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Abstract

We present studies of the spatial clustering of inertial particles embedded in turbulent

flow. A major part of the thesis is experimental, involving the technique of Phase

Doppler Interferometry (PDI). The thesis also includes significant amount of simu-

lation studies and some theoretical considerations. We describe the details of PDI

and explain why it is suitable for study of particle clustering in turbulent flow with

a strong mean velocity. We introduce the concept of the radial distribution func-

tion (RDF) as our chosen way of quantifying inertial particle clustering and present

some original works on foundational and practical considerations related to it. These

include methods of treating finite sampling size, interpretation of the magnitude of

RDF and the possibility of isolating RDF signature of inertial clustering from that of

large scale mixing. In experimental work, we used the PDI to observe clustering of

water droplets in a turbulent wind tunnel. From that we present, in the form of a pub-

lished paper, evidence of dynamical similarity (Stokes number similarity) of inertial

particle clustering together with other results in qualitative agreement with available

theoretical prediction and simulation results. We next show detailed quantitative

comparisons of results from our experiments, direct-numerical-simulation (DNS) and

theory. Very promising agreement was found for like-sized particles (mono-disperse).

Theory is found to be incorrect regarding clustering of different-sized particles and we

propose a empirical correction based on the DNS and experimental results. Besides
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this, we also discovered a few interesting characteristics of inertial clustering. Firstly,

through observations, we found an intriguing possibility for modeling the RDF arising

from inertial clustering that has only one (sensitive) parameter. We also found that

clustering becomes saturated at high Reynolds number.
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Chapter 1

Introduction

It is a common observation, for instance when stirring cream in a cup of tea, that

turbulence produced by the stirring action would cause the initially inhomogeneous

field of cream to become homogenously mixed. Such mixing ability is, in fact, a hall-

mark of turbulent flows. In this mixing process, the randomly rotating and stretching

fluid motion in turbulence causes the initially simple geometry of the cream field to

be distorted and stretched thus increasing the surface area bordering the ‘creamed’

and clear fluid. When this bordering area grows to becomes large enough, the rate of

molecular diffusion across it becomes dominant and the mixture becomes homogenous

down to sub-micrometer scales∗ (see e.g. Villermaux et al., 2001). Similar mixing pro-

cesses are ubiquitous in nature, such as in mixing of smokestack plumes, pollutants

∗but still larger than the scales at which the continuum approximation breaks down.
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in turbulent rivers and so on.

One might then expect that the same situation occurs in turbulent atmospheric

clouds. Mixing certainly occurs in clouds, however we are in for a surprise. Let us

restrict ourselves to the simplest case of liquid clouds. The main theme of this thesis

is to show that the distribution of water droplets is in fact, not uniform at small scales

(. 10−2 m) and to study this clustering phenomenon.

The key to understanding this clustering phenomenon is the inertia of the par-

ticles. Unlike the ‘cream’ discussed earlier, which is made of particles with size com-

parable to molecular scales, water droplets have finite size and have a much higher

mass-density that the surrounding fluid. Thus while the former is passively advected

by the fluid, and its motion at any time mimics that of the local fluid motion, the

latter (inertial particle) may de-correlate from the advecting fluid motion due to its

inertia alone (neglecting gravity etc). Currently, it is generally accepted that this

inertial de-correlation leads to the clustering of inertial particles in turbulent flow at

fine scales (comparable to the smallest structures of turbulence motion).

This phenomenon, referred to in the literature either as inertial clustering or

preferential concentration, is of course not restricted only to clouds but applies to

many particle laden, unsteady flows such as fuel droplets in combustion engines,

dust particles in planet forming regions in astrophysics (Cuzzi et al., 2001) and so on.

Inertial clustering may be important for understanding the dynamics of such systems.
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For instance, it has been proposed that inertial clustering may lead to increased

collision rate of water droplets in clouds, which may help explain the anomalous

short time of rain formation (Pinsky and Khain, 1997; Falkovich et al., 2002; Shaw,

2003).

This thesis focuses on the fundamental investigation of inertial clustering, specif-

ically its multi-scale nature and how it depends on dynamical parameters of the fluid

and particles (St, Re, Sg, to be defined later on). We will present mainly experimental

studies, a significant portion of simulation effort and some theoretical considerations.

A detailed outline can be found at the end of this chapter.

1.1 Fluid Turbulence

This thesis concerns itself with the type of fluid motion that could accurately model

many fluid dynamical phenomena in our atmosphere, oceans, rivers and many indus-

trial and domestic flows. In technical terms this is the motion of an incompressible

Newtonian fluid and its equation of motion is the Navier-Stokes equation coupled by

the (incompressible) continuity equation:

∂u

∂t
+ u · ∇u = −∇P +

1

Re
∇2u ,

∇ · u = 0 , (1.1)
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where the Navier-Stokes equation is shown in its non-dimensional form with u(x, t) as

the fluid velocity field and P (x, t) is the fluid pressure field. Re is the (dimensionless)

Reynolds number defined from the characteristic scales of the problem at hand (which

were also used to non-dimensionalize the equations):

Re = UL/ν , (1.2)

where U is the characteristic velocity scale; L, the characteristic length scale and ν

is the fluid’s kinematic viscosity. A closed problem is obtained when the appropriate

initial and boundary conditions are imposed. Kinetic energy needed to drive the flow

can be included in the boundary conditions (e.g. via jet or fan).

The Reynolds number which can be interpreted as the ratio of the flow’s inertial

energy to the fluid viscous dissipation, is an important quantity that characterizes

the nature of the fluid motion. When Reynolds number is very high, Re ∼ O(103),

the fluid motion becomes turbulent and has the general characteristic of being chaotic

and solenoidal (having many vortices).

Alternatively, the Reynolds number based on the Taylor micro-scale, Rλ, is used

when studying the small scales of turbulence. Rλ can be defined as:

Rλ = u′ λ/ν , (1.3)
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where u′ is the root mean square fluctuation of the fluid velocity and λ is the Taylor

micro (length) scale which is defined as:

λ = u′
√

15ν/ε , (1.4)

where ε is the average dissipation rate of kinetic energy in the fluid (into heat) and

other quantities are as defined previously. These two versions of Reynolds number

can be roughly related via:

Re = 0.15Rλ
2 . (1.5)

as derived in Pope (2000).

Turbulent flows can be viewed, through the paradigm of Fourier analysis, as a

compilation of unsteady fluid motions on a wide range of length scales. Following

this picture, an energy cascade model for turbulence was proposed (see e.g. Tennekes

and Lumley, 1972), where the largest scales of motion receive kinetic energy from the

forcing mechanism and this energy is cascaded to a long series of smaller scales. The

cascade mechanism is thought to be due to inviscid instability in which large vortical

structures (eddies) become unstable thus breaking up into smaller eddies. At the

smallest scale of turbulent motion, viscosity becomes dominant and kinetic energy is

dissipated into heat. Kolmogorov (1941) presented a theory along this energy cascade

picture that would become important in the foundation of turbulence research. In

this, he assumes that the smallest scales of turbulence are universal and do not depend
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on the specifics of the large scale forcing (the ‘memory’ of the large scales is lost in

the random nonlinear cascade). It is then deduced that the small scale motions are

fully governed by the fluid viscosity and the kinetic energy dissipation rate per unit

mass of the fluid, ε. With this Kolmogorov arrives at a measure of the smallest scales

of motion:

rk = (ν3/ε)1/4 , (1.6)

while similar expressions for the velocity scale, vk, and time scale, τk, can be obtained

in terms of ν and ε via dimensional analysis. The Reynolds number, in this context,

gives a measure of the separation between the energy injection scale (L) and the

Kolmogorov scale (rk).

1.2 Inertial particle clustering in turbulent flow

1.2.1 Theories and quantification of inertial clustering

It has been proposed that inertial clustering of particles in turbulence is the result of

particles being centrifuged out of regions of high fluid vorticity (highly rotating) as

a result of their inertia and thus preferentially concentrating in the regions of high

strain. In fact, evidence of inertial particles preferentially concentrating in regions of

low vorticity and high strain is abundant (see e.g. Maxey, 1987; Eaton and Fessler,
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1994).

However, later simulation studies (e.g. Reade and Collins, 2000; Chun et al.,

2005), found that inertial clustering may be strong even at scales much smaller than

the scales of turbulent vortices (Kolmogorov length scale). The general consensus now

is that the radial distribution function (RDF), a scale resolving measure of particle

clustering (to be described in Chap. 3), continues to grow with the inverse of spatial

scales in a manner satisfying a power-law down to scales 103 times smaller than

Kolmogorov length scale:

g(r) = c0(rk/r)
c1 , (1.7)

where g(r) is the RDF, rk is the Kolmogorov length scale and r is the spatial cor-

relation scale. In this thesis, we shall call c0 the power-law pre-factor (or simply

pre-factor) and c1 the power-law exponent (or clustering exponent). This observation

called into question the completeness of the vortex-ejection picture of inertial clus-

tering since it is not obvious how the sub-Kolmogorov-scale clustering can be fully

explained by the super-Kolmogorov-scale vortical structure of turbulence.

Following that, theoretical attempts have been made to reproduce this power-

law scaling of the RDF (or the equivalent) by Balkovsky et al. (2001); Zaichik and

Alipchenkov (2003); Chun et al. (2005). These studies performed a perturbative

expansion about a fluid particle trajectory with the particle inertia serving as the

small parameter in order to obtain the clustering statistics of inertial particles. The
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essential result was that in the limit of St� 1,

c1 ∝ St2 , (1.8)

where St is the particle Stokes number characterizing the particle’s inertial with

respect to the flow dynamics and is defined as the ratio of the particle inertial response

time τp to the Kolmogorov time scale τk (see e.g. Tennekes and Lumley, 1972):

St ≡ τp
τk

=
1

18

(
ρp

ρ

)(
d

rk

)2

, (1.9)

where ρp is the particle mass density, d is the particle diameter, and rk the Kolmogorov

length scale. The particle inertial response time, τp , is obtained assuming Stokes

flow (Re < 1) around a spherical particle†. Other assumptions that go into the

theory include: particle size much smaller than flow structures (d/rk � 1); effect

of gravitational settling of particle is negligible which can be stated in terms small

gravitational settling parameter, Sg ≡ vg/vk, where vg = τp g is the particle terminal

falling speed; negligible flow modification by the particles which implies dilute particle

loading (besides small particles).

According to Chun et al. (2005), the sub-Kolmogorov clustering arises because

inertial particle at an average have a drift relative velocity that tends to bring particles

†Where the Stokes drag force is given as Fd = 6πµav, with µ, the fluid’s dynamic viscosity; a, particle
radius; v, fluid velocity relative to the particle.
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closer together. The steady form of the RDF results from the balance between this

drift velocity and the dispersing effect of chaotic fluid motion.

Our own line of research is significantly influenced by this school of thoughts as

can be seen from our methods of analysis of empirical data. However, we must point

out that alternative theoretical approaches to this problem exist and should not be

ignored (see e.g. Goto and Vassilicos, 2008; Duncan et al., 2005; Elperin et al., 2002;

Bec et al., 2007). Of potential relevance to this thesis is the fractal interpretation

of inertial clustering. Following Bec et al. (2007), inertial clustering is understood

as resulting from the dynamic equations of motion (of the particle and fluid) be-

ing of the dissipative kind which leads to contraction of phase space of the system.

Since the dissipation becomes strong in sub-Kolmogorov scales (where fluid strain in

strong), particles will converge to a dynamically evolving attractor (a set of geomet-

rical points). The cluster field will become fractal due to scale-invariant dynamics at

these scales. A measure for clustering can be provided via the (fractal) correlation

dimension D2 (see Bec et al.). It is claimed (although never explicitly proven) that

the correlation dimension and the clustering exponent are related via:

c1 = 3−D2 . (1.10)

In this sense our results casted in the language of c1 are also relevant to this line of

work.
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1.2.2 Other computational and experimental works

Recent and contemporary experimental studies of inertial particle clustering includes:

Aliseda et al. (2002); Wood et al. (2005); Salazar et al. (2008). Each have shown

evidence of inertial clustering in turbulence and found reasonable agreement with

results from computation and theory. Here we strive to complement these studies

with an independent and more comprehensive investigation of inertial clustering at

high Reynolds numbers (Rλ > 400).

Simulation works involving "direct numerical simulation" (DNS) method are

also plentiful (besides those cited in previous section, see also e.g. Wang and Maxey,

1993; Falkovich and Pumir, 2004; Bec et al., 2007). Each of these publications have

discerned interesting aspects of inertial clustering. Here we will also present a DNS

study, in collaboration with colleagues from Cornell University (J. Salazar and L.

Collins), which focuses on the effect of poly-dispersity (particle with a broad range

of Stokes number) that has not been investigated in detail in previous studies.

1.3 Outline

We begin with a detailed description of the phase Doppler interferometry (PDI) tech-

nique and our PDI instrument in Chapter 2. This is followed by a description of how
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this technique (in particular our PDI instrument) can be used to effectively study

inertial particle clustering in Sec. 2.4.

In Chapter 3, we introduce the method of our choice for quantifying parti-

cle clustering: the radial distribution function (RDF). We motivate this choice by

pointing out its origin in fundamental probabilistic reasoning and its usefulness in

application. We also discuss how the RDF can be calculated in practice and how

certain technical difficulties can be overcome. In Sec. 3.3, we discuss foundational

issues regarding the interpretation of the RDF and consider the situation when more

than one kind of inhomogeneity are present in the data (which is important to our

experiment).

In Chapter 4, we describe our experimental setup and procedures in detail.

In Chapter 5, we present the first batch of our experimental results in form of a

published paper. The main emphasis of the study is on the concept of Stokes number

similarity.

In Chapter 6, we present the second batch of experimental results and also

results from our poly-disperse DNS effort. Here we perform systematic (direct and

indirect) comparison of results between theory, experiment and simulation. We also

use the available data to aid understanding of inertial clustering by discussing the

implications of our data for certain topics or questions regarding inertial clustering.
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Chapter 7 summarizes and concludes this thesis.

12



Chapter 2

Phase Doppler Interferometry

Here we describe the fluid measurement technique central to all of the studies in

this thesis. Phase Doppler interferometry (PDI) is a laser-optical method capable of

measuring velocity and diameter of individual, spherical particles as they traverse the

instrument’s measurement volume. We will begin by describing its general working

principle. This is followed by a description of the specifics of our own PDI instrument

and an explanation of how this technique can be used for studying particle clustering

in turbulence.
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2.1 Background

The main capability of phase Doppler interferometry (PDI) is the measurement of

velocity (up to three components) and diameter of spherical particles as they traverse

its measurement volume. PDI is an extension of its simpler and older cousin, laser

Doppler velocimetry (LDV) which measures only velocity (particle sphericity not re-

quired). LDV first appeared in the scientific literature in the 1960s while the phase

Doppler extension was first conceived in 1975 and successfully realized physically in

the early 1980s (Albrecht et al., 2002, Sec. 1.1). Since then, both techniques have ma-

tured and found popularity as research tools, with commercial PDI systems available

as early as the late 1980s. For further historical details and current developments,

see (Albrecht et al., 2002, Sec. 1.1).

Today, PDI and LDV are widely used in fluid dynamics experiments for making

fixed-point measurement of fluid motion (flow seeded with tracer particles) and also to

study dynamics of particles embedded in fluid or otherwise. Some of the often quoted

novelties of the Doppler techniques include: non-intrusiveness, directional sensitivity,

high spatial and temporal resolution and high accuracy.
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2.2 Basic working principles

This section describes the general operation of PDI and only covers the complexity of

the subject to a degree sufficient for the understanding of this thesis. More complete

treatments can be found in (Albrecht et al., 2002, Chap. 2, 5).

Figure 2.1a shows the typical, basic setup of a PDI system. Two laser beams

of nearly the same frequency are focused by a converging lens and cross each other

at their respective beam waist (point of minimum beam cross section). This beam

crossing region defines the measurement volume of the interferometer which has the

approximate shape of an ellipsoid, a result from the gaussian profile of the laser

beams typically used. Figure 2.1b depicts qualitatively the light intensity profile of

the measurement volume in the x-z plane. Such is the result of interference between

the two beams. By considering two crossing plane waves (Albrecht et al., 2002,

Sec. 2.1) one can see that the intensity profile can be reasonably represented by a

gaussian enveloped, sinusoidal function of x position, similar to the Doppler burst

shown in Figure 2.1a.
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Figure 2.1: Schematic showing basic operating principle of phase Doppler
Interferometry. The off-axis angle (φ) is measured in the ‘major plane’ (nor-
mal to the plane of the beams and containing the main axis).

2.2.1 Velocity measurement

Here we will proceed with a more intuitive interpretation of the velocity measurement

of PDI; an alternative interpretation starting from Doppler effect can be found in

(Albrecht et al., 2002, Chap. 2). Both methods are equivalent in the sense that they

yield the same physical outcomes, while the former has the advantage of being more

intuitive, the later is more explicit in showing the center role of Doppler effect in the

theory of measurement.

Following the conceptual picture described in Sec. 2.2, when a particle traverses

the measurement volume in the forward direction, it scatters light projecting the

intensity profile of the measurement volume. One or more light detectors collect the

scattered light and turn it into an electrical signal. A typical temporal evolution of the

observed signal is depicted in Figure 2.1a and is commonly termed a ‘Doppler burst’.

The frequency of each Doppler burst (Doppler frequency) is directly proportional to
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the magnitude of the particle’s velocity in the x direction:

|vx| = fd δ , (2.1)

where vx is the x component of particle’s velocity, fd is the Doppler frequency and δ

is the fringe spacing of the intensity profile in the measurement volume satisfying the

relation:

δ =
λb

2 sin Θ
2

, (2.2)

where λb is the laser beam wavelength and Θ is the minor angle between the two

crossing beams.

In practice, the direction ambiguity of vx is broken by shifting the laser fre-

quency of one of the beams relative to the other by ∆fb (e.g. by using acousto-optic

modulator), resulting in:

vx = (fd −∆fb) δ for vf ≥ −|∆fb δ| . (2.3)

When this is done the intensity fringes in the measurement volume will have uniform

motion in one direction, in the present case the negative x direction, thus shifting the

velocity corresponding to zero Doppler frequency to a negative value.
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2.2.2 Size measurement

Here we continue with the same picture provided above, restricting ourselves to con-

sider only particles that are spherical, optically homogenous-isotropic, non-opaque

and of size sufficiently larger than the laser wavelength so that geometrical optics

is a good approximation. Under these conditions, one can interpret the function of

a detected particle as a optical lens (or mirror) that images the intensity fringes in

the measurement volume to the surrounding space. This image of the fringes is then

picked up by the detectors as depicted in Figure 2.2 showing an instantaneous snap-

shot of how the fringes are projected in space by the particle. The magnification of the

fringes scales inversely as the particle size since that determines the curvature of the

lens (or mirror). Multiple detectors placed at different locations effectively measures

the spatial frequency of the magnified fringes by registering different phase of the

fringes. The phase shift between the Doppler bursts measured by any detector pair

is then monotonically related to the size of the particle. The exact relation between

particle diameter and phase difference depends on the scattering mode considered

(reflection, 1st order refraction, etc) and the physical setup of the instrument.

In practice, the detectors are place at scattering angles that favor only one

scattering mode. When this is done and with a few additional assumptions (plane

wave incident light, small particle compared to its distance from detectors), it can

be shown that the diameter-phase relation for any detector pair is linear (Albrecht
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Figure 2.2: Particles as a lenses that project the measurement volume
fringes onto the detectors. Figure from Chuang et al. (2008). For copyright
information, see Appendix B.

et al., 2002, Chap. 5) :

d = FΦ(λb, Θ, φ, ψ1, ψ2) ∆Φ , (2.4)

where ∆Φ is the phase difference; FΦ is the phase conversion factor, a function of laser

wavelength and optical geometry of the system which includes beams-cross angle (Θ),

off axis angle (φ) measured in the ‘major plane’ (see Fig. 2.1), and the elevation angles

of the detectors (ψi), measured relative to the major plane.

2.3 Our Phase Doppler Interferometer

Our PDI system is designed and manufactured by Artium Technologies Inc. The sys-

tem consists of three sub units: the flight probe, the signal processor, and a personal

computer with the data acquisition software.

The flight probe shown in Figure 2.3, contains a compact solid state laser
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(λb =532 nm, continuous wave), optical components, three photo-multiplier-tubes

(PMT) as light detectors and supporting electronics. The detectors are all positioned

at an off-axis angle (φ) of ∼ 40 degrees where first order refraction is the dominant

scattering mode. The three detectors have small but different elevation angles so that

three independent size measurement are made for each particle (one per each detector

pair). This redundancy allows for extension of the range of measurable particle size,

besides improving measurement accuracy and particle detection fidelity (Albrecht

et al., 2002, Sec. 8.2).

After some pre-amplification, the output from the photo-detectors are fed to the

signal processor, which digitizes the analog signals, performs Doppler burst detection∗,

measures the raw burst’s signal amplitude, performs signal filtering and further am-

plification. The output from the processor is passed via an interface card to a personal

computer, where Fast Fourier Transform (FFT) is performed on each burst to obtain

complex Fourier coefficients from which the frequency and phase can be extracted.

The particle velocity and size is then calculated from the extracted frequency and

phases as described in Section 2.2. Following that, the computer performs a burst

validation routine to filter away false triggers based on a number of adjustable crite-

ria, including phase difference consistency among the three signal channels, frequency

consistency, signal to noise ratios in each channel, etc. In addition, the software in

∗For the interested reader, this is done (in principle) via continuous low resolution discrete Fourier
transform and a potential burst is declared when there is a peak in the transform that exceeds a
threshold
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the computer is also capable of calculating various data statistics in near realtime.

Finally, data is saved to disk including the raw sampled bursts, burst amplitudes, etc.

We will now discuss specific details of our PDI system that are relevant to this

thesis.

2.3.1 The probe body’s design

The probe body shown in Figure 2.3 is made of anodized aluminium with dimensions

of the main section as 28 x 56 x 6.6 cm; each arm is 30 cm long and 4 cm in diameter,

and the two arms are 15 cm apart (center to center). The probe body is designed so

that it can make non-intrusive, in situ measurement of particle laden flow with finite

mean velocity. When deployed with the arms pointing upstream, the measurement

volume is well outside the body’s boundary layers and far upstream of stagnation

points. Specifically, this is achieved when the mean flow speed is above several cen-

timeters per second and that the direction of the incoming flow is within 10 degrees

of normal.

Modeling of the flow around the probe body was done using a commercial fluid

dynamic package (Fluent). It was found that at a mean follow speed of 2 ms−1

normal to probe, there is a slight uniform increase of the flow speed around the

measurement volume due to the contraction of flow by the arms. More relevant to
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Figure 2.3: Two photos showing the Artium flight-PDI. Panel (a) shows the
instrument mounted vertically onboard a research aircraft. Panel (b) shows
the laser beams scatter off small water droplets. The beams emerge from the
upper arm, The scattered light collected through the window of the lower
arm and is sensed by three photo-detectors(internal). Panel (c) Front view
of the two arms and the rough location of the view volume. The instrument
body is 28 x 56 x 6.6 cm; each arm is 30 cm long and 4 cm in diameter;
the arms are 15 cm apart. Figure from Chuang et al. (2008). For copyright
information, see Appendix B.

this thesis is when particle trajectories are calculated (also using Fluent), there is at

most a few percent deviation of particle velocity and relative position compared to

the undisturbed upstream values. More details are available in Chuang et al. (2008).
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2.3.2 Slit aperture and measurement volume

In order to have a better defined measurement volume and to allow for the flexibility

of changeable measurement volume size, an adjustable slit aperture is added in the

receiving optics to truncate the measurement volume in the z direction as shown in

Figure 2.4. The slit width, ls, is selectable between 50, 100, 200, 500 and 1000 µm.

The slit aperture is imaged onto the measurement volume where it has a magnified

width of l′s and thus the measurement volume width in the z direction, lz, follows

l′s/ sinφ.

However, other factors (i.e. diffraction and beam edges) may compromise the

above result from geometrical optics. This is especially true for the case of narrowest

and widest slit. From our measurement of intermediate cases (100 to 500 µm), we

found that lz is roughly 2 to 3 times the slit width (ls). The uncertainty of this

result is rather large due to ambiguity of how the measurement volume edge should

be defined and the fact that measurement volume is particle size dependent (details

in Chuang et al. (2008)).

The other dimensions of the measurement volume, namely lx and ly, take the

value of the beam width, which is found to be v 230µm.
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Figure 2.4: Truncated measurement volume resulting from the used of slit
aperture (light gray area). Particle trajectories are into the page, detec-
tors are located far away (not shown) downward and to the right. l′s is the
magnified slit width.

2.3.3 Arrival time accuracy

Especially important to this thesis is the accuracy of droplet arrival time or detection

time which is typically not reported by manufacturers. We determined the corre-

sponding accuracy by setting up the PDI system to measure a stream of monodisperse

(single sized) droplets generated at uniform time interval with adjustable period. The

droplets are generated via a drop-on-demand droplet generator by MicroFab Technolo-

gies. The arrival time accuracy of the PDI is calculated from the measured statistical

distribution of the inter-particle arrival times (interval between subsequently detected

particle). Since droplets are generated at nearly uniform intervals, the resulting dis-

tribution is a sharp, bell like curve. An upper bound of the single particle arrival time

measurement is calculated from the standard deviation of this distribution. This pro-

vides an upper bound because some of the spread of the distribution is obviously

due to error in the droplet generation timing and other environmental effects on the
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Advertised Our Findings
Drop arrival time accuracy n/a < 3.5µs
Drop Size measurement range 0.5 to > 1000 µm n/a
Estimated accuracy ±0.5 µm 7 to 20% (see text)
Estimated resolution ±0.5 µm n/a
Velocity measurement range -100 to 300 m/s n/a
Velocity accuracy to ±1% ± a few percents
Volume Flux accuracy to ±15% n/a

Table 2.1: Table showing the measurement accuracy and dynamic range
of our PDI system as claimed by the manufacturer and the results of our
own characterization (not always consistent with manufacturer’s). Velocity
measurement range is variable, velocity accuracy is reported in percent of
measurement range.

droplet trajectory from nozzle to measurement volume. The upper-bound was found

to be 3.5 µs.

2.3.4 Velocity accuracy and range

Table 2.1 shows the various measurement accuracies and dynamic ranges of our system

copied directly from the brochure published by the manufacturer. Since these numbers

are likely to be general and represent best case scenario, we carried out independent

measurements in our lab to determine the various accuracies of our system.

Velocity measurement precision of the PDI system is independently calibrated

in our lab by measuring the velocity of optical fiber core attached to a spin-wheel of

a mechanical laser-chopper with precisely controlled spinning frequency (Thorlabs,

model MC1000). The test was set up with both the probe and the spin-wheel fixed
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in space so that a fixed point on the fiber core (acting as particle) cuts through the

measurement volume in every spinning-cycle. The standard deviation of the velocities

measured gives the measurement precision which varies from less than 1% to a few

percent, corroborating the manufacturer’s claim of 1% accuracy. The mean velocity

measured is also in agreement (within measurement error) with those calculated from

spin-frequency multiplied by radius of circular motion. Besides this, we have many

‘in field’ observations that provide inter-comparison between the measurements of

our PDI system with other independently calibrated instruments including Hot-wire

Anemometry (HWA) and another PDI system. The results show agreement in mean

flow velocity to within 10% or less, suggesting insignificant systematic bias in the

measurement at least at the level required by our experiments (Sec. 4.3.1 and Sec. 4.4).

Further details on velocity accuracy including some theoretical discussion and inter-

instrumental comparison can be found in Chuang et al. (2008).

2.3.5 Sizing accuracy and range

We calibrate the size (diameter) measurement using droplets from the monodis-

perse droplet generator (with diameter w 55µm) and two sets of precision solid

glass microspheres (Duke Scientific, series 9000) with mean diameters 10.0 ± 1.0µm,

30.1 ± 2.1µm and standard deviation of their distribution of 1.4µm, and 2.0µm, cor-

respondingly. Results for the droplets showed that PDI measurement has precision of
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v0.1µm, based on standard deviation of the measured diameters. This is consistent

with the manufacturer’s claim (cf. Table 2.1). We could not use the droplets to study

the bias since we do not know the droplet size a priori. Results for the glass micro-

spheres, after correcting for their own internal standard deviations, yield precision

of the PDI system of 2 to 3µm and no discernible bias at this precision (difference

in mean is less than the uncertainty). The reason the microspheres studies yield a

poorer instrumental precision is very likely explained by the important phenomenon

discussed in the following paragraphs.

It was found that the size measurement is affected by the edge of the measure-

ment volume imposed by the slit aperture (cf. Fig. 2.4). Since the droplet stream

emerging from our droplet generator sustains a straight line motion for a finite dis-

tance, we were able to make the droplet traverse through the measurement volume

with highly localized y-z position (see Fig. 2.4). Care has been taken to ensure

that drop shape oscillation is negligible by gradually moving the drop emitting nozzle

away from the measurement volume along the x direction. When we move the droplet

stream about the y-z plane, we observed that droplet diameters reported by the PDI

vary significantly when droplets are near the edges of the measurement volume.

For instance, referring to Figure 2.4, if we initially position the droplet stream

at a position centered in y but with a z position close to the positive edge of the

effective measurement volume (right edge of the light gray area) and then start to
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move the stream in the +y direction, the diameter reported would at first remain

constant and then the value will increase slightly ( by v 4%, with 55 µm drops)

followed by a steep decrease (v 20%, with 55 µm drops). In the decrement zone, the

Doppler bursts’ amplitudes are relatively small and only a fraction of the droplets

are validated, signifying some edge is reached. The same is not observed if we move

the stream in the opposite (−y) direction. It was also found that the point where

the reported diameter starts to vary is shifted outward (towards +y) if a wider slit

aperture is chosen.

A general mechanism of this ‘slit effect’ based on geometrical optics can be found

in Albrecht et al. (2002, Sec. 8.3). The main idea is that an unwanted scattering mode

(reflection) becomes dominant at the +z end of the slit due to blockage of the preferred

first order refraction mode. However we found that this does not provide a complete

description of our observations. For instance, we also found similar diameter drop-off

at the −z end of the slit where the first order refraction is not blocked.

The slit effect provides an explanation for the relatively poor PDI sizing preci-

sion reported for glass microspheres as compared to the droplet stream. The explana-

tion being that because the microspheres were simply sprinkled onto the measurement

volume, they sampled the whole measurement volume including the edges where in-

accurate sizes would be reported.

In real experiments, it is reasonable to assume that the measurement volume
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would be uniformly traversed by the particles, thus the true diameter precision is

therefore significantly worse than claimed and will be dependent on the width of the

slit aperture. Furthermore there would also be a weak bias towards smaller diameters.

From the various calibrations we have done for the case of slit aperture width of 200

µm (most relevant to this thesis), we found that the precision (standard deviation)

goes from 2 µm at mean diameter of 10 µm to 3 µm at 30 µm and 4 µm at 55 µm.

The only statistically significant bias was observed for the 55 µm case with the rough

value of negative 1.5 µm.

To summarize, the sizing precision of the PDI system when droplets are con-

straint to traverse only the interior cross-section of the measurement volume is of the

order of 0.1 µm with negligible bias, as claimed by the manufacturer. However some

form of non-fully understood slit effect deteriorates the precision and accuracy in

real experiments. With the most typical choice of 200 µm slit aperture, the effective

precision was found to goes from 20% at 10 µm to 7% at 55 µm.

2.4 Observing particle clustering with PDI

The PDI method, particularly our PDI system, is suitable for studies of particle

clustering when the probe is oriented such that there is a strong mean flow in the

x direction. Examples of this suitable situation include when the probe is placed
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inside a wind tunnel, turbulent or otherwise and when the probe is flown through

atmospheric clouds. To be more precise, we are interested in situations where the

mean flow velocity is much stronger than the average deviation of particle velocities

from the mean flow. Such deviation may be caused by the presence of turbulence or

other forces like gravity.

Under this condition, one can calculated inter-particle distances in the x axis

from the arrival times of each particle as shall be discussed in section 4.3.1. This

essentially contains information on the one dimensional distribution of the particles

in space, from which further analysis can be made.

The ability to measure the size of individual particles allows the experimentalist

to condition the analysis on particle size and to study how particle size influence the

particle (spatial) distribution or clustering. In addition, one can also study the cross-

correlation between particles of different sizes.

Finally the velocity measurement allows one to characterize turbulent statistics

of the ambient flow. With this information, one can study how turbulence affects the

particle distribution and vice-versa. However, in practice certain turbulent statistics

can only be measured reliably with either very high particle detection rate or a long

enough sampling time (which may not be readily attainable in some experiments). A

challenging turbulence statistics for the PDI is the energy spectrum of the turbulence†,

†Still an area of active research.
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and examples of the turbulent spectrum obtained with our PDI system in wind tunnel

will be discussed in chapter 4 (cf. Fig. 4.4 and corresponding text).
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Chapter 3

Radial distribution function (RDF) in

application

In this chapter, we will introduce the main mathematical tool used for quantifying

particle clustering in our experimental analysis. We present the derivation of the

RDF from fundamental probability theory followed by a detailed description of its

calculation from particle position data. This is followed by a discussion of certain

theoretical aspects of the RDF related to its application in the analysis of experimental

data.
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3.1 Definition from basic probability

The radial distribution function (RDF) is essentially a measure of correlation of par-

ticle position in space as compared to uniform-random distribution of particles (the

Poisson point process). Here we present its definition following the works of others

(Shaw et al. 2002; Larsen 2006; McQuarie 2000, Sec. 13-2).

We begin by considering a field of particles in space. We restrict ourselves to

the case of statistical homogeneity in space and statistically identical particles in the

sense that any single particle has equal probability to be anywhere in space. Under

this scheme, any inhomogeneities in the particle density field are interpreted as corre-

lations between particle positions. A discussion of why inertial particle advected by

homogenous-isotropic turbulence satisfy these conditions (at the long time limit) is at-

tempted in Section 3.1.1. Generalization that allows for statistical inhomogeneity (at

scales larger than the scales of the correlation of interest) is discussed in Section 3.3.2.

We first define two infinitesimal volumes — δV1 and δV2 — in the space con-

taining the particles and let ~r be the displacement of δV2 relative to δV1. With these,

we define the RDF, written as g(~r), based on basic probability:

g(~r) =
P (1, 2)

P (1)P (2)
, (3.1)
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or alternatively:

g(~r) =
P (2|1)

P (2)
, (3.2)

where P (1) is the probability that δV1 is occupied by a single particle and P (2)

is similarly defined with respect to δV2, P (1, 2) is the joint probability that both

infinitesimal volumes are occupied and P (2|1) is the conditional probability that δV2

is occupied given that δV1 is. Some important observations:

• Since the definition is based on infinitesimal volume elements, the probability

of occupancy of two or more particles is negligible.

• The RDF can thus be interpreted as a measure of enhanced probability of finding

other particles as function of relative displacement from a particle.

• If the system of particles satisfies isotropy (as are most cases in this thesis),

then one can write the RDF as g(r).

Apart from being a suitable quantification of particle clustering in turbulence,

the RDF has the advantage of being directly useful in theories of particle fields where

clustering plays a role. For instance, it was shown that g(r) is directly involved in

the equation for particle collision rate in turbulence by Sundaram and Collins (1997)

(the same work shows enhancement of collision rate due to clustering) and also in

radiation extinction inside a field of clustered particles (Kostinski and Shaw, 2001).
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Alternatively, a more practical definition of RDF starting with a finite δV2 is

possible∗. However, in practice, this has not been done as it is more convenient to

calculate what would amount to a volume-weighted average of g(r) as will be discussed

in Section 3.2.

3.1.1 Relevance to particle clustering in turbulence

In this section, we discuss the relevance of the concept of the RDF as derived in

Section 3.1 to particle clustering in homogenous and isotropic turbulence which is at

the core of the experimental efforts in this thesis. Specifically we wish to motivate

that particles advected by turbulent flow satisfy the conditions used in deriving the

radial distribution function, namely spatial statistical homogeneity and identically

distributed particles.

Considering a set of particles placed into a turbulent flow field at some time.

Indifferent to their initial positions, after sufficiently long time compared to turbu-

lent time scales, each and every particle would have equal probability to be at any

point satisfying the two conditions due to the homogenous and isotropic nature of the

driving turbulence. Implicit to this statement is the fact that we have ignored the

determinism of classical fluid mechanics while appealing to the apparently chaotic

nature of turbulent flow that deems impossible the ability of the experimenter to

∗Such a definition however would not be directly applicable in theories discussed above.
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specify the initial or boundary conditions sufficiently well for any deterministic pre-

diction. Although perhaps philosophically debatable, this is especially relevant for

real experiments such as those reported in this thesis where particles are repeatedly

injected into a statistically stationary turbulent flow in a wind tunnel†.

3.2 Calculating the RDF from a particle field

Here we consider the problem of estimating g(~r) given a sample (or realization) of a

particle field with sample size V much larger than any clustering scales. This shall

allow us, later on, to estimate the true average particle density as the sample’s average

particle density.

For convenience we first reproduce the definition of the RDF (Eq. 3.2) here:

g(~r) =
P (2|1)

P (2)
. (3.3)

Since the definition is based on infinitesimal volumes, we shall proceed correspond-

ingly before considering finite volumes. Our first task is to estimate P (2|1). The

close relation between g(~r) and P (2|1) turns out to be a fruitful one here. Since

P (2|1) is a statistic conditioned on the presence of a single particle, this allows one to

break down the calculation to the single particle level and thus enjoy much flexibility
†In this case, statistical homogeneity is only guaranteed sufficiently far away from physical boundaries.
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in composing the estimation procedure. This flexibility, for instance, allows one to

correct for error due to sample boundaries (Sec. 3.2.2) and to handle the problem of

small sample size (Sec. 3.2.3).

We estimate P (2|1) (the conditional probability of finding an occupied δV2 at

~r from any given particle) by the standard ‘successes/trials ’ method. Each particle

that is present is a valid trial and we define a success as finding a particle in the

infinitesimal volume δV2 at ~r from the trial particle under consideration (strictly, it

is the δV2’s that serve as trials). We thus have:

P (2|1) = S(~r)/Nt , (3.4)

where S(~r) is the number of successes (number of trial particles that see a neighbor

particle in δV2 at position ~r relative to itself) and Nt is the number of trials. It

is important to note that Nt need not be the total number of available particles as

long as the selection of trials is fair — neither favoring particles within a cluster nor

otherwise. This reflects the fact that the calculation may be broken down to the level

of single trial particles as mentioned earlier. Section 3.2.2 shows how this flexibility

can be utilized to avoid estimation bias due to sample edges.

On another note, P (2) may be estimated from Poisson statistics taking the
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infinitesimal volume limit (Larsen, 2006, Sec. 2.4):

P (2) = lim
δV2→0

1− exp(−n δV2) =
(N − 1) δV2

V
, (3.5)

where on the far right, we have substituted n — the expected particle number density

assuming zero correlation of particle positions — with the sample’s average number

density‡: (N − 1)/V . With these, we have an operational definition of the RDF as:

g(~r) =
S(~r)/Nt

(N − 1) δV2/V
, (3.6)

where again S(~r) is the number of trial particles having a neighbor particle in δV2 at

~r from itself, Nt is the total number of trial particle considered, and so on.

We now present two important corollaries:

1. If isotropy is satisfied by the system under consideration, then we can average

Eq. 3.6 over spherical shells for each r, thus giving us the commonly seen,

isotropic radial distribution function:

g(r) =
ψ(r)/Nt

(N − 1) δVr/V
, (3.7)

‡This follows from the fact that V is much larger than any correlation scales. The ‘−1’ term is added
in observation that the trial particle must be excluded from the pool of possible occupants of δV2

consistent with the scenario of P (2|1).
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where now, ψ(r) is the sum over ‘numbers of particles found at distance r from

each trial particle’ and δVr is the volume of the infinitesimal shell (e.g. 4πr2δr

in 3D).

2. Furthermore, if the sample edge effect is negligible, — for example when the

sample has periodic boundaries or when N and V is large enough that errors due

to edges are small — then one may , without loss of accuracy, use all particles

as trial particles (Nt → N). As a result, ψ(r) will become equal to 2Np(r) with

Np(r) defined as the total number of particle pairs in the sample separated by

distance r (the factor of 2 arising as a result of double counting). Hence we

have:

g(r) =
2Np(r)/N

(N − 1) δVr/V
. (3.8)

This result has many interesting interpretations which we shall only discuss

after we consider the case of finite δVr.

3.2.1 Extension to finite interrogation volume

Here we consider the more practical case of finite interrogation volumes (δV2 or δVr)

which is unavoidable in any realistic analysis of experimental data. We will focus only

on the case of isotropic RDF since it is the most commonly encountered and also the

case of relevance to the analysis in this thesis. For simplicity, we also restrict ourselves
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to the case of negligible sample edge effects (cf. Eq. 3.8). Generalization to account for

sample edge effect should be fairly straight forward since it is an independent effect

from our subject matter here. However, the same cannot be said of the isotropy

condition. We shall see that, due to isotropy, we need to discriminate between data

of different dimensionality§ since the consequence of finite interrogation volume on

them are different.

Strictly, Eq. 3.8 is a valid estimator of the RDF only in the limit of vanishing δVr.

However, in the analysis of real experimental data, one needs to do some averaging

over δVr. The common practice, including that of this thesis, is to simply extrapolate

Eq. 3.8 for the finite case. For clarity, here we rewrite Eq. 3.8 substituting δVr with

its finite counterpart ∆Vr:

g∆r(r) =
2Np(r)/N

(N − 1) ∆Vr/V
, (3.9)

where everything has the same meaning except that ∆Vr is now a finite volume

(e.g. 4/3π (r2
3 − r1

3) in 3D) and correspondingly Np(r) is now the number of pairs

separated by r ± ∆r/2. Some observations:

• It can be seen that Eq. 3.9 no longer reflects the fundamental probabilities (as

in Eq. 3.3) by considering, for instance, a simplest yet non trivial case where

there are only three particles in V with two of them being within r′ ± ∆r/2

§i.e. data collected in 1, 2, or 3 spatial dimensions.
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from the first. Here, the numerator of Eq. 3.9 for the case (r = r′) yields 4/3

which is greater than 1, thus can no longer be a valid estimate of P (2|1).

• Mathematically, one can show that g∆r(r) is related to the infinitesimal one

(Eq. 3.8) via:

g∆r(r) =
1

∆Vr(r)

∫
∆r

g(r′)
dVr(r

′)

dr′
dr′ . (3.10)

In words, the finite volume RDF, g∆r(r), is the interrogation-volume-weighted

average of the infinitesimal one.

• One interesting aspect of g∆r(r) as written in Eq. 3.9 is that it affords multiple

interpretations apart from being a volume-weighted average of the (fundamen-

tal) RDF. If we write:

g∆r(r) =
2Np(r)/(N ∆Vr)

(N − 1)/V
, (3.11)

then we see that it is the ratio of average density at distance r from each

particle to the expected density if a uniform-random distribution is assumed.

Alternatively we may write:

g∆r(r) =
Np(r)/∆Vr

N(N − 1)/2V
, (3.12)

and then we have a ratio of pair density to the expected pair density under a

uniform random distribution (Holtzer and Collins, 2002).
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The consequence of the volume-weighted averaging effect when using Eq. 3.9 for

analysis of data is as follows: For 3D or 2D particle position data, the estimated RDF

would be biased towards larger r within each ∆r bin (as compared to the infinitesimal

RDF). This is because isotropic shells of larger r have larger volumes (with constant

∆r). On the other hand, for 1D particle position data collected through a thin line,

the volume-weighted averaging reduces to simple averaging without any bias.

Thus if one wishes to have an unbiased estimate of the infinitesimal RDF related

to fundamental probability as discussed in Section 3.1, it is desirable to use very fine

bins (∆r) when processing 3D or 2D data via Eq. 3.9. This can then be followed by a

simple averaging manually to suppress statistical noise. For 1D data however, Eq. 3.9

may be used with finite ∆r , as will be done in this thesis.

3.2.2 Sample edge treatment

When the data available has a sample size (N and/or V ) that is small enough such that

edge effects become important, Eq. 3.8 and Eq. 3.9 are no longer an accurate estimate

of the RDF. This is because particles that are close to the sample edges (closer that

the scale at which g(r) is evaluated) have truncated interrogation volumes and thus

should not be normalized by the full isotropic shell volumes ∆Vr.

To treat this, one could utilize the fact that the RDF estimation can be broken
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into those based on single trial particles (as discussed below Eq. 3.3). The simplest

way to do this is to exclude these ‘edge particles’ from the pool of trial particles

by rolling back to the more general Eq. 3.7 while allowing δVr the flexibility to also

represents a finite shell.

The full treatment of the edges, albeit more computationally intensive, can

be done by appending to the above procedure, individual treatments of the edge

particles via Eq. 3.7 with δVr substituted by the truncated interrogation volumes of

each of them, then followed by a (Nt ∆V )-weighted averaging of all the results. Note

that Weighting by Nt simply reflects the modularity of the calculation at the single

trial particle level while weighting by ∆V stems from the isotropic averaging done in

going from Eq. 3.6 to Eq. 3.7. Full treatment of the edges is used in the analysis of

experimental data in thesis and will be discussed in Sec. 4.3.2.

3.2.3 Averaging the RDF over many small samples

When sample size V is comparable to the clustering scales, estimation of g(r) from a

single sample using Eq. 3.7 is essentially biased because the value of its denominator

fluctuates with the location of the sample (due to the clustering itself) and does not

reflect the global average. However, if we have a big set of small samples taken in

different locations and/or times, then it is possible to form a unbiased estimator of
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g(r) by averaging over many such samples (ensemble average).

Let us consider samples taken in a fixed location at different times. If we can

assume statistical stationarity and that the sampling is done without prejudice (not

favoring either clusters or voids), then each sample is an independent realization of

the same physical system. We can then average over many such samples to obtain

as estimate of the RDF. Referring back to Eq. 3.3, all we need are estimates of P (2)

and P (2|1) that average over multiple samples. Following Eq. 3.4, we may construct:

P (2|1) =

∑
S(~r)∑
Nt

, (3.13)

where the summation is over the samples. Note that here we have utilized again the

particle-by-particle flexibility of the estimation scheme. Independently, from Eq. 3.5,

we saw that P (2) is directly related to the (uniform-random equivalent) particle

number density n. To that end, although the local number density in each sample

inadvertently fluctuates away from n (due either to particle correlation or fundamental

Poisson fluctuation), the average of number density over many such samples would

approach n given that the sampling process is without prejudice. Thus we may write:

P (2) =
(
∑
N − 1) δV2∑

V
. (3.14)

With these, the estimator under the condition of isotropy, finite interrogation
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volumes and with edge particles excluded is given by:

g(r) =

∑
ψ(r)/

∑
Nt

(
∑
N − 1) ∆Vr/

∑
V
, (3.15)

which can be seen as a generalization of Eq. 3.7. It is also worth noting that, the

volume-weighted averaging effects of ∆Vr (Sec. 3.2.1) are still in effect independent

of the averaging over samples since both processes are linear and independent.

3.3 Characteristics of the RDF

3.3.1 Relation of RDF to scales of clustering

Here we give a few words on the relation of the RDF to the scales of clustering.

Earlier works (Shaw et al., 2002; Kostinski and Shaw, 2001) have shown that the

RDF¶ does not have ‘memory’ of the smaller scales — the values of g(r) at a given r

is not influenced by any clustering at scales smaller than r. In relation to that, here

we wish to show that the converse — g(r) has no ‘memory’ of larger scales — may

not be true depending on what one means by ‘scales of clustering’.

In general g(r) has the following behavior: when the particle field has no clus-

tering at all (uniform-randomly distributed), then its value would be unity at all
¶In these papers, it was the pair correlation function (equivalent to g(r)− 1) that was discussed.
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Figure 3.1: Caricature of a one dimensional particle field made up of ran-
domly distributed blocks of particles (without overlap). All blocks has the
same size (say b) and within each block, particles are uniform-randomly dis-
tributed.

scales (r). When there is clustering, g(r) would be greater than unity below some

scales related to the scales of clustering (signifying the enhanced probability of finding

neighboring particles), while becoming slightly lower than unity for larger scales.

We now consider a particle field, in 1D space for simplicity, which is made up of

randomly distributed blocks of particles (without overlap), where inside each block the

particles are uniform-randomly distributed (illustrated in Figure 3.1). Let the blocks

all have equal size, b. For some, this particle field would be described as having a

single clustering scale – the size of the block clusters, b. However if one calculates

g(r) for this particle field, the result would be a curve that increases quasi-linearly

for r . b. This can be seen clearly considering when r becomes smaller, the success

rate of finding neighboring particles is higher while everything else remain unchanged

(cf. Eq. 3.6). Similar argument may be extended for three dimensional data and were

also found to be consistent with simulated results.

Thus one needs to be careful with what one means by the terms ‘size of the

clusters’ and ‘clustering scales’ when relating to the magnitude trends of g(r). For
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the block clusters considered here, if we insist that the magnitude of g(r) represent the

extent of clustering, then we must interpret these block clusters as having clustering

that increases with decreasing scale despite the notion that inside each block the

particles are uniform-randomly distributed.

Regardless of how we wish to interpret the meaning of ‘clustering scales’, the

application of g(r) in other theories as earlier discussed in Section 3.1 is fundamentally

sound since they stem from its mathematical definition.

3.3.2 Inertial clustering and turbulent mixing

The radial distribution function, traditionally defined (Sec. 3.1 and reference therein),

does not discriminate between the mechanisms of correlation between particle posi-

tions. In turbulence, particles may have correlations in their number density caused

by other effects apart from the mechanism of inertial clustering. All of these inhomo-

geneities will appear in the RDF calculated via the family of equations that follows

from Eq. 3.7.

Particularly important to this thesis, apart from inertial clustering itself, is the

inhomogeneity due to particle injection into an otherwise homogenous and isotropic

turbulent flow. Due to the random stirring and mixing effect of turbulence, these

density inhomogeneities would be slowly smoothed. However their residues would
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blend into the observed RDF (via Eq. 3.7 or the likes) in addition to the signature

of inertial clustering of interest. Here we shall show that, due to the distinct scales

of the two processes (the residual turbulent mixing being at large scales), the effect

of the mixing residues on the inertial clustering signature is simply a multiplicative

factor on the g(r) of the otherwise pure signature of inertial clustering and that this

factor is nearly a constant (over the clustering scales) when the two scales are well

separated. (This finding will be utilized in our data analysis to isolate the influence

of mixing over the signatures of inertial clustering.)

Although the main intention here is to address the relation between mixing and

inertial clustering, the mathematical result here may be extended to other system

satisfying similar conditions. We begin with some definitions and assumptions:

• We assume that the inhomogeneity of the particle density field is driven by two

classes of processes with distinct scales and that they are mutually uncorrelated.

Particularly for our case of interest, the inhomogeneous initiation of the particle

field into turbulence should have no effect on how particles are clustered due to

small scale vortices‖. Thus the role of the large scale inhomogeneity is just to

introduce a landscape of varying local densities within which the particles are

clustered by the local vortices.

• We define m(~r) as the local number density dictated only by the large scale

‖This is true as long as the injection process itself has little effect on the turbulence field
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inhomogeneity. Precisely, this may be defined as the (idealized) density profile

when the system hosts only a large number of particles that are unaffected by

the small scale clustering (in our case, a field of passive scalars) while satisfying

all initial conditions of the problem (such as the particle injection geometries).

Experimentally, m(~r) can be approached by averaging the observed particle

density over a scale much larger than the small scale clustering yet much smaller

that the large scale inhomogeneity.

• We define gm(r) as the RDF that corresponds to the large scale inhomogene-

ity and that can be computed from m(~r). When there is no such large scale

inhomogeneity, in other words when ‘large scale averaged’ particle density is

constant everywhere, gm(r) would be equal to unity at all r.

• We define gn(r) as the ‘normal’ RDF calculated from a sample using the tradi-

tional method derivable from Eq. 3.7, that is when a global particle density is

used and any inhomogeneities are interpreted as particle spatial correlations.

• We use g(r) to represents the ‘pure’ RDF signature of the small scale clustering

that is of interest. It will be recovered by gn(r) when large scale particle density,

m(~r), is indeed constant everywhere. Otherwise, gn(r) would be some composite

of g(r) and gm(r).

• We shall be interested in the theoretical or mathematical relation between gn(r),

gm(r) and g(r). To that end, the ‘limits of large numbers’ will be assumed
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throughout the development to follow. This means we will be considering the

idealized situation where we have infinitely many particles (so that density

is well defined) inside an infinitely large sample (so that all RDF estimators

approaches the true values), and other idealizations.

With these we proceed to consider the case of particle distributed in one dimension for

sake of simplicity, conceptual clarity, direct relevance to this thesis and also for the fact

that the finite volume version of RDF in 1D is unbiased (Sec. 3.2.1). (Generalization

to higher dimension seems straight forward but will not be attempted here.) We first

write down the formula for gn(r), the normally calculated RDF (cf. Eq. 3.7) for the

one dimensional case:

gn(r) =

∑Nt

i=1 Si(r)

Nt n δr
, (3.16)

where Si(r) is the number of particles found at position r±δr from the ith trial particle

and n is the sample’s global average particle density (in 1D). Next, we introduce in

the summation the local (large scale) particle density at position r relative to each

trial particle, mi(r):

gn(r) =

∑Nt

i
Si(r)
mi(r)

mi(r)

Nt n δr
. (3.17)

We now take the key step of grouping the summation according to various values of

mi(r), which we denote as mj (where j = 1, 2, 3 . . .):

gn(r) =

∑
j

∑Nj

i
Sij(r)

mj
mj

Nt n δr
. (3.18)
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Here Nj is the number of trial particles belonging to the jth group — those that

see, at position r relative to each, other particles with number density of value mj.

Note that Nt =
∑

j Nj . Bringing everything that are independent of i out of the

summation over i, introducing Nj and bringing δr inside the summation over j :

gn(r) =

∑
j {Nj mj

PNj
i Sij(r)

δr Nj mj
}

Nt n
. (3.19)

Here we recognize that the quotient inside the parenthesis is an unbiased estimator of

g(r) (the small scale clustering signature) for every mj. The reason for this is because

the trial particles under the summation over i all see the same density mj at r relative

to them. Hence the quotient is a construct much like an RDF estimator averaged

over many small yet statistically identical samples (Sec. 3.2.3). We thus write it as

gEst
j (r) in what follows. Next, multiplying and dividing the whole right hand side

with
∑
Nj mj ; and rearranging, we have:

gn(r) =

∑
j Nj mj

Nt n

(∑
j Nj mj g

Est
j (r)∑

j Nj mj

)
. (3.20)

We quickly see that the inside of the parenthesis is a weighted average of gEst
j (r)

and since we are taking the ‘limits of large numbers’, it will approach the true RDF

signature of small scale clustering, g(r). Before we continue, it is worth noting as

a corollary that this provides us with a means of recovering directly the small scale
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clustering signature even when large scale inhomogeneity is present, that is:

g(r) =

∑
j Nj mj

PNj
i Sij(r)

δr Nj mj∑
j Nj mj

=

∑Nt

i Si(r)

δr
∑

j Nj mj

. (3.21)

Turning back to Eq. 3.20, at the ‘limits of large numbers’, the quotient outside

the parenthesis would become gm(r). This can be seen clearer if we consider:

∑
j Nj mj

Nt n
=

∑
j Nj (mj δr)

Nt n δr
, (3.22)

where the numerator reads: sum over the ‘expected number of other particles found

at r from each trial particle’ as dictated by the density field m(~r). Hence we have

established the general relation:

gn(r) = gm(r) g(r) . (3.23)

In words: the RDF calculated using global average density (Eq. 3.16) is the product

of the RDF that would result from large scale inhomogeneity (e.g. mixing residue)

and that of the small scale.

Finally, if the scales of the two families of inhomogeneities is sufficiently sepa-

rated, then gm(r) would be almost constant in the range of small r where g(r) is of

interest. We shall see that this is true to a good degree with the experimental data
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in this thesis.
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Chapter 4

The wind tunnel experiment

In this chapter, we describe our experimental setup, procedures and analysis methods.

The chapter begins with an introduction to the turbulent flow of our choice — grid

generated turbulence in wind tunnel. This is followed by a description of experimental

details including a discussion of various assumptions made and related subtleties.

Experimental results shall be presented in the coming chapters (Chap. 5 and 6).

55



4.1 Background

4.1.1 Homogenous-isotropic turbulence

The Navier-Stokes equation is notoriously difficult to solve at high Reynolds number

due to its nonlinearity (see e.g. Shinbrot, 1973). Moreover, since turbulent solutions

are apparently chaotic, the detailed evolution of the velocity field is perhaps of less

theoretical value compared to some form of statistical physics of turbulence.

Most theoretic-statistical understanding of turbulence to date is based on the

idealized homogenous-isotropic turbulence. From a physicist’s point of view, homogenous-

isotropic turbulence plays the role much like point mass in Newtonian mechanics

where it provides a good starting point for discovery of universal characteristics of

turbulence itself and also how turbulence relates to other flow related phenomena (e.g.

inertial particle dynamics). For this reason, homogenous-isotropic turbulence has

been studied extensively in theory, experiment and numerical simulation. Due to its

simplicity and the broadly available knowledge about it, we thus choose homogenous-

isotropic turbulence as a starting point for the study of inertial particle clustering in

turbulence.
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4.1.2 Grid turbulence

Experimentally, homogenous-isotropic turbulence may be approximately achieved

through what is called grid turbulence. Grid turbulence is typically generated in a

wind tunnel where a cross-stream array of periodic obstructions (e.g. grid) is placed

in the path of the otherwise uniform flow. Down-stream, the sheared flow develop

into decaying yet nearly homogenous and isotropic turbulence.

4.2 Experimental setup and methods

A schematic diagram of our experimental setup is shown in Figure 4.1. The experi-

ment was conducted in an open circuit, suction wind-tunnel in the DeFrees Hydraulics

Figure 4.1: A schematic (not to scale), showing the experimental setup.
Figure from supplementary material of Saw et al. (2008).
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Laboratory (School of Civil and Environmental Engineering, Cornell University). The

wind-tunnel is 20m in length and 0.95m×1.00m across (height × width) with achiev-

able mean velocity of 1 to 15 m/s. Air is sucked into the wind-tunnel by a fan (not

drawn in figure) connected to the end of the wind tunnel (far right). Turbulence is

generated via the active grid, and down stream of that four spray nozzles produce

water droplets (inertial particles) in a broad range of sizes (∼ 1 − 50µm). Ample

time is allowed for the development of the turbulence and also for interaction between

droplets and turbulence before measurements of the droplet statistics and turbulent

flow are made by the phase Doppler interferometer (PDI).

The PDI has been discussed in detail in Chapter 2. Here we proceed to discuss

other specific aspects of the experimental setup.

4.2.1 Active grid and turbulence generation

The main advantage of an active grid over the traditional passive grid is in the

generation of high intensity (thus high Reynolds number) turbulence. The wind-

tunnel does not have the traditional flow stabilizers (e.g. screens, honeycomb) and

contraction to condition the flow before it enters the test section. Instead, the flow

is allowed to settle in the early section (left) of the wind tunnel before it passes

through the turbulence generating active grid (Gylfason, 2006). Another advantage
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Figure 4.2: Picture showing the active grid and the configuration of the
droplet sprays. Figure obtained from (Gylfason, 2006), courtesy of the author
(See Appendix B).

of the active grid is that it produces large scale mixing which renders the flow input

inhomogeneities insignificant further downstream where measurements are made.

The design of the active grid followed that of Makita (1991) with some modifi-

cations (picture in Fig. 4.2). It is made up of a series of horizontal and vertical rods

with triangular winglets attached to them. Each rod is powered by a stepper motor

and in operation would rotate with randomly switching directions. There are eight

horizontal and seven vertical rods made of aluminium with outer diameter of 1.27 cm,

and with mesh spacing, M , of 11.4 cm between neighboring rods (the outermost ver-

tical rods are M/2 from the tunnel walls). The winglets are also made of aluminium

with thickness of 0.64 mm. Near the walls, ‘static winglets’ with calibrated holes are

added to ensure good cross-stream homogeneity of the flow.
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The active grid generates turbulence by inducing random shears in the traversing

flow. These then developed into a nearly homogenous-isotropic turbulence further

downstream ( & 25M) with turbulent kinetic energy that decays with downstream

distance following a power law.

The turbulence in the present setup is well characterized and was found to be

homogeneous and isotropic enough for the present studies of small scale turbulence

(at least as good as any passive grid turbulence, see Appendix A). An example of

the turbulence spectrum obtained in the present setup can be found in Fig. 4.4. The

implication of the addition of water sprays to the turbulence characteristics will be

discussed in Section 4.2.3.

4.2.2 Droplet generation

We have chosen to study water droplets embedded in air due to its relevance to

atmospheric clouds, which was the main motivation that initiated this work. The

droplets are generated via four commercial air-atomizing sprays bought from Spraying

Systems Co. (model: 1/4JN-SS, SU11DF-ss). The spray nozzles are evenly positioned

just downstream of the active grid as shown in Figure 4.2. In operation, pressurized

air and water are internally mixed inside the nozzle while upon exiting, air-induced

breakup of water produces a jet of small water droplets. The droplet size distribution
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Figure 4.3: Probability density function of water droplets generated by the
spray nozzles. The broader distribution (blue) is obtained when the water/air
pressures are is set to 32/32.5 psi (± 0.5 psi). This setting was used in works
whose results will discussed in Chap. 5 (Cornell-1). The other distribution
(green) that has smaller drops corresponds to condition of water/air pressures
equals 40/35 psi and was used in works to be presented in Chap 6 (Cornell-2).

(diameter) is broad and is controlled by the pressure of the supplied air/water and is

generally in the range of 1-50 µm with a log-normal like distribution (see Fig. 4.3).

Distilled water is stored in a pressurized stainless steel container, pressurized

by compressed air. The water and atomizing air pressures are regulated by electro-

pneumatic controllers (Bellofram 3212), which use a (in-built) closed loop control to

regulate the output pressure to be a linear function of the voltage of an analog control

signal.
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4.2.3 Influence of Sprays on turbulence

One legitimate concern is whether the jets from the spray and the presence of the

droplets affect the background turbulent flow. The former seems to be avoidable as

long as the flow rate of the tunnel itself is much greater than those of the jets and that

the measurement is carried out far enough downstream of the sprays. Regarding the

later, in our experiments the liquid-to-air volume (mass) ratio is less than 2.3× 10−5

(4.8× 10−2). This has been shown to be sufficiently small (coupled with the fact that

droplet sizes are smaller than rk) that flow modulation by the droplets can be ignored

(Geiss et al., 2004).

However to be more certain, we did comparative measurements (at down-

stream distance most relevant to our experimental studies, X=3-5 m) using hot-wire

anemometry (HWA) with sprays turned off and using phase-Doppler interferometry

(PDI) with sprays turned on∗. The results from the two instruments show agreement

well within experimental error (an example is shown in Fig 4.4) corroborating the

dilute limit assertion and show that the impact of the jets is negligible. Due to this

finding, we have the option of characterizing the turbulent flow in the wind-tunnel

using the HWA data (with sprays off) when the use of PDI data is inconvenient (e.g.

does not have enough statistical convergence). This also allows us to use the extensive

turbulence characterization from previous works using HWA (details in Appendix A).

∗Note: HWA is only suitable for fluid measurement without seeding while vice-versa for PDI.
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Figure 4.4: Energy spectra of turbulence at X=5m, fan-speed=20Hz. Cyan
continuous line is the result via HWA. Red with dots is the result via PDI
(using small droplets (< 10µm), we first obtained the longitudinal structure
function of the droplet velocities from which the velocity autocorrelation
function can be simply derived. The spectrum results from Fourier trans-
form of the velocity autocorrelation. The spectrum was also averaged with
exponentially increasing bins to reduce noise at high κ). Green dotted line
is defined as 0.5 ε−2/3κ−5/3, where ε is obtained empirically from HWA data
(this is the prediction of Kolmogorov (1941) theory for homogenous-isotropic
turbulence). The ability to obtain turbulence spectrum via PDI that is so
closely consistent with HWA is a remarkable finding.

In some cases, HWA data is preferable since they yield more direct and precise deter-

mination of the turbulence statistics (HWA does not use discrete particle and boasts

high sampling frequencies).
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4.2.4 PDI positioning and particle equilibration

The position of the PDI from the grid, X, has to be far enough downstream in order

to provide sufficient time for the development of the turbulence and for the particle

dynamics to achieve equilibrium with the turbulence. In all our experiments, X is

greater than 3 m, which gives the droplets & 0.34 s to equilibrate. This is equivalent

to 0.5 to a few integral time scales of the turbulent flows (τL) and is in the order

of 102 τη ( where τη is the Kolmogorov time scale, cf. Sec. 1.1). All results shown in

this thesis are for St . 1 (thus τp . τη) and it has been shown via direct numerical

simulation (DNS) that in this parameter range the time for both the particle positions

and velocity dynamics to achieve equilibrium with the flow is on the order of 10τη

(see e.g. Cencini et al., 2006; Chun et al., 2005). Furthermore, a recent experiment

(Yang and Shy, 2005) suggests that clusters of inertial particles are well developed

(at least qualitatively) from initially uniform distribution given time of the order of

10τη (or even less in some cases; see the paper for details).

Through private communication with Prof. Lance. R. Collins (Cornell Univ.)

and from our own experience, results from DNS suggest that finer features of inertial

clustering take longer time to develop. Specifically, while the feature at scales ∼ η

and greater were found to equilibrate after a few 10τη, features at smaller scales

take considerably longer time. This however has not been methodically observed in

experiment. To this end, since our experiments do not resolve clustering features
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smaller than η, it is thus safe to assume that what we observe has already achieved

equilibrium.

Another closely related and perhaps more pressing question is whether one

can consider the droplets to be interacting with stationary turbulence with quasi-

constant mean energy dissipation rate (ε) given that grid turbulence is decaying. To

address this, we consider the decay rate of ε experienced by the droplets as they move

downstream. Specifically, we calculate the fractional reduction of ε for every 20 τη

(assuming that is the time needed for the droplets to equilibrate with the turbulence).

Writing βε as the reduction, we have:

βε =
| dε
dX
|U × 20τη

ε
. (4.1)

For the data reported here, βε is between 0.12-0.19. Therefore until this matter is

further studied, our results should be interpreted with the caveat that the values of ε

used are representative of a quantity that actually varies by up to ∼ 10%. Finally it

is worth noting that in high Reynolds number turbulence, ε is a highly intermittent

quantity, thus a 10% decay in its mean value may not be physically significant.
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4.3 Data analysis

From the collected particle statistics we calculate the RDF (cf. Chap. 3) of each

experimental set, which allows us to study the dependence of clustering on flow pa-

rameters (St, Rλ, etc). This section discusses our methods of obtaining the RDF’s

experimentally.

4.3.1 Obtaining inter-particle distances from particle arrival

times

A Phase Doppler interferometer (cf. Chap. 2) measures the arrival time, velocity and

diameter of each detected particle. When particles share a strong average velocity,

the series of arrival times can be transformed into a one dimensional distribution of

particles in space. This idea is similar to Taylor’s frozen turbulence hypothesis (see

e.g. Tennekes and Lumley, 1972; Taylor, 1938) which states that when there is a

strong mean flow, the spatial structures of the turbulence do not change appreciably

while they are advected passed a fixed point in space. Thus, these structures are

captured as a function of time by any Eulerian measurement (measurement carried

out at a fixed point). In our case, one can write:

∆xi = U∆ti , (4.2)
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where U is the mean velocity component shared by droplets and background fluid

motion; ∆xi are the inter-particle distances and ∆ti are the inter-particle arrival

times. The error from invoking Taylor’s hypothesis will be discussed in Section 4.4.

4.3.2 Calculation of radial distribution function

Given a sample of inter-particle distances, we calculate the RDF using the 1D ver-

sion of Eq. 3.7 with finite interrogation volume (Sec. 3.2.1) and full edge treatment

(Sec. 3.2.2). The correct formulation is given by:

g(r) =
Np(r)[

Nin(r) + 1
2
Nex(r)

]
∆r (N − 1)/L

, (4.3)

where Np(r) is the total number of particle pairs separated by distance r ± ∆r/2,

Nin(r) is the number of interior particles — particles that are at least at distance r

from sample edges, Nex(r) is the number of edge particles — particles closer than r

from the sample edges, N is the total number of particles in the sample and L is the

total length of the sample.

To see how Eq. 4.3 results from doing full edge treatment to 1D data, let us

imagine a plot of particle positions along a horizontal line from left to right. Follow-

ing the procedure outlined in Section 3.2.2, we treat the interior and edge particles
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separately using Eq. 3.7, reproduced here for the 1D case:

g(r) =
ψ(r)/Nt

(N − 1) 2∆r/L
, (4.4)

where ψ(r) is the sum over ‘numbers of particles found at distance r from each trial

particle’. We have written L in place of V (the full sample volume) and 2∆r in place

of δVr (in 1D, an isotropic shell reduces to two symmetric bins).

We use all particles as trial particles and apply a full edge treatment in order

to achieve maximum statistical convergence. Each interior trial particle provides us

with two interrogation volumes ∆r, one on its left and one on its right. However,

for each edge particle, there is only one such ∆r, since the data is truncated on the

other side . Thus when combined, we obtain a formula for g(r) much like Eq. 4.4

but with the total number of interrogation volumes 2Nt substituted with 2Nin +Nex.

This coupled with the fact that ψ(r) becomes 2Np(r) when all particles are used in

the calculation, gives us Eq. 4.3.

4.4 Error analysis

In this work we are interested in the radial distribution function, g(r). To calculate

g(r) we need the inter-particle distances of the detected droplets. In practice, the
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PDI registers droplet arrival times. The inter-droplet distances are then obtained

from this time series via a time-to-space transformation, equivalent in principle to

the Taylor frozen turbulence hypothesis: Eq. 4.2. After that, g(r) is calculated using

Eq. 4.3. Sources of error in estimating g(r) include:

1. Bias from using finite interrogation volumes. As discussed in Sec. 3.2.1, this

only affects g(r) calculated from 2D and 3D data. In our case, the effect of

using finite ∆r is just a simple averaging of g(r) over ∆r, which washes out

possible fine features (not of interest to present studies).

2. Error in measurement of droplet arrival times. Particle arrival time accuracy

was found to be better than ' 3.5µs (see Sec. 2.3.3), which we shall see is just

a few percent of the smallest inter-droplet arrival time studied. This error has

the same effect as the next error to be discussed but it is one order smaller in

magnitude. We thus ignore this in the error analysis.

3. Error from time-space transformation. The use of Eq. 4.2 essentially assumes

that all droplets are advected downstream with velocity equal to the mean flow

velocity U . This is, by definition, incorrect because droplets are embedded in

a turbulent flow. The resulting estimates of inter-droplet distances, ∆x, thus

contain random errors. The resulting error is on the order of (u/U) ∆x, where

u is the r.m.s velocity fluctuation. In our experiments, u/U never exceeds 20%,

thus resulting in errors of less than 20% in ∆x.
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Since we are ultimately interested in g(r), which is derived from counting the

number of droplet pairs separated by distances satisfying r − δr/2 < ∆x <

r + δr/2 (cf. Eq. 4.3), random errors in ∆x imply that some droplet pairs are

wrongly accounted into neighboring inter-droplet-distance bins. This is essen-

tially equivalent to a low-pass filtering on g(r). However, since we report coarse

grained RDF (with finite interrogation volumes, ∆r > 0.1r), the probability of

particle pairs being wrongly binned is suppressed, and therefore the low-pass

filtering effect of this error is masked. Because of the loss of possible fine fea-

tures due to low-pass filtering or r-coarse graining, the conclusions reached in

this study, such as observations of Stokes similarity, are limited to the coarse

trends of the g(r) curves.

Lastly, due to the geometry of the problem there is an additional, more subtle

bias that arises from the use of the time-space transformation, to be discussed

in point 5 below.

4. Finite sample volume and one-dimensional sampling. The PDI has a mea-

surement cross-section with height ≈ 230µm and width of roughly 2-3 times

the slit aperture (selectable between 50, 100, 200, 500, 1000µm). This has the

implication that the ∆x estimated via Eq. 4.2 has a tendency to underesti-

mate the true inter-particle distance. Proceeding from this line of reasoning,

Holtzer and Collins (2002, hereafter as H&C) showed that g(r) obtained from

one-dimensional sampling of a droplet distribution could systematically deviate
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from the true (three dimensional) g(r) due to averaging effects from a finite

instrument sampling volume or resolution. The same study also shows that

this deviation is negligible for r greater than the sample volume dimensions. In

this work, we have reported only g(r) at scales satisfying this condition. Fur-

thermore, following the analysis of H&C we have estimated that at the scales

reported in this thesis the maximum decrement of any single point of g(r) from

its 3D counterpart is ≈ 0.4, most deviations in the g(r) curves due to this

spatial averaging are much smaller than this. For the results we shall present

in Chapter 5, this bias is within the average statistical error and thus is not

treated. The same cannot be said of results in Chapter 6.

5. An additional error from the time-space transformation. A similar bias to that

described in point 4, but not discussed in H&C, results from uncertainty in ∆x

due to the time-to-space transformation. A simplistic way to explain this is that

because the use of Eq. 4.2 does not allow for any displacement of droplets in

the plane normal to the mean flow direction, it always tends to underestimate

the true particle separation distance: Lateral droplet motion during the time

interval between detection of two droplets is not measured, and this results

in an underestimate of the inter-particle distance. It is similar to the bias

discussed in H&C in that the error results essentially from a collapse of three

spatial dimensions into one. However, starting from an error of 20% in ∆x, we

estimate that the ‘scale of averaging’ is less than 4% of r, which implies that the
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resulting bias is negligible at small r. Even at r ∼ 10 rk (the largest scales at

which inertial clustering is observed), this bias is less than half the magnitude

of that resulting from finite measurement volume. The combined effect is thus

still insignificant for the results presented in this thesis.

6. Shot noise. Because g(r) is derived from counting droplets within a particular

interval (cf. Eq. 4.3), it is subjected to Poisson statistics. From this, one can

derive the sampling uncertainty to be:

σg(r) =
√
〈g(r)〉/Nnp ∆r , (4.5)

where N is the total number of droplets detected in the whole experiment, np is

the globally averaged droplet density, and ∆r is the width of the interrogation

bin. A large sample is usually required to minimize this noise. Even with that,

this noise dominates the error in our g(r) results in Chapter 5. Therefore in

that chapter, we will show our error bars as 2σ in the plots of g(r), which we

assume as an upper bound of the combined effect of sampling and other less

significant errors. In Chapter 6 however, only one σ is used in the error bars.
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Chapter 5

Stokes similarity in inertial clustering

(a published paper)

In this chapter, we present the major results from our earlier experiments (done in

winter of 2004) in a form of a published paper. The paper was published in Physical

Review Letters under the title: Inertial Clustering of Particles in High-Reynolds-

Number Turbulence (Saw et al., 2008)∗. Notes for readers: Reading the introduction

section in this paper is optional since most of the contents has been discussed in

earlier chapters. Cross references and formats of the paper has been modified to be

compatible with the organization of this thesis.

∗Reprinted here with permission (see Appendix B).
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Abstract

We report experimental evidence of spatial clustering of dense particles in homoge-

nous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering

becomes stronger as Stokes number increases and is found to exhibit similarity with

respect to the droplet Stokes number over a range of experimental conditions (parti-

cle diameter and turbulent energy dissipation rate). These findings are in qualitative

agreement with recent theoretical and computational studies of inertial particle clus-

tering in turbulence. Due to the large Reynolds numbers a broad scaling range of

particle clustering due to turbulent mixing is present, and the inertial clustering can

clearly be distinguished from that due to mixing of fluid particles.

5.1 Introduction

It is a common observation that a ‘passive’ tracer injected non-uniformly into a tur-

bulent flow (e.g. a substance that only marks but does not modify the flow, such as

smoke in air or milk in tea) will soon be stirred and mixed by the random vortices

in the turbulence until it attains a uniform distribution. Such high mixing power is

in fact a hallmark of turbulent flow (Tennekes and Lumley, 1972). One might rea-

sonably ask if the same holds true when the substance is no longer a perfect fluid

tracer, such as one that consists of macroscopically discrete particles possessing finite
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inertia, like the distribution of water droplets in turbulent clouds (e.g., actively con-

vective cumulus clouds). In fact, water droplets with mass density 103 times greater

than that of air are dynamically stubborn and do not exactly follow the motion of

the host fluid. As a result, these ‘inertial particles’ should have a steady state spatial

distribution differing from that of a uniform field of fluid particles (Eaton and Fessler,

1994; Elperin et al., 1996; Maxey, 1987; Sundaram and Collins, 1997; Balkovsky et al.,

2001).

The inertial clustering phenomenon has implications for a wide range of prob-

lems in nonlinear and fluid dynamics, including the formation of rain by droplet col-

lisions in atmospheric clouds (Falkovich et al., 2002; Pinsky and Khain, 1997; Shaw,

2003). Because the droplet collision rate is proportional to droplet density squared,

spatial correlations due to inertial clustering can result in accelerated rain forma-

tion. Considerable progress has been made in computational and theoretical studies

of inertial clustering, but experimental results are sparse (Aliseda et al., 2002; Wood

et al., 2005) and the nature of inertial clustering at high Reynolds numbers remains

an open problem (Collins and Keswani, 2004). Qualitatively, inertial clustering can

be understood as the result of particles being centrifuged out of turbulent vortices

and thus congregating in regions of high strain (Eaton and Fessler, 1994; Sundaram

and Collins, 1997). Turbulence is a multi-scale process in which energy injected at

large scales (of order l) ‘cascades’ to progressively smaller scales through nonlinear

interactions such as vortex stretching. Over most of these spatial scales, known as the
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inertial range, fluid inertia dominates over viscous forces; the scales at which viscosity

becomes important lie in the dissipation range. The clustering of inertial particles is

significant at dissipation scales and below because it is in this range that turbulent

vorticity and accelerations are strongest (Wang and Maxey, 1993; Falkovich et al.,

2002; Chun et al., 2005). It should be noted, however, that alternate interpretations

and approaches exist (Chen et al., 2006; Duncan et al., 2005; Elperin et al., 2002;

Ghosh et al., 2005; Zaichik and Alipchenkov, 2003), adding impetus to the need for

experimental data capable of elucidating mechanisms and constraining theory. To

that end, it is the purpose of this paper to describe an experimental study of iner-

tial clustering and its dependence on particle size and turbulence conditions at high

Reynolds numbers.

Suitable quantification of clustering is provided by the particle pair correlation

function η(r) (Sundaram and Collins, 1997; Shaw, 2003), whose magnitude charac-

terizes the strength of clustering at scale r. Intuition on the properties of η(r) can

be gained by examining how it is calculated in our experiment for one-dimensional

sampling of the particle spatial distribution (Holtzer and Collins, 2002):

η(r) =
Q̃(r)/δr

Q/L
− 1, (5.1)

where Q̃(r) is the number of particle pairs separated by a distance within [r−δr/2, r+
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δr/2]; Q is the total number particle pairs in the sample; L is the sample length. Previ-

ous theoretical and Direct-numerical-simulation studies (Balkovsky et al., 2001; Chun

et al., 2005; Falkovich et al., 2002; Reade and Collins, 2000; Kerstein and Krueger,

2006), suggest that under ideal conditions (homogenous and isotropic turbulence,

single-size particle population, particle-fluid coupling following Stokes’s law, dilute

particle loading, and negligible role of gravity) η(r) satisfies a simple power law†:

η(r) ∝ (r/rk)
−f(St), (5.2)

where rk is the Kolmogorov length scale (characterizing the dissipation range), and

f(St) > 0 increases monotonically with St for St < 1. Here, the Stokes number St

characterizes the particle’s inertial response to the flow and is defined as the ratio of

the particle inertial response time τd to the Kolmogorov time τk (coherence time scale

for the dissipation range) (see e.g. Tennekes and Lumley, 1972):

St =
τd
τk

=
1

18

(
ρd

ρ

)(
d

rk

)2

, (5.3)

where ρd is the particle mass density, d is the particle diameter, and the Kolmogorov

†While it is usually stated that the theories apply to the limit r/rk � 1, in fact the power-law
form is predicted to continue to the correlation scale of velocity gradients. That scale is on the
order of r/rk ∼ 10 (see A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics
of Turbulence, Vol. II (MIT Press, 1975), Sec. 23.4 and Fig. 77; and S. G. Saddoughi and S. V.
Veeravalli, J. Fluid Mech. 268, 333 (1994), Sec. 3.2.1 and Fig. 10.
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microscale rk = (ν3/ε)1/4 depends on the kinematic viscosity ν of the fluid (air) and

the turbulent kinetic energy dissipation rate ε.

5.2 Experiment

The experimental setup, which is further detailed in chapter 4, consists of a wind tun-

nel with well-characterized turbulence, sprays for particle generation, and a particle

detector. Homogenous and nearly isotropic turbulent flow is generated by a motor-

ized ‘active grid’ capable of achieving high Reynolds number (Mydlarski and Warhaft,

1996; Ayyalasomayajula et al., 2006). Water droplets are introduced via four spray

nozzles, with the resulting size distribution being broad (d̄ = 22 µm, σd = 13 µm).

Downstream, a phase-Doppler interferometer (PDI) (Chuang et al., 2008) simulta-

neously measures the diameter (di), downstream speed (vi), and arrival time (ti) of

all droplets that traverse its view volume (which has cross-section of approximately

150 µm × 210 µm). Table 5.1 lists the flow parameters for the various experiments

carried out in the wind tunnel: the experiments differ in Rλ and ε, and therefore

have different rk. Each experiment is referred to by a name based on the distance

downstream from the active grid (in meters) where measurements are taken and the

speed of the fan (in Hz) that drives the wind tunnel.

The PDI is stationed far enough downstream (X = 3 and 5 m, where X is the
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distance from the active grid) such that the small scale spatial distribution of the

droplets reported here have ample interaction time with the turbulence to achieve

equilibrium. This follows from the fact that the transit time of droplets is much larger

than the Kolmogorov time scale (at least 200τk; see Sec. 4.2.4 for additional details).

To obtain the droplet spatial distribution (xi) needed for the evaluation of η(r) using

5.1, we adopt a method equivalent to Taylor’s frozen turbulence hypothesis (Tennekes

and Lumley, 1972) in which the time series is converted into a spatial one(xi = tiU).

Within each experiment, the dependence of clustering on particle inertia is studied

by selecting droplets from a small range of Stokes numbers St ± ∆St and then

evaluating η(r) for that subset of droplets. In practice, ∆St is chosen such that

acceptable counting statistics are obtained. Stokes numbers are calculated using

Stokes drag (cf. Eq. 5.3), which is accurate to within 10% for the largest droplet

diameters used in this study (≈ 50 µm). The uncertainty in this study is dominated

strongly by the ‘shot noise’ in the value of η(r) due to droplet counting statistics, as

detailed in Sec. 4.4.

5.3 Results and Discussion

The essential experimental results on particle clustering are presented in Figs. 5.1

and 5.2, which depict the dependence of η(r) on r̂ ≡ r/rk for various flow conditions

(in log-log coordinates, cf. Eq. 5.2). Fig. 5.1 illustrates how η(r) changes with St
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Experiment 3m20Hz 3m30Hz 5m20Hz 5m30Hz
Rλ 520 660 440 590
ε (m2 s−3) 1.6 5.4 0.6 2.0
U (m s−1) 4.69 6.78 4.59 6.81
u/U 0.17 0.18 0.12 0.13
rk (µm) 210 150 270 200
St = 0.3 18, 0.14 13, 0.05 23, 0.30 16, 0.10
St = 0.7 27, 0.32 20, 0.13 35, 0.69 25, 0.26
St = 1.1 34, 0.50 25, 0.20 43, 1.04 32, 0.42
St = 1.5 39, 0.66 29, 0.27 51, 1.46 37, 0.56

Table 5.1: Experiment flow parameters, where Rλ is the Taylor-scale
Reynolds number, U is the mean and u is the rms fluctuation of the flow
speed along the wind tunnel. The last 4 rows are the droplet diameters (in
µm) and corresponding gravitational settling parameters, Sg, for the St bins
used in the data analysis.

within a single experiment (3m30Hz). We note that strong clustering is mainly limited

to scales r̂ on the order of 10 and below (see footnote just before Eq. 5.2), and that

clustering is stronger for droplets of larger St. Onset of clustering in the dissipation

range, and monotonic increase of clustering with St are consistent with theory for

St� 1 (Balkovsky et al., 2001; Chun et al., 2005)). Within the inertial range, on the

order of 10 . r̂ . 1000, the correlation functions η(r̂) show weakly decreasing cluster-

ing with increasing r̂, and then fall off more strongly at larger r̂. This inertial-range

behavior typifies correlations arising from mixing of a passive tracer by turbulence

(e.g., η(r) scaling as 1 − (r/l)2/3. See e.g. Lumley and Panofsky, 1964, Sec. 2.9).

Essentially, large-scale inhomogeneities in the droplet spatial distribution induced by

the spray injection are subsequently stretched and distorted in the turbulent cascade,

as the droplets are advected downstream.
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Figure 5.1: (color online) η(r) versus r̂ (≡ r/rk) with error bars of 2ση(r),
and with η(r) parameterized by St from experiment 3m30Hz. Consistent
with theoretical expectations, η(r) increases in magnitude with increasing
Stokes number in the dissipation range. Each line is η(r) calculated from
droplets within the specified range of St (from bottom to top corresponding
to successively larger St). The errors are evaluated as 2ση(r) (details in text)
.

Droplets with different diameters but equal Stokes numbers from the exper-

iments are compared in Fig. 5.2 (zoomed scale), demonstrating ‘Stokes similarity’

consistent with scaling arguments for inertial clustering. The η(r) values for the

same St range coincide to within the experimental error even though each is obtained

from different flow conditions and droplet sizes (see Table 5.1). In obtaining such

comparison of the dissipation-range clustering, large-scale correlations resulting from

inertial-range mixing must be removed. To that end, the η(r) curves in Fig. 5.2 are

normalized such that they coincide in the inertial subrange (r̂ ∼ 100, see Sec. 5.4 for

details). Finally, we note that although Stokes similarity is evident in Fig. 5.2, for one
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Figure 5.2: (color online) Stokes-similarity results shown in two panels
for clarity. Left: St-similarity for droplets with St=0.01-0.3 (circles) and
St=0.7-1.1 (triangles). Plots for other St groups from ig. 5.1, 3m30Hz, are
shown in the background for comparison. The marker colors represent η(r)
from different experiments (blue=3m20Hz, green=3m30Hz, red=5m20Hz,
cyan=5m30Hz). Right: St-similarity for St=0.3-0.7 (circles) and St=1.1.-
1.5 (triangles).

data set a discrepancy is observed for 1.1 < St < 1.4, suggesting that the behavior of

droplets with St > 1 merits future investigation‡.

A further observation from Fig. 5.2 is the apparent power-law dependence of

η(r) in the dissipation range (for St ≤ 1.1 data). Although this observation is rather

tentative given the level of uncertainty and the limited window of resolvable scales

showing constant slope, it suggests that the power law is realized even for droplets with

finite Stokes number. Theoretically, the power law is valid for St � 1 (see Eq. 5.2)

but computational work suggests that the power-law dependence continues to hold

for St . 1 as well (Reade and Collins, 2000), consistent with our results. Detailed

‡We later found that this is caused by a problem with the PDI probe at that time which have the
tendency to register big drops such as these more than once. This causes spurious increase in the
RDF as seen here; except for the 5M30Hz case, which we think is free from this problem.
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theoretical and computational accounting of the more realistic case of a finite range of

Stokes numbers (i.e., ∆St > 0) is still lacking, thus a direct comparison of our results

with theory is not possible here. Finally, quantitative comparison of theoretical and

measured power-law exponents will require greater resolution at low Stokes numbers

since the theory is strictly applicable to St� 1.

Recently Wood and colleagues (Wood et al., 2005) also addressed inertial clus-

tering in an experiment with Rλ = 230 and obtained results in qualitative agreement

with computational work. We are especially interested, however, in the implications

of inertial clustering for cloud droplets and its possible influence on the development of

precipitation (Shaw, 2003). For geophysical problems the open question of Reynolds

number dependence (Collins and Keswani, 2004) is crucial, and therefore we have

utilized an experimental system allowing us to attain Reynolds numbers approaching

103. This leads to a clear separation of scales (i.e., l/rk ≈ 2000) and reveals the

relative roles of inertial-range mixing and dissipation-range clustering due to droplet

inertia. This is critical in allowing comparison between controlled laboratory data

such as these, to similar particle-counting measurements in clouds, where turbulence

characterization is considerably more difficult (Brenguier et al., 1998; Kostinski and

Shaw, 2001; Lehmann et al., 2007; Pinsky and Khain, 2003).

Yet to be studied methodically is the role of gravitational settling in inertial

clustering. Theoretical findings on this matter are sparse and the problem remains
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open. Our experiments have large ε relative to many atmospheric clouds, thus the

role of gravity is relatively less important. Theoretically, the importance of gravity

is expected to scales as the gravitational sedimentation parameter Sg ≡ τk/τg, where

τg is the time required for a droplet to fall over a distance of rk at its terminal speed.

In our experiments, the values of this quantity (cf. Table 5.1) suggest that the role

of gravity ranges from small (Sg ∼ 0.01) to significant, but not dominant (Sg ∼ 1).

However, the observation of Stoke similarity in our results (despite the fact that Sg

changes by five to six-fold in each St range) suggests that the role of gravity in this

work is limited relative to that of turbulence for the range of conditions considered.

The experiments described here provide support for the inertial clustering mech-

anism, and are in qualitative agreement with theoretical predictions. Clustering dis-

tinct from that expected for mixing of fluid particles is observed at dissipative scales,

where fluid acceleration and vorticity reach a maximum. The magnitude of the clus-

tering increases monotonically with droplet St, for St . 1, where St is a parameter

characterizing coupling between particles and the fluid. Finally, under distinct flow

conditions and with varying droplet sizes, the dissipation-range clustering is observed

to exhibit Stokes similarity.
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5.4 Supplementary: Large scale spatial inhomogene-

ity of particle density and how to correct for it

Figure 5.3 shows RDF’s of particles with St = 0.1→ 0.5 from various experimental

runs (directly calculated from the data without any extra normalization). Each RDF

curve has a power-law like region at the smallest scales (r/rk 6 10), followed by

a plateau region at r/rk ' 50 → 100, and then rapid fall-off region at still larger

scales. The RDF’s measured at the same downstream distance are Stokes similar

(coincide with each other). On the other hand, it is clear that the RDF’s measured

at 3m downstream of the grid (the triangles) lie consistently above those measured

5m downstream counterparts (the circles). As mentioned in Sec. 5.3, we interpret

the presence of a ‘shoulder region’ (plateau then fall off at large scales) in the RDF

curve as due to large scale inhomogeneity in the spatial distribution of the droplets,

that is not part of inertial clustering. The fact that the plateau in RDF measured

at 5m is lower than that in RDF measured at 3m, implies that such inhomogeneity

is diminishing as the droplets are advected downstream§. The most likely source

for this inhomogeneity is the residual inhomogeneity due to droplet injection that

is not yet fully homogenized by turbulent mixing as described in Sec. 3.3.2. The

time scale for turbulence mixing is close to the turbulence large eddy turnover time

(also called integral time scale) and in all our measurements the particles only has a

§We also have data at 8 m downstream that has an even lower plateau region.
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Figure 5.3: Error-bar plots of RDF (≡ η(r) + 1) for St = 0.1→ 0.5 from
various experimental runs (in logarithmic axes). Colors represent different
experimental runs: purple is 3m25Hz; green is 3m30Hz; black is 3m40Hz;
gold is 5m20Hz; cyan is 5m25Hz; red is 5m40Hz. In addition, to aid differ-
entiation, results from 3 m and 5 m downstream are marked as triangles and
circles respectively. The present of a ‘shoulder region’ at r/rk > 50 is likely
the result of large scale inhomogeneity in the spatial distribution of droplets
(see text).

few eddy turnover times between injection and measurement. It is thus likely that

the homogenizing action of turbulent mixing on the initially inhomogeneous field of

particles is not yet complete, and this is captured by the RDF as a shoulder region

that diminishes with time as mixing progresses.

The fact that the RDF’s measured at the same downstream distance still show

Stokes similarity despite the shoulder regions is best explained by the fact that inertial

clustering occurs at small scales that are well separated from the scales of the large

scale inhomogeneity, and this leads to the result that the RDF signature of inertial
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Figure 5.4: Error-bar plots of corrected RDF for St = 0.1 → 0.5 from
various experimental runs (in logarithmic axes). Each RDF is multiplied
by a constant factor such that its values at r/rk ' 80 are equal to one.
Colors represent different experimental runs: purple is 3m25Hz; green is
3m30Hz; black is 3m40Hz; gold is 5m20Hz; cyan is 5m25Hz; red is 5m40Hz.
In addition, to aid differentiation, results from 3 m and 5 m downstream are
marked as triangles and circles respectively. The RDF’s show clear evidence
of Stokes similarity in their average steepness at small scales (r/rk 6 10).

clustering is still intact but its magnitude gets multiplied by a constant factor (see

Sec. 3.3.2 for details, especially discussion around Eq. 3.23).

In light of Sec. 3.3.2, we now attempt to remove the influence of the large scale

inhomogeneity on the RDF’s. Figure 5.4 shows the same set of RDF’s as the ones

shown in Fig. 5.3 but each is vertically shifted (multiplied by a constant factor) so

that its values around r/rk = 80 are equal to one. The RDF’s show clear Stokes

similarity after this simple treatment.
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To conclude, through a combination of observation and theoretical reasoning,

we are convinced that the shoulder region in the measured RDF from our experiment

is a signature of large scale inhomogeneity and we have found a way to isolate it

from the RDF signature of inertial clustering that we are interested in. However, we

must point out that this interaction between large scale mixing and inertial clustering

merits further (more detailed) study.
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Chapter 6

Quantitative comparison between

experiment, simulation

and theory

In the previous chapter, we have shown that our experimental results support certain

qualitative (and semi-quantitative) predictions of theories and simulations. Here we

present a more detailed quantitative comparison of our experimental findings with

those from theory and direct numerical simulations (DNS).

Direct comparison of experimental findings with available theoretical and sim-

ulation studies to date is likely to be ambiguous and misleading. This is because
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in our experiments (as in most realistic settings of practical interest), inertial parti-

cles are inevitably poly-disperse (having more than one size), while theoretical and

simulation studies to date only consider mono-disperse (see e.g. Balkovsky et al.,

2001; Chun et al., 2005; Cencini et al., 2006) and bi-disperse particles (Chun et al.,

2005). As we shall see, the RDF signature of inertial clustering is a strong function

of poly-dispersity.

In order to make more meaningful comparisons, we initiated a set of DNS stud-

ies involving poly-disperse particles∗. This allows us to compare our experimental

findings directly with the DNS results in the poly-disperse and bi-poly-disperse† set-

tings. This is coupled with a direct comparison of the exact same DNS results with

theory in the mono-disperse and bi-disperse settings. Under this approach, the DNS

study serves as a bridge for an indirect comparison between theory and experiments.

In addition, we shall also use our results (DNS and experimental) to address

several questions about the nature of inertial particle clustering in this chapter. Here

we list the major questions:

1. What are the essential consequences of poly-dispersity on inertial clustering ?

2. How does the pre-factor (c0) in the power-law model of the RDF relate to other

∗This was done in collaboration with colleagues from Cornell University, New York. The simulation
was carried out by Juan Salazar and Dr. Lance Collins (both at Cornell). Our role was mainly in
the initiation of the effort and post-analysis of the simulation outputs.

†Involving two sets of (different St) poly-disperse particles.
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quantities ?

3. Does the RDF show asymptotic behavior in the limit of large Reynolds number ?

6.1 Direct Numerical Simulation (DNS)

This section describes the simulation performed and is similar to descriptions found

in two papers (Salazar et al., 2008; Collins and Keswani, 2004) published by the

colleagues directly involved in the simulation.

6.1.1 Simulating the fluid turbulence

We simulate homogenous and isotropic turbulence inside a three-dimensional cubic

domain with length 2π along each side (arbitrary simulation units) with periodic

boundary condition. The fluid flow is obtained as a solution to the incompressible

Navier-Stokes equations and corresponding continuity equation:

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u + F

∇ · u = 0 (6.1)
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Rλ u′ ε ν L λ

143± 4 1.68 0.32± 0.02 ∼ 0.002 1.38± 0.04 0.302± 0.009

rk T τk ∆t Ngrid kmaxrk

0.0128± 0.0002 0.82± 0.02 0.08± 0.002 1× 10−3 2563 > 1.5

Table 6.1: Turbulence parameters in arbitrary units (except the first and
last, which are dimensionless) in this DNS. Rλ is the Taylor microscale
Reynolds number, ε the turbulent energy dissipation rate, u′ the turbulent
r.m.s. velocity, ν the fluid kinematic viscosity, L the integral length scale,
λ = u′

√
15ν/ε the Taylor microscale, rk the Kolmogorov length scale, T the

large eddy turnover time, τk the Kolmogorov time scale, ∆t the fluid time
step, kmax the maximum resolved wavenumber of the simulation.

where u(x, t) is the fluid velocity field, P (x, t) is the fluid pressure field and F(x, t)

is a fluid forcing that injects kinetic energy to maintain the flow. The equations are

solved in a 2563 grid using the standard pseudospectral technique (involving Fourier

transform, for details see Brucker et al. 2007). Energy is continuously injected into

the first two wavenumbers to maintain a turbulent flow that is statistically station-

ary, homogenous and isotropic (Witkowska et al., 1997). Table 6.1 lists the major

parameters of the flow.

6.1.2 Simulating the particles

Particles of various Stokes numbers are introduced into the flow. Specifically we

simulated particles with 250 different discrete Stokes numbers in the range St =
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0.01 to 1.2 with uniform increment of δSt = 0.005 (each Stokes number has 8000

particles). Hereafter we refer each simulated Stokes number as a Stokes number line

(in short, St-line). This unique setup makes it possible to study effects of poly-

dispersity and also gives us the flexibility of post-filtering the particle St-distribution

to match any application specific shape, for instance when comparing results with real

experiment where the particles are continuously poly-disperse (spanning a continuous

range of Stokes numbers). It is important to note here that we are making the

assumption that δSt of 0.005 is small enough that a combination of adjacent lines

provides a good first order model for the case of continuous poly-disperse particles‡.

Two simulations were performed, one with an initial particle distribution that is

random and uniform over the simulation domain (case UI) while in the other, particles

are initially concentrated in a cube (internally uniformly and randomly distributed)

of dimensions 1/4 that of the full domain along each side (case CI). In both cases the

background fluid velocity field is exactly the same at all times. Here we will mainly

focus on the UI case (findings from the CI case will only be mentioned where needed).

After the inertial clusters have achieve equilibrium with the flow, steady state RDF’s

were accumulated from particle positions starting from 18T until 60T . The choice

of 18T is a very conservative one since RDF’s was apparently steady at significantly

earlier times. Other authors had use as low as 6T under similar conditions (see e.g.

Collins and Keswani, 2004).

‡This assumption should be reasonable when the finite range of particle Stokes number considered is
large compared to the this spacing, true for most cases in this thesis.
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The particles are advected in the flow (under the action of Stokes drag) accord-

ing to the equations:

dxi

dt
= vi

dvi

dt
=

1

τp
[u(xi)− vi ] (6.2)

where xi and vi are the position and velocity of the ith particle, respectively, while

u(xi) is the undisturbed fluid velocity at the particle position, xi. These equations

are a simplified version of the Maxey-Riley equations (Maxey and Riley, 1983) under

the assumption of heavy (ρp/ρf � 1) and small (d/rk � 1) particles§. Both of

these assumptions are well satisfied in the context of this thesis (as for many aerosol

containing flows) since ρp/ρf ∼ 1000 for water droplets in air, and d/rk ∼ 0.1 for

the range of droplet size used in the experiments¶. Also neglected is the influence of

the particle volumes on the fluid continuity equation and reverse coupling effect of

the particles on the flow owing to small volume loadings (Φv ∼ 10−5) and small mass

loading (Φm ∼ 10−2) respectively (see e.g. Geiss et al., 2004).

Additionally, we neglect gravitational settling. The DNS work of Wang and

§Specifically, under these conditions, one may neglect the added mass, Baset history and Faxen
corrections that would arise in the complete analysis of the forces acting on particles in time-
dependent flows

¶Regarding the second condition, it is generally accepted that rk under-estimates the smallest scales
of fluid velocity gradient by a factor ∼ 10, which makes this condition less stringent (see footnote of
Eq. 5.2).
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Maxey (1993) found no appreciable effect of gravity on the particle concentration

statistics for Sg ≡ vg/uk < 3, where vg = τp g is the gravitational settling velocity and

uk is the Kolmogorov velocity scale. This is consistent with our own experimental

finding in Chapter 5 (the definition of Sg here is equivalent to that used in earlier

chapters). In our experiments, Sg ranges from O(10−2) to O(1).

Further technical details include the use of two-stage second order Runge Kutta

method (Heun’s method) in integrating Eq 6.2 to obtain particle tracks. Fluid ve-

locities at particle centers are obtained via an eighth-order Lagrangian interpolation

scheme similar to that described in Berrut and Trefethen (2004). The smallest parti-

cles were advanced multiple time steps within each fluid time step in order to account

for their much smaller response times relative to τk.

6.2 Results and Discussions

We begin by showing snapshots of particle fields from the DNS in Figure 6.1. Both

panels correspond to the same instance in time and the same spatial sub-domain (a

‘thin slice’ of 3 rk thick and 2π × 2π across∗) with the right panel showing particles

of higher Stokes number. Clearly, the particles appear clustered with clustering more

pronounced at higher Stokes number.

∗The whole simulation domain has volume of (2π)3.
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Figure 6.1: Snapshots of particle fields from the DNS taken at the same
instance in (simulated) time and in the same spatial sub-domain (a ‘slice’
of 3 rk thick and 2π × 2π across). Left, particles with St=0.1-0.4; Right,
particles with St=0.5-0.8

Closer observation of the right panel reveals some geometrical structure of the

clusters. Some of the clusters appear as thin lines which suggests that they are two

dimensional sheets in three dimensional space. Further geometric analysis shall be

the focus of future works. However, here we note that since we learnt from Eq. 1.10

that the clustering exponent (c1) is related to the fractal dimension of the particle

field (D2), sheet like clusters implies that c1 will have values approaching unity†. We

shall see in Sec. 6.2.1 that this is indeed the case (cf. Fig. 6.3). Throughout our

studies, c1 has never been found to have value larger than 0.8 (as we shall see) and

it is interesting to question whether this tentative upper bound and the sheet like

nature of clusters can be theoretically explained.

†This is because D2 will have values close to 2, the value for perfect two dimensional object (see e.g.
Strogatz, 2001).
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Figure 6.2: Quasi mono-disperse RDF calculated from 3D particle posi-
tions. Individual RDF represent Stokes number of (increasing from bottom
top): 0.04, 0.2, 0.36, 0.52, 1.0.

6.2.1 Comparing DNS results with theory: mono-disperse

Figure 6.2 shows some of our DNS results (in terms of RDF) for ‘quasi’ mono-disperse

g(r) calculated using three dimensional particle positions, for various Stokes numbers.

Inertial clustering is found to occur for r/rk . 20 and increases with St but starts to

show saturation at St ∼ 1.

These results are ‘quasi’ mono-disperse in the sense that particles from more

that one St lines were used in the calculation of each g(r) in order to have the curve

smooth enough for meaningful studies. Specifically, for each St level studied we

included particles of five St-lines centered on the St of interest, thus in effect we are

considering particle with St ± 0.01 respectively. (Recall that line spacing is 0.005
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and there are 8000 particle per line). Detailed study (see Sec. 6.2.2) convinced us

that the effect of this level of St broadening is just a few percent reduction in power-

law exponent (quantity of main interest) of the g(r) at the length scale that we can

resolved here (r/rk > 0.1). This reduction is negligible compared with the level of

statistical fluctuation in these results‡. We thus are confident that these results are

relevant for mono-disperse studies to a very high degree although keeping in mind

that they strictly represent lower bounds.

Next we compare the power-law exponents (cf. Eq. 1.7), written as c1 , of these

RDF’s with the theoretical prediction of Chun et al. (2005)§. This is shown in Fig. 6.3

where the solid parabolic curve is from the theory and the (blue) error-bars plot is

from the DNS. The theory predicts that c1 scales as St2 for St� 1 with a coefficient

that depends on various turbulent flow statistics. Specifically they found (for St� 1):

c1 = 0.9 [σ2
ε Tεε − ρεζ σεσζ(Tεζ + Tζε) + σ2

ζ Tζζ ]St2 (6.3)

where ε(t) is the instantaneous kinetic energy dissipation rate, ζ(t) is the instanta-

neous enstrophy (square of vorticity) times the kinematic viscosity, σX is the standard

deviation of the variable X normalized by its mean 〈X〉, ρXY is the cross-correlation

coefficient and TXY is the correlation time normalized by Kolmogorov time scale (see

‡For cases St < 0.3, we instead calculate g(r) separately for each St line and then average g(r) over
five St-lines. In principle this should give more accurate result, yet we did not see any improvement
at the current level of statistical accuracy

§Similar theoretical treatments were also published earlier by Falkovich et al. (2002); Zaichik and
Alipchenkov (2003)
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Figure 6.3: Clustering exponent (c1) versus Stokes number (St). Blue,
DNS; Cyan, theory.

Chun et al. for details). In the same work, using semi-empirical inputs from DNS

performed at Rλ = 47.1, they obtained a value of 6.6 for the coefficient in front of

this St2-law.

The figure clearly shows good numerical agreement between the two results for

St 6 0.3 even though it is not clear that our DNS results dictate a St2 scaling. In

fact it is arguable that a linear scaling would be equally likely. We partially address

this point by performing a linear fit (method: error accounting least-square fitting

using model ŷ = mx̂ + yo) on the DNS data in the range St 6 0.4 and found that

yo = −0.09 ± 0.04. Since a negative clustering exponent is un-physical for particles

with zero Stokes number (fluid tracers) and also for inertial particle in the absent of

repelling forces, we conclude that our result supports some kind of curvature for the
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c1(St) curve at this limit (so that c1 does not cross over to the negative side and will

instead cross the origin). However, we can not be certain that this curvature is of the

St2 nature at this point. Similar conclusion can also deduced in Chun et al. (2005).

Theory for finite St is still open, however the peaking and subsequent decrement

of c1, starting around St = 0.5, is likely related to the general conviction that heavier

particles, with inertial response time much larger that the coherence time scale of

smallest (dissipative) eddies (typical ∼ τk), do not respond well to the centrifugal

effects of these eddies, thus resulting in weaker inertial clustering. Other works (see

e.g. DNS results in Bec et al. (2007)) have shown that particles becomes un-clustered

again at larger St.

One point worth addressing here is the fact that the theoretical results rely semi-

empirically on a DNS that was done at Rλ = 47.1, lower than in our own simulation

(Rλ = 143). For one, the good numerical agreement suggests that inertial clustering

may not be a strong function of Reynolds number. This matter will be addressed more

closely in Sec. 6.2.5. On the other hand, if one considers Eq. 6.3, it is not obvious that

the complicated coefficient should have only weak Reynolds dependence. Currently

we do not have clear answer for this. It will be interesting to see if the coefficient so

calculated from our own simulation really gives a value close to 6.6 (these statistics

are not available to us for the moment).

Alternatively, Chun et al. also provide a more general form for c1 (still in the
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limit of St� 1):

c1 = 3.61St τ 2
k [ 〈S2〉p − 〈R2〉p ] (6.4)

where S2 ≡ Slj Slj and R2 ≡ Rlj Rlj (summation over repeated indices implied) are

the second invariant of the rate of strain and rate of rotation tensors, respectively¶.

〈·〉p implies averaging over ensemble of particles. Using this formulation and their

DNS results for 〈S2〉p and 〈R2〉p , the resulting function c1(St) is still a curve but the

region of St2 scaling was limited to St ≤ 0.05. At higher St this curve was found to

be below the theoretical curve of 6.6St2. The question of Reynolds dependence raised

above is equally valid for this formulation. Our findings here (further strengthened in

Sec. 6.2.5) imply that if the theory should be correct, these statistics should be weak

functions of Reynolds number.

We conclude that there is a good agreement between theory and DNS at small

Stokes number up to St ' 0.3. The disagreement at larger St is not surprising since

these theories only address the limit of St� 1.

6.2.2 Effects of poly-dispersity on RDF

Figure 6.4 shows how the RDF changes from the case of (quasi) mono-disperse to poly-

disperse. Essentially the slope (power-law exponent) diminishes with poly-dispersity

¶Further, Sij ≡ 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
), Rij ≡ 1

2 ( ∂ui

∂xj
− ∂uj

∂xi
).
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Figure 6.4: Poly-disperse RDF on logarithmic axes. Each g3d(r) is based
on particles with Stokes number within (Stmid ± ∆St) where Stmid = 0.4.
Colors represent different St-bin widths, ∆St, increasing from top to bottom.
The observed trend is representative of results using other values of Stmid.
The first point of the top two curves are thrown due to poor statistical
convergence.

and a plateau region starts to appear at small r which grows with poly-dispersity.

The power-law model for the RDF essentially breaks down when there is significant

poly-dispersity. The appearance of the plateau at small scales signifies that one will

not see clustering at these scales. Specifically if one were to zoom in on the particle

field and look at a box of size corresponding to these scales, the particles should

seemed random-uniformly distributed. In probabilistic language, the probability of

finding neighbors (around a particle) at any distance shorter than the scale of onset

of this plateau is the same (yet it is still higher than at any longer distances).

A physical interpretation for this is that, on average, particles of different St

tend to cluster at slightly offset locations giving rise to a collective field of clusters that
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is fuzzy. This is hardly surprising and reflects the simple fact that particle trajectories

are deterministic function of their inertia. Mathematically the poly-disperse RDF can

be constructed from the mono and bi-disperse RDF via a double integral:

g(r, a 6 St 6 b) =

∫ b

a

∫ b

a

g12(r, St1, St2) ρ(St1) ρ(St2) dSt1 dSt2 (6.5)

where g12(r) is the bi-disperse RDF (which becomes the mono-disperse RDF when

St1 = St2); ρ(St) are the relative populations of each St. It is thus necessary and

sufficient to understand the mono and bi-disperse RDF in order to make quantitative

prediction on the RDF in any circumstances. Understanding the poly-disperse case

is important because poly-dispersity is ubiquitous in nature.

In many situations, one may wish to know how much poly-dispersity can one

have but still be able to describe the problem at hand as a mono-disperse problem

(e.g. as we did in Sec. 6.2.1). Figure 6.5 answers this by showing the evolution of the

clustering exponent, c1 with increasing poly-dispersity. We have investigated this in

the range of St simulated and found (as seen in this plot) that the Stokes number

width at which c1 is diminished by 10%, ∆St10%, is roughly Stmid/5 in the range of

Stokes number studied.
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Figure 6.5: Power-law exponent, c1, as a function of ∆St for Stmid = 0.4.
Red line is a linear fit on points satisfying ∆St 6 0.08. Trend representative
of results using other values of Stmid.

6.2.3 Comparing Experimental and DNS results: poly-disperse

Here we present a comparison between empirical and DNS results. The experimental

data presented are from the 5m20Hz run (cf. Table 5.1) with Rλ = 440. This is

higher than the DNS Rλ of 143. This issue of comparing data at different Rλ will be

fully discussed in Sec. 6.2.5, here we will simply state that an earlier study (Collins

and Keswani, 2004) suggests that clustering is only weakly dependent on Reynolds

at high enough Rλ such as considered here. Moreover, if Rλ should be an important

factor, the compared data would reveal this to us.

Figure 6.6 shows some of the experimental and DNS results on the same loga-

rithmic axes. The error-bar plots are the experimental RDF’s calculated from one-

dimensional inter-particle distances involving (continuous) poly-disperse particles.
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Recall that we can not avoid considering particles with finite Stokes number ranges

in order to have acceptable statistical convergence of the RDF. The other lines are

from DNS which will be described shortly. Three sets of particles are shown here

as different colors, starting from bottom in blue are particle with St = 0.01→ 0.21;

green, St = 0.09→0.29; red, St = 0.25→0.45. The plots in the figure are vertically

shifted so that their plateau regions at large r (30 . r/rk . 60) roughly coincide.

We are thus restricted to comparison of trends or slopes (the clustering exponent)

between these curves and the DNS results. The reason for such vertical shifting (also

mentioned in Sec. 5.3) is to remove the signature of large scale inhomogeneity in par-

ticle density from the RDF. Such inhomogeneity is very likely due to the incomplete

mixing of cloudy and dry air in the wind tunnel as detailed in Sec. 3.3.2∗.

The DNS results are shown in three different sets for each Stokes number range.

This is to discern the relative contribution of each correction made in the process

of bringing the DNS to an equal footing with the experiments. We start with the

dotted lines which are RDF’s calculated with three-dimensional positions ( g3d(r) ) of

particles matching the experimental St-ranges but with flat St-distribution inside each

St bin. Clearly, these lines are significantly steeper that their measured counterparts.

(We choose not to plot the mono-disperse counter part for comparison but in light of

Sec. 6.2.2, these results would be more steep than the dotted lines and thus, deviate

∗The same section also concludes (theoretically) that when there is a large scale separation between
the large scale inhomogeneity and the inertial clustering, the effect of large scale inhomogeneity on
the RDF signature of inertial clustering is just a multiplicative constant (at least in the first order).
Our experimental finding also supports this conclusion, see Sec. 5.4 for detailed account.
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Figure 6.6: Poly-disperse RDF on logarithmic axes. Colors represent dif-
ferent St ranges. St increases from bottom to top: blue is St = 0.01→0.21;
green, St = 0.09→0.29; red, St = 0.25→0.45. The error-bar plots are exper-
imental results [ g1d(r) ]; dotted lines, g3d(r) with flat St-bins; dashed lines,
g3d(r) with corrected (matching experiment’s) St-bins; solid lines, g1d(r) with
corrected St-bins. The experimental plots are vertically shifted so that only
their trends or slopes are compared (see text).

much more from the measurements.) This suggests the importance of matching the

shape of the particle St distribution when comparing results. The experimental St-

distribution of each St bin is far from flat (Fig. 6.7), and therefore it is necessary to

account for the actual distribution of St within the bins.

Back to Fig. 6.6. The dashed lines are the further corrected g3d(r) using poly-

disperse particles matching the experimental St distribution. The agreement with the

experimental curves is much improved. Finally, we also applied spatial averaging to

these g3d(r) to obtain the one-dimensional counterparts , g1d(r), plotted as solid curves

in the figure. This is done following the mathematical analysis of Holtzer and Collins

106



Figure 6.7: Probability distribution function of droplet Stokes number for
experiment 5m20Hz whose result is discussed in this section. Black line is a
log-normal fit.

(2002) using a realistic estimate of the dimensions of our phase-Doppler device’s

measurement volume which is roughly rk × rk. (In many instances, we also took the

alternative path of down-sampling the particle position into one-dimension, followed

by direct calculation of g1d(r) and found very good agreement.) One can see that the

main differences between g3d(r) and g1d(r) are restricted to regions of r less than the

measurement volume size ( ∼ rk in this case), where g1d’s are considerably flattened as

a result of dimensional averaging (consistent with the findings of Holtzer and Collins).

At the length scales that our experiments can resolve, this effect is almost negligible

even though it does shift the RDF’s in the direction of better agreement between

experiment and DNS.

Let us now focus on the final comparison between DNS and experiment (St-

bin matched g1d(r)), plotted in logarithmic axes in Figure 6.8. The most striking
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Figure 6.8: Poly-disperse RDF on logarithmic axes. Colors represent dif-
ferent St ranges. St increases from bottom to top: blue is St = 0.01→0.21;
green, St = 0.09→ 0.29; red, St = 0.25→ 0.55; purple, St = 0.40→ 1.0.
Open circles with error-bars are experimental results [ g1d(r) ]; Solid lines
with error-bars are g1d(r) from DNS (matching experimental St-bins). The
experimental plots are vertically shifted so that only their trends or slopes
are of absolute significance.

agreement between the two is that inertial clustering becomes pronounced at small

length scales, below r/rk ∼ 10 to 30, and apparently increasing with particle inertia

(St). A Similar trend was also found for mono-disperse cases (Fig. 6.2). That inertial

clustering starts at ∼ 10rk is consistent with the idea that it is a dissipative scale phe-

nomenon since there are many evidence that rk under-estimates the scale of strongest

velocity gradients in turbulence (the essence of energy dissipation) by a factor of ∼ 10

[ see Monin and Yaglom (1975, Sec. 23.4 and Fig. 77) ; and Saddoughi and Veeravalli

(1994, Sec. 3.2.1 and Fig. 10) ]. Both data also agree on the qualitative trend of

increasing clustering (e.g. the steepness of g1d) with particle Stokes number in the
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range of St 6 1. We can not at this time make clear conclusion about larger St due

to limited statistical convergence and other problems in the experiments.

Quantitative agreement between the experiment and DNS, again in terms of the

average steepness of RDF, is also very good at the experimentally resolvable scales.

This is especially true at the small St limit. However, it may be apparent that the

experimental curves tend to lie below the DNS at higher St, especially in the case of

red curves. Note that the experimental error-bars only capture statistical (sampling)

errors, thus this implies there is systematic deviation, albeit small, between the two

at larger Stokes.

The explanation for this deviation is still unknown. Some speculations includes

the sizing error of the PDI instrument, over-estimation of kinetic energy dissipation

rate and the effect of gravity not simulated in DNS. However we choose not dwell on

it here since it is a small deviation considering the state of knowledge of turbulent

phenomenology. To begin, the concept of Stokes number is not a sharply defined

quantity. Here it is defined as τp/τk, where τk is understood as representing coherence

time scale of dissipative (smallest) scale of turbulence, a quantity that may not have

a sharply defined value. Further, τk is always taken as (ν3/ε̄)1/4 via dimensional

analysis, which could easily be subjected to a dimensionless factor of order unity.

Lastly ε is a strongly fluctuating quantity in turbulence whose mean value may not

capture fully the physics in the problem (this intermittency is known to increase with
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Figure 6.9: The average steepness of the (poly-disperse) RDF’s in Fig. 6.8,
c1 as function of average Stokes number, 〈St〉. Blue is the DNS results;
cyan, empirical. c1 is obtained by fitting power-law (straight line in logarith-
mic axes) to RDF in the window of r/rk = 2→ 10, using the same fitting
algorithm used for in Fig. 6.3.

Reynolds number). In view of this, we found that if we increase the experimental

value of τk by about 9% (equivalent to reducing ε by 30%) then the agreement between

the two results would be nearly perfect.

Although the experimental RDF’s do not have a clear power-law like region as

the mono-disperse case, in order to illustrate the trend of the steepness of RDF with

respect to St, we did a power-law fit on these RDF in the window: r/rk = 2→ 10

where the slope are fairly constant. The results are shown in Figure 6.9.

We thus conclude that there is good agreement between experiment and DNS

despite some small unresolved deviations. Together with the good agreement found

in Sec. 6.2.1 between theory and DNS data (from exactly the same run used here),
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we have shown, indirectly, that there is some level of consistency between theory

and experiment. Specifically, if we assume that the agreement between DNS and

experiment found here can be extrapolated to the limit of ∆St→ 0 (mono-disperse),

then we can claim that there is a good agreement between experiment and theory for

inertial clustering of mono-disperse particles.

Further, in light of Eq. 6.5, if we can also shows that the DNS and theory agree

in the case of bi-disperse RDF, then by the same token, we may conclude that the

theoretical prediction for poly-disperse RDF (using Eq. 6.5) is indirectly consistent

with the experimental results. However, we will show that this is not the case, when

we compare DNS and theory in the bi-disperse setting in Sec. 6.2.6.

6.2.4 Relationship between c1 and c0

That the RDF’s in all cases (regardless of dispersity and dimensionality) become

horizontal at larger r, with onset within a narrow region of r/rk ∼ 10 → 30, has an

interesting and perhaps important consequence. It implies a close numerical relation

between the pre-factor (c0) and the power-law exponent (c1) in the power-law model

of the RDF (cf. Eq. 1.7).

To illustrate, we first need to generalize c1 to refer, in cases where a clean power-
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law that extends to r→0 is not observed†, to the slope of the RDF near the inflection

point (e.g. the region of r/rk = O(1) in Fig. 6.8), where the curve is quasi-straight.

Then, given any c1, our empirical findings imply that the value of c0 is constrained

such that the power-law, being a straight line in logarithmic axes, crosses the line of

(y = 1) at r/rk ' 10→30. This gives us a fuzzy relation of:

ln c0
c1

' ln 10 ∼ ln 30 = 2.3 ∼ 3.4 , (6.6)

or alternatively:

c0
1/c1 ' 10 ∼ 30 . (6.7)

Since c1 was also found empirically to have upper-bound of ∼ 0.8 (cf. Fig. 6.3,

Fig. 6.12 and Sec. 6.2.3), this allows us to estimate c0 from c1 within a factor of three.

We have tested this on the DNS results (by obtaining c0 and c1 via power-law fitting

as describe in the previous sections) and found that in almost all cases c01/c1 falls

within 7 to 30.

Further improvement can be made with the observation that c01/c1 increases

gradually with St within that range of 10 to 30. This observation might have a

physical explanation along the line of clustering of large particles (St > 1) in the

inertial subrange of turbulence.

†e.g. when St is large, poly-disperse, etc.
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Apart from practical implication of this relation, the important lesson we learn

from this is that c0 and c1 are not independent quantities. They are linked through

the fact that inertial clustering must cease at order of ten times Kolmogorov length,

which has been consistently found to be the scales where velocity gradient is maximum

[ see Monin and Yaglom (1975, Sec. 23.4 and Fig. 77) ; Saddoughi and Veeravalli

(1994, Sec. 3.2.1 and Fig. 10.) ].

If we substitute c01/c1 = rs/rk, where rs is the starting scale of inertial clustering,

into the power-law model c0(rk/r)
c1 , we get:

g(r) =
(rs

r

)c1
(6.8)

a power-law with a single parameter, c1, only if rs is sharply defined and universal.

However, our results suggest that rs is weakly dependent on St.

6.2.5 Asymptotic behavior at large Reynolds number

There have been questions about the behavior of inertial clustering with the increase

of Reynolds number. Recently Collins and Keswani (2004) showed DNS results (of

mono-disperse particles) at various Reynolds numbers up to Rλ = 152 and concluded

that both the clustering exponent, c1, and the pre-factor, co, approach saturated

values as Rλ increases. On the other hand Falkovich and Pumir (2004), in exact

113



disagreement, present DNS results showing linear (or faster) increase of c1 (called α

in their paper) with Rλ in the same range (up to Rλ = 130). This was interpreted as

a consequence of increased intermittency in turbulent velocity gradient as Reynolds

number increases.

Our results (experimental and from DNS) strongly support saturation of c1 in

the limit of large Reynolds number. In Sec. 5.3 (specifically Fig. 5.2), our results

from different sets of experiments covering Rλ from 440 to 660‡ showed strong Stokes

similarity in the steepness of the RDF (equivalent to c1). This implies that any

Reynolds dependence of c1 is within the error-bars and thus much weaker than the

dependence on Stokes. Besides this, the good agreement between experiments (Rλ =

440) and DNS (Rλ ∼ 140) found in Sec. 6.2.3 clearly supports this conclusion§.

Further, since c0 is intimately linked to c1 (in light of Sec. 6.2.4), our results

imply that c0 is also saturated at high Reynolds.

6.2.6 Comparing DNS with theory: bi-disperse RDF

Figure 6.10 shows the general behavior of the quasi¶ bi-disperse RDF. Each RDF

reflects the spatial correlation between two sets of particles with different Stokes

‡We actually have data up to Rλ ∼ 800 showing consistent trend.
§In fact, the experimental RDF was slightly lower than the DNS at larger St.
¶See discussion in Sec. 6.2.1 for details
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Figure 6.10: Bi-disperse RDF from DNS, with one Stokes number fixed,
St1 = 0.40, while the other, St2, varied. Left) Blue, St2 = 0.40 (mono-
disperse); green, St2 = 0.34; red, St2 = 0.28. Right) Blue, St2 = 0.40
(mono-disperse); cyan, St2 = 0.46; purple, St2 = 0.52. General trend repre-
sentative of cases at other Stokes numbers studied.

numbers, St1 and St2. Here the value of St1 is fixed while St2 is varied for each

RDF in order to show the effect of bi-dispersity. (RDF’s are invariant with respect to

exchange of St1 with St2 as anticipated). The general trend is similar to those found

with respect to poly-dispersity in Sec. 6.2.2. This is of course not surprising since the

two cases are intimately connected through Eq. 6.5. However, as can be seen in the

plots, the behavior of g12 is asymmetric when one Stokes number (St1) is fixed while

the other (St2) is varied away from it. When St2 is lowered with respect to St1, the

slope of g12 (at the inflection point) diminishes and a plateau starts to appear. On

the hand when St2 is increased from St1, the slope of g12 remain nearly constant.

The magnitude of g12 at r above the scale corresponding to the the inflection point,

becomes slightly larger than the mono-disperse case. We will come back to this point

later.
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Chun et al. (2005) proposed a model for g12 of the form:

g12(r) = c0

(
r2
k + r2

c

r2 + r2
c

)c1/2

, (6.9)

where rc is the scale below which flattening of g12 occurs; c0 and c1 has the same

interpretation as in the mono-disperse case. Note that this reduces to the mono-

disperse RDF (Eq. 1.7) when rc = 0, thus it is a generalization that encompasses

both cases. The Chun et al. theory also predicts (in the limit of St � 1), with

semi-empirical input from DNS (at Rλ = 47), that:

rc ' 5.0 |St2 − St1 | (6.10)

and

c1(St1, St2) ' 6.6St1 St2 . (6.11)

We will now compare our DNS results with these predictions with DNS values for

rc and c1 obtained by fitting Eq. 6.9 to the RDF’s (all the fits are very good by

inspection).

Figure 6.11 shows a comparison of theory (Eq. 6.10) and DNS for the trend

of the flattening scale, rc. The agreement is surprisingly good especially at higher

Stokes numbers (e.g. St > 0.4), considering that the theory was developed in the

limit of St � 1. It is clear that rc behaves symmetrically with respect to the point
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Figure 6.11: The normalized flattening scale rc/rk versus St2 − St1. For
each color, St1 is fixed while St2 is varied. Blue, St1 = 0.2; red, St1 = 0.4;
cyan, St1 = 0.7; green, St1 = 1.0. Magenta dashed line is the theoretical
prediction (5.0 |St2−St1 |). All rc’s were obtained by fitting Eq. 6.9 to g12(r)
in the window r/rk = 0.1→4.

of St2 − St1 = 0 (hereafter we define ∆St21 ≡ St2 − St1 ). This implies that rc only

depends on the absolute value of ∆St21.

Figure 6.12 shows the comparison of theory and DNS for the exponent c1. It is

clear that even at Stokes number as small as St1 = 0.2, the theory fails to account

for the asymmetric nature of c1 with respect to sign of ∆St21 (with St1 fixed). For

instance in the St1 = 0.2 case, when ∆St21 is negative (St2 < St1) c1 is linear with

St2 but when St2 > St1, c1 becomes almost constant. This can be understood as a

bottle-neck effect where c1 is always strongly limited by one of the Stokes numbers

which corresponds to less clustered particles (note that this is not always the smaller
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Figure 6.12: c1 versus St2 with St1 fixed at various values. Theoretical
prediction of linear dependence of c1 on St2 is not correct (see text).

St). Starting with any mono-disperse case (∆St21 = 0), changing only one of the two

St in the direction of increased clustering does not introduce a significant increase in

c1.

Taking everything together, the bi-disperse trends of g12 can be interpreted as

follows. Particles of different St cluster with sharpness characteristic of their St. The

‘clustering sites’ of different Stokes numbered particles are still in the vicinity of each
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other (e.g. in the regions of high low vorticity) however they are slightly offset. rc

reflects an isotropic average of these offsets. These offsets presumably have isotropic

statistics over the particle field, at least when there is no effect of gravity or other

non-isotropic factors. The bottleneck behavior of c1 can be deduced from the relative

cluster-sharpness of different St given the mathematical nature of RDF.

We conclude that the bi-disperse theory captures the behavior of the clustering

offset, rc. However, the theory does not predict the behavior of c1 correctly. To make a

better prediction that reflects the observed bottleneck effect, c1 can be approximated

(to the lowest order) by the smaller of the two mono-disperse c1 , each corresponding

to one of St1 and St2:

c1,bi(St1, St2) = min [c1(St1), c1(St2)] , (6.12)

where c1(Sti) refer to the power-law exponents of the RDF of mono-disperse particles

with the corresponding Stokes number. Based on observations in Fig. 6.12, this

empirical model is accurate to within twice the error-bars for Stokes number in the

range of 0 to 1.2.

With the failure of accurately predicting c1, the Chun et al. theory is not

expected to accurately predict the poly-disperse RDF (cf. Eq. 6.5).
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6.2.7 Comparing Experiment with DNS: bi-poly-disperse RDF

Figure 6.13 shows the comparison of various g1d(r) obtained from DNS and experiment

(run 5m20Hz). Each curve measures the spatial correlation between two sets of

particles with different ranges of St. Here we keep St1 fixed at 0.2 to 0.3 while St2 is

varied (corresponding to different colors). The simple poly-disperse case (St1 ≡ St2)

is shown as purple colored lines. From the DNS (top-left plot), the general trend with

respect to St2 is similar to the bi-disperse case (Fig. 6.10) described in Sec. 6.2.6 and

will not be repeated here. The experimental RDF’s (top-right) show a similar trend

albeit the trend at larger St2 is hardly discernable due to statistical noise (lack of

statistical convergence). The quantitative agreement for the slopes of these RDF’s

between DNS and experiment is very good when St2 is small, as seen in the top-left

panel. At larger St2, the two results remain close but the experimental curves seem

to be consistently less steep. Here again, due to statistical noise, there is no clear

evidence of RDF flattening at small r in the empirical curves.

We conclude here that good agreement between experiment and DNS albeit

some ambiguities from statistical noise. Further, the experimental results clearly

support the asymmetric dependence of the RDF slopes, c1, on St2 when St1 is fixed

(the bottleneck effect discussed in Sec. 6.2.6). A corollary of this coupled with the

conclusion of Sec. 6.2.6, is that the theory and experiment disagree on the trend of

c1.
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Figure 6.13: Bi-polydisperse RDF with St1 = 0.2→0.3 (fixed). St2 is var-
ied: blue is St2 = 0.01→ 0.1; red, St2 = 0.1→ 0.2; purple, St2 = 0.2→ 0.3
(mono-disperse); black, St2 = 0.3→ 0.5; green, St2 = 0.5→ 1.2. Smooth
solid lines are from DNS; circles are from experiments (5m20Hz). Statisti-
cal error of experimental points are very well represented by the apparent
fluctuation in each curve (which become larger at small r). Top-left and bot-
tom panels show comparison between DNS and experiment (separated for
clarity); top-right panel shows only the experimental results.
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6.3 Further discussions

6.3.1 Consistency of data between Cornell-1 and Cornell-2.

It is worth pointing out that the experimental data used throughout this chapter

(with flow condition 5m20Hz) was collected much later in time compared to those

used in Chap. 5. The two experimental campaign were called Cornell-1 and Cornell-2

respectively following their chronological sequence∗. Although most of the experimen-

tal setup are kept the same, there were two potentially significant changes. Firstly,

the PDI instrument used in Cornell-2 experiments were of a newer and much im-

proved version, this is the one that we described and characterized in Chap. 2. The

older probe (which was a loaned system) is no longer accessible to us for detailed

characterization.

Secondly, the spray pressure setting was changed in the Cornell-2 experiment in

order to have droplets of smaller sizes (cf. Fig. 4.3). However we are fully confident

that this does not have a significant consequence on the experiment since the impact

of the sprays on the turbulence is negligible (Sec. 4.2.3) and because droplets have

enough time to equilibrate with the small scale dynamics (Sec. 4.2.3).

Here we show a representative comparison of the results from both experimental

∗Cornell-1 was done in Dec. 2004 while Cornell-2 was done in June 2006.
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Figure 6.14: Comparing RDF from Cornell-1 and Cornell-2 experiments.
All RDF are for St = 0.1 → 0.5. Blue solid line is from Cornell-2, 5m20Hz
run. The others are form Cornell-1: red is 3m20Hz; cyan, 3m40Hz; green,
5m30Hz. All plots are vertically shifted to match at r/rk = 80 ∼ 120. Note
that Cornell 1 and 2 has different drop Stokes distribution (see Fig. 6.15).

periods (Cornell-1 and 2) in Figure 6.14. Shown were g1d from various experimental

run for particles with St = 0.1 to 0.5. The Cornell-1 RDF’s (the ×’s) are found to be

consistently slightly less steep than that the Cornell-2 RDF’s (solid blue). Although

the extents of the error-bars (due sampling noise) would challenge such a conclusion,

comparison between the blue and the red plot certainly favors it.

This inconsistency between Cornell-1, 3m20Hz and Cornell-2, 5m20Hz is more

pronounced when one takes into account the different Stokes distribution of these two

experiments, shown in Figure 6.15. Here we see that the droplet Stokes distribution

of the 3m20Hz data-set is flatter and thus contains more large drops than that of the

Cornell-2 data-set. We thus expect that the 3m20Hz RDF should be steeper than the

Cornell-2 RDF (cf. Sec. 6.2.2). Thus the resultant RDF of the 3m20Hz data being
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Figure 6.15: Comparing Stokes number distribution of droplets from
Cornell-1, 3m20Hz with that from Cornell-2, 5m20Hz. Alternatively, for
size distributions see Fig. 4.3.

systematically below the Cornell-2 RDF implies that the two sets of data are not

exactly consistent in term of the Stokes dependence of RDF.

Apart from that, we see again (in Fig. 6.14) that all RDF from Cornell-1

(arguably even Cornell-2) collapse well within their error-bars signifying Stokes-

similarity. We speculate that the slight disagreement between Cornell-1 and 2 could

be the result of less accurate droplet size measurement of the old PDI instrument.

Figure 6.16 shows another comparison between Cornell-1 and 2. In this case

both data sets were collected under the 5m20Hz condition. The Cornell-1 result in

this case shows some periodic fluctuations at small r with period of roughly 250µm

(which is close to rk and the measurement volume size). The origin of this oscillation

is not clear to us and it only affects a few of our experiments in Cornell-1. In the

other cases, either such oscillations do not occur or they have much weaker magnitude

such that we could not resolve them. Those RDF’s shown earlier in Fig. 6.14 were
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Figure 6.16: Comparing RDF from Cornell-1 and Cornell-2 experiments.
All RDF are for St = 0.1 → 0.5. Blue solid line is from Cornell-2, 5m20Hz
run. Yellow is form Cornell-1, 5m20Hz. All plots are vertically shifted to
match at r/rk = 80 ∼ 120. Note that Cornell 1 and 2 has different drop size
distribution (see Fig. 4.3).

selected from these apparently clean cases.

All these observations seems to suggest that at least some of the results from

Cornell-1 are questionable. This challenges our conclusions in Chapter 5. We thus

stress the importance of future experiments, either of the same kind or otherwise, in

corroborating our results.
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Chapter 7

Summary and conclusions

We have described a wind tunnel experiment that allows us to study inertial parti-

cle clustering in turbulence, utilizing a novel phase Doppler interferometer (Chap. 2

and 4). We have introduced the radial distribution function (RDF) as a way of quan-

tifying inertial particle clustering and presented some original works on foundational

and practical considerations related to it (Chap. 3). These include methods of treat-

ing finite sampling size, interpretation of the magnitude of RDF and the possibility

of isolating RDF signature of inertial clustering from that of large scale mixing.

In Chapter 5, we showed experimental evidence for Stokes similarity of inertial

clustering. We also found that the influence of Reynolds number and gravitational

settling parameter (Sg) is weak in the range studied (Rλ ' 400 ∼ 700; Sg . 1).
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There was also evidence for other qualitative agreements between the experimental

data and theory (detailed below).

We have also studied inertial clustering by comparing our experimental results

with direct numerical simulation (DNS) of particle laden turbulence, and also in-

directly with theory using the DNS data as a ‘bridge’ (Chap. 6). The DNS was

performed mimicking key realistic conditions found in experiments, in order for these

comparisons to be free of ambiguities. Good agreement among experiment, DNS and

theory were found in the followings (cf. Sec. 6.2.1 and 6.2.3):

1. The RDF arising from inertial clustering is power-law like and extends to the

limit of very small length scales (r � rk) for mono-disperse particles (the latter

was only addressed by DNS and theory, the experiment has scale resolution

limit of ∼ rk ).

2. The RDF, and thus inertial clustering, is found to show dynamical similarity

with respect to particle Stokes number. The RDF is flat (c1 = 0, no clustering)

when St = 0 and becomes steeper as St increases from zero.

3. For non-zero St, the RDF becomes larger than unity (signature of clustering)

at length scales r < 10 ∼ 30 rk. This is found to be true for all cases (mono-

disperse, bi-disperse, poly-disperse). This finding supports the understanding

that inertial clustering is driven by dissipation scale fluid motions and corrobo-
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rates the long standing consensus among researchers that turbulent vorticity is

maximum around the scales of 10 to 20 Kolmogorov lengths (rk).

Apart from these, good quantitative agreement was found between DNS and the

mono-disperse theory for St . 0.3. Good quantitative agreement was also found (al-

beit minor deviations at large St) between DNS and experiment in the poly-disperse

setting. Taken together, this implies that there is consistency between theory and ex-

periment regarding the Stokes number scaling of mono-disperse RDF’s (see Sec. 6.2.3

for details).

In Section 6.2.2, we showed, using the DNS data, that the effect of poly-

dispersity is to diminish clustering. Specifically, as poly-dispersity is increased, the

RDF slope is lowered and a plateau region appears below a small length scale that

grows with poly-dispersity. We further found that the reduction of the slope (c1)

becomes significant (> 10%) when ∆St ' Stmid/5. In the same section, we also

provided a mathematical relation that allows one to predict any general poly-disperse

RDF given the mono-disperse and bi-disperse RDF’s (Eq. 6.5).

For the case of spatial correlation between two sets of particles with different

Stokes numbers, we found disagreement between theory and DNS (Sec. 6.2.6). Specif-

ically, when comparing the bi-disperse RDF’s, we found that the theory was able to

predict the trend of the flattening scale, rc, very well but fails to account for the
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bottleneck effect found in the trend of c1. Since the experiment and DNS agree on

this bottleneck effect (Sec. 6.2.7), experiment and theory are thus qualitatively incon-

sistent. In view of that, we have proposed a corrected, first order, empirical model

for the bi-disperse c1 based on empirical observation (Eq. 6.12).

In Section 6.2.4, we presented, based on DNS and experimental data, evidence

for an intriguing (semi-exact) relation between the pre-exponential factor of the RDF,

c0, and the power-law exponent, c1. This finding led us to propose an alternative

form for the RDF of inertial clustering that is approximately controlled by a single

parameter, c1 (see discussion around Eq. 6.8 for details).

In Section 6.2.5, using the experimental and DNS data, we showed evidence that

inertial clustering becomes saturated once the Reynolds number is increased beyond

a certain level (Rλ ∼ 140).

Finally we end this thesis by pointing out that the work presented here, like

any work of science, is not without subtleties or shortcomings (see e.g. Sec. 6.3) and

thus should be subjected to tests and improvements by future studies, experimental

or otherwise.
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Appendix A

Details on characterization of active

grid turbulence

The turbulence generated by the present (and similar) active grid setup (cf. Sec. 4.2.1)

has been carefully characterized and used for various turbulence studies [see e.g.

Mydlarski and Warhaft (1996, 1998), hereafter as M&W-year ; and Ayyalasomayajula

et al. (2006)]. In M&W (1996), a similar but scaled down system (about half the size)

was extensively studied to determine the performance of the active grid. It was found

that the turbulence generated was slightly less isotropic (∼ 10% less) compared to

that generated by passive grids. However the anisotropy was restricted to the large

scale turbulence motion and thus the flow was concluded to be well suited for studies of

fine scale turbulence dynamics. It was also found that the velocity p.d.f. (probability
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distribution function) is slightly non-gaussian (skewed) due to the high intensity and

rapid decay of the turbulence. This was argued to be ignorable since it is very small

compared to the highly non-gaussian statistics of velocity differences and derivatives

in the small scale fluid motions. Other than these, the generated turbulence shows

highly promising flow statistics including a clear scaling range (inertial subrange) in

the spectra. Many of the results in that work were found to be in line with results of

earlier studies using passive grids.

In M&W (1998), a larger active grid, identical with the present, was built and

used in a wind tunnel of nearly the same cross-section as the present. The generated

turbulence was found to be qualitatively similar (details in the paper) with that of

the smaller system in M&W (1996) and closely follow all the trends.

Finally, the turbulent flow in the present setup was also characterized and found

to be in good agreement with the aforementioned systems (Gylfason, 2006, Chap. 5).
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Appendix B

Copyright information

The author has obtained permission for the use of each copyrighted materials this

thesis. In some cases, the permission is automatically granted since the author of this

thesis is also an author of the published works. Detailed copyright documentations can

be found in the corresponding supplementary document submitted to the graduate

school of Michigan Technological University.
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