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In this thesis, dielectric polymer and magnetic nanoparticles were uti-

lized to hybridize FeNi Slanted columnar thin films (SCTFs). Firstly

Fe3O4 in PMMA matrix was prepared by physical blending process.

Transmission electron microscopy (TEM) and scanning electron mi-

croscopy (SEM) were used to investigate the dispersion of the nanopar-

ticles in PMMA matrix and the preparation conditions were varied to

optimize the dispersion. The hybridized materials were prepared by

the infiltration of PMMA and 5 wt% Fe3O4 nanoparticles/PMMA to

the voids of FeNi SCTFs. Spin-coating and annealing process were

employed to reach an excellent infiltration.

The structural property of FeNi SCTFs and FeNi SCTF composites

(FeNi SCTFs after infiltration) was studied by GE and SEM. The

anisotropic Bruggeman effective medium approximation (AB-EMA)

was used to model the experimental data. The GE analysis success-

fully characterized the structural parameters of the samples and the

results show the structure of nanocolumns was changed due to the in-

filtration. SEM result confirmed the structural property found by GE.

The GE analysis also revealed a strongly anisotropic optical property

of the samples. The optical constants along the three major axes of the

biaxial layer can be obtained by modeling. Due to the excellent ma-

terial infiltration into the void of SCTFs, the optical constants along

the three major axes have enhanced greatly across the investigated

spectral range.



The magnetic property of the samples was characterized by Alter-

nating field gradient magnetometer (AGFM) and MOGE. The hys-

teresis loops measured by AGFM in different configurations reflected

the anisotropic nature of the magnetization within the samples. The

MOKE of the samples was measured in polar configuration and the

corresponding complex MO tensor element was determined in the spec-

tral range. Vector magneto-optical generalized ellipsometry (VMOGE)

with the external magnetic field rotating along different loops was uti-

lized to measure the SCTF composites. The three complex magneto-

optical tensor elements were determined by the loop measurements

to study the effect of the nanoparticles on the MO property of FeNi

SCTFs.



Acknowledgements

I am deeply grateful to my advisers Dr. Eva Schubert and Dr. Mathias

Schubert for teaching and supporting me during my study at UNL. I

would like to thank them for the discussion and suggestion on my

research work. With their patient and kind help, I am able to improve

and finish this thesis.

I would like to thank all my colleagues in this wonderful group for not

only the valuable suggestions on my research, but also the precious

time we spent together. I would like to express my appreciation of Dr.

Hao Wang and Dr. Daniel Schmidt’s help on the experiment.

I would like to give special thanks to Dr. Tino Hofmann and Dr.

Natale Ianno for being my committee members.

Last but not least, I would like to thank my parents and grandparents

in China for their love, encouragement and support all the time.



Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Tables x

1 Introduction 1

2 Glancing Angle Deposition 6

2.1 Growth Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Growth of Slanted Columnar STFs . . . . . . . . . . . . . 7

2.1.2 Growth of Helical STFs . . . . . . . . . . . . . . . . . . . 8

2.2 Glancing Angle Deposition System Configuration . . . . . . . . . 8

2.2.1 Deposition System . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 GLAD Apparatus . . . . . . . . . . . . . . . . . . . . . . . 9

3 Magnetic Nanoparticle/Polymer Composites 12

3.1 Preparation of Nanoparticle/Polymer Composites . . . . . . . . . 13

3.2 Magnetic Properties of Magnetic Nanoparticles and Their Composites 14

4 Characterization Methods 18

4.1 Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 18



vi

4.2 Alternating Field Gradient Magnetometer . . . . . . . . . . . . . 19

4.3 Spectroscopic Ellipsometry . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 General Description . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Jones Matrix and Mueller Matrix . . . . . . . . . . . . . . 22

4.3.3 Dielectric Tensor in Anisotropic Materials . . . . . . . . . 25

4.3.4 Light Propagation in Stratified Anisotropic Materials . . . 28

4.3.5 Anisotropic Bruggeman Effective Medium Approximation . 31

4.3.6 Generalized Ellipsometry . . . . . . . . . . . . . . . . . . . 32

4.3.7 Magneto-Optical Generalized Ellipsometry . . . . . . . . . 33

5 Experiment 35

5.1 Material Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Fabrication of FeNi Alloy Slanted Columnar Thin Films . 35

5.1.2 Preparation of Fe3O4 Nanoparticles/PMMA Composites . 36

5.1.3 Preparation of FeNi SCTFs infiltrated with PMMA and 5

wt% Fe3O4 nanoparticles/PMMA . . . . . . . . . . . . . . 36

5.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Transmission Electron Microscopy . . . . . . . . . . . . . . 37

5.2.2 Scanning Electron Microscopy . . . . . . . . . . . . . . . . 37

5.2.3 Alternating Field Gradient Magnetometer . . . . . . . . . 37

5.2.4 Generalized Ellipsometry . . . . . . . . . . . . . . . . . . . 38

5.2.5 Vector Magneto-Optical Generalized Ellipsometry . . . . . 38

6 The Dispersion of Fe3O4 Nanoparticles in PMMA 41

6.1 TEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 SEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Structural and Optical Properties of SCTF Composites 46

7.1 Structural Property . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Optical Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



vii

8 Magnetic Properties of SCTF Composites 57

8.1 Magnetic Hysteresis Loop Measurement . . . . . . . . . . . . . . . 57

8.2 Polar Kerr Effect Generalized Ellipsometry Measurement . . . . . 60

8.3 Vector Magneto-Optical Generalized Ellipsometry Measurement . 63

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Conclusions 70

References 79



List of Figures

1.1 Scheme of STF infiltrated with nanoparticles/polymer composites 4

2.1 Scheme of the deposition process of SFTs . . . . . . . . . . . . . . 7

2.2 The cross-section SEM image of Si helical STF . . . . . . . . . . . 8

2.3 Scheme of GLAD Setup . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Photograph of the UHV GLAD system . . . . . . . . . . . . . . . 11

3.1 The in-situ chemical route for synthesis of nanoparticles/polymer

composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Scheme of AFGM . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 The scheme of ellipsometry measurement . . . . . . . . . . . . . . 22

4.3 Definition of the Euler angles . . . . . . . . . . . . . . . . . . . . 26

4.4 Definition of α, β and γ . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Scheme of light transfer in stratified anisotropic materials . . . . . 28

4.6 Scheme of AB-EMA . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Scheme of vector-magnet . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 TEM images of Fe3O4 nanoparticles in PMMA . . . . . . . . . . . 42

6.2 TEM images of Fe3O4 nanoparticles in PMMA dried at different

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 SEM images of Fe3O4 nanoparticles/PMMA spin-coated on Si sub-

strate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 The optical constants of PMMA and 5 wt% Fe3O4 nanoparticles/PMMA 47



ix

7.2 Optical Model for FeNi SCTFs and FeNi SCTF composites . . . . 47

7.3 SEM images of the FeNi SCTF composites . . . . . . . . . . . . . 50

7.4 Mueller matrix elements of FeNi SCTFs and SCTFs infiltrated with

PMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.5 Mueller matrix elements of SCTFs infiltrated with 5 wt% Fe3O4

nanoparticles/PMMA . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.6 Optical constants of FeNi SCTFs, FeNi SCTFs infiltrated with

PMMA and SCTFs infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA. 55

8.1 Magnetic hysteresis loops of the SCTF composites . . . . . . . . . 59

8.2 The polar measurement configuration . . . . . . . . . . . . . . . . 61

8.3 The calculated and experimental Muellar matrix element difference

data for the SCTF composites . . . . . . . . . . . . . . . . . . . . 62

8.4 The real and imaginary part of the complex magneto-optical tensor

element εMO
xy versus photon energy . . . . . . . . . . . . . . . . . 63

8.5 The VMOGE measurement configuration . . . . . . . . . . . . . . 64

8.6 The magneto-optical tensor elements determined by TP loop mea-

surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.7 The magneto-optical tensor elements determined by LT loop mea-

surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.8 The magneto-optical tensor elements determined by PL loop mea-

surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Tables

7.1 The Best-match model results of AB-EMA for FeNi SCTFs, FeNi

SCTFs infiltrated with PMMA (SCTF/PMMA), FeNi SCTFs infil-

trated with 5 wt% Fe3O4 nanoparticles/PMMA (SCTF/PMMA/NP).
∗ denotes the coupled parameters in the modeling. The error limits

given in parentheses denote the uncertainty of the last digit. . . . 49

7.2 Summary of the structural parameters of FeNi SCTFs infiltrated

with PMMA (SCTF/PMMA) and FeNi SCTFs infiltrated with 5

wt% Fe3O4 nanoparticles/PMMA (SCTF/PMMA/NP) obtained

by GE and SEM analysis. The error limits given in parentheses

denote the uncertainty of the last digit in the GE analysis. . . . . 51

8.1 Coercivity (Hc) and remanence magnetization normalized to the

saturation magnetization (Mr/Ms) of FeNi SCTFs infiltrated with

PMMA (SCTF/PMMA) and FeNi SCTFs infiltrated with 5 wt%

Fe3O4 nanoparticles/PMMA (SCTF/PMMA/NP) measured by AGFM.

(a), (b) and (c) correspond to the same measurement configurations

in Figure 8.1a, 8.1b and 8.1c respectively. . . . . . . . . . . . . . . 58



Chapter 1

Introduction

Nanomaterials have been receiving enormous interests from academia, industry

and government for decades, since physicist Richard Feynman firstly introduced

the concept of nanomaterials by delivering a talk in 1959 entitled “There’s Plenty

of Room at the Bottom” (1). These materials usually have internal or surface struc-

ture with one or more dimensions in the size range from 1 nm to 100 nm (2). Within

nanoscale, the materials can exhibit a great number of properties different from

the ones in macroscale because of quantum size effects, quantum tunneling effects

and large-scale surface. The unique and remarkable properties stemming from

the extremely small feature size enable a wide range of applications in electronics,

biomedicine, astronautics, etc.

Nanomaterials are mainly classified as zero-dimensional, one-dimensional, two-

dimensional and three-dimensional nanostructures. Zero-dimensional nanostruc-

ture is often referred to nanoparticle with all three dimensions below 100 nm (3).

These materials are highly developed and can be the basis for other nanoma-

terials. For example, nanoparticles can be dispersed in polymer materials to

form nanocomposites that combine the desirable properties of both materials (4).

The use of zero-dimensional structures has been reported on a variety of fields,

for instance, drug delivery (5), quantum dots (6), and chemical catalyst (7). One-

dimensional nanostructure is a nano-object with two similar external dimensions

on the nanoscale and the third dimension significantly larger which includes

nanofibre, nanorod, nanotube, nanowire, etc (3). Two-dimensional nanostruc-
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tures possess nanoscale dimensions only in thickness and infinite length in the

plane (8). Three dimensional nanostructures are emerging nanomaterials with dis-

tinct nanoscale features in arbitrary dimension. Great effort has been made on

the fabrication techniques of complex three-dimensional nanostructure, because

well-controlled morphology, orientation, and dimension become vital to the novel

properties of this material. For instance, the self-assembly of low-dimensional

building blocks is considered to be an efficient but difficult method to obtain

highly-ordered three-dimensional nanostructures (9).

In terms of nanostructure fabrication, a physical vapor deposition technique

called glancing angle deposition (GLAD) has been proven to be effective and

convenient. In this technique, the deposition flux is incident on the substrate

at an oblique angle with respect to surface normal and the substrate is rotat-

ing simultaneously (10). The shadowing effect introduced by the oblique angle can

produce columnar structures while substrate rotation results in a variety of struc-

tures such as zig-zag, spirals, etc. Therefore by simply rotating the substrate in

both polar and azimuthal directions one can prepare customized nanostructures

such as columnar nanostructures with different shapes and helical nanostruc-

tures (10). These nanostructured materials named sculptured thin films (STFs)

have been explored in various fields of applications such as sensor devices (11–13),

hybrid solar cells (14,15) and engineered optical materials (16–19). Particularly mag-

netic nanocolumns and nanohelices have received great research attention, since

the unique nanostructures can have potential use on nano storage device, mag-

netic actuators and perpendicular reading heads (20). Randomly distributed posts

and helices can be fabricated in a one-step process from typical magnetic mate-

rials such as cobalt, nickel and iron. Periodic arrays of nanocolumns have been

prepared by using substrate pre-patterning (20). The nanostructures introduce

magnetic anisotropy to the thin films and lead to many interesting phenomena.

For instance, the magnetic anisotropy of slanted nanocolumns is characterized by

two principle axes: one parallel and the other normal to the columns (21). The

magneto-optical (MO) properties of the ferrimagnetic STFs have also been in-

vestigated intensely because of their applications on thin film based MO devices

such as recording devices and Faraday rotation cell (22). The researchers studied
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the magneto-optical Kerr effect (MOKE) of the STFs in different magnetic field

orientations by measuring Kerr rotation and observing the anisotropic behaviors

in Kerr effect (22–25).

A novel strategy of modifying the properties of the STFs is to alter the void

fraction, composition and surface conditions through hybridization with other

functional materials such as conducting polymers and nanoparticles. This hy-

bridization process not only optimizes the host material performance but also

combines each material component in an organic way, creating a new family of

advanced materials for future applications. For instance, the ideal structure of a

heterojunction solar cell can be consisted of a hybrid organic-metal oxide nanocol-

umn system with appropriate morphology control (14,26). The optical properties of

the nanostructured thin films can be changed by semiconducting polymer infil-

tration (27) and it is indicated that the sensitivity to the dielectric constants in

the void regions allows the STF composites to be used as nanosensors (21,28). The

addition of nematic liquid crystals (LCs) to porous helical STFs improves the op-

tical properties of the films and suggests a promising application in dynamically

switchable device (29,30).

Due to the unique optical and magnetic properties alongside the ease of pro-

cessing, hybrid nanoparticle/polymer composite is considered to be an excellent

infiltration material to improve the performance of STFs. Figure 1.1 depicts

the concept of infiltration of STFs with nanoparticles/polymer composites. Such

slanted columnar structure with nanoparticles in figure 1.1a may have the po-

tential application as tunable optical or magnetic devices. Periodically-arranged

helical STFs shown in figure 1.1b can be fabricated from metal and infiltrated

with ferrimagnetic nanoparticles to become a magnetic data storage material (31).

The research work in this thesis is aimed to modify the magneto-optical (MO)

response of the ferrimagnetic STFs with magnetic nanoparticle infiltration. A

nanocomposite with 10 nm magnetite (Fe3O4) embedded in host matrix poly-

methylmethacrylate (PMMA) was used to fill the void of the FeNi slanted colum-

nar thin films (SCTFs). With magnetic nanoparticles located at the interspacing

of the nanocolumns, the coupling effect among the nanocolumns would enhance,
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(a)

(b)

Figure 1.1: Scheme of STFs infiltrated with nanoparticle/polymer composites:

(a) Slanted columnar thin film; (b) helical thin film. In the figure, the column

and spiral posts in gold color denote the differently shaped nanostructure and the

black spheres indicate nanoparticles.

thus the MO property of the SCTFs is expected to be influenced by the nanopar-

ticles. Additionally, the change in the optical and structural properties of the

FeNi SCTFs after polymer infiltration is of great interest for research.

In this research, a nondestructive and highly-precise methodology, spectro-

scopic generalized ellipsometry, is employed in order to systematically investigate

the optical and MO properties of STFs/nanocomposite hybrid thin film. Due

to the strong anisotropy in the structure, STFs exhibit complex optical and MO

behaviors such that advanced ellipsometry techniques are required to analyze the

materials. Generalized ellipsometry (GE) has proven to be an effective method
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to characterize complex multilayered materials with intrinsic and arbitrarily ori-

ented anisotropy (32–38). In GE, the optical response of the materials is measured

in the form of Mueller matrix elements and the anisotropic dielectric functions

can be determined. GE has demonstrated great ability to study the optical dis-

persion and anomalous birefringence of SFTs (39–43). Magneto-optical generalized

ellipsometry (MOGE) occurs if generalized ellipsometry is performed on a sample

in the presence of a magnetic field. By MOGE, one can determine the magneto-

optical dielectric tensors and have an insight into the magnetization dynamics of

STFs under varying magnetic field (44).

The present thesis which investigates the structural, optical and magnetic

properties of FeNi SCTFs infiltrated with PMMA and Fe3O4 nanoparticles is or-

ganized as following: In chapter 2 the growth mechanism of GLAD is introduced

briefly and the deposition system used in this thesis is described. Chapter 3 re-

views the recent research on preparation and magnetic property of the magnetic

nanoparticles and their composites. In chapter 4, the characterization techniques

such as SEM, TEM, Alternating field gradient magnetometer (AFGM) and ellip-

sometry are presented. The main part of this chapter is focused on the principles

of spectroscopic ellipsometry. Chapter 5 depicts the experimental details on the

preparation and characterization of the FeNi SCTFs infiltrated with PMMA and

Fe3O4 nanoparticles/PMMA (FeNi SCTF composites). In chapter 6, a simple

physical blending process was used to prepare Fe3O4 nanoparticles/PMMA com-

posites. TEM and SEM were used to investigate the dispersion of the nanopar-

ticles in PMMA matrix. In chapter 7, the structural and optical properties of

FeNi SCTFs and FeNi SCTF composites were studied by GE and SEM. The

anisotropic Bruggeman effective medium approximation (AB-EMA) was used to

model the experimental data and acquire the optical constants of the samples. In

chapter 8, the magnetic property of the FeNi SCTF composites is characterized

with AFGM and MOGE. This chapter emphasizes on the use of an advanced el-

lipsometry technique vector magneto-optical generalized ellipsometry (VMOGE)

to obtain the complex magneto-optical tensor. Last the experimental results and

conclusion are summarized in Chapter 9.



Chapter 2

Glancing Angle Deposition

2.1 Growth Mechanism

Glancing angle deposition (GLAD) is basically a technological innovation of oblique

angle deposition (OAD) by introducing substrate rotation control (21). In OAD,

the trajectory of the incident vapor flux is not parallel to the substrate normal,

which can generate inherently anisotropic thin films. An atomic-scale shadow-

ing effect (also named self-shadowing), which becomes prominent with deposition

angle higher than 65◦, is the key to the deposition process. The self-shadowing

effect involves the mechanism that the vapor can only condensate on the nuclei

which nucleate on the substrate and develop to the columnar structures, while

the areas behind the nuclei receive no vapor and cease growing. The left scheme

in figure 2.1 describes the phenomenon of self-shadowing during the fabrication of

slanted columnar. By adding substrate rotation to OAD, GLAD technique pro-

vides great opportunity to fabricate various types of nanostructures other than

nanocolumns. The substrate rotation changes the direction of the incident vapor

and the dynamics of self-shadowing during the deposition. Therefore the column

growth can be manipulated to form desirable nanostructures by simply adjusting

the manner of substrate rotation. The right scheme in Figure 2.1 depicts the

formation of helical nanostructure by rotating the substrate.
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Figure 2.1: Diagram of the deposition process of typical SFTs: slanted columnar

thin films (left); helical thin film (right). Scheme adapted from (44).

2.1.1 Growth of Slanted Columnar STFs

GLAD with a stationary substrate at its simplest form can be used to fabricate

slanted columnar STFs. At the initial stage of the deposition, the nuclei form

randomly on the substrate and become the nucleation centers for the subsequent

vapor deposition. As the deposition continues, the shadowing effect dominates the

process such that the nuclei receives greater amount of vapor than the shadowed

areas behind them. Eventually the nuclei develop into nanocolumns which are

tilted in the direction of the vapor flux approximately. In order to estimate the

tilt angle of the deposited columns, much research work has been devoted to

establish the relation between flux incident angle and column tilt angle (45–49). For

instance, based on continuum model approach, an equation has been proposed to

express the relation (48):

tan β =
2 tanα

3(1 + Φ tanα sinα)
, (2.1)

where α is the deposition angle, β is the column tilt angle and Φ relates with the

diffusion and deposition rate. Even though the equations from the literature can

be consistent with the experiments in specific conditions, the columnar nanostruc-

ture have strong dependence on deposition parameters and surface properties of

the materials, thus the estimation on the column tile angle can be difficult (21).
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Figure 2.2: SEM cross-section image of a Si helical STF grown by GLAD (50).

2.1.2 Growth of Helical STFs

With the substrate rotation at a relatively slow rate, the nanocolumn can have

sufficient time to grow along different directions, which lead to helical structure

formation. The deposition parameters such as time interval of each rotation step

and the deposition angle determine the fine structure of helical STFs which in-

cludes the perimeter of each loop, diameter of the columns, the number of the

turns, etc. Figure 2.2 shows the cross-section SEM image of Si helical STF.

2.2 Glancing Angle Deposition System Config-

uration

2.2.1 Deposition System

A general experimental setup for pragmatic GLAD process is described schemat-

ically in Figure 2.3. The vapor flux is generated by electron beam evaporation

of the deposition materials. The movement of the substrate is controlled by two

stepper motors: one controls the angle θ between incident flux and the substrate

normal; the other controls the azimuthal rotation of the substrate with respect to
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the substrate normal. In modern GLAD technique, computers are used to pre-

cisely manipulate the motion of the two motors through the feedback from the

deposition rate monitor.

Figure 2.3: Scheme of GLAD Setup (51).

2.2.2 GLAD Apparatus

In this work, the GLAD system mainly comprises two components as shown in

Figure 2.4: the deposition chamber and the load-lock chamber. The deposition

chamber is an ultrahigh vacuum system (UHV) attached by a mechanical pump

and a turbomolecular pump which can pump the system to a pressure of 10−8

mbar regularly. The electron beam evaporator system is located at the bottom of

the deposition system and it is used to provide a stable vapor flux for deposition.

During the evaporation, the electron gun with tungsten filament emits the elec-

trons which can be accelerated in an electrical field and directed by a magnetic
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lens to hit the source material. The material loaded in a pocket is heated and

then evaporated by the constant electron bombardment. The sample manipulator

and deposition controller which controls the substrate rotation and monitors the

deposition process respectively are also located in the deposition chamber (44).

The load-lock chamber is attached to the deposition chamber and functions

as sample transfer from atmospheric pressure to high vacuum. The sample can

be placed into the deposition chamber without interruption of ultra-high vacuum.

A scroll vacuum pump and a turbomolecular pump attached to this chamber

can produce a high vacuum as 10−6 mbar within 5 minutes. Once the load-

lock chamber reaches the required low pressure, the gate valve connecting the

two different chambers mentioned above can be opened and the sample can be

translated to the sample manipulator in the deposition chamber by the sample

transfer system (44).
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Figure 2.4: Photograph of the UHV GLAD system: (1) port for sample loading,

(2) magnetically-coupled linear-rotary feedthrough with sample transfer system,

(3) vacuum gauge, (4) connection to roughening pump, (5) turbo pump, (6) gate

valve to deposition chamber, (7) view port with shutter and maintenance flange

for electron beam evaporator system, (8) sample manipulator unit with stepper

motor, (9) vacuum gauges, (10) roughening pump, and (11) turbo pump. Items

(1)-(5) belong to the load-lock chamber whereas (7)-(11) are parts of the deposi-

tion chamber (44).



Chapter 3

Magnetic Nanoparticle/Polymer

Composites

Magnetic nanoparticles can be considered as a zero-dimensional nanomaterial in

the scale of less than 100 nm (3). This special class of material is prepared from

magnetic elements such as Fe, Co, Ni, or chemical compounds such as CoFe, FePt,

or oxides such as Fe3O4, CoFe2O4. Magnetic nanoparticles commonly exhibit

unique chemical and physical properties which are different from bulk magnetic

materials. For example, the magnetic nanoparticles begin to show superparamag-

netism when the diameter of the nanoparticles decreases to a critical value which

depends on particular material but is typically 10-20 nm (52). At such a small

size, each nanoparticle becomes a single magnetic domain and shows superpara-

magnetic behavior such that the nanoparticles display large magnetic moment

instantly in a magnetic field with negligible remanence and coercivity. Because

of these features, magnetic nanoparticles are of great interest for a wide range

of applications including biomedicine (53), magnetic resonance imaging (54,55), elec-

tromagnetic interference (56), data storage (57), Faraday effect (58), environmental

protection (59,60) and catalysis (61,62). To seek a broader application of magnetic

nanoparticles, recent research has focused on utilizing polymer as matrix material

with respect to its easy processability, low cost and other functions. The com-

bination of polymer and the nanoparticles aims to preserve properties of both
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components or to increase the functions by combining the properties of both com-

ponents, which leads to more opportunities of nanoparticle applications.

3.1 Preparation of Nanoparticle/Polymer Com-

posites

The fabrication technology for nanoparticles/polymer composites is a significant

issue since the excellent performance of the composites is determined by a suc-

cessful combination of two constituents into a single material. The importance of

this technology is considered for all sorts of nanoparticle/polymer composites, thus

the knowledge of this technology can be applied to magnetic nanoparticle/polymer

composites as well. Numerous effects have been taken to search an effective and

simple method to obtain highly-quality composites.

The most common preparation technique involves blending or mixing of the

two components directly using polymer in solutions or melt form. Sonication

or mechanical blending process is normally used in this method. This simple

physical process causes a weak interaction between nanoparticles and polymer by

hydrogen bonding or van der Waals forces only. The insufficiency of this technique

lies in the possible agglomeration of nanoparticles in the polymer matrix due to

the incomplete contact between the two different components. Additionally, the

solution blending method fails in the case of insoluble polymer.

Another effective method to synthesize nanoparticles/polymer composites is to

introduce an intimate combination at a molecular level by chemical route. In this

synthesis, a strong chemical covalent bond between the two phases is formed by in-

situ polymerization of the monomers. After polymerization, the polymer entraps

or encapsulates the nanoparticles rather than simple blending or mixing (63). The

process is described in Figure 3.1.

Surfactant and polymer coatings are also employed to prepare composites with

good dispersion of nanoparticles in the polymer matrix. In the absence of repul-

sive forces, the nanoparticles tend to agglomerate in the host matrix because of

the van der Waals attraction (64) and magnetic attraction in the case of magnetic
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Figure 3.1: The in-situ chemical route for synthesis of nanoparticles/polymer

composites (63).

particles. To solve this problem, one can attach the surfactant or polymer physi-

cally or chemically to the nanoparticle surface to create repulsion to balance the

attractive force (52). Using surfactants or coupling agents has been the common

route to disperse nanoparticles in polymer (65,66). More recently, polymer coating

method has received much interest. The polymer coating mostly formed by in-

situ polymerization can increase the compatibility of the nanoparticles with the

organic phase and also protect the nanoparticles from oxidation (67). For magnetic

nanoparticles, the suitable coating polymers include poly(pyrrole), poly(aniline),

poly(alkylcyanoacrylates), poly(methylidene malonate), and polyesters, and their

copolymers (68–71). Magnetite nanoparticles which are used in the present thesis

favor the polymers containing functional groups such as carboxylic acids, phos-

phates, and sulfates (52). Biocompatible polymer-coated magnetic nanoparticles

have been applied to the biomedical fields such as magnetic-field-directed drug

targeting and magnetic resonance imaging (72,73).

3.2 Magnetic Properties of Magnetic Nanopar-

ticles and Their Composites

The interesting properties of magnetic nanoparticles and their composites have

been studied intensively by many researchers. For example, the research has been

conducted to estimate the single domain size for different nanoparticle materials.

The equation to calculate the critical diameter of the nanoparticles in the size of
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single domain is deduced by using the balance condition that the magnetostatic

energy is equal to the domain wall energy:

Dc ≈ 18

√
AKeff

µ0M2
, (3.1)

where A is the exchange constant, Keff is the anisotropy constant, µ0 is the vacuum

permeability and M is the saturation magnetization (74). The typical diameters

calculated by this equation are 15 nm for hcp Co, 7 nm for fcc Co, 15 nm for

Fe, 55 nm for Ni, and 128 nm for Fe3O4
(74). However, the critical diameter

is also strongly affected by particle shape and the estimation above does not

consider nanoparticle interaction. The relaxation time of the magnetic moment

for nanoparticles is determined by the Néel-Brown expression:

τ = τ0 exp (
KeffV

kBT
), (3.2)

where kB is the Boltzmann constant, V is the particle volume, T is the temperature

and τ0 is approximately 10−9 s (75). The nanoparticles can only show superpara-

magnetic state when the particle magnetic moment is reversed at a time scale

shorter than the experimental measurement time, otherwise the nanoparticles are

in the blocked state. The blocking temperature TB which separates the two states

depends on Keff , V, the applied field and the experimental measurement time (52).

Fe nanoparticles (20 nm in diameter)/PMMA composites were synthesized with

different nanoparticle concentrations and the hysteresis loop measurements at

different temperatures show the composites exhibit a mixture of single-domain

and multi-domain behavior (76). C. Baker et al. prepared Fe oxide/Fe core shell

nanaoparticles with different sizes and dispersed the nanoparticles in PMMA ma-

trix. The experiment indicates that the interaction of the nanoparticles decreases

as the particles were separated from each other. This interaction decrease results

in larger coercivity and slower relaxation rate (77). Uniform dispersion of 10 nm

Fe3O4 coated with oleic acid was achieved by simple sonication and subsequent

spin-coating process. The blocking temperature can be observed in the zero-field-

cooling (ZFC) data and the superparamagnetic property of the nanoparticles was

retained in the polymer matrix (56). A. Ceylan et al. reported a formation of



16

chain-like Fe nanoparticle cluster in polymer matrix. The magnetic response of

composites displayed a nonmonotonic tendency as the nanoparticle concentra-

tion increased, which can be explained by the varying amount of the chain-like

nanoparticle clusters (78).

The magneto-optical (MO) properties of the magnetic nanoparticles and their

composites have also attracted significant attention from research. For instance,

the MO response of Fe3O4 core/PMMA shell nanoparticles were dispersed in

PMMA. From the Faraday rotation measurement, it was found that the Faraday

rotation of the composites have an obvious dependence on nanoparticle concen-

tration, the wavelength of the measurement, and the shape of the nanoparticles.

Furthermore, the Faraday rotation angle data as a function of applied magnetic

field can be fitted by a modified Langevin function:

m(H,T ) =
∑
i

Nimi[coth(
µ0miH

kBT
)− kBT

µ0miH
], (3.3)

where Ni denotes the number of noninteracting particles per unit volume, mi is

the moment of each nanoparticle, H is the applied field, T is the temperature, kB

is the Boltzmann constant, and the sum accounts for all particles with different

moments (58). Kalska et al. have deposited Co nanoparticle films on Al and Si

substrates and measured the MO Kerr effect spectra. The 10 nm Co nanoparti-

cles showed superparamagnetism while the 12 nm ones exhibited ferromagnetism

which was a deviation from the Langevin function. It was also found that all the

nanoparticle systems showed an opponent MO behavior compared with the bulk

Co material (79). The optical and MO properties of Fe nanoparticles with diam-

eters ranging from 5 to 8 nm embedded in amorphous Al2O3 were investigated

with spectroscopic ellipsometry. Effective medium approximations were used to

analyze the experimental data. Good agreement between model and experimental

data were found for the nanoparticles with a diameter above 4 nm. Both optical

and MO parameters varied as a function of the nanoparticle diameter (80). In a

different report, gold and magnetite nanoparticles have been bonded with an or-

ganic molecular. The MO Faraday rotation and ellipticity of dual nanoparticle

clusters can be changed greatly due to the electromagnetic interaction between
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those two nanoparticles (81). MO Kerr effect studies have been conducted on the

magnetic nanoparticles M0.5Fe2.5O4 (M=Fe, Co, Mn, and Ni) and the change of

MO Kerr spectra due to different substitutes on Fe position was investigated (82).

A highly transparent Lithium Ferrite nanoparticle/ethyl(hydroxyethyl)cellulose

(EHEC) was prepared by in-situ hydrolysis. The faraday rotation of the film

increased with decreasing wavelength and it was indicated that this magnetic hy-

brid film has applications on novel field-responsive devices (83). D. Smith et al. re-

ported that the peak position of the Faraday rotation spectrum of Fe3O4 nanopar-

ticles/PMMA composites was dependent on nanoparticle concentration and ge-

ometric concentration. A red shift and broadening of the main spectral feature

were observed for the 8 nm nanoparticle system (84). A. Dzarrova et al. synthesized

Fe3O4 nanoparticles via a biomineralization process and showed magneto-induced

linear and circular anisotropy caused by chain effect of the nanoparticles. Us-

ing the classic Langevin model the authors determined an average number of 12

nanoparticles per chain which was consistent with the TEM result (85).



Chapter 4

Characterization Methods

4.1 Electron Microscopy

Transmission electron microscopy (TEM) has become one powerful method to

investigate various features of materials including crystal structure, dimension,

composition, defects and so on. In this technique the electron beam is employed

as the imaging source. Due to the short wavelength of the electron wave, the

theoretical resolution limit of TEM can be 0.3 Å. The resolution of TEM method

can be about 3 Å for many modern instruments and better than 2 Å for special

high-voltage instruments. During the operation, the electrons are emitted by the

electron gun and accelerated by high voltage(typically 100-300 kV). The electrons

enter the optical system and are focused on the imaging device. The optical

system is composed of mainly condenser lens, objective lens and projection lens.

The electrons firstly form a beam after passing the condenser lens and strike on

the sample. Secondly the objective lens focus the electron beam which penetrates

the sample. The projector lenses are used to guide the electron beam to the

imaging device. By adjusting the objective aperture in the back focal plane, one

can select the Bragg diffraction from the sample such that the diffraction pattern

of the sample can be recorded in the imaging system to reflect the crystal feature

of the materials. Electron diffraction and high-resolution imaging exist as the two

main functions of TEM.
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Scanning electron microscope (SEM) is an another microscopy technology us-

ing an electron beam to scan the sample surface to obtain various information on

materials such as surface morphology, chemical composition, et al. In this charac-

terization method, high-energy electrons generated thermally by filament cathode

interact with the sample to produce many sorts of signals from the materials in-

cluding secondary electrons, back-scattered electrons, Auger electrons and so on.

For example, the imaging function of SEM utilizes the secondary electrons to re-

flect the topological information on material surface. Normally the sample for

SEM is required to be electrically conductive or conductive at least on the sur-

face. Non-conductive samples need to be coated with a conductive ultrathin film

by sputtering technique. The common coating materials include gold, chromium,

carbon and so on. However, it is possible that the extra coating can change the

morphology of the material surface.

4.2 Alternating Field Gradient Magnetometer

Alternating field gradient magnetometer (AFGM) is an instrument which mea-

sures the magnetization via magnetic flux change induced by sample vibration.

In this technique, a magnetic sample is attached at the end of an nonmagnetic

rod and placed into a fixed dc magnetic field (86). An alternating field gradient is

produced by an electromagnet and a pair of gradient coils respectively as shown in

Figure 4.1. During the measurement, the gradient coil pair can apply an alternat-

ing force to the sample which causes the sample vibration. The rod also oscillates

with the sample vibration. The piezoelectric crystal connected to the rod can

generate a voltage signal proportional to the vibration amplitude (86). Since the

vibration amplitude is proportional to the magnetic moment of the sample, the

sample magnetization can be obtained from the voltage signal (86). The limiting

sensitivity of the commercial AFGM is approximately 10−6 emu (86).
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Figure 4.1: Scheme of AFGM from (86).
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4.3 Spectroscopic Ellipsometry

4.3.1 General Description

Ellipsometry is a characterization method which can be used to analyze the change

in the polarization state of the light after reflection or transmission on a sample.

Ellipsometry can be employed to investigate material properties, such as optical

constants, thin film thickness, material composition and so on. The ellipsometry

measurement process is shown schematically in Figure 4.2. Upon reflection of par-

allel and perpendicular polarized lights (p- and s-polarized lights) on the sample,

the polarization state shows changes in both amplitude and phase. For p-polarized

light, the electric field is parallel to the plane of incident while s-polarized light

is perpendicular. The two parameters Ψ and ∆ measured by ellipsometry de-

note the amplitude ratio and phase difference between p- and s-polarized lights

respectively, as shown in the following equation:

ρ ≡ tan Ψ exp(i∆) ≡ rp
rs
≡
(
Erp

Eip

)/(
Ers

Eis

)
, (4.1)

where rp and rs are the Fresnel coefficients for p- and s-polarized lights respec-

tively (87). Thus

tan Ψ = |rp|/|rs|, ∆ = δrp − δrs. (4.2)

When light propagates in a medium with the complex refractive index N as

N ≡ n+ ik, (4.3)

the electromagnetic wave in the medium can be described as follows:

E = E0 exp

[
i

(
2πN

λ
x− ωt+ δ

)]

= E0 exp

(
−2πk

λ
x

)
exp

[
i

(
2πn

λ
x− ωt+ δ

)]
.

(4.4)

where n is refractive index, k is the extinction coefficient, E0 is the amplitude of

the electric field, ω is the angular frequency of the wave, λ is the wavelength of the

wave in vacuum, and δ is the initial phase (87). As known from the Equation 4.4, the
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Figure 4.2: The scheme of ellipsometry measurement (87).

wavelength of the electromagnetic wave in the medium is λ/n. If the proportional

constant is neglected, the light intensity can be expressed by

I = |E|2 =

∣∣∣∣E0 exp

(
−2πk

λ
x

)∣∣∣∣2 = |E0|2 exp

(
−4πk

λ
x

)
, (4.5)

which indicates the light intensity decreases with exp (−2πkx/λ) when the light

travels along the x direction in the absorbing medium (87). Therefore, as the light

propagates through the medium the polarization state of the light is influenced

by the n and k values. As we know from Equation 4.1, the ellipsometry measures

the change of the polarization state between incident and reflected light, and by

applying Fresnel equations the n and k values of the medium can be determined

by analyzing the two ellipsometry parameters Ψ and ∆. When ellipsometry is

performed in a wide range of the light wavelength, spectroscopic ellipsometry is

used for the terminology.

4.3.2 Jones Matrix and Mueller Matrix

The polarization state of light can be presented by the Jones Vector which is

defined by the electric field vector along x and y directions. For example, the

polarization state of the light traveling in z direction with two electric field com-

ponents oscillating in x and y directions can be expressed by the Jones vector as

follows (87):

E(z, t) = exp [i(kz − ωt)]
[
Ex0 exp (iδx)
Ey0 exp (iδy)

]
. (4.6)
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In general, by omitting the term exp [i(kz − ωt)] this equation can be simplified

to (87)

E(z, t) =

[
Ex0 exp (iδx)
Ey0 exp (iδy)

]
. (4.7)

In ellipsometry measurement, the Jones matrix shown in Equation 4.8 can be

used to represent the sample properties which are responsible for the change of

the polarization state after the light reflection. In the equation, the Jones matrix

J connects the incident polarized light (Ap, As) and the reflected light (Bp, Bs).

The Jones matrix contains four complex-valued elements. For isotropic materials,

the Jones matrix only contains the diagonal elements rpp and rss which are the

Fresnel reflection coefficients. On the other hand, both the diagonal and the off-

diagonal elements of the Jones matrix are nonzero for anisotropic materials. rps

represents the conversion of s-polarization into p-polarization while rsp represents

the conversion of p-polarization into s-polarization after reflection.(
Bp

Bs

)
= J

(
Ap

As

)
=

(
rpp rps
rsp rss

)(
Ap

As

)
. (4.8)

Mueller matrix is another method to describe the propagation of polarized or

partially polarized light through an optical system. In this method, the incident

and emergent Stokes vectors are transformed by a Mueller matrix. The 4×4 matrix

corresponds to the optical response of a material. The four Stokes parameters

grouped in the column vector S are defined as
S0

S1

S2

S3

 =


Ip + Is
Ip − Is

I45 − I−45

IR − IL

 , (4.9)

where Ip, Is, I45, I−45, IR and IL denote the intensities for the p-, s-, +45◦,

−45◦, right-handed and left-handed circularly polarized light components respec-

tively (32). As shown in Equation 4.10, the Mueller matrix transforms the input

Stokes vector to the output vector.
S0

S1

S2

S3


output

=


M11 M12 M13 M14

M21 M22 M23 M24

M31 M31 M33 M34

M41 M42 M43 M44



S0

S1

S2

S3


input

. (4.10)
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The Mueller matrix elements can be calculated by the following functions of

Jones matrix elements (88):

M11 =
1

2
(rppr

∗
pp + rssr

∗
ss + rspr

∗
sp + rpsr

∗
ps), (4.11a)

M12 =
1

2
(rppr

∗
pp − rssr∗ss − rspr∗sp + rpsr

∗
ps), (4.11b)

M13 = Re(rppr
∗
sp + r∗ssrps), (4.11c)

M14 = Im(rppr
∗
sp + r∗ssrps), (4.11d)

M21 =
1

2
(rppr

∗
pp − rssr∗ss + rspr

∗
sp − rpsr∗ps), (4.11e)

M22 =
1

2
(rppr

∗
pp + rssr

∗
ss − rspr∗sp − rpsr∗ps), (4.11f)

M23 = Re(rppr
∗
sp − r∗ssrps), (4.11g)

M24 = Im(rppr
∗
sp − r∗ssrps), (4.11h)

M31 = Re(rppr
∗
ps + r∗ssrsp), (4.11i)

M32 = Re(rppr
∗
ps − r∗ssrsp), (4.11j)

M33 = Re(rppr
∗
ss + r∗psrsp), (4.11k)

M34 = Im(rppr
∗
ss − r∗psrsp), (4.11l)

M41 = −Im(rppr
∗
ps + r∗ssrsp), (4.11m)

M42 = −Im(rppr
∗
ps − r∗ssrsp), (4.11n)

M43 = −Im(rppr
∗
ss + r∗psrsp), (4.11o)

M44 = Re(rppr
∗
ss − r∗psrsp), (4.11p)

where ∗ denotes the conjugate value of the Jones matrix element.
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4.3.3 Dielectric Tensor in Anisotropic Materials

In non-cubic solids, the dielectric constants can be expressed by a complex-valued

second-rank symmetric tensor ε in Cartesian coordinates (x, y, z):

D = ε0(E + P) = ε0εE = ε0

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

E, (4.12)

where the displacement D, polarization field P, and electric field E are given

along the unit directions x, y, z (ε0 is the vacuum permittivity) (89). The tensor ε

generally varies as a function of the photon energy ~ω of the incident light, which

is referred to the dielectric function or dielectric dispersion.

The intrinsic polarization P is responsible for the dielectric response of the

materials and can be described by linear superposition of polarizations along the

unit cell axes a, b and c:

P = %a(aE)a + %b(bE)b + %c(cE)c, (4.13)

where %a, %b and %c are the complex-valued scalar major polarizabilities along each

cell axis. The three major polarizabilities obey Kramers-Kronig consistency and

have dispersion according to the photon energy ~ω. The unit cell axes a, b and c

are also referred to the major polarizability axes.

An orthogonal rotation matrix A can be used to connect the Cartesian labo-

ratory coordinate (x, y, z) with the Cartesian auxiliary coordinate system (ξ, η,

ζ), which is defined as follows:

A =

cosψ cosϕ− cos θ sinϕ sinψ − sinψ cosϕ− cos θ sinϕ sinψ sin θ sinϕ
cosψ cosϕ+ cos θ sinϕ sinψ − sinψ cosϕ+ cos θ sinϕ sinψ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

 ,

(4.14)

where ϕ, θ and ψ are the three Euler angles for the rotation (89). The rotation

procedure is depicted in the Figure 4.3. In applying the rotation matrix, firstly the

coordinate is rotated by ϕ around the z-axis; subsequently the system is rotated

by θ around the new x-axis; finally the system is rotated by ψ around the ζ-axis

to become the Cartesian auxiliary coordinate system (ξ, η, ζ).
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Figure 4.3: Definition of the Euler angles ϕ, θ and ψ and the orthogonal rotations

as provided by rotation matrix A. (x, y, z) and (ξ, η, ζ) are referred as the

Cartesian laboratory coordinate and the Cartesian auxiliary coordinate system

respectively (44).

For a material with orthorhombic, tetragonal, hexagonal, trigonal and cubic

symmetry, a rotation matrix A independent of wavelength can be found such that

ε has a diagonal form in the coordinate system (ξ, η, ζ):

ε = A

εa 0 0
0 εb 0
0 0 εc

A−1, (4.15)

where εa, εb, and εc are the dielectric constants in the major polarizability axis

system (a, b, c) (44) and εj = 1 + %j (j = a, b, c). This diagonal tensor in the

equation above can be employed to express the optical constants of materials.

For example, in an isotropic system it is found that εa=εb=εc. In this case, the

dielectric constant is a scalar and D=ε0εE. For uniaxial materials with tetragonal,

hexagonal and trigonal symmetry, the dielectric constants can be described as εc

along c-axis and εa=εb 6= εc along the other two axes. The biaxial materials
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Figure 4.4: Definition of α, β and γ. The scheme depicts a crystallographic unit

cell with the major axes a, b and c. α, β and γ are the angles between a, b and

c. For example, with monoclinic symmetry, εa 6= εb 6= εc and β 6= α = γ = 90◦;

with triclinic symmetry, εa 6= εb 6= εc and α 6= β 6= γ 6= 90◦ (44).

(triclinic, monoclinic and orthorhombic materials) have dielectric constants as

εa 6= εb 6= εc.

For biaxial materials in non-Cartesian systems such as monoclinic and triclinic

materials, an additional projection matrix U is required to compose a virtual

orthogonal basis (90):

U =

sinα (cos γ − cosα cos β)(sinα)−1 0

0 (1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ)
1
2 (sinα)−1 0

cosα cos β 1

 ,

(4.16)

where α, β and γ are the internal angles between the major polarizability axes a,

b and c. As shown in Figure 4.4, c-axis is chosen to be coincide with the z-axis

while a-axis is located within the x-z plane. For instance, the dielectric tensor of

monoclinic system is as follows:

εm = U

εa 0 0
0 εb 0
0 0 εc

UT =

1 + %a 0 0
0 1 + sin2 β%b sin β cos β%b
0 sin β cos β%b 1 + cos2 β%b + %c

 , (4.17)

where %a, %b and %c are the polarizability along each axis a, b and c (44).
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Figure 4.5: Schematic presentation of incident (A), re ected (B), and transmitted

(C) plane waves across a sample with plane parallel interfaces, and multiple layer

stacks at the front side of the supporting substrate. D modes (if present) are

incident from the right. The substrate may totally absorb C and/or D (89).

4.3.4 Light Propagation in Stratified Anisotropic Materi-

als

The 4×4 matrix formulism provides a general approach to describes the light

propagation in stratified anisotropic materials. In this formulism, a global transfer

matrix T is used to describe the optical response of the stratified materials to the

incident light (Shown in Figure 4.5):
As

Bs

Ap

Bp

 = T


Cs

Ds

Cp

Dp

 . (4.18)

where As, Ap and Bs, Bp denote the complex amplitudes of the incident and

reflected lights (p- and s-polarized lights) respectively.

If the light propagates in the stratified materials, the transfer matrix T can

be written as a product of all n partial transfer matrices Tp:

T = L−1
a T−1

p1 . . . T−1
pn Lf , (4.19)

where La and Lf are the matrices for the incident and exit media respectively (33),

each Tp describes the optical response of one homogenous layer.
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Furthermore the partial transfer matrix Tp can be obtained from the first order

Maxwell equations which Berreman derived in 1972 as follows (33):

∂zΨ(z) = ik0∆(z)Ψ(z), (4.20)

where

Ψ(z) = (Ex, Ey, Hx, Hy)
T (z), k0 =

ω

c
. (4.21)

In Equation 4.21, the E and H represent the electric and magnetic fields respec-

tively, ω is the angular frequency and c is the light velocity in vacuum. Also it

should be noted that (Ex, Ey, Hx, Hy)
T denotes the transposed vector and ∆ is

the wave transfer matrix of the layer (33). ∆ is a 4×4 matrix expressed as:

∆ =



−kx
ε31

ε33

−kx
ε32

ε33

0 1− k2
x

ε33

0 0 −1 0

ε23
ε31

ε33

− ε21 k2
x − ε22 + ε23

ε32

ε33

0 kx
ε23

ε33

ε11 − ε13
ε31

ε33

ε12 − ε13
ε32

ε33

0 −kx
ε13

ε33


, (4.22)

where kx ≡ na sin Φa, na is the complex refractive index of incident isotropic

medium and Φa is the angle of incidence (33). If the single layer is homogeneous

and the characteristic matrix ∆ is independent on z, the solution of Equation 4.21

can be simplified to

Ψ(z + d) = exp
(

i
ω

c
∆d
)

Ψ(z) = TpΨ(z), (4.23)

thus

Tp ≡ exp
(

i
ω

c
∆d
)
. (4.24)

By applying the theorem of Cayley-Hamilton, the partial transfer matrix Tp can

be calculated by a finite series of expansion up to the power of n-1:

Tp ≡ exp
(

i
ω

c
∆d
)

= β0I + β1∆ + β2∆2 + β3∆3, (4.25)
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where n is the rank of the matrix (33). The scalars βi must obey the following

linear equations:

exp
(

i
ω

c
qkd
)

=
3∑

j=0

βjq
j
k, k = 1, . . . , 4. (4.26)

where qk are the eigenvalues of the matrix ∆ (33). Each solution corresponds to

one of the four plane waves in the homogeneous medium. The two solutions with

positive real parts represent the forward-traveling plane waves and the other two

with negative real parts are due to the backward-traveling plane waves.

Based on the equations above, a 4×4 matrix formalism can be established and

then utilized to calculated the Jones matrix elements. The transfer matrix T can

be expressed as follows (33):
As

Bs

Ap

Bp

 = T


Cs

Ds

Cp

Dp

 =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T31 T33 T34

T41 T42 T43 T44

 =


Cs

0
Cp

0

 (4.27)

The exiting medium is assumed to be half infinite at the back side, thus only

two amplitudes for the transmitted p and s modes Cp and Cs exist. The Jones

matrix elements can be expressed with the transfer matrix T elements by following

equations (87):

rpp =

(
Bp

Ap

)
As=0

=
T11T43 − T13T41

T11T33 − T13T31

, (4.28a)

rsp =

(
Bs

Ap

)
As=0

=
T11T23 − T13T21

T11T33 − T13T31

, (4.28b)

rss =

(
Bs

As

)
Ap=0

=
T21T33 − T23T31

T11T33 − T13T31

, (4.28c)

rps =

(
Bp

As

)
Ap=0

=
T33T41 − T31T43

T11T33 − T13T31

. (4.28d)
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Figure 4.6: Scheme of AB-EMA: (a) the inclusions randomly distributed in the

host medium with an isotropic effective polarizability ; (b) the inclusions orderly

distributed in the host medium with three effective polarizabilities; (c) the indi-

vidual elliptical inclusions (44).

4.3.5 Anisotropic Bruggeman Effective Medium Approxi-

mation

Effective medium approximation (EMA) theories have been established to model

the optical constants of the composites comprised of two or more other materials.

Bruggeman proposed the EMA expressed by following equation (32):

n∑
i=1

fi
εi − ε
εi + 2ε

= 0. (4.29)

where ε is the dielectric function of the host, fi is the volume fraction of the ith

component, εi is the dielectric function of the ith component. The Bruggeman

EMA has been successfully applied to model the surface roughness.

More recently the anisotropic Bruggeman EMA (AB-EMA) has been devel-

oped to model the optical response of the materials consisting of ordered inclu-

sions and homogeneous host medium. As shown in Figure 4.6, with the elliptical

inclusions randomly distributed in the host, the composite exhibits an isotropic

effective polarizability, while the polarizability becomes biaxial with the inclusions

orderly distributed in the host medium. The dielectric functions in the three major



32

polarizability axes for two-phase composites are expressed as following (44):

f
εi − εeff,j

εeff,j + LD
j (εi − εeff,j)

+ (1− f)
εm − εeff,j

εeff,j + LD
j (εm − εeff,j)

= 0, j = a, b, c, (4.30)

where εi and f are the dielectric function and volume fraction of the inclusions

respectively, εm and (1-f) are the dielectric function and volume fraction of the

host medium. LD
a , LD

b , LD
c are the three depolarization factors along the three

major polarizability axes a, b and c, which accounts for the anisotropic optical

property in the composites. The sum of the three depolarization factors must

follow (91,92):

LD
a + LD

b + LD
c = 1, (4.31)

with

0 ≤ LD
j ≤ 1, j = a, b, c. (4.32)

The depolarization factors correspond to charge screening effects which are related

with shapes of the inclusions. For instance, LD
a = LD

b = LD
c = 1/3 for spherical

inclusions (44).

4.3.6 Generalized Ellipsometry

Generalized ellipsometry (GE) adapts the 4×4 formalism to analyze the com-

plex anisotropic stratified materials. GE parameters for reflection are define with

normalized Jones matrix elements as follows (32):

rpp
rss
≡ Rpp = tan Ψpp exp(i∆pp), (4.33a)

rps
rpp
≡ Rps = tan Ψps exp(i∆ps), (4.33b)

rsp
rss
≡ Rpp = tan Ψsp exp(i∆sp). (4.33c)

where Ψpp, ∆pp, Ψps, ∆ps, Ψsp and ∆sp are the six real-valued parameters pre-

sented by Jones matrix elements. The six parameters are only sufficient for the

non-depolarized light conditions. When the sample or optical ellipsometer compo-

nents cause the light depolarization, the Mueller matrix elements are employed to
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present the GE data (37). For an anisotropic medium, the off-diagonal elements of

both matrices are nonzero. Also the GE measurement are conducted at multiple

sample azimuth orientations and angles of incident.

4.3.7 Magneto-Optical Generalized Ellipsometry

Magneto-optical generalized ellipsometry (MOGE) is capable of analyzing the

non-symmetric dielectric constants due to the magneto-optical properties of the

anisotropic materials with arbitrary magnetization direction. The dielectric func-

tion of the magneto-optical materials is composed of a symmetric (s) and an

anti-symmetric (a) tensor (32) accounting for the dielectric and magneto-optical

response respectively:

εij = sij + aij, sij = sji, aij = aji, (4.34)

where sij and aij are the elements of a 3 × 3 tensor matrix. Through the same

method shown in section 4.3.4, the characteristic coefficient matrix ∆ of the

magneto-optical layer and the eigenvalues of ∆ can be obtained. Therefore the

transfer matrix Tp for the magneto-optical layer can be calculated from Equa-

tion 4.25 and 4.26.

The general form of the dielectric tensor of a magneto-optical medium in the

presence of an external magnetic field can be described as the sum of the symmetric

dielectric and non-symmetric magneto-optical tensors (93):

ε = εD + εMO =

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

+


0 iεPxy −iεTxz

−iεPxy 0 iεLyz

iεTxz −iεLyz 0

 , (4.35)

where εPxy, ε
T
xz and εLyz are off-diagonal elements of the magneto-optical tensor εMO.

The three elements εPxy, ε
T
xz and εLyz are assumed to be a linear function of the

sample magnetization and correspond to the magnetization along the Cartesian

laboratory axis z, y and x respectively.

The magneto-optical effect describes the change of the polarization state upon

the reflection of light from a magnetic material in the presence of an external
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field. MOGE can be used to study the magneto-optical Kerr effect (MOKE). In a

MOKE measurement, commonly three different configurations can be employed:

polar, longitudinal and transverse configuration. In a polar measurement, the

external magnetic field is perpendicular to the sample surface as the light beam is

incident on the sample surface. In a longitudinal measurement the magnetic field

is parallel to the plane of incidence while in a transverse measurement, the field

is perpendicular to the plane of incidence. MOKE measurement in the present

thesis was performed with an octupole vector magnet installed on an ellipsometer

stage such that the measurement can be done with the external magnetic field in

arbitrary directions. The ellipsometer can monitor the magneto-optical response

of the sample at each field orientation. The details of the measurement setup is

described in next chapter.



Chapter 5

Experiment

5.1 Material Preparation

5.1.1 Fabrication of FeNi Alloy Slanted Columnar Thin

Films

Nickel-iron (FeNi) alloys are a class of soft magnetic materials which generally

contain 50-80 wt% of Ni (86). FeNi is notable for its high permeability in low fields

and its ultra low coercivity. Additionally the films of FeNi can be fabricated easily

by using common evaporation techniques. For the fabrication of FeNi slanted

columnar thin films (SCTFs), the GLAD system described in section 2.2 was used.

The deposition source materials composed of 81 wt% of Ni, 15 wt% of Fe and 5

wt% of Mo were purchased from the Kurt J. Lesker Company in form of pellets.

During the deposition, the FeNi pellets were placed in graphite liners. (001) Si

substrates with a approximately 2 nm native silicon oxide top layer have been used.

The power of the electron-beam during the bombardment of the source material

was controlled by the emission current to keep the deposition rate constantly

between 4 to 5 Å/s. The deposition rate was monitored by a quartz crystal

microbalance. The deposition was conducted for 680 s at a deposition angle of

85◦ with no substrate rotation. The pressure in the chamber was maintained at

5.3×10−9 mbar in the deposition.
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5.1.2 Preparation of Fe3O4 Nanoparticles/PMMA Com-

posites

Polymethylmethacrylate (PMMA) with the weight average molecular mass Mw =

120, 000 and the glass transition temperature Tg = 99 ◦C was purchased from

Sigma-Aldrich. The Fe3O4 nanoparticles purchased from Sigma-Aldrich were dis-

persed in toluene with a nanoparticle concentration of 5 mg/mL. The average di-

ameter of the nanoparticles is about 10 nm. The Fe3O4 nanoparticles were coated

with oleic acid to prevent agglomeration and improve the solubility toluene. The

magnetization of the nanoparticles is 45 emu/g (at ambient temperature under

4500 Oe) and the density of the dispersion is 0.865 g/mL at 25 ◦C. During the

preparation, first PMMA was added to toluene and subsequently the solution

was sonicated for 2.5 h in order to reach a complete dissolution of the polymer in

toluene. Secondly, Fe3O4 nanoparticles in different weight percentages were added

to the prepared PMMA/toluene solution. For example, 5 wt% Fe3O4 nanoparti-

cles/PMMA denotes that the weight ratio of Fe3O4 nanoparticles and PMMA is

5:95. The mixture was treated with sonication to facilitate an uniform dispersion

of the nanoparticles in solutions.

5.1.3 Preparation of FeNi SCTFs infiltrated with PMMA

and 5 wt% Fe3O4 nanoparticles/PMMA

First, FeNi slanted columnar thin films (SCTFs), 5 wt% Fe3O4 nanoparticles/PMMA

composites (5 wt% Fe3O4 nanoparticles/PMMA) and pristine PMMA in toluene

were prepared respectively with the method described in the former two sections.

Before use, the FeNi SCTF was cleaved carefully into two pieces. Subsequently,

Fe3O4 nanoparticles/PMMA was spin-coated onto one piece of FeNi SCTF at 3000

rpm for 60 s while pristine PMMA in toluene was spin-coated onto the other piece

at the same spin-coating condition. The former sample is referred to FeNi SCTFs

infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA and the latter to FeNi SCTFs

infiltrated with PMMA. The two samples are termed FeNi SCTF composites in

this thesis for convenience. Finally both samples were dried in the oven at 100
◦C to remove the toluene. Another purpose of drying at the temperature well
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above Tg of PMMA is that, the molten state of the polymer can ameliorate the

infiltration into the void of the SCTFs (94).

5.2 Characterization

5.2.1 Transmission Electron Microscopy

Transmission electron microscopy (TEM) was employed to investigate the disper-

sion of the Fe3O4 nanoparticles in PMMA. The TEM sample was prepared as

following: A single drop of Fe3O4 nanoparticles/PMMA solution was placed onto

a 400-mesh carbon-coated copper grid using a pipette. Subsequently the sample

was dried in air or in the oven. The TEM analysis were performed using a Hitachi

H7500 TEM with a magnification up to 200,000x at 100 kV and a resolution up to

1.5 nm. The voltage used in present experiments was 80 kV and the magnification

was 60,000 or 120,000x.

5.2.2 Scanning Electron Microscopy

Scanning electron microscopy (SEM) investigation was conducted by a FE-SEM

(S4700 Field-Emission SEM, Hitachi) with magnification up to 500,000x and res-

olution up to 2 nm. Two configurations for SEM were used in the thesis: top-view

and cross-section imaging. In the top-view SEM, the sample was glued with car-

bon tape onto the specimen stage. For the cross-section SEM, the sample was

firstly cleaved in order to obtain a fresh cross-section. Subsequently the cleaved

sample was clamped on a special sample stage with the sample plane perpendic-

ular to the stage plane. The typical acceleration voltage was in the range of 6 to

8 keV and the working distance is 9 mm approximately.

5.2.3 Alternating Field Gradient Magnetometer

The hysteresis loops of the samples were measured by alternating field gradient

magnetometer (AFGM). Before the measurement, a standard Ni foil on glass sub-

strate was used to calibrate the magnetometer. The samples were loaded on two
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probes which allowed for measurements with magnetic fields parallel or perpen-

dicular to the sample surface. Three measurement configurations with different

magnetic field orientations are described in Figure 8.1. During the measurement,

the magnetic field varied from -11 kOe to 11 kOe at a step of 250 Oe to magnetize

the sample.

5.2.4 Generalized Ellipsometry

Generalized ellipsometry (GE) measurement was conducted with a J. A. Woollam

Co., Inc. M-2000VI ellipsometer covering the spectral range from 370 nm to 1700

nm (0.73 eV to 3.34 eV) with 590 wavelengthes. An horizontal stage controlled by

computer allows for an automated in-plane rotation of the sample. A goniometer is

utilized to control the angle of incidence. The Mueller matrix elements normalized

to M11, except for the fourth row of elements from M41 to M44, can be measured

by this equipment.

The Mueller matrix element measurement was performed in a spectral range

from 400 nm to 1700 nm. The angle of incidence Φa varied from 45◦ to 75◦ at a

step of 10◦ and the in-plane rotation angle φ (sample azimuth) of the sample was

shifted from 0◦ to 360◦ at a step of 6◦. The measurements on the SCTFs and SCTF

composites were performed by initially placing the sample on the rotation stage

such that the slanted nanocolumns on the sample pointed towards the light source

of the ellipsometer and parallelled the plane of incidence. After the measurement,

the data analysis was performed with the use of software WVASE32.

5.2.5 Vector Magneto-Optical Generalized Ellipsometry

A vector magneto-optical generalized ellipsometer is composed of a V-VASE el-

lipsometer and an octupole vector-magnet installed on the V-VASE goniometer.

The V-VASE ellipsometer is capable of measuring within a spectral range from

0.75 eV to 5.5 eV. The automated sample stage is installed vertically such that

the stage plane is perpendicular to the optical table. Two focusing probes are

attached to the ellipsometer so that the light beam can be focused into a much
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(a) (b)

Figure 5.1: (a) Scheme of the vector-magnet with four solenoid pairs; (b) illustra-

tion of the Cartesian coordinate system (x,y,z) for the VMOGE. k and k’ denote

the incident and reflected wave vectors respectively, with an angle of incidence Φa.

The orientation of the external magnetic field µ0H is defined by the azimuth φm

and polar angle θm. P, L and T correspond to the measurement with magnetic

field in the laboratory coordinate directions x, y and z respectively while P̄ , L̄

and T̄ denote the directions -x, -y and -z. Schemes adapted from (44).

smaller spot. The Mueller matrix elements normalized to M11, except for the

fourth row of elements, can be measured by this equipment.

The octupole vector-magnet is comprised of four solenoid pairs as illustrated

in Figure 5.1a. Each solenoid pair can generate a magnetic field along the diag-

onal direction of a cube and the overall magnetic field is the vector addition of

the three diagonal magnetic field components. The current through the solenoid

pairs can be adjusted by four power supplies such that the magnitude and di-

rection of the overall field can be adjusted by controlling the currents through

each solenoid. The Cartesian coordinate system (x,y,z) for the VMOGE is shown

in Figure 5.1b. The plane of incidence is within the x-y plane. The magnetic

field µ0H = µ0(Hx, Hy, Hz) is defined in a spherical coordinate. The orien-
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tation of the field is determined by the azimuth angle φm in x-y plane and

the polar angle θm. The polar measurement was conducted by simply setting

(Hx = 0, Hy = 0, Hz 6= 0). Three major loop scans along LP (longitudinal-polar),

LT (longitudinal-transverse) and TP (transverse-polar) were designed. For exam-

ple, the LP loop is defined such that φm = 0 and θm changes from 0◦ to 360◦; LT

is defined such that φm changes from 0◦ to 360◦ and θm = 0; TP loop is defined

such that φm = 90◦ and θm changes from 0◦ to 360◦. During loop scans, the

direction of µ0H rotates along the LP, LT and TP loops while the magnitude is

maintained.

During the measurement, the sample was placed at the center of the vector-

magnet while the light beam struck on the sample surface center precisely. Before

each VMOGE measurement, a measurement from 400 nm to 1000 nm with H =

0 was performed to determine the in-plane orientation of the sample. In the

polar measurement, the Mueller matrix element measurement was performed in

a spectral range from 400 nm to 1000 nm with the magnetic field (µ0H = 0.2 T )

along +z and -z directions respectively. The experimental data were expressed as

difference of Mueller matrix elements between +z and -z field measurements:

∆Mk,l = Mk,l(µ0H = 0.2 T )−Mk,l(µ0H = −0.2 T ). (5.1)

Loop scan measurements have been performed at a fixed wavelength of 500 nm

with a magnetic field (µ0H = 0.17 T ). The magnetic field with magnitude 0.17 T

was rotated along LP, LT and TP loops from 0◦ to 360◦ at a step of 6◦. At each

rotation interval, a Mueller matrix element measurement was performed. The

loop measurement data were extracted as follows:

∆Mk,l = Mk,l(µ0H = 0.17 T )−Mk,l(µ0H = 0 T ), (5.2)

and presented as a function of rotation angle.



Chapter 6

The Dispersion of Fe3O4

Nanoparticles in PMMA

The dispersion of nanoparticles in a polymer matrix is crucial for the performance

of the composites. However, due to the van der Waals force and the magnetic force

the magnetic nanoparticles tend to aggregate to form clusters, and it becomes a

challenge to reach a uniform distribution of nanoparticles in a polymer matrix.

The common methods for nanoparticle dispersion include chemical reaction and

physical blending. The chemical reaction route often involves complicated and

tedious procedure. In this chapter, a simple physical blending process was used to

achieve a uniform dispersion of Fe3O4 nanoparticles in PMMA. The preparation

conditions such as nanoparticle concentration and drying process were varied to

optimize the dispersion. Transmission electron microscopy (TEM) and scanning

electron microscopy (SEM) were used to investigate the dispersion of the nanopar-

ticles in the PMMA matrix. The Fe3O4/PMMA solution and TEM samples were

prepared by the method described in Section 5.1.2 and Section 5.2.1.

6.1 TEM Analysis

Figure 6.1 shows the TEM image of the samples with different nanoparticle con-

centrations in PMMA. As indicated in the images, the aggregation increases with

nanoparticle concentration. The sample with 1 wt% nanoparticle concentration
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(a) (b)

(c) (d)

Figure 6.1: TEM image of Fe3O4 nanoparticles with different concentrations

dipersed in PMMA: (a) 1 wt%; (b) 2 wt%; (c) 3 wt%; (d) 5 wt%. All samples

were dried at 50 ◦C for 22 h. Scale bar: 50 nm.
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(a) (b)

(c) (d)

Figure 6.2: TEM images of Fe3O4 nanoparticles in PMMA dried at different

conditions: (a) 1 wt% nanoparticles in PMMA dried at room temperature; (b) 1

wt% nanoparticles in PMMA dried at 100 ◦C for 22 h; (c) 5 wt% nanoparticles

in PMMA dried in air; (d) 5 wt% nanoparticles in PMMA dried at 100 ◦C for 1

h. Scale bar: 200 nm.
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shows the best dispersion. For the composites prepared by sonication blending,

PMMA is physically adsorbed at the magnetic nanoparticle surface, which cre-

ates steric repulsion force to balance the magnetic and van der Waals attractive

forces of the nanoparticles and consequently separates the nanoparticles (52) from

each other. However as the nanoparticle concentration increases, the nanoparti-

cles have higher chance to contact mutually without polymer coating, therefore

more aggregations occur with higher nanoparticle concentration.

TEM images of 1 wt% and 5 wt% Fe3O4 nanoparticles in PMMA dried at

different conditions are displayed in Figure 6.2. At both nanoparticle concentra-

tions, heat treatment above Tg of PMMA caused no further agglomeration in the

sample. Thus, it is concluded that the nanoparticle dispersion in PMMA can be

still maintained by drying the sample at 100 ◦C.

6.2 SEM Analysis

The dispersion of Fe3O4 nanoparticles in PMMA can also be observed by SEM

as shown in Figure 6.3. Before using SEM, the Fe3O4 nanoparticles/PMMA com-

posites were spin-coated on Si substrates to form a thin film. For spin-coated

samples, the dispersion of the nanoparticles shows similar patterns as observed in

Figure 6.1. The dark background corresponds to the PMMA matrix. The bright

spots in Figure 6.3a represents the well-distributed nanoparticles in PMMA ma-

trix. The bright clusters in Figure 6.3b correspond to the nanoparticle aggrega-

tions in the sample with 5 wt% of nanoparticles.
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(a) (b)

Figure 6.3: SEM images of Fe3O4 nanoparticles/PMMA spin-coated on Si sub-

strate: (a) 1 wt%; (b) 5 wt%.

6.3 Summary

In conclusion, the best uniform dispersion of nanoparticles in PMMA matrix is

achieved in the sample with 1 wt% nanoparticles. The nanoparticle concentration

in PMMA is an important factor for nanoparticle aggregation while drying samples

at 100 ◦C does not change the dispersion radically. SEM images also indicate that

the agglomeration increases in the polymer matrix as nanoparticle concentration

enhances.



Chapter 7

Structural and Optical Properties

of SCTF Composites

7.1 Structural Property

The optical constants of PMMA and 5 wt% Fe3O4 nanoparticles/PMMA compos-

ites (5 wt% Fe3O4 nanoparticles/PMMA) were determined by ellipsometry anal-

ysis before the analysis of FeNi SCTFs infiltrated with PMMA and 5 wt% Fe3O4

nanoparticles/PMMA (SCTF composites). PMMA and 5 wt% Fe3O4 nanoparti-

cles/PMMA were spin-coated on the Si substrates respectively. After dried in air,

the samples were measured by M-2000VI ellipsometer. A Cauchy model was used

to fit the experimental data since the samples are transparent with only a small

absorption in the spectral range from 400 nm to 1700 nm. The optical constants

obtained from the best-match model are shown in Figure 7.1. As seen from Fig-

ure 7.1, a slight difference in refractive index exists between PMMA and 5 wt%

Fe3O4 nanoparticles/PMMA.

The optical model used to analyze the experimental data of SCTF composites

is shown schematically in Figure 7.2. A monoclinic biaxial layer (described in

Section 4.3.3) was built on top of the Si substrate to model FeNi SCTFs. The

AB-EMA (discussed in Section 4.3.5) was applied to model the optical constants

of the monoclinic layer along the three major polarizability axes a, b and c. The

c axis is chosen to be along the pointing direction of the slanted nanocolumns.
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Figure 7.1: The optical constants of PMMA and 5 wt% Fe3O4 nanoparti-

cles/PMMA composites.

(a) (b)

Figure 7.2: Optical Model for (a) FeNi SCTFs, (b) FeNi SCTFs infiltrated with

PMMA or 5 wt% Fe3O4 nanoparticles/PMMA. a, b and c denote the major

polarizability axes, β is the internal angle between b and c.
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The other two axes a and b are perpendicular to the nanocolumns and a is also

parallel to the substrate surface. Thus, the internal angles α and γ were fixed at

90◦ while the angle β between the axes b and c is a modeling parameter. The

three Euler angles ϕ, θ and ψ which transform the Cartesian coordinate system

(x, y, z) to the major polarizability axis system (a, b, b) were the parameters to

determine the orientation of the anisotropic sample (discussed in Section 4.3.3).

The two-phase AB-EMA for FeNi SCTFs are comprised of FeNi and voids.

In the model for FeNi SCTFs infiltrated with PMMA or with 5 wt% Fe3O4

nanoparticles/PMMA, an orthorhombic biaxial layer (described in Section 4.3.3)

was built above the Si substrate and a top layer was used to model the outstanding

material above the FeNi SCTF after spin-coating. The AB-EMA was applied to

model the optical constants of the orthorhombic biaxial layer along the three

major polarizability axes a, b and c. The arrangement of the three major axes

was similar to that for FeNi SCTFs except that the internal angles α, β and γ

were assumed to be 90◦ since the orthorhombic biaxial model was used. The

three Euler angles ϕ, θ and ψ were the modeling parameters to determine the

orientation of the anisotropic sample. The three-phase AB-EMA for FeNi SCTF

composites consists of FeNi, infiltration materials and void. During the modeling,

the parameters such as biaxial layer thickness, the Euler angle θ and FeNi void

fraction were coupled such that these parameters are the same for both infiltrated

samples.

For all the samples, the depolarization factors LD
a , LD

b , LD
c are utilized to

model the biaxial effective dielectric functions.

The best-match model results are summarized in Table 7.1. From the results,

the difference in some parameters reflects the structural change of the SCTFs after

infiltration. First, it is noted that the thickness of the biaxial layer decreased from

86.4 to 73.9 nm and the Euler angle θ increased from 63.57 to 72.46◦ by almost

10◦. θ represents the acute angle between the major axis c (along the pointing

direction of the slanted nanocolumns) and the Cartesian laboratory axis z (normal

to the substrate surface). Thus the increasing θ indicates that after infiltration

the slanted nanocolumns were approximately 10◦ more inclined to the substrate

surface. This incline also resulted in the decrease of the biaxial layer thickness
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from 86.4 to 73.9 nm. Secondly, the results show that a top layer which is about

60 nm is above the biaxial layer, which could be the cause of the more inclined

nanocolumns after infiltration. The void fractions declined greatly from 74.87% to

5.32% and 8.74% after infiltration, which proves an excellent material infiltration

into the void of FeNi SCTFs. The smaller void fraction reveals a better infiltration

with PMMA than 5 wt% Fe3O4 nanoparticles/PMMA. The depolarization factors

generally follow the order LD
b > LD

a > LD
c . The depolarization factor LD

c smaller

than the other two illuminates that the structure extends in the c-axis which is

along the pointing direction of the nanocolumns, but LD
c 6= 0 reflects the fact that

the nanocolumns is not infinitely long. Due to the material infiltration, LD
c shows

a noticeable increase after infiltration while LD
a decreases appreciably.

Table 7.1: The Best-match model results of AB-EMA for FeNi SCTFs, FeNi

SCTFs infiltrated with PMMA (SCTF/PMMA), FeNi SCTFs infiltrated with

5 wt% Fe3O4 nanoparticles/PMMA (SCTF/PMMA/NP). ∗ denotes the coupled

parameters in the modeling. The error limits given in parentheses denote the

uncertainty of the last digit.

Parameter SCTFs SCTF/PMMA SCTF/PMMA/NP

Biaxial layer thickness (nm) 86.4(1) 73.9(1)∗ 73.9(1)∗

Top layer thickness (nm) NA 58.97(9) 64.04(8)

ϕ (◦) 95.36(1) 96.56(1) 3.65(1)

θ (◦) 63.57(3) 72.76(4)∗ 72.76(4)∗

β (◦) 82.43(8) 90 (fixed) 90 (fixed)

FeNi fraction (%) 25.13 25.09(4)∗ 25.09(4)∗

Void fraction (%) 74.87(3) 5.32 8.74

Infiltration fraction (%) NA 69.6(2) 66.2(2)

LD
c 0.1128(9) 0.1344(9) 0.1448(9)

LD
a 0.393 0.3694 0.366

LD
b 0.4943 0.4962 0.4893

MSE 11.72 5.32 5.32
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(a) (b)

(c) (d)

Figure 7.3: The SEM images of the FeNi SCTF composites: (a) the top-view of

FeNi SCTFs infiltrated with PMMA; (b) the top-view of FeNi SCTFs infiltrated

with 5 wt% Fe3O4 nanoparticles/PMMA; (c) the cross-section of FeNi SCTFs

infiltrated with PMMA; (d) the cross-section of FeNi SCTFs infiltrated with 5

wt% Fe3O4 nanoparticles/PMMA. The red circles in (b) indicate the areas where

the nanoparticle clusters exist. θ in (c) and (d) represents the angle between the c

axis (along the pointing direction of the slanted nanocolumns) and the Cartesian

laboratory axis z (normal to the substrate surface). The scale bars in (c) and (d)

are 500 nm.
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The top-view and cross-section SEM images of the FeNi SCTF composites

are displayed in Figure 7.3. In the top-view SEM, the images of the the slanted

nanocolumns are blurred because of the top layer. From Figure 7.3b, the nanopar-

ticle clusters in the top composite layer can be seen. Even though the separated

nanoparticles can not be observed in this image because of the resolution limit, it

is deduced that they are distributed in the top layer and also infiltrated into the

void of the SCTFs. In the cross-section SEM, PMMA or 5 wt% Fe3O4 nanopar-

ticles/PMMA penetrated to the interspace of the nanocolumns filling the void

completely, which indicates an excellent infiltration. The top layer can be clearly

observed in the cross-section images. The structural parameters of the samples

evaluated by SEM are summarized in Table 7.2 and compared with the results

acquired by GE analysis. The thickness results obtained by SEM and GE are

very consistent and the SEM analysis also indicates that θ = 73◦ approximately

for the FeNi SCTF composites.

Table 7.2: Summary of the structural parameters of FeNi SCTFs infiltrated with

PMMA (SCTF/PMMA) and FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanopar-

ticles/PMMA (SCTF/PMMA/NP) obtained by GE and SEM analysis. The error

limits given in parentheses denote the uncertainty of the last digit in the GE

analysis.

SCTF/PMMA SCTF/PMMA/NP

GE SEM GE SEM

Biaxial layer thickness (nm) 73.9(1) 76.1 73.9(1) 68.2

Top layer thickness (nm) 58.97(9) 60.1 64.04(8) 66.3

θ (◦) 72.76(4) 74.1 72.76(4) 71.9

7.2 Optical Property

Figure 7.4 shows the experimental and best-model calculated Mueller matrix ele-

ments versus sample azimuth φ and angle of incidence Φa at wavelength λ = 601
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(b)

Figure 7.4: Experimental (open circle) and best-match calculated (solid line) GE

data versus sample azimuth φ and angle of incidence Φa = 45◦, 55◦, 65◦, 75◦ at

λ = 601 nm: (a) FeNi SCTFs; (b) FeNi SCTFs infiltrated with PMMA. The GE

data are presented by Mueller matrix elements Mij normalized to M11. Note that

in (a) the scale of the vertical ordinate of M14 is different from the rest of the

Mueller matrix elements.
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Figure 7.5: Experimental (open circle) and best-match calculated (solid line) GE

data of FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA versus

sample azimuth φ and angle of incidence Φa = 45◦, 55◦, 65◦, 75◦ at λ = 601 nm.

The GE data are presented by Mueller matrix elements Mij normalized to M11.

nm for FeNi SCTFs and FeNi SCTFs infiltrated with PMMA. The Mueller matrix

elements which are not shown in the figure can be obtained by symmetry (40). The

experimental and best-match calculated data exhibit excellence fit for both sam-

ples. The off-diagonal elements including M13, M14, M23 and M24 for both samples

show a variation versus sample azimuth φ and a two-fold rotational symmetry,

which reveals a strong optical anisotropy in the materials since these elements

are zero for isotropic samples regardless of sample azimuth, angle of incidence

and wavelength (42). The off-diagonal elements approach to zero for all angles of

incidence and wavelengthes at φ ≈ 0◦ and 180◦ where the tilting direction of the

nanocolumns is parallel to the plane of incidence. This phenomenon is termed

the pseudo-isotropic sample orientation (42). Comparing the off-diagonal elements
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of the two samples, the variation patterns change after PMMA infiltration while

the two-fold symmetry is maintained. It is observed that the intensity of M14 is

enhanced greatly after PMMA infiltration.

The exemplary Mueller matrix elements versus sample azimuth φ and angle of

incidence at λ = 601 nm for FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanopar-

ticles/PMMA are shown in Figure 7.5. From the modeling results, it is obtained

that the Euler angle ϕ = 3◦ which corresponds to the configuration that the

nanocolumns point towards the -y direction in the laboratory coordinate system.

This explains that the Mueller matrix element pattern is shifted 90◦ to the right

compared with that of the former two samples. Nevertheless, the Mueller matrix

element data of the two SCTF composites shows no difference.

The optical constants of the biaxial layer versus wavelength obtained by mod-

eling are exhibited in Figure 7.6. The biaxial layers of all three samples show

strong birefringence and dichroism. The wavelength dispersion of the optical con-

stants for FeNi SCTF composites follows the similar pattern as that for FeNi

SCTFs. The refractive index nc and extinction coefficient kc along c axis have the

strongest wavelength dispersion compared with the optical constants along a and

b. For all three samples, nc crosses na and nb in the middle of the spectra and

kc > ka > kb. Nevertheless, the optical constants of the FeNi SCTF composites

show great difference from that of FeNi SCTFs. Due to the excellent material

infiltration into the voids of SCTFs, the refractive index n and extinction coeffi-

cient k along all the axes have enhanced greatly across the investigated spectral

range. Whereas the optical constants for the two infiltrated samples are found to

be similar. The slight distinction may be cause by different void fractions and the

difference in optical constants between the two infiltration materials.
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Figure 7.6: Optical constants for the biaxial layers of FeNi SCTFs (black line),

FeNi SCTFs infiltrated with PMMA (red line) and SCTFs infiltrated with 5 wt%

Fe3O4 nanoparticles/PMMA (green line) along the major axes a, b and c: na, nb,

nc and ka, kb, kc.
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7.3 Summary

GE was employed to characterize the structural and optical properties of FeNi

SCTFs infiltrated with PMMA and 5 wt% Fe3O4 nanoparticles/PMMA. AB-EMA

was used to model the GE data. The results show that the samples possess a biax-

ial structure with the c axis along the pointing direction of the nanocolumns. The

structural parameters obtained by modeling are consistent with those of the SEM

analysis, which indicates that after infiltration the infiltrated samples possess a top

layer above the slanted nanocolumns and the nanocolumns were approximately

10◦ more inclined to the substrate surface. The low void fraction reveals that an

excellent infiltration was achieved. The GE analysis reflects that all the samples

have a strong optical anisotropy. Due to the excellent material infiltration into the

void of SCTFs, the optical constants along the three major axes have enhanced

greatly across the investigated spectral range.



Chapter 8

Magnetic Properties of SCTF

Composites

8.1 Magnetic Hysteresis Loop Measurement

Magnetic hysteresis loops of the SCTF composites measured by AGFM are ex-

hibited in Figure 8.1 and the obtained magnetic parameters are summarized in

Table 8.1. The measurement of 5 wt% Fe3O4 nanoparticles/PMMA spin-coated

on Si substrate by AGFM was unsuccessful because the sensitivity of the AFGM

was not able to detect the magnetic response of the nanoparticles at such a low

amount. The different shapes of the hysteresis loops reveal the strong magnetic

anisotropy of the samples. As shown in Figure 8.1a, with an external magnetic

field H perpendicular (⊥) to the a axis and parallel (‖) to the substrate surface,

the SCTF composites reached the saturation magnetization at a lower field com-

pared with the other two configurations shown in Figure 8.1b and 8.1c. According

to Table 8.1, both coercivity and remanence in Figure 8.1a show the greatest val-

ues compared with the other two configurations. This result indicates that the

easier magnetization occurred with H ⊥ a and ‖ substrate surface.

In Table 8.1, the magnetic parameters of the two SCTF composite samples

are appreciably different. Since the magnetic measurement of the SCTFs are very

sensitive to the sample orientation (23,24), the variations on the parameters can be

explained by the sample orientation errors in separated measurements.
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Table 8.1: Coercivity (Hc) and remanence magnetization normalized to the

saturation magnetization (Mr/Ms) of FeNi SCTFs infiltrated with PMMA

(SCTF/PMMA) and FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparti-

cles/PMMA (SCTF/PMMA/NP) measured by AGFM. (a), (b) and (c) corre-

spond to the same measurement configurations in Figure 8.1a, 8.1b and 8.1c re-

spectively.

SCTF/PMMA SCTF/PMMA/NP

(a) (b) (c) (a) (b) (c)

Hc (Oe) 647 172 585 671.5 198 509

Mr/Ms 0.78 0.16 0.21 0.86 0.17 0.18
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Figure 8.1: Magnetic hysteresis loops of of FeNi SCTFs infiltrated with PMMA

(black solid line) and 5 wt% Fe3O4 nanoparticles/PMMA (red solid line) measured

with different magnetic field directions: (a) H ⊥ a axis and ‖ substrate surface;

(b) H ‖ a axis; (c) H ⊥ substrate surface; (d) the measurement configurations. H

is the applied magnetic field. The definition of a axis is described in Section 7.1.

The magnetization M is normalized to the saturation magnetization Ms. The

blue symbols in (d) denote the three different orientations of the magnetic fields

H used in the corresponding configurations.
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8.2 Polar Kerr Effect Generalized Ellipsometry

Measurement

The Kerr effect of the SCTF composites was measured in polar configuration as

shown in Figure 8.2 with Φa = 45◦, φ = 53◦ approximately, and µ0H = 0.2 T .

The external magnetic field was perpendicular to the substrate surface. The

Mueller matrix element measurement was performed in a spectral range from

1.24 to 3.1 eV (400 to 1000 nm) without external magnetic field to determine

the sample azimuth φ. Before the measurement on SCTF composites, the polar

Kerr effect measurement was conducted on 5 wt% Fe3O4 nanoparticles/PMMA

spin-coated on Si substrate. The MO response of Fe3O4 nanoparticles embedded

in PMMA at such a concentration was found to be within the signal error. There-

fore, the present modeling neglected the MO response from the Fe3O4 nanoparti-

cles/PMMA layer on the top and only considers that from the infiltrated biaxial

layer above the substrate. The structural and optical parameters were adapted

from the optical modeling described in Section 7.1 and 7.2. Only the complex

magneto-optical (MO) tensor element εMO
xy corresponding to the magnetization

direction along the Cartesian laboratory axis z was determined by matching the

calculated and experimental Muellar matrix difference data as described in Equa-

tion 5.1. A wavelength-by-wavelength analysis was performed to model the ex-

perimental data and determine the complex magneto-optical tensor element εMO
xy

versus photon energy.

Figure 8.3 shows the calculated and experimental off-diagonal Muellar matrix

element difference data. The calculated and experimental data exhibit a good

match for both samples, thus the model scenario which assumes the sample mag-

netization oriented along the external magnetic field direction in z represents the

experimental fact.

The real and imaginary part of the complex magneto-optical tensor element

εMO
xy versus photon energy was plotted in Figure 8.4 by wavelength-by-wavelength

analysis. The symbols represent the obtained tensor element εMO
xy as a function

of wavelength. In the polar Kerr effect measurement, εMO
xy is almost identical for

both SCTF composite samples, therefore the magnetic nanoparticles have limited
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Figure 8.2: The polar measurement configuration with sample azimuth φ, column

tilt angle θ and angle of incidence Φa.

influence on the MO response of SCTFs with this particular field orientation.

In order to identify the effect of the nanoparticles on SCTFs, an ellipsometry

measurement with magnetic field in arbitrary orientation is required.
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Figure 8.3: The calculated and experimental off-diagonal Muellar matrix element

difference data ∆Mk,l = Mk,l(µ0H = 0.2 T )−Mk,l(µ0H = −0.2 T ) normalized to

M11 for the SCTF composites: (a) FeNi SCTFs infiltrated with PMMA (Φa = 45◦,

φ = 53.5◦); (b)FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA

(Φa = 45◦, φ = 52.1◦).
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Figure 8.4: The real and imaginary part of the complex magneto-optical tensor

element εMO
xy versus photon energy obtained by wavelength-by-wavelength anal-

ysis on: FeNi SCTFs infiltrated with PMMA (black diamond) and FeNi SCTFs

infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA (red triangle).

8.3 Vector Magneto-Optical Generalized Ellip-

sometry Measurement

In this section, the SCTF composites were measured wia vector magneto-optical

generalized ellipsometry (VMOGE) and the three off-diagonal elements of the

complex magneto-optical tensor element εPxy, ε
T
xz and εLyz (discussed in Section 4.3.7)

were plotted in a 3-dimension coordinate system. Before performing VMOGE

measurement, the Mueller matrix element measurement in the spectral range from

400 to 1000 nm without external magnetic field was conducted to determine the

sample azimuth φ. A zero-field measurement at a single wavelength 500 nm was

also performed. The VMOGE measurement details are described in Section 5.2.5.

Figure 8.5 illustrates the measurement configuration. Three loop (TP, LT, and

PL) measurements were performed at a fixed wavelength of 500 nm with Φa = 55◦,

φ = 90◦ approximately and µ0H = 0.17 T . The experimental data was acquired

in the form of ∆Mk,l = Mk,l(µ0H = 0.17 T ) −Mk,l(µ0H = 0 T ) as a function
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Figure 8.5: The VMOGE measurement configuration with sample azimuth φ,

column tilt angle θ and angle of incidence Φa. P, L and T correspond to the

polar, longitudinal and transverse MOKE configurations respectively. The bar

over the letters denote the directions -x, -y and -z. k and k’ denote the incident

and reflected wave vectors respectively. In the measurement, the direction of

external magnetic field µ0H rotates along the LP, LT and TP loops at a step of

6◦ while the magnitude is maintained. The Mueller matrix element measurement

is performed at each magnetic field orientation.

of magnetic field rotation angle φm and θm (described in Section 5.2.5). Before

the measurement on SCTF composites, the VMOGE was conducted on 5 wt%

Fe3O4 nanoparticles/PMMA spin-coated on Si substrate and the MO response

of Fe3O4 nanoparticles at such a concentration in PMMA was within the signal

error. Therefore, the present modeling neglected the MO response from the Fe3O4

nanoparticles/PMMA layer on the top and only considers that from the infiltrated

biaxial layer above the substrate. In the modeling, the structural and optical pa-

rameters were adapted from the optical modeling described in Section 7.1 and 7.2.

Only the three complex magneto-optical tensor elements εxy, εxz and εyz were de-

termined by matching the calculated and experimental Muellar matrix difference

data. A point-by-point analysis was utilized to model the experimental data and

determine the three complex magneto-optical (MO) tensor elements.

The real and imaginary part of the three MO tensor elements (εxy, εxz and εyz)
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determined by TP, LT and PL loop measurements at wavelength 500 nm on the

SCTF composites were plotted in Figure 8.6, 8.7 and 8.8 respectively. The plots

of the complex tensor elements generally form elliptical loops in the 3-dimension

coordinate. The elliptical loops are obvious for the TP and LT measurements

although the ones become less clear for PL measurement. The projection (repre-

sented by green symbols) of the loops to εxy-εyz plane generally shows an elongated

shape with the long axis along the same directions for both samples, which may

result from the orientation of the nanocolumns. By the arrows in the figures, the

variation of the complex tensor elements can be tracked during each loop measure-

ment. For example, from the real part of the complex tensor element as shown in

Figure 8.6b, it is known that the complex tensor elements moved along the loop

in the 3-dimension coordinate from T through P and -T to -P. The loop shapes

differ in TP, LT, and PL measurements, which indicates the great anisotropic

MO property in the SCTF composites. From the figures, it is noted that the

loop shapes of the FeNi SCTFs infiltrated with PMMA differ from FeNi SCTFs

infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA. For instance, from the real

part of the complex tensor element as shown in Figure 8.6, it can be noticed that

the loop shape for FeNi SCTFs infiltrated with PMMA changes from a column

to an ellipse for FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA.

The loops in the corresponding 2-dimension coordinates also change for the latter

sample. For the imaginary part of the complex tensor element as shown in Fig-

ure 8.7, the difference in loop shape between the two samples is obvious too. The

changes of the loop shapes may be caused by the magnetic Fe3O4 nanoparticles

which infiltrate into the voids and changes the anisotropy in MO property of the

FeNi SCTFs.
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(a)

(b)

Figure 8.6: The magneto-optical tensor elements εxy, εxz and εyz determined by

TP loop measurement on the SCTF composites: (a) FeNi SCTFs infiltrated with

PMMA (φ = 93.9◦); (b)FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparti-

cles/PMMA (φ = 91.6◦). The sphere symbols in black denote the plot of the

elements in the 3-dimension coordinate. The square symbols in color denote the

plot of the elements in the corresponding 2-dimension coordinates. P, L and T

correspond to the measurement with magnetic field in the laboratory coordinate

directions x, y and z respectively while -P, -L and -T denote the directions -x,

-y and -z. The arrows indicate the elements obtained by P, L, T and -P, -L, -T

measurements.
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(a)

(b)

Figure 8.7: The magneto-optical tensor elements εxy, εxz and εyz determined by

LT loop measurement on the SCTF composites: (a) FeNi SCTFs infiltrated with

PMMA (φ = 93.9◦); (b)FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparti-

cles/PMMA (φ = 91.6◦). The sphere symbols in black denote the plot of the

elements in the 3-dimension coordinate. The square symbols in color denote the

plot of the elements in the corresponding 2-dimension coordinates. P, L and T

correspond to the measurement with magnetic field in the laboratory coordinate

directions x, y and z respectively while -P, -L and -T denote the directions -x,

-y and -z. The arrows indicate the elements obtained by P, L, T and -P, -L, -T

measurements.
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(a)

(b)

Figure 8.8: The magneto-optical tensor elements εxy, εxz and εyz determined by

PL loop measurement on the SCTF composites: (a) FeNi SCTFs infiltrated with

PMMA (φ = 93.9◦); (b)FeNi SCTFs infiltrated with 5 wt% Fe3O4 nanoparti-

cles/PMMA (φ = 91.6◦). The sphere symbols in black denote the plot of the

elements in the 3-dimension coordinate. The square symbols in color denote the

plot of the elements in the corresponding 2-dimension coordinates. P, L and T

correspond to the measurement with magnetic field in the laboratory coordinate

directions x, y and z respectively while -P, -L and -T denote the directions -x,

-y and -z. The arrows indicate the elements obtained by P, L, T and -P, -L, -T

measurements.
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8.4 Summary

The magnetic properties of the FeNi SCTFs infiltrated with PMMA and FeNi

SCTFs infiltrated with 5 wt% Fe3O4 nanoparticles/PMMA were investigated by

AGFM and MOGE. The hysteresis loop measurements in different configurations

reveal a strongly anisotropic nature of the magnetization within the samples. The

easier magnetization occurred in the samples with the external magnetic field

H ⊥ a axis and ‖ substrate surface. The MOKE of the samples was measured

in polar configuration and the complex MO tensor element εMO
xy was determined

in the spectral range from 400 to 1000 nm. VMOGE was employed to study the

MO response of the samples. The three complex magneto-optical tensor elements

εPxy, ε
T
xz and εLyz determined by TP, LT, and PL measurements were plotted in a

3-dimension coordinate. The plots of the complex tensor elements generally form

elliptical loops and the projection of the loops to εxy-εyz plane exhibits an elon-

gated shape with the long axis along the same directions for both samples. The

difference in loop shapes between the two samples indicates that Fe3O4 nanopar-

ticles may infiltrate into the void areas and change the anisotropic MO response

of the FeNi SCTFs.
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Conclusions

FeNi Slanted columnar thin films (SCTFs) were infiltrated with PMMA and 5wt%

Fe3O4 nanoparticles/PMMA. The structural and optical properties of the FeNi

SCTF composites were investigated with electron microscopy and generalized el-

lipsometry (GE). AB-EMA was used to model the GE data. The GE results show

that the samples possess a biaxial structure with the c axis along the pointing

direction of the nanocolumns. Both GE and SEM analysis indicate that after in-

filtration the samples possess a top isotropic layer above the slanted nanocolumns

and the nanocolumns were approximately 10◦ more inclined towards the substrate

surface. The low void fraction obtained by modeling reveals that an excellent in-

filtration was achieved. The GE analysis reflects that all the samples have a

strongly anisotropic optical property. Due to the excellent material infiltration

into the void of SCTFs, the optical constants along the three major axes have

enhanced greatly across the investigated spectral range.

The magnetic property of the FeNi SCTF composites were investigated by

AGFM and MOGE. The hysteresis loop measurements in different configurations

reveal a strongly anisotropic nature of the magnetization within the samples. The

easier magnetization occurred in the samples with the external magnetic field

H ⊥ a axis and ‖ substrate surface. The MOKE of the samples was measured

in polar configuration and the complex MO tensor element εMO
xy was determined

in the spectral range from 400 to 1000 nm. VMOGE was employed to study the

MO response of the samples. The three complex magneto-optical tensor elements

εPxy, ε
T
xz and εLyz determined by TP, LT, and PL measurements were plotted in a
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3-dimension coordinate system. The plots of the complex tensor elements gener-

ally form elliptical loops and the projection of the loops to εxy-εyz plane exhibits

an elongated shape with the long axis along the same directions for both sam-

ples. The difference in loop shapes between the two samples indicates that Fe3O4

nanoparticles may infiltrate into the void areas and change the anisotropic MO

response of the FeNi SCTFs.

In this thesis, GE and MOGE have demonstrated great capability of character-

izing the structural, optical and MO properties of SCTF composites. The results

obtain by using the two techniques have proven that the infiltration of functional

materials into the voids can be an effective approach to modify the optical and MO

properties of STFs. Due to the changes in optical and MO properties, this method

extends the application of STFs in various fields such as sensors or magnetic data

storage device.
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Chem. Int. Ed. 49, 4795 (2010). 2

[9] Zeng, S., Tang, K., Li, T., Liang, Z., Wang, D., Wang, Y., Qi, Y., and Zhou,

W. J. Phys. Chem. C 112, 4836 (2008). 2

[10] Zhao, Y., Ye, D., Wang, G., and Lu, T. Proceedings of SPIE 5219, 59 (2003).

2



73

[11] Kesapragada, S. V., P., V., Nalamasu, O., and Gall, D. Nano Lett. 6, 854

(2006). 2

[12] Harris, K. D., Huzinga, A., and Brett, M. J. Electrochem. Solid-State Lett.

5, H27 (2002).

[13] Steele, J. J., Gospodyn, J. P., Sit, J. C., and Brett, M. J. IEEE Sens. J. 6,

24 (2006). 2
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[52] Lu, A., Salabas, E. L., and Schüth, F. Angew. Chem. Int. Ed. 46, 1222

(2007). 12, 14, 15, 44

[53] Gupta, A. K. and Gupta, M. Biomaterials 26, 3995 (2005). 12

[54] Mornet, S., Vasseur, S., Grasset, F., Verveka, P., Goglio, G., Demourgues,

A., Portier, J., Pollert, E., and Duguet, E. Prog. Solid State Chem. 34, 237

(2006). 12

[55] Li, Z., Wei, L., Gao, M. Y., and Lei, H. Adv. Mater. 17, 1001 (2005). 12

[56] Gass, J., Poddar, P., Almand, J., Srinath, S., and Srikanth, H. Adv. Funct.

Mater. 16, 71 (2006). 12, 15

[57] Hyeon, T. Chem. Commun. , 927 (2003). 12

[58] Lopez-Santiago, A., Gangopadhyay, P., Thomas, J., Norwood, R. A., Per-

soons, A., and Peyghambarian, N. Appl. Phys. Lett. 95, 143302 (2009). 12,

16

[59] Elliott, D. W. and Zhang, W. Environ. Sci. Technol. 35, 4922 (2001). 12

[60] Takafuji, M., Ide, S., Ihara, H., and Xu, Z. Chem. Mater. 16, 1977 (2004).

12

[61] Lu, A., Schmidt, W., Matoussevitch, N., Bönnermann, H., Spliethoff, B.,
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