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Abstract
This research work proposes a novel physiologically-
aware communication architecture for the 
transmission of biomedical signals in BASNs (Body 
Area Sensor Networks) and wearables for emerging 
IoT applications.  The architecture to fulfill the following 
objectives:
•  Reduce volume of biomedical data in IoT networks 

and Internet infrastructure.
•  Minimize the required computational load of 

biomedical data on the cloud side.
•  Extend the lifetime of the mobile wearable/BASN 

through improved energy savings.

Architecture

D-Stage Performance
(Feat. Extraction and Pre-Diagnosis)
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System Diagram for Physiologically-Aware Communication Architecture
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Experimental Work
Experimental work was simulated and conducted in 
MATLAB:
•  Experimental work focused on ECG-class signals as 

“proof-of-concept” behind research work.
•  Five, 30-minute ECG records were used from 

PhysioNet’s ECG database.
•  Records: 100, 106, 107, 108 are of patients with 

various degree of Arrhythmia.
•  Record 16265 is Normal Sinus for ground truth.
•  Simulation work focused on characterizing energy 

by transmission pipeline in (4) given wireless 
transmission costs are much higher than 
computation costs.

In no particular order: 
•  Plot (2) shows D-stage performance of ECG (top).
•  The middle plot in (2) shows feature-extraction of 

patient health state in the form of heart rate 
“jitter” (middle).

•  Bottom plot in (2) shows the DCL score, changing 
as a function of patient health state.

•  Plot (3) shows performance of Q-stage comparing 
impact on signal quality in wavelet domain using 
four special “truncation modes”.

•  Some truncation modes are better at preserving 
signal quality with respectable gains in compression 
ratio.

 ~w(~�, ~�0) =
||(f(~x)� f(~x0))T · ~w||2

||f(~x)||2

Sample-based Distortion Measures vs. 
Feature-Based Diagnostic Distortion Measure (DDM)
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(Cont’d) 
•  Plot (1) shows performance of feature-based 

diagnostic distortion measure (DDM).
•  DDM allows us to actually “observe” when features 

of clinical significance actually disappear (top) by Q-
stage effects.

•  It compares DDM against sample-based distortion 
measures (e.g., PRD and WWPRD).

•  Plots in (4) show energy performance of 
transmission pipeline.

•  Left plot in (4) shows how energy changes for each 
packet transmitted as function of patient health state 
in a variety of modes: RAW mode, and our methods 
(homogeneous and heterogeneous data).

(Cont’d) 
•  Right plot in (4) shows total energy consumption for 

all five records using different transmission modes. 
•  Energy savings by factor of 30 are realized.
•  This translates into proportional reduction in data.

Conclusion
This architecture is generalizable to class of 
biomedical signals.  It prevents large volume of 
biomedical data to be generated; uses patient state to 
control almost any system parameter;
achieves significant energy savings, 
helping to extend the lifetime of the 
device for medical-IoT applications.

The above goals are achieved with proposed 
architecture (shown center/right):
•  Feature-extraction and pre-diagnosis on biomedical 

signal via D-stage (2) to assign a ‘score’ 
representing patient health state called Diagnostic 
Condition Level (DCL).

•  Signal is manipulated in the wavelet domain by the 
Q-stage (3) for eventual compression while working 
to preserve the features of clinical significance.

•  Q-stage impact is evaluated via feature-based 
Diagnostic Distortion Measure (DDM) (1) to 
establish hard limits that would result in loss of 
clinical features by Q-stage.

•  The resulting bitstream is sent to the transmission 
pipeline for further processing before eventual 
transmission (4).

•  All pipeline parameters in (4) can change in real-
time as the patient health state (DCL) changes, 
balancing signal quality, urgency, and energy 
efficiency.

Results

Q-Stage Performance and
Compression Ratio Potential
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