

 The Islamic University – Gaza غــــزة–ة الإسلامیة ــعــامـالج

 Deanery of Graduate Studies اـیـلـعـات الـدراسـادة الـــمـــــع

 Faculty of Engineering ســــــــــــة ــنــــدھــة الـــــیـلــك

 ـة ـــــائیـربـالھندســـــــة الكــــھ

Electrical Engineering

Fuzzy Logic Speed Controllers Using FPGA Technique

for Three-Phase Induction Motor Drives

Moayed N. EL Mobaied

Advisor

Dr. Basil Hamed

This Thesis is submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in

Electrical Engineering

1429ھــ – 2008 م

 بسم االله الرحمن الرحيم

"يرفع ا الذين امنوا منكم و الذين أوتوا العلم درجات و ا بما تعملون خبير"

 صدق ا العظيم

١١ آية –اادلة

 ii

Dedication

To the memory of my beloved brother, the martyr, Ashraf.

To my parents, big brother, sisters, wife, and lovely kids:

Wafiqa and Ashraf.

Moayed Naser El-Mobaied

 iii

Acknowledgments

I wish to express my deepest gratitude to my advisor, Dr. Basil Hamed, for

his professional assistance, support, advice and guidance throughout my

thesis, and to my discussion committee, Dr. Hatem El Aydi and Dr. Assad

Abu Jasser for their acceptance to discuss my thesis.

I would also like to extend my gratitude to my family for providing all the

preconditions necessary to complete my studies, also for keeping me in their

prayers.

 iv

Abstract

Fuzzy Logic Speed Controllers Using FPGA Technique for

 Three-Phase Induction Motor Drives

By

Moayed N. EL Mobaied

The design of intelligent control systems has become an area of intense research interest.

The development of an effective methodology for the design of such control systems

undoubtedly requires the synthesis of many concepts from artificial intelligence. A

promising direction in the design of intelligent systems involves the use of Fuzzy logic

control to discover the abilities of intelligent control systems in utilizing experience via

rule-based knowledge.

The most commonly used controller in the industry field is the proportional-plus-integral-

plus-derivative (PID) controller, which requires a mathematical model of the system.

Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the

available system models are inexact or unavailable. Also rapid advances in digital

technologies have given designers the option of implementing controllers using Field

Programmable Gate Array (FPGA) which depends on parallel programming. This method

has many advantages over classical microprocessors. In this research, a novel Fuzzy-PID

controller, which is fabricated on modern FPGA card (Spartan-3A, Xilinx Company,

2007) is proposed to implement a prototype of a speed controller for three-phase induction

motor (squirrel cage type) as a an example for complex model systems.

The proposed controller and the pulse width modulator PWM inverter algorithm which

have been built in FPGA appeared fast speed response and good stability in controlling the

three-phase induction motor.

For comparison purpose, another two widely used controllers "PID and Fuzzy" have been

implemented in the same FPGA card to examine the performance of the proposed system.

These controllers have been tested using Matlab/Simulink program under speed and load

 v

variation conditions. The results show that the Fuzzy-PID is the best controller between

them.

In this thesis, the fuzzy logic control demonstrates good performance. Furthermore, fuzzy

logic offers the advantage of faster design, and emulation of human control strategies.

Also fuzzy control work well for high-order and nonlinear and shows the efficiency over

the PID controller.

 vi

 ملخص البحث

 للتحكم بسرعة المحرك الحثي ذو ثلاثة أوجه FPGA تصميم متحكم ضبابي بتقنية ال

 إعداد

 مـــؤيـد نصر المبـيـض

إن تصمیم الأنظمة الذكیة اصبح من الأبحاث المھمة في عالم التحكم الرقمي والموجودة على أولویات اھتمام الب احثین ف ي ھ ذا

. متمیزة في ھذا المجال فاننا بلا ش ك نحت اج ال ى تط ویر مھ ارات ف ي مج الات الأنظم ة الذكی ة من أجل تطویر تصامیم .المجال

یعتبر المتحكم بي أي دي من أكثر المتحكمات شیوعا في مجال الصناعة ،وھو یحتاج ال ى المعادل ة الریاض یة المكافئ ة للنظ ام ،

مة، خصوصا عندما تكون المعادلات المكافئة للأنظمة غی ر دقیق ة ولقد أثبتت المتحكمات المنطقیة الضبابیة تفوقا على ھذه الانظ

 FPGAاضافة الى ذلك لقد قدم التطور التكنولوجي الرقمي للمصممین خیار تطبیق المتحكمات داخل ال .أو لا یمكن استنتاجھا

ات المبنی ة داخ ل المعالج ات والتي تعتم د عل ى أنظم ة البرمج ة المتوازی ة والت ي أظھ رت العدی د م ن الایجابی ات عل ى المتحككم

 . الدقیقة

ل م ن ال ب ي أي دي في ھذا البحث ت م تق دیم فك رة مطورةحدیث ة ف ي ھ ذا المج ال وھ ي اع داد م تحكم مھج ن ی شمل ایحابی ات ك

 المقدم ة م ن ٣- أ- الحدیث ة س بارتن FPGAم الضبابي حیث تم تجمیع ھذا الم تحكم وبرمجت ھ داخ ل وح دة ال كحوایجابیات المت

یلینكس ، حیث استخدم ھذا المتحكم الحدیث بغرض التحكم بسرعة موتور ثلاثي الأوجھ من نوع قف ص ال سنجاب لك ي شركة ز

 . فیھا المعادلات المكافئة معقدة وغیر خطیة تكونیكون مثالا عن الأنظمة التي

 أظھ را FPGAناؤھم ا داخ ل ال المتحكم المقترح وبرنامج الانفرتر المعتمد عل ى نظ ام ال تحكم بع رض الموج ة ،و الل ذان ت م ب

 .استجابة سریعة لطلبات السرعة وایضا أظھرا استقراریة عالیة في اداء الموتور ثلاثي الأوجھ المستخدم في ھذا البحث

لغرض المقارنة تم تصمیم متحكمین اخرین وھما المتحكم الضبابي والمتحكم ال بي أي دي كل على حدا ،حیث تم تطبیقھما على

 . لفحص الكفاءة للمتحكم المقدم FPGAل نفس لوحة ا

س یمیولینك تح ت ظ رف تغیی ر ال سرعة وتغیی ر الحم ل / الماتلاب المحاكاة لقد تم فحص ھذه المحكمات الثلاثة باستخدام برنامج

 . نتائج المقارنة أظھرت تفوق المتحكم الھجین المقدم على المتحكمین الأخرین،المطبق على الجزء الدوار

 vii

Table of Contents

1 Introduction 1
 1.1 Introduction………………………………………………………………….…. 1
 1.2 Motivation and Objectives……………………………………………………... 2
 1.3 Literature review…………………………………………………………….…. 3
 1.4 Contribution………………………………………………………………..…… 4
 1.4 Outline of the thesis…………………………………………………………...... 4

2 Three-Phase Induction Motor 5
 2.1 Introduction…………………………………………………………….………. 5
 2.2 Basic construction and operation principle…...………………………………... 6
 2.2.1 Induction motor construction……………………………………..……… 6
 2.2.1.a Stator……………………………….……………………………. 6
 2.2.1.b Rotor……………………………….…………………………….. 7
 2.2.2 Squirrel-cage induction motor operation principle……………..………… 9
 2.3 Rotating magnetic field……….………….…………………………..………… 10
 2.3.1 Magnetic field in the stator……………………………….……………..... 10
 2.3.2 Magnetic field in the rotor……………………………….……………….. 13
 2.4 Speed of an induction motor…………………………………………………… 15
 2.5 Torque equation governing motor operation…………………………………… 15
 2.5.1 Starting characteristic …………...……………………………………….. 17
 2.5.2 Running characteristic.………………………………….………………... 17
 2.6 V/f control theory ……….…………………………………….……………….. 18
 2.7 Equivalent circuit of the induction motor……………………..……..…………. 20

3 Fuzzy Logic Control 25
 3.1 Fuzzy logic history……..……………………………………………………… 25
 3.2 Fuzzy logic..……………………………………………………………………. 26
 3.3 Fuzzy sets………………………………………………….…………………… 27
 3.4 Membership function……………………………………..…………………….. 28
 3.5 Operations with fuzzy sets……………………………..………………………. 29
 3.5.1 Complement……………………………………………………………… 29
 3.5.2 Intersection or triangular norms…..……………………………………… 30
 3.5.3 Union triangular.………………………………………...……………….. 31
 3.6 Notion of linguistic rule………………………………………..……………….. 32
 3.7 General structure of fuzzy logic control "FLC" system…….………………….. 33
 3.7.1 Knowledge base…………………………………………..……………… 33
 3.7.2 Procedure of fuzzy inference………………………………..…………… 34
 3.7.2.a Mamdani method……………………………………..………….. 34
 3.7.2.b Sugeno method………………………………………..…………. 39
 3.7.2.c How to make a decision Mamdani or Sugeno?............................. 41

4 Field Programmable Gate Arrays (FPGAs) 42
 4.1 Introduction…………………………………………………………………….. 42
 4.2 PLDs history…………………………………………………………………… 42
 4.3 FPGAs construction……………………………………………………………. 45
 4.4 ASIC vs FPGA as a design choice……………………………………………... 46
 4.5 FPGAs design advantages……………………………………………………… 47
 4.6 Parallel processing…………………………………………………………........ 48
 4.7 Xilinx design software package……………….………………………….......... 48

 viii

 4.8 Spartan-3A Starter Kit Board user guide……………………………………… 53
 4.9 PicoBlaze processor……………………………………………………………. 55

5 Designing Controllers Using FPGA for Three-Phase Induction Motor 58
 5.1 Overall system design and implementation………..…………………………… 58
 5.2 Three-phase induction motor inverter……………..…………………………. 58
 5.2.1 Hardware construction of the inverter…….……………………………... 59
 5.2.2 Software implementation of the inverter….……………………………... 65
 5.2.2.a Pulse width modulators……….…………………………………. 66
 5.2.2.b Sine wave generation………..…………………………………... 68
 5.2.2.c Sine table skipping method.…………………………………….. 70
 5.3 Controllers design……………………..………………………………………... 73
 5.3.1 Model of the induction motor...………………………………………….. 73
 5.3.2 Speed sensor……………………………………………………………... 75
 5.3.3 PID controller……………………………………………………………. 76
 5.3.3.a PID parameters……………………….…………………………... 76
 5.3.3.b PID algorithm implementation in VHDL……………………..….. 78
 5.3.3.c PID controller simulation in Matlab………………………….….. 80
 5.3.4 Fuzzy logic controller "FLC"………………………………………........ 81
 5.3.4.a FLC design……………………………………………………..… 81
 5.3.4.b Fuzzy logic controller simulation in Matlab…………………… 84
 5.3.5 Fuzzy-PID logic controller…………………………………………........ 85
 5.3.5.a Fuzzy-PID design………………………………………………… 85
 5.3.5.b Fuzzy-PID controller simulation in Matlab……………………... 86
 5.4 Results comparison ………………………………………………………... 87
 5.5 Modelsim results………..……………………………………………………... 90
 5.6 VHDL and PicoBalze software…...……………………………………………. 90

6 Conclusions and Future Research 91
 6.1 Conclusion…………………………………………………………………….. 91
 6.2 Future research………………………………………………………………. 92

8 Bibliography 93

7 Appendices 96
 7.1 Appendix A…………………………………………………………………….. 96
 7.2 Appendix B…………………………………………………………………….. 97
 7.3 Appendix C…………………………………………………………………….. 98
 7.4 Appendix D……………………………………………………………………. 99
 7.5 Appendix E…………………………………………………………………….. 100

 ix

List of Tables

4.1 ASIC and FPGA comparison ……………………………………………………... 47
5.1 Effects of P, I, and D on the step response ………………….………….…........... 77
5.2 Ziegler-Nichols method …………………………………………………………... 77
5.3 Control rule base for Fuzzy controller ..…………………………………………... 83
5.4 Control rule base for Fuzzy-PID controller ………………………………………. 86
5.5 Controllers comparison …………………………………………………..……….. 88

 x

List of Figures

2.1 Three-phase induction motor……………………………………………………… 5
2.2 Induction motor construction…………………………………………………….... 6
2.3 Typical stator………………………………………………………………………. 7
2.4 Squirrel-cage construction………………………………………………………… 8
2.5 Squirrel-cage………………………………………………………………………. 8
2.6 Wound rotor…………………………………………………………………..…… 8
2.7 Series of conductors of length l………………………………………..................... 9
2.8 Squirrel-cage shape…………………………………………………………........... 10
2.9 Stator and Rotor…………………………………………………………………… 10
2.10 Rotating magnetic field…………………………………………………………… 11
2.11 Six poles stator connections……………………………………………………….. 12
2.12 Six poles stator construction………………………………………………………. 12
2.13 Magnetic field stages……………………………………………………………… 13
2.14 Construction of an AC induction motor's rotor……………………………………. 14
2.15 Voltage induced in the rotor…..…………………………………………………… 14
2.16 Typical torque-speed curve of 3-phase AC induction motor……………………... 16
2.17 Torque/speed characteristic curve due to variable frequency and constant voltage. 18
2.18 Torque/speed characteristic with constant V/F ratio…………………………….. 19
2.19 Frequency -Torque characteristics with V/F Control……………………………... 20
2.20 General equivalent circuit of the induction motor……………………………….... 20
2.21 Parameter of rotor referred to the primary………………………………………… 21
2.22 Equivalent circuit of induction motor……………………………………………... 22
2.23 Approximate Equivalent circuit of induction motor………………………………. 22
2.24 Blocked-rotor test equivalent circuit of induction motor……………………...…... 23
2.25 No-load test equivalent circuit of induction motor………………………………... 24

3.1 Different shapes of membership functions: monotonic,

triangular, trapezoidal, and bell- shaped…………………………………...…........ 28
3.2 Membership function example (positive small temperature)....................... …....... 29
3.3 Universe of discourse for linguistic variable: temperature………………………... 29
3.4 Complement of fuzzy sets A………………………………………………………. 30
3.5 Intersection of fuzzy sets A and B(most used)……………………………………. 31
3.6 Union Intersection of fuzzy sets A and B(most used)…………………………...... 32
3.7 General structure of fuzzy inference system………………………………………. 33
3.8 Fuzzification stage……………………………………………………………….... 35
3.9 Rule evaluation in Mamdani method……………………………………………… 36
3.10 Clipping and scaling stage………………………………………………………… 36
3.11 Aggregation stage in Mamdani method………………………………………….... 37
3.12 COG approach in Defuzzification stage………………………………………….. 39
3.13 Rule evaluation stage in TSK method……………………………………………... 40
3.14 Aggregation stage in TSK method……………………………………………….... 40
3.15 (WA) method in Defuzzification stage…………………………………………… 41
3.16 General structure of fuzzy logic control part of the system……...……………….

41

4.1 PLA constructions……………………………………………………………….... 43
4.2 PAL constructions………………………………………………………………… 43
4.3 CPLD architecture…………………………………………………………………. 44
4.4 FPGA logic element……………………………………………………………….. 45
4.5 Structure of a Xilinx FPGA standard………………….. 46

 xi

4.6 Parallel processing in FPGA………………………………………………………. 48
4.7 Design flow in schematic method…………………………………………………. 50
4.8 Multiplier code in VHDL…………………………………………………………. 51
4.9 Design flow in both schematic and VHDL approaches…………………………… 52
4.10 Overall process to program FPGAs………………………...……………………... 53
4.11 Spartan-3A Starter Kit Board……………………………………………………… 54
4.12 Spartan -3 in car applications……………………………………………………… 54
4.13 PicoBlaze architecture……………………………………………………………. 57

5.1 Block diagram for the over all control system…………………………………….. 58
5.2 Switching amplifier diagram………………………………………………………. 59
5.3 One phase rectifier bridge with ripple capacitor…………………………………... 59
5.4 Three phase rectifier bridge with ripple capacitor………………………………… 59
5.5 Input and output signal for the one phase bridge rectifier………………………… 60
5.6 Input and output signal for the three phase bridge rectifier……………………...... 60
5.7 Ripple factor for the full wave rectifier…………………………………………… 60
5.8 Six switches and free-wheeling diodes used in the inverter………………………. 62
5.9 IGBTs works as switches in the inverter………………………………………….. 62
5.10 Practical IGBTs circuit…………………………………………………………….. 62
5.11 Power driver circuit to provide the required voltage for the overall system………. 63
5.12 Driver signal for the IGBT………………………………………………………… 63
5.13 Driver signal for the IGBT………………………………………………………… 64
5.14 Practical IGBT driver circuit………………………………………………………. 65
5.15 Input output for the Driver software………………………………………………. 65
5.16 Up down counter used in PWM generation……………………………………….. 66
5.17 Top and bottom PWM signals…………………………………………………….. 66
5.18 Center aligned method in PWM generation………………………………………. 67
5.19 Edge aligned method in PWM generation………………………………………… 67
5.20 Dead-band region………………………………………………………………….. 68
5.21 Sin Look-up table to generate Vmax= 325V……………………………………… 69
5.22 Indexes for the Sine Look-up table………………….……………………………. 69
5.23 Analog and digital 32 entries signal for sin wave………………………………… 70
5.24 Sin table skipping method to increase/decrease the frequency……………………. 70
5.25 Interpolation method………………………………………………………………. 71
5.26 Interpolation method applied to sine table skip………………………………….. 72
5.27 Block diagram for the software PWM generators………………………………… 72
5.28 General Block diagram for the induction motor controller……………………....... 73
5.29 Three phase induction motor squirrel cage "64-501 Feedback company"………... 73
5.30 Simulink module for induction motor…………………………………………… 75
5.31 Dc motor with pulse optical encoder……………………………………………… 75
5.32 Pulse optical encoder……………………………………………………………… 76
5.33 General block diagram for PID controller………………………………………… 76
5.34 PID parameters on FPGA card…………………………………………………….. 78
5.35 PID parameters on LCD of the FPGA card……………………………………….. 79
5.36 PID algorithm flow chart………………………………………………………….. 79
5.37 PID speed Controller………………………………………………………………. 80
5.38 PID controller step response with load and speed variation………………………. 80
5.39 FLC controller for the three phase induction motor……………………………… 81
5.40 Error and error change approach in FLC………………………………………….. 81
5.41 Error fuzzy set of FLC……………………………………………………………. 82
5.42 Change error fuzzy set of FLC…………………………………………………… 82
5.43 Fuzzy set of FLC output entering to plant speed register………………………… 82
5.44 Rule surface of FLC………………………………………………………………. 83
5.45 Fuzzy logic speed controller………………………………………………………. 84
5.46 Fuzzy controller step response with load and speed variation…………………...... 84

 xii

5.47 Fuzzy PID controller for the induction motor……………………………………... 85
5.48 Fuzzy sets for Kp, Ki, and Kd……………………….……………………………. 85
5.49 Fuzzy-PID Logic speed controller……………..………………………………...... 86
5.50 Fuzzy-PID controller step response with load and speed variation……………...... 87
5.51 Feedback torque unit……………………………………………………………… 88
5.52 Dynamometer coupled with induction motor……………………………….…….. 88
5.53 Tachometer for speed scaling……………………………………………………... 89
5.54 Storage oscilloscope………………………………………………………………. 89
5.55 Overall system……………………………………………………………………... 89
5.56 Three-phase simulation using Modelsim …………………………………………. 90

Introduction 1

CHAPTER 1

Introduction

1.1 Introduction
Three phase Induction motors are the most common motors used in industrial motion

control systems. Low-cost, simple and rugged design and low maintenance are the main

advantages of induction motors. Due to that, these motors are often called the workhorse

of the motion industry. Squirrel cage is the widely type of induction motors used in

industry [1].

Generally, most of the industrial applications which contain induction motor need to vary

their speed. However, induction motors can only run at their rated speed when they are

connected directly to the main power supply. This is the reason why variable speed drives

are needed to vary the rotor speed of an induction motor. The most popular algorithm for

the control of a three-phase induction motor is the V/f control approach. Open-loop control

is sometimes used in motor speed control system. However, open–loop AC motor speed

control requires a precise speed profile to operate the motor from stand still to full speed.

Speed error may arise due to load changes or external disturbances. To overcome these

shortages, closed-loop control is frequently utilized in AC motor speed control system.

Designing a robust controller will ensure the system to remains stable and keeps its

required speed even the loads are applied or external disturbances occur [2].

The applications of induction motors in high accurate drives require more advanced control

techniques so that those nonlinear and strongly coupled induction motors whose

parameters are time-variant can be effectively controlled. At present, Proportional-Integral-

Derivative "PID" controller, due to its simplicity, stability, and robustness, is a type of

controller that is most widely applied [3]. However, it is difficult to design when the

accurate model of plant is unknown. For induction motors, factors such as unknown load

characteristic and parameter variation influence seriously the controlling effect of speed

controller.

Therefore, some advanced control techniques such as variable structure control and

Introduction 2

adaptive control etc. have been presented. However, the design of these controllers is

based on known system model parameters and if the parameters can't be achieved, it is

very troublesome in designing these controllers too [4].

Nowadays, many people paid a lot of attention to the application research of artificial

intelligence in the AC drives. Fuzzy control dose not strictly need any mathematical

model of the plant. It is based on plant operator experience, and it is very easy to apply.

Fuzzy control gives robust performance for a linear or nonlinear plant with parameter

variation. Fuzzy logic controller provides an alternative to PID controller since it is a good

tool for the control of systems that are difficult in modeling [5]. Hardware implementation

of the controller can be achieved in a number of ways to create new products. The most

popular method of implementing fuzzy controller is using a general-purpose

microprocessor or microcontroller. Generally, an 8-bit microprocessor can handle most of

the necessary computations. Microprocessor based controllers are more economical, but

often face difficulties in dealing with control systems that require high processing and

input/output handling speeds. Rapid advances in digital technologies have given designers

the option of implementing a controller on a variety of Programmable Logic Device

(PLD), Field Programmable Gate Array (FPGA), etc. FPGA is suitable for fast

implementation controller and can be programmed to do any type of digital functions.

There are three main advantages of an FPGA over a microprocessor chip for controller

designing:

• An FPGA has the ability to operate faster than a microprocessor chip.

• The new FPGAs that are on the market will support hardware that is upwards of

one million gates, which increase program capacity.

• Because of the flexibility of the FPGA, additional functionality and user interface

controls can be incorporated into the FPGA minimizing the requirement for

additional external components.

FPGAs are programmed using Very High Speed Integrated Circuit hardware description

language (VHDL) and a download cable connected to a host computer. Once they are

programmed, they can be disconnected from the computer, and it will be running as stand

alone device. The FPGAs can be programmed while they run, because they can be

reprogrammed in the order of microseconds. This short time means that the system will

not even sense that the chip was reprogrammed [6]. Applications of FPGAs include

industrial motor drivers, real time systems, digital signal processing, aerospace and

Introduction 3

defense systems, medical imaging, computer vision, speech recognition, cryptography,

computer hardware emulation and a growing range of other areas.

1.2 Thesis Motivation and Objectives

1.2.1 Motivation

Nowadays, fuzzy logic controllers have an efficient performance over the traditional

controller researches especially in nonlinear and complex model systems. FPGA is a new

key technology used in modern control hardware implementation. Modem manufactures

began to apply these technologies in their applications instead of the traditional ones, due

to the low cost and widely features available in these controllers. Thus motivated me to

investigate this topic.

1.2.2 Objectives

The main objective of this thesis is to build three different types of controllers (PID,

Fuzzy, and Fuzzy-PID) which have been constructed on a FPGA card to be used as speed

controllers for three-phase induction motor (squirrel cage type).

The specific objectives include:

• Improving FPGA knowledge.

• Improving VHDL programming skills.

• Designing PID controller skills.

• Designing Fuzzy controller skills.

• Building a variable-speed driver for three phase induction motor.

1.3 Literature review

 Manny studies for three-phase induction motor speed controller appeared using the

general PI technique. Volcanjk and Jezernik presented a novel design method using this

technique in 1994 (IEEE) [7]. Fuzzy controller began in this field due to the drawbacks of

the previous methods. Zidani, Benbouzid, M.E.H., and Diallo presented a Fuzzy efficient-

optimization controller for induction motor drives in 2000 (IEEE) [8]. Shi, Chan, and

Wong, presented a novel hybrid fuzzy-PI two-stage controller for an induction motor drive

in 2001 (IEEE) [9]. Yong, Han, Kim, and Chang-Goo Lee presented sensorless vector

control of induction motor using improved self-tuning fuzzy PID controller in 2003

Introduction 4

(IEEE)[10]. The above papers present good performance controllers but without load

variation conditions, and all of them had been constructed using microprocessors

technique, due to the fast technology growing, FPGA technique appeared in the speed

controller of the motor. Lin, Wang, and Huang, presented FPGA-based fuzzy sliding-

mode control for a linear induction motor drive in 2005 (IEEE) [11],in this paper they

implement only the fuzzy controller in FPGA and gets acceptable results. Priya, Kumar,

and Renganarayanan, presented a FPGA based Fuzzy logic controller for dc electrical

vehicle at Singapore in 2005 [12]. This paper was focused on dc motor and get a novel

performance. Zhang, Li, and Collins, presented a digital Anti-Windup PI Controllers for

variable-speed motor drives Using FPGA and Stochastic Theory in 2006 (IEEE) [13] but

not deals with fuzzy approaches. It's memorable to note that the above mentioned papers

have been selected only to describe the survey progress, but in real, there are many other

papers have been written in the same field.

Due to the survey on the available resources, a Fuzzy-PID controller in FPGA for three-

phase induction motor speed controller hasn't been presented yet.

1.4 Contribution

In this thesis three different types of controllers (PID, Fuzzy, and Fuzzy-PID) have been

constructed in FPGA card which are used as a speed controller for three-phase induction

motor (squirrel cage type). These controllers have been tested using Matlab/Simulink

program under different speed and load variation conditions. The comparison result shows

that the Fuzzy-PID controller is the best between them.

The novel approach, which is proposed in this thesis is: Design and practical

implementation of a Fuzzy-PID controller using modern FPGA card (Spartan-3A, Xilinx

Company, 2007) for speed control of a three-phase induction motor (squirrel cage type) as

an application.

1.5 Outline of the thesis

The thesis is organized into six chapters. Chapter 2 handles some basic principles of three-

phase induction motor. Chapter 3 focuses on Fuzzy logic sets. Chapter 4 deals with FPGA

and VHDL software implementation. Chapter 5 presents the design of the three types of

controllers, also the simulation and results are included. The last chapter concludes the

design and the implementation and proposes some future work.

Three-Phase Induction Motor 5

CHAPTER 2

Three-Phase Induction Motor
2.1 Introduction
AC induction motors are the most common motors used in industrial motion control

systems, as well as in main powered home appliances. Hence, they are often called the

workhorse of the motion industry. Induction motors are more rugged, require less

maintenance, and are less expensive than dc machines of equal kilowatt and speed ratings

[14].

Induction motors are constructed both for single-phase and three-phase operation. Three-

phase induction motors are widely used for industrial applications such as in lifts, pumps,

exhaust fans, grinding and filling machines, etc. Where as single-phase induction motors

are used mainly for domestic-electrical appliance such as fans, refrigerators, washing

machines, exhaust pumps, etc. Various types of AC induction motors are available in the

market. Different motors are suitable for different applications. Although AC induction

motors are easier to design than DC motors, the speed and the torque control in various

types of AC induction motors require a greater understanding of the design and the

characteristics of these motors [1].

Figure 2.1: Three-phase induction motor.

Three-Phase Induction Motor 6

2.2 Basic construction and operation principle
Like most motors, an AC induction motor has a fixed outer portion, called the stator and a

rotor that spins inside with a carefully engineered air gap between the two. Virtually all

electrical motors use magnetic field rotation to spin their rotors. A three-phase AC

induction motor is the only type where the rotating magnetic field is created naturally in

the stator because of the nature of the supply. DC motors depend either on mechanical or

electronic commutation to create rotating magnetic fields. A single-phase AC induction

motor depends on extra electrical components to produce this rotating magnetic field.

Two sets of electromagnets are formed inside any motor. In an AC induction motor, one

set of electromagnets is formed in the stator because of the AC supply connected to the

stator windings. The alternating nature of the supply voltage induces an Electromagnetic

Force (EMF) in the rotor (just like the voltage is induced in the transformer secondary) as

per Lenz’s law, thus generating another set of electromagnets; hence the name – induction

motor. Interaction between the magnetic field of these electromagnets generates twisting

force, or torque. As a result, the motor rotates in the direction of the resultant torque [1].

2.2.1 Induction motor construction
A 3-phase induction motor is shown in Figure 2.2 has two main parts:

a. Stator.

b. Rotor.

2.2.1.a Stator
The stator is constructed from several thin laminations of aluminum or cast iron. They are

punched and clamped together to form a hollow cylinder (stator core) with slots as shown

in Figure 2.3. These slots contain coils of insulated wires. Each grouping of coils, together

with the core it surrounds, forms an electromagnet (a pair of poles) on the application of

AC supply. The number of poles of an AC induction motor depends on the internal

connection of the stator windings. The stator windings are connected directly to the power

Figure 2.2: Induction motor construction.

Three-Phase Induction Motor 7

source. Internally they are connected in such a way that on applying AC supply, a rotating

magnetic field is created [1].

2.2.1.b Rotor
The rotor is made up of several thin steel laminations with evenly spaced bars, which are

made up of aluminum or copper. Induction motors are classified in two categories based

on the construction of the rotor: squirrel cage motors and slip ring motors, but the stator

part is the same in both motors.

 Squirrel cage motor represents about 90% of induction motors. That is due to the simplest

and rugged construction of this motors type. The rotor consists of cylindrical laminated

core with axially placed parallel slots for carrying the conductors. Each slot carries copper,

aluminum, or alloy bar. If the slots are semi closed, then these bars are inserted from the

ends. These rotor bars are permanently short-circuited both ends by means of the end

rings, as shown Figure 2.4 [1]. This total assembly resembles the look of a squirrel cage,

which gives the rotor its name as shown in Figure 2.5.

 The rotor slots are not exactly parallel to the shaft. Instead, they are given a skew for two

main reasons. The first reason is to make the motor run quietly by reducing magnetic hum

and to decrease slot harmonics. The second reason is to help reduce the locking tendency

of the rotor. The rotor teeth tend to remain locked under the stator teeth due to direct

magnetic attraction between the two. This happens when the number of stator teeth is

equal to the number of rotor teeth [14]. The rotor is mounted on the shaft using bearings

on each end; one end of the shaft is normally kept longer than the other for driving the

load. Some motors may have an accessory shaft on the non-driving end for mounting

speed or position sensing devices. Between the stator and the rotor, there exists an air gap,

through which due to induction, the energy is transferred from the stator to the rotor. The

generated torque forces the rotor and then the load to rotate [15].

Figure 2.3: Typical stator.

Three-Phase Induction Motor 8

A wound rotor shown in Figure 2.6 has a 3-phase winding, similar to the stator winding.

The rotor winding terminals are connected to three slip rings which turn with the rotor.

The slip rings/brushes allow external resistors to be connected in series with the winding.

The external resistor can be used to boost the starting torque of the motor and change the

speed-torque characteristic. When running under normal conditions, the slip rings are

short circuited, using an external metal collar, which is pushed along the shaft to connect

the rings.

Figure 2.4: Squirrel-cage construction.

Figure 2.5: Squirrel-cage.

Figure 2.6: Wound rotor.

Three-Phase Induction Motor 9

So, in normal conditions, the slip ring motor functions like a squirrel cage motor. The

downside of the slip ring motor is that slip rings and brush assemblies need regular

maintenance, which is a cost not applicable to the standard cage motor. This type of motor

is used in applications for driving variable torque variable speed loads, such as in printing

presses, compressors, conveyer belts, hoists and elevators [15].

2.2.2 Squirrel-cage induction motor operation principle
Due to the above comparison between the two kinds in this thesis, the squirrel-cage type

has been used. To get familiar with the operation of this kind of motors, we can consider

the series of conductors (length L) whose extremities are shorted by bars A and B. A

permanent magnet moves at a speed v, so that its magnetic field sweeps across the

conductors [15].

The following sequence of events takes place:

• A voltage E = B*L*V is induced in each conductor while it is being cut by the flux

(Faraday’s Law).

where B is the magnetic field, V is the linear speed, and B,I,V are mutually

perpendicular.

• The induced voltage produces currents which circulate in a loop around the

conductors (through the bars).

• Since the current-carrying conductors lie in a magnetic field, they experience a

mechanical force (Lorentz force).

• The force always acts in a direction to drag the conductor along with the magnetic

field.

Figure 2.7: Series of conductors of length l.

Three-Phase Induction Motor 10

If the above ladder has been enclosed upon itself to form a squirrel cage, and place it in a

rotating magnetic field, then a rotor for induction motor will be constructed establish as

shown in Figure 2.8 [1].

2.3 Rotating magnetic field
There are two kinds of rotating magnetic field which are rotating in the induction motor:

2.3.1 Magnetic field in the stator
The stator represents the stationary part of the motor which consists of a group of

individual electro-magnets arranged in such a way that they form a hollow cylinder, with

one pole of each magnet facing toward the center of the group. The term 'stator' is derived

from the word stationary. The rotor represents the rotating part of the motor, which

consists of a group of electro-magnets arranged around a cylinder, with the poles facing

toward the stator poles. The rotor is located inside the stator and is mounted on the motor's

shaft. The term 'rotor' is derived from the word rotating. The magnetic interaction between

the stator and rotor will rotate the motor shaft. This rotation will occur because unlike

magnetic poles attract each other and like poles repel. If the polarity of the stator poles is

changed in such a way that their combined magnetic field rotates, then the rotor will

follow and rotate with the magnetic field of the stator.

Figure 2.8: Squirrel-cage shape.

Figure 2.9: Stator and Rotor.

Three-Phase Induction Motor 11

To be familiar with fundamental of the rotating magnetic fields it can be assumed that the

stator has six magnetic poles and the rotor has two poles [15].

 At time 1, stator poles A-1 and C-2 are north poles and the opposite poles, A-2 and C-1,

are south poles. The S-pole of the rotor is attracted by the two N-poles of the stator and the

N-pole of the rotor is attracted by the two south poles of the stator.

At time 2, the polarity of the stator poles is changed so that now C-2 and B-1 are N-poles

and C-1 and B-2 are S-poles. The rotor then is forced to rotate 60 degrees to line up with

the stator poles as shown in Figure 2.10.

At time 3, B-1 and A-2 are N-poles.

At time 4, A-2 and C-1 are N-poles.

As each change is made, the poles of the rotor are attracted by the opposite poles on the

stator. Thus, as the magnetic field of the stator rotates, the rotor is forced to rotate with it.

To produce a rotating magnetic field in the stator of a three-phase AC motor, we need to

direct couple the 3 phase power supply to the stator terminal. Each phase of the three-

phase power supply is connected to opposite poles and the associated coils are wound in

the same direction. The polarities of the poles are determined by the direction of the

current flow through the coil. Therefore, if two opposite stator electro-magnets are wound

in the same direction, the polarity of the facing poles must be opposite. Therefore, when

pole A1 is N, pole A2 is S. When pole B1 is N, B2 is S and so forth.

Figure 2.10: Rotating magnetic field.

Three-Phase Induction Motor 12

The windings AN, BN, CN are mechanically spaced at 120°from each other. AC currents Ia,

Ib and Ic will flow in the windings, but will be displaced in time. Each winding produces

its own EMF, which creates a flux across the hollow interior of the stator. The three fluxes

combine to produce a magnetic field that rotates at the same frequency as the supply [3].

The phase current waveforms follow each other in the sequence A-B-C. This produces a

clockwise rotating magnetic field. If we interchange any two of the lines connected to the

stator, the new phase sequence will be A-C-B. This will produce a counterclockwise

rotating field, reversing the motor direction. In practice, induction motors have internal

diameters that are smooth, instead of having salient poles. Also, instead of a single coil per

pole, many coils are lodged in adjacent slots. The staggered coils are connected in series to

form a phase group. Spreading the coil in this manner creates a sinusoidal flux distribution

per pole, which improves performance and makes the motor less noisy.

Figure 2.11: Six poles stator connections.

Figure 2.12: Six poles stator construction.

Three-Phase Induction Motor 13

The rotating speed of the revolving flux can be reduced by increasing the number of poles

(in multiples of two). In a four-pole stator, the phase groups span an angle of 90°. In a six-

pole stator, the phase groups span an angle of 60° and so on. Figure 2.13 shows how the

rotating magnetic field is produced. At time1, the current flow in the phase "A" poles is

positive making A-1 N and pole A-2 is S. The current flow in the phase "C" poles is

negative, making C-2 a N-pole and C-1 is S. There is no current flow in phase "B", so

these poles are not magnetized. At time 2, the phases have shifted 60 degrees, making

poles C-2 and B-1 both N and C-1 and B-2 both S. Thus, as the phases shift their current

flow, the resultant N and S poles move clockwise around the stator, producing a rotating

magnetic field. The rotor acts like a bar magnet, being pulled along by the rotating

magnetic field [15].

2.3.2 Magnetic field in the rotor

There is no external power supply for the rotor part. It is a natural phenomena which

occurs when a conductor which contains aluminum bars shown in Figure 2.14, is moved

through an existing magnetic field or when a magnetic field is moved past a conductor. In

either case, the relative motion of the two causes an electric current to flow in the

Figure 2.13: Magnetic field Stages.

Three-Phase Induction Motor 14

conductor. This is referred to as "induced" current flow. In other words, in an induction

motor the current flow in the rotor is not caused by any direct connection of the

conductors to a voltage source, but rather by the influence of the rotor conductors cutting

across the lines of flux produced by the stator magnetic fields. The induced current which

is produced in the rotor results in a magnetic field around the rotor conductors as shown in

Figure 2.15. This magnetic field around each rotor conductor will cause each rotor

conductor to act like the permanent magnet. As the magnetic field of the stator rotates, due

to the effect of the three-phase AC power supply, the induced magnetic field of the rotor

will be attracted and will follow the rotation. The rotor is connected to the motor shaft, so

the shaft will rotate and drive the connection load [15].

Figure 2.14: Construction of an AC induction motor's rotor.

Figure 2.15: Voltage induced in the rotor.

Three-Phase Induction Motor 15

2.4 Speed of an induction motor
The magnetic field created in the stator rotates at a synchronous speed (Ns) which can be

obtained from the following formula:

p
fNs *120= (2.1)

Where

Ns : The synchronous speed of the stator magnetic field in RPM.

P : The number of poles on the stator.

F : The supply frequency in Hertz.

The magnetic field produced in the rotor because of the induced voltage is alternating in

nature. To reduce the relative speed, with respect to the stator, the rotor starts running in

the same direction as that of the stator flux and tries to catch up with the rotating flux.

However, in practice, the rotor never succeeds in “catching up” to the stator field. The

rotor runs slower than the speed of the stator field. This speed is called the Base Speed

(Nb). The difference between NS and Nb is called the slip. The slip varies with the load. An

increase in load will cause the rotor to slow down or increase slip. A decrease in load will

cause the rotor to speed up or decrease slip. The slip is expressed as a percentage and can

be determined with the following formula [1]:

 100*%
sN

bNsN
slip

−
= (2.2)

2.5 Torque equation governing motor operation

The motor load system can be described by a fundamental torque equation.

dt
dJW

dt
dWJTT m

m
l ** +=− (2.3)

Where:

T : The instantaneous value of the developed motor torque (N.m).

Tl : The instantaneous value of the load torque (N.m).

Wm: The instantaneous angular velocity of the motor shaft (rad/sec).

J : The moment of inertia of the motor load system (kg.m2)

For drives with constant inertia, (dJ/dt) = 0. Therefore, the equation would be:

dt

dWJTT m
l *+= (2.4)

Three-Phase Induction Motor 16

This shows that the torque developed by the motor is counter balanced by a load torque, Tl

and a dynamic torque,
dt

mdJ ω . The torque component,
dt

mdJ ω , is called the dynamic torque

because it is present only during the transient operations. The drive accelerates or

decelerates depending on whether T is greater or less than Tl. During acceleration, the

motor should supply not only the load torque, but an additional torque component
dt

mdJ ω , in

order to overcome the drive inertia. In drives with large inertia, such as electric trains, the

motor torque must exceed the load torque by a large amount in order to get adequate

acceleration. In drives requiring fast transient response, the motor torque should be

maintained at the highest value and the motor load system should be designed with the

lowest possible inertia. The energy associated with the dynamic torque,
dt

mdJ ω , is stored in

the form of kinetic energy (KE) given by,
2

2
mw

J . During deceleration, the dynamic

torque,
dt

mdJ ω , has a negative sign. Therefore, it assists the motor developed torque T and

maintains the drive motion by extracting energy from the stored kinetic energy. To

summarize, in order to get steady state rotation of the motor, the torque developed by the

motor (T) should always be equal to the torque requirement of the load (Tl). The torque-

speed curve of the typical three-phase induction motor is shown in Figure 2.16 [1].

Figure 2.16: Typical torque-speed curve of 3-phase AC induction motor.

Three-Phase Induction Motor 17

2.5.1 Starting characteristic

Induction motors, at rest, appear just like a short circuited transformer and if connected to

the full supply voltage, draw a very high current known as the “Locked Rotor Current.”

They also produce torque which is known as the “Locked Rotor Torque”. The Locked

Rotor Torque (LRT) and the Locked Rotor Current (LRC) are function of the terminal

voltage of the motor and the motor design. As the motor accelerates, both the torque and

the current will tend to alter with rotor speed if the voltage is maintained constant. The

starting current of a motor with a fixed voltage will drop very slowly as the motor

accelerates and will only begin to fall significantly when the motor has reached at least

80% of the full speed. The actual curves for the induction motors can vary considerably

between designs but the general trend is for a high current until the motor has almost

reached full speed. The LRC of a motor can range from 500% of Full-Load Current

(FLCu) to as high as 1400% of FLCu. Typically, good motors fall in the range of 550% to

750% of FLCu. The starting torque of an induction motor starting with a fixed voltage will

drop a little to the minimum torque, known as the pull-up torque, as the motor accelerates

and then rises to a maximum torque, known as the breakdown or pull-out torque, at almost

full speed and then drop to zero at the synchronous speed. The curve of the start torque

against the rotor speed is dependant on the terminal voltage and the rotor design. The LRT

of an induction motor can vary from as low as 60% of FLT to as high as 350% of FLT.

The pull-up torque can be as low as 40% of FLT and the breakdown torque can be as high

as 350% of FLT. Typically, LRTs for medium to large motors are in the order of 120% of

FLT to 280% of FLT [1].

2.5.2 Running characteristic
Once the motor is up to speed, it operates at a low slip, at a speed determined by the

number of the stator poles. Typically, the full-load slip for the squirrel cage induction

motor is less than 5%. The actual full-load slip of a particular motor is dependant on the

motor design. The typical base speed of the four pole induction motor varies between

1420 and 1480 RPM at 50 Hz, while the synchronous speed is 1500 RPM at 50 Hz. The

current drawn by the induction motor has two components: reactive component

(magnetizing current) and active component (working current). The magnetizing current is

independent of the load but is dependant on the design of the stator and the stator voltage.

The actual magnetizing current of the induction motor can vary, from as low as 20% of

FLCu for the large two pole machine, to as high as 60% for the small eight pole machine.

Three-Phase Induction Motor 18

The working current of the motor is directly proportional to the load. The tendency for the

large machines and high-speed machines is to exhibit a low magnetizing current, while for

the low-speed machines and small machines the tendency is to exhibit a high magnetizing

current. A typical medium sized four pole machine has a magnetizing current of about

33% of FLC. A low magnetizing current indicates a low iron loss, while a high

magnetizing current indicates an increase in iron loss and a resultant reduction in the

operating efficiency. Typically, the operating efficiency of the induction motor is highest

at 3/4 load and varies from less than 60% for small low-speed motors to greater than 92%

for large high-speed motors. The operating PF and efficiencies are generally quoted on the

motor data sheets. As seen in the speed-torque characteristics, torque is highly nonlinear

as the speed varies. In many applications, the speed needs to be varied, which makes the

torque vary [1].

2.6 V/F control theory
The most widely way to control the motor's shaft speed is to vary the supply frequency

with constant voltage over frequency percent. If the induction motor is supplied with its

rated voltage and frequency, the flux produced will be at the optimum design value. As it

can be seen in the speed-torque characteristics shown in Figure 2.16, the induction motor

draws the rated current and delivers the rated torque at the base speed. When the load is

increased (over-rated load), while running at base speed, the speed drops and the slip

increases. As has been presented in the earlier section, the motor can take up to 2.5 times

the rated torque with around 20% drop in the speed. Any further increase of load on the

shaft can stall the motor. Reducing the supply frequency below the rated value whilst

maintaining the rated supply voltage will cause an increase in motor flux. If the frequency

is increased above its rated value, the flux and hence torque will decrease. Figure 2.17

illustrates the effect on the motor torque/speed characteristic as the operating frequency is

varied with constant supply voltage applied [16].

Figure 2.17: Torque/speed characteristic curve due to variable frequency and constant voltage.

Three-Phase Induction Motor 19

The torque developed by the motor is directly proportional to the magnetic field produced

by the stator. So, the voltage applied to the stator is directly proportional to the product of

stator flux and angular velocity. This makes the flux produced by the stator proportional to

the ratio of applied voltage and frequency of supply. By varying the frequency, the speed

of the motor can be varied. Therefore, by varying the voltage and frequency at the same

ratio, flux and hence, the torque can be kept constant throughout the speed range.

V/F

2*
)]([*])([)(

α
πα

α

Φ
Φ

Φ
fV

wvelocityAngularFluxStatorVVoltageStator
 (2.5)

With a variable frequency of the supply, the motor impedance will change with the

frequency, influencing also the magnetic flux produced at the motor air gap. Since the

torque produced in the motor is a function of the air gap magnetic flux, it is necessary to

compensate for the motor impedance change by changing the voltage applied to the motor

to maintain a constant flux over the operating frequency range.. This is achieved by

increasing the motor voltage, Vs, at the lower frequencies and is termed 'voltage boost'.

Figure 218 illustrates the effect of voltage boost on the motor torque/speed characteristic.

.

Figure 2.19 shows the relation between the voltage and torque versus frequency. Which

demonstrates that the voltage and frequency being increased up to the base speed. At base

speed, the voltage and frequency reach the rated values as listed in the nameplate. It's

possible to drive the motor beyond base speed by increasing the frequency further.

 However, the voltage applied cannot be increased beyond the rated voltage. Therefore,

only the frequency can be increased, which results in the field weakening and the torque

available being reduced. Above base speed, the factors governing torque become complex,

Figure 2.18: Torque/speed characteristic with constant V/F ratio.

Three-Phase Induction Motor 20

since friction and windage losses increase significantly at higher speeds. Hence, the torque

curve becomes nonlinear with respect to speed or frequency [17].

2.7 Equivalent circuit of the induction motor
The polyphase induction motor can be assumed as a polyphase transformer since the EMF

produced by the rotor currents is rotating at synchronous speed relative to the stator

winding, it induces a source frequency voltage just as in a normal transformer. Figure 2.20

shows the equivalent circuit of the induction motor [18].

Figure 2.19: Frequency -Torque characteristics with V/F Control.

Figure 2.20: General equivalent circuit of the induction motor.

Three-Phase Induction Motor 21

Where

currentexcitationIII

currentonmagnetiztiIcurrentlosscoreI
currentstatorIcurrentwindingrotorI

sanyatemfrotorsEEsatemfrotorKfNE
emfstatorKfNEfluxphaseimum

factorwindingrotorKfactorwindingstatorK
phaseperturnsrotorNphaseperturnsstatorN

ceresiscoreRcereacgmagnetizinX
sanyatreactacnerototsXsfLXsatcereacleakagerotorfLX

satceinducleakagerotorLceresiswindingrotorR
cereacleakagefLXceinducleakagestatorL

resistorstatorRvoltageappliedv

mo

m

brmwb

mwm

ww

cm

bbbb

b

=+=

=−=
==

=====
===

==
==
==

======

===
===

==

µ

µ

φ
φφ

ππ

π

12

22

111

21

21

2

111

11

144.4
44.4max

tantan
221tan2

1tantan
tan2tan

The secondary parameters and variables of the model can be referred to the primary. For

convenience, this is done by adding primes to the symbols for the secondary resistance,

leakage reactance, current, and voltage as shown in Figure 2.21.

Where:

()1
2

22

2

2

1
22

2

2

122
2

2

1
2

N
NIIN

NXX

N
N

S
R

S
R

EN
NE

=′

=′

=

′

=′

Figure 2.21: Parameter of rotor referred to the primary

Three-Phase Induction Motor 22

Then we can rewrite the term
S

R ′
2 into the following:

 −′+′=

′

S
SRR

S
R 1

22
2

In the induction machine the stator core loss exists as long as the machine is connected to

a source, the rotor core loss exists when the slip is any value other than zero, and the

windage and friction losses exist when the machine rotates. Since the windage and friction

losses are significantly greater than others, it is common to group all of them as rotational

losses and remove mR from the circuit model. This is convenient since the no-load power

is the sum of these lenses other than the small copper losses, and normally it is not

possible to separate the core loss from the mechanical loss. Naturally this introduce a

small error in computed values of gap power, but this error is quite insignificant .When

this is done, the equivalent circuit appears as shown in Figure 2.23.

Figure 2.22: Equivalent circuit of induction motor.

Figure 2.23: Approximate Equivalent circuit of induction motor.

Three-Phase Induction Motor 23

In order to get the transfer function of the induction motor, the values of each of the

resistors and inductors given in Figure 2.23 must be obtained [18].

Three separate tests can be performed to evaluate the circuit parameters:

DC resistance Test:

This dc resistance test applied to the stator terminal to measured and provides an estimate

of the primary resistance R1. This test is performed by setting ωe equal to zero. This

causes all the impedances caused by inductances to be zero at steady state according to

Steady State Impedance = Z = j*ωe*L

R1 can then be evaluated by the equation below.

 R1(dc) = Vdc / Idc

The above value will be right if the test applied on one phase, but if the phase motor

connected star or delta then to get the resistance per phase the getting value must be scaled

as following:

If the motor connect in Star form then the value must divided by two.

If the motor connect in Delta form then the value must multiplied by 1.5.

Blocked-rotor Test:

The blocked rotor test is done by running the motor at zero speed (ωr = 0). The rotor is

blocked to prevent rotation and balanced voltages are applied to the stator terminals at a

frequency of 25 percent of the rated frequency at a voltage where the rated current is

achieved. Current, voltage and power are measured at the motor input. This test will let us

obtain the rotor resistance, R2, and the leakage inductances of the rotor and stator, L2 and

L1. Figure 2.2 below shows the equivalent blocked rotor circuit.

.

Figure2.24: Blocked-rotor test equivalent circuit of induction motor.

Three-Phase Induction Motor 24

Because I2 is much greater than the exciting current Im, we can neglect the magnetizing

branch, and assuming that ′= 21 XX , the equivalent impedance of the circuit can be
represented as below.

 121
1

1 2XRRI
VZeq +′+==

 And we can get the value of R1 from the previous dc resistance test.

No-load test

This test will let us find the value of the mutual inductance, Lm then we can get

Xm=J*W*Lm. During the No Load Test, we can assume that ωe = ωr. This corresponds to

a slip of zero. A slip of zero also means that right loop of the circuit is now an open

circuit as shown in Figure 2.25. The equivalent impedance of the circuit is then:

 Zeq = R1 + X1+Xm

Figure 2.25: No-load test equivalent circuit of induction motor.

Fuzzy Logic Control 25

CHAPTER 3

Fuzzy Logic Control
3.1 Fuzzy logic history
The concept of fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at the

University of California at Berkley, who was published the first paper on fuzzy set theory

in early 1960's [19], which was presented not as a control methodology, but as a way of

processing data.

This approach to set theory was not applied to control systems until the 70's due to

insufficient small-computer capability prior to that time. Professor Zadeh reasoned that

people do not require precise, numerical information input, and yet they are capable of

highly adaptive control. If feedback controllers could be programmed to accept noisy,

imprecise input, they would be much more effective and perhaps easier to implement [20].

However, during its early years, it was met with a lot of criticisms, some of which are

from Prof. Zadeh's colleagues themselves. Rudolph E. Kalman had this to say in 1972: "I

would like to comment briefly on Prof. Zadeh's presentation. His proposals could be

severely, ferociously, even brutally criticized from a technical point of view. This would

be out of place here. But a blunt question remains: Is Prof. Zadeh presenting important

ideas or is he indulging in wishful thinking? No doubt Prof. Zadeh's enthusiasm for

fuzziness has been reinforced by the prevailing climate in the U.S.A one of unprecedented

permissiveness. 'Fuzzification' is a kind of scientific permissiveness; it tends to result in

socially appealing slogans unaccompanied by the discipline of hard scientific work and

patient observation." [21].

Similarly, his esteemed and brilliant colleague Prof. William, stated the following in 1975:

"Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem that could

not be solved better by ordinary logic. What Zadeh is saying is the same sort of things:

Technology got us into this mess and now it can't get us out. Well, technology did not get

us into this mess. Greed and weakness and ambivalence got us into this mess. What we

need is more logical thinking, not less. The danger of fuzzy theory is that it will encourage

the sort of imprecise thinking that has brought us so much trouble.".

Fuzzy Logic Control 26

Unfortunately, U.S. manufacturers have not been so quick to deal with this technology

while the Europeans and Japanese have been aggressively building real products around it.

[21]. In 1974, Mamdani published the first paper for fuzzy applications [22]. Mamdani

method was proposed as an attempt to control a real application in steam engine. The

fuzzy inference system proposed by Mamdani, known as the Mamdani model in fuzzy

system literature.

 In 1985, Takagi and Sugeno published the paper of fuzzy systems [23]. The fuzzy

inference system proposed by Takagi and Sugeno, known as the T-S model in fuzzy

system literature.

There are several advantages of using fuzzy control over classical control methods. As

Lotfi Zadeh, who is considered the father of fuzzy logic, once remarked: "In almost every

case you can build the same product without fuzzy logic, but fuzzy is faster and cheaper."

[19]. Japanese were the first to use fuzzy logic in application in 1980's. Japanese and

Korean companies are using fuzzy logic to enhance things like computers, air

conditioners, automobile parts, cameras, televisions, washing machines, and robotics. In

1994 Japan exported products using fuzzy logic totaling 35 billion dollar. Today, many

publications discuss the theoretical background of fuzzy logic, its history, and how to

program fuzzy logic algorithms.

3.2 Fuzzy logic
FL is a problem-solving control system methodology that lends itself to implementation in

systems ranging from simple, small, embedded micro-controllers to large, networked,

multi-channel PC or workstation-based data acquisition and control systems [24]. It can be

implemented in hardware, software, or a combination of both. FL provides a simple way

to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noise, or

missing input information.

 FL's approach to control problems mimics how a person would make decisions, only

much faster FL incorporates a simple, rule-based IF X AND Y THEN Z approach to a

solving control problem rather than attempting to model a system mathematically. The FL

model is empirically-based, relying on an operator's experience rather than their technical

understanding of the system. In other words fuzzy logic is used in system control and

analysis design, because it shortens the time for engineering development and sometimes,

 in the case of highly complex systems, is the only way to solve the problem [25].

Fuzzy Logic Control 27

Before illustrating the mechanisms which make fuzzy logic machines work, it is important

to realize what fuzzy logic actually is. Fuzzy logic is a superset of conventional (Boolean)

logic that has been extended to handle the concept of partial truth values between

"completely true" and "completely false". As its name suggests, it is the logic underlying

modes of reasoning which are approximate rather than exact. The importance of fuzzy

logic derives from the fact that most modes of human reasoning and especially common

sense reasoning are approximate in nature.

The essential characteristics of fuzzy logic as founded by Lotfi Zadeh are as follows:

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate

reasoning.

• In fuzzy logic everything is a matter of degree.

• Any logical system can be Fuzzified.

• In fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently,

fuzzy constraint on a collection of variables.

• Inference is viewed as a process of propagation of elastic constraints.

3.3 Fuzzy sets
General definition of a set is that a set is a collection of objects distinct and perfectly

specified. A part of a set is a subset. For example, let E is a finite referential set:

 E = {a, b, c, d, e, f }

It can form a crisp subset of E, for example:

 A = {b,d,f}

If we present it in the other form:

In the classical set theory one element can either belong

to a set, or not. This property can be represented by a degree of membership. In the case

shown before, the element f belongs to A, and its degree of membership is 1.

The element c doesn’t belong to A and its membership is 0. We can form a function which

represents this property:

∉

∈
=

Axif

Axif
xA

0

1
)(µ

 (3.1)

Fuzzy Logic Control 28

This concept is basic in the classical set theory. The main concept of fuzzy theory is a

notion of fuzzy set. Fuzzy set is an extension of crisp set. Zadeh was giving the following

definition:

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is

characterized by a membership (characteristic) function which assigns to each object a

grade of membership ranging between zero and one [25].

After Dr.Zadeh fuzzy set,, many authors found different ways of denoting fuzzy sets [26].

Zimmermann writes:

A fuzzy set is denoted by an ordered set of pairs, the first element of which denotes the

element (x) and the second (µA(x)) the degree of membership:

 (){ }XxxAxA ∈= |)(, µ (3.2)

where µA takes values in the interval [0,1].

One of the biggest differences between crisp and fuzzy sets is that the former always have

unique membership functions, whereas every fuzzy set has an infinite number of

membership functions that can represent it. From the above definitions follows that one

possible fuzzy subset of the referential E is:

It means that the element a belongs to B with a value of 0.8, element b with 0.4 etc. This

value has different names in the literature. The mostly used are: membership value, degree

of membership, degree of compatibility, degree of truth, grade of membership, level of

membership etc.

3.4 Membership function
Every fuzzy set can be represented by its membership function. The shape of membership

function depends on the application and can be monotonic, triangular, trapezoidal or bell-

shaped as shown in Figure 3.1.

Figure 3.1: Different shapes of membership functions: monotonic, triangular, trapezoidal and bell-shaped.

Fuzzy Logic Control 29

For example to represent the property: positive small of the linguistic variable:

temperature shown in Figure 3.2. If the measured temperature in one system is x, then the

level of membership of x in the fuzzy set positive small is given by µ(x) and it is 0.8. We

can say that the level of truth for the proposition:" The temperature x is positive small" is

0.8 or 80%.

One of the first steps in every fuzzy application is to define the universe of discourse

(dynamic range) for every linguistic variable. The set of terms: T(temperature) can be

characterized as fuzzy sets whose membership functions are shown in Figure 3.3. Every

fuzzy set in a universe of discourse represents one linguistic value or label.

3.5 Operations with fuzzy sets
The most important operators in classical set theory with ordinary (crisp) sets are

complement, intersection, union. These operations are defined in fuzzy logic via

membership functions. Moreover, fuzzy set theory offers the vast range of operations on

fuzzy sets that don’t exist in the classical theory [28].

Figure 3.2: membership function example (positive small temperature).

Figure 3.3: Universe of discourse for linguistic variable: temperature.

Fuzzy Logic Control 30

3. 5. 1 Complement

Complementation in fuzzy set theory corresponds to the complementation in classical set

theory. For example, the element belongs to the fuzzy subset B with a level 0.6. It means

that it does not belong to B with a level 0.4. Mathematically the membership values in a

complement subset B are.

 µ B (x) = not (µ B(x)) = 1 - B(x). (3.3)

3. 5. 2 Intersection or triangular norms

For the intersection of fuzzy sets, Zadeh [28] suggested the min operator and the algebraic

product. Following Zadeh’s idea a lot of researchers proposed various operators for this

operation [26]. Let A and B be two fuzzy sets in U universe of discourse, with

membership functions µA and µB respectively. The most important intersection operators

are:

• min operator

µA(x) and µB(x) = min { µA(x), µB(x)} (3.4)

• algebraic product

µA(x) and µB(x) = µA(x)* µB(x) (3.5)

• bounded product

µA(x) and µB(x) = max (0, µA(x)+ µB(x)-1) (3.6)

• drastic product

<

=

=

=

1,0

1

1

yxif

xify

yifx

and BA µµ (3.7)

 Figure 3.4: Complement of fuzzy sets B.

Fuzzy Logic Control 31

• Einstein product

)]()()()([2

)()(
xBxAxBxA

xBxA
BandA µµµµ

µµ
µµ

−−−
= (3.8)

• Hamacher product

)]()()()(

)()(
xBxAxBxA

xBxA
BandA µµµµ

µµ
µµ

−+
= (3.9)

3. 5.3 Union triangular

For the union of two fuzzy sets, the most used in the literature are:

• max operator

µA(x) or µB(x) = max {µA(x), µB(x)} (3.10)

• algebraic sum

µA(x) or µB(x) = µA(x) µB(x)- µA(x)* µB(x) (3.11)

• bounded sum

µA(x) or µB(x) = min { 1, µA(x) +µB(x) } (3.12)

• drastic sum

>

=

=

=

0,1

0

0

yxif

xify

yifx

or BA µµ (3.13)

Figure 3.5: Intersection of fuzzy sets A and B(most used).

Fuzzy Logic Control 32

• Einstein sum

)()(1
)()(

xBxA

xBxA
BorA µµ

µµ
µµ

+
+

= (3.14)

• Hamacher sum

)()(1

)()(2)()(

xBxA

xBxAxBxA
BorA µµ

µµµµ
µµ

−

−+
= (3.15)

• Disjoint sum

µA(x) or µB(x) = max {min (µA(x), 1 -µB(x)), min(1 -µA(x) µB(x)) } (3.16)

3.6 Notion of linguistic rule
The principal idea of fuzzy logic systems is to express the human knowledge in the form

of linguistic if-then rules. Every rule has two parts:

• Antecedent part (premise), expressed by if... and

• Consequent part, expressed by: then...

The antecedent part is the description of the state of the system, and the consequent is the

action that the operator who controls the system must take. There are several forms of if-

then rules. The general is:

If (a set of conditions is satisfied) then (a set of consequences can be inferred).

Example: If the temperature is high, then the pressure is small.

The general form of this rule is:

Rule: If x is A, then y is B.

Temperature (x) and pressure (y) are linguistic variables. x represents the state of the

system, and y is control variable and represents the action of the operator. High (A) and

small (B) are linguistic values or labels characterized by appropriate membership

Figure 3.6: Union Intersection of fuzzy sets A and B(most used).

Fuzzy Logic Control 33

functions of fuzzy sets. They are defined in the universe of discourse of the linguistic

variables x and y.

Takagi and Sugeno [26] proposed the form which has the fuzzy sets only in the premise

part of the rule, and the consequent part is described by a non-fuzzy equation of the input

variable.

Example: If velocity is high, then force is k*(velocity)2

Another form of this rule is:

Rule: If x is A, then y is k*x2.

or more general,

Rule: If x is A, then y is f(x)

3.7 General structure of fuzzy logic control "FLC" system
Every fuzzy system is composed of four principal blocks (Figure 3.7):

1. Knowledge base (rules and parameters for membership functions).

2. Decision making unit (inference operations on the rules).

3. Fuzzification interface (transformation of the crisp inputs into degrees of match with

linguistic variables).

4. Defuzzification interface (transformation of the fuzzy result of the inference into a

crisp output).

3.7.1 Knowledge base

We can use four modes of derivation of fuzzy control rules. These four modes are not

mutually exclusive, and it is necessary to combine them to obtain an effective system.

Figure 3.7: General structure of fuzzy inference system.

Fuzzy Logic Control 34

• Expert experience and control engineering knowledge: operating manual and

questionnaire.

• Based on operators’ control actions: observation of human controller’s actions in

terms of input-output operating data.

• Based on the fuzzy model of a process: linguistic description of the dynamic

characteristics of a process.

• Based on learning: ability to modify control rules such as self-organizing

controller.

The number of base rules depends on the number of membership in the fuzzy set of the

inputs. For example if the system contains one input with fuzzy set contains 4

memberships then there are 4 base rules. If the system has two inputs and one of them

contains five membership in its fuzzy set, and the other contains three memberships then

the total base rules will equal to 5*3=15 base rule. The efficiency of the system will

proportionally depend on the number of membership, but here the system is going more

complex to implement. So there are many studies in genetic algorithm which try to

minimizing the base rules and hence to simplify the system calculations.

3.7.2 Procedure of fuzzy inference

There are a lot of inference methods which deals with fuzzy inference like : Mamdani

method, Larsen method, Tsukamoto method, and the Sugeno style inference, or to be more

complete, Takagi-Sugeno_Kang (TSK) method. The most important and widely used in

fuzzy controllers are the Mamdani and Takagi-Sugeno methods.

3.7.2.a Mamdani method

Which is the most commonly used fuzzy inference technique. In 1974, Professor Ebrahim

Mamdani of London University built one of the first fuzzy systems to control a steam

engine and boiler combination. He applied a set of fuzzy rules supplied by experienced

human operators. The Mamdani-style fuzzy inference process is performed in four steps

[23]:

• Fuzzification of the input variables,.

• Rule evaluation.

• Aggregation of the rule outputs.

• Defuzzification.

Fuzzy Logic Control 35

Crisp Input
y1

0.1

0.7
1

0 y1

B1 B2

Y

Crisp Input

0.2
0.5

1

0

A1 A2 A3

x1

x1 X
µ (x = A1) = 0.5
µ (x = A2) = 0.2

µ (y = B1) = 0.1
µ (y = B2) = 0.7

To illustrate the fuzzy inference let's examine a simple two-input one-output problem that

includes three rules:

 Rule(1)…. IF X is A3 OR Y is B1 THEN z is C1

 Rule(2)…. IF X is A2 AND Y is B2 THEN z is C2

 Rule(3)…. IF X is A1 THEN z is C3

Step 1: Fuzzification

The first step in the application of fuzzy reasoning is a Fuzzification of inputs in the

controller, which is to take the crisp inputs, x1 and y1, and determine the degree to which

these inputs belong to each of the appropriate fuzzy sets. It means that to every crisp value

of input we attribute a set of degrees of membership (mj, j=1,n) to fuzzy sets defined in

the universe of discourse for that input.

Step 2: Rule evaluation

The second step is to take the Fuzzified inputs, µ(x=A1) = 0.5, µ(x=A2) = 0.2,

µ(y=B1) = 0.1 and µ(y=B2) = 0.7, and apply them to the antecedents of the fuzzy rules. If

a given fuzzy rule has multiple antecedents, the fuzzy operator (AND or OR) is used to

obtain a single number that represents the result of the antecedent evaluation. This

number (the truth value) is then applied to the consequent membership function. To

evaluate the disjunction of the rule antecedents, we use the OR fuzzy operation. As shown

Operations with fuzzy sets the most used approach for the union is to get the maximum:

 µA∪B(x) = max [µA(x), µB(x)] (3.17)

Similarly, in order to evaluate the conjunction of the rule antecedents, we apply the AND

fuzzy operation intersection which used minimum approach:

 µA∩B(x) = min [µA(x), µB(x)] (3.18)

Figure 3.8: Fuzzification stage

Fuzzy Logic Control 36

A3
1

0 X

1

y10 Y
0.0

x1 0

0.1
C1

1
C2

Z

1

0 X

0.2

0

0.2 C1
1

C2

Z

A2

x1

Rule 3:

A1
1

0 X 0

1

Zx1

THEN

C1 C2

1

y1

B2

0 Y

0.7

B1
0.1

C3

C3

C30.5 0.5

OR
(max)

AND
(min)

OR THENRule 1:

AND THENRule 2:

IF x is A3 (0.0) y is B1 (0.1) z is C1 (0.1)

IF x is A2 (0.2) y is B2 (0.7) z is C2 (0.2)

IF x is A1 (0.5) z is C3 (0.5)

Degree of
Membership
1.0

0.0

0.2

Z

Degree of
Membership

Z

C2

1.0

0.0

0.2

C2

the rule evaluations are clearly appears in Figure 3.9.

The most common method of correlating the rule consequent with the truth value of the

rule antecedent is to cut the consequent membership function at the level of the antecedent

truth. This method is called clipping. Since the top of the membership function is sliced,

the clipped fuzzy set loses some information. However, clipping is still often preferred

because it involves less complex and faster mathematics, and generates an aggregated

output surface that is easier to Defuzzify.

While clipping is a frequently used method, scaling offers a better approach for preserving

the original shape of the fuzzy set. The original membership function of the rule

consequent is adjusted by multiplying all its membership degrees by the truth value of the

rule antecedent. This method shown in Figure 3.10, which generally loses less

information, can be very useful in fuzzy expert systems

Figure 3.9: Rule evaluation in Mamdani method

Figure 3.10: Clipping and scaling stage.

Fuzzy Logic Control 37

Step 3: Aggregation of the rule outputs

Aggregation is the process of unification of the outputs of all rules. We take the

membership functions of all rule consequents previously clipped or scaled and combine

them into a single fuzzy set. The input of the aggregation process is the list of clipped or

scaled consequent membership functions, and the output is one fuzzy set for each output

variable.

Step 4: Defuzzification

The last step in the fuzzy inference process is Defuzzification. Fuzziness helps us to

evaluate the rules, but the final output of a fuzzy system has to be a crisp number. The

input for the Defuzzification process is the aggregate output fuzzy set and the output is a

single number. There are several methods for the Defuzzification, proposed in the

literature. Here are four of them [27].

• The center of gravity method

This widely used method generates a center of gravity (or center of area) also called

centroid technique of the resulting fuzzy set of a control action. If we discretize the

universe it is:

 (3.19)

Where n is the number of quantization levels, ri is the amount of control output at the

quantization level i and Zi represents its membership value.

0
0.1

1
C 1

C z is 1 (0.1)

C 2

0
0.2

1

C z is 2 (0.2)

0

0.5

1

C z is 3 (0.5)
Z Z Z

0.2

Z 0

∑

C 3
0.5
0.1

Figure 3.11: Aggregation stage in Mamdani method.

∑
=

∑
==
n

i
iZ

n

i
iZir

Z

1

1

Fuzzy Logic Control 38

• The mean of maximum method

The mean of maxima method generates a crisp control action by averaging the support

values which their membership values reach the maximum. In the case of discrete

universe:

 ∑
=

=
l

i l
iZ

Z
1

 (3.20)

Where l is the number of the quantized r values which reach their maximum memberships.

• Tsukamoto’s method

If monotonic membership functions are used, then the crisp control action can be

calculated as follows:

∑
=

∑
==

n

i
iW

n

i
iZiW

Z

1

1 (3.21)

Where n is the number of rules with firing strength wi is grater than zero and zi is the

amount of control action recommended by the rule i.

• The weighted average method

This method is used when the fuzzy control rules are the functions of their inputs.

 In general, the consequent part of the rule is:

z = f(x,y) If Wi is the firing strength of the rule i, then the crisp value is given by:

∑
=

∑
==

n

i
iW

n

i
iyixfiW

Z

1

1
),(

 (3.22)

where n is the number of firing rules.

The most popular method of Defuzzification is the Centroid technique. It finds the point

where a vertical line would slice the aggregate set into two equal masses. Mathematically

this centre of gravity (COG) can be expressed as:

 (3.23)

()

()∫

∫
= b

a
A

b

a
A

dxx

dxxx
COG

µ

µ

Fuzzy Logic Control 39

A reasonable estimate can be obtained by calculating it over a sample of points.

Mamdani-style inference, as we have just seen, requires us to find the centroid of a two-

dimensional shape by integrating across a continuously varying function. In general, this

process is not computationally efficient [27].

3.7.2.b Sugeno method

Since Mamdani's pioneering work [28] on fuzzy control motivated by zadeh's approach to

inexact [29], there have been numerous studies on fuzzy reasoning [30,31]. Most fuzzy

controllers have been designed, based on human operator experience and/or control

engineer knowledge. It is; however, often the case that an operator cannot tell

linguistically what kind of action he takes in a particular situation. In this respect, it is

quite useful to provide a method of modeling the control actions using numerical data

[32]. In 1985 Takagi-Sugeno-Kang suggested to use a single spike, a singleton, as the

membership function of the rule consequent, and they suggested another approach that

using equation consequent in place off singleton consequent. A singleton, or more

precisely a fuzzy singleton, is a fuzzy set with a membership function that is unity at a

single particular point on the universe of discourse and zero everywhere else. Sugeno-style

fuzzy inference is very similar to the Mamdani method. Sugeno changed only a rule

consequent. Instead of a fuzzy set, he used a mathematical function of the input variable.

The format of the Sugeno-style fuzzy rule is

 IF X is A AND Y is B THEN Z is f (x, y) (3.24)

where X, Y and Z are linguistic variables; A and B are fuzzy sets on universe of discourses

X and Y, respectively; and f (x, y) is a mathematical function.

1.0

0.0

0.2

0.4

0.6

0.8

0 20 30 40 50 10 70 80 90 100 60

Z

Degree of
Membership

67.4

4.67
5.05.05.05.02.02.02.02.01.01.01.0

5.0)100908070(2.0)60504030(1.0)20100(
=

++++++++++
×++++×++++×++

=COG

Figure 3.12: COG approach in Defuzzification stage.

Fuzzy Logic Control 40

A3
1

0 X

1

y10 Y

0.0

x1 0

0.1

1

Z

1

0 X

0.2

0

0.2

1

Z

A2

x1

IF x is A1 (0.5) z is k3 (0.5)Rule 3:

A1
1

0 X 0

1

Zx1

THEN

1

y1

B2

0 Y

0.7

B1
0.1

0.5 0.5

OR
(max)

AND
(min)

OR y is B1 (0.1) THEN z is k1 (0.1)Rule 1:

IF x is A2 (0.2) AND y is B2 (0.7) THEN z is k2 (0.2)Rule 2:

k1

k2

k3

IF x is A3 (0.0)

The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules in the

following form:

 IF X is A AND Y is B THEN Z is k (3.25)

Where k is a constant.

In this case, the output of each fuzzy rule is constant. All consequent membership

functions are represented by singleton spikes.

The following Figures (3.13,14,15) illustrate the idea for TSK which like Mamadni steps.

For Defuzzification stage its better to use Weighted Average method (WA)

z is k1 (0.1) z is k2 (0.2) z is k3 (0.5) ∑
0

1

0.1
Z 0

0.5

1

Z0
0.2

1

Zk1 k2 k3 0

1

0.1
Zk1 k2 k3

0.20.5

Figure 3.13: Rule evaluation stage in TSK method.

Figure 3.14: Aggregation stage in TSK method.

65
5.02.01.0

805.0502.0201.0
)3()2()1(

3)3(2)2(1)1(
=

++
×+×+×

=
++

×+×+×
=

kkk
kkkkkkWA

µµµ
µµµ

Fuzzy Logic Control 41

The overall fuzzy logic controller "FLC" appear in Figure 3.16

3.7.2.c How to make a decision Mamdani or Sugeno?

• Mamdani method is widely accepted for capturing expert knowledge. It allows us to

describe the expertise in more intuitive, more human-like manner. However,

Mamdani-type fuzzy inference entails a substantial computational burden.

• On the other hand, Sugeno method is computationally effective and works well with

optimization and adaptive techniques, which makes it very attractive in control

problems, particularly for dynamic nonlinear systems.

0 Z

Crisp Output
z1

z1

Figure 3.15: (WA) method in Defuzzification stage.

Figure 3.16: General structure of fuzzy logic control part of the system.

Field Programmable Gate Arrays (FPGAs) 42

CHAPTER 4

Field Programmable Gate Arrays (FPGAs)
4.1 Introduction
FPGAs stand for Field Programmable Gate Arrays are one type of programmable logic

devices (PLDs). They are an integrated circuit that can be configured by the user in order

to implement digital logic functions of varying complexities. FPGAs can be very

effectively used for control purposes in processes demanding very high loop cycle time.

One of the fundamental advantage of FPGA over DSP or other microprocessors is the

freedom of programming parallelism. Since different parts of FPGA can be configured to

perform independent functions simultaneously, its performance is just not tied to clock

rate as in DSPs. This fact enables FPGA‘s to score over general purpose computing chips

in the digital control systems implementation [32].

4.2 PLDs history
By the late 1970s, standard logic devices like AND, OR, NAND, and others basic gates

with printed circuit boards loaded with them were the rage techniques in electronics

design. Then a novel idea has been appeared which provided designers with the ability to

implement different interconnections in a bigger device. This would allow designers to

integrate many standard logic devices into one part. To offer the ultimate in design

flexibility, Ron Cline from Signetics™ (which was later purchased by Philips and then

eventually Xilinx) came up with the idea of the programmable logic device.

A programmable logic device or PLD is an electronic component used to build

reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD has

an undefined function at the time of manufacture, and before the PLD can be used in a

circuit it must be programmed. The first type of PLD family which had been appeared in

the market is called programmable logic array (PLA). PLAs have two programmable

planes as illustrated in Figure 4.1. These two planes provided any combination of “AND”

and “OR” gates, as well as sharing of AND terms across multiple ORs. This architecture

Field Programmable Gate Arrays (FPGAs) 43

was very flexible, but at the time wafer geometries of 10 µm made the input-to-output

delay (or propagation delay time Tpd) high, which made the devices relatively slow [33].

After fabrication issues applied to PLA, it was modified to become the programmable

array logic (PAL). This new architecture shown in Figure 4.2 differed from in that one of

the programmable planes (OR array) was fixed. PAL architecture also had the added

benefit of faster Tpd and less complex software, but without the flexibility of the PLA

structure. This category of PLD devices is often called Simple PLD or SPLD.

The architecture had a mesh of horizontal and vertical interconnect tracks. At each

junction was a fuse. With the aid of software tools, designers could select which junctions

would not be connected by “blowing” all unwanted fuses. This process was done by a

device programmer. Input pins were connected to the vertical interconnect. The horizontal

tracks were connected to AND-OR gates, also called “product terms”. These in turn

Figure 4.1: PLA constructions.

Figure 4.2: PAL constructions.

Field Programmable Gate Arrays (FPGAs) 44

connected to dedicated flip-flops, whose outputs were connected to output pins. SPLDs

provided as much as 50 times more gates in a single package than discrete logic devices.

PLD technology has moved on from the early days with companies such as Xilinx

producing ultra-low-power CMOS devices based on flash memory technology. Flash

PLDs provide the ability to program the devices time and time again, electrically

programming and erasing the device [34,35].

Complex Programmable Logic Devices (CPLD) which shown in Figure 4.3 are another

way to extend the density of the simple PLDs. The concept is to have a few PLD blocks or

macrocells on a single device with general purpose interconnect in between. Simple logic

paths can be implemented within a single block. More sophisticated logic will require

multiple blocks and use the general purpose interconnect in between to make these

connections.

In 1985, Xilinx company introduced a completely new idea. The concept was to combine

the user control and time to market of PLDs with the densities and cost benefits of gate

arrays. A lot of customers liked it, and the FPGA was born. The term is most commonly

applied to electronic devices which contain an array of identical logic elements which can

be configured using a programming procedure to replicate any particular logic circuit.

Figure 4.3: CPLD architecture.

Field Programmable Gate Arrays (FPGAs) 45

4.3 FPGAs construction
A normal FPGA device is usually contained within a single silicon package which may

also house some form of memory elements [36]. As shown in Figure 4.4 the logic

element has a programmable Look-Up Table and a register (flip-flop).

The LUT can perform any logic function on the available inputs to produce a single logic

output. The final output is either this new value or the previous value (stored in the flip-

flop), although the logic element may have more than the four inputs.

Figure 4.5 demonstrates the way in which logic blocks are laid out to form an array inside

the FPGA. Different Manufactures will have slightly different configurations but all use

some type of programmable switch matrix at the crossing point of the logic block

interconnection lines.

By having programmable switches and programmable logic elements, the system can be

configured to mimic any combination of logic functions as long as the overall design can

be fitted into the available number of logic elements and switches.

There are two basic types of FPGAs: SRAM-based reprogrammable and One-time

programmable (OTP). These two types of FPGAs differ in the implementation of the logic

element and the mechanism used to make connections in the device.

 The dominant type of FPGA is SRAM-based and can be reprogrammed by the user as

often as the user chooses. In fact, an SRAM FPGA is reprogrammed every time it is

powered-up.

That’s why you need a serial programmable read only memory (SPROM) or system

memory with every SRAM FPGA. One-time programmable (OTP) FPGAs use anti-fuses

to make permanent connections in the chip and so do not require a SPROM or other

means to download the program to the FPGA. However, every time you make a design

change, you must throw away the chip.

Figure 4.4: FPGA logic element

Field Programmable Gate Arrays (FPGAs) 46

4.4 ASIC vs FPGA as a design choice
In comparison with PLDs, there is another kind of un-programmable digital devices called

application specific integrated circuit (ASIC). An ASIC is an integrated circuit (IC)

customized for a particular use, rather than intended for general-purpose use. By carefully

tuning each ASIC to a given job, the computer designer can produce a smaller, cheaper,

faster chip that consumes less power than a programmable processor. A graphics chip for

a personal computer (PC), for instance, can draw lines or paint pictures on the screen 10 or

100 times as quickly as a general-purpose central processing unit can. The ASIC must be

fabricated on a manufacturing line, a process that takes several months, before it can be

used or even tested. ASIC have some significant advantages because they are designed for

a particular purpose they are very fast, efficient circuitry, and lower cost for high volume

production. The disadvantages that it takes time for the ASIC vendor to manufacture and

test the parts and the process of designing, testing and setting up fabrication facilities for

the production of an ASIC is generally very expensive. In situations where the market for

a certain device is large and reprogrammability is not needed, this high non-recurring

Figure 4.5: Structure of a Xilinx FPGA standard.

Field Programmable Gate Arrays (FPGAs) 47

engineering (NRE) cost can be countered by the smaller, faster and cheaper end product

that ASIC technology produces. Strictly speaking, a working FPGA device programmed

with a hardware image is in fact a type of ASIC, however the FPGA’s reprogrammability

makes it very different as a design choice. The advantages and disadvantages of both types

of technology are summed up in Table 4.1.

4.5 FPGAs design advantages
FPGAs enable ease of design, lower development costs, and more product revenue for

money, and the opportunity to speed products to market.

• Ease of Design: FPGAs offer the simplest way to implement a design. Once a design

has been described, it is simply use software development tools to optimize, fit, and

simulate the design.

• Lower Development Costs: FPGAs offer very low development costs. Because its

reprogrammablity, it's easily and very inexpensively to change designs. This allows

optimizing designs and continuing to add new features to enhance products.

• More Product Revenue: FPGAs offer very short development cycles, which means

the product will getting market quicker and begin generating revenue sooner. Again

due to its reprogrammablity, products can be easily modified. This in turn allows

easily introducing additional features and quickly generating new revenue.

• Reduced Board Area: FPGAs offer a high level of integration (that is, a large number

of system gates per area) and are available in very small form factor packages. This

provides the perfect solution for designers whose products which must fit into small

enclosures or who have a limited amount of circuit board space to implement the logic

design [36].

 Table 4.1: ASIC and FPGA comparison.

Field Programmable Gate Arrays (FPGAs) 48

4.6 Parallel processing
Of the many advantages that FPGA devices offer, the ability to allow for customized

parallel processing is perhaps the most beneficial of all. Since a designer no longer needs

to rely on a ASIC vendor to provide him with the processing tools that he needs, the

designer can quickly create his own processing blocks in hardware. This is hugely

beneficial for computationally strenuous tasks, and since the cost of trial and error

designing is now essentially nil, the designer is free to experiment with different

processing configurations to fine tune his system. The basic concept is demonstrated in

Figure 4.6. The Figure shows how an FPGA can be used to quadruple the speed of digital

processing using existing software to defined DSP core, along with a control core. For

example, let us assume that the original DSP core can perform a given operation in 4 clock

cycles. This gives an output of 1/4 = 0.25 operations per clock cycle. In the configuration

at Figure 4.6, the control core switches the data input and outputs in a rotational fashion

thereby allowing a new input value to be applied to the inputs of a different DSP core

every clock cycle. Thus the DSP blocks will operate in parallel on a single sequential

stream of incoming data. Our resulting performance is 4/4 = 1 Operations per clock cycle

[37].

4.7 Xilinx design software package
Xilinx offers complete electronic design tools that enable the implementation of designs in

Xilinx PLDs. These development solutions combine powerful technology with a flexible,

easy-to-use graphical interface regardless of any experience level. The availability of

products such as WebPACK ISE software has made it much easier to design with

programmable logic. Designs can be described easily and quickly using a description

language such as ABEL, VHDL, Verilog™, or with a schematic capture package.

Figure 4.6: Parallel processing in FPGA.

Field Programmable Gate Arrays (FPGAs) 49

 Schematic capture is the traditional method that designers have used to specify gate

arrays and programmable logic devices. It is a graphical tool that allows the user to

specify the exact gates required and how they connected. There are four basic steps to

using schematic capture:

1. After selecting a specific schematic capture tool and device library, begin building the

circuit by loading the desired gates from the selected library. It can be used any

combination of needed gates that you need.

2. Connecting the gates together using nets or wires.

3. Add and label the input and output buffers. These will define the I/O package pins for

the device.

4. Generate a netlist which is a text equivalent of the circuit. It is generated by design tools

such as a schematic capture program. The netlist is a compact way for other programs to

understand what gates are in the circuit, how they are connected, and the names of the I/O

pins.

Figure 4.7 describe an illustrative example, the netlist reflects the actual syntax of the

circuit in the schematic. There is one line for each of the components and one line for each

of the nets. The computer assigns names to components (G1 to G4) and to the nets (N1 to

N8). When implementing this design, it will have input package pins A, B, C, and D, and

output pins Q, R, and S.

The above example is obviously very simplistic. Let’s describe a more realistic design of

10,000 equivalent gates. The typical schematic page contains about 200 gates, contained

with soft macros.

Therefore, it would require 50 schematic pages to create a 10,000-gate design! Each page

needs to go through all the steps mentioned previously which are: adding components,

interconnecting the gates, adding I/Os, and generating a netlist.

 This is rather time-consuming, especially if it is required to have a 20,000, 50,000, or

even larger design. Another inherent problem with using schematic capture is the

difficulty in migrating between vendors and technologies.

 If initially we create 10,000 gates design with FPGA vendor X and then want to migrate

to a gate array, then it will required to modify every one of those 50 pages using the gate

array vendor’s component library.

Field Programmable Gate Arrays (FPGAs) 50

.

There has to be a better way, and, of course, there is. It is called high-level design (HLD),

behavioral, or hardware description language (HDL). For our purposes, these three terms

are essentially the same thing. The idea is to use a high-level language to describe the

circuit in a text file rather than a graphical low-level gate description. There are many

programming language illustrate HDL and the mostly famous is VHDL (Very High Speed

Integrated Circuits) [36]. As an example, let's consider the design work needed specifying

a 16 x 16 multiplier with schematic capture or an VHDL file. A multiplier is a regular but

Figure 4.7: Design flow in schematic method.

Field Programmable Gate Arrays (FPGAs) 51

complex arrangement of adders and registers that requires quite a few gates. This example

has two 16-bit inputs (A and B) and a 32-bit product output (Y = A x B) for a total of 64

I/Os. This circuit requires approximately 6,000 equivalent gates. In the schematic

implementation, the required gates would have to be loaded, positioned on the page, and

interconnected, with I/O buffers added. That would be about three days of work. The

VHDL implementation shown in Figure 4.8 , which is also 6,000 gates, requires eight

lines of text and can be done in three minutes. This file contains all the information

necessary to define the 16 x 16 multiplier. In addition to the tremendous time savings, the

VHDL method is completely vendor-independent. This opens up tremendous design

possibilities for engineers. To create a 32 x 32 multiplier, it could simply modify the work

which already done for the smaller multiplier. For the schematic approach, this would

entail making three copies of the 30 pages, then figuring out where to edit the 90 pages so

that they addressed the larger bus widths. This would probably require four hours of

graphical editing.

Figure 4.8: Multiplier code in VHDL.

Field Programmable Gate Arrays (FPGAs) 52

Figure 4.9 illustrate the design flow of the multiplication example in schematic and VHDL

approaches. Once we have specified the design in a behavioral description we can convert

It into gates using the process of synthesis.

The next step from schematics or synthesis approaches is the verification done by using a

simulator, which is a software program that confirms the functionality or timing of a

circuit. The last step is the implementation, which contains five stages:

• Translate: This Stage translates comprise various programs used to import the

design netlist and prepare it for layout.

• Fitting: Meaning to “fit” the design to the target device.

• Place: Is the process of selecting specific modules, or logic blocks, in the FPGAs

where design gates will reside.

• Route: As the name implies, is the physical routing of the interconnection between

the logic blocks.

Figure 4.9: Design flow in both schematic and VHDL approaches.

Field Programmable Gate Arrays (FPGAs) 53

Most vendors provide automatic place and route tools so that we don’t have to worry

about the intricate details of the device architecture.

• Download program to FPGA chip: using USB cable or special programmer device

depending on the kind of the FPGA chip and its board.

Figure 4.10 illustrates the overall procedure to implement the design using FPGAs .

4.8 Spartan-3A Starter Kit Board user guide
Xilinx Spartan-3A FPGAs (Figure 4.11) are ideal for low-cost, high-volume applications

and are targeted as replacements for fixed-logic gate arrays. The combination of low cost

and some improvements features makes it an ideal replacement for ASICs.

Depending on that and after features checking for the needs of my project in this thesis, I

decided to select this board. Also it's memorable to mention that this board is very modern

due to its manufacturing date (February 15, 2007) [37].

Figure 4.10: Overall process to program FPGAs.

Field Programmable Gate Arrays (FPGAs) 54

This family of cards Spartan-3 FPGA has many applications in our real life, for example,

in a car multimedia system shown in Figure 4.12 could absorb many system functions,

including embedded IP cores, custom system interfaces, DSP, and logic.

Figure 4.11 Spartan-3A Starter Kit Board.

Figure 4.12 Spartan -3 in car applications.

Field Programmable Gate Arrays (FPGAs) 55

The key features of the Spartan-3A Starter Kit are available at the Appendix A, but here

are some of them:

• Xilinx 700K-gate XC3S700A Spartan-3A FPGA .

• 16 Mbits of SPI serial Flash

• Two-line, 16-character LCD screen.

• PS/2 mouse or keyboard port

• VGA display port

• 10/100 Ethernet

• Two nine-pin RS-232 ports (DTE- and DCE-style)

• On-board USB-based programming solution

• FPGA download/debug

• 50 MHz clock oscillator

• High-speed differential I/O connectors

• Receiver: Five data channels plus clock

• Transmitter: Five data channels plus clock

• Supports multiple differential I/O standards

• Supports up to 24 single-ended I/O

• Uses widely available 34-conductor cables

• Four-output, Digital-to-Analog Converter (DAC)

• Two-input, Analog-to-Digital Converter (ADC) with programmable-gain

• pre-amplifier

• Stereo audio jack using digital I/O pins

• Rotary-encoder with push-button shaft

• Eight discrete LEDs

• Four slide switches

• Four push-button switches

4.9 PicoBlaze processor
Due to the complexity of some programming application in FPGA like video display ,

sound processing, network application, lcd etc. Xilinx Company provide The PicoBlaze™

microcontroller which is a compact, capable, and cost-effective fully embedded 8-bit

RISC microcontroller core optimized for the Spartan™-3, and some others FPGA

Field Programmable Gate Arrays (FPGAs) 56

families. The PicoBlaze software microcontroller provides cost-efficient microcontroller-

based control and simple data processing. Designing with the PicoBlaze means

instantiating it in the design using VHDL. An external assembler is then used to generate

the code that is downloaded to the block RAM. One of the outputs of the assembler is a

VHDL file that defines the BRAM and its contents. This is added as a source to the

project and that’s all there is to it. The PicoBlaze microcontroller is optimized for

efficiency and low deployment cost. It occupies just 96 FPGA slices, or about 2% of an

XC3S700 FPGA. In typical implementations, a single FPGA block RAM stores up to

1024 program instructions, which are automatically loaded during FPGA configuration.

Even with such resource efficiency, the PicoBlaze microcontroller performs a respectable

44 to 100 million instructions per second (MIPS) depending on the target FPGA family

and speed grade. The PicoBlaze microcontroller core is totally embedded within the target

FPGA and requires no external resources. The PicoBlaze microcontroller is extremely

flexible. The basic functionality is easily extended and enhanced by connecting additional

FPGA logic to the microcontroller’s input and output ports [38].

As shown in the block diagram in Figure 4.13, the PicoBlaze microcontroller supports the

following features:

• 16 byte-wide general-purpose data registers.

• 1K instructions of programmable on-chip program store, automatically loaded during

FPGA configuration.

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags.

• 64-byte internal scratchpad RAM.

• 256 input and 256 output ports for easy expansion and enhancement.

• Automatic 31-location CALL/RETURN stack.

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or 100

MIPS in a Virtex-II Pro FPGA.

Field Programmable Gate Arrays (FPGAs) 57

• Fast interrupt response; worst-case 5 clock cycles.

• Optimized for Xilinx Spartan-3, Virtex-II, and Virtex-II Pro FPGA architectures—just

96 slices and 0.5 to 1 block RAM.

• Assembler, instruction-set simulator support.

Figure 4.13 PicoBlaze architecture.

Designing Controllers Using FPGA for Three-phase Induction Motor 58

CHAPTER 5

Designing Controllers Using FPGA for

Three-phase Induction Motor
5.1 Overall system design and implementation
This chapter presents the process used to design three kinds of widely used controllers

(PID, Fuzzy, and Fuzzy-PID) for the three phase induction motor using FPGA

technique. The block diagram explains the concept of this system is shown in Figure

5.1.

.

5.2 Three-phase induction motor inverter
When power is supplied to an induction motor at the recommended specifications, it

runs at its rated speed. However, many applications need variable speed operations.

For example, a three-phase induction motor in the elevator must use different speeds

for each order needs to travel between floors. Historically, mechanical gear systems

were used to obtain variable speed. Recently, electronic power and control systems

have matured to allow these components to be used for motor control in place of

mechanical gears. These electronics not only control the motor’s speed, but can

Figure 5.1: Block diagram for the over all control system.

Designing Controllers Using FPGA for Three-phase Induction Motor 59

improve the motor’s dynamic and steady state characteristics [39]. In addition,

electronics can reduce the system’s average power consumption and noise generation

of the motor. While there are different methods for control, Variable Voltage Variable

Frequency (VVVF) or V/f is the most common method of speed control. As has been

mentioned in chapter 2 it is needed to change the frequency of the input power supply

of the motor for getting variable speeds, and at same time the percentage V/f must be

constant to keep the delivered torque to the load constant during speed varying . This

means that the motor can no longer be supplied directly from the AC power line if

there are needs to change its speed.

5.2.1 Hardware construction of the inverter
If the incoming AC supply were converted to DC using a rectifier as shown in Figure

5-2, it could then use some kind of switching power inverter to generate an oscillation

of needed frequency.

The rectifier circuit can be one-phase or three-phase bridge rectifier as shown in

Figure (5.3-5.4) According to the kind of the input power supply used in the system.

Figure 5.2: Switching amplifier diagram.

Figure 5.3: One-phase rectifier bridge with ripple capacitor.

Figure 5.4: Three-phase rectifier bridge with ripple capacitor.

Designing Controllers Using FPGA for Three-phase Induction Motor 60

The input and output for each rectifier is shown in Figure 5.5 and Figure 5.6

For a given load, a larger capacitor will reduce ripple but will cost more and will

create higher peak currents in the supply feeding it. In Figure 5.7, the voltage

waveform of capacitors is depicted to calculate corresponding capacitance value.

Figure 5.5: Input and output signal for the one phase bridge rectifier.

Figure 5.6: Input and output signal for the three phase bridge rectifier.

Figure 5.7: Ripple factor for the full wave rectifier.

Designing Controllers Using FPGA for Three-phase Induction Motor 61

Electrolytic capacitors are used to smooth the dc bus voltage. Its capacitance can be

found from the formula:

rect

in

fVV
PC

)(
2

2
min

2
max

min −
= (5.1)

Where Pin is the load power in watts, frect is the ripple frequency, Vmax is the

maximum DC voltage and V min is the minimum dc voltage [31]. In practical

realization, if a one phase 230V AC input is connected to the input of the rectifier.

The peak voltage value of input is as follows:

VVlV 3252max ==

Assuming ;312%96 maxmin VVV ==

HzfrecWinp 10050*2;1119746*5.1 ====

F
fVV

P
C

rect

in µ2700
100*)312325(

5.1117*2
)(

2
222

min
2

max
min =

−
=

−
=

So the capacitor which been selected was equal to 3300 Fµ which is the nearest value

available in the local market. A voltage source power inverter is used to convert the

DC bus to the required AC voltages and frequency. In summary, the power section

consists of a power rectifier, filter capacitor, and power inverter. The motor is

connected to the inverter as shown in Figure 5.8. The power inverter has 6 switches

that are controlled in order to generate an AC output from the DC input. Pulse width

modulation PWM signals generated from the FPGA controller will control these 6

switches. The phase voltage is determined by the duty cycle of the PWM signals. In

time, a maximum of three switches will be on, either one upper and two lower

switches, or two upper and one lower switch. When the switches are on, current flows

from the DC bus to the motor winding. Because the motor windings are highly

inductive in nature, they hold electric energy in the form of current. This current

needs to be dissipated while switches are off. Diodes connected across the switches

give a path for the current to dissipate when the switches are off. These diodes are

also called freewheeling diodes. Upper and lower switches of the same limb should

not be switched on at the same time. This will prevent the DC bus supply from being

shorted. A dead time is given between switching off the upper switch and switching

on the lower switch and vice versa, as will be explained in next section.

Designing Controllers Using FPGA for Three-phase Induction Motor 62

Up to switching powers of a few kW MOSFET (Metal Oxide Silicon Field-Effect

Transistors) are often used as switching devices. The MOSFET can be switched on

and off by a low level signal requiring virtually no current, is robust and has excellent

conduction when 'switched on'. For powers up to about 10 kW, IGBTs (Insulated Gate

Bipolar Transistors) are the economical power control devices shown in Figure 5.9.

For higher powers the only available devices are thyristors [39].

Depending on the motor power size and the available chips in our local market, the

IXDH20N IGBT has been selected which its datasheet available in Appendix B. The

practical IGBTs circuit which was implemented in this thesis are shown in Figure

5.10.

Figure 5.8: Six switches and free-wheeling diodes used in the inverter.

Figure 5.9: IGBTs works as switches in the inverter.

Figure 5.10: Practical IGBTs circuit.

Designing Controllers Using FPGA for Three-phase Induction Motor 63

The signal coming from the FPGA controller can't feed directly to the IGBT gate pin

due to the weakness of its voltage (3.3v). So it's required to build a power driver

circuit to provide the required voltage. This driver shown in Figure 5.11 include four

transformers, one for each upper three IGBT and common one for the other three

lower IGBT due to its common source pins. Another two transformers are added to

this board to provide power to auxiliary electrical units like the relay and the feedback

sensor. In practice, its better to use the positive –negative driver, which send 10 volt

to the gate of IGBT in case "ON" and -10 volt in case "OFF" to insure that the IGBT

clears its internal capacitor which is connected between gate and source as shown

in Figure 5.12 .

Figure 5.12: Driver signal for the IGBT.

Figure 5.11: Power driver circuit to provide the required voltage for the overall system.

Designing Controllers Using FPGA for Three-phase Induction Motor 64

Figure 5.13 shows the circuit diagram for a leg, which includes high and low sides of

IGBT modules. The over all driver circuit contains three identical legs. The driver

chip which is selected here is HCPL-3120 and its datasheet available in Appendix C.

Figure 5.14 shows the real circuit containing another protection IC's to provide the

complete isolation between the FPGA card and high Voltage stage.

Figure 5.13: Driver signal for the IGBT.

Designing Controllers Using FPGA for Three-phase Induction Motor 65

5.2.2 Software implementation of the inverter
As has been motioned in chapter 4, the FPGA can be programmed using VHDL

language, which is selected as the main language in programming the process and

needs to generate the outputs PWM signals. The main idea here is to generate a three

PWM signals for the upper three IGBTs and the inverse of them towards the other

lower three IGBTs with some modification as will be illustrated in the next section.

The resultant AC frequency of these signals will vary from 0 to 200 HZ range

depending on the value of specified register called the plant speed register. Then this

register will be used as speed input to the plant in the controller design (i.e. the three

phase motor plant has only one input register to specify its speed, and the output of

this block will generate the required six PWM channels where its values will depend

on the input speed) as shown in Figure 5.15.

Figure 5.15: Input output for the Driver software.

Figure 5.14: Practical IGBT driver circuit.

Designing Controllers Using FPGA for Three-phase Induction Motor 66

5.2.2.a Pulse width modulators
 To generate the upper three phase PWM signals of the bridge inverter needed to run

the induction motor we construct a single up-down counter unit, and three comparator

units. For example we consider a five bit counter counts from 0 – 31, with 0 being the

minimum voltage available at the power inverter and 31 being the maximum voltage

available at the power inverter. Now, assuming that the inverter voltage ranges from

0V – 400V, each time the counter increments by 1, the inverter voltage will jump by

1/32 of the maximum voltage, or12.5V. The counter counts from 0 to its maximum

value, then from its maximum value to 0, as seen in Figure 5.16 [40].

The frequency of the PWM signal is equal to the frequency of the counter and is

typically in the 16 – 20 KHz range (outside of the audible range). A fine line must be

drawn between audible noise, and power loss that occurs as the frequency of the

PWM period is increased. Another limiting factor of the PWM period frequency is the

switching frequency of the power semiconductors used by the inverter. These devices

have physical switching frequency limitations, which they will fail to operate over it.

One compare unit is used for each of the three phases, the compare units compare the

count value from the counter unit with a user specified value derived from the sine

wave lookup tables. Each compare unit has two PWM outputs, one is asserted when

the count value is ≥ the user specified value, and the other is asserted when the count

value is < the user specified value [33]. The relationship between the compared values

and the PWM Top and Bottom outputs of the compare unit is shown in Figure 5.17.

Figure 5.16: Up down counter used in PWM generation.

Figure 5.17: Top and bottom PWM signals.

Designing Controllers Using FPGA for Three-phase Induction Motor 67

This type of up-down counter/compare unit combination generates pulses center

aligned within the PWM period. This type of center aligned PWM which is shown in

Figure 5.18 has advantages over edge aligned PWM Figure 5.19 because the outputs

signals in this method will not run the IGBT's together, at the beginning of every

period, as they would do with edge aligned PWM. This can help reduce noise on the

inverter power lines; thus, increasing motor power efficiency.

In order to control the inverter efficiently and without damaging the power

semiconductors, it is important to consider the time it takes for the power

semiconductors to switch-on and off. Figure 5.20 shows that the PWM bottom signal

is the inverse of the PWM top signal; this is fine in theory, but in the real world the

power semiconductors do not switch immediately. There could be a period of time

where both the top and bottom power semiconductors of a phase are on at the same

time causing a direct short to ground. To alleviate this problem, a dead-band is

inserted between the turning off of the PWM bottom signal and the turning on of the

Figure 5.18: Center aligned method in PWM generation.

Figure 5.19: Edge aligned method in PWM generation.

Designing Controllers Using FPGA for Three-phase Induction Motor 68

PWM top signal, and between the turning off of the PWM top signal and the turning

on of the PWM bottom signal. Thus, both PWM outputs remain off to allow the

power semiconductors time to switch.

With dead-time inserted, the PWM top output is asserted when the count value is ≥

user specified value + (deadband/2) and the PWM bottom output is asserted when the

count value is < user specified value – (deadband/2). I used a 2 µ second as dead-band

time in this thesis [40].

5.2.2.b Sine wave generation
There are many methods approved to control the frequency varying of the sine wave

signal. Here, sine table skipping method was selected due to its simplicity and

efficiently in programming using VHDL code. It's required to create a sine lookup

table; the values contained in this lookup table are created by a special program called

sinegen which is available at Xilinx website [33]. The sinegen program generates a

table containing 360 degree of the sine wave and has 256 entries, with each entry

being 16-bits wide as shown in Figure 5.21. The required three sine waves (each 120

degree out of phase from the others) are created by using three separate indices into

the lookup table, as shown in Figure 5.22. It is important to note that the values which

appear in the lookup table represent a sine wave with its maximum voltage. In others

words, this table should change depending on the required frequency to keep the

ration voltage/frequency always constant, for example at low frequency the peak

value for the sine wave will be very small reaching about "X000a" which

approximately equal to 5 volt, and at maximum frequency the peak value will equal to

maximum "Xffff" which approximately equal to 325v.

Figure 5.20: Dead-band region.

Designing Controllers Using FPGA for Three-phase Induction Motor 69

The sine wave generation depending on the integer based sine lookup table does not

have to be mean perfect as shown in Figure 5.23.

 However distortion of the sine wave begins as soon as it enters the digital domain.

Figure 5.21: Sine Look-up table to generate Vmax= 325V.

Figure 5.22: Indexes for the Sine look-up table.

Designing Controllers Using FPGA for Three-phase Induction Motor 70

5.2.2.c Sine table skipping method
This method of sine wave generation employs a static 256 entry lookup table that

contains 360° of a sine wave. By reading values from the table in sequence and

passing them to the PWMs, it is possible to generate a sinusoidal output. Figure 5.23

depicts a 32-entry sine lookup table with 9-bit PWM values. The solid line

(continuous one) represents the analog sine wave, while and the green line (discrete

one) is the digital representation of this sine wave. The frequency of the sine wave can

be increased by skipping entries in the sine lookup table. If for example, the lookup

table entries shaded grey in Figure 5.23 were skipped, the resulting sine wave as

shown in Figure 5.24 would be twice the frequency of that which is displayed in

Figure 5.23. Hence, the term Sine Table Skipping refers to the skipping of entries in

the sine lookup table to increase the frequency of the sine wave [40].

Figure 5.23: Analog and digital 32 entries signal for sine wave.

Figure 5.24: Sine table skipping method to increase/decrease the frequency.

Designing Controllers Using FPGA for Three-phase Induction Motor 71

This method of sine wave generation has two major drawbacks. First, the minimum

sine wave frequency is based upon the number of entries in the sine lookup table and

the PWM period. With a PWM period of 16 KHz and a 256 entry sine lookup table,

the minimum sine wave frequency would be 62.5 Hz (16000/256=62.5). Secondly,

the maximum frequency of the sine wave is also limited by the size of the sine table,

as we skip more and more entries in the lookup table to increase the sine wave

frequency; the sine wave becomes more and more distorted, until it no longer

resembles a sine wave at all. As this distortion increases, it is possible that the peaks

of the sine waves are clipped, reducing the utilization of the DC bus voltage; because

of the wrap-around nature of the access to the sine lookup tables, this could cause

unwanted harmonics to be generated in the windings of the motor. A better solution to

both of these problems is to use a larger sine lookup table. This would allow for a

lower minimum sine wave frequency, and a less distorted maximum sine wave

frequency. However, large lookup tables may be undesirable due to the amount of

space required within the FPGA device to hold them. An intermediate solution is to

use a 256 entry lookup table with linear interpolation. A 16-bit value is used to

address the entries in the table; the upper eight bits are used to index the table and the

lower eight bits are used to interpolate one of 256 points between the index value and

the next index value. This gives the impression that the sine lookup table actually has

65536 entries and not 256 entries. Figure 5.25 depicts the equation used to perform

the linear interpolation of the 256 entry sine lookup table [40].

And the Y value will equal to the following equation:

()

1
12

2
*

Y
FractionYY

Y BitsFraction +

 −

= (5.2)

Figure 5.25: Interpolation method.

Designing Controllers Using FPGA for Three-phase Induction Motor 72

Although the interpolated sine wave in Figure 5.26 continues to appear distorted, the

majority of the step increments seen in the digitized sine wave have been smoothed

out.

Hence, the block diagram for the plant driver is shown in Figure 5.27. After that the

design is ready for the controller part, since there is a unique input to the plant which

is 8-bit or 16-bit register called plant speed register, and six digital PWM outputs will

feed the driver circuit. The clock "clk" input is a 50 MHZ clock which provides the

time base for the software. In VHDL programming, this block diagram called the top

level of the inverter module, and its ready to connect to the others blocks in the

overall design to implement the general top level block diagram.

Figure 5.27: Block diagram for the software PWM generators.

Figure 5.26: Interpolation method applied to sine table skip..

Designing Controllers Using FPGA for Three-phase Induction Motor 73

5.3 Controllers design
The previous section focused on building the PWM inverter, where a value is stored

the plant speed register and generates a three PWM signals required to run the motor

at the speed specified in this register; hence, the controller blocks design will contain

the PWM inverter as shown in Figure 5.28.

 Three different controllers were developed in this thesis which are: PID controller,

Fuzzy controller, and Fuzzy-PID controller. Finally a comparison will be made

among these controllers to find the best performer. To implement the PID controller

for the three phase induction motor, it's required to get the model of the motor, as

shown in the next subsection.

5.3.1 Model of the induction motor
Three phase induction motor squirrel cage has been selected, which manufactured by

Feedback Company " machine Laboratory 64-501 code" shown in Figure 5.29.

Figure 5.28: General block diagram for the induction motor controller.

Figure 5.29: Three-phase induction motor squirrel cage "64-501 Feedback company".

Designing Controllers Using FPGA for Three-phase Induction Motor 74

This motor has the following specifications:

• Two poles induction motor.

• 250W continuous operation.

• Rotates at up to 2980 rev/min at 50 Hz.

• 380/415 V three phase A.C at 50/60 Hz for star connection and 220/240 V

Three phase A.C at 50/60 Hz for delta connection.

In chapter 2, it was explained the technique and the theory needed to get the model of

the three phase induction motor shown in Figure 2.23, and extract its parameters via

the three practical tests.

The three phase induction motor parameters have been gotten in the lab after the

implementation of the tests and the results was as the following:

• DC resistance Test

Rs=1.4 Ω

Due to skin effect, the AC resistance value is closer to the practical value than the DC

value, so the following approach can be applied:

R1(ac)=(1---1.3)* Rdc =1.2*1.4 = 1.68 Ω

• BLocked-rotor Test

2R′ = .56 Ω HLL 0073.021 =′=

• No-load test

Lm =0.089H

Now that all of the parameters have been found, the motor function can be obtained.

Unlike many other motors (i.e. DC Motor), the induction motor is a nonlinear

machine.

 Thus, to build a robust controller we need a nonlinear designing method which

depends on many complex mathematically approaches. However, the nonlinear

controller is not being covered in this thesis.

Therefore a ready simulink module depending on linearization technique has been

selected as shown in Figure 5.30 which was developed by Professor Mahmoud Riaz.

This module needs to fill with the pervious calculated parameters of the induction

motor.

Designing Controllers Using FPGA for Three-phase Induction Motor 75

Where Wk is the input speed, Wm is the actual speed, and Te is the torque.

5.3.2 Speed sensor
There are many types for speed sensor. The most widely used is the digital pulses

optical encoder, where the output frequency of these pulses is proportional to the

speed of the rotor as shown in Figure 5.31. In Practice, dc motor was used with

optical digital pulses sensor for this purpose. The dc motor has been mechanically

coupled to the rotor of the induction motor as shown in Figure 5.32.

Figure 5.31: Dc motor with pulse optical encoder.

Figure 5.30: Simulink module for induction motor.

Designing Controllers Using FPGA for Three-phase Induction Motor 76

5.3.3 PID controller
Between many of control design techniques, the PID controller is the most widely

used. Over 85% of all dynamic controllers are of the PID variety. PID stands for

proportional, integral and differential control. There are many types of the PID

controller; here the mostly general and flexible form is selected which is called

parallel form as shown in Figure 5.33.

 5.3.3.a PID parameters
In this thesis, it's required to build a digital PID controller in the FPGA. To do that

firstly we need to design an analog PID controller and use same resultant parameters

in designing process of the digital one using Tustin approach. The equation which

represents the PID controller is:

 ∫ ++=
dt

tdeKdtteKteKtu dip
)()()()((5.3)

Figure 5.33: General block diagram for PID controller.

Figure 5.32: Pulse optical encoder.

Designing Controllers Using FPGA for Three-phase Induction Motor 77

The effects of each parameter on the step response of the system is illustrated in Table

5.1

Tuning method

There are many methods to get the best values of KP ,KI, and Kd. One approach is to

use a technique which was developed in the 1950's but has stood the time and is still

used today. This is known as the Ziegler Nichols tuning method [41].

Ziegler Nichols tuning method

First, it's needed to get the closed loop transfer function of the system, and then apply

the following procedures:

• Select proportional control alone.

• Increase the value of the proportional gain until the point of instability is

reached (sustained oscillations), the critical value of gain, Kc, is reached.

• Measure the period of oscillation Pc.

Once the values for Kc and Pc are obtained, the PID parameters can be calculated,

according to the design specifications, from Table 5.2.

When implementing the Ziegler-Nichols method to the plant, the resultant parameters

were KP= 15, KI= 7, and Kd=2. Practically due to the approximate transfer function,

Ziegler-Nichols method

Control type Kp Ki Kd

P 0.5 Kc - -

PI 0.45 Kc 1.2Kp/Pc -

PID 0.6.Kc 2KP/Pc KpPc/8

 Table 5.1: Effects of P, I, and D on the step response.

 Table 5.2: Ziegler-Nichols method.

Designing Controllers Using FPGA for Three-phase Induction Motor 78

these values may need some manual adaption when the system is implemented. The

next step is to get the digital form of the PID controller appears in Equation 5.4.

TsnEnEKdnEKiTsnKpEnC
N

/)]1()([)()()(
0

−−++= ∑ (5.4)

A general rule of thumb in control design is to sample at least 4 to 20 times the rise

time of the system response, so the sampling time will be chosen to 4.1 millisecond.

Hence, the output of the PID controller will feed to the plant speed register of the

PWM inverter.

5.3.3.b PID algorithm implementation in VHDL
In FPGA, two PID algorithms were implemented, the first one was written in VHDL

language, and the second implemented using PicoBlaze processor which was

presented in Chapter 4. The main difficulties faced in programming the two

algorithms were in programming the mathematics operations like product and

division. The program in FPGA card was developed to use the LCD unit for

displaying the values of the KP, KI, and Kd as shown in Figure (5.34-35). Figure 5.36

shows the flowchart of the PID algorithm.

Figure 5.34: PID parameters on FPGA card.

Designing Controllers Using FPGA for Three-phase Induction Motor 79

Figure 5.36: PID algorithm flow chart.

Figure 5.35: PID parameters on LCD of the FPGA card.

Designing Controllers Using FPGA for Three-phase Induction Motor 80

5.3.3.c PID controller simulation in Matlab
Figure 5.37 illustrates the Simulink block diagram for the PID speed controller for

three phase induction motor.

The controller has been tested using Simulink motor module in Matlab by applying

full load on the rotor after 3.5 second from starting.

I also changed the desired input speed from the rating speed to fifty percentages from

this rate after 4 seconds from the starting. The results are shown in Figures 5.38.

Figure 5.37: PID speed Controller.

 Figure 5.38: PID controller step response with load and speed variation.

Designing Controllers Using FPGA for Three-phase Induction Motor 81

5.3.4 Fuzzy logic controller "FLC"
5.3.4.a FLC design

FLC has been constructed Using VHDL and embedded PicoBalze processor in FPGA.

The block diagram for the FLC for the three phase induction motor is shown in Figure

5.39.

FLC has two inputs which are: Error and the Error change, and one output feeding to

the plant speed register of the PWM inverter. Figure 5.40 illustrates the method used

in reaching the desired speed value. For example, at stage A the Error is positive

(desired speed –actual speed) and the Change Error (Error – last Error) is negative

which meaning that the response is going in the right direction; hence, the FLC will

go forward in this direction. Using the same criteria at stage B, the Error is negative

and CE is bigger negative; hence, the response is going in wrong direction so FLC

will change its direction to enter Stage C, until reaching the desired speed.

Figure 5.39: FLC controller for the three-phase induction motor.

Figure 5.40: Error and error change approach in FLC.

Designing Controllers Using FPGA for Three-phase Induction Motor 82

As has been presented in Chapter 3, there are two widely used approaches in FLC

implementation: Mamdani and Sugeno. In this thesis, Mamdani approach in FPGA

has been used to implement FLC for the three phase induction motor. FLC contains

three basic parts: Fuzzification, Base rule, and Defuzzification.

• Fuzzification

Figure 5.41 illustrates the fuzzy set of the Error input which contains 7 Triangular

memberships

Figure 5.42 illustrates the fuzzy set of the Change Error input which contains 7

Triangular memberships.

Figure 5.43 illustrates the fuzzy set of the output which contains 7 Triangular

memberships.

Figure 5.41: Error fuzzy set of FLC.

Figure 5.42: Change error fuzzy set of FLC.

Figure 5.43: Fuzzy set of FLC output entering to plant speed register.

Designing Controllers Using FPGA for Three-phase Induction Motor 83

• Control rule base

Table 5.3 illustrates the knowledge base defining the rules for the desired relationship

between the input and output variables in terms of the membership functions. The

control rules are represented as a set of:

IF Error is ... and Change Error is ... THEN the output will … .

The control rules are evaluated by an inference mechanism.

The overall rules are located in Appendix D.

Figure 5.44 shown the surface of the base rules using in FLC.

 Table 5.3: Control rule base for fuzzy controller.

Figure 5.44: Rule surface of FLC.

Designing Controllers Using FPGA for Three-phase Induction Motor 84

• Defuzzification

 As illustrated in Chapter 3, the center of gravity "centroid" method is widely used in

Mamdani approach which has been selected in this thesis.

5.3.4.b Fuzzy logic controller simulation in Matlab
Figure 5.45 illustrates the Simulink block diagram for the Fuzzy speed controller for

three phase induction motor.

The controller has been tested using Simulink motor module in Matlab by applying

full load on the rotor after 3.5 second from starting. I also changed the desired input

speed from the rating speed to fifty percentages from this rate after 4 seconds from the

starting, as shown in Figures 5.46.

Figure 5.45: Fuzzy logic speed controller.

Figure 5.46: Fuzzy controller step response with load and speed variation.

Designing Controllers Using FPGA for Three-phase Induction Motor 85

5.3.5 Fuzzy-PID logic controller

5.3.5.a Fuzzy-PID design
Here, another approach which depends on mixing the PID controller with Fuzzy

controller in FPGA using VHDL and embedded PicoBlalze processor. Hence, the

value of the PID parameters will be evaluated using the Fuzzy controller. Figure 5.47

shows the complete design of this system. Figure 5.48 shows the fuzzy sets for the

output: Kp, Ki and Kd, practically there are three different fuzzy sets for these

parameters. .For inputs fuzzy sets the same Error and Change Error presented in the

previous section has been used.

Figure 5.47: Fuzzy-PID controller for the induction motor.

Figure 5.48: Fuzzy sets for Kp, Ki, and Kd with different memberships boundaries.

Designing Controllers Using FPGA for Three-phase Induction Motor 86

Table 5.4 illustrates the base Rules of Fuzzy-PID controller. Practically there are three

different tables for these parameters. The complete rules are available in Appendix E.

 E

CE
Nb NM NS ZE PS PM PB

PB ZE PS PM PB PB PB PB

PM NS ZE PS PM PB PB PB

PS NM NS ZE PS PM PB PB

ZE NB NM NS ZE PS PM PB

NS NB NB NM NS ZE PS PM

NM NB NB NB NM NS ZE PS

NB NB NB NB NB NM NS ZE

5.3.5.b Fuzzy-PID controller simulation in Matlab
Figure 5.49 illustrate the Simulink block diagram for the Fuzzy-PID speed controller

for three phase induction motor.

The controller has been tested using Simulink motor module in Matlab by applying

full load on the rotor after 3.5 second from starting.

 I also changed the desired input speed from the rating speed to fifty percentage from

this rate after 4 seconds from the starting, as shown in Figures 5.50.

 Table 5.4: Control rule base for Fuzzy-PID controller.

Figure 5.49: Fuzzy-PID Logic speed Controller.

Designing Controllers Using FPGA for Three-phase Induction Motor 87

5.4 Results comparison

Table 5.5 explains controllers comparison, hence from table results we find that the

Fuzzy-PID controller is the best between these controllers.

O.S after

load applied

O.S after

speed 2

S.T after

speed 2

System

S.T

System

O.S

Controller

2% 30% 2.25S 2.5S 13% PID

2% 23% 2.1S 2. 0s 11% Fuzzy

2% 13% 1.7S 1.5s 9% Fuzzy-PID

In the lab I used the Feedback machine which appears in Figure 5.51 to implement the

load in N.M using dynamometer device shown in Figure 5.52.

Tachometer device shown in Figure 5.53 used to scale the real speed value.

 Table 5.5: Controllers comparison.

Figure 5.50: Fuzzy-PID controller step response with load and speed variation.

Designing Controllers Using FPGA for Three-phase Induction Motor 88

Figure 5.51: Feedback torque unit.

Figure 5.52: Dynamometer coupled with induction motor.

Designing Controllers Using FPGA for Three-phase Induction Motor 89

For real time testing I used the digital storage oscilloscope shown in Figure 5.54

Figure 5.55 shown the over all system.

Figure 5.53: Tachometer for speed scaling.

Figure 5.54: Storage oscilloscope.

Figure 5.56: Overall system.

Designing Controllers Using FPGA for Three-phase Induction Motor 90

5.5 Modelsim results

PWM inverter software was tested using Modelsim program. Each pairs of top and

bottom PWM can be mixed together using ac approach as shown in Figure 5.56.

5.6 VHDL and PicoBalze software

The over all software contains two main parts:

VHDL algorithm: For controllers blocks and for user interface units available on the

FPGA card like rotating switch needed to control with the speed of the induction

motor and sliding switches to select between the controllers and to specify the Kp, Ki

and Kd parameter in PID controller.

PicoBlaze algorithm which contains the LCD program and some auxiliary functions

built for controllers.

Figure 5.56: Three-phase simulation using Modelsim.

Conclusion and Future work 91

CHAPTER 6

Conclusions and Future Research

1.1 Conclusions
In recent years, fuzzy logic control has been suggested as an alternative approach to

conventional process control techniques.

Since the first paper on fuzzy sets was published, fuzzy logic control has attracted

great attention from both the academic and industrial communities. Much progress

has been made in successfully applying FLC in industrial control systems. FLC

techniques represent means of both collecting human knowledge and expertise and

dealing with uncertainties in the process of control. They have a number of

advantages. Although fuzzy logic control is not the solution for all problems, it can

play an important role in making automated processes more intelligent.

In this research, fuzzy logic controller FLC has been selected to control the speed of

three-phase induction motor (squirrel cage type) due to its advantages over the

traditional PID controller. This wide-spreading of FLC's appears because these kind

of controllers have been a very effective techniques for complicated and imprecise

processes for which either no mathematical model exists or the mathematical model is

severely nonlinear as induction motor.

Modern FPGA card (Spartan 3-A) was implemented in Xilinx company in 2007,

which represents headquarter in the FPGA manufacturing companies, have been

chosen in this research as a digital controllers board builder.

In this research, three different types of controllers (PID, Fuzzy, and Fuzzy-PID) were

constructed in FPGA card, which was used as a speed controller for three-phase

induction motor (squirrel cage type). These controllers have been tested using

Matlab/Simulink program under speed and load variation conditions. The comparison

results show that the Fuzzy-PID controller was the best of them.

Xilinx Company provided very attractive package software "ISE9.1 and Modelsim"

for programming purpose, this software was used to implement the three different

Conclusion and Future work 92

controllers, and to generate the six PWM pulses feeding to the induction motor drivers

boards.

In this research, the algorithm for the three-phase induction motor inverter was

constructed in the FPGA card, also the hardware equipments needed for this driver

was constructed which contains: IGBTs board, IGBT driver chip, and the power

supply board.

1.2 Future research
In this thesis, Mamdani method was used to implement the fuzzy control rules, it can

be replaces by Sugeno approach and compare it with Mamdani. Also a good area of

research is using optimization method to reduce the rules of the controller such as

using Genetic Algorithm with fuzzy controllers. Genetic algorithms are search

algorithm based on natural genetics. There are used in the control algorithm to tune

the membership functions so that the inexact reasoning characteristics of the FLC are

sufficient to control a system that requires precise control actions. On of the more

important areas in control is stability; more work can be done on the stability of the

fuzzy controller.

Bibliography 93

Bibliography

[1] Microchip Company, AC Induction Motor Fundamentals, technical data, AN887,
2003.

[2] M. Lai, C. Chang, and W. Chiou "Design of fuzzy logic controller for an
induction motor speed drive," IEEE, Vol.113, No.13, 1997, 1071 – 1076.

[3] C. Shanmei, W. Shuyun, and D. Zhengeheng " Fuzzy speed controller of
induction motors," IEEE, Vol.145, No.15, 2004, 747- 750

[4] X. Fu and J. Dong, ‘‘ The decoupling-variable structure adjustable-speed control
system for induction motor,” IPEC’93. Singapore, V1.2, pp466- 471,1993.

[5] Fayez F. M. El-Sousy and Maged N. F. Nashed " Robust fuzzy logic current and
speed controllers for field-oriented induction motor drive," The Korean Institute
of Power Electronics (KIPE), Journal of Power Electronics (JPE), Vol. 3, No. 2,
pp. 115-123, April, 2003.

[6] Tipsuwanpom, Runghimmawan., T Runghim, T. Intajag, and S. Krongratana
"Fuzzy logic PID controller based on FPGA for process control," IEEE, Vol.2 ,
No.11, 2004, 1495- 1500.

[7] Volcanjk, and Jezernik" Induction motor control with PI-load estimator," IEEE,
Vol.3 , No. 2 , 1994, 1097-1100.

[8] Zidani, Benbouzid, and Diallo " Fuzzy efficient-optimization controller for
induction motor drives," IEEE, Vol.20, No. 10, 2000,43-44.

[9] Shi, Chan, and Wong "A novel hybrid fuzzy/PI two-stage controller for an
induction motor drive," IEEE, Vol.1, No.1, 2001, 415 – 421.

[10] W.Yong Han, S. Kim, and C. Lee " Sensorless vector control of induction
motor using improved self-tuning fuzzy PID controller," IEEE, Vol.3, No.1, 2003.
3112-3117.

[11] Lin, Wang, and Huang " FPGA-based fuzzy sliding-mode control for a linear
induction motor drive," IEEE,Vol.152, No. 5, 2005, 1137 – 1148.

[12] T.V.S.Urmila Priya , K.Udaya Kumar and S.Renganarayanan ,present in 2005
“FPGA based fuzzy logic controller for dc electric vehicle," S.Poorani Journal of
The Institution of Engineers, Singapore Vol. 45 Issue 5 2005.

[13] Zhang and Collins " Digital anti-windup PI controllers for variable-speed motor
drives using FPGA and stochastic theory," IEEE, Vol.21, No.5, 2006, 1496 –
1501.

Bibliography 94

[14] S.K Bhattacharya, Electrical Machines, 2th Edition, McGraw-Hill, 1998.

 [15] Wildi, T., Electrical Machines, Drives and Power Systems, 5th Edition, Prentice-
Hall, 2002.

[16] Feedback Company, Variable Frequency Drive Trainer, Technical data, 66-003,
2006.

[17] Microchip Company, Speed Control of 3-Phase Induction Motor Using PIC18
Microcontrollers, technical data, AN843, 2002.

[18] Bhag S. Guru & Huseyin R. Hizirglu, Electric Machinery and Transformers,
Oxford University Press, 3th Edition , 2001.

[19] L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8, pp. 338-353, 1965.

[20] K. M. Passion and S. Yurkovich, Fuzzy Control .Addison-Wesley,1998.

[21] F. Mcneill and E. Thro, Fuzzy Logic: a practical Approach. AP Professional,
1994

[22] L.X. Wang, A Course in Fuzzy Systems and Controls. Englewood Cliffs:
Prentice-Hall, 1997.

[23] E H Mamdani, “Application of Fuzzy algorithms for the control of a dynamic
plant” IEE vol. 121, pp. 1585-1588, 1974.

[24] E. H. Mamdani and S. Assilian, “An experiment with in linguistic synthesis with
a fuzzy logic controller,” International journal of Man-Machine studies, vol. 7,
pp. 1-13, 1975.

[25] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE Transactions on
Fuzzy Systems, vol. 4, pp. 103–111, May 1996.

[26] H.-J. Zimmermann, Fuzzy Sets Theory - and Its Applications, Kluwer Academic

 Publishers, 1990.

[27] T. Takagi and M. Sugeno, Derivation of fuzzy control rules from human
operator’s control actions, Proc. of the IFAC Symp. on Fuzzy Information,
Knowledge Representation and Decision Analysis, p. 55-60, July 1983

[28] E.H. .Mamdani "Application of Fuzzy algorithms for control of simple dynamic
plant," IEEE, Vol.121,no.12,1976,1585-1588.

 [29] L.A. Zadeh, "Fuzzy logic and approximate reasoning," syntheses, Vol.30, 1975,
407-428.

Bibliography 95

[30] J. F. Baldwin,"Amodel of FUZZY reasoning through multi-valved logic and set
theory," International journal of Man-Machine Studies, vol 11,1979, 351-380.

[31] Michio Sugeno,"Anew approach to design of Fuzzy controller," P.P wany
ed.,Advance in Fuzzy Sets, Possibility Theory, and Application,Plenum
Press,1983.

[32] T. Takagi and M.Sugeno,"Fuzzy identification of systems and its applications to
modeling and control," IEEE Transactions on systems, Man and Cybernetics,
vol.Smc-15, no, 1985.

[33] R. Jastrzebski, O. Pyhonen, A. Napieralski, “FPGA based platform for real-time
testing of fast induction motor controllers”, Proceedings of the 11th International
Conference on Mixed Design (MIXDES 2004), Szczecin, Poland, June24-26,
2004, pp. 491-496.

[34] R. Jastrzebski, O. Laakkonen, K. Rauma, J. Luukko, H. Saren, O. Pyhonen,
“Real-Time Emulation of Induction Motor in FPGA using Floating Point
Representation”, Proceedings of the IASTED International Conference on
Applied Simulation and Modelling, June 28-30, Rhodes, Greece, pp. 226-231.

[35] J. Birkner et al, “A very-high-speed field-programmable gate array using metal-
tometal antifuse programmable elements,” Microelectronics Journal, v. 23, pp.
561-568.

[36] Xilinx Company, Programmable Logic Design, Technical data, Logic_handbook
2006.

[37] Xilinx Company, Spartan-3A starter kit –Board User Guide,Technical data, UG
330, 2007.

[38] Xilinx Company, PicoBlaze, Technical data, Kcpsm3,2003.

[39] Ying-Yu Tzou and Hau-Jean Hsu, “FPGA realization of Space-Vector PWM
control IC for three-phase pwm inverters”, IEEE transactions on power
electronics, Vol. 12, No. 6,Novemeber 1997.

[40] Xilinx Company, Logic-Based AC Induction Motor Controller, Technical data,
xapp448,2005.

[41] B. Kuo, Automatic Control Systems, Englewood Cliffs: Prentice Hall, 1995.

[42] P. Asheaden " The designer's guide to VHDL , Morgan Kaufmann," 1998.

Appendices 96

Appendices

1.1 Appendix A

The key features of the Spartan-3A Starter Kit
• The key features of the Spartan-3A Starter Kit board are:
• Xilinx 700K-gate XC3S700A Spartan-3A FPGA in the Pb-free 484-ball BGA

package (FGG484)
• 4 Mbit Xilinx Platform Flash configuration PROM
• 64 MByte (512 Mbit) of DDR2 SDRAM, 32Mx16 data interface
• 4 MByte (32 Mbit) of parallel NOR Flash
• FPGA configuration storage
• MicroBlaze code storage/shadowing
• x8 or x16 data interface after configuration
• 16 Mbits of SPI serial Flash
• Choose either the STMicroelectronics or the Atmel DataFlash serial architectures
• FPGA configuration storage
• MicroBlaze code shadowing
• Two-line, 16-character LCD screen
• PS/2 mouse or keyboard port
• VGA display port
• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA)
• Two nine-pin RS-232 ports (DTE- and DCE-style)
• On-board USB-based programming solution
• FPGA download/debug
• SPI serial Flash in-system direct programming
• 50 MHz clock oscillator
• 8-pin DIP socket for second oscillator
• SMA connector for clock inputs or outputs
• 100-pin Hirose FX2 expansion connector with up to 43 FPGA user I/Os
• Compatible with Digilent FX2 add-on cards
• High-speed differential I/O connectors
• Receiver: Five data channels plus clock
• Transmitter: Six data channels or five data channels plus clock
• Supports multiple differential I/O standards, including LVDS, RSDS, mini-LVDS
• Also supports up to 24 single-ended I/O
• Uses widely available 34-conductor cables
• Three six-pin expansion connectors for Digilent Peripheral Modules
• Four-output, SPI-based Digital-to-Analog Converter (DAC)
• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-gain

pre-amplifier
• Stereo audio jack using digital I/O pins
• ChipScope™ SoftTouch debugging port
• Rotary-encoder with push-button shaft
• Eight discrete LEDs
• Four slide switches
• Four push-button switches

Appendices 97

1.2 Appendix B

Appendices 98

1.3 Appendix C

Appendices 99

1.4 Appendix D

 Control rule base for FUZZY controller

1 - IF E Is NB And CE Is NB Then Output NB
2 - IF E Is NB And CE Is NM Then Output NB
3 - IF E Is NB And CE Is NZ Then Output NB
4 - IF E Is NB And CE Is ZE Then Output NB
5 - IF E Is NB And CE Is PS Then Output NM
6 - IF E Is NB And CE Is PM Then Output NS
7 - IF E Is NB And CE Is PB Then Output ZE
8 - IF E Is NM And CE Is NB Then Output NB
9 - IF E Is NM And CE Is NM Then Output NB
10 - IF E Is NM And CE Is NZ Then Output NM
11 - IF E Is NM And CE Is ZE Then Output NM
12 - IF E Is NM And CE Is PS Then Output NS
13 - IF E Is NM And CE Is PM Then Output ZE
14 - IF E Is NM And CE Is PB Then Output PS
15 - IF E Is NS And CE Is NB Then Output NB
16 - IF E Is NS And CE Is NM Then Output NM
17 - IF E Is NS And CE Is NZ Then Output NS
18 - IF E Is NS And CE Is ZE Then Output NS
19 - IF E Is NS And CE Is PS Then Output ZE
20 - IF E Is NS And CE Is PM Then Output PS
21 - IF E Is NS And CE Is PB Then Output PM
22 - IF E Is ZE And CE Is NB Then Output NB
23 - IF E Is ZE And CE Is NM Then Output NM
24 - IF E Is ZE And CE Is NZ Then Output NS
25 - IF E Is ZE And CE Is ZE Then Output ZE
26 - IF E Is ZE And CE Is PS Then Output PS
27 - IF E Is ZE And CE Is PM Then Output PM
28 - IF E Is ZE And CE Is PB Then Output PB
29 - IF E Is PS And CE Is NB Then Output NM
30 - IF E Is PS And CE Is NM Then Output NS
31 - IF E Is PS And CE Is NZ Then Output ZE
32 - IF E Is PS And CE Is ZE Then Output PS
33 - IF E Is PS And CE Is PS Then Output PS
34 - IF E Is PS And CE Is PM Then Output PM
35 - IF E Is PS And CE Is PB Then Output PB
36 - IF E Is PM And CE Is NB Then Output NS
37 - IF E Is PM And CE Is NM Then Output ZE
38 - IF E Is PM And CE Is NZ Then Output PS
39 - IF E Is PM And CE Is ZE Then Output PM
40 - IF E Is PM And CE Is PS Then Output PM
41 - IF E Is PM And CE Is PM Then Output PB
42 - IF E Is PM And CE Is PB Then Output PB
43 - IF E Is PB And CE Is NB Then Output ZE
44 - IF E Is PB And CE Is NM Then Output PS
45 - IF E Is PB And CE Is NZ Then Output PM
46 - IF E Is PB And CE Is ZE Then Output PB
47 - IF E Is PB And CE Is PS Then Output PB
48 - IF E Is PB And CE Is PM Then Output PB
49 - IF E Is PB And CE Is PB Then Output PB

Appendices 100

1.5 Appendix E

 Control rule base for FUZZY controller

1 - IF E Is PB And CE Is PB Then Output ZO
2 - IF E Is PB And CE Is PM Then Output NS
3 - IF E Is PB And CE Is PS Then Output NM
4 - IF E Is PB And CE Is ZE Then Output NB
5 - IF E Is PB And CE Is NS Then Output NB
6 - IF E Is PB And CE Is NM Then Output NB
7 - IF E Is PB And CE Is NB Then Output NB
8 - IF E Is NM And CE Is PB Then Output PS
9 - IF E Is NM And CE Is PM Then Output ZO
10 - IF E Is NM And CE Is PS Then Output NS
11 - IF E Is NM And CE Is ZE Then Output NM
12 - IF E Is NM And CE Is NS Then Output NB
13 - IF E Is NM And CE Is NM Then Output NB
14 - IF E Is NM And CE Is NB Then Output NB
15 - IF E Is NS And CE Is PB Then Output PM
16 - IF E Is NS And CE Is PM Then Output PS
17 - IF E Is NS And CE Is PS Then Output ZO
18 - IF E Is NS And CE Is ZE Then Output NS
19 - IF E Is NS And CE Is NS Then Output NM
20 - IF E Is NS And CE Is NM Then Output NB
21 - IF E Is NS And CE Is NB Then Output NB
22 - IF E Is ZE And CE Is PB Then Output PB
23 - IF E Is ZE And CE Is PM Then Output PM
24 - IF E Is ZE And CE Is PS Then Output PS
25 - IF E Is ZE And CE Is ZE Then Output ZO
26 - IF E Is ZE And CE Is NS Then Output NS
27 - IF E Is ZE And CE Is NM Then Output NM
28 - IF E Is ZE And CE Is NB Then Output NB
29 - IF E Is PS And CE Is PB Then Output PB
30 - IF E Is PS And CE Is PM Then Output PB
31 - IF E Is PS And CE Is PS Then Output PM
32 - IF E Is PS And CE Is ZE Then Output PS
33 - IF E Is PS And CE Is NS Then Output ZO
34 - IF E Is PS And CE Is NM Then Output NS
35 - IF E Is PS And CE Is NB Then Output NM
36 - IF E Is PM And CE Is PB Then Output PB
37 - IF E Is PM And CE Is PM Then Output PB
38 - IF E Is PM And CE Is PS Then Output PB
39 - IF E Is PM And CE Is ZE Then Output PM
40 - IF E Is PM And CE Is NS Then Output PS
41 - IF E Is PM And CE Is NM Then Output ZO
42 - IF E Is PM And CE Is NB Then Output NS
43 - IF E Is PB And CE Is PB Then Output PB
44 - IF E Is PB And CE Is PM Then Output PB
45 - IF E Is PB And CE Is PS Then Output PB
46 - IF E Is PB And CE Is ZE Then Output PB
47 - IF E Is PB And CE Is NS Then Output PM
48 - IF E Is PB And CE Is NM Then Output PS
49 - IF E Is PB And CE Is NB Then Output ZO

Appendices 101

