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 عرض الصوت لمساعدة الصم باستخدام حوسبة الهواتف المحمولة

 محمود صبحي الهباش

 ملخص الدراسة

تعرض هذه الدراسة طريقة جديدة لعرض الصوت بغية مساعدة الصم في التعرف على الأصوات المحيطة بهم. 

رموز الأصوات التي يتم التعرف عليها بطريقة بالتزامن مع عرض   اهم مميزات الصوت المتغيرةوذلك بعرض 

لكي   MFCCتم استخدام مميزات للصوت تدعى  ، ولإمكانية عرض الأصوات بشكل فعالسهلة للمستخدم.  

التي   MFCCالمميزات المصنفة لخصائص الصوت بشكل جلي. وللتغلب على مشكلة تعدد ابعاد طريقة تعرض 

والثلاثون ألا وهي القيمة الناتجة عن مقارنة مميز تسع بعدا تم عرض بعد واحد فقط يمثل هذه الابعاد ال  43تساوي 

مع المميز الوارد. لهذا الغرض تم طرح طريقة جديدة لمقارنة هذا النوع من مميزات   MFCCمرجعي من نوع 

الأصوات تتغلب على المشاكل الموجودة في خوارزميات مقارنة الأصوات المعروفة , والتي تقوم بمقارنة كل بعد 

 على حدة مما نتج عنه قرارات خاطئة في الحكم على تشابه بعض الأصوات. 

حيث أن  كل شريحة زمنية من  اكثر قابلية للاستخدام تم ادراج خاصية التعرف على الأصوات ,جعل التطبيق ول

يتم بواسطتها التعرف على الاحداث الصوتية السريعة   K-NNمن نوع  الصوت اخضعت لخوارزمية تصنيف

للتعرف على السلاسل مخصصة   DTWتدعى وكل ثانية زمنية يتم تخزينها وإحالتها إلى خوارزمية تصنيف ثانية 

 تسلمان نتيجتهما إلى جزئية العرض.كلا الخوارزميتين تعملان في نفس الوقت و .الزمنية المتغيرة

وتمت برمجته باستخدام لغة  Androidالتي تعمل بنظام  هذا النظام مصمم كتطبيق يعمل بواسطة الهواتف الذكية

Java   ت الخوارزميات اخذت بالحسبان , حيث يتم العرض  باستخدام لذلك كان هناك  عدة اعتبارات متعلقة بتعقيدا

هذه الوحدة بالتالي يمكننا ضمان سلاسة العرض  التي تحويبالأجهزة الذكية  GPU  وحدة عرض الرسومات

على مقابلات أجريت مع خمسة اشخاص ممن لديهم إعاقة سمعية  ة لذلك تم تصميم هذا النظام بناء  وسرعته. إضاف

الاعتبار طريقتهم المفضلة لعرض الصوت وفيما بعد تم اختبار النظام بواسطة نفس الأشخاص الخمسة  ,آخذين بعين

وتم تقييمه بناء على طريقة تفاعلهم معه ونتج عن ذلك طريقة أسهل للتعامل مع عرض الصوت ومناسبة أكثر 

 للأشخاص ذوي الخبرة القليلة بالتقنية الحديثة.

 

 



xiv 
 

ABSTRACT 

This thesis presents a new approach to the visualization of sound for deaf assistance that 

simultaneously illustrates important dynamic sound properties and the recognized sound 

icons in an easy readable view. .In order to visualize general sounds efficiently , the 

MFCC sound features was utilized to represent robust discriminant properties of the 

sound. The problem of visualizing MFCC vector that has 39 dimension was simplified 

by visualizing one-dimensional value, which is the result of comparing one reference 

MFCC vector with the input MFCC vector only.  New similarity measure for MFCC 

feature vectors comparison was proposed that outperforms existing local similarity 

measures due to their problem of one to one attribute value calculation that leaded to 

incorrect similarity decisions. 

Classification of input sound was performed and attached to the visualizing system to 

make the system more usable for users. Each time frame of sound is put under K-NN 

classification algorithm to detect short sound events. In addition, every one second the 

input sound is buffered and forwarded to Dynamic Time Warping (DTW) classification 

algorithm which is designed for dynamic time series classification.  Both classifiers 

works in the same time and deliver their classification results to the visualization model. 

The application of the system was implemented using Java programming language to 

work on smartphones that run Android OS, so many considerations related to the 

complexity of algorithms is taken into account. The system was implemented to utilize 

the capabilities of the smartphones GPU to guarantee the smoothness and fastness of the 

rendering. The system design was built based on interviews with five deaf persons 

taking into account their preferred visualizing system. In addition to that, the same deaf 

persons tested the system and the evaluation of the system is carried out based on their 

interaction with the system. Our approach yields more accessible illustrations of sound 

and more suitable for casual and little expert users.    
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CHAPTER 1 

INTRODUCTION 

This chapter introduces the problem that a deaf person faces in his daily life and explains how 

deaf can overcome these difficulties by his own or by various aid devices. The vision sense that 

deaf person had can be the best solution, where we explained how we could take advantage of 

it to build our proposed system. This chapter also explains the goals of this study and the 

methodology we followed to achieve the resulted system. 

1.1   Sound awareness 

People use sound mainly to gain awareness of the state of the world around them. For example, 

many everyday devices such as mobiles, doorbells, ovens, and telephones produce sound to 

make us aware of their states. At office, sounds of co-workers provide awareness of whether 

they are still working or one is alone in an office. Similarly, at street, one might hear the horn 

of cars and guess a passing car is becoming closer.  

Hearing is a very important sensory function to human beings [1]. However, not all the humans 

have the sense of hearing. According to Palestinian Central Bureau of Statistics, more than 

43617 people in Gaza and West Bank are deaf  and 95% of them suffer from the illiteracy [2] 

as they need special equipment and learning criteria. Globally, the National Center for Health 

Statistics states that, more than thirty-seven million people in the United States have some form 

of hearing loss, approximately seventeen percent of the population [3]. While the largest 

percentage of persons with hearing loss are sixty-five or older, there are many persons lived all 

entire their lives with an inability to hear most sounds. One child in every thousand is born deaf 

or becomes deaf by the age of three [4].  



2 
 

1.2   How hearing impaired can experience sound 

For centuries, many devices have been made to allow deaf persons to function normally in a 

hearing society. Today, deaf persons have a variety of “hearing aids”; including cochlear 

implants, and assistive listening devices and some other assistive tools as shown in figure (1.1). 

These devices do not improve hearing like corrective lens can improve vision; they simply 

make certain sounds louder or softer. The majority of “hearing aids” are small personal devices 

that manipulate sounds before they reach the person’s ear and amplify them to levels that are 

suitable to the wearer [3]. They are made in a variety of shapes and sizes, fitting inside the ear, 

around the ear, or as an external module connected to a headset. The common property of these 

devices that, each device has a microphone that receives sound and a processor that converts 

the sound into an electrical signal, and then  amplifies or transforms  the sound, into another 

form of  acoustic properties more perceptible to the user but they are optimized for speech 

only[5]. 

 

Figure 1.1 : Equipment used often used to help hearing impaired 
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1.2.1    Assistive listening devices based on vibrations 

There are many ways that a hearing-impaired person can experience sound, both with his or her 

own hearing faculties and with other senses. We often think only about how sound vibrations 

reach our ears, while these vibrations also reach the rest of our body. There parts of the human 

body other than the ear that can sense the vibration of sounds. Research has shown that 

hearing-impaired person can experience sounds similar to normal hearing people [6]. 

According to Dr. Dean Shibata [7], “the perception of the musical vibrations by the deaf is 

likely every bit as real as the equivalent sounds, since they are ultimately processed in the same 

part of the brain”.  Russ Palmer [8] made a study about the way that sound can create 

sympathetic vibrations in the body. He noted that lower frequencies can be felt in the feet, legs, 

and hips; mid-range frequencies can be felt in the stomach, chest, and arms; and higher 

frequencies can be felt in the fingers, head, and hair. Similarly, certain parts of our bodies react 

in certain ways with some specific frequencies. Most of these frequencies are in lower range of 

our hearing, with some lying below our range of hearing .This explains why sometimes we feel 

string vibrations from music in our lungs or in our eyes. 

The use of vibration devices to experience sound (mainly musical sound) has been applied in 

several ways over the past few years. Several simple methods, such having hearing impaired 

individuals sit close to sources of vibrations or holding balloons, have been applied in the past , 

but in the recent years many advanced technologies are designed to enhance the experience of 

the sound vibration like never before. Russ Palmer designed a sound system that amplifies 

music vibrations through feet [8]. Similarly, Strike-A-Chord Company produces vibration 

chairs that amplify music and direct its vibrations to sections of chairs. 
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The vibration itself is not enough for hearing impaired person to experience sound, so other 

techniques were merged to produce better experience.  In some deaf schools a specific room is 

made for listening to music where several 100-watt amplifiers are positioned to the face of 

deaf, sending vibrations through the floor and exciting the nerves of listeners. In addition to 

these amplifiers, there is an audio spectrum analyzer device that displays the properties of 

music as visual information (colors, lines, etc.).  

1.2.2    Assistive listening devices based on vision 

Vision can help a hearing-impaired individual extract meaning (or assign meaning) to sound 

events, if the sound visualizing describes the sound properly for hearing impaired. The rapid 

development of video technology has inspired many researches for sound expression on visual 

displays. Even without video, a hearing impaired individual can experience the sound. The 

movements of speaker lips, the facial expression, the rise and fall of drum sticks can offer a lot 

of information to someone who cannot hear. Also, the use of sign language can be extremely 

useful tool to those who cannot hear.  

Implementing aid device for hearing impaired based on vision is very important and offers 

much useful information for him. The problem here arises from that hearing impaired 

individual already uses vision for his own aid not only for experiencing sounds. The designing 

of visual displays for sound must not encounter on disabling the human vision for things other 

than the sound visualization. Beside this design consideration, there are other many factors that 

are related to the hearing impaired individual must be taken in consideration.  

Technology to represent sound visually has existed for several years. One of the most familiar 

examples of sound visualization software is the Microsoft Windows Media Player [9]. The 
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software does not give a true representation for the music, but it responds visually to various 

aspects of music such as amplitude, rhythm, and tempo. The user can simply detect the 

meaning of the displayed image for some specific sounds.  

1.3   Challenges in sound Visualization 

Sound visualization research falls under the general area of sound processing and image/video 

processing [10]. Image and video processing are essential parts of sound visualization research 

as they can be used as textural representation of audio input. However, there are many aspects 

relevant to sound visualization. In [10] Zhang illustrated in Figure (1.2) the main research areas 

that are relevant to sound visualization. The thickness of the lines indicates the importance of 

each area to this research. Bi-directional arrows are indicative of reciprocal relationships.  

Other related research areas include machine learning, computer vision, and data mining. For 

example, the similarity measures (which play essential rules in data mining) are needed for 

comparing different sound features. Sound visualization will benefit from any improvements in 

these related research areas.  

 

Figure 1.2 : Aspects of research areas related of audio visualization [10]. 
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Sound visualization’s success depends on correct extraction of sound features and similarity 

measure between these features. The sound features can be used in the production of resultant 

images/videos generation and the similarity measure can be used for differentiation between 

them.  

To summarize, the sound visualization research in this thesis explores the following research 

questions:  

1. How can we construct an image or sequence of images that represent real time 

sounds simple for hearing impaired individual to understand? 

2. What sound features can be used to accurately describe the heterogeneous sound 

environment? 

3. How can we differentiate between sound features that are mapped to various sounds 

and represent these differences on the generated image sequence? 

4. How can features of sound be mapped into the features of the generated images?  

5. Is it possible to use or develop a sound classification method that classifies general 

sounds accurately enough to allow visualization of real time sound? 

1.4    Approach 

The approach that was used to solve the sound visualization for deaf starts from capturing 

sound from a portable device which can be carried easily by deaf individual , then  extracting 

the most describing features for every time frame of sound , while applying suitable similarity 

measure between the extracted features in real time. The visualization is done based on the 

result of the applied similarity measure by assigning different colors to specific intervals of that 

result.  
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1.4.1   Sound Features  

Many different types of sound features have been proposed to describe sound coming from 

speech recognition community [11][12][13][14][15]. Researchers tried to taxonomy the 

features that can be used to describe sounds. Sound features can be categorized into basic 

groups [16]; temporal , energy , spectral , harmonic , and perceptual features . We will describe 

each category . 

(a) Temporal shape features : 

Can be computed from the wave form of the signal . Examples: attack-time . temporal 

increase/decrease , effective duration . 

(b) Temporal features :  

Like auto-correlation coefficient, zero crossing rate . 

(c) Energy features :  

Features representing various energy content of the signal . Examples: global energy , 

harmonic energy , noise energy . 

(d) Spectral shape features : 

Features resulted from applying Short Time Fourier Transform (STFT) to the signal. 

Examples: centroid , spread , skewness , kurtosis , slope , Mel-Frequency Cepstral 

Coefficients  (MFCC) . 

(e) Harmonic Features : 

Features computed from the Sinusoidal Harmonic modeling of the signal . Examples : 

harmonic/noise ratio , harmonic deviation . 
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(f) Perceptual features :  

Features computed using a model of the human ear process. Examples: relative specific 

loudness, sharpness, spread . 

In this thesis we will focus on spectral shape features as it proved higher discrimination results 

than other features[16]. 

1.4.2   Similarity measures  

There are many methods that can be used to compare and derive the differences between two 

vectors. They are grouped into main categories according to their functionality. 

a)  Local dissimilarity/distance measure 

Similarity measures that compare the differences between two vectors according to the 

values of these vectors only. Usually, this type of similarity measures makes one to one 

attribute comparisons. Such as Euclidean [19], cosine[20],…,etc.  

b) Statistical similarity measures 

Similarity measures take into consideration the statistics parameters of the dataset to 

compare between two vectors from that dataset. Such as  Kullback Leibler distance 

[21], and the Hotelling T2-Statistic distance [22]. 

The local similarity measures are more suitable to our proposed system because it is hard to 

have full dataset for all environmental sounds, so statistical measures will be biased according 

to the dataset. 
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1.5    Research overview  

1.5.1   Objective 

In our method, we focus on helping the deaf for experiencing surrounding sound by visualizing 

the sound. Due to the deaf lack of experience of sound generally, the visualization of sound 

rendering should be readably simple, real time runnable, and portable.  

Due to the sensitivity of resulted application for deaf individual life, the application 

performance should be high and capable of processing many input sound classes in real time. 

Besides that, the accuracy of results that will be displayed on portable device screen should be 

high because there is no other way that the deaf can guess the correctness of the visualized 

result.  

Our proposed system will pick the most suitable sound features, similarity measures, classifiers 

, rendering frame work  to achieve the main goals of the system and this not an easy job at all!.  

1.5.2    Methodology  

Our method starts be making interviews with deaf persons living in different environments by 

considering their profession, capabilities, and ages. The interviews should give a whole 

overview about good visualization system behavior. In addition to that, the interviews should 

present some existing applications resulted from previous studies and collecting the deaf 

impressions about these applications and guessing their points of weakness and power. 

As mentioned in approach section, many different sound features can be used for representing 

sound. We tries to pick the most discriminative sound features taking into consideration the 

computation power of the device where the system will be implemented. Since there are many 
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studies evaluating these features, we will take advantage to pick the most suitable features 

rapidly without making exhaustive experiments on every previously proposed sound features.  

Sound features are not the only obstacle that our methodology faces. Comparing between two 

sound features is also an obstacle; since sound features vectors have some special properties led 

us to propose new similarity measure for this purpose. 

Rendering the visualized sound is the step that we have made based on the interviews with deaf 

after analyzing their preferred picture about the proposed system. The interview made us aware 

of some special needs that we did not take into consideration because we can experience 

sounds not like the deaf. 

Finally, after combining the results of the whole previous steps we noticed that it is hard for the 

deaf to use our proposed system directly without continuous help, so we added recognition 

module to the system that classifies some prior known sounds to help the user. We made a 

database that contains multiple important classes of sound and trained our classifiers on it 

taking into consideration using some lightweight classifiers for real time classifications. We 

tend to update the training set of the classifiers and update the application when the users 

connect their smart phones to the internet.   

1.5.3    Contribution 

Our contribution to sound visualization was done in more than one direction to develop system 

that helps the deaf to experience sound, despite their loss of very important sensation, which is 

hearing. 
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 We used the advantage of deaf vision to handle sounds as visual signals instead of 

sound signals by our visualizing system, which simplifies this job by acquiring the 

sound from the surrounding environment and processing it to be displayed in simple 

way to understand.  

 The system was not developed through straight easy steps, but required additional 

contribution to overcome the existing similarity measures shortcomings. 

 Another contribution is the usage of smartphone capabilities to develop such system 

where performance optimization is required as so as taking into consideration the 

computational complexity of used algorithms. 

The proposed system can be viewed as sound class free system that doesn’t depend on specific 

data set to handle specific sound class . It was designed to work with any type of sound. 

1.5.4    Thesis Organization 

In Chapter (2) we will review the related work for sound visualization problem, we will 

describe some of the work that was done in the field, focusing on the advantages /disadvantages 

of resulted application that resulted from those works and we will review the result for each 

work in order to develop our application. 

Then we will overview some background theory in Chapter (3), explaining some basic steps for 

processing sound signals to extract sound features. We will explain the most well-known sound 

features in literature in detail explaining our point of view about their validity to be 

implemented in our system. After that, we will present most generally used local similarity 

measures definition in order to evaluate them in Chapter (5).   
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Chapter (4) describes our proposed system in detail. It  explains the interview mechanism that 

we made with deaf participants and presents the summary of our and their view about the 

preferred visualization system. It describes every single step in building our visualization 

system , starting from the input of the sound, passing with feature extraction methods  by 

explaining the implemented equation for each feature extraction method according to the 

theoretical presentation in Chapter (3). In addition, in    Chapter (4), we describe the proposed 

similarity measure for comparing MFCC sound features effectively explaining the drawbacks 

of other similarity measures. Finally, the visualizing system framework was expressed in detail 

to be later evaluated. 

Chapter (5) views the data set that was used to develop the proposed system and describes the 

system environment phases and procedures. In addition, it describes the results of each 

experiment and presents the overall evaluation of our proposed system. 

Finally, Chapter (6) includes the conclusion of our research, which summarizes research 

remarks and notes about our research.  

1.6    Conclusion 

We introduced the problems of experiencing sounds by hearing impaired and presented 

our solution by building visualization system of sound. The sound visualization has 

many challenges related to audio processing, audio feature extraction, audio 

classification, and image processing. We introduced the methodology that we followed 

to accomplish our mission by introducing new similarity measure and new visualization 

criteria.   
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CHAPTER 2 

RELATED WORKS 

In this chapter, we present previous related works to our research. We’ve started with early 

devices that tried to display sound as any other signal. We advanced with more specified sound 

visualization systems. We presented the system that tried to display some specific sound classes 

for training or aiding people. Finally, the systems that proposed to aid deaf people are 

explained in details and analyzed from our point of view. 

2.1   Sound display as general signal 

The term "Sound visualization", also called "Audio visualization" has been defined by Nomura, 

Shiose, Kawakami, Katai and Yamanaka as reading sounds [23]. There are many researches 

that were done in sound visualization field. This chapter contains a review of existing 

approaches to sound visualization, we are going to focus on them starting from historical 

review of sound visualization methods and discussing in detail the drawbacks of the existing 

methods that led us to propose our sound visualizing method.  

Various attempts have been made to visualize different kinds of sounds; some of them were 

prior to the computer invention. The first attempt at visualizing sound can be traced back to the 

development of the phonautograph [24] see Figure (2.1). A phonautograph is a device for 

converting sound into visible traces. Invented by Frenchman Édouard-Léon Scott de 

Martinville  , it could be used to visually study and measure the amplitude envelopes and 

waveforms of speech and other sounds, or to determine the frequency of a given musical pitch 

by comparison with a simultaneously recorded reference frequency [25]. The images from a 

phonodiek (advanced phonautograph) illustrated that the differences of the sounds could be 

visually presented using different wave shapes. Similar to modern oscilloscopes, the 

phonautograph and modern oscilloscopes can display the wave shape along the time axis. 
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Figure 2.1: An early phonautograph (1859) [24]. 

 

2.2   Advanced sound visualization  

Besides representing sound amplitudes as waves in the time domain using modern oscilloscope, 

sounds may be visualized using spectrograms.  

 

Figure 2.2 : Spectrograph for speech 

The spectrograms are visual representation of the spectrum of frequencies in a sound. They 

represent an audio signal in the frequency domain, as shown in figure (2.2). The magnitudes of 

the windowed discrete-time Fourier transform are shown against the two orthogonal axes of 

time and Frequency. Experts may directly derive information from sound spectrographs such as 

bandwidth (wide band or narrow band), or even recognize certain words by reading their 

spectrographs [26]. 

The oscilloscope and spectrogram representations of sound are hard to understand by non-

professional users, so more easier methods are required to represent the sound visually. 

Tzanetakis and Cook proposed a method for visually representing audio files by TimbreGrams 

images [27], light and bright colors typically correspond to speech and singing, while purple 
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and blue colors represent classical music segments see figure (2.3). They depended on the 

human color perception and the pattern recognition capabilities to extract timbral and temporal 

information from TimbreGrams . 

 

 

                                      Figure 2.3: TimbreGrams for speech and classical music [27]. 

 

This approach can be used as an effective tool for speech/music discrimination as non-

professional users can easily distinguish speech from classical music by the colors in the 

images. We mainly depend on this approach to build our visualizing system. However, this 

method does not meet our audio visualization requirements because it does not give enough 

information about the content of an input file especially for deaf person. 

Margounakis and Karatsoris proposed similar work for music only [28], in which visualizing 

features are limited to a specific feeling they described as the "chromatic of music". A 

chromatic is adopted from color models and used to describe a user's feeling for a piece of 

music. The drawback of this visualizing system is that it cannot be used effectively on general 

audio input or by non-professional users.  

Other visualizing approaches represented the sound by varying shapes as visual feature. One 

approach generated black-white image containing shapes representing sound features [29].  In 

this algorithm, any sound signal f(t) is transformed into a three-dimensional phase space 

Φ3(f)=(f(t),f'(t),f''(t)).  Simple shapes used to represent periodic signals, for example a sinusoid 

represented by a circle or an ellipse. Natural sounds that contain different sinusoidal signals 

have more complicated shapes. The images in Figure (2.4) represent the same note played on 
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three different instruments. A modified version of this approach made the roughness of the 

curve representing the consonance of a chord [30]. 

 

Figure 2.4: Visualization of a single note on various instruments in phase space [29]. 

 

Some audio visualization systems (especially music) aim to use the value 

similarity/dissimilarity between audio pieces to be an element in a matrix and represented as a 

pixel in the final. The audio pieces are parameterized into acoustic feature vectors where 

similarity/dissimilarity measures can be applied, so that similar repeating elements are visually 

distinct, allowing identification of structural and rhythmic characteristics. This approach firstly 

used by Foote’s visualization of music using self-similarity [31] produced a check-board 

image, intended to show the resemblance among the pieces of music input. This approach has 

been extended to structural analysis for indexing and thumbs nailing [32] [33].  

More recently, Karahalios and Hart introduced a new method for visualizing the structure of 

music showing consonant intervals between notes and common chords [34]. All of these 

methods are made for knowledgeable users and are strictly designed to visualize musical input, 

for example songs often have repeating regions, from the resultant structure image. Viewers 

can find the repeating patterns which are important for music summarization. But they do not 

help in understanding the content beyond the structure. 

Other works have also represented audio properties by other visual features in other 

applications, such as loudness by height of a sphere [35], reverberation by color [36], and pitch 

by light intensity [37]. 
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2.3 Music visualizing  

Music visualization is the most commonly studied topic in audio visualization [10]. Most 

research in audio visualization handles music input only. The audio features that best describe 

music are not necessarily the best for general audio input. Some audio features of music, such 

as tempo, are not likely suitable to general audio files so the approaches for visualizing music 

are not preferable for general audio visualization. Any system for the visualization general 

audio input must be able to visualize music as well as other sounds. Therefore, the audio 

feature that should be used for visualizing audio input must be able to describe all types of 

audio input. 

Widespread availability of powerful and user-friendly personal computers and portable 

computing devices led to the development of music visualizers, which generate animated 

imagery based on music. The 1999 Windows Media Player application Visualizations created 

various designs as visual representations of any given music played through it. Such 

applications are now more developed in other digital media players like Winamp and iTunes. 

This produces a fluid, textured, rhythmic and animated video stream that is generally 

nonrepresentational . 

Some music visualization research has resulted in methods that are used to represent or 

describe a piece of music [38] [39]. Others have developed ways in which music can be 

generated to represent given visual features [23] [28] [40].  

Hiraga and Matsuda [39] categorized music visualization methods into two types, augmented 

score and performance visualization. Augmented score visualization method was intended to 

assist  performers in learning a piece of music [41] [42], while performance visualization 

method was developed to assist musical performances [43] [44]. Hiraga and Watanabe [45] 

generated a system to illustrate any change in performance using a series of Chernoff faces that 

may be used in music training or practice. 

In some approaches, researchers concentrated more on music analysis than on visualization. 

For example, Hiraga and Matsuda visualized tempo change, dynamic changes and the 
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articulation of music pieces with vertical lines, horizontal intervals and the height and width of 

bars [39]. For example, Politis et al. [28] argued that the song "How you gonna see me now" 

(Alice Cooper) is most similar to "The trooper" (Iron Maiden) and both belong to the category 

of Metal songs. They visualized these two songs by using chromatic graphs. It is also important 

to note that the goals for music visualization differ from our goal. For example, music 

visualization has been used to support music learning and analyze performance[45].  Mood was 

used instead of content and tags for a musical data mining interface [32].  Our proposed system 

has been tested using different type of music sound and provided visualization that clearly 

represent the difference between these types in simple memorable interface.  

2.4   Speech visualization  

Hailpern et al. [46] hypothesized that speech visualization techniques can be mainly used to 

support communication and to help autistic children develop speech skills by visualizing 

vocalization. 

 

Figure 2.5 :Graphic matching in speech learning [47]. 

 

Karahalios and Bergstrom [47] visualized speech using simple graphical elements to identify 

the current speaker as shown in figure (2.5). Different colors were used to represent different 

speakers around a table and the thickness of the line, which forms a section of the circle, 

corresponds to the average amplitude of voice. Similar approaches can be found in [48] where 

Bergstrom and Karahalios visualized speakers in conversations around a table using a clock-

like image as shown in figure (2.6). 
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Figure 2.6: Clock visualization for conversation: [48]. 

 

Simunek [49] developed a system that animate human face based on phonemes that produce a 

kind of visualization for speech by animating lip movement. Bregler et al. created a video of a 

person mouthing words that he did not speak on image of still face [50]. Bregler's methods 

could be adapted to generating new video sequences that accurately represent the time 

sequence of sounds in a general audio file. 

The methods of speech visualization may differ from our proposed system, except the 

approaches used in speech visualization and the uses of video represent commonalities. 

2.5 General sound visualization  

Audio visualization results are most commonly static 2D or 3D images. Smith and Williams 

[51], Chaudhary and Freed[52], Kaper et al. [36] and Hiraga et al. [32] have also constructed 

visualizations of audio files in three-dimensional space. Smith and Williams present a method 

for visualizing the audio properties of MIDI music by using color in 3D space [51]. The 

mapping function is defined by the musical characteristics and the piece of music is 

transformed into three-dimensional graphical views. While in [52] the time, amplitude and 

features  of sounds are visualized in 3D as in Figure (2.7). Tones are represented by colored 

spheres and the pitch, and volume and timbre are the audio properties that define the spheres. 

Kunze and Taube also generated a 3D graphical tool that could be used by composers for 

writing music [53]. Hiraga et al. [32] produced 3D images in three properties; pitch, volume 

and tempo were represented by the height, diameter and color saturation of stacked cylinders. 
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Either 2D or 3D images can be employed to visualize sounds as long as there are enough visual 

features available to represent the selected audio features. The advantages of 3D over 2D 

become apparent when more than one sound is visualized at the same time. 

 

 

                                                 Figure 2.7: Sound visualizations  in method [52]. 

2.6 Sound visualization for hearing impaired or deaf 

Hearing impaired and deaf people requires special properties for visualizing sounds. They need 

simple and available techniques to get their attention and to connect their awareness of sound 

with the real properties of sounds. Many devices and equipment are available to help deaf and 

hearing impaired people, adapt to their environment, and function in society more efficiently. 

For example, smoke alarms, phone ringing, and alarm clocks can all be converted to vibrating 

mechanisms or flashing lights for notification. 

Audio visualization for hearing impaired and deaf has been proposed in [54][55][56]. In [54] 

the authors analyzed the techniques used by deaf people for sound awareness; they made 

interviews with deaf and hearing impaired participants for designing an efficient method of 

sound visualization, and based on these interviews, they based their visualization system on 

drawing sounds as waves (circles). Based on these results, two sound displays have been 

presented. One is based on a spectrograph and the other is based on positional ripples. In the 

spectrograph scheme, height is mapped to pitch and color is mapped to intensity (red, yellow, 

green, blue, etc.). In the positional ripple prototype, the background displays an overhead map 
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of the room. Sounds are depicted as rings, and the center of the rings denotes the position of the 

sound source in the room. As shown in Figure (2.8) the size of the rings represents the 

amplitude of the loudest pitch at a particular point in time. Each ring persists for three seconds 

before disappearing. 

 

Figure 2.8: Speech Visualized by Positional Ripples[54]. 

 

This architecture however is impractical since it requires prior knowledge of the surrounding 

place (e.g. office); also it is expensive in terms of equipment setup (array of microphones 

placed at certain corners in the room) and is also not portable (bound to the workplace 

environment). 

 

In [55], new models have been proposed, based on the proposed system in [54]. The authors 

proposed two models. The first model, based on single icon scheme, which displays recognized 

sounds as icons, located on the upper right corner of the user’s computer monitor as shown in 

Figure (2.9). It was used throughout the analysis and was shown to give good results. 

According to the survey performed in [55], all participants liked it because it identified each 

sound event. 

The disadvantage of this method however is the actual need for prior knowledge of the type of 

sound to be detected which is very hard for a person who cannot hear well. The second model, 

the spectrograph with icon visualization, improves over the single icon model in that it 

combines the black and white spectrograph model in [54] with the single icon model. This 

mapping tends to associate a particular sound with its shape on the spectrograph [55].  
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Figure 2.9 : Single icon model [55]. 

But this method also shares the disadvantages of the first method where the need for prior 

knowledge of the type of sound to be detected. 

2.7 Conclusion 

A more general and simpler method is needed because the existing research related to audio 

visualization provides no approach that can be used to visualize the content of audio in simple 

manner suitable for deaf person as well as depends on highly representative audio features. 

Our proposed method presents a general method for audio visualization, which is more 

accessible than the existing methods and depends on robust sound features because the resulted 

video from the application is directly representative of sounds in the real world as well as 

highly discriminating between different types of sound. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

In this chapter, we overview some background theory explaining some basic steps for 

processing sound signals to extract sound features. We explain the most well-known sound 

features in literature in detail explaining our point of view about their validity to be 

implemented in our system. After that, we present most generally used local similarity 

measures definition in order to evaluate them. In addition, we present the theory of most well-

known classifiers suitable for building our system. 

3.1  Sound signal analysis  

Sound can be processed digitally by extracting its features. Luckily, the sound is a natural 

signal, thus the signal processing theories can be applied to sound for extracting its features. 

This section introduces the basic principles of feature extraction. Several most commonly used 

in literature analysis methods are considered, inspired from the speech recognition community. 

LPC and Cepstral models are presented, as well as techniques representing behavioral models 

of the human ear.  

The feature extraction [57] is the most important part of recognition, classification, and 

visualizing systems. If the features have not good discrimination properties between sound 

classes, no classifier or visualizing system architecture will be efficient, as advanced as it could 

be. In practice, features always present some degree of overlap from one class to the other. 

Consequently, it is important to choose the features that are most robust for representing sound 

classes and immune for noise.  

Ideally good features should have the following properties: 

 They have to emphasize the difference between classes of the sound. 

 They have to be immune to noise effect , preserving the class separability  as can as 

possible. 

 Their intra-class variance should be minimal, and their inter-class means well separated. 
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 The feature dimension number has to be limited but sufficient. Too large dimension 

leads to more complex systems architecture to handle these features. This fact is the 

well-known “Curse of dimensionality” [58].  

 A high correlation between features should be avoided, as much as possible. Despite 

that there are situations where slight amount of correlation can be benefit, where one 

extracted feature supports the other.  

We will present general well-known feature extraction models used commonly in  speech 

recognition community.  

3.2 Sound Features  

3.2.1 LPC Features 

In the speech processing community, the analysis of speech signal often involves the LPC 

(Linear Prediction Coefficients) model. This section will review the LPC model in abstract 

manner as there is large published literature, as [15] that explains in detail this model. This 

analysis model consists in a linear all-zero analysis filter to separate between two main 

components of the speech signal: 

 The excitation, which represents the air pressure waveform resulting from vibration of 

the vocal cords that are excited by air expulsed from lungs, this excitation signal is the 

result of the LPC analysis filter where pulse period or pitch can be derived from the 

excitation signal (pitch detection [15]). 

 The spectral envelope of the speech, which is produced by the shape of the vocal tract. 

The vocal tract is represented by the synthesis filter, whose input is the excitation. The 

spectral envelope information is held in the coefficients of the adaptive filter, the larger 

number of coefficients, the more precise the envelope.  

The LPC filter coefficients are derived for each overlapping (1/3) hamming windowed frame of 

length (20 to 30 ms) of speech signal, using a short-term prediction of the speech samples.  

In speech or speaker recognition problems, the number of filter taps is chosen between 8 and 

12. The LPC coefficients features are well adapted to speech recognition and provide better 
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results than the time frequency analysis [59]. On the other hand, the LPC does not perform well 

for general audio analysis, which is the study domain of our research.  

3.2.2 Cepstral Coefficients  

The cepstral transformation is an improved and more robust way to isolate the two components 

of speech [60]. The cepstrum 𝐶(𝑛)  in equation (3.1) is defined by inverse Fourier transform of 

the amplitude logarithm of an input signal 𝑥(𝑘)  

                   𝐶(𝑛) = 𝐹−1{log|𝑥(𝑘)|}                                                            (3.1) 

Where 𝐹 represents the Fourier transform operator. This Cepstral domain is useful in speech 

processing because, the excitation and vocal tract components are linearly combined. Since the 

speech is produced by convolving the excitation with the impulse response of the vocal tract 

synthesis filter (inverse LPC filter), the transforming into the frequency domain makes this 

convolution process turns to simple addition!. Then, the linear Fourier transform or its inverse 

can be taken once again, to analyze the “frequency” content of the log spectrum. This shows 

the advantages of the cepstral information, because for speech, the envelope shows slowly 

spectral properties. On the other hand, the excitation of voiced speech is made of important 

spectral variation (pitch and harmonics), so more easy discrimination between excitation and 

envelope components is then possible. 

For computation reasons, only the first cepstral coefficients (15 or 20) are usually kept. The 

expression (3.2) illustrates how to calculate the first 𝑁𝑐 cepstral coefficients 𝑐𝑐(𝑖) can be 

derived at each time frame. 

              𝑐𝑐(𝑖) = ∑ 𝑋𝑛  cos
𝜋𝑖𝑛

𝑁
 𝑁−1

𝑛=0  for 𝑖 = 1,… ,𝑁𝑐                                                (3.2) 

Where 𝑁 represents the frame length, and 𝑋𝑛 represents the log-amplitudes corresponding to 

frequency 𝑛.  

The resulting set of cepstral coefficients are usually smoothed using sinusoidal window. 

Equation (3.3) deemphasizes both the first coefficients that are sensitive to the spectral tilt , and 

last coefficients , more sensitive to noise. 
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            𝑐𝑐′(𝑛) =  𝑐𝑐(𝑛) 𝑤(𝑛) and 𝑤(𝑛) = 1 + 
𝑁𝑐

2
sin (

𝜋𝑛

𝑁𝑐
)                                      (3.3) 

Speech recognition systems based on cepstral features are said to be slightly better and more 

robust than LPC features[61]. Delta Cepstral Coefficients is used in calculating more robust 

cepstral features. Those coefficients can be computed as the difference between cepstral 

coefficients of the current frame and past frames, including temporal evolution information in 

the features [60]. 

For general sounds, cepstral features may be most useful as they are able to de-correlate slowly 

and fast varying components of the spectrum.   

3.2.3  Features From Human Ear Model 

3.2.3.1  Human ear frequency scale 

Sound waves are transformed into mechanical vibrations in the outer ear, at the eardrum. The 

little bones of the middle ear convert those vibrations into liquid pressure variations in the inner 

ear that finally create the traveling waves of the basilar membrane of the cochlea [62]. The 

membrane moves according to the energy of the incoming sound [63]. Low frequencies result 

in movement at the beginning of hypothetically unrolled basilar membrane, and higher 

frequency response appear farther in the cochlea. Thus the human perceptual frequency scale 

will vary in response to low and higher frequencies making the perceptual frequency scale 

logarithmic in some regions and linear in others.  

3.2.3.2   Mel Frequency Cepstral Coefficients (MFCC) 

Stevens[17] measures the human perceptual frequency scale producing of what is called the 

mel-frequency scale or similarly Bark scale. The mapping between the linear frequency and the 

human scale seems to be linear up to 1 kHz, and gets logarithmic above this value. 

It can be expressed as a function of one variable 𝑓 which is the linear frequency in kHz[18] as 

in equation (3.4) which shows how to calculate the bark scale resulting the curve shown in 

Figure (3.1)  
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                       𝑓𝑏𝑎𝑟𝑘 = 13 arctan(0.76𝑓) + 3.5(
𝑓2

56.25
)                                            (3.4) 

  

Figure 3.1: Linear frequency to Bark scale mapping 

Generally the use of human ear models seems to bring an improvement on the performance of 

speech recognition systems especially in the presence of important background noise, where the 

Mel-Frequency Cespstral Coefficients (MFCC) is proved to be providing important performance 

improvements, compared to the linear cepstral coefficients[60]. The idea of the MFCC is to 

distribute the cepstral coefficients according to the critical bands , instead of the linear 

distribution. This is done by applying “critical band filters” to the current frame spectrum [61]. 

The complete spectrum is rebuilt by placing zeros at indexes that do not correspond to the 

critical band central frequencies.  

3.3 Similarity measures  

Any visualizing system cannot do its job well without depending on  similarity differentiating 

between sounds, either by using similarity measures or probability classifiers. In this section we 

will present the most common similarity measures that are found in the open literature. xi, yi 

are the feature values of the reference feature vector and the test feature vector. 

  

 

 

 



28 
 

 

3.3.1 Minkowski Distance (L2) 

Minkowski distance [32] is one of the most popular similarity measures used in literature , and 

its defined as : 

                      𝐷0 =  (∑ (𝑥𝑖 − 𝑦𝑖)
𝑘

𝑖 )1/𝑘                                                                                       (3.5) 

Where 𝑘 is representing multiple forms of Minkowski distances 

3.3.2 Euclidean Distance (L2) 

One of the commonest distance measures in literature is the Euclidean distance [31]. It 

corresponds to the Minkowski-form for 𝑘 =2, and is defined as: 

                                  𝐷1 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑖                                                                                      (3.6) 

3.3.3 Manhattan Distance (or City Block Distance) 

The Manhattan distance [64] corresponds to Minkowski-form for 𝑘 =1. It requires less 

computation than the Euclidean distance and many other distances, and is defined as: 

 

                                  𝐷2 = |𝑥𝑖 − 𝑦𝑖|                                                                                                 (3.7) 

3.3.4 Canberra Distance 

 

Canberra distance [65] is very popular in CBIR applications. It has the advantage of a relatively 

low computational complexity and high retrieval efficiency. 

            𝐷3 =∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖 + 𝑦𝑖|
𝑖

                                                                                            (3.8) 

3.3.5 Jeffrey Divergence Distance 

The Jeffrey divergence distance[66] is defined as: 

                 𝐷4 = ∑ [ 𝑥𝑖 𝑙𝑜𝑔 (
𝑥𝑖

𝑚𝑖
)  + 𝑦𝑖 𝑙𝑜𝑔 (

𝑦𝑖

𝑚𝑖
) ]𝑖                                                                 (3.9) 

Where 𝑚𝑖 = 
𝑥𝑖+ 𝑦𝑖

2
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3.3.6 Bray Curtis Distance 

Bray Curtis distance [67] is quite similar to Canberra metric. It is defined as: 

 

                          𝐷5 =
∑ |𝑥𝑖−𝑦𝑖|𝑖

∑ |𝑥𝑖+𝑦𝑖|𝑖
                                                                           (3.10) 

 

3.3.7 Angular Separation Distance (cosine similarity) 

Angular Separation distance [68] is defined as: 

     𝐷6 =  1 −
∑ 𝑥𝑖. 𝑦𝑖𝑖

√∑ 𝑥𝑖2  ∑ 𝑦𝑖2𝑖𝑖

                                                           (3.11) 

  

3.3.8 Chord Distance 

Chord distance [69] measures the distance between the points where vectors cross a unit 

sphere. It is defined as: 

                          𝐷7 = √2 − 2
∑ 𝑥𝑖.𝑦𝑖𝑖

√∑ 𝑥𝑖
2  ∑ 𝑦𝑖

2
𝑖𝑖

                                                                       (3.12) 

3.3.9 Non-Correlation 

The non-correlation metric[70] is defined as: 

𝐷8 =  1 −
∑ |𝑥𝑖 − 𝑥�̅�|. |𝑦𝑖 − 𝑦�̅�|𝑖

√∑ (𝑥𝑖 − 𝑥�̅�)2  ∑ (𝑦𝑖 − 𝑦�̅�)2𝑖𝑖

                                                 (3.13) 

 

3.3.10 Matusita Distance 

The Matusita  [69] distance is defined as: 

                             𝐷9 = √∑ (√𝑥𝑖 −√𝑦𝑖)2     𝑖                                                                          (3.14) 
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3.2.11 Wave – Hedges 

The Wave-Hedges metric [69] is defined as: 

               𝐷10 =∑1−
min (𝑥𝑖, 𝑦𝑖)

max (𝑥𝑖 , 𝑦𝑖)
𝑖

                                                            (3.15) 

  

3.2.12 Weighted Euclidean Distance  

The Weighted Euclidean Distance [71] has the same form as Euclidean but the square 

difference of the two distributions for every i is multiplied by a weight wi depending on the 

value of distribution x. 

                   𝐷11 = √∑𝑤𝑖 (𝑥𝑖 − 𝑦𝑖)2

𝑖

                                                                                 (3.16) 

Where 𝑤𝑖 = 𝑥𝑖 if 𝑥𝑖 ≠ 0 , and 𝑤𝑖 = 1 otherwise. 

There are many other weighted distances similar to Weighted Euclidean Distance but the 

distributions for every i is multiplied by a weight 𝑤𝑖 depending on the value of distribution 𝑥 , 

like weighted Manhattan distance. 

                         𝐷12 = |𝑚𝑥 −𝑚𝑦|                                                                                                   (3.17) 

Where 𝑚𝑥 = ∑ 𝑥𝑖𝑖 𝑝(𝑥𝑖)  and 𝑚𝑦 = ∑ 𝑦𝑖𝑖 𝑝(𝑦𝑖) . 

 

3.4 Classification  

3.4.1 Which classifier 

There are large several classification techniques following different approaches. Statistical 

methods such as Bayes classification and Gaussian Mixture Models try to estimate the 

probability density function of the underlying data [72]. Another group of classifiers is learning 

algorithms that employ artificial intelligence techniques. There are supervised learning methods 

such as Support Vector Machines, neural networks, and non-supervised techniques such as 

Self-Organizing Maps [73]. Beside parametric techniques (e.g. Support Vector Machines), 
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there are non-parametric techniques such as the k-Nearest Neighbor (k-NN). Another special 

classifier used for time series signal to measure sequence called Dynamic Time Warping 

classifier (DTW).  

Two classifiers were selected for classification to be implemented in our system which are the 

K-NN and DTW. Because the simplest way to classify feature vectors is the nearest neighbor 

rule (k-NN) which suits for the real time application. In addition to that, since sounds are 

sequence time frames and have perceptual properties they required to employ the well-known 

DTW.  

3.4.2 K-Nearest Neighbor  

K-Nearest Neighbor (K-NN) is a popular non-parametric classier [74]. Like other non-

parametric techniques K-NN operates on the data directly. Therefore, it cannot measure sound 

sequence similarities.  

The 1-NN (NN) algorithm assigns a new vector 𝑥 to the class label 𝑠 of the nearest training 

vector 𝑥𝑖, as shown in equation (3.18) 

𝑠 = argmin
𝑖
‖𝑿 − 𝑿𝒊‖       , 1 < 𝑖 < 𝑁                                         (3.18) 

Similarity in nearest neighbor classification can be measured by any similarity (distance) 

measure. Frequently, Euclidean distance is used for K-NN. 

The K-NN algorithm with K > 1 considers more than just the nearest neighbor for 

classification. K denotes the number of nearest neighbors of a new feature vector x that are 

considered for classification. From these K vectors, 𝑘𝑗 vectors belong to class ωj, with ∑ 𝑘𝑗 =
𝑐
𝑗

𝐾 where 𝑐 is the number of classes. Vector 𝑥 is assigned to class 𝑠 with the greatest number of 

representatives in the set of K neighbors as it can be shown in equation (3.19). 

                                              𝑠 = argmax
𝑗
 𝑘𝑗 , 1 < 𝑖 < 𝑐                                                              (3.19) 

Hence, memory and computation costs grow linearly with the size of the training set (𝑂(𝑁)). 

This computational complexity fits perfectly for our real time application. 
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3.4.3 Dynamic Time Warping   

DTW is a dynamic programming technique that measures the similarity and finds the 

minimum-distance warping path between two time series [75].  Given two time series A and B, 

of length m and n, respectively, 

𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑚] 

𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑛] 

the distance of  𝑎𝑖  and   𝑏𝑗 is denoted as in equation (3.20) as  

𝑑𝑖𝑠𝑡(𝑖, 𝑗) =  |𝑎𝑖 − 𝑏𝑗|  if 1 ≤ 𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛.                                                              (3.20) 

A 2D cost matrix 𝐷 of size m by n is constructed, where 𝐷(𝑖, 𝑗) represents the minimum 

distance between two partial series 

�́� = [𝑎1, 𝑎2, … , 𝑎𝑖] 

�́� = [𝑏1, 𝑏2, … , 𝑏𝑗] 

𝐷 is initialized as 𝐷(0,0) = 0, infinity otherwise , and then D is filled from 𝐷(1,1) 𝑡𝑜 𝐷(𝑚, 𝑛)   

using equation (3.21) with 

𝐷(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑖, 𝑗) + min[𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1)] 

𝑖𝑓 1 ≤ 𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛                                                                                                            (3.21) 

 

The algorithm increments 𝑖 and 𝑗 until the cost matrix is filled such that 𝐷(𝑚, 𝑛) is the 

minimum distance between series 𝐴 and 𝐵. Since a single member in one series can map to 

multiple successive members in the other series, the two series can -be of different lengths. 

 

3.4 Conclusion 

In this chapter, we overviewed some background theory explaining some basic steps for 

processing sound signals to extract sound features. We explain the most well-known sound 

features in literature in detail explaining our point of view about their validity to be 

implemented in our system. After that, we present most generally used local similarity 

measures definition in order to evaluate them. In addition, we present the theory of most well-

known classifiers suitable for building our system. 
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CHAPTER 4 

PROPOSED SYSTEM 

In this chapter we are going to describe our proposed system in detail and describe every single 

step in building our visualization system , starting from the procedure of gathering design 

properties by interviewing group of the deaf. The behavior of the proposed system is explained 

starting from the sound input, passing with feature extraction methods by explaining the 

implemented equation for each feature extraction method according to the theoretical 

presentation in Chapter (3). Also we are going to describe the proposed similarity measure for 

comparing MFCC sound features effectively explaining the drawbacks of other similarity 

measures. Finally, the visualizing system framework will be expressed in detail to be later 

evaluated. 

4.1 Gathering design requirements  

4.1.1 Interviews  

The properties of good sound visualization system must answer the following questions; 

 What sounds are important to people who are deaf? 

 What display size is preferred (e.g. mobile, PC monitor, or large wall screen)?  

 What information about sounds is important (e.g. sound classes, location, or 

characteristics like volume and pitch)? 

 How the person who is deaf can be aware with the visualizing system? 

 

These questions should be answered by a sample of deaf people. In the next section, we  

present the extracted results from interviews made with people who are deaf according to 

previous questions.  These questions will be discussed in detail as subsections in this chapter to 
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describing our visualizing system requirements. We meant by these surveys to produce a small 

set of scenarios, not to enclose the list of all sounds of interest. 

 

The initial data for the deaf participants was gathered by interviewing five of the deaf persons. 

The participants were chosen in different ages and jobs see Table (5.1).  

Table 4.1: Interview participants 

Deaf 

participant 
Work place Job 

Age 

        1 Dar Elarkam Library Printing & photocopying 

documents 

24 

2 Atfaluna Society for Deaf Childern 

[76] 

Student  (grade 9) 14 

3 Future Society for Deaf Adults Worker at craftworks Club 31 

4 Atfaluna Society Restaurant Waiter 28 

5 House Housewife 33 

 

We can  notice the differences of deaf ages and jobs in Table (4.1) . These differences in the 

sample participants enhance our understanding of the participants needs. With this 

understanding, we were able to answer the first question which is “What sounds are important 

to people who are deaf?" that would help us to learn about the sounds which the  participants 

wanted to be aware . 

4.1.2 What sounds are important to people who are deaf? 

Our interviews helped us to learn about sounds that participants wanted to be aware of sound as 

follows; 

 The activity and presence of others:  

Participants who we interviewed, mentioned that they hope to have awareness of any soft 

sounds like music and colleagues speech when they are  alone.  
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 Highly dynamic environment sounds: 

In environments where needs change frequently especially in work, it is hard for a deaf 

person who works in a mixed working environment with hearing co-workers to 

maintain awareness of sounds alone. For example , in a library where visitors need to be 

served as soon as they arrive. One participant mentioned how waiting for a visitor can 

be very difficult. He would have to visually check every few minutes because he could 

not hear a door knock. 

 Sound from home environment: 

In the home environment, the sounds of the appliances such as microwave ovens, and 

kettles can be considered as a set of sounds  which the deaf would like to be aware.  

This is particularly important from the own view of  the deaf because those sounds are 

designed to notify  users of important state changes.  

 

Our participants confirmed that sound awareness was important in work, home, and mobile 

settings involving social interactions (e.g. presence of co-workers or children playing in another 

room), safety (e.g. sudden car horns , and fire alarms), and many other situations. 

4.1.3 What display size is preferred (mobile phone , PC monitor, or large wall 

screen)? 

Based on the participants views about the display size (e.g. mobile, PC monitor, or large wall 

screen), participants preferred smaller displays in all locations such using a mobile phone or 

using part of a PC screen.  In other words, most of the participants pointed their desire toward a 

small display which they can  use  it whenever and wherever they wanted . So,  they  

considered  using mobile phone is more practical tool than the other techniques like PC monitor 

or large wall screen. However, some of them suggested using glasses technique  in further 

researches . Also, two participants referred to a new display that showed a single icon (for 

recognized sounds) and rings (for unrecognized sounds) . 
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During our interviews with the participants, they focused our attention towards several issues. 

One of the participants wanted a way to look at a history of identified sounds. One participant 

commented "I wouldn’t want to be looking at the monitor all the time, but it would work if it 

has a history component". Another wanted to minimize background noises and commented "I 

don’t really care about hearing the other environmental noises".    

4.1.4 What information about sounds is important (e.g. sound classes, location, or 

characteristics like volume and pitch)?  

 We seek to answer questions about many design issues ranging from place of use to type of 

information displayed. For example, is sound location more useful than sound volume and 

pitch?.  

We explored how information about sound characteristics such as volume, pitch, and location 

affected deaf distraction and ability to identify sounds. Participants felt that the displays should 

allow them to ‘look & know’ or ‘figure out the sound’. Participants liked the location 

information because it gave them even more information with which to identify sounds. 

Participants tended to prefer displays that showed location or identity of sound over volume 

and pitch alone, although participants thought all features would be useful in identifying 

unknown sounds.   Functionally, we found that participants wanted mechanisms to: 

 Identify what sound occurred, with or without computer recognition, 

 view a history of displayed sounds, 

 determine the accuracy of displayed information. 

4.1.5 How the person who is deaf can be aware with the visualizing system? 

Four of the participants preferred visual designs that were easy to use and have less distraction, 

over designs with more detailed information or single type of notification.  

One participant wanted the displays to show every sound that was made, including co-workers 

coughing or sneezing. Each individual will have varying preferences about the types of sounds 

of which they wish to be aware. Ideally, the tool would be flexible enough to allow deaf to be 

aware of any type of sound. 
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We have discovered two main guidelines for an ambient sound visualization display: 

 The display should identify or help the user identify sounds: 

Because sound identification was the major goal, sound recognition received a positive 

feedback. However, due to limitations of sound recognition technology, recognition for 

all sounds is improbable. Deaf were willing to interpret sounds themselves, as long as 

the system can provide information that would help them do so. Our evaluations showed 

that each type of sound information is limited by itself, but a combination of sound 

recognition, location, volume, and frequency might improve sound identification in 

more situations. 

 The display should allow users to choose which sounds to show and filter out the 

rest:  

Ambient sounds are present all around us all the time. However, different sounds are 

important to a person depending on his/her context. deaf need the ability to choose 

which sounds should be displayed. The display might have performed better if 

background noises had been filtered out. 

  

The interview results provided us with an understanding of participants visual design 

preferences and functional requirements. Visually, participants preferred designs that were 

easy to interpret. Displays using mobile phones were preferred because participants could 

easily understand what sound occurred in a glance. Participants criticized displays they 

thought would be overly distracting, like Rings. More complex displays like Ambient 

Visualization were criticized for being difficult to understand. 

 

4.2  Sound input  

The sound is sampled from the portable device microphone at 44100 samples per second, 16 bit 

per sample and mono. The sampling rate can be lowered according to the device computation 

power , for example 24000 sample per second to guarantee not missing some environmental 
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sounds that has frequencies higher than 10 KHz.  Further sound processing requires framing the 

sound to be processed in real time and due to memory limitations of the computing devices. 

The frames must be overlapped and windowed so the transaction between frames is 

smoothened to prevent the distortions. The choice of the frame length N of sample must be 

done carefully, considering temporal properties of the audio data, and to speed up the detection 

at further stages of the process. Therefore, choosing a precise frame size cannot fit every 

acquiring audio system depending on sampling rate and computation power of the system. The 

time duration of each frame is about 20~30 ms that can support the assumption of the stationary 

of the audio signal within the frame. If the frame duration time is too long, we cannot get the 

time-varying characteristics of the audio signals , and consumes much memory resources which 

are valuable for further processing steps, especially when converting to other domains on 

behalf of signal processing techniques . On the other hand, if the frame duration time is too 

short, then we cannot extract valid acoustic features and causes too much detail that would 

needlessly appear in the signal power bins.  Thus, some tradeoff is needed, and a good solution 

was found using hamming window of size N=1024 samples with overlap of 50% at sampling 

rate of 44100 sample/second, which approximately corresponds to 23.2ms of sound input.  

4.3 Feature extraction  

The extraction of the best parametric representation of acoustic signals is an important phase in 

our system since it affects the visualizing and recognition behaviors in the next phases.  The 

most well-known state of art-feature extraction methods are MFCC and LPC; by considering 

their popularity in sound recognition systems [77]. The widespread use of the MFCCs is due to 

its low computational complexity and better performance for most ASR systems [10-14]. 

MFCCs is used for speech data in most cases but it can be generalized for environment sound 
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as in [10]. The characteristics of MFCCs that made it preferable for our system is that it has 

lower computational complexity than many other algorithms (𝑛 log(𝑛)) [78], its discrimination 

rate (as we will see in Chapter(5)) , and for its simplicity in implementation . 

 Seven computational steps for generating MFCC vectors  are summarized in figure (4.1) and 

expressed as following;  

 

Figure 4.1: MFCC block diagram 

1. Pre-emphasis 

The emphasis filter we used is shown in equation (4.1) derived from the equation in [79], 

which makes 95% of any one sample is presumed to originate from the previous sample  

𝑌[𝑛] = 𝑋[𝑛] − 0.95𝑋[𝑛 − 1]                                                                                  (4.1) 

Where 𝑌[𝑛] is the emphasized frame , 𝑋[𝑛] is the input frame , and 𝑛 is the sample number 

2. Framing  

As mentioned in the previous section the frame length  is chosen to be 1024 sample at 

sampling rate of 44100Hz , which approximately corresponds to 23ms of sound duration 

time . 
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3. Windowing  

For constructing the hamming window form the form in [80] we used the parameter shown 

in equation (4.2) 

𝑊(𝑛) = 0.54 − 0.46 𝑐𝑜𝑠 [
2𝜋𝑛

𝑁−1
] , 0 ≤ 𝑛 ≤ 𝑁 − 1                                             (4.2) 

The result of windowing signal is shown in equation (4.3) 

𝑌(𝑛) = 𝑋(𝑛) ×𝑊(𝑛)                                                                                                             (4.3) 

Where  

𝑌(𝑛)  is the resulted  windowed signal 

𝑋(𝑛) is the input signal 

𝑊(𝑛)  is the Hamming window  

4. Fast Fourier Transform 

Each frame can be considered  a stationary signal.  The windowed frame can be 

transformed into the frequency domain by using Fast Fourier Transform [81] according to 

equation (4.4). 

𝑆[𝑘] = ∑ 𝑠[𝑛]𝑒−𝑗
2𝜋𝑘𝑛

2𝑁2𝑁−1
𝑛=0                                                                                     (4.4) 

Where  

𝑠(𝑛) is the windowed frame , 𝑁  is the frame length , and 𝑘 is the corresponding frequency 

bin and the power spectrum is produced by applying absolute value for 𝑆[𝑘]. 
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5. Mel Filter Bank Processing  

The power spectrum is passed through triangular shaped Mel filters with M filters (m = 1, 

2, …, M), M usually ranges from 24 to 40 and we used M=24 according to the equation 

(4.5) [82]. 

𝐻𝑚[𝑘]

=

{
  
 

  
 

0 , 𝑖𝑓 𝑘 < 𝑓[𝑚 − 1]

2(𝑘 − 𝑓[𝑚 − 1])

(𝑓[𝑚 + 1] − 𝑓[𝑚 − 1])(𝑓[𝑚] − 𝑓[𝑚 − 1])
, 𝑖𝑓 𝑓[𝑚 − 1]  ≤ 𝑘 ≤ 𝑓[𝑚]

2(𝑓[𝑚 + 1] − 𝑘)

(𝑓[𝑚 + 1] − 𝑓[𝑚 − 1])(𝑓[𝑚] − 𝑓[𝑚])
, 𝑖𝑓 𝑓[𝑚]  ≤ 𝑘 ≤ 𝑓[𝑚 + 1]

0 , 𝑖𝑓 𝑘 > 𝑓[𝑚 + 1] }
  
 

  
 

        (4.5) 

      In addition, we used equation (4.6) to compute the Mel scale [18] for given frequency in 

Hz: 

𝐹(𝑀𝑒𝑙) = [2595 ∗ 𝑙𝑜𝑔10[1 + 𝑓] ∗ 700 ]                                                             (4.6) 

6. Discrete Cosine Transform  

Discrete Cosine Transform (DCT) [83][84] is applied to the logarithm of the filter-bank 

coefficients, to find the MFCCs vector parameters [82] as in equation (4.7) 

𝑐𝑖 = √
2

𝑁
 ∑ log(𝑒𝑗) cos (

𝜋𝑖

𝑁
 (𝑗 + 0.5))𝑁

𝑗=1                𝑖 = 1,… , 𝐷                                (4.7) 

Where 𝑒𝑗 represents the energy output of the 𝑗 − 𝑡ℎ triangular filter, N number of filters, 

and 𝐷  is the length of the feature vector   . Because the first DCT coefficients correspond 

to low-frequency components of the transformed information. The low-frequency 

components usually contain the important transformed information.  The later coefficients 

contain the less-important data information [82], so we used D to be 12. 
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7. Delta Energy and Delta Spectrum  

We used 13 delta or velocity features, and another 13 double delta or acceleration features 

are added to 13 ( 12 cepstrum  and 1 energy ) features to produce 39 MFCCs . The overall 

complexity of the system is (𝑛 log(𝑛)) . 

4.4 Distance measure for MFCCs feature vector   

4.4.1 Similarity measures and MFCC 

In Chapter (3), we investigated popular similarity measures, which are often used in clustering, 

recognition, and information retrieval algorithms. In this following three sections we will 

explain the main reasons that made the mentioned distance measures in Chapter (3) fail in 

measuring the similarity between  MFCCs and propose new distance measure suitable for not 

only MFCCs , but also for many  vectors often used to describe sound , image ,and natural 

language features . These features vectors are in fact   Discrete Cosine Transform (DCT) 

coefficients, which have some properties that made our proposed similarity measures superior 

on conventional distance measures. Thus, we can generalize the proposed similarity measures 

for measuring the similarity between DCT vectors. 

4.4.2 Discrete Cosine Transform 

The Discrete Cosine Transform (DCT) is a Fourier-like transform. While the Fourier 

Transform represents a signal as the sums of sines and cosines, the DCT expresses a signal (a 

set of numbers) in terms of a sum of cosine functions with different frequencies. The advantage 

of DCT is that the energy of the original data may be concentrated in only a few low frequency 

components of DCT depending on the correlation in the data, so it is used in large scale for 

feature vectors to reduce the dimensionality of these vectors.  
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We will express the general equation for DCT to extract the properties of DCT coefficients, 

hence the MFCCs coefficients.  

Given a set A of N values; M= { m0 , m1 ,…, mN-1} , one dimensional discrete cosine transform 

coefficients [83] are given by  equation (4.8), 

𝑐(𝑖) = 𝛼(𝑖)√
2

𝑁
 ∑𝑚𝑗 cos (

𝜋

𝑁
 (𝑗 + 0.5)𝑖)

𝑁−1

𝑗=0

               𝑖 = 0,… ,𝑁 − 1                            (4.8) 

Where 𝛼(𝑖) = {
1

√2
  , 𝑖 = 0 

1 , 𝑖 > 0
                                                                                                             

As can be seen from equation (4.8), the substitution of  = 0 , 𝑐(0) =  𝛼(0) ∑ 𝑚𝑗
𝑁−1
𝑗=0  , which is 

the sample mean of the set A .In literature , it is called the DC coefficient of the transform and 

the other coefficients are called the AC coefficients .  

If we ignored mj  and 𝛼(𝑖)  in (4.8) , then ;for every value 𝑖 = 0,1, … ,𝑁 − 1 transform 

coefficients correspond to a certain waveform. The first waveform renders a constant value, 

whereas all other waveforms (𝑖 = 1, 2, … ,𝑁 − 1) produce a cosine function at increasing 

frequencies. The output of the transform for each 𝑖 is the convolution of the input signal with 

the corresponding waveform. This is explained if we plotted  ∑ cos (
𝜋

𝑁
 (𝑗 + 0.5)𝑖)𝑁−1

𝑗=0  for 𝑁 =

1000 and varying values of  𝑖 , then the corresponding waveforms are shown in figure (4.2). 

These waveforms are called cosine basis functions. These waveforms are orthogonal and 

independent, that is, none of the basis functions can be represented as a combination of other 

basis functions [84].  
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Figure 4.2 : 1D DCT basis function 

The mentioned properties of DCT coefficients will be reflected on MFCC as its coefficients are 

DCT coefficients. We will discuss the impact of changing the values of DCT coefficients either 

by the value coefficient itself or by changing its place in the MFCC feature vector to extract the 

main properties of suitable distance measure. 

4.4.3 Properties of MFCCs  

The steps for generating MFCCs were shown in section (4.2). The final step for generating 

basic MFCCs (step 6) shows that MFCCs are DCT coefficients, so we will use the terms DCT 

coefficients and MFCCs alternatively in this section .There are two important properties for 

DCT/MFCC coefficients making them hard to be measured in conventional similarity 

measures, which are: 

1. Shuffling variant  

As discussed in section (DCT) we determined that none of DCT coefficients can be made 

as combination of other coefficients , so any  reordering or permuting of MFFC coefficients 
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makes them describing another set of data and hence, describing another sound.  This 

property clarify the inadequacy of distances D1-D11 (Defined in Chapter (3)) on MFCCs 

by explaining the “shuffling invariance”[85]  property . A distance measure between two 

MFCCs is “shuffling invariant” if and only if the distance does not change when levels { m0 

, m1 ,…, mD-1} in the MFFCs are permuted or reordered. Distances D1 – D11 have the 

“shuffling invariance” property, because the definition of distances D1 – D11 shows that 

they are sum of individual distances of each attribute of the feature vector, and due to the 

commutative law, the distances do not change when the attributes are reordered.  

The reordering of some DCT coefficients has big impact on the shape of the transformed data. 

The shape of waveform corresponds with the largest absolute coefficient value will dominate 

the shape of the transformed data and the next waveform corresponds to the next largest 

absolute value of the coefficients will dominate, but with less influence and so on. 

We can deduce that any distance measure should take into account the places of the 

absolute values of DCT coefficients in order. In other words, the suitable similarity measure 

should compare the places of most dominant coefficients to compute the similarity between 

MFCC vectors. 

2. Different impacts of attributes  

The independence property of DCT coefficients made it hard to compare coefficients with 

different order by value because each coefficient has different impacts on the transformed 

data. In other words, the right comparison by values should be done between one 

coefficient and another if they take the same order in the DCT vector.  As shown in the 

previous section, the first DCT coefficients correspond to low-frequency components of the 
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transformed information. The low-frequency components usually contain the important 

transformed information. The later coefficients contain the less-important data information 

[83].  This forces us to design a similarity measure to take into account the importance of 

each coefficient by assigning a weight for every coefficient. 

4.4.4 The proposed similarity measure 

In this subsection, we introduce efficient algorithm for measuring the similarity between two 

vectors of MFCC taking into account “shuffling property” and the different impact of the 

coefficients of the MFCC vector.   

Algorithm (1) handles the shuffling property of the MFCCs, as it differentiates between two 

MFCC vectors regarding to the places of the dominating coefficients.  The following pseudo-

code shows the steps for calculating such similarity.  

        Algorithm (1) : The proposed distance measure 

Purpose : to measure the distance between two vectors of MFCC 

Input : MFCC vector A, MFCC vector B of length N 

Output: distanc between A, B 

Procedure:  

1 Create two vectors Ai, Bi with the same length of A,B to store 

the indices of the elements in A,B 

2 distance=0 

3 Sort the elements of both A,B descending with  corresponding 

indices in Ai, Bi 

4 For i=0 to N-1 

5 distance += wi|Ai(i)-Bi(i)|, wi is the corresponding weight of 

each attribute 

6 Return (distance) 

 



47 
 

Consider MFCCs vectors A, B, C, D, E, and F with length N = 8 as follows: 

A= (4, 4, 4, 4, 4, 4, 4, 4) , B = ( 8, 4 , 7 , 4, 1 , 3 , 2, 9 ) , C = ( 8, 4, 4, 1, 7, 3, 2, 9 ), D= (4, 4, 4, 

4, 4, 3, 4, 4) , E= (4, 3, 4, 4, 4, 4, 4, 4) , and F= (4, 4, 4, 4, 4, 4, 4, 3) 

Algorithm (1) measures the similarity between A and B;  D(A,B)=14 and between A and C , 

D(A,C)= 18, while all conventional distances deals with D(A,B) and D(A,C) as same distance. 

If we considered the distance D(F,D) , D(F,E) we can notice that D is more similar to F than E , 

and the proposed distance confirms that  with D(F,D)=4  and D(F,E)=12.  

Algorithm (1) measures the similarity between A and B as shown in Table (4.2):  

Table 4.2: The distance calculation using the proposed distance measure 

A 4 4 4 4 4 4 4 4  … (1) 

B 8 4 7 4 1 3 2 9  … (2) 

Sorted A 4 4 4 4 4 4 4 4  … (3) 

Ai 1 2 3 4 5 6 7 8  … (4) 

Sorted B 9  8 7 4 4 3 2 1  … (5) 

Bi 8 1 3 2 4 6 7 5  … (6) 

|Ai-Bi| 7 1 0 2 1 0 0 3  14 … (7) 

 

Algorithm (1) concentrates on the order and the places of the MFCC coefficients only, it does 

not consider the difference between the coefficients in the same place in the MFCC vector as 

the other conventional methods in Chapter (3) do. The values of the coefficients have important 

effect on distance calculation between the MFCC vectors, so Algorithm(1) needs to be 

combined with one of the conventional methods to get the most efficiency. However, the 

combination operation may affect the proposed distance measure results, so some separation is 
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needed to not fall in the problems of conventional methods again. Thus, we propose new 

separation method while keeping the effect of the proposed distance measure highest. That can 

be accomplished by calculating the farthest distance between MFCC vectors when using one of 

the conventional methods and then adding it to the result of the proposed distance after raising 

it to the least nearest power of ten.  

We used Manhattan distance [64] as it completes the idea of the proposed distance measure of 

calculating the required steps of converting one MFCC vector into another. Finally, equation 

(4.9) summarizes the modified proposed distance.  

𝑃 = 𝑀𝐷 + 10
𝑚 ∗ 𝐴1𝐷                                                                                                       (4.9) 

Where 𝑀𝐷 is the Manhattan distance, 𝐴1𝐷 is the distance calculated from alogrithm1, and m is 

the next power of then after the maximum value of 𝑀𝐷. 

4.5 Visualization system 

4.5.1 Visualization system framework 

In this section, we present our proposed visualizing system based on the interviews  that were 

held in Chapter (3). Figure (4.3) illustrates the overall system separated in modules (Audio 

processing module , similarity measure module , classification module , and visualizing 

module). 
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Figure 4.3: The overall system design 

 The proposed visualizing system mainly transforms the sound feature into colors in real time 

and visualizes them in 3D manner.  A 2D plane with color represents a sound is drawn and its 

height varies according to the power level of the sound signal. In order to keep the user able to 

memorize the previous sounds, the previous sound levels and colors are kept on the drawing 

canvas like a sliding window of time with period of three second past, see figure (4.4). The 

visualizing is drawn line by line from upper left to the lower right. Each line is one pixel wide 

and represents the analyzing one frame of sound input in real time. 

 

Figure 4.4: Sound visualizing early steps 



50 
 

The next two sections explain in detail the procedure of producing the visualizing system. 

4.5.2 Color plan 

As discussed in Chapter (3), the deaf person is highly attracted to colors. For that reason, we 

designed the system to visualize the sounds by mainly coloring them with wide range of color 

spectrum. Because environment contains wide range of sounds that cannot be grouped into 

finite number of sound sets, we intended to color similar sounds not by specified flat color, but 

with ranges of colors. The user can differentiate between similar and dissimilar sounds easily. 

The coloring procedure is done by calculating distance between the MFCC vectors of input 

sound with a MFCC vector of reference sound by using the proposed distance measure in the 

previous section. The overall distance is normalized according to equation (4.10) to range of  

[0, 1]. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝐷𝑅,𝐼

max(𝐷𝑅,𝐼) − min (𝐷𝑅,𝐼)
                                                (4.10)  

Where 𝐷𝑅,𝐼 is the proposed distance between MFCC vector R and MFCC vector of input sound. 

The normalized distance is mapped to the value of the color map shown in figure (4.5) .This 

figure represents the jet color map in MATLAB [86] which is used by the research community 

in visualizing data. The used color map contains wide range of colors suitable for differing 

between sounds easily.  

 

Figure 4.5 : MATLAB color map, jet 
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4.5.3 Sound power level 

To keep the user of the system aware with the changes of the environmental sounds 

interactively, we need to connect the visualizing system with the loudness of the sound signal.  

The loudness of audio signals is the most prominent feature according to human aural 

perception [15].To define volume quantitatively we used equation (4.11) to calculate the 

loudness of the sound, which is the sum of absolute samples within each frame. 

𝑆𝐿 =  ∑ |𝑥𝑖|

𝑁−1

𝑖=0

                                                                                               (4.11)  

4.6 Classification 

Our proposed system tends to simplify the sound visualizing operation as much as possible. 

The deaf person is naturally not aware of the surrounding sounds and cannot relate the 

visualized color sound with the real sound. However, the natural intelligence of the human can 

by practice connect the visualized sound with real sound by slight helping by other humans, 

direction of the sound or by automated recognition system that can help the deaf user. We tend 

to use recognition to increase the usability of the system by training the system for well-known 

sounds to be recognized by simple recognition method. Name or icon of the recognized sound 

is displayed on the screen for the user besides the corresponding visualized sound. The deaf 

person can connect the other visualized sounds by real life experience or by training our 

classifier with the new sound. 
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Figure 4.6: Classification module 

Figure (4.6) illustrates in detail the classification module , where two classifiers are running in 

same time by implementing Java threads. The result of the classification is delivered to the 

visualization model to be displayed as icons on the display. Every prior known class has an 

icon and classifier model to be used in real time classification. 

4.7 Implementation 

The performance of the algorithms was tested using MATLAB since it support many useful 

toolboxes to implement and analyze many similarity measures, classification algorithms , and 

data visualization color maps. We decided for the MATLAB environment because it provides a 

comfortable interface for sound processing and a large number of basic sound algorithms. 

The development of the system required to be implemented on a smartphone according to the 

preferred visualization device of the interviewed deaf. The smartphone application was 

developed in Java for Android. Android is an operating system and software platform for 

smartphones. We used Android v.2.3 (API-10) "Gingerbread" to implement the application , 

but the application can work on smartphones the runs Android version is v.4.x (API-15) "Ice 

Cream Sandwich" with slight deployment modifications. Eclipse  IDE v.3.8.0 with Android 

Development Toolkit  was used during development.  

To produce real-time visualizations, Canvas and OpenGL framework were used within the 

Android platform. Threads were used to run the two classification algorithms in the same time.  
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4.8 Conclusion 

We presented the steps of building our proposed system. We discussed the interview results 

with deaf participants. The behavior of the proposed system, starting from the processing 

details of sound input was explained. After that , the extraction of sound features and the 

proposed similarity measure were discussed in detail. Finally, we illustrated  the overall system 

architecture and presented the implantation tools that we used in building our proposed system . 
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

                                                                                                                                                                    

In this chapter, the performed experiments were described and discussed. Different groups of 

sound features, similarity measures, and classifiers where tested and compared in order to 

choose the best of each group to build the proposed visualizing system.  

The proposed system was done through two phases of experiments. The first phase was done 

for choosing the best sound feature vector, similarity measure, and the best classifier for using 

them in the proposed system, where dataset of sound samples was built for experiments. The 

second phase was built on smart phone for testing with deaf individuals to produce the most 

suitable visual interface for sound based on the interviews that were made earlier. 

5.1 Data set  

Five types of environmental sounds, namely door bells, cars, speech, crowd, explosions are 

chosen for experimentations.  Sounds of explosions are chosen to represent most sever situation 

where deaf individual must be notifie0d accurately. In the other hand, sounds of cars and 

crowds show many similarities on the technical and perceptual level. This makes the chosen 

classes suitable for measuring the quality of features, similarity measures, and the classification 

algorithms.  

We built a database of sound samples by collecting the preferred samples from well-known 

datasets [87] [88] [89]. The dataset contains 430 (80 door bells, 100 cars, 130 speech, 70 

crowds, and 50 explosions) samples. All signals in the database have a 16 bit resolution and are 

sampled at 44100 Hz mono channel. In this way, all possible sound spectrum components can 

be introduced for experimentation purpose. This point is very important for environmental 

sounds, because some sounds show an important energy content in the highest frequencies, like 

glass breaks for example.  The samples duration is fixed of four seconds but have different 

loudness levels. Each sound sample is assigned to exactly one of the five classes.  
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5.2 System environment  

5.2.1 Algorithm choosing phase 

The system that was used during this phase is MATLAB program version 7.8.0.347 (R2009a). 

We used a platform of Intel Core i5 with 4 GB RAM during the experiments.  

The goal of this framework is to choose the most suitable sound features, similarity measure, 

and classifier for the proposed system to be implemented on smartphone. Thus, the challenges 

arise when considering the smart phone computation power and real time performance with 

complex algorithms.  

5.2.1.1 Distance measures algorithms 

All the distance measures 𝐷1 − 𝐷11  that were mentioned in Chapter (3) with the proposed 

distance measure are evaluated to choose the most discriminative distance measure. The 

importance of this step is that the most important part of the visualizing system, which is sound 

colors, depends on the distance between reference sound and the input sound. 

The evaluated distance measures are considered local distance measure, so the evaluation 

criteria we used is the recognition rate of a classifier that uses local distance measure for 

classification. We used K-NN classifier for classifying every time frame in real time and 

Dynamic Time Wrapping DTW  for classifying input sounds with long duration to preserve the 

perceptual properties of the sound.  

Figure (5.1) shows the recognition rate for the K-NN classifier and DTW using the mentioned 

distances. We can notice the benefit of the proposed distance measure for increasing 

recognition rate for both classifiers more than any other distance measure.  
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Figure 5.1: Similarity measures evaluation using k-NN and DTW 

5.2.1.2 Feature extraction algorithms 

By considering the popularity of sound features we will compare the most well-known sound 

feature in literature. The MFCC and LPC sound features were compared to be one chosen 

feature in our proposed system. The comparison will be done using popular classification 

algorithms to avoid classifier dependence false decisions as shown in Table (5.1) and Table 

(5.2).  

Table 5.1: Recognition rate for LPC features 

LPC K-NN DTW 

 Recognition rate % Recognition rate % 

Cars 45 65 

Crowd 41 40 

speech 75 82 

explosions 73 69 

Door bells 72 79 
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Table 5.2: Recognition rate for MFCC features 

 K-NN DTW 

 Recognition rate % Recognition rate % 

Cars 50 71 

Crowd 49 52 

Speech 78 86 

explosions 79 72 

Door bells 75 82 

 

We notice that MFCC has beaten the LPC features in most of the sound classes. This result is 

not surprising as most previous research noticed the robustness of MFCCs for environmental 

and speech sound. In addition the computational complexity and the obtained results, MFCC 

will be applied in our visualization system. 

5.2.1.3 Classification algorithms  

The simplicity of K-NN and DTW in addition to their dependence on local distance measures 

made they suitable to be tested in our proposed system. In addition to that, K-NN uses short 

time frames for classification, while DTW uses sound duration more than one second for 

classification. The merging of these two classifiers make us avoid missing short sound events 

and classifying sounds that require longer time to be detected 

The results for this step can collected from the results of the previous two section and 

illustrated in figure (5.2). As expected the K-NN with short time frames has recognition rates 

with classes that happens in short time like explosions, while the recognition rate increases 

when using DTW with other classes like speech and door bells. 
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Figure 5.2: Recognition rate with multiple classes 

5.2.2 System implementation phase 

The overall system was implemented on smart phone  of model number Galaxy Ace 2 made by 

SAMSUNG co  , which has a Dual-core 800 MHz , 4 GB storage, 768 MB RAM , and runs 

Android operating system. 

Android is a free open source operating system for mobile devices, running on a Linux kernel, 

and owned by Google. Android provides various applications written in Java programming 

language. This operating system includes a set of core libraries [90] that provides most of the 

functionalities available in the core libraries of the Java programming language. In order to 

develop Android applications, developers use the Android System Development tool Kit 

(SDK). It provides all the necessary tools to write, compile and run an Android application with 

or without a connected mobile device, as the emulator emulates an Android mobile phone. 

Once the latter is installed, it is easy and simple to use it with Eclipse IDE. 

For fast video rendering of the visualized sound we used OpenGL ES 2 framework on Android 

[91], which uses the phone’s GPU and provides simple API to call the native interfaces 

implemented inside. 
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5.3 Visualization  

The visualization is drawn on a rectangular canvas with adaptive size to fit on any android 

device’s display. It consists of two parts; the first part is the 3D colored visualization of the 

acquired sound while the second part series of images displaying the symbols of recognized 

sounds as shown in figure (5.3). The visualized sound flows from left to right as so as the 

additional icons that appear if the classifiers recognize any sound. 

Since the daily sounds are countless we focused on the classes in section (5.1) to be presented 

in the following figures. In addition to that, the mentioned classes were trained with the used 

classifiers so we can present the full visualization system. 

Figure 5.3: General view of the visualization 

 5.3.1 Speech  

Figure (5.4) shows the visualizations of a number of different voiced Arabic vowels             ( , ا

 Since vowels shows some constant representation of the sound during the voice, we can .(و , ي

notice clearly the visualized sound even if it cannot recognized by the classifiers. 
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Figure 5.4: The visualized Arabic vowels 

The reference sound used for the similarity measure and hence for the visualization system, is 

picked from the third vowel, so we can notice that the third vowel has the lowest height in 3D 

mesh. 

The additional notices from figure (5.4) is that the three different vowels show related colors 

(except the third, because we used the reference from one of its frames) because they belong to 

speech class. The third vowel shows blue color during the visualization for expressing our point 

of view only hence we use a reference sound represents silence in the real time application.  

5.3.2 Door bells 

Figure (5.5) shows the visualizing result for doorbell sound. The interesting thing about this 

visualized doorbell is that it displays icon of doorbell in yellow (warning color) above bird 

icon. This happened because in fact the doorbell is designed to output bird sounds. Since one of 

the classifiers, detect that this sound is likely to be a bird sound and the other for doorbell 

sound. The visualizing system displays the icon of both classes.  
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Figure 5.5: Visualized door bell tone 

5.3.3 Explosions   

This class represents the most severe case among all other classes. The mobile phone makes a 

vibration besides the visualization. The explosions includes gunshots, heavy falling mass and 

real known explosions.  

Figure (5.6) shows the visualization of explosion sound. The visualizing system showed the 

explosion icon with vibration on the test smart phone. 

 

Figure 5.6 : Explosion sound visualization 
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5.4 Evaluation tests 

5.4.1 Training phase  

The evaluation of the proposed system was done to investigate readability of the visualization 

system and durability of the learning effect. Because deaf person is not aware of the sound 

he/she cannot evaluate the system directly without training. We can consider our visualization 

system successful if the trainers of the system can give high correct answer rate about if they 

understood the meaning of the visualized sound and if the response time duration was fast. The 

five deaf persons that involved in our interviews engaged in our evaluation tests. 

In the training phase, a pair of recognizable sounds by our implemented classifiers and 

visualized sound is presented at the same time and one by one, for the learning users. Next , the 

confirmation of the learning procedure is done by simple tests with visual pattern only and the 

test trainees are asked for the meaning of the visualized pattern .After the correct response rate 

to be obtained by the confirming test had reached a sufficiently high score (more than 90%)  

new other sounds were appended to the list and the training continued likewise. Finally, when 

the confirming test using 50 recognizable sounds showed good results, the training session was 

closed, the learning time was recorded, and the real test session was started. Figure (5.7) shows 

the correct answer rate of each user during the learning sessions. 

 

Figure 5.7: Learning sessions for users 
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5.4.2 Testing phase 

The testing phase is somehow similar to the training phase but without any outer help of the 

trainers. New additional not recognizable sounds were played for the visualizing system , and 

the trainees are asked for every sound about its class if it was recognizable by them.  

For every sound, the answers of the trainees are collected with their response time for every 

answer is recorded for analysis. Due to the deaf inability to analyze sound from previous 

experience, the tests were made repeatedly and the results only picked in the last two sessions 

and only for correct answer rate of 90% and above. 

Figure (5.8) shows the average duration of correct answers curve for the testing users. As we 

can note, the users at first find some difficulties for giving correct answers with the new sounds 

during session 1. In the next sessions , the users shows improvements in response time . The 

interesting notice about the final results is that the response time reached several few seconds 

this indicates that they can use the program in real time with little difficulties  

 

Figure 5.8: Testing sessions for users and their response time 

5.4.3 Comparison with other visualization systems  

In Chapter (4) we analyzed the interviews with some deaf persons and built our proposed 

system to avoid the disadvantages of other systems. Consequently, the comparison with other 

visualization systems is inadequate in the experiments phase. Besides to that, the 

implementation of other visualization systems is not an easy job.   
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5.5 Conclusion 

The results that led us to present our proposed system were illustrated in this chapter. The 

extracted results came from two phases of experiments. The first phase was done, firstly by 

constructing a new data set and then by evaluating the suggested algorithms for building our 

system. Based on the results that depicted from the first phase, the second phase of testing 

included the evaluation of the constructed system with real users.  
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CHAPTER 6 

CONCLUSION 

6.1 Summary and conclusion remarks 

We proposed a new visualization system to help deaf person to experience surrounding sounds. 

This system depends on vision sense of deaf to understand the sound visualization. Technically, 

the system depends on extracting robust sound features and comparing them with reference 

sound feature for using the comparison result for visualizing the sound in 3D curve with 

different colors. The building of the system involved in using feature extraction, similarity 

measures, classification, and rendering frameworks. 

The proposed system could not use the traditional similarity measures for getting suitable 

visualization result, so a new similarity measure was proposed for handling the robust MFCC 

sound features in order to get robust visualization system. The proposed similarity measure 

suitable for many feature vectors that uses DCT in its final steps, where is used for 

dimensionality reduction and data compaction.  

The sound feature that was used for representing sound is MFCC by evaluating many sound 

features and picking the highest recognition rate feature vector. Since, there is wide range of 

feature vectors proposed previously, our evaluation done on the most well-known features in 

open literature.  

The classification algorithms that suited our proposed system are K-NN and DTW , considering 

there computational complexity , recognition rate ,and sound features special properties. K-NN 

classifier mainly used for short time frames to classify fast sound events so reducing miss rate. 

The DTW classifier used to fit the perceptual properties of sound since, there is many classes of 

sound can be detected in dynamic time series.  

We formed sound database from other three databases to get different sound classes that fits the 

resulted application-working environment. We used our database for evaluating many sound 

features, similarity measures , and classification algorithms . 
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The visualization system renders the frames of sound as 3D dynamic mesh changing over time 

to give the user real time feeling with sound. The dynamic color and height of the visualized 

sound can be read easily by little experienced user. The color range is wide to represent various 

sound changes with time. The display presents 3 seconds of sound time, so the user can 

memories some past sound events easily. Classification results shown during sound 

visualization to give the user more self-experience of the system. 

6.2 Recommendations and future work 

The visualization system depends on many variables to be enhanced 

 The sound features could be enhanced if we used more representative sound features 

than MFCC , since too many research were made to enhance MFCC and other sound 

feature that we recommend to test. 

 The similarity measure can be enhanced if developed to be more robust to noise. 

 The classification algorithms are simple so the classification rates reduced with some 

sound classes. 

 We tend to add sound separation module to the system to enhance visualization as so as 

the  classification rate . 

 The proposed system is developed using Android operating system. It will be better if 

we programed it on many other smart phone operating systems. 

 The main future work we need to add is the visualizing of sound direction , since our 

system doesn’t support. This will enhance the usability of the system . 
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APPENDIX 1 

Questionnaire 

This questionnaire reflects the study main questions  which make the base on designing  the 

sound application of the study. 

My dear deaf, this paper shows four items , please tick Yes/ No for each one according your 

own opinion. 

 

 

 

 

 

 

 

 

 

 

 

No. Items Yes No 

       

1. 

 

What sounds are preferred for you? 
 The activity and presence of others. 

 Sound from home environment . 

 Highly dynamic environment sounds. 

 Life critical sounds. 

  

2. What display size is the most preferred for you? 
 Mobile phone. 

 PC monitor. 

 large wall screen. 

 

  

3. What information about sounds do you think is important? 

 Display that shows sound classes. 

 Display that shows sound location. 

 Display that shows sound characteristics. 

 Display that shows view a history of displayed sounds. 

  

4. Which way do you prefer to be aware with the visualizing 

system ? 
 Display that shows every sound that was made. 

 Display that allows users to choose which sounds to 

show and filter out the rest. 

 

  


