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 Pseudomonas syringae is a Gram-negative plant pathogen whose 

virulence is dependent upon its type III secretion system (T3SS), a nanosyringe 

that facilitates translocation, or injection, of type III effector (T3E) proteins into 

eukaryotic cells. The primary function of P. syringae T3E proteins is suppression 

of plant immunity. Bacterial proteins called translocators form a translocon that 

forms a pore in the host plasma membrane which is traversed by T3Es. HrpK1, a 

putative P. syringae translocator, is a type III-secreted protein important for 

virulence and T3E injection, but not secretion of T3Es. Harpins are a group of 

proteins specific to plant pathogens that are also important for T3E translocation.  

P. syringae pv. tomato DC3000 has 4 harpins – HrpZ1, HrpW1, HopAK1, and 

HopP1. Here, HrpK1 is confirmed to be a translocator. HrpK1 had a greater 

impact on T3E translocation than the harpins. HrpK1 and HrpZ1 disrupted 

liposomes. Both proteins interacted with phosphatidic acid which interfered with 

T3E translocation. HrpJ, a type III-secreted protein required for HrpZ1 secretion, 

was also required for secretion of HrpK1, HrpW1, and HopAK1. A hrpJ mutant 



 

secreted elevated levels of the Hrp pilus protein HrpA1. HrpJ appears to control 

transition from Hrp pilus secretion to translocator secretion. Secretion was 

complemented by secretion incompetent HrpJ derivatives indicating that HrpJ 

controls secretion from inside the bacteria. The hrpJ mutant expressing secretion 

incompetent HrpJ was reduced in virulence but was complemented by HrpJ 

expressed inside plant cells. Additionally, transgenic Arabidopsis plants 

expressing HrpJ were reduced in their immune responses indicating that HrpJ 

can suppress plant immunity. Plants pretreated with an inducer of pathogen-

associated molecular pattern-triggered immunity are unable to produce an HR. 

Plants, as an immune response, have evolved the ability to block T3E 

translocation when plant immunity has been induced prior to bacterial 

inoculation. This is especially true in non-host interactions whereas virulent 

bacteria appear to be able to attenuate injection restriction in host plants via T3E 

activity.
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Background on Pseudomonas syringae 

Pseudomonas syringae is a Gram-negative hemi-biotrophic bacterial plant 

pathogen comprised of more than 50 pathovars capable of infecting a wide 

variety of plant species in a host-pathovar specific manner (5, 147). P. syringae 

causes a number of different diseases, often the symptoms include, but are not 

limited to, chlorotic and necrotic lesions on aerial plant tissues (129). In addition 

to its endophytic lifestyle as a pathogen growing within a plant, P. syringae can 

also exist as an epiphyte, that is it can grow on the outer surface of a plant (78).  

A γ-proteobacteria, P. syringae is rod-shaped with polar flagella and is an 

obligate aerobe that produces fluorescent pigments (63). The fluorescence can 

be observed when grown on King’s B media and is attributable to the production 

of a pyoverdin siderophore that functions in iron acquisition (37, 99). P. syringae 

strains are members of the order Pseudomonadales (150) and are in the family 

of Pseudomonadaceae; the common bacteria associated with this family are 

water bacteria or plant pathogens (191). The genus Pseudomonas was first 

described by the German botanist Walter Migula at the end of the 19th Century 

(131).  

Individual strains within the P. syringae species are generally able to 

cause disease in a narrow host range and are given the pathovar epithet to 

distinguish among them at the infrasubspecific level. For example, the first 

identified strain of P. syringae was isolated from lilac (Syringa vulgaris) and was 

ultimately given the name P. syringae pv. syringae where the pathovar name is 

indicative of the host plant (195). Some pathovars are further divided into races 
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on the basis of host range within a plant cultivar (38). In non-host plants P. 

syringae induces a programmed cell death response known as the 

hypersensitive response (HR) that is a plant immune response associated with 

resistance (100). While P. syringae is primarily thought of as a pathogen, there is 

evidence that some strains may not be pathogenic (78, 134). It remains possible 

that these strains are pathogens but simply have not been tested on the proper 

host plant; however, in certain cases, strains are lacking genes thought to be 

essential for the type III secretion system (T3SS), which is generally considered 

to be necessary for pathogenesis (36). 

One of the model P. syringae pathovars and the most extensively studied 

is P. syringae pv. tomato DC3000 which causes bacterial speck on its hosts 

tomato (Solanum lycopersicum) and the model plant Arabidopsis thaliana (93, 

189). DC3000 has a 6.4 megabase genome and 2 plasmids and is an ideal strain 

for research as it was the first pathovar of P. syringae to be sequenced and it 

infects Arabidopsis (29). A. thaliana Col-0 has also been fully sequenced and is 

considered amenable to laboratory research due to its small size, relatively rapid 

growth, and abundant production of seeds (13). Additionally, DC3000 is an 

economically relevant pathogen as it causes bacterial speck in tomato, which 

results in necrotic lesions on the leaves and, more importantly, on the fruit which 

reduces yield and marketability (87). DC3000 serves as a model strain for a 

species that collectively can cause disease in a number of economically 

important plant species. 
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Type III Secretion Systems 

A necessary component of the virulence of P. syringae is the presence of 

a functional T3SS (4, 38). Often the term injectisome or non-flagellar T3SS is 

used to specify virulence associated T3SSs rather than flagellar T3SSs (52, 

192). Here, the term T3SS will refer to virulence-associated T3SS unless 

otherwise specified. T3SSs are used by numerous Gram-negative bacteria to 

translocate, or inject, type III effector (T3E) proteins into the cells of eukaryotes 

(39, 62). More than 25 species of bacteria are known to employ T3SSs as a 

mechanism of interaction with their respective eukaryotic hosts (40). T3SSs are 

found in animal pathogens such as Yersinia, Salmonella, and Shigella, 

phytopathogens such as Xanthomonas, Erwinia, and Ralstonia, but are also 

found in bacteria that use their T3SS to develop symbiotic relationships with 

eukaryotes such as Rhizobium (39).  

At least 25 proteins are used to construct the T3SS apparatus spanning 

both the inner and outer bacterial membranes and possessing an extracellular 

needle or pilus (Fig. 1) (46, 192, 194). Many of these proteins are similar in either 

sequence or function to proteins of bacterial flagella and export of the component 

proteins is analogous between the two systems (22, 132). T3SSs differ from 

flagella in that they inject T3E proteins into host cells and do so in a manner that 

requires host cell contact (21, 137, 188). 

Bacterial plant pathogens gain access to their hosts by entering through 

wounds or natural openings such as stomata (20). While many animal bacterial 

pathogens are intracellular, bacterial plant pathogens exclusively attack their 
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Fig. 1. Schematic diagram of the T3SS. The protein names used here are from 
the Yersinia spp. T3SS. The basal body consists of an inner membrane ring 
(IMR) and an outer membrane ring (OMR) spanning both the inner and outer 
bacterial membranes (IM and OM). The needle proteins (YscF) followed by the  
translocators and tip protein (YopB, YopD, and LcrV) travel through the basal 
body (YscC, YscD, and YscJ) and are thought to self-assemble. The type III 
effectors (T3E) then travel through the needle and translocon in the host 
membrane directly into the cytoplasm of the host cell. The export apparatus 
proteins are YscN, YscV, YscU, YscQ, YscR (R), YscS (S), and YscT (T). Many 
of the secreted proteins have congnate chaperones such as SycD for the 
translocators, LcrG for the tip protein, YscG and YscE for the needle, as well as 
assorted chaperones for T3E (not depicted). This figure is taken from Izore et al. 
(83). 
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hosts extracellularly from the apoplastic environment which necessitates 

penetration of the cell wall prior to injecting T3E proteins into the plant cell 

cytoplasm. In order to accomplish this, the injectisome used by plant pathogens 

is a long thin structure of variable length termed the Hrp pilus, in contrast to the 

shorter needle structures typically found in animal pathogens (86). The 

similarities and differences between the T3SSs of plant and animal pathogens 

are illustrated in Figure 2. 

Type III Effectors 

Ultimately the function of a T3SS is to inject T3E proteins into the host 

cells. In plant pathogenic bacteria that make use of T3SSs, the T3E proteins are 

responsible for suppressing immune responses and ultimately allow bacterial 

colonization and disease (3, 7). T3E proteins are known to function in an 

assortment of ways, having very diverse host targets, disrupting various signal 

transduction pathways, cell trafficking and gene expression, and localizing to 

different organelles (Fig. 2). Often the T3E proteins will mimic host proteins, work 

together in concert, or even have their function under strict temporal regulation 

(61, 164).  

Most individual T3Es in P. syringae appear to suppress plant immune 

responses, which will be discussed in more detail later (26, 69, 84). The majority 

of T3E targets and biochemical functions are unknown and this remains a 

popular area of research (Fig. 3) (14, 60, 64, 65, 112, 123, 124, 144, 165, 193, 

197). The number of T3E proteins in plant pathogens tends to be larger than in 

human pathogens; DC3000 itself has at least 30 T3E genes (29, 177). Couple  
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Fig. 2. Schematic diagram highlighting the differences and similarities 
between the T3SSs of plant and animal pathogens. A) Representative T3SS 
from a plant pathogen. B) Representative T3SS from animal pathogens. The 
secretion apparatus spans both bacterial membranes and is associated with a 
cytoplasmic ATPase. The T3SS from plant pathogenic bacteria is connected to 
an extracellular pilus that presumably spans the plant cell wall. The T3SS system 
from animal pathogenic bacteria is associated with a short extracellular needle, 
which serves as a transport channel for secreted proteins. The needle is linked 
via the so-called tip complex to the translocon, which forms a proteinaceous 
channel in the host plasma membrane and allows transport of effector proteins 
into the host cell cytosol. Evidence for the presence of a tip complex in plant 
pathogenic bacteria is still missing. IM, Inner membrane; OM, outer membrane; 
PM, plasma membrane. This figure is taken from Buttner and He (30).  
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that with the diversity of T3E genes in the pangenome of P. syringae and the 

highly divergent nature of T3E repertoires of individual strains and it seems likely 

that studying T3E function will continue to be a popular topic of research and 

likely will yield a number of new and exciting discoveries (15, 117). 

One might ponder the benefit of P. syringae maintaining so many T3E 

genes in its T3E inventory. To compound this issue further is the fact that single 

mutants lacking individual P. syringae T3E genes have very little effect on 

virulence. The reason for this appears to be effector redundancy (185). This 

becomes an important point when experimenting with mutants that may have 

incremental or masked virulence phenotypes. Because of these issues, 

strategies have been employed to make large-scale reductions in the T3E 

repertoires of P. syringae (77, 185). These strategies have been used to identify 

minimal sets of T3E genes for virulence, identify T3E genes responsible for host 

range, group similar functioning T3E genes, and create intermediately virulent 

strains (42, 107, 139, 185). 

All known T3E proteins function inside the host cells after having been 

translocated by the T3SS. Understanding how the pathogens are able to get 

bacterial derived proteins across both membranes, through a pilus or needle, 

across host cell walls, through host plasma membranes and into the cytoplasm is 

therefore very important. Additionally, the T3SS apparatus and translocator 

proteins, those that form the opening in the host plasma membrane, form a literal 

bottleneck for bacterial pathogens as all type III-secreted proteins must traverse 
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Fig. 3. Plant targets and activities of type III effectors from phytobacterial 
pathogens. Bacterial plant pathogens inject many different T3Es into plant cells via the 

T3SS. The activities of T3Es can be recognized by plant R proteins inducing ETI. The R 
protein RPM1 causes ETI by recognizing the phosphorylation (P) of RIN4 by the T3Es 
AvrRpm1 and AvrB, while RPS2 causes ETI upon the cleavage of RIN4 by the T3E 
AvrRpt2. The T3E AvrPphB degrades the PBS1 kinase inducing RPS5-dependent ETI. 
The R protein Prf recognizes the interaction of the Pto kinase with AvrPto or AvrPtoB to 
elicit ETI; however, AvrPtoB ubiquinates (Ub) the Fen kinase targeting it for degradation 
and preventing recognition by Prf. Plants can also use receptor kinases such as EFR or 
FLS2 to detect PAMPs. This leads to PTI. AvrPto inhibits the kinase activity of Pto, 
FLS2, and EFR. The HopAI1 T3E is a phosphothreonine lyase that suppresses MAPKs. 
The HopAO1 T3E is a protein tyrosine phosphatase whose target is unknown. The 
HopU1 T3E is a mono-ADP-ribosyltransferase that modifies GRP7 glycine-rich RNA-
binding protein and probably prevents it from binding to RNA. The HopM1 T3E causes 
the ubiquination and degradation via the 26S proteasome of AtMIN7, which may be 
involved in vesicle trafficking. The GALA T3Es contain F-box domains and can interact 
with plant ASK proteins (part of an SCF-type E3 ubiquitin ligase complex). GALAs are 
predicted to change the ubiquitination status of host proteins. The T3Es XopD and 
AvrXv4, which function in different locations in the plant cell, are isopeptidases that 
remove SUMO (Su) from host proteins. The chloroplast localized, J domain-containing 
T3E HopI1, suppresses salicylic acid (SA) production and may associate with Hsp70. 
T3Es AvrBs3, PthXo6/7, and HsvG/B bind to specific promoters in the nucleus inducing 
the transcription of genes favoring pathogenesis. Broken lines indicate plant responses 
and solid lines T3E activities. This figure is taken from Block et al. (20). 
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this system in order to subvert host immunity and cause disease. This point of 

confluence for T3E protein delivery could be a target for both host immune 

systems as well as for therapeutic or preventative measures to reduce the effects 

of the resulting diseases. The latter can only be accomplished by more fully 

understanding the mechanisms involved in T3E translocation. 

Secretion vs. Translocation 

 Secretion by definition occurs when the bacterium moves any of its own 

proteins from inside the cell to outside the cell. Translocation takes place when a 

bacterial protein is injected into the cytoplasm of a eukaryotic cell. It is important 

to differentiate between the two. All translocated proteins by definition are 

secreted but a protein can be secreted without being translocated. All T3E 

proteins act inside the plant cell and therefore must be both secreted and 

translocated. Surprisingly it seems that most secreted substrates are also 

translocated even in instances where the primary function appears to take place 

extracellularly (59, 108, 152, 156). It is unknown whether the translocation of all 

type III-secreted substrates predicted to act outside the plant cell is biologically 

relevant. Potentially the translocation observed for some of the proteins may be 

an artifact of the assays themselves and they are not translocated in nature. 

 Importantly though, through genetic manipulation, the difference between 

secretion and translocation can be exploited for research. Whereas mutants that 

block both secretion and translocation are considered T3SS-deficient, mutants 

that are positive for secretion of T3E proteins but severely reduced or completely 

unable to inject T3E proteins have been observed. In these cases it is presumed 
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that these genes encode proteins that function in translocation, either directly as 

with translocator proteins, or indirectly such as the regulation of translocator 

protein secretion (23, 31, 59, 108, 152). 

Hrp/Hrc T3SSs 

The T3SS of P. syringae is encoded by the hrp (HR and pathogenicity) 

and hrc (HR and conserved) genes which are contained in the hrp/hrc cluster (6). 

The Hrp T3SSs are conserved among, but not limited to, bacterial plant 

pathogens (41, 119, 173). hrp genes were first described in P. syringae pv. 

phaseolicola (120) and then in other strains of P. syringae (9, 16, 43, 91, 92) as 

well as other phytopathogenic bacteria such as Xanthomonas (9, 91, 92), Erwinia 

(16, 17), and Ralstonia (28) among others (119). The nomenclature was 

established based on the discovery that mutations made in these genes in P. 

syringae pv. phaseolicola resulted in reduced pathogenicity in bean plants and 

the inability to elicit the HR in tobacco (120).  

 Hrp T3SSs can be divided into two groups with P. syringae belonging to 

Group 1 along with E. amylovora and the human pathogen Vibrio 

parahaemolyticus all of which are γ-proteobacteria. The other group of Hrp 

T3SSs, Group 2, includes X. campestris, R. solanacearum, and the human 

pathogen Burkholderia pseudomallei, the latter two being β-proteobacteria (6, 

39). The two groups are divided based on the presence of similar genes, 

regulatory elements, and arrangement of the genes within their respective 

hrp/hrc clusters (4). When one compares the two groups based on Hrp systems 
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versus their phylogenic groupings there are obvious discrepancies, suggesting 

horizontal acquisition (6).   

 Included in the approximately 26 kb hrp/hrc locus are 9 genes that share 

homology with animal T3SSs called hrc genes, and 17 hrp genes that do not 

have clear homologs in other T3SSs (147). The 9 widely conserved hrc genes 

are named with the final letter of the gene name corresponding to the gene name 

used in the Yersinia spp. homolog (24). Most T3E genes are known as avr 

(avirulence) and hop (hrp-dependent outer proteins) in the hrp T3SS (38). The 

difference in nomenclature is that avr genes were discovered initially because the 

induce immunity in resistant plants, rendering the bacteria avirulent. But in 

essence all T3Es are thought to possess a virulence function even though for 

many T3Es these remain to be explored. 

 The hrp/hrc gene cluster present in P. syringae strains is one-third of a 

three part pathogenicity island (pai). Pais are sequences of DNA, often large, that 

contain virulence genes and are frequently found in pathogenic strains but are 

absent from non-pathogenic strains of the same or related species (73). Often 

pais are thought to have been acquired through horizontal gene transfer (73). 

The hrp/hrc pai contains the conserved effector locus (CEL) and exchangeable 

effector locus (EEL), which flank the hrp/hrc cluster on either side. The EEL 

encodes diverse genes including effectors and contains mobile genetic element 

sequences. The CEL, as its name implies, is more conserved, and contains 

effectors shown to be important to virulence (4). In addition to this pai, P. 

syringae contains at least 5 additional chromosomal pais and a pai on one of its 
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plasmids that contain T3E genes (68, 77, 107, 185). These pais were identified 

on the basis of having multiple virulence genes, a unique G + C content relative 

to the rest of the genome, occupying large regions, often having multiple repeat 

sequences at the borders, being unstable, and flanked by mobile genetic 

elements (4, 73).  

Structure of the T3SS apparatus 

The biogenesis of the supramolecular complex that is the T3SS requires 

highly regulated and precise interactions among the proteins that comprise it. 

Production of this complex necessitates the coordinated construction of cytosolic, 

periplasmic, membrane-bound, and extracellular proteins (83). Based on its 

structure and mode of function, the T3SS is considered a nanosyringe as it is 

able to deliver T3E proteins through a narrow channel in an ATP-dependent 

manner (127). Assembly of the T3SS is thought to take place in a concerted 

stepwise fashion. First, the basal body spanning both the inner and outer 

membranes is constructed. Second, the needle/pilus structure is assembled. 

Third, the translocator proteins are secreted and ultimately inserted in the host 

plasma membrane, at which point T3Es are injected (83). 

 The basal body begins to form the opening through which type III secreted 

substrates will be secreted (127). Three proteins make up the stable core of the 

type III basal body (98, 103). Based on the relatively small size of these proteins 

(all are <70 kDa) and the necessarily large size of the basal body structure (>300 

angstroms), the proteins must form highly symmetric oligomers (127). In 

confirmation of this, electron microscopy experiments have shown that the basal 
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body is a ring-like structure composed of high-order radial symmetry (79, 125, 

126). These rings span both the inner and outer bacterial membranes. The inner 

membrane-spanning ring (IMR), which is the larger of the two membrane-

spanning portions, is itself made up of two sets of rings (135). PrgH and PrgK are 

the constituent proteins of the Salmonella enterica IMR in which the seminal and 

most elegant research has been conducted (30, 103, 162). The corresponding 

IMR genes in P. syringae are hrcJ (75) and hrcQ. BLAST searches on NCBI 

identify hrcQ as encodes a yscD domain (Yersinia spp. IMR protein) though this 

similarity has never been published. The hrcQ gene is encoded on the hrp/hrc 

cluster and has been annotated as a T3SS apparatus protein. The outer 

membrane ring (OMR) of the T3SS is composed of proteins belonging to the 

secretin family of proteins (135). Secretins are proteins that form multimeric ring 

structures in the outer membranes for a variety of different specialized 

multiprotein secretion systems including type II and type IV secretion (102). The 

secretin making up the OMR in P. syringae T3SSs is HrcC (47). Mutants in the 

hrcC gene are deficient in type III secretion and are often used as negative 

controls. 

 As conserved as the basal body is among T3SSs, the Hrp pili and needles 

of T3SSs are very divergent. This is likely due to the different hosts, 

environments, and modes of infection of the different bacteria that employ them. 

The main component of the Hrp pilus is the HrpA1 protein. This protein is 

secreted via the T3SS through the basal body and polymerizes to form the pilus 

(86, 115). The Hrp pilus appears to be much longer than the T3S needles of 
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Yersinia spp. which are consistently only 60 nm in length (80, 104). The indefinite 

length of the Hrp pilus is probably necessitated by the pathogen’s need to bridge 

the variably thick cell wall of the host plant. This is analogous to the filament 

found in enteropathogenic E. coli where the short needle, composed of EspF and 

comparable in length to the Yersinia needle, is extended by a long flexible 

filamentous structure composed of the protein EspA. This supramolecular sheath 

is thought to be necessary for the pathogen to deliver type III substrates across 

the mucus layer of enterocytes in the intestine (45, 163). In addition to the 

variability caused by mechanical necessity due to infection types, the pili, 

needles, and filaments may have further variability imposed on them because 

they come in direct contact with host cells. This contact makes pilus/needle 

proteins poteintial targets of host defense responses, likely adding selective 

pressures via co-evolution. Indeed HrpA1 seems to be under strong diversifying 

selection which enables maintenance of genetic diversity (71).   

Translocon and harpins 

 In terms of molecular host-pathogen interactions nothing epitomizes the 

literal term more than the translocon. It is the exact point where phytopathogenic 

bacteria and plant cells make contact. The translocon proteins have been 

implicated in recognizing host cell contact (1). The translocators imbed 

themselves within the eukaryotic plasma membrane (128), making them the 

intimate interface between the plant cell and the bacterial cell. T3Es cannot be 

efficiently translocated without translocators, effectively rendering the bacteria 

non-pathogenic; therefore, translocators are of the utmost importance to 
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pathogens employing T3SSs (182). Translocator proteins, being essential and 

entrenched in the host-pathogen interface, are also likely targets of host immune 

responses (12, 168).  

 The translocon complexes for some strains of animal pathogens have 

been more extensively characterized than in plant pathogens. They are made of 

two hydrophobic translocator proteins that physically form the pore in the host 

plasma membrane and one hydrophilic protein known as the tip protein that 

connects the needle to the translocators (138). The translocon of plant 

pathogens seems to be quite different. In P. syringae HrpK1 is a putative 

translocator protein. It is hydrophobic, has a transmembrane domain and shares 

certain biochemical properties with the YopB family of translocators from Yersinia 

spp. (152). There is no protein similar to the other hydrophobic translocator, 

typified by YopD; nor is there a hydrophilic tip protein that can be identified (30).

 Coupled with the absence of the canonical components of the translocon, 

is the presence of a unique class of proteins conserved among bacterial plant 

pathogens but absent in their animal counterparts. These are the harpin proteins. 

Harpins have long been implicated in translocation of T3E proteins (6). Rich in 

glycine and lacking cysteine, harpins are able to elicit an HR when purified and 

infiltrated into plant tissue (74, 187). While highly conserved among plant 

pathogenic bacteria, the number of harpins present in each strain is variable. 

DC3000 has a suite of four harpin genes, hrpZ1, hrpW1, hopAK1, and hopP1 

(108). HrpZ1 only contains a harpin domain, while the others have additional 
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domains. HrpW1 and HopAK1 both have pectate lyase domains, and HopP1 has 

a lytic transglycosylase domain (32, 108, 148). 

Regulation of T3SS 

 Regulation of the expression of the T3SS is obviously important because 

the bacterial cells using a T3SS need to make sure that the apparatus is 

constructed prior to contact with host cells. The hrp genes are not constitutively 

expressed. For example under nutrient rich conditions they are turned off. The 

hrp genes are only turned on when necessary, that is, in the plant apoplast at the 

concentration where pathogenicity is most beneficial to the bacteria. When T3SS 

genes are turned on there is a concomitant down-regulation of many 

housekeeping genes suggesting that the T3SS comes at a cost to the basic 

bacterial lifestyle (109). Expression of the Hrp T3SS and most of the T3E genes 

is activated by the alternative sigma factor HrpL, which recognizes type III-related 

promoters (54). By using a reporter transposon to enlarge the set of known Hrp 

promoters, a hidden Markov model was defined to search for additional Hrp 

promoters (57). This helped further identify T3E genes, as well as virulence 

genes unrelated to the T3SS such as the toxin coronatine. A whole-genome 

microarray was constructed for DC3000 that identified nearly 200 genes 

regulated by HrpL (54). Like DC3000, the T3SSs of other P. syringae strains are 

also under the control of HrpL (116). 

 HrpL is a 54 kDa alternative sigma factor (sigma54). Regulation of sigma54-

RNA polymerase activity is achieved by the action of specific enhancer-binding 

proteins. In phytopathogenic species of P. syringae hrpL expression is regulated 
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by HrpR and HrpS (81, 90). HrpR and HrpS, two atypical two component 

response regulators, are encoded by the hrpRS operon and form a 

heterohexamer (HrpRS) that binds the hrpL promoter to activate its transcription 

(90).  

HrpR and HrpS are controlled by HrpV and HrpG (90). hrpV and hrpG are 

both encoded on the hrpC operon (48). HrpV interacts with and negatively 

regulates HrpS (90, 153). HrpG interacts with and suppresses HrpV which frees 

HrpS allowing HrpRS to activate downstream hrp/hrc genes (184). In addition to 

HrpG and HrpV, hrpR and hrpS expression is effected by the GacS/GacA two 

component system (33). This two component system is found in numerous 

Gram-negative bacteria and often plays a role in regulating pathogenicity (76). 

GacS is the sensory histidine kinase and GacA is the response regulator (174). 

Also, the HrpA1 protein, the main component of the Hrp pilus, is important for 

hrpR and hrpS expression, as a hrpA1 mutant exhibits reduced transcription of 

hrpR and hrpS (186). 

As mentioned the T3SS is only turned on under certain environmental 

conditions. This can be accomplished in the lab using certain T3SS-inducing 

minimal media that simulate the plant apoplastic environment. T3SS-inducing 

media are acidic, nutritionally poor, and contain specific sugars, often strain-

dependent, as the lone carbon source. Expression of T3SS genes is highest 

when P. syringae bacteria are grown at about 22°C (181). Induction of the P. 

syringae pv. phaseolicola hrpL gene in planta is much greater compared to 

induction in T3SS-inducing media, suggesting that there are signals in the plant 
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that contribute to T3SS gene induction (155, 174). Indeed, the expression of 

hrpA1 was shown to be induced to higher levels in the presence of small, water-

soluble compounds from plant exudates (72).  

Secretion hierarchy  

 Secretion hierarchy, that is the order in which T3SS substrates are 

secreted, is an important area of research. This process is thought to be tightly 

regulated such that certain classes of proteins are secreted together in a 

temporal manner. For example, all the pilus components would be secreted 

together early and then turned off prior to translocator secretion (Fig. 4) (160). A 

hierarchy likely exists even within classes of proteins, as there are probably T3E 

proteins that are secreted early or late relative to one another. This would 

prevent interference among their activities or potentially allow for certain T3E 

proteins to modify the activity of other T3E proteins (164). This likely all takes 

place within the bacterial cell, in Salmonella T3SSs there is a sorting platform 

where the order of secretion is determined (110).  

Control of secretion hierarchy may be controlled in part by HrpL. Induction 

kinetics of the HrpL regulon identified eight genes whose products are rapidly 

expressed, including the pilus protein HrpA1, the translocator HrpK1, and the 

harpins HrpW1 and HrpZ1 (54). It makes intuitive sense that these proteins 

would necessarily be among the first proteins secreted as T3E translocation 

would not be possible without them.  

Beyond gene expression there are other proteins known to be involved in 

secretion hierarchy. The YopN/TyeA family of proteins is important in controlling 
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Fig. 4. Schematic diagram showing the hierarchical nature of type III 
secretion in the T3SS of P. aeruginosa. Figure depicted sequentially moving 
from left to right. Upon formation of the base rings (green), PscF is released from 
its chaperones (PscG and PscE) and polymerizes to form the T3SS needle. The 
tip protein PcrV is released from its cytoplasmic partner (PscG) and forms the tip 
of the PscF needle after being secreted through it. Translocator proteins PopB 
and PopD release PcrH and are secreted. Upon formation of the Pop translocon 
on the eukaryotic membrane, type III effectors (T3Es) produced in the bacterial 
cytoplasm release their cognate chaperones and are injected through the 
translocon pore and into the target cytoplasm. IM, inner membrane; OM, outer 
membrane. This figure is taken from Mattei et al. (128). 
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the secretion of translocator proteins (27, 151). The family member from P. 

syringae is HrpJ which is necessary for the secretion of the harpin HrpZ1 but 

does not control T3E secretion (59). A hrpJ mutant is severely reduced in 

virulence and T3E translocation in both P. syringae and E. amylovora (59, 143). 

Because hrpZ1 mutants have subtle virulence phenotypes and the hrpJ mutant 

phenotype is so severe, HrpJ likely controls the secretion of more proteins than 

just HrpZ1. Further investigation of this protein will help identify P. syringae 

translocators as well as provide insight into the control of secretion hierarchy. 

Another component of the regulation of secretion hierarchy may be 

proteins containing a feature known as the type III secretion substrate specificity 

switch (T3S4). YscP is the Yersinia protein with a T3S4 domain and is referred to 

as a molecular ruler as it is thought to control the length of the needle (2). YscP 

function is dependent on its interaction with YscU, a component of the T3SS 

basal body (89). The yscP mutant secretes the needle protein in uncontrolled 

abundance (137). A mutant lacking the protein proposed to be the molecular 

ruler in P. syringae, HrpP, actually secretes less pilus subunits (i.e., the HrpA1 

protein) than wild type DC3000, the opposite phenotype of the yscP mutant 

(136). Therefore, the transition of secretion of HrpA1 to translocator secretion is 

likely controlled by a different protein.     

P. syringae toxins and hormones 

 In addition to the T3SS, there are a number of other pathogenicity factors 

employed by P. syringae including toxins and hormones that are important 

contributors to interactions with hosts. P. syringae strains produce a large array 
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of pathovar-specific phytotoxins including coronatine, syringomycin, 

syringopeptin, tabtoxin, syringolin, and phaseolotoxin (18). It has been reported 

that there may be a correlation between the size of the T3E repertoire of a given 

strain and the number of toxins it produces suggesting a possible compensatory 

relationship between the two (15). 

 DC3000 contains the phytotoxin coronatine which is a non-host specific 

toxin that contributes to the chlorosis associated with disease symptoms. 

Coronatine appears to function by mimicking the plant hormone methyl 

jasmonate (55). Additionally, coronatine plays a role in opening stomata, 

enabling the bacteria to enter the leaf by overcoming pre-invasive immunity 

which normally causes stomata to temporarily close (130). Syringomycin is 

produced by most strains of P. syringae pv. syringae and functions to induce 

necrosis in infected plants. It functions by inserting itself in lipid membranes 

allowing for cation leakages that are deadly to the plant cells (18). A toxin with a 

similar function to syringomycin is syringopeptin. It too forms pores in 

membranes contributing to necrosis but the structure is much different (82). Like 

syringomycin, syringopeptin was initially identified in P. syringae pv. syringae. All 

strains of P. syringae pv. syringae that have been analyzed produce both 

syringomycin and syringopeptin suggesting interrelated roles for the toxins in the 

plant pathogen interaction; however, the reason for keeping two toxins with such 

similar function remains unclear (18). Tabtoxin is a monocyclic β-lactam 

produced by P. syringae pv. tabaci that irreversibly inhibits glutamine synthetase. 

This mode of action prevents glutamine synthetase from detoxifying ammonia. 
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Phenotypically the toxin manifests itself by inducing chlorosis in plants (175). 

Syringolin A (SylA) inhibits the 26S proteasome (67). This toxin has been shown 

to help P. syringae pv. syringae B728a open stomata in bean plants similar to the 

function of coronatine (161). Additionally, SylA has recently been implicated in 

distant colonization (101). Phaseolotoxin is produced by P. syringae pv. 

phaseolicola the causative agent of halo blight on legumes. Phaseolotoxin 

competitively inhibits ornithine carbamoyl transferase resulting in a deficiency in 

arginine which contributes to chlorosis or the characteristic “halo” of the disease 

(133). This is not a comprehensive list of P. syringae toxins. Some are more 

conserved than others while many are strain specific. (15).  

In addition to producing toxins and T3E proteins, many P. syringae strains 

produce the plant hormone indole-3-acetic acid (IAA) (158, 169). The iaaL gene, 

which is involved in IAA biosynthesis, is preceded by a hrp promoter suggesting 

a role in pathogenicity but the function in colonization remains unclear. P. 

syringae may also induce IAA responses in plant cells through transformation of 

plant-derived IAA precursors. P. syringae pv. syringae B728a has been shown to 

produce a nitrilase and an aldoxime dehydratase; together these enzymes can 

transform indole-3-acetaldoxime (IAOx) to IAA. During infection tryptophan 

catabolism is activated resulting in accumulation of IAOx, which suggests these 

genes may play an important role in manipulating plant metabolism to promote 

infection (158). 
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Plant immunity 

 The interactions between pathogens and plants lead to a constant 

struggle in which plants evolve to avoid disease and the pathogens evolve to 

subvert detection. This has inevitably led to a back-and-forth genetic battle 

between the plant immune system and bacterial virulence factors, a so-called 

molecular arms race. Plants evolve genes whose products can recognize 

pathogens while the genes corresponding to the recognized bacterial proteins 

are modified or discarded to prevent recognition (10, 105). Plants have 

developed a two-pronged defense strategy against pathogens. First, plants likely 

evolved extracellular receptors to detect the presence of microbial organisms. 

Epitopes from highly conserved microbial structural elements termed pathogen 

(microbe)-associated molecular patterns (PAMPs/MAMPs) are recognized by 

these receptors called pattern recognition receptors (PRRs) (88). Recognition of 

PAMPs leads to PAMP-triggered immunity (PTI). Second, plants have 

intracellular receptors (R proteins) that recognize the presence of translocated 

bacterial effectors, historically referred to as avirulence (Avr) proteins (51). 

Originally proposed to be a direct interaction (96), it is now widely accepted 

based on experimental evidence that the recognition of bacterial Avr proteins is 

indirect (44, 180). This second line of defense is known as effector-triggered 

immunity (ETI). 

Differences between PTI and ETI are clear and defined in terms of the 

recognition events that lead to the activation of each. Similarly the elicitors 

themselves are also usually clearly different. PAMPs are generally conserved 
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throughout microbes and contribute to their fitness in general ways.  For 

example, both flagellin and peptidoglycan are PAMPs where flagellin contributes 

to motility and peptidoglycan contributes rigidity and structure to the bacterial cell 

(35, 70) Other PAMPs include, elongation factor Tu (EF-Tu) and 

lipopolysaccharides from bacteria, oomycete glucans, and fungal chitins (176). 

Effectors instead are very specific to certain pathogens, sometimes only found in 

a single pathovar, and play a role in virulence. However, at this level the lines 

between PTI and ETI begin to be blurred as many effectors are highly conserved 

among pathogens and some PAMPs are narrowly conserved (146, 176).  

While the mode of recognition is clearly different, the responses from both 

PTI and ETI are very similar. The fact that pathogens present both PAMPs and 

effectors simultaneously further obscures differences between PTI and ETI (94, 

154, 176). Both lines of defense are complex and highly coordinated having been 

driven by eons of co-evolution (118). In spite of the overlap between PTI and ETI, 

in this dissertation the responses will be treated as separate and each will be 

further characterized individually to highlight differences in the biology. 

PAMP-Triggered Immunity  

PTI is the frontline of immunity, where the plant recognizes the presence 

of microbes. PAMPs are recognized by PRRs. The PRR that recognizes flagellin 

is FLAGELLIN SENSITIVE 2 (FLS2). It is able to recognize a 22 amino acid 

peptide within flagellin known as flg22 (172). FLS2, like many PRRs, is a leucine-

rich repeat receptor kinase (LRR-RK) belonging to the subfamily XII of LRR-RK. 

FLS2 has an extracellular domain with 28 LRR motifs, a transmembrane domain, 
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and a cytoplasmic serine/threonine kinase domain. FLS2, which was first 

identified in Arabidopsis (66), has since been found in a number of other plants 

(142). FLS2 has been shown biochemically to directly bind flg22 (34).  

EFR is a receptor kinase homologous to FLS2 (196). It recognizes elf18, 

an 18 amino acid peptide from EF-Tu that is sufficient to induce PTI (106, 198). 

EFR is structurally similar to FLS2, belongs to the same subfamily of LRR-RK, 

and has 21 LRR motifs. Mutants in either of these receptors exhibit increased 

susceptibility to pathogens (142, 199).  

In Arabidopsis the fungal PAMP chitin is recognized by CERK1 which has 

three extracellular LysM domains and an intracellular Ser/Thr kinase domain 

(196). Interestingly, CERK1 has been shown to be involved in bacterial 

recognition as Arabidopsis mutants were more susceptible to P. syringae 

suggesting that PRRs recognize multiple PAMPs (64). Indeed, CERK1 together 

with LYM1 and LYM3, two LysM domain proteins, recognizes peptidoglycan in 

Arabidopsis (190). Given that the majority of PRRs interact with unknown PAMPs 

the number of recognized PAMPs and therefore complexity of PTI could be 

significantly more multifaceted than already hypothesized. 

The PTI response to a PAMP is a complex network of reactions most of 

which have a characteristic time frame in which they occur. Typically, it has been 

shown that PAMPs induce a stereotypical response suggesting that unique initial 

signals converge to a common multilayered response (25).  

Almost immediately following PAMP treatment (< 2 minutes) there is an 

influx of Ca2+ and H+ into plant cells and concomitant K+ and anion efflux into the 
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plant apoplast leading to an alkalinization (146). The elevated levels of 

cytoplasmic Ca2+, or calcium burst, may serve as signaling molecules to open 

membrane channels (111, 157) or activate calcium-dependent kinases (122). 

Concurrent with or immediately following the calcium burst is the oxidative burst, 

another early PTI response. The reactive oxygen species produced, such as 

H2O2, may act directly as antimicrobial agents, be used as signaling molecules, 

or strengthen the cell wall by inducing cross-linking (8). Another early response 

involved in PTI is the activation of mitogen-associated protein kinases (MAPK) 

signal transduction pathways which peak 5-10 minutes after PAMP treatment 

(145). In an Arabidopsis leaf cell system flg22 was found to activate a cascade of 

MEKK1, MKK4/MKK5 and MPK3/MPK6 sequentially, which activated WRKY22 

and WRKY29 transcription factors (11).   

The aforementioned responses happen almost immediately and all are 

thought to be involved in downstream signaling events. Other responses happen 

on the order of minutes and are likely turned on by the cellular signals described 

above. Ethylene biosynthesis takes place early in PTI (170). Shortly after 

activation by flg22 (10-20 minutes), FLS2 undergoes ligand-induced endocytosis 

(159). This is likely involved in further PTI signaling (114) as well as the 

degradation of the receptor so that PTI is not turned on indefinitely (121). 

Activation of nearly 1,000 genes also occurs relatively quickly following PTI 

activation and the genes activated appear to be similar regardless of the PAMP 

used for elicitation (25). 
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While many responses happen quickly following PAMP recognition, other 

responses take place over several hours or days. Callose deposition is the 

quintessential late PTI response. Callose is the main component of extracellular 

papillae that form in response to PAMPs. These callose-based papillae also 

contain phenolic compounds and can be seen microscopically in the cell wall at 

the area where T3SS-deficient mutants are located which is attributable to PTI-

induction. Fully pathogenic bacteria are able to suppress PTI and are not 

associated with large papillae (97). Another response that takes a long time to 

observe is seedling growth inhibition induced by PAMP treatments. The 

significance of this response is only beginning to be understood (113). 

The multitude of different and reliable responses associated with PTI has 

lent itself well to use in molecular plant-microbe interaction research. The 

oxidative burst can be measured using luminol which fluoresces when it interacts 

with hydrogen peroxide. Callose deposition can be easily visualized and 

quantified microscopically by staining with aniline blue. Expression of different 

genes can also be used to monitor PTI. These tests and others can be used not 

only qualitatively to look at induction or suppression of PTI but in some instances 

can be used quantitatively to differentiate between assorted responses based on 

the intensity of the response evoked.  

Effector-Triggered Immunity  

 With plants likely having evolved PTI as the first active layer of plant 

immunity, pathogens probably responded by evolving ways to suppress PTI such 

as T3SS-injection of T3Es. In response, the plant evolved a second line of 
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defense in order to recognize the presence of T3Es and did so by evolving 

intracellular receptors known as R proteins. This evolved intracellular recognition 

by the plant represents ETI. Presumably the pathogen would continue to acquire 

new T3Es to suppress ETI while the plant would evolve new R proteins (53). This 

two-layered plant immunity model can be illustrated within the context of the 

zigzag model in which ETI and PTI are described as similar responses with ETI 

being a more prolonged and robust response such that it goes above a certain 

threshold until it induces an HR (Fig. 5) (88). Lending credence to this idea of a 

sequential evolution with PTI developing prior to ETI is the discovery that PRRs 

appear to have evolved very early while R proteins are evolutionarily much 

younger (176).  

Hypersensitive Response 

 The hypersensitive response (HR) is a programmed cell death response 

that is often associated with ETI, which is triggered when a plant R protein 

recognizes a cognate bacterial effector. The HR was first observed in wheat in 

response to the fungal pathogen Puccinia glumarum in 1902 and the term was 

coined in 1915 to describe pathogen-triggered cell death associated with disease 

resistance to P. graminis (171, 183). Zoltan Klement was the first to show that 

bacteria could elicit an HR and established it as a valuable and frequently used 

tool in the laboratory. The need for both an R gene from the plant as well as the 

avr effector gene from the pathogen led Harold Flor to develop the gene-for-gene 

hypothesis. Flor wrote, “for each gene that conditions resistance in the host there 

is a corresponding gene that conditions pathogenicity in the parasite” (56). 



31 
 

 

 

 

Fig. 5. A zigzag model illustrates the quantitative output of the plant 
immune system. Plants detect microbial/pathogen-associated molecular 
patterns (MAMPs/PAMPs, red diamonds) via PRRs to trigger PAMP-triggered 
immunity (PTI). Successful pathogens deliver effectors that interfere with PTI, or 
otherwise enable pathogen nutrition and dispersal, resulting in effector-triggered 
susceptibility (ETS). When one effector (indicated in red) is recognized by an NB-
LRR protein, effector-triggered immunity (ETI) is activated. ETI often passes a 
threshold for induction of hypersensitive cell death (HR). Pathogen isolates are 
selected that have lost the recognized red effector, and perhaps gained new 
effectors through horizontal gene transfer (in blue)—these may help pathogens 
suppress ETI. Selection favours new plant NB-LRR alleles that can recognize 
one of the newly acquired effectors, resulting again in ETI. This figure is taken 
from Jones and Dangl (88). 
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 The HR is often compared to animal apoptosis but in some ways it is 

different. Many of the cellular responses, such as cytoplasmic shrinkage, 

chromatin condensation, and mitochondrial swelling, are similar. Other 

responses are plant specific, for example vacuolization and chloroplast 

disruption. The HR lacks some hallmarks of apoptosis, such as the production of 

apoptotic bodies (140). 

Guard and decoy hypotheses 

 The gene-for-gene hypothesis now sits on firm ground on the basis of the 

number of avr/R gene combinations that have been discovered. However, the 

model for perception and interaction between the two encoded proteins remains 

in flux. It is now widely accepted that R proteins recognize T3E by an indirect 

detection. This came about because so many Avr/R protein sets did not directly 

interact with one another, although in a few cases direct interaction has been 

shown (49, 50, 85, 178).   

 Initially, it was discovered that the T3E AvrPto1, which interacts with the 

Ser/Thr kinase Pto, required a third protein, Prf, to initiate ETI (58, 149). Pto 

interacts with several known defense-related transcription factors suggesting a 

role in immunity. However, Prf is an NB-LRR protein signifying that it, rather that 

Pto, is the key recognition component for immunity (i.e. the R protein) in 

response to AvrPto1. To explain this it was proposed that Pto was the actual 

virulence target and that Prf evolved to ‘guard’ Pto such that when Pto is targeted 

by AvrPto1 Prf initiates ETI (44, 179).  



33 
 

 Other examples have lent further support to the guard hypothesis such as 

RIN4 and PBS1. RIN4 is targeted by at least three T3Es, AvrRpm1, AvrB1, and 

AvrRpt2, and guarded by two R-proteins, RPM1 and RPS2, which are activated 

based on the T3E modifications to RIN4 (88). PBS1 is proteolytically cleaved by 

AvrPphB and guarded by the R protein RPS5 (167). In these cases the R 

proteins mediate resistance by recognizing the modifications to target proteins by 

T3Es.  

 A variation of the Guard hypothesis has been proposed in which the plant 

has evolved decoy proteins that specialize in interacting with T3E proteins by 

mimicking the virulence target to initiate R protein mediated defense by ‘tricking’ 

the effector into binding with it. (19). The decoy protein is itself not directly 

involved in pathogen fitness but its modification by the Avr protein is recognized 

by the R protein resulting in ETI. 

 There are several examples of T3Es and plant protein targets that support 

this hypothesis. Again the example of AvrPto1 and Pto is relevant. Pto closely 

resembles the kinase domain of PRR proteins involved in PAMP perception such 

as FLS2 and EFR. AvrPto1 has been shown to bind both EFR and FLS2 and 

block their plant immune responses in protoplasts (193). So, in this scenario, Pto 

may have evolved as the decoy, mimicking the PRR proteins such that the R 

protein Prf can recognize AvrPto1 when it activates Pto. Under the decoy model, 

the PRRs are the true virulence targets of AvrPto1 and Pto evolved as a decoy 

that the pathogen does not benefit by targeting (200). This is supported by noting 
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that Pto is not required for the virulence function of AvrPto1 based on the fact 

that tomato Pto mutants are not hypersusceptible to P. syringae (166). 

 A more unique example that supports the decoy hypothesis comes from 

Xanthomonas campestris pv. vesicatoria and its T3E AvrBs3, a transcription 

factor that binds to the promoter of the master regulator Upa20 which controls 

cell size (95). Resistant plants carry an R gene Bs3 which is expressed by 

AvrBs3 but Bs3 does not appear to be expressed under any other conditions, 

suggesting its sole purpose is for recognition of AvrBs3 (180). 

 The guard and decoy hypotheses can be thought of as unique models of 

R gene mediated immune responses, or the decoy model as a specific off-shoot 

of the original guard model. These models both highlight the complex nature of 

gene-for-gene resistance, which is an indirect method of detecting T3E proteins 

involving multiple host proteins that detect an individual T3E making that plant 

completely resistant to an otherwise pathogenic strain.  

Summary of thesis objectives 

 In order to more fully understand P. syringae translocation of T3E 

proteins, defining its translocon was chosen as a primary focus for the research 

presented in this dissertation. In order to accomplish this, the putative 

translocator HrpK1 was selected for further investigation (152). In doing so 

HrpK1 has been confirmed to be a translocator based on disruption of liposomes, 

a hallmark of translocator proteins. Further investigation showed with which 

phospholipids HrpK1 interacts, the strongest of which phosphatidic acid matches 
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another putative translocator HrpZ1. The impact that HrpK1 has on T3E 

translocation has been determined by testing its efficacy in multiple systems.  

Along with HrpK1 three harpins, HrpZ1, HrpW1, and HopAK1, have been 

shown to contribute to T3E translocation (108). Experiments were conducted and 

are presented in this dissertation that characterize to what extent each of these 

proteins affects translocation and identify which are most important for 

translocation.  

HrpJ, a protein previously shown to control the secretion of HrpZ1 in 

culture, was used to further confirm the suite of translocator proteins in P. 

syringae. This was done by screening other type III-secreted substrates to 

determine which were dependent on HrpJ for them to be secreted in culture. 

Additionally, it was discovered that HrpJ may act as a switch protein, controlling 

the transition from Hrp pilus secretion to translocator secretion.  

HrpJ is injected into plant cells, which appears to be independent of its 

primary function. Another objective was to determine if this has a biological 

function for the pathogen. Here, data is presented that suggests that HrpJ 

functions within plant cells to suppress PTI. 

Plant immune systems can be pre-activated allowing for the blockage of 

the HR (141). Why PTI preactivation inhibits the HR has been a long-standing 

question. A final objective of my dissertation project was to determine how this 

happens. Several mechanisms were possible including bacterial death, PTI 

biochemically preventing ETI induced cell death, or PTI responses somehow 

blocking the T3SS. Here, data are presented that show that PTI-induced plants 
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accomplish this by blocking T3E injection. Bacteria seem to be able to combat 

this in certain cases by the suppressive activity of T3E proteins.  
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Abstract 

The bacterial plant pathogen Pseudomonas syringae uses a type III secretion 

system (T3SS) to translocate, or inject, type III effector (T3E) proteins into plant 

cells. The T3SS is required for pathogenicity. In order for T3Es to be 

translocated, P. syringae must create an opening in the plant plasma membrane, 

using a group of proteins known as a translocon, through which the T3E proteins 

can be delivered. The translocon is composed of membrane proteins called 

translocators that span the plant plasma membrane. HrpK1 has many of the 

characteristics of a translocator: it is a type III-secreted protein, has a 

transmembrane domain, and is important for pathogenicity. Most importantly, 

hrpK1 mutants are secretion competent but defective in T3E translocation. Here, 

we confirm that HrpK1 can act as a translocator for multiple T3Es and find that it 

is capable of interacting with liposomes, which is consistent with properties of 

other established translocators. HrpK1 is more important to T3E translocation 

than other P. syringae proteins known as harpins, which have been implicated in 

translocation. Both HrpK1 and HrpZ1, one of the harpins, interact with 

phosphatidic acid and this compound can block T3E translocation in a HrpK1 and 

HrpZ1 specific manner. These experiments support that HrpK1 is a primary 

translocator for the P. syringae T3SS and that it may function by binding 

phospholipids in the plant plasma membrane. 
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Introduction 

Pseudomonas syringae is a Gram negative bacterial pathogen that is 

capable of causing diseases on a wide variety of plants (8, 47). A specialized 

secretion system known as the type III secretion system (T3SS), sometimes 

referred to as a molecular syringe, is essential to the virulence of the pathogen 

(9, 50). The P. syringae T3SS is encoded by the hrp (HR and pathogenicity) and 

hrc (HR and conserved) genes. The T3SS allows P. syringae to translocate, or 

inject, bacterial type III effector (T3E) proteins directly into plant cells in order to 

manipulate the cellular activities of the host to allow for growth of the pathogen 

(3). The main function of P. syringae T3E proteins appears to be suppression of 

the plant innate immune response (37). T3SSs are also necessary for elicitation 

of the hypersensitive response (HR); an immune-associated programmed cell 

death response that is associated with resistant plants (20).  

T3SSs can be divided into at least five major families based on 

phylogenetic analyses (64, 71, 80). The T3SSs of bacterial plant pathogens 

belong to one of two groups known as group 1 or group 2 Hrp T3SSs. P. 

syringae belongs to group 1, along with Erwinia amylovora and others. Ralstonia 

solanacearum and Xanthomonas campestris are representative members of 

group 2 (4, 21, 2). In P. syringae the T3SSs and T3E genes, as well as many 

other virulence-associated genes, are regulated by the alternative sigma factor 

HrpL (31, 33).  

The T3SS is a molecular syringe that allows for the translocation of T3E 

proteins directly into the cytoplasm of eukaryotic cells (22). Found in a wide 
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variety of Gram negative bacteria, T3SSs are relatively conserved in structure 

and constructed from more than 20 proteins (21, 34, 49). T3SSs are composed 

of three components: a basal body spanning both bacterial membranes, a needle 

(animal pathogens) or pilus (plant pathogens) which serves as a conduit through 

which partially unfolded T3E proteins are proposed to travel, and a translocon 

complex which forms a channel, or pore, in the eukaryotic plasma membrane 

through which the T3E proteins are delivered into the host cell (11). 

The translocon complex is better understood in animal pathogens. It is 

composed of three proteins typically encoded on a single operon (64). Two of 

these proteins are hydrophobic translocators that form an integrated pore in the 

host plasma membrane (10, 41, 61, 67). A third, hydrophilic protein, or tip 

protein, is present at the end of the needle; it is thought to help integrate the 

hydrophobic translocators into the membrane and act like a bridge connecting 

the translocators to the needle (32, 35, 56, 74). The translocator class in the 

prototypical Yersinia T3SS contains YopB, a larger hydrophobic translocator and 

YopD, a smaller hydrophobic translocator (23). YopB and YopD are attached at 

the tip of the needle by the tip protein LcrV, presumably forming a continuous 

conduit (12, 35, 65). These three proteins are conserved in animal pathogens at 

the sequence level within T3SS families and at the functional level among 

families (64).  

While the translocators of animal pathogens are highly conserved, there 

are typically no clear homologs in phytopathogens. No tip protein or YopD 

homolog has been identified for any phytopathogen T3SS (14). Because plants 
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have the additional barrier of the cell wall that the bacteria have to penetrate, it is 

likely that additional proteins are required. In spite of the additional complexities 

that exist, progress has been made in phytopathogen translocator research. P. 

syringae encodes a type III-secreted protein thought to be a translocator called 

HrpK1 (73). HrpK1 shares weak similarity with YopB and two other putative 

translocators, HrpF and PopF, found in the group 2 Hrp T3SSs of X. campestris 

and R. solanacearum, respectively (15, 60, 73). However, HrpK1 has many 

features that suggest it is a translocator protein. For example, HrpK1 contains a 

predicted transmembrane domain, which is pervasive among translocators (73). 

Expression of hrpK1 is regulated in a HrpL-dependent manner, is activated 

rapidly, and, along with the pilus protein HrpA1, is involved in the early 

deployment of type III secretion machinery (31). A hrpK1 mutant causes severely 

reduced disease symptoms and is significantly reduced in growth in host plants. 

Additionally, a hrpK1 mutant has a reduced capacity to elicit the HR in tobacco in 

spite of the retained ability to secrete T3E proteins (73). This suggests that 

although the T3E proteins are secreted, they fail to be translocated inside of the 

plant cells; this is one hallmark of translocator proteins. Another hallmark of 

translocator proteins is that they often interact with lipid membranes (30).  

Along with HrpK1, P. syringae has an additional family of proteins called 

harpins that have been reported to aid in T3E translocation. Harpins are a group 

of proteins unique to plant pathogens that are rich in glycine but lacking cysteine 

that, when purified and infiltrated into plant tissue, elicit an HR-like cell death 

(45). P. syringae pv. tomato DC3000 has four harpins: HrpZ1, HrpW1, HopP1, 
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and HopAK1. Three of these, HrpZ1, HrpW1, and HopAK1 play a role in T3E 

translocation (52). HrpZ1 has previously been shown to interact with lipid 

membranes, consistent with it being a translocator (29, 55). Because harpins are 

only found in plant pathogens, it is likely that some contribute to T3E 

translocation in ways that are specific to infection of their plant hosts. In support 

of this HrpW1 targets plant cell walls and, both it and HopAK1 possess C-

terminal domains that resemble pectate lyases, enzymes that act on plant cells 

walls. This suggests that HrpW1 and HopAK1 function by allowing the Hrp pilus 

to traverse through the plant cell wall (18, 52). Conversely, HopP1, a harpin that 

resembles a lytic transglycosylase does not appear to function in translocation of 

T3E proteins but is important for T3SS-dependent infection (68). The particular 

role that each individual harpin plays in translocation needs to be further 

explored, but the variety of their potential functions illustrates the complexity of 

plant pathogen T3E translocation. 

Secretion hierarchy is thought to be very important for the successful 

deployment of T3SSs (70). Different types of proteins are thought to be secreted 

in an ordered fashion. For example the pilus protein, HrpA1, is assumed to be 

secreted prior to translocators. Recent research identified a P. syringae protein, 

HrpJ, which appears to function as a molecular switch that controls the transition 

of secretion from pilus to translocators. HrpK1, HrpZ1, HopAK1, and HrpW1 are 

not secreted in a hrpJ mutant while HrpA1 has elevated secretion (25). That the 

secretion of these proteins is similarly regulated further suggests that they are 

linked as translocators. Additionally, a poly-harpin hrpK1 mutant, which is unable 
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to elicit an HR in tobacco, is partially complemented by individually expressing 

hrpK1, hrpZ1, hopAK1, or hrpW1 (52). While these types of experiments solidify 

that these proteins constitute a functional class, they do little to explain how each 

protein functions individually in terms of T3E translocation. 

Here, we confirm that HrpK1 from DC3000 is a translocator protein. 

Deletion of hrpK1 results in reduced translocation of T3Es. I found that HrpK1 

plays a more important role in translocation than the harpins. Furthermore, 

complementation of poly-harpin hrpK1 mutants with the harpins hrpZ1, hrpW1, or 

hopAK1 is only partial and dependent on high expression levels, which in itself is 

problematic (1, 18) and illustrates that HrpK1 contributes more significantly to 

translocation than any of the harpins. HrpK1 disrupts liposomes, which is 

consistent with the activities of other translocators. HrpZ1 is the only harpin to 

interact in a similar manner suggesting HrpK1 and HrpZ1 are the translocators 

that act on the plant plasma membrane. HrpK1 and HrpZ1 both interact with 

phosphatidic acid (PA) and when PA is co-infiltrated with bacteria, translocation 

of T3E proteins is blocked. These data suggest that HrpK1 and HrpZ1 may 

interact with PA and other phospholipids to translocate T3Es. 

 Results 

A hrpK1 mutant is reduced in its ability to translocate T3E proteins and 

harpins into N. benthamiana cells. Since hrpK1 mutants are not affected in 

type III secretion of T3E proteins in culture but are significantly reduced in HR 

elicitation (73), an indicator of T3E injection, we wanted to determine the extent 

that the hrpK1 mutant is affected in T3E translocation. To do this, I made T3E-
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adenylate cyclase (CyaA) fusions. CyaA is an enzyme from Bordetella pertussis 

that converts AMP to cAMP but only in the presence of calmodulin. Since 

bacteria do not produce calmodulin the only way for cAMP concentrations to 

significantly increase in infected tissue samples is if the T3E-CyaA protein fusion 

is translocated into the plant cell. The amount of cAMP is quantified and this is an 

indicator of T3E translocation (76, 78). A large subset of T3E proteins was 

chosen to test the translocation from both DC3000 and its hrpK1 mutant 

derivative. Eight different T3E-CyaA gene constructs were made, avrB-cyaA, 

avrPto1-cyaA, avrRpt2-cyaA, hopC1-cyaA, hopR1-cyaA, hopX1-cyaA, hopAI1-

cyaA, and hopAM1-1-cyaA. These were each expressed individually in both 

DC3000 and the hrpK1 mutant and translocation of each T3E-CyaA was 

quantified 7 hours after infiltration into Nicotiana benthamiana leaves. In all eight 

cases the translocation of the T3E-CyaA fusion was reduced from the hrpK1 

mutant strain compared to DC3000 (Fig. 1), consistent with HrpK1 operating as a 

translocator. Interestingly, P. syringae still appears able to inject small amounts 

of T3E proteins in the absence of HrpK1.  

HrpK1 is translocated into plant cells but truncation derivatives are not 

translocated in the absence of HrpK1; HrpK1 truncation derivatives with 

intact transmembrane domains can restore T3E translocation in a hrpK1 

mutant. HrpK1 has a predicted transmembrane domain between amino acids 

698 and 750 that has been shown to be functionally important based on HR 

elicitation in tobacco (73). We wanted to determine the extent that the 

translocation of HrpK1 was linked to its ability to assist in T3E translocation. 
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Fig. 1. A hrpK1 mutant is reduced in its ability to translocate type III effector 
(T3E) proteins. Eight different T3E-CyaA fusions, AvrB-CyaA, AvrPto1-CyaA, 
AvrRpt2-CyaA, HopC1-CyaA, HopR1-CyaA, HopX1-CyaA, HopAI1-CyaA, and 
HopAM1-1-CyaA, were individually tested to measure translocationof T3E-CyaA 
from DC3000 and a hrpK1 mutant in N. benthamiana leaves. The bacteria were 
infiltrated at 4 x 108 cells/ ml 7 hours before measuring cAMP.   
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When various hrpK1-cyaA truncations were expressed in wild type bacteria all  

were translocated into the leaves of N. benthamiana plants at 1 x 108 cells/ml, 

albeit at reduced levels. When the same constructs were expressed in a hrpK1 

mutant, however, none except for full-length HrpK1 were translocated (Fig. 2A). 

This suggests that translocation of any HrpK1 protein derivative requires the 

bacterial cell to have a full-length HrpK1.  

To determine if T3E translocation was affected in a similar manner, the 

same truncations were expressed, this time with a hemagglutinin (HA) tag, in the 

hrpK1 mutant to see if any could restore the ability to translocate the T3E 

HopU1-CyaA. The truncations that contained the transmembrane domain were 

able to almost fully complement the mutant. The strains expressing constructs 

lacking the transmembrane domain behaved similar to the mutants (Fig. 2B). The 

putative transmembrane domain of HrpK1 is likely required for HrpK1 to function 

as a translocator. 

Translocation experiments indicate that HrpK1 is more important 

than the harpins for T3E translocation. Because knocking out hrpK1 alone 

does not completely stop T3E translocation, and because harpins contribute to 

T3E translocation (52) we wanted to see to what extent T3E translocation was 

reduced in mutants lacking different combinations of HrpK1 and the harpins. It 

has previously been shown that when all harpin genes are knocked out, 

translocation of AvrPto1 is not reduced at high inoculums, but when hrpK1 is 

additionally knocked out a significant reduction in translocation is observed (52).  
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Fig. 2. HrpK1 truncations are not translocated from hrpK1 mutants but 
HrpK1 derivatives containing transmembrane domains can partially 
complement T3E translocation. A) HrpK1 and derivative truncations were 
expressed in wild type bacteria and hrpK1 mutants using the Tn7 expression 
system and carrying CyaA tags. Only when the full length hrpK1 was expressed 
was translocation observed. None of the truncated HrpK1-CyaA proteins were 
injected from the hrpK1 mutant. Translocation was measured in N. benthamiana 
8 h after infiltration with 2 x 108 cells/ml of bacteria. B)Translocation of plasmid 
encoded HopU1-CyaA was measured from DC3000, UNL111, and UNL111 
complemented by hrpK1 truncations expressed using the Tn7 system carrying 
HA tags. The Tn7-hrpK1 derivatives containing transmembrane domain region, 
amino acids 698-750, markedly increased translocation of HopU1-CyaA from 
hrpK1.  
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Here, we were interested in the effect of translocation of T3E proteins at a high 

bacterial concentration when different combinations of harpin genes were deleted 

by themselves or with hrpK1.  

 As expected, deletion of harpins alone had only a moderate effect on 

translocation of AvrPto1-CyaA and a large reduction in translocation was only 

seen when hrpK1 was additionally deleted (Fig. 3A). A similar trend was also 

observed for translocation of AvrB1-CyaA (Fig. S1). While both hrpW1 and hrpZ1 

mutants reduced translocation neither was as strong as hrpK1. In fact loss of all 

four harpins had less of a reduction in translocation than did deletion of hrpK1 by 

itself (Figs. 3A & S1).  

  To confirm the results observed using the CyaA reporter a direct measure 

of translocation was employed. AvrRpt2 has been shown to be processed upon 

entry into plant cells leading to a detectable band with a reduced molecular mass 

on immunoblots that is only present when AvrRpt2 is translocated (63). This 

assay was consistent with the CyaA translocation assay in that deletion of harpin 

genes negligibly reduced the presence of the processed AvrRpt2-HA band 

compared to wild type bacteria, while deletion of hrpK1 either alone or in 

combination with harpins consistently showed a more substantial reduction in 

AvrRpt2-HA translocation (Fig. 3B). Clearly, from these results, HrpK1 plays a 

more important role than  the harpins in T3E translocation.  

In addition to T3E proteins, other type III-secreted substrates such as the 

harpins are translocated into the plant cell (52, 75). As with T3E proteins, 

translocation of harpins is T3SS-dependent; therefore, harpins would also be  
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Fig. 3. HrpK1 is more important for type III translocation than the harpins. (A) To 
determine AvrPto-Cya translocation, cAMP was measured from samples of N. 
benthamiana leaves infiltrated with a construct expressing AvrPto-CyaA in  DC3000 and 
mutants lacking hrpZ1, hrpW1, or all four harpins as well as each strain with additional 
loss of hrpK1. cAMP was measured from samples of the leaves of N. benthamiana 

infiltrated with each strain at  4 x 108 cells/ml  for 7 h to determine translocation of 
AvrPto-CyaA. (B) A construct expressing AvrRpt2-HA was electroporated into the same 
strains. Translocation of AvrRpt2-CyaA was observed on immunoblots after samples 
were taken from N. benthamiana leaves 7 h after infiltration at 1 x 109 cells/ml. Equal 

amounts of each sample in total protein were separated on an SDS-PAGE gel and 
subjected to immunoblot analysis using anti-HA antibodies. The smaller band represents 
translocation as it is the processed protein after it has been cleaved in the plant cell. (C) 
Levels of translocation of three harpins (HrpZ1, HrpW1, and HopAK1) expressed from 
Tn7 constructs fused at their C-terminal ends to CyaA were also individually measured 
from both DC3000 and hrpK1 in N. benthamiana leaves. (D) Translocation of HrpK1-
CyaA, expressed by Tn7 system, was measured from both DC3000 and the poly-harpin 
mutant in N. benthamiana leaves. (A-D) the bacteria was infiltrated at 4 x 108 cells/ml for 

7 h before measuring cAMP. 
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impacted by aberrant formation of the translocon. As before, gene constructs 

were made such that each gene product was fused to a C-terminal CyaA 

reporter. This time, only the three harpin proteins (HrpZ1, HrpW1, and HopAK1)  

known to be involved in translocation were used. The harpin proteins were 

expressed using a Tn7 system. This system has the advantage that it introduces 

the gene in single copy and expresses it from a type III-related promoter, which 

allows the gene to be expressed at a biologically relevant level. As expected, the 

translocation of harpins was severely reduced from the hrpK1 mutant relative to 

DC3000 (Fig. 3C).   

HrpK1 has also been shown to be translocated (Fig. 2) (73). HrpK1-CyaA 

translocation was measured from both DC3000 and a mutant lacking all harpin 

genes (52). There was a reduction in translocation from the poly-harpin mutant 

(CUCPB 5401) compared to DC3000 (Fig. 3D); however, this reduction was not 

as severe as for translocation of harpins from the hrpK1 mutant (Fig. 3C), 

suggesting again that HrpK1contributes more significantly to translocation than 

the harpins. 

Because the previous experiments were done in a DC3000 background, 

which has evolved a large repertoire of genes that contribute to pathogenicity, we 

wanted to conduct similar experiments in a reductionist system. pHIR11 is a 

cosmid that contains a 31 kb DNA fragment of the P. syringae pv. syringae 61 

genome that encodes a functional T3SS along with a single T3E, HopA1 (48). 

This cosmid can be introduced into a non-pathogen such as P. fluorescens 55 

and confer the ability of this bacterium to inject T3Es via T3SS when infiltrated in 
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leaf tissue (5). In these experiments I used derivatives of pHIR11 that are 

defective in hrpK1 (pLN468) (73) or hrpZ1 (pCPP5024) (1). I made an additional 

pHIR11 derivative lacking both hrpK1 and hrpZ1 (pLN4495). A construct 

expressing AvrRpt2 fused at its C-terminus to CyaA was electroporated into all 

strains. Levels of cAMP were assessed 7 h after infiltration at 4 x 108 cells/ml in 

N. benthamiana to determine the amount of translocation. The concentration of 

cAMP, and, therefore, the amount of AvrRpt2-CyaA translocated from the mutant 

strains, was much lower in all mutants than from P. fluorescens(pHIR11) (Fig. 

S1). P. fluorescens(pLN468), the pHIR11 hrpK1 derivative, was completely 

devoid of T3E translocation, P. fluorescens(pCPP5024), the pHIR11 hrpZ1 

derivative, maintained a low level of T3E translocation. Not surprisingly, the 

double mutant, P. fluorescens(pLN4495) also failed to inject the T3E reporter 

(Fig. S1).  

Complementation of the poly-harpin hrpK1 mutant with single harpin genes 

or hrpK1 is dependent on expression levels.  When all four harpin genes and 

hrpK1 are deleted from DC3000, the mutant is unable to elicit an HR in tobacco 

leaves even at concentrations of 3 x 108 cells/ml. When the individual genes are 

reintroduced on multi-copy plasmids and constitutively expressed, hrpZ1, hrpW1, 

or hopAK1 can restore HR elicitation to the poly-harpin hrpZ1 mutant when 

infiltrated at 3 x 108 cells/ml while only hrpK1 is able restore the HR phenotype to 

the poly-harpin hrpZ1 mutant when infiltrated at 1 x 107 cells/ml (Fig. 4A) (52). It 

has already been shown that overexpression of the harpin proteins HrpZ1 and 

HrpW1 can affect HR elicitation (1, 18). Because of these aberrant phenotypes 
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involving expression levels of harpins we decided to repeat these experiments 

complementing this mutant with genes in single copy and natively expressed, 

which may be less problematic and more biologically relevant than 

complementation experiments using muti-copy plasmids and constitutive 

expression. 

 In order to accomplish this, a Tn7 expression system was adapted to be 

Gateway compatible (19). Because Tn7 integrates into a specific region of the 

bacterial chromosome the introduced gene is single copy. Our Tn7 construct was 

designed with an avrPto1 promoter such that it was induced in conditions that 

express the T3SS. We tested the effect of expression of hrpZ1, hrpW1, hopAK1 

and hrpK1 using the Tn7 expression system and none of the strains were altered 

in their ability to elicit the HR in tobacco plants (data not shown). 

The results we observed using the multi-copy plasmids were consistent with 

Kvitko et al. (52) in that hrpZ1, hrpW1, and hopAK1 in addition to hrpK1 were 

able to restore the ability to elicit an HR to the poly-harpin hrpK1 mutant when 

infiltrated at 3 x 108 cells/ml (Fig. 4A, upper panel), while only hrpK1 was able to 

restore the HR when infiltrated at the 1 x 107 cells/ml (Fig. 4A, lower panel). 

However, when we expressed the same genes using the Tn7 expression system, 

none of the harpins were able to restore the ability to elicit the HR to the poly-

harpin hrpK1 mutant at any of the cell densities tested (Fig. 4B). In spite of this, 

hrpK1 was still able to restore the HR to this mutant in every cell density tested 

(Fig 4B). These data, along with the results from Kvitko et al. (52), once again 

confirm that HrpK1  makes a more important contribution to T3E translocation  
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Fig. 4. Restoration of the poly-harpin hrpK1 mutant HR phenotype with 

individual harpins is expression dependant, while HrpK1 fully restores the 

ability to elicit an HR. Tobacco leaves were infiltrated with a blunt syringe with 

either 3 x 108 cells/ml (upper panels) or 1 x 107 cells/ml (lower panels) of bacteria 

which resulted in elicitation of an HR from DC3000 but not from the poly-harpin 

hrpK1 mutant. Restoration of the HR phenotype of the mutant was attempted by 

individually expressing the deleted genes either by a plasmid (A) or using a Tn7 

single copy, suicide vector with an avrPto promoter (B). Restoration of the HR 

was observed in both systems by hrpK1 at both bacterial concentrations. No 

other gene could restore the HR phenotype using the Tn7 expression system or 

at 1 x 107 cells/ml by plasmid.  
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than any of the harpins and, along with Fig. 3, suggests that HrpK1 is the only 

translocator sufficient to restore the HR and moderate translocation to the poly-

harpin hrpK1 mutant.  

HrpK1 and the HrpZ1 harpin disrupt liposomes in vitro; other harpins lack 

this activity. Translocator proteins must insert themselves into the host plasma 

membrane in order to form a pore (21). The propensity for translocator proteins 

to insert into liposomes to allow small molecular release has been documented in 

the Shigella T3SS (27, 74). A similar experiment has already been done with 

HrpZ1, one of the harpins in DC3000, showing membrane interaction (29). In this 

study HrpK1 and all four harpin proteins were tested for interactions with 

liposomes. Purified recombinant protein was made for HrpK1-GST, HrpZ1-His, 

HopP1-His, HopAK1-His, and the harpin domain of HrpW1 (HrpW1HD-His), 

because the full-length HrpW1 protein is lethal in Escherichia coli (Fig. S2) (18). 

The known Shigella translocator protein IpaB was used as a positive control for 

the release of sulforhodamine-B (SRB) from liposomes. The Shigella type III 

secretion apparatus needle tip protein IpaD was used as a negative control since 

it does not insert into phospholipid membranes under physiological conditions. 

As shown in Fig. 5, both HrpZ1-His and HrpK1-GST resulted in a rapid and 

significant release of SRB from liposomes within 5 min (Fig. 5). These are similar 

to the positive control IpaB, which caused a rapid release of SRB with 

approximately 70% of the fluorophore released after 5 min (Fig. 5). In contrast, 

the amount of fluorophore released by liposomes treated with HrpW1HD-His, 

HopAK1-His, and HopP1-His was similar to the amount detected from liposomes  
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Fig. 5. HrpK1-GST disrupts liposomes. Protein-mediated release of 
sulforhodamine-B (SRB) from liposomes. SRB-containing liposomes were 
incubated for 30 sec in PBS. 7.5 µg/ml of protein was added and the relief of 
SRB auto-quenching was monitored for 300 sec more.  



72 
 

treated with the negative control, IpaD (Fig. 5). This evidence further confirms 

that HrpK1 is a translocator protein. HrpZ1 likely also plays a role in formation of 

the translocon because of its interaction with liposomes and other lipid 

membranes (Fig. 5) (29, 55) as well as the previous reports that are consistent 

with it acting as a translocator (1, 52). Because none of the other harpins tested 

showed the ability to significantly disrupt liposomes above the level of the 

negative control (Fig. 5), their function in translocation may not be in the 

formation of a pore in the plant plasma membrane. 

HrpK1 interacts with phosphatidic acid. Because HrpK1 is able to disrupt 

liposomes we wanted to test if it interacted with any phospholipids. Commercially 

available PIP strips (Invitrogen) that carry an assortment of membrane lipids 

were used to determine if HrpK1 interacted with any phospholipids. We 

confirmed that HrpZ1 could bind only to phosphatidic acid (PA) (Fig. 6A) (40). 

Similarly, HrpK1-GST showed its strongest interaction with PA. However, in 

contrast to HrpZ1, HrpK1 was more promiscuous in its interactions with 

phospholipids, exhibiting a positive interaction with 10 of the 15 membrane lipids 

tested, although none as strongly as with PA (Fig. 6A). To ensure that the 

binding was with HrpK1, purified GST was used in the same assay and was 

unable to bind any of the spots (data not shown). 

Co-infiltration with phosphatidic acid prevents translocation of T3Es. In 

planta growth is significantly reduced when wild type bacteria are co-infiltrated 

with 1 mM PA compared to infiltration of bacteria alone in Arabidopsis thaliana 

(Fig. 6B). Co-infiltration with phosphatidylcholine (PC), a phospholipid that does 
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not interact with HrpK1 or HrpZ1, had no effect on bacterial growth (Fig. 6B). The 

growth of the type III-deficient mutant hrcC was unaltered by the presence of PA 

suggesting that the reduction in growth is T3SS-specific, likely due to the 

interaction between translocators and PA. To test this, the in planta growth of 

hrpK1 and hrpZ1 single mutants and a hrpK1 hrpZ1 double mutant was 

measured when co-infiltrated with PA in Arabidopsis. In both single mutants there 

was a significant decrease in growth in the strains co-infiltrated with PA but 

growth of the double mutant was not affected by PA (Fig. 6C). This suggests that 

both proteins can bind PA independently and the significant growth defect occurs 

when either HrpK1 or HrpZ1 is present, but in the absence of both proteins PA 

has no impact on bacterial growth in planta.    

 Since the reduced growth of P. syringae in the presence of PA may be 

due to the interaction between translocators and PA, it is possible this interaction 

prevents translocation of T3E proteins into plant cells. This may be because the 

PA infiltrated in the apoplast is binding the translocon in such a manner that 

prevents it from making productive contact with the plasma membrane blocking 

the injection of T3Es into plant cells. To test this we measured the ability of 

DC3000 to inject the T3E-CyaA fusion HopU1-CyaA when co-infiltrated into A. 

thaliana leaves in buffer containing 1 mM concentrations of specific 

phospholipids. In the presence of PA there was a severe reduction in the amount 

of HopU1-CyaA translocated by DC3000 (Fig. 6D). Neither PC, which did not 

interact with HrpK1 or HrpZ1 in our binding assays (Fig. 6A), nor PS, which did 

interact with HrpK1, had a significant effect on HopU1-CyaA translocation. To  
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Fig. 6. HrpK1-GST and HrpZ1-HA bind to phosphatidic acid which can block T3E 
translocation. (A) Both HrpK1-GST and HrpZ1-HA had a higher affinity for PA than the 
other phospholipids present on the membrane. These phospholipids are 
lysophosphatidic acid (1), lysophosphatidylcholine (2) phosphatidylinositol (PI) (3) PI(3)P (4) 
PI(4)P (5) PI(5)P (6) phosphatidylethanolamine(7) phosphatdiylcholine (PC) (8) sphingosine 1-
phosphate (9) PI(3,4)P2 (10) PI(3,5)P2 (11) PI(4,5)P2 (12) PI(3,4,5)P3 (13) PA (14) 

phosphatidylserine (PS) (15) Blank (16). (B) DC3000 or the hrcC mutant were infiltrated at 1 
x 105 cells/ml into Arabidopsis leaves in 5 mM MES buffer alone or containing 1 mM PA or PC 
and bacterial growth was measured by direct colony counts. (C) hrpK1, hrpZ1, or hrpK1,hrpZ1 
double mutant were infiltrated at 1 x 10

5
 cells/ml into Arabidopsis leaves in 5 mM MES buffer 

alone or containing 1 mM PA  and bacterial growth was measured by direct colony counts. (C & 
D) Lower case letters indicate whether growth of the different strains was statistically different 
based on t-tests (P < 0.05) and error bars indicate standard deviation. (D) Translocation of the 
T3E HopU1-CyaA was measured in Arabidopsis leaves 8 h after being infiltrated with 2 x 10

8
 

cells/ml of DC3000(phopU1-cyaA) either in buffer alone (mock) or with 1 mM PA, PC, or PS. (D) 
Tobacco leaves were infiltrated with DC3000 at 2 x 10

6
 cells/ml either alone or with 1 mM PA or 

PC and elicitation of the HR was assessed after 48 hours.  
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confirm that PA does not specifically inhibit CyaA enzyme activity, a direct 

translocation assay using AvrRpt2 was again employed. There was noticeably 

less cleaved AvrRpt2, which represents the in planta form of AvrRpt2, in the PA-

infiltrated samples than buffer alone or with PC, confirming the results with the 

CyaA reporter (Fig. S3). The HR elicited by DC3000 is dependent upon the 

translocation of T3Es. Thus, the HR is a measure of the ability of DC3000 to 

translocate T3Es. DC3000 was unable to elicit an HR when it was infiltrated at 2 

x 106 cells/ml in the presence of 1 mM PA even though this cell density was 

sufficient for DC3000 to elicit an HR when it was infiltrated in buffer alone or with 

1 mM PC (Fig. 6E).  

Discussion 

One of the most interesting aspects of studying the T3SSs of plant 

bacterial pathogens is that the translocator proteins are so divergent from animal 

translocator proteins. Plant bacterial pathogens lack specific proteins present in 

the protypical animal translocon, such as a YopD or tip protein family members, 

and encode additional proteins called harpins that are unique to plant pathogens 

and play roles in translocation. Even HrpK1 is only weakly similar to YopB, 

sharing 26% identity across 105 amino acid residues of this 780 amino acid long 

protein (14). In spite of a lack of sequence similarity it is assumed that plant 

pathogens like P. syringae inject proteins in a similar manner, and, therefore, 

these bacteria must form a translocon that allows the T3SS apparatus to traverse 

the plant cell wall and plasma membrane (10, 64). We have confirmed that 

HrpK1 disrupts liposomes in a manner similar to the Shigella translocator IpaB as 
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well as the HrpZ1 harpin (Fig. 1), both of which have been previously shown to 

have pore-forming activities in similar assays (10, 29). Disruption of lipid 

membranes is a characteristic of a functional translocator and it has been used to 

determine if a protein is a translocator. The other harpin proteins from DC3000 

do not share the ability to interact with liposomes (Fig. 1). This suggests then 

that, like animal pathogens, P. syringae uses two proteins to form pores in the 

plant plasma membrane; however, these proteins are highly divergent from the 

animal translocators, particularly HrpZ1; and, unlike animal pathogens are not 

encoded on the same operon along with a type III chaperone gene (59). 

Since HrpW1 and HopAK1 are known to be involved in T3E translocation 

their inability to interact with liposomes suggests that they function outside of the 

plasma membrane pore. This is consistent with their predicted pectate lyase 

activity which would implicate their function at the cell wall (18, 52). Additionally, 

since animal pathogens do not have harpins it makes sense that some harpins 

target a plant specific structure. It is worth noting that different strains of P. 

syringae contain different sets of harpins suggesting certain harpins may be host 

specific. There also seems to be a certain level of functional redundancy among 

harpins (39, 52). In one case, P. syringae pv. tabaci, the hrpZ1 gene has an 

internal deletion and a frame-shift (81). This suggests that another protein, 

possibly another harpin fills the functional void left by HrpZ1, or that P. syringae 

pv. tabaci can still be a successful pathogen without it. This is supported by 

noting that the hrpZ1 mutant phenotype is only moderately reduced in virulence 

and T3E injection (44, 46). HrpZ1 is known to trigger immune responses, 
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perhaps explaining why there would be environmental selection for this mutation 

in P. syringae pv. tabaci. The pilus protein, HrpA1, which like translocators is 

exposed to the plant and, therefore, may be vulnerable to recognition, is known 

to be under positive evolutionary selection (38). This may mean that 

translocators are under selective pressures to evade detection or even suppress 

detection. It would be reasonable to assume that type III secretion substrates that 

are translocated early, which would include translocators, may have evolved to 

suppress plant immunity. 

 The specific function of individual harpins in the infection process remains 

to be elucidated; however, they (except for HopP1) are involved in T3E 

translocation and like HrpZ1 and HrpK1 their secretion is dependent upon HrpJ. 

HrpJ is a T3SS control protein that controls translocator secretion, suggesting 

that these proteins comprise the DC3000 translocator set and are deployed by 

the T3SS at the same stage of infection (25). No tip protein has been identified in 

a plant pathogen but one possible strategy to find the protein that functions in this 

capacity is to find another protein similarly regulated by HrpJ, since it would likely 

be secreted at a similar stage as the other translocators. Alternatively, 

phytopathogens may not have a traditional tip protein. Perhaps the harpins that 

act at the cell wall, such as HrpW1 and HopAK1, help bring the needle into close 

proximity or physically connect it to the pore, but this needs to be determined 

experimentally.  

 Like HrpZ1, HrpK1 interacts strongly with the membrane phospholipid PA 

(Fig. 2A). Infiltration of bacteria in buffer containing PA resulted in reduced in 
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planta growth that was dependent on HrpK1 and HrpZ1 (Fig. 2B & C). This 

reduced growth is likely due to a decreased ability of the bacteria to deliver T3Es 

when co-infiltrated with PA (Fig. 2D). The interaction between the translocators 

and PA presumably is important to P. syringae. Perhaps PA is used as a docking 

station for the translocon. PA molecules may occupy the translocators and lead 

to less efficient T3E translocation. Another possibility for the PA blockage of 

translocation is that the plant uses PA to block translocation. It has previously 

been shown that expression of avr genes in planta leads to accumulation of PA 

(6, 28). PA has also been shown to be a second messenger involved in plant 

immunity such as the oxidative burst (54, 58). PA blocking translocation by acting 

as a second messenger to trigger different signal transduction pathways seems 

less likely than direct blockage for a couple reasons. First, HrpK1 and HrpZ1 both 

directly interact with PA and growth of hrcC and the hrpK1 hrpZ1 double mutant 

was not affected by PA. Second, PAMPs, such as flg22, which strongly and 

rapidly induce the oxidative burst, are able to block translocation but only when 

treated in advance of bacterial inoculation (24, 69). Simultaneous co-infiltration 

with flg22 caused no reduction in translocation unlike PA (Fig. S4). Outputs of 

PTI such as callose deposition and reactive oxygen species production were not 

induced by PA (Fig. S5A & B). Cell death, which has been reported to be induced 

by PA in Arabidopsis (72) was not observed in this study. It is important to note 

that the PA used in our study had different acyl chains than in Park et al. (72), 

which may have caused the discrepancy between the two studies (Fig. S5C). 
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A hrpK1 mutant has a drastic reduction in its ability to translocate T3E 

proteins both in P. syringae and in a heterologous system in which P. fluorescens 

possesses a functional T3SS (Figs. 1 & S1). Type III-secreted proteins would not 

be able to enter the plant cell in the absence of a translocon; because hrpK1 

mutants are so severely impaired in their ability to translocate these proteins it is 

likely that HrpK1 is a translocator, however, animal pathogen translocators 

mutants such as yopB have been reported to be completely devoid of T3E 

translocation, however, differences in translocation levels may be attributable to 

differences in the assays used to measure translocation in the different systems. 

There are several possible explanations for the remaining low levels of 

translocation observed in the hrpK1 mutant. First, it may be attributable to other 

proteins, such as HrpZ1, which interact with the plant plasma membrane 

potentially forming a partially functional translocon. Second, DC3000 T3SS may 

be more complicated and the need to carry multiple harpins may indicate multiple 

mechanisms for T3E translocation. Perhaps, HrpK1 is a part of a conventional 

translocon and that is the most common or efficient way to inject T3Es. Finally, 

hrpK1 and hrpZ1 are not as intimately linked and therefore may function more 

independently of one another than translocators in animal systems. Whatever the 

explanation, this highlights another distinction from animal pathogens where 

deletion of any single translocator completely blocks T3E translocation (57). 

 The hrpK1 mutant was much more reduced in T3E translocation than any 

single harpin mutant or the poly-harpin mutant lacking all of the known harpins 

(Figs. 3 & S1). This clearly confirms that HrpK1 is more important for 
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translocation than the harpins, including HrpZ1 which also shares pore-forming 

activities. There is a precedent for translocators playing unequal roles in 

phytopathogenic bacteria. For example in Ralstonia solanacearum the putative 

translocator PopF1 is of greater importance to pathogenicity than its homologous 

partner PopF2 (60). Additionally, the YopB family member which is sometimes 

referred to as the major translocator may have additional regulatory functions in 

animal pathogens (57, 77). An undiscovered regulatory function may be another 

explanation for why HrpK1 seems to be more important than the harpins in 

translocation.   

One interesting facet of P. syringae infection is that HrpK1 is itself translocated 

inside of the plant cell. If it were only functioning as part of the translocon, 

intuitively, it seems inefficient for the pathogen to inject HrpK1 in high amounts 

into the plant cytoplasm (Figs. 2 & 3). There are numerous examples where 

translocators have functions in addition to their translocon forming functions. In 

addition to its role in forming the translocon SipC, a hydrophobic translocator 

from Salmonella, can nucleate actin and bundle F-actin (16, 17, 43, 66). 

Similarly, the Shigella translocator IpaC has been shown to induce ruffles 

through the activation of Cdc42, recruitment of Src kinase, and activation of Abl 

kinase (13, 62, 79). The other Shigella translocator IpaB is necessary for 

induction of apoptosis in macrophage cells by binding to and activating the 

cysteine protease caspase-1 (36, 83). YopB has been shown to suppress TNF-α 

production, which significantly contributes to evasion of host defenses (7).  
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Fig. 7. Model of the P. syringae HrpK1/harpin translocon. The T3SS forms a 

continuous conduit spanning both inner (IM) and outer membranes (OM). The 

T3SS injects T3Es into the plant cytoplasm using energy supplied by the 

associated ATPase. The T3Es travel through the needle, eventually going 

through the pore which is formed by HrpK1 and HrpZ1. Other harpins, such as 

HrpW1 and HopAK1 are type III secreted proteins and likely function to aid in 

translocation by physically allowing the needle to penetrate the plant cell wall. A 

tip protein may or may not be present in plant pathogenic bacteria.  
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Identifying whether HrpK1 has an additional function inside plant cells will be a 

focus of future studies.  

Based on our results, we propose a model in which HrpK1 and HrpZ1 

together form the plasma membrane pore, following the animal model where it is 

formed by a multimer of two proteins (Fig. 7). In this model, the HrpW1 and 

HopAK1 harpins aid in translocation while functioning within the cell wall likely 

allowing the pilus access to the plant plasma membrane (Fig. 7). This model 

needs to be confirmed by further studies identifying interactions among the 

proteins involved in translocation and also by identifying additional functional 

characteristics that may show how they operate together to promote 

translocation. In any event, elucidating the mechanisms of type III translocation 

for plant pathogens and their divergence from animal T3SS remains an exciting 

endeavor. 

Experimental Procedures 

Bacterial strains, plasmids, and growth conditions. The bacterial strains and 

DNA constructs used are listed in Table S1. Plasmids were typically maintained 

in DH5α. Pseudomonas syringae and P. fluorescens strains were grown in King’s 

B (KB) medium at 30° with appropriate antibiotics. Induction of type III-regulated 

genes was done by growing them in Hrp minimal media (HrpMM) supplemented 

with fructose at 22°. Escherichia coli strains were grown at 37° in Luria-Bertani 

medium with appropriate antibiotics. The antibiotics used were at the following 

concentrations (μg/ml):  ampicillin, 100; rifampicin, 100; kanamycin, 50; 

spectinomycin, 50; and gentamicin, 10 or 1. 
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Construction of plasmids. Restriction enzymes, T4 DNA ligase, and Taq 

polymerase were purchased from New England Biolabs (Beverly, MA, USA). 

Amplification of DNA fragments for cloning was done using thermostable Pfu 

polymerase from Stratagene (La Jolla, CA, USA). The primers used were 

ordered from Integrated DNA Technologies (Coralville, IA, USA). All Gateway 

cloning was done by amplifying desired gene fragments by PCR using Pfu 

polymerase and cloning those products into PENTR/D-TOPO (Invitrogen, 

Carlsbad, CA, USA) using the protocol provided by the manufacturer. LR 

reactions were carried out to recombine the pENTR constructs into appropriate 

Gateway destination vectors using LR clonase from Invitrogen. 

Purification of proteins. For purification of the 6x-Histidine containing proteins, 

HrpZ1, HopP1, HrpW1-harpin domain, and HopAK1 were expressed from pET21 

and purified from E. coli BL21 DE3. Proteins were induced at an optical density 

at 600nm (OD600) of 0.4 at 37° for 4 h with 1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). Cells were harvested by centrifugation, 

resuspended in 50 mM NaH2PO4, 300 mM NaCl solution, and broken by 

sonication. After removal of the cell debris the supernatant was mixed with Ni-

nitrilotriacetic acid-agarose (Qiagen, Valencia, CA, U.S.A.) and was purified from 

a gravity-flow column using an elution buffer containing 50 mM NaH2PO4, 300 

mM NaCl, and 500 mM Imidazole. 

 HrpK1 was tagged with glutathione S-transferase (GST) and was 

expressed on pGEX-5X-1 and purified from E. coli DH5α. 4 L of LB media was 

inoculated with 40 ml of bacterial culture and grown overnight. The inoculum was 
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allowed to grow in a 37° shaker for 8 h. Cells were harvested and broken by 

sonication. Upon centrifugation, the cell debris was resuspended in 1x PBS 

containing 8 M Urea. The supernatant from another centrifugation was dialyzed 

in 1x PBS overnight at 4°C. After dialysis the supernatant was mixed with 

Glutathione Sepharose 4B (Amersham Biosciences, Piscataway, NJ, USA) and 

was purified using a gravity-flow column. After multiple washes with PBS, HrpK1 

was eluted using 10 mM reduced glutathione in 50 mM Tris-HCl, pH 8.0. 

 The purified proteins were analyzed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie staining and 

Western blotting after transferring to a membrane for protein confirmation using 

affinity-tag specific antibodies. Conjugated anti-His C-terminal-AP antibodies 

(Invitrogen, Carlsbad, CA, USA) were used to detect 6x-His labeled proteins. 

Anti-GST primary antibodies (Amersham Biosciences, Piscataway, NJ, USA) and 

anti-goat IgG (whole molecule)–alkaline phosphatase secondary antibodies 

produced in rabbit (Sigma, St. Louis, MO, USA) were used for confirmation of 

HrpK1-GST. Buffers for all proteins were exchanged for PBS using a Microcon 

centrifugal filter device (Millipore, Billerica, MA, USA) before use in liposome 

disruption assays. Protein concentrations were determined using the Bio-Rad 

(Hercules, CA, USA) protein assay. 

Protein interaction with phospholipid membranes. To determine the ability of 

different purified proteins to interact with phospholipids, a liposome release assay 

was used. At high concentrations within liposomes, encapsulated 

sulforhodamine-B is auto-quenched, but this is relieved by disruption of the 
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liposomes due to dilution of the escaping SRB. In these experiments, liposomes 

comprised of 80% 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (PG) and 

20% 1,2-dioleoyl-sn-glycero-3-phosphotidylcholine (PC) were prepared at 1 

mg/ml to contain 100 mM SRB by mixing these components, sonicating them, 

and then extruding them through a 100 nm pore to ensure uniformly sized 

unilamellar vesicles. The SRB was excited at 558 nm with emission detected at 

565 nm using 2.5 nm slits.  

 The liposome preparation (10 µl) was mixed with 575 µl of 10 mM 

phosphate containing 150 mM NaCl (PBS) in a quartz cuvette and scanned using 

time-based acquisition mode on a FluoroMax Spectrofluorometer (Horiba-Jobin-

Yvon) for 30 s. The scan was then paused and 15 µl of protein was added from a 

stock solution prepared at 300 µg/ml. Scanning was resumed for 5 m, after which 

60 µl of 1% Triton X-100 in PBS was added and the sample scanned for an 

additional 30 s. The last step allowed determination of the total amount of 

fluorescence that could be released if all liposomes were disrupted.  

Lipid Binding Assays. The PIP strips used in this study were purchased from 

Invitrogen (San Diego, CA, USA). Each strip contains 15 different lipids and one 

negative control. The strips are incubated in TBS-T buffer, 10 mM Tris–HCl, pH 

8.0, 150 mM NaCl, containing 0.1% (v/v) Tween 20 plus 3% BSA, for 1 h. Then 

purified protein was added at a concentration of 1 μg/ml in TBS-T. The strip was 

then washed with TBS-T twice for 10 m. Protein was detected using the 

antibodies corresponding to the affinity tag listed above and then using standard 

immunoblotting techniques. 
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Plant HR assays. All HR assays were done on N. tabacum cv. Xanthi leaves. 

The HR was assessed at 24 h. To test for restoration of the HR by harpins and 

HrpK1, constructs encoding these proteins were electroporated into the poly-

harpin hrpK1 mutant (CUCPB5483). Construction of this mutant was described 

previously (52). Leaves were infiltrated with bacteria at OD600 of 0.3 (3 x 108 

cells/ml), 0.1 (1 x 108 cells/ml), 0.05 (5 x 107 cells/ml) and 0.01 (1 x 107 cells/ml) 

in 5 mM MES (pH=5.6) using a blunt syringe.  

Adenylate Cyclase translocation assays. All constructs used in translocation 

assays were made using the Gateway system (Invitrogen, Carlsbad, CA, USA). 

The procedure was described in Schechter et al. (76). Briefly, the tested strains 

were infiltrated in the leaves of N. benthamiana or A. thaliana plants at an OD600 

of 0.4 (4 x 108 cells/ml) in 5 mM MES and samples were taken after 7 h using a 

0.8 cm diameter cork borer. The leaf discs were ground in liquid nitrogen and 

resuspended in 300 μl of 0.1 M HCl. Protein concentrations were determined 

using the Bio-Rad (Hercules, CA, USA) protein assay and were normalized to 

ensure equal protein loading. The level of cAMP from the tissue was quantified 

using Correlate-EIA Direct cAMP Enzyme Immunoassay kit (Assay Designs, Ann 

Arbor, MI, USA) using the directions provided by the manufacturer. 

 In order to create the CyaA tagged constructs expressed from the Tn7 

expression system, pUC18-mini-Tn7-Gm was altered to create a destination 

vector giving the gene of interest an avrPto1 promoter and a C-terminal CyaA tag 

in a suicide vector. In order to make this, pLN2190 was digested with XhoI, blunt 

ended with T4 DNA polymerase, and then digested with ClaI to have one blunt 
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end and a recessed end. The avrPto1 promoter was PCR amplified from DC3000 

genomic DNA. The PCR fragment was digested with ClaI. pLN2190 

(XhoI,T4,ClaI) was ligated to the avrPto1 promoter(ClaI) to produce pLN4047. 

pLN4047 and pUC18-mini-Tn7-Gm were digested with SacI and ligated with T4 

DNA polymerase to make plasmid pLN4048. Desired entry clones were then 

used in an LR reaction with pLN4048 destination vectors, confirmed by PCR, and 

electroporated into wild type or mutant P. syringae strains. pTNS2 helper plasmid 

was used in these transformations. Protein expression in the transformants was 

confirmed by inducing the bacteria in HrpMM for 6 h. Proteins were then detected 

via Western blot with CyaA antibodies (3D1) (Santa Cruz Biotechnologies, Santa 

Cruz, CA, USA) with anti-mouse IgG (whole molecule)–alkaline phosphatase 

secondary antibodies (Sigma, St. Louis, MO, USA).  

AvrRpt2 translocation assay. This assay was modified from Mudgett and 

Staskawicz (63). pLN2637 was transformed by electroporation into DC3000 and 

the poly-harpin hrpK1 mutant derivatives. The bacteria were grown overnight on 

KB media containing appropriate antibiotics, collected, and resuspended in 10 

mM MgCl2 at a concentration of 1 x 109 cells/ml. Each strain was then infiltrated 

into the leaves of tobacco plants with a blunt syringe. Six h later leaf samples 

were taken with a cork borer, ground in liquid nitrogen using a pestle and 

microcentrifuge tube, and then resuspended in phosphate buffered saline (PBS) 

containing Complete protease inhibitor cocktail (Roche, Basel, Switzerland). 

Soluble protein was collected upon centrifugation at 13,000 x g for 5 m at 4°C. 

Protein concentration was determined using Bradford assay (BioRad) and all 
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samples were normalized to 1 μg/μl total protein. Protein fractions were mixed 

1:1 with 2x Laemmli sample buffer, boiled for 5 m, centrifuged at 13,000 x g for 3 

m, and analyzed 25 μg of total protein by immunoblotting using high affinity HA 

antibodies (Roche) and anti-rat IgG (whole molecule)–alkaline phosphatase 

secondary antibodies (Sigma, St. Louis, MO, USA).  

Tn7 protein expression system. The construction of the Tn7 expression 

vectors has been previously described (19). Briefly, the Tn7 Gateway compatible 

entry vector was made with left and right flanking sequences, Tn7R and Tn7L, 

the transposase complex, an avrPto1 promoter sequence, a Gm resistant FRT 

cassette, and the final gene product contains a C-terminal HA tag. Genes of 

interest were amplified by PCR using Pfu polymerase with Gateway compatible, 

gene specific primers. Upon completion of a pENTR reaction, the construct was 

transformed via heat-shock into DH5α cells and selected for using Ap and Gm. 

The plasmid was isolated and then was electroporated into DC3000 or mutant 

derivatives along with the helper plasmid pTNS2 (19). The positive colonies were 

selected using 1 μg/ml Gm along with strain appropriate antibiotics and colonies 

were confirmed by PCR. Expression of the proteins was confirmed by Western 

blot after cells were grown for 7 h at 22°C in HrpMM to induce expression. 
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Supporting Figures and Tables 

 

Supporting Figure 1. Deletion of hrpK1 has a stronger effect on T3E translocation 
than the harpin proteins in DC3000 and a heterologous Pseudomonas fluorescens 
system. (A) A construct expressing AvrPto-CyaA was electroporated into DC3000 and 
mutants lacking hrpZ1, hrpW1, or all four harpins as well as each strain with additional 
loss of hrpK1. cAMP was measured from samples of the leaves of N. benthamiana 
infiltrated with each strain at  4 x 108 cells/ml  for 7 h to determine translocation of 
AvrPto-CyaA. (B) hrpK1, hrpZ1, and a hrpK1,hrpZ1 double mutant were made in the 
cosmid pHIR11. pHIR11 and the mutant derivatives were electroporated along with a 
plasmid expressing AvrRpt2-CyaA. Leaves were infiltrated at 4 x 108 cells/ml and cAMP 
was measured after 7 h.  
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Supporting Figure 2. Purification of HrpK1-GST and Harpin proteins. 
Coomassie blue stained gels containing the purified recombinant protein samples 
used for the liposome assay in Fig. 1. The band corresponding to the protein of 
interest is labeled to the right of the gel with an *. All proteins were confirmed by 
Western blot with antibodies specific to the epitopes used for purification. S = 
Supernatant, WC = whole cell lysate, FT = Flow through, W = washes, E = 
elutions.  
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Supporting Figure 3. AvrRpt2 translocation from DC3000 is reduced when 
co-infiltrated with phosphatidic acid. AvrRpt2-HA is cleaved only when 
present inside plant cells. DC3000 containing a construct that encodes AvrRpt2-
HA was infiltrated in buffer alone (-) or with 1 mM of phosphatidic acid (PA) or 
phosphatidylcholine (PC) into the leaves of Arabidopsis plants. Samples were 
taken after 6 h and analyzed by immunoblot using HA antibody. A reduced 
amount of the cleaved product can be seen in the PA sample. Molecular mass 
markers in kilodaltons are indicated at the left.  
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Supporting Figure 4. Injection blockage by PA does not mimic PTI-induced 
injection restriction. Arabidopsis plants were infiltrated with DC3000(phopU1-
cyaA) in 5 mM MES buffer either alone (Buffer) or with 1mM phosphatidic acid 
(PA), 1 μM flg22 (flg22), both flg22 and PA (PA+flg22), or 1 mM 
phosphatidylcholine (PC). Only with the addition of PA was there a reduction in 
HopU1-CyaA injection.  
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Supporting Figure 5. Phosphatidic acid does not induce PTI and does not 
cause cell death. In all experiments 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-
Phosphate was used a phosphatidic acid (PA) containing mixed acyl groups. A) 
Infiltration with 1 mM PA does not induce a significantly higher amount of callose 
deposition compared to the buffer alone unlike the PAMP flg22 which induced 
much higher levels when infiltrated at1 μM B) Leaf discs floated on buffer alone 
or with 1 mM PA or PC did not induce a spike in ROS which was observed with 
flg22 C) Photographs of representative leaves 72 hours after having been 
infiltrated with 1 mM PA  more than 20 leaves from more than 7 plants grown at 3 
different times were infiltrated and 0 leaves had visible cell death even after 5 
days.  
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Supporting Table 1. Strains and Plasmids used in this study. 

Strain or 
Plasmid 

Relevant 
Characteristics 

Reference or 
Source 

E. coli DH5α   supE44 ΔlacU169(Φ80lacZΔM15) hsdR17 recA1 endA1 
  gyrA96 thi-1relA1, Nal

r
 

(42); Life 
Technologies 

E. coli BL21 DE3 F
-
 ompT hsdS20(rB

- 
mB

-
) gal  Stratagene 

 
Pseudomonas 
syringae pv. 
tomato DC3000 

Wild type, Rf
r
 (26) 

DC3000 hrcC hrcC mutant defective in T3SS, Rf
r
 Cm

r
 (82) 

UNL111 DC3000 hrpK1 mutant, Rf
r
 Km

r 
(73) 

UNL234 DC3000 hrpK1 mutant Km
r
 hrpW1::ΩSp

r
/Sm

r
 This work 

CUCPB5094 DC3000 ΔhrpZ1::nptII hrpW1::ΩSp
r
/Sm

r
  (52) 

CUCPB5096 DC3000 hrpW1::ΩSp
r
/Sm

r
 (52) 

CUCPB5401 DC3000 ΔhrpZ1::nptII hrpW1::ΩSp
r
/Sm

r

 ΔhopAK1ΔhopP1 
(52) 

CUCPB5482 DC3000 ΔhrpK1 ΔhrpZ1::nptII (52) 
CUCPB5483 DC3000 ΔhrpK1ΔhrpZ1::nptII hrpW1::ΩSp

r
/Sm

r
 

ΔhopAK1 ΔhopP1 
(52) 

P.fluorescens 55 55 Wild type Nalr
r 

 
pHIR11 Cosmid pLAFR3 derivative with T3SS DNA from 

genome of P.syringae pv. syringae 61, Tc
r
 

(48) 

pML123   Broad host range cloning vector, Gm
r
 Km

r 
(53) 

pBBR1mcs1   Broad host range cloning vector, Cm
r
 (51) 

pGEX-5X-1   N-terminal GST expression vector, Ap
r
  Pharmacia 

pET21   N-terminal 6x-His expression vector, T7 promoter, Ap
r
 Novagen 

pTNS2   pTNS1 derivative helper plasmid, Ap
r
 (19) 

pCPP3234 pVLT35 derivative Gateway destination containing the 
adenylate cyclase (cyaA) gene for C-terminal fusions, 
Sp

r
/Sm

r
 Cm

r
 

(76) 

pCPP5024   pHIR11 derivative with a hrpZ1 mutation, Tc
r
 Km

r
  (1) 

pLN174 pRG930 derivative that contains hrpK1 with its native  
promoter    

  and a Gm
r
 cassette, Sp

r
/Sm

r
 Gm

r
 

(73) 

pLN293   entry vector carrying hrpK1, Km
r
 (73) 

pLN468   pHIR11 derivative with a hrpK1 mutation, Tc
r
 Km

r
 (73) 

pLN615 pML123 derivative gateway destination vector containing     
a HA tag for C-terminal fusions, Gm

r
 Cm

r
 

(37) 

pLN1682   entry vector carrying hrpZ1, Km
r
 (25) 

pLN1696 pLN615 derivative containing hrpZ1-ha, Gm
r
 This work 

pLN1985 pCPP3234 derivative containing avrPto-cyaA Sp
r
/Sm

r
 This work 

pLN2193 pML123-derivative Gateway destination vector 
containing cyaA gene for C-terminal fusions, Gm

r

  

This work 

pLN2254 pLN2193 derivative carrying hopU1-cyaA, Gm
r 

 
pLN2583   entry vector carrying hopAK1, Km

r 
(25) 

pLN2590   entry vector carrying hopP1, Km
r 

(25) 
pLN2637 pML123 derivative containing avrRpt2-ha, Gm

r
 (24) 

pLN2635 pLN615 derivative containing hopAK1-ha, Gm
r
 This work 

pLN2742   entry vector carrying hrpW1, Km
r 

(25) 
pLN2759 pLN2193 derivative carrying hopX1-cyaA, Gmr  This work 
pLN2760 pLN2193 derivative carrying hopAI1-cyaA, Gm

r
 This work 

pLN2761 pLN2193 derivative carrying hopAM1-1-cyaA, Gm
r
 This work 
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pLN2786 pLN2193 derivative carrying hopR1-cyaA, Gm
r
 This work 

pLN2790 pLN2193 derivative carrying hopC1-cyaA, Gm
r
 This work 

pLN3066   pLN2992 derivative carrying hrpZ1, Gm
r
 (25) 

pLN3067 pLN2992 derivative carrying hrpW1, Gm
r
 This work 

pLN3069 pML123 derivative containing hrpW1-ha, Gm
r
 This work 

pLN3121 pLN2992 derivative carrying hopAK1, Gm
r
 This work 

pLN3149 pLN2992 derivative carrying hrpK1, Gm
r
 This work 

pLN3161 pGEX-5X-1 expressing hrpK1-gst, Ap
r 

This work 
pLN3224 pET21 expressing hrpZ1-his, Ap

r
 This work 

pLN3252 pLN2193 derivative carrying avrB-cyaA, Gm
r
 This work 

pLN3253 pLN2193 derivative carrying avrRpt2-cyaA, Gm
r
 This work 

pLN3305 pLN615 derivative carrying hrpK1-ha, Gm
r 

This work 
pLN3415 pLN2193 derivative carrying avrPto1-cyaA, Gm

r
 This work 

pLN3661 pET21 expressing hopP1-His, Ap
r 

This work 
pLN3662 pET21 expressing hopAK1-His, Ap

r
 This work 

pLN4048 puc18mini-Tn7-Gm
r
::avrPtoprom/Gateway-cyaA This work 

pLN4086 pLN4048 derivative carrying hrpZ1-cyaA, Gm
r 

 This work 
pLN4199 pLN4048 derivative carrying hrpK1-cyaA, Gm

r
 This work 

pLN4200 pLN4048 derivative carrying hrpW1-cyaA, Gm
r
 This work 

pLN4201 pLN4048 derivative carrying hopAK1-cyaA, Gm
r
 This work 

pLN4253 pET21 expressing the harpin domain of hrpW1, Ap
r 

This work 
pLN4495 pHIR11 derivative with a hrpZ1 and hrpK1 mutation, 

Tc
r
, Km

r 
This work 
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Chapter 3 

The Pseudomonas syringae HrpJ protein 

controls the secretion of type III translocator 

proteins and has a virulence role inside plant 

cells 
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Abstract 

The bacterial plant pathogen Pseudomonas syringae injects effector proteins into 

plant cells via a type III secretion system (T3SS), which is required for 

pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a 

fully functional T3SS. A hrpJ mutant is nonpathogenic and cannot inject type III 

effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ 

mutant also cannot secrete the harpins HrpW1 and HopAK1 or the translocator 

HrpK1, suggesting that these proteins are required in the translocation (injection) 

of effectors into plant cells. Complementation of the hrpJ mutant with secretion 

incompetent HrpJ derivatives restores the secretion of HrpZ1 and HrpW1 and the 

ability to elicit a hypersensitive response, a measure of translocation. However, 

growth in planta and disease symptom production is only partially restored, 

suggesting that secreted HrpJ may have a direct role in virulence. Transgenic 

Arabidopsis plants expressing HrpJ-HA complemented the virulence phenotype 

of the hrpJ mutant expressing a secretion incompetent HrpJ derivative and were 

reduced in their immune responses. Collectively, these data indicate that HrpJ 

has a dual role in P. syringae: Inside bacterial cells HrpJ controls the secretion of 

translocator proteins and inside plant cells it suppresses plant immunity. 
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Introduction 

Numerous Gram-negative bacterial pathogens and eukaryote-associated 

bacteria use type III protein secretion systems (T3SSs) to inject or translocate 

effector proteins into animal or plant cells (20, 30). There are several 

prerequisites before a bacterium possessing a T3SS can successfully inject 

effectors into host cells: (i) The basal body of the T3SS apparatus, which spans 

both bacterial membranes needs to be assembled; (ii) the proteins that make up 

the extracellular conduit (a long pilus in plant-associated bacteria and a short 

needle in animal pathogens) are secreted and assembled; (iii) translocator 

proteins are secreted and these somehow aid in the formation of a pore in the 

eukaryotic plasma membrane; and finally (iv) type III effectors are delivered 

across the host’s plasma membrane gaining entrance into the eukaryotic cell (19, 

31). These prerequisites necessitate that the construction of a type III apparatus 

and type III secretion is a highly regulated and ordered process. For example, it 

is logical to expect that the pilus or needle proteins would be secreted prior to 

translocators or type III effectors. There appear to be multiple strategies used by 

bacteria to insure that type III secretion is carried out in a temporal and 

hierarchical manner (23, 57).  

One protein family that plays an important role in type III secretion control 

and hierarchy is the YopN-TyeA/InvE/SepL family (9, 59). The prototype for this 

family is from Yersinia spp. where it is actually two different proteins, YopN and 

TyeA, which interact with each other in a complex to regulate the secretion of 

Yop proteins, which include effectors and other type III-secreted substrates such 
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as translocators (43, 59). In most other bacteria YopN and TyeA homologs are 

fused and are encoded by one gene (59). Yersinia spp. mutants of either yopN or 

tyeA constitutively secrete Yop proteins in the presence of calcium and prior to 

host cell contact, conditions that normally inhibit their secretion (8, 27, 41). The 

TyeA protein has been implicated in the translocation of effectors (22, 41). 

Salmonella enterica mutants lacking InvE or SsaL, YopN-TyeA/InvE/SepL family 

members of the two T3SSs of S. enterica, do not secrete type III translocator 

proteins (18, 45). SepL from enteropathogenic Escherichia coli is required for 

secretion of translocator proteins in culture and the translocation of type III 

effectors (56). Shigella flexneri mutants lacking MxiC, another YopN-

TyeA/InvE/SepL family member, exhibit increased secretion of type III effectors 

(9) but also secrete reduced amounts of translocators (50). Most of the proteins 

belonging to this family are themselves type III-secreted proteins. The exception 

seems to be InvE, which has been reported to remain inside the bacterial cell 

(45) and TyeA is not secreted (15, 25). Thus, the picture that has emerged from 

studies on members of this protein family from animal pathogens is that they 

control the secretion of type III-secreted substrates and are often associated with 

controlling the secretion of type III translocators. 

 There are three conserved proteins that are involved in the translocation 

of type III effectors into animal cells (19). In the prototypical Yersinia spp. T3SS, 

these are YopB, YopD, and LcrV.  YopB and YopD are translocator proteins and 

they can form pores in the host plasma membrane (35, 52, 54). These proteins 

are thought to be situated at the tip of the type III needle by the LcrV tip protein 
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(53). In plant pathogens the proteins involved in type III translocation appear 

quite different perhaps because they have to deliver proteins across the plant cell 

wall as well as the eukaryotic plasma membrane (10). The Pseudomonas 

syringae HrpK1 protein, Xanthomonas campestris HrpF, and Ralstonia 

solanacearum PopF1 and PopF2 share similarity with each other and share 

biochemical characteristics with the YopB family of translocators from animal 

pathogens (13, 51, 60). However, plant pathogens have not been reported to 

possess the YopD translocator or the LcrV tip protein family members. Instead 

another family of proteins called harpins, which are unique to plant-associated 

bacteria, have long been implicated in type III translocation (4). Harpins were 

originally identified because when purified and infiltrated into plant tissue they 

can elicit an immunity-associated programmed cell death response in plants 

called the hypersensitive response (HR) (37, 67). They share common 

biochemical characteristics including being glycine-rich and lacking in cysteines. 

The genome of P. syringae pv. tomato DC3000 encodes four harpins, hrpZ1, 

hrpW1, hopAK1, and hopP1 and all except hopP1 encode proteins that appear to 

contribute to translocation (46). However, it is currently unknown how harpins 

interact with HrpK1/HrpF family members to translocate type III effectors into 

plant cells. 

P. syringae is a phytopathogen that uses its T3SS to inject type III 

effectors into host plant cells to subvert plant immunity (7, 72). Its T3SS is 

encoded by the hrp-hrc (HR and pathogenicity and HR conserved) gene cluster. 

One gene (hrpJ) carried within the P. syringae hrp-hrc cluster encodes HrpJ, a 
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member of the YopN-TyeA/InvE/SepL protein family (4, 28, 59). A P. syringae pv. 

tomato DC3000 hrpJ mutant cannot secrete the HrpZ1 harpin in culture and is 

greatly reduced in virulence and in its ability to translocate effectors into plant 

cells (28). Similar phenotypes are also associated with an Erwinia amylovora 

hrpJ mutant (55). The implication from these results is that HrpZ1 is a 

translocator that cannot participate in translocation in the absence of HrpJ 

because it is not secreted. However, the severity of the phenotypes associated 

with the P. syringae hrpJ mutant suggests that it controls the secretion of a large 

suite of proteins in addition to HrpZ1 because P. syringae hrpZ1 mutants exhibit 

only subtle phenotypes (2). Coupled with the observation that many other 

members of the YopN-TyeA/InvE/SepL protein family are unable to secrete 

translocators these data imply that HrpZ1 is a translocator. Identifying the 

complete inventory of proteins that are dependent on HrpJ for their secretion may 

be a viable strategy to better define the P. syringae translocator class. 

Here, we show that HrpJ is required for the secretion of the HrpK1 

translocator and the HrpZ1, HrpW1, and HopAK1 harpins, but not the HopP1 

harpin or other classes of type III-secreted substrates. Interestingly, elevated 

amounts of HrpA1, the major component of the type III pilus, were secreted by 

the hrpJ mutant. Secretion incompetent HrpJ derivatives can restore the ability of 

a hrpJ mutant to secrete HrpZ1 and HrpW1 in culture indicating that HrpJ 

controls their secretion from within the bacterial cell. Additionally, we show that a 

C-terminal HrpZ1 deletion derivative can be secreted in the absence of HrpJ 

suggesting that HrpJ exerts its secretion control by interacting either directly or 
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indirectly with this region of HrpZ1. HrpJ is itself translocated into plant cells and 

in planta expression of HrpJ can partially restore virulence to a hrpJ mutant 

expressing a secretion incompetent HrpJ derivative and results in reduced plant 

immune responses. Taken together, these data indicate that HrpJ acts inside the 

bacterial cell as a control protein that regulates the temporal secretion of 

translocators and it also acts inside the plant cell to suppress plant immunity. 

Results   

The hrpJ mutant is unable to secrete harpins and HrpK1 but retains the 

ability to secrete HrpA1 (the Hrp pilus), effector proteins, and other type III-

secreted proteins encoded by the hrp/hrc cluster. We reported earlier that the 

P. syringae pv. tomato DC3000 hrpJ mutant was unable to secrete HrpZ1 in 

culture (28). DC3000 hrpZ1 mutants have a subtler virulence phenotype than the 

DC3000 hrpJ mutant (2), which suggests that other proteins cannot be secreted 

from the hrpJ mutant in addition to HrpZ1. Because HrpZ1 is a candidate 

translocator, the hrpJ mutant may be defective in the secretion of translocators 

and by identifying proteins that are not secreted from the hrpJ mutant we may 

better define the group of proteins that make up the DC3000 translocon. To test 

this, we first determined the extent that the HrpW1 harpin was secreted from the 

hrpJ mutant. We performed in culture secretion assays by growing DC3000 

cultures in a medium that induces the T3SS and separated the cultures into cell-

bound and supernatant fractions. HrpW1 was found in the supernatant fraction 

from wild type DC3000 but only in the cell fraction of the hrpJ mutant (Fig. 1A) 

indicating that HrpW1 cannot be secreted from cells lacking HrpJ. The ability to 
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secrete HrpW1 was restored to the hrpJ mutant when hrpJ was provided in trans 

(Fig. 1A). The inability of the hrpJ mutant to secrete HrpW1 further suggests that 

HrpJ may be required for the secretion of a larger group of proteins that need to 

be secreted early in the type III secretion hierarchy. 

In order to identify other proteins that cannot be secreted by the hrpJ 

mutant and therefore, possibly linked in function to HrpZ1 and HrpW1 we 

screened a wide array of type III-secreted substrates for their inability to be 

secreted by the hrpJ mutant. Included in these experiments were HrpA1 (the 

major protein component of the pilus), type III effectors, other harpin proteins, 

and other type III-secreted proteins encoded by the hrp-hrc cluster. Because the 

overexpression of harpins can have aberrant effects on type III secretion (3, 14), 

harpin and hrpK1 genes were expressed from a type III promoter using a Tn7 

expression system (See Experimental Procedures). DC3000 and hrpJ mutant 

strains containing different genes that encoded type III-secreted substrates fused 

to a hemagglutinin (HA) or a FLAG epitope were grown in type III-inducible 

medium and separated into cell and supernatant fractions. Interestingly, the two 

additional putative translocator proteins, the HopAK1 harpin and HrpK1, were not 

detectable in the supernatant fraction of the mutant indicating that HrpJ is 

required for their secretion (Fig. 1B). The HopP1 harpin was secreted by the hrpJ 

mutant (Fig. 1B) indicating that it likely had a different role in the T3SS than the 

other harpins tested. The secretion of both HopAK1 and HrpK1 was restored 

when hrpJ was provided in trans to the hrpJ mutant (Fig. 1B). The type III  
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Fig. 1. The hrpJ mutant is impaired in its ability to secrete HrpW1, HrpK1, and 
HopAK1, but not HopP1, HrpF, HrpA1, HopO1-1, or AvrPto1. (A) Wild type DC3000, 
a type III defective mutant hrcC, and a hrpJ mutant were grown in type III-inducing 
conditions and then separated into cell (C) and supernatant (S) fractions by 
centrifugation. Proteins were resolved with SDS PAGE and immuno-stained with anti-
HrpW1 antibodies. (B) Wild type DC3000 and a hrpJ mutant carrying a plasmid that 
encoded one of several type III-secreted substrates fused at their C-termini to an HA or 
FLAG epitope were grown in type III-inducing conditions and separated into cell and 
supernatant fractions. Type III-secreted proteins were detected with anti- HA antibodies. 
(A-B) Bacteria also expressed NPTII or β-lactamase as negative controls because these 
remain cell-bound unless non-specific cell leakage occurred. All experiments were 
repeated at least three times with similar results. 
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effectors AvrPto1 and HopO1-1, the HrpA1 pilus protein, and HrpF, a type III- 

secreted protein encoded by the hrp-hrc cluster (62), were all secreted by the 

hrpJ mutant (Fig. 1B). We reported previously that HrpA1 was secreted by the 

hrpJ mutant (28). Further experimentation suggests that HrpA1 is actually 

secreted in higher amounts by the hrpJ mutant as shown in Fig. 1B. Thus, the 

harpins HrpZ1, HrpW1, and HopAK1, and the translocator HrpK1 all require HrpJ 

to be secreted via the T3SS. This result suggests that the type III secretion of 

these proteins is coordinated by the HrpJ control protein and that they likely all 

perform related translocation functions. Furthermore, the increased secretion of 

HrpA1 by the hrpJ mutant suggests that HrpJ may aid in the transition from 

production of the pilus to the translocon. 

Cell-bound HrpJ restores HrpZ1 and HrpW1 secretion from the hrpJ 

mutant. HrpJ is a type III-secreted protein (28). Because a DC3000 mutant 

lacking HrpJ does not secrete HrpZ1, we wanted to determine whether HrpJ 

secretion was needed for the secretion of HrpZ1 or HrpW1 or whether their 

secretion required HrpJ to be present inside the bacterial cell. The type III 

secretion signal for HrpJ is present on its N-terminus (28). N-terminal GST 

fusions have been made with type III-secreted substrates to render them 

impassable to the T3SS (63). We made a hrpJ construct that produces a HrpJ 

derivative containing GST fused to the N-terminus of HrpJ. This HrpJ derivative 

was not secreted by the hrpJ mutant (Fig. 2). We carried out in culture secretion 

assays to determine the extent that HrpZ1, HrpW1, and HrpA1 could be secreted 

from the hrpJ mutant complemented with the secretion incompetent derivative of  



113 
 

 

 

 

 

Fig. 2. A secretion incompetent HrpJ fusion protein restores the ability to 
secrete HrpZ1 to a hrpJ mutant. The DC3000 hrpJ mutants carrying a 
construct that encoded HrpJ-HA C-terminal fusion, GST alone, or a GST-HrpJ N-
terminal fusion were grown in type III-inducing conditions and separated into cell 
and supernatant fractions by centrifugation. Proteins were resolved with SDS 
PAGE and immuno-stained with anti-HrpZ1, anti-HrpW1, anti-HrpA1, anti-GST, 
anti-HA, or anti-NPTII antibodies. NPTII was used as a lysis control. The 
experiment was repeated two additional times with similar results. 
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HrpJ. Both HrpZ1 and HrpW1 were secreted from the hrpJ mutant producing the 

secretion incompetent HrpJ derivative (Fig. 2). We also found that the enhanced 

secretion of HrpA1 by the hrpJ mutant was reduced back to wild type levels when 

GST-HrpJ was introduced into the hrpJ mutant (Fig. 2). These results suggest 

that HrpJ is needed inside the bacterial cell in order to allow for the secretion of 

HrpZ1 and HrpW1 and likely the other translocators and, perhaps, to act as a 

substrate switch from the secretion of HrpA1 pilus protein to translocator 

secretion. Furthermore, the purpose of HrpJ’s own secretion appears to be 

independent of its function in controlling the secretion of HrpZ1 and other 

translocators. 

Expression of a secretion incompetent HrpJ derivative in the hrpJ mutant 

complements HrpZ1 secretion, elicitation of an HR in tobacco, and partially 

restores virulence in Arabidopsis. In order to confirm that cell-bound HrpJ is 

sufficient  to restore the secretion of DC3000 translocators to the hrpJ mutant, 

several additional hrpJ constructs were made that produced HrpJ derivatives 

lacking either its type III secretion signal (HrpJΔ2-75), an N-terminal half region 

(HrpJΔ2-185), or a large C-terminal region (HrpJΔ161-368), each fused to an HA 

epitope. These constructs were confirmed by sequencing and produced stable 

HrpJ derivatives (Data not shown). The HrpJΔ2-75 and HrpJΔ2-185 derivatives could 

not be detectably secreted or translocated in in culture secretion assays and 

translocation assays, respectively, whereas the HrpJΔ161-368 derivative was 

detectably secreted and translocated (Data not shown). In culture secretion 

assays were performed with hrpJ strains separately containing these constructs 
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to determine if any could restore HrpZ1 secretion. The HrpJΔ2-75 derivative 

restored the secretion of HrpZ1 from the hrpJ mutant (Fig. 3A). Both HrpJΔ2-185 

and HrpJΔ161-368 did not restore HrpZ1 secretion (Fig. 3A). We performed similar 

experiments with the YopN and TyeA moieties of HrpJ and found that neither 

could restore the secretion of HrpZ1, and, therefore, HrpJ’s function in 

translocator secretion requires both (Fig. S1). Our results confirm the data shown 

in Fig. 2 indicating that secretion incompetent HrpJ is sufficient to restore the 

secretion of HrpZ1 to the hrpJ mutant. Additionally, it also suggests that the 

amino acids deleted from HrpJΔ2-185 and HrpJΔ161-368 derivatives are required for 

HrpJ’s ability to control HrpZ1 secretion.  

The ability of DC3000 to elicit an HR in tobacco is dependent upon its 

ability to inject type III effectors into the plant cells. Therefore, the HR is a 

measure of translocation. In order for type III effectors to be injected, HrpJ must 

be present to allow for the secretion of HrpK1 and the harpin proteins (Fig. 1), 

which collectively are necessary for translocation (46, 60). The hrpJ mutant 

cannot elicit an HR in tobacco because it cannot inject type III effectors, but this 

phenotype was complemented by expression of hrpJ in trans ((28); Fig. 3B). The 

secretion incompetent HrpJΔ2-75 was also capable of restoring HR elicitation while 

the other HrpJ deletions tested did not restore the ability to elicit an HR to the 

hrpJ mutant (Fig. 3B). These results support the hypothesis that cell-bound HrpJ 

is required for the secretion of translocators. 

As has previously been shown (28), a hrpJ mutant was severely reduced 

in its ability to grow in planta and cause disease symptoms in Arabidopsis (Fig.  
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Fig. 3. A HrpJ derivative lacking its secretion signal restores secretion of HrpZ1 
and the ability to elicit an HR to a hrpJ mutant but only partially complements 
pathogenicity. (A) DC3000 strains were grown in type III-inducing conditions and 
separated into cell and supernatant fractions by centrifugation and assessed for the 
secretion of HrpZ1 or AvrPto1 with immunoblot anaylses. NPTII was used as a cell lysis 
control. pML123 was used as an empty vector (pEV) control. The experiment was 
repeated three times with similar results. (B) The DC3000 hrpJ mutant strains 
expressing either the full length HrpJ or HrpJΔ2-75 were capable of eliciting an HR in 
tobacco indicating that these strains were capable of injecting type III effectors. Bacteria 
were infiltrated at 1 x 108 cells/ml and the HR was observed within 24 hours after 
infiltration. The experiment was repeated four times with similar results. (C) Growth of 
the hrpJ mutant on Arabidopsis thaliana Col-0 was partially restored when full length 
hrpJ or hrpJΔ2- 75 was provided in trans. Lower case letters indicate whether growth of the 

different strains were statistically different based on t-tests (P < 0.1) and error bars 
indicate standard deviation. (D) Photos of disease symptoms on Arabidopsis leaves 
were taken 4 days after infection. (C-D) The experiments were repeated twice with 
similar results. 
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3C and D). The production of HrpJΔ2-185 and HrpJΔ161-368 was unable to 

complement the virulence phenotype exhibited by the hrpJ mutant (Fig. 3C and 

D). It is important to note that full length HrpJ was unable to fully complement the 

virulence phenotype of the hrpJ mutant (Fig. 3C and D). HrpJΔ2-75 was able to 

partially restore virulence to the hrpJ mutant, but could not restore virulence to 

levels exhibited by the hrpJ mutant complemented with full length HrpJ (Fig. 3C 

and D). Because HrpJΔ2-75 was able to fully restore secretion of HrpZ1 and HR 

elicitation, the difference in growth of the hrpJ mutant complemented with full 

length hrpJ or hrpJΔ2-75 may be attributable to the function of secreted HrpJ rather 

than the function of its cell-bound form.  

A HrpZ1 C-terminal deletion derivative can be secreted in culture by the 

hrpJ mutant. The requirement of cell-bound HrpJ for HrpZ1 secretion suggests 

that HrpZ1 may interact with HrpJ or a HrpJ complex near the pore of the T3SS 

apparatus. However, we were unable to demonstrate an interaction between 

HrpJ and HrpZ1 in yeast two hybrid interaction assays or in GST-HrpJ pull-down 

assays (Data not shown). We also included HrpK1, HrpW1, and HopAK1 in these 

yeast two hybrid experiments and were unable to detect any interactions with 

these proteins and HrpJ (Data not shown). In spite of this apparent lack of 

interaction experimentally between these proteins, which may be due to the 

transient nature of these interactions or that these interactions may require a 

protein complex, we wanted to test the extent that any HrpZ1 deletion derivatives 

could be secreted by the hrpJ mutant. The rationale for this experiment was that 

if a region within the HrpZ1 protein was required to interact with HrpJ or a HrpJ 
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complex in order for it to be secreted, then it is possible that the hrpJ mutant may 

be able to secrete a HrpZ1 deletion derivative lacking this region. To test this, a 

series of hrpZ1 gene constructs were made that when introduced into DC3000 

produced HrpZ1 deletion derivatives lacking 50 amino acid portions in different 

regions of this protein. Interestingly, the HrpZ1Δ271-320-HA derivative, which lacked 

amino acids 271-320 was secreted in culture from the hrpJ mutant (Fig.4A). Only 

low amounts of HrpZ1Δ271-320-HA were secreted, however, this experiment was 

repeated several times with similar results. All of the other HrpZ1 derivatives 

were not secreted from the hrpJ mutant. Each hrpZ1 gene construct produced a 

stable HrpZ1 derivative and all except for the most N-terminal deletion derivative 

(HrpZ1Δ21-70-HA), which likely lacked part of the type III secretion signal, were 

detectably secreted from the hrpJ mutant expressing hrpJ in trans (Fig. 4B). The 

implication of this result is that a C-terminal region of HrpZ1 is required for HrpJ-

dependency, and therefore, may interact with HrpJ allowing HrpJ to control the 

secretion of HrpZ1.  

The reduced virulence phenotype exhibited by the hrpJ mutant expressing 

the cell-bound HrpJ is complemented by in planta-expressed HrpJ-HA. The 

hrpJ mutant complemented with a secretion incompetent HrpJ derivative was 

less virulent than when it was complemented with full length HrpJ (Fig. 3C). 

Because HrpJ is itself a secreted protein we determined the extent that in planta-

expressed HrpJ could complement the observed reduced virulence phenotype. 

To test this we made transgenic Arabidopsis plants that constitutively 

expressed HrpJ-HA and performed pathogenicity assays using these plants. The  
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Fig. 4. A C-terminal HrpZ1 deletion derivative can be secreted in culture by 
a hrpJ mutant. (A) Wild type DC3000 (WT) and hrpJ mutant strains expressing 
HrpZ1 and HrpZ1 derivatives C-terminally fused to a hemagglutinin (HA) tag 
were grown in type III-inducing conditions and separated into cell and 
supernatant fractions by centrifugation and assessed for HrpZ1 secretion by 
immunoblot analysis. The HrpZ1 derivatives were not secreted by the hrpJ 
mutant except for a HrpZ1 derivative that lacked amino acids 271-320 
(HrpZ1D271-320). (B) The hrpJ mutant strains expressing HrpZ1 and HrpZ1 
derivatives and complemented with full length hrpJ were grown in type III-
inducing conditions and separated into cell and supernatant fractions to 
determine the extent that the HrpZ1 derivatives could be secreted in the 
presence of HrpJ. With the exception of hrpZ1_21-70, which lacks its secretion 
signal, all of the HrpZ1 derivatives were secreted from the hrpJ mutant when 
hrpJ was provided in trans. (A-B) HrpZ1 and HrpZ1 derivatives were expressed 
from a type III promoter using a Tn7 expression system. HrpZ1-HA and 
derivatives were detected with anti-HA antibodies. β-lactamase was used as a 
lysis control and detected with anti- β-lactamase antibodies. These experiments 
were done 4 times with similar results. 
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transgenic Arabidopsis plants were confirmed to constitutively express HrpJ-HA 

(Fig. 5A). Consistent with the results presented in Fig. 3C, the hrpJ mutant grew 

poorly likely due to the failure of this mutant to inject type III effectors because it 

cannot secrete translocators (Fig. 5C). However, the hrpJ mutant expressing the 

secretion incompetent HrpJ (HrpJΔ2-75) grew similarly and caused similar disease 

symptoms in transgenic Arabidopsis plants expressing HrpJ-HA to the hrpJ 

mutant expressing full length HrpJ (Fig. 5B and C). Thus, the growth difference 

observed between these two strains in wild type Arabidopsis plants (Fig. 3C) was 

not detectable on transgenic Arabidopsis plants expressing HrpJ-HA indicating 

that in planta-expressed HrpJ contributed to virulence by acting inside plant cells.  

Expression of hrpJ in transgenic plants suppresses PAMP-triggered 

immunity. Because the primary role of type III effectors injected by P. syringae 

appears to be to suppress the plant’s innate immune system (34), we sought to 

determine if Arabidopsis plants expressing HrpJ-HA were altered in their innate 

immune responses relative to wild type plants. We made several independent 

lines of transgenic Arabidopsis plants that constitutively expressed HrpJ-HA. 

Pathogen-associated molecular patterns (PAMPs) can be recognized by plants 

and animals resulting in the induction of PAMP-triggered immunity (PTI) (65). We 

used two commonly used assays to evaluate PTI in Arabidopsis plants 

expressing HrpJ-HA: The ability of a type III defective P. syringae strain (hrcC), 

which is a de facto-PTI inducing strain, to grow in Arabidopsis plants expressing 

HrpJ-HA compared to wild type plants and callose (a β-1,3- glucan) deposition in 

the cell wall in response to flg22, a peptide derived from the flagellin PAMP. A  
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Fig. 5. In planta HrpJ-HA expression complements the reduced growth 
phenotype associated with the hrpJ mutant complemented with cell-bound 
HrpJ. (A) Transgenic Arabidopsis plants express detectable amounts of HrpJ-
HA. Total protein extracts from wild type A. thaliana Col-0 (right) and a 
representative HrpJ-HA transgenic plant that constitutively expresses HrpJ-HA 
(left) were subjected to immunoblot analysis using anti-HA antibodies. (B) Photos 
of disease symptoms on transgenic HrpJ-HA Arabidopsis leaves were taken 4 
days after infection with the P. syringae strains indicated. This experiment was 
done twice with similar results. (C) Transgenic HrpJ-HA Arabidopsis plants were 
spray-inoculated with 2 x 108 cells/ ml with wild type DC3000, the type III 
defective hrcC mutant, the hrpJ mutant, hrpJ mutant complemented with full 
length hrpJ, or the hrpJ mutant complemented with a hrpJ derivative (hrpJΔ2-75) 
that encodes a secretion incompetent form of HrpJ. Lower case letters indicate 
whether growth of the different strains were statistically different based on t-tests 
(P < 0.05), and error bars indicating standard deviation are shown. 
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DC3000 hrcC mutant, defective in the T3SS, was spray-inoculated onto wild type 

Arabidopsis and Arabidopsis plants expressing HrpJ-HA and bacterial cells were 

enumerated at 0 and 4 days after infection. Interestingly, the hrcC strain 

exhibited significantly better survival on plants expressing HrpJ-HA compared to 

wild type plants (Fig. 6A). We next measured the ability of transgenic Arabidopsis 

plants expressing HrpJ-HA to deposit callose compared to wild type plants in 

response to flg22. The number of callose deposits was more than two-fold higher 

in wild type plants than in plants expressing HrpJ-HA (Fig. 6B) indicating that 

HrpJ-HA can suppress flg22-induced callose deposition. We observed similar 

results with other plant lines expressing HrpJ-HA (data not shown). These results 

suggest that HrpJ-HA can suppress PTI. Collectively, these experiments suggest 

that HrpJ acts as a virulence factor inside plant cells and can suppress PTI. 

Discussion 

The YopN-TyeA/InvE/SepL protein family members function as control proteins 

for type III-secreted substrates and are particularly important for the secretion of 

translocator proteins. In most T3SS-containing bacteria these translocators are 

easily identified because they have high sequence identity with the YopB and 

YopD translocators and the LcrV tip protein from Yersinia spp. (39). Bacterial 

plant pathogens appear to have a substantially different translocon than animal 

pathogens due probably to the need for the T3SS apparatus to cross the plant 

cell wall (11). Putative translocators in the P. syringae T3SS are the HrpZ1 

harpin and HrpK1 (47, 60), but the relationship between these proteins is 

unclear. The observation that HrpZ1 was not secreted from a P. syringae hrpJ  
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Fig. 6. Transgenic HrpJ-HA Arabidopsis plants exhibit reduced plant innate 
immune responses. (A) Bacterial growth assays of a type III defective hrcC 
mutant spray-inoculated at 2 x 108 cells/ml onto wild type Arabidopsis (Col-0) and 
transgenic Arabidopsis plants expressing HrpJ-HA. The hrcC mutant persisted at 
higher numbers in HrpJ-HA plants than it did in wild type plants at 4 days post-
infection. (B) Wild type and HrpJ-HA plants were infiltrated with 1 μM flg22 and 
after 16 h the leaves were stained with aniline blue and examined by 
fluorescence microscopy for callose deposition. Arabidopsis plants expressing 
HrpJ-HA showed fewer callose foci than wild type plants (bar graph) as depicted 
in a representative micrographs (right panels). Numbers are the average of 120 
images taken from 12 leaves of 2 individual plants. Representative micrographs 
are shown in the panels on the right. These experiments were done at least twice 
with similar results. 
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mutant (28) revealed a strategy to better identify the P. syringae translocator 

class by screening type III-secreted substrates for HrpJ-dependent secretion. 

Interestingly, we found that HrpK1 and the harpins HrpW1 and HopAK1, but not 

the HopP1 harpin, are required HrpJ for their secretion into culture supernatants 

(Fig. 1). An earlier study found these same proteins were capable of restoring to 

differing degrees the ability to elicit an HR to a P. syringae mutant lacking the 

harpins and HrpK1 (46). The fact that HrpZ1, HrpW1, HopAK1, and HrpK1 all 

require HrpJ for their secretion further links these proteins in the translocation 

process and provides an explanation for the greatly reduced virulence and HR 

phenotypes exhibited by the hrpJ mutant ((28), Fig. 3).  

 YopN-TyeA/InvE/SepL protein family members are considered ‘switch 

proteins’ because bacterial mutants lacking them are generally defective in the 

secretion of translocators and secrete increased amounts of type III effectors (24, 

66). Presently, there is no evidence to suggest that HrpJ is acting as a switch 

protein to shift from the secretion of translocators to effectors because the P. 

syringae hrpJ mutant secretes similar amounts of type III effectors as the wild 

type strain (Fig. 1). Interestingly, however, the hrpJ mutant did secrete increased 

amounts of the HrpA1 pilus protein (Fig. 1) suggesting that HrpJ negatively 

controls the secretion of HrpA1, perhaps, acting as a switch protein between 

pilus assembly and translocation. This result is in contrast to the secretion 

phenotype exhibited by a Shigella mxiC mutant, which secreted wild type levels 

of the type III needle protein (enhanced amounts of effectors, and delayed and 

weak secretion of translocators) after induction with congo red (50). Another 



125 
 

report describing the phenotype of a Shigella mxiC mutant found that it was 

enhanced for type III effector secretion but that it secreted translocators at wild 

type levels when grown in cultures in the absence of any activation signal such 

as congo red (9). This highlights an important point to consider – Comparisons 

between the phenotypes exhibited by mutants defective in YopN-

TyeA/InvE/SepL family members can be problematic because bacterial secretion 

and translocation assays are done differently by different researchers and in 

different bacterial systems. The involvement of HrpJ in the control of translocator 

secretion appears undeniable because of its strong virulence and translocation 

phenotypes ((28) and Fig. 2) and because of its inability to secrete the harpins 

and HrpK1 translocators. The extent that HrpJ acts as a switch protein between 

the secretion of different classes of type III-secreted substrates will be a focus of 

future studies. 

 We found that a secretion incompetent HrpJ derivative was able to restore 

in culture secretion of HrpZ1 and HrpW1 to a P. syringae hrpJ mutant (Figs. 2 

and 3A). This is consistent with similar experiments done with the Salmonella 

invE, Yersinia pestis yopN, and Shigella mxiC mutants (9, 26, 45) and also with 

the finding that the Shigella MxiC interacts with the Spa47 ATPase, an ATPase 

associated with the cytoplasmic side of the Shigella T3SS (9). Interestingly, 

introduction of the secretion incompetent GST-HrpJ fusion into the hrpJ mutant 

also restored the reduced levels of HrpA1 secretion observed from the wild type 

strain consistent with HrpJ acting as a substrate switch from pilus assembly and 

translocation (Fig. 2).  Thus, it is clear that HrpJ functions inside the bacterial cell 
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to control translocator secretion. The model for HrpJ function is that it binds to 

the inner face of the P. syringae T3SS and facilitates the secretion of the HrpK1 

and harpin translocators. Importantly, in the absence of HrpJ, translocators are 

not secreted and because a HrpZ1 C-terminal deletion derivative regained its 

ability to be secreted from a hrpJ mutant (Fig. 4), it appears that translocators 

may have domains that make them dependent on HrpJ for their secretion. 

However, we have thus far been unable to demonstrate interactions between 

HrpJ and T3SS apparatus proteins or between HrpJ and HrpK1 or the harpins 

using yeast two hybrid screens and co-immunoprecipitation experiments (A. 

Karpisek and J.R. Alfano, unpublished). In spite of this, it remains likely that 

these interactions are occurring but may be too transitory or weak to be detected, 

or require additional proteins. 

 What remains less clear is why the majority of YopN-TyeA/InvE/SepL 

family members, including HrpJ, are secreted. Do they function extracellularly or 

inside eukaryotic cells? There are several plausible scenarios that are not 

mutually exclusive, which could explain the need for these proteins to be 

secreted. (i) To act as switch proteins they need to be released from the cell. 

These proteins may not have a function outside of the bacterial cell per se, but in 

order to act as switch proteins they need to be absent from the bacterial cell and 

this is facilitated by their secretion. (ii) These proteins may have an extracellular 

accessory function in the T3SS. While there is little evidence to support this, it 

remains possible that these proteins act in this manner. And finally (iii), the 

secreted YopN-TyeA/InvE/SepL family members are translocated into eukaryotic 
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cells where they function as effectors. Our results with HrpJ are supportive of this 

last scenario in that HrpJ is translocated into plant cells (28) and in planta 

expressed HrpJ can suppress innate immune responses (Fig. 6).  

The T3SSs of bacterial plant pathogens can be divided into two groups 

based on the possession of similar genes, operon structures, and regulatory 

systems. Group 1 includes the P. syringae T3SS and group 2 includes the well-

studied T3SS of Xanthomonas campestris (4, 19). Group 2 T3SSs do not use a 

YopN-TyeA/InvE/SepL family member. Instead, based on research on the X. 

campestris T3SS, they use the HpaC protein, which is not present in group 1 

T3SSs and appears to serve an analogous secretion control function as HrpJ. 

HpaC is known to control the secretion of early and late type III-secreted 

substrates from the X. campestris T3SS (12). A hpaC mutant is deficient in 

secretion of several type III effectors as well as the translocators HrpF and XopA 

but retains the ability to secrete the HrpE pilus protein (12, 64). Additionally, 

HpaC interacts with and prevents the secretion of HrpB2, which is secreted early 

and is known to be essential for the assembly of the pilus (49). Thus, it appears 

that HpaC is acting as a substrate specificity switch protein in the X. campestris 

T3SS shifting the secretion from HrpB2 to the secretion of translocators and 

effector proteins. The differences in the secretion control proteins used by group 

1 and 2 T3SSs illustrate how plant pathogenic T3SSs apparently evolved 

different strategies to control type III secretion hierarchy. 

 In our review of the literature, we were unable to find many reports 

indicating that YopN-TyeA/InvE/SepL family members were translocated into 
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eukaryotic cells and/or had effects in eukaryotic cells. There are differing reports 

on whether the Yersinia YopN is translocated into animal cells (8, 22, 48). E. coli 

SepL is secreted in culture and, even though it has not been reported to be 

translocated, Younis et al. suggested that it resembles a type III effector because 

it utilizes a class I type III chaperone, accessory proteins required by many type 

III effectors for their secretion (58, 69). The only published evidence that a YopN-

TyeA/InvE/SepL family member can act as an effector inside host cells is with the 

Chlamydia pneumoniae CopN protein (5, 38). Expression of C. pneumonia CopN 

in yeast or animal cells caused cell cycle arrest and disruption of microtubules 

(38). Further studies found that CopN directly binds αβ-tubulins and inhibits 

tubulin polymerization (5). Because genetic manipulations are not possible in 

Chlamydia the contribution of CopN to virulence could not be conventionally 

established using bacterial mutants. However, Huang et al. identified small 

molecules that inhibited CopN-induced growth inhibition in yeast and found that 

these compounds reduced C. pneumonia replication in animal cells consistent 

with CopN contributing to virulence (38).  

 A P. syringae hrpJ mutant is severely debilitated in its ability to infect 

plants ((28); Fig. 3). A large part of the observed reduction in virulence is due to 

the role HrpJ plays inside bacterial cells in translocator secretion. We know this 

because when the hrpJ mutant is complemented with a construct that produces a 

secretion incompetent HrpJ derivative virulence is substantially but not 

completely restored (Fig. 3C and D). However, we found that the hrpJ mutant 

producing a secretion incompetent HrpJ derivative could restore virulence to the 
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same extent as a hrpJ mutant producing full length HrpJ if these strains were 

inoculated into Arabidopsis plants expressing HrpJ-HA (Fig. 5). This clearly 

shows that HrpJ can also contribute to virulence by acting inside plant cells. 

Together with the finding that a P. syringae type III defective mutant grows to 

higher levels in Arabidopsis plants expressing HrpJ-HA compared to wild type 

Arabidopsis and that these plants produce reduced amounts of callose 

deposition suggest that HrpJ contributes to virulence by suppressing innate 

immune responses. Our future experiments will seek to determine the extent that 

HrpJ produces CopN-like phenotypes in eukaryotic cells and on the identification 

of targets and activities of HrpJ inside plant cells. 

 Other future studies will be focused on the identification of P. syringae 

proteins that interact with HrpJ. Even though we have been unable to identify 

HrpJ interactors, there has been some success at identifying interactors for other 

TyeA/InvE/SepL family members (44, 56, 66, 68-70). The Salmonella SsaL 

family member was relatively recently found to be part of a pH-sensing complex 

that withholds effector secretion in the low pH conditions found inside host 

vacuoles (70). Interestingly, the plant apoplast has long been known to be acidic 

and it is possible that HrpJ participates in such a pH-sensing control mechanism. 

Elucidating the molecular roles that HrpJ plays inside bacterial cells and plant 

cells will likely shed light on both the timing and hierarchy of type III secretion and 

strategies P. syringae uses to disable the plant’s immune system. 



130 
 

Experimental procedures 

Bacterial strains and media. Bacterial strains and plasmids used in this work 

are listed in Supporting Information Table S1. Escherichia coli strain DH5α was 

used for general cloning and was grown in Luria-Bertani broth at 37°C. 

Pseudomonas syringae pv. tomato DC3000 was grown in King’s B (KB) broth at 

30°C or in type III-inducing fructose minimal medium at 22°C (40). Antibiotics 

were used at the following concentrations (micrograms per milliliter):  Ampicillin, 

100; chloramphenicol, 20; gentamicin, 10; kanamycin, 50; rifampicin, 100; 

spectinomycin, 50; and tetracycline, 20.  

General DNA manipulation. Restriction enzymes, T4 ligase, and DNA 

polymerase were purchased from New England Biolabs (Beverly, MA). 

Thermostable DNA polymerase used in the polymerase chain reaction (PCR) 

was Pfu DNA polymerase (Stratagene, La Jolla, CA). Primers were made by 

Integrated DNA Technologies (Coralville, IA). A list of the primers, their 

oligonucleotide sequences, and additional information are shown in Supporting 

Information Table S2. For cloning using Gateway technology, we amplified genes 

with PCR and recombined them into the pENTR/D TOPO vector (Invitrogen, 

Carlsbad, CA). QuikChange Site-Directed Mutagenesis Kit was used to make 

site-directed mutations in hrpJ or hrpZ1 following the manufacturer’s instructions 

(Stratagene, La Jolla, CA). Constructs were introduced into P. syringae strains by 

electroporation. 

Type III secretion assays. Bacterial strains were grown on KB media with 

appropriate antibiotics for 16 h in a 30°C incubator. Cells were harvested from 
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plates, resuspended in 100 ml type III-inducing fructose minimal media, and 

adjusted to a concentration of 4 x 108 cells/ml (OD600 = 0.4) with the appropriate 

antibiotics. Cultures were incubated in a 22°C shaker at 220 rpm for 6 h. Cultures 

were then separated into cell and supernatant fractions by centrifugation. Protein 

precipitation of the supernatant fraction was performed by adding 25% 

trichloroacetic acid (Sigma Aldrich, St. Louis, MO) to the supernatant, mixing and 

incubating at 4°C for 15 h. Supernatant fractions were centrifuged and excess 

supernatant was discarded. Precipitated protein was washed briefly with acetone 

and air-dried. The protein pellet was then resuspended in SDS buffer containing 

Dithiothreitol (DTT) (New England BioLabs). Cell pellets were resuspended in 

type III-inducing fructose minimal media containing SDS and DTT. Proteins were 

separated by 12% SDS-PAGE and transferred to Immobilon-P membranes 

(Millipore, Billerica, MA) for immunoblot analyses. β-lactamase or NPTII was 

used as lysis control.  

Tn7 expression system. A transposon 7 (Tn7) expression system was used to 

express certain genes in P. syringae (16). Briefly, a Tn7 Gateway compatible 

entry vector was made with left and right flanking sequences, Tn7R and Tn7L, 

the transposase complex, an avrPto1 promoter sequence, and a gentamicin 

resistant FRT cassette. The final gene product contained an in-frame 3’ HA tag. 

Genes of interest were amplified by PCR using Pfu polymerase with Gateway 

compatible, gene specific primers. Upon completion of Gateway cloning into the 

pLN2992 destination vector, plasmids were confirmed by PCR. The positively 

confirmed constructs were then transformed by electroporation into wild type or 
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the P. syringae hrpJ mutant. Transformants were checked for expression by 

growing them in type III-inducing condition for 6 h at 22°C. Proteins were 

detected with commercially available HA (Roche Diagnostics, Basel, Switzerland) 

or CyaA antibodies (Santa Cruz Biotechnology, Santa Cruz, CA).  

Plant bioassays. HR assays were done in Nicotiana tabacum cv. Xanthi. 

DC3000 and DC3000 mutant strains were grown for 16 h on KB media with 

appropriate antibiotics at 30°C. Bacteria were resuspended in 5 mM 2-(N-

morpholino) ethanesulfonic (pH 5.6) at a cell density of 1 x 108 cells/ml and 

serially diluted. Leaves were infiltrated with a blunt syringe and the HR was 

evaluated after 24 h. The growth and disease symptoms caused by DC3000 and 

mutant strains were assessed in A. thaliana Col-0 plants or transgenic Col-0 

plants constitutively expressing HrpJ-HA. Transgenic Arabidopsis plants were 

made by introducing the hrpJ gene fused at its 3’ with nucleotides encoding an 

HA tag into pLN462, a Gateway version of the binary vector pPZP212, 

downstream of a CaMV 35S promoter. The resulting construct (pLN4501) was 

electroporated into Agrobacterium and hrpJ-ha was introduced into the plant’s 

genome using the Agrobacterium-mediated floral dip method (6). T2 generation 

plants were confirmed to express HrpJ-HA with immunoblots using anti-HA 

antibodies prior to their use in experiments. To infect plants, P. syringae strains 

were grown for 16 h on KB media with antibiotics at 30°C. The strains were 

resuspended in 10 mM MgCl2 containing 0.02% Silwet L-77 (Lehle Seeds, 

Round Rock, TX) and spray-inoculated at a concentration of 2 x 108 cells/m. Four 

leaf discs were taken for each strain at 0 and 4 days with a 0.4 cm2 cork borer. 
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The samples were ground in 250 ml of autoclaved water and serially-diluted 

aliquots were grown on KB plates with the appropriate antibiotics and 

enumerated. Disease symptoms were assessed and documented 4 days after 

inoculation. 

Callose deposition assays. Callose deposits were measured in leaves of A. 

thaliana Col-0 or transgenic Col-0 plants constitutively expressing HrpJ-HA. 

Callose depositions were induced by infiltration of 1 μM flg22. Leaves were 

harvested 16 h after infiltration and evacuated in alcoholic lactophenol (1:1:1:1:2 

phenol:glycerol:lactic acid:water:ethanol) for 15 m and then incubated in alcoholic 

lactophenol at 65°C until cleared. Leaves were stained with the fluorescent dye 

aniline blue (0.01%) in a solution of 150 mM K2HPO4 (pH 9.5) for 30 m as 

previously described (1) then mounted on slides in 50% glycerol. The aniline 

blue-stained callose was visualized on a fluorescence microscope (Zeiss 

Axionplan 2, Carl Zeiss, Oberkochen, Germany), and the number of callose 

deposits was quantified using Quantity One (Bio-Rad). 
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Supporting Figures and Tables 

 

 

 

 

 

Fig. S1. The YopN and TyeA moieties of HrpJ do not restore the secretion 
of HrpZ1 from the hrpJ mutant. Plasmids expressing the YopN and/or TyeA 
moieties of HrpJ, pLN4101 and pLN4109, respectively, were expressed in the 
hrpJ mutant and the secretion of HrpZ1-HA was determined. When either the 
YopN or TyeA moiety or both were expressed, the ability to secrete HrpZ1 was 
not restored to the hrpJ mutant. Only when full length HrpJ was expressed was 
secretion of HrpZ1-HA restored to the hrpJ mutant. Secretion assays were 
performed as described in the associated paper. To PCR clone the nucleotides 
corresponding to the YopN and TyeA moieties primers P3654 and P3655 and 
P3652 and P3653 were used, respectively. These DNAs were cloned into 
Gateway entry vectors and recombined into Gateway destination plasmid 
pLN615 or pLN705. 
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Table1. Strains and Plasmids used in this study 

Strain or 
plasmid 

Relevant Characteristics Source or 
Reference 

E. coli DH5α supE44 ΔlacU169(Φ80lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 
relA1, Nalr 

(36); Life 
Technologies 

Pseudomonas 
syringae pv. 
tomato DC3000 

Wild type, Rfr (21) 

DC3000 hrcC hrcC mutant defective in T3SS, Rfr Cmr (71) 
UNL140 Non-polar hrpJ mutant, Rfr, Kmr 

(29) 
pENTR/D-
TOPO 

Gateway entry vector, Kmr Invitrogen 

pLN293 entry vector carrying hrpK1, Kmr 
(61) 

pLN307 entry vector carrying avrPto1, Kmr (29) 
pLN335 pBBR1MCS-1 derivative gateway destination vector 

containing a FLAG tag for C-terminal fusions, Cmr 
This work 

pLN375  entry vector carrying hrpJ, Kmr (29) 
pLN462 pPZP212 derivative gateway destination binary vector 

containing 35S promoter and HA tag for C-terminal fusions, 
Spr 

(42) 

pLN615 pML123 derivative gateway destination vector containing a  
HA tag for C-terminal fusions, Gmr Cmr 

(33) 

pLN705 pBBR1MCS-1 derivative gateway destination vector 
containing a HA tag for C-terminal fusions, Gmr 

(32) 

pLN736 pLN705 derivative carrying hrpJ, Gmr 
(29) 

pLN814 entry vector carrying hopO1-1, Kmr (32) 
pLN1327 pLN615 derivative carrying avrPto1, Gmr (33) 
pLN1622 pLN615 derivative carrying hopO1-1, Gmr This work 
pLN1681 entry vector carrying hrpA1, Kmr 

This work 
pLN1682 entry vector carrying hrpZ1, Kmr This work 
pLN1695 pLN615 derivative carrying hrpA1, Gmr 

This work 
pLN2590 entry vector carrying hopP1, Kmr 

This work 
pLN2583 entry vector carrying hopAK1, Kmr 

This work 
pLN2647 pLN615 derivative carrying hrpJ, Gmr 

This work 
pLN2648 pLN615 derivative carrying hrpJΔ186-368 a.a., Gmr 

This work 
pLN2653 entry vector carrying hrpJΔ186-368 a.a., Kmr 

This work 
pLN2742 entry vector carrying hrpW1, Kmr 

This work 
pLN2913 entry vector carrying hrpF1, Kmr 

This work 
pLN2992 pUCP18T-mini-Tn7 derivative destination vector containing 

a HA tag for C-terminal fusions, PavrPto, Gmr 
This work 

pLN3066 pLN2992 derivative carrying hrpZ1, Gmr This work 
pLN3075 entry vector carrying hrpJΔ2-185 a.a., Kmr 

This work 
pLN3079 pLN615 derivative carrying hrpJΔ2-185 a.a., Gmr This work 
pLN3109 entry vector carrying hrpZ1Δ2-70, Kmr 

This work 
pLN3110 entry vector carrying hrpZ1Δ71-120, Kmr This work 
pLN3111 entry vector carrying hrpZ1Δ121-170, Kmr This work 
pLN3112 entry vector carrying hrpZ1Δ171-220, Kmr This work 
pLN3113 entry vector carrying hrpZ1Δ221-270, Kmr This work 
pLN3114 entry vector carrying hrpZ1Δ271-320, Kmr This work 
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pLN3115 entry vector carrying hrpZ1Δ321-368, Kmr This work 
pLN3116 pLN2992 derivative carrying hrpZ1Δ2-70, Gmr 

This work 
pLN3117 pLN2992 derivative carrying hrpZ1Δ71-120, Gmr This work 
pLN3118 pLN2992 derivative carrying hrpZ1Δ121-170, Gmr This work 
pLN3119 pLN2992 derivative carrying hrpZ1Δ221-270, Gmr This work 
pLN3120 pLN2992 derivative carrying hrpZ1Δ271-320, Gmr This work 
pLN3123 pLN615 derivative carrying hopP1, Gmr 

This work 
pLN3133 pLN2992 derivative carrying hrpZ1Δ171-220, Gmr This work 
pLN3134 pLN2992 derivative carrying hrpZ1Δ321-368, Gmr This work 
pLN3231 entry vector carrying gst, Kmr This work 
pLN3232 entry vector carrying gst-hrpJ, Kmr 

This work 
pLN3233 pLN615 derivative carrying gst, Gmr This work 
pLN3234 pLN615 derivative carrying gst-hrpJ, Gmr This work 
pLN3258  entry vector carrying hrpJΔ2-75 a.a., Kmr This work 
pLN3260 pLN615 derivative carrying hrpJΔ2-75 a.a., Gmr 

This work 
pLN3478 pLN335 derivative carrying hrpJ, Cmr 

This work 
pLN4084 entry vector carrying hrpJYopN, Kmr This work 
pLN4085 entry vector carrying hrpJTyeA, Kmr This work 
pLN4101 pLN615 derivative carrying hrpJYopN, Gmr This work 
pLN4109 pLN615 derivative carrying hrpJTyeA, Gmr This work 
pLN4501 pLN462 derivative carrying hrpJ, Spr 

This work 
pLN4607 pLN615 derivative carrying hrpF1, Gmr 

This work 
pLN5037 entry vector carrying hrpJYopN-stop, Kmr 

This work 
pLN5038 pLN615 derivative carrying hrpJYopN-stop, Gmr 

This work 
pTNS2 pTNS1 derivative helper plasmid, Apr (17) 
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Table 2. Primers used in this study. 

 

  

Gene  
name  

Primer 
number 

Primer  
sequence 

hrpK1 P0638 5'-CACCACTCTCGGAAGGCAACTAACAATGCGT-3' 
 P0639 5'-ATGCGCCTTCGCAATCCCGAA-3' 
avrPto1 P0689 5'-CACCTGTACTAAAGAGGGTATAAGAATGGGA-3' 
 P0690 5'-TTGCCAGTTACGGTACGGGCT-3' 
hrpJ P0759 5'-CACCGGCTTAGAACTGAACAATGAAAATCG-3' 
 P0760 5'-GACGAGCCCCCCGTAGAGCTGC-3' 
hopO1-1 P0814 5'- CTCGTCAGAGCTCTCTGCGAT-3' 
 P1120 5'-CACCCGAGTGATTTTAACAATGGGTAATATTTGTGG-3' 
hrpA1 P1752 5'-CACCCACGCTGGTAAATCTTAA-3' 
 P1753 5'-GTAACTGATACCTTTAGC-3' 
hrpZ1 P1754 5'-CACCGGCCGCTACCTTGGGATG-3' 
 P1755 5'-GGCCACAGCCTGGTTAGT-3' 
hrpJΔ2-185 P2301 5'-GCTTAGAACTGCCCTATGAACAGCGCCAAGGCATTCG-3' 
 P2302 5'-CGAATGCCTTGGCGCTGTTCATAGGGCAGTTCTAAGC-3' 
hrpJΔ186-368 P2303 5'-CGTGCTCGCGCCGGGATCATGAAGGGTGGGCGCGC-3' 
 P2304 5'-GCGCGCCCACCCTTCATGATCCCGGCGCGAGCACG-3' 
hopP1 P2327 5'-CACCGTGAGGTAACTGGCTATG-3' 
 P2328 5'- AGCGGGTAAATTGCCCTGCC-3' 
hopAK1 P2329 5'-CACCCCACAGGCGGGGAACTCAACAATG-3' 
 P2330 5'-TTTCACGACCTGTGCACCCGC-3' 
hrpW1 P2582 5'-CACCTTAGCGAGGTAACGCAGCATGAGCATCGGC-3' 
 P2583 5'-AAGCTCGGTGTGTTGGGT-3' 
hrpF1 P2654 5'-CACCAAGCTTCTGCTGGAGCACCAGGACATG-3' 
 P2655 5'-TCTAGACTGAATTCCATCGATGACTG-3' 
hrpZ1Δ2-70 P2776 5'-TCATTGTTCCCCGTGTCGGGCAAGTCGGCTAACAGC-3' 
 P2777 5'-GCTGTTAGCCGACTTGCCCGACACGGGGAACAATGA-3' 
hrpZ1Δ71-120 P2778 5'-CAAGGCCATGGCTGCGGATGGTGGCGGTCTGAGCAGC-3' 
 P2779 5'-GCTGCTCAGACCGCCACCATCCGCAGCCATGGCCTTG-3' 
hrpZ1Δ121-170 P2780 5'-GTTCTGGTTCGGGTGTCGAAAAAGTCGCCCAGTTC-3' 
 P2781 5'-GAACTGGGCGACTTTTTCGACACCCGAACCAGAAC-3' 
hrpZ1Δ171-220 P2782 5'-GATGACATGCCGACCCTGCTCGGCCAGCAACAAGGTG-3'   
 P2783 5'-CACCTTGTTGCTGGCCGAGCAGGGTCGGCATGTCATC-3' 
hrpZ1Δ221-270 P2784 5'-GACGTCATTGGTCAACAGATCGGTCAACTCATCGAC-3' 
 P2785 5'-GTCGATGAGTTGACCGATCTGTTGACCAATGACGTC-3'    
hrpZ1Δ271-320 P2786 5'-GTCGACGTAGGTCAACTGAGCGGCTTGCTGCAACGCG-3' 
 P2787 5'-CGCGTTGCAGCAAGCCGCTCAGTTGACCTACGTCGAC-3' 
hrpZ1Δ321-368 P2788 5'-GACCTGGGTCAACTGCTGAAGGGTGGGCGCGCCG-3'   
 P2789 5'-CGGCGCGCCCACCCTTCAGCAGTTGACCCAGGTC-3' 
gst-hrpJ P2814 5'-CACCAGGAAACAGTATTCATGTCCC-3' 
 P2857 5'-TCAGACGAGCCCCCCGTAGAGCTGC-3' 
gst P2814 5'-CACCAGGAAACAGTATTCATGTCCC-3' 
 P2883 5'-TCAGAATTCGGGGATCCCAC-3' 
hrpJΔ2-75 P2942 5'-GCTTAGAACTGCCCTATGGAGCTTTATCAACTGCTG-3' 
 P2945 5'-CAGCAGTTGATAAAGCTCCATAGGGCAGTTCTAAGC-3' 
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hrpJTyeA P3652 5'-GCTTAGAACTGCCCTATGAACACGGCACGCCACGTG-3' 

 P3653 5'-CACGTGGCGTGCCGTGTTCATAGGGCAGTTCTAAGC-3' 
hrpJYopN P3654 5'-ACACTGATGCACGGCCTCAAGGGTGGGCGCGCCGAC-3' 
 P3655 5'-GTCGGCGCGCCCACCCTTGAGGCCGTGCATCAGTGT-3' 
hrpJYopN-stop P4475 5'-TCAGAGGCCGTGCATCAGTGT-3'  
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injection of type III effectors by the 

Pseudomonas syringae type III secretion system 
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Abstract 

Plants perceive microorganisms by recognizing microbial molecules known as 

pathogen-associated molecular patterns (PAMPs) inducing PAMP-triggered 

immunity (PTI) or by recognizing pathogen effectors inducing effector-triggered 

immunity (ETI). The hypersensitive response (HR), a programmed cell death 

response associated with ETI, is known to be inhibited by PTI. Here we show 

that PTI-induced HR inhibition is due to direct or indirect restriction of the type III 

protein secretion system’s (T3SS) ability to inject type III effectors (T3Es). We 

found that the Pseudomonas syringae T3SS was restricted in its ability to inject a 

T3E-adenylate cyclase (CyaA) injection reporter into PTI-induced Nicotiana 

tabacum (tobacco) cells. We confirmed this restriction with a direct injection 

assay that monitored the in planta processing of the AvrRpt2 T3E. Virulent P. 

syringae strains were able to overcome a PAMP pretreatment in tobacco or 

Arabidopsis thaliana and continue to inject a T3E-CyaA reporter into host cells. In 

contrast, ETI-inducing P. syringae strains were unable to overcome PTI-induced 

injection restriction. A P. syringae pv. tomato DC3000 mutant lacking about one-

third of its T3E inventory was less capable of injecting into PTI-induced A. 

thaliana plant cells, grew poorly in planta, and did not cause disease symptoms. 

PTI-induced transgenic A. thaliana expressing the T3Es HopAO1 or HopF2 

allowed higher amounts of the T3E-CyaA reporter to be injected into plant cells 

compared to wild type plants. Our results show that PTI-induced HR inhibition is 

due to direct or indirect restriction of T3E injection and that T3Es can relieve this 

restriction by suppressing PTI. 



147 
 

Introduction 

Plants come into contact with a myriad of microorganisms and rely on their 

innate immune systems to perceive potential microbial infections and induce 

immune responses. Plant innate immunity can be broadly portrayed as consisting 

of two major branches, distinguished primarily by their mode of microbe 

detection. The first branch is activated by extracellular pattern recognition 

receptors (PRRs) (7, 43) that perceive broadly conserved molecules called 

pathogen (microbe)-associated molecular patterns (PAMPs or MAMPs) (4, 37). 

The response induced by this recognition is termed PAMP-triggered immunity 

(PTI) (31). A well characterized example of PTI in plants is the recognition of and 

subsequent immune response to a small N-terminal region of bacterial flagellin 

by the FLS2 receptor kinase of Arabidopsis thaliana (16, 56). Plant resistance (R) 

proteins activate the second branch of the plant innate immune system by 

recognizing specific pathogen effector proteins. The response induced by this 

recognition is termed effector-triggered immunity (ETI) (31). ETI and PTI induce 

similar innate immune responses including ion fluxes, reactive oxygen species 

(ROS), and callose (β-1,3- glucan) deposition in the cell wall (7, 52), however, 

ETI generally also includes the induction of a programmed cell death called the 

hypersensitive response (HR) (25).  

The induction of ETI in response to a bacterial plant pathogen is generally 

due to the recognition of bacterial type III effector (T3E) proteins injected into the 

plant cell by the pathogen’s type III protein secretion system (T3SS)(2, 9). These 

recognized T3Es were classically known as avirulence (Avr) proteins because 
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they induced ETI responses sufficient to prevent a normally virulent pathogen 

from causing disease thereby rendering it ‘avirulent’ (33). However, it has 

become increasingly apparent that many T3Es benefit their bacteria by 

suppressing PTI and ETI (6, 12, 20). Under the current model plants first 

developed PTI to reduce microbial colonization of the apoplast. Successful 

bacterial pathogens countered this by acquiring a T3SS and PTI-suppressing 

T3Es (10, 15, 31).  

The bacterial pathogen Pseudomonas syringae infects the aerial parts of 

many plant species. It displays host-specificity and its strains have been 

separated into greater than 50 pathovars based on the host plants that they 

infect. For example, P. syringae pv. tabaci is virulent in Nicotiana tabacum 

(tobacco), but it triggers non-host resistance in A. thaliana, a plant-microbe 

interaction referred to as a non-host interaction. Non-host resistance describes 

the resistance observed when all members of a plant species are resistant to a 

specific pathogen (40, 51). While not well understood, both PTI (34) and ETI (44, 

54) have been shown to play a role in non-host resistance to bacterial 

pathogens. In some cases, P. syringae strains display race-cultivar resistance. 

This is generally due to the resistant cultivar possessing an R protein that can 

recognize a T3E from the pathogen inducing ETI (5). One well-studied P. 

syringae strain is P. syringae pv. tomato DC3000, which causes bacterial speck 

disease on specific tomato (Lycopersicon esculentum) cultivars and disease on 

all ecotypes of A. thaliana tested. These interactions have been classically 
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referred to as compatible interactions. However, DC3000 triggers non-host 

resistance in tobacco and many other plants. 

DC3000 contains greater than thirty T3Es (12, 13, 35). These are encoded 

by genes contained within the Hrp pathogenicity island, which also encodes the 

T3SS apparatus (1), other pathogenicity islands, or as individual genes 

throughout the genome of DC3000 (8, 54). One molecular tool that has been 

useful in studying the effect individual T3Es have on plants is the cosmid pHIR11 

(28). This cosmid encodes a functional T3SS from P. syringae pv. syringae 61 

and the T3E HopA1. It confers upon non-pathogenic bacteria such as P. 

fluorescens the ability to inject HopA1 into plant cells. In tobacco and other 

plants, injected HopA1 induces ETI including an HR (3, 28). The expression of 

other T3Es in P. fluorescens(pHIR11) enabled them to be screened for the ability 

to suppress HopA1-induced ETI (20, 30). Bacterial strains carrying the pHIR11 

derivatives pLN18 or pLN1965 both of which lack hopA1 and so no longer induce 

ETI were used to determine which T3Es could suppress PTI (20, 45). 

Collectively, these experiments demonstrated that many P. syringae T3Es 

possessed the ability to suppress both ETI and PTI. 

One PTI suppression assay using P. fluorescens(pLN18) employed by Oh 

and Collmer (45) took advantage of earlier observations indicating that PTI could 

inhibit the ability of the plant to mount an HR (i.e., ETI) in response to avirulent or 

non-host bacteria (32, 42). In this assay, the PTI inducers P. fluorescens(pLN18) 

or a 22 amino acid peptide from flagellin (flg22) are infiltrated into N. 

benthamiana. Six h later the ETI inducer DC3000 is infiltrated in a region of the 
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leaf that overlaps with the earlier infiltration. The HR is typically inhibited in the 

overlapping region that was pretreated with a PTI inducer. Several T3Es 

suppressed this inhibition when they were separately delivered at time of 

pretreatment (45). It has been speculated that the probable mechanisms for 

inhibition of the HR caused by PTI include impairment of delivery of T3Es that 

induce the HR, modification of the events downstream of T3E recognition, or a 

shutdown of programmed cell death (42). 

Here we show that PTI inhibits the HR on tobacco because it restricts the 

ability of P. fluorescens(pLN1965) or DC3000 to inject T3Es based on injection 

(translocation) assays using T3E-adenylate cyclase (CyaA) fusions. This was 

confirmed using an independent injection assay that monitored the amount of the 

cleaved in planta form of the T3E AvrRpt2. Interestingly, this injection restriction 

was not observed in the compatible interactions between DC3000 and A. 

thaliana or between P. syringae pv. tabaci 11258 and tobacco. A DC3000 mutant 

lacking four clusters of T3E genes, which corresponds to eleven T3Es, was less 

able to inject a T3E-CyaA fusion into PTI-induced A. thaliana suggesting that the 

PTI suppressing activities of the T3E inventory of DC3000 it to overcome the 

injection restriction. Transgenic A. thaliana plants separately expressing specific 

T3Es known to be capable of PTI suppression increased the ability of P. 

fluorescens(pLN1965) to inject a T3E-CyaA fusion into PTI-induced plant cells. 

Collectively, these data suggest that PTI can directly or indirectly restrict type III 

injection and PTI suppression by T3Es can relieve this restriction in susceptible 

plant cells but not plant cells undergoing ETI. 
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Results 

PTI inhibits the P. fluorescens(pHIR11)-dependent HR on tobacco. To 

explore the mechanism underlying PTI inhibition of the HR (32, 42, 45) we first 

needed to define the conditions necessary for it to occur in our system. To cause 

PTI we used two well established PTI-inducers – one was the nonpathogenic 

bacterial strain P. fluorescens(pLN1965) (20, 24), and the other was a 21 amino 

acid peptide (flg21) from the N-terminus of flagellin (16).  To cause an HR we 

used P. fluorescens(pHIR11), which encodes a functional T3SS and the T3E 

HopA1 that elicits an HR on tobacco (28). To test HR inhibition the PTI-inducer 

(pretreatment) was infiltrated into a N. tabacum cv. Xanthi (tobacco) leaf. After 

the specified time interval the HR-inducer was infiltrated into a partially 

overlapping region of the same leaf. Presence or absence of HR was scored in 

the overlapping region 48 h after the second infiltration. PTI-induction by 

infiltration of P. fluorescens(pLN1965) at a cell density of 3 X 108 cells/ml at 4 h 

but not at 2 h before infiltration of P. fluorescens(pHIR11) was sufficient to inhibit 

the HR (Fig. 1A). Similarly, infiltration with 1 μM flg21 at 2 h but not at 1 h to 

induce PTI was sufficient to inhibit the pHIR11-dependent HR (Fig. 1B). In 

addition a 2 h pretreatment with 0.1 μM flg21 but not with 0.01 μM flg21 could 

inhibit P. fluorescens(pHIR11)-dependant HR (Fig. 1C).  We used the 

pretreatment times, bacterial cell densities, and flg21 concentrations established 

in these experiments for the experiments described below.  
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Figure 1. PTI-induction times and flagellin concentrations that inhibit the P. 
fluorescens(pHIR11)-dependent HR in tobacco. PTI was induced by infiltration 
with 3 x 108 cells/ml of P. fluorescens (pLN1965) or various flg21 concentrations 
(indicated by black dashed lines). After the specified period an overlapping 
infiltration of 3 x 108 cells/ml of the HR-inducing strain P. fluorescens(pHIR11) 
(indicated by white dashed lines) was performed. The presence or absence of 
HR in the overlapping region (bordered by white and black dashed lines) was 
evaluated 48 h after P. fluorescens(pHIR11) infiltration. (A) Tobacco leaves were 
infiltrated with P. fluorescens(pHIR11) 0, 2, 4, or 8 h after having been infiltrated 
with P. fluorescens(pLN1965). (B) Tobacco leaves were infiltrated with P. 
fluorescens(pHIR11) 0, 0.5, 1, or 2 h after having been infiltrated with 1μM flg21. 
(C) Tobacco leaves were infiltrated with 0, 0.01, 0.1 or 1 μM of flg21, 2 h prior to 
infiltration with P. fluorescens(pHIR11). The fraction to the left of each image 
indicates the number of times that the HR was inhibited over the total number of 
times the assay was performed. 
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PTI restricts T3E injection. One possible reason why the HR is inhibited by PTI 

is that the T3Es causing ETI are not entering the plant cells. This could be due to 

a direct block of the process or an indirect effect on bacterial physiology such 

that they can no longer inject T3Es. To test whether T3Es were injected into PTI-

induced plant cells, we used an adenylate cyclase (CyaA) injection 

(translocation) assay (49). This assay determines whether a CyaA fusion protein 

is injected into eukaryotic cells because CyaA’s ability to produce cAMP is 

dependent on calmodulin, a protein only present in significant amounts in 

eukaryotic cells. If a substantial amount of cAMP is detected, it indicates that the 

CyaA fusion protein was injected. At defined time points after infiltration of the 

PTI inducer (flg21 or P. fluorescens(pLN1965)) into tobacco, we infiltrated P. 

fluorescens(pLN1965) carrying an additional construct that encoded the AvrPtoB 

or HopU1 T3E fused to CyaA. Construct pLN1965 encodes a functional P. 

syringae T3SS and enables P. fluorescens to inject T3Es. As shown in Fig. 2, 

pretreatment with either PTI inducer greatly restricted the injection of AvrPtoB-

CyaA or HopU1-CyaA into tobacco cells as demonstrated by the low levels of 

cAMP. Importantly, we were unable to detect changes in cAMP levels in plants 

transiently expressing cyaA after PAMP treatment indicating that PTI does not 

directly affect CyaA activity (Supplemental Fig. 1). Moreover, the decrease in 

cAMP levels in PTI-induced tobacco occurs in the same time frame as HR 

inhibition consistent with HR inhibition being due to direct or indirect restriction of 

T3E injection. 
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Figure 2. PTI restricts injection of T3E-adenylate cyclase (CyaA) fusion 
proteins into tobacco cells. PTI was induced by infiltration with 3 x 108 cells/ml 

P. fluorescens(pLN1965) or 1M flg21 at the indicated times prior to an 
overlapping infiltration of 3 x 108 cells/ml P. fluorescens(pLN1965) expressing 
AvrPtoB-CyaA or HopU1-CyaA. The level of T3E injection was determined by 
quantifying cAMP in the overlapping infiltration area 16 h later. cAMP levels in 
tobacco leaves infiltrated with (A) P. fluorescens(pLN1965 + pavrPtoB-cyaA) 
pretreated with flg21,  (B) P. fluorescens(pLN1965 + phopU1-cyaA) pretreated 
with flg21, (C)  P. fluorescens(pLN1965 + pavrPtoB-cyaA) pretreated with P. 
fluorescens(pLN1965), or (d) P. fluorescens(pLN1965 + phopU1-cyaA) 
pretreated with P. fluorescens(pLN1965). Reduced cAMP levels in PTI-induced 
plant cells shows that PTI restricts T3E injection. Standard error bars are shown 
and each experiment was repeated three times with similar results. 
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The ability of the non-pathogenic bacterial strain P. fluorescens(pLN1965) to 

inject T3E-CyaA fusions in tobacco was clearly restricted by the induction of PTI. 

We next sought to determine the extent that the pathogenic bacterial strain P. 

syringae pv. tomato DC3000 was blocked in its ability to elicit an HR and inject a 

T3E-CyaA fusion into PTI-induced tobacco plant cells. The PTI-inducers used 

were flg21 and a DC3000 hrcC mutant, which is defective in type III secretion 

(20, 24). DC3000 induces non-host resistance on tobacco and normally causes 

an HR within 24 h. Using HR inhibition assays we found that a 2 h pretreatment 

with flg21 or a 4 h pretreatment with the hrcC mutant were sufficient to prevent 

the DC3000-induced HR on tobacco (Fig. 3A & B). In conjunction with this, the 

ability of DC3000 to inject HopU1-CyaA was also strongly inhibited by a 2 h 

pretreatment of flg21 or the hrcC strain (Fig. 3C). Thus, PTI also directly or 

indirectly blocks the ability of DC3000 to inject T3Es into tobacco cells indicating 

that this phenotype is not limited to the P. fluorescens(pLN1965) injection 

system. One explanation for this result is that PTI kills the bacterial cells in the 

apoplast. To test this, bacterial test strains were infiltrated into tobacco leaves at 

various time points and cell densities after PTI-induction. We were unable to 

detect any reduction in the number of bacterial cells in PTI-induced plants 

compared to control plants suggesting that PTI was not inhibiting the HR or 

restricting injection simply by causing bacterial cell death (Supplemental Fig. 2). 

These data suggest that a PTI-induced restriction of injection is responsible for 

the HR inhibition phenotype. One could envision that reduced T3E injection into 

tobacco cells would lead to insufficient delivery of recognized T3Es and, 
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Figure 3. The ability of DC3000 to elicit an HR and inject T3E-CyaA fusions 
in tobacco is inhibited by PTI. (A) PTI was induced in tobacco leaves by 
infiltration with 3 x 108 cells/ml of the DC3000 hrcC mutant 0, 2, 4, or 8 h prior to 
an overlapping infiltration with 2 x 107 cells/ml of the wild type DC3000 and 
scored for HR inhibition. The fraction to the left of each image indicates the 
number of times that the HR was inhibited over the total number of times the 
assay was performed. (B) PTI was induced in tobacco leaves by infiltration of 

1M flg21 0, 0.5, 1, or 2 h prior to infiltration with 2 x 107 cells/ml DC3000 and 
scored for elicitation of HR inhibition. (C)  The level of injection was determined 
by measuring cAMP in tobacco 7 h after infiltration with 3 x 108 cells/ml of 
DC3000(phopU1-cyaA) in plants pretreated with hrcC or flg21 at the times 
indicated. (D) AvrRpt2-HA is cleaved only when present inside plant cells. PTI 

was induced in tobacco leaves with a 1M flg21 treatment prior to infiltration of 
DC3000 containing a construct that encodes AvrRpt2-HA. In a water (mock) 
treatment control cleavage of AvrRpt2-HA can be detected with anti-HA 
antibodies but no or reduced amounts of cleaved AvrRpt2-HA can be detected in 
PTI-induced tobacco tissue. Molecular mass markers in kilodaltons are indicated 
at the left. PTI induction inhibited the HR and the ability of DC3000 to inject 
HopU1-CyaA or AvrRpt2-HA into tobacco cells. Each experiment was repeated 
at least three times with similar results. Standard error bars are shown when 
appropriate.  
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 therefore, prevent induction of ETI responses including the HR.  

PTI restricts the injection of AvrRpt2 as PAMP pretreatment greatly 

reduced the amount of in planta AvrRpt2 cleavage. To confirm that PTI 

restricted T3E injection using an independent assay, we developed a direct 

assay to monitor the injection of a T3E after PTI induction. The P. syringae T3E 

AvrRpt2 has been shown to be processed once it is injected into plant cells by 

the P. syringae T3SS (39). Wild type DC3000 was transformed with a construct 

that encoded AvrRpt2 fused to a hemagglutinin (HA) tag at its C-terminus. This 

strain was infiltrated into tobacco leaf tissue pretreated with flg22 or a mock 

control. After 6 h crude plant samples were isolated and subjected to SDS-PAGE 

and immunoblot analysis. Cleaved AvrRpt2-HA was detected in the mock treated 

leaf tissue samples and greatly reduced amounts of cleaved AvrRpt2-HA were 

detected in the flg21 pretreated samples infiltrated with DC3000 (Fig. 3D). These 

results indicate that AvrRpt2 is not injected into PTI-induced plant cells and 

confirm the findings of the CyaA injection assay. Because the CyaA injection 

assay data are more easily quantifiable we chose to use this assay to further 

define this phenomenon. 

DC3000 but not P. fluorescens(pLN1965) can overcome PTI-induced 

injection restriction in A. thaliana. We next sought to determine if this injection 

restriction also occurred in A. thaliana. To do this we tested if the PTI-inducers 

flg21 and hrcC could prevent P. fluorescens(pLN1965) or DC3000 injecting the 

HopU1-CyaA fusion into A. thaliana cells. As in tobacco, pretreatment with flg21 

or the hrcC mutant reduced P. fluorescens(pLN1965) injection of the HopU1-
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CyaA fusion into A. thaliana cells (Fig. 4A). This result was somewhat expected 

because tobacco and A. thaliana are known to induce PTI in response to PAMP 

treatments (16) and these plants respond similarly to infiltration of the P. 

fluorescens(pLN1965) injection system. Interestingly, when we performed similar 

experiments using DC3000 to inject HopU1-CyaA into A. thaliana cells, plant leaf 

tissue contained high amounts of cAMP at all time points indicating that the 

HopU1-CyaA fusion continued to be injected by DC3000 after PTI induction (Fig. 

4B). These data suggest that in compatible interactions such as that of DC3000 

with A. thaliana, but not in incompatible or non-host interactions, the bacteria can 

overcome PTI-induced injection restriction.  

 PTI-induction restricts injection by P. syringae into non-host plant cells. To 

determine the extent that host or non-host interactions influenced the PTI-

induced restriction of T3E injection we electroporated the construct encoding 

HopU1-CyaA into P. syringae pv. tabaci 11258, which has a non-host interaction 

with A. thaliana and a compatible interaction with its host tobacco. In stark 

contrast to DC3000, this strain was capable of injecting HopU1-CyaA into PTI-

induced tobacco cells (Fig. 4C) but not into PTI-induced A. thaliana cells (Fig. 

4D). Normalization of the cAMP levels to the growth of these bacterial strains in 

A. thaliana and tobacco within the 16 h time frame of the cAMP measurements 

did not significantly change these conclusions (Supplemental Fig. 3). Collectively, 

these data suggest that in compatible interactions, the initial low amount of T3Es 

injected is capable of suppressing PTI such that normal levels of T3E injection 

can be achieved. In non-host interactions, the bacterial T3Es are incapable of 
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Figure 4. PTI-induced injection restriction occurs in tested P. syringae non-
host interactions but not in compatible interactions. PTI was induced with 3 

x 108 cells/ml of the hrcC mutant (left panels) or 1M flg21 (right panels). At the 
times indicated 3 x 10

8
 cells/ml of bacterial strains expressing HopU1-CyaA were 

infiltrated into an overlapping area and cAMP amounts were determined. The 
following bacteria/plant combinations were used to assess injection capability: 
(A) P. fluorescens(pLN1965 + phopU1-cyaA) / A. thaliana Col-0; (B) 
DC3000(phopU1-cyaA) / A. thaliana Col-0, a compatible interaction; (C) P. 
syringae pv. tabaci 11258(phopU1-cyaA) / N. tabacum cv. Xanthi, a compatible 
interaction; and (D) P. syringae pv. tabaci 11258(phopU1-cyaA) / A. thaliana Col-
0, a non-host interaction. PTI induction severely restricted the ability of bacterial 
strains in non-host plants to inject the HopU1-CyaA fusion into plant cells based 
on the reduced levels of cAMP. However, bacterial strains in host plants were 
capable of relatively high levels of HopU1-CyaA injection irrespective of PTI 
induction. Each experiment was repeated at least three times with similar results 
and standard error bars are shown. 
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 suppressing PTI sufficiently to allow normal injection, perhaps because T3Es 

can be recognized by R proteins and induce ETI reinforcing the injection 

restriction or at least preventing T3Es from suppressing PTI. In support of this, 

several DC3000 T3Es when expressed transiently in tobacco using 

Agrobacterium induce ETI (Supplemental Fig. 4). 

A DC3000 poly-T3E mutant loses the ability to inject T3Es into PTI-induced 

A. thaliana and does not grow well or cause disease symptoms in planta. 

To determine whether T3Es were allowing DC3000 to continue to inject into its 

susceptible host A. thaliana despite PTI induction we made a series of DC3000 

mutants lacking different subsets of T3Es. We deleted DNA clusters of T3E 

genes from DC3000 using a homologous recombination approach that relies on 

yeast Flp recombinase to act on introduced Flp recombinase target sequences 

resulting in unmarked mutations (11, 27). One DNA cluster we deleted was the 

exchangeable effector locus (EEL) from the Hrp pathogenicity island (1) resulting 

in DC3000 mutant UNL155. This mutant lacks the T3E gene, hopB1 (47). The 

other T3E gene-containing DNA clusters were pathogenicity islands distributed 

around the DC3000 genome (8), which we gave the following temporary names: 

Effector pathogenicity island 1 (EPai1) that contains hopD1, hopQ1-1, and 

hopR1; EPai2 that contains hopAA1-2, hopV1, hopAO1, hopG1, and hopQ1-2; 

and EPai3 that contains hopF2, and hopU1. DC3000 mutants lacking EPai1, 

EPai2, or EPai3 were named UNL158, UNL159, and UNL184, respectively. 

Additionally, we made a DC3000 quadruple mutant lacking the EEL, EPai1, 

EPai2, and EPai3, which was named UNL227. All of the mutants were confirmed 
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using PCR using primers adjacent to the deleted DNA clusters (Supplemental 

Fig. 5). 

We tested the extent that the DC3000 T3E mutants were altered in their 

ability to inject a HopU1-CyaA fusion into PTI-induced A. thaliana plants 

compared to wild type DC3000. The DC3000 mutants lacking different T3E gene 

(UNL155, UNL158, UNL159, and UNL184) were subtly affected in T3E injection, 

but all retained the ability to inject HopU1-CyaA (Fig. 5A). However, the DC3000 

quadruple mutant UNL227 was greatly reduced in its ability to inject HopU1-

CyaA into PTI-induced A. thaliana plants based on low cAMP levels in infiltrated 

A. thaliana tissue (Fig. 5A). The growth differences between the DC3000 and 

UNL227 could not account for the different cAMP levels (Supplemental Fig. 3). 

UNL227 is lacking eleven T3Es normally present in DC3000, which accounts for 

about one-third of its T3E inventory. This clearly prevented UNL227 from being 

able to suppress PTI sufficiently to inject T3Es in PTI-induced A. thaliana. We 

performed in planta growth assays with the different DC3000 mutants and found 

that the DC3000 single cluster mutants were only slightly reduced in disease 

symptoms and in their ability to grow in planta (Fig. 5B-C). Surprisingly, the 

DC3000 quadruple mutant UNL227 was dramatically affected in its ability to 

cause disease symptoms and grow in plants (Fig. 5B-C). It is remarkable 

considering the number of extant T3Es that the in planta growth of UNL227 is 

reduced to a level similar to a DC3000 hrcC mutant, which has a defective T3SS 

and grows poorly in plants. Additionally, we performed in planta growth assays  

using wild type DC3000, a DC3000 hrcC mutant, and the UNL227 mutant on A. 
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Figure 5.  A DC3000 poly-effector mutant loses its ability to inject T3Es into 
PTI-induced A. thaliana. (A) Infiltrations of 3 x 108 cells/ml of wild type DC3000, 
DC3000 EEL mutant (UNL155), DC3000 effector pathogenicity island (EPai) 
mutants (UNL158, UNL159, and UNL184) and a DC3000 quadruple mutant 
(UNL227) each expressing HopU1-CyaA were perfomed into A. thaliana after a 0 

or 2 h pretreatment with 1M flg21 and the production of cAMP was determined. 
DC3000 single mutants were differentially affected, but retained their ability to 
inject the HopU1-CyaA fusion, however, the DC3000 quadruple mutant was 
restricted in its T3E injection after PTI induction based on low cAMP levels. (B) 
The virulence of wild type DC3000, the DC3000 hrcC mutant, the DC3000 single 
EPai mutants, and the DC3000 quadruple mutant were compared by spray-
inoculating them at 2 x 107 cells/ml onto untreated A. thaliana. Virulence was 
assessed by disease symptoms at 4 days post-inoculation (B) and enumeration 
of bacteria at 0 and 4 days post-infiltration (C).  Letters a-d are statistically 
different (p<0.05) and standard error bars are shown. These data indicate that 
the quadruple mutant loses the ability to inject T3Es in PTI-induced A. thaliana 
and cannot produce disease symptoms and grows poorly in uninduced plant 
tissue.  
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 thaliana plants pretreated with flg21 for 2 h or 24 h to determine if the flg21 

pretreatments had an effect on the ability of these strains to grow in planta. The 2 

h flg21 pretreatment did not alter the ability of these strains to grow in A. thaliana 

plants (Supplemental Fig. 6). In contrast, a 24 h pretreatment altered the ability of 

DC3000 to grow in A. thaliana plants (Supplemental Fig. 6), consistent with 

earlier reports (20, 23, 34, 56). These data support the hypothesis that T3Es of 

virulent bacterial pathogens are responsible for mitigating the PTI-induced 

injection restriction. 

PTI restricts T3E injection into A. thaliana cells by an ETI-causing P. 

syringae. The normally virulent DC3000 strain on A. thaliana can be converted 

to an ETI-inducing strain (i.e., ‘avirulent’ strain) by the introduction of a T3E that 

is recognized by an A. thaliana R protein. The T3E AvrRpm1 is recognized by the 

RPM1 R protein present in A. thaliana Col-0 (18) resulting in ETI induction. 

DC3000 carrying avrRpm1 cannot cause disease on A. thaliana Col-0 due to this 

race-cultivar resistance. We wanted to determine the effect that ETI induction 

had on the ability of DC3000 to suppress PTI-induced injection restriction. A. 

thaliana Col-0 leaves were pretreated with flg21 and at different time points 

DC3000(phopU1-cyaA) with or without an avrRpm1 construct were infiltrated into 

the same leaf regions. DC3000 expressing AvrRpm1 was less able to inject 

HopU1-CyaA then the DC3000 strain indicating that AvrRpm1-dependent ETI 

contributed to the PTI-induced T3E injection restriction (Fig. 6). 
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Figure 6. PTI-induced injection restriction occurs in Arabidopsis when 
DC3000 carries the avirulence gene avrRpm1. PTI was induced with 1 μM 
flg21. At the times indicated, 3 x 108 cells/mL of DC3000 strains expressing 
HopU1-CyaA and with or without AvrRpm1 were infiltrated into Arabidopsis Col-0 
leaves, and cAMP amounts were determined. T3E injection was severely 
restricted when DC3000 expressed AvrRpm1, suggesting that ETI contributed to 
T3E injection restriction. The experiment was repeated three times with similar 
results, and SE bars are shown. 



165 
 

Transgenic expression of the T3Es HopAO1-HA or HopF2-HA in A. thaliana 

relieves PTI-induced injection restriction. We used the P. 

fluorescens(pLN1965) injection system to determine the amount of the HopU1-

CyaA reporter injected into transgenic A. thaliana plants expressing HopAO1-HA 

or HopF2-HA, two T3Es that have been shown to suppress PTI (20, 45, 53). 

After 1 h or 2 h flg21 pretreatments both transgenic lines allowed increased 

amounts of HopU1-CyaA to be injected compared to wild type controls (Fig. 7). 

These results show that the PTI suppression activities of at least two T3Es from 

DC3000 are independently sufficient to partially relieve PTI-induced injection 

restriction in A. thaliana. These data in conjunction with the mutant studies above 

suggest that the combined PTI suppression activity in A. thaliana of multiple 

T3Es is required for the complete removal of the injection restriction that is 

observed in DC3000. 

flg21-induced PTI inhibits the HR and restricts type III injection for a shorter 

time period than hrcC-induced PTI. To characterize the persistence of the 

injection restriction and HR inhibition following PTI-induction in tobacco, we 

performed flg21 and hrcC pretreatments at defined times during a 2 week period 

before HR induction with DC3000 or injection monitoring with DC3000(phopU1-

cyaA). Tobacco pretreated with flg21 inhibited the HR and restricted injection 

through two days. Somewhat surprisingly the hrcC mutant inhibited the HR and 

restricted injection through the entire two week period (Fig. 8). It is likely that the 

flg21 PAMP is cleared from the apoplast by endocytosis with FLS2 (48) and 

suggests that this process requires two days to complete when flg21 is present in  
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Figure 7. Transgenic expression of PTI-suppressing T3Es in Arabidopsis 

relieves PTI-induced injection restriction. Arabidopsis wild type plants and 

Arabidopsis transgenic plants expressing the DC3000 T3Es HopAO1-HA or 

HopF2-HA were pretreated with 1 μM flg21 for indicated time periods and 

infiltrated with 3 x 108 cells/mL of P. fluorescens(pLN1965) expressing HopU1-

CyaA. The higher amounts of cAMP in PTI-induced transgenic plants compared 

to the wild type control indicated that these T3Es can relieve PTI-induced 

injection restriction. This experiment was repeated at least three times with 

similar results, and SE bars are shown. 
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Figure 8. PTI-induced by hrcC inhibits the HR and restricts the injection 
longer than PTI-induced by flg21. (A) PTI was induced in tobacco leaves by 

infiltration with 1M flg21 or 3 x 108 cells/ml of hrcC 0, 1, 2, 3, 5, 7, 10 and 14 d 
prior to an overlapping infiltration with 2 x 107 cells/ml of DC3000.  Pictures were 
taken 48 h post DC3000 infiltration. The fraction to the left of each image 
indicates the number of times that the HR was inhibited over the total number of 
times the assay was performed. (B) PTI was induced in tobacco leaves by 

infiltration with 1M flg21 or 3 x 108 cells/ml of hrcC 0, 1, 2, 3, 5, 7, 10 and 14 
days prior to an overlapping infiltration with 3 x 108 cells/ml of DC3000(hopU1-
cyaA). cAMP levels were measured 7 h post DC3000(hopU1-cyaA) infiltration. 
PTI induced by flg21 no longer inhibited the HR or restricted T3E injection after 2 
d, whereas PTI induced by the hrcC mutant inhibited the HR and restricted 
injection throughout the 14 d experiment. These experiments were repeated 
twice with similar results and standard error bars are shown. 



168 
 

the apoplast at 1M. The persistent inhibition caused by the hrcC-induced PTI is 

probably due to the continual lysis of hrcC bacterial cells and release of PAMPs 

during the two week period, preventing the PAMPs from being effectively cleared 

from the apoplast. 

Discussion 

We show here that the PTI-induced inhibition of the HR occurs within two 

h of PAMP pretreatment (Fig. 1). This a reasonably quick response relative to the 

twelve to twenty-four hours generally required for production of an HR. However, 

PTI-induced inhibition of the HR appears to require de novo transcription and 

translation as it was previously reported that the protein synthesis inhibitor 

cycloheximide restores the HR (32). Interestingly, HR inhibition induced by flg21 

lasted through two days while HR inhibition induced by intact bacteria persisted 

over a two week period. This difference probably reflects the clearing of flg21 

peptide from the apoplast by endocytosis of its receptor FLS2 (48). In contrast, 

when bacteria are used to induce PTI, PAMPs continue to be released over an 

extended time period. Plants often cannot perceive PAMPs while they are part of 

the bacterial cell. For example, flagellin cannot be detected by the FLS2 receptor 

kinase while the flagellum filament is intact because the recognized part of the 

protein is on the inner side of the filament tube and not surface exposed (55). 

Researchers sometimes use PTI inducers interchangeably. Our results indicate 

that the choice between PTI-inducers flg21 (and likely other purified PAMPs) and 

intact bacteria may be an important consideration depending on the experimental 

design. 
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 We show that the PTI-induced inhibition of the HR is due to direct or 

indirect restriction of T3E injection. The reduced amount of T3Es, a subset of 

which trigger ETI, entering the plant cell is then insufficient to cause the 

macroscopic HR.  It remains unclear if PTI is directly blocking the T3SS 

apparatus from injecting T3Es or whether it has a more general effect on the 

bacteria in the apoplast that prevents them from injecting T3Es. For example, it is 

intriguing to speculate that the cell wall defenses induced by PTI may strengthen 

the plant cell wall such that the T3SS pilus can no longer traverse it to inject 

T3Es. However, the time limit on the effectiveness of at least flg21-induced 

injection restriction indicates that it is of a transitory rather than permanent 

nature. The early and spatially limited character of the PTI-induced injection 

restriction suggests that it may involve ROS, perhaps directly killing bacteria in 

the apoplast. Indeed, a related study showed that PTI-induced tissue infiltrated 

with green fluorescent protein (GFP)-labeled bacteria had dramatically less 

fluorescence than untreated plant tissue, which the authors concluded was due 

to the inhibition of bacterial growth caused by PTI (46). However, we were unable 

to detect any significant reduction of bacterial populations in leaf tissue by direct 

bacterial counting after PTI induction (Supplemental Fig. 2). We think this 

discrepancy may be due to reduced GFP production in PTI-induced tissue 

instead of PTI causing bacterial growth inhibition. It remains possible that a PTI 

response such as ROS production may affect bacterial transcription or translation 

preventing the T3SS apparatus from being assembled. In support of this, there 

has been a report that the expression of Erwinia amylovora T3SS-related genes 
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is altered after treatment with bacterial lipopolysaccharide (38). We are currently 

testing whether PTI effects the expression of the T3SS apparatus genes in the P. 

syringae-A. thaliana pathosystem. 

 The PTI-induced inhibition of the HR has previously only been reported in 

the solanaceous plants tobacco, N. benthamiana, and Capsicum annuum 

(pepper) (32, 42, 45).  PTI-induced inhibition of the HR can also be recapitulated 

in A. thaliana leaves (Supplemental Fig. 7), although A. thaliana small leaf size 

makes overlapping infiltrations difficult. We show here that A. thaliana PTI 

restricts the T3E injection. Both assays should be added to the limited collection 

of assays that are currently being used to assess PTI.  

 PTI in tobacco and A. thaliana was more effective at restricting T3E 

injection by P. syringae strains in non-host than in compatible interactions (Fig. 

4). This difference was attributed to the PTI-suppressing activity of T3Es since a 

DC3000 poly-effector mutant lacking about one third of its T3E inventory was 

less able to overcome PTI-induced injection restriction on A. thaliana compared 

to wild type DC3000 (Fig. 5A). PTI-induced transgenic A. thaliana plants 

separately expressing two DC3000 T3Es known to suppress PTI relieved 

injection restriction. Collectively, these results suggest that in compatible 

interactions T3Es are apparently injected at a low level during PTI-induced 

injection restriction. This allows the injected T3Es to suppress PTI in susceptible 

hosts relieving restriction. Importantly, longer PAMP pretreatments beginning at 

about sixteen h begin to severely restrict T3E injection even in the compatible 

interaction between DC3000 and A. thaliana (Supplemental Fig. 8). In addition, a 
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twenty-four but not a two hour PAMP pretreatment allows A. thaliana to restrict 

the growth of normally virulent DC3000 (Supplemental Fig. 2). These data 

indicate that whatever mechanism is causing this phenotype is so substantial by 

twenty-four hour that it cannot be overcome by virulent P. syringae strains. 

 We found that PTI-induced injection restriction was severe in non-host 

plants tobacco and A. thaliana (Fig. 4). It is possible that in non-host plants the 

T3Es have an insufficient ability to suppress PTI, however, the severity of the 

restriction may be due to the induction of ETI. We did find that DC3000 

expressing AvrRpm1 was clearly less able to inject the T3E-CyaA reporter than 

DC3000 not expressing it (Fig. 6). This suggests that ETI induction prevents 

DC3000 from delaying T3E injection restriction. The induction of ETI may prevent 

T3Es from acting to suppress PTI and relieving injection restriction. Alternatively, 

it is possible that ETI may also evoke or enhance injection restriction. We favor 

the latter explanation because of the extensive overlap between ETI and PTI 

responses (41, 52). Additionally, when we compared PTI-induced injection 

restriction initiated by P. fluorescens(pLN1965) (which induces PTI) and P. 

fluorescens(pLN1965 + pavrRpm1) (which induces PTI and ETI) we found that 

injection restriction induced by P. fluorescens(pLN1965 + pavrRpm1) occurred 

more quickly than when it was induced by P. fluorescens(pLN1965) 

(Supplemental Fig. 9). One important caveat is that we only investigated specific 

P. syringae interactions and other P. syringae strains may fail to grow on non-

host plants for reasons other than T3E recognition. For example, flagellin from 

certain P. syringae pathovars induce an HR on non-host tobacco (50). We are 



172 
 

currently taking several approaches to determine the extent that ETI, in the 

absence of PTI, can induce injection restriction. 

The PTI-induced inhibition of the HR and injection restriction assays 

should provide a unique perspective on how PTI affects bacteria in the apoplastic 

environment. This should facilitate the dissection of the plant immune response 

in such a manner as to potentially identify the mechanism behind these 

phenomena. For example, do certain plant mutants defective in specific immune 

responses relieve PTI-induced injection restriction? If this approach is successful 

it may help us better understand one of the long-standing questions in molecular 

phytobacteriology – what plant immune responses are important for successfully 

defending against bacterial pathogens. 

Experimental Procedures 

Bacterial strains, plasmids, and growth conditions. Bacterial strains, 

plasmids, and primers are listed in Supplemental Table 1 and Supplemental 

Table 2. Pseudomonas syringae and Pseudomonas fluorescens strains were 

grown in King’s B (KB) medium at 30°C with appropriate antibiotics. The 

antibiotics were used at the following concentrations (μg/ml): rifampicin (Rf), 100; 

gentamicin (Gm), 10; tetracycline (Tc), 10; kanamycin (Km), 50; naldixic acid 

(Nx), 20; and spectinomycin (Sp), 50. Plasmids used in unmarked mutagenesis 

were: pRK2013 and pRK2073, mobilizing helper plasmids; pBH474, a Flp 

recombinase encoding plasmid; pMK2016 and pMK2017, both containing FRT 

cassettes (26). Plasmids used for plant bioassays were pHIR11 (29), a cosmid 

containing the genes for a functional T3SS and the T3E hopA1, and pLN1965 
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(19), a pHIR11 derivative lacking the hopA1 T3E gene. For translocation assays 

constructs encoding AvrPtoB or HopU1 C-terminal CyaA fusions were made by 

LR reactions between pENTR/D-TOPO (Invitrogen, Carlsbad, CA, U.S.A.) 

constructs containing each gene and the Gateway vector pLN2193 creating the 

plasmids pLN2250 and pLN2254 respectively. 

Plant Bioassays. Wild type Arabidopsis thaliana (Col-0) and transgenic plants 

were grown in a growth chamber at 24°C on 10 h days. Nicotiana tabacum cv. 

Xanthi (tobacco) plants were grown in greenhouse conditions. HR inhibition 

assays were done with infiltrations of fresh overnight cultures resuspended in 5 

mM morpholineethanesulfonic acid (MES) at pH 5.5 to 3 x 108 cells/ml for P. 

fluorescens(pHIR11), P. fluorescens(pLN1965), and hrcC and at 2 x 10
7
 cells/ml 

for DC3000. flg21 was used at 1 μM concentrations in H20 unless otherwise 

indicated. Fully expanded leaves of 4 week old A. thaliana or 6 week old tobacco 

plants were PTI induced by infiltration with flg21, P. fluorescens(pLN1965), or 

hrcC using a blunt-ended syringe. Then the HR elicitor, either DC3000 or P. 

fluorescens(pHIR11), was infiltrated in an overlapping region of the same leaf 0, 

0.5, 1 or 2 h after infiltration with flg21 or 0, 2, 4 or 8 h after infiltration with P. 

fluorescens(pLN1965) or hrcC. Infiltration outlines were marked with a felt-tipped 

pen and the overlapping area was assessed 48 h after HR elicitor infiltration for 

the presence or absence of an HR.  

Plant growth assays were carried out using fresh bacteria grown on KB 

plates overnight and resuspended in 5 mM MES. PTI induction and bacterial 

infiltration of tobacco were carried out as in HR inhibition assays. Bacterial 
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growth in A. thaliana was done by spray-inoculation with 2 x 108 cells/ml. Four 

leaf disks were harvested for each strain at each time point with a 0.8 cm2 cork 

borer for tobacco and a 0.4 cm2 cork borer for A. thaliana. The samples were 

ground in 250 μl of sterile water and serial dilutions were plated on KB with 

appropriate antibiotics, and colonies were counted to determine bacterial growth. 

Statistical differences were calculated using single factor anova. 

Adenylate cyclase (CyaA) injection assay. pLN2250 and pLN2254 were 

transformed via electroporation into P. syringae pv. tomato DC3000, P. syringae 

pv. tabaci 11528, P. fluorescens 55, or DC3000 mutant derivatives and T3E 

protein expression was confirmed with immunoblots. The CyaA injection assays 

were performed following a previously published protocol (Schechter et al., 

2004). Briefly, tobacco or A. thaliana were initially challenged to induce PTI in the 

same manner as in other plant bioassays and were subsequently infiltrated with 

the strain carrying the T3E-cyaA gene fusion suspended at 3 x 108 cells/ml in 5 

mM MES in an area overlapping the initial infiltration using a blunt-ended syringe. 

Leaf discs (0.9 cm2) were taken from the area of overlapping infiltration 16 h (7 h 

for DC3000 in tobacco) after the second infiltration. The samples were ground in 

liquid nitrogen and resuspended in 0.1M HCl. Samples were  adjusted to 10 ng/μl 

after quantification of total protein using Bradford assay (BioRad, Hercules, CA). 

A direct cyclic AMP (cAMP) immunoassay kit (Assay Design, Ann Arbor, MI) was 

used to measure cAMP levels following the manufacturer’s instructions.  

AvrRpt2 in planta processing injection assay. This assay was modified from 

Mudgett and Staskawicz (39) to fit the experimental conditions. pLN2637 was 
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transformed by electroporation into DC3000. The bacteria were grown overnight 

on KB media containing appropriate antibiotics, collected, and resuspended in 10 

mM MgCl2 at a concentration of 1 x 109 cells/ml. Tobacco leaves were infiltrated 

with either 1 μM flg21 or H20 (mock) using a blunt-ended syringe and 2 h later 

were infiltrated in the same tissue with the bacteria. Six h after bacterial 

infiltration, leaf samples were taken with a cork borer, ground in liquid N2 using a 

pestle and microcentrifuge tube, and then resuspended in 1x phosphate buffered 

saline (PBS) containing complete protease inhibitor cocktail (Roche, Basel, 

Switzerland). Soluble protein was collected upon centrifugation at 13,000 x g for 

5 min at 4°C. Protein concentrations were determined using the Bradford assay 

(BioRad, Hercules, CA) and all samples were normalized to 800 ng/μl total 

protein. Protein fractions were mixed 1:1 with 2x sample buffer, boiled for 5 min, 

centrifuged at 13,000 x g for 3 min, and 20 μg of total protein was analyzed by 

immunoblotting using anti-HA antibodies (Roche, Basel, Switzerland).  

Unmarked mutagenesis. The construction of the DNA cluster deletion mutants 

was done by unmarked mutagenesis (House et al., 2004). Plasmids and primers 

are listed in Supplemental Table 1 and Supplemental Table 2, respectively. DNA 

clusters containing T3E genes were identified in Pseudomonas syringae pv. 

tomato DC3000 based on the presence of type III promoters using the Artemis 

Genome Viewer (Sanger Institute, Hinxton, Cambridge, UK). For each DNA 

cluster, the 2.5 Kb upstream (US) DNA sequence and 2.0 Kb downstream (DS) 

DNA sequence were amplified by PCR using the following Gateway compatible 

primer sequences: for the EEL the primers P2443/P2444 and P2445/P2446 were 
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used, for EPai3 the primers P2404/P2405 and P2406/P2407 were used, for 

EPai1 the primers P2091/P2092 and P2093/P2094 were used, and primers 

P2097/2098 and P2099/P2100 were used for EPai2.  The purified PCR products 

were cloned into the pENTR/D-TOPO vector (Invitrogen). The entry vectors were 

then recombined by LR reactions into pMK2017 for US sequences and pMK2016 

for DS sequences.  

The plasmids containing the US flanking sequences were integrated into 

DC3000 chromosome using bi-parental mating with selection on KB plates 

containing Rf and Tc. Positive colonies were then confirmed for proper 

integration of the plasmid with PCR using P1790 and the relevant US reverse 

primer and checked for UV fluorescence, Sp sensitivity, and lack of growth at 

37C. The confirmed single integrant DC3000 mutants were subsequently tri-

parental mated with DH5α containing the DS sequence plasmid and 

HB101(pRK2013). Colonies were selected on KB plates containing Rf, Sp, and 

Tc and tested for UV fluorescence and lack of growth at 37°C.  Proper integration 

of both plasmids flanking the targeted DNA cluster was confirmed with PCR 

using P1790 with the relevant right border reverse primer and P1789 with the 

relevant left border reverse primer.  

Upon confirmation of double integrants, excision of the integrated 

plasmids at FRT sites was conducted. Triparental mating of the DC3000 double 

integrant mutants, DB3.1(pBH474), and DB3.1(pRK2073) was performed and 

colonies selected on KB plates containing Rf and Gm. Excision of the integrated 

plasmids was confirmed by testing for  sensitivity to Sp and Tc. Isolated colonies 
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were streaked onto KB plates containing Rf and 5% sucrose to select against 

retention of pBH474. After deletion by the Flp recombinase enzyme a 0.2 kb FRT 

scar remained in place of the targeted DNA cluster. As a final measure of proper 

excision, the DC3000 mutants were confirmed with PCR using primers designed 

to anneal 0.5 kb within the border region, resulting in a 1.2 kb PCR product. 
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Supplemental Figures and Tables 

 

 

 

 

 

 

 

Supplemental Figure 1. CyaA remains functional in PTI-induced tissue. 
Samples were taken from N. tabacum cv. Xanthi leaves that were infiltrated with 
A. tumefaciens transiently expressing cyaA-ha. 24 h post infiltration the leaves 
were infiltrated again with either water (mock) or a 1 μM flg21 solution. Samples 
were taken 16 h after the second infiltration and a CyaA assay was performed to 
measure cAMP levels.     
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Supplemental Figure 2. Growth of DC3000(phopU1-cyaA) was not affected 

by pre-treatment with either flg21 or hrcC. DC3000(phopU1-cyaA) was 

infiltrated into tobacco at 3 x 108, 3 x 107, or 3 x 105 cells/ml either alone, 1 or 2 h 

after 1 μM flg21 infiltration, or 4 or 8 h after infiltration of 3 x 108 cells/ml of hrcC. 

Bacteria were enumerated in the overlapping area 7 h after DC3000(phopU1-

cyaA) infiltration. PTI-induction does not alter the growth of DC3000(phopU1-

cyaA) in tobacco within 7 h. These experiments were repeated three times with 

similar results and standard error bars are shown.  
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Supplemental Figure 3. cAMP levels were not affected by differences in 
growth. The growth of DC3000(phopU1-cyaA), UNL227(phopU1-cyaA), and P. 
syringae pv. tabaci(phopU1-cyaA) was determined at 0 and 16 h after infiltration 
in A. thaliana Col-0 or N. tabacum cv. Xanthi leaves pretreated for 2 h with 1 μM 
flg21 or water (mock). The levels of cAMP were determined at 16 h in A. thaliana 
Col-0 (A) and N. tabacum cv. Xanthi (B) plant tissue. The cAMP levels were 
normalized with respect to the differences in growth between DC3000 and the 
other strains. The cAMP amounts are shown before (actual) and after 
normalization (normalized). While there were significant changes in cAMP levels 
in UNL227(phopU1-cyaA) and P. syringae pv. tabaci(phopU1-cyaA) after 
normalization, there was little change in the differences in cAMP amounts 
between flg21-induced and mock samples. Therefore, the growth differences 
between the P. syringae strains are not responsible for the dramatic differences 
in cAMP levels that occur after PTI induction. These experiments were repeated 
twice with similar results and standard error bars are shown.  
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Supplemental Figure 4. Tobacco leaves were infiltrated with Agrobacterium 
carrying binary constructs containing each of the indicated T3E genes. 
After 24-48 h HR-like responses developed within the infiltrated zone for these 
T3E genes suggesting that they encode T3Es that induce ETI. Pictures were 
taken 48 h after infiltration.  
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Supplemental Figure 5. Confirmation of DC3000 DNA cluster mutants. 
Colony PCR was done for each of the mutants and compared to wild type 
bacterial samples to confirm that a T3E-related DNA cluster was deleted from the 
different bacterial mutants. (A) The DNA cluster names, primer sets used, and 
expected and observed PCR band lengths are indicated. Primers were made 
approximately 600 base pairs upstream and downstream of the DNA cluster, 
which would result in a PCR product of about 1.2 kb if the putative mutant carried 
the correct mutation. (B) DNA agarose gels of PCR reactions from the single 
T3E-related DNA clusters. (C) DNA agarose gels of PCR reactions from the poly 
DNA cluster mutant UNL227. In DC3000 the DNA clusters were too big to be 
amplified in the PCR conditions used and resulted in the absence of bands of the 
predicted length.  
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Supplemental Figure 6. The induction of PTI by flg21 at 24 h but not 2 h 

before inoculation with DC3000 inhibits bacterial growth in A. thaliana. A. 

thaliana Col-0 plants were infiltrated with 1 μM flg21 or a water control at 24 h (A) 

or 2 h (B) prior to spray-inoculation with 2 x 108 cells/ml of DC3000, UNL227 or 

hrcC. Bacteria were enumerated at 0 and 4 d post-inoculation. Letters a-d are 

statistically different (p<0.05) and standard error bars are shown. These 

experiments were repeated at least three times with similar results.  
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Supplemental Figure 7. PTI-induction inhibits AvrRpm1 induced HR in A. 

thaliana by hrcC and flg21 PTI-inducers. Infiltration of the leaves of A. thaliana 

with 1 x 107 cells/ml of P. fluorescens(pLN1965 + pavrRpm1) was unable to 

cause an HR in PTI-induced leaves pretreated with the hrcC mutant or flg21. 

With the exception of the zero time point, the HRs were inhibited in leaves at the 

remaining time points. The fraction below each leaf indicates the number of times 

that the HR was inhibited over the total number of times the assay was 

performed. Photos were taken after 48 h after P. fluorescens(pLN1965 + 

pavrRpm1) infiltration.  
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Supplemental Figure 8. Time course of the restriction of HopU1-CyaA 

injection into PTI-induced A. thaliana plant cells. PTI was induced with 1 μM 

flg21 and at the indicated times DC3000(phopU1-cyaA) at a cell density of 3 x 

108 cells/ml was infiltrated into the pretreated leaf regions. After 16 h cAMP levels 

were determined. This experiment was repeated three times with similar results.  

  



186 
 

 

 

 

 

 

Supplemental Figure 9. PTI- and ETI-induced A. thaliana plants appear to 

restrict T3E injection more quickly than when PTI only is induced in A. 

thaliana plants. A. thaliana plants were pretreated with 3 x 108 cells/ml P. 

fluorescens(pLN1965), which induces PTI, or P. fluorescens(pLN1965 + 

pavrRpm1), which induces PTI and ETI. At the indicated times DC3000(phopU1-

cyaA) at a cell density of 3 x 108 cells/ml was infiltrated into the pretreated leaves 

and the level of T3E injection was determined by quantifying cAMP in the 

overlapping infiltration area 16 h later. These experiments were repeated at least 

three times with similar results.  
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Supplemental Table 1. Strains and plasmids used in this study  

Strain or plasmid  Characteristics  Reference or 
source  

E. coli DH5α  supE44 ΔlacU169(Φ80lacZΔM15) hsdR17 recA1 endA1 
gyrA96 thi-1 relA1, Nalr  

(22); Life 
Technologies, 
Gaithersburg, MD, 
USA  

E. coli DB3.1  F-gyrA462 endA1 Δ(sr1-recA) mcrB mrr hsdS20 (rB-, rB-) 
supE44 ara-14 galK2 lacY1 proA2 rpsL20 (Smr) xyl-5 λ- 
leu mtl-1  

Invitrogen, Carlsbad, 
CA, USA  

E. coli HB101  supE44 hsdS20 (rB-, mB-) recA13 ara-14 proA2 lacY1 
galK2 rpsL20 xyl-5 Δleu mtl-1  

New England 
Biolabs, Beverly, 
MA, USA  

Pseudomonas 
fluorescens 55  

Nal
r 
 M. Sasser  

Pseudomonas 
syringae pv. 
tomato DC3000  

Wild type, Rf
r
  (14)  

DC3000 hrcC  hrcC mutant defective in T3SS, Rf
r
 Cm

r
  (26)  

Pseudomonas 
syringae pv. tabaci 

11528  

Wild type, Nal
r
  American Type 

Culture Collection  

UNL155  DC3000 EEL mutant lacking T3E hopB1, Rf
r
  This work  

UNL158  DC3000 EPai1 mutant lacking T3E genes hopD1, hopQ1-
1, and hopR1, Rf

r
  

This work  

UNL159  DC3000 EPai2 mutant lacking T3E genes hopAA1-2, 
hopV1/shcV, hopAO1, hopG1, and hopQ1-2, Rf

r
  

This work  

UNL184  DC3000 EPai3 mutant lacking T3E genes hopF2/shcF and 
hopU1, Rf

r
  

This work  

UNL227  DC3000 EPai1, EPai2, EPai3, EEL mutant, Rf
r
  This work  

pBH474  Sucs derivative of pTH474  (26) 

pHIR11  Cosmid pLAFR3 derivative carrying T3SS DNA from P. 
syringae pv. syringae 61, Tc

r
  

(29) 

pENTR/D-TOPO  Gateway system entry vector, Km
r
  Invitrogen, Carlsbad, 

CA, U.S.A.  

pLN525  pPZP212 derivative carrying hopF2, Km
r
 This work  

pLN953  pPZP212 derivative carrying hopT1-2, Km
r
 This work  

pLN956  pPZP212 derivative carrying avrE1, Km
r
 This work  

pLN958  pPZP212 derivative carrying hopAA1-2, Km
r
 This work  

pLN1965  pHIR11 derivative containing a deletion of shcA/hopA1 

operon replaced by a sp resistant cassette, Tc
r
 Sp

r 
 

(19) 

pLN2193  pML123 derivative gateway destination vector containing a 
CyaA tag for C-terminal fusions, Gm

r
  

(17) 

pLN2194  pMK2017 derivative carrying 2.5 kb sequence US of EPai1, 
Tc

r
, Sp

r 
 

This work  

pLN2195  pMK2017 derivative carrying 2.5 kb sequence US of EPai2, 
Tc

r
, Sp

r
  

This work  

pLN2204  pMK2016 derivative carrying 2.0 kb sequence DS of EPai1, 
Sp

r
  

This work  

pLN2205  pMK2016 derivative carrying 2.0 kb sequence DS of EPai2, 
Sp

r
  

This work  

pLN2250  pLN2193 derivative carrying avrPtoB, Gm
r 
 This work  

pLN2254  pLN2193 derivative carrying hopU1, Gm
r 
 This work  

pLN2616  pMK2017 derivative carrying 1.5 kb sequence US of EPai3, 
Tc

r
, Sp

r 
 

This work  
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pLN2617  pMK2016 derivative carrying 2.0 kb sequence DS of EPai3, 
Sp

r
  

This work  

pLN2637  pML123 derivative carrying avrRpt2-ha, Gm
r
 This work  

pLN2665  pMK2017 derivative carrying 2.4 kb sequence US of EEL, 
Tc

r
, Spr  

This work  

pLN2666  pMK2016 derivative carrying 2.5 kb sequence DS of EEL, 
Sp

r 
 

This work  

pMK2016  Sp
r 
St

r 
oriV oriTColE1 with FRT cassette from pMK2014  (26) 

pMK2017 Tc
r
 oriVR6K oriTRP4 with FRT cassette from pMK2015 (26) 

pRK2013 Km
r 
mobilization helper plasmid  

pRK2073 Sp
r 
mobilization helper plasmid  

pVSP61::avrRpm1 pVSP61 derivative containing avrRpm1, Km
r
 (36) 

pPZP212 Agrobacterium tumefaciens binary vector, Km
r
 (21) 

  



189 
 

Supplemental Table 2. Primers used in this study  

Primer  Sequence  Use
a
 

P1789  5’-GAACTTCAAGATCCCCTGATTCCCTT-3’  pMK2016 insert  
P1790  5’-GAGCGCTTTTGAAGCTGATGTGC-3’  pMK2017 insert  
P2087  5’-GCACGTTGGGTACGCTGCAAG-3’  confirm EEL  
P2088  5’-CGCCGCCGCCATCGATC-3’  confirm EEL  
P2091  5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGCGCTTCTCCCTGGC-3’  pLN2194  
P2092  5’-GGGGACCACTTTGTACAAGAAAGCTGGGTGCCTGCGGGCTGGATG-3’  pLN2194  
P2093  5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTCTCCTGGGCATTCTTCAGACG-3’  pLN2204  
P2094  5’-GGGGACCACTTTGTACAAGAAAGCTGGGTGGCGTTGACACCTACGTCATAC-3’  pLN2204  
P2095  5’-CCGTCCGCAGTTCAGGCG-3’  confirm EPai1  
P2096  5’-CCGGCAAGCGGGTATGC-3’  confirm EPai1  
P2097  5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGCTCTATTATCGCAGCCCCCTG-3’  pLN2195  
P2098  5’-GGGGACCACTTTGTACAAGAAAGCTGGGTGCTACTCAGCGTATGGGGCGAG-3’  pLN2195  
P2099  5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGACAACCCCCAAGACAAACTCC-3’  pLN2205  
P2100  5’-GGGGACCACTTTGTACAAGAAAGCTGGGTGCAACTGGGGTTTGCGGAGC-3’  pLN2205  
P2101  5’-GAAGAGTTTTCCCAGGGGCTGC-3’  confirm EPai2  
P2102  5’-CGGTGAAACTGCTTCCCCTATTCC-3’  confirm EPai2  
P2404  
P2405  
P2406  

5’-CACCGTTTTTCATAATGCATCTCCTCAT-3’  
5’-CCCTCCTACCTGGCATCGAAATG-3’  
5’-CACCGTCATTCGTTCCAGGATTCATCAG-3’  

pLN2617  
pLN2617  
pLN2616  

P2407  5’-CAGATTTGAGTCCATGAAGGAGGCC-3’  pLN2616  
P2443  5’-CACCCTCAATGGTGGTGCCCCGAG-3’  pLN2665  
P2444  5’-GTATAAAAAGCAGGAAAAACTCGTTC-3’  pLN2665  
P2445  5’-CACCCGATCTCGATCATTTTTTCTGG-3’  pLN2666  
P2446  5’-CGCGGAGATTCAATCATG-3’  pLN2666  
P2447  5’-GAACAAGGAATGGGGCGAGC-3’  confirm EPai3  
P2448  5’-GGCGATGTTGCTGACGACCAAATAC-3’  confirm EPai3  
a
Primers were used to make a construct, confirm a deletion, or confirm a sequence insertion. 
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Pseudomonas syringae requires the use of a type III secretion system 

(T3SS) for pathogenicity. T3SSs allow pathogenic bacteria to inject type III 

effector (T3E) proteins into the eukaryotic cells of hosts which lead to disease. 

Understanding how the bacteria inject T3Es is paramount to understanding 

plant/bacterial pathogen interactions at a molecular level. Here we have sought 

to more fully characterize the hypersensitive response and pathogenicity (Hrp) 

T3SS translocon by identifying which proteins it is composed of, which putative 

translocators function away from the translocon, and what impact these proteins 

have on T3E injection. Comparing the differences between the P. syringae 

translocon and those of animal pathogens provides insight into how these 

pathogens evolved to colonize such different hosts and what selective pressures 

and physical obstacles they have overcome to accomplish T3E injection. The 

similarities between the translocons may point out elements that have remained 

conserved out of necessity in spite of eons of divergent co-evolution, for example 

the presence of transmembrane domains or that the translocon pore appears to 

always be composed of two different proteins.  

The advances in understanding the control of secretion of translocators by 

HrpJ presented here were beneficial for at least two reasons. First, they help 

further demonstrate that type III-secreted substrates are regulated based on 

functional classes of proteins and are secreted in a hierarchical manner. Second, 

it helped independently show that the harpins and HrpK1 constitute a functional 

group of proteins that aid in T3E translocation and are similarly regulated. This 

study also established that HrpJ not only controls secretion of translocators but 
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may function as a molecular switch, controlling the transition from pilus to 

translocon formation (8).  

Normally different classes of T3SS proteins have been described as 

having distinct functions but the HrpJ data shows that functions overlap among 

different classes of proteins (3, 18, 28, 35, 39, 48, 50). T3E proteins were 

presented as the only type III-secreted proteins to function within the plant cell to 

suppress immunity and ultimately allow the bacteria to grow and cause disease 

(21, 26). Other regulatory and structural proteins have likewise been thought to 

singularly function in those capacities. Here, we have shown that a T3SS-

injected protein with a defined regulatory function, has a secondary function 

within the plant cell contributing to the suppression of plant immunity. While it has 

been shown that P. syringae T3SS extracellular proteins, such as the pilus 

protein HrpA1, are under selection to avoid detection by plant immunity, no other 

structural or regulatory protein has been shown to suppress plant immunity (17). 

However, the same selective pressures would likely favor a structural protein that 

after secretion evaded detection or better yet suppressed plant immunity. It is 

likely that other type III-secreted proteins with established functions will be found 

to similarly suppress pathogen associate molecular pattern (PAMP)-triggered 

immunity (PTI).  

As important as it is to the pathogen to evade and suppress plant 

immunity, it is equally important to the plant to identify and mount a strong 

immune response to prevent the pathogen from growing and causing disease. 

One facet of a successful immune response, which we established here, is 
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prevention of the pathogen from injecting T3E proteins. We have shown that 

plants are capable of blocking T3E injection when PTI (or effector-triggered 

immunity (ETI)) is pre-induced. That response is much stronger in non-host 

interactions as the pathogen suppresses immunity most efficiently in its host 

plant. Importantly, this research answers the question of why a normally HR 

eliciting strain no longer induces a hypersensitive response (HR) in areas pre-

treated with a PAMP or PTI-inducing bacteria (32). A number of possible 

explanations existed but now we know that it is due to the inability of the 

pathogen to inject T3Es precluding intracellular R proteins from detecting their 

presence. 

HrpK1 and harpin proteins contribute to T3E translocation. The work 

presented in Chapter 2 demonstrates that HrpK1 as well as HrpZ1 interact with 

liposomes. The HopAK1 and HrpW1 harpins, which contribute to translocation (2, 

23), do not interact with liposomes. Because both HopAK1 and HrpW1 contain 

pectate lyase domains their contribution to T3E translocation probably occurs at 

the cell wall (6, 23). In order for these proteins to function efficiently they likely 

form protein-protein interactions. We have tried to show interactions among 

these proteins with no success. Yeast-2-hybrid (Y2H) assays, pull-down assays, 

and co-immunoprecipitation experiments have all been negative or problematic. 

For example HrpZ1 has auto-activation activity in Y2H experiments, and the 

difficulty to purify HrpK1 without denaturing it complicates in vitro interaction 

assays.  
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In the future further experiments need to be done to show protein-protein 

interactions among the translocator proteins. In order to do this non-traditional 

assays may need to be employed. For example it may be necessary to look for 

interactions in ways that consider the hydrophobic environment in which the 

proteins would bind one another. Perhaps phosphatidic acid (PA) would need to 

be added to buffers for pull-down assays to work. Alternatively, microscopy 

techniques such as bimolecular fluorescence complementation may need to be 

employed to see if any in vivo interaction can be detected either in planta or in 

cell culture.  

The importance of understanding which proteins interact and where they 

interact is very important in establishing how plant bacterial pathogens inject T3E 

proteins. Because the proteins involved are unique compared to animal 

pathogens figuring out which proteins form complexes and where those 

complexes exist may lead to new and exciting discoveries that highlight the 

differences among these pathogens. A more detailed understanding of the 

interactions may provide mechanistic insights to P. syringae T3E translocation. 

Another related area of future study is the identification of a P. syringae tip 

protein. As mentioned, in all animal systems there is a third translocator, a 

hydrophilic protein that is thought to connect pore forming translocators to the 

needle that is also important for identifying host cell contact (31, 43). P. syringae 

strains lack similar proteins (5). It seems likely that there must be a protein 

serving the same function but due to different hosts and evolutionary divergence 

the phytopathogenic tip protein is dissimilar to the animal tip proteins. Whether 
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there is a yet unidentified protein that serves this function or a protein known to 

aid in translocation, such as a harpin, that serves to connect the pilus to the 

translocon via a novel mechanism needs to be investigated. Because it has been 

established that different classes of proteins have overlapping functions it is 

possible that a protein with an established function may have a second function 

to connect the pilus to the translocon. Recently, the tip protein from Vibrio 

parahaemolyticus was the first to be shown to be translocated (50). This 

discovery shows how, when searching for the tip protein in DC3000, one cannot 

solely rely on the rules established in other systems to identify it. Defining protein 

interactions among the known translocator proteins, which could piece together 

how the translocon is assembled, could also help in the identification of a tip 

protein.  

It has long been thought that the T3SS functions as an injectisome, that is 

that the T3SS acts like syringe, injecting T3Es directly into eukaryotic cells 

through a conduit in a unidirectional one-step manner. Recent studies have 

results suggesting that T3E translocation may be much more complicated. 

Akopyan et al. (1) showed that type III substrates are visible outside of the 

bacteria prior to translocation and that purified YopH protein could be 

translocated into infected host cells in a T3SS-dependent manner. This discovery 

along with the fact that no one has shown that T3Es are injected directly into 

eukaryotic cells, led to the suggestion that the T3SS translocation mechanism is 

more similar to AB toxin delivery than needle-like injection (14). This proposed 

toxin-like mechanism is not mutually exclusive to the injection model and both 
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may occur. Certain systems or specific T3Es may employ different translocation 

mechanisms. That these discrepancies exist in the well-characterized Yersinia 

system, the system in which T3SS were discovered (29), exemplifies how much 

research is needed before it can be said with high confidence that T3SSs 

mechanistic function is fully understood. Additionally, multiple translocation 

mechanisms may help explain why, for example, hrpK1 mutants are not fully 

devoid of T3E injection. Or, why different phytopathogen bacterial strains have 

different harpin repertoires (36, 42). 

HrpJ controls the secretion of the translocators and may function as 

a molecular switch controlling the transition from Hrp pilus formation to 

translocator secretion. Secretion hierarchy as it relates to T3SSs is an active 

and important area of research but overall relatively little is known about how 

secretion is controlled. Type III substrates are thought to be secreted in an 

orderly fashion, for example pilus proteins, followed by translocators, followed by 

T3E proteins (12, 28, 45). In P. syringae the expression of all of these proteins is 

regulated by HrpL (15, 16, 24, 44). Since HrpL controls the expression of all type 

III-secreted substrates, regulatory proteins must control the timing of secretion 

from within the bacterial cell. Here, HrpJ has been shown to regulate the 

secretion of the translocator proteins. In hrpJ mutants the translocators are no 

longer secreted while the pilus protein HrpA1 is secreted at elevated levels. 

Additionally, we have confirmed that HrpJ regulates secretion from within the cell.  

HrpJ is a member of a conserved family of type III secretion regulators. 

This family of proteins operates by different mechanisms in different pathogens. 
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For example, the YopN-TyeA proteins of Yersinia spp. are two separate proteins 

that correspond to two domains present in HrpJ (19). InvE, the representative 

protein from S. Typhimurium appears to be the lone family member that is not 

secreted (22). Most regulatory proteins, including MxiC and SepL from Shigella 

and enteropathogenic Escherichia coli, respectively, also have an effect on T3E 

secretion while HrpJ does not (27, 34). In some cases the differences among 

members of this family of proteins may be due to the different methods used to 

study them, but in other cases it may highlight important differences among the 

pathogens in terms of host interactions or pathogen evolution.  

It is not known with which proteins HrpJ interacts. Because it regulates the 

secretion of translocators, it is logical to assume that HrpJ interacts with them. 

We have been unable to confirm interactions directly but showed that deletion of 

a C-terminal region of HrpZ1 could relieve the control by HrpJ, suggesting that 

this region is required for HrpJ interaction. More research needs to be done to 

establish how HrpJ interacts with the proteins it regulates.  

Many of the YopN-TyeA/SepL/InvE family members interact with 

chaperones (7, 10, 48). Chaperones are typically grouped based on substrate 

class with class I chaperones binding effectors, class II binding translocators, and 

class III binding needle or pilus components (3). Since HrpJ has a T3E-like 

function, in addition to its regulatory function, it will be interesting to see what 

chaperone class it may bind. The only other family member shown to have T3E-

like function is CopN from Chlamydia which binds a class II chaperone (3). 

Interestingly, SepL, which has not been shown to function like a T3E, binds a 
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class I chaperone which normally only interact with T3E proteins (48). Proteins 

and their associated chaperones are usually encoded in proximity to one another 

on the chromosome. The closest chaperone-like gene to hrpJ is hrpG, although 

present on a different operon (13). The tertiary structure of HrpG shares similarity 

to the class I T3E chaperones SicP, SycE, and CesT which are chaperones of 

T3SS effectors for SptP in Salmonella, YopE in Yersinia and Tir in E. coli (46). It 

would be very interesting if HrpG is the chaperone for HrpJ and would give 

added credence to HrpJ functioning as a T3E protein in plant cells. Identifying a 

HrpJ chaperone and any other bacterial proteins it interacts with will be an area 

of future study.  

That HrpA1 is secreted more abundantly from the hrpJ mutant adds an 

additional layer of complexity to the role of HrpJ that is not evident in its animal 

pathogen counterparts. In animal pathogens the length of the needle is controlled 

by a protein that has the type III secretion substrate specificity switch, which in 

Yersinia is found in YscP (20). Homologues of this protein, such as InvJ and 

Spa32, have been studied in Salmonella and Shigella respectively and control 

needle length. Mutants in these genes secrete elevated levels of their respective 

needle protein (11). HrpP is the most similar protein from DC3000 (5). It contains 

the substrate specificity switch, but the mutant does not function in the same 

manner; instead, it reduces HrpA1 secretion and blocks secretion of all other 

T3SS substrates tested (30). It appears as if HrpJ may function as a substrate 

switch and may control the length of the Hrp pilus. The most likely explanation is 
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that it is mediated by recognition of cell contact although further studies are 

needed to confirm this (47).  

In order to confirm that HrpJ controls the regulation of HrpA1secretion and 

pilus length, it should be tested whether HrpA1 and HrpJ interact, but this may be 

difficult as interaction experiments with HrpJ have not been successful, as 

mentioned. Next, it should be examined whether the increased HrpA1 secretion 

results in longer Hrp pili on the surface of the bacteria using electron microscopy 

techniques. A potential problem with these experiments is that the Hrp pili appear 

to grow indefinitely in these types of experiments and that may preclude the 

ability to observe differences in pilus length between wild-type and mutant strains 

(4, 37). However, experiments showing differences in the ability of hrpA1 mutants 

to polymerize have been successful in spite of the delicate nature of the 

techniques (25).  

HrpJ suppresses plant innate immunity. HrpJ is an injected protein that 

plays an important role in the T3SS-mediated injection of T3E proteins. Because 

hrpJ mutants cause such strong phenotypic changes in the ability of DC3000 to 

inject T3Es, it was a challenge to study if the injection of HrpJ had any benefit to 

the pathogen. There were logical reasons to explain why HrpJ would need to be 

injected. For example secretion may have been required in order to allow for the 

translocators to be secreted, to give just one example. However, we showed that 

HrpJ controls secretion from within the bacterial cell. With this in mind we made 

transgenic plants expressing HrpJ and tested different outputs of PTI. Somewhat 

surprisingly HrpJ suppressed the plant immune response.  
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Based on this discovery hrpJ should be studied as a bona fide T3E gene. 

To this end the same series of tests used to identify T3E target and function 

should be applied HrpJ. The in planta subcellular localization should be 

determined; likewise, yeast-2 hybrid assays should be conducted to look for 

Arabidopsis proteins that interact with HrpJ in hopes of identifying a target. 

Identifying the in planta target may provide a way to identify the in planta activity 

of HrpJ as has been done with other T3E proteins.  

PTI or ETI induced plants can restrict T3E injection. This work helps 

establish a defense mechanism employed by plants likely to prevent infection. 

Additionally, this work offers a new output that can be tested, the injection 

restriction assay. It can be used to test mutant strains of bacteria that are more or 

less able to overcome injection restriction. Alternatively, it can be used to test if 

genes expressed in planta can affect injection restriction. These types of 

experiments would indicate whether the gene of interest suppresses or enhances 

PTI.  

It is interesting to speculate on the biological significance of injection 

restriction. Is it merely a lab manipulated phenomenon, or does it have 

implications in natural settings? It could be that PTI has many outputs that try to 

stymie bacterial pathogens and giving it a head start simply allows it to block T3E 

injection indirectly. But perhaps it is an evolved defense mechanism where 

environmental conditions that allow for the exposure to an abundance of PAMPs 

may often be accompanied by interactions with many potential pathogens. In this 

scenario, some event like a heavy rain induces wounding allowing for many non-
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pathogenic microbes to present PAMPs. It is beneficial to induce PTI, or more 

specifically the branch of PTI responsible for injection restriction, so that 

pathogenic bacteria that may later gain access to the newly acquired wounds are 

less able to inject T3E proteins and therefore less able to cause disease. 

That PTI and ETI can both cause injection restriction exemplifies the 

overlapping nature of the two immune responses. ETI appears to trigger a 

stronger injection restriction which matches the established paradigm that it is the 

more robust of the two plant immunity responses. 

How does the plant mechanistically restrict injection? The most 

interesting unresolved issue about injection restriction is establishing how the 

plants accomplish it. The most straightforward way to begin to answer this 

question is to screen different mutant plants deficient in specific outputs of 

immunity to see which genes or outputs contribute to injection restriction. This 

could be done by screening mutants deficient in callose deposition, ROS outputs, 

or other genes specifically involved in PTI or ETI (9, 33, 38, 40, 41).  

A second line of study would be to investigate what impact injection 

restriction has on the bacteria. First, one could investigate whether the bacteria 

under these conditions have any changes in gene expression. If this is the case it 

would be interesting to know whether the plant can target T3SS genes 

specifically and down-regulate them, or whether it affects gene expression in 

general. Alternatively, if the expression is altered it could be because the 

environment in the leaf may have changed to make T3SS less favorable, for 

example pH is known to be important for T3SSs (49). 
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It would also be possible to look for bacterial mutants in genes unrelated 

to T3SS that may be important in overcoming injection restriction. For example, 

mutants less able to deal with oxidative stress, pH changes, or even motility may 

be hypersensitive to injection restriction even when looking at a pathogen in its 

host. Experiments like these could help establish mechanistic functions 

responsible for injection restriction. More importantly, this could help solve a long 

standing question in molecular plant pathology – what are the plant immune 

responses that specifically target bacterial pathogens in the plant apoplast. 
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