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ABSTRACT 

 

It is of great importance to keep the voltage profile at a power system buses 

within a prescribed tolerance of ± 10%. Keeping an acceptable voltage profile 

at the system buses is a challenging and a system-wide task. The reactive 

power flow in the lines of a power system dictates the voltage profile at the 

system buses. Voltage-control is rooted in rescheduling of this flow of reactive 

power. Despite the fact that many voltage-control techniques are available to 

electric power system operators, these systems around the world have been 

subjected to voltage instability problems and voltage collapses that cause in 

many occasions complete system breakdowns. 

 

In this thesis, a new voltage–control methodology is presented, which is 

originated on the use of multi-objective function based on fuzzy set theory 

and adaptive particle swarm optimization. The fuzzy logic is used to adapt 

the parameters of the adaptive particle swarm optimization. This 

methodology is applied to get a solution to the mathematical model that 

represents the voltage-control problem of a power system. The purpose is to 

ensure acceptable voltage profile and to minimize both the voltage deviation 

and the real power loss. The IEEE 30-Bus system model is used to employ and 

investigate the mathematical model built for the new voltage-control 

methodology using Matlab code. The findings will be documented and 

compared with other voltage-control strategies. 
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Voltage profile, voltage collapse, voltage deviation, multi-objective, fuzzy 

logic, adaptive particle swarm optimization, and fuzzy adaptive particle 

swarm optimization. 
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  ملخص البحث
   

  التحكم في الجھد الكھربائي بإستخدام التحكم الضبابي والبرمجة المتطورة

  
عند مستوي معين نظمة القوي الكھربائية المناطق المختلفة لأ كھربائي فى أن يكون الجھد المن المھم جداً 

وذلك للمحافظة على الاجھزة والمعدات الكھربائية المختلفة القيمة الاسمية  نم %10 ± بحيث لايتعدى

ند مستوي مقبول في شبكات النقل وخطوط التوزيع  الجھد ع إن المحافظة علي. ولضمان تشغيل أمثل للنظام

 تعتمدو الخطية غير من المشاكل التحكم في الجھد الكھربائيعملية تعتبر .يعتبر من أكبر التحديات والمھام

وبالرغم من وجود عدة طرق مختلفة , بشكل أساسي على توزيع ومرور القدرة التخيلية فى شبكات النقل

دي إلي عدم إستقرار ؤحيث تبعض العيوب من  إلا أن أغلب ھذه الوسائل تعانىللتحكم بالجھد الكھربائي 

  .إنھيار كامل للنظامينتج النظام الكھربائي وفي بعض الحالات 

 

سيتم للتعامل مع المعادلات الرياضية التى تمثل النظام حيث جديدة تحكم طريقة تطبيق الرسالة سيتم  في ھذه

ي المحافظة على الجھد الكھربائي ضمن النطاق وھ أساسية فاھدثلات أتحقيق العمل على من خلالھا 

 للنھج البارزة السمة. حقيقيةقد في القدرة الاتقليل الفكذللك في الجھد الكھربائي والأنحراف تقليل المقبول و

والبرمجة المتطورة  Fuzzy logicي أنظمة التحكم الضبابي المنطق بين يجمع نهأ ھو المقترح

Adaptive Particle Swarm Optimization . حيث أن التحكم الضبابي المنطقي يستخدم فى

 IEEE 30-Bus Systemتطبيق ھذه الطريقة على نظام  سيتم. البرمجة المتطورةمعاملات تعديل 

سيتم تدوين النتائج وMatlab. تخدام برنامج بإس لحصول على حل للمعادلات الرياضية التي تمثل النظامل

   .بالطرق الأخرى للتحكمومقارنتھا التى يتم الحصول عليھا 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Background  
In all conducting systems, whether overhead lines or underground cables, 

there will be a drop of volts along the system when current is flowing and this 

drop will vary with the current and the power factor. The voltage drop 

should not exceed values which are outside the capacities of automatic 

voltage regulators, which control the generator terminal voltage. Practically 

all present day equipments which utilize electric power such as lights, motors, 

thermal appliances, and electronic appliances are designed for use with a 

certain definite terminal voltage, the nameplate voltage. If the voltage 

deviates from this value, the efficiency, life expectancy, and the quality of 

performance of the equipment will suffer. Some electrical equipment is more 

sensitive to voltage variation than others such as motors. However, it is not 

economically possible to maintain voltage absolutely constant at every 

consumer’s service terminals [1]. This means that the variations in voltage are 

permissible, but with favorable zones, for example the rise or drop in voltage 

should not exceed a prescribed tolerance of ± 10% of the nominal voltage.  

 

Day-by-day, the evaluation of stability and voltage-control in power systems 

become very important especially when the system subjected to a 

disturbance. The disturbance may be small or large. The system must be able 

to operate satisfactorily under these conditions and successfully supply the 

maximum amount of load. It must also be capable of surviving numerous 

disturbances, such as a short circuit on a transmission line, loss of a large 
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generator or load, or loss of a tie between two subsystems. This could lead to 

voltage instability and eventually to a voltage collapse.  

 

Many mathematical assumptions, such as analytic and differentiable 

properties of the objective functions and unique minima existing in problem 

domains, have to be given to simplify the problem, otherwise it is very 

difficult to calculate the gradient variables, and a large amount of 

computation is involved in the conventional methods. In the conventional 

approaches to the Q-problem, the gradient of the objective function with 

respect to voltages is used as a search direction, while assuming active power 

and reactive power uninfluenced by voltage and angle changes respectively, 

based on the P-Q decomposition concept. However, in practice the phase 

angles will vary as active power changes and have a great influence on the 

active power loss in the network. Therefore, based on the mathematical 

assumptions in the Q-problem, use of the gradients may result in wrong 

search directions and the optimization tends to diverge when the system 

becomes large [2].  

 

Although a large spectrum of optimization problems has grown in size and 

complexity, the solution to complex multidimensional problems by means of 

classical optimization techniques is extremely difficult and computational 

expensive. In general, heuristic algorithms which are referred to as 

“stochastic” optimization techniques have facilitated solving optimization 

problems that were previously very difficult or impossible to solve. These 

tools include: genetic algorithms, evolutionary strategies, evolutionary 

programming, simulated annealing, and particle swarm optimization.  

 

The Evolutionary Algorithms (EA) can be applied to difficult search problems 

based on simulating natural evolution. Optimization using the EA is more 

efficient and effective than conventional gradient-based optimization 

algorithms. The EA does not require the mathematical assumptions applied in 
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the conventional methods and offers a powerful global search over the control 

variable space. A population of solutions is maintained at each of the 

iterations. These solutions propagate into future generations probabilistically, 

as function of their overall merit. The EA can therefore discover the globally 

optimal point [2]. Due to these advantages, the EA offers a new promising 

tool for optimal reactive power dispatch of power systems. Reports of 

applications of each of these tools have been widely published. Recently, 

these new heuristic tools have been combined (or hybridized) among 

themselves and with more traditional approaches, to solve extremely 

challenging problems. 

 

1.2 Thesis Objectives  
The main objective of this thesis is to propose and employ a new 

methodology to control the system voltage profile through controlling 

reactive power flow based on the Fuzzy Adaptive Particle Swarm 

Optimization technique. In addition, the technique proposed aims at keeping 

the voltage deviation at the system buses as small as possible, and at 

minimizing of the real power loss, while satisfying a lot of constraints. These 

constraints are fundamental to ensure acceptable performance such as: 

satisfying of the reactive power generation limits, maintaining acceptable 

voltage magnitudes at the load buses, meeting the reactive power 

compensation limits, and satisfying the power balance within the system. 

 

Various optimization techniques will be employed to obtain a valid solution 

to the mathematical model. The methods employed are: Optimal Economic 

Dispatch, Particle Swarm Optimization, Adaptive Particle Swarm 

Optimization, Fuzzy Particle Swarm Optimization and Fuzzy Adaptive 

Particle Swarm Optimization.  At the end, the results will be compared and 

the superiority of the Fuzzy Adaptive Particle Swarm Optimization technique 

will be demonstrated.  
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1.3 Research Methodology 
In order to achieve these objectives, the following procedure will be carried 

out:  

1. Using the well known standard test system, the IEEE 30-bus system to 

validate and compare the results. 

2. Formulating the problems of voltage-control, voltage deviation, and real 

power loss as mathematical optimization problems subject to the 

applicable constraints using Matlab code. 

3. optimization models and then the proposed Fuzzy Adaptive Particle 

Swarm Optimization model to the problems addressed. 

4. Tabulating and comparing the results obtained by the various control 

strategies with the proposed strategy. 

 

1.4 Literature Review 
Power system economical operation consists of two aspects: active power 

regulation and reactive power dispatch. This forms a multi-objective global 

optimization problem of a large-scale industrial system. This problem is 

considered conventionally as two separate problems: active power problem 

(P-problem) and reactive power problem (Q-problem) [2]. There is a strong 

relationship between the active power (P-problem) and phase angle, also 

between the reactive power (Q-problem) and voltage magnitude. The            

Q-problem is more difficult to solve than the P-problem due to its more 

complex relationship between variables. The P-problem is to regulate active 

power outputs of generators to minimize fuel costs. The Q-problem is to 

improve voltage stability.  

 

A first comprehensive survey regarding optimal power dispatch was given by 

H. H. Happ [3] and subsequently an IEEE working group [4] presented 

bibliography survey of major economic-security functions in 1981. Thereafter 

in 1985, Carpentair [5] presented a survey and classified the OPF algorithms 
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based on their solution methodology. In 1990, Chowdhury [6] did a survey on 

economic dispatch methods. E. Lobato et al. [7] proposed LP based OPF for 

minimization of transmission losses and Generator reactive margins of the 

Spanish power system. N. Grudinin [8] proposed a reactive power 

optimization model that was based on Successive Quadratic Programming 

(SQP) methods. Six optimization methods were used to test the IEEE 30-bus 

and 278 bus systems. It is found that the developed SQP methods provide 

more fast and reliable optimization in comparison with the usual Successive 

Linear Programming method (SLP).  

 

Nonlinear programming (NLP) deals with problems involving nonlinear 

objective and constraint functions. J. A. Momoh et al. [9] proposed a new 

nonlinear convex network flow programming (NLCNFP) model and 

algorithm for solving the security constrained multi-area economic dispatch 

(MAED) problem. Karmarkar proposed a new method in 1984 for solving 

large-scale linear programming problems very efficiently. It is known as an 

interior method since it finds improved search directions strictly in the 

interior of the feasible space. Sergio Granville [10] presented an application of 

an Interior Point Method to the optimal reactive power dispatch problem. It is 

based on the primal dual logarithmic barrier method as described by 

Monteiro and Adler. Wei Yan et al. [11] presented the solution of the Optimal 

Reactive Power Flow (ORPF) problem by the Predictor Corrector Primal Dual 

Interior Point Method (PCPDIPM). V. C. Ramesh et al. [12] presented a Fuzzy 

Logic approach for the contingency constrained OPF problem formulated in a 

decomposed form that allows for post-contingency corrective rescheduling.   

Linear membership function is used. Walters et al. [13] applied a Genetic 

Algorithm (GA) to solve an economic dispatch problem for valve point 

discontinuities. Po-H. Chen et al. [14] proposed a new genetic algorithm for 

solving the Economic Dispatch (ED) problem in large-scale systems. It is a 

subset of evolutionary computation, a generic population based metaheuristic 

optimization algorithm. P. Somasundaram et al. [15] proposed an algorithm 
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for solving security constrained optimal power flow problem through the 

application of EA.  

 

Particle Swarm Optimization (PSO) refers to a relatively new family of 

algorithms that may be used to find optimal or near optimal solutions to 

numerical and qualitative problems. Particle Swarm Optimization was 

introduced by Russell Eberhart and James Kennedy in 1995 [16], inspired by 

social behavior of bird flocking or fish schooling. H. Yoshida et al. [17] 

proposed a Particle Swarm Optimization (PSO) for reactive power and 

Voltage/VAR Control (VVC) considering voltage security assessment. It 

determines an on-line VVC strategy with continuous and discrete control 

variables such as AVR operating values of generators, tap positions of on line 

tap changing of transformers and the number of reactive power compensation 

equipment.  In adaptive particle swarm, the inertia weight (w) was modified 

according to linearly decreased equation. Cui-Ru Wang et al. [18] presented 

Adaptive (Modified) Particle Swarm Optimization (APSO) algorithm to solve 

economic dispatch problem. Wen Zhang and Yutian Liu [19] presented FPSO 

to solve voltage control and reactive power problem. In the FPSO, the fuzzy 

system was used to modify all of the parameter of particle swarm 

optimization to improve the performance of the system.  

 

In this work a new methodology will be introduced that may help overcome 

some of the problem that appear in previous models. This new control 

methodology suggest the combination between the APSO and Fuzzy logic 

which known as FAPSO, in this method the w is linearly decreased while 

social parameter and cognitive parameter are modified by fuzzy system. By 

modifying these parameters, the overall objective of this work is to use this 

modern heuristic optimization algorithm (FAPSO) for solving voltage control 

and voltage stability problems through rescheduling of reactive power 

dispatch.  
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1.5 Contribution 
The main contribution of this work is the introduction of a new modern 

heuristic technique based on Fuzzy Adaptive Particle Swarm Optimization to 

handle the voltage control problem in power systems. This new control 

methodology takes advantage of the Fuzzy Logic to adapt the parameters of 

the APSO. The second contribution is that: the voltage tolerance considered is 

± 5% which narrower than any other previous work where a tolerance value 

of ± 10% was considered, also the precision index which is tackled in the 

iterative Newton Raphson methods is 10-4. All of this has been dealt with 

while satisfying all constraints. Finally Matlab codes have been developed for 

each of the optimization techniques.   

  

1.6 Outline of the Thesis  
This thesis is organized into six chapters to report on the whole research 

activities and to discuss and analyze the results. Each of the following 

paragraphs generally describes the contents of each chapter. Chapter-1 

explains the objectives and scope of this thesis, and gives the reasoning for 

such a study. It also summarizes a general methodology and the main 

activities involved in this research. Chapter-2 presents and describes the 

statement of the problem to be handled. Chapter-3 presents an overview of 

the voltage stability and voltage-control of power systems. Chapter-4 

introduces the concept of optimization and describes the optimization 

methods. It also summarizes briefly the concept of particle swarm 

optimization and fuzzy logic system and describes its various configurations. 

Chapter-5 presents the Application of the Optimization technique to the 

Selected Power System Model to enhance voltage stability by controlling the 

voltage levels through reactive power dispatch. Finally, Chapter-6 presents 

the general conclusions and recommendations for future work.  
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CHAPTER 2      

   

2. STATEMENT OF THE PROBLEM 

 

 

2.1 Introduction 
The voltage-control is very important especially when the system is heavily 

loaded or subject to a disturbance. Different methods were proposed in 

literatures to solve voltage-control such as linear programming [20], Newton-

Raphson, quadratic programming, interior point and nonlinear programming 

methods [21-24]. Although these methods solve the power flow equation, 

they may sometimes have problems that appear as voltage instabilities and in 

some occasions as voltage collapses. From this point of view, voltage stability 

is very important in power systems and cause researchers to develop and 

upgrade different methods controlling power system bus voltages. This 

objective can be addressed through absorb or inject of reactive power 

from/into the system.  

 

The problem to be dealt with is to examine and validate a new control 

methodology through selecting an appropriate power system model, to 

develop a mathematical model for this selected system (IEEE 30-bus system) 

and to employ various optimization techniques. In all techniques, the purpose 

is to sustain an acceptable voltage profile, to minimize the voltage deviation, 

and to reduce the real power loss, while satisfying all constraints. The optimal 

economic dispatch, the particle swarm, the adaptive particle swarm, and the 

fuzzy particle swarm optimization techniques will be employed separately to 

obtain a solution to the mathematical model that describes the selected 
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system. To highlight the merits of the new optimization technique, The Fuzzy 

Adaptive Particle Swarm Optimization, the results obtained will be 

documented, graphed, and compared.  
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CHAPTER 3   

      

3. VOLTAGE STABILITY AND VOLTAGE-

CONTROL 

 

3.1 Introduction 
Power system stability is defined as the property of a power system that 

enables it to remain in a state of operating equilibrium under normal 

operating condition and to regain an acceptable state of equilibrium after 

being subjected to a physical disturbance. Stability is a condition of 

equilibrium between opposing forces, instability results when a disturbance 

leads to a sustained imbalance between the opposing forces [25].  

 

The power system is highly nonlinear system that operates in a constantly 

changing environment, loads, generator outputs, topology and key operating 

parameters change continually. When subjected to a transient disturbance, the 

stability of the system depends on the nature of the disturbance as well as the 

initial operating condition. The disturbance may be small or large, small 

disturbance in the form of load changes and the system must be able to 

operate satisfactory and successfully under these conditions to meet the load 

demand. In the following, we will first review the classification of power 

system stability, and then briefly review voltage stability and its types. 

Finally, we will discuss the methods of voltage-control. 
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3.2 Classification of Power System Stability  
We classify the stability of the power system based on the following 

considerations: the physical nature of the resulting instability related to the 

main system parameters in which instability can be observed. The size of the 

disturbance considered indicates the most appropriate method of calculation 

and prediction of stability. The devices, processes and the time span must be 

taken into consideration in order to determine stability. Figure 3.1 shows the 

classification of power system stability into various categories [25]: 

 

 

Figure  3.1: Classification of Power System Stability 

Now, in the following, each type of stability will be considered in the brief but 

with concentration on the voltage stability. 

 

3.2.1 Rotor Angle Stability 

Rotor angle stability is the ability of interconnected synchronous machines of 

power system to remain in synchronism under normal operating conditions 

and after being subjected to a disturbance. It depends on the ability to 

maintain or restore equilibrium between electromagnetic torque and 

mechanical torque of each synchronous machine in the system. Instability that 
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results occurs in the form of increasing angular swings of some generators 

leading to their loss of synchronous with other generators. A fundamental 

factor in this problem is that the power outputs of synchronous machines 

vary as their rotor angles change, since under steady state condition, there is 

an equilibrium between the input mechanical torque and the output electrical 

torque and the speed remains constant [25].     

 

3.2.2 Frequency Stability 

Frequency stability is the ability of the power system to maintain steady 

frequency within a nominal range following a severe system upset resulting 

in a significant imbalance between generation and load. It depends on the 

ability to restore balance between system generation and load with minimum 

loss of load [25].   

 

3.2.3 Voltage Stability 

Voltage stability is the ability of a power system to maintain steady voltages 

at all buses in the system under normal operating conditions, and after being 

subjected to a disturbance. Instability occurs when voltage fall or rise at some 

buses. Possible reasons of voltage instability are: loss of load in the area where 

voltages reach unacceptable low values and loss of integrity of the power 

system. This limits the capability of transmission network for power transfer. 

The power transfer is limited when some of generators hit their reactive 

power capability limits. The driving force for voltage instability is the loads, 

in response to a disturbance; power consumed by the loads tends to be 

restored by the action of distribution voltage regulators, tap-changing 

transformers and capacitor banks sizes. The voltage collapse is the 

catastrophic result of a sequence of events leading to a low voltage profile 

suddenly in a major part of the power system [25]. Voltage stability is 

classified into two types. 
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3.2.3.1 Large Disturbance Voltage Stability 

This type is concerned with system ability to control voltages, following large 

disturbances such as system faults, loss of generation or circuit contingencies. 

The ability is determined by the system-load characteristics and interaction of 

both continuous and discrete controls and protections. Determination of large 

disturbance stability requires the examinations of the nonlinear dynamic 

performance of a system over a period of time [25].  

      

3.2.3.2 Small Disturbance Voltage Stability 

This type is concerned with a system ability to control voltages following 

small perturbations such as incremental changes in system load. This form of 

stability is determined by the characteristics of the loads, continuous controls 

and discrete controls at a given instant of time. A criterion for small 

disturbance voltage stability is that at a given operating condition for every 

bus in the system, the bus voltage magnitude increases as the reactive power 

injected at the same bus is increased. This means that a system is voltage-

unstable if at least one of the buses in the system has a voltage magnitude (V) 

that decreases as the reactive power injected (Q) at the same bus is increased 

[25]. 

 

3.3 Voltage and Reactive Power Control 
For efficient and reliable operation of power systems, the control of voltage 

and reactive power should satisfy the following objectives: 

• Voltages at terminals of all equipment in the system are within acceptable 

limits. 

• System stability is enhanced to maximize utilization of the transmission 

system, as mentioned before; voltage and reactive power control have a 

significant impact on system stability.  

• The reactive power flow is minimized to reduced 2I R  and 2I X losses to 

practical minimum.     
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The problem of maintaining voltages within the required limits is 

complicated by the fact that the power system supplies power to many loads 

and is fed from many generating units. As loads vary, the reactive power 

requirements of the transmission system vary. 

 

3.4 Methods of Voltage-Control 
The control of voltage levels is accomplished by controlling the production, 

absorption and flow of reactive power at all levels in the system [25]. There 

are many devices required to control voltage throughout the system, these 

devices can be classified as follows: 

• Sources or sinks of reactive power such as: shunt capacitors, shunt 

reactors, synchronous condensers and static VAR compensators.  

• Line reactance compensators such as series capacitors. 

• Regulating transformers such as tap-changing transformers. 

Shunt capacitors and reactors and series capacitors provide passive 

compensation; they are either permanently connected to the transmission and 

distribution system or switched-off. Synchronous condensers and static VAR 

compensators provide active compensations: they absorb or supply reactive 

power to systems and automatically adjusted to maintain voltages with 

acceptable range. 

 

3.5 Control Methodology  
Previously, voltage magnitudes were controlled manually; this means that the 

human will raise or lower the voltage according to the state in any area. After 

that, the control of voltage was done in an almost entirely decentralized 

manner according to timing depending on previous forecasting, this done by 

regulating pre-assigned voltage levels at certain buses using local reactive 

power sources such as generators, synchronous condensers and various tap-

changers.  However, dynamic changes of system loads and its topological 

variations would require a sufficiently fast adjustment of reactive power 
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flows which would suit the real-time nature of the power system operation. 

From this point of view, the researchers attend to automatic voltage-control 

and extensive studies have been presented to investigate and analyze the 

nature of this complex problem. 

 

Voltage-control and reactive power optimization is a sub-problem of the 

optimal power-flow (OPF) calculation, Several optimization methods have 

been proposed to solve the OPF, among them: the reduced gradient method, 

the differential injection method, the projected Lagrangian method, sequential 

quadratic programming methods [24], specific algorithms based on the 

resolution of a sequence of linear programming problems or on the resolution 

of a sequence of quadratic programming problems, interior point methods 

[21] and so on. 

 

In this thesis, a new voltage control methodology is proposed. The method 

combines the fuzzy logic and the adaptive particle swarm optimization. 
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CHAPTER 4    

     

 

4. OPTIMIZATION TECHNIQUES 

 
 

4.1 Introduction 
The objective of optimization is to seek values for a set of parameters that 

maximize or minimize objective functions subject to certain constraints [26, 

27]. A choice of values for the set of parameters that satisfy all constraints is 

called a feasible solution. Feasible solutions with objective function values are 

called optimal solutions. An example of an optimization problem is the 

arrangement of the transistors in a computer chip in such a way that the 

resulting layout occupies the smallest area and that as few as possible 

components are used to perform a certain job. Optimization techniques are 

used on a daily base for industrial planning, resource allocation, scheduling, 

decision making. Furthermore, optimization techniques are widely used in 

many fields such as business, industry, engineering, and computer science. 

Research in the optimization field is very active and new optimization 

methods are being developed regularly [28]. Optimization can be classified 

into maximization and minimization problems. Any maximization problem 

can be converted into a minimization problem by taking the negative of the 

objective function, and vice versa. In general, the problem of voltage-control 

tackled in this thesis is a minimization problem. Therefore, the remainder of 

the discussion focuses on minimization problems. The minimization problem 

can be defined as follows [29]. 
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Given  ݂: ܵ ՜ ܴ Where ܵ ك  ܴேௗ and ௗܰ  is the dimension of the search space S  

Find כݔ א ܵ such that ݂ሺכݔሻ ൑ ݂ሺݔሻ,  ݔ׊ א ܵ. 

The variable x* is called the global minimizer of f and f (x*) is called the global 

minimum value of f. This can be illustrated as shown in Figure 4.1. The 

process of finding the global optimal solution is known as global optimization 

[30]. A true global optimization algorithm will find x* regardless of the 

selected starting point ݔ଴ א ܵ [27]. Global optimization problems are generally 

very difficult and are categorized under the class of nonlinear programming 

(NLP).  

 

Figure  4.1: Example of a global minimizer x* as well as a local minimize x*B  

 

Examples of global optimization problems are [30]: 

• Combinatorial problems: where a linear or nonlinear function is defined 

over a finite but very large set of solutions, for example, network problems 

and scheduling [29].  

• General unconstrained problems: where a nonlinear function is defined 

over an unconstrained set of real values. 

• General constrained problems: where a nonlinear function is defined over 

a constrained set of real values. 
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In Figure 4.1, ݔ஻כ  is called the local minimize of region B because ݂ሺݔ஻כ ሻ is the 

smallest value within a local neighborhood, B. Mathematically, the variable ݔ஻כ    

is a local minimize of the region B if 

݂ሺݔ஻כ ሻ ൑ ݂ሺݔሻ, ݔ׊ א  ܤ

Where,ܤ ؿ ܵ . Every global minimizer is a local minimizer, but a local 

minimizer is not necessarily a global minimizer. Generally, a local 

optimization method is guaranteed to find the local minimize ݔ஻כ  of the region 

B if a starting point x0 is used with ݔ଴ א  An optimization algorithm that .ܤ

converges to a local minimizer, regardless of the selected starting point ݔ଴ א ܵ, 

is called a globally convergent algorithm.  

 

4.2 Traditional Optimization Algorithms 
Traditional optimization algorithms use exact methods to find the best 

solution. The idea is that if a problem can be solved, then the algorithm 

should find the global best solution. One exact method is the brute force (or 

exhaustive) search method where the algorithm tries every solution in the 

search space so that the global optimal solution is guaranteed to be found. 

Obviously, as the search space increases the cost of brute force algorithms 

increases. Therefore, brute force algorithms are not appropriate for the NLP-

hard problems. The time to search an NLP-hard problem increases 

exponentially with problem size.  

 

4.3 Stochastic Algorithms 
Stochastic search algorithms are used to find near-optimal solutions for NLP-

hard problems in polynomial time. This is achieved by assuming that good 

solutions are close to each other in the search space. This assumption is valid 

for most real world problems [31, 32] since the objective of a stochastic 

algorithm is to find a near-optimal solution, stochastic algorithms may fail to 
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find a global optimal solution. While an exact algorithm generates a solution 

only after the run is completed, a stochastic algorithm can be stopped any 

time during the run and generate the best solution found so far. Stochastic 

search algorithms have several advantages compared to other algorithms [33]:  

• Stochastic search algorithms are generally easy to implement. 

• They can be used efficiently in a multiprocessor environment. 

• They do not require the problem definition function to be continuous. 

•  They generally can find optimal or near-optimal solutions. 

• They are suitable for discrete and combinatorial problems. 

The major stochastic algorithms are Hill-Climbing [34], Simulated Annealing 

[35] and Tabu search [36, 37]. In Hill-Climbing, a potential solution is 

randomly chosen. The algorithm then searches the neighborhood of the 

current solution for a better solution. If a better solution is found, then it is set 

as the new potential solution. This process is repeated until no more 

improvement can be made. Simulated annealing is similar to Hill-Climbing in 

the sense that a potential solution is randomly chosen. A small value is then 

added to the current solution to generate a new solution. If the new solution is 

better than the original one then the solution moves to the new location. 

Otherwise, the solution will move to the new location with a probability that 

decreases as the run progresses [38]. Tabu search is a heuristic search 

algorithm where a tabu list memory of previously visited solutions is 

maintained in order to improve the performance of the search process. The 

tabu list is used to guide the movement from one solution to the next one to 

avoid cycling [39], thus, avoid being trapped in a local optimum. Tabu search 

starts with a randomly chosen current solution. A set of test solutions are 

generated via moves from the current solution. The best test solution is set as 

the current solution if it is not in the tabu list, or if it is in the tabu list, but 

satisfies an aspiration criterion. A test solution satisfies an aspiration criterion 

if it is in the tabu list and it is the best solution found so far [40]. This process 

is repeated until a stopping criterion is satisfied. 
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4.3.1 Particle Swarm Optimization Technique 

Particle Swarm Optimization (PSO) is a population-based stochastic 

optimization algorithm modeled after the simulation of the social behavior of 

bird flocks. It is a relatively new evolutionary algorithm that may be used to 

find optimal (or near optimal) solutions to numerical and qualitative 

problems. Particle Swarm Optimization was originally developed by a social 

psychologist (James Kennedy) and an electrical engineer (Russell Eberhart) in 

1995 [1, 3]. Although there were a number of such algorithms getting quite a 

bit of attention at the time, Kennedy and Eberhart became particularly 

interested in the models developed by biologist Frank Heppner [41]. Heppner 

studied birds in flocking behaviors mainly attracted to a roosting area. In 

simulations, birds would begin by flying around with no particular 

destination and spontaneously formed flocks until one of the birds flew over 

the roosting area. 

 

Due to the simple rules the birds used to set their directions and velocities, a 

bird pulling away from the flock in order to land at the roost would result in 

nearby birds moving towards the roost. Once these birds discovered the roost, 

they would land there, pulling more birds towards it, and so on until the 

entire flock had landed. Finding a roost is like finding a solution in a field of 

possible solutions in a solution space. The manner in which a bird who has 

found the roost, leads its neighbors to move towards it, increases the chances 

that they will also find it. This is known as the “socio-cognitive view of 

mind”. The “socio-cognitive view of mind” means that a particle learns 

primarily from the success of its neighbors. Eberhart and Kennedy revised 

Heppner's methodology [41] so that particles could fly over a solution space 

and land on the best solution simulating the birds’ behavior. 
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Each particle should compare themselves to others and imitate the behavior 

of others who have achieved a particular objective successfully. Eberhart and 

Kennedy developed a model that balances the cooperation between particles 

in the swarm. An appropriate balance between exploration (individuals 

looking around for a good solution) and exploitation (individuals taking 

advantage of someone else's success), is a main concern in the Eberhart and 

Kennedy model. Too little exploration and the particles will all converge to 

the first good solution found (typically a local solution). Too little exploitation 

and the particle will take longer to converge (or may not converge at all). In 

summary, the Eberhart and Kennedy model attempts to find the best 

compromise between its two main components, individuality and sociality 

[16]. 

 

4.3.2 Particle Swarm Model for Continuous Variables 

In Particle Swarm Optimization, the particles are “flown” through the 

problem space by following the current optimum particles. Each particle 

keeps track of its coordinates in the problem space which are associated with 

the best solution (fitness) that it has achieved so far. This implies that each 

particle has a memory, which allows it to remember the best position on the 

feasible search space that it has ever visited. This value is commonly called 

previous best (p-best). Another best value that is tracked by the particle 

swarm optimizer is the best value obtained so far by any particle in the 

neighborhood of the particle. This location is commonly called global best    

(g-best). The basic concept behind the Particle Swarm Optimization technique 

consists of changing the velocity (or accelerating) of each particle toward its  

p-best and the g-best positions at each time step. This means that each particle 

tries to modify its current position and velocity according to the distance 

between its current position and p-best, and the distance between its current 

position and g-best. In its canonical form, Particle Swarm Optimization is 

modeled as follows: 
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௜௞ାଵݒ ൌ ௜௞ݒ ൅ ܿଵ ൈ ሺ݀݊ܽݎ ሻଵ ൈ ൫ݐݏܾ݁݌௜ െ ௜௞൯ݏ ൅ ܿଶ ൈ ሺ݀݊ܽݎ ሻଶ
ൈ ൫ܾ݃݁ݐݏ െ  ௜௞൯                                                                                       ሺ4.1ሻݏ

௜௞ାଵݏ ൌ ௜௞ݏ ൅                                  ௜௞ାଵ                                                                                                               ሺ4.2ሻݒ

Where,  

௜௞ାଵݒ    ׷ ݇ ݊݋݅ݐܽݎ݁ݐ݅ ݐܽ ݅ ݈݁ܿ݅ݐݎܽ݌ ݂݋ ݕݐ݅ܿ݋݈݁ݒ ൅ 1 

௜௞ݒ    ׷  ݇ ݊݋݅ݐܽݎ݁ݐ݅ ݐܽ ݅ ݈݁ܿ݅ݐݎܽ݌ ݂݋ ݕݐ݅ܿ݋݈݁ݒ

௜ܵ
௞ାଵ   ׷ ݇ ݊݋݅ݐܽݎ݁ݐ݅ ݐܽ ݅ ݈݁ܿ݅ݐݎܽ݌ ݂݋ ݊݋݅ݐ݅ݏ݋݌ ൅ 1 

௜௞ݏ   ׷  ݇ ݊݋݅ݐܽݎ݁ݐ݅ ݐܽ ݅ ݈݁ܿ݅ݐݎܽ݌ ݂݋ ݊݋݅ݐ݅ݏ݋݌

ܿଵ   ׷  ݐݏܾ݁݌ ݋ݐ ݀݁ݐ݈ܽ݁ݎ ݎ݋ݐ݂ܿܽ ݃݊݅ݐ݄݃݅݁ݓ ݐ݊ܽݐݏ݊݋ܿ

ܿଶ   ׷  ݐݏܾ݁݃ ݋ݐ ݀݁ݐ݈ܽ݁ݎ ݎ݋ݐ݂ܿܽ ݃݊݅ݐ݄݃݅݁ݓ ݐ݊ܽݐݏ݊݋ܿ

randሺሻଵ   : 1 ݀݊ܽ 0 ݊݁݁ݓݐܾ݁ ݎܾ݁݉ݑ݊ ݉݋݀݊ܽݎ    

randሺሻଶ   : 1 ݀݊ܽ 0 ݊݁݁ݓݐܾ݁ ݎܾ݁݉ݑ݊ ݉݋݀݊ܽݎ 

௜ݐݏܾ݁݌   ׷  ݅ ݈݁ܿ݅ݐݎܽ݌ ݂݋ ݊݋݅ݐ݅ݏ݋݌ ݐݏܾ݁݌

  ݐݏܾ݁݃ ׷  ݉ݎܽݓݏ݂݋ ݊݋݅ݐ݅ݏ݋݌ ݐݏܾ݁݃

Expressions in equations (4.1) and (4.2), [19] describe the velocity and position 

update, respectively. Expression in equation (4.1) calculates a new velocity for 

each particle based on the particle’s previous velocity, the particle’s location 

at which the best fitness has been achieved so far, and the population global 

location at which the best fitness has been achieved so far. In addition, c1 and 

c2 are positive constants called the cognitive parameter and the social 

parameter, respectively. These constants provide the correct balance between 

exploration and exploitation (individuality and sociality). Acceleration is 

weighted by a random term, with separate random numbers being generated 

for acceleration toward p-best and g-best locations. The random numbers 

provide a stochastic characteristic for the particles velocities in order to 

simulate the real behavior of the birds in a flock. Figure 4.2 shows the concept 

of modification of searching points described by expression in equation (4.1). 

An inertia weight parameter w was introduced in order to improve the 

performance of the original Particle Swarm Optimization model. This 
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parameter plays the role of balancing the global search and local search 

capability of Particle Swarm Optimization. It can be a positive constant or 

even a positive linear or non linear function of time. 

  

 

 

 

 

 

 

Figure  4.2: Concept of Modification of Searching Point 

A better method of global optimum within a reasonable number of iterations 

can be achieved by incorporating this parameter into the velocity update 

expression in equation (4.1), as follows: 

௜௞ାଵݒ ൌ ݓ ൈ ௜௞ݒ ൅ ܿଵ ൈ ሺ݀݊ܽݎ ሻଵ ൈ ൫ݐݏܾ݁݌௜ െ ௜௞൯ݏ ൅ ܿଶ ൈ ሺ݀݊ܽݎ ሻଶ
ൈ ൫ܾ݃݁ݐݏ െ  ௜௞൯                                                                                         ሺ4.3ሻݏ

Typical values for the inertia parameter are in the range [0.7, 1.2]. On the 

other hand some different approach using a construction factor K, which 

increase the algorithm’s ability to converge to a good solution, and the 

expression used to update the particle’s velocity becomes:  

௜௞ାଵݒ ൌ ܭ ൈ ቀݒ௜௞ ൅ ܿଵ ൈ ሺ݀݊ܽݎ ሻଵ ൈ ൫ݐݏܾ݁݌௜ െ ௜௞൯ݏ ൅ ܿଶ ൈ ሺ݀݊ܽݎ ሻଶ

ൈ ൫ܾ݃݁ݐݏ െ  ௜௞൯ቁ                                                                                      ሺ4.4ሻݏ

Where,    
ܭ ൌ ଶ

ቚଶିఝିඥఝమିସఝቚ
, ߮ ൌ ܿଵ ൅ ܿଶ, ߮ ൐ 1                                                                           ሺ4.5ሻ                         

The Particle Swarm Optimization algorithm with constriction factor can be 

considered as a special case of the algorithm with inertia weight since the 

parameters are connected through expression in equation (4.5). From 

Sik

Sik+1

Vik Vik+1

Vpbest

Vgbest
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experimental results, the best approach to use with Particle Swarm 

Optimization as a “rule of thumb” is to utilize the constriction factor approach 

or utilize the inertia weight approach while selecting w, c1, and c2 according 

to expression in equation (4.3). All parameters introduced in equations (4.3), 

(4.4) and (4.5) may vary depending of the characteristics of the problem at 

hand. Adjustments of these parameters are different for every kind of 

problem and need to be carefully adjusted in order to achieve better 

performance of the algorithm. In this thesis, we apply the inertia weight 

approach to use with particle swarm optimization on voltage-control 

problem. 

 

4.4 Fuzzy System   
The dictionary meaning of the word “fuzzy” is “not clear”. By contrast, in the 

technical sense, fuzzy systems are precisely defined systems, and fuzzy 

control is a precisely defined method of non-linear control. The main goal of 

fuzzy logic is to mimic (and improve on) “human-like” reasoning. “Fuzzy 

systems are knowledge-based or rule-based systems” [42], specifically, the 

key components of fuzzy system’s knowledge base are a set of IF-THEN rules 

obtained from human knowledge and expertise. The fuzzy systems are multi-

input-multi-output mappings from a real-valued vector to a real-valued 

scalar. 

 

4.4.1 Why Fuzzy? 

Natural language is one of the most powerful forms of conveying 

information. The conventional mathematical methods have not fully tapped 

this potential of language. According to Timothy J. Ross [43], “scientists have 

said, the human thinking process is based primarily on conceptual patterns 

and mental images rather than on numerical quantities”. So if the problem of 

making computers with the ability to solve complex issues has to be solved, 

the human thought process has to be modeled. The best way to do this is to 
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use models that attempt to emulate the natural language; the advent of fuzzy 

logic has put this power to proper use. 

 

Most if not all of the physical processes are non-linear and to model them, a 

reasonable amount of approximation is necessary. For simple systems, 

mathematical expressions give precise descriptions of the system behavior. 

For more complicated systems with significant amounts of data available, 

model-free methods provide robust methods to reduce ambiguity and 

uncertainty in the system. But for complex systems where not much 

numerical data exists, fuzzy reasoning furnishes a way to understand the 

system behavior by relying on approximate input-output approaches. The 

underlying strength of fuzzy logic is that it makes use of linguistic variables 

rather than numerical variables to represent imprecise data. 

 

4.4.2 Fuzzy Sets 

The key difference between classical sets and fuzzy sets is that in the former, 

the transition for an element in the universe between membership and non-

membership in a given set is well defined, that is the element either belongs 

or does not belong to the set. By contrast, for elements in fuzzy sets, the 

membership can be a gradual one, allowing for the boundaries for fuzzy sets 

to be vague and ambiguous. 

 

4.4.3 Membership Function 

A fuzzy set is characterized by a membership function whose value ranges 

from 0 to 1. It consists of members with varying degrees of membership based 

on the values of the membership function. In mathematical terms, the fuzzy 

set A in the universe U can be represented as a set of ordered pairs of an 

element x and its membership function ߤ஺ሺݔሻ. Formally we have 
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ܣ ൌ ൛൫ݔ, ݔ|ሻ൯ݔ஺ሺߤ א ܷ,where ܷ is continuousൟ                                                 ሺ4.6ሻ  

For more detailed description of fuzzy sets and the set operations that can be 

performed on them, see references [42] and [43]. A membership function is a 

continuous function in the range of 0 to 1. It is usually decided from human 

expertise and observations made and it can be either linear or nonlinear. Its 

choice is critical for the performance of the fuzzy logic system since it 

determines all the information contained in a fuzzy set. In the voltage and 

reactive power control problems under study in this research, the 

membership functions will help in automating the fuzzy control. The rules 

were framed through numerous simulations, which are carried out to 

determine the best possible set of rules aimed at pushing the stability limits of 

the system to its maximum. The membership functions can be estimated by 

studying the behavior of different conditions and for different contingency 

cases. They should be able to accommodate all the non-linearities of the 

system, making their determination a complex task.  

 

4.4.4 Fuzzy Rule Base – IF-THEN Rules 

Fuzzy logic has been centered on the point that it makes use of linguistic 

variables as its rule base. Li-Xin Wang [42] said that “If a variable can take words 

in natural language as its values, it is called linguistic variable, where the words are 

characterized by fuzzy sets defined in the universe of discourse in which the variable 

is defined”. Examples of these linguistic variables are slow, medium, high, 

young and thin. There could be a combination of these variables too, i.e. 

“slow-young horse”, “a thin young female”. These characteristics are termed 

atomic terms while their combinations are called compounded terms. In real 

world, words are often used to describe characteristics rather than numerical 

values. For example, one would say “the car was going very fast” rather than 

say “the car was going at 100 miles per hour”. Terms such as slightly, very, 

more or less, etc. are called linguistic hedges since they add extra description 

to the variables, i.e. very-slow, more or less red, slightly high.  
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4.4.5 Inference Systems Methods 

There are a lot of inference methods which deals with fuzzy inference such as 

Mamdani method, Larsen method, Tsukamoto method, Sugeno style 

inference and Takagi- Sugeno-Kang (TSK) method. The most important and 

widely used in fuzzy controller are the Mamdani and Takagi-Sugeno 

methods. 

 

4.4.5.1 Mamdani Method 
This fuzzy inference method is the most commonly used. In 1974, Professor 

Ebrahim Mamdani of London University built one of the first fuzzy systems 

to control a steam engine and boiler combination. He applied a set of fuzzy 

rules supplied by experienced human operators [44]. The Mamdani style 

fuzzy inference process is performed in four steps: 

• Fuzzification of the input variable. 

• Rule evaluation. 

• Aggregation of the rule output. 

• Defuzzification. 

The system shown in Figure 4.3 incorporates all the essential features of fuzzy 

systems. To illustrate the fuzzy inference, each step will be explained in more 

details.  

 

Figure  4.3: Configuration of a fuzzy system with fuzzifier and defuzzifier 
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Step 1: Fuzzification  

The fuzzifier is a mapping from the real valued point, כݔ א ܷ to a 

corresponding fuzzy set ܣ′ ؿ ܷ , which is the input to the fuzzy inference 

engine. The fuzzifier needs to account for certain criteria while performing 

this mapping. The first of these criteria states that the input is a crisp point כݔ, 

so that its mapping in U is a fuzzy set ܣ′ that has a large membership value. 

The second criterion states that the fuzzifier must be able to suppress the 

noise inherent in real valued inputs. The third criterion is that the fuzzifier 

must be able to simplify the computations in the fuzzy inference engine. 

Three types of fuzzifiers have been proposed by Li-Xin Wang [42], which are 

singleton, Gaussian, and triangular fuzzifiers. They are defined as follows: 

• Singleton Fuzzifier: This maps a real valued point כݔ א ܷ , with a 

membership function ߤ஺′ሺݔሻ into a fuzzy singleton ܣ′ ݅݊ ܷ . Specifically we 

have  

ሻݔ஺ᇲሺߤ • ൌ ቄ1           if x ൌ xכ
0       otherwise                                                                                       4.7 

 
• Gaussian Fuzzifier: This maps a real valued point כݔ א ܷ into a fuzzy set 

′ܣ ؿ ܷ with a membership function given by 

 

ሻݔ஺′ሺߤ ൌ eି൬
୶భି୶భכ
ୟభ

൰
మ

…  eି൬
୶౤ି୶౤כ
ୟ౤

൰
మ

                                                                               4.8 
 
Where: ሼܽ௜, ݅ ൌ 1,… . , ݊ሽ are positive parameters 
 
 
• Triangular Fuzzifier: This maps a real valued point  כݔ א ܷ,  into a fuzzy 

set  ܣᇱ ؿ ܷ with a membership function written as 

 
ሻݔ஺′ሺߤ

ൌ ቐቆ1 െ
|xଵ െ xଵכ|

bଵ
ቇ…ቆ1 െ

|x୬ െ x୬כ |
b୬

ቇ     if  |x୧ െ x୧כ| ൑ b୧, i ൌ 1,2, … .   n 

0                                 otherwise                                                                   
         4.9 

 
 
Where: ሼܾ௜, ݅ ൌ 1,… . , ݊ሽ are positive parameters 



29 
 

Note that all these fuzzifiers satisfy the first criterion as mentioned above, that 

is to say they have a large membership value at the input point. It can be 

observed that the singleton fuzzifier simplifies the computations involved in 

the fuzzy inference engine for any type of membership functions, while the 

other two fuzzifiers simplify the computations if the membership is either 

Gaussian or triangular, respectively. On the other hand, the Gaussian and 

triangular fuzzifiers can suppress noise while the singleton fuzzifier can’t. 

 

Step 2: Rule Evaluation 

The second step is to take the fuzzified input, and apply them to the 

antecedents of the fuzzy rules. If a given fuzy rule has multiple antecedents, 

the fuzzy operator (AND or OR) is used to obtain a single number that 

represent the result of the antecedent evaluation.  

 

Step 3: Aggregation of the Rule Output 

Aggregation is the process of unification of the ouputs of all rules, we take the 

membership functions of all rule consequents and combine them into a single 

fuzzy set. 

 

Step 4: Defuzzification  

The defuzzifier’s task is the reverse operation to the fuzzifier. It maps the 

fuzzy output set, ܤ′ ؿ ܸ, from the fuzzy inference engine to a real valued 

point (crisp point), כݕ א ܸ . In other words, it can be said that the defuzzifier 

gives the real point that best describes the fuzzy set ܤ′. Naturally, there exist 

many choices for choosing this point, but the most suitable point can be 

determined by considering certain criteria. The point כݕ should represent ܤ′ 

from an intuitive point of view; for example it should exhibit a high 

membership in ܤ′  . Furthermore, the defuzzifier has to have computational 
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simplicity; this is particularly important because most of the fuzzy controllers 

are usually used in real time. Lastly, the defuzzifier must have continuity. 

 
• Centroid Defuzzifier 

The centroid defuzzifier specifies the crisp point כݕ as the center of the area 

covered by the membership function of ܤ′ . If the membership function is 

viewed as a probability density function of a random variable, the centroid 

defuzzifier gives its mean value. One inherent disadvantage of this method is 

that it is computational intensive. 

 

• Center Average Defuzzifier 

The center average defuzzifier takes the weighted averages of all the fuzzy 

sets that are output from the inference engine, where the weight of each set is 

based on the height of that particular set to determine the point כݕ. This is a 

good approximation since the fuzzy set ܤ′is either a union or an intersection 

of the inference engine’s output. This is the most commonly used defuzzifier 

in fuzzy systems because of it computational simplicity and intuitive 

plausibility. 

 

 

• Maximum Defuzzifier 

The maximum defuzzifier chooses כݕ  as the point at which the associated 

membership function achieves its maximum value. If more than one point 

satisfies this condition, then the maximum, or minimum, or mean of all such 

points is taken. While this type of defuzzifier is computationally simple and 

intuitively plausible, it lacks continuity wherein a small change in the value of 

 .כݕ results in a large change in ′ܤ
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4.4.5.2 Sugeno Method 

Most fuzzy controllers have been designed, based on human operator 

experience and/or control engineer knowledge. It is often the case that an 

operator can’t tell linguistically what kind of action he takes in a particular 

situation. In this situation, it is useful to provide a method of modeling the 

control actions using numerical data [45]. In 1985 Takagi-Sugeno-Kang 

suggested to use a single spike, a singleton, as the membership function of the 

rule consequent, and they suggested another approach that using equation 

consequent in place off singleton consequent. Sugeno style fuzzy inference is 

very similar to the Mamdani method. Sugeno changed only a rule 

consequent, instead of a fuzzy set, he used a mathematical function of the 

input variable. The format of the Sugeno style fuzzy rule is  

If  ܆  is  ۯ  AND  ܇  is  ۰  THEN  ܈  is  ࢌሺܠ,  ሻ                                                             4.10ܡ

Where X, Y and Z are linguistic variables; A and B are fuzzy sets on universe 

of discourses X and Y, respectively; and f(x,y) is a mathematical function. 

 

In this research the fuzzy logic with Mamdani inference system and centroid 

defuzzifier is used to adjust the parameters of particle swarm in order to 

improve the performance of the search for an optimized solution. 
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CHAPTER 5    

    

5. APPLICATION OF THE OPTIMIZATION 

TECHNIQUES 

 

 

5.1 Introduction 
The optimal operating state of a power system network has been determined 

based on economic factors. However, the power quality and system security 

have forced power systems planners and operators to incorporate other 

criteria such as improved and maintain system voltage profile with acceptable 

value and minimization of transmission losses. Generally, the voltage-control 

and reactive power dispatch is one of the application functions of modern 

energy management systems, used to satisfy and maintain those criteria. 

Scheduling of the reactive power in an optimum manner ensures better 

voltage profile which leads to real power saving on account of reduced 

system losses. Hence the reactive power dispatch plays an important role 

both in planning stages as well as in day-to-day operation of the power 

system. The reactive power dispatch determines the proper system settings 

required to control reactive power flows and allocate reactive power properly. 

Reactive power dispatch provides better system voltage-control and reduces 

power system losses. All these result in an improved voltage profile, system 

security, power transfer capability and overall system operation. 
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number 27. All four transformers are used as control variable. There are also 
two capacitor banks connected to bus 10 and bus 24.     

 

Table  5.1: Bus data of IEEE 30-Bus system model 

Bus data Voltage Angle Load Generation Static 
Mvar 

No Code PU Degree MW Mvar MW Mvar Qmin Qmax +Qc/Ql 
1 1 1.05 0.0 0.0 0.0 0.0 0.0 0 0 0 
2 2 1.05 0 21.70 12.7 40 0.0 -40 50 0 
3 0 1.0 0 2.4 1.2 0 0 0 0 0 
4 0 1.0 0 7.6 1.6 0 0 0 0 0 
5 2 1.05 0 94.2 19.0 0 0 -40 60 0 
6 0 1.0 0 0 0.0 0 0 0 0 0 
7 0 1.0 0 22.8 10.9 0 0 0 0 0 
8 2 1.05 0 30 30.0 0 0 -30 70 0 
9 0 1.0 0 0 0 0 0 0 0 0 
10 0 1.0 0 5.8 2 0 0 0 0 10 
11 2 1.05 0 0 0 0 0 -6 24 0 
12 0 1.0 0 11.2 7.5 0 0 0 0 0 
13 2 1.05 0 0 0 0 0 -6 40 0 
14 0 1 0 6.2 1.6 0 0 0 0 0 
15 0 1 0 8.2 2.5 0 0 0 0 0 
16 0 1 0 3.5 1.8 0 0 0 0 0 
17 0 1 0 9.0 5.8 0 0 0 0 0 
18 0 1 0 3.2 0.9 0 0 0 0 0 
19 0 1 0 9.5 3.4 0 0 0 0 0 
20 0 1 0 2.2 0.7 0 0 0 0 0 
21 0 1 0 17.5 11.2 0 0 0 0 0 
22 0 1 0 0 0 0 0 0 0 0 
23 0 1 0 3.2 1.6 0 0 0 0 0 
24 0 1 0 8.7 6.7 0 0 0 0 4.3 
25 0 1 0 0 0 0 0 0 0 0 
26 0 1 0 3.5 2.3 0 0 0 0 0 
27 0 1 0 0 0 0 0 0 0 0 
28 0 1 0 0 0 0 0 0 0 0 
29 0 1 0 2.4 0.9 0 0 0 0 0 
30 0 1 0 10.6 1.9 0 0 0 0 0 

 
 

Table 5.1 contains the bus data, column two for the bus type: code 0: 

represents a load bus, code 1: represents a slack bus and code 2: represents a 

voltage controlled bus. Column 3 and column 4 present the voltage 

magnitude and phase angle in degrees respectively, while column 5 and 

column 6 describe the power load demand. Also column 7, column 8, column 

9, and column 10 represent the power generations and their minimum and 

maximum limits. Finally column 11 states the capacitor bank size connected 

to the respective bus.  
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Table 5.2 contains the line data, column 1 and column 2 are reserved for line 

bus number, column 3, column 4 and column 5 are  used for line resistance, 

reactance and one half of total line charging susceptance, and column 6 has 

the value of 1 for transmission line or transformer tap setting. 

 
Table  5.2: Line data of IEEE 30-Bus system model 

From 
Bus 

To 
Bus Type R (p.u.) X (p.u.) ½ B (p.u.) 

Line code 
=1 for lines 

>1 or <1 for tr. Tap at from bus 
1 2 T. L.* 0.0192 0.0575 0.02640 1 
1 3 T. L. 0.0452 0.1852 0.02040 1 
2 4 T. L. 0.0570 0.1737 0.01840 1 
3 4 T. L. 0.0132 0.0379 0.00420 1 
2 5 T. L. 0.0472 0.1983 0.02090 1 
2 6 T. L. 0.0581 0.1763 0.01870 1 
4 6 T. L. 0.0119 0.0414 0.00450 1 
5 7 T. L. 0.0460 0.1160 0.01020 1 
6 7 T. L. 0.0267 0.0820 0.00850 1 
6 8 T. L. 0.0120 0.0420 0.00450 1 
6 9 Transformer 0 0.2080 0 0.978 
6 10 Transformer 0 0.5560 0 0.969 
9 11 T. L. 0 0.2080 0 1 
9 10 T. L. 0 0.1100 0 1 
4 12 Transformer 0 0.2560 0 0.932 
12 13 T. L. 0 0.1400 0 1 
12 14 T. L. 0.1231 0.2559 0 1 
12 15 T. L. 0.0662 0.1304 0 1 
12 16 T. L. 0.0945 0.1987 0 1 
14 15 T. L. 0.2210 0.1997 0 1 
16 17 T. L. 0.0824 0.1923 0 1 
15 18 T. L. 0.1073 0.2185 0 1 
18 19 T. L. 0.0639 0.1292 0 1 
19 20 T. L. 0.0340 0.0680 0 1 
10 20 T. L. 0.0936 0.2090 0 1 
10 17 T. L. 0.0324 0.0845 0 1 
10 21 T. L. 0.0348 0.0749 0 1 
10 22 T. L. 0.0727 0.1499 0 1 
21 22 T. L. 0.0116 0.0236 0 1 
15 23 T. L. 0.1000 0.2020 0 1 
22 24 T. L. 0.1150 0.1790 0 1 
23 24 T. L. 0.1320 0.2700 0 1 
24 25 T. L. 0.1885 0.3292 0 1 
25 26 T. L. 0.2544 0.3800 0 1 
25 27 T. L. 0.1093 0.2087 0 1 
28 27 Transformer 0 0.3960 0 0.968 
27 29 T. L. 0.2198 0.4153 0 1 
27 30 T. L. 0.3202 0.6027 0 1 
29 30 T. L. 0.2399 0.4533 0 1 
8 28 T. L. 0.0636 0.2000 0 1 
6 28 T. L. 0.0169 0.0599 0 1 

*T.L. is the transmission line 
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5.3 Mathematical model  
The voltage-control and reactive power dispatch problem may be considered 

as a special case of optimal power flow (OPF). The main objective is to 

improve system voltage profile, minimize voltage deviation, and minimize 

the real power transmission loss, while satisfying a number of equality and 

inequality constraints. The equality constraints are the conventional power 

flow equations; the inequality constraints are the limits on the control and 

operating variables of the system. Mathematically, the voltage-control 

problem can be formulated as a constrained nonlinear optimization problem. 

 

Voltage-control and Reactive power dispatch problem are complex 

combinatorial optimization problem involving continuous and discrete 

variables. The problem constraints include the reactive power limits of 

generation units, the voltage magnitude limits at load buses, the transformer 

tap positions, the voltage magnitude limits at generation buses, and settings 

of VARS compensators or shunt capacitor banks.  

 

5.4 Objective functions 
The objective function of voltage-control problem comprises three important 

terms, which are: maintaining acceptable system voltage profile, minimizing 

the voltage deviation at load buses, and minimizing the real power loss in the 

transmission grid. 

 

5.4.1 System Voltage Profile  

The first objective is to maintain the voltage at all buses in an acceptable range 

between (0.95 – 1.05). 
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5.4.2 Voltage Deviation 

Bus voltage is one of the most important securities and service quality, one of 

the effective ways to avoid the voltages from moving toward their maximum 

or minimum limits after optimization, is to choose the deviation of voltage 

from the desired value as an objective function, that is 

min ଶ݂ ൌ  ෍
௜ݒ| െ |כ௜ݒ

௅ܰ

ேಽ

௜ୀଵ

                                                                                                 5.1           

Where ଶ݂ is the per unit average voltage deviation, ௅ܰ is the total number of 

the system load buses, ݒ௜  and ݒ௜כ are the actual voltage magnitude and the 

desired voltage magnitude at bus ݅. 

 

5.4.3 Power Loss 

The third objective is to minimize the total active power lose which can be 

expressed as follows: 

min ଵ݂ ൌ ௟ܲ௢௦௦ሺݔ,  ሻ                                                                                                     5.2ݑ

Where ଵ݂ is the total active power losses of the power system, ݔ  is the state 

variable vector consisting of load bus voltages ௅ܸ   and generator reactive 

power outputs  is the control variable vector consisting of generator ݑ , ீܳ 

voltages, ܸீ  shunt VAR compensations ܳ௖ and transformer tap settings ܶ. 

On the other hands, the mathematical formulation can be expressed as follow:  

min ଵ݂ ൌ min ቄ∑ ∑ ቂ݃௜௝ ൈ ൬| ௜ܸ|ଶ ൅ ห ௝ܸห
ଶ െ 2 ൈ | ௜ܸ| ൈ ห ௝ܸห ൈ ௜ߜ൫ݏ݋ܿ െ ௝൯൰ቃேߜ

௝ୀଵ
ே
௜ୀଵ     5.3     

Where,  

ܰ     : Number of buses 

| ௜ܸ|   : Voltage magnitude at bus ݅ 

ห ௝ܸห   : Voltage magnitude at bus ݆ 
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௜݃௝    : Conductance of transmission line between bus ݅ and bus ݆ 

  ݅ ௜     : Voltage angle at busߜ

  ݆ ௝     : Voltage angle at busߜ

The following constraints are known as the power balance constraints. They 

guarantee that the load demand will be met considering the transmission 

losses of the system. These constraints are the main objective in a power flow 

analysis. 

෍ܲீ െ෍ ஽ܲ െ ௅ܲ ൌ 0                                                                                                 5.4 

෍ܳீ െ෍ܳ஽ െ ܳ௅ ൌ 0                                                                                               5.5 

Where,  

ܲீ    : Real power generation  

஽ܲ   : Real power demand  

௅ܲ   : Real power loss  

ܳீ  : Reactive power generation  

ܳ஽  : Reactive power demand  

ܳ௅  : Reactive power loss  

The operational constraints guarantee a safe operation of the system. The 

capacity limits should be met at all time to avoid damage to power system 

components and maintain system stability. The following constraints state 

real and reactive power generation limits for each generation unit: 

ܲீ ௜
௠௜௡ ൑ ܲீ ௜ ൑ ܲீ ௜

௠௔௫                                                                                                       5.6         

ܳீ௜௠௜௡ ൑ ܳீ௜ ൑ ܳீ௜௠௔௫                                                                                                      5.7               
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Where,  

ܲீ ௜
௠௜௡  : Lower real power generation limit of unit ݅                                    

ܲீ ௜
௠௔௫  : Upper real power generation limit of unit ݅                                    

ܳீ௜௠௜௡  : Lower reactive power generation limit of unit ݅       

ܳீ௜௠௔௫  : Upper reactive power generation limit of unit ݅         

In order to maintain system stability, the voltage at each bus should be within 

its limits. The following constrain shows this operational condition: 

௜ܸ
௠௜௡ ൑ | ௜ܸ| ൑ ௜ܸ

௠௔௫                                                                                                   5.8 

Where:  

௜ܸ
௠௜௡   : Lower voltage magnitude limit at bus ݅ 

௜ܸ
௠௔௫   : Upper voltage magnitude limit at bus ݅ 

The optimal voltage-control and reactive power dispatch can be achieved by 

employing reactive power compensator devices such as shunt capacitor 

banks, and by adjusting the transformer tap positions. Shunt capacitor banks 

and transformer tap positions are control variables for voltage-control 

problem. The operational limits of these devices are expressed in the 

following constrains: 

ܳ஼௠௜௡ ൑ ܳ஼ ൑ ܳ஼௠௔௫                                                                                                        5.9  

௞ܶ
௠௜௡ ൑ ௞ܶ ൑ ௄ܶ

௠௔௫                                                                                                         5.10 

Where: 

 ܳ஼    : Reactive power generated by the shunt capacitor bank C 

ܳ஼௠௜௡ : Lower limit of shunt capacitor bank C 

ܳ஼௠௔௫ : Upper limit of shunt capacitor bank C 
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௞ܶ      : Tap position of transformer k 

௞ܶ
௠௜௡  : Lower tap position limit of transformer k 

௞ܶ
௠௔௫  : Upper tap position limit of transformer k 

The transformer tap settings and the adjustable shunt capacitor banks are the 

essential key elements in transmission loss reduction. In power systems, 

almost all transformers provide taps on windings to adjust the ratio of 

transformation, also have adjustable shunt capacitor banks located in 

specified buses in order to correct voltage and power factor problems. In a 

mathematical formulation, the transformers tap settings and the adjustable 

shunt capacitor banks may be represented either as continuous or discrete 

variables, depending on the study issued. In this work, the transformers tap 

settings and the adjustable shunt capacitor banks are considered as 

continuous variables.  

 

In the following, the voltage-control problem will be solved by five different 

approaches. The results will be generated, analyzed, compared and discussed. 

The program code was developed using MATLAB R2008a on a Pentium 4 PC. 

The power flow equations were solved using the Newton-Raphson load flow 

method with a tolerance of 10-4.  

 

5.5 Optimal Economic Dispatch  
Despite the voltage control problem is non linear control problem, hence the 

power flow equations become nonlinear and must be solved by iterative 

technique. The commonly used iterative technique is Newton-Raphson for 

power flow equation. This method was employed to IEEE 30-bus system, 

subject to the applicable constraints and the optimal economic dispatch was 

used to rearrangement of power generator in order to minimize the total 

generation cost according to the following equation 



41 
 

ܬ ൌ෍ ௜݂    

௚

௜ୀଵ

                                                                                                                         5.11 

Where:   ௜݂  is the fuel cost of ݅௧௛ generator 

௜݂ ൌ ܽ௜ ൅ ܾ௜ܲீ ௜ ൅ ܿ௜ܲீ ௜
ଶ                                                                                                      5.12   

Where ai, bi, ci are cost coefficients of unit i, g is the number of generator. PGi is 

the real power generation of unit i. The loss formula can be formulated and 

described in equation 5.13. 

௅ܲ ൌ ܲ ൈ ܤ ൈ ்ܲ ൅ ଴ܤ ൈ ்ܲ ൅                      ଴଴                                                                               5.13ܤ

Where P is the real power generation, B, B0 and B00 are coefficients of the loss 

formula. For more details see Appendix A.  

At each iteration, the set of values for voltage magnitudes at PV buses, 

transformers tap positions and total capacity of each shunt capacitor bank are 

used to run a power flow, calculate the transmission losses, voltage deviation 

and evaluate the following fitness function: 

min ଵ݂ ൌ min ቐ෍෍ቂ݃௜௝ ൈ ൬| ௜ܸ|ଶ ൅ ห ௝ܸห
ଶ െ 2 ൈ | ௜ܸ| ൈ ห ௝ܸห ൈ ௜ߜ൫ݏ݋ܿ െ ௝൯൰ቃߜ

ே

௝ୀଵ

ே

௜ୀଵ

              5.14 

min ଶ݂ ൌ  ෍
௜ݒ| െ |כ௜ݒ

௅ܰ

ேಽ

௜ୀଵ

                                                                                                      5.15 

Subject to  

ܲீ ௜ െ ஽ܲ௜ െ෍ൣห ௜ܻ௝ห ൈ | ௜ܸ| ൈ ห ௝ܸห ൈ cos൫׎௜௝ ൅ ௝ߜ െ ௜൯൧ߜ ൌ 0                                  5.16
ே

௝ୀଵ

 

ܳீ௜ െ ܳ஽௜ െ෍ൣห ௜ܻ௝ห ൈ | ௜ܸ| ൈ ห ௝ܸห ൈ sin൫׎௜௝ ൅ ௝ߜ െ ௜൯൧ߜ
ே

௝ୀଵ

ൌ 0                                  5.17 

 Variables values were forced to be within their limits. Any parameter that 

violates the limits is replaced with values using equation (5.18): 



42 
 

௜ݑ ൌ ቐ
௜ݑ  ݂݅                          ௜௠௜௡ݑ  ൏     ௜௠௜௡ݑ
௜ݑ  ݂݅                         ௜௠௔௫ݑ  ൐    ௜௠௔௫ݑ 
     ݁ݏ݅ݓݎ݄݁ݐ݋                                  ௜ݑ

                                                                   5.18 

Where: ݑ௜ is any parameter variable 

5.6 Optimal Economic Dispatch Results  
The main classical approach used for solving the voltage-control problem was 

Newton Raphson Optimal Power Flow method. The following table shows 

the bus data results obtained: 

Table  5.3: The bus data solution by OED 

Bus 
no. 

Bus 
Code 

Voltage 
Magnitude 

Angle 
Degree 

Load Generation 
Qmin Qmax Qsh 

MW Mvar MW Mvar 
1 1 1.050 0.000 0 0 150.73 -39.28 0 0 0 
2 2 1.050 -3.401 21.7 12.7 42.54 26.07 -40 50 0 
3 0 1.038 -4.687 2.4 1.2 0.00 0.00 0 0 0 
4 0 1.035 -5.615 7.6 1.6 0.00 0.00 0 0 0 
5 2 1.050 -10.053 94.2 19 18.50 51.76 -40 60 0 
6 0 1.041 -6.859 0 0 0.00 0.00 0 0 0 
7 0 1.037 -8.663 22.8 10.9 0.00 0.00 0 0 0 
8 2 1.050 -7.491 30 30 10.00 61.03 -30 70 0 
9 0 1.048 -7.022 0 0 0.00 0.00 0 0 0 
10 0 1.040 -8.845 5.8 2 0.00 0.00 0 0 10 
11 2 1.050 -3.771 0 0 30.00 1.81 -6 24 0 
12 0 1.056 -7.136 11.2 7.5 0.00 0.00 0 0 0 
13 2 1.050 -4.240 0 0 40.00 -3.15 -6 40 0 
14 0 1.041 -8.176 6.2 1.6 0.00 0.00 0 0 0 
15 0 1.036 -8.420 8.2 2.5 0.00 0.00 0 0 0 
16 0 1.041 -8.127 3.5 1.8 0.00 0.00 0 0 0 
17 0 1.035 -8.837 9 5.8 0.00 0.00 0 0 0 
18 0 1.025 -9.267 3.2 0.9 0.00 0.00 0 0 0 
19 0 1.022 -9.580 9.5 3.4 0.00 0.00 0 0 0 
20 0 1.026 -9.455 2.2 0.7 0.00 0.00 0 0 0 
21 0 1.029 -9.326 17.5 11.2 0.00 0.00 0 0 0 
22 0 1.030 -9.323 0 0 0.00 0.00 0 0 0 
23 0 1.026 -9.189 3.2 1.6 0.00 0.00 0 0 0 
24 0 1.022 -9.874 8.7 6.7 0.00 0.00 0 0 4.3 
25 0 1.029 -10.423 0 0 0.00 0.00 0 0 0 
26 0 1.011 -10.834 3.5 2.3 0.00 0.00 0 0 0 
27 0 1.041 -10.492 0 0 0.00 0.00 0 0 0 
28 0 1.041 -7.374 0 0 0.00 0.00 0 0 0 
29 0 1.022 -11.679 2.4 0.9 0.00 0.00 0 0 0 
30 0 1.010 -12.530 10.6 1.9 0.00 0.00 0 0 0 

 

The voltage magnitudes result in column 3 are within the range (0.95- 1.05), 

except the load bus number 12 has a magnitude of 1.056 also the real and 

reactive power generation are within the range.  
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Table  5.4: The control variable solution by OED 

 

 

The variables in shaded cells indicate that all control variables are within the 

range specified and the output of simulation as follows: 

The total system loss, TSL = 8.3703- 13.6527i MVA 

The voltage deviation, VD = 0.0325 pu 

The incremental fuel cost, λ = 3.3897 $/ MWH 

The total cost, TC = 782.2480 $ / H 

The time elapsed for this simulation, t = 0.2383 S. 

The system voltage profile is shown in Figure 5.2. 

       

Figure  5.2: System Voltage Profile for OED 
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Variable Result 

T6-9
 

0.9780 

T6-10
 

0.9690 

T4-12
 

0.9320 

T28-27
 

0.9680 

Real Power Loss 8.3703 

Reactive Power Loss - 13.6527i 

Voltage Deviation(pu) 0.0325 

Time Elapsed (s) 0.2383 
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5.7 Particle Swarm Optimization 
The control variables for voltage-control problem, which will be modified by 

the Particle Swarm optimization process, are: 

1. Voltages magnitude at voltage-controlled buses (PV-buses) including the 

slack bus. 

2. Transformers tap settings. 

3. Adjustable shunt capacitor banks. 

There are twelve control variables for IEEE 30-Bus system. The first position 

of control variables vector is the slack bus. The next five position for the five 

voltage magnitudes at PV-buses. The next four positions of the control 

variables vector are the transformers tap settings. These variables are 

considered as continuous variables, they are adjusted in the range [0.9-1.1]. 

The last two positions of the control variables vector are the adjustable shunt 

capacitor banks. These variables are also considered as continuous variables, 

they are adjusted in the range [0-10 MVAR]. All control variables were 

handled using the Particle Swarm Optimization and fuzzy system model for 

continuous variables. The following table shows the control variables vector.  

Table  5.5: Control variable of IEEE 30-Bus system model 

Control Variables Vector or Particle 

1 2 3 4 5 6 7 8 9 10 11 12 

 ૛૝ࡽ ૚૙ࡽ ૛ૡି૛ૠࢀ ૝ି૚૛ࢀ ૟ି૚૙ࢀ ૟ିૢࢀ ૚૜ࢂ ૚૚ࢂ ૡࢂ ૞ࢂ ૛ࢂ ૚ࢂ

 

At each iteration, every particle determines a possible set of values for voltage 

magnitudes at PV buses, transformers tap positions and total capacity of each 

shunt capacitor bank. Subsequently, they are used to run a power flow, 

calculate the transmission losses, voltage deviation and evaluate the fitness 

function. The particle swarm optimization contains three tuning parameters 

w, c1 and c2 as shown in equations (4.2) and (4.3) that influences the algorithm 

performance, often stated as the exploration–exploitation tradeoff. 

Exploration is the ability to test various regions in the problem space in order 
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to locate a good optimum, the global one. Exploitation is the ability to 

concentrate the search around a promising candidate solution in order to 

locate the optimum precisely. The inertia weight w is employed to control the 

impact of the previous history of velocities on the current velocity. A larger 

inertia weight w facilitates global exploration while a smaller inertia weight 

tends to facilitate local exploration to fine-tune the current search area. 

Suitable selection of the inertia weight w can provide a balance between 

global and local exploration abilities, thus require less iterations on average to 

find the optimum. The learning factors c1 and c2 determine the influence of 

personal best p-best and global best g-best, respectively as shown in equation 

(4.3). Since c1 expresses how much the particle trusts its own past experience, 

it is called cognitive parameter. While c2 expresses how much it trusts the 

swarm, it is called social parameter. In addition the PSO is influenced by the 

number of particles and the swarm size N, in the swarm. Since the parameters 

of PSO are influenced and deeply affect the algorithm performance, we 

concentrate in this thesis on these parameters. Each control variables vector or 

particle was evaluated according to the following algorithm: 

Step 1: Initial search points and velocities are randomly generated for each of 

the three variables between their upper and lower bounds. 

Step 2: Power loss and voltage deviation for each set (one value of voltage-

controlled bus, transformer tap position and adjustable shunt capacitor) of 

particles is evaluated based on the fitness function. If the constraints are 

violated, the control variable is corrected according to equation 5.18. 

Step 3: Assign the particle’s position to p-best position and fitness to p-best 

fitness. Identify the best among the p-bests as the g-best. 

Step 4: New velocities and new search points (directions) are formulated 

using the Equations (4.2) and (4.3) respectively. 

Step 5: Power loss and voltage deviation corresponding to the new search 

points and velocities are evaluated. 
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Step 6: Compare the best current fitness evaluation with the population’s g-

best. If the current value is better than the g-best, reset g-best to the current 

best position and fitness value. 

Step 7: If iteration reaches maximum number, then exit, otherwise go to step 4 

The model of PSO can be shown below:  

 

 

Figure  5.3: Flow Chart of the Particle Swarm Optimization 

 

5.8 Particle Swarm Optimization Results 
To improve the performance of voltage-control problem, the particle swarm 

optimization was employed with inertia weight 0.9, the cognitive parameter 

and social parameter equal 1, swarm size 50 and the number of iteration 20. 

The following tables show the bus data results and control variable solution 

obtained: 
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Table  5.6: The bus data solution by Particle Swarm Optimization 

Bus 
no. 

Bus 
Code 

Voltage 
Magnitude 

Angle 
Degree 

Load Generation 
Qmin Qmax Qsh 

MW Mvar MW Mvar 
1 1 1.050 0.000 0 0 150.77 -22.93 0 0 0.00 
2 2 1.042 -3.400 21.7 12.7 41.98 32.30 -40 50 0.00 
3 0 1.033 -5.048 2.4 1.2 0.00 0.00 0 0 0.00 
4 0 1.028 -6.053 7.6 1.6 0.00 0.00 0 0 0.00 
5 2 1.013 -9.321 94.2 19 18.88 24.35 -40 60 0.00 
6 0 1.020 -7.060 0 0 0.00 0.00 0 0 0.00 
7 0 1.010 -8.512 22.8 10.9 0.00 0.00 0 0 0.00 
8 2 1.025 -7.440 30 30 10.00 45.22 -30 70 0.00 
9 0 0.980 -8.514 0 0 0.00 0.00 0 0 0.00 
10 0 0.989 -10.442 5.8 2 0.00 0.00 0 0 7.73 
11 2 0.969 -6.253 0 0 30.00 -4.62 -6 24 0.00 
12 0 1.004 -9.299 11.2 7.5 0.00 0.00 0 0 0.00 
13 2 1.050 -7.396 0 0 40.00 35.00 -6 40 0.00 
14 0 0.988 -10.334 6.2 1.6 0.00 0.00 0 0 0.00 
15 0 0.983 -10.481 8.2 2.5 0.00 0.00 0 0 0.00 
16 0 0.990 -10.083 3.5 1.8 0.00 0.00 0 0 0.00 
17 0 0.984 -10.565 9 5.8 0.00 0.00 0 0 0.00 
18 0 0.972 -11.242 3.2 0.9 0.00 0.00 0 0 0.00 
19 0 0.969 -11.482 9.5 3.4 0.00 0.00 0 0 0.00 
20 0 0.973 -11.286 2.2 0.7 0.00 0.00 0 0 0.00 
21 0 0.976 -10.939 17.5 11.2 0.00 0.00 0 0 0.00 
22 0 0.977 -10.924 0 0 0.00 0.00 0 0 0.00 
23 0 0.972 -11.022 3.2 1.6 0.00 0.00 0 0 0.00 
24 0 0.967 -11.362 8.7 6.7 0.00 0.00 0 0 0.00 
25 0 0.983 -11.622 0 0 0.00 0.00 0 0 0.00 
26 0 0.964 -12.072 3.5 2.3 0.00 0.00 0 0 0.00 
27 0 1.001 -11.477 0 0 0.00 0.00 0 0 0.00 
28 0 1.018 -7.582 0 0 0.00 0.00 0 0 0.00 
29 0 0.981 -12.763 2.4 0.9 0.00 0.00 0 0 0.00 
30 0 0.969 -13.687 10.6 1.9 0.00 0.00 0 0 0.00 

 

Column 3 in table 5.6 shows that the voltage magnitudes are within the range 

(0.95- 1.05). The real and reactive power generation also are within the range, 

note that the capacitor bank connected to bus number 10 equal 7.73 MVAR  

while the capacitor bank equal 0 on bus number 24.  
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Table  5.7: The control variable solution by Particle Swarm Optimization 

 

 

 

 

 

 

 

 

 

In Particle swarm optimization methods, the variables in shaded cells indicate 

that all control variables are within the range specified and the output of 

simulation as follows: 

The total system loss, TSL = 8.0359- 9.1446i MVA 

The voltage deviation, VD = 0.0206 pu 

The incremental fuel cost, λ = 3.3869 $ / MWH 

The total cost, TC = 781.8074 $ /H 

The time elapsed for this simulation, t = 13.3194 S. 

The system voltage profile for this method is shown in Figure 5.4. 

 

Figure  5.4:  System Voltage Profile for PSO 
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Variable Result 

T6-9
 

1.0467 

T6-10
 

0.9000 

T4-12
 

1.0577 

T28-27
 

0.9758 

Real Power Loss 8.0359 

Reactive Power Loss - 9.1446i 

Voltage Deviation(pu) 0.0206 

Time Elapsed (s) 13.3194 
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5.9 Adaptive Particle Swarm Optimization algorithm 
In the adaptive particle swarm optimization, the inertia weight decreased 

linearly according to the following equation 

ݓ ൌ ௠௔௫ݓ െ ൬
௠௔௫ݓ െ ௠௜௡ݓ

௠௔௫ݎ݁ݐ݅
൰ ൈ  5.19                                                                         ݎ݁ݐ݅ 

Where: 

itermax : maximum number of iteration 

iter : current iteration number  

wmax  : maximum inertia weight  

wmin  : minimum inertia weight  

With setting ܿଵ ܽ݊݀ ܿଶ= 1.0, which means that each particle will be attracted to 

the average of p-best and g-best. The swarm size is taken at 50 and the 

number of iterations is set at 20.  
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5.10 Adaptive Particle Swarm Optimization Results  
 The following table shows the bus data and control variable results obtained: 

Table  5.8: The bus data solution by adaptive particle swarm optimization 

Bus 
no. 

Bus 
Code 

Voltage 
Magnitude 

Angle 
Degree 

Load Generation 
Qmin Qmax Qsh 

MW Mvar MW Mvar 
1 1 1.050 0.000 0 0 150.45 -26.41 0 0 0.00 
2 2 1.042 -3.388 21.7 12.7 42.10 29.11 -40 50 0.00 
3 0 1.039 -5.132 2.4 1.2 0.00 0.00 0 0 0.00 
4 0 1.035 -6.154 7.6 1.6 0.00 0.00 0 0 0.00 
5 2 1.004 -9.165 94.2 19 19.01 11.22 -40 60 0.00 
6 0 1.027 -7.167 0 0 0.00 0.00 0 0 0.00 
7 0 1.010 -8.518 22.8 10.9 0.00 0.00 0 0 0.00 
8 2 1.028 -7.479 30 30 10.00 33.37 -30 70 0.00 
9 0 1.028 -8.724 0 0 0.00 0.00 0 0 0.00 
10 0 0.998 -10.708 5.8 2 0.00 0.00 0 0 9.23 
11 2 1.050 -6.737 0 0 30.00 11.38 -6 24 0.00 
12 0 1.000 -9.359 11.2 7.5 0.00 0.00 0 0 0.00 
13 2 1.050 -7.449 0 0 40.00 38.18 -6 40 0.00 
14 0 0.987 -10.428 6.2 1.6 0.00 0.00 0 0 0.00 
15 0 0.984 -10.664 8.2 2.5 0.00 0.00 0 0 0.00 
16 0 0.991 -10.242 3.5 1.8 0.00 0.00 0 0 0.00 
17 0 0.991 -10.799 9 5.8 0.00 0.00 0 0 0.00 
18 0 0.976 -11.449 3.2 0.9 0.00 0.00 0 0 0.00 
19 0 0.975 -11.703 9.5 3.4 0.00 0.00 0 0 0.00 
20 0 0.980 -11.518 2.2 0.7 0.00 0.00 0 0 0.00 
21 0 0.988 -11.247 17.5 11.2 0.00 0.00 0 0 0.00 
22 0 0.989 -11.250 0 0 0.00 0.00 0 0 0.00 
23 0 0.980 -11.381 3.2 1.6 0.00 0.00 0 0 0.00 
24 0 0.985 -11.950 8.7 6.7 0.00 0.00 0 0 10.0 
25 0 0.989 -11.897 0 0 0.00 0.00 0 0 0.00 
26 0 0.971 -12.341 3.5 2.3 0.00 0.00 0 0 0.00 
27 0 1.001 -11.580 0 0 0.00 0.00 0 0 0.00 
28 0 1.025 -7.688 0 0 0.00 0.00 0 0 0.00 
29 0 0.981 -12.866 2.4 0.9 0.00 0.00 0 0 0.00 
30 0 0.969 -13.791 10.6 1.9 0.00 0.00 0 0 0.00 

 

Note that the voltage magnitudes on load buses are within the range, also the 
capacitor banks on bus number 10 is increased to 9.23 MVAR and has a 
maximum (10 MVAR) on bus number 24.  

Table  5.9: The control variable solution by APSO 

 

 

 

 

Variable Result 

T6-9
 

0.9646 

T6-10
 

1.0948 

T4-12
 

1.1000 

T28-27
 

0.9954 

Real Power Loss 7.9509 

Reactive Power Loss - 10.1218i 

Voltage Deviation(pu) 0.0180 

Time Elapsed (s) 12.5933 
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In the adaptive particle swarm optimization methods, the variables in shaded 

cells indicate that all control variables are within the range specified and the 

output of simulation as follows: 

The total system loss, TSL = 7.9509- 10.1218i MVA 

The voltage deviation, VD = 0.018 pu 

The incremental fuel cost, λ = 3.3846 $ / MWH 

The total cost, TC = 781.677 $ / H  

The time elapsed for this simulation, t = 12.5933 S. 

The system voltage profile is shown in Figure 5.5. 

  

 

Figure  5.5: System Voltage Profile for APSO 

 

5.11 Fuzzy Particle Swarm Optimization Algorithm 
A fuzzy particle swarm optimization (FPSO) will be proposed to improve the 

performance of PSO; a fuzzy system will be employed to adjust the parameter 

of PSO, the inertia weight w and learning factors c1 and c2 during the 

evolution process. From experience, it is known that:  

1. When the best fitness is low at the end of the run in the optimization of a 

minimum function, low inertia weight and high learning factors are often 

preferred. 
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2. When the best fitness is stuck at one value for a long time, number of 

generations for unchanged best fitness is large. The system is often stuck 

at a local minimum, so the system should probably concentrate on 

exploiting rather than exploring. That is, the inertia weight should be 

increased and learning factors should be decreased. Based on this kind of 

knowledge, a fuzzy system is developed to adjust the inertia weight, and 

learning factors with best fitness (BF) and number of generations for 

unchanged best fitness (NU) as the input variables, and the inertia weight 

(w) and learning factors (c1 and c2) as output variables. 

 

The BF measures the performance of the best candidate solution found so far. 

Different optimization problems have different ranges of BF value. To design 

a FPSO applicable to a wide range of problems, the ranges of BF and NU are 

normalized into [0, 1.0]. To convert BF to a normalized BF format, we use 

equation (5.20): 

 

ܨܤܰ ൌ ሺ஻ிି஻ி೘೔೙ሻ
ሺ஻ி೘ೌೣି஻ி೘೔೙ሻ

                                                                                                  5.20   

 

Where BFmin is the real minimum fitness value and BFmax is greater than the 

maximum fitness value. NU can be converted into [0, 1.0] in similar way. The 

value for w is bounded in 0.2 1.2w≤ ≤  and the values of ܿଵand ܿଶ are bounded in 

1.0 ൑ ܿଵ,  ܿଶ ൑ 2.0. 

In the fuzzy particle swarm optimization, each control variables vector or 

particle was evaluated according to the following algorithm: 

Step (1) Input the power system data and the FPSO parameter limits. 

Step (2) Generate the initial searching points and velocities of particles 

randomly and uniformly in the searching space. For each particle, calculate 

objective functions. 

Step (3) Set each initial searching point to p-best; the initial best evaluated 

value among p-best is set to g-best. 
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Step (4) Update the FPSO control parameters (w, c1 and c2) by the fuzzy 

system. 

Step (5) New velocities and searching points are calculated using (4.2) and 

(4.3). 

Step (6) Evaluate all the particles in the new position. That is to calculate 

objective functions. 

Step (7) If the evaluation value of each particle is better than the previous      

p-best, the value is set to p-best; if the best p-best is better than g-best, the 

value is set to g-best. All of g-bests are stored as candidates for the final 

solution. 

Step (8) Check the stop criterion, usually a sufficiently good fitness value or a 

maximum number of iteration. If the stop criterion is not satisfied, then 

continue the process by returning to step 4. Otherwise, proceed to next step. 

The model of FPSO can be described as follows: 

 

Figure  5.6: Flow Chart of the Fuzzy Particle Swarm Optimization Method 
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The membership function of inputs and outputs of FPSO model shown below 

 

 

Figure  5.7: Membership function of Best fitness BF 

 

Figure  5.8: Membership function of number of generations for unchanged best fitness NU 

 

 

Figure  5.9: Membership function for learning factor C1 
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Figure  5.10: Membership function for learning factor C2  

 

 

Figure  5.11: Membership function of inertia weight w 

 

The fuzzy system consists of four principal components: fuzzification, fuzzy 

rules, fuzzy reasoning and defuzzification, which are described as following: 

 

5.11.1 Fuzzification 

Among a set of membership functions, left-triangle, triangle and right-triangle 

membership functions are used for every input and output as illustrated in 

Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11. Four 

membership function were used in this thesis PS (positive small), PM 

(positive medium), PB (positive big) and PR (positive bigger) are the linguist 

variables for the inputs and outputs.  
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5.11.2 Fuzzy Rules 

The Mamdani-type fuzzy rule is used to formulate the conditional statements 

that comprise fuzzy logic. The fuzzy rules in Table 5.10, Table 5.11 and Table 

5.12 are used to adjust the inertia weight (w) and learning factors (c1 and c2), 

respectively. Each rule represents a mapping from the input space to the 

output space. The base rule can be formulated as follows: 

 

R1:  If NBF is PS and NU is PS then w is PS; c1 is PR and c2 is PR. 

R2: If NBF is PM and NU is PS then w is PM; c1 is PB and c2 is PB. 

R3: If NBF is PB and NU is PS then w is PB; c1 is PB and c2 is PM. 

R4: If NBF is PR and NU is PS then w is PB; c1 is PM and c2 is PM. 

R5: If NBF is PS and NU is PM then w is PM; c1 is PB and c2 is PB. 

R6: If NBF is PM and NU is PM then w is PM; c1 is PM and c2 is PM. 

R7: If NBF is PB and NU is PM then w is PB; c1 is PM and c2 is PM. 

R8: If NBF is PR and NU is PM then w is PB; c1 is PM and c2 is PS. 

R9: If NBF is PS and NU is PB then w is PB; c1 is PB and c2 is PM. 

R10: If NBF is PM and NU is PB then w is PB; c1 is PM and c2 is PS. 

R11: If NBF is PB and NU is PB then w is PB; c1 is PS and c2 is PS. 

R12: If NBF is PR and NU is PB then w is PR; c1 is PS and c2 is PS. 

R13: If NBF is PS and NU is PR then w is PB; c1 is PM and c2 is PM. 

R14: If NBF is PM and NU is PR then w is PR; c1 is PS and c2 is PS. 

R15: If NBF is PB and NU is PR then w is PR; c1 is PS and c2 is PS. 

R16: If NBF is PR and NU is PR then w is PR; c1 is PS and c2 is PS. 

 

Table  5.10: Fuzzy rules for inertia weight (w) 

W 
NU 

PS PM PB PR 

NBF 

PS PS PM PB PB 

PM PM PM PB PR 

PB PB PB PB PR 

PR PB PB PR PR 
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Table  5.11: Fuzzy rules for learning factor c1 

C1 
NU 

PS PM PB PR 

NBF 

PS PR PB PB PM 

PM PB PM PM PS 

PB PB PM PS PS 

PR PM PM PS PS 

 

Table  5.12: Fuzzy rules for learning factor c2 

C2 
NU 

PS PM PB PR 

NBF 

PS PR PB PM PM 

PM PB PM PS PS 

PB PM PM PS PS 

PR PM PS PS PS 

 

5.11.3 Fuzzy Reasoning 

The fuzzy control strategy is used to map from the given inputs to the 

outputs. Mamdani’s fuzzy inference method is used in this thesis. The AND 

operator is typically used to combine the membership values for each fired 

rule to generate the membership values for the fuzzy sets of output variables 

in the consequent part of the rule. Since there may be several rules fired in the 

rule sets, for some fuzzy sets of the output variables there may be different 

membership values obtained from different fired rules. These output fuzzy 

sets are then aggregated into a single output fuzzy set by OR operator. That is 

to take the maximum value as the membership value of that fuzzy set. 

 

5.11.4 Defuzzification 

To obtain a deterministic control action, a defuzzification strategy is required. 

The method of centroid (center-of-sums) is used as shown below: 

ݕ ൌ
׬ ∑ .ݕ ௡ݕሻ݀ݕ஻௜ሺߤ

௜ୀଵ௬

׬ ∑ ௡ݕሻ݀ݕ஻௜ሺߤ
௜ୀଵ௬

                                                                                          5.21 
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Defuzzified value is directly acceptable values of PSO parameters, where the 

input for the defuzzification process is a fuzzy set ( )Bi yμ (the aggregate 

output fuzzy set) and the output is a single number y. 

 

5.12 Fuzzy Particle Swarm Optimization Results 
The following table shows the bus data and control variable results obtained: 

 

Table  5.13: The bus data solution by fuzzy Particle Swarm Optimization 

Bus 
no. 

Bus 
Code 

Voltage 
Magnitude 

Angle 
Degree 

Load Generation 
Qmin Qmax Qsh MW Mvar MW Mvar 

1 1 1.0500 0.0000 0 0 150.413 -15.208 0 0 0 
2 2 1.0383 -3.3422 21.7 12.7 42.158 20.858 -40 50 0 
3 0 1.0301 -5.0272 2.4 1.2 0.000 0.000 0 0 0 
4 0 1.0249 -6.0279 7.6 1.6 0.000 0.000 0 0 0 
5 2 1.0135 -9.3240 94.2 19 18.850 25.524 -40 60 0 
6 0 1.0216 -7.0879 0 0 0.000 0.000 0 0 0 
7 0 1.0105 -8.5293 22.8 10.9 0.000 0.000 0 0 0 
8 2 1.0213 -7.3766 30 30 10.000 29.355 -30 70 0 
9 0 1.0086 -8.5925 0 0 0.000 0.000 0 0 0 
10 0 1.0163 -10.4547 5.8 2 0.000 0.000 0 0 9.84 
11 2 1.0403 -6.5476 0 0 30.000 16.144 -6 24 0 
12 0 1.0264 -9.1728 11.2 7.5 0.000 0.000 0 0 0 
13 2 1.0500 -7.3118 0 0 40.000 18.074 -6 40 0 
14 0 1.0121 -10.2028 6.2 1.6 0.000 0.000 0 0 0 
15 0 1.0077 -10.4052 8.2 2.5 0.000 0.000 0 0 0 
16 0 1.0146 -10.0048 3.5 1.8 0.000 0.000 0 0 0 
17 0 1.0102 -10.5394 9 5.8 0.000 0.000 0 0 0 
18 0 0.9982 -11.1587 3.2 0.9 0.000 0.000 0 0 0 
19 0 0.9958 -11.4041 9.5 3.4 0.000 0.000 0 0 0 
20 0 1.0001 -11.2278 2.2 0.7 0.000 0.000 0 0 0 
21 0 1.0046 -10.9782 17.5 11.2 0.000 0.000 0 0 0 
22 0 1.0055 -10.9814 0 0 0.000 0.000 0 0 0 
23 0 0.9997 -11.0907 3.2 1.6 0.000 0.000 0 0 0 
24 0 0.9977 -11.6420 8.7 6.7 0.000 0.000 0 0 10 
25 0 0.9874 -11.5470 0 0 0.000 0.000 0 0 0 
26 0 0.9692 -11.9929 3.5 2.3 0.000 0.000 0 0 0 
27 0 0.9899 -11.2194 0 0 0.000 0.000 0 0 0 
28 0 1.0216 -7.5912 0 0 0.000 0.000 0 0 0 
29 0 0.9693 -12.5355 2.4 0.9 0.000 0.000 0 0 0 
30 0 0.9574 -13.4822 10.6 1.9 0.000 0.000 0 0 0 

 

Note that the voltage magnitudes result in column 3 are within the range 

(0.95- 1.05) with decreased in voltage deviation, also the real and reactive 

power generation are within the range. The capacitor banks are increased and 

within its range. 
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Table  5.14: The control variable solution by fuzzy Particle Swarm Optimization 

 

 

 

 

 

 

In the fuzzy particle swarm optimization methods, the variables in shaded 

cells indicate that all control variables are within the range specified and the 

output of simulation as follows: 

The total system loss, TSL = 7.8699 - 11.6112i MVA 

The voltage deviation, VD = 0.0146 pu 

The incremental fuel cost, λ = 3.3836 $ / MWH 

The total cost,   TC = 781.1845 $ / H 

The time elapsed for this simulation, t = 14.0566 S 

The system voltage profile is shown in Figure 5.5. 

 

 

Figure  5.12: System Voltage Profile for FPSO 
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Variable Result 

T6-9
 

1.0592 

T6-10
 

0.9000 

T4-12
 

0.9980 

T28-27
 

1.0167 

Real Power Loss 7.8699 

Reactive Power Loss - 11.6112i 

Voltage Deviation (pu) 0.0146 

Time Elapsed (s) 14.0566 
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5.13 Fuzzy Adaptive Particle Swarm Optimization Algorithm 
This new control method combined both fuzzy system and adaptive particle 

swarm optimization, where the inertia weight was modified according to 

equation (5.21), while c1 and c2 are modified according to fuzzy logic 

presented in the previous section. The fuzzy rule base and membership 

functions used in FAPSO are the same in the FPSO apart from the inertia 

weight.  

 

5.14 Fuzzy Adaptive Particle Swarm Optimization Results 
The following table shows the bus data and control variable results obtained 

Table  5.15: The bus data solution by Fuzzy Adaptive Particle Swarm Optimization 

Bus 
no. 

Bus 
Code 

Voltage 
Magnitude 

Angle 
Degree 

Load Generation 
Qmin Qmax Qsh MW Mvar MW Mvar 

1 1 1.050 0.000 0 0 150.42 -17.63 0 0 0 
2 2 1.039 -3.358 21.7 12.7 42.05 25.32 -40 50 0 
3 0 1.031 -5.031 2.4 1.2 0.00 0.00 0 0 0 
4 0 1.026 -6.033 7.6 1.6 0.00 0.00 0 0 0 
5 2 1.011 -9.298 94.2 19 18.89 22.83 -40 60 0 
6 0 1.021 -7.086 0 0 0.00 0.00 0 0 0 
7 0 1.009 -8.520 22.8 10.9 0.00 0.00 0 0 0 
8 2 1.023 -7.423 30 30 10.00 37.32 -30 70 0 
9 0 1.021 -8.550 0 0 0.00 0.00 0 0 0 
10 0 1.012 -10.421 5.8 2 0.00 0.00 0 0 0 
11 2 1.050 -6.549 0 0 30.00 14.89 -6 24 0 
12 0 1.016 -9.089 11.2 7.5 0.00 0.00 0 0 0 
13 2 1.043 -7.196 0 0 40.00 20.91 -6 40 0 
14 0 1.003 -10.130 6.2 1.6 0.00 0.00 0 0 0 
15 0 1.000 -10.357 8.2 2.5 0.00 0.00 0 0 0 
16 0 1.007 -9.953 3.5 1.8 0.00 0.00 0 0 0 
17 0 1.005 -10.505 9 5.8 0.00 0.00 0 0 0 
18 0 0.991 -11.126 3.2 0.9 0.00 0.00 0 0 0 
19 0 0.990 -11.377 9.5 3.4 0.00 0.00 0 0 0 
20 0 0.995 -11.200 2.2 0.7 0.00 0.00 0 0 0 
21 0 1.002 -10.945 17.5 11.2 0.00 0.00 0 0 0 
22 0 1.003 -10.947 0 0 0.00 0.00 0 0 0 
23 0 0.995 -11.058 3.2 1.6 0.00 0.00 0 0 0 
24 0 0.998 -11.619 8.7 6.7 0.00 0.00 0 0 9.43 
25 0 1.002 -11.619 0 0 0.00 0.00 0 0 0 
26 0 0.984 -12.052 3.5 2.3 0.00 0.00 0 0 0 
27 0 1.013 -11.343 0 0 0.00 0.00 0 0 0 
28 0 1.019 -7.610 0 0 0.00 0.00 0 0 0 
29 0 0.993 -12.599 2.4 0.9 0.00 0.00 0 0 0 
30 0 0.981 -13.502 10.6 1.9 0.00 0.00 0 0 0 
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The voltage magnitudes result in column 3 are within the range (0.95- 1.05) 

with decreased in voltage deviation to 0.0109. The real and reactive power 

generations are within the range, while the capacitor bank equal 9.43 on bus 

number 24 and equal 0 on bus number 10.  

Table  5.16: The control variable solution by FAPSO 

 

 

 

 

 

 

 

 

In the fuzzy adapted particle swarm optimization method, the variables in 

shaded cells indicate that all control variables are within the range specified 

and the output of simulation as follows: 

The total system loss, TSL = 7.8369 - 13.1478i   MVA 

The voltage deviation, VD = 0.0109 pu 

The incremental fuel cost, λ = 3.3829 $/MWH 

The total cost, TC = 780.9932 $ / H 

The time elapsed for this simulation is t = 14.1275 S 

The system voltage profile is shown in Figure 5.13. 

 

Variable Result 

T6-9
 

1.0099 

T6-10
 

0.9234 

T4-12
 

1.0254 

T28-27
 

0.9796 

Real Power Loss 7.8369 

Reactive Power Loss - 13.1478i 

Voltage Deviation (pu) 0.0109 

Time Elapsed (s) 14.1275 
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Figure  5.13: System Voltage Profile for FAPSO 

 

5.15 Discussion of Results 
The control variable limits and optimal control of IEEE-30 bus power system 

can be summarized in the following table 

Table  5.17: The control variable limits and optimal control value 

Control 
Variable 

Control 
variable limit OED PSO APSO FPSO FAPSO 

Min Max 

VG1 0.95 1.05 1.050 1.050 1.050 1.0500 1.050 

VG2 0.95 1.05 1.05 1.042 1.042 1.0383 1.039 

VG5 0.95 1.05 1.05 1.013 1.004 1.0135 1.011 

VG8 0.95 1.05 1.05 1.025 1.028 1.0213 1.023 

VG11 0.95 1.05 1.05 0.969 1.050 1.0403 1.050 

VG13 0.95 1.05 1.05 1.05 1.050 1.0500 1.043 

T6-9
 

0.9 1.1 0.978 1.047 0.965 1.059 1.010 

T6-10
 

0.9 1.1 0.969 0.900 1.095 0.900 0.923 

T4-12
 

0.9 1.1 0.932 1.058 1.100 0.998 1.025 

T28-27
 

0.9 1.1 0.968 0.976 0.995 1.017 0.980 

Qc10 0 0.1 0.1 0.773 0.923 0.984 0 

Qc24 0 0.1 0.43 0 0.1 0.1 0.943 

 

In general, all variables met their operational limits for all cases. The 

following table summarizes the result obtained. 
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Table  5.18: Results from various voltage control methodology 

Control 
strategy 

VD 
(pu) R (MW) λ ($/MWH) TC  ($/H) t (s) Reduction in 

VD (%) 
Reduction in 

R (%) 

OED 0.0325 8.3703 3.3897 782.2480 0.2383 Original Original 

PSO 0.021 8.0359 3.3869 781.8074 13.3194 1.15 33.44 

APSO 0.0180 7.9509 3.3846 781.677 12.5933 1.45 41.94 

FPSO 0.0146 7.8699 3.383691 781.1845 14.0566 1.79 52.16 

FAPSO 0.0109 7.8369 3.382931 780.9932 14.1275 2.16 53.34 
 

Note that OED, PSO, APSO, FPSO and FAPSO approaches adjusted the 

voltage magnitudes of all PV buses, transformers tap settings and shunt 

capacitor banks. In comparison with the OED, the PSO gives a reduction in 

the VD of 1.15 %, while the APSO gives 1.45% reduction, the FPSO gives 

1.79%, and finally the FAPSO gives a reduction of 2.16%. Moreover, there is a 

reduction in the real power loss of 33.44% using PSO, while a reduction of 

41.94% is obtained using APSO, the FPSO gives a reduction of 52.16 and the 

reduction using the FAPSO reaches the 53.34%. The time elapsed for OED is 

0.2383 second which is the smallest for all optimization technique because all 

control variable values are constant, thus has only a single solution, while for 

the PSO technique was 13.3194 second, the APSO takes 12.5933 second, also 

the FPSO elapse  14. 0566 second and FAPSO time elapsed is 14.1275, which is 

the largest one. This small incremental in time for FAPSO technique can be 

ignored corresponding to a large improvement in voltage deviation and real 

power loss reduction.           

 

Figure  5.14: System Voltage Profile 
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CHAPTER 6 

 

6. CONCLUSION 

 

 

6.1 General  
The purpose of this work was to develop and apply an optimization 

technique for handling the mathematical model of the voltage-control 

problem in a power system through reactive power dispatch and to compare 

the outcomes with the results achieved by previous solving methods. 

Although all methods have achieved acceptable results to the objective 

functions the proposed technique exploiting evolutionary programming has 

accomplished best results.  

 

6.2 Conclusion  
Different optimization techniques were employed using combination of all 

control tools such as tap setting, static VAR compensations and voltage-

control buses to solve the voltage-control problem. The PSO technique was 

first considered, the second was the Adaptive PSO technique then FPSO was 

employed and last a combination of fuzzy-logic and APSO technique were 

used, which known as FAPSO. It has been demonstrated that application of 

these optimization techniques gave acceptable results as far as the voltage 

magnitudes at the system buses are concerned. As well as the voltage 

deviations have been also within tolerable margins. The real power loss was 

also in a narrow range. However, we have noticed that the proposed 
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optimization technique has achieved better results. In the adaptive particle 

swarm optimization, the inertia weight was decreased linearly to explore the 

search space from global to local area, the fuzzy system used to modify the 

particle swarm optimization parameters such inertia weight, cognitive and 

social. Suitable selection of these parameters has led to better voltage 

deviation and minimum real power loss. Therefore, the implementation of 

Particle Swarm Optimization to the voltage-control problem is a contribution 

to the modern heuristics research in the power system engineering area. The 

voltage-control and reactive power dispatch problem were formulated as 

mathematical optimization problem subject to applicable constraints. All 

optimization techniques tackled in this thesis were programmed using the 

MATLAB code and applied to the standard IEEE 30-bus system model. In 

general, the results obtained show the effectiveness, flexibility, and 

applicability of the Particle Swarm Optimization and Fuzzy Adaptive Particle 

Swarm Optimization technique for the proposed control problem. 

 

6.3 Recommendations and Future Work 
Several heuristic tools have evolved in the last decade that facilitated solving 

optimization problems that were previously difficult or impossible to solve. A 

general recommendation for future work is to apply Particle Swarm 

Optimization and Fuzzy Adaptive Particle Swarm Optimization to problems 

that arise continuously. Also, it is recommended to test the approaches using 

larger systems and to optimize the program code to reduce the execution time 

in order to improve the algorithm’s performance. 
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Appendixes 

Appendix A: B - Coefficients  

 

B = 

   [ 0.0235    0.0082    0.0025   -0.0033    0.0009    0.0036 

     0.0082    0.0202    0.0008   -0.0055    0.0010    0.0026 

     0.0025    0.0008    0.0559   -0.0467   -0.0029   -0.0011 

    -0.0033   -0.0055   -0.0467    0.1423    0.0046   -0.0000 

     0.0009    0.0010   -0.0029    0.0046    0.0107   -0.0002 

     0.0036    0.0026   -0.0011   -0.0000   -0.0002    0.0248] 

  

B0 = 

[  -0.0015    0.0025   -0.0061    0.0097    0.0006    0.0004] 

 

B00 = 

  [  0.0014] 

 

 

 

 


