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Abstract 
 

Fuzzy Logic Speed Controllers Using FPGA Technique for 

 Three-Phase Induction Motor Drives 

By 

Moayed N. EL Mobaied 

The design of intelligent control systems has become an area of intense research interest. 

The development of an effective methodology for the design of such control systems 

undoubtedly requires the synthesis of many concepts from artificial intelligence. A 

promising direction in the design of intelligent systems involves the use of Fuzzy logic 

control to discover the abilities of intelligent control systems in utilizing experience via 

rule-based knowledge.  

The most commonly used controller in the industry field is the proportional-plus-integral-

plus-derivative (PID) controller, which requires a mathematical model of the system. 

Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the 

available system models are inexact or unavailable. Also rapid advances in digital 

technologies have given designers the option of implementing controllers using Field 

Programmable Gate Array (FPGA) which depends on parallel programming. This method 

has many advantages over classical microprocessors. In this research,  a novel  Fuzzy-PID 

controller, which is fabricated on modern FPGA card (Spartan-3A, Xilinx Company, 

2007) is proposed to implement a prototype of a speed controller for three-phase induction 

motor (squirrel cage type) as a an example for  complex  model  systems.  

The proposed controller and the pulse width modulator PWM inverter algorithm which 

have been built in FPGA appeared fast speed response and good stability in controlling the 

three-phase induction motor.  

For comparison purpose, another two widely used controllers "PID and Fuzzy" have been 

implemented in the same FPGA card to examine the performance of the proposed system. 

These controllers have been tested using Matlab/Simulink program under speed and load 



 v  

variation conditions. The results show that the Fuzzy-PID is the best controller between 

them. 

In this thesis, the fuzzy logic control demonstrates good performance. Furthermore, fuzzy 

logic offers the advantage of faster design, and emulation of human control strategies. 

Also fuzzy control work well for high-order and nonlinear and shows the efficiency over 

the PID controller. 
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  ملخص البحث

  

  للتحكم بسرعة المحرك الحثي ذو ثلاثة أوجه FPGA تصميم متحكم ضبابي بتقنية ال 

  إعداد

  مـــؤيـد نصر المبـيـض

إن تصمیم الأنظمة الذكیة اصبح من الأبحاث المھمة في عالم التحكم الرقمي  والموجودة على أولویات اھتمام الب احثین ف ي ھ ذا        

. متمیزة في ھذا المجال فاننا بلا ش ك  نحت اج ال ى تط ویر مھ ارات ف ي مج الات الأنظم ة الذكی ة          من أجل تطویر تصامیم     .المجال

یعتبر المتحكم بي أي دي من أكثر المتحكمات شیوعا في مجال الصناعة ،وھو یحتاج ال ى المعادل ة الریاض یة المكافئ ة للنظ ام ،         

مة، خصوصا عندما تكون المعادلات المكافئة للأنظمة غی ر دقیق ة   ولقد أثبتت المتحكمات المنطقیة الضبابیة تفوقا على ھذه الانظ       

   FPGAاضافة الى ذلك لقد قدم التطور التكنولوجي الرقمي للمصممین خیار تطبیق المتحكمات داخل ال .أو لا یمكن استنتاجھا

ات المبنی ة داخ ل المعالج ات    والتي تعتم د عل ى أنظم ة البرمج ة المتوازی ة والت ي أظھ رت العدی د م ن الایجابی ات عل ى المتحككم              

  . الدقیقة

ل م ن ال ب ي أي دي   في ھذا البحث ت م تق دیم فك رة مطورةحدیث ة ف ي ھ ذا المج ال وھ ي اع داد م تحكم مھج ن ی شمل ایحابی ات ك                      

 المقدم ة م ن   ٣- أ- الحدیث ة س بارتن   FPGAم الضبابي حیث تم تجمیع ھذا الم تحكم وبرمجت ھ داخ ل وح دة ال     كحوایجابیات المت

یلینكس ،  حیث استخدم ھذا المتحكم الحدیث بغرض التحكم بسرعة موتور ثلاثي الأوجھ من نوع قف ص ال سنجاب لك ي         شركة ز 

  . فیھا المعادلات المكافئة معقدة وغیر خطیة تكونیكون مثالا عن الأنظمة التي

 أظھ را   FPGAناؤھم ا داخ ل ال   المتحكم المقترح وبرنامج الانفرتر المعتمد عل ى نظ ام ال تحكم بع رض الموج ة ،و الل ذان ت م ب       

  .استجابة سریعة لطلبات السرعة وایضا أظھرا استقراریة عالیة في اداء الموتور ثلاثي الأوجھ المستخدم في ھذا البحث

لغرض المقارنة تم تصمیم متحكمین اخرین وھما المتحكم الضبابي والمتحكم ال بي أي دي كل على حدا ،حیث تم تطبیقھما على 

  . لفحص الكفاءة للمتحكم المقدم FPGAل نفس لوحة ا

س یمیولینك تح ت ظ رف تغیی ر ال سرعة وتغیی ر الحم ل        / الماتلاب  المحاكاة لقد تم فحص ھذه المحكمات الثلاثة باستخدام برنامج 

  . نتائج المقارنة أظھرت تفوق المتحكم الھجین المقدم على المتحكمین الأخرین،المطبق على الجزء الدوار
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CHAPTER 1 

Introduction 

1.1 Introduction 
Three phase Induction motors are the most common motors used in industrial motion 

control systems. Low-cost, simple and rugged design and low maintenance are the main 

advantages of induction motors.  Due to that, these motors are often called the workhorse 

of the motion industry. Squirrel cage is the widely type of induction motors used in 

industry [1].  

Generally, most of the industrial applications which contain induction motor need to vary 

their speed. However, induction motors can only run at their rated speed when they are 

connected directly to the main power supply. This is the reason why variable speed drives 

are needed to vary the rotor speed of an induction motor. The most popular algorithm for 

the control of a three-phase induction motor is the V/f control approach. Open-loop control 

is sometimes used in motor speed control system. However, open–loop AC motor speed 

control requires a precise speed profile to operate the motor from stand still to full speed. 

Speed error may arise due to load changes or external disturbances. To overcome these 

shortages, closed-loop control is frequently utilized in AC motor speed control system. 

Designing a robust controller will ensure the system to remains stable and keeps its 

required speed even the loads are applied or external disturbances occur [2 ].  

The applications of induction motors in high accurate drives require more advanced control 

techniques so that those nonlinear and strongly coupled induction motors whose 

parameters are time-variant can be effectively controlled. At present, Proportional-Integral-

Derivative "PID" controller, due to its simplicity, stability, and robustness, is a type of 

controller that is most widely applied [3]. However, it is difficult to design when the 

accurate model of plant is unknown. For induction motors, factors such as unknown load 

characteristic and parameter variation influence seriously the controlling effect of speed 

controller.  

Therefore, some advanced control techniques such as variable structure control and 
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adaptive control etc. have been presented. However, the design of these controllers is 

based on known system model parameters and if the parameters can't be achieved, it is 

very troublesome in designing these controllers too [4]. 

Nowadays, many people paid a lot of attention to the application research of artificial 

intelligence in the AC drives. Fuzzy control dose not strictly need any mathematical 

model of the plant. It is based on plant operator experience, and it is very easy to apply. 

Fuzzy control gives robust performance for a linear or nonlinear plant with parameter 

variation. Fuzzy logic controller provides an alternative to PID controller since it is a good 

tool for the control of systems that are difficult in modeling [5]. Hardware implementation 

of the controller can be achieved in a number of ways to create new products. The most 

popular method of implementing fuzzy controller is using a general-purpose 

microprocessor or microcontroller. Generally, an 8-bit microprocessor can handle most of 

the necessary computations. Microprocessor based controllers are more economical, but 

often face difficulties in dealing with control systems that require high processing and 

input/output handling speeds. Rapid advances in digital technologies have given designers 

the option of implementing a controller on a variety of Programmable Logic Device 

(PLD), Field Programmable Gate Array (FPGA), etc. FPGA is suitable for fast 

implementation controller and can be programmed to do any type of digital functions. 

There are three main advantages of an FPGA over a microprocessor chip for controller 

designing: 

• An FPGA has the ability to operate faster than a microprocessor chip. 

• The new FPGAs that are on the market will support hardware that is upwards of 

one million gates, which increase program capacity. 

• Because of the flexibility of the FPGA, additional functionality and user interface 

controls can be incorporated into the FPGA minimizing the requirement for 

additional external components. 

FPGAs are programmed using Very High Speed Integrated Circuit hardware description 

language (VHDL) and a download cable connected to a host computer. Once they are 

programmed, they can be disconnected from the computer, and it will be running as stand 

alone device. The FPGAs can be programmed while they run, because they can be 

reprogrammed in the order of microseconds. This short time means that the system will 

not even sense that the chip was reprogrammed [6].  Applications of FPGAs include 

industrial motor drivers, real time systems, digital signal processing, aerospace and 
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defense systems, medical imaging, computer vision, speech recognition, cryptography,  

computer hardware emulation and a growing range of other areas. 

 

1.2 Thesis Motivation and Objectives 
 

1.2.1 Motivation 

Nowadays, fuzzy logic controllers have an efficient performance over the traditional 

controller researches especially in nonlinear and complex model systems. FPGA is a new 

key technology used in modern control hardware implementation. Modem manufactures 

began to apply these technologies in their applications instead of the traditional ones, due 

to the low cost and widely features available in these controllers. Thus motivated me to 

investigate this topic. 

 

1.2.2 Objectives 

The main objective of this  thesis is to build three different types of controllers (PID, 

Fuzzy, and Fuzzy-PID) which have been constructed on  a FPGA card to be used as  speed 

controllers for three-phase induction motor (squirrel cage type).  

The specific objectives include: 

• Improving FPGA knowledge. 

• Improving VHDL programming skills. 

• Designing PID controller skills.  

• Designing Fuzzy controller skills.  

• Building a variable-speed driver for three phase induction motor. 

 

1.3 Literature review 

 Manny studies for three-phase induction motor speed controller appeared using the 

general PI technique. Volcanjk and Jezernik presented a novel design method using this 

technique in 1994 (IEEE) [7]. Fuzzy controller began in this field due to the drawbacks of 

the previous methods. Zidani, Benbouzid, M.E.H., and Diallo presented a Fuzzy efficient-

optimization controller for induction motor drives in  2000 (IEEE) [8]. Shi, Chan, and 

Wong, presented a novel hybrid fuzzy-PI two-stage controller for an induction motor drive 

in 2001 (IEEE) [9]. Yong, Han, Kim, and Chang-Goo Lee presented sensorless vector 

control of induction motor using improved self-tuning fuzzy PID controller in 2003 
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(IEEE)[10]. The above papers present good performance controllers but without load 

variation conditions, and all of them had been constructed using microprocessors 

technique, due to the fast technology growing, FPGA technique appeared in the speed 

controller of the motor. Lin, Wang, and Huang, presented FPGA-based fuzzy sliding-

mode control for a linear induction motor drive in 2005 (IEEE) [11],in this paper they 

implement only the fuzzy controller in FPGA and gets acceptable results. Priya, Kumar, 

and Renganarayanan, presented a FPGA based Fuzzy logic controller for dc electrical 

vehicle at Singapore in 2005 [12]. This paper was focused on dc motor and get a novel 

performance. Zhang, Li, and Collins, presented a digital Anti-Windup PI Controllers for 

variable-speed motor drives Using FPGA and Stochastic Theory in 2006 (IEEE) [13] but 

not deals with fuzzy approaches. It's memorable to note that the above mentioned papers 

have been selected only to describe the survey progress, but in real, there are many other 

papers have been written in the same field.  

Due to the survey on the available resources, a Fuzzy-PID controller in FPGA for three-

phase induction motor speed controller hasn't been presented yet. 

 

1.4 Contribution 

In this thesis three different types of controllers (PID, Fuzzy, and Fuzzy-PID) have been 

constructed in FPGA card which are used as a speed controller for three-phase induction 

motor (squirrel cage type). These controllers have been tested using Matlab/Simulink 

program under different speed and load variation conditions. The comparison result shows 

that the Fuzzy-PID controller is the best between them. 

The novel approach, which is proposed in this thesis is: Design and practical 

implementation of a Fuzzy-PID controller using modern FPGA card (Spartan-3A, Xilinx 

Company, 2007) for speed control of a three-phase induction motor (squirrel cage type) as 

an application. 
 

1.5 Outline of the thesis 

The thesis is organized into six chapters. Chapter 2 handles some basic principles of three-

phase induction motor. Chapter 3 focuses on Fuzzy logic sets. Chapter 4 deals with FPGA 

and VHDL software implementation. Chapter 5 presents the design of the three types of 

controllers, also the simulation and results are included. The last chapter concludes the 

design and the implementation and proposes some future work. 
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CHAPTER 2 

Three-Phase Induction Motor 
2.1 Introduction  
AC induction motors are the most common motors used in industrial motion control 

systems, as well as in main powered home appliances. Hence, they are often called the 

workhorse of the motion industry. Induction motors are more rugged, require less 

maintenance, and are less expensive than dc machines of equal kilowatt and speed ratings 

[14]. 

  

 

 

 

 

 

 

 

 

Induction motors are constructed both for single-phase and three-phase operation. Three-

phase induction motors are widely used for industrial applications such as in lifts, pumps, 

exhaust fans, grinding and filling machines, etc. Where as single-phase induction motors 

are used mainly for domestic-electrical appliance such as fans, refrigerators, washing 

machines, exhaust pumps, etc. Various types of AC induction motors are available in the 

market. Different motors are suitable for different applications. Although AC induction 

motors are easier to design than DC motors, the speed and the torque control in various 

types of AC induction motors require a greater understanding of the design and the 

characteristics of these motors [1]. 

Figure 2.1: Three-phase induction motor. 
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2.2 Basic construction and operation principle  
Like most motors, an AC induction motor has a fixed outer portion, called the stator and a 

rotor that spins inside with a carefully engineered air gap between the two. Virtually all 

electrical motors use magnetic field rotation to spin their rotors. A three-phase AC 

induction motor is the only type where the rotating magnetic field is created naturally in 

the stator because of the nature of the supply. DC motors depend either on mechanical or 

electronic commutation to create rotating magnetic fields. A single-phase AC induction 

motor depends on extra electrical components to produce this rotating magnetic field.  

Two sets of electromagnets are formed inside any motor. In an AC induction motor, one 

set of electromagnets is formed in the stator because of the AC supply connected to the 

stator windings. The alternating nature of the supply voltage induces an Electromagnetic 

Force (EMF) in the rotor (just like the voltage is induced in the transformer secondary) as 

per Lenz’s law, thus generating another set of electromagnets; hence the name – induction 

motor. Interaction between the magnetic field of these electromagnets generates twisting 

force, or torque. As a result, the motor rotates in the direction of the resultant torque [1]. 
 

2.2.1 Induction motor construction 
A 3-phase induction motor is shown in Figure 2.2 has two main parts: 

a. Stator. 

b. Rotor. 

 

 

 

 

 

2.2.1.a Stator 
The stator is constructed from several thin laminations of aluminum or cast iron. They are 

punched and clamped together to form a hollow cylinder (stator core) with slots as shown 

in Figure 2.3. These slots contain coils of insulated wires. Each grouping of coils, together 

with the core it surrounds, forms an electromagnet (a pair of poles) on the application of 

AC supply. The number of poles of an AC induction motor depends on the internal 

connection of the stator windings. The stator windings are connected directly to the power 

Figure 2.2: Induction motor construction. 
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source. Internally they are connected in such a way that on applying AC supply, a rotating 

magnetic field is created [1]. 

 

 
 

 

 

 

 

 

 

 

2.2.1.b Rotor 
The rotor is made up of several thin steel laminations with evenly spaced bars, which are 

made up of aluminum or copper. Induction motors are classified in two categories based 

on the construction of the rotor: squirrel cage motors and slip ring motors, but the stator 

part is the same in both motors. 

 Squirrel cage motor represents about 90% of induction motors. That is due to the simplest 

and rugged construction of this motors type. The rotor consists of cylindrical laminated 

core with axially placed parallel slots for carrying the conductors. Each slot carries copper, 

aluminum, or alloy bar. If the slots are semi closed, then these bars are inserted from the 

ends. These rotor bars are permanently short-circuited both ends by means of the end 

rings, as shown Figure 2.4 [1]. This total assembly resembles the look of a squirrel cage, 

which gives the rotor its name as shown in Figure 2.5. 

 The rotor slots are not exactly parallel to the shaft. Instead, they are given a skew for two 

main reasons. The first reason is to make the motor run quietly by reducing magnetic hum 

and to decrease slot harmonics. The second reason is to help reduce the locking tendency 

of the rotor. The rotor teeth tend to remain locked under the stator teeth due to direct 

magnetic attraction between the two. This happens when the number of stator teeth is 

equal to the number of rotor teeth [14]. The rotor is mounted on the shaft using bearings 

on each end; one end of the shaft is normally kept longer than the other for driving the 

load. Some motors may have an accessory shaft on the non-driving end for mounting 

speed or position sensing devices. Between the stator and the rotor, there exists an air gap, 

through which due to induction, the energy is transferred from the stator to the rotor. The 

generated torque forces the rotor and then the load to rotate [15].  

Figure 2.3: Typical stator. 
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A wound rotor shown in Figure 2.6 has a 3-phase winding, similar to the stator winding. 

The rotor winding terminals are connected to three slip rings which turn with the rotor. 

The slip rings/brushes allow external resistors to be connected in series with the winding. 

 

 

 

 

 

 

 

 

 

The external resistor can be used to boost the starting torque of the motor and change the 

speed-torque characteristic. When running under normal conditions, the slip rings are 

short circuited, using an external metal collar, which is pushed along the shaft to connect 

the rings.  

Figure 2.4: Squirrel-cage construction. 

Figure 2.5: Squirrel-cage. 

Figure 2.6: Wound rotor.  
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So, in normal conditions, the slip ring motor functions like a squirrel cage motor. The 

downside of the slip ring motor is that slip rings and brush assemblies need regular 

maintenance, which is a cost not applicable to the standard cage motor. This type of motor 

is used in applications for driving variable torque variable speed loads, such as in printing 

presses, compressors, conveyer belts, hoists and elevators [15]. 

 

2.2.2 Squirrel-cage induction motor operation principle 
Due to the above comparison between the two kinds in this thesis, the squirrel-cage type 

has been used. To get familiar with the operation of this kind of motors, we can consider 

the series of conductors (length L) whose extremities are shorted by bars A and B. A 

permanent magnet moves at a speed v, so that its magnetic field sweeps across the 

conductors [15]. 

 

 

 

 

 

 

 

 

The following sequence of events takes place: 

• A voltage E =  B*L*V is induced in each conductor while it is being cut by the flux 

(Faraday’s Law). 

where B is the magnetic field, V is the linear speed, and B,I,V are mutually   

perpendicular.   

• The induced voltage produces currents which circulate in a loop around the 

conductors (through the bars). 

• Since the current-carrying conductors lie in a magnetic field, they experience a 

mechanical force (Lorentz force). 

• The force always acts in a direction to drag the conductor along with the magnetic 

field. 

Figure 2.7: Series of conductors of length l. 
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If the above ladder has been enclosed upon itself to form a squirrel cage, and place it in a 

rotating magnetic field, then a rotor for induction motor will be constructed establish as 

shown in    Figure 2.8 [1]. 

 

 

 

 

 

 

2.3 Rotating magnetic field  
There are two kinds of rotating magnetic field which are rotating in the induction motor: 

2.3.1 Magnetic field in the stator 
The stator represents the stationary part of the motor which consists of a group of 

individual electro-magnets arranged in such a way that they form a hollow cylinder, with 

one pole of each magnet facing toward the center of the group. The term 'stator' is derived 

from the word stationary. The rotor represents the rotating part of the motor, which 

consists of a group of electro-magnets arranged around a cylinder, with the poles facing 

toward the stator poles. The rotor is located inside the stator and is mounted on the motor's 

shaft. The term 'rotor' is derived from the word rotating. The magnetic interaction between 

the stator and rotor will rotate the motor shaft. This rotation will occur because unlike 

magnetic poles attract each other and like poles repel. If the polarity of the stator poles is 

changed in such a way that their combined magnetic field rotates, then the rotor will 

follow and rotate with the magnetic field of the stator. 

 
 

 

 

 

Figure 2.8: Squirrel-cage shape. 

Figure 2.9: Stator and Rotor.  
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To be familiar with fundamental of the rotating magnetic fields it can be assumed that the 

stator has six magnetic poles and the rotor has two poles [15].  

 At time 1, stator poles A-1 and C-2 are north poles and the opposite poles, A-2 and C-1, 

are south poles. The S-pole of the rotor is attracted by the two N-poles of the stator and the 

N-pole of the rotor is attracted by the two south poles of the stator.              

At time 2, the polarity of the stator poles is changed so that now C-2 and B-1 are N-poles 

and  C-1 and B-2 are S-poles. The rotor then is forced to rotate 60 degrees to line up with 

the stator poles as shown in Figure 2.10.        

At time 3, B-1 and A-2 are N-poles.                                         

At time 4, A-2 and C-1 are N-poles.                                                   

As each change is made, the poles of the rotor are attracted by the opposite poles on the 

stator. Thus, as the magnetic field of the stator rotates, the rotor is forced to rotate with it.  

 

 

 

 

 

 

 

 

 

 

To produce a rotating magnetic field in the stator of a three-phase AC motor, we need to 

direct couple the 3 phase power supply to the stator terminal. Each phase of the three-

phase power supply is connected to opposite poles and the associated coils are wound in 

the same direction. The polarities of the poles are determined by the direction of the 

current flow through the coil. Therefore, if two opposite stator electro-magnets are wound 

in the same direction, the polarity of the facing poles must be opposite. Therefore, when 

pole A1 is N, pole A2 is S. When pole B1 is N, B2 is S and so forth.  

Figure 2.10: Rotating magnetic field.  
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The windings AN, BN, CN are mechanically spaced at 120°from each other. AC currents Ia, 

Ib and Ic will flow in the windings, but will be displaced in time. Each winding produces 

its own EMF, which creates a flux across the hollow interior of the stator. The three fluxes 

combine to produce a magnetic field that rotates at the same frequency as the supply [3]. 

 

 

 

 

 

 

The phase current waveforms follow each other in the sequence A-B-C. This produces a 

clockwise rotating magnetic field. If we interchange any two of the lines connected to the 

stator, the new phase sequence will be A-C-B. This will produce a counterclockwise 

rotating field, reversing the motor direction. In practice, induction motors have internal 

diameters that are smooth, instead of having salient poles. Also, instead of a single coil per 

pole, many coils are lodged in adjacent slots. The staggered coils are connected in series to 

form a phase group. Spreading the coil in this manner creates a sinusoidal flux distribution 

per pole, which improves performance and makes the motor less noisy. 

 

 

 

 

 

 

 

Figure 2.11: Six poles stator connections.  

Figure 2.12: Six poles stator construction.  
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The rotating speed of the revolving flux can be reduced by increasing the number of poles 

(in multiples of two). In a four-pole stator, the phase groups span an angle of 90°. In a six-

pole stator, the phase groups span an angle of 60° and so on. Figure 2.13 shows how the 

rotating magnetic field is produced. At time1, the current flow in the phase "A" poles is 

positive making A-1 N and pole A-2 is S. The current flow in the phase "C" poles is 

negative, making C-2 a N-pole and C-1 is S. There is no current flow in phase "B", so 

these poles are not magnetized. At time 2, the phases have shifted 60 degrees, making 

poles C-2 and B-1 both N and C-1 and B-2 both S. Thus, as the phases shift their current 

flow, the resultant N and S poles move clockwise around the stator, producing a rotating 

magnetic field. The rotor acts like a bar magnet, being pulled along by the rotating 

magnetic field [15].  

 

 

 

 

 

 

 

 

 

 

2.3.2 Magnetic field in the rotor                                                

There is no external power supply for the rotor part. It is a natural phenomena which 

occurs when a conductor which contains aluminum bars shown in Figure 2.14, is moved 

through an existing magnetic field or when a magnetic field is moved past a conductor. In 

either case, the relative motion of the two causes an electric current to flow in the 

Figure 2.13: Magnetic field Stages.  



Three-Phase Induction Motor                                                                                              14 

   

conductor. This is referred to as "induced" current flow. In other words, in an induction 

motor the current flow in the rotor is not caused by any direct connection of the 

conductors to a voltage source, but rather by the influence of the rotor conductors cutting 

across the lines of flux produced by the stator magnetic fields. The induced current which 

is produced in the rotor results in a magnetic field around the rotor conductors as shown in 

Figure 2.15. This magnetic field around each rotor conductor will cause each rotor 

conductor to act like the permanent magnet. As the magnetic field of the stator rotates, due 

to the effect of the three-phase AC power supply, the induced magnetic field of the rotor 

will be attracted and will follow the rotation. The rotor is connected to the motor shaft, so 

the shaft will rotate and drive the connection load [15].  

 

 

 

 

 

 

 

Figure 2.14:  Construction of an AC induction motor's rotor.  

Figure 2.15:  Voltage induced in the rotor.    
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2.4 Speed of an induction motor 
The magnetic field created in the stator rotates at a synchronous speed (Ns) which can be 

obtained from the following formula: 

                                        
p
fNs *120=                                                                            (2.1) 

Where 

Ns  : The synchronous speed of the stator magnetic field in RPM. 

P   :  The number of poles on the stator.           

F   :  The supply frequency in Hertz.           

The magnetic field produced in the rotor because of the induced voltage is alternating in 

nature. To reduce the relative speed, with respect to the stator, the rotor starts running in 

the same direction as that of the stator flux and tries to catch up with the rotating flux. 

However, in practice, the rotor never succeeds in “catching up” to the stator field. The 

rotor runs slower than the speed of the stator field. This speed is called the Base Speed 

(Nb). The difference between NS and Nb is called the slip. The slip varies with the load. An 

increase in load will cause the rotor to slow down or increase slip. A decrease in load will 

cause the rotor to speed up or decrease slip. The slip is expressed as a percentage and can 

be determined with the following formula [1]:  

                                  100*%
sN

bNsN
slip

−
=                                                                    (2.2) 

2.5 Torque equation governing motor operation  
 
The motor load system can be described by a fundamental torque equation. 
                                          

dt
dJW

dt
dWJTT m

m
l ** +=−                                                               (2.3) 

Where: 

T  :  The instantaneous value of the developed motor torque (N.m). 

Tl  :  The instantaneous value of the load torque (N.m). 

Wm:  The instantaneous angular velocity of the motor shaft (rad/sec). 

J    : The moment of inertia of the motor load system (kg.m2) 

For drives with constant inertia, (dJ/dt) = 0. Therefore, the equation would be: 

                                         
dt

dWJTT m
l *+=                                                                             (2.4) 
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This shows that the torque developed by the motor is counter balanced by a load torque, Tl 

and a dynamic torque, 
dt

mdJ ω . The torque component,
dt

mdJ ω , is called the dynamic torque 

because it is present only during the transient operations. The drive accelerates or 

decelerates depending on whether T is greater or less than Tl. During acceleration, the 

motor should supply not only the load torque, but an additional torque component
dt

mdJ ω , in 

order to overcome the drive inertia. In drives with large inertia, such as electric trains, the 

motor torque must exceed the load torque by a large amount in order to get adequate 

acceleration. In drives requiring fast transient response, the motor torque should be 

maintained at the highest value and the motor load system should be designed with the 

lowest possible inertia. The energy associated with the dynamic torque,
dt

mdJ ω , is stored in 

the form of kinetic energy (KE) given by, 
2

2
mw

J . During deceleration, the dynamic 

torque,
dt

mdJ ω , has a negative sign. Therefore, it assists the motor developed torque T and 

maintains the drive motion by extracting energy from the stored kinetic energy.  To 

summarize, in order to get steady state rotation of the motor, the torque developed by the 

motor (T) should always be equal to the torque requirement of the load (Tl). The torque-

speed curve of the typical three-phase induction motor is shown in Figure 2.16 [1]. 

 

Figure 2.16:  Typical torque-speed curve of 3-phase AC induction motor.  
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2.5.1 Starting characteristic 

Induction motors, at rest, appear just like a short circuited transformer and if connected to 

the full supply voltage, draw a very high current known as the “Locked Rotor Current.” 

They also produce torque which is known as the “Locked Rotor Torque”. The Locked 

Rotor Torque (LRT) and the Locked Rotor Current (LRC) are function of the terminal 

voltage of the motor and the motor design. As the motor accelerates, both the torque and 

the current will tend to alter with rotor speed if the voltage is maintained constant. The 

starting current of a motor with a fixed voltage will drop very slowly as the motor 

accelerates and will only begin to fall significantly when the motor has reached at least 

80% of the full speed. The actual curves for the induction motors can vary considerably 

between designs but the general trend is for a high current until the motor has almost 

reached full speed. The LRC of a motor can range from 500% of Full-Load Current 

(FLCu) to as high as 1400% of FLCu. Typically, good motors fall in the range of 550% to 

750% of FLCu. The starting torque of an induction motor starting with a fixed voltage will 

drop a little to the minimum torque, known as the pull-up torque, as the motor accelerates 

and then rises to a maximum torque, known as the breakdown or pull-out torque, at almost 

full speed and then drop to zero at the synchronous speed. The curve of the start torque 

against the rotor speed is dependant on the terminal voltage and the rotor design. The LRT 

of an induction motor can vary from as low as 60% of FLT to as high as 350% of FLT. 

The pull-up torque can be as low as 40% of FLT and the breakdown torque can be as high 

as 350% of FLT. Typically, LRTs for medium to large motors are in the order of 120% of 

FLT to 280% of FLT [1]. 
 

2.5.2 Running characteristic  
Once the motor is up to speed, it operates at a low slip, at a speed determined by the 

number of the stator poles. Typically, the full-load slip for the squirrel cage induction 

motor is less than 5%. The actual full-load slip of a particular motor is dependant on the 

motor design. The typical base speed of the four pole induction motor varies between 

1420 and 1480 RPM at 50 Hz, while the synchronous speed is 1500 RPM at 50 Hz. The 

current drawn by the induction motor has two components: reactive component 

(magnetizing current) and active component (working current). The magnetizing current is 

independent of the load but is dependant on the design of the stator and the stator voltage. 

The actual magnetizing current of the induction motor can vary, from as low as 20% of 

FLCu for the large two pole machine, to as high as 60% for the small eight pole machine. 
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The working current of the motor is directly proportional to the load. The tendency for the 

large machines and high-speed machines is to exhibit a low magnetizing current, while for 

the low-speed machines and small machines the tendency is to exhibit a high magnetizing 

current. A typical medium sized four pole machine has a magnetizing current of about 

33% of FLC. A low magnetizing current indicates a low iron loss, while a high 

magnetizing current indicates an increase in iron loss and a resultant reduction in the 

operating efficiency. Typically, the operating efficiency of the induction motor is highest 

at 3/4 load and varies from less than 60% for small low-speed motors to greater than 92% 

for large high-speed motors. The operating PF and efficiencies are generally quoted on the 

motor data sheets. As seen in the speed-torque characteristics, torque is highly nonlinear 

as the speed varies. In many applications, the speed needs to be varied, which makes the 

torque vary [1]. 
 

2.6 V/F control theory 
The most widely way to control the motor's shaft speed is to vary the supply frequency 

with constant voltage over frequency percent. If the induction motor is supplied with its 

rated voltage and frequency, the flux produced will be at the optimum design value. As it 

can be seen in the speed-torque characteristics shown in Figure 2.16, the induction motor 

draws the rated current and delivers the rated torque at the base speed. When the load is 

increased (over-rated load), while running at base speed, the speed drops and the slip 

increases. As has been presented in the earlier section, the motor can take up to 2.5 times 

the rated torque with around 20% drop in the speed. Any further increase of load on the 

shaft can stall the motor. Reducing the supply frequency below the rated value whilst 

maintaining the rated supply voltage will cause an increase in motor flux. If the frequency 

is increased above its rated value, the flux and hence torque will decrease. Figure 2.17 

illustrates the effect on the motor torque/speed characteristic as the operating frequency is 

varied with constant supply voltage applied [16]. 

 

 

 

 

Figure 2.17:  Torque/speed characteristic curve due to variable frequency and constant voltage.    
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The torque developed by the motor is directly proportional to the magnetic field produced 

by the stator. So, the voltage applied to the stator is directly proportional to the product of 

stator flux and angular velocity. This makes the flux produced by the stator proportional to 

the ratio of applied voltage and frequency of supply. By varying the frequency, the speed 

of the motor can be varied. Therefore, by varying the voltage and frequency at the same 

ratio, flux and hence, the torque can be kept constant throughout the speed range.  

    
V/F
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Φ
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                                 (2.5) 

With a variable frequency of the supply, the motor impedance will change with the 

frequency, influencing also the magnetic flux produced at the motor air gap. Since the 

torque produced in the motor is a function of the air gap magnetic flux, it is necessary to 

compensate for the motor impedance change by changing the voltage applied to the motor 

to maintain a constant flux over the operating frequency range.. This is achieved by 

increasing the motor voltage, Vs, at the lower frequencies and is termed 'voltage boost'. 

Figure 218 illustrates the effect of voltage boost on the motor torque/speed characteristic. 
 

 

 

. 
 

 

 

 

Figure 2.19 shows the relation between the voltage and torque versus frequency. Which 

demonstrates that the voltage and frequency being increased up to the base speed. At base 

speed, the voltage and frequency reach the rated values as listed in the nameplate. It's 

possible to drive the motor beyond base speed by increasing the frequency further. 

 However, the voltage applied cannot be increased beyond the rated voltage. Therefore, 

only the frequency can be increased, which results in the field weakening and the torque 

available being reduced. Above base speed, the factors governing torque become complex, 

Figure 2.18:  Torque/speed characteristic with constant V/F ratio. 



Three-Phase Induction Motor                                                                                              20 

   

since friction and windage losses increase significantly at higher speeds. Hence, the torque 

curve becomes nonlinear with respect to speed or frequency [17]. 

 
2.7 Equivalent circuit of the induction motor  
The polyphase induction motor can be assumed as a polyphase transformer since the EMF 

produced by the rotor currents is rotating at synchronous speed relative to the stator 

winding, it induces a source frequency voltage just as in a normal transformer. Figure 2.20 

shows the equivalent circuit of the induction motor [18]. 

 

 

Figure 2.19:  Frequency -Torque characteristics with V/F Control.    

Figure 2.20:  General equivalent circuit of the induction motor.  
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The secondary parameters and variables of the model can be referred to the primary. For 

convenience, this is done by adding primes to the symbols for the secondary resistance, 

leakage reactance, current, and voltage as shown in Figure 2.21. 

 

 

 

 

 

 

Where: 

( )1
2

22

2

2

1
22

2

2

122
2

2

1
2

N
NIIN

NXX

N
N

S
R

S
R

EN
NE

=′





=′






=

′





=′

 

Figure 2.21:  Parameter of rotor referred to the primary    
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Then we can rewrite the term
S

R ′
2   into the following: 
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In the induction machine the stator core loss exists as long as the machine is connected to 

a source, the rotor core loss exists when the slip is any value other than zero, and the 

windage and friction losses exist when the machine rotates. Since the windage and friction 

losses are significantly greater than others, it is common to group all of them as rotational 

losses and remove mR from the circuit model. This is convenient since the no-load power 

is the sum of these lenses other than the small copper losses, and normally it is not 

possible to separate the core loss from the mechanical loss. Naturally this introduce a 

small error in computed values of gap power, but this error is quite insignificant .When 

this is done, the equivalent circuit appears as shown in Figure 2.23. 

 

Figure 2.22:  Equivalent circuit of induction motor.     

Figure 2.23:  Approximate Equivalent circuit of induction motor.    
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In order to get the transfer function of the induction motor, the values of each of the 

resistors and inductors given in Figure 2.23 must be obtained [18]. 

Three separate tests can be performed to evaluate the circuit parameters: 

DC resistance Test: 

This dc resistance test applied to the stator terminal to measured and provides an estimate 

of the primary resistance R1. This test is performed by setting ωe equal to zero.  This 

causes all the impedances caused by inductances to be zero at steady state according to  

Steady State Impedance = Z = j*ωe*L 

R1 can then be evaluated by the equation below. 

                                          R1(dc) = Vdc / Idc   

The above value will be right if the test applied on one phase, but if the phase motor 

connected star or delta then to get the resistance per phase the getting value must be scaled 

as following: 

If the motor connect in Star form then the value must divided by two. 

If the motor connect in Delta form then the value must multiplied by 1.5.  

Blocked-rotor Test: 

The blocked rotor test is done by running the motor at zero speed (ωr = 0). The rotor is 

blocked to prevent rotation and balanced voltages are applied to the stator terminals at a 

frequency of 25 percent of the rated frequency at a voltage where the rated current is 

achieved. Current, voltage and power are measured at the motor input.  This test will let us 

obtain the rotor resistance, R2, and the leakage inductances of the rotor and stator, L2 and 

L1.  Figure 2.2 below shows the equivalent blocked rotor circuit. 

 

. 

 

 

 

 

 

Figure2.24:  Blocked-rotor test equivalent circuit of induction motor.  
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Because I2 is much greater than the exciting current Im, we can neglect the magnetizing 

branch, and assuming that ′= 21 XX , the equivalent impedance of the circuit can be 
represented as below. 

              121
1

1 2XRRI
VZeq +′+==          

 And we can get the value of R1 from the previous dc resistance test. 

 

No-load test 

This test will let us find the value of the mutual inductance, Lm then we can get 

Xm=J*W*Lm. During the No Load Test, we can assume that ωe = ωr.  This corresponds to 

a slip of zero.  A slip of zero also means that right loop of the circuit is now an open 

circuit as shown in Figure 2.25.  The equivalent impedance of the circuit is then: 

             Zeq = R1 + X1+Xm                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25:  No-load test equivalent circuit of induction motor.    
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CHAPTER 3 

Fuzzy Logic Control 
3.1 Fuzzy logic history 
The concept of fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at the 

University of California at Berkley, who was published the first paper on fuzzy set theory 

in early 1960's [19], which was presented not as a control methodology, but as a way of 

processing data.  

This approach to set theory was not applied to control systems until the 70's due to 

insufficient small-computer capability prior to that time. Professor Zadeh reasoned that 

people do not require precise, numerical information input, and yet they are capable of 

highly adaptive control. If feedback controllers could be programmed to accept noisy, 

imprecise input, they would be much more effective and perhaps easier to implement [20].  

However, during its early years, it was met with a lot of criticisms, some of which are 

from Prof. Zadeh's colleagues themselves. Rudolph E. Kalman had this to say in 1972: "I 

would like to comment briefly on Prof. Zadeh's presentation. His proposals could be 

severely, ferociously, even brutally criticized from a technical point of view. This would 

be out of place here. But a blunt question remains: Is Prof. Zadeh presenting important 

ideas or is he indulging in wishful thinking? No doubt Prof. Zadeh's enthusiasm for 

fuzziness has been reinforced by the prevailing climate in the U.S.A one of unprecedented 

permissiveness. 'Fuzzification' is a kind of scientific permissiveness; it tends to result in 

socially appealing slogans unaccompanied by the discipline of hard scientific work and 

patient observation." [21].  

Similarly, his esteemed and brilliant colleague Prof. William, stated the following in 1975: 

"Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem that could 

not be solved better by ordinary logic. What Zadeh is saying is the same sort of things: 

Technology got us into this mess and now it can't get us out. Well, technology did not get 

us into this mess. Greed and weakness and ambivalence got us into this mess. What we 

need is more logical thinking, not less. The danger of fuzzy theory is that it will encourage 

the sort of imprecise thinking that has brought us so much trouble.".  
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Unfortunately, U.S. manufacturers have not been so quick to deal with  this technology 

while the Europeans and Japanese have been aggressively building real products around it. 

[21]. In 1974, Mamdani published the first paper for fuzzy applications [22]. Mamdani 

method was proposed as an attempt to control a real application in steam engine. The 

fuzzy inference system proposed by Mamdani, known as the Mamdani model in fuzzy 

system literature. 

 In 1985, Takagi and Sugeno published the paper of fuzzy systems [23]. The fuzzy 

inference system proposed by Takagi and Sugeno, known as the T-S model in fuzzy 

system literature.  

There are several advantages of using fuzzy control over classical control methods. As 

Lotfi Zadeh, who is considered the father of fuzzy logic, once remarked: "In almost every 

case you can build the same product without fuzzy logic, but fuzzy is faster and cheaper." 

[19]. Japanese were the first to use fuzzy logic in application in 1980's. Japanese and 

Korean companies are using fuzzy logic to enhance things like computers, air 

conditioners, automobile parts, cameras, televisions, washing machines, and robotics. In 

1994 Japan exported products using fuzzy logic totaling 35 billion dollar. Today, many 

publications discuss the theoretical background of fuzzy logic, its history, and how to 

program fuzzy logic algorithms.  

 

3.2 Fuzzy logic  
FL is a problem-solving control system methodology that lends itself to implementation in 

systems ranging from simple, small, embedded micro-controllers to large, networked, 

multi-channel PC or workstation-based data acquisition and control systems [24]. It can be 

implemented in hardware, software, or a combination of both. FL provides a simple way 

to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noise, or 

missing input information. 

 FL's approach to control problems mimics how a person would make decisions, only 

much faster FL incorporates a simple, rule-based IF X AND Y THEN Z approach to a 

solving control problem rather than attempting to model a system mathematically. The FL 

model is empirically-based, relying on an operator's experience rather than their technical 

understanding of the system. In other words fuzzy logic is used in system control and 

analysis design, because it shortens the time for engineering development and sometimes, 

 in the case of highly complex systems, is the only way to solve the problem [25]. 
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Before illustrating the mechanisms which make fuzzy logic machines work, it is important 

to realize what fuzzy logic actually is. Fuzzy logic is a superset of conventional (Boolean) 

logic that has been extended to handle the concept of partial truth values between 

"completely true" and "completely false". As its name suggests, it is the logic underlying 

modes of reasoning which are approximate rather than exact. The importance of fuzzy 

logic derives from the fact that most modes of human reasoning and especially common 

sense reasoning are approximate in nature. 

The essential characteristics of fuzzy logic as founded by Lotfi Zadeh are as follows:  

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate 

reasoning.  

• In fuzzy logic everything is a matter of degree.  

• Any logical system can be Fuzzified. 

• In fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently, 

fuzzy constraint on a collection of variables. 

• Inference is viewed as a process of propagation of elastic constraints. 

 

3.3 Fuzzy sets  
General definition of a set is that a set is a collection of objects distinct and perfectly 

specified. A part of a set is a subset. For example, let E is a finite referential set: 

                                          E = {a, b, c, d, e, f } 

It can form a crisp subset of E, for example: 

                                         A = {b,d,f} 

If we present it in the other form: 

 

In the classical set theory one element can either belong 

to a set, or not. This property can be represented by a degree of membership. In the case 

shown before, the element f belongs to A, and its degree of membership is 1.  

The element c doesn’t belong to A and its membership is 0. We can form a function which 

represents this property:   

                                             







∉
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                                                      (3.1) 
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This concept is basic in the classical set theory. The main concept of fuzzy theory is a 

notion of fuzzy set. Fuzzy set is an extension of crisp set. Zadeh was giving the following 

definition: 

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is 

characterized by a membership (characteristic) function which assigns to each object a 

grade of membership ranging between zero and one [25]. 

After Dr.Zadeh fuzzy set,, many authors found different ways of denoting fuzzy sets [26]. 

Zimmermann writes: 

A fuzzy set is denoted by an ordered set of pairs, the first element of which denotes the 

element (x) and the second (µA(x)) the degree of membership:                                                              

                                       ( ){ }XxxAxA ∈= |)(, µ                                                      (3.2) 

where µA takes values in the interval [0,1]. 

One of the biggest differences between crisp and fuzzy sets is that the former always have 

unique membership functions, whereas every fuzzy set has an infinite number of 

membership functions that can represent it. From the above definitions follows that one 

possible fuzzy subset of the referential E is: 

 
 

 

It means that the element a belongs to B with a value of 0.8, element b with 0.4 etc. This 

value has different names in the literature. The mostly used are: membership value, degree 

of membership, degree of compatibility, degree of truth, grade of membership, level of 

membership etc. 

 

3.4 Membership function 
Every fuzzy set can be represented by its membership function. The shape of membership 

function depends on the application and can be monotonic, triangular, trapezoidal or bell-

shaped as shown in Figure 3.1. 

 

 

 

Figure 3.1:  Different shapes of membership functions: monotonic, triangular, trapezoidal and bell-shaped. 
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For example to represent the property: positive small of the linguistic variable: 

temperature shown in Figure 3.2. If the measured temperature in one system is x, then the 

level of membership of x in the fuzzy set positive small is given by µ(x) and it is 0.8. We 

can say that the level of truth for the proposition:" The temperature x is positive small" is 

0.8 or 80%. 

 

 

 

 

 

 

 

 

One of the first steps in every fuzzy application is to define the universe of discourse 

(dynamic range) for every linguistic variable. The set of terms: T(temperature) can be 

characterized as fuzzy sets whose membership functions are shown in Figure 3.3. Every 

fuzzy set in a universe of discourse represents one linguistic value or label. 

 

3.5 Operations with fuzzy sets 
The most important operators in classical set theory with ordinary (crisp) sets are 

complement, intersection, union. These operations are defined in fuzzy logic via 

membership functions. Moreover, fuzzy set theory offers the vast range of operations on 

fuzzy sets that don’t exist in the classical theory [28]. 

Figure 3.2:   membership function example (positive small temperature). 

Figure 3.3:  Universe of discourse for linguistic variable: temperature.  
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3. 5. 1 Complement 

Complementation in fuzzy set theory corresponds to the complementation in classical set 

theory. For example, the element belongs to the fuzzy subset B with a level 0.6. It means 

that it does not belong to B with a level 0.4. Mathematically the membership values in a 

complement subset B  are. 

              µ B (x) = not (µ B(x)) = 1 - B(x).                                                   (3.3) 

 

 

 

 

 

3. 5. 2 Intersection or triangular norms 

For the intersection of fuzzy sets, Zadeh [28] suggested the min operator and the algebraic 

product. Following Zadeh’s idea a lot of researchers proposed various operators for this 

operation [26]. Let A and B be two fuzzy sets in U universe of discourse, with 

membership functions µA and µB respectively. The most important intersection operators 

are: 

• min operator 

µA(x) and µB(x) = min { µA(x), µB(x)}                                                                        (3.4) 

 

• algebraic product 

µA(x) and µB(x) = µA(x)* µB(x)                                                                                   (3.5) 

 

• bounded product 

µA(x) and µB(x) = max (0, µA(x)+ µB(x)-1)                                                                 (3.6) 

 

• drastic product 
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                        Figure 3.4:  Complement of fuzzy sets B. 
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• Einstein product 
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• Hamacher product 
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3. 5.3 Union triangular  

For the union of two fuzzy sets, the most used in the literature are: 

 

• max operator 

µA(x) or µB(x) = max {µA(x), µB(x)}                                                                         (3.10) 

 

• algebraic sum 

µA(x) or µB(x) = µA(x) µB(x)- µA(x)* µB(x)                                                             (3.11) 

 

• bounded sum 

µA(x) or µB(x) = min { 1, µA(x) +µB(x) }                                                                   (3.12) 

 

• drastic sum 
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Figure 3.5:  Intersection of fuzzy sets A and B(most used).  
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• Einstein sum 
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• Hamacher sum 
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• Disjoint sum 

µA(x) or µB(x) = max {min (µA(x), 1 -µB(x)), min(1 -µA(x)  µB(x)) }                      (3.16) 

 

 

 

 

 

 

3.6 Notion of linguistic rule 
The principal idea of fuzzy logic systems is to express the human knowledge in the form 

of linguistic if-then rules. Every rule has two parts: 

• Antecedent part (premise), expressed by if... and 

• Consequent part, expressed by: then... 

The antecedent part is the description of the state of the system, and the consequent is the 

action that the operator who controls the system must take. There are several forms of if-

then rules. The general is: 

If (a set of conditions is satisfied) then (a set of consequences can be inferred). 

Example: If the temperature is high, then the pressure is small. 

The general form of this rule is: 

Rule: If x is A, then y is B. 

Temperature (x) and pressure (y) are linguistic variables. x represents the state of the 

system, and y is control variable and represents the action of the operator. High (A) and 

small (B) are linguistic values or labels characterized by appropriate membership 

Figure 3.6:  Union Intersection of fuzzy sets A and B(most used). 
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functions of fuzzy sets. They are defined in the universe of discourse of the linguistic 

variables x and y. 

Takagi and Sugeno [26] proposed the form which has the fuzzy sets only in the premise 

part of the rule, and the consequent part is described by a non-fuzzy equation of the input 

variable. 

Example: If velocity is high, then force is k*(velocity)2 

Another form of this rule is: 

Rule: If x is A, then y is k*x2. 

or more general, 

Rule: If x is A, then y is f(x) 

 

3.7 General structure of fuzzy logic control "FLC" system 
Every fuzzy system is composed of  four principal blocks (Figure 3.7): 

1. Knowledge base (rules and parameters for membership functions). 

2. Decision making unit (inference operations on the rules). 

3. Fuzzification interface (transformation of the crisp inputs into degrees of match with 

linguistic variables). 

4. Defuzzification interface (transformation of the fuzzy result of the inference into a 

crisp output). 

3.7.1 Knowledge base  

We can use four modes of derivation of fuzzy control rules. These four modes are not 

mutually exclusive, and it is necessary to combine them to obtain an effective system. 

Figure 3.7:  General structure of fuzzy inference system.  
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• Expert experience and control engineering knowledge: operating manual and 

questionnaire. 

• Based on operators’ control actions: observation of human controller’s actions in 

terms of input-output operating data. 

• Based on the fuzzy model of a process: linguistic description of the dynamic 

characteristics of a process. 

• Based on learning: ability to modify control rules such as self-organizing 

controller. 

The number of base rules depends on the number of membership in the fuzzy set of the 

inputs. For example if the system contains one input with fuzzy set contains 4 

memberships then there are 4 base rules. If the system has two inputs and one of them 

contains five membership in its  fuzzy set, and the other contains three memberships then 

the total base rules will equal to 5*3=15 base rule. The efficiency of the system will 

proportionally depend on the number of membership, but here the system is going more 

complex to implement.  So there are many studies in genetic algorithm which try to 

minimizing the base rules and hence to simplify the system calculations. 

 

3.7.2 Procedure of fuzzy inference  

There are a lot of inference methods which deals with fuzzy inference like : Mamdani 

method, Larsen method, Tsukamoto method, and the Sugeno style inference, or to be more 

complete, Takagi-Sugeno_Kang (TSK) method. The most important and widely used in 

fuzzy controllers are the Mamdani and Takagi-Sugeno methods. 

 

3.7.2.a Mamdani method 

Which is the most commonly used fuzzy inference technique. In 1974, Professor Ebrahim 

Mamdani of London University built one of the first fuzzy systems to control a steam 

engine and boiler combination.  He applied a set of fuzzy rules supplied by experienced 

human operators. The Mamdani-style fuzzy inference process is performed in four steps 

[23]: 

• Fuzzification of the input variables,. 

• Rule evaluation. 

• Aggregation of the rule outputs. 

• Defuzzification. 
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To illustrate the fuzzy inference let's examine a simple two-input one-output problem that 

includes three rules: 

 Rule(1)…. IF  X   is    A3      OR     Y   is    B1        THEN  z is C1   

 Rule(2)…. IF  X    is   A2      AND  Y   is    B2        THEN  z is C2   

 Rule(3)…. IF  X    is   A1                              THEN  z is C3  

 

Step 1: Fuzzification 

The first step in the application of fuzzy reasoning is a Fuzzification of inputs in the 

controller, which is to take the crisp inputs, x1 and y1, and determine the degree to which 

these inputs belong to each of the appropriate fuzzy sets. It means that to every crisp value 

of input we attribute a set of degrees of membership (mj, j=1,n) to fuzzy sets defined in 

the universe of discourse for that input. 

 

 

Step 2: Rule evaluation 

The  second  step  is   to  take  the  Fuzzified  inputs, µ(x=A1) = 0.5, µ(x=A2) = 0.2, 

µ(y=B1) = 0.1 and µ(y=B2) = 0.7, and apply them to the antecedents of the fuzzy rules.  If 

a given fuzzy rule has multiple antecedents, the fuzzy operator (AND or OR) is used to 

obtain a single number that represents the result of the antecedent evaluation.  This 

number (the truth value) is then applied to the consequent membership function. To 

evaluate the disjunction of the rule antecedents, we use the OR fuzzy operation.  As shown 

Operations with fuzzy sets the most used approach for the union is to get the maximum: 

                         µA∪B(x) = max [µA(x), µB(x)]                                                             (3.17)   

Similarly, in order to evaluate the conjunction of the rule antecedents, we apply the AND 

fuzzy operation intersection which used minimum approach: 

    µA∩B(x) = min [µA(x), µB(x)]                                                            (3.18) 

 

Figure 3.8:  Fuzzification stage 
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the rule evaluations are clearly appears in Figure 3.9. 

The most common method of correlating the rule consequent with the truth value of the 

rule antecedent is to cut the consequent membership function at the level of the antecedent 

truth.  This method is called clipping. Since the top of the membership function is sliced, 

the clipped fuzzy set loses some information.  However, clipping is still often preferred 

because it involves less complex and faster mathematics, and generates an aggregated 

output surface that is easier to Defuzzify. 

While clipping is a frequently used method, scaling offers a better approach for preserving 

the original shape of the fuzzy set.  The original membership function of the rule 

consequent is adjusted by multiplying all its membership degrees by the truth value of the 

rule antecedent. This method shown in Figure 3.10, which generally loses less 

information, can be very useful in fuzzy expert systems  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Rule evaluation in Mamdani method  

Figure 3.10:  Clipping and scaling stage.  
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Step 3: Aggregation of the rule outputs 

Aggregation is the process of unification of the outputs of all rules.  We take the 

membership functions of all rule consequents previously clipped or scaled and combine 

them into a single fuzzy set. The input of the aggregation process is the list of clipped or 

scaled consequent membership functions, and the output is one fuzzy set for each output 

variable. 

 

 

 

 

 

 

 

Step 4: Defuzzification 

The last step in the fuzzy inference process is Defuzzification.  Fuzziness helps us to 

evaluate the rules, but the final output of a fuzzy system has to be a crisp number.  The 

input for the Defuzzification process is the aggregate output fuzzy set and the output is a 

single number. There are several methods for the Defuzzification, proposed in the 

literature. Here are four of them [27].  

• The center of gravity method 

This widely used method generates a center of gravity (or center of area) also called 

centroid technique of the resulting fuzzy set of a control action. If we discretize the 

universe it is: 

  

 

       (3.19) 

 

 

 

Where n is the number of quantization levels, ri is the amount of control output at the 

quantization level i and Zi represents its membership value. 
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Figure 3.11:  Aggregation stage in Mamdani method. 
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• The mean of maximum method 

The mean of maxima method generates a crisp control action by averaging the support 

values which their membership values reach the maximum. In the case of discrete 

universe: 

                                                         ∑
=
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i l
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                                      (3.20) 

Where l is the number of the quantized r values which reach their maximum memberships. 

• Tsukamoto’s method 

If monotonic membership functions are used, then the crisp control action can be 

calculated as follows: 
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Where n is the number of rules with firing strength wi is grater than zero and zi is the 

amount of control action recommended by the rule i. 

• The weighted average method 

This method is used when the fuzzy control rules are the functions of their inputs. 

 In general, the consequent part of the rule is: 

z =  f(x,y) If Wi is the firing strength of the rule i, then the crisp value is given by: 
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where n is the number of firing rules. 

The most popular method of Defuzzification is the Centroid technique.  It finds the point 

where a vertical line would slice the aggregate set into two equal masses.  Mathematically 

this centre of gravity (COG) can be expressed as: 

 

 (3.23) 
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A reasonable estimate can be obtained by calculating it over a sample of points. 

 
 

 

 

 

 

 

 

 

Mamdani-style inference, as we have just seen, requires us to find the centroid of a two-

dimensional shape by integrating across a continuously varying function.  In general, this 

process is not computationally efficient [27]. 

3.7.2.b Sugeno method 

Since Mamdani's pioneering work [28] on fuzzy control motivated by zadeh's approach to 

inexact [29], there have been numerous studies on fuzzy reasoning [30,31]. Most fuzzy 

controllers have been designed, based on human operator experience and/or control 

engineer knowledge. It is; however, often the case that an operator cannot tell 

linguistically what kind of action he takes in a particular situation. In this respect, it is 

quite useful to provide a method of modeling the control actions using numerical data 

[32]. In 1985 Takagi-Sugeno-Kang suggested to use a single spike, a singleton, as the 

membership function of the rule consequent, and they suggested another approach that 

using equation consequent in place off singleton consequent. A singleton, or more 

precisely a fuzzy singleton, is a fuzzy set with a membership function that is unity at a 

single particular point on the universe of discourse and zero everywhere else. Sugeno-style 

fuzzy inference is very similar to the Mamdani method.  Sugeno changed only a rule 

consequent.  Instead of a fuzzy set, he used a mathematical function of the input variable.  

The format of the Sugeno-style fuzzy rule is 

         IF  X  is A          AND    Y  is B      THEN  Z is f (x, y)                                         (3.24) 

where X, Y and Z are linguistic variables; A and B are fuzzy sets on universe of discourses 

X and Y, respectively; and f (x, y) is a mathematical function. 
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Figure 3.12: COG approach in Defuzzification stage.  
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The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules in the 

following form: 

         IF  X     is A  AND  Y      is B      THEN  Z is k                                                    (3.25) 

Where k is a constant. 

In this case, the output of each fuzzy rule is constant. All consequent membership 

functions are represented by singleton spikes. 

The following Figures (3.13,14,15) illustrate the idea for TSK which like Mamadni steps. 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

For Defuzzification stage its better to use Weighted Average method (WA) 
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Figure 3.13:  Rule evaluation stage in TSK method. 

Figure 3.14:  Aggregation stage in TSK method.  
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The overall fuzzy logic controller "FLC" appear in Figure 3.16  

 

3.7.2.c How to make a decision  Mamdani or Sugeno?  

• Mamdani method is widely accepted for capturing expert knowledge.  It allows us to 

describe the expertise in more intuitive, more human-like manner. However, 

Mamdani-type fuzzy inference entails a substantial computational burden.  

• On the other hand, Sugeno method is computationally effective and works well with 

optimization and adaptive techniques, which makes it very attractive in control 

problems, particularly for dynamic nonlinear systems. 
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Figure 3.15:  (WA) method in Defuzzification stage.   

Figure 3.16:  General structure of fuzzy logic control part of the system. 
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CHAPTER 4 

Field Programmable Gate Arrays (FPGAs) 
4.1 Introduction 
FPGAs stand for Field Programmable Gate Arrays are one type of programmable logic 

devices (PLDs). They are an integrated circuit that can be configured by the user in order 

to implement digital logic functions of varying complexities. FPGAs can be very 

effectively used for control purposes in processes demanding very high loop cycle time. 

One of the fundamental advantage of FPGA over DSP or other microprocessors is the 

freedom of programming parallelism. Since different parts of FPGA can be configured to 

perform independent functions simultaneously, its performance is just not tied to clock 

rate as in DSPs. This fact enables FPGA‘s to score over general purpose computing chips 

in the digital control systems implementation [32].  

 

4.2 PLDs history 
By the late 1970s, standard logic devices like AND, OR, NAND, and others basic gates 

with printed circuit boards loaded with them were the rage techniques in electronics 

design. Then a novel idea has been appeared which provided designers with the ability to 

implement different interconnections in a bigger device. This would allow designers to 

integrate many standard logic devices into one part. To offer the ultimate in design 

flexibility, Ron Cline from Signetics™ (which was later purchased by Philips and then 

eventually Xilinx) came up with the idea of the programmable logic device. 

A programmable logic device or PLD is an electronic component used to build 

reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD has 

an undefined function at the time of manufacture, and before the PLD can be used in a 

circuit it must be programmed. The first type of PLD family which had been appeared in 

the market is called programmable logic array (PLA). PLAs have two programmable 

planes as illustrated in Figure 4.1. These two planes provided any combination of “AND” 

and “OR” gates, as well as sharing of AND terms across multiple ORs. This architecture 
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was very flexible, but at the time wafer geometries of 10 µm made the input-to-output 

delay (or propagation delay time Tpd) high, which made the devices relatively slow [33]. 

 

 

 

 

 

 

 

 

 

After fabrication issues applied to PLA, it was modified to become the programmable 

array logic (PAL). This new architecture shown in Figure 4.2 differed from in that one of 

the programmable planes (OR array) was fixed. PAL architecture also had the added 

benefit of faster Tpd and less complex software, but without the flexibility of the PLA 

structure. This category of PLD devices is often called Simple PLD or SPLD. 

 

 

 

 

 

 

 

 

 

The architecture had a mesh of horizontal and vertical interconnect tracks. At each 

junction was a fuse. With the aid of software tools, designers could select which junctions 

would not be connected by “blowing” all unwanted fuses. This process was done by a 

device programmer. Input pins were connected to the vertical interconnect. The horizontal 

tracks were connected to AND-OR gates, also called “product terms”. These in turn 

Figure 4.1: PLA constructions. 

Figure 4.2: PAL constructions.  
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connected to dedicated flip-flops, whose outputs were connected to output pins. SPLDs 

provided as much as 50 times more gates in a single package than discrete logic devices. 

PLD technology has moved on from the early days with companies such as Xilinx 

producing ultra-low-power CMOS devices based on flash memory technology. Flash 

PLDs provide the ability to program the devices time and time again, electrically 

programming and erasing the device [34,35].  

Complex Programmable Logic Devices (CPLD) which shown in Figure 4.3 are another 

way to extend the density of the simple PLDs. The concept is to have a few PLD blocks or 

macrocells on a single device with general purpose interconnect in between. Simple logic 

paths can be implemented within a single block. More sophisticated logic will require 

multiple blocks and use the general purpose interconnect in between to make these 

connections. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

In 1985, Xilinx company introduced a completely new idea. The concept was to combine 

the user control and time to market of PLDs with the densities and cost benefits of gate 

arrays. A lot of customers liked it, and the FPGA was born. The term is most commonly 

applied to electronic devices which contain an array of identical logic elements which can 

be configured using a programming procedure to replicate any particular logic circuit.  

Figure 4.3:  CPLD architecture.   
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4.3 FPGAs construction 
A normal FPGA device is usually contained within a single silicon package which may 

also house some form of memory elements [36].  As shown in Figure 4.4 the logic 

element has a programmable Look-Up Table and a register (flip-flop).  

The LUT can perform any logic function on the available inputs to produce a single logic 

output. The final output is either this new value or the previous value (stored in the flip-

flop), although the logic element may have more than the four inputs.  

Figure 4.5 demonstrates the way in which logic blocks are laid out to form an array inside 

the FPGA. Different Manufactures will have slightly different configurations but all use 

some type of programmable switch matrix at the crossing point of the logic block 

interconnection lines.  

By having programmable switches and programmable logic elements, the system can be 

configured to mimic any combination of logic functions as long as the overall design can 

be fitted into the available number of logic elements and switches.   

There are two basic types of FPGAs: SRAM-based reprogrammable and One-time 

programmable (OTP). These two types of FPGAs differ in the implementation of the logic 

element and the mechanism used to make connections in the device. 

 The dominant type of FPGA is SRAM-based and can be reprogrammed by the user as 

often as the user chooses. In fact, an SRAM FPGA is reprogrammed every time it is 

powered-up.  

That’s why you need a serial programmable read only memory (SPROM) or system 

memory with every SRAM FPGA. One-time programmable (OTP) FPGAs use anti-fuses 

to make permanent connections in the chip and so do not require a SPROM or other 

means to download the program to the FPGA. However, every time you make a design 

change, you must throw away the chip. 

Figure 4.4:  FPGA logic element  
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4.4 ASIC vs FPGA as a design choice 
In comparison with PLDs, there is another kind of un-programmable digital devices called 

application specific integrated circuit (ASIC). An ASIC is an integrated circuit (IC) 

customized for a particular use, rather than intended for general-purpose use. By carefully 

tuning each ASIC to a given job, the computer designer can produce a smaller, cheaper, 

faster chip that consumes less power than a programmable processor. A graphics chip for 

a personal computer (PC), for instance, can draw lines or paint pictures on the screen 10 or 

100 times as quickly as a general-purpose central processing unit can. The ASIC must be 

fabricated on a manufacturing line, a process that takes several months, before it can be 

used or even tested. ASIC have some significant advantages because they are designed for 

a particular purpose they are very fast, efficient circuitry, and lower cost for high volume 

production. The disadvantages that it takes time for the ASIC vendor to manufacture and 

test the parts and the process of designing, testing and setting up fabrication facilities for 

the production of an ASIC is generally very expensive. In situations where the market for 

a certain device is large and reprogrammability is not needed, this high non-recurring 

Figure 4.5:  Structure of a Xilinx FPGA standard. 
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engineering (NRE) cost can be countered by the smaller, faster and cheaper end product 

that ASIC technology produces. Strictly speaking, a working FPGA device programmed 

with a hardware image is in fact a type of ASIC, however the FPGA’s reprogrammability 

makes it very different as a design choice. The advantages and disadvantages of both types 

of technology are summed up in Table 4.1. 

 

 

 

 

 

 

4.5 FPGAs design advantages 
FPGAs enable ease of design, lower development costs, and more product revenue for 

money, and the opportunity to speed products to market.  

• Ease of Design: FPGAs offer the simplest way to implement a design. Once a design 

has been described, it is simply use software development tools to optimize, fit, and 

simulate the design.  

 

• Lower Development Costs: FPGAs offer very low development costs. Because its 

reprogrammablity, it's easily and very inexpensively to change designs. This allows 

optimizing designs and continuing to add new features to enhance products.  

 

• More Product Revenue: FPGAs offer very short development cycles, which means 

the product will getting market quicker and begin generating revenue sooner. Again 

due to its reprogrammablity, products can be easily modified. This in turn allows 

easily introducing additional features and quickly generating new revenue.  

 

• Reduced Board Area: FPGAs offer a high level of integration (that is, a large number 

of system gates per area) and are available in very small form factor packages. This 

provides the perfect solution for designers whose products which must fit into small 

enclosures or who have a limited amount of circuit board space to implement the logic 

design [36].  

                                                         Table 4.1:  ASIC and FPGA comparison.  
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4.6 Parallel processing 
Of the many advantages that FPGA devices offer, the ability to allow for customized 

parallel processing is perhaps the most beneficial of all. Since a designer no longer needs 

to rely on a ASIC vendor to provide him with the processing tools that he needs, the 

designer can quickly create his own processing blocks in hardware. This is hugely 

beneficial for computationally strenuous tasks, and since the cost of trial and error 

designing is now essentially nil, the designer is free to experiment with different 

processing configurations to fine tune his system. The basic concept is demonstrated in 

Figure 4.6. The Figure shows how an FPGA can be used to quadruple the speed of digital 

processing using existing software to defined DSP core, along with a control core. For 

example, let us assume that the original DSP core can perform a given operation in 4 clock 

cycles. This gives an output of 1/4 = 0.25 operations per clock cycle. In the configuration 

at Figure 4.6, the control core switches the data input and outputs in a rotational fashion 

thereby allowing a new input value to be applied to the inputs of a different DSP core 

every clock cycle. Thus the DSP blocks will operate in parallel on a single sequential 

stream of incoming data. Our resulting performance is 4/4 = 1 Operations per clock cycle 

[37].  

 

 

 

 

 

 

 

4.7 Xilinx design software package 
Xilinx offers complete electronic design tools that enable the implementation of designs in 

Xilinx PLDs. These development solutions combine powerful technology with a flexible, 

easy-to-use graphical interface regardless of any experience level. The availability of 

products such as WebPACK ISE software has made it much easier to design with 

programmable logic. Designs can be described easily and quickly using a description 

language such as ABEL, VHDL, Verilog™, or with a schematic capture package. 

Figure 4.6:  Parallel processing in FPGA.  
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 Schematic capture is the traditional method that designers have used to specify gate 

arrays and programmable logic devices. It is a graphical tool that allows the user to 

specify the exact gates required and how they connected. There are four basic steps to 

using schematic capture: 

1. After selecting a specific schematic capture tool and device library, begin building the 

circuit by loading the desired gates from the selected library. It can be used any 

combination of needed gates that you need.  

 

2. Connecting the gates together using nets or wires. 

 

3. Add and label the input and output buffers. These will define the I/O package pins for 

the device. 

 

4. Generate a netlist which is a text equivalent of the circuit. It is generated by design tools 

such as a schematic capture program. The netlist is a compact way for other programs to 

understand what gates are in the circuit, how they are connected, and the names of the I/O 

pins.  

Figure 4.7 describe an illustrative example, the netlist reflects the actual syntax of the 

circuit in the schematic. There is one line for each of the components and one line for each 

of the nets. The computer assigns names to components (G1 to G4) and to the nets (N1 to 

N8). When implementing this design, it will have input package pins A, B, C, and D, and 

output pins Q, R, and S. 

The above example is obviously very simplistic. Let’s describe a more realistic design of 

10,000 equivalent gates. The typical schematic page contains about 200 gates, contained 

with soft macros.  

Therefore, it would require 50 schematic pages to create a 10,000-gate design! Each page 

needs to go through all the steps mentioned previously which are: adding components, 

interconnecting the gates, adding I/Os, and generating a netlist. 

 This is rather time-consuming, especially if it is required to have a 20,000, 50,000, or 

even larger design. Another inherent problem with using schematic capture is the 

difficulty in migrating between vendors and technologies. 

 If initially we create 10,000 gates design with FPGA vendor X and then want to migrate 

to a gate array, then it will required to modify every one of those 50 pages using the gate 

array vendor’s component library. 
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There has to be a better way, and, of course, there is. It is called high-level design (HLD), 

behavioral, or hardware description language (HDL). For our purposes, these three terms 

are essentially the same thing. The idea is to use a high-level language to describe the 

circuit in a text file rather than a graphical low-level gate description. There are many 

programming language illustrate HDL and the mostly famous is VHDL (Very High Speed 

Integrated Circuits) [36]. As an example, let's consider the design work needed specifying 

a 16 x 16 multiplier with schematic capture or an VHDL file. A multiplier is a regular but 

Figure 4.7:  Design flow in schematic method.  
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complex arrangement of adders and registers that requires quite a few gates. This example 

has two 16-bit inputs (A and B) and a 32-bit product output (Y = A x B) for a total of 64 

I/Os. This circuit requires approximately 6,000 equivalent gates. In the schematic 

implementation, the required gates would have to be loaded, positioned on the page, and 

interconnected, with I/O buffers added. That would be about three days of work. The 

VHDL implementation shown in Figure 4.8 , which is also 6,000 gates, requires eight 

lines of text and can be done in three minutes. This file contains all the information 

necessary to define the 16 x 16 multiplier. In addition to the tremendous time savings, the 

VHDL method is completely vendor-independent. This opens up tremendous design 

possibilities for engineers. To create a 32 x 32 multiplier, it could simply modify the work 

which already done for the smaller multiplier. For the schematic approach, this would 

entail making three copies of the 30 pages, then figuring out where to edit the 90 pages so 

that they addressed the larger bus widths. This would probably require four hours of 

graphical editing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8:  Multiplier code in VHDL. 
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Figure 4.9 illustrate the design flow of the multiplication example in schematic and VHDL 

approaches. Once we have specified the design in a behavioral description we can convert 

It  into gates using the process of synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next step from schematics or synthesis approaches is the verification done by using a 

simulator, which is a software program that confirms the functionality or timing of a 

circuit. The last step is the implementation, which contains five stages: 

• Translate: This Stage translates comprise various programs used to import the 

design netlist and prepare it for layout. 

 

• Fitting:  Meaning to “fit” the design to the target device. 

 

• Place: Is the process of selecting specific modules, or logic blocks, in the FPGAs 

where design gates will reside. 

• Route: As the name implies, is the physical routing of the interconnection between 

the logic blocks. 

Figure 4.9:  Design flow in both schematic and VHDL approaches. 
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Most vendors provide automatic place and route tools so that we don’t have to worry 

about the intricate details of the device architecture. 

• Download program to FPGA chip: using USB cable or special programmer device 

depending on the kind of the FPGA chip and its board. 

Figure 4.10 illustrates the overall procedure to implement the design using FPGAs . 

 

4.8 Spartan-3A Starter Kit Board user guide 
Xilinx Spartan-3A FPGAs (Figure 4.11) are ideal for low-cost, high-volume applications 

and are targeted as replacements for fixed-logic gate arrays. The combination of low cost 

and some improvements features makes it an ideal replacement for ASICs.  

Depending on that and after features checking for the needs of my project in this thesis, I  

decided to select this board. Also it's memorable to mention that this board is very modern   

due to its manufacturing date (February 15, 2007) [37]. 

Figure 4.10:  Overall process to program FPGAs. 
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This family of cards Spartan-3 FPGA has many applications in our real life, for example, 

in a car multimedia system shown in Figure 4.12 could absorb many system functions, 

including embedded IP cores, custom system interfaces, DSP, and logic. 

Figure 4.11 Spartan-3A Starter Kit Board.   

Figure 4.12 Spartan -3 in car applications.  
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The key features of the Spartan-3A Starter Kit are available at the Appendix A, but here 

are some of them: 

• Xilinx 700K-gate XC3S700A Spartan-3A FPGA . 

• 16 Mbits of SPI serial Flash 

• Two-line, 16-character LCD screen. 

• PS/2 mouse or keyboard port 

• VGA display port 

• 10/100 Ethernet  

• Two nine-pin RS-232 ports (DTE- and DCE-style) 

• On-board USB-based programming solution 

• FPGA download/debug 

• 50 MHz clock oscillator 

• High-speed differential I/O connectors 

• Receiver: Five data channels plus clock 

• Transmitter: Five data channels plus clock 

• Supports multiple differential I/O standards 

• Supports up to 24 single-ended I/O 

• Uses widely available 34-conductor cables 

• Four-output, Digital-to-Analog Converter (DAC) 

• Two-input, Analog-to-Digital Converter (ADC) with programmable-gain 

• pre-amplifier 

• Stereo audio jack using digital I/O pins 

• Rotary-encoder with push-button shaft 

• Eight discrete LEDs 

• Four slide switches 

• Four push-button switches 

 

4.9 PicoBlaze processor 
Due to the complexity of some programming application in FPGA like video display , 

sound processing, network application, lcd etc. Xilinx Company provide  The PicoBlaze™ 

microcontroller which is a compact, capable, and cost-effective fully embedded 8-bit 

RISC microcontroller core optimized for the Spartan™-3, and some others FPGA 
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families. The PicoBlaze software microcontroller provides cost-efficient microcontroller-

based control and simple data processing. Designing with the PicoBlaze means 

instantiating it in the design using VHDL. An external assembler is then used to generate 

the code that is downloaded to the block RAM. One of the outputs of the assembler is a 

VHDL file that defines the BRAM and its contents. This is added as a source to the 

project and that’s all there is to it. The PicoBlaze microcontroller is optimized for 

efficiency and low deployment cost. It occupies just 96 FPGA slices, or about 2% of an 

XC3S700 FPGA. In typical implementations, a single FPGA block RAM stores up to 

1024 program instructions, which are automatically loaded during FPGA configuration. 

Even with such resource efficiency, the PicoBlaze microcontroller performs a respectable 

44 to 100 million instructions per second (MIPS) depending on the target FPGA family 

and speed grade. The PicoBlaze microcontroller core is totally embedded within the target 

FPGA and requires no external resources. The PicoBlaze microcontroller is extremely 

flexible. The basic functionality is easily extended and enhanced by connecting additional 

FPGA logic to the microcontroller’s input and output ports [38].  

As shown in the block diagram in Figure 4.13, the PicoBlaze microcontroller supports the 

following features: 

• 16 byte-wide general-purpose data registers. 

 

• 1K instructions of programmable on-chip program store, automatically loaded during 

FPGA configuration. 

 

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags. 

 

•  64-byte internal scratchpad RAM. 

 

• 256 input and 256 output ports for easy expansion and enhancement. 

 

• Automatic 31-location CALL/RETURN stack. 

 

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or 100 

MIPS in a Virtex-II Pro FPGA. 
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• Fast interrupt response; worst-case 5 clock cycles. 

 

• Optimized for Xilinx Spartan-3, Virtex-II, and Virtex-II Pro FPGA architectures—just 

96 slices and 0.5 to 1 block RAM. 

 

• Assembler, instruction-set simulator support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13   PicoBlaze architecture.  
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CHAPTER 5 

Designing Controllers Using FPGA for 

Three-phase Induction Motor 
5.1 Overall system design and implementation  
This chapter presents the process used to design three kinds of widely used controllers 

(PID, Fuzzy, and Fuzzy-PID) for the three phase induction motor using FPGA 

technique. The block diagram explains the concept of this system is shown in Figure 

5.1.  

 

.   

 

 

 

 

 

 

 

 

 

5.2 Three-phase induction motor inverter  
When power is supplied to an induction motor at the recommended specifications, it 

runs at its rated speed. However, many applications need variable speed operations. 

For example, a three-phase induction motor in the elevator must use different speeds 

for each order needs to travel between floors. Historically, mechanical gear systems 

were used to obtain variable speed. Recently, electronic power and control systems 

have matured to allow these components to be used for motor control in place of 

mechanical gears. These electronics not only control the motor’s speed, but can 

Figure 5.1:  Block diagram for the over all control system.    
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improve the motor’s dynamic and steady state characteristics [39]. In addition, 

electronics can reduce the system’s average power consumption and noise generation 

of the motor. While there are different methods for control, Variable Voltage Variable 

Frequency (VVVF) or V/f is the most common method of speed control. As has been 

mentioned in chapter 2 it is needed to change the frequency of the input power supply 

of  the motor for getting variable speeds, and at same time the percentage V/f must be 

constant to keep the delivered torque to the load constant during speed varying . This 

means that the motor can no longer be supplied directly from the AC power line if  

there are needs to change its speed.  

5.2.1 Hardware construction of the inverter 
If the incoming AC supply were converted to DC using a rectifier as shown in Figure 

5-2, it could then use some kind of switching power inverter to generate an oscillation 

of needed frequency.  

 

 

 

 

 

 

The rectifier circuit can be one-phase or three-phase bridge rectifier as shown in 

Figure (5.3-5.4) According to the kind of the input power supply used in the system. 

 

 

 

 

 

 

 

 

Figure 5.2:  Switching amplifier diagram.    

Figure 5.3:  One-phase rectifier bridge with ripple capacitor.     

Figure 5.4:  Three-phase rectifier bridge with ripple capacitor.    
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The input and output for each rectifier is shown in Figure 5.5 and Figure 5.6 

 

 

 

 

 

 

 

 

For a given load, a larger capacitor will reduce ripple but will cost more and will 

create higher peak currents in the supply feeding it. In Figure 5.7, the voltage 

waveform of capacitors is depicted to calculate corresponding capacitance value.  

 

 

 

 

 

 

 

 

 

Figure 5.5:  Input and output signal for the one phase bridge rectifier.    

Figure 5.6:  Input and output signal for the three phase bridge rectifier.    

Figure 5.7:  Ripple factor for the full wave rectifier.    
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Electrolytic capacitors are used to smooth the dc bus voltage. Its capacitance can be 

found from the formula: 

                             
rect
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Where Pin is the load power in watts, frect is the ripple frequency, Vmax is the 

maximum DC voltage and V min is the minimum dc voltage [31]. In practical 

realization, if a one phase 230V AC input is connected to the input of the rectifier. 

The peak voltage value of input is as follows: 
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So the capacitor which been selected was equal to 3300 Fµ  which is the nearest value 

available in the local market. A voltage source power inverter is used to convert the 

DC bus to the required AC voltages and frequency. In summary, the power section 

consists of a power rectifier, filter capacitor, and power inverter. The motor is 

connected to the inverter as shown in Figure 5.8. The power inverter has 6 switches 

that are controlled in order to generate an AC output from the DC input. Pulse width 

modulation PWM signals generated from the FPGA controller will control these 6 

switches. The phase voltage is determined by the duty cycle of the PWM signals. In 

time, a maximum of three switches will be on, either one upper and two lower 

switches, or two upper and one lower switch. When the switches are on, current flows 

from the DC bus to the motor winding. Because the motor windings are highly 

inductive in nature, they hold electric energy in the form of current. This current 

needs to be dissipated while switches are off. Diodes connected across the switches 

give a path for the current to dissipate when the switches are off. These diodes are 

also called freewheeling diodes. Upper and lower switches of the same limb should 

not be switched on at the same time. This will prevent the DC bus supply from being 

shorted. A dead time is given between switching off the upper switch and switching 

on the lower switch and vice versa, as will be explained in next section. 
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Up to switching powers of a few kW MOSFET (Metal Oxide Silicon Field-Effect 

Transistors) are often used as switching devices. The MOSFET can be switched on 

and off by a low level signal requiring virtually no current, is robust and has excellent 

conduction when 'switched on'. For powers up to about 10 kW, IGBTs (Insulated Gate 

Bipolar Transistors) are the economical power control devices shown in Figure 5.9. 

For higher powers the only available devices are thyristors [39].  

Depending on the motor power size and the available chips in our local market,  the 

IXDH20N IGBT has been selected which its datasheet available in Appendix B. The 

practical IGBTs circuit which was implemented in this thesis are shown in Figure 

5.10. 

 

  

 

 

 

 

 

 

Figure 5.8:  Six switches and free-wheeling diodes used in the inverter.    

Figure 5.9:  IGBTs works as switches in the inverter.    

Figure 5.10:  Practical IGBTs circuit.    
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The signal coming from the FPGA controller can't feed directly to the IGBT gate pin 

due to the weakness of its voltage (3.3v). So it's required to build a power driver 

circuit to provide the required voltage. This driver shown in Figure 5.11 include four 

transformers, one for each upper three IGBT and common one for the other three 

lower IGBT due to its common source pins. Another two transformers are added to 

this board to provide power to auxiliary electrical units like the relay and the feedback 

sensor. In practice, its better to use the positive –negative driver, which send 10 volt 

to the gate of  IGBT in case "ON" and -10 volt  in case "OFF" to insure that the IGBT  

clears  its internal capacitor which is connected  between gate and source   as shown 

in Figure 5.12 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12:  Driver signal for the IGBT.    

Figure 5.11:  Power driver circuit to provide the required voltage for the overall system.     
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Figure 5.13 shows the circuit diagram for a leg, which includes high and low sides of 

IGBT modules. The over all driver circuit contains three identical legs. The driver 

chip which is selected here is HCPL-3120 and its datasheet available in Appendix C. 

Figure 5.14 shows the real circuit containing another protection IC's to provide the 

complete isolation between the FPGA card and high Voltage stage.  

 

Figure 5.13:  Driver signal for the IGBT.     
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5.2.2 Software implementation of the inverter 
As has been motioned in chapter 4, the FPGA can be programmed using VHDL 

language, which is selected as the main language in programming the process and 

needs to generate the outputs PWM signals. The main idea here is to generate a three 

PWM signals for the upper three IGBTs and the inverse of them towards the other 

lower three IGBTs with some modification as will be illustrated in the next section. 

The resultant AC frequency of these signals will vary from 0 to 200 HZ range 

depending on the value of specified register called the plant speed register. Then this 

register will be used as speed input to the plant in the controller design ( i.e. the three 

phase motor plant has only  one input register to specify its speed, and the output of 

this block will generate the required six PWM channels where its values will depend 

on the input speed) as shown in Figure 5.15. 

 

  

 

 

 

 

Figure 5.15: Input output for the Driver software.    

Figure 5.14:  Practical IGBT driver circuit.    
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5.2.2.a Pulse width modulators 
 To generate the upper three phase PWM signals of the bridge inverter needed to run 

the induction motor we construct a single up-down counter unit, and three comparator 

units. For example we consider a five bit counter counts from 0 – 31, with 0 being the 

minimum voltage available at the power inverter and 31 being the maximum voltage 

available at the power inverter. Now, assuming that the inverter voltage ranges from 

0V – 400V, each time the counter increments by 1, the inverter voltage will jump by 

1/32 of the maximum voltage, or12.5V. The counter counts from 0 to its maximum 

value, then from its maximum value to 0, as seen in Figure 5.16 [40]. 

 

 

 

 

The frequency of the PWM signal is equal to the frequency of the counter and is 

typically in the 16 – 20 KHz range (outside of the audible range). A fine line must be 

drawn between audible noise, and power loss that occurs as the frequency of the 

PWM period is increased. Another limiting factor of the PWM period frequency is the 

switching frequency of the power semiconductors used by the inverter. These devices 

have physical switching frequency limitations, which they will fail to operate over it. 

One compare unit is used for each of the three phases, the compare units compare the 

count value from the counter unit with a user specified value derived from the sine 

wave lookup tables. Each compare unit has two PWM outputs, one is asserted when 

the count value is ≥ the user specified value, and the other is asserted when the count 

value is < the user specified value [33]. The relationship between the compared values 

and the PWM Top and Bottom outputs of the compare unit is shown in Figure 5.17. 

 

 

 

 

 

Figure 5.16:  Up down counter used in PWM generation.    

Figure 5.17: Top and bottom PWM signals.     
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This type of up-down counter/compare unit combination generates pulses center 

aligned within the PWM period. This type of center aligned PWM which is shown in  

Figure 5.18 has advantages over edge aligned PWM Figure 5.19 because the outputs 

signals in this method will  not run the IGBT's  together, at the beginning of every 

period, as they would do with edge aligned PWM. This can help reduce noise on the 

inverter power lines; thus, increasing motor power efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to control the inverter efficiently and without damaging the power 

semiconductors, it is important to consider the time it takes for the power 

semiconductors to switch-on and off. Figure 5.20 shows that the PWM bottom signal 

is the inverse of the PWM top signal; this is fine in theory, but in the real world the 

power semiconductors do not switch immediately. There could be a period of time 

where both the top and bottom power semiconductors of a phase are on at the same 

time causing a direct short to ground. To alleviate this problem, a dead-band is 

inserted between the turning off of the PWM bottom signal and the turning on of the 

Figure 5.18: Center aligned method in PWM generation. 

Figure 5.19: Edge aligned method in PWM generation.  
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PWM top signal, and between the turning off of the PWM top signal and the turning 

on of the PWM bottom signal. Thus, both PWM outputs remain off to allow the 

power semiconductors time to switch. 

 

 

 

 

 

 

 

 

With dead-time inserted, the PWM top output is asserted when the count value is ≥ 

user specified value + (deadband/2) and the PWM bottom output is asserted when the 

count value is < user specified value – (deadband/2). I used a 2 µ second as dead-band 

time in this thesis [40]. 

5.2.2.b Sine wave generation 
There are many methods approved to control the frequency varying of the sine wave 

signal. Here, sine table skipping method was selected due to its simplicity and 

efficiently in programming using VHDL code. It's required to create a sine lookup 

table; the values contained in this lookup table are created by a special program called 

sinegen which is available at Xilinx website [33]. The sinegen program generates a 

table containing 360 degree of the sine wave and has 256 entries, with each entry 

being 16-bits wide as shown in Figure 5.21. The required three sine waves (each 120 

degree out of phase from the others) are created by using three separate indices into 

the lookup table, as shown in Figure 5.22. It is important to note that the values which 

appear in the lookup table represent a sine wave with its maximum voltage. In others 

words, this table should change depending on the required frequency to keep the 

ration voltage/frequency always constant, for example at low frequency the peak 

value for the sine wave will be very small reaching about "X000a" which 

approximately equal to 5 volt, and at maximum frequency the peak value will equal to 

maximum "Xffff" which approximately equal to 325v. 

Figure 5.20: Dead-band region.  
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The sine wave generation depending on the integer based sine lookup table does not 

have to be mean perfect as shown in Figure 5.23. 

 However distortion of the sine wave begins as soon as it enters the digital domain.  

Figure 5.21: Sine Look-up table to generate Vmax= 325V.   

Figure 5.22: Indexes for the Sine look-up table.  
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5.2.2.c Sine table  skipping method 
This method of sine wave generation employs a static 256 entry lookup table that 

contains 360° of a sine wave. By reading values from the table in sequence and 

passing them to the PWMs, it is possible to generate a sinusoidal output. Figure 5.23 

depicts a 32-entry sine lookup table with 9-bit PWM values. The solid line 

(continuous one) represents the analog sine wave, while and the green line (discrete 

one) is the digital representation of this sine wave. The frequency of the sine wave can 

be increased by skipping entries in the sine lookup table. If for example, the lookup 

table entries shaded grey in Figure 5.23 were skipped, the resulting sine wave as 

shown in Figure 5.24 would be twice the frequency of that which is displayed in 

Figure 5.23. Hence, the term Sine Table Skipping refers to the skipping of entries in 

the sine lookup table to increase the frequency of the sine wave [40]. 

 

Figure 5.23: Analog and digital 32 entries signal for sine wave.  

Figure 5.24: Sine table skipping method to increase/decrease the frequency.  
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This method of sine wave generation has two major drawbacks. First, the minimum 

sine wave frequency is based upon the number of entries in the sine lookup table and 

the PWM period. With a PWM period of 16 KHz and a 256 entry sine lookup table, 

the minimum sine wave frequency would be 62.5 Hz (16000/256=62.5). Secondly, 

the maximum frequency of the sine wave is also limited by the size of the sine table, 

as we skip more and more entries in the lookup table to increase the sine wave 

frequency; the sine wave becomes more and more distorted, until it no longer 

resembles a sine wave at all. As this distortion increases, it is possible that the peaks 

of the sine waves are clipped, reducing the utilization of the DC bus voltage; because 

of the wrap-around nature of the access to the sine lookup tables, this could cause 

unwanted harmonics to be generated in the windings of the motor. A better solution to 

both of these problems is to use a larger sine lookup table. This would allow for a 

lower minimum sine wave frequency, and a less distorted maximum sine wave 

frequency. However, large lookup tables may be undesirable due to the amount of 

space required within the FPGA device to hold them. An intermediate solution is to 

use a 256 entry lookup table with linear interpolation. A 16-bit value is used to 

address the entries in the table; the upper eight bits are used to index the table and the 

lower eight bits are used to interpolate one of 256 points between the index value and 

the next index value. This gives the impression that the sine lookup table actually has 

65536 entries and not 256 entries. Figure 5.25 depicts the equation used to perform 

the linear interpolation of the 256 entry sine lookup table [40]. 

 

 

 

 

 

 

 

And the Y value will equal to the following equation: 

                  
( )

1
12

2
*

Y
FractionYY

Y BitsFraction +





 −

=                                                               (5.2) 

Figure 5.25: Interpolation method.  
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Although the interpolated sine wave in Figure 5.26 continues to appear distorted, the 

majority of the step increments seen in the digitized sine wave have been smoothed 

out.  

Hence, the block diagram for the plant driver is shown in Figure 5.27. After that the 

design is ready for the controller part, since there is a unique input to the plant which 

is 8-bit or 16-bit register called plant speed register, and six digital PWM outputs will 

feed the driver circuit. The clock "clk" input is a 50 MHZ clock which provides the 

time base for the software. In VHDL programming, this block diagram called the top 

level of the inverter module, and its ready to connect to the others blocks in the 

overall design to implement the general top level block diagram.  

 

Figure 5.27: Block diagram for the software PWM generators.  

Figure 5.26: Interpolation method applied to sine table skip..   
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5.3 Controllers design  
The previous section focused on building the PWM inverter, where a value is stored  

the plant speed register and generates a three PWM signals required to run the motor 

at the speed specified in this register; hence, the controller blocks design will contain 

the PWM inverter as shown in Figure 5.28. 

 Three different controllers were developed in this thesis which are: PID controller, 

Fuzzy controller, and Fuzzy-PID controller. Finally a comparison will be made 

among these controllers to find the best performer.  To implement the PID controller 

for the three phase induction motor, it's required to get the model of the motor, as 

shown in the next subsection. 

 

5.3.1 Model of the induction motor  
Three phase induction motor squirrel cage has been selected, which manufactured by 

Feedback Company " machine Laboratory 64-501 code" shown in Figure 5.29. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: General block diagram for the induction motor controller.   

Figure 5.29: Three-phase induction motor squirrel cage "64-501 Feedback company". 



Designing Controllers Using FPGA for Three-phase Induction Motor                       74 

   

This motor has the following specifications: 

• Two poles induction motor. 

 

• 250W continuous operation. 

 

• Rotates at up to 2980 rev/min at 50 Hz. 

 

• 380/415 V three phase A.C at 50/60 Hz for star connection and 220/240 V 

Three phase A.C at 50/60 Hz for delta connection. 

In chapter 2, it was explained the technique and the theory needed to get the model of 

the three phase induction motor shown in Figure 2.23, and extract its parameters via 

the three practical tests. 

The three phase induction motor parameters have been gotten in the lab after the 

implementation of the tests and the results was as the following: 

• DC resistance Test 

Rs=1.4 Ω  

Due to skin effect, the AC resistance value is closer to the practical value than the DC 

value, so the following approach can be applied: 

R1(ac)=(1---1.3 )* Rdc =1.2*1.4 = 1.68  Ω 

• BLocked-rotor Test 

2R′ =   .56    Ω                            HLL 0073.021 =′=  

• No-load test 

Lm =0.089H 

Now that all of the parameters have been found, the motor function can be obtained.  

Unlike many other motors (i.e. DC Motor), the induction motor is a nonlinear 

machine. 

 Thus, to build a robust controller we need a nonlinear designing method which 

depends on many complex mathematically approaches. However, the nonlinear 

controller is not being covered in this thesis.  

Therefore a ready simulink module depending on linearization technique has been 

selected as shown in Figure 5.30 which was developed by Professor Mahmoud Riaz. 

This module needs to fill with the pervious calculated parameters of the induction 

motor. 
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Where Wk is the input speed, Wm is the actual speed, and Te is the torque.  

 

5.3.2 Speed sensor  
There are many types for speed sensor. The most widely used is the digital pulses 

optical encoder, where the output frequency of these pulses is proportional to the 

speed of the rotor as shown in Figure 5.31. In Practice, dc motor was used with 

optical digital pulses sensor for this purpose. The dc motor has been mechanically 

coupled to the rotor of the induction motor as shown in Figure 5.32. 

 

Figure 5.31:  Dc motor with pulse optical encoder.     

Figure 5.30: Simulink module for induction motor.     
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5.3.3 PID controller 
Between many of control design techniques, the PID controller is the most widely 

used. Over 85% of all dynamic controllers are of the PID variety.  PID stands for 

proportional, integral and differential control. There are many types of the PID 

controller; here the mostly general and flexible form is selected which is called  

parallel form as shown in Figure 5.33. 

 5.3.3.a PID parameters  
In this thesis, it's required to build a digital PID controller in the FPGA. To do that 

firstly we need to design an analog PID controller and use same resultant parameters 

in designing process of the digital one using Tustin approach. The equation which 

represents the PID controller is: 

                 ∫ ++=
dt

tdeKdtteKteKtu dip
)()()()(                                                     (5.3) 

Figure 5.33: General block diagram for PID controller.   

Figure 5.32: Pulse optical encoder.    
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The effects of each parameter on the step response of the system is illustrated in Table 

5.1 

 

 

 

 

 

Tuning method                    

There are many methods to get the best values of KP ,KI, and Kd. One approach is to 

use a technique which was developed in the 1950's but has stood the time and is still 

used today. This is known as the Ziegler Nichols tuning method [41]. 

Ziegler Nichols tuning method  

First, it's needed to get the closed loop transfer function of the system, and then apply 

the following  procedures:  

• Select proportional control alone.  

 

• Increase the value of the proportional gain until the point of instability is 

reached (sustained oscillations), the critical value of gain, Kc, is reached.  

 

• Measure the period of oscillation Pc.  

Once the values for Kc and Pc are obtained, the PID parameters can be calculated, 

according to the design specifications, from Table 5.2. 

 

When implementing the Ziegler-Nichols method to the plant, the resultant parameters 

were KP= 15, KI= 7, and Kd=2. Practically due to the approximate transfer function,     

Ziegler-Nichols method 

Control type Kp Ki Kd 

P 0.5 Kc - - 

PI 0.45 Kc 1.2Kp/Pc - 

PID 0.6.Kc 2KP/Pc KpPc/8 

                                                   Table 5.1: Effects of P, I, and D on the step response.   

                            Table 5.2: Ziegler-Nichols method.  
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these values may  need some manual adaption when the system is implemented. The 

next step is to get the digital form of the PID controller appears in Equation 5.4. 

TsnEnEKdnEKiTsnKpEnC
N

/)]1()([)()()(
0

−−++= ∑                                       (5.4) 

A general rule of thumb in control design is to sample at least 4 to 20 times the rise 

time of the system response, so the sampling time will be chosen to 4.1 millisecond. 

Hence, the output of the PID controller will feed to the plant speed register of the 

PWM inverter. 

5.3.3.b PID algorithm implementation in VHDL 
In FPGA, two PID algorithms were implemented, the first one was written in VHDL 

language, and the second implemented using PicoBlaze processor which was 

presented in Chapter 4. The main difficulties faced in programming the two 

algorithms were in programming the mathematics operations like product and 

division. The program in FPGA card was developed to use the LCD unit for 

displaying the values of the KP, KI, and Kd as shown in Figure (5.34-35). Figure 5.36 

shows the flowchart of the PID algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34: PID parameters on FPGA card.   
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Figure 5.36: PID algorithm flow chart.  

Figure 5.35: PID parameters on LCD of the FPGA card.   
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5.3.3.c PID controller simulation  in Matlab 
Figure 5.37 illustrates the Simulink block diagram for the PID speed controller for 

three phase induction motor.  

 

The controller has been tested using Simulink motor module in Matlab by applying 

full load on the rotor after 3.5 second from starting.  

I also changed the desired input speed from the rating speed to fifty percentages from 

this rate after 4 seconds from the starting. The results are shown in Figures 5.38. 

 

Figure 5.37: PID speed Controller.    

     Figure 5.38: PID controller step response with load and speed variation.    
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5.3.4 Fuzzy logic controller "FLC" 
5.3.4.a  FLC design 

FLC has been constructed Using VHDL and embedded PicoBalze processor in FPGA. 

The block diagram for the FLC for the three phase induction motor is shown in Figure 

5.39.  

FLC has two inputs which are: Error and the Error change, and one output feeding to 

the plant speed register of the PWM inverter. Figure 5.40 illustrates the method used 

in reaching the desired speed value. For example, at stage A the Error is positive 

(desired speed –actual speed) and the Change Error (Error – last Error) is negative 

which meaning that the response is going in the right direction; hence, the FLC will 

go forward in this direction. Using the same criteria at stage B, the Error is negative 

and CE is bigger negative; hence, the response is going in wrong direction so FLC 

will change its direction to enter Stage C, until reaching the desired speed.   

 

Figure 5.39: FLC controller for the three-phase induction motor.   

Figure 5.40: Error and error change approach in FLC.    
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As has been presented in Chapter 3, there are two widely used approaches in FLC 

implementation: Mamdani and Sugeno. In this thesis, Mamdani approach in FPGA 

has been used to implement FLC for the three phase induction motor. FLC contains 

three basic parts: Fuzzification, Base rule, and Defuzzification.  

• Fuzzification  

Figure 5.41 illustrates the fuzzy set of the Error input which contains 7 Triangular 

memberships 

 

 

 

 

 

Figure 5.42 illustrates the fuzzy set of the Change Error input which contains 7 

Triangular memberships. 

 

 

 

 

 

Figure 5.43 illustrates the fuzzy set of the output which contains 7 Triangular 

memberships. 

 

 

 

 

 

 

 

Figure 5.41: Error fuzzy set of FLC.   

Figure 5.42: Change error fuzzy set of FLC.    

Figure 5.43: Fuzzy set of FLC output entering to plant speed register.   
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• Control  rule base 

Table 5.3 illustrates the knowledge base defining the rules for the desired relationship 

between the input and output variables in terms of the membership functions. The 

control rules are represented as a set of: 

IF Error is ... and Change Error is  ... THEN the output will … . 

The control rules are evaluated by an inference mechanism.  

The overall rules are located in Appendix D. 

 

 

 

 

 

 

 

 

 

 

Figure 5.44 shown the surface of the base rules using in FLC. 

 

 

 

 

 

 

 

 

 

 

 

 

                           Table 5.3: Control rule base for fuzzy controller. 

Figure 5.44: Rule surface of FLC.  
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• Defuzzification  

 As illustrated in Chapter 3, the center of gravity "centroid" method is widely used in  

Mamdani approach which has been selected in this thesis.  

5.3.4.b Fuzzy logic controller simulation  in Matlab 
Figure 5.45 illustrates the Simulink block diagram for the Fuzzy speed controller for 

three phase induction motor.  

The controller has been tested using Simulink motor module in Matlab by applying 

full load on the rotor after 3.5 second from starting. I also changed the desired input 

speed from the rating speed to fifty percentages from this rate after 4 seconds from the 

starting, as shown in Figures 5.46. 

 

 

Figure 5.45: Fuzzy logic speed controller.    

Figure 5.46: Fuzzy controller step response with load and speed variation.    
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5.3.5 Fuzzy-PID logic controller  

5.3.5.a Fuzzy-PID design 
Here, another approach which depends on mixing the PID controller with Fuzzy 

controller in FPGA using VHDL and embedded PicoBlalze processor. Hence, the 

value of the PID parameters will be evaluated using the Fuzzy controller. Figure 5.47 

shows the complete design of this system. Figure 5.48 shows the fuzzy sets for the 

output: Kp, Ki and Kd, practically there are three different fuzzy sets for these 

parameters.  .For inputs fuzzy sets the same Error and Change Error presented in the 

previous section has been used.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.47: Fuzzy-PID controller for the induction motor.    

Figure 5.48: Fuzzy sets for Kp, Ki, and Kd with different memberships boundaries.   
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Table 5.4 illustrates the base Rules of Fuzzy-PID controller. Practically there are three 

different tables for these parameters. The complete rules are available in Appendix E. 

       E 

CE 
Nb NM NS ZE PS PM PB 

PB ZE PS PM PB PB PB PB 

PM NS ZE PS PM PB PB PB 

PS NM NS ZE PS PM PB PB 

ZE NB NM NS ZE PS PM PB 

NS NB NB NM NS ZE PS PM 

NM NB NB NB NM NS ZE PS 

NB NB NB NB NB NM NS ZE 

 

5.3.5.b Fuzzy-PID controller simulation  in Matlab 
Figure 5.49 illustrate the Simulink block diagram for the Fuzzy-PID speed controller 

for three phase induction motor.  

 

 

The controller has been tested using Simulink motor module in Matlab by applying 

full load on the rotor after 3.5 second from starting. 

 I also changed the desired input speed from the rating speed to fifty percentage from 

this rate after 4 seconds from the starting, as shown in Figures 5.50. 

                           Table 5.4: Control rule base for Fuzzy-PID controller. 

Figure 5.49: Fuzzy-PID Logic speed Controller.    
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5.4 Results comparison  

Table 5.5 explains controllers comparison, hence from table results we find that the 

Fuzzy-PID controller is the best between these controllers. 

O.S after 

load applied 

O.S after 

speed 2 

S.T after 

speed 2 

System 

S.T 

System 

O.S 

Controller 

2% 30% 2.25S 2.5S 13% PID 

2% 23% 2.1S 2. 0s 11% Fuzzy 

2% 13% 1.7S 1.5s 9% Fuzzy-PID 

 

In the lab I used the Feedback machine which appears in Figure 5.51 to implement the 

load in N.M using dynamometer device shown in Figure 5.52.  

Tachometer device shown in Figure 5.53 used to scale the real speed value.  

                             Table 5.5: Controllers comparison. 

Figure 5.50: Fuzzy-PID controller step response with load and speed variation.     
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Figure 5.51: Feedback torque unit.     

Figure 5.52: Dynamometer coupled with induction motor.    
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For real time testing I used the digital storage oscilloscope shown in Figure 5.54 

Figure 5.55 shown the over all system. 

 

 

 

 

 

 

 

 

 

 

Figure 5.53: Tachometer for speed scaling.     

Figure 5.54: Storage oscilloscope.     

Figure 5.56: Overall system.     
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5.5 Modelsim results 

PWM inverter software was tested using Modelsim program. Each pairs of top and  

bottom PWM can be mixed together using ac approach as shown in Figure 5.56.   

5.6 VHDL and PicoBalze software 

The over all software contains two main parts: 

VHDL algorithm: For  controllers blocks and for user interface units available on the 

FPGA card like rotating switch needed to control with the speed of the induction 

motor and sliding switches to select between the controllers and to specify the Kp, Ki 

and Kd parameter in PID controller. 

PicoBlaze algorithm which contains the LCD program and some auxiliary functions 

built for controllers. 

 

 

 

Figure 5.56: Three-phase simulation using Modelsim.   
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CHAPTER 6 

Conclusions and Future Research 

1.1 Conclusions 
In recent years, fuzzy logic control has been suggested as an alternative approach to 

conventional process control techniques. 

Since the first paper on fuzzy sets was published, fuzzy logic control has attracted 

great attention from both the academic and industrial communities. Much progress 

has been made in successfully applying FLC in industrial control systems. FLC 

techniques represent means of both collecting human knowledge and expertise and 

dealing with uncertainties in the process of control. They have a number of 

advantages. Although fuzzy logic control is not the solution for all problems, it can 

play an important role in making automated processes more intelligent. 

In this research, fuzzy logic controller FLC has been selected to control the speed of 

three-phase induction motor (squirrel cage type) due to its advantages over the 

traditional PID controller. This wide-spreading of FLC's appears because these kind 

of controllers have been a very effective techniques for complicated and imprecise 

processes for which either no mathematical model exists or the mathematical model is 

severely nonlinear as induction motor.  

Modern FPGA card (Spartan 3-A) was implemented in Xilinx company in 2007,   

which represents headquarter in the FPGA manufacturing companies, have been 

chosen in this research as a digital controllers board builder. 

In this research, three different types of controllers (PID, Fuzzy, and Fuzzy-PID) were 

constructed in FPGA card, which was used as a speed controller for three-phase 

induction motor (squirrel cage type). These controllers have been tested using 

Matlab/Simulink program under speed and load variation conditions. The comparison 

results show that the Fuzzy-PID controller was the best of them. 

Xilinx Company provided very attractive package software "ISE9.1 and Modelsim" 

for programming purpose, this software was used to implement the three different 
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controllers, and to generate the six PWM pulses feeding to the induction motor drivers 

boards. 

In this research, the algorithm for the three-phase induction motor inverter was 

constructed in the FPGA card, also the hardware equipments needed for this driver 

was constructed which contains: IGBTs board, IGBT driver chip, and the power 

supply board. 

 

1.2 Future research 
In this thesis, Mamdani method was used to implement the fuzzy control rules, it can 

be replaces by Sugeno approach and compare it with Mamdani. Also a good area of 

research is using optimization method to reduce the rules of the controller such as 

using Genetic Algorithm with fuzzy controllers. Genetic algorithms are search 

algorithm based on natural genetics. There are used in the control algorithm to tune 

the membership functions so that the inexact reasoning characteristics of the FLC are 

sufficient to control a system that requires precise control actions. On of the more 

important areas in control is stability; more work can be done on the stability of the 

fuzzy controller. 
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Appendices  

1.1 Appendix A  
 

The key features of the Spartan-3A Starter Kit  
• The key features of the Spartan-3A Starter Kit board are: 
• Xilinx 700K-gate XC3S700A Spartan-3A FPGA in the Pb-free 484-ball BGA 

package (FGG484) 
• 4 Mbit Xilinx Platform Flash configuration PROM 
• 64 MByte (512 Mbit) of DDR2 SDRAM, 32Mx16 data interface 
• 4 MByte (32 Mbit) of parallel NOR Flash 
• FPGA configuration storage 
• MicroBlaze code storage/shadowing 
• x8 or x16 data interface after configuration 
• 16 Mbits of SPI serial Flash 
• Choose either the STMicroelectronics or the Atmel DataFlash serial architectures 
• FPGA configuration storage 
• MicroBlaze code shadowing 
• Two-line, 16-character LCD screen 
• PS/2 mouse or keyboard port 
• VGA display port 
• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA) 
• Two nine-pin RS-232 ports (DTE- and DCE-style) 
• On-board USB-based programming solution 
• FPGA download/debug 
• SPI serial Flash in-system direct programming 
• 50 MHz clock oscillator 
• 8-pin DIP socket for second oscillator 
• SMA connector for clock inputs or outputs 
• 100-pin Hirose FX2 expansion connector with up to 43 FPGA user I/Os 
• Compatible with Digilent FX2 add-on cards 
• High-speed differential I/O connectors 
• Receiver: Five data channels plus clock 
• Transmitter: Six data channels or five data channels plus clock 
• Supports multiple differential I/O standards, including LVDS, RSDS, mini-LVDS 
• Also supports up to 24 single-ended I/O 
• Uses widely available 34-conductor cables 
• Three six-pin expansion connectors for Digilent Peripheral Modules 
• Four-output, SPI-based Digital-to-Analog Converter (DAC) 
• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-gain 

pre-amplifier 
• Stereo audio jack using digital I/O pins 
• ChipScope™ SoftTouch debugging port 
• Rotary-encoder with push-button shaft 
• Eight discrete LEDs 
• Four slide switches 
• Four push-button switches 
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1.2 Appendix B 
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1.3 Appendix C  
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1.4 Appendix D  
 

 Control rule base for FUZZY controller 

1 - IF E Is  NB And  CE Is NB Then  Output  NB 
2 - IF E Is  NB And CE Is NM Then Output NB 
3 - IF E Is  NB And CE Is NZ Then Output NB 
4 - IF E Is  NB And CE Is ZE Then Output NB 
5 - IF E Is  NB And CE Is PS Then Output NM 
6 - IF E Is  NB And CE Is PM Then Output NS 
7 - IF E Is  NB And CE Is PB Then Output ZE 
8 - IF E Is  NM And CE Is NB Then Output NB 
9 - IF E Is  NM And CE Is NM Then Output NB 
10 - IF E Is  NM And CE Is NZ Then Output NM 
11 - IF E Is  NM And CE Is ZE Then Output NM 
12 - IF E Is  NM And CE Is PS Then Output NS 
13 - IF E Is  NM And CE Is PM Then Output ZE 
14 - IF E Is  NM And CE Is PB Then Output PS 
15 - IF E Is  NS And CE Is NB Then Output NB 
16 - IF E Is  NS And CE Is NM Then Output NM 
17 - IF E Is  NS And CE Is NZ Then Output NS 
18 - IF E Is  NS And CE Is ZE Then Output NS 
19 - IF E Is  NS And CE Is PS Then Output ZE 
20 - IF E Is  NS And CE Is PM Then Output PS 
21 - IF E Is  NS And CE Is PB Then Output PM 
22 - IF E Is  ZE And CE Is NB Then Output NB 
23 - IF E Is  ZE And CE Is NM Then Output NM 
24 - IF E Is  ZE And CE Is NZ Then Output NS 
25 - IF E Is  ZE And CE Is ZE Then Output ZE 
26 - IF E Is  ZE And CE Is PS Then Output PS 
27 - IF E Is  ZE And CE Is PM Then Output PM 
28 - IF E Is  ZE And CE Is PB Then Output PB 
29 - IF E Is  PS And CE Is NB Then Output NM 
30 - IF E Is  PS And CE Is NM Then Output NS 
31 - IF E Is  PS And CE Is NZ Then Output ZE 
32 - IF E Is  PS And CE Is ZE Then Output PS 
33 - IF E Is  PS And CE Is PS Then Output PS 
34 - IF E Is  PS And CE Is PM Then Output PM 
35 - IF E Is  PS And CE Is PB Then Output PB 
36 - IF E Is  PM And CE Is NB Then Output NS 
37 - IF E Is  PM And CE Is NM Then Output ZE 
38 - IF E Is  PM And CE Is NZ Then Output PS 
39 - IF E Is  PM And CE Is ZE Then Output PM 
40 - IF E Is  PM And CE Is PS Then Output PM 
41 - IF E Is  PM And CE Is PM Then Output PB 
42 - IF E Is  PM And CE Is PB Then Output PB 
43 - IF E Is  PB And CE Is NB Then Output ZE 
44 - IF E Is  PB And CE Is NM Then Output PS 
45 - IF E Is  PB And CE Is NZ Then Output PM 
46 - IF E Is  PB And CE Is ZE Then Output PB 
47 - IF E Is  PB And CE Is PS Then Output PB 
48 - IF E Is  PB And CE Is PM Then Output PB 
49 - IF E Is  PB And CE Is PB Then Output PB 
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1.5 Appendix E  
 

 Control rule base for FUZZY controller  

1 - IF E Is  PB And  CE Is PB Then  Output  ZO 
2 - IF E Is  PB And CE Is PM Then Output NS 
3 - IF E Is  PB And CE Is PS Then Output NM 
4 - IF E Is  PB And CE Is ZE Then Output NB 
5 - IF E Is  PB And CE Is NS Then Output NB 
6 - IF E Is  PB And CE Is NM Then Output NB 
7 - IF E Is  PB And CE Is NB Then Output NB 
8 - IF E Is  NM And CE Is PB Then Output PS 
9 - IF E Is  NM And CE Is PM Then Output ZO 
10 - IF E Is  NM And CE Is PS Then Output NS 
11 - IF E Is  NM And CE Is ZE Then Output NM 
12 - IF E Is  NM And CE Is NS Then Output NB 
13 - IF E Is  NM And CE Is NM Then Output NB 
14 - IF E Is  NM And CE Is NB Then Output NB 
15 - IF E Is  NS And CE Is PB Then Output PM 
16 - IF E Is  NS And CE Is PM Then Output PS 
17 - IF E Is  NS And CE Is PS Then Output ZO 
18 - IF E Is  NS And CE Is ZE Then Output NS 
19 - IF E Is  NS And CE Is NS Then Output NM 
20 - IF E Is  NS And CE Is NM Then Output NB 
21 - IF E Is  NS And CE Is NB Then Output NB 
22 - IF E Is  ZE And CE Is PB Then Output PB 
23 - IF E Is  ZE And CE Is PM Then Output PM 
24 - IF E Is  ZE And CE Is PS Then Output PS 
25 - IF E Is  ZE And CE Is ZE Then Output ZO 
26 - IF E Is  ZE And CE Is NS Then Output NS 
27 - IF E Is  ZE And CE Is NM Then Output NM 
28 - IF E Is  ZE And CE Is NB Then Output NB 
29 - IF E Is  PS And CE Is PB Then Output PB 
30 - IF E Is  PS And CE Is PM Then Output PB 
31 - IF E Is  PS And CE Is PS Then Output PM 
32 - IF E Is  PS And CE Is ZE Then Output PS 
33 - IF E Is  PS And CE Is NS Then Output ZO 
34 - IF E Is  PS And CE Is NM Then Output NS 
35 - IF E Is  PS And CE Is NB Then Output NM 
36 - IF E Is  PM And CE Is PB Then Output PB 
37 - IF E Is  PM And CE Is PM Then Output PB 
38 - IF E Is  PM And CE Is PS Then Output PB 
39 - IF E Is  PM And CE Is ZE Then Output PM 
40 - IF E Is  PM And CE Is NS Then Output PS 
41 - IF E Is  PM And CE Is NM Then Output ZO 
42 - IF E Is  PM And CE Is NB Then Output NS 
43 - IF E Is  PB And CE Is PB Then Output PB 
44 - IF E Is  PB And CE Is PM Then Output PB 
45 - IF E Is  PB And CE Is PS Then Output PB 
46 - IF E Is  PB And CE Is ZE Then Output PB 
47 - IF E Is  PB And CE Is NS Then Output PM 
48 - IF E Is  PB And CE Is NM Then Output PS 
49 - IF E Is  PB And CE Is NB Then Output ZO 
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