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Fiber optic sensors became an emerging technique to detect ultrasonic emissions

in the last decade. Their light weight, immunity to electromagnetic interference

and capacity of being multiplexed make them defeat their electronic counterparts in

various applications. In this thesis we presented a novel fiber optic ultrasonic sensor

based on π-phase shift fiber Bragg gratings. Numerical simulations were performed to

study the characteristics of π-phase shift fiber Bragg gratings impinged by ultrasonic

waves. The coupling theory was introduced to analyze the change of fiber Bragg

gratings when impinged by ultrasonic waves, and the transfer matrix method was

utilized to implement the simulation. In addition, the effect of the grating length and

grating refractive index modification depth on the wavelength sensitivity and intensity

sensitivity of the π-phase shift fiber Bragg grating sensors were investigated. The

responses of π-phase shift fiber Bragg gratings under ultrasonic pressure waves were

also compared with that of uniform fiber gratings. Finally, the responses of πFBGs

when impinged by ultrasonic longitudinal waves and shear waves were provided. Our

analysis revealed several unique characteristics of π-phase shift fiber Bragg gratings

used for ultrasonic detection and will be useful for design and optimization of fiber

optic ultrasonic sensors with π-phase shift fiber Bragg grating as the sensing element.
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Chapter 1

Introduction

1.1 Motivation of the Work

Ultrasonic emission is an important indicator of material degradation in structural

health monitoring (SHM), as acoustic signals in the form of ultrasonic waves are

generated and propagate in a structure when cracks occur, defects grow, or surface

degrades [1][2][3][4]. Also, ultrasonic waves can be generated actively in order to de-

tect and evaluate the flaws occurring in a structure in the case of ultrasound-based

nondestructive testing (NDT) [5][6][7]. Thus, ultrasonic detection has been of a great

interest in the applications like SHM and NDT. Traditionally, ultrasonic testing uses

the piezoelectric ceramics for ultrasonic detectors [3]. In the last two decades, fiber

optic sensors are widely investigated in the applications of sensing temperature [8]

[9], strain [10] [11], pressure [12] [13], electric field [14] [15], magnetic field [16] and ul-

trasonic waves [17][18]. Fiber optic ultrasonic sensors offer numerous advantages over

their electronic counterparts when they are applied to SHM [19][20][21][22]. First,

they are immune to electromagnetic interference (EMI), since the fiber is not electri-

cally conductive. Second, fiber-optic sensors feature small size and light weight, and
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can be easily embedded into the structure without affecting the mechanical properties

of the structure. Third, fiber-optic sensors, particularly those based on fiber Bragg

grating (FBG)[23][1][2], offer excellent multiplexing capabilities, making them ideal

for application involving sensing at multiple locations. Both wavelength-domain mul-

tiplexing and time-domain multiplexing can be used to achieve multiplexed fiber-optic

sensing [24] [25] [26].

Due to these remarkable advantages, FBG-based ultrasonic sensing has become

an active research area in the past decade for structural health monitoring. Two

different schemes have been proposed to detect ultrasonic waves using FBG sensors

[27]. The first one relies on detecting the spectral shift of the Bragg wavelength caused

by the strains of the ultrasonic waves, in which case the broadband laser is used [28]

[29]. The second one is to monitor the ultrasonic-induced reflectivity variation of

FBG using a narrowband tunable laser source. In this case the laser is tuned to the

wavelength for which the reflectivity from the Bragg grating is roughly half of the

peak value, and operate in the linear range of the FBG spectrum slope [30] [31]. The

experimental results show that FBG-based sensor is a promising tool for ultrasonic

detection.

However, there are still several technical challenges that need to be overcome

to improve the performance of current FBG-based ultrasonic sensors. Among them

are the improvement of two key specifications, sensitivity and speed, which indicate

the smallest detectable strains and the largest detectable ultrasonic frequency. The

demand for high sensitivity is that the environment where ultrasonic sensors are

embedded contains much noise. High detection speed indicates that the ultrasonic

sensors can instantaneously capture most of the frequency components of the ultra-

sound. π-phase-shifted FBGs (πFBGs) are a special type of FBGs whose reflection

spectrum features a notch in the center of the grating caused by a π-phase discon-
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tinuity [32] [33], and draw a great deal of attention for high sensitivity ultrasonic

detection [34][35][36]. The πFBG can be conceptually considered as a Fabry-Perot

cavity formed by two FBG mirrors because of the phase discontinuity. When the two

mirrors are highly reflective, the quality factor of the Fabry-Perot cavity is increased,

resulting in an extremely narrow spectral notch for highly sensitive ultrasonic sensing.

Although a few experiments of ultrasonic detection based on πFBGs have been re-

ported, the response of πFBG under ultrasonic waves has not been fully understood.

This thesis aims to simulate the responses of πFBGs when impinged by ultrasonic

pressure waves and provide guidance to design and optimize πFBG-based ultrasonic

sensors.

1.2 Thesis Organization

This thesis is organized as follows: Chapter 1 provides the background and the mo-

tivation of the research on fiber optic ultrasonic detection. Chapter 2 introduces the

effects on the optical fiber and fiber grating area of the ultrasonic pressure waves

impinging onto fibers. A model of fiber grating and ultrasonic waves are established.

We also discuss the necessary couple mode theory and transfer matrix method for

simulating the FBG spectrum in this chapter. Chapter 3 presents the implementa-

tion of numerical simulation using Matlab, and analyzes the wavelength sensitivity

change of uniform FBGs. In chapter 4, the results on wavelength sensitivity, inten-

sity sensitivity as well as directivity of πFBGs for different designs are given. We

also compares the performance of uniform FBGs and πFBGs. Chapter 5 discusses

the grating pitch change and the refractive index change caused by longitudinal and

shear ultrasonic waves, and compares the results of ultrasonic longitudinal waves and

shear waves on the performance of πFBGs. Chapter 6 provides several conclusions of
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the thesis.



5

Chapter 2

Modeling and Methods

The goal of this chapter is to establish a mathematical model of ultrasonic pressure

waves, and introduce an efficient numerical method to simulate the response of FBGs

when impinged by ultrasonic pressure waves. In addition, the changes related to

parameters of fiber gratings caused by ultrasound will be detailed.

Figure 2.1: Schematics of a uniform FBG (upper graph) and a πFBG(lower graph).
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Figure 2.2: Schematic of a ultrasonic wave propagating in the optical fiber

2.1 Influence of Ultrasonic Waves on Fiber Bragg

Gratings

The schematic of a uniform FBG and a πFBG is shown in Fig. 2.1. A uniform

FBG, which consists of periodic refractive index modulation in the fiber core along

the fiber axis, can be seen as a distributed Bragg reflector. Once the Bragg condition

is satisfied, the forward propagating light is reflected at a wavelength called Bragg

wavelength (λB): [37]

λB = 2nΛ (2.1)

where λB is Bragg wavelength, n is the effective refractive index of optical mode

propagating along the fiber, and Λ is the period of the FBG structure.

The πFBG is a type of nonuniform FBG, which consists of a phase jump of π

at the center of the grating. The phase jump divides the grating into two parts of

uniform FBGs and results in a deep notch at the center of the reflection spectrum.

When the FBG is impinged by ultrasonic waves, the mechanical strain will have

an influence on the optical fiber and the FBG in several ways, causing the Bragg

wavelength shifts. Those influences will be discussed in the following sections. We

consider the case of ultrasonic pressure wave that propagates along the fiber axis, as

shown in Fig. 2.2.
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Figure 2.3: Illustration of the ultraosnic-induced geometric effect on uniform FBG

2.1.1 Geometric Effect

We start with the phase of the light propagating through the fiber grating, which

can be expressed as φ = βL. L is the length of the fiber, and β is the propagation

constant of light. The mechanical strain-induced phase shift at the output is [38]

∆φ = β∆L+ L∆β (2.2)

The first term in the right hand side of Eq. 2.2 indicates the changes in physical

length of the fiber. In the case of a fiber grating region, it denotes the grating pitch

changes caused by the ultrasonic waves. This direct effect is called ultrasonic-induced

geometric effect, as illustrated in Fig. 2.3. For a given ultrasonic pressure P , the stress
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can be written as

σ =


−P

−P

−P

 (2.3)

In an elastic and isotropic material, such as optical fiber, the strain is related to stress

by 

εxx

εyy

εzz

εxy

εyz

εzx



=



1
E
− ν
E
− ν
E

0 0 0

− ν
E

1
E
− ν
E

0 0 0

− ν
E
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E

1
E

0 0 0

0 0 0 1
G

0 0

0 0 0 0 1
G

0

0 0 0 0 0 1
G





σxx

σyy

σzz

τxy

τyz

τzx



(2.4)

For a ultrasonic pressure wave which has no shear components, the strain vector of

optical fiber caused by the pressure wave can be written as [38]


εxx

εyy

εzz

 =


−1−2ν

E
P

−1−2ν
E
P

−1−2ν
E
P

 (2.5)

εzz in Eq. 5.3 represents the strain in the direction of fiber axis. Thus, the geometric

effect can be quantitatively written as [38]

β∆L = βεzzL = −β(1− 2ν)LP
E

(2.6)

where E is the Young’s modulus of the fiber, and ν is Poisson’s ratio.
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2.1.2 Elasto-optic Effect

In addition to geometric effect, ultrasonic strain leads to other changes to the optical

fiber and fiber grating according to the second term of Eq. 2.2. Due to the change of

propagation constant β, the second term can be broken down into two terms [38]:

L∆β = L
dβ

dn
∆n+ L

dβ

dD
∆D (2.7)

where D represents the diameter of the fiber. The first term of Eq. 2.7 takes the

refractive index change caused by ultrasonic waves into account, and thus is called

elasto-optic effect or strain-optic effect. It is known β = neffk0. Because ncladding <

neff < ncore and the difference between ncladding and ncore is very small, we have

dβ/dn = k0. In the rest of the thesis we use n to denote the effective refractive

index. The second term of Eq. 2.7 is called waveguide mode dispersion effect due to

the change in fiber diameter produced by the ultrasonic-induced strain. It is worth

noting that this waveguide mode dispersion effect is negligible compared with the

other two effects.

From the elasto-optic effect, the change in optical indicatrix is given by [38]

∆( 1
n2 )i =

6∑
j=1

pijεj (2.8)

Because the ultrasonic wave propagates longitudinally along the fiber axis, the shear

strain elements ε4 = ε5 = ε6 = 0. The strain-optic tensor for a homogeneous isotropic
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material can be simplified to [38]

Pij =


p11 p12 p12

p12 p11 p12

p12 p12 p11

 (2.9)

where p11 and p12 are the components of strain-optic tensor of the optical fiber ma-

terial.

∆( 1
n2 )x,y,z = −p11P (1− 2ν)

E
− 2p12P (1− 2ν)

E
(2.10)

= −P (1− 2ν)
E

(p11 + 2p12) (2.11)

Therefore, the change of the refractive index is

∆nx = ∆ny = ∆nz = ∆n = n3P

2E (1− 2ν)(p11 + 2p12) (2.12)

2.1.3 Spectral Response of FBG Under Pressure Waves

From Eq. 2.1 Bragg wavelength of a FBG shifts when either the grating length or

the refractive index changes. The wavelength shift is also used to demodulate the

pressure caused by ultrasonic strain. According to Eq. 2.1, for a pressure change of

∆P , the wavelength shift ∆λBP is given by [39]

∆λBP
λBP

= ∆(nΛ)
nΛ =

(
1
Λ
∂Λ
∂P

+ 1
n

∂n

∂P

)
∆P (2.13)

We have discussed the change of fiber length and the change of refractive index due

to the geometric effect and elaso-optic effect, as shown in Eq. 2.6 and Eq. 2.12.

Considering the change of grating period is exactly the same as that of optical fiber
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length, the normalized pitch-pressure and the index-pressure coefficients are given by

∆Λ
Λ = ∆L

L
= −(1− 2ν)∆P

E
(2.14)

∆n
n

= n2∆P
2E (1− 2ν)(2p12 + p11) (2.15)

Substituting Eq. 2.14 and Eq. 2.15 into Eq. 2.13, the spectral shift of the FBG with

respect to the ultrasonic-induced pressure can be expressed by [39]

∆λBP = λ

[
−(1− 2ν)

E
+ n2

2E (1− 2ν)(2p12 + p11)
]

∆P (2.16)

It shows in Eq. 2.16 that the wavelength shift is directly proportional to the pressure

change ∆P .

2.1.4 Model of Ultrasonic Waves

In solid materials the ultrasonic waves can travel in the forms of longitudinal waves,

shear waves, surface waves and plate waves, based on the way particles oscillate

[40]. Fig. 2.4 illustrates the difference of the longitudinal ultrasonic wave and shear

ultrasonic wave. Ultrasonic pressure waves, which can yield equal amount of strain in

any direction, can be seen as a series of expansions and compressions along the fiber

axis. Therefore, the time-dependent ultrasonic pressure wave can be modeled by [2]

∆P (z, t) = ∆P0 cos(2π
λs
z − ωt) (2.17)

where ∆P0, λs, ω, are the peak pressure, the wavelength of ultrasonic wave in the

optical fiber, and the angular frequency, respectively; z is the coordinate along the

fiber axis direction; and t is the time. The sinusoidal model given by Eq. 2.17 is valid
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Figure 2.4: Illustration of a)longitudinal wave and b) shear wave

for both high frequency waves and low frequency waves. For low-frequency ultrasonic

modulation, the strain is often simplified as a constant over the FBG length, if the

wavelength of ultrasonic wave is far greater than the length of FBG. However, when

the wavelength of ultrasonic wave is comparable or shorter than the length of fiber

grating, the perturbation cannot be regarded as uniform and constant. Hence, the

numerical approach has to be used to analyze the response of fiber gratings under

non-uniform tensile and compressive strains, as is discussed in the rest of this chapter.

2.2 Models of Fiber Bragg Gratings

2.2.1 Coupled Mode Theory and Uniform FBGs

The coupled mode theory is a powerful mathematical tool to analyze the wave prop-

agation and interactions with materials in optical waveguide. Coupled mode theory

consider the grating structure as the perturbation to an optical waveguide [41]. Cou-

pling of guided modes occurs due to the perturbation. A number of fiber grating
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structures have been successfully modeled based on coupled mode theory, and the

simulation results show excellent matches with experiment results.

For uniform FBGs, there exist closed-form solutions of coupling mode equations.

Before starting solving these coupled mode equations, we introduce the perturbation

to effective refractive index δn(z): [37]

δn(z) = δn{1 + ν cos[2πΛ z + φ(z)]} (2.18)

where δn(z) is the ”dc” index change, ν is the fringe visibility of the index change, Λ

is the grating period and φ(z) denotes the grating chirp. For single mode FBG, the

simplified coupled mode equations can be expressed [37]

dR

dz
= iσ̂R(z) + iκS(z) (2.19)

dS

dz
= −iσ̂S(z)− iκ∗R(z) (2.20)

where R(z) = A(z)exp(iδz−φ/2) and S(z) = B(z)exp(−iδz+φ/2) are the amplitudes

of forward-propagating mode and backward-propagating mode. In these equations,

κ is ”ac” coupling, and σ̂ is the general ”dc” coupling coefficient. They are defined

as [37]

σ̂ = δ + σ − 1
2
dφ

dz
(2.21)

κ = κ∗ = π

λ
νδn (2.22)

The detuning δ and σ in Eqs. 2.21 and 2.22 are defined as [37]

δ = β − π

Λ = 2πn( 1
λ
− 1
λD

) (2.23)
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σ = 2π
λ
δn (2.24)

For uniform FBG, in which case the ”dc” refractive index change δn is a constant

and the grating chirp dφ/dz = 0, κ, σ, σ̂ in Eqs. 2.22, 2.2.1, 2.21 are constants. By

applying the boundary conditions R(−L/2) = 1,S(L/2) = 0, we obtain the analytical

expression of power reflection [37]:

r = −κ sinh2(
√
κ2 − σ2L)

cosh2(
√
κ2 − σ2L)− σ̂2

κ2

(2.25)

2.2.2 Non-uniform FBGs and Transfer Matrix Method

In this part, we consider the modeling of non-uniform FBGs, especially the πFBG.

Two approaches to modeling non-uniform FBGs are introduced and compared. We

also demonstrate the use of Transfer Matrix Method in the numerical simulation of

spectral response of πFBG.

Despite of the fact that uniform FBGs have been vastly investigated and utilized,

the non-uniform FBGs, such as apodized FBGs, chirped FBGs, and phase-shift FBGs,

have numerous unique benefits and find many practical applications. However, it is

hard to find closed-form solutions for these equations like Eq. 2.25 due to the designed

non-uniform refractive index modulation. Therefore, numerical methods have to be

used to calculate the reflection spectra. Direct-integration approach and piecewise-

uniform approach are two standard approaches.

The direct-integration approach directly solves the coupled mode equations of

non-uniform gratings by resorting to numerical integration, for example, Runge-Kutta

numerical integration [37]. This method is straightforward, but is usually not a fast

method. On the contrary, the piecewise-uniform approach is fast, easy to implement,
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and accurate enough. This method is to divide a non-uniform grating into multiple

uniform pieces, and multiply the analytical solutions of each uniform piece. As the

analytical solutions in each uniform section are expressed in a form of a 2× 2 matrix,

this approach is also called Transfer Matrix Method (T-Matrix Method) [37].

To model πFBG by Transfer Matrix Method, the fiber grating with length of L

is divided into M sections. Usually the larger the number M is, the more accurate

this approach is, but it is worth noting that M cannot be arbitrarily large, as the

solution of coupled mode equations (Eq. 2.25)is not valid for the uniform grating with

only a few period long. The amplitudes of forward-propagating mode and backward-

propagating mode before and after the ith uniform section are expressed in a matrix

Fi such as [37]:

 Ri

Si

 = Fi

 Ri−1

Si−1

 =

 F11 F12

F21 F22


 Ri−1

Si−1

 (2.26)

where Ri, Si are the forward-propagating mode and backward-propagating mode after

the ith uniform section, while Ri−1, Si−1 represent the forward-propagating mode and

backward-propagating mode before the ith uniform section. The elements in matrix

Fi are defined by [37]

F11 = F ∗22 = cosh(γB∆z)− i σ̂
γB

sinh(γB∆z) (2.27)

F12 = F ∗21 = −i κ
γB

sinh(γB∆z) (2.28)

where “*” represents the complex conjugate, ∆z is the length of the ith uniform

section, and γB =
√
κ2 − σ̂2, where κ and σ̂ are the same as we discussed in Eqs.

2.21 and 2.22. The output amplitude are obtained by multiplying all the matrices for
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individual sections such as  RM

SM

 = F

 R0

S0

 (2.29)

where F = FM · FM−1 · · ·F1. To take phase shift into account, we insert a phase-shift

matrix at the position of the phase shift such as [37]

FΦ =

 exp
(
−iφi

2

)
0

0 exp
(
iφi

2

)
 (2.30)

where φi represents the shift of the phase. For a π-phase shift, Eq. 2.30 can be

written as

Fπ =

 −i 0

0 i

 (2.31)

The output amplitudes through the entire non-uniform FBG are obtained by applying

the boundary conditions, R0 = R(L) = 1, and S0 = S(L) = 0. Therefore, the

amplitude reflection coefficient ρ = RM/SM , and power reflection coefficient r = |ρ|2

are calculated by T-Matrix Method.
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Chapter 3

Numerical Analysis of Uniform

Fiber Bragg Gratings

3.1 Overview

Now we have the preliminary knowledge for implementing the simulation of the spec-

tral response of uniform FBG impinged by ultrasonic pressure waves. We first describe

the implementation using Matlab. The numerical simulation results of wavelength

shifts caused by ultrasonic waves are shown. Since the length and refractive index

modification depth of a uniform FBG are the two key parameters for designing FBG-

based fiber ultrasonic sensors, we discuss in detail the wavelength sensitivity with

respect to the ratio between grating length and ultrasonic wavelength, when these

two parameters change.

3.1.1 Simulation Implementation

To simulate the spectral response of a uniform FBG, we first need to obtain the

reflection spectrum simply by applying Eq. 2.25. The necessary parameters of the
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neff 1.4453
λD 1550 nm
δn0 1× 10−4

L 10 mm
M 100

Table 3.1: Parameters of uniform fiber Bragg grating in the simulation

Figure 3.1: Reflection spectrum of uniform FBG

uniform FBG used for simulation are listed in table 3.1, and the result is plotted in

Fig. 3.1. Note that the maximal reflectivity does not occur at the designed wavelength

λD, which is 1550 nm. This is because the designed wavelength λD = 2nΛ is valid for

Bragg scattering by infinitesimally weak grating with a period Λ, which corresponds

to δn approaches 0. In reality, the Bragg wavelength of grating is typically greater

than the designed wavelength, for δneff is larger than 0 [37].

It is known that the fiber grating pitch and refractive index are affected by
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Figure 3.2: The wavelength shift caused by ultrasonic strain

ultrasonic-induced strain according to geometry effect and elasto-optic effect. We

can obtain the new grating pitch and refractive index by adding the variation such as

Λ′ = Λ + ∆Λ (3.1)

δn′ = δn+ ∆n (3.2)

where ∆Λ and ∆n are modulated by ultrasonic-induced pressure ∆P , as discussed in

Eq. 2.14 and Eq. 2.15. Thus, the perturbation to the effective index when ultrasonic

wave is induced becomes:

δn′ = δn′ + νδn cos
[2π

Λ′ z + φ(z)
]

(3.3)

Substituting Eq. 3.3 into the program that we calculate the reflection spectrum, we
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Symbol Physical Quantity Value Unit
E Young’s modulus of optical fiber 70 GPa
ν Poisson’s ratio 0.17 -
p11 1,1 element in strain-optic tensor 0.121 -
p12 1,2 element in strain-optic tensor 0.270 -
s ultrasound velocity in fused silica 4000 m/s
P Peak pressure amplitude of ultrasonic wave 1 MPa

Table 3.2: Parameters of the ultrasonic wave and optical fiber used in the simulation

can have the wavelength shift at a given ultrasonic frequency, as shown in Fig. 3.2.

As time-varying ultrasonic waves produce time-dependent wavelength shift, we define

the wavelength sensitivity as the peak Bragg wavelength shift caused by ultrasonic

wave with unit pressure amplitude. In our simulation, the relevant parameters of

ultrasonic waves and the optical fiber are listed in table 3.2.

3.2 Wavelength Sensitivity and Grating Length

Fig. 3.3 plots the result of wavelength sensitivity with respect to ultrasonic frequency

when the length of uniform FBGs changes from 8 mm to 14 mm. The graph in

logarithmic scale is given in Fig. 3.4. The refractive index modulation depth is set to

1 × 10−4 in the simulation, and the peak pressure amplitude of ultrasonic wave is 1

MPa. The wavelength sensitivity of all of these FBGs starts from the same maximum

of 4.5 pm/MPa when the ultrasonic frequency is zero. As the ultrasonic frequency

increases, the wavelength sensitivity of all the uniform FBGs decreases, and reaches

their first minimum which is almost zero. The wavelength sensitivity of uniform

FBG with longer length drops more quickly to the first local minimum, which means

that FBGs with shorter length offers better wavelength sensitivity than those with

longer grating length. This is because the average change to the refractive index and
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Figure 3.3: Wavelength sensitivity of uniform FBG with δn0 = 1×10−4 as a function
of ultrasonic frequency in linear scale.

the grating period length caused by ultrasonic waves decreases when the ultrasonic

frequency increases. After the first local minimum, the sidelobes appear at the tail of

the curves as the ultrasonic frequency continues to increase. It is worth noting that

the wavelength sensitivity becomes very weak when the ultrasonic frequency is higher

than 3 MHz. This is due to the ultrasonic wave with multiple periods neutralizes the

change of refractive index and that of the grating period length.

3.3 Wavelength Sensitivity and Refractive Index

Modulation Depth

Fig. 3.5 shows the wavelength sensitivity of uniform FBGs with length of 10 mm as a

function of ultrasonic frequency when the refractive index modulation depth changes
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Figure 3.4: Wavelength sensitivity of uniform FBG with δn0 = 1×10−4 as a function
of ultrasonic wavenumber in logarithmic scale.

from 6× 10−5 to 1.2× 10−4. The graph in logarithmic scale is given in Fig. 3.6. Like

the curves in Fig. 3.3, the wavelength sensitivity drops as the ultrasonic frequency

increases in the low frequency region, and the sidelobe structure occurs in the high

frequency region. However, curves of different refractive indices almost overlap in the

entire frequency region except for their first sidelobes, and the wavelength sensitivity

of FBGs with different refractive indices reaches every local minimum at the same

ultrasonic frequency. This means that changing the refractive index modulation depth

of a uniform FBG with given length does not affect the wavelength sensitivity at any

ultrasonic frequency.
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Figure 3.5: Wavelength sensitivity of uniform FBG with length of 10 mm as a function
of ultrasonic frequency.

Figure 3.6: Wavelength sensitivity of uniform FBG with length of 10 mm as a function
of ultrasonic wavenumber in logarithmic scale.
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3.4 Conclusion

In this chapter, we elaborated the implementation of the simulation based on the

model discussed in last chapter. In addition, the parameters used in the numerical

simulation were discussed and the values of those parameters were given. Also, we an-

alyzed the wavelength sensitivity of uniform FBGs with respect to grating length and

refractive index modification depth. The results show that the wavelength sensitivity

decreases as the ultrasonic frequency increases. Reducing the grating length can en-

hance the wavelength sensitivity of a uniform FBG ultrasonic sensor. Changing the

refractive index modification depth, nevertheless, has little impact on the wavelength

sensitivity.
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Chapter 4

Numerical Analysis of

π-phase-shift Fiber Bragg Gratings

4.1 Overview

πFBGs feature a deep notch at their center wavelength, and hence have a narrow

bandwidth of reflection spectrum. This makes πFBGs an ideal candidate for the ap-

plications in high-sensitivity, distributed optical fiber sensing. Yet, the πFBG-based

optical fiber sensors have not been fully studied for ultrasonic detection. In this chap-

ter, besides the wavelength sensitivity, we also study another important parameter of

a πFBG ultrasonic sensor named intensity sensitivity. We will investigate the perfor-

mances of πFBG by changing the grating length, refractive index modification depth,

and the incidence angles of ultrasonic waves impinging onto the fiber grating. In

addition, the comparison of uniform FBGs and πFBGs used for ultrasonic detection

will be discussed.
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Figure 4.1: Wavelength shift of πFBG with δn0 = 1× 10−4.

4.2 Wavelength Sensitivity

4.2.1 Wavelength Sensitivity and Grating Length

As we find in Chapter 3 the wavelength sensitivity for πFBG is the maximum spectral

shift of the πFBG Bragg wavelength caused by ultrasonic wave with unit pressure

amplitude. Fig. 4.1 shows the wavelength shift with respect to ultrasonic frequency

for the πFBGs with constant refractive index modulation depth δn0 = 1 × 10−4

and grating length ranging from 2 mm to 10 mm. We assume that all the peak

pressure amplitudes of ultrasonic wave are 1 MPa. The maximal wavelength shift

of 4.5 pm occur when a static tensile or compressive strain applied to the grating.

The wavelength shift decreases as the frequency increases, with the sidelobe structure

appearing at the tail of each curves. This is due to the fact that as the ultrasonic

frequency increases, the wavelength of ultrasonic wave decreases and the average net
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Figure 4.2: Wavelength sensitivity response of πFBG with δn0 = 1×10−4. (a) Wave-
length sensitivity as a function of ultrasonic wavenumber; (b) Wavelength sensitivity
as a function of ultrasonic normalized wavenumber.
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changes by geometric effect and elasto-optic effect over the grating decreases. In

other words, the effect of stretching and compressing on fiber grating pitch cancels

out each other. This ”averaging effect” is more evident in Fig. 4.2 (b), which plots the

wavelength sensitivity as a function of normalized ultrasonic wavenumber defined as

the grating length-ultrasonic wavelength ratio (L/λs). It shows that when L/λs < 2,

the wavelength sensitivities of all different lengths drop from their maximum value;

at L/λs ≈ 2, the wavelength sensitivities are around their first minimum; when

L/λs > 2, the sidelobes occur and the wavelength sensitivities approach to their next

minimum. Note that all the πFBGs fall to their first minimum at approximately the

same grating length-ultrasonic wavelength ratio of L/λs = 2; while for unform FBGs

the first minimum occurs when L/λs = 1.3 [42]. This exhibits that πFBGs have a

larger ultrasonic bandwidth compared with uniform FBGs of the same length. The

difference arises from the different spatial distributions of the light intensity along a

πFBG and a uniform FBG, which will be further discussed in section 4.2.3. In the

third region, the second local minimum is roughly one order of magnitude less than

the first one. This indicates that the effects of tensile strain and compressive strain on

fiber grating period, and the effect of the refractive index change are approximately

averaged out when the ultrasonic wavelength is much smaller than the grating length.

4.2.2 Wavelength Sensitivity and Refractive Index

Modulation Depth

We also carry out the simulation to investigate the effect of the refractive index

modulation depth on the wavelength sensitivity of πFBGs The results are shown in

Fig. 4.3, which plots wavelength sensitivity as a function of normalized ultrasonic

wavenumber for πFBGs with the same length of 4 mm but with different refractive
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Figure 4.3: Wavelength sensitivity response of 4-mm long πFBGs of different refrac-
tive index modulation depths as a function of normalized ultrasonic wavenumber.

index modulation depth. The curves of wavelength sensitivity also start from 4.5

pm/MPa when the normalized wavenumber L/λs = 0, and decrease as the normalized

wavenumber increases. We notice that for gratings with lower average refractive index

change, the sidelobe structures still occur at the tail; while for the gratings with

higher average refractive index change, the tails tend to be smooth and the sidelobe

structure is less evident. Our results reveal that the gratings with higher average

refractive index change achieve considerably higher wavelength sensitivity than those

with lower refractive modulation depth, when impinged by the ultrasonic waves of

the same frequency. For example, at frequency of 2 MHz, when the δn0 = 1× 10−4,

the wavelength sensitivity is 0.076 pm/MPa. The wavelength sensitivity is increased
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Figure 4.4: Spatial distribution of the normalized light intensity over 4-mm long
πFBGs of different refractive index modulation depths.

to 0.59 pm/MPa for a δn0 of 3×10−4. The wavelength sensitivity is further increased

to 1.33 pm/MPa for a δn0 of 5× 10−4, which is almost 20 times better than the case

for δn0 = 1 × 10−4. The significantly enhanced wavelength sensitivity to ultrasonic

waves observed in πFBGs are not present in uniform FBGs. The reason for this

enhancement will be discussed in section 4.2.3. Our simulation result also indicates

that fabricating strong πFBGs is an effective way to detect higher frequency ultrasonic

waves, as the wavelength sensitivity is enhanced by at least one order of magnitude

in the high frequency range.
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4.2.3 Spatial Distribution of Light Intensity

In order to better understand the characteristics of πFBGs as mentioned earlier,

the spatial distribution of light intensity over a 4 mm long πFBGs is reported in

Fig. 4.4. With π phase shift at the center of the fiber grating, the light energy is

more distributed around the center of πFBG, and decays from the center to the two

ends. This center-intense spatial confinement phenomenon is more evident for the

πFBG with larger refractive modulation depth. The reason for this phenomenon is

that, as a πFBG can be considered as a Fabry-Perot cavity formed by two uniform

FBG reflection mirrors, a larger refractive index modulation depth yields a higher

reflectivity of each of the FBG mirrors, leading to higher cavity quality factor and a

better spatial confinement of the light around the center of the πFBG and therefore

reducing the “effective length” of the πFBG. The unique light energy distribution in

πFBGs is also responsible for the larger ultrasonic bandwidth of a πFBG compared

to a uniform FBG, as mentioned in section 4.2.1.

4.3 Intensity Sensitivity

Besides the wavelength sensitivity, we also study another parameter called intensity

sensitivity, as shown in Fig. 4.5, which is defined by the amplitude of the reflectivity

variations at the wavelength corresponding to 50% reflection of the πFBG reflection

spectrum in presence of ultrasonic wave with unit pressure amplitude. In term of

practical applications, the intensity sensitivity is more relevant, as it is the sensitiv-

ity used in the narrowband laser interrogation technique for Bragg grating response

demodulation [27]. This technique employs a narrow linewidth laser working in the

πFBG spectral linear range (usually locked to the 50% reflection position) to detect

the reflected amplitude change that is directly related to the Bragg wavelength shift.
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Figure 4.5: Illustration of intensity sensitivity for πFBG.

It is worth noting that the intensity sensitivity also relates to the wavelength

sensitivity we discussed before through the slope of the πFBG spectral linear range

such as
dR

dP
= dλ

dP
· k (4.1)

where dR/dP denotes the intensity sensitivity, dλ/dP represents the wavelength sen-

sitivity, and k = dR/dλ is the slope of πFBG spectral linear range.

4.3.1 Intensity Sensitivity and Grating Length

Our previous analysis has revealed that a πFBG with longer length reduces the wave-

length sensitivity due to the non-uniform perturbations to the refractive index and

grating period. However, a longer πFBG length also reduces the bandwidth of the re-

flection spectral dip and increases the slope of the linear range. According to Eq. 4.1,

it is worthy to study the overall effect of the πFBG length on the intensity sensitivity.

The numerical results of intensity sensitivity as a function of ultrasonic wavenumber

for πFBGs of different refractive index modulation depth are shown in Fig. 4.6. The

intensity sensitivity decreases as the wavenumber increases. For the πFBGs with
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Figure 4.6: Intensity sensitivity as a function of ultrasonic wavenumber for πFBGs of
different refractive index modulation depth (a) δn0 = 2×10−4 and (b) δn0 = 6×10−4.
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both δn0 = 2 × 10−4, we can slightly see the sidelobe structure, and that number of

sidelobe is proportional to the length of πFBG; while the sidelobe structure almost

disappears for the πFBGs with δn0 = 6×10−4. In both cases, the intensity sensitivity

of a longer πFBG is usually higher than that of a shorter one. The benefit to the

intensity sensitivity of longer πFBG length is more evident in πFBGs with higher

refractive index modulation depth, as shown in Fig. 4.6 (b). Therefore, increasing of

πFBG length can increase the detection sensitivity of a πFBG-based ultrasonic sensor

system as the increased spectral slope overcomes the reduced spectral sensitivity by

a longer grating length.

4.3.2 Intensity Sensitivity and Refractive Index Modulation

Depth

In addition to the effect of πFBG length change, we also investigate the effect of

refractive index modulation depth on the intensity sensitivity, as shown in Fig. 4.7.

The result exhibits that the intensity sensitivity increases as the refractive index

modulation depth increases and it decreases as the wavenumber increases. Besides

that higher refractive index modulation index can enhance the wavelength sensitivity

due to the center-intense confinement phenomenon of πFBGs, higher refractive index

modulation index can also narrow the spectral notch leading to a larger slope of

linear region. Therefore, the intensity sensitivity, which is the product of wavelength

sensitivity and the slope of linear region, can be enhanced by increasing the refractive

index modulation depth.



35

Figure 4.7: Intensity sensitivity as a function of ultrasonic wavenumber for πFBGs
of 4 mm.

4.4 Comparison of Uniform FBGs and πFBGs

In this section, we compare the sensitivity performances of uniform FBGs and πFBGs

for detecting pressure waves.

4.4.1 Similarities

Several numerical simulations have been performed to investigate the responses of

uniform FBGs and πFBGs under ultrasonic pressure waves. We discover that for

both uniform FBGs and πFBGs the wavelength sensitivity increases as the grating

length decreases in the low ultrasonic frequency region.
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Figure 4.8: Simulated reflection spectra of a 2-mm long πFBG and a 20-mm long
uniform FBG.

4.4.2 Differences

Note that the grating lengths used in the simulation for uniform FBGs and πFBGs

are not in the same range. The reason is that longer grating length is required for

uniform FBGs to achieve comparable reflectivity and spectral bandwidth of πFBGs

with the same refractive index modulation. As shown in Fig. 4.8, the reflection

spectrum of πFBG features a narrow notch, which results from the discontinuity in

the center of the grating. In order to obtain the spectral bandwidth of 0.1 nm, the

uniform FBG has to be made as long as 20 mm, while a 2 mm long πFBG has the

same spectral bandwidth. Since shorter grating length leads to higher wavelength

sensitivity, it is benefical to use πFBG to design more sensitive ultrasonic sensors.

In addition, unlike FBGs whose wavelength sensitivity does not change with dif-

ferent refractive index modulation depth, the wavelength sensitivity of πFBGs can be
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Figure 4.9: Schematic of a πFBG and an ultrasonic pressure wave impinging onto the
grating with an incident angle of α

enhanced by increasing the refractive index modulation depth. As the results shown

in Section 4.2.2, this enhancement is more evident in the high frequency region where

usually uniform FBG ultrasonic sensors have fairly small responses. The enhance-

ment explained in section 4.2.3 is due to the effective length reducing effect which

results from the Fabry-Perot cavity formed by two uniform FBGs of a πFBG.

4.5 Directivity

Directivity is another important parameter for designing ultrasonic sensors. The

results we have discussed before are based on the assumption that the pressure ultra-

sonic waves impinge onto the gratings from a direction parallel to the fiber axis. For

pressure waves impinging onto the πFBG at an angle of α with respect to the fiber

axis, as shown in Fig. 4.9, the ultrasonic length along the fiber axial direction can be
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given as

λα = λS
| cosα| (4.2)

In this case the amplitude of the refractive index and the grating pitch modifications

caused by ultrasonic pressure waves remain unchanged. Thus, the ratio of ultrasonic

wavelength and grating length is expected to be an important factor to affect the

directivity. The results of intensity sensitivity of a 4 mm πFBG with δn0 = 2× 10−4

with respect to incidence angle for different grating length to ultrasonic wavelength

ratio are plotted in Fig. 4.10. We can clearly see that the maximum of intensity

sensitivity occurs at the normal incidence. For lower L/λS ratio, which corresponds

to lower ultrasonic frequency, the intensity sensitivity appears less directional. This is

because when the ultrasonic wavelength is significantly larger than the grating length,

the perturbation induced by ultrasonic waves can be considered to be uniform leading

to omnidirectional response. As the ultrasonic frequency increases, the nonuniform

perturbation caused by ultrasonic pressure is more sensitive to the incidence angle,

and therefore the intensity sensitivity of the πFBG is highly directional. We notice

that when L/λS = 4, the sensitivity is about 50 times higher for normal incidence

(α = 90◦)than for parallel incidence. It reveals that impinging ultrasonic waves at

normal incidence can enhance the intensity sensitivity for high frequency ultrasound

detection. Recalling that increasing fiber length can increase the intensity sensitivity,

we need to consider the tradeoff between sensitivity and directivity when designing

the πFBG sensors.

Similar directivity characteristics are also observed in some other types of fiber

optic sensors, such as Fabry-Perot sensors [43] and Sagnac interferometers [44]. It is

worth noting that the directivity analysis is only valid for an ultrasonic wave with an

isotropic stress field, such as the pressure waves. The grating ultrasonic sensor may
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Figure 4.10: Normalized intensity sensitivity as a function of ultrasonic incident angle
for 4-mm long πFBG with a refractive index modification depth δn0 = 2 × 10−4

impinged by ultrasonic waves of different wavelength.

show completely different directivity patterns when used to detect ultrasonic waves

with an anisotropic field.

4.6 Conclusion

In this chapter, we simulated the performance of πFBGs under the impact of ultra-

sonic pressure waves based on the model discussed in previous chapters. The results

show that the wavelength sensitivity increases as the grating length decreases, and it

increases as the refractive index modification depth increases. The spatial distribu-

tion of light intensity can explain the enhancement by increasing the refractive index

modification depth. The intensity sensitivity increases as the grating length increases
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or as the refractive index modification depth increases. In addition, the performance

of uniform FBGs and πFBGs was compared to demonstrate the advantages of πFBGs

to be used as a sensing element for ultrasonic detection. In the end we analyzed the

directivity of a πFBG ultrasonic sensor for pressure detection. It shows that normal

incidence can enhance the intensity sensitivity significantly when πFBG is used to

detect high frequency ultrasonic waves.
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Chapter 5

Response of πFBG Under

Longitudinal or Shear Ultrasonic

Waves

In Chapter 2 to Chapter 4, our simulation and discussion focus on the response

of FBGs to ultrasonic pressure waves. Pressure waves are an important type of

ultrasonic waves that typically exist in liquids or in the air and yield strains of the

same amount in any direction on the material. However, there are ultrasonic waves of

other types in solids which are more common in structural health monitoring(SHM),

such as ultrasonic longitudinal waves and ultrasonic shear waves. In this chapter we

will analyze the responses of πFBGs when impinged by ultrasonic longitudinal waves

and shear waves. The emphasis is placed on the method of establishing new model

for longitudinal or shear waves and the modification of refractive index of the fiber

gratings, so that similar methods can also be applied to analyze ultrasonic waves

of other types. The numerical results on the response under ultrasonic waves of

those types will be compared with those under pressure waves discussed in previous
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chapters.

5.1 Modification of Grating Period and

Refractive Index by Longitudinal Waves

Ultrasonic longitudinal waves, whose vibration direction is parallel to the direction

of propagation, have a different impact on both grating period and refractive index

change from ultrasonic pressure waves. Assume the vibration direction and propaga-

tion direction are both in z direction, which is along with the fiber axis. The stress

along z direction can be modeled by

σz = −P cos
(2π
λs
z + ωt

)
(5.1)

where P is the pressure produced by the ultrasonic wave. The stress vector can be

written as

σ =


0

0

−P

 (5.2)

Recall that the strain is related to stress in Eq. 2.4 For a ultrasonic longitudinal

wave which has no shear components, the strain vector of optical fiber caused by the

pressure wave can be written as


εxx

εyy

εzz

 =


ν
E
P

ν
E
P

− 1
E
P

 (5.3)
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The changes in fiber grating period and fiber length are related to εzz by [39]

∆Λ
Λ = ∆L

L
= εzz = − 1

E
P (5.4)

We know that the interaction of ultrasonic waves and materials also causes the

change of refractive index of the material, which is called elasto-optic effect or strain-

optic effect. According to the elasto-optic effect discussed in 2.1.2, the change in

optical indicatrix caused by an applied strain is given by [6]

∆
( 1
n2

)
i

=
6∑
j=1

pijεj (5.5)

where pij is the strain optic tensor. For a homogeneous and isotropic fiber, the strain-

optic tensor can be expressed in Eq. 2.9 The strain vector caused by the longitudinal

wave is

ε =



εxx

εyy

εzz

εxy

εyz

εzx



=



ν
E
P

ν
E
P

− 1
E
P

0

0

0



(5.6)

Solve Eq. 5.5 by multiplying Eq. 2.9 and Eq. 5.6, and the change in the indicatrix is

obtained as

∆
( 1
n2

)
x,y

= [νp11 − (1− ν)p12]P
E

(5.7)
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The refractive index related to the change in optical indicatrix is [6]

∆nx,y = −1
2n

3∆
( 1
n2

)
x,y

= n3

2E [(1− ν)p12 − νp11]P

(5.8)

Substituting Eq. 5.4 and Eq. 5.8 into Eq. 2.13, we can predict the spectral shift with

respect to the ultrasonic-induced pressure by

∆λB = λB

{
− 1
E

+ n2

2E [(1− ν)p12 − νp11]
}

∆P (5.9)

5.2 Modification of Grating Period and

Refractive Index by Shear Waves

As we discussed in Chapter 2, the propagation direction of shear waves is perpendic-

ular to the direction of vibration. Assume a shear ultrasonic wave propagating along

the fiber axis in z direction vibrates in x direction. The stress in x direction can be

modeled by

σx = −P cos
(2π
λs
z + ωt

)
(5.10)

where P is the pressure produced by the ultrasonic wave. The stress vector can be

written as

σ =


−P

0

0

 (5.11)
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Substituting Eq. 5.11 into Eq. 2.4, the strain of optical fiber is obtained by


εxx

εyy

εzz

 =


− 1
E
P

ν
E
P

ν
E
P

 (5.12)

The changes in fiber grating period and fiber length are related to εzz by [39]

∆Λ
Λ = ∆L

L
= εzz = ν

E
P (5.13)

Solve Eq. 5.5 using Eq. 2.9 and Eq. 5.12, the change in the indicatrix is obtained by

∆
( 1
n2

)
x

= (2νp12 − p11)P
E

(5.14)

∆
( 1
n2

)
y

= [νp11 − (1− ν)p12] P
E

(5.15)

The refractive index change can be derived from

∆n = −1
2n

3∆
( 1
n2

)
(5.16)

The components of refractive index changes are

∆nx = n3

2E (p11 − 2νp12)P (5.17)

∆ny = n3

2E [(1− ν)p12 − νp11]P (5.18)

Since the x component and y component of the refractive index change induced by

shear waves are not equal, we only discuss two special cases. The first one is when a

linearly polarized light whose electric field is parallel to x direction is launched into
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the fiber. The second one is when a linearly polarized light whose electric field is

parallel to y direction is launched into the fiber. In the first case substituting Eq.

5.13 and Eq. 5.17 into Eq. 2.13, we obtain the spectral shift with respect to the

ultrasonic-induced pressure by

∆λB = λB

[
ν

E
+ n2

2E (p11 − 2νp12)
]

∆P (5.19)

In the second case substituting Eq. 5.13 and Eq. 5.18 into Eq. 2.13, we can predict

the spectral shift by

∆λB = λB

{
ν

E
+ n2

2E [(1− ν)p12 − νp11]
}

∆P (5.20)

Since shear waves cause different refractive index changes in the x direction and y

direction, the ultrasonic detection sensitivity is dependent on the polarization of the

light in the fiber.

5.3 Numerical Results

The numerical simulations on intensity sensitivity of πFBGs under ultrasonic lon-

gitudinal waves and shear waves are carried out. Fig. 5.1, Fig. 5.2 and Fig. 5.3

show the results of longitudinal waves and shear waves. I need to point out that the

result of shear wave is obtain based on the assumption that a linearly polarized light

whose electric field is parallel to x direction or y direction is incident to the fiber. It

is evident that the πFBG sensor has a higher intensity sensitivity when impinged by

longitudinal waves than by shear waves. We can attribute the differences of intensity

sensitivity to the different overall effect of grating period change and refractive index

change caused by different types of ultrasonic waves. For longitudinal waves, under



47

Figure 5.1: Intensity sensitivity of a πFBG with δn0 = 2 × 10−4 under longitudinal
waves.

which the wavelength shift is expressed in Eq. 5.9, the geometric effect is just oppo-

site to the strain-optic effect, and the geometric effect dominates; While shear waves,

whose vibration direction is perpendicular to the fiber axis, cause little grating period

change. Quantitatively comparing the wavelength shift in Eq. 5.9, Eq. 5.19 and Eq.

5.20, we can see that the wavelength shift caused by longitudinal waves are much

greater than that caused by shear waves. Besides, the slope of πFBG spectral linear

region merely change when ultrasonic waves impinge onto a fiber grating. Therefore,

the πFBG sensor has a higher intensity sensitivity when impinged by longitudinal

waves than by shear waves. Furthermore, due to the difference of refractive index

change in x and y direction caused by shear waves, the intensity sensitivity for πFBG

sensors slightly changes when the orientation of input linearly polarized light changes
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Figure 5.2: Intensity sensitivity of a πFBG with δn0 = 2 × 10−4 under shear waves
when a linearly polarized light whose electric field is parallel to x direction is incident
to the fiber.

with respect to the fast or slow axis.

5.4 Conclusion

In this chapter, the discussion is extended to ultrasonic longitudinal waves and shear

waves. The models of longitudinal waves and shear waves are provided, and grating

pitch change and the refractive index changes are derived. For shear waves, the

birefringence through the fiber grating is analyzed. Numerical results show that

the intensity sensitivities under longitudinal waves are greater than that under shear

waves. That different geometric effect and strain-optic effect caused by different types

of ultrasonic waves is the reason for the differences of intensity sensitivity.



49

Figure 5.3: Intensity sensitivity of a πFBG with δn0 = 2 × 10−4 under shear waves
when a linearly polarized light whose electric field is parallel to y direction is incident
to the fiber.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have carried out extensive numerical simulations to study the re-

sponses of uniform FBGs and πFBGs when impinged by ultrasonic pressure waves. A

theoretical model has been established to simulate those responses. In the model, the

ultrasonic waves is described by a sinusoidal function. The ultrasonic-induced strains

are described by the product of strain-optic tensor and strain vectors of different type

of ultrasonic waves. Fiber gratings, both uniform FBGs and πFBGs, are modeled by

the transfer matrix method, in which the grating is divided into numbers of uniform

subsections.

Our simulation results show that, for uniform FBGs and πFBGs, both the wave-

length sensitivity and intensity sensitivity decreases as the ultrasonic frequency in-

creases. For both gratings, the wavelength sensitivity can be enhanced by reducing

the grating length. For πFBGs only, the wavelength sensitivity can be increased by

increasing the refractive index modification depth. In addition, our analysis reveals

the intensity sensitivity of a πFBG can be enhanced by increasing the grating length
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or the refractive index modification depth. We also analyzed the directivity of a

πFBG sensor for pressure waves. When the grating length is smaller than the ultra-

sonic wavelength, the πFBG is omnidirectional. As the πFBG length increases, the

πFBG sensor becomes more directional with the maximum sensitivity occurring at

the normal incidence of the ultrasonic wave.

In addition, the grating period change and refractive index change of a πFBG

impinged by ultrasonic longitudinal waves or shear waves were calculated. The re-

sponses of the πFBG reveal that the πFBG sensors have a higher intensity sensitivity

when detecting ultrasonic longitudinal waves than shear waves. Also, the orientation

of input light with respect to the vibration direction of shear waves slightly affects the

intensity sensitivity due to the different refractive index change in different direction

caused by shear waves.

To sum up, our model and analysis have revealed several significant differences

between ultrasonic sensors employing uniform FBGs and πFBGs. The results provide

an important guidance for designing and optimizing fiber optic ultrasonic sensors

utilizing fiber gratings as the sensing element.
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