipole polarizability capable of measurement. This value is small 

comparing to the static polarizability of Ni I 3F4, 46 au as in [24] and it is close to Ni II 
2D5/2 7.7367 au as in [7] as expected.  

Table 2-2 gives the contributions of the bound state part. Table 2-3 gives the 

continuum part; it gives a list of the channels of the dipole transition and the contribution 

of each channel. As we see in table 2-2 the bound excitations of 3d to p are dominant.  

Table 2-3 shows that the excitations of 3d to f are dominant in the continuum part. The 

contribution of 3d to f increases with J. The contribution due f7/2 is bigger than that of f5/2 

for J = 1/2and 5/2 and they have almost equal contributions for J = 3/2. 

As we see in the table 2-3 3P1.p1.J1, 3P1.p1.J3 and 3F3.p1.J5 channels give 

zeros. That’s because the dipole matrix element is zero. We can write the transition 

as, �Ni II 3𝑑𝑑9 𝐷𝐷3/2
2  �Ω�Ni III 3𝑑𝑑8 𝑃𝑃1/2

3 𝑝𝑝1/2 � , this reduces to the matrix element  

�3𝑑𝑑5/2�Ω�𝑝𝑝1/2� which is zero because “Ω” is a tensor of rank-1, etc. 
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2.4.2 Off diagonal electric dipole polarizability of Ni II 3d9 2D5/2 , 

αD,2(2D5/2) 

 This included calculations of matrix elements of Ni II 3d9 states; 2D5/2 and 2D3/2 . 

In equation (2.7), Jc=5/2, Jc
` = 3/2, and Jc

`` = 3/2 and 5/2 and the energy difference is the 

energy of the final states, where 3d9 2D5/2 is taken to be the reference. Tables 2-4 and 2-5 

give the bound and continuum contributions to αD,2(2D5/2). The phase differences of the 

different channels resulted in huge cancellations, for a loss of two significant figures. Our 

result is -0.2204 au (this is the sum of -0.0559 au due to continuum and -0.1645 due to 

bound states).  The estimated value of Woods et al is -0.04 au [5]. This estimation was 

based on bound state calculations done by us, as cited in [5]. As we see the two results 

agree on the phase (both are negative) but disagree on the magnitude. 

Regarding the continuum part, the channels that included p continuum electron 

had the maximum df/dE very close to the threshold energy, while those that had f 

electron had the maximum quite far from the threshold (roughly at about 20-30 eV above 

threshold). These three channels; 3P1.p1.J1, 3P1.p1.J3 and 3F3.p1.J5 included forbidden 

transitions so their contributions were zero and they are not included in table 2-5. 

2.4.3 Non-Adiabatic scalar dipole polarizability of Ni II 3d9 2D5/2, 

βD,0(2D5/2) 

We calculated βD,0 (2D5/2) to be 9.2345 au (this is the sum of 8.08944 au due to 

bound states and 1.1535 due to the continuum) which is in good agreement with 

estimated value of Wood et al, 8.9 (1.2) au [5]. Table 2-6 gives the contributions due to 

the different symmetries and it shows that 3d to p were stronger than 3d to f transitions in 

the bound state, and that some of the shallow core excitations were of significant effect.  

Table 2-7 gives the channels and their contributions to the continuum part. 



35 

2.4.4 Quadrupole polarizability of Ni II 3d9 2D5/2, αQ,0 (2D5/2) 

Our value is 62.940 au (this is the sum of 54.917 au due to bound states and 

8.02362 au) which agrees with the value of Wood’s at 55(8) a.u. [5]. Table 2-8 gives the 

contributions of the different symmetries in the bound state part. The contributions of 3d 

to s are the most significant and 3d to g are the smallest. 

Table 2-9 gives the contributions due to each continuum channel for transitions in 

αQ,0 (2D5/2). It also gives the total contribution due to all the channels for a fixed one 

electron type for a given J. From the table we see that αQ,0 due to transitions that includes 

a s electron were all small, about 10-3-10-4 for all Js. The contributions due to d3/2 and d5/2 

were of order 10-1 for all Js. The biggest contributions are those of g, these are of order 

101. Although g9/2 contributed through fewer channels –due to the selection rule as will 

be explained below- its contribution was almost equal or greater than that of g7/2. 

The df/dE of the channels that included d and g had very good gauge agreement, 

that velocity and length gauges came up at the same order of magnitude and their results 

were close for most of the cases. Most of df/dE verses E curves of the d channels had 

very smooth curves with peaks very close to the threshold. A few of them, e.g.  

3F3.d5.J3, 3F4.d5.J5, 1D2.d5.J5 and 3F3.d3.J5 had the peaks about 40-60 eV above the 

threshold, which is not too high as the mesh extended to 500 eV. All the df/dE that 

included g electrons had the peaks at very high energies, about 200 eV above threshold. 

For the transitions that included s electrons df/dE by velocity gauge was about 1 order of 

magnitude off from the calculations using the length gauge for all Js. The curves of df/dE 

verses E seemed to have two peaks a smaller one very close to threshold and a higher one 

at very high energy, about 400 eV above the threshold. 

Due to the selection Rules some of the channels produced zero df/dE. We saw 

that in 3F3.g9J3, 3F3.g9J5, 3P1.g9J7, 3F3.g9J7, 3P1.g9J9, 3F3.g9J9. These have the 

matrix element �Ni II 3d9 D5/2
2  �Ω.Ω�Ni III 3d8  P13  g9/2�, which reduces to 

�3d3/2 �Ω.Ω�g9/2� which is zero. 



36 

2.4.5 Discussion 

We computed four quantities for the first time. Two of our results agree well with 

the values of Wood et al [5] which they deduced from measurements. For αD,2 the 

calculations included summations of very small quantities and many cancellations due to 

the phase differences,  that made reaching accurate results was not so easy.  

One more important quantity is αQ,0 - 6βD,0  because it was determined by a 

combination of measurements and fitting [5]. Then the value of βD,0 was extracted from 

this sum [5]. Although our calculations for the αQ,0 and βD,0  quantities agree well with 

the values given in [10] we get αQ,0 - 6βD,0  = 7.48 au while Wood et al get 1.4(2.8) [10]. 

Adding more Rydberg states in the discrete part did not bring our result closer to Wood’s. 

A few comments here; i) Wood’s et al in [5] is not clear enough about which quantities 

(other than energies) were being directly measured and which were obtained by fitting, ii) 

their error bar for this quantity is 200%, iii) a small change in the calculations of βD,0  will 

lead to a big effect in this quantity because βD,0  is multiplied by 6. 

From all the tables we see that although the continuum contributions are smaller 

than those of the bound state but they are significant enough and cannot be ignored.  
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Table 2-2: Bound state contribution to Ni II 3d9 2D3/2, α (2D3/2) in au [1]. 

Transition J final (J’) Bound 
𝟑𝟑𝟑𝟑 → 𝒑𝒑 5/2 1.9108 
𝟑𝟑𝟑𝟑 → 𝒑𝒑 3/2 2.0644 
𝟑𝟑𝟑𝟑 → 𝒑𝒑 1/2 0.7482 
𝟑𝟑𝟑𝟑 → 𝒇𝒇 5/2 0.1679 
𝟑𝟑𝟑𝟑 → 𝒇𝒇 3/2 0.1026 
𝟑𝟑𝟑𝟑 → 𝒇𝒇 1/2  0.0406 

Total 5.0345 
 

 

Table 2-3: Contributions due to each continuum channel to the scalar dipole 

polarizability of Ni II 3d 9 2D3/2 , αD,0 (2D3/2)  in au. 

channel# Channel αD,0 (2D3/2) 

1 3P0.p1.J1 5.6862E-03 

2 1S0.p1.J1 3.8759E-03 

Sum p1.J1 9.5621E-03 

3 3P1.p3.J1 1.4368E-02 

4 3F2.p3.J1 3.6673E-05 

5 1D2.p3.J1 3.0977E-03 

6 3P2.p3.J1 1.2216E-02 

Sum p3.J1 2.9720E-02 

Sum p(1+3).J3 3.9282E-02 

7 3F2.f5.J1 4.6271E-02 

8 1D2.f5.J1 9.0145E-03 

9 3P2.f5.J1 7.6853E-04 

10 3F3.f5.J1 1.0094E-02 

Sum f5.J1 6.6148E-02 

11 3F3.f7.J1 4.6814E-02 

12 3F4.f7.J1 4.5835E-02 

13 1G4.f7.J1 1.8682E-01 
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sum f7.J1 2.7948E-01 

sum f(5+7).J1 3.4562E-01 

sum (p+f).J1 3.8490E-01 

14 3P1.p1.J3 0.0000E+00 

15 3F2.p1.J3 2.8124E-02 

16 1D2.p1.J3 1.0112E-02 

17 3P2.p1.J3 5.7909E-03 

sum p1.J1 4.4028E-02 

18 3P0.p3.J3 1.1261E-03 

19 1S0.p3.J3 7.7393E-04 

20 3P1.p3.J3 4.5998E-03 

21 3F2.p3.J3 7.9687E-03 

22 1D2.p3.J3 4.1584E-04 

23 3P2.p3.J3 1.0254E-02 

24 3F3.p3.J3 3.0916E-02 

sum p3.J3 5.6055E-02 

sum p(1+3).J3 1.0008E-01 

25 3P1.f5.J3 9.0479E-03 

26 3F2.f5.J3 2.0953E-01 

27 1D2.f5.J3 5.9517E-02 

28 3P2.f5.J3 1.8581E-02 

29 3F3.f5.J3 4.9829E-05 

30 3F4.f5.J3 2.6184E-03 

31 1G4.f5.J3 1.0830E-02 

sum f5.J3 3.1017E-01 

32 3F2.f7.J3 2.4579E-02 

33 1D2.f7.J3 4.1619E-03 

34 3P2.f7.J3 5.3277E-02 

35 3F3.f7.J3 2.2004E-01 

36 3F4.f7.J3 8.8031E-08 
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37 1G4.f7.J3 3.9153E-07 

sum f7.J3 3.0206E-01 

sum f(5+7).J3 6.1224E-01 

sum (p+ f).J3 7.1232E-01 

38 3F2.p1.J5 6.4493E-03 

39 1D2.p1.J5 2.4763E-03 

40 3P2.p1.J5 1.4323E-03 

 41 3F3.p1.J5 0.0000E+00 

Sum p1.J5 1.0358E-02 

42 3P1.p3.J5 1.7548E-04 

43 3F2.p3.J5 7.9121E-03 

44 1D2.p3.J5 6.4583E-04 

45 3P2.p3.J5 1.9832E-04 

46 3F3.p3.J5 1.6704E-02 

47 3F4.p3.J5 1.1443E-02 

48 1G4.p3.J5 4.5179E-02 

Sum p3.J5 8.2259E-02 

Sum p(1+3).J5 9.2616E-02 

49 3P0.f5.J5 8.2360E-02 

50 1S0.f5.J5 5.7953E-02 

51 3P1.f5.J5 1.7053E-03 

52 3F2.f5.J5 2.1466E-01 

53 1D2.f5.J5 1.1531E-01 

54 3P2.f5.J5 9.6756E-02 

55 3F3.f5.J5 1.5943E-02 

56 3F4.f5.J5 3.5052E-03 

57 1G4.f5.J5 1.4518E-02 

Sum f5.J5 6.0272E-01 

58 3P1.f7.J5 2.1121E-01 

59 3F2.f7.J5 8.2806E-02 
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60 1D2.f7.J5 1.3962E-02 

61 3P2.f7.J5 1.7861E-01 

62 3F3.f7.J5 2.4932E-01 

63 3F4.f7.J5 2.3080E-02 

64 1G4.f7.J5 9.9876E-02 

Sum f7.J7 8.5886E-01 

Sum f(5+7).J7 1.4616E+00 

Sum (p+ f).J7 1.5542E+00 

Total  
 

2.6514E+00 
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Table 2-4: Bound state contributions to αD,2 (2D5/2) in au [1]. 

Transition Jfinal (J``) Bound 

𝟑𝟑𝟑𝟑 → 𝒑𝒑 5/2 + 0.6553 - 0.3973 
= + 0.2581 

𝟑𝟑𝟑𝟑 → 𝒑𝒑 3/2 + 0.3967 - 0.8011 
= - 0.4044 

𝟑𝟑𝟑𝟑 → 𝒇𝒇 5/2 + 0.0320 - 0.0663 
= - 0.0343 

𝟑𝟑𝟑𝟑 → 𝒇𝒇 3/2 + 0.0255 - 0.0357 
= - 0.01022 

𝟑𝟑𝒑𝒑 → 𝟑𝟑𝟑𝟑 3/2 + 0.02636 

Total  + 0.2844 - 0.4490 
= - 0.1645 

 

Table 2-5: Continuum contributions to αD,2 (2D5/2)in au 

Channel # Channel αD,0 (2D5/2) 

1 1D2.p1.J3 2.9273E-03 

2 3F2.p1.J3 -1.3669E-01 

3 3P2.p1.J3 6.4701E-02 

4 3P0.p3.J3 -8.3062E-03 

5 1S0.p3.J3 7.0647E-03 

6 3P1.p3.J3 -3.1824E-03 

7 1D2.p3.J3 -2.9273E-03 

8 3F2.p3.J3 -1.4836E-02 

9 3P2.p3.J3 1.5346E-01 

10 3F3.p3.J3 -1.3537E-01 

11 3P1.f5.J3 -7.0147E-03 

12 1D2.f5.J3 -4.8808E-01 

13 3F2.f5.J3 1.5344E+00 

14 3P2.f5.J3 -5.8747E-02 

15 3F3.f5.J3 -3.1888E-03 

16 3F4.f5.J3 -1.4539E-02 

17 1G4.f5.J3 -2.4871E+00 
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18 1D2.f7.J3 2.5393E-02 

19 3F2.f7.J3 2.2035E-02 

20 3P2.f7.J3 -5.5777E-02 

21 3F4.f7.J3 -8.7985E+00 

22 1G4.f7.J3 7.8268E+00 

23 1D2.p1.J5 9.6991E-04 

24 3F2.p1.J5 -3.9677E-02 

25 3P2.p1.J5 2.1586E-02 

26 3P1.p3.J5 7.0236E-04 

27 1D2.p3.J5 2.0746E-02 

28 3F2.p3.J5 -6.8104E-02 

29 3P2.p3.J5 1.7751E-04 

30 3F3.p3.J5 3.7854E-04 

31 3F4.p3.J5 1.3032E+00 

32 1G4.p3.J5 -1.5819E-01 

33 3P0.f5.J5 2.5067E-01 

34 1S0.f5.J5 -2.2036E-01 

35 3P1.f5.J5 3.7143E-02 

36 1D2.f5.J5 -2.4858E+00 

37 3F2.f5.J5 8.7950E+00 

38 3P2.f5.J5 -4.2117E+00 

39 3F3.f5.J5 3.0733E+00 

40 3F4.f5.J5 -1.9879E-01 

41 1G4.f5.J5 -2.5095E+00 

42 1D2.f7.J5 1.5634E+00 

43 3F2.f7.J5 1.3727E+00 

44 3P2.f7.J5 -3.4282E+00 

45 3F4.f7.J5 -9.9150E+00 

46 1G4.f7.J5 9.3169E+00 

Total   -5.59196E-02 
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Table 2-6: Discrete contribution to βD,0 (2D5/2) in au [1]. 

Transition J of the final state 
(J’) Bound 

𝟑𝟑𝟑𝟑 → 𝒑𝒑 7/2 1.9258 
𝟑𝟑𝟑𝟑 → 𝒑𝒑 5/2 3.5763 
𝟑𝟑𝟑𝟑 → 𝒑𝒑 3/2 2.2230 
𝟑𝟑𝟑𝟑 → 𝒇𝒇 7/2 0.1288 
𝟑𝟑𝟑𝟑 → 𝒇𝒇 5/2 0.1229 
𝟑𝟑𝟑𝟑 → 𝒇𝒇 3/2 0.0924 
𝟑𝟑𝒑𝒑 → 𝟑𝟑𝟑𝟑 3/2 0.0203 

            Total 8.0894 
 

Table 2-7: Continuum contribution to βD,0 (2D5/2)in au. 

Channel # Channel βD,0 (2D5/2) 

1 3P1.p1.J3 4.9002E-03 
2 3F2.p1.J3 1.3400E-03 
3 1D2.p1.J3 6.9979E-05 
4 3P2.p1.J3 2.5786E-03 
5 3P0.p3.J3 1.6888E-03 
6 1S0.p3.J3 1.2398E-03 
7 3P1.p3.J3 1.5833E-04 
8 3F2.p3.J3 5.1599E-04 
9 1D2.p3.J3 8.3086E-03 
10 3P2.p3.J3 3.4411E-03 
11 3F3.p3.J3 1.1584E-03 

Sum p.J3 2.5400E-02 
12 3P1.f5.J3 2.4545E-04 
13 3F2.f5.J3 2.6810E-03 
14 1D2.f5.J3 2.7032E-03 
15 3P2.f5.J3 1.0128E-03 
16 3F3.f5.J3 2.3080E-02 
17 3F4.f5.J3 2.0158E-03 
18 1G4.f5.J3 7.2142E-02 
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19 3F2.f7.J3 3.2568E-04 
20 1D2.f7.J3 2.0019E-03 
21 3P2.f7.J3 3.3603E-04 
22 3F4.f7.J3 6.4239E-02 
23 1G4.f7.J3 1.1458E-02 

Sum f.J3 1.8224E-01 
Sum (p+ f).J3 2.0764E-01 
24 3F2.p1.J5 1.4114E-03 
25 1D2.p1.J5 7.8677E-05 
26 3P2.p1.J5 2.8919E-03 
27 3F3.p1.J5 1.0061E-02 
28 3P1.p3.J5 7.6142E-04 
29 3F2.p3.J5 1.9712E-01 
30 1D2.p3.J5 6.4339E-03 
31 3P2.p3.J5 1.7049E-04 
32 3F3.p3.J5 4.9749E-06 
33 3F4.p3.J5 2.5364E-02 
34 1G4.p3.J5 7.0397E-04 

Sum p.J5 4.9853E-02 
35 3P0.f5.J5 8.0792E-04 
36 1S0.f5.J5 6.2082E-04 
37 3P1.f5.J5 5.7801E-03 
38 3F2.f5.J5 1.2479E-02 
39 1D2.f5.J5 5.8922E-03 
40 3P2.f5.J5 1.1597E-02 
41 3F3.f5.J5 5.8210E-02 
42 3F4.f5.J5 1.7185E-02 
43 1G4.f5.J5 4.5039E-02 
44 3F2.f7.J5 5.0123E-03 
45 1D2.f7.J5 3.0659E-02 
46 3P2.f7.J5 5.1413E-03 
47 3F4.f7.J5 1.3266E-01 
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48 1G4.f7.J5 2.4387E-02 
Sum  f.J5 3.5547E-01 
Sum (p+ f).J5 4.0533E-01 
49 3F3.p1.J7 3.0260E-03 
50 3F4.p1.J7 2.8679E-03 
51 1G4.p1.J7 1.1380E-02 
52 3F2.p3.J7 4.4174E-04 
53 1D2.p3.J7 5.4777E-04 
54 3P2.p3.J7 9.4077E-05 
56 3F3.p3.J7 1.4850E-03 
57 3F4.p3.J7 1.0948E-02 

 Sum p.J7 3.0791E-02 
58 3P1.f5.J7 4.7871E-02 
59 3F2.f5.J7 1.5862E-02 
60 1D2.f5.J7 1.2568E-04 
61 3P2.f5.J7 5.0566E-02 
62 3F3.f5.J7 6.0930E-02 
63 3F4.f5.J7 2.9782E-02 
64 1G4.f5.J7 1.1802E-02 
65 3P0.f7.J7 1.6236E-02 
66 1S0.f7.J7 1.5344E-02 
67 3F2.f7.J7 1.7525E-02 
68 1D2.f7.J7 1.0523E-01 
70 3P2.f7.J7 1.8189E-02 
71 3F4.f7.J7 1.0192E-01 
72 1G4.f7.J7 1.8415E-02 

Sum f.J7 5.0979E-01 
Sum (p+ f).J7 5.4058E-01 
Total    1.5355E+00 
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Table 2-8: Discrete contributions to αQ,0 (2D5/2) in au [1]. 

Transition J of the final state 
(J’) Bound 

𝟑𝟑𝟑𝟑 → 𝒔𝒔 1/2 1.4280 
𝟑𝟑𝟑𝟑 → 𝒔𝒔 3/2 5.2230 
𝟑𝟑𝟑𝟑 → 𝒔𝒔 5/2 6.6580 
𝟑𝟑𝟑𝟑 → 𝒔𝒔 7/2 24.5520 
𝟑𝟑𝟑𝟑 → 𝒔𝒔 9/2 4.4860 
𝟑𝟑𝟑𝟑 → 𝟑𝟑 1/2 0.2670 
𝟑𝟑𝟑𝟑 → 𝟑𝟑 3/2 0.8370 
𝟑𝟑𝟑𝟑 → 𝟑𝟑 5/2 1.0610 
𝟑𝟑𝟑𝟑 → 𝟑𝟑 7/2 0.9360 
𝟑𝟑𝟑𝟑 → 𝟑𝟑 9/2 1.4780 
𝟑𝟑𝟑𝟑 → 𝒈𝒈 1/2 0.0027 
𝟑𝟑𝟑𝟑 → 𝒈𝒈 3/2 0.0075 
𝟑𝟑𝟑𝟑 → 𝒈𝒈 5/2 0.0140 
𝟑𝟑𝟑𝟑 → 𝒈𝒈 7/2 0.0210 
𝟑𝟑𝟑𝟑 → 𝒈𝒈 9/2 0.0482 

3d9 2D 5/2         2D 3/2 6.8420 
𝟑𝟑𝒔𝒔 → 𝟑𝟑𝟑𝟑 0.0053 

Total 54.9170 
 

Table 2-9: Continuum contributions to αQ,0 (2D5/2) in au. 

Channel # Channel αQ,0 (2D5/2) 

1 1S0.s1.J1 5.6517E-05 

2 3P0.s1.J1 6.6128E-05 

3 3P1.s1.J1 5.3537E-05 

Sum s1.J1 1.7618E-04 

4 3P1.d3.J1 3.2059E-03 

5 3F2.d3.J1 1.6143E-02 

6 1D2.d3.J1 2.0243E-02 

7 3P2.d3.J1 4.7831E-03 

Sum d3.J1 4.4375E-02 

8 3F2.d5.J1 9.7051E-04 

9 1D2.d5.J1 1.5049E-02 

10 3P2.d5.J1 9.5770E-03 
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11 3F3.d5.J1 1.0743E-02 

Sum d5.J1 3.6339E-02 

Sum d.J1 8.0714E-02 

12 3F3.g7.J1 1.2066E-02 

13 3F4.g7.J1 1.5257E-05 

14 1G4.g7.J1 2.0345E-01 

Sum g7.J1 2.1553E-01 

15 3F4.g9.J1 3.9878E-02 

16 1G4.g9.J1 8.0060E-03 

Sum g9.J1 4.7884E-02 

Sum g.J1 2.6341E-01 

Sum (s+ d+ g).J1 3.4431E-01 

17 3P1.s1.J3 7.8332E-05 

18 3F2.s1.J3 5.8306E-06 

19 1D2.s1.J3 2.4301E-04 

20 3P2.s1.J3 2.5635E-04 

Sum s1.J3 5.8352E-04 

21 3P0.d3.J3 5.3316E-03 

22 1S0.d3.J3 3.6454E-03 

23 3P1.d3.J3 1.9176E-02 

24 3F2.d3.J3 5.7222E-03 

25 1D2.d3.J3 6.1706E-06 

26 3P2.d3.J3 9.9963E-03 

27 3F3.d3.J3 2.2664E-02 

Sum d3.J3 6.6542E-02 

28 3P1.d5.J3 1.6681E-03 

29 3F2.d5.J3 1.8817E-03 

30 1D2.d5.J3 3.8140E-02 

31 3P2.d5.J3 3.0885E-02 

32 3F3.d5.J3 1.6182E-02 
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33 3F4.d5.J3 1.0723E-01 

34 1G4.d5.J3 2.4870E-03 

Sum d5.J3 1.9847E-01 

Sum d.J3 2.6502E-01 

35 3F2.g7.J3 6.1640E-03 

36 1D2.g7.J3 9.8603E-03 

37 3P2.g7.J3 7.8439E-04 

38 3F3.g7.J3 8.2672E-02 

39 3F4.g7.J3 7.8298E-03 

40 1G4.g7.J3 2.8889E-01 

sum g7.J3 3.9620E-01 

41 3F3.g9.J3 0.0000E+00 

42 3F4.g9.J3 2.5004E-01 

43 1G4.g9.J3 5.0280E-02 

Sum g9.J3 3.0032E-01 

Sum g.J3 6.9652E-01 

Sum (s+ d+ g).J3 9.6212E-01 

44 3F2.s1.J5 1.4351E-04 

45 1D2.s1.J5 2.9391E-04 

46 3P2.s1.J5 9.5701E-06 

47 3F3.s1.J5 7.1213E-05 

Sum s1.J5 5.1820E-04 

48 3P1.d3.J5 4.4216E-02 

49 3F2.d3.J5 3.5199E-03 

50 1D2.d3.J5 1.7160E-02 

51 3P2.d3.J5 3.2571E-03 

52 3F3.d3.J5 5.0535E-02 

53 3F4.d3.J5 1.1526E-02 

54 1G4.d3.J5 4.5177E-02 

Sum d3.J5 1.7539E-01 
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55 3P0.d5.J5 2.5695E-02 

56 1S0.d5.J5 2.4455E-02 

57 3P1.d5.J5 5.9777E-03 

58 3F2.d5.J5 1.0149E-03 

59 1D2.d5.J5 2.1977E-03 

60 3P2.d5.J5 1.5345E-02 

61 3F3.d5.J5 1.5571E-03 

62 3F4.d5.J5 1.3895E-01 

63 1G4.d5.J5 1.6699E-04 

Sum d5.J5 2.1536E-01 

Sum d.J5 3.9075E-01 

64 3P1.g7.J5 4.8998E-03 

65 3F2.g7.J5 3.6054E-02 

66 1D2.g7.J5 4.2396E-02 

67 3P2.g7.J5 1.2758E-02 

68 3F3.g7.J5 2.0889E-01 

69 3F4.g7.J5 5.4998E-02 

70 1G4.g7.J5 2.3072E-01 

sum g7.J5 5.9072E-01 

71 3F2.g9.J5 5.5944E-03 

72 1D2.g9.J5 3.6836E-02 

73 3P2.g9.J5 1.0206E-02 

74 3F3.g9.J5 0.0000E+00 

75 3F4.g9.J5 5.4134E-01 

76 1G4.g9.J5 1.0894E-01 

Sum g9.J5 7.0292E-01 

Sum g.J5 1.2936E+00 

Sum (s+ d+ g).J5 1.6849E+00 

77 3F3.s1.J7 2.9812E-04 

78 3F4.s1.J7 9.4064E-04 
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79 1G4.s1.J7 6.4225E-05 

Sum s1.J7 1.3030E-03 

80 3F2.d3.J7 7.4426E-03 

81 1D2.d3.J7 1.2221E-03 

82 3P2.d3.J7 4.7648E-02 

83 3F3.d3.J7 1.4510E-02 

84 3F4.d3.J7 2.9041E-03 

85 1G4.d3.J7 6.9366E-02 

Sum d3.J7 1.4309E-01 

86 3P1.d5.J7 1.4294E-02 

87 3F2.d5.J7 1.7428E-02 

89 1D2.d5.J7 7.2199E-02 

90 3P2.d5.J7 8.0520E-03 

91 3F3.d5.J7 4.1709E-03 

92 3F4.d5.J7 4.6609E-03 

93 1G4.d5.J7 1.9300E-02 

Sum d5.J7 1.4011E-01 

Sum d.J7 2.8320E-01 

94 3P0.g7.J7 8.0188E-03 

95 1S0.g7.J7 8.8755E-03 

96 3P1.g7.J7 5.1993E-02 

97 3F2.g7.J7 7.7008E-02 

98 1D2.g7.J7 4.0552E-02 

99 3P2.g7.J7 8.7492E-02 

100 3F3.g7.J7 3.0207E-01 

101 3F4.g7.J7 1.3559E-01 

102 1G4.g7.J7 1.0766E-01 

Sum g7.J7 8.1926E-01 

103 3P1.g9.J7 0.0000E+00 

104 3F2.g9.J7 3.6491E-02 
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105 1D2.g9.J7 2.4032E-01 

106 3P2.g9.J7 6.6586E-02 

107 3F3.g9.J7 0.0000E+00 

108 3F4.g9.J7 6.1730E-01 

109 1G4.g9.J7 1.2409E-01 

Sum g9.J7 1.0848E+00 

Sum g.J7 1.9041E+00 

Sum (s+ d+ g).J7 2.1885E+00 

110 3F4.s1.J9 1.2925E-05 

111 1G4.s1.J9 5.5348E-04 

Sum s1.J9 5.6641E-04 

112 3F3.d3.J9 4.4893E-02 

113 3F4.d3.J9 9.2857E-02 

114 1G4.d3.J9 4.0331E-02 

Sum d3.J9 1.7808E-01 

115 3F2.d5.J9 1.0702E-02 

116 1D2.d5.J9 1.6646E-02 

117 3P2.d5.J9 1.4329E-03 

118 3F3.d5.J9 2.6889E-02 

119 3F4.d5.J9 1.1941E-01 

120 1G4.d5.J9 8.2437E-02 

Sum d5.J9 2.5752E-01 

Sum d.J9 4.3560E-01 

121 3P1.g7.J9 2.8507E-01 

122 3F2.g7.J9 6.2949E-02 

123 1D2.g7.J9 7.3676E-04 

124 3P2.g7.J9 2.9263E-01 

125 3F3.g7.J9 2.3605E-01 

126 3F4.g7.J9 1.4000E-01 

127 1G4.g7.J9 2.1424E-02 
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Sum g7.J9 1.0389E+00 

128 3P0.g9.J9 1.0026E-01 

129 1S0.g9.J9 1.1095E-01 

130 3P1.g9.J9 0.0000E+00 

131 3F2.g9.J9 7.9875E-02 

132 1D2.g9.J9 5.2645E-01 

133 3P2.g9.J9 1.4589E-01 

134 3F3.g9.J9 0.0000E+00 

135 3F4.g9.J9 3.3757E-01 

136 1G4.g9.J9 6.7724E-02 

Sum g9.J9 1.3687E+00 

Sum g.J9 2.4076E+00 

Sum (s+ d+ g).J9 2.8437E+00 

Total 
 

8.0236E+00 
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3 RCI study of Hyperfine Structure Constants of V II 

3d4, 3d3 4s, and 3d2 4s2  J = 1-5 even states 
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3.1 Introduction 

This is a study of the hyperfine structure (HFS) constants of singly ionized 

vanadium, V II. The two HFS constant; Magnetic dipole interaction constant , A, and the 

electric quadrupole interaction constant, B,  have been calculated for the 3d4, 3d3 4s, and 

3d2 4s2 J=1 to 5 even parity states in V II [1]. Lande g-values and the vector composition 

percentages for all the wavefunctions of those configurations have also been calculated 

[1].  

The importance of studying HFS of V II comes from three reasons; the 

astrophysical importance of the iron group, the scientific need for accurate atomic data 

for these elements and their positive ions, and the lack of HFS data of V II and other 

important elements in the literature with similar configurations, i.e. d4, d3 4s, d2 s2 .    

Iron group elements, 20 > Z > 30, have been observed in many stars. Vanadium in 

the sun is predominately, > 99 %, V II [2, 3]. Many of the lower sequence stars, Te ≤ 

7000 K (Te = effective temperature) have composition similar to the solar composition 

[4]. Iron-group elements have been also observed in many of the chemically peculiar 

(CP) stars, the group of stars in the upper main sequence with 7000 > Te > 30,000 K [4]. 

For example the spectrum of V II was measured in a study of the 3 Cen A star spectrum 

[5]. Another example is the spectrum of the Eta Carina (η Car) massive star which was 

found to be rich in singly ionized iron group elements [6]. Also,  the abundance ratios of 

the iron-group elements indicate the history of nucleo-synthesis of some stellar objects in 

the early universe, for example the ratio of (V, Co, Zn)/ Fe in comparison to (Cr, Mn)/ Fe 

can provide information about the range of temperature of supernovae explosion [7 and 

references therein]. 

Many researchers have reported the importance of the availability of accurate 

atomic data, e.g. oscillator strength, lifetime, Lande g-value, HFS constants, etc, for the 

iron-group elements and their positive ions. According to Biemont et al (1989) studying 

the solar abundance of Vanadium through separate direct measurements on V I and V II 

helps to reduce the uncertainty which is introduced in the ratio (V II/ V I) dependent 

model. It also helps to test and constrain the model. In a study of the solar abundance of 

V they found that spectra of V I and V II were blended and that the HFS of V lines 
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complicated analysis. They used semi-empirical gf-values of Kurucz (1987) to estimate 

the relative contribution of possible V II blends to some lines. Values of empirically 

estimated HFS were used for the calculations of the lines that showed broad Fourier 

Transform Spectroscopic profiles. They concluded that although V II was the best 

abundance indicator of V though only very few lines are suitable to conduct an accurate 

study. This in my opinion stresses the need for more accurate studies on V II atomic data 

including its HFS. In a study of scandium and vanadium abundance in the solar 

photosphere Youssef and Amer stated that Sc and V in the solar photosphere are 

predominantly singly ionized and that accurate transition probabilities of singly ionized 

elements of the iron group are the key solution for understanding the abundance of these 

elements [ 3 and references therein ]. Since most of the observed lines are heavily 

blended there must be criteria for choosing the suitable lines to be studied. One of the 

criteria that Youssef and Amer considered was the availability of HFS data. Also, they 

used earlier HFS measurements on Sc II to derive wavelength and log gf-values to 

calculate the abundance of Sc [3].  

Almost all the elements (except thorium) in the sun have isotopes with hyperfine 

splitting. The spectrum received from the sun is very blended. Computer programs for 

analyzing spectra including the hyperfine and isotopic splitting already exist [8], e.g. 

ATLAS12 by Kurucz. Atomic data are required to use these programs efficiently. The 

required atomic data include for example energy levels, wavelength, Lande g-value, 

hyperfine and isotopic splitting, etc. Many elements of the iron group have isotopes with 

hyperfine splitting that had not been considered properly in earlier 

studies. Ignoring isotopic or hyperfine splitting introduces many systematic errors in the 

analysis of the spectral lines, e.g. abundances determined from equivalent widths are 

systematically too large, and the Doppler width and Voigt profile differ significantly 

from isotope to isotope [see Kurucz 1993 for more details]. Understanding the solar 

spectrum fully and analyzing it requires the availability of accurate data for the isotopic 

and hyperfine splitting of each energy level of every isotope of every atom and ion [8]. 

In studying the abundance analysis of the Homunculus (the nebula that surrounds η 

Car massive star) Nielsen and Gull, 2009 reported that accurate spectral analysis was 

highly dependent on the availability of accurate atomic data. Using old atomic data for V 
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II transitions (from 3d4 5D and 3d3 4s 5F) produced ambiguous results for the blue-shift. 

They observed that Vanadium was 51V, nuclear spin =7/2, magnetic moment (µ) 5.51 μN 

(μN: nuclear magneton) and was subject to hyperfine splitting. Using the results given by 

Arvidsson 2003 [who studied hyperfine constants and wavelengths in V II derived by 

Fourier transform spectrometry] for the V II spectrum removed the ambiguity in their 

results [6]. 

Until recently there were very few V II HFS constants available in the literature. In 

2003 Arvidsson [9] measured 26 new values for HFS A, as cited in Cowley et al 2006 

[5]. In 2011 Armstrong et al. published results of measurements of HFS A of 24 even 

levels and 31 odd levels. In 2015 Abdalmoneam and Beck published RCI results of 69 

values of HFS constants A and B [1]. 

Our group had successfully used RCI method to compute HFS of different 

transition metals (TM), e.g. Sc II, Y II [10], Fe V [11], Ta II [12], and many others (see 

[13] for a complete list). Computing HFS of transition metals where dm, dm-1 s, and dm-2 s2 

levels are interleaved can be still challenging. For example there was a clear discrepancy 

between theoretical and experimental results of HFS for Ti I 3d2 4s2 3P and V I 3d3 4s2 4P 

in [14].   

Our long term goal of such studies has been gaining and providing a predictive 

understanding of the many body effects that govern HFS. In our previous studies we 

presented ab initio RCI calculations of HFS where many body effects, such as valence 

pair correlation, shallow-core-valence correlation and core polarization, were evaluated. 

The same ab initio methodology has been used for V II HFS calculations. Predicting the 

exact position of some levels was quite difficult. In this work we have improved the RCI 

method by additionally shifting some energy diagonal matrix elements. Shifting the 

diagonal matrix elements is an empirical approach that’s done through comparing the 

calculated and experimental energy levels (see appendix, section 6.3). The effects of 

core-valence pair correlations, triple excitations, and other computationally expensive 

correlation configurations are substituted by shifts of reference diagonal matrix elements. 

This shifting is properly effective as long as no correction is needed for the off-diagonal 

matrix elements of LS degenerate states. 
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This study provides atomic data for the most stable vanadium isotope 51V, I=7/2 . 

We present RCI results of hyperfine structure constants and Lande g-value of 69 V II 

even parity levels. The text gives a comparison of the new results with the available data 

found in the literature and discusses thoroughly the agreements and disagreements with 

the available experimental data. This study provides 43 new values for HFS A and 69 

new values of HFS B. The results are ab initio and corrected through shifting the energy 

diagonal matrix elements. Justification of the values of shifts is in section 5.3. Also a 

semi empirical method for predicting HFS A for some levels is introduced. The odd 

parity configurations, 3d3 4p and 3d2 4s 4p ,of V II have been ignored in this study 

because of the following reasons; the LS degenerate levels are not close in energy so they 

do not serve our goal, and they can be studied as Rydberg states of a V III core and a 

Rydberg p electron. 

3.2 Theory and Method 
3.2.1 Hyperfine structure operators 

The fine structure in atomic spectra refers to the deviation of the atomic spectra 

from that of the non-relativistic Schrodinger picture. It results from the relativistic 

momentum due to electrons together with their magnetic moment and due to the relative 

motion of the charge of the static nucleus.  

The effect of the hyperfine structure was first observed in the yellow spectrum of 

Sodium, where under high resolution the spectral lines of 2P3/2 and the singlet 2P1/2 were 

split (with a slight shift) into finer lines. The same thing was observed in many other 

metals but a few metals did not show this behavior, e.g. 114Cd 5s 5p 1P1 – 5s5d 1D2 line, 

[15]. Later this hyperfine structure was explained to be due to the interaction between the 

nucleus dipole moment and the magnetic moment of the electrons. This produces a new 

quantum number that characterizes the system. So for a nucleus with an intrinsic spin I 

the total angular momentum of the nucleus and the electrons become 

F=I +J                                                                                                   (3.1) 

, J is the total angular momentum of the electrons.  
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Computationally the hyperfine structure is one of the properties that emphasize 

the region of space near the nucleus. Accurate calculations should include core 

polarization from all closed “s” sub-shells. The following equations are the non-

relativistic [16]. The relativistic equations are given in the appendix, section 6.2. The 

hyperfine energy, that includes only the magnetic dipole and electric quadrupole 

contributions, is given [16 and references therein] by 

𝐸𝐸𝐻𝐻𝑁𝑁𝐻𝐻 =  12 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐴𝐴(𝐴𝐴 + 1)                                                                             (3.2) 

Where 

𝐴𝐴 = 𝐹𝐹(𝐹𝐹 + 1) −  𝐼𝐼(𝐼𝐼 + 1) −  𝐽𝐽(𝐽𝐽 + 1)                                                                (3.3) 

, equations 3 and 4 are correct for both relativistic and non-relativistic treatments.  

Non-relativistically the dipole magnetic interaction constant A can be considered 

as a result of the interaction of three operators, in this proportionality relation; 

𝐴𝐴  ∝  (𝜂𝜂𝑚𝑚 +  𝜂𝜂𝑙𝑙 +  𝜂𝜂𝑑𝑑  )                                                                                    (3.4) 

, the three operators are the contact spin-spin (Fermi-contact term), αs, operator that’s due 

to the nucleus- electron’s field interaction at r = 0, it is strongly determined by the 

transitions from an s sub-shell to another s sub-shell, and open “s” sub-shells already in 

the reference functions, the orbital-spin operator, αl, that’s due to the orbital motion of the 

electrons around the nucleus and it is strongly determined by the excitations from a p 

sub-shell to another p sub-shell, and the spin dipolar operator, αd ,that’s due to the 

interaction between the electron spin and nuclear spin at r ≠ 0 and it is strongly 

determined by the transitions form s sub-shells to d sub-shells. The largest effect comes 

from the contact spin-spin operator and it contributes significantly only the presence of 

an open s sub-shell. 

For LS coupling A can be expressed in terms of the angular factors (𝜆𝜆 ) and the 

reduced matrix elements (𝛼𝛼 ) as follows; 

𝐴𝐴 =  95.409 (𝜇𝜇 𝐼𝐼⁄ )(𝜆𝜆𝑚𝑚𝛼𝛼𝑚𝑚 +  𝜆𝜆𝑙𝑙𝛼𝛼𝑙𝑙 + 𝜆𝜆𝑑𝑑𝛼𝛼𝑑𝑑)                                             (3.5) 

, A is in MHz, 𝛼𝛼 in atomic units (au), 𝜇𝜇 in nuclear magneton.  

The reduced matrix elements are given by [16] 

𝛼𝛼𝑚𝑚 =  〈𝐿𝐿𝑆𝑆 ��8
3

 𝜋𝜋𝜋𝜋(𝑟𝑟𝑖𝑖)𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖

� 𝐿𝐿𝑆𝑆〉                                                                  (3.6𝑎𝑎) 
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𝛼𝛼𝑙𝑙 =  〈𝐿𝐿𝑆𝑆 ��𝑙𝑙𝑖𝑖
(𝑟𝑟𝑖𝑖)3
�

𝑁𝑁

𝑖𝑖

�𝐿𝐿𝑆𝑆〉                                                                         (3.6𝑏𝑏) 

𝛼𝛼𝑑𝑑 =  〈𝐿𝐿𝑆𝑆 ����3𝑠𝑠𝑖𝑖
𝑟𝑟𝑖𝑖

(𝑟𝑟𝑖𝑖)5
� 𝑟𝑟𝑖𝑖 −  𝑠𝑠𝑖𝑖/(𝑟𝑟𝑖𝑖)3�

𝑁𝑁

𝑖𝑖

� 𝐿𝐿𝑆𝑆〉                                  (3.6𝑐𝑐) 

The sum is done over the number of electrons. The ket and bra represent the electronic 

wavefunction of the atomic states. 

The angular factors are given by [16]; here 

 𝜆𝜆𝑚𝑚 = − (−1)𝐻𝐻+𝐿𝐿+𝐽𝐽  � 2𝐽𝐽+1
𝐽𝐽(𝐽𝐽+1)�

1 2⁄
 �𝐽𝐽 𝐽𝐽 1
𝑆𝑆 𝑆𝑆 𝐿𝐿�                                              (3.7𝑎𝑎) 

𝜆𝜆𝑙𝑙 =  − (−1)𝐻𝐻+𝐿𝐿+𝐽𝐽  �
2𝐽𝐽 + 1
𝐽𝐽(𝐽𝐽 + 1)�

1 2⁄

 �𝐽𝐽 𝐽𝐽 1
𝐿𝐿 𝐿𝐿 𝑆𝑆�                                          (3.7𝑏𝑏) 

 

𝜆𝜆𝑑𝑑 =  �
 3(2𝐽𝐽 + 1)
𝐽𝐽(𝐽𝐽 + 1)

�
1 2⁄

 �
𝐿𝐿 𝐿𝐿 2
𝑆𝑆 𝑆𝑆 1
𝐽𝐽 𝐽𝐽 1

�                                                                 (3.7𝑐𝑐) 

The { } in equations (3.7a) and (3.7b) are the 3-j symbols, in equation (3.7c) they are the 

9-j symbol. Knowledge of the non-relativistic HFS operators helps us understand what 

correlation is needed relativistically. I.E. once again correlation is mainly non-relativistic. 

The interaction between the nuclear electric quadrupole moment and the electric field 

gradient within the atom produces EQ [15]. Consider the electrostatic potential of an 

arbitrary charge distribution φ (r), r > R (R: radius of charge distribution) which can be 

expanded as  

𝜙𝜙(𝑟𝑟) = 𝑘𝑘 �𝑞𝑞
𝑟𝑟

+ 𝐷𝐷 .𝑟𝑟
𝑟𝑟3

+  𝑟𝑟.𝑄𝑄.𝑟𝑟
2  𝑟𝑟5

+  … …                           �                                        (3.8) 

Where q is the monopole moment, p is the dipole moment (zero for an eigenstate of 

parity) and Q is the quadrupole tensor. Q is a diagonal tensor with a vanishing trace (Q11 

+ Q22 = -Q33).The electric quadrupole constant B is given by [16] 

𝐵𝐵 =  
3

2𝐼𝐼 (2𝐼𝐼 − 1)
 × 234.9649 𝑄𝑄 𝜆𝜆𝑄𝑄 𝛼𝛼𝑄𝑄                                                              (3.9)  

, B in MHz and Q in barns. 

𝜆𝜆𝑄𝑄 =  −  
1
4

 (−1)𝐻𝐻+𝑙𝑙+𝐽𝐽 �
2𝐽𝐽 + 1

𝐽𝐽(𝐽𝐽 + 1)(2𝐽𝐽 − 1)(2𝐽𝐽 + 3)
�
1/2

 �𝐽𝐽 𝐽𝐽 2
𝐿𝐿 𝐿𝐿 𝑆𝑆�                         (3.10) 
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𝛼𝛼𝑄𝑄 =  〈𝐿𝐿𝑆𝑆 �2 �𝐶𝐶𝐼𝐼
(2) 𝑟𝑟𝑖𝑖3�

𝑁𝑁

𝑖𝑖

� 𝐿𝐿𝑆𝑆〉                                                                                 (3.11) 

, for l = 2 and ml = 0, 𝐶𝐶0
(2)is given as 

𝐶𝐶(2) =  �
4𝜋𝜋
5

  𝑌𝑌2,0 (𝜃𝜃,𝜑𝜑)                                                                                             (3.12) 

3.2.2 Dirac-Fock functions of the reference configurations 

  The reference wavefunctions (configurations) are eigenstates of J2, Jz, and parity 

with fixed one electron angular functions (spinors). The radial functions are numerical 

solutions of the Dirac-Fock Hamiltonian obtained using the Desclaux code [17]. The 

reference functions are 3d4, 3d3 4s, and 3d2 4s2. The radials of 1s , 2s, 3s, 3p, and were 

prepared separately for each of the reference functions 3d4 and 3d3 4s . Then the 1s …3d 

radials of 3d4 were added to the 4s radial from 3d3 4s to make the reference radial 

functions.  The reason of this choice was the observation that this arrangement leads to 

the minimal corrections needed for each of reference functions. For example with this 

arrangement it was observed that the energy contribution from the correlation 

configurations to 3d4 was small and to 3d3 4s was a little bigger but still small enough. 

The choice of taking 1s to 3d radials from the 3d3 4s Dirac-Fock functions led to large 

corrections to the 3d4 references (~ 1 eV). This strategy was used for all V II calculations. 

It satisfies the requirement for having orthonormal radial RCI basis set [18]. 

3.2.3 Relativistic configuration Interaction Calculations 

 In the RCI calculations there were five main steps; LS coupling of the reference 

functions, diagonalizing the matrices of LS degenerate states, correlation, addition of 

Breit effect, and shift. 

 All the reference functions have been re-coupled to be eignenstates of L and S. 

For example a function like 3d4 J = 2 even with jj J coupling only it looks as made up of 

8 eigen vectors with 5  eigenvalues which are automatically produced by the RCI 

program [18], but the LS coupling of these states (vectors) cannot be distinguished . Then 
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the LS coupled terms are prepared, see section 3.2.3.1. So that terms like 3F2, 3P2, 5D2, etc 

will be created explicitly in the calculations. As for 3d3 4s (or 3d2 4s2) more detailed LS 

coupled terms for the sub-groups are created. For example we have 3d3 (2D) 4s 1D2, 

where L and S are specified and all possible js get included for each sub-group. Having 

the LS coupled vectors shown explicitly is very helpful for recognizing the contribution 

of each of them and for more accurate calculations that will be needed later (e.g. 

choosing the shift for each vector, recording the percentage contribution of each LS 

coupling, and comparing the calculated g-value to the expected g-value due to the sharing 

LS coupled terms). 

 The Breit effect is added to take two particle relativistic corrections due to 

electromagnetic interaction into account. It adds the energy due to the magnetic 

interactions and the retardation effects, that’s about 1 – 200 cm-1. 

3.2.3.1 Treating the LS degenerate states 

 LS degenerate states (vectors) cannot be distinguished in regular RCI runs. Many 

of the levels in V II are composed of LS degenerate vectors. For example Thorne 2013 

shows the  composition of the level at 25191 cm-1 as 37 % 3d4 1D2, 32% 3d4 1D2, and 

17% 3d3 (2D) 4s 1D and the level at 50951 cm-1 is composed of 48% 3d4 1D2 , 30 %  3d2 

4s2 1D2, and 12% 3d4 1D2. So the two degenerate 3d4 1D vectors are distributed between 

two energy levels (or more). A regular RCI run (with LS coupling) will show a similar 

distribution to the degenerate vectors.  

 In order to be able to distinguish the degenerate vectors separate RCI runs were 

made. Each run contains only one pair of degenerate vectors which produces a 2 x 2 

energy matrix for them. From this run the two vectors are orthogonalized and new mixing 

coefficients are produced. Later using these new coefficients to rotate the two states 

produced by the LS diagonalizer results in having only one vector occupying one energy 

level entirely, and the two vectors are no longer mixed. For example table 3-7 shows 

25191 cm-1 has 54 %  3d4 1D and 50952cm-1 has 72%  of another 3d4 1D  (These are two 

different 3d4 1D, they are degenerate though). So the degenerate vectors are no longer 



64 

mixed in one level. This allows us to obtain individual shifts for the LS diagonal states. 

This approach is new to this work. 

3.2.3.2 Correlations  

  In the RCI calculations the filled and partially filled energy sub-shells are the 

numerical solutions of Dirac-Fock-Breit Hamiltonian. The empty sub-shells are 

relativistic screened hydrogenic (RSH) functions with adjustable effective charge (Z*). 

Z* is determined by applying the energy variational principle. The initial value of Z* is 

calculated as in equation (3.14); 

𝑍𝑍𝑖𝑖∗ =  𝑚𝑚(𝑚𝑚 + 1.5) 〈𝑟𝑟〉𝑛𝑛𝑙𝑙𝑗𝑗⁄                                                                       (3.13) 

, m is the principle quantum number of the RSH sub-shell. Usually m = l+1, l is orbital 

quantum number. 〈𝑟𝑟〉𝑛𝑛𝑙𝑙𝑗𝑗 is the average radius of the sub-shell which is being replaced. A 

usual choice will be taking 〈𝑟𝑟〉𝑛𝑛𝑙𝑙𝑗𝑗 of the outer most sub-shell, e.g. 3d5/2, for the first radial 

set of the RSH functions, then 〈𝑟𝑟〉𝑛𝑛𝑙𝑙𝑗𝑗  of the 2nd one, e.g. 3d3/2 for the 2nd radials of the 

RSH, and so on. Special cases for calculating〈𝑟𝑟〉𝑛𝑛𝑙𝑙𝑗𝑗are mentioned below. The RSH 

included l = 0 -5, sub-shells s, p, d, f, g, and h. They are referred to as vl, e.g. vs, vp, etc. 

These calculations included five different radials for vs, 2-3 radials for vp-vg, and one 

radial for vh.  

 The quality of the results of the HFS calculations is strongly dependent on the 

quality of the wave function. A very well correlated wave function will include single, 

double, triple, and quadrupole excitations from the valence, the shallow core and the core 

sub-shells. All these excitations must be done equivalently for the three reference 

configurations. There are many limitations for including the correlation effects this way. 

The first limitation is the 20K allowed vectors by the RCI code. For J = 2 one correlation 

like 3p2 to vh2 includes 3888 vectors. Another correlation like 3p 3d to vf vh includes 

6357 vectors. For J=5 a triple excitation from 3d to vp vf vh includes 9784 vectors. Even 

a super computer with 106 x 106 energy matrices will never be sufficient to include all 

double, triple and quadruple excitations, e.g. 3p2 3d2 to vf 2 vh2. Another limitation is the 

extended effect of some correlation configurations, e.g. 3p5 3d4 vf, on the rest of matrix. 

This effect will be discussed in section 3.2.3.3. According to these limitations the 
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correlation configurations are divided into three groups; correlations that must be present 

in the wave function, correlations which are computed separately and only their energy 

effects are added later as shifts, and computationally expensive correlations with very 

small effects that are not calculated at all. 

 Single and double excitations from valence and shallow core sub-shells give most 

of the corrections to the calculated properties. The energy contributions due to 

correlations are calculated through intermediate normalization ⟨𝜑𝜑|𝜓𝜓⟩ = 1, 𝜑𝜑 is the 

reference function and 𝜓𝜓 is the total wavefunction [1].  

 Single excitations from ns to vs are essential for accurate HFS calculations 

because they represent the effect of the Fermi-contact term. Excitations are done from ns, 

n = 1, 2, 3, and 4 to all the included five vs radials. Obtaining Z* for each of these vs was 

done in a separate run, where  〈𝑟𝑟〉 of one ns sub-shell was used to calculate the initial 

value of Z* then after it was optimized the final value was added in the RCI file of the 

whole matrix. Z* range from 1 to 25. One way to evaluate quality of the selected set of 

Z* was to see their effect on the sum of small HFS As, < 100 MHz. This effect can be 

seen by considering 𝐶𝐶 ⟨𝑛𝑛𝑠𝑠2|𝑇𝑇|𝑛𝑛𝑠𝑠 𝑣𝑣𝑠𝑠⟩, where T is the hyperfine structure operator and C 

are the RCI coefficients. A good set of Z* will maximize the product. Other important 

single excitations to HFS were 3s to 3d and 3p to vp when the sub-group 3p5 vp coupled 

to J = 1 or 2 (i.e. (3p5 vp) J=1 or 2 for any Jtotal= 1 -5)). 

 The single excitations of 3d to vd were crucial for two reasons; first the vd RSH 

substituted for 4d (and higher nd) sub-shells. It was difficult to include the 4d radial in 

the Dirac-Fock calculations because Desclaux code does not treat two partially filled sub-

shells having the same symmetry accurately. So there was a great emphasis on including 

many radials for vd. The second vd RSH corrected the 3d sub-shell radial especially for 

the 3d3 4s and 3d2 4s2 references and their correlation configurations. Only 2-3 different 

radials for vd were included. To justify this choice, it is known that〈𝑟𝑟4𝑑𝑑〉 ≫  〈𝑟𝑟3𝑑𝑑〉. Also, 

= 𝑐𝑐14𝑑𝑑 + 𝑐𝑐25𝑑𝑑 +  𝑐𝑐3 6𝑑𝑑 + ⋯  , c < 1 in a converging series, where  c approaches zero 

for the higher  nd Rydberg orbitals. The most effective part of this series is only the part 

near 3d and only 2 vd radials are sufficient to represent it. 
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 Single and double excitations, e.g. 3s to 3d, 3s to 4s, 3p2 to 3d2, .. etc., that 

involve the exclusion effect were quite important. The exclusion effect means that only 

some (not all) LS couplings of the reference functions will be affected by the excitation 

and the other LS couplings will not, due to Pauli Exclusion Principle. For example; if the 

reference configuration is 3p6 3d8 then a 3p2 excitation to 3d2 will produce 3p4 3d10. The 

reference configuration has five LS coupling terms; 1S, 3P, 1D, 3F, and 1G. The produced 

configuration has only three LS coupling terms; 1S, 3P, and 1D. So that only the first three 

LS terms in the reference configurations will have their energies and other properties 

affected by the transition of two p electrons to d- sub-shell while the other LS coupling 

terms will not be affected. (This is an illustrative example. It is given because it is easier 

than the actual ones included in the calculations that have so many LS coupling terms) 

 The complete wavefunction included the correlations due to all single excitations 

from core, shallow core, and valence sub-shells to RSH sub-shells. It also included 

excitations from the shallow core to valence sub-shells and many pair excitation 

correlations. One kind of single excitation was replaced by a shift, that is 3p to vf and 3p 

to vp for the cases where the sub-group 3p5 vp has J = 0.  

3.2.3.3 Shifting the diagonal matrix elements 

 Shifting the energy diagonal matrix element is done by manually adding a specific 

amount of energy to a specific diagonal matrix element of the reference configurations. It 

could be shifting up by adding positive energy or shifting down. Part of the shift is 

accurately prepared through ab initio RCI calculations. This is done to replace specific 

configurations. Another part of the shift is obtained when comparing the calculated 

energy to the experimental values. This part substitutes for the effects of the triple and 

quadruple excitations, as well as missing core-core and core-valence correlation energies, 

that hadn’t been calculated. 

 Most of the correlations that have big energy effects and negligible contribution to 

HFS were replaced by shifts. These correlations included 3p to vp (J = 0) and to vf, 3s 3p 

to vd vp and to vd vf. The values of each of these shifts were prepared from RCI runs that 

included one vector of a reference configuration, e.g.  3d2 4s2 3F, and the correlation 
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configuration (e.g. 3p5 vf 3d2 4s2) then optimizing Z*. For some bi-virtual correlations, 

e.g. 3s 3p to vd vf, the angular momentum sections had to be prepared by the BCB 

method because their determinants generated more than 1000 vectors. 

 The shift that comes from comparison to experiment is two parts; the first is a 

“global shift” which is applied to all the LS coupling (vectors) of one of the reference 

configurations, the second is an “individual shift” applied to each vector. The global shift 

is obtained by comparing RCI and experimental energies of pure levels, e.g. 3d4 5D and 

3d3 4s 5F for J=1, 2, 3, and 4 and 3d4 3H and 3d3 4s 5F for J=5. This shift is done to the 

vectors of one reference relative to the other one (not to both references at the same 

time). 

 An RCI file with a full matrix of 20K vectors takes about 25 min to run [at a 2.0 

GHz 8 CPU pc]. Each RCI run of a single correlation configuration takes 3 - 40 min. This 

is besides the time needed for preparing the input files, e.g. the angular momentum 

sections of 3s1 3p5 vd vf 3d3 4s , J=5, produces 32 angular momentum sections, 191 

eigen-values and 6001 eigen-vectors. So it had to be prepared through 7 smaller runs. In 

each of these runs the configuration is split into two groups, for example (of 3s1 3p5) and 

(vd vf 3d3 4s), where a specific range of angular momentum is specified for each group, 

see figure 3-1. This process is repeated until the whole range of allowed angular 

momentums is covered. So getting accurate values for the shift was quite time 

consuming.  
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Figure 3-1: Splitting a configuration into sub-groups and specifying a range of angular 

momentum for each sub-group, BCB method. 

3.2.4 Approximate conservation rule 

 Through observation of the RCI results and experimental results of HFS A it was 

found that; “ the sum of HFS A of two or more levels of the same LSJ (either degenerate 

or different configurations) and small energy gap between them is almost constant at 

different energy shifts”.  

 This rule is applicable for the cases of pure LS and when the two levels have a 

mix of two configurations with the same LS, e.g. one level is pure 3d4 and the other is 

pure 3d3 4s or each of the two levels is a mixture of 3d4 and 3d3 4s all with the same LSJ.  

Shift of the diagonal matrix elements has two effects; one it changes the energy of one or 

more levels and it also changes the percentage of the vector composition of energy levels. 

The importance of this rule is the confidence that even in presence of small differences of 

energies between the experimental values and RCI calculations of individual levels the 

HFS sum for those levels will be conserved. Only a few levels have their experimental 

HFS measured. So the RCI sum of HFS can be used to predict of the HFS A of some 

levels in a semi-empirical method. Examples of levels where this rule is applicable are; 

the two levels at 18270 and 20687 cm-1 which are a mix of 3d4 and 3d3 4s 3D1 . The 

energy difference is 2417 cm-1 and only one of them has an experimental A, the two 

levels at 19166 and 20090 cm-1 which are a mix of 3d3 (2P) 4s and 3d3 (4P) 4s 3P. A 

semi-empirical value can be extracted from RCI sum by subtracting off the measured 

value [1]. 
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3.3 Results 
3.3.1 General Remarks 

 Hyperfine structure constants  (HFS) A, and B/Q, energy levels, Lande g-value, 

and vector composition of V II 3d4, 3d3 4s, and 3d2 4s2 J=1-5 even states have been 

calculated using RCI method. For these calculations a nuclear dipole moment µ=5.149 

and nuclear spin I=7/2 were used. RCI calculations give the value of B/Q, Q is the 

electric quadrupole moment in Barn, which can be used to determine B once Q is 

measured, or to obtain Q semi-empirically. In regards to units A and B are in MHz, 

energy in cm -1, and the g-value is unit less. 

 In order to see the sequence of computational steps that was followed for 

obtaining the final HFS A values table 3-1 is provided. It gives the values of A that were 

computed  using only one reference function, the results when using the three reference 

functions together, the contributions of single excitations, and finally the full RCI results 

which included double excitations and shifts. Comparing the values of one reference 

configuration and those of three references shows that for those pure or semi-pure levels, 

leading percentage ≥ 75 % As have similar values in the two cases, e.g. 3d4 5D and 

3d3(4F) 4s 5F. Mixing the three reference functions had a stronger effect on the highly 

mixed levels, e.g. 3d4 3G and 3d3 4s 3G. As for the contributions of single excitations the 

data do not show a relation between the purity of the levels and the effect of single 

excitations. So for the four 100% pure levels the single excitations contribute 9 to 186 

MHz (absolute values). Also, although the correlation configurations were applied 

equivalently to the three references they did not have equivalent effects on them, for 

example the single excitations add only 1 MHz 3d4 3G while it adds 115 MHz to 3d3 4s 
3G. Considering the energy impact of the single excitation the calculations showed that 

the strongest impact came from 3s to 3d, 3d to vd and from 3p to vp and vf. The first type 

included exclusion effect and those had bigger impact on 3d3 4s and 3d2 4s2 because they 

were correcting the 3d radials and exclusion effect was small in these two references. The 

other two types of excitations had bigger impact on 3d4 because they are correlating one 

(or two) more 3d electrons (Notice the valence electrons in this case are either 3d or 4s. 
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correlations have stronger effect on 3d because it has more electrons). The last column in 

table 3-1 gives the final values of A, where double excitations and shifts have been 

included. It shows that the single excitations have the greatest effect (comparing to 

double excitations and shifts) on improving the computed As. This table illustrates the 

conservation rule in section 3.2.4. The sum of As of 3d4 3F and 3d3 4s 3F in the 1-

configuration computation is 468 MHz, for the 3 references is 474, and for the full RCI is 

476 MHz. This is a pretty stable value. The experiment gives A of 3d4 3F only as 250.91 

so a semi-empirical prediction of A of 3d3 (4F) 4s 3F to be ~ 476 – 251 = 225 MHz. 

 An analysis of the impact of single excitation on the HFS of 3d4 5D3 is given in 

table 3-2. The largest contributions are due to the ns to vs excitations, n = 2 and 3. That 

emphasizes the effect of the Fermi-Contact term on A. The smallest contribution is due to 

3d to vg, this is expected because l  l+2 is not large near r = 0. Similar effects were 

observed for all the other calculated levels. 

 The energy contributions due to individual correlations, which includes single and 

double excitations, to 15 energy levels of J = 3 even are given in table 3-3. The biggest 

contributions are due to 3d to vd excitations and due to 3p2 to 3d2. And their contributions 

were even bigger for 3d3 4s reference. To explain this we can label the 3d in 3d4 as 3da 

and 3d in 3d3 4s as 3db, where 3db = 3da + ∆. Since 3da was the one used for the whole 

calculations then the contribution of vd was bigger for 3d3 4s because it was giving the 

missed ∆. In this table the vd represents 3 different RSH d functions. And the present 

results are the sum of the contributions due to three configurations.  

 Tables 3-1, 3-2, and 3-3 are examples of detailed analysis for some intermediate 

steps during the calculations. In the following sections the focus is only on the final 

results. 

3.3.2 RCI results of V II J = 1 

 There are 12 energy levels for V II J = 1 even parity that had been included in this 

study. Table 3-4 gives the configurations and their equivalent RCI labels, e.g. V1 3d4 3D. 

The Vn is just a simple label that refers to the actual configurations. The LS degenerate 
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configurations have labels as Vn, n+1. Table 3-5 gives experimental data and RCI results. It 

gives the configurations and their energies as recorded in NIST [19]. The RCI 

arrangements of the configurations do agree with those in NIST. The RCI energies differ 

very slightly from those in NIST. Energy of the bottom level was selected to match the 

experimental value [19]. The difference between the RCI energy and the experimental, 

ERCI – Eexp, ranges from 10 to 160 cm-1. This meets our goal of accuracy for ERCI – Eexp < 

1000 cm-1, for each level. Notice that for many of the levels these absolute energies (i.e. 

the difference between the energy of a specific level and the ground state) are not the 

important factors because they will not give the strongest impact on the calculated 

properties. A very important factor is the energy difference between two nearby 

interacting levels. In general for two interacting levels “i” and “j” the accuracy goal is to 

have dEij-exp – dEij-RCI < 250 cm-1. For hyperfine structure calculations this energy 

difference is required to be even less than this value. The reason is that sometimes the 

energy difference dEij effects the vector composition of the levels which has a strong 

impact on HFS. 

 There are four LS degenerate 3P levels, three 3D levels and the other levels are 

non-degenerate. The vector components of each level are given in the last column in table 

3-5. There is a good agreement between the RCI vector composition and the data in 

Kurucz data base [20] as recorded in [21] except for two levels, 18270 and 20090 cm-1, 

there are slight differences, where the former contains 12%  (2P)4s 3P and the later has 

80% of (4P) 4s 3P [21]. During the calculations these vector compositions could be 

relatively changed by energy shift (i.e.  % of a given component increase in one level and 

results in a decrease in other one but usually it does not disappear completely. So the 

residual effect must be associated with off diagonal matrix elements shift because the 

shift does not have absolute control on the vector components). The most interesting 

levels are the two 3P levels at 19166 and 20090 cm-1, they are LS degenerate with a small 

dE (924 cm-1). The other 3P levels are distant. This gives a good illustration of the 

conservation rule (Sec. 3.2.4). The sum of As is 813.3 MHz. A slight shift of -100 cm-1 to 

the first and +100 cm-1 to the second change their individual As dramatically, -199 MHz 

and 1020 MHz, while the produced sum after the shift is 821 MHz.  The other two 

interesting levels are the 3D LS degenerate at 18270 and 20522 cm-1, dE =2250 cm-1. 
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Each of these levels is mix of 3d4 3D and 3d3 4s 3D. Although they are not neighboring 

levels, the vector components percentage of each of them was sensitive and linked to the 

other. This happened because the other levels that surround them have different LS. Since 

the third 3D level is about 24,000 cm-1 below them these two levels are another example 

of the conservation rule. Shifting (2D) 4s by -300 gives A= -91 and +162, respectively. 

This gives a sum of 71 MHz while As in table 3-5 have a sum of 85.4 MHz. The 

experimental value of A of 3d4 3D is -38.51. So a semi-empirical prediction of A of (2D) 

4s is ~ 85.5 – 38.5 = 47 MHz.  

 As for the Lande g-values there is a good agreement between RCI calculations 

and six experimental values given by NIST [19], with the differences ≤ 0.03. For three 

other levels the difference are ≥ 0.07, which is big. The level at 13503 cm-1 is a pure 5P 

level. Using equation 7.65 in [22] give g-value = 2.50 which agrees with the RCI 

calculations.  Bouazza et al, 2014 [23] calculated g-value of 19166 and 20090 cm-1 to be 

1.484 and 1.438 which agree with the RCI calculations. Also, RCI g-values of the 12 

levels are in good agreement with the results of Bouazza et al [23]. 

 Table 3-5 gives 12 values for HFS A (10 of them are new) 12 new values of HFS 

B, and Lande g-values of the 12 levels. Armestrong et al, 2011 [7] give two experimental 

values of A for the levels at 18270 and 32299 cm-1. HFS A of 18270 was also measured 

by Arvidsson, 2003 to be 279 MHz [as given in 7]. RCI results are in good agreement 

with the 2011 experimental values in [7] .The percentage errors (|Aexp – ARCI| / ARCI * 

100) for these two levels are 28.8 and14.9 % with an average of 21.9 %.  

3.3.3 RCI results of V II J = 2 

 There are 21 levels of V II J = 2 included in this study. Most of these levels are 

highly mixed and for many of them it was required to define more than the largest three 

vector components. The presence of interleaving vectors in many levels made the study 

of J = 2 levels a little complicated. For the pure and nearly pure levels the RCI vector 

composition is in good agreement with NIST [19] and Kurucz [20]. For the six levels 

between 18294 and 25191 cm-1 the RCI main vector components agree with those given 

in [19] and [20] but there are some differences in the percentages of those vectors. RCI 
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results show that the two 3F levels at 30267 and 30673 cm-1 have their main components 

as 3d4 and 3d3 (2F) 4s, respectively. This is the opposite of the experimental data given in 

[19] and the semi-empirical fit in [20] but it agrees with the calculation of Bouazza et al 

[23]. In general The RCI energies differ very slightly from those in NIST [19] except the 

two levels at 25191 and 50952 cm-1 where ERCI – Eexp = 600 and 1560 cm-1, respectively. 

 Table 3-7 gives 14 new values for HFS, 21 new values for HFS B and Lande g-

value for the 21 levels. For HFS A there is a good agreement between the RCI results and 

the measured values of 7 levels of Armstrong [7] the first two were also measured by 

Arvidsson [as given in 7] and they are already close to those Armstrong’s. The error 

percentages of As are 7.9, 1.8, 16.8, 11.2, 5.8, 0.3, and 4.1 with an average of 7.30 % 

(without the 32041 cm-1 level).  The good agreement of measured and calculated As of 

the two 3F levels at 30267 and 30673 cm-1 supports their RCI calculated vector 

composition. 

 As for the g-values there are 15 available experimental values [19]. The RCI 

results agree well with 8 of them, where the difference is ≤ 0.03, and for the other 7 the 

difference between the calculated and measured values ranges between 0.04 and 0.12. 

Although many of these levels are composed of many vectors, more than 90% of the 

composition have the same L and S. Since g-value is a function on J, L, and S only then 

g-value of these levels should be almost equal to that of pure levels. Using equation 7.65 

in [22] give g-values of 5D, 5F, 3F, 5P, 3P, 3D, and 1D to be 1.5, 1.0, 0.67, 1.83, 1.5, 1.17, 

and 1.0. These values agree very well with the RCI results. Also, there is a good 

agreement with Bouazza et al [23] results of g-values for 19 levels. They are different at 

levels 20343 cm-1 where they give 1.439 while RCI gives 1.37 which is very close to the 

experimental value, for level at 20981 where they give 1.027 which is close to 

experiment and 0.07 different with RCI. Especially for this level sum of the top three 

vector components is 75, all are 1D, and so it cannot be concluded that RCI g-value of 

this level is right. 
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3.3.4 RCI results of V II J = 3 

 There are 15 levels of V II J = 3 included in this study. Calculated energies are 

close to the experimental measurements [19], with ERCI – Eexp < 300 cm-1 for most of the 

levels. Only three levels have ERCI – Eexp between 450 and 700 cm-1.  

 Three LS degenerate pairs have their results stand out. The first one is 3G at14462 

and 16341 cm-1, dEij = 1880cm-1. RCI dEij = 2570 cm-1 so the difference between the 

experimental and RCI dEij = is 700 cm-1 which exceeds our limits for accuracy. This 

suggests a problem with off-diagonal matrix elements. At the same time these two levels 

have their RCI calculated g-values agree with the measurements [19] and the RCI vector 

components also agree with both [19] and [21]. So the energy difference did not affect 

the vector components of the two levels which is the main impact on the accuracy of 

HFS. RCI A is 36 MHz above the experimental [7].  The second pair is the 3D at 18354 

and 20623 cm-1. There is a third 3D level but it is very high so it is not expected that it has 

strong influence on these two. The experimental dEij is 2270 and the calculated is 3100 

cm-1, with 830 cm-1 difference. RCI g-value of the first is close to experiment [19], 0.03 

differences, but the second is not, 0.07, and both agree with [23]. The vector components 

agree with both [19 and 21]. RCI A is 35 HMz below experiment [7] but it lies within the 

estimated experimental uncertainty, 45 MHz. The third pair is the 3F at 30306 and 30642 

cm-1. The calculated energies are close to experiment but the main components are 

flipped so RCI give the first as 3d4 and the second as 3d3 4s. This is opposite to 

measurements [19] and to the calculations of Kurucz [20] but it agrees with [23]. RCI g-

values are close to measurements [19]. RCI A of the first level is close to experiment, 11 

MHz difference, but the second is 46 MHz far from experiment.  Even with the energy 

discrepancies I do predict that the conservation rule of the sum of As will still hold to a 

good extent. So using the sum of RCI As of the 3G pair and the single experimental 

measured value A of 3d3 4s is predicted to be ~ 370 – 139 = 231 MHz, and for 3d3 4s 3G 

it will be ~ 1121- 503 = 609 MHz. For the 3F three levels will be included the pair 

mentioned above and the 3d2 4s2 at 38193 cm-1 because it is not too far. For this level 

predicted A ~ 1163 – 747= 416 MHz. 
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 RCI g-values agree with the 8 experimental values and have big differences (> 

0.04) with another 5 values. All RCI g-values agree with [23] and for the pure levels they 

agree with the theoretical predictions, equation 7.65 in [22]. In general the vector 

components percentages agree with Kurucz as given in [21] except for the two flipped 

levels. Table 3-9 gives 6 new values for HFS A and 15 values for HFS B. Comparing the 

calculated and measured [7] As gives these percentage errors: 2.0, 4.1, 21.0, 7.5, 7.1, 2.7, 

12.1, and 1.4 %, with an average error of 7.23 %. 

3.3.5 RCI results of V II J = 4 

 There are 15 levels of V II J = 4 included in this study. The calculated energies 

are close to the experimental [19], ERCI – Eexp < 250 cm-1 for most of the levels. Only 

three levels have ERCI – Eexp between 450 and 700 cm-1. The calculated g-values are in 

good agreement with most of the experimental available values [19] and they are in 

excellent agreement Bouazza et al [23]. RCI calculations show the 3F levels at 9098 

and13609 cm-1 have their main component inverted compared to experimental 

measurement [19] and to Kurcuz data [20]. We label the first as 3d4 and the second is 3d3 

(2F) 4s. The excellent agreement between the RCI and experimental values of HFS A 

support this result, which agrees with [23].  

 Table 3-11 gives 10 new values for A, 15 new values for B and it gives g-value 

for the 15 levels. The calculated As are in very good agreement with the experimental 

measurement [7]. The percentage errors are: 0.03, 8.0, 2.3, 2.4, and 2.6. Armstrong et al 

give A = 276 or -351 MHz for the 38517 cm-1 level. RCI results support the first value. 

 Sum of As of LS degenerate levels can be used to predict empirical values for 

some levels.  There are five 3F levels and the sum of their As is conserved. But looking at 

their energy separation the first two are close to each other and distant from the last three 

are close so they can make two sub groups. For the pair at 9098 and 13609 cm-1 sum As is 

101 so a semi-empirical prediction of A for the other level is 101-171.4 = -70.4 MHz. 

The other three 3F have their experimental As available and they are close to the RCI 

values.  For the 3G at 14556 and 16422 cm-1 a semi-empirical prediction of A for the first 

one is 397 MHz. There are four 1G levels the first two have their energies close to each 
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other but each one of the other two is far and isolated. But none of them has any 

experimental A available. 

3.3.6 RCI results of V II J = 5 

J = 5 is a relatively simple case, it has only six energy levels four of them are 

pure.  The most interesting levels are 3G5 at 14656 and 16533 cm-1, they have 

high mixing percentages. Studying these two levels illustrate good example for 

the semi-conservation of sum of HFS A with different method of calculations. 

Using a single reference Dirac Fock calculations HFS A are 257 and 650. 

Whereas double reference DF gives 289 and 574 and RCI gives 597 and 324, 

respectively. These give sum values of 907, 872, and 921. And the sum of the 

experimental values [7] is 934 MHz.  Also, through different shifts it was possible 

to change the percentage of the vector composition of these two levels and it was 

observed that HFS A of each level was so sensitive to the change of the vector 

composition but the sum of the two levels was still semi-conserved. For example 

when the level at 14656 is made up of 42%  3d4 3G and 58 % 3d3 4s 3G and the 

level at 16533 is made up of 35% 3d4 and 65% 3d3 4s (which agree with the 

vector components in [19]) it gives HFS A = 497 and 532, sum =1029 MHz. 

While the vector composition in table 3-13 (which agree with Kurucz data as 

given in [21]) produces HFS A = 436 and 498, sum = 934 MHz.  Calculated 

energy for each of these two levels is in good agreement with experiment [NIST], 

the differences are -241 and 172 cm-1. But the calculated energy difference 

between them is quite big comparing to experiment (dEij) RCI - (dEij) exp= 413 cm-1 

.The other four levels are pure, and the calculated energies are in good agreement 

with the experiment [19]. The calculated g-values for all the levels agree well 

with experiment [19] except for the ground state. The ground state is 5F using 

equation eq. 7.65 in [22] give g-value =1.40 which also agrees with Bouazza [23]. 
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3.4 Conclusion 

 Atomic Data of the single ion of 51V has been required in the scientific 

community due to the importance of this element in analyzing the stellar radiation and 

due to the lack of data in the literature. A relativistic Configuration Interaction ab initio 

method has been used to provide hyperfine structure constants A and B of V II J=1-5 

even parity. Shifting the reference diagonal energy matrix elements has been used to 

improve the results. Energies of the levels, g-values and vector components have been 

calculated as well. These results are displayed in tables 3-5: 3-13. In general the RCI 

results are in good agreement with the available measurements. Cases of differences have 

been discussed thoroughly in the text. 

 We obtained 43 new values for HFS A and 69 new values of HFS B.  We suggest 

experimental re-labeling of the some 3F levels for J=2, 3, and 4 and for some g-values, 

details are in the text. We have established a conservation rule for the sums of HFS 

constants in V II. 
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Table 3-1:HFS of V II J=3 levels.The first three columns are experimental data from 

NIST [19], then the experimental A from [7]. The 4th column gives the Dirac-Fock results 

using only one single reference function. The fifth column gives the results using the three 

reference functions combined together. The seventh column gives the contributions due to 

the single excitations only. The last column gives RCI final results 

configuration LS 
Leading 

percentage 
Ac 1-Con Refs 

Contribution 

of Single 

excitations 

Full-RCI 

3d4 5D 100  137 136 -186 -44 

3d3 (4F) 4s 5F 100  513 509 26 529 

3d3 (4F) 4s 3F 87  180 197 22 220 

3d4 3F 84 250.91 288 277 -26 256 

3d3 (4P) 4s 5P 100 840.96 816 816 -9 808 

3d4 3G 62  378 186 -1 193 

3d3 4s 3G 63 138.96 -143 53 115 176 

3d4 3D 67 502.93 220 458 -2 468 

3d3 4s 3D 65  943 700 -41 644 

3d4 1F 80 301.10 318 316 0 324 

3d3 (2F) 4s 3F 47 332.24 441 375 5 379 

3d4 3F 64 414.24 300 372 30 403 

3d3 (2F) 4s 1F 80 355.08 333 324 24 350 

3d2 (3F) 4s2 3F 75  304 304 b 70 379 

3d3 4s 3D 100  923 925 89 1013 

 
(a) 1-Con [“Dominant” configuration],  Refs= 3d4   + 3d3 4s  + 3d2 4s2 

(b) The Refs and 1-configuration values appear identical because level 2 is 75% combination 

of 3d2 (3F) 4s2 3F and 25% 3d4 3F. The basis functions have very similar 1-Con values and 

they don’t interact through the HFS operators. 

(c) Expt. Experimental results, Armstrong et al, 2011  
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Table 3-2: The largest correlation contributions to HFS A of 3d4 5D3  from matrix 

elements of the form: ⟨𝑅𝑅𝑒𝑒𝑑𝑑𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒|𝐻𝐻𝐹𝐹𝑆𝑆|𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛⟩ [1]. The closed (and empty) sub- 

shells are not mentioned in the configurations. The virtual orbitals (v) ; the range of 

radials  included of the same l is between brackets 

 

Correlation configuration Contribution to A (MHz) 
 

3d3 vd (v=1:2) 4.66 
3d3 vg 0.076 
3s 3d5 -0.16 

3s 3d4 4s -11.53 
3s 3d4 vs (v=1:5) -74.42 

2s 3d4 4s -4.05 
2s 3d4 vs  (v=1:5) -95.14 
1s 3d4 vs (v=1:5) -1.76 

(3p5 vp) J=2, (3d4) J=3 , (v=1:2) -3.53 
Total -185.88 
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Table 3-3: Energy contributions (meV) due to individual correlation to each energy level 
for V II J=3 even. The left column gives the correlation configurations, closed and empty 
sub-shells are not mentioned. For vs , v= 1:5 it represents the sum of contribution due to 
5 different “s” virtual orbitals. For vp , v= 1:3 , vf , v=1:3, vg, v=1.  Numbers in the first 
row are levels numbers, with # 1 is the ground state and15 is the 14th excited state.. The 
energy values are negative in most of cases but we remove the ‘-‘ to save space. So that 
ones with ‘-‘are positive. 
 

Correlation 
Configuration 

Energy Contribution (meV) to level # 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                
3d3 vd 12 5 60 72 20 80 51 88 42 156 167 166 87 24 74 

3d2 4s vd 0 994 1115 191 796 286 549 229 537 105 174 417 626 47 421 

3d2 vd2 763 2 118 755 2 560 331 603 301 768 455 316 191 326 1 

3d2 vf2 461 0 62 426 0 268 161 345 176 405 263 182 106 146 1 

3d 4s vd2 0 255 194 30 326 125 209 126 254 82 156 274 333 5 583 

3d 4s vf2 0 219 192 30 316 76 130 111 230 59 104 194 242 5 468 

3p4 3d6 856 0 127 858 0 520 307 650 324 790 505 356 195 263 1 

3p4 3d5 4s 3 1162 1011 153 1256 432 725 463 931 252 436 801 987 17 1551 

3p4 3d4 4s2 1 1 2 10 0 1 1 1 1 2 249 52 2 1119 1 

3d 4s2 vd 0 0 1 18 0 1 2 1 3 1 452 124 2 2111 0 

4s2 vd2 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -12 0 

4s2 vf2 0 0 0 0 0 0 0 0 0 0 10 2 0 42 0 

3d2 vp2 35 0 71 73 0 14 52 30 61 36 38 34 103 401 28 

3d2 vp vf 25 184 224 94 185 113 176 94 176 93 113 159 237 18 207 

3d 4s vp2 0 9 6 1 24 6 9 18 37 6 7 25 17 30 90 

3d 4s vp vf 0 9 7 3 5 13 22 6 12 7 55 38 29 195 28 

4s2 vp vf 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

3d2 vs vd 0 66 60 15 66 28 42 28 46 22 24 42 50 1 66 

3d 4s vs vd 0 0 0 0 0 2 3 3 6 0 3 1 2 14 0 

4s2 vs vd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3d3 vs 0 22 15 15 26 8 2 10 2 6 5 7 8 0 13 

3d2 4s vs 0 0 1 11 0 0 1 1 1 1 92 22 2 195 0 

3d3 vg 16 1 8 44 0 41 32 43 32 86 60 26 38 24 1 

3d2 4s vg 0 12 9 5 28 22 29 14 18 18 25 56 64 6 55 

3d 4s2 vg 0 0 0 0 0 0 0 0 0 0 1 2 1 10 1 

3s 3d5 42 0 10 53 0 51 29 123 60 112 35 19 27 12 0 

3s 3d 4s 1 36 33 5 128 27 50 44 88 26 46 83 104 2 97 

3s 3d3 4s2 0 17 11 2 17 6 10 5 11 3 24 4 12 22 17 

3s 3d4 vs 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3s 3d3 4s vs 0 72 63 10 74 27 46 25 50 15 28 49 62 1 80 

3s 3d2 4s2 vs 0 0 0 2 0 0 0 0 0 0 49 11 0 215 0 

3p5 3d4 vp 1 47 22 8 51 15 27 15 24 15 17 23 25 2 48 

3p5 3d3 4s vp 3 3 3 6 2 3 2 3 3 3 26 10 3 78 7 
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Table 3-4: Labels for the vector composition in V II J=1 even [1]. 

V1 3d4              5D V2,3 3d4              3P V4 3d4              3D 

V5 3d3 (4F) 4s   5F V6 3d3 (4P) 4s   5P V7 3d3 (2P) 4s   3P 

V8 3d3 (4P) 4s   3P V9,V10 3d3 (2D) 4s  3D V11 3d3 (2P) 4s   1P 

V12 3d2 4s2         3P     

 

Table 3-5: Hyperfine structure constants A (MHz) and B/Q (MHz/barn) of V II 3d4 , 3d3 

4s and 3d2 4s2  J=1 even Parity [1].The vector composition % section gives the 

percentage of the major component then the vector number (as in table 3-4) followed by 

its percentage. 

Label 
Energy cm-1 g-value A MHz 

B/Q Vector composition % 
NISTa RCI NISTa RCI Exp.b RCI 

3d4              5D 36 36   1.50  -89.6 107.2 100   

3d3 (4F) 4s   5F 2605 2539   ~ 0  -369.0 -38.9 100   

3d4              3P 11515 11497 1.48 1.50  -6.8 -0.31 88 V8      7 V7     4 

3d3 (4P) 4s   5P 13512 13503 2.39 2.50  1426.9 23.0 100   

3d4              3D 18270 18074 0.49 0.51 -38.51(51) -26.4 -29.9 55 V9      43            

3d3 (2P) 4s   3P 19166 19007 1.40 1.49  984.9 7.0 80 V8    17 V4      1 

3d3 (4P) 4s   3P 20090 20179 1.35 1.42  -171.8 -100.2 67 V7   12 V2,3  11 

3d3 (2D) 4s  3D 20522 20687 0.58 0.59  111.8 11.1 51 V4    39 V8      5 

3d3 (2P) 4s   1P 22274 22114 0.97 1.00  250.9 -73.4 96 V9      2 V8      2 

3d4              3P 32299 32326 1.48 1.50 -73.33(29) -68.1 -63.8 94 V8      3 V12    2 

3d3 (2D) 4s  3D 44202 44354 0.50 0.50  -497.3 146.0 100   

3d2 4s2         3P 48976 49007  1.50  40.5 104.2 97 V3      2  

 

a http://physics.nist.gov/asd3 

b Armstrong N M R, Rosner S D, and Holt R A, Phys. Scr. 84, 055301(2011) 

c Thorne A P, Pickering J C, and Semeniuk J I, ApJ. Supp.207:13 (2013) 
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Table 3-6: Labels for the vector composition in V II J=2 even [1]. 

V1,2 3d4                 3F V3 3d3(4F) 4s      3F V4 3d3 (2F) 4s        3F 

V5 3d2 4s2             3F V6,7 3d4                 3P V8 3d3(2P) 4s         3P 

V9 3d3(4P) 4s      3P V10 3d4                   3D V11,12 3d3 4s               3D 

V13,14 3d4                        1D V15,16 3d3 4s            1D V17 3d2 4s2                  1D 

V18 3d4                       5D V19 3d3 (4F) 4s     5F V20 3d3 4s                5P 

V21 3d2 4s2              3P     

 

Table 3-7: HFS constants A (MHz) and B/Q (MHz/barn) of V II 3d4 , 3d3 4s and 3d2 4s2  

J=2 even Parity [1].The vector composition % section gives the percentage of the major 

component then the vector number (as in table 3-6) followed by its percentage. 

Label 
Energy cm-1 g-value A MHz 

B/Q 
Vector composition % 

NIST RCI NIST RCI Exp.b RCI RCI 

3d4           5D 107 107  1.50  -69 70 100   

3d3 (4F) 4s   5F 2687 2656 0.97 1.00  370 -18 100   

3d3(4F) 4s    3F 8640 8621 0.65 0.67  918 -104 91 V1        9  

3d4               3P 11908 11782 1.49 1.50  24.2 23 86 V9        7 V8         4 

3d4               3F 13491 13559 0.59 0.67 481.96(15) 520 -65 86 V3        8 V2         5 

3d3 (4P) 4s   5P 13595 13623 1.78 1.83 1096.69(43) 1077 -235 99   

3d4              3D 18294 17946 1.13 1.18 488.08(20) 570 -66 49 V12     48 V8         2 

3d3 (2P) 4s   3P 19133 18895 1.38 1.48  692 47 66 V9      28 V10        3 

3d3 (4P) 4s   3P 20343 20363 1.36 1.37  167 4 43 V10     19 V12       16 

3d3 (2D) 4s  3D 20617 20680 1.25 1.21  736 82 21 V13     19 V12      16 

3d3 (2D) 4s  1D 20981 20895 1.02 1.10  -153 25 30 V13     26 V12      19 

3d4               1D 25191 25788 0.99 1.00  339 248 54 V16     44  

3d4               3F 30267 31129 0.67 0.67 -251(22) -223 143 82 V2      13  

3d3(2F) 4s    3F 30673 30591 0.67 0.67 397(26) 420 239 59 V5      24 V4        16 

3d4              3P 32041 32178 1.38 1.50 ~ 0 -0.45 105 94 V21      3 V9          2 

3d2 4s2         3F 37938 38210  0.67  534 170 69 V2      30  

3d3 (2D) 4s  3D 44160 43938 1.14 1.17  725 199 98   
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3d2 4s2         1D 44658 44506  1.00 366(86) 367 -221 68 V14     29  

3d3 (2D) 4s  1D 47324 47382  1.00  379 409 95 V17       3  

3d2 4s2         3P 49205 49048  1.49  396 -246 94 V7        3  

3d4              1D 50952 52513  1.00  339 -285 72 V17     24  

 
a http://physics.nist.gov/asd3 
b Armstrong N M R, Rosner S D, and Holt R A, Phys. Scr. 84, 055301(2011) 
c Thorne A P, Pickering J C, and Semeniuk J I, ApJ. Supp.207:13 (2013) 
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Table 3-8: Labels for vector composition in V II J=3 even [1]. 

V1 3d4                     5D V2,3 3d4                     3F V4 3d4                       3G 

V5 3d4                      3D V6 3d4               1F V7 3d3 (4F) 4s   5F 

V8 3d3 (4F) 4s    3F V9 3d3 (2F) 4s   3F V10 3d3 (4P) 4s   5P 

V11 3d3 4s          3G V12,13 3d3 4s                3D V14 3d3 (2F) 4s   1F 

V15 3d2 4s2           3F     

 

Table 3-9: HFS constants A (MHz) and B/Q (MHz/barn) of V II 3d4 , 3d3 4s and 3d2 4s2  

J=3 even Parity [1]. The vector composition % section gives the percentage of the major 

component then the vector number (as in table 3-8) followed by its percentage.   

 

label 

Energy cm-1 g-value A MHz 
B/Q Vector composition % 

NISTa RCI NIST RCI Exp.b RCI 

3d4              5D 209 209  1.50  -44 -65.6 100   

3d3 (4F) 4s   5F 2809 2808 1.20 1.25  529 -31.4 100   

3d3 (4F) 4s   3F 8842 8861 1.04 1.08  220 -98.1 87   V2    13  

3d4                    3F 13543 13271 1.06 1.08 250.91(39) 256 -63.7 84   V8    12  

3d3 (4P) 4s   5P 13742 13700 1.62 1.67 840.96(48) 808 248 100   

3d4                     3G 14462 14456 0.74 0.75  193 -2.9 62   V11   37  

3d3 4s         3G 16341 17023 0.76 0.75 138.66(19) 176 42.1 63   V4    37  

3d4                     3D 18354 17704 1.30 1.33 502.93(45) 468 -29.8 67   V12   33  

3d3 4s            3D 20623 20800 1.26 1.33  644 -106 65   V5    33 V13   2 

3d4               1F 26840 26965 0.97 1.00 301.10 (26) 324 337 80   V14  19  

3d4                      3F 30306 30098 1.05 1.08 414.24(22) 403 185 64   V3    32 V15   4 

3d3 (2F) 4s   3F 30642 30617 1.06 1.08 332.71(26) 379 249 47   V9    35 V15 17 

3d3 (2F) 4s   1F 34229 34225 1.00 1.00 355.08(48) 350 201 80   V6    20  

3d2 4s2           3F 38193 37743  1.08  381 198 75   V3    23  

3d3 4s            3D 44099 44154 1.27 1.33  1013 430 100   

 
a http://physics.nist.gov/asd3 
b Armstrong N M R, Rosner S D, and Holt R A, Phys. Scr. 84, 055301(2011) 
c Thorne A P, Pickering J C, and Semeniuk J I, ApJ. Supp.207:13 (2013) 
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Table 3-10: Labels for vector composition in V II J=4 even [1]. 

V1 3d4                     5D V2 3d4                               3H V3,4 3d4                     3F 

V5 3d4                      3G V6,7 3d4                      1G V8 3d3 (4F) 4s    5F 

V9 3d3 (4F) 4s  3F V10 3d3 (2G) 4s          3G V11 3d3 (2G) 4s  1G 

V12 3d3 (2H) 4s   3H V13 3d3 (2F) 4s           3F V14 3d2 4s2            1G 

V15 3d2 4s2            3F     

 

Table 3-11:HFS constants A (MHz) and B/Q (MHz/barn) of V II 3d4 , 3d3 4s and 3d2 4s2  

J=4 even Parity [1].Vector composition % section gives the percentage of the major 

component then the vector number (as in table 3-10) followed by its percentage. 

Label Energy cm-1 g-value A MHz B/Q Vector composition % 

NISTa RCI NIST RCI Exp. b RCI 

3d4                 5D 339 339  1.50  21 -290 100   

3d3 (4F) 4s      5F 2968 2942 1.30 1.35  613 -77.2 100   

3d3 (4F) 4s      3F 9098 9095 1.22 1.25  -76 -132 88 V3      11  

3d4                        3H 12545 12523 0.83 0.80  400 139 100   

3d4                          3F 13609 13666 1.19 1.25 171.4(13) 177 -69 86 V9      11 V5      2 

3d4                          3G 14556 14732 1.00 1.05  360 -6 61 V10     36 V3      2 

3d3 (2G) 4s     3G 16422 17128 1.03 1.05 423.32(30) 460 51 62 V5      37  

3d4                 1G 17911 18358 0.95 1.00  285 -45 57 V11     39  

3d3 (2G) 4s     1G 19113 19793 0.98 0.98  329 89 52 V6      40 V12    8 

3d3 (2H) 4s    3H 20242 20494 0.82 0.82  -29 416 90 V11       6  

3d4                          3F 30319 31249 1.23 1.25 591.70(71) 606 234 60 V4      35 V5      4 

3d3 (2F) 4s      3F 30614 30602 1.25 1.25 434.52(18) 424 301 45 V13     39 V15    15 

3d4                 1G 36425 36567 0.96 1.00  332 136 96   

3d2 4s2              3F 38518 38220  1.25 276.67(56)d 270 223 77 V4      21  

3d2 4s2              1G 53607 53095  1.00  412 716 97 V7        3  

 

a http://physics.nist.gov/asd3 

b Armstrong N M R, Rosner S D, and Holt R A, Phys. Scr. 84, 055301(2011) 

c Thorne A P, Pickering J C, and Semeniuk J I, ApJ. Supp.207:13 (2013) 

d Armstrong 2011 gives two values for HFS A for this energy level, these are 276.67(56) and -

351.28(63) [8] 
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Table 3-12: Labels for vector composition in V II J=5 even [1]. 

V1 3d4                      3H V2 3d4                         3G V3 3d3 (2G) 4s      3G 

      

V4 3d3 (4F) 4s     5F V5 3d3 (2H) 4s      3H V6 3d3 (2H) 4s       1H 

 

Table 3-13: HPS constants A (MHz) and B/Q (MHz/barn) of V II 3d4 , 3d3 4s and 3d2 4s2  

J=5 even Parity [1].Vector composition % section gives the percentage of the major 

component then the vector number (as in table 3-12) followed by its percentage. 

Label 
Energy cm-1 g-value A MHz 

B/Q Vector composition % 
NISTa RCI NIST RCI Expb RCI 

3d3 (4F) 4s      5F 3163 3163 1.28 1.40  640 -159 100   

3d4                        3H 12622 12673 1.02 1.03  271 128 100   

3d4                         3G 14656 14415 1.17 1.20 436.10(42) 386 3.8 65 V3      35  

3d3 (2G) 4s    3G 16533 16705 1.16 1.20 498.41(13) 532 68 65 V2      35  

3d3 (2H) 4s    3H 20281 20283 1.01 1.03  423 438 100   

3d3 (2H) 4s     1H 23391 23423 1.04 1.00  340 474 100   

 
a http://physics.nist.gov/asd3 
b Armstrong N M R, Rosner S D, and Holt R A, Phys. Scr. 84, 055301(2011) 
c Thorne A P, Pickering J C, and Semeniuk J I, ApJ. Supp.207:13 (2013) 
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Transitions and Lifetimes, Oscillator Strengths and 

Lande g-values in Singly Ionized Tungsten, W II 
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4.1 Introduction 

We present relativistic configuration interaction (RCI) calculations of the lifetimes 

of singly ionized tungsten W II. These results are important for different fields in which 

atomic data of tungsten are required, such as fusion reactors, plasma temperature, solar 

photosphere, and abundance of tungsten in different stars. Usually the lifetime values are 

combined with branching ratios to obtain oscillator strength, the most important data for 

studying stellar spectrum. In this study we provide calculated lifetimes for 175 transitions 

in W II. Our results agree well with most of the published measurements of W II 

lifetimes.  Our branching ratios did not have same good agreement with the experimental 

measurements; we explain the reason in section 4.3.5. This chapter presents the RCI 

results of W II lifetimes, comparison with the available data, and justification of the 

importance of our results. A more thorough calculation of branching ratios is left for a 

future work. 

Atomic data, such as dipole transition probabilities, lifetimes, oscillator strengths, 

and Lande g-values,  of tungsten and many other neutral and ionized atoms are required 

for studying the temperature structure of solar photosphere [9 and references within] and 

to interpret satellite-borne UV and vacuum-UV spectra [11]. In fusion devices and 

plasma experiments tungsten is used as a divertor and limiter which creates a demand for 

the data of first three spectra of tungsten (W I, W II, and W III) in order to predict plasma 

device efficiency and to better handle plasma impurities in fusion research [8, 11].  In 

high intensity discharge lamps tungsten electrodes are used. Tungsten is highly refractory 

(i.e. lot of energy is needed to remove an electron out of it). So tungsten data are needed 

to estimate the in-efficiencies in fusion reactions due to radiation absorbed by impurities. 

Also the data is needed in order to model the electrode erosion and for better 

manufacturing of these lamps [12]. 

The National Institute of Science and Technology [NIST] has published 

experimental atomic spectroscopic data for tungsten atom W I and the singly ionized 

tungsten, W II energy levels, configurations, and Lande g values [1]. These data are 

mainly taken from the compilation of atomic data of W I and W II by Karamida and 

Shiria, 2006 [2]. The ground state of W I is 5d4 6s2 5D0, ionization energy = 63427 cm-1 = 
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7.864 eV. The ground state of W II is 5d4 6s1 6D1/2 , ionization energy = 132000 cm-1 = 

16.36 eV. The most recent W II energy levels were measured by Ekberg et al [3]. They 

identified about 2500 W II lines using Fourier transform spectroscopy (FTS) [3]. In their 

measurements of W II energy levels Ekberg et al used samples of natural tungsten which 

did not show line structure attributable to hyperfine structure or isotope shift. Tungsten 

has four stable isotopes (A = 182, 183, 184, and 186) with terrestrial fractional abundance 

of 26.3 %, 14.3 %, 30.7 %, and 28.6 % respectively, so the recorded experimental 

energies in [1, 2, and 3] represent the average values over all isotopes in natural tungsten 

[2, 10]. Only A=183 has a non-zero nuclear spin (I=1/2, µ=+0.1178). The term labels for 

both W I and W II in [1 and 2] do not reflect the actual nature of the states due to the 

strong mixing between the configurations. The percentage compositions of the W I levels 

were given only for the levels that were easily identified, i.e. those separated from other 

levels with the same J or those with pure enough LS coupling [2]. These percentage 

compositions were obtained by least square fitting calculations using Cowan’s code for 

the even levels. For the odd levels they were obtained by means of ab-initio Hartree-Fock 

high Z (Z is the atomic number) calculations with electrostatic and configuration 

interaction parameters scaled by a factor of 0.8. For W II the analysis of the vector 

compositions of the levels were done by Ekberg et al using Cowan’s code [3] and 

reproduced by Kramida et al [2] using the same code. Ekberg et al (2000) identified 76 

even parity and 187 odd parity levels. The even levels of W II belong to strongly mixed 

5d4 6s, 5d3 6s2, and 5d5 configurations. The odd levels belong to strongly mixed 5d3 6s 6p 

and 5d4 6p configurations [2, 3]. Also, the interaction with 5d2 6s2 6p is significant but 

not as strong [2]. 

  The experimental Lande g values of W II given by NIST [1] were from Laun [4] 

and were calculated by Ekberg et al (2000) [3]. The calculated and experimental g-values 

are in excellent agreement except the J=5/2 54704 cm-1 level where the experimental 

value was 0.623 and the calculated was 1.24 and it was suggested that the experimental 

value was wrong [2].  

In W II the levels n = 1: 4 form a closed core. The 4f sub-shell is part of the 

closed core with a very small average radius, nearly half of the 5p radius. The filled core 
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of n = 1: 4 introduces screening effects in the valence part of the configuration. The open 

5d sub-shells introduce intermediate coupling and configuration interaction effects [10]. 

Intermediate coupling is needed because neither the LS coupling nor JJ coupling schemes 

are accurate enough to describe the levels of this ion. The coupling in the zero level 

wavefunction (i.e. before correlation is added) is determined through the diagonalization 

of the energy matrix (It is simply whatever the system says it is without any prior 

prediction). Correlation effects are so strong that most of the levels of W II are heavily 

mixed. For the same J and parity each level is composed of multiple configurations and in 

many cases the dominant configuration occupies less than 20% of the total wavefunction. 

These effects apply to all singly positive ions with the same configuration where 5d is 

filled with 3 to 7 electrons. For these ions the transitions 5dx 6s to 5dx 6p are particularly 

strong between the levels of high J for of maximum spin multiplicity [10]. By a strong 

transition we mean one that has significant energy difference and large oscillator strength 

(f ≥ 0.5 ).  .  

The absorption spectra of positive ions 5s2 5p6 5dx 6s, x=3:7, in the range 2000-

3000 Å has been very helpful in obtaining their astrophysical abundance. But these 

spectra are so complex it is difficult to determine their absolute oscillator strengths either 

through relative absorption/emission measurements methods or through lifetimes. To 

obtain oscillator strengths from lifetime data we need to have reliable branching 

fractions. In ions like W II there is a great deal of configuration interaction effects. The 

even parity ground state consists mainly of one configuration but excited even levels are 

highly mixed of (5d+6s )5 configurations while the odd states are mixed of (5d+6s )4  6p 

configurations. This makes it fairly difficult to rule out the transition on criteria other 

than energy, parity, and angular momentum [10] (for example; usually there are cases in 

which some transitions are more favorable, e.g. nl to n(l± 1). But since each level already 

has many configurations in it there is not one l and the favorable configurations for the 

transitions are many). 

Oscillator strengths can be obtained experimentally through two approaches; the 

first is by emission, absorption or dispersion direct measurements. The second is through 

the lifetime and branching ratio measurements. The direct measurements include 
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comparing different atomic transitions simultaneously. They require sample equilibrium, 

measurement of absolute intensity and determination of absolute number density (e.g. 

emission measurements involve the number density of the upper level) [18]. Most of the 

early experiments used one of these direct approaches but the preciseness of the results 

was only about 50 percent. On the other hand measurements of radiative lifetimes are 

usually time-resolved which include comparing relative intensities from the same 

transitions at different times and it does not require any absolute measurements [18]. One 

of the factors that limit the accuracy of these measurements is the cascade repopulation of 

the levels of interest. This difficulty could be eliminated through selective excitations of 

the levels of interest, where the laser source is tuned to the frequency of the desired 

absorption transition. At the same time this method is limited only to atomic levels that 

can be accessed directly from the ground state by strong dipole transitions [18]. Add to 

this that measurements of branching fractions used are still pretty challenging and very 

few measurements are available even now. Also, lifetime and branching fractions are 

usually done as separate measurements. That is why computational studies of these data 

are highly important. They are not limited to any specific level and many data are 

obtained in one study. 

The following paragraphs give an overview of the most recent lifetime 

measurements in W II. The technique of selective laser excitations and time-resolved 

laser-induced-florescence (TR-LIF) had been used by Kwiatkowski et al [9] for 3 

measurements, by Schnabel et al [6] for 19 measurements, by Schults-Johanning et al [4] 

for 2 measurements and by Nilsson et al (2008) for 9 measurements. Also, Henderson et 

al [10] used the beam-foil method for 3 measurements. Lifetimes of some transitions 

were measured by different groups for comparison of techniques so for two decades. 

Only 28 radiative lifetime measurements of W II transitions are available from five 

experimentalists. 

Kwiatkowski et al 1984 used selective time-resolved laser induced florescence to 

measure lifetimes of three transitions in W II and the ions were produced by a sputtering 

technique. They also used the relative transition probabilities and relative oscillator 

strength measurements of Obbarius and Kock [14] to calculate absolute transition 

probabilities and oscillator strengths. According to Kwiatkowski et al the uncertainty in 
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the relative sets of f-values were 10 - 20% but the method that was used by Obbarius and 

Kick to convert them to absolute values increased the uncertainty to 50%. Kwiatkowski 

et al used their lifetime measurements of the two J=1/2 transitions to calculate the 

absolute f-values of these two transitions and to rescale the absolute f-values of the other 

25 transitions that were given by Obbarius and Kock [9]. 

Schnabel et al, 1998 gave radiative lifetimes of 19 W II levels that were measured 

using time-resolved-laser-technique with uncertainty 1-3% [6]. This was done as part of 

their program to obtain transition probabilities of W I, W II, and W III which were 

required by the scientific community, especially for plasma experiments. The goal was to 

combine the measurements of lifetimes with the measurements of branching ratios in 

order to obtain W II oscillator strengths. 

Henderson et al (1999) published lifetime measurements (with ~ 10% precision) 

of three W II transitions which are known to be of astrophysical importance. They also 

used Corliss and Bozman [13] transition probability measurements and their lifetimes to 

estimate oscillator strengths of four W II transitions. And they used their results to 

discuss the abundance of W II in the Sirius star. The most important line was that due to 

the 54498.57 o11/2 transition to 6D7/2 with lifetime 2.7(0.3) ns. This line has large oscillator 

strength and is only slightly affected by line blending. It was suggested as a good line for 

studying the abundance of W II in Sirius [10]. Notice that the absolute oscillator strengths 

values used in this work were quite old. So they might be not so accurate, which would 

effect on the accuracy of the lifetimes. 

Kling at el (2000) [5] gave transition probabilities which were obtained using the 

branching ratios derived from FTS. To convert the measured branching ratios to absolute 

transition probabilities Kling et al used the lifetimes measured by Schnabel et al, 1998. 

The uncertainty of these values ~ 7 – 9% and could be as large as 50%. Kling also 

calculated the spontaneous transition probability “A” for some lines [2].  

Ekberg et al (2000) besides giving measurements to W II energy levels also 

calculated the vector composition of all the levels by fitting parameters to observed levels 

using Cowan’s code. They found that very few levels, either even or odd parity, have a 

dominant configuration that occupies 50% or more of the wave function. Also, they used 

Cowan’s code to calculate lifetimes, transition probabilities, oscillator strengths, and 
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Lande g-value. Their calculated lifetimes are clearly bigger than the experimental values 

given by Schnabel et al [6]. The ratios of calculated to observed lifetimes were 0.66-0.93, 

see table VIII in [3]. This approach depends on comparisons with observed lifetimes to 

calculate scaled theoretical transition probabilities [3]. This makes difficult for us to 

compare our transition probabilities and/or oscillator strengths to theirs. As for the 

calculated g-values most of them are in good agreement with the ones measured by Laun 

et al (1964) [4]. For the 54704o
5/2 level the difference between the calculated and 

observed g-values is quite big (1.24 vs. 0.623). Both Ekberg et al and Wyart et al [15] 

doubted the experimental g-value of this level. [3].  

Nilsson et al, (2008) gave radiative lifetimes measurements of nine W II levels. 

They used their lifetime measurements and the previously measured ones and calculated 

branching fractions to deduce 290 transition probabilities. Also, they calculated the 

oscillator strength of 290 transitions using a relativistic Hartree Fock approach modified 

with core-polarization effects inclusion (HFR+CP). Both the relativistic effects and some 

correlation single excitations were included. The correlation effects due to core valence 

interactions were included in two different forms; in the first an Er 4f14 ionic core 

surrounded by 5 valence electron was considered, HFR+CP (A) model. The second 

considered a Yb- 4f14 5d2 ionic core surrounded by 3 valence electrons, HFR+CP (B) 

model. In the second form all the single excitations from 5d to the virtuals orbitals nl 

were taken into account, which built a core-polarization potential that 5d shell into the 

ionic core. So when these were used to calculate lifetimes the HFR+CP (B) results came 

closer to experiment. Nilsson et al mentions that the Ekberg et al (2000) calculated 

lifetimes are 30% lower than measurements and 15-25% lowers than their HFR+CP 

calculations. So that in table-1 in their paper they adjusted Ekberg’s lifetimes by dividing 

by a 0.69 scaling factor. That made Ekberg’s calculated lifetimes in good agreement with 

Nilsson’s measured and calculated lifetimes.  

Quinet et al, (2010) published a compilation of data for the radiative decay rates 

of W I, W II, and W III. They evaluated the available data in literature and gave the most 

recommended data for those transitions of interest for the plasma fusion experiments 

[18]. The data given included oscillator strengths and emission transition probabilities. 
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Although the RCI calculated branching ratios do not show excellent agreement with 

the experimental values, tables 4-9 : 4-14, we see that the RCI calculated lifetimes, tables 

4-1 and 4-3 : 4-8, do and so they are valuable to the scientific community. Our lifetimes 

of W II do agree well with most of the available experimental measurements. Many of 

the available calculations of branching fractions use fits with old experimental transition 

probabilities [e.g. Henderson 1999]. The energy levels of W II are heavily mixed which 

means that so many transitions are allowed this makes giving accurate branching 

fractions so complex. The experimental available branching fractions are only for 10 

transitions. So within this complexity it is not conclusive to consider RCI results as not 

accurate. The rest of this chapter includes theoretical background in section 4.2 and the 

results are presented and discussed in section 4.3. As for the tables, and throughout the 

discussion, due to the strong mixing between the different configurations in most of the 

levels we found that it is better not to give a general label for each level. So we are going 

to refer to the levels by their energies with the parity super-scripted and total J sub-

scripted. The transitions studied have large energy differences. Based on our previous 

theory [20], the sum of oscillator strengths from nearly degenerate levels (i.e. levels that 

have same J, parity and are close in energy) to a single level is almost a constant. Thus 

the lifetimes are nearly insensitive to the mixing of the even levels into which the odd 

levels decay. On the contrary the branching ratios are sensitive to the mixing in both even 

and odd levels. 

4.2 Theoretical background and computational details 
4.2.1 Theory and general background 

Interpreting the astrophysical data requires determination of wavelengths, 

intensity and shape of the spectral lines being received from the stars, where these 

spectral lines are due to radiative transitions between atomic states. The wavelengths 

have been measured precisely (about 1 part in 108) by classical spectroscopic methods. 

The intensity of a line could be determined through emission transition probability, Aki, 

or through absorption oscillator strengths, fik (k > i). The shape of a line is determined 

though its natural width Γ𝑘𝑘 =  ℏ/𝜏𝜏𝑘𝑘, 𝜏𝜏𝑘𝑘is the lifetime of the excited state” [17]. Accurate 
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measurements of some W II oscillator strengths and lifetimes became available recently 

and for a long time they had not been as precise. For cases where lifetimes are used to 

determine oscillator strength branching fractions, BFji, is also an important quantity that 

can be either measured or calculated. Measurements of branching fractions had been 

quite challenging and some have become available very recently. 

For a homogeneous light source of length l and for the optically thin case the total 

line intensity (SI unit radiance) is 

𝐼𝐼𝑙𝑙𝑖𝑖𝑛𝑛𝐸𝐸 =  � 𝐼𝐼(𝜆𝜆)𝑑𝑑𝜆𝜆
∞

0
=
ℎ𝑐𝑐 𝐴𝐴𝑘𝑘𝑖𝑖  𝑁𝑁𝑘𝑘 𝑙𝑙

4 𝜋𝜋  𝜆𝜆0
                                                              (4.1) 

, 𝐼𝐼(𝜆𝜆) is the intensity at wavelength 𝜆𝜆 and 𝜆𝜆0 is the wavelength at the center of the line. 

Nk is the number per unit volume of excited atoms in state “k". [18] 

In the case of absorption, the reduced line intensity (Wik) from a homogeneous 

and optically thin absorbing medium of length l is [18] 

𝑊𝑊𝑖𝑖𝑘𝑘 =  � 𝑊𝑊(
∞

0
𝜆𝜆) 𝑑𝑑𝜆𝜆 =  

𝑒𝑒2

4𝜖𝜖0 𝑚𝑚𝐸𝐸 𝑐𝑐2
 𝜆𝜆02 𝑁𝑁𝑖𝑖  𝑑𝑑𝑖𝑖𝑘𝑘 𝑙𝑙                                             (4.2) 

The atomic transition probability Aki is the spontaneous emission probability per 

unit time for an atom in any one of the 𝑔𝑔𝑘𝑘 degenerate states of the energy level k to make 

a transition to any of the 𝑔𝑔𝑖𝑖 degenerate states of the level i [18]. (in general 𝑔𝑔𝑘𝑘/𝑖𝑖 accounts 

for the mj degeneracy). 

For electric dipole transition, E1, (J  J, J±1, and parity change) Aki and fik are 

related as follows; 

𝐴𝐴𝑘𝑘𝑖𝑖 =  
2𝜋𝜋 𝑒𝑒2

𝑚𝑚𝐸𝐸 𝑐𝑐 𝜖𝜖0 𝜆𝜆2
  
𝑔𝑔𝑖𝑖
𝑔𝑔𝑘𝑘

 𝑑𝑑𝑖𝑖𝑘𝑘                                                                               (4.3) 

Equation 3 is in SI units. In customary units (that’s more commonly used with atomic 

units) 

𝐴𝐴𝑘𝑘𝑖𝑖 =  
6.6702 ×  1015

𝜆𝜆2
 
𝑔𝑔𝑖𝑖
𝑔𝑔𝑘𝑘

 𝑑𝑑𝑖𝑖𝑘𝑘                                                                         (4.4) 

, A in s-1, 𝜆𝜆 in Å, and f is dimensionless. 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑘𝑘 are statistical weights 𝑔𝑔𝑖𝑖(𝑘𝑘) =  2𝐽𝐽𝑖𝑖(𝑘𝑘) +

1. fik is the oscillator strength, also called f-value. 
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The radiative lifetime is the time required for a state “i" to decay into any one of 

the lower states k. It is equal to the inverse of the total transition rates summed over all 

decay channels. 

𝐶𝐶𝑘𝑘 =  ��𝐴𝐴𝑘𝑘𝑖𝑖
𝑖𝑖

�
−1

                                                                                                 (4.5) 

The branching fraction is the ratio of atoms that decay from an upper level “i" to a 

specific lower level, to the total number of atoms that decay from the same upper level to 

any lower level [19]. So the branching fraction for the jth channel of decay from level “i" 

is defined [17] as  

𝐹𝐹𝐵𝐵 =   
𝐴𝐴𝑗𝑗𝑖𝑖

∑ 𝐴𝐴𝑘𝑘𝑖𝑖𝑘𝑘
 =  𝜏𝜏𝑘𝑘𝐴𝐴𝑗𝑗𝑖𝑖                                                                                    (4.6) 

Measurements of branching fractions include measuring the relative intensity of the 

spectral line between two specific levels and comparing it to the total intensity of the 

emission from that upper level. 

The branching ratio between two decay channels [17] is  

𝑅𝑅𝐵𝐵 =  
𝐴𝐴𝑗𝑗𝑖𝑖
𝐴𝐴𝑘𝑘𝑖𝑖

                                                                                                                 (4.7)  

 

Figure 4-1: Illustration of a level "k" decays into lower levels "i". 

4.2.1.1 Relative and absolute transition probabilities  

If 1, 3 are high levels and 2 and 4 are low levels then relative oscillator strength is 

measuring f12/f32 and uses it with other data to obtain f34 which is absolute. 
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4.2.1.2  Conservation of the Sums of f-values 

The logic of Nicolaides and Beck [20] which dealt with the dipole transition from 

a single lower energy state i to two upper states k1, k2 is extended in this thesis. For f-

values, it was assumed the condition that condition of having |dE (k, i)| >> |dE (k1, k2)| 

was met. If so this implies [20] that the sum of the oscillator strengths fi,k1 + fi,k2 is nearly 

constant. Equivalently, it means the sum of the squares of the dipole transition matrix 

elements is constant.  

Here, we extend this to include an arbitrary number of lower levels (even parity) i, 

and any number of closely spaced odd parity upper levels k. The conditions and energy 

differences are, for all i, k combinations (with moderate to large fi,k) |dE(k, i)| >> |dE(k, 

k')|, |dE(i, i')| for all (k, k') and (i, i') combinations. Since the lifetime for level k, 𝐶𝐶𝑘𝑘 is 

inversely proportional to ∑ 𝐴𝐴𝑘𝑘𝑖𝑖𝑖𝑖  which is in turn proportional to ∑ 𝑑𝑑𝑖𝑖𝑘𝑘𝑖𝑖 , the extended 

conservation rule is ∑ 1
𝐸𝐸𝑖𝑖

 𝑘𝑘  is nearly constant where k is a member of a group of closely 

spaced odd parity levels. This can be summarized as in equations (4-8): (4-10) 

∑ ∑ 𝑑𝑑𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 ≅  𝐶𝐶1                                                                   (4.8) 

Since 

 𝑑𝑑𝑖𝑖𝑘𝑘 𝛼𝛼 𝐴𝐴𝑘𝑘𝑖𝑖   𝐶𝐶ℎ𝑒𝑒𝑛𝑛   ∑ ∑ 𝐴𝐴𝑘𝑘𝑖𝑖𝑖𝑖𝑘𝑘  ≅  𝐶𝐶2                                             (4.9) 

And since 

 𝐶𝐶𝑘𝑘 =  1
∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖

  𝐶𝐶ℎ𝑒𝑒𝑛𝑛    ∑ 1
𝐸𝐸𝑖𝑖

  =  𝐶𝐶3𝑘𝑘                                          (4.10) 

Where C1, C2, C3 are arbitrary constants. 

For very many cases in the W II levels studied here, this is proven to be valid. 

Qualitatively it is saying that while the mixing coefficients for closely spaced levels may 

be  harder to get accurately, whatever is "lost" by one these levels is redistributed over the 

other levels in the "k" set. 

In this thesis, an equivalent conservation rule is confirmed for hyperfine structure 

and Lande g-values, without involving energy differences which are not present for these 

operators. These "rules" have also been confirmed for a large number of cases. Finally, in 

all instances the rules may be used to make a semi-empirical estimate of the property for 

a "missing" member of the "k group", providing the other members have been measured. 
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4.2.2 RCI calculations 

Relativistic configuration interaction calculations included all W II odd parity 

states with angular momentum J = 1/2 up to J = 11/2 and all even states from J = 1/2 up 

to J=13/2. Which are almost all the experimentally measured enerty levels given in [1-2] .  

The goal of these calculations was to obtain the lifetimes due to the electric dipole 

transitions between these states. Also, three other quantities were obtained; emission 

probabilities, oscillator strength, branching fractions, and Lande g-values. 

The reference configurations are 5d4 6s and 5d3 6s2 for the even states and 5d3 6s 

6p and 5d4 6p  for the odd states. The radial functions of the reference configurations 

were obtained as numerical solutions of the Multi-Configurational-Dirac-Fock equations 

using Desclaux code [19]. The experimental energy differences are used to calculate the 

transition probabilities and oscillator strengths. 

The correlation effects were taken into account by using relativistic screened 

hydrogenic functions, RSH functions, (or virtual orbitals). For W II two sets of l =0 to 4 

were included. And all single and double excitations from the valence shells (n = 5-6) 

were considered. The effective charge, Z*, of the RSH functions is determined by 

applying the energy variational procedure to valance electrons in the RCI matrix.  

Some of the configurations have a large number of matrix elements and also large 

energy contributions, e.g. 5p to vf contributes ~ 1.3 eV. It is better to exclude these 

configurations from energy matrix because it is limited only to 20, 000 vectors and a few 

of them can use up all the allowed space. The second reason for excluding them is the 

disturbance they produce to other configurations. For example; when the reference 

configurations are 5s2 5p6 5d4 6p and 5s2 5p6 5d3 6s 6p, introducing a 5p to vf excitation 

must be done to the two references. While it gives the right effect to fix one of the 

references it will disturb the other one. In these cases our solution is to perform separate 

calculations that include only one reference and one correlation configuration, for 

example 5s2 5p6 5d4 6p and 5s2 5p5 5d4 6p vf are included in the matrix. Then another 

matrix that includes 5s2 5p6 5d3 5s 6p and 5s2 5p5 5d3 5s 6p vf. In each of these runs the 

Z* of vf was recalculated. Then compare the energy contribution due to the correlation 

configuration on the two references. Finally only the relative energy difference is taken as 
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shift of the diagonal energy matrix element of one of the references with respect to the 

other. This idea of shift is also discussed in [22]. Calculating the relative energy shift this 

way was done to all single and double excitations that had big matrix size and big energy 

contributions, examples are 5p to vp, 5p to vf, 5s 5p to vd vf, and 5p 6d to vp vd. 

The electric dipole transitions between J odd to J, J±1 even states were calculated by 

the f-value code [21]. This code deals with the non-orthonormal states which are required 

because the initial (even levels with lower energies) and final states (odd levels with 

higher energies) have different radials. In this stage of calculations we used the 

experimentally measured energies, not the RCI calculated, because they are more 

accurate. It produces the emission probabilities and oscillator strength by two different 

calculations, the length gauge and the velocity gauge. The results of length gauge are 

proportional to radial operator while the results of the velocity gauge are proportional to 

the inverse of the radial operator [23]. In cases where excitations are done from both the 

core and the valence sub-shells usually the gauge spread [|velocity- length|/ (velocity + 

length)] is about 10% or less. In the case of W II only the excitations from the valence 

shells were done so only the results on the length gauge were used. 

4.3 Results and Discussion 

In this section we present RCI results in comparison with recent experimental data 

and some of the previous calculations. First there are three tables for RCI results, 

lifetime, oscillator strength, and Lande g-value, for the odd parity levels that have 

experimental measurements only. So that the comparisons between RCI and experimental 

results are clear. Then we present tables of RCI results, lifetime and g-values, for all the 

published odd parity levels. We also give oscillator strength, emission probabilities and 

branching for the lowest 10 levels for each odd J. The RCI results are compared with 

some available data in the literature.  A conservation of the sum of the inverse lifetimes 

of two (or more) neighboring levels that have same J and parity was observed. 
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4.3.1  Lifetime of W II transitions; comparing RCI results to 

experimental values 

We are comparing RCI lifetime calculations to the most recent reliable 

measurements and calculations; Nilsson’s et al 2008 and Ekberg’s et al 2000. Nilsson’s 

calculations had shown to be in good agreement with experimental values. Ekberg gave 

the most recent most accepted energy level measurements and LS vector composition 

calculations. It is expected that the same parameters which they used to derive the LS 

vector composition will yield good lifetime values. In table 4-1 we compare RCI 

calculations to recent measured values and to the calculated values by Nilsson’s [7] two 

methods and to Ekberg’s [3] calculations. The values for Ekberg’s results in table 4-1 are 

those given in table 4-8 in [3] multiplied by 0.69 as a scaling factor. This was the same 

scaling factor used by Nilsson’s et al in [7]. For reasons of choosing this value see [7] and 

[3].The percentage errors are calculated as (|τRCI – τexp|/ τexp) * 100. 

In general the short lifetimes have big percentage errors although most of 

calculated short lifetimes are of order of 10-2 ns difference from the experimental values. 

In total the average error percentage between RCI calculated lifetimes and the 28 

experimental values is 15.9 % (or 14.3 % if the smaller errors are considered, for those 

levels that have multiple measured values) 

A conservation of the sum of the inverse of lifetimes of neighboring levels with 

the same J, and parity is observed in some cases. Since the conservation of sum of the 

inverse also implies conservation of the sum we are going to give the examples of these 

conservation cases in terms of sum of lifetimes directly. This conservation rule can be 

applied on levels that have same radials, i.e. either 5d4 6p or 5d3 6s 6p. But the levels of 

W II are highly mixed of different configurations for the two different radials (see 

columns 1 and 2 in table 4-1). Also, the given percentages of the configurations in the 

different levels show that it is not possible to follow a given configuration to see how it is 

distributed on the different levels. Because of these two reasons we decided that the sum 

of the f-values (or sum of lifetimes) can be applied approximately and collectively on all 

levels that have small energy differences, same J and same parity and they don’t have to 
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have same radials. The best case of applying this rule was J=3/2 because many levels in a 

raw have available lifetime measurements. Other Js have a fewer measurements available 

with many levels in between are not measured. 

In regards to Nilsson’s two methods of calculations; they stated that the second 

method ((HFR+CP (B), Yb-like ionic core and 3 valence electrons) gave values that were 

closer to the experimental ones. But studying table 4-1 and table 1 in [7] shows that in 

some cases the first method ((HFR+CP(A) , Er-like core and 5 valence electrons) gave 

better results. This reflects the complexity of W II electronic states and the difficulty to 

specify an exact model for it. 

4.3.1.1 Comparing RCI lifetimes to experimental values for W II J=1/2 

 36165.361/2
𝐷𝐷  Level; RCI is in excellent agreement with both experimental values but it 

is closer to the Kwiatkowski’s. RCI is better than the Nilsson’s calculations and as good 

as Ekberg’s. 

 38576.31 1/2
𝐷𝐷  ; RCI is in good agreement with both experimental values but it is closer 

to the Kwiatkowski’s. RCI is closer to experiments than the Nilsson’s calculations. 

 44455.21 1/2
𝐷𝐷 ; RCI is in excellent agreement with experimental value. RCI is also close 

to the Nilsson’s second calculations and both are better than Ekberg’s 

These are the lowest three levels for J=1/2 the sum of lifetime from RCI is 26.84 ns and 

the experimental is 27.97 ns. So the error in the sum of the three levels is 4%. 

Lifetimes of 36165.35o
½ and 38576.32o

½ were also measured by Shultz et al, 1998 [11] as 

part of testing their experimental technique of using Linear Paul trap with TRLF for 

lifetime measurements. They gave the same results as those given by Schnabel et al 1998 

[Shultz and Schnabel belong to the same experimental group]. Schnabel’s and 

Kwiatkowski’s measurements of the lifetimes of 36165o
½ and 38576o

½ are close to each 

other. 
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4.3.1.2 Comparing RCI lifetimes to experimental values for W II J=3/2 

39129.463/2
𝐷𝐷 ; RCI is 28% off the experimental value. Both of Nilsson’s second 

calculation and Ekberg’s are better than RCI. 

42298.223/2
𝐷𝐷 ; RCI is in excellent agreement with the experimental value. RCI is better 

than the 3 previous calculations. 

44911.663/2
𝐷𝐷 ; The difference between RCI calculated lifetime and the measured one is 

0.56 ns. Since this is a relatively short lifetime the error percentage is quite big, 12.87%. 

RCI is slightly better than Nilsson’s two calculations. Ekberg’s is better than the other 

calculations. 

45553.653/2
𝐷𝐷 ; This is an average lifetime. But RCI is giving a relatively long lifetime. 

RCI is 23.73 off experiment. All previous calculations are closer to experiment than RCI. 

And this is one of the biggest error percentages for RCI.  

47179.943/2
𝐷𝐷 ; The two experimental values are quite close, almost the same. RCI is in 

excellent agreement with both of them and slightly closer to Schnabel’s than to Nilsson’s. 

RCI is as good as Nilsson’s first calculation and clearly better than the other two 

calculations. 

The sum of lifetimes of the three levels, 44911.663/2
𝐷𝐷 , 45553.653/2

𝐷𝐷  and 47179.943/2
𝐷𝐷  is 

18.75 ns for RCI calculation, and 17.94 for the experimental values (measured by 

Shnabel) with a 0.81% error. 

47588.653/2
𝐷𝐷 ; RCI is in good agreement (9.71 % error) with the experimental value and it 

is as good as Nilsson’s second calculation and Ekberg’s. 

48982.943/2
𝐷𝐷 ; RCI has 19.60 % error. Both of Nilsson’s measurements look as good as 

RCI with one of them less than experiment and the other is higher. Ekberg’s value is 

good, as well. 

50431.003/2
𝐷𝐷 ; This is a short lifetime, 6.6 ns. RCI is 17.58% off experiment. It is a little 

better than Nilsson’s first calculations and almost as good as their second calculations. 

51254.433/2
𝐷𝐷 ; RCI is 13.33% off experiment. It is close to Nilsson’s first calculation. 
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These are three levels in sequence so the sum of their lifetimes should be conserved, 

(𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 is 13.6 ns and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 13.7 ns with an error of 0.72%, which is an excellent 

application for the conservation of the sum.  

4.3.1.3 Comparing RCI lifetimes to experimental values for W II J=5/2 

42049.485/2
𝐷𝐷 ; RCI is in excellent agreement with experiment and it is better than the 

three previous calculations. 

44354.785/2
𝐷𝐷 ; RCI is in excellent agreement with experiment. It is better than the 

Nilsson’s previous calculations and as good as Ekberg’s. 

48284.505/2
𝐷𝐷 ; RCI is 18.81% off the experimental value. Both of Nilsson’s calculations 

are bigger than RCI with the first value closer to experiment. 

49242.045/2
𝐷𝐷 ; RCI 12.91% off experiment and it is better than the three previous 

calculations.  

50292.355/2
𝐷𝐷 ; RCI is 28.40 % of experiment. RCI is very close to Nilsson’s second 

calculation and to Ekberg’s. Nilsson’s first calculation is the closest to experiment. 

51438.06 5/2
𝐷𝐷 ; RCI is in very good agreement with experiment. Nilsson’s two 

calculations are slightly better than RCI.  

These four levels for J=5/2 are in sequence and they illustrate a good example of the 

conservation of the sum of lifetimes. 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 of 48284.505/2
𝐷𝐷  and 49242.045/2

𝐷𝐷  is 

8.55 ns, 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 9.23 ns with 7.4% error. Adding to them the lifetime of 

50292.355/2
𝐷𝐷  gives 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 15.15 ns and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 14.37 ns with 5% error. Then 

adding to them lifetime of  51438.06 5/2
𝐷𝐷  gives 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 20.13 ns and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 

18.97 ns with 6% error. 

4.3.1.4 Comparing RCI lifetimes to experimental values for W II J=7/2 

42390.297/2
𝐷𝐷 ; The difference between RCI and experiment is 2 ns. Since it is a long 

lifetime the error percentage is just 2.71 %. RCI is in excellent agreement with 

Schnable’s measurement and disagrees with Kwiatkowski’s. It’s better than the three 
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other measurements. For this level the value given by Kwiatkowski’s measurement is 

much smaller than that given by Schnabel’s measurement and Ekberg’s and Nilsson’s 

calculations and also RCI calculations. So we agree with Nilsson that this value should be 

rejected. Schnable et al explain this disagreement to be due to misidentification of the 

wave length of the measured lifetime by the Kwiatkowski group [8]. 

44877.217/2
𝐷𝐷 ; RCI is in excellent agreement with experiment and it is better than 

Nilsson’s calculations and slightly better than Ekberg’s. Although the energy difference 

between this level and the one above is quite big 2500 cm-1. The  𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 is 84.49 ns 

and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 82.68 ns with an error of 2.18 % 

51045.297/2
𝐷𝐷 ; This is one of the short lifetimes. RCI is bigger than experimental value. 

The two Nilsson’s calculations look closer to experiment than RCI. The error percentage 

of RCI (32.98 %) is less than that of the Nilsson’s first calculation (41%) and bigger than 

the second (9.8 %). 

54498.617/2
𝐷𝐷 ; The two experimental values are close and show it as a fast transition. RCI 

is closer to Nilsson’s measurement than it is to Hendersson’s.  Both of Nilsson’s 

calculations are closer to Hendersson’s measurement. 

For the 42390o
7/2 and 54498o

7/2 there is a disagreement between TR-LIF Nilsson’s et al 

measurements and both of their calculations which seem to be in good agreement 

between the HFR-CP results by Nilsson’s and the measurements of Henderson’s. And we 

see that the RCI result is in excellent agreement with Nilsson’s measurement, as it falls 

within the range of experimental uncertainty. Between the 44877 and 51045 cm-1 levels 

there are 3 levels missing measured lifetimes, between the 51045 and 54498 there are 4 

missed levels. So it is not useful to apply the conservation of the sum rule for these 

levels. 

4.3.1.5 Comparing RCI lifetimes to experimental values for W II J=9/2 

44758.10 9/2
𝐷𝐷 ; RCI is in good agreement, 13.27 % error, with this average sized lifetime 

and it is better than the three previous calculations. 
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46493.369/2
𝐷𝐷 ; RCI is in good agreement with this average sized lifetime and it is better 

than Nilsson’s calculations. Ekberg’s is even better than RCI. 

49181.039/2
𝐷𝐷 ; Although it is not a short lifetime RCI and experiment differ by 18.60%.  

55392.459/2
𝐷𝐷 ; This has a short lifetime and RCI and experiment differ by 19.57%. Both 

of Nilsson’s calculations are closer to experiment than RCI.  

44758.10 9/2
𝐷𝐷 , 46493.369/2

𝐷𝐷 , and 49181.039/2
𝐷𝐷  levels are in sequence, 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 is 

53.44 ns and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 55.5 with a 3.7% error. There are 5 levels are missing 

lifetime measurements above 55392.459/2
𝐷𝐷 . So the conservation of the sum cannot be 

applied here in order to predict individual semi-empirical lifetimes. 

4.3.1.6 Comparing RCI lifetimes to experimental values for W II J=11/2 

51495.0511/2
𝐷𝐷 ; This is the biggest RCI error percentage, 45.71 %.  

54229.0811/2
𝐷𝐷 ; RCI is in better agreement with Hendersson’s measurement than it is with 

Schnabel’s. The three other calculations are closer to Schnabel’s measurement. The 

energy difference between this level and the one above is 2700 cm-1. 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝑁𝑁𝑅𝑅𝐼𝐼 is 7.32 

ns and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝜏𝜏)𝐸𝐸𝑒𝑒𝐷𝐷 is 11.2 ns (or 10.18 using Shcnabel’s value) with an error of 35 % (or 

(28.1%). The decays of 51495o
11/2 and 54229o

11/2 levels produce astrophysically  

important lines [10]. The agreement of RCI calculation with the experimental values is 

not satisfactory for these two levels. 

4.3.2 Lande g-value of W II odd levels; comparing RCI results to 

experimental values 

Table 4-2 presents RCI calculated Lande g-value (g-factor) for W II odd levels 

that have their experimental values measured and published. Those are in NIST data base 

[1] which is taken form Kramida et al 2006 [2] and originally they are the measurements 

of Laun et al (1964) [4 ]. The Ekberg’s et al (2000) [3] calculated results for these levels 

are also displayed.  
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Since g-values are already small I am considering all error < 10% excellent 

agreement with experiment for the individual levels. The average error over the available 

71 experimental values is 8.51%. 

4.3.2.1 Comparing RCI g-values to experimental values for W II J=1/2odd  

For most of W II J=1/2 levels RCI calculations are in excellent agreement with 

experiment except for a few levels. 

44455.21 1/2
𝐷𝐷 ; The difference between RCI and experiment is pretty small but the value 

of g-factor is small, too. This gives a big percentage error. 

52355.25 1/2
𝐷𝐷 ; RCI and Ekberg agree and they are pretty different from experiment so we 

suggest that g-value needs to be re-measured. 

52593.77 1/2
𝐷𝐷 ; RCI is quite different form experiment (error is 34.8%) and Ekberg’s. 

Since the energy difference between this level and the one above is only 250 cm-1 then an 

effective mixing is expected to affect the results of these two levels. 𝑠𝑠𝑠𝑠𝑚𝑚 (𝑔𝑔)𝑁𝑁𝑅𝑅𝐼𝐼 is 2.87 

and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝑔𝑔)𝐸𝐸𝑒𝑒𝐷𝐷 is 2.54 with an error of 13%. This illustrates the conservation of g-value 

sum for nearly degenerate levels. 

4.3.2.2 Comparing RCI g-values to experimental values for J=3/2 odd 

Most of the levels have very good to excellent agreement with the experimental 

values except  56084.333/2
𝐷𝐷  and 58007.693/2

𝐷𝐷  where there is about 20% error.  For the 

58007.693/2
𝐷𝐷   level and the 58748.043/2

𝐷𝐷  (directly above it), 𝑠𝑠𝑠𝑠𝑚𝑚 (𝑔𝑔)𝑁𝑁𝑅𝑅𝐼𝐼 is 2.298 and 

𝑠𝑠𝑠𝑠𝑚𝑚 (𝑔𝑔)𝐸𝐸𝑒𝑒𝐷𝐷 is 1.98 with an error of 16%.  

4.3.2.3 Comparing RCI g-values to experimental values for J=5/2 odd 

RCI calculated g-values are in excellent agreement with experiment for all the levels 

except the following ones; 

54704.59 5/2
𝐷𝐷 ; RCI is almost double the experimental value but it is very close to 

Ekberg’s calculations. 
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55162.39 5/2
𝐷𝐷 ; RCI is 19.71% off experiment but it is close to Ekberg’s result. We 

suggest re-measuring g-values of these two levels. 

56874.98 5/2
𝐷𝐷 ; RCI is much bigger than experiment and Ekberg’s. 

57856.76 5/2
𝐷𝐷 ; RCI is much smaller than experiment and Ekberg’s. It seems as if g-values 

of these two levels have been exchanged, 𝑠𝑠𝑠𝑠𝑚𝑚 (𝑔𝑔)𝑁𝑁𝑅𝑅𝐼𝐼 is 2.3 and 𝑠𝑠𝑠𝑠𝑚𝑚 (𝑔𝑔)𝐸𝐸𝑒𝑒𝐷𝐷 is 2.17 with 

an error of 5.7%. 

4.3.2.4 Comparing RCI g-values to experimental values for J=7/2 odd 

All levels have excellent-very good agreement between RCI results and 

experimental values. For 48830.70 The RCI error % is less than 10% but it is pretty close 

to Ekberg’s. A couple of levels are quite different from Ekberg’s calculations 58537.63 

and 58709.61, but these don’t have their experimental measurements available. But the 

difference in the sum is only 2.2%. 

4.3.2.5 Comparing RCI g-values to experimental values for J=9/2 odd 

Only 8 levels have experimental g-values available. RCI of 5 levels is in excellent 

agreement with experiment. For the 53370.01 and 54056.59 the error percentages are 17 

and 15 %, the error of the sum is only 3.3%. For the 55392.45 the three values RCI, 

experiment and Ekberg’s are quite different from each other, the errors % of RCI is 21% 

and that of Ekberg’s is 14%. 

4.3.2.6 Comparing RCI g-values to experimental values for J=11/2 odd 

RCI g-values are in excellent agreement with the experimental measurements except 

for one level 51495.05. In section 4.3.1 we saw that summing lifetime of this level with 

the 54229 cm-1 level reduced the error drastically. The g-value of the second level not 

measured so we can’t compare the sum for g-values. But I think that the sum g-values for 

the two levels will show very small error % when new measurements are provided. 
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4.3.3 RCI results of W II odd levels; lifetimes and g-values 

Tables 4-3 to 4-8 display the RCI results of the lifetime and Lande g-value of the 

lowest odd levels of W II. Calculated g-values by Ekberg et al (2000) are also given. The 

overall agreements between RCI and Ekberg’s calculations are good.  A few values show 

some disagreement. Ekberg et al have the most recent measurements of W II energy 

levels and it is expected that their g-value calculations are accurate enough and good to 

compare with.  

4.3.4 Oscillator strength of W II odd levels; comparing RCI results to 

experimental values 

Tables 4-9 to 4-14 present RCI results for emission probabilities Aki, absorption 

oscillator strength (or f-value) fik, and branching fractions of the lowest 10 energy levels 

for each J odd state. The calculations included all the W II 175 odd parity levels, J=1/2 – 

11/2, but we chose to display the results of only a few of them to avoid lengthy tables. 

Also, because the experimental measurements of Lennartsson et al [16] included lower 

levels only, these values are given in the tables for comparisons. The tables also gives 

log10 (gf) which is the most commonly used quantity in literature; g is the statistical 

weight of the lower level. In these tables we also give calculated log (gf) values that were 

compiled by Quinet et al (2010). Lennartsson et al measured the branching fractions 

associated with the most recent lifetime’s measurements, Nilsson’s et al 2008. From these 

measurements of branching fractions and lifetimes their oscillator strengths values were 

derived [16].  

Looking at the tables we see a good agreement between RCI f-values and those 

compiled by Quient [18]. This puts the quality of RCI branching fractions and f-value 

calculations on equal footing with the most important previous calculations. Also, when 

comparing the branching fractions of the nine decays measured by Lennartsson et al [16] 

to the RCI calculations we see that both agree on identifying the strongest 2 or 3 branches 

for each decay. In many cases the calculated and experimental values of these strong 



110 

branches are similar. Other small branches have less agreement between the calculated 

and experimental values. 

47179.943/2
𝐷𝐷 ; decays into 11 even levels, table 4-1, gives10.17 % error in lifetime 

calculation (τerror). Table 4-10, shows that both RCI and experiment give the strongest 

three branches of decay to be 0.01/2
𝐸𝐸 , 15193/2

𝐸𝐸 , and 87113/2
𝐸𝐸 with the same order. The RCI 

and experiment values are different, error 30, 33, 40%. 

50431.003/2
𝐷𝐷 ; decays into 14 branches, τerror is 17.58%, RCI branching fractions shows 

51% to the ground and 16.8 % to 131731/2
𝐸𝐸  , other branches are small. Experiment show 

31.3% decay to 131731/2
𝐸𝐸  and 14.3 % to ground and 9.86% to 113035/2

𝐸𝐸 . So RCI did 

identify the biggest two branches as experiment, but with a reversed order and bigger 

values and it missed the third branch. 

51254.433/2
𝐷𝐷 ; decays to 14 branches, τerror is 13.33 %, both of RCI and experiment show 

the biggest three branches ,in order, to be 0.01/2
𝐸𝐸 , 31725/2

𝐸𝐸 , and 15193/2
𝐸𝐸 , errors 43, 68, 

and 20.5%. 

48284.505/2
𝐷𝐷 ; decays to 16 branches, τerror is 18.8 %, both of RCI and experiment show 

the biggest three branches ,in order, to be 74205/2
𝐸𝐸 , 31725/2

𝐸𝐸 , and 47167/2
𝐸𝐸 , errors 13.5, 7, 

and 50%. 

51438.06 5/2
𝐷𝐷 ; decays via 24 branches, τerror is 8.7 %, both of RCI and experiment show 

the biggest two branches, in order, to be 31725/2 
𝐸𝐸  and 146343/2

𝐸𝐸   , error 5 and 2 %. The 

third decay branches of RCI and experiment are different. This transition shows the small 

error in lifetime calculation is associated with small errors in branching fraction 

calculations. 

51045.297/2
𝐷𝐷 ; decays to 16 branches, τerror is 32.98 %, both of RCI and experiment show 

the biggest three branches ,in order, to be 31725/2
𝐸𝐸 , 47167/2

𝐸𝐸 , and 61479/2
𝐸𝐸  , errors 6, 26, 

and 75%. 

54498.617/2
𝐷𝐷 ; decays to 16 branches, τerror is 9.05 %, both of RCI and experiment show 

the biggest two branches ,in order, to be 47167/2 
𝐸𝐸  and 61479/2

𝐸𝐸   , error 34 and 10 %. The 

third decay branches of RCI and experiment are different. This transition shown a small 
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error in lifetime calculation not associated with small error in branching fraction 

calculations.  

49181.039/2
𝐷𝐷 ; decays to 5 branches, τerror is 18.6 %, both of RCI and experiment show the 

biggest two branches ,in order, to be 47167/2 
𝐸𝐸  and 61479/2

𝐸𝐸   , error 27 and 15 %. The 

third decay branches of RCI and experiment are different. 

55392.459/2
𝐷𝐷 ; decays to 21 branches, τerror is 19.57 %, both of RCI and experiment show 

the biggest two branches ,in order, to be 47167/2 
𝐸𝐸  and 61479/2

𝐸𝐸   , error 25 and 72 %. The 

third decay branches of RCI and experiment are different 

The analysis of lifetime and branching fractions of these levels does not give a clear 

link between the error percentages in the RCI calculations of the two quantities. 

4.3.5 Conclusion 

Relativistic configuration interaction calculations were performed to obtain the 

lifetimes due to the electric dipole transitions between W II J=1/2 to J=11/2 odd parity 

states and J=1/2 to J=13/2 even states. Lifetimes of 175 transitions are given in this study. 

In general the agreement between the RCI lifetimes and the available 28 measured 

lifetimes is good, average error is 15.9 %. Comparing RCI lifetime values to the 9 

measurements by Nilsson et al [7] the average error is 16.53 %. Oscillator strengths, 

emission probabilities, and branching fractions were obtained for all the mentioned 

transitions. In this study we provide these quantities for the lowest 10 energy levels for 

each J odd value.  The agreement between the measured branching fractions of 9 

lifetimes (Lennartsson et al 2011) is not excellent. Qualitatively it is good because all the 

measured important branches of decay were also shown to be important in RCI 

calculations. On the other hand the agreement between RCI oscillator strengths and the 

previous calculations (Quinet et al 2010) is good. This puts the quality of RCI f-value and 

branching fractions on equal footing to all the previous important calculations. A 

conservation of sum of lifetimes of levels that have close energies, same J, and parity was 

observed in the RCI results. This reflects the conservation of the sum of the oscillator 

strengths values that was mentioned earlier by Nicolaides and Beck in [20]. Although the 
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individual values (either life times or oscillator strengths) may disagree with the 

measured values the sums are nearly the same. Also Lande g-values were calculated and 

they are in good agreement with measured and previously calculated values. A 

conservation of the sum of g-values of nearby energy levels is observed. 

According to Henderson et al , 1999 [10] the transitions 5dx 6s to 5dx 6p are 

particularly strong between the levels of high J for terms of maximum spin multiplicity 

for all the positive ions that have ground state configuration 5dx 6s, x = 3-7. Looking at 

the f-values of RCI calculations (tables 4-9: 4-14) and the available experimental results 

[16] and other calculations [18] I see that all Js have almost equal average log gf values. 

There for I do not see this point given in reference [10] about the stronger transitions 

verified in case of W II. 

Although the lifetimes result from summing up the emission probabilities over the 

different branches we found that RCI lifetimes have much better agreement with 

experimental values than the branching fractions and oscillator strength (which is closely 

related to emission probabilities), see also section 4.2.1.2. This can be explained as 

follows; first all W II levels are very impure where many configurations are mixed to 

make each level. In our calculations we were more concerned with the mixing 

percentages in the odd states, while we did not give same attention to the mixing in the 

even states. The lifetime values (which are the goal of this study) are sensitive to mixing 

in the odd states, while the branching fractions are sensitive to mixing of the odd and 

even states. Since each odd state decays into multiple even states, the branching fractions 

show even more sensitivity to the mixing and formation of the even states.  

  One thing to mention here is that experimentally the lifetimes and branching 

fractions are obtained in different sets of experiments and then they are used to calculate 

the oscillator strength (which is the most required quantity for spectroscopic analysis and 

diagnoses). In this study we calculate the emission probabilities and oscillator strength 

first then they were used to get the lifetime. The goal of this study was to provide 

lifetimes that can be used later with measured branching fractions to obtain oscillator 

strength. The goal of this study has been achieved by providing these lifetimes values. A 

future work can improve the mixing coefficients in the even states and thus the branching 

fractions.  
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Table 4-1: Comparision of RCI lifetimes to the experimental measurements. Error % between 

RCI calculations and experimental values are given.  Also, previous calculations are given. 

Previous calculations include: HFR-CP (A), HFR-CP (B) of Nilsson’s et al and Ekberg’s 

(scaled). 

 

Level Energy 

 (cm-1)a 

LS coupling a TRCI (ns) Texp (ns) Error 

% 

Tcalc (ns) 

% Configuration LSO 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  17 

10 

5d4(5D)6p  

 5d4 (3P)6p  

6F 
4D 

13.61 14.42 ± 0.14c 

14.0 ±0.7d 

5.62 

2.79 

11.11f, 11.91g 

13.70 h 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  21 

17 

  5d4 (5D)6p 

5d4 (5D)6p 

4P 
6F 

10.33 11.88 ±  0.07c 

11.3 ± 0.6d 

13.05 

8.85 

9.11f , 9.82g 

11.17 h 

𝟒𝟒𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  43 

24 

5d4 (4F)6s(5F)6p 

5d4 (5D)6p 

6F 
6F 

2.90 2.67 ±  0.07c 8.61 2.46f , 2.87g 

3.07 h 

𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑.𝟒𝟒𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  34 

12 

5d4 (5D)6p 

5d3 (4F)6s(5F)6p 

6F 
4D 

17.89 13.94 ± 0.09 c 28.34 10.97f, 12.52g 

12.52 h 

𝟒𝟒𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑.𝟐𝟐𝟐𝟐𝟑𝟑/𝟐𝟐
𝒐𝒐  23 

17 

5d4 (5D)6p 

5d4 (5D)6p  

6D 
4P 

10.69 10.88 ±  0.13c 1.75 8.30f , 9.00g 

10.09 h 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  25 

17 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6F 
4P 

3.79 4.35 ±  0.06 c 12.87 3.25f , 3.75g 

4.09 h 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  31 

5 

5d4(5D)6p  

5d3 (2P)6s(3P)6p  

6F 
4D 

9.75 7.88 ±  0.24c 23.73 6.15f , 6.79g 

7.17 h 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟒𝟒𝟑𝟑/𝟐𝟐
𝒐𝒐  29 

13 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6F 
4F 

5.21 5.8 ± 0.3b 

5.71 ±  0.08c 

10.17 

8.76 

5.91f , 6.82g 

7.67 h 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  46 

9 

5d4 (5D)6p  

5d3 (4P)6s(5P)6p  

6P 
6P 

3.07 3.40 ±  0.11c 9.71 2.88f , 3.23g 

3.67 h 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟑𝟑𝟒𝟒𝟑𝟑/𝟐𝟐
𝒐𝒐  35 

12 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6D 
4P 

4.02 5.00 ±  0.08c 19.60 4.54f , 5.37g 

5.83 h 

𝟑𝟑𝟓𝟓𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟓𝟓𝟑𝟑/𝟐𝟐
𝒐𝒐  14 

11 

5d4 (5D)6p  

5d4 (5D)6p  

4F 
6D 

7.76 6.6± 0.4b 17.58 4.69f , 5.31g 

𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑𝟒𝟒.𝟒𝟒𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  17 

15 

5d4 (5D)6p  

5d3 (4P)6s(5P)6p  

6D 
6D 

1.82 2.1± 0.2b 13.33 1.87f , 2.16g 

𝟒𝟒𝟐𝟐𝟓𝟓𝟒𝟒𝟑𝟑.𝟒𝟒𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  45 

11 

5d4 (5D)6p  

5d3 (4F)6s(5F)6p  

6F 
6F 

11.97 11.07 ±  0.19c 8.13 8.34f , 9.04g 

9.45 h 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟒𝟒.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  22 

13 

5d4 (5D)6p  

5d3 (4F)6s(5F)6p  

6D 
6D 

10.18 9.90 ± 0.12c 2.83 7.74f, 8.61g 

9.86 h 

𝟒𝟒𝟑𝟑𝟐𝟐𝟑𝟑𝟒𝟒.𝟑𝟑𝟓𝟓𝟑𝟑/𝟐𝟐
𝒐𝒐  21 

10 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6F 
6P 

4.79 5.9 ±0.3b 18.81 6.61f , 7.63g 

𝟒𝟒𝟑𝟑𝟐𝟐𝟒𝟒𝟐𝟐.𝟓𝟓𝟒𝟒𝟑𝟑/𝟐𝟐
𝒐𝒐  30 5d3 (4F)6s(5F)6p  6F 3.76 3.33 ± 0.11c 12.91 2.52f, 2.87 g 
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27 5d4 (5D)6p  6P 3.09 h 

𝟑𝟑𝟓𝟓𝟐𝟐𝟑𝟑𝟐𝟐.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  32 

13 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6D 
4F 

6.60 5.14 ± 0.06c 28.40 5.08f, 6.61h 

6.61 h 

𝟑𝟑𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  15 

14 

5d4 (5D)6p  

5d4 (5D)6p  

4F 
4P 

5.00 4.6± 0.4b 8.70 4.30f , 4.75h 

𝟒𝟒𝟐𝟐𝟑𝟑𝟑𝟑𝟓𝟓.𝟐𝟐𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  73 

4 

5d3(4F)6s(5F)6p  

5d4 (5D)6p  

6G 
6F 

78.16 76.1 ± 0.9c 

3.0  ± 0.03 d 

2.71 67.89f , 72.32g 

72.90 h 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  44 

15 

5d4 (5D)6p  

5d3 (4F)6s(5F)6p  

6F 
6G 

6.33 6.58 ± 0.15c 3.80 5.22f , 5.72g 

6.13 h 

𝟑𝟑𝟑𝟑𝟓𝟓𝟒𝟒𝟑𝟑.𝟐𝟐𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  35 

19 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6F 
6D 

6.25 4.7± 0.4b 32.98 3.71f , 4.28g 

𝟑𝟑𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  17 

7 

5d4 (5D)6p  

5d4 (5D)6p  

6D 
4D 

1.91 2.1± 0.2b 

2.7 ± 0.3e 

9.05 

29.26 

2.59f , 2.94g 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  29 

12 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6G 
6F 

24.50 21.63 ± 0.22c 13.27 15.29f , 16.35g 

17.09 h 

𝟒𝟒𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  53 

8 

5d3 (4F)6s(5F)6p  

5d4 (5D)6p  

6G 
4F 

11.44 12.37 ± 0.10c 7.52 10.00f , 11.09g 

12.46 h 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  25 

20 

5d4 (5D)6p  

5d3 (4F)6s(5F)6p  

6F 
6D 

17.50 21.5 ±1.0b 18.60 19.17f , 20.44g 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟒𝟒𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  15 

15 

5d4 (3H)6p  

5d3 (4F)6s(5F)6p  

4H 
6D 

1.85 2.3± 0.2b 19.57 2.12f , 2.45g 

𝟑𝟑𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  44 

32 

5d4 (5D)6p  

5d3 (4F)6s(5F)6p  

6F 
6G 

4.18 7.7 ±  0.8e 45.71 5.37f , 5.83g 

𝟑𝟑𝟒𝟒𝟐𝟐𝟐𝟐𝟑𝟑.𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  35 

17 

5d4 (5D)6p  

5d3(4F)6s(5F)6p  

6F 
6F 

3.14 2.48 ± 0.08c 

3.5 ± 0.3e 

26.61 

10.29 

2.05f , 2.35g 

2.49 h 

 

 

(a) NIST 

(b) Nilsson, et al (2008) , lifetime experimental measurements [7] 

(c) Schnabel et al (1998), lifetime  experimental measurements [8] 

(d) Kwiatkowski et al (1984), lifetime experimental measurements [9] 

(e) Henderson et al (1999), lifetime experimental measurements [10] 

(f) Nilsson et al (2008), HFR +CP (A) lifetime calculations [7] 

(g) Nilsson et al (2008), HFR + CP (B) lifetime calculations [7] 

(h) Ekberg et al (2000) [3] lifetime calculations,  table VIII scaled ( /0.69) as was scaled by Nilsson 

2008 [7] 
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Table 4-2: Comparison of RCI Lande g-values to experimental values [NIST, Laun] and 

Ekberg et al calculations. 

Level Energy 
 (cm-1)a g-value RCI g-value exp Error % g-value calc 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.74 0.678 9.14 0.73 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.54 1.614 4.58 1.58 

𝟒𝟒𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  -0.31 -0.217 -42.86 -0.23 

𝟒𝟒𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.56 0.519 7.90 0.43 

𝟒𝟒𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.76 1.70 3.53 1.79 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟒𝟒.𝟒𝟒𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  2.74 2.78 1.44 2.71 

𝟑𝟑𝟐𝟐𝟑𝟑𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.767 0.981 21.81 0.73 

𝟑𝟑𝟐𝟐𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  2.103 1.56 34.81 1.75 

𝟑𝟑𝟑𝟑𝟒𝟒𝟒𝟒𝟓𝟓.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  2.098 2.038 2.94 2.44 

𝟑𝟑𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.386 1.46 5.07 1.42 

 
𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑.𝟒𝟒𝟑𝟑  𝟑𝟑/𝟐𝟐

𝒐𝒐  1.152 1.147 0.44 1.14 

𝟒𝟒𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑.𝟐𝟐𝟐𝟐𝟑𝟑/𝟐𝟐
𝒐𝒐  1.510 1.498 0.80 1.48 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.218 1.221 0.25 1.27 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.028 1.033 0.48 1.04 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟒𝟒𝟑𝟑/𝟐𝟐
𝒐𝒐  0.924 1.007 8.24 0.97 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  2.123 2.00 6.15 1.99 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟑𝟑𝟒𝟒𝟑𝟑/𝟐𝟐
𝒐𝒐  1.768 1.72 2.79 1.73 

𝟑𝟑𝟓𝟓𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟓𝟓𝟑𝟑/𝟐𝟐
𝒐𝒐  0.856 0.93 7.96 1.01 

𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑𝟒𝟒.𝟒𝟒𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.597 1.58 1.08 1.46 

𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.204 1.357 11.27 1.17 

𝟑𝟑𝟑𝟑𝟒𝟒𝟐𝟐𝟑𝟑.𝟓𝟓𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.033 0.976 5.84 1.35 

𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑𝟐𝟐𝟑𝟑/𝟐𝟐
𝒐𝒐  1.729 1.608 7.52 1.72 

𝟑𝟑𝟑𝟑𝟓𝟓𝟑𝟑𝟒𝟒.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.276 1.021 24.98 1.00 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.181 1.06 11.42 1.10 

𝟑𝟑𝟑𝟑𝟓𝟓𝟓𝟓𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.496 1.20 24.67 1.26 

𝟑𝟑𝟑𝟑𝟑𝟑𝟒𝟒𝟑𝟑.𝟓𝟓𝟒𝟒𝟑𝟑/𝟐𝟐
𝒐𝒐  0.802 0.78 2.82 1.00 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟒𝟒 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.889 0.889 0.00 0.89 

𝟒𝟒𝟐𝟐𝟓𝟓𝟒𝟒𝟑𝟑.𝟒𝟒𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.310 1.292 1.39 1.29 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟒𝟒.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.415 1.390 1.80 1.40 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟒𝟒𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.298 1.236 5.02 1.29 

𝟒𝟒𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.018 1.111 8.37 1.22 

𝟒𝟒𝟑𝟑𝟐𝟐𝟑𝟑𝟒𝟒.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.481 1.366 8.42 1.18 

𝟒𝟒𝟑𝟑𝟐𝟐𝟒𝟒𝟐𝟐.𝟓𝟓𝟒𝟒 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.464 1.510 3.05 1.53 

𝟑𝟑𝟓𝟓𝟐𝟐𝟑𝟑𝟐𝟐.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.395 1.334 4.57 1.37 

𝟑𝟑𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.221 1.301 6.15 1.28 



116 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.323 1.262 4.83 1.23 

𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.520 1.51 0.66 1.44 

𝟑𝟑𝟒𝟒𝟑𝟑𝟓𝟓𝟒𝟒.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.264 0.623 102.89 1.24 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.246 1.00 24.60 1.27 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟒𝟒.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.352 0.815 65.89 0.91 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.956 1.36 29.71 1.27 

𝟑𝟑𝟓𝟓𝟑𝟑𝟓𝟓𝟑𝟑.𝟓𝟓𝟐𝟐 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.927 0.92 0.76 0.98 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.103 1.07 3.08 1.05 

 𝟒𝟒𝟐𝟐𝟑𝟑𝟑𝟑𝟓𝟓.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.167 1.161 0.52 1.16 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.303 1.277 2.04 1.28 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟒𝟒𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.464 1.452 0.83 1.45 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟓𝟓.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.109 1.008 10.02 1.15 

𝟒𝟒𝟑𝟑𝟑𝟑𝟐𝟐𝟒𝟒.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.458 1.499 2.74 1.36 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟓𝟓𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.006 0.937 7.36 0.96 

𝟑𝟑𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑.𝟐𝟐𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.291 1.297 0.46 1.33 

𝟑𝟑𝟐𝟐𝟑𝟑𝟓𝟓𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.256 1.374 8.59 1.36 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.927 0.968 4.24 0.96 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟑𝟑𝟒𝟒 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.136 1.22 6.89 1.21 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.219 1.147 6.28 1.12 

𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.147 1.184 3.12 1.22 

𝟑𝟑𝟑𝟑𝟐𝟐𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.080 1.102 2.00 1.14 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.059 1.125 5.87 1.10 

𝟒𝟒𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟓𝟓 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.288 1.270 1.42 1.27 

  𝟒𝟒𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.336 1.311 1.91 1.30 

𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.427 1.409 1.28 1.42 

𝟑𝟑𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.217 1.194 1.93 1.19 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟓𝟓.𝟓𝟓𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.306 1.086 20.26 1.17 

𝟑𝟑𝟒𝟒𝟓𝟓𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  0.977 1.123 13.00 1.08 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐.𝟒𝟒𝟑𝟑 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.345 1.061 26.77 1.23 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟒𝟒 𝟑𝟑/𝟐𝟐
𝒐𝒐  1.187 1.179 0.68 1.19 

𝟑𝟑𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑.𝟓𝟓𝟑𝟑 𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.403 1.054 33.11 1.38 

𝟑𝟑𝟒𝟒𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.136 1.141 0.44 1.11 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑𝟒𝟒 𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.138 1.144 0.52 1.14 

𝟑𝟑𝟓𝟓𝟐𝟐𝟑𝟑𝟑𝟑.𝟓𝟓𝟐𝟐  𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.172 1.130 3.72 1.15 

𝟑𝟑𝟑𝟑𝟐𝟐𝟒𝟒𝟓𝟓.𝟑𝟑𝟑𝟑 𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.116 1.120 0.36 1.13 

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟒𝟒𝟑𝟑 𝟑𝟑𝟑𝟑/𝟐𝟐
𝒐𝒐  1.128 1.149 1.83 1.14 
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Tables (4-3: 4-8): RCI results of W II odd levels, g-values from Ekberg calculations are also 
given. 

Table 4-3: RCI lifetimes and g-values of J =1/2 W II odd parity levels. 

Energy 
 (cm-1)a τRCI (ns) 

g-value 
RCI 

g-value b 

36165.36 13.61 0.742 0.73 
38576.31 10.33 1.539 1.58 
44455.21 2.90 -0.305 -0.23 
45457.07 18.56 0.561 0.43 
46625.28 13.51 1.756 1.79 
49154.48 2.49 2.743 2.71 
51536.62 2.80 2.461 2.48 
52355.25 4.30 0.767 0.73 
52593.77 10.26 2.103 1.75 
53440.21 2.11 2.098 2.44 
54485.70 8.91 1.386 1.42 
58308.80 7.70 0.502 0.45 
62131.11 10.52 1.758 0.62 

 

a) NIST [1] 
b) Ekberg et al (2000) g-value calculations [3] 
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Table 4-4: RCI lifetimes and g-values of J =3/2 W II odd parity levels. 

Energy 
(cm-1)a τRCI (ns) g-value RCI g-value b 

37971.53 411.93 0.079 0.12 
39129.46 17.89 1.152 1.14 
42298.22 10.69 1.510 1.48 
44911.66 3.79 1.218 1.27 
45553.65 9.75 1.028 1.04 
47179.94 5.21 0.924 0.97 
47588.65 3.07 2.123 1.99 
48982.94 4.02 1.768 1.73 
50431.00 7.76 0.856 1.01 

51254.43 1.82 1.597 1.46 
52803.01 4.11 1.738 1.49 
53329.76 2.46 1.204 1.17 
53423.05 13.6 1.033 1.35 
54137.23 2.11 1.729 1.72 
55488.13 2.30 1.630 1.85 
56084.33 4.15 1.276 1.00 
56932.35 4.62 1.181 1.10 
58007.69 2.68 1.496 1.26 
58748.04 3.75 0.802 1.00 
59370.49 3.47 0.916 0.76 
59816.39 3.19 1.041 1.27 
60665.36 2.42 1.303 1.22 
61117.66 1.78 0.745 0/76 
62454.56 7.27 1.108 1.15 
62724.69 2.91 1.294 1.42 
63134.77 2.99 1.066 1.02 
64255.16 2.95 0.999 1.03 
64804.17 2.16 0.888 1.06 
65299.72 1.52 1.333 1.19 
68499.49 3.55 1.064 1.08 

 

a) NIST [1] 

b) Ekberg et al (2000) g-value calculations [3] 
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Table 4-5: RCI lifetimes and g-values of J =5/2 W II odd parity levels. 

Energy 
(cm-1)a τRCI (ns) g-value RCI g-value b 

39936.84 239.50 0.889 0.89 
42049.48 11.97 1.310 1.29 
44354.78 10.18 1.415 1.40 
46355.40 7.94 1.298 1.29 
47413.27 10.82 1.018 1.22 
48284.50 4.79 1.481 1.18 
49242.04 3.76 1.464 1.53 
50292.35 6.60 1.395 1.37 
51438.06 5.00 1.221 1.28 
52087.11 4.53 1.225 1.21 
53113.53 2.07 1.323 1.23 
54026.31 6.41 1.149 1.18 
54375.90 18.09 1.520 1.44 
54704.59 2.33 1.264 1.24 
55162.39 9.51 1.246 1.62 
56544.51 2.28 1.589 1.26 
56874.98 7.03 1.352 0.91 
57252.14 3.68 1.126 1.09 
57856.76 4.52 0.956 1.27 
58337.10 2.21 1.306 1.21 
59443.05 2.47 1.292 1.45 
59992.38 3.21 1.162 1.13 
60474.73 5.72 1.075 1.14 
60656.54 3.11 1.077 1.09 
60901.02 2.55 0.927 0.98 
61566.86 7.29 1.103 1.05 
62333.25 2.89 1.060 1.05 
62989.64 3.20 1.016 1.01 
63880.27 2.17 1.289 0.96 
64030.51 3.05 0.994 1.29 
64310.11 5.83 1.300 1.11 
64990.38 1.84 1.408 1.13 
65481.01 2.58 1.081 1.63 
66144.50 3.15 1.156 1.09 
67173.56 4.68 1.043 1.00 
68443.79 2.13 1.188 1.21 
69060.71 3.97 1.038 1.10 
69481.71 2.13 1.187 1.01 

a) NIST [1] 

b) Ekberg et al (2000) g-value calculations [3] 
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Table 4-6: RCI lifetimes and g-values of J =7/2 W II odd parity levels. 

Level Energy 
(cm-1)a τRCI (ns) g-value RCI g-value b 

42390.29 78.16 1.167 1.16 
44877.21 6.33 1.303 1.28 
46175.40 20.30 1.464 1.45 
48830.70 7.33 1.109 1.15 
49124.51 3.63 1.458 1.36 
51045.29 6.25 1.424 1.41 
51863.00 5.30 1.006 0.96 
52275.29 3.50 1.291 1.33 
52901.79 8.54 1.256 1.36 
53338.08 12.82 0.927 0.96 
54498.61 1.91 1.435 1.34 
55022.93 3.50 1.284 1.29 
56612.84 13.72 1.136 1.21 
56768.60 4.20 1.219 1.12 
57729.99 5.99 1.147 1.22 
58537.63 4.34 1.102 1.37 
58709.61 5.21 1.483 1.16 
59276.85 5.03 1.080 1.14 
59869.15 3.61 1.059 1.10 
59933.69 1.77 1.249 1.17 
60256.55 3.90 1.459 1.29 
60424.24 3.42 1.088 1.22 
61326.28 2.04 1.046 1.08 
61550.65 2.98 1.145 1.12 
62561.09 4.42 1.202 1.16 
63266.46 4.35 0.988 0.97 
63788.24 3.47 1.097 1.09 
64356.75 2.03 1.146 1.17 
64896.33 2.96 1.085 1.06 
65455.50 4.68 0.926 0.96 
65643.97 3.82 1.182 1.23 
66026.80 1.92 0.987 1.03 
66898.06 2.76 1.060 1.13 
68362.32 3.35 1.115 1.06 
68619.99 2.02 1.259 1.15 
69580.33 3.78 1.083 1.13 
70211.80 2.12 1.184 1.17 
70674.18 2.34 1.102 1.10 
72597.30 1.47 1.138 1.16 
73427.54 1.79 1.071 1.14 

a) NIST [1] 

b) Ekberg et al (2000) g-value calculations [3] 
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Table 4-7: RCI lifetimes and g-values of J =9/2 W II odd parity levels. 

Energy 
(cm-1)a τRCI (ns) g-value RCI g-value b 

44758.10 24.50 1.288 1.27 
46493.36 11.44 1.336 1.30 
49181.03 17.50 1.427 1.42 
50863.11 6.87 1.217 1.19 
52567.28 6.86 1.349 1.34 
53370.01 2.58 1.306 1.17 
54056.59 7.26 0.977 1.08 
55392.45 1.85 1.345 1.23 
56413.65 4.42 1.195 1.18 
57089.48 5.76 0.987 1.07 
57986.94 16.89 1.128 1.09 
58687.97 8.86 1.234 1.29 
59399.34 2.97 1.187 1.19 
60278.73 5.48 1.073 1.10 
61055.85 5.63 1.190 1.15 
61360.58 2.99 1.23 1.12 
62330.86 10.51 1.402 1.26 
62437.09 1.88 1.220 1.08 
62716.16 2.47 1.096 1.43 
64207.59 4.14 1.193 1.11 
64516.23 3.81 1.111 1.19 
65003.29 3.64 1.033 1.04 
66271.00 4.31 1.116 1.10 
66816.29 2.64 1.142 1.14 
67028.65 2.45 1.109 1.17 
67847.27 2.34 1.035 1.04 
68734.66 3.43 0.991 1.03 
69105.78 2.95 1.031 1.03 
70902.47 1.88 1.067 1.11 
71245.03 2.89 1.122 1.05 
71785.39 2.29 1.088 1.08 
72401.58 1.94 1.048 1.11 
72557.90 2.45 1.172 1.09 
73705.97 1.29 1.103 1.06 
74446.93 1.53 0.998 1.16 

 

a) NIST [1] 

b) Ekberg et al (2000) g-value calculations [3] 
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Table 4-8: RCI lifetimes and g-values of J =11/2 W II odd parity levels. 

Energy 
(cm-1)a τRCI (ns) 

g-value 
RCI g-value b 

48332.76 88.36 1.333 1.32 
51495.05 6.16 1.403 1.38 
54229.08 3.85 1.361 1.36 
54958.57 3.24 1.136 1.11 
56376.57 10.63 1.182 1.20 
58891.74 3.75 1.138 1.14 
60219.02 8.70 1.172 1.15 
61240.81 3.82 1.116 1.13 
61589.46 3.08 1.128 1.14 
62966.51 3.82 1.095 1.09 
64969.17 5.52 1.169 1.13 
65326.55 1.95 1.109 1.17 
65684.87 4.65 1.085 1.09 
66703.46 4.23 1.123 1.10 
68013.63 2.16 1.113 1.11 
69587.79 1.42 1.208 1.13 
71164.17 1.52 1.103 1.09 
72180.63 2.56 1.075 1.14 
73266.32 1.68 1.139 1.07 

 

a) NIST [1] 

b) Ekberg et al (2000) g-value calculations [3] 
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Tables 4-9: 4-14 give RCI results of emission transition probability Aki (s-1) , the absorption 

oscillator strength fik, and the branching fractions, BF of the lowest 10 levels in J = 1/2, 3/2, 5/2, 

7/2, 9/2, and 11/2 odd parity in W II. Some experimental oscillator strength, experimental and 

calculated BF fractions are given. 

Table 4-9: RCI transition probability Aki (s-1) , the absorption oscillator strength fik, and 

the branching fractions, BF of the lowest 10 energy levels of W II J=1/2 odd. 

Ek
a Ei

a 2Ji 
a Aki f ik 

Log 
(gf) BF log(gf)O 

36165 0 1 5.33E+07 0.0611 -0.91 0.7251 -0.89b 

 8711 3 1.18E+07 0.0117 -1.33 0.1605 -1.33b 

 8833 1 2.89E+06 0.0058 -1.94 0.0394  
 13173 1 4.57E+06 0.013 -1.59 0.0621 -1.4b 

 19404 1 4.74E+05 0.0025 -2.30 0.0064  
38576 0 1 6.48E+06 0.0065 -1.89 0.0669  

 1519 3 6.29E+07 0.0343 -0.86 0.6499 -0.87b 

 8833 1 5.59E+06 0.0095 -1.72 0.0577  
 10592 3 1.35E+07 0.0129 -1.29 0.139 -1.18b 

 13173 1 2.72E+06 0.0063 -1.90 0.0281  
 14634 3 3.85E+06 0.005 -1.70 0.0398  
 18991 3 6.63E+05 0.0013 -2.28 0.0069  
 22503 3 4.31E+05 0.0012 -2.32 0.0044  
 22536 1 2.73E+05 0.0016 -2.49 0.0028  

44455 0 1 2.77E+08 0.2104 -0.38 0.803 -0.32b 

 1519 3 4.05E+07 0.0165 -1.18 0.1174  
 8711 3 2.90E+06 0.0017 -2.17 0.0084  
 8833 1 7.35E+06 0.0087 -1.76 0.0213  
 10592 3 1.32E+07 0.0086 -1.46 0.0383  
 14634 3 2.35E+06 0.002 -2.10 0.0068  
 22536 1 4.43E+05 0.0014 -2.55 0.0013  

45457 0 1 1.35E+07 0.0098 -1.71 0.2504  
 1519 3 5.15E+06 0.002 -2.10 0.0956  
 8711 3 3.00E+06 0.0017 -2.17 0.0557  
 8833 1 2.32E+07 0.0259 -1.29 0.4305  
 10592 3 3.48E+06 0.0021 -2.08 0.0647  
 18991 3 1.15E+06 0.0012 -2.32 0.0213  
 19404 1 2.65E+06 0.0058 -1.94 0.0491  
 22536 1 6.59E+05 0.0019 -2.42 0.0122  

46625 0 1 5.10E+07 0.0351 -1.15 0.6885  
 8711 3 1.92E+06 0.001 -2.40 0.026  
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 10592 3 1.17E+07 0.0068 -1.57 0.158  
 13173 1 1.31E+06 0.0018 -2.44 0.0177  
 18991 3 2.55E+06 0.0025 -2.00 0.0344  
 19404 1 3.08E+06 0.0062 -1.91 0.0416  
 22536 1 6.81E+05 0.0018 -2.44 0.0092  

49154 0 1 6.03E+07 0.0374 -1.13 0.1502  
 1519 3 3.07E+08 0.1013 -0.39 0.7639  
 13173 1 5.97E+06 0.0069 -1.86 0.0149  
 14634 3 1.06E+07 0.0066 -1.58 0.0263  
 18991 3 2.85E+06 0.0023 -2.04 0.0071  
 19404 1 6.66E+06 0.0113 -1.65 0.0166  
 25045 1 2.22E+06 0.0057 -1.94 0.0055  
 25170 3 2.75E+06 0.0036 -1.84 0.0069  

51537 0 1 6.49E+07 0.0366 -1.14 0.1819  
 1519 3 2.19E+08 0.0657 -0.58 0.6142  
 8711 3 1.05E+07 0.0043 -1.76 0.0294  
 8833 1 5.48E+06 0.0045 -2.05 0.0154  
 10592 3 3.00E+07 0.0134 -1.27 0.0842  
 13173 1 1.27E+07 0.0129 -1.59 0.0355  
 18991 3 4.21E+06 0.003 -1.92 0.0118  
 19404 1 3.27E+06 0.0047 -2.03 0.0092  
 20456 3 2.26E+06 0.0018 -2.14 0.0063  
 25045 1 2.35E+06 0.005 -2.00 0.0066  

52355 0 1 9.71E+06 0.0053 -1.97 0.0417  
 1519 3 7.12E+06 0.0021 -2.08 0.0306  
 8711 3 5.80E+07 0.0228 -1.04 0.2493  
 8833 1 6.38E+07 0.0505 -1.00 0.2742  
 13173 1 4.40E+07 0.043 -1.07 0.1891  
 14634 3 9.06E+06 0.0048 -1.72 0.0389  
 19404 1 1.06E+07 0.0146 -1.53 0.0456  
 20456 3 2.96E+06 0.0022 -2.06 0.0127  
 22503 3 1.62E+07 0.0136 -1.26 0.0694  
 24992 3 2.08E+06 0.0021 -2.08 0.0089  
 25045 1 2.66E+06 0.0053 -1.97 0.0114  
 28491 3 8.51E+05 0.0011 -2.36 0.0037  
 32950 3 9.03E+05 0.0018 -2.14 0.0039  

52594 8711 3 2.37E+07 0.0092 -1.43 0.2433  
 8833 1 3.03E+07 0.0237 -1.32 0.3109  
 13173 1 2.04E+07 0.0197 -1.40 0.2093  
 18991 3 3.56E+06 0.0024 -2.02 0.0365  
 19404 1 1.68E+06 0.0023 -2.34 0.0172  
 20456 3 4.61E+06 0.0033 -1.88 0.0473  
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 22503 3 1.29E+06 0.0011 -2.36 0.0132  
 24992 3 2.14E+06 0.0021 -2.08 0.0219  
 25045 1 3.29E+06 0.0065 -1.89 0.0338  

53440 0 1 2.72E+07 0.0143 -1.54 0.0574  
 1519 3 1.25E+08 0.0347 -0.86 0.2629  
 8711 3 7.24E+06 0.0027 -1.97 0.0153  
 8833 1 2.00E+08 0.151 -0.52 0.4227  
 10592 3 1.49E+07 0.0061 -1.61 0.0315  
 13173 1 1.34E+07 0.0124 -1.61 0.0283  
 14634 3 5.27E+07 0.0262 -0.98 0.1112  
 19404 1 7.12E+06 0.0092 -1.74 0.015  
 24992 3 5.18E+06 0.0048 -1.72 0.0109  
 25045 1 5.87E+05 0.0011 -2.66 0.0012  
 25170 3 1.54E+07 0.0144 -1.24 0.0325  
 26527 1 2.97E+06 0.0061 -1.91 0.0063  

 

(a) NIST [1] 

(O) Results from literature, other work (b and c) 

(b) Quinet et al , 2010 [18] 

(c ) Lennertsson et al, 2011 [16] 
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Table 4-10: RCI transition probability Aki (s-1) , the absorption oscillator strength fik, and 

the branching fractions, BF of the lowest 10 energy levels of W II J=3/2 odd. 

Ek Ei 2Ji Aki f ik log (gf) BF log(gf)o BFo 

37912 8711 3 1.75E+06 0.0031 -1.91 0.7225 -1.72b  
39129 0 1 1.16E+07 0.0228 -1.34 0.2081 -1.07b  

 1519 3 2.67E+07 0.0283 -0.95 0.4784 -0.77b  
 3172 5 2.98E+06 0.0023 -1.86 0.0533   
 8711 3 2.42E+06 0.0039 -1.80 0.0434   
 8833 1 4.54E+05 0.0015 -2.53 0.0081   
 11301 5 5.73E+06 0.0074 -1.35 0.1026   
 13173 1 1.89E+06 0.0084 -1.77 0.0338   
 14634 3 1.28E+06 0.0032 -1.89 0.0229   
 14968 5 8.15E+05 0.0014 -2.08 0.0146   
 20456 3 2.59E+05 0.0011 -2.35 0.0056   
 22536 1 2.07E+05 0.0023 -2.34 0.0037   
 24992 3 1.98E+05 0.0015 -2.22 0.0035   

42298 1519 3 1.95E+07 0.0176 -1.15 0.208 -1.04b  
 3172 5 4.41E+07 0.0288 -0.76 0.472 -0.7b  
 7420 5 1.93E+06 0.0016 -2.02 0.021   
 8711 3 3.22E+06 0.0043 -1.77 0.034   
 8833 1 4.45E+06 0.0119 -1.62 0.048   
 13434 5 5.68E+06 0.0068 -1.39 0.061   
 14634 3 9.41E+06 0.0184 -1.13 0.101 -1.07b  
 14968 5 2.71E+06 0.0036 -1.66 0.029   
 22536 1 3.00E+05 0.0023 -2.34 0.003   

44912 0 1 1.12E+08 0.1665 -0.48 0.4245 -0.46b  
 1519 3 9.97E+07 0.0793 -0.50 0.378 -0.56b  
 3172 5 1.99E+06 0.0011 -2.16 0.008   
 7420 5 7.43E+06 0.0053 -1.50 0.028   
 8711 3 1.10E+07 0.0126 -1.30 0.042   
 11301 5 4.47E+06 0.0040 -1.63 0.017   
 13173 1 1.17E+07 0.0348 -1.16 0.044   
 13434 5 6.32E+06 0.0064 -1.42 0.024   
 14968 5 2.00E+06 0.0022 -1.87 0.008   
 16235 5 3.40E+06 0.0041 -1.61 0.013   
 18991 3 8.63E+05 0.0019 -2.11 0.003   
 19276 5 7.68E+05 0.0012 -2.15 0.003   
 23450 5 5.55E+05 0.0012 -2.14 0.002   

45554 0 1 2.37E+07 0.0342 -1.16 0.231   
 1519 3 2.95E+07 0.0228 -1.04 0.287   
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 3172 5 2.21E+07 0.0123 -1.13 0.215   
 7420 5 2.12E+06 0.0015 -2.06 0.021   
 8711 3 1.25E+06 0.0014 -2.26 0.012   
 8833 1 1.76E+06 0.0039 -2.11 0.017   
 10592 3 4.46E+06 0.0055 -1.66 0.043   
 11301 5 8.74E+06 0.0074 -1.35 0.085   
 13173 1 1.91E+06 0.0055 -1.96 0.019   
 14968 5 1.43E+06 0.0015 -2.04 0.014   
 19404 1 8.16E+05 0.0036 -2.15 0.008   
 20456 3 1.04E+06 0.0025 -2.01 0.0101   
 22536 1 9.56E+05 0.0054 -1.97 0.009   
 24992 3 7.11E+05 0.0025 -2.00 0.007   

47180 0 1 9.08E+07 0.1223 -0.61 0.473 -0.77 c 0.364 c 

 1519 3 5.74E+07 0.0413 -0.78 0.299 -0.95 c 0.224 c 

 3172 5 4.17E+06 0.0022 -1.89 0.022 … … 

 8711 3 2.06E+07 0.0209 -1.08 0.1075 -0.9 c 0.182 c 

 8833 1 1.61E+06 0.0033 -2.18 0.008 -1.5 c 0.0451 c 

 13173 1 7.05E+06 0.0183 -1.44 0.037 -1.45 c 0.04 c 

 14634 3 4.23E+06 0.0060 -1.62 0.022 -1.34 c 0.0465 

 16235 5 1.52E+06 0.0016 -2.02 0.008 -1.79 c 0.015 c 

 18990 3 … … … … -2.11 c 0.0059c 

 19276 5 … … … … -2.25 c 0.0042c 

 22139 5 … … … … -2.06 c 0.0053c 
47589 0 1 4.77E+07 0.0632 -0.90 0.147   

 1519 3 3.24E+07 0.0229 -1.04 0.0995   
 3172 5 1.06E+08 0.0539 -0.49 0.327   
 7420 5 1.25E+08 0.0773 -0.33 0.383 -0.34b  
 8833 1 1.09E+06 0.0022 -2.36 0.003   
 10592 3 2.62E+06 0.0029 -1.94 0.008   
 14634 3 6.29E+06 0.0087 -1.46 0.019   
 22536 1 4.60E+05 0.0022 -2.36 0.001   

48983 0 1 5.10E+07 0.0638 -0.89 0.205   
 1519 3 1.03E+08 0.0683 -0.56 0.413   
 3172 5 5.20E+07 0.0248 -0.83 0.209   
 7420 5 1.16E+07 0.0067 -1.39 0.047   
 8833 1 5.73E+06 0.0107 -1.67 0.023   
 10592 3 1.75E+06 0.0018 -2.15 0.007   
 11301 5 2.39E+06 0.0017 -2.00 0.01   
 13173 1 1.75E+06 0.0041 -2.09 0.007   
 13434 5 8.98E+06 0.0071 -1.37 0.036   
 14634 3 4.92E+06 0.0063 -1.60 0.0198   
 18991 3 7.30E+05 0.0012 -2.31 0.003   
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 23450 5 7.54E+05 0.0012 -2.16 0.003   
50431 0 1 6.57E+07 0.0774 -0.81 0.51 -1.29 c 0.143 c 

 1519 3 1.97E+06 0.0012 -2.30 0.015 … … 

 3172 5 5.94E+06 0.0027 -1.80 0.046 -1.58 c 0.0641 c 

 7420 5 4.14E+06 0.0022 -1.87 0.032 -1.84c 0.0294c 

 8711 3 9.40E+06 0.0081 -1.49 0.073 -1.42 c 0.0588 c 

 8833 1 5.44E+06 0.0094 -1.72 0.042 -1.93 c 0.0226 c 

 11301 5 4.32E+06 0.0028 -1.77 0.034 -1.23 c 0.0986 c 

 13173 1 2.17E+07 0.0468 -1.03 0.168 -0.69 c 0.313 c 

 14968 5 2.18E+06 0.0017 -1.98 0.017 -1.5 c 0.0439 c 

 16235 5 2.42E+06 0.0021 -1.91 0.019 -1.57 c 0.035 c 

 19404 1 4.83E+05 0.0015 -2.52 0.004 … … 

 19637 5 1.06E+06 0.0011 -2.17 0.008 -1.95 c 0.0117 c 

 23450 5 … … … … -1.89 c 0.0103 c 

 25045 1 5.49E+05 0.0026 -2.29 0.004 -1.87 c 0.0096c 
51254 0 1 3.14E+08 0.3583 -0.14 0.5701 -0.6 c 0.233 c 

 1519 3 4.42E+07 0.0268 -0.97 0.0803 -0.93 c 0.101 c 

 3172 5 1.47E+08 0.0636 -0.42 0.267 -0.5 c 0.1586 c 

 7420 5 1.25E+07 0.0065 -1.41 0.023 -0.87 c 0.0903 c 

 8711 3 4.05E+06 0.0034 -1.87 0.007 -0.63 c 0.15 c 

 10592 3 1.66E+06 0.0015 -2.22 0.003 … … 

 11301 5 1.90E+06 0.0012 -2.15 0.003 -1.25 c 0.0318 c 

 13434 5 1.19E+07 0.0083 -1.30 0.022 -0.77 c 0.0841 c 

 14634 3 4.72E+06 0.0053 -1.68 0.009 -0.98 c 0.0493 c 

 18991 3 2.07E+06 0.0030 -1.92 0.004 -0.94 c 0.0416 c 

 19404 1 7.80E+05 0.0023 -2.34 0.001 … … 

 19637 5 1.75E+06 0.0018 -1.98 0.003 … … 

 22139 5 … … … … -1.38 c 0.0124 c 

 22503 3 6.95E+05 0.0013 -2.30 0.001 -1.09 c 0.0232 c 
 

(a) NIST [1] 

(O) Results from literature, other work (b and c) 

(b) Quinet et al , 2010 [18] 

(c ) Lennertsson et al, 2011 [16] 
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Table 4-11: RCI transition probability Aki (s-1), the absorption oscillator strength fik, and 

the branching fractions, BF of the lowest 10 energy levels of W II J=5/2 odd. 

Ek Ei 2Ji Aki f ik log (g f) BF log(gf)o BFo 
39937 8711 3 1.32E+06 0.0030 -1.92 0.316 -1.68b  
 10592 3 7.20E+05 0.0019 -2.12 0.172 -2.12 b  
 11301 5 4.21E+05 0.0015 -2.05 0.101   
 14634 3 4.21E+05 0.0015 -2.23 0.101   
42049 1519 3 2.47E+07 0.0338 -0.87 0.295 -0.78 b  
 3172 5 4.09E+07 0.0405 -0.61 0.489 -0.49 b  
 4716 7 4.82E+06 0.0039 -1.51 0.058   
 8711 3 2.16E+06 0.0044 -1.76 0.026   
 10592 3 9.46E+05 0.0022 -2.07 0.011   
 11301 5 9.24E+05 0.0015 -2.05 0.011   
 13411 7 1.16E+06 0.0016 -1.89 0.014   
 14634 3 1.84E+06 0.0055 -1.66 0.022   
 15147 7 2.15E+06 0.0033 -1.57 0.026   
 16235 5 6.35E+05 0.0014 -2.07 0.008   
 18001 7 5.93E+05 0.0012 -2.04 0.007   
 18991 3 4.36E+05 0.0018 -2.13 0.005   
 22140 5 2.71E+05 0.0010 -2.21 0.003   
 22503 7 1.78E+05 0.0011 -2.08 0.002   
 23047 7 4.05E+05 0.0013 -2.00 0.005   
 24992 3 2.33E+05 0.0018 -2.14 0.003   
44355 1519 3 1.34E+07 0.0164 -1.18 0.136   
 3172 5 2.78E+07 0.0246 -0.83 0.283 -0.76 b  
 4716 7 2.71E+07 0.0194 -0.81 0.276   
 7420 5 2.83E+06 0.0031 -1.73 0.029 -0.76 b  
 10592 3 3.88E+06 0.0077 -1.51 0.039   
 11301 5 9.95E+06 0.0136 -1.09 0.101   
 13434 5 8.01E+05 0.0013 -2.12 0.008   
 14634 3 1.25E+06 0.0032 -1.90 0.013   
 14968 5 5.07E+06 0.0088 -1.28 0.052   
 16235 5 2.94E+06 0.0056 -1.48 0.03   
46355 1519 3 5.27E+07 0.0590 -0.63 0.419 -0.14 b  
 3172 5 3.46E+07 0.0278 -0.78 0.275 -0.66 b  
 7420 5 5.43E+06 0.0054 -1.49 0.043   
 8711 3 3.63E+06 0.0058 -1.64 0.029   
 13434 5 5.72E+06 0.0079 -1.32 0.045   
 14634 3 2.52E+06 0.0056 -1.65 0.02   
 15147 7 5.46E+06 0.0063 -1.30 0.043   
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 16590 7 8.20E+06 0.0104 -1.08 0.065   
 18991 3 1.28E+06 0.0039 -1.81 0.01   
 19276 5 1.17E+06 0.0024 -1.84 0.009   
 19637 5 8.22E+05 0.0017 -1.98 0.007   
 20456 3 4.98E+05 0.0017 -2.18 0.004   
 24992 3 1.07E+06 0.0053 -1.67 0.009   
47413 4716 7 2.44E+07 0.0150 -0.92 0.264 -0.51 b  
 7420 5 2.28E+07 0.0213 -0.89 0.246 -0.52 b  
 11301 5 1.23E+07 0.0141 -1.07 0.133   
 13434 5 8.27E+05 0.0011 -2.19 0.009   
 13411 7 4.98E+06 0.0049 -1.41 0.054   
 14634 3 8.26E+06 0.0173 -1.16 0.089   
 15147 7 2.24E+06 0.0024 -1.71 0.024   
 16235 5 1.92E+06 0.0030 -1.75 0.021   
 16590 7 4.03E+06 0.0048 -1.42 0.044   
 18001 7 1.97E+06 0.0026 -1.69 0.021   
 19276 5 6.44E+05 0.0012 -2.14 0.007   
 20456 3 3.70E+06 0.0114 -1.34 0.04   
 22140 5 7.02E+05 0.0017 -2.00 0.008   
 22194 7 5.86E+05 0.0010 -2.08 0.006   
48284 1519 3 9.24E+06 0.0095 -1.42 0.044 -1.33 c 0.0673c 

 3172 5 5.30E+07 0.0391 -0.63 0.254 -0.75c 0.237c 

 4716 7 5.08E+07 0.0301 -0.62 0.243 -0.89c 0.162c 

 7420 5 7.54E+07 0.0677 -0.39 0.361 -0.54c 0.318c 

       -0.84 b  
 8711 3 7.27E+05 0.0010 -2.38 0.003 -1.79c 0.0166c 

 11301 5 2.02E+06 0.0022 -1.88 0.01 -1.69c 0.0183c 

 13411 7 3.83E+06 0.0036 -1.55 0.018 -1.47c 0.0269c 

 14634 3 1.22E+06 0.0024 -2.01 0.006            …        … 

 14968 5 3.51E+06 0.0047 -1.55 0.017 -1.5c 0.0232c 

 16235 5 1.24E+06 0.0018 -1.96 0.006            …             … 

 16590 7 1.27E+06 0.0014 -1.94 0.006             …       … 

 18991 3 1.14E+06 0.0030 -1.92 0.005 -1.19 c 0.0365c 

 20456 3 1.70E+06 0.0049 -1.70 0.008 -1.57 c  0.0177 c 

 23046 7 … …  … -2.04 c 0.0038 c 

 23450 5 4.20E+05 0.0010 -2.21 0.002 … … 

 26227  7.65E+05 0.0024 -2.63 0.004 … … 
49242 1519 3 1.77E+08 0.1750 -0.15 0.666 -0.05 b  
 3172 5 1.65E+07 0.0116 -1.16 0.062   
 4716 7 3.67E+07 0.0208 -0.78 0.138   
 7420 5 3.19E+07 0.0274 -0.78 0.12 -0.42 b  
 18991 3 5.31E+05 0.0013 -2.28 0.002   
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 24992 3 3.01E+05 0.0012 -2.34 0.001   
50292 1519 3 7.63E+07 0.0721 -0.54 0.503   
 3172 5 1.19E+07 0.0080 -1.32 0.078   
 4716 7 4.80E+06 0.0026 -1.68 0.032   
 7420 5 3.72E+06 0.0030 -1.74 0.025   
 10592 3 1.29E+07 0.0184 -1.13 0.085   
 11301 5 6.37E+06 0.0063 -1.42 0.042   
 13434 5 3.22E+06 0.0036 -1.67 0.021   
 14634 3 1.73E+06 0.0031 -1.91 0.011   
 14968 5 1.08E+07 0.0130 -1.11 0.071   
 16235 5 6.41E+06 0.0083 -1.30 0.042   
 16590 7 1.84E+06 0.0018 -1.84 0.012   
 18001 7 3.64E+06 0.0039 -1.50 0.024   
 18991 3 6.22E+05 0.0014 -2.24 0.004   
 20456 3 1.36E+06 0.0034 -1.86 0.009   
 22194 7 1.57E+06 0.0022 -1.75 0.01   
51438 1519 3 2.32E+07 0.0209 -1.08 0.116            …           … 

 3172 5 7.05E+07 0.0453 -0.57 0.352 -0.55c 0.334 c 

 4716 7 … …  .. -1.67c 0.0237 c 

 7420 5 3.68E+06 0.0029 -1.77 0.018 -1.45c 0.0354 c 

 8711 3 4.13E+06 0.0051 -1.69 0.021 -1.58c 0.0245 c 

 10592 3 8.70E+05 0.0012 -2.33 0.004            …          … 

 11301 5 1.78E+07 0.0165 -1.00 0.089 -0.98c 0.0888 c 

 13434 5 5.22E+06 0.0054 -1.49 0.026 -1.49 c 0.0242 c 

 13411 7 1.08E+07 0.0084 -1.17 0.054 -0.98 c  0.078 c 

 14634 3 3.78E+07 0.0628 -0.60 0.189 -0.62 c 0.168 c 

 16590 7 9.98E+06 0.0092 -1.13 0.05 -0.88 c 0.0824 c 

 18001 7 1.88E+06 0.0019 -1.82 0.009            …       … 

 18991 3 2.92E+06 0.0062 -1.60 0.015 -1.25 c 0.03 c 

 20040 7 2.56E+06 0.0029 -1.63 0.013 -1.56 c 0.0139 c 

 20456 3 1.82E+06 0.0043 -1.77 0.009            ...      … 

 22502 5 … … .. … -1.69 c 0.0088 c 

 23450 5 8.98E+05 0.0017 -1.99 0.004 -1.89 c 0.0051 c 

 24804 7 … … … … -1.75 c 0.0064 c 

 24992 3 3.82E+05 0.0012 -2.31 0.002 … … 

 25672 5 … … … … -2.11 c 0.0027 c 

 27274 7 6.87E+05 0.0013 -1.98 0.003 -1.85 c 0.0043 c 

 30224 3 2.22E+05 0.0011 -2.35 0.001 … … 

 32487 3 1.70E+05 0.0011 -2.37 0.001 … … 

 32950 7 2.01E+05 0.0013 -1.98 0.001 … … 
52087 1519 3 7.02E+07 0.0617 -0.61 0.318   
 3172 5 5.58E+07 0.0350 -0.68 0.253   
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 4716 7 5.44E+07 0.0273 -0.66 0.247   
 7420 5 1.43E+06 0.0011 -2.19 0.006   
 10592 3 1.16E+07 0.0151 -1.22 0.053   
 14634 3 6.75E+06 0.0108 -1.36 0.031   
 14968 5 1.62E+06 0.0018 -1.98 0.007   
 18001 7 4.09E+06 0.0040 -1.50 0.019   
 18991 3 3.04E+06 0.0063 -1.60 0.014   
 22140 5 1.17E+06 0.0020 -1.93 0.005   
 23047 7 2.97E+06 0.0040 -1.50 0.013   
 25170 3 1.96E+06 0.0061 -1.61 0.009   
 25672 5 4.91E+05 0.0011 -2.20 0.002   
 28632 7 6.44E+05 0.0013 -1.98 0.003   

 

(a) NIST [1] 

(O) Results from literature, other work (b and c) 

(b) Quinet et al , 2010 [18] 

(c ) Lennertsson et al, 2011 [16] 
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Table 4-12: RCI transition probability Aki (s-1) , the absorption oscillator strength fik, and 

the branching fractions, BF of the lowest 10 energy levels of W II J=7/2 odd. 

Ek Ei  2Ji Aki f ik Log (gf) BF log (gf)O BF O 
42390.0 3172 5 1.98E+06 0.0026 -1.81 0.154   

 4716 7 4.48E+06 0.0047 -1.42 0.351 -1.5b  
 11301 5 1.60E+06 0.0033 -1.70 0.125 -1.54 b  
 13434 5 5.24E+05 0.0013 -2.12 0.041   
 13411 7 9.62E+05 0.0017 -1.86 0.075   
 14968 5 1.48E+06 0.0039 -1.63 0.116 -1.55 b  

44877.0 3172 5 6.03E+07 0.0693 -0.38 0.382 -0.39 b  
 4716 7 7.61E+07 0.0708 -0.25 0.482 -0.19 b  
 6147 9 8.08E+06 0.0065 -1.19 0.051   
 13434 5 1.76E+06 0.0036 -1.67 0.011   
 13411 7 2.00E+06 0.0030 -1.62 0.013   
 14968 5 4.73E+06 0.0106 -1.20 0.030   
 16235 5 1.62E+06 0.0040 -1.63 0.010   
 16553 9 1.44E+06 0.0022 -1.67 0.009   
 19637 5 3.57E+05 0.0011 -2.17 0.002   
 23450 5 2.58E+05 0.0011 -2.17 0.002   

46175.0 6147 9 1.58E+07 0.0118 -0.93 0.320 -0.76 b  
 7420 5 1.11E+07 0.0148 -1.05 0.226 -0.76 b  
 11301 5 8.18E+05 0.0013 -2.09 0.017   
 13411 7 1.16E+07 0.0163 -0.88 0.236 -0.75 b  
 14968 5 1.79E+06 0.0037 -1.66 0.036   
 16590 7 2.65E+06 0.0046 -1.44 0.054   
 20780 9 5.39E+05 0.0010 -2.00 0.011   
 22194 7 1.08E+06 0.0028 -1.65 0.022   
 25209 9 4.13E+05 0.0011 -1.95 0.008   
 26227 5 2.62E+05 0.0013 -2.10 0.005   

48831.0 3172 5 4.95E+07 0.0475 -0.55 0.363   
 4716 7 2.61E+06 0.0020 -1.79 0.019   
 6147 9 2.90E+07 0.0191 -0.72 0.213   
 7420 5 1.90E+07 0.0221 -0.88 0.139   
 11301 5 7.26E+05 0.0010 -2.21 0.005   
 13411 7 1.23E+07 0.0148 -0.93 0.091   
 14857 9 2.63E+06 0.0027 -1.56 0.019   
 14968 5 9.09E+06 0.0158 -1.02 0.067   
 16235 5 7.71E+05 0.0015 -2.06 0.006   
 16553 9 1.21E+06 0.0014 -1.86 0.009   
 16590 7 2.96E+06 0.0043 -1.47 0.022   
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 19637 5 1.39E+06 0.0033 -1.71 0.010   
 22140 5 1.49E+06 0.0042 -1.60 0.011   
 23804 7 6.53E+05 0.0016 -1.90 0.005   

49125.0 3172 5 1.83E+06 0.0017 -1.98 0.007   
 4716 7 5.00E+07 0.0380 -0.52 0.182   
 6147 9 9.71E+07 0.0630 -0.20 0.353 -0.49 b  
 7420 5 1.08E+08 0.1240 -0.13 0.393 -0.59 b  
 13434 5 4.02E+06 0.0063 -1.42 0.015   
 13411 7 2.13E+06 0.0025 -1.70 0.008   
 15147 7 9.89E+05 0.0013 -1.99 0.004   
 16235 5 3.14E+06 0.0058 -1.46 0.011   
 16553 9 1.86E+06 0.0021 -1.68 0.007   
 20780 9 9.23E+05 0.0014 -1.86 0.003   
 22140 5 8.40E+05 0.0023 -1.86 0.003   
 22194 7 9.33E+05 0.0019 -1.81 0.003   

51045 3172 5 9.71E+07 0.0847 -0.29 0.607 -0.18c 0.596 c 

       -0.02 b  
 4716 7 3.69E+07 0.0258 -0.69 0.231 -0.66 c 0.183 c 

 6147 9 4.86E+06 0.0029 -1.54 0.030 -0.83 c 0.118 c 

 7420 5 … … … … -1.39 c 0.0302 c 

 13411 7 8.83E+06 0.0094 -1.13 0.055 -1.38 c 0.0233 c 

 14968 5 4.28E+06 0.0066 -1.40 0.027 -1.52 c 0.0153 c 

 16235 5 7.79E+05 0.0013 -2.11 0.005 … … 

 16590 7 2.01E+06 0.0025 -1.69 0.013 … … 

 20780 9 … … … … -1.91 c 0.0045 c 

 22194 7 9.92E+05 0.0018 -1.84 0.006 … … 

 23450 5 … … … … -2.05 c 0.0026 c 

 26227 5 3.77E+05 0.0012 -2.14 0.002 … … 
51863.0 3172 5 1.37E+08 0.1150 -0.16 0.726   

 4716 7 3.49E+06 0.0024 -1.73 0.018   
 6147 9 1.03E+07 0.0059 -1.23 0.055   
 7420 5 6.73E+06 0.0068 -1.39 0.036   
 11301 5 4.65E+06 0.0056 -1.47 0.025   
 13411 7 9.08E+06 0.0092 -1.13 0.048   
 14968 5 9.27E+05 0.0014 -2.09 0.005   
 16235 5 2.18E+06 0.0034 -1.69 0.012   
 16590 7 4.63E+06 0.0056 -1.35 0.025   
 19071 9 2.20E+06 0.0025 -1.61 0.012   
 20780 9 9.57E+05 0.0012 -1.92 0.005   
 22194 7 8.76E+05 0.0015 -1.92 0.005   
 24804 7 5.26E+05 0.0011 -2.06 0.003   
 26227 5 1.70E+06 0.0052 -1.51 0.009   
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52275.0 3172 5 1.34E+08 0.1110 -0.18 0.469   
 4716 7 3.14E+06 0.0021 -1.78 0.011   
 6147 9 6.41E+07 0.0362 -0.44 0.225   
 7420 5 6.93E+06 0.0069 -1.38 0.024   
 11301 5 3.32E+06 0.0040 -1.63 0.012   
 13434 5 1.35E+07 0.0178 -0.97 0.047   
 13411 7 4.95E+06 0.0049 -1.40 0.017   
 14968 5 5.57E+06 0.0080 -1.32 0.020   
 15147 7 4.00E+06 0.0044 -1.46 0.014   
 16235 5 2.32E+07 0.0356 -0.67 0.081   
 16553 9 1.10E+07 0.0103 -0.99 0.039   
 19071 9 1.10E+06 0.0012 -1.92 0.004   
 19637 5 1.93E+06 0.0036 -1.66 0.007   
 20780 9 2.00E+06 0.0024 -1.62 0.007   
 22140 5 2.24E+06 0.0049 -1.53 0.008   
 23804 7 6.64E+05 0.0012 -2.01 0.002   
 28632 7 4.99E+05 0.0013 -1.97 0.002   

52902.0 6147 9 2.50E+06 0.0014 -1.86 0.021   
 11301 5 1.06E+07 0.0123 -1.13 0.091   
 13434 5 3.36E+06 0.0043 -1.59 0.029   
 13411 7 2.48E+06 0.0024 -1.72 0.021   
 14857 9 1.53E+07 0.0127 -0.90 0.130   
 14968 5 1.83E+07 0.0254 -0.82 0.156   
 15147 7 1.31E+07 0.0138 -0.96 0.112   
 16235 5 1.52E+06 0.0023 -1.87 0.013   
 16553 9 2.61E+06 0.0024 -1.63 0.022   
 16590 7 9.99E+05 0.0011 -2.04 0.009   
 18001 7 1.42E+06 0.0018 -1.85 0.012   
 19071 9 9.58E+06 0.0100 -1.00 0.082   
 19276 5 1.67E+07 0.0295 -0.75 0.143   
 19637 5 4.42E+06 0.0080 -1.32 0.038   
 22140 5 5.88E+05 0.0012 -2.13 0.005   
 23047 7 1.56E+06 0.0026 -1.68 0.013   
 23235 5 2.25E+06 0.0031 -1.73 0.019   
 23450 5 1.22E+06 0.0028 -1.77 0.010   
 25209 9 1.47E+06 0.0023 -1.64 0.013   
 25672 5 9.59E+05 0.0026 -1.81 0.008   
 26227 5 6.82E+05 0.0019 -1.94 0.006   
 27274 7 1.65E+06 0.0038 -1.52 0.014   
 30618 5 3.20E+05 0.0013 -2.11 0.003   
 31447 7 3.41E+05 0.0011 -2.05 0.003   

53338.0 11301 5 3.04E+06 0.0034 -1.69 0.039   
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 14968 5 8.16E+06 0.0111 -1.18 0.105   
 15147 7 5.09E+06 0.0052 -1.38 0.065   
 16235 5 1.96E+07 0.0284 -0.77 0.251   
 16553 9 6.00E+06 0.0053 -1.27 0.077   
 16590 7 6.58E+06 0.0073 -1.23 0.084   
 19071 9 1.92E+06 0.0020 -1.71 0.025   
 19276 5 4.52E+06 0.0078 -1.33 0.058   
 20040 7 1.67E+06 0.0023 -1.74 0.021   
 22140 5 4.00E+06 0.0082 -1.31 0.051   
 22194 7 6.55E+06 0.0101 -1.09 0.084   
 23235 9 7.99E+05 0.0011 -1.97 0.010   
 23450 5 7.32E+05 0.0016 -2.01 0.009   
 23804 7 4.37E+06 0.0075 -1.22 0.056   
 25209 9 7.24E+05 0.0011 -1.96 0.009   
 30618 5 4.05E+05 0.0016 -2.03 0.005   

54499 4716 7 2.94E+08 0.1780 0.03 0.561 -0.02 c 0.418 c 

 6147 9 8.18E+07 0.0419 -0.38 0.156 -0.46 c 0.141 c 

 13411 7 3.01E+06 0.0027 -1.67 0.006 -1.05 c 0.0267 c 

 13434 5 .. … … … -0.91 c 0.0361 c 

 14857 9 3.13E+06 0.0024 -1.62 0.006 … … 

 14967 5 .. .. .. .. -0.78 c 0.0451 c 

 15147 7 3.28E+06 0.0032 -1.60 0.006 … … 

 16553 9 6.17E+06 0.0051 -1.29 0.012 … … 

 18001 7 1.32E+06 0.0015 -1.93 0.003 -0.72 c 0.0481 c 

 20040 7 1.34E+06 0.0017 -1.87 0.003 … … 

 20780 9 1.68E+06 0.0018 -1.75 0.003 … … 

 23047 7 8.11E+05 0.0012 -2.01 0.002 … … 

 23804 7 1.46E+06 0.0023 -1.73 0.003 … … 

 24 804 7 … … … … -0.32 c 0.0747 c 

 28 118 5 … … … … -1.26 c 0.0066 c 

 31 538 5 … … … … -1.26 c 0.0063 c 
 

(a) NIST [1] 

(O) Results from literature, other work (b and c) 

(b) Quinet et al , 2010 [18] 

(c ) Lennertsson et al, 2011 [16] 
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Table 4-13: RCI transition probability Aki (s-1) , the absorption oscillator strength fik, and 

the branching fractions, BF of the lowest 10 energy levels of W II J=9/2 odd. 

Ek Ei 2Ji Aki f ik log (gf) BF log 
(gf)O BF O 

44758 4716 7 8.60E+06 0.0100 -1.10 0.211 -1.00b  
 6147 9 1.85E+07 0.0186 -0.73 0.453 -0.59 b  
 14857 9 3.24E+06 0.0054 -1.27 0.079   
 15147 7 4.28E+06 0.0092 -1.14 0.105   
 16590 7 2.80E+06 0.0066 -1.28 0.069   
 18001 7 2.08E+06 0.0055 -1.36 0.051 -1.08 b  
 23047 7 4.99E+05 0.0020 -1.80 0.012   

46493 4716 7 2.73E+07 0.0293 -0.63 0.312 -0.62 b  
 6147 9 3.85E+07 0.0354 -0.45 0.44 -0.45 b  
 13411 7 2.45E+06 0.0042 -1.47 0.028   
 14857 9 5.37E+06 0.0080 -1.09 0.061   
 15147 7 2.59E+06 0.0049 -1.40 0.03   
 16590 7 7.32E+06 0.0153 -0.91 0.084 -1.03 b  
 17437 11 1.22E+06 0.0018 -1.66 0.014   
 18001 7 1.19E+06 0.0028 -1.66 0.014   

49181 4716 7 3.81E+07 0.0361 -0.54 0.667 -0.73c 0.526 c 

       -0.68 b  
 6147 9 1.52E+07 0.0123 -0.91 0.265 -0.93 c 0.311c 

 14857 9 1.51E+06 0.0019 -1.72 0.026 … … 

 16553 9 8.62E+05 0.0012 -1.92 0.015 -1.44 c 0.056 c 

 16589 7 … … … … -1.75 c 0.027 c 
50863 4716 7 8.48E+07 0.0746 -0.22 0.582 -0.08 b  

 6147 9 9.80E+06 0.0073 -1.13 0.067   
 13411 7 8.72E+06 0.0117 -1.03 0.06   
 14857 9 1.96E+07 0.0227 -0.64 0.135   
 15147 7 1.17E+07 0.0173 -0.86 0.081   
 16553 9 1.62E+06 0.0021 -1.69 0.011   
 20040 7 2.55E+06 0.0050 -1.40 0.018   
 22194 7 1.24E+06 0.0028 -1.65 0.009   
 23235 9 1.50E+06 0.0030 -1.53 0.01   
 23804 7 4.83E+05 0.0012 -2.00 0.003   
 25209 9 1.54E+06 0.0035 -1.45 0.011   
 28632 7 4.84E+05 0.0018 -1.83 0.003   
 30633 9 2.85E+05 0.0010 -1.98 0.002   

52567 4716 7 4.48E+07 0.0367 -0.53 0.308   
 6147 9 6.49E+07 0.0451 -0.35 0.445 -0.48 b  
 13411 7 4.62E+06 0.0057 -1.34 0.032   
 14857 9 1.93E+06 0.0020 -1.69 0.013   
 15147 7 3.04E+06 0.0041 -1.49 0.021   
 16553 9 2.47E+06 0.0029 -1.54 0.017   
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 16590 7 1.60E+07 0.0232 -0.73 0.11   
 17437 11 1.68E+06 0.0017 -1.69 0.012   
 20040 7 7.99E+05 0.0014 -1.94 0.005   
 22194 7 7.45E+05 0.0015 -1.92 0.005   
 23047 7 1.49E+06 0.0032 -1.59 0.01   
 23235 9 6.59E+05 0.0012 -1.94 0.005   
 24804 7 5.12E+05 0.0012 -2.00 0.004   
 26159 9 7.28E+05 0.0016 -1.80 0.005   

53370 4716 7 3.35E+08 0.2610 0.32 0.866   
 6147 9 4.59E+06 0.0030 -1.52 0.012   
 15147 7 8.77E+05 0.0011 -2.06 0.002   
 16553 9 9.48E+06 0.0103 -0.99 0.024   
 16590 7 2.51E+07 0.0340 -0.57 0.065 -0.23b  
 17437 11 4.44E+06 0.0042 -1.30 0.011   
 20040 7 1.67E+06 0.0027 -1.66 0.004   
 20534 11 1.54E+06 0.0017 -1.68 0.004   
 20780 9 1.17E+06 0.0016 -1.79 0.003   
 22194 7 8.89E+05 0.0017 -1.87 0.002   

54056 6147 9 1.98E+07 0.0130 -0.89 0.144   
 13411 7 8.89E+06 0.0101 -1.09 0.064   
 14857 9 5.81E+06 0.0057 -1.25 0.042   
 15147 7 4.75E+07 0.0588 -0.33 0.345   
 16553 9 1.70E+07 0.0181 -0.74 0.123   
 16590 7 1.67E+07 0.0223 -0.75 0.121   
 17437 11 5.30E+06 0.0050 -1.23 0.038   
 19071 9 2.59E+06 0.0032 -1.50 0.019   
 20534 11 9.97E+05 0.0011 -1.88 0.007   
 20780 9 6.34E+06 0.0086 -1.07 0.046   
 24804 7 1.52E+06 0.0033 -1.58 0.011   
 26159 9 5.27E+05 0.0010 -1.99 0.004   
 27274 7 4.63E+05 0.0012 -2.01 0.003   
 30633 9 7.45E+05 0.0020 -1.69 0.005   

55392 4716 7 8.18E+07 0.0597 -0.32 0.151 -0.68 c 0.088 c 

 6147 9 4.07E+08 0.2520 0.40 0.752 0.13 c 0.507 c 

 13411 7 .. .. .. .. -0.98 c 0.029 c 

 14857 9 1.15E+06 0.0011 -1.98 0.002 .. .. 

 15147 7 1.31E+06 0.0015 -1.92 0.002 -0.75 c 0.044 c 

 16553 9 6.83E+06 0.0068 -1.17 0.013 -1.40 c 0.009c 

 16590 7 7.79E+06 0.0097 -1.11 0.014 -0.54 c 0.067c 

 17437 11 3.79E+06 0.0033 -1.40 0.007 -0.95 c 0.025c 

 18001 7 1.02E+07 0.0136 -0.96 0.019 -0.32 c 0.010c 

 19071 9 1.36E+06 0.0016 -1.81 0.003 .. .. 

 20534 11 1.42E+06 0.0015 -1.76 0.003 -1.03 c 0.018c 

 22194 7 6.58E+05 0.0011 -2.05 0.001 .. .. 

 23047 7 3.23E+06 0.0058 -1.33 0.006 .. .. 

 23235 9 4.82E+06 0.0070 -1.16 0.009 -0.79 c 0.026c 
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 23804 7 3.43E+06 0.0064 -1.29 0.006 -1.12 c 0.012c 

 23955 11 2.30E+06 0.0029 -1.46 0.004 -0.75 c 0.027c 

 24804 7 … … … … -0.97 c 0.015c 

 25209 9 7.02E+05 0.0012 -1.94 0.001 … … 

 26159 9 6.00E+05 0.0011 -1.98 0.001 -1.34 c 0.006c 

 28632 7 4.58E+05 0.0012 -2.02 0.001 … … 

 30632 11 … … … … -1.26 c 0.005c 
56414 4716 7 3.15E+07 0.0221 -0.75 0.139   

 6147 9 1.04E+08 0.0617 -0.21 0.459   
 13411 7 8.76E+06 0.0089 -1.15 0.039   
 14857 9 8.89E+06 0.0077 -1.11 0.039   
 15147 7 1.30E+07 0.0143 -0.94 0.057   
 16553 9 9.79E+06 0.0092 -1.03 0.043   
 16590 7 8.97E+06 0.0106 -1.07 0.04   
 18001 7 1.67E+07 0.0212 -0.77 0.074   
 23047 7 1.28E+07 0.0215 -0.76 0.056   
 23235 9 2.97E+06 0.0041 -1.39 0.013   
 23955 11 1.08E+06 0.0013 -1.81 0.005   

57089 6147 9 1.20E+07 0.0070 -1.16 0.069   
 13411 7 1.59E+07 0.0157 -0.90 0.092   
 15147 7 2.94E+07 0.0313 -0.60 0.169   
 18001 7 6.04E+07 0.0740 -0.23 0.348   
 20534 11 6.89E+06 0.0064 -1.11 0.04   
 20780 9 9.67E+06 0.0110 -0.96 0.056   
 23047 7 1.02E+07 0.0164 -0.88 0.059   
 23955 11 6.55E+06 0.0075 -1.05 0.038   

 

(a) NIST [1] 

(O) Results from literature, other work (b and c) 

(b) Quinet et al , 2010 [18] 

(c ) Lennertsson et al, 2011 [16] 
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Table 4-14: RCI transition probability Aki (s-1), the absorption oscillator strength fik, and 

the branching fractions, BF of the lowest 10 energy levels of W II J=11/2 odd. 

Ek  Ei 2Ji Aki fik  log(gf) BF log(gf) O 

48332.8 6147 9 2.53E+06 0.0026 -1.59 0.224  
 14857 9 1.79E+06 0.0029 -1.54 0.158  
 16553 9 3.50E+06 0.0062 -1.20 0.309 -1.12b 

 20780 9 1.49E+06 0.0035 -1.45 0.132  
 25209 9 6.69E+05 0.0023 -1.65 0.059  
 26159 9 2.86E+05 0.0011 -1.98 0.025  
51495.1 6147 9 1.60E+08 0.1400 0.15 0.985 0.17b 
54229.1 6147 9 1.74E+08 0.1350 0.13 0.669 0.50b 

 14857 9 2.84E+06 0.0033 -1.48 0.011  
 16553 9 3.43E+07 0.0435 -0.36 0.132  
 17437 11 3.43E+07 0.0380 -0.34 0.132  
 19071 9 1.61E+06 0.0023 -1.63 0.006  
 19442 13 3.23E+06 0.0034 -1.32 0.012  
 20534 11 1.40E+06 0.0019 -1.65 0.005  
 23235 9 5.79E+06 0.0108 -0.97 0.022  
 25209 9 5.88E+05 0.0013 -1.90 0.002  
 26159 9 1.15E+06 0.0026 -1.58 0.004  
54958.6 6147 9 2.26E+08 0.1710 0.23 0.734  
 14857 9 1.05E+07 0.0118 -0.93 0.034  
 16553 9 2.63E+07 0.0320 -0.49 0.085 -0.13b 

 17437 11 2.67E+07 0.0285 -0.47 0.087 -0.09b 

 19071 9 2.58E+06 0.0036 -1.44 0.008  
 19442 13 9.91E+05 0.0010 -1.85 0.003  
 20534 11 4.83E+06 0.0061 -1.13 0.016  
 20780 9 4.44E+06 0.0068 -1.17 0.014  
 23235 9 4.07E+06 0.0073 -1.14 0.013  
 23955 11 7.21E+05 0.0011 -1.87 0.002  
 29341 9 4.32E+05 0.0012 -1.93 0.001  
56376.6 6147 9 4.05E+07 0.0289 -0.54 0.43  
 14857 9 9.81E+06 0.0102 -0.99 0.104  
 16553 9 2.00E+06 0.0023 -1.64 0.021  
 19071 9 5.49E+06 0.0071 -1.15 0.058  
 19442 13 7.40E+06 0.0070 -1.01 0.079  
 20534 11 1.10E+07 0.0129 -0.81 0.117  
 20780 9 6.55E+06 0.0093 -1.03 0.07  
 23235 9 1.97E+06 0.0032 -1.49 0.021  
 23955 11 1.77E+06 0.0025 -1.52 0.019  
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 25209 9 2.19E+06 0.0041 -1.39 0.023  
 26159 9 3.03E+06 0.0060 -1.22 0.032  
 29341 9 4.63E+05 0.0011 -1.94 0.005  
 33911 11 4.94E+05 0.0015 -1.75 0.005  
58891.7 6147 9 2.29E+07 0.0148 -0.83 0.086  
 14857 9 7.30E+07 0.0678 -0.17 0.274 -0.05b 

 16553 9 1.67E+07 0.0167 -0.78 0.062  
 17437 11 2.56E+07 0.0223 -0.57 0.096  
 19071 9 5.92E+07 0.0671 -0.17 0.222 -0.12b 

 19442 13 2.01E+07 0.0166 -0.63 0.075  
 20534 11 1.22E+07 0.0125 -0.82 0.046  
 20780 9 2.43E+07 0.0301 -0.52 0.091  
 26929 11 5.38E+06 0.0079 -1.02 0.02  
 29341 9 1.91E+06 0.0039 -1.41 0.007  
 30633 9 8.68E+05 0.0020 -1.71 0.003  
 33911 11 2.95E+06 0.0071 -1.07 0.011  
60219.1 14857 9 1.56E+07 0.0136 -0.87 0.135  
 17437 11 2.11E+06 0.0017 -1.68 0.018  
 19071 9 1.71E+07 0.0182 -0.74 0.149  
 19442 13 2.05E+06 0.0016 -1.65 0.018  
 20780 9 3.57E+07 0.0413 -0.38 0.31 -0.12b 

 23235 9 2.16E+07 0.0284 -0.55 0.188  
 23955 11 1.89E+06 0.0022 -1.59 0.016  
 25209 9 4.65E+06 0.0068 -1.17 0.04  
 26159 9 2.08E+06 0.0032 -1.49 0.018  
 26929 11 1.43E+06 0.0019 -1.64 0.012  
 29341 9 5.09E+06 0.0096 -1.02 0.044  
 31100 11 1.50E+06 0.0027 -1.50 0.013  
61240.8 6147 9 8.78E+06 0.0052 -1.28 0.034  
 14857 9 1.52E+07 0.0127 -0.90 0.058  
 16553 9 4.08E+07 0.0368 -0.43 0.156  
 17437 11 6.40E+07 0.0500 -0.22 0.244  
 19071 9 4.55E+07 0.0460 -0.34 0.174  
 19442 13 5.40E+06 0.0040 -1.26 0.021  
 20534 11 9.40E+06 0.0085 -0.99 0.036  
 20780 9 3.04E+07 0.0334 -0.48 0.116  
 23235 9 2.66E+07 0.0332 -0.48 0.102  
 25209 9 5.93E+06 0.0082 -1.09 0.023  
 29341 9 2.82E+06 0.0050 -1.30 0.011  
61589.5 14857 9 1.79E+07 0.0148 -0.83 0.058  
 16553 9 8.12E+07 0.0720 -0.14 0.263  
 17437 11 3.45E+07 0.0265 -0.50 0.111  
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 19442 13 2.67E+07 0.0193 -0.57 0.086  
 20534 11 5.85E+07 0.0521 -0.20 0.189 -0.15b 

 20780 9 4.10E+06 0.0044 -1.35 0.013  
 23235 9 5.93E+07 0.0725 -0.14 0.192  
 23955 11 6.78E+06 0.0072 -1.06 0.022  
 31100 11 3.84E+06 0.0062 -1.13 0.012  
 33911 11 3.41E+06 0.0067 -1.10 0.011  
62966.5 14857 9 1.17E+08 0.0910 -0.04 0.447  
 16553 9 1.28E+07 0.0107 -0.97 0.049  
 17437 11 1.23E+07 0.0089 -0.97 0.047  
 19071 9 8.17E+06 0.0076 -1.12 0.031  
 20534 11 1.23E+07 0.0102 -0.91 0.047  
 20780 9 6.14E+06 0.0062 -1.21 0.023  
 25209 9 4.65E+07 0.0586 -0.23 0.177  
 26929 11 2.37E+07 0.0274 -0.48 0.091  
 33911 11 1.25E+07 0.0222 -0.57 0.048  

 

(a) NIST [1] 

(O) Results from literature, other work (b and c) 

(b) Quinet et al , 2010 [18] 

(c ) Lennertsson et al, 2011 [16] 
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5 Summary and Future Work 

In this study the relativistic configuration interaction (RCI) has been used to produce 

atomic data for three positive ions, Ni II, V II, and W II. The RCI is an Ab initio 

computational methodology and it had been modified a little by shifting the diagonal 

matrix elements. This shift was done in two ways. The simple way was to compare the 

RCI energy values of the excited atomic levels to the experimental ones and to use the 

difference to produce the value of the shift. This is a semi empirical method that had been 

used in previous RCI studies. The other method for producing the values of the shift was 

to isolate specific electronic configurations and do study them with pure ab initio RCI 

calculations, then using these results to produce the values for the shift. The 

configurations that has been isolated and studied separately were those that have big 

matrix size, quite large energy effect, and almost negligible effect on other atomic 

properties (e.g. electric and magnetic moments).  Although the separate runs took long 

time, this method of shift is very systematic and has improved the RCI results. Another 

improvement in the computational method was the interpolations of the bound and 

continuum states calculations to include all ranges on energy starting from the ground 

state to infinity. This was implemented in the Ni II study. 

We calculated atomic electric moments of Ni II, Hyperfine structure constants of 

V II, and lifetime and oscillator strength of W II.  

Improving the W II oscillator strength and branching fractions is a good next step. 

It will support the validity of the lifetimes that appear in this study. Also, it will reduce 

the unsatisfactory disagreement between the calculated and experimental oscillator 

strength and branching fractions. Another future project will be studying the hyperfine 

structure of other transition atoms and or ions using the same methodology that has been 

used in studying V II. The computational methods that have been used to calculate the 

electric moments on Ni II were very detailed and valuable and they were done for the 

first time. They can be applied to more complicated ions, for example Th II, but this will 

require cooperation with some experimental group. In case it happens, it will be great 

addition to the scientific literature. 
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6 Appendix  
6.1 Cowan's Method and Code 

Cowan's semi-empirical methodology is used by both experimenters and computationalists who 

wish to "quickly" obtain properties of "all" the observed [1] energy levels with known 

configurational labeling. A description of the method is given in Cowan's book [2], 

accompanying the source code [3], and an article by Quinet et al extending the treatment to a rare 

earth ion, Tm II [4]. 

6.1.1 The steps in the process are essentially these: 

 (1) Use observation to choose the configurations used to create the radial functions. The 

Hamiltonian used for them is a non-relativistic one, which may include the mass-variation with 

velocity and Darwin terms from the low-Z Pauli approximation. The radial equation is of the 

Hartree-Fock Slater type, i.e. the exchange effects are averaged and become part of the potential 

[5]. Effectively, one is obtaining radials which optimize the average energy [6]. With the 

configuration's radials established, the two particle electrostatic Fk and Gk integral values and 

some approximation for the spin-orbit effects are computed. Two particle effects [7] may be 

incorporated in the spin-orbit constant following Blume and Watson [8]. Using the non-

relativistic operators, and the one particle low Z Pauli operators for the Hamiltonian, matrix 

elements between all levels belonging to the configuration, with fixed J and parity are set up. For 

example, the electrostatic portion of the energy arising 1s2 2s 2p is Eavg-G1 (2s, 2p)/6 for the 3P 

and Eavg + G1 (2s, 2p)/2 for the 1P. The spin-orbit contribution for J=1 would be [9] 

   

� 𝑃𝑃13 �𝑑𝑑(𝑠𝑠0)� 𝑃𝑃13 � =  −𝐴𝐴(𝑟𝑟);        � 𝑃𝑃11 �𝑑𝑑(𝑠𝑠0)� 𝑃𝑃11 � = 0                           (𝐴𝐴. 1) 

� 𝑃𝑃13 �𝑑𝑑(𝑠𝑠0)� 𝑃𝑃11 � =  √2 𝐴𝐴(𝑟𝑟), 𝐴𝐴(𝑟𝑟) ≅  1
𝑟𝑟

 
𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑟𝑟

                                   (𝐴𝐴. 2) 

 In equation (A.1) having this matrix element equal to zero mean that the diagonal matrix element 

has zero spin orbit effect. 

, V(r) being the potential. Energy contributions from the closed sub-shells are included in Eavg, 

which has a known, simple structure [6] .Cowan in Appendix F [2] uses Racah algebra to produce 

the atomic structure. RCI [10] does so by dealing with determinantal pairs. 
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 (2) Once the radial functions for all the configurations have been obtained, and the intra-

configurational matrix elements have set up, one lets levels belonging to different configurations 

interact. These off-diagonal matrix elements will involve a more general electrostatic radial 

integral known as a RK integral. Any non-orthogonality effects are assumed negligible. For 

example, the interaction between 1s2 2s 2p and 1s2 3d 4f would require R2 (2s, 2p; 3d, 4f) and 

R3(2s,2p;4f,3d), N.B. Fk(x, y) = Rk(x, y; x, y) and Gk(x, y) = Rk(x, y; y, x) 

 (3) The full matrix is diagonalized, and its energy levels are compared with observation. One 

does not expect a good match, because (i) many relativistic effects are missing (ii) exchange is 

included only approximately and (iii) almost all correlation effects are missing. We now come to 

the "heart of the method"- all the energy parameters Eavg, Fk, Gk, Rk and spin-orbit constants are 

varied in a least-squares iterative manner to get the best fit to the observed energy levels possible. 

While there are many parameters-possibly 50 or more for each J, parity, based on previous work 

some trends seem well established. For example, rescaling the Fk, Gk, and Rk integrals using a 

0.85 factor normally works well in the majority of cases. See discussion by Cowan [2] on pages 

464-7 and beyond. A list of rescaling factors is commonly included in papers using the Cowan 

method [e.g.4]. 

 (4) Assessment. The energy fit to experiment can be quite good- as close as 100 cm-1 on average 

for a hundred levels. The main outputs are the wavefunctions for each level which are used to 

evaluate like oscillator strengths (see chapter-4, W II) and hyperfine structure (see chapter-3, V 

II). These results seem to be useful at least in a semi-quantitative manner. The real weakness of 

the procedure, in addition to requiring a lot of data, is that it lacks formal justification. A priori 

prediction of whether it will be successful in any particular new case depends solely on prior 

results on similar systems and the user’s skills. 

 (5) Possible future justification of the method. Our work with shifts used to correct diagonal 

matrix elements for missing correlation effects can be used to partially justify some of the scaling 

appearing in the Cowan method. However, we have not yet been able to formally justify (or 

identify) the source of scaling in the off-diagonal matrix elements. On p.464 Cowan remarks that 

p (ns) is perturbed by p (ms) (m > n) in such a way as to narrow the gap between 1P,3P for p 

(ns).This may be helpful in reducing the spacing between the 3d4 and 3d3 4s 3GJ levels in V II (by 

adding more virtual s (= vs) via 3d3 vs 3GJ (see section 5, V II), ”v” is for a virtual sub-shell. 
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6.2 Relativistic Hyperfine Structure Formula used in RCI 

code [1] 
6.2.1  Introduction 

The hyperfine structure (HFS) operators are taken from the work of Lindgren and Rosen 

[2]. For N electrons, the HFS Hamiltonian can be written as 

𝐻𝐻𝐻𝐻𝑁𝑁𝐻𝐻 =  �𝑇𝑇𝑎𝑎  .𝑀𝑀𝑎𝑎

𝐾𝐾

                                                                                    

,𝑇𝑇𝑎𝑎 =  �𝐶𝐶𝑎𝑎(𝑖𝑖),     𝑎𝑎𝑛𝑛𝑑𝑑     𝑀𝑀𝑎𝑎 =  � 𝑚𝑚𝑎𝑎(𝑖𝑖)  
𝑁𝑁

𝑖𝑖=1
                                      (𝐵𝐵. 1)

𝑖𝑖

 

 

“a” designates a tensor of rank “a” . Odd values of “a” are magnetic terms, e.g. a =1 is a magnetic 

dipole and even values of “a” are electrostatic terms, e.g. a = 2 for the electric quadrupole. “T” 

designates the electronic part of the operator and “M” designates the nuclear part. Only the 

electronic part is evaluated in Atomic Computations.  

6.2.2 Coupling Scheme 

In the RCI computations which are developed by Beck and used throughout his research 

group the coupling scheme is chosen as follows; the neutron and proton nuclear spins are coupled 

together to form the total angular momentum “𝐼𝐼” , and the spins of the electrons are coupled 

together to form the total electronic angular momentum “𝐽𝐽  ”. 𝐼𝐼 𝑎𝑎𝑛𝑛𝑑𝑑 𝐽𝐽 are then coupled to form the 

total angular momentum of the system, “�⃗�𝐹" . 

The electron-nuclear states are labeled | 𝐼𝐼 𝐽𝐽 𝐹𝐹 𝑀𝑀𝑁𝑁〉  and their matrix elements can be written as; 

�𝐼𝐼𝐽𝐽𝐹𝐹𝑀𝑀𝑁𝑁�𝐻𝐻𝐻𝐻𝑁𝑁𝐻𝐻𝑎𝑎 �𝐼𝐼𝐽𝐽�̀�𝐹𝑀𝑀𝑁𝑁̀ �  =   (−1)2𝐽𝐽−𝑁𝑁−𝐼𝐼+𝐽𝐽̀   𝛿𝛿𝑁𝑁�̀�𝑁   𝛿𝛿𝑀𝑀𝐹𝐹 �̀�𝑀𝐹𝐹 *  〈𝐼𝐼‖𝑀𝑀𝑎𝑎‖ 𝐼𝐼〉 〈𝐽𝐽‖𝑇𝑇𝑎𝑎‖ 𝐽𝐽〉  �
𝐼𝐼 𝐽𝐽 𝐹𝐹
𝐽𝐽 𝐼𝐼 𝑎𝑎�              

(B.2) 

Where { } is a Wigner 6j symbol [3]. 〈  ‖ ‖ ̀ 〉 is a reduced matrix element which appears when 

the Wigner-Eckart theorem [3] is used to remove the dependence on the azimuthal quantum 

numbers. For example, the nuclear reduced matrix element is given by 

⟨𝐼𝐼 𝐼𝐼|𝑀𝑀𝑂𝑂
𝑎𝑎|𝐼𝐼 𝐼𝐼⟩  =   � 𝐼𝐼 𝑎𝑎 𝐼𝐼

−𝐼𝐼 𝑂𝑂 𝐼𝐼� 〈𝐼𝐼‖𝑀𝑀
𝑎𝑎‖ 𝐼𝐼〉                                                      (𝐵𝐵. 3)  
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Where the stretched matrix element (i.e. the one with the highest possible value of the azimuthal 

quantum number) appearing on the left hand side is usually available [4] from experiment, and 

the (  ) is a Wigner 3j symbol [3]. a=1 is for the magnetic dipole operator and a=2 for the electric 

quadrupole operator. These are the two largest operators (unless they equal to zero) and they are 

the only ones used in this work (beside the electric dipole operator). Here only the diagonal case 

is of interest, that’s 𝐼𝐼 = 𝐼𝐼 𝑎𝑎𝑛𝑛𝑑𝑑 𝚥𝚥̀  = 𝐽𝐽. 

6.2.3 Results for Magnetic Dipole 

The magnetic dipole operator is frequently written as 𝐴𝐴( 𝐼𝐼 .  𝐽𝐽 ) for the diagonal matrix 

elemnt, and expectation value of this operator is  

〈𝐴𝐴 (𝐼𝐼 .  𝐽𝐽 )〉  =  
𝐴𝐴
2

 [ 𝐹𝐹(𝐹𝐹 + 1) −  𝐼𝐼(𝐼𝐼 + 1) −  𝐽𝐽(𝐽𝐽 + 1)]                           (𝐵𝐵. 4) 

Experimentally “A” is given in units of MHz, A is a scalar and its matrix element carries all 

required information other than spin so it ends up a simple number. From equations B.2 and 

B.3and expanding the 6j symbol [3], “A” can be written as  

𝐴𝐴 =  −  
𝜇𝜇𝐼𝐼
𝐼𝐼 𝐽𝐽

 �𝐽𝐽 𝐽𝐽��̀�𝑇𝑂𝑂�𝐽𝐽 𝐽𝐽�                                                                                       (𝐵𝐵. 5) 

Where 𝜇𝜇𝐼𝐼 is the expectation value of  𝑀𝑀𝑂𝑂
1  in the stretched state, i.e. the nucleus magnetic dipole 

moment in nuclear magneton units [4]. 

6.2.4 Results for Nuclear Quadrupole 

The nuclear Quadrupole contribution to the diagonal HFS energy (by using eq. B.2) can 

be written as; 

𝐵𝐵 𝐴𝐴𝑞𝑞 =  −  
3 𝑄𝑄 𝐴𝐴𝑞𝑞

4 𝐽𝐽(2𝐽𝐽 − 1)𝐼𝐼 (2𝐼𝐼 − 1) �𝐽𝐽 𝐽𝐽� ∑ 𝑟𝑟𝐾𝐾−3𝐾𝐾   𝐶𝐶𝑂𝑂 
2 (𝐴𝐴)�𝐽𝐽 𝐽𝐽�                        (𝐵𝐵. 6) 

Where the quadrupole moment is defined to be: 
𝑒𝑒𝑄𝑄
2

 ≡  �𝐼𝐼 𝐼𝐼�𝑀𝑀𝑂𝑂
2�𝐼𝐼 𝐼𝐼�                                                                                                    (𝐵𝐵. 7) 

𝐶𝐶𝑂𝑂𝐾𝐾 =  �
4𝜋𝜋

2𝐴𝐴 + 1
  𝑌𝑌𝐾𝐾𝑂𝑂                                                                                                   (𝐵𝐵. 8) 
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𝐴𝐴𝑞𝑞 =   
1
6

 (−1)𝐼𝐼+ 𝐽𝐽+𝑁𝑁̀  �
𝐽𝐽 𝐼𝐼 𝐹𝐹
𝐼𝐼 𝐽𝐽 2� ∗ �2𝐼𝐼(2𝐼𝐼 − 1)(2𝐼𝐼 + 2)(2𝐼𝐼 + 1)(2𝐼𝐼 + 3) ∗ 

�2𝐽𝐽(2𝐽𝐽 + 1)(2𝐽𝐽 + 2)(2𝐽𝐽 + 3)(2𝐽𝐽 − 1)    

 (B.9) 

And 

𝐴𝐴𝑞𝑞 =  𝐴𝐴 (𝐴𝐴 + 1) ,    𝐴𝐴 = 𝐹𝐹(𝐹𝐹 + 1) −  𝐼𝐼(𝐼𝐼 + 1) −  𝐽𝐽(𝐽𝐽 + 1)                               (𝐵𝐵. 10) 

, the equivalence is only strictly valid if the part independent of “F” is dropped. 

 

6.2.5 Matrix Elements for one electron HFS operator 

𝐻𝐻𝐻𝐻𝑁𝑁𝐻𝐻 = 𝑒𝑒𝑐𝑐 �⃗�𝛼 .𝐴𝐴𝑁𝑁 − 𝑒𝑒 𝜑𝜑𝑁𝑁 =  � 𝐶𝐶𝑎𝑎  .𝑚𝑚𝑎𝑎

𝑎𝑎 >0

                                                   (𝐵𝐵. 11) 

𝐴𝐴𝑁𝑁 =  −  
𝑖𝑖 𝜇𝜇𝑂𝑂
4𝜋𝜋

 �𝑟𝑟−𝑎𝑎−1 �𝑙𝑙 𝐶𝐶𝑎𝑎�.𝑚𝑚𝑎𝑎

𝑎𝑎

                                                                 (𝐵𝐵. 12) 

The electronic part can be reduced to: 

𝐶𝐶𝑎𝑎 =  −2𝑖𝑖  
𝜇𝜇𝑂𝑂
4𝜋𝜋

 
𝜇𝜇𝐵𝐵
𝑎𝑎0

 �
𝑎𝑎 + 1
𝑎𝑎

 𝑟𝑟−𝑎𝑎−1  { �⃗�𝛼 𝐶𝐶𝑎𝑎}𝑎𝑎                                                     (𝐵𝐵. 13) 

, 𝑒𝑒𝑐𝑐 =  2 𝜇𝜇𝐵𝐵 𝛼𝛼𝑎𝑎𝐷𝐷⁄  , 𝑎𝑎𝐷𝐷 is Bohr radius. 

6.2.5.1 Magnetic Dipole 

The final “standard” result for the magnetic dipole is then: 

�𝑛𝑛 𝜅𝜅 𝑚𝑚𝑗𝑗�𝐶𝐶𝑄𝑄1��̀�𝑛 𝜅𝜅 ̀  �̀�𝑚𝑗𝑗�

=  
2 𝜇𝜇𝐷𝐷
4𝜋𝜋

 
𝜇𝜇𝐵𝐵
𝛼𝛼 𝑎𝑎𝐷𝐷

 (−1)𝑙𝑙𝑖𝑖+ 12 �(2𝑗𝑗 + 1)(2𝚥𝚥̀+ 1)  (𝜅𝜅 + �̀�𝜅)

∗  �
𝑗𝑗 𝑗𝑗′ 1
−1
2

1
2

0�  �
𝑗𝑗 𝑗𝑗′ 1

−𝑚𝑚𝑗𝑗 𝑚𝑚𝑗𝑗
′ 𝑄𝑄�  � 𝑑𝑑𝑟𝑟 𝑟𝑟−2 [𝑃𝑃𝑛𝑛𝑛𝑛 𝑄𝑄𝑛𝑛′𝑛𝑛′ +  𝑄𝑄𝑛𝑛𝑛𝑛 𝑃𝑃𝑛𝑛′𝑛𝑛′]

∞

0
 

(B.14) 

“𝜅𝜅" is Kappa that gives the angular momentum, 𝜅𝜅 = �𝐽𝐽 ± 1
2
� , 𝜅𝜅 ≠ 0   . 
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6.2.5.2 Electric Quadrupole Hyperfine Operators 

𝐶𝐶𝑎𝑎  =  
−𝑒𝑒

4𝜋𝜋𝜖𝜖0
 𝑟𝑟−𝑎𝑎−1 𝐶𝐶𝑎𝑎 (𝜃𝜃,𝜑𝜑)                                                           (𝐵𝐵. 15) 

The final result is given by 

�𝑛𝑛 𝜅𝜅 𝑚𝑚𝑗𝑗�𝐶𝐶𝑄𝑄𝑎𝑎�𝑛𝑛′ 𝜅𝜅′ 𝑚𝑚𝑗𝑗
′� 

= (−1)�𝑎𝑎−𝑙𝑙𝑖𝑖+ 12− 𝑖𝑖− 𝑖𝑖′�  �(2𝑗𝑗 + 1)(2𝑗𝑗′ + 1)  �
𝑗𝑗 𝑗𝑗′ 𝑎𝑎
1
2

−1
2 0�  �

𝑗𝑗 𝑗𝑗′ 𝑎𝑎
−𝑚𝑚𝑗𝑗 𝑚𝑚𝑗𝑗

′ 𝑄𝑄� ∗

 � −𝐸𝐸
4𝜋𝜋 𝜖𝜖0

�  ∫ 𝑑𝑑𝑟𝑟 𝑟𝑟−𝑎𝑎−1 [𝑃𝑃𝑛𝑛𝑛𝑛 𝑃𝑃𝑛𝑛′𝑛𝑛′ +  𝑄𝑄𝑛𝑛𝑛𝑛 𝑄𝑄𝑛𝑛′𝑛𝑛′]
∞
0  

(B.16) 

P, and Q are the major and minor radial components, 𝜅𝜅 = ± �𝑗𝑗 +  1
2
� 

6.2.5.3 Contributions from the Closed Shells 

Core contributions to the HFS involve the sum 

� (−1)−𝑙𝑙𝑖𝑖  �
𝑗𝑗 𝑗𝑗 𝑎𝑎

−𝑚𝑚𝑗𝑗 𝑚𝑚𝑗𝑗 0�
+𝑗𝑗

𝑙𝑙𝑖𝑖=−𝑗𝑗

      𝑎𝑎 > 0                                                   (𝐵𝐵. 17) 

, which equals to zero. 

6.2.6 Units 

HFS units can be confusing. Calculations are done in atomic units. Experimental constants “A” 

and “B” and given in MHz and nuclear moments are given in nuclear magnetons, 𝜇𝜇𝑁𝑁 ≡  𝐸𝐸 ℏ
2𝑀𝑀

 [4], 

“Q” is given in barns.  
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6.3 Shift 

Shift of the diagonal matrix element refers to adding (or subtracting) an exact 

amount of energy to a specific vector(s) during the process of calculating the total 

wavefunction by the RCI program. In this study shift has been used to replace some 

double (and higher order) excitations (i.e. all the single excitations were directly 

represented in the energy matrix and thus in the total wavefunction). Determining the 

energy for the shift and the usefulness of the shift is discussed below, see [1-2] for more 

details. 

In order to appreciate the usefulness of the shift we can consider a case with two 

reference configurations ψ1 and ψ2. Using the second order perturbation for these two 

functions the energy lowering is 

dE (2)  = H2(1,2) / [ H (1,1) – H(2,2)] 

In the case of no correlation H(1,1) and H(2,2) can be energetically close, so the 

denominator is small and dE(2) is large. If only H(1,1) is correlated and H(2,2) is not 

then the magnitude of the denominator can be considerably larger ( e.g. ~ 0.5 – 1.0 eV), 

which will dramatically reduce dE(2). So the only way to get accurate dE(2) is to 

equivalently correlate the two reference functions.  

In practical cases of more than one reference configurations the equivalent correlation 

of all references may be computationally expensive. For example; consider the case of V 

II with three reference configurations; 3d4, 3d3 4s, and 3d2 4s2. A double excitation like 

3d2 to vf 2 contributes about 0.3 eV to the 3d4 reference. So it is an energetically 

important correlation and it should be equivalently added to the three references. This 

will result in these new configurations; 

a. 3d2 vf 2 (a double excitation from the 3d4 reference) 

b. 3d 4s vf 2 (a double excitation from 3d3 4s reference) 

c. 4s2 vf 2 (a double excitation from 3d2 4s2 reference). 

On the other hand if we look at the 3d3 4s and a correlation to the 3d4 through the single 

excitation of 3d to 4s then a configuration (b) will be considered as a triple excitation 

from 3d4 (3d3 to 4s vf 2). Similarly; 3d2 4s2 can be considered as a double excitation from 
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the 3d4 and the configuration (c) will be a quartet excitation from 3d4. So the equivalent 

inclusion of vf 2 to the three references implies on in-equivalent correlation to the first 

reference, as it will include the single, double and triple excitations. To avoid this it is 

better to include vf 2 correlation through shifts. 

Another case in which the method was so useful was the study of Ni II Rydberg 

states in order to compute different polarizabilities of Ni II [3]. For Rydberg 

configurations like 3d8 np (n = 4 -14) .The RCI Rydberg wavefunctions used for the 

RESIS matrix elements all involve transition probabilities. To make them accurate, the 

relative positioning of nearly degenerate Rydberg levels is important, as is the proper 

radial-angular behavior of the Rydberg electron. Most correlation for these levels is in the 

Ni III core, with a much lesser amount arising from the core-Rydberg electron 

interaction. This implies with the possibility to replace core correlation (e.g. 3d2 to vf 2,  

3p 3d to vd vf, etc.) with a shift of the diagonal matrix elements for the reference function 

(e.g. for 3d8 (2S+1LJ-core) 4pj Jtotal =5/2).  

To obtain the shifts associated with the core energy, we compare our single 

configuration energies 3d8 (2S+1LJ-core) using our Ni II radial functions with the NIST [4] 

Ni III (2S+1LJ) observed energy levels. The difference is used to shift our Ni II 3d8 (2S+1LJ-

core) npj Jtotal diagonal energy matrix elements. This method is quite useful due to the 

simplicity of the Rydberg levels. For the energetically lower most Ni II levels, the shifts 

are adjusted (to a small extent) to match the observed [4] Ni II spectrum. This adjustment 

represents the effect of core-Rydberg correlation (which decreases at higher energies) on 

the position of energy levels. 

Determining the required energy for shift is done through separate runs. Each run 

includes one reference and one correlation configuration. After obtaining the energy 

contribution due to a specific correlation to a specific reference only the relative energy 

effect is included in the wavefunction to represent the relative shift of one (or two) 

reference to another one. This method in determining the shift is used in cases of having 

more than one reference configurations. Another way to determining the energy of the 

shift is comparison with experimental data when available. In this case the energies of the 

excited levels are compared to the experimental values and the energy difference is added 

as a shift. This method is used when having only one reference configuration. This 
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energy difference (~ 10-3 eV) represents the contribution due to triple and quadrupole 

excitations. If the experimental energies are not available then this step is skipped.  

The shift method has been developed basing on computational experience gained 

by Beck over four decades [5, 6]. The shifts that are obtained through matching 

experimental energies are useful for obtaining good oscillator strengths values. A huge 

advantage of using shift was the possibility of computing atomic properties that need 

accurate inclusion of so many correlations including the core excitations. The matrix size 

is limited to specific number of vectors; the more correlation is added the faster that 

space is used up. Even an n106 x n106 matrix will not be enough to include all possible 

excitations. So it is better to use the matrix space for the correlations that contribute to the 

different atomic properties and to replace the correlations that effect only on the total 

energy by shift, see chapter-3 for more details. 
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6.4 Quantities and units in Atomic Physics 
6.4.1 Electronic Configurations and Coupling Schemes: 

  The quantum numbers which denote the energy states for an atom are mainly 

those of the outer most electrons. Those quantum numbers are (n, l, s, and J) principle, 

orbital, spin and total angular momentum. All electrons in the outer most shells couple 

together and final L, S, and J are given to the whole configurations as 2s+1L J . 

L =                    0, 1, 3, 4, 5, 6, 7… 

Symbol           S, P, D, F, G, H, I, K…..  

 

6.4.1.1 Russell-Saunders (L-S) Coupling: 

In several-electron configurations, especially simple spectra cases, the interactions 

between electrons is such that spins of individual electrons “s” combine together to form 

on single spin for the whole configuration “S”. The same happens with orbital angular 

momentum, single “l” combine to give one “L”. Then the total angular momentum “J” is 

the resultant of S and L. good for low to medium Z. 

𝑆𝑆 = ∑𝑠𝑠  ,                       |𝑙𝑙1 −  𝑙𝑙2| ≤ 𝐿𝐿 ≤ |𝑙𝑙1 +  𝑙𝑙2 |  ,                 |𝐿𝐿 − 𝑆𝑆| ≤ 𝐽𝐽 ≤ |𝐿𝐿 + 𝑆𝑆| 

6.4.1.2 (j, j) Coupling 

In this case the spin-orbit interaction for each electron is much larger than the interaction 

between different electrons. So that j’s of individual electrons combine together to form 

the resultant J. Good for highly ionized high Z (atomic number). 

|𝑙𝑙𝜈𝜈 − 𝑠𝑠𝜈𝜈|  ≤ 𝑗𝑗𝜈𝜈 ≤ |𝑙𝑙𝜈𝜈 + 𝑠𝑠𝜈𝜈|                                      �𝑗𝑗𝜈𝜈 − 𝑗𝑗𝜇𝜇�  ≤ 𝐽𝐽 ≤ |𝑗𝑗𝜈𝜈 + 𝑗𝑗𝜇𝜇| 

The RCI code allows these two coupling mechanisms and it also allows intermediate 

coupling, that’s not purely LS or J-J, where the computation itself determines the type of 

coupling. 
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6.4.2 Units 

Quantity Unit (au) Conversion factors 

Energy Hartree 27.21 eV 

219474.63 cm-1 

Transition probability s-1 s-1 

Electric dipole  a0
2 e2 8.478 x 10-30 m2 C2 

Electric quadrupole a0
4 e2 2.013 x 10 -79 m4 C2 

Magnetic dipole µB 
2 8.601 x 10 -47 J2T-2 
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6.5 Computer time and Resources 

Our recourses are two PCs with 2.5 GHz AMD processors. The required time for 

computation includes preparing a few input files manually and many other files are 

prepared automatically. Preparing the angular momentum sections usually takes few 

seconds for those electronic configurations that have matrix size smaller than 1K x 1K. 

Angular momentum sections of more complicated configurations are done on several 

steps in the BCB calculation method. The time needed for each step is a few seconds but 

more human time is needed in this case. The main step and the core of the calculations is 

producing the radials (or the complete wavefunctions). This is the RCI run; a full matrix 

size of 20 K x 20 K takes about 55 minutes. Calculating the transition probabilities and 

oscillator strength in done in the next step of calculations and it take a few seconds. 
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