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The objective of vision-based human action recognition is to label the video

sequence with its corresponding action category. In this thesis, the human action

recognition problem is solved from a novel sparse representation perspective. First,

spatial-temporal interest points are extracted in the video sequences. Then, a cuboid

is extracted centered at each spatial-temporal interest point. The histogram of

oriented gradients (HOG) and histogram of flow (HOF) descriptors for each cuboid are

computed and concatenated into a one-dimensional vector. The K-Means clustering

algorithm is used to cluster these cuboid feature vectors into a few visual codewords.

Finally, each action instance is represented as a histogram of the visual codewords.

We apply sparse representation based classification in the human action recognition

problem. Each action instance in the test set is represented approximately as a linear

weighted sum of all the action instances in the training set. The `1-minimization

technique is utilized to derive the sparse result. The residual between the test in-

stance and its corresponding representation using the action instances in each class

is calculated. The test action instance falls into the action class with the smallest

residual. Our proposed human action recognition system is evaluated on the KTH

human action dataset. The experimental results obtained using our method are com-

pared with the results derived using conventional machine learning techniques such

as K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) and show that



the proposed framework yields considerable performance improvement in many aspects.

Keywords: human action recognition, spatial-temporal interest point, histogram

of oriented gradients, histogram of flow, compressed sensing, sparse representation,

k-nearest neighbors, k-means clustering, support vector machines, `1-minimization,

`1-regularized least squares.
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Chapter 1

Introduction

Human action recognition is the process of labeling video sequences containing human

action with corresponding action classes. More specifically, vision-based human

action recognition is discussed and studied in this thesis. Vision-based human action

recognition is the process of recognizing the human actions in video sequences by

utilizing computer vision techniques.

1.1 Motivation

Due to the increase of digital video cameras used in everyday life, more and more video

content is generated and uploaded to the Internet or stored in large video dataset.

Categorizing rich video content based on the actions appearing in the video is a good

way to reach the initial goal of organizing these videos. Also, human action recognition

is a popular research area due to its potential application in visual surveillance, content-

based video retrieval, human-computer interaction and sports annotation, [1][2][3][4][5].

For example, with successful human action recognition, the visual surveillance system

in large public area can automatically extract high-level semantic information from
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the surveillance video thus making it possible to make alarms to the public when

predefined dangerous behaviors occur in the range of surveillance; content-based

video retrieval system can search and locate the video content with specific definition

fast and precisely; human-computer interaction systems can smoothly interact with

human body movement and provide more sophisticated human-computer interface.

For instance, Kinect R©, a gaming console controller from Microsoft that usually tracks

human body movement, is a commercial product that utilizes the power of human

action recognition; sports annotation system can perform complicated player motion

analysis and extract play strategy information from live video of sport games in

real-time. Figure 1.1 shows the different applications introduced above. Figure 1.1a

demonstrates an example of commercial surveillance system; Figure 1.1b shows the

human-motion based gaming console controller called Kinect R© from Microsoft; Figure

1.1c demonstrates a sports annotation system used to intelligently annotate sports

games.

1.2 Challenges

Although researchers are greatly motivated by the promise of its wide application and

have done a lot of research on this topic, vision-based human action recognition is still a

very challenging research area due to a few reasons. First, there are great variations of

performance for either intra or inter-class action instances. Two action instances in the

same action class can demonstrate non-negligible dissimilarity because of the different

appearance or movement characteristics between the performers. Different individuals

may also perform the same action in different ways. The differences in the speed and

stride length of articulation movement can also contribute to variations among intra

or inter-class action instances. An ideal human action recognition algorithm should be
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(a) Commercial Surveillance System

(b) Microsoft Kinect R©: A human computer interface

(c) Sports Annotation System

Figure 1.1: Different Application Scenario for Human Action Recognition (Courtesy
image from Google Image Search )
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able to adapt the variations within one class and discriminate the variations among

different action classes. Second, the video sequences containing the human actions

can be captured in different environments with different recording settings. It would

be more difficult to correctly recognize the human action in a cluttered or dynamic

background. The human body may be occluded in the video sequence which would

raise the challenge of correctly recognizing the human action. Change in lighting

conditions is also a common source of variation in the recording settings. When using

a moving camera, the challenges become even harder since the same action, observed

from different viewpoints, can lead to very different image observations. Third, video

sequences may be recorded at different rates, which generates great variations in the

rate of performance of an action. Stable human action recognition algorithms should

eliminate the effect of difference in human action performance rate.

1.3 Related Work

In this section, previous research conducted by researchers on vision-based human

action recognition is examined. The precedent work can be mainly divided into several

general approaches summarized in the following sections.

Recognition based on cross-correlation One direction of research is based on

calculating the cross-correlation between volumes of video data from different action

instances. Higher correlation indicates higher similarity between the two test video

sequences. Shechtman and Irani (2005)[6] proposes a method to discriminate whether

two different space-time intensity patterns of video sequences are from the same

underlying human action category based upon extending the 2-D image correlation

to 3-D space-time volume correlation. The advantage of this method is it can detect
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complex human action activity with multiple actions included. The disadvantage is

that it requires the cross-correlation calculation for one test video sequence against

the whole library of video action templates, which results in high computational

complexity.

Recognition based on tracking and trajectory There is also one approach

based on tracking human body parts and utilizing the derived motion trajectories

to perform action or behavior recognition. In Yilmaz and Shah[7], landmark points

of the human body are first detected in every frame of the video sequences from

multiple moving cameras with different viewing angles. The generated corresponding

4D (x, y, z, t) trajectories of these landmark points are used to discriminate different

human actions. This approach can be used in action recognition and video retrieval,

however, the cost of considerable human annotation is significant. In the work of

Fanti et al.[8], a human motion model is represented as a triangulated graph and the

model is learned in an unsupervised manner from unlabeled data. Their approach

combines multiple cues such as positions, velocities and appearance which are derived

by tracking the feature points in a frame-by-frame manner. However, the quality of

the point tracking has a great effect on the recognition performance. It highly depends

on the photometric conditions, thus making it less robust and applicable.

Recognition based on global image representation Another very popular

approach to tackle the human action recognition problem is based on global image

representations, which encode the ROI (region of interest) of a moving object as a

whole. The ROI can be derived by traditional background subtraction and tracking.

Bobick and Davis [9] use temporal template to represent human movement. In

detail, two different versions of the motion template: motion energy image (MEI) and
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Figure 1.2: 3-D space-time volume [10]

motion history image (MHI) are proposed. The calculated MEI and MHI are used to

recognize the human action by matching them against the available known human

action templates stored in a local action template library. Since this method require

robust background subtraction, moving camera and clutter background can reduce its

performance and recognition accuracy. Blank et al. [10] treat human actions as three-

dimensional shapes generated by accumulating the detected foreground human figures

frame by frame in the video sequence. A few different space-time features such as local

space-time saliency, action dynamics, shape structure, and orientation are extracted

and utilized to perform human action recognition. Similarly, this approach requires

robust static background subtraction. Figure 1.2 demonstrates the 3-D space-time

volume.

Recognition based on interest feature points Alternatively, researchers de-

veloped an approach based on spatial-temporal interest points to represent action

instance. Laptev et al.[11] extends conventional 2-D Harris corner detector to 3-D

scenario with additional consideration of time dimension. The proposed algorithm can

detect interest points in space-time volumes where the image values vary significantly
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in all of the three dimensions. However, their method can only generate a relatively

small number of stable interest points which are usually not sufficient to discriminate

different complex action sequences. To solve this deficiency, Dollár et al.[12] propose a

spatial-temporal interest point detector based on a group of separable linear filters to

generate a large number of interest points. The interest points are the local maxima

of a response function which is derived by applying the linear filters on the video

sequences. These interest points correspond to the local regions where complex motion

patterns can be detected.

1.4 Overview of Compressed Sensing and Sparse

Representation

In recent years, compressed sensing [13] has become a popular research area in the

community of signal processing, and sparse representations for classification problems

has also drawn some attentions from researchers in the field of computer vision and

pattern recognition. Compressed sensing is usually used in acquiring and reconstructing

signals known to be sparse or compressible in some specific basis such as Fourier and

wavelet. The advantage of compressed sensing is that a signal acquired with a sampling

rate under the Nyquist rate can still be reconstructed correctly using techniques in

convex optimization. It is possible to find sparse solutions to underdetermined linear

systems by `1 minimization and its extensions and variations such as `1 regularized

least squares.

Sparse representation is usually denoted as representing a signal or feature vector

as a linear combination of few columns which are called atoms in an over-complete

dictionary. The resulting coefficient vector is sparse in terms of the huge collections in
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the dictionary, meaning that only a small portion of coefficients in the vector are non-

zero. Compared with the original feature vector, this sparse, compact representation is

not only more informative and valuable in related signal acquisition and compression

problems, but also shows great potential in signal classification and related computer

vision tasks.

In this thesis, a sparse representation technique is utilized in a classification

framework to recognize the human actions in the video sequences. The theory and

applications of compressed sensing and sparse representation are demonstrated and

discussed in detail in Chapter 2.

1.5 Organization of Thesis

The remaining parts of the thesis are organized as follows: Chapter 2 describes the

theory and relevant applications of compressed sensing and sparse representations

in the filed of computer vision and pattern recognition. Chapter 3 describes the

proposed approach used to solve the problem in this thesis. In particular, spatial-

temporal interest point detection, bag of words representation of action instance,

and classification framework based on sparse representation are explained in detail.

Chapter 4 gives the implementation details of our proposed approach and demonstrates

the derived experimental results using our approach. The results are analyzed and

compared with the ones derived from other machine learning algorithms. At last, the

conclusion is given in Chapter 5.
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Chapter 2

Compressed Sensing and Sparse

Representation for Computer

Vision and Pattern Recognition

2.1 Background

Traditional signal acquisition procedure follows the classical Nyquist Sampling The-

orem, which indicates that a signal can be captured accurately without aliasing if

the sampling rate is at least twice the highest frequency of the signal. Nyquist sam-

pling rate is a sufficient, but not necessarily required, condition. Recent research in

“Compressed Sensing” or “Compressed Sampling” indicates that it is also possible to

recover signals, images, or other data from highly sub-Nyquist-rate sampling.

Consider the development of consumer digital camera industry as an example,

the effective number of pixels in the optical image sensors used to sense photons and

capture images are increasing all the time since people want to capture images with a

higher resolution. However, the next step after sensing and generating the raw image
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Figure 2.1: Single Pixel Camera Architecture [15]

data is often to compress and discard a great part of the information in the raw image

to satisfy the requirements on storage and transmission. This is a considerable waste

on the utilization of the image sensor since most of the information acquired at the

sensing stage is discarded at the compression stage. It would be better if we could

sense the image directly in a compressive way at the sensing stage and then reconstruct

the image we want using the compressed measurements. Compressed sensing is aimed

to solve the problem and provide a new scheme for signal acquisition and compression

at the same time. Therefore, it can cause great innovation in hardware sensor design

by following this strategy and changing the way we use sensors to acquire signals from

a totally different perspective. For instance, Marco et al. [14] designed a single-pixel

camera by applying this compressed sensing technology in the camera hardware design.

For light whose wavelength is not in the range of visible spectrum, the traditional

CMOS sensors do not work anymore. Specific sensors aimed for special light are much

more expensive than the sensors used in consumer digital cameras. Therefore, cost

can be greatly reduced by using the single-pixel camera. Figure 2.1 demonstrates the

architecture of single-pixel camera.
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2.2 Compressed Sensing Theory

Sparse Representation In this subsection, we use image signals as an example

to explain what sparse representation means in compressed sensing theory. For an

image X with resolution N1 ×N2, we concatenate the column data of the image into

a single one-dimensional vector x with size N = N1 ×N2. Therefore, x(n) denotes

the nth element in the vector x, for which n = 1, 2, ...N . We express x in the basis

Ψ = [Ψ1,Ψ2, ...ΨN ] with a K-sparse representation:

x =
N∑
n=1

Θ(n)Ψn =
K∑
l=1

Θ(nl)Ψnl (2.1)

where Θ(n) is the coefficient of the nth basis vector Ψn and the coefficients indexed by

nl are the K-nonzero entries of the basis decomposition. Equation 2.1 can be further

simplified as:

x = ΨΘ (2.2)

where Θ is an N×1 column vector with K nonzero elements space.Here Θ is K-sparse,

which means that the `0 norm of Θ:‖ Θ ‖0= K which simply counts the non-zero

entries of Θ.

Incoherent Projections In the compressed sensing framework, the K nonzero en-

tries in Θ usually cannot be derived directly. On the other hand, a measurement matrix

Φ is adopted to project the N elements in the image vector x into M measurements

with M < N . The relationship can be expressed as:

y = Φx = ΦΨΘ (2.3)
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Figure 2.2: Explanation of Compressed Sensing

in which the measurement matrix Φ = [Φ′1,Φ
′
2, , ,Φ

′
M ]′ with size M ×N , the vector y

(M × 1) contains the compressive sampling measurements. Although the recovering of

the image data x from compressive sampling measurements y is under-determined

since M < N , the extra sparsity of the vector Θ makes it possible to achieve this goal.

There are also some additional requirements added on the compressed sensing

theory to make it possible to recover the set of nonzero entries of Θ from y: the

first condition is called incoherence between two bases which means that the sparsity

basis Ψ cannot sparsely represent the rows of the measurement matrix Φ, the second

condition is that the number of measurements M should be larger than O(Klog(N
K

)).

For the first condition, incoherence holds for many pairs of bases, e.g. delta spikes and

the sine waves of the Fourier basis. Also, incoherence surprisingly holds between a

randomly generated basis (e.g., i.i.d. Gaussian or Bernoulli/Rademacher ±1 vectors)

and an arbitrary basis. Figure 2.2 shows the procedure of how the compressed sampling

measurements are generated.
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Signal Reconstruction via `1 Minimization The most common recovery method

for compressed sensing is based on the following `1 optimization problem:

Θ̂ = arg min ‖ Θ ‖1 s.t. y = ΦΨΘ (2.4)

This convex optimization problem is called Basis Pursuit [16] which can be efficiently

solved using polynomial time algorithms. There are also other available recovery

algorithms such as Orthogonal Matching Pursuit [17](OMP), Lasso and Basis Pursuit

with quadratic constraint[18], etc.

2.3 `1-Regularized Least Squares

In fact, many `1 regularization problem can be cast as `1-regularized least squares

problem. The mathematical expression for `1-regularized least squares problem is:

minimize ‖ Ax− y ‖22 +λ ‖ x ‖1 (2.5)

In sparse representation scenario, A ∈ Rm×n, which is the over-complete dictionary;

x ∈ Rn, which is the sparse coefficient vector that needs to be calculated; y ∈ Rm,

which is the feature vector that can be represented as a linear weighted sum of the

column data in the over-complete dictionary A. In this thesis, the sparse representation

problem solves the `1-regularized least squares. Our implementation solves the `1-

regularized least squares through an interior-point method, the details of which can be

found in [19]. The search direction is calculated by utilizing preconditioned conjugate

gradients (PCG) algorithm. The overall computational complexity of the `1-regularized

least squares is determined by the product of number of PCG steps in all the iterations

and the run time for one PCG step.
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2.4 Applications

A lot of research has been done using the compressed sensing and sparse representation

techniques in the field of computer vision and pattern recognition. Some of the most

significant research is summarized in the following.

In [20], Cossalter et al. applied compressive sensing theory on background sub-

traction, which is similar to the idea in [21]. The background subtracted image,

in another words, the foreground image is not directly transmitted to the decoder.

The random projection of the foreground image is calculated and transmitted. The

reconstruction of the foreground image is implemented at the decoder. Then, based on

the observed foreground images, the particle filter framework can predict the position

of the bounding box for the next frame and continuously track the object. The

compressive sensing theory is applied here to enable the privacy of the video sequence.

The random projection is derived from a matrix whose entries are sampled from a

Gaussian distribution. The matrix, or the seed used to generate matrix, is known at

the decoder. Therefore, the decoder can reconstruct the foreground image, while it is

impossible to do so without knowing the seed.

In [22], Mei et al. tackle visual tracking by integrating sparse representation

in a particle filter framework. The detected foreground moving object in a new

frame is represented as a sparse representation of the available target templates and

trivial templates. The introduced `1-regularized least squares is utilized to solve the

sparse representation problem. The new tracking target is identified by locating the

template candidate with the smallest projection error. The visual tracking procedure

is performed continuously in a Bayesian state inference framework in which particle

filtering is adopted.

In [23], Wright et al. proposed robust face recognition via sparse representation.
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In this application, there is a data set that contains multiple objects classes. In each

object class of the data set, there are several face images in different illumination

scenarios. When a test image is presented, the proposed algorithm tries to represent

the test face image by the linear combination of the existing face images in the data

set. Since the test image is only highly correlated with one or a few images in the

data set, therefore, the matrix that represents the linear combination should be a

sparse matrix. The relationship can be described in the following formula:

x = Dα0 + e0 (2.6)

in which x is the test image, D is the matrix represents the entire training set, α0 is the

sparse coefficient vector, e0 is a vector of errors. The searching for the corresponding

face object is achieved by solving relevant `1-minimization problem.

In [24], Allen et al. proposed distributed recognition of human actions using

wearable sensor networks. In their proposed system, each individual sensor node is

capable of performing local classification based on the local observation gathered at

the sensor node. The sensor will only transmit the data back to the base station

when possible occurrence of specific motion are detected. On the base station, a

global classifier receives the data from multiple sensor nodes, and further improves

the classification accuracy based on the local decisions from the sensor nodes. The

distributed recognition system aims to recognize certain body actions, such as sitting,

running, going upstairs and downstairs. The proposed solution is based on a classifi-

cation framework which utilizes the technique of distributed compressed sensing. In

this framework, the distribution of multiple human motion classes is modeled as a

combination of subspace model, one subspace for each class. Given C classes and a

test sample y, the objective is to find the sparse linear representation of y in terms of
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all the available training data.

In [25], Allen et al. utilize compressive sensing to compress the SIFT histogram

which contains the features of the detected object in each camera’s scene. The

SIFT feature detector is used to extract the viewpoint-invariant features form the

corresponding images. The SIFT histogram for each individual object in a single

image is sparse compared to the large vocabulary that contains codewords from many

object classes. This is the premise that compressive sensing theory can be applied in

multiple-view object recognition. The authors also point out high-dimensional SIFT

histograms share a joint sparse pattern corresponding to a set of common features in

3-D across the embedded camera network. Such joint sparse patterns can increase the

sparsity of the features from all the cameras in the network. All the cameras capture

the same object in the scene from different vantage points and the features of the

object are extracted in these cameras distributively. The SIFT features are compressed

via random projection in each camera and are sent back to the base station. Then the

base station would perform object recognition from these features.

2.5 Similarity and Differences between

Compressed Sensing and Sparse

Representation

Although compressive sensing and sparse representation have lots of similarities in

many aspects, they have different meanings in the field of computer vision and

pattern recognition. The sparse representation is the premise of compressive sensing.

Compressive sensing can be applied on certain signal only when the signal has some

sparse representation on some basis. Usually, compressive sensing is applied where
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there is the demand or preference on the compression of the data or the communication

channel is band-limited. In this case, compressive sensing is used to decrease the

dimensionality of the data and the privacy is enabled at the same time when random

projection is performed. More importantly, compressed sensing is widely applied

in new sensor hardware design since there is a sensing stage as the term indicates.

Sparse representation is mainly used in recognition or classification. The basic idea is

that usually the object that needs to be recognized or classified (test example) can

be written in the form of linear combination of all the samples in the training set

with a sparse vector. The similarity between the two is that `1-minimization or more

generally convex optimization is used in both of the two techniques. In compressed

sensing, `1-minimization is used to reconstruct the sparse signal from the projection

measurements. In sparse representation, `1-minimization is used to find the sparse

linear combination vector. The classification is achieved based on the sparsity of the

vector. If the test example is in one of the categories of the data set, the vector should

only have a few non-zero values at the corresponding positions. Further classification

framework can be developed based on this important property. The goal of this thesis

project is to recognize and classify the human actions in video sequences, therefore,

the concept and application of sparse representation rather than compressed sensing

is exploited and studied extensively.
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Chapter 3

Human Action Recognition based

on Sparse Representation

Our approach adopts the spatial-temporal interest points approach to generate the

dimension-reduced feature vectors that are the input to machine learning algorithms.

The whole human action recognition system is composed of the following three

components: spatial-temporal interest points detection, bag-of-words representation

for action instance, and classification framework based on sparse representation. Figure

3.1 demonstrates the system flow diagram. In this chapter, the relevant theories of

adopted techniques and algorithms are first explained and then the components in the

system model are discussed in the following subsections extensively. The intermediate

experimental results in each step are demonstrated to better elaborate the system

model.
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Figure 3.1: Diagram Flow of Human Action Recognition System

3.1 Relevant Theory

3.1.1 Gabor Filter

The Gabor filter was first introduced by Dennis Gabor[26]. The one-dimensional

Gabor filter is defined as the multiplication of a sinusoidal wave with a Gaussian

window:

ge(x) =
1√
2πσ

e−
x2

2σ2 cos(2πω0x) (3.1)

go(x) =
1√
2πσ

e−
x2

2σ2 sin(2πω0x) (3.2)

in which ω0 determines the central frequency in which the filter can derive the greatest

response and σ determines the spread of the Gaussian window. The power spectrum
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of the Gabor filter is given by the sum of the two Gaussians center at ±ω0:

‖ G(ω) ‖= e−2π
2σ2(ω−ω0)2 + e−2π

2σ2(ω+ω0)2 (3.3)

which can be easily explained. The power spectrum of a sine function is two spikes

at frequency ±ω0 and the power spectrum of a Gaussian is still a Gaussian. Then

multiplication in spatial or temporal domain yield convolution in frequency domain.

Therefore, there are two Gaussian distribution located at frequency ±ω0. The 1-D

quadrature of Gabor filter pair is shown in Figure 3.2. Gabor filter has also been

extended to 2-D and 3-D version which has widely applied in the field of image

processing for edge detection, texture representation and optical flow computation,

etc.

3.1.2 Image Descriptors

Histogram of Oriented Gradients Histogram of Oriented Gradients (HOG) is

one of the most popular image descriptors used in human detection in still images.

The algorithm of HOG is proposed by Navneet et al. in [27]. There are four different

kinds of HOG introduced in Navneet’s work: rectangular HOG (R-HOG), circular

HOG (C-HOG), bar HOG and centre-surround HOG. The default HOG descriptor

adopted in this thesis project is R-HOG. The image gradients are calculated over the

x and y direction with simple filters [−1, 0, 1] and [1, 0,−1]′ respectively. The gradient

orientation at each pixel position is then calculated according to the image gradients

at x and y direction.

In R-HOG, HOG descriptors are computed over each block, which contains several

dense uniformly sampled grids and are usually overlapped with its neighbors. The

HOG for each block is normalized independently. Take square R-HOG as an example,
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Figure 3.2: One dimensional Gabor Filter and corresponding frequency response
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one block contains ς × ς grids of η × η pixel cell, each of which includes β orientation

bins. These orientation histograms at each cell are concatenated into a one-dimensional

feature vector for the interested detection region. The parameters ς , η and β determine

the length of the finally generated feature vector.

Histogram of Flow The calculation of Histogram of Flow (HOF) is similar with the

calculation of HOG. However, HOF operates on differentials of optical flow-either flow

orientation or oriented spatial gradients of flow components instead of original image

gradients. Compared with HOG, HOF focuses on extracting the motion characteristics

of consecutive image pairs in video sequence. HOF is also proposed by Navneet et al.

for solving human detection problem[28].

First, optical flow Iw is calculated top-down in a multi-scale approach. The

initialization of flow is estimated at a coarse scale, and then the initial flow is

propagated from top to down in a pyramid structure to refine the finalized optical flow

at the finest scale. The calculation of optical flow is based on the constant brightness

equation: ∂I
∂t

+ w∇I = 0. I is the image, w is the infinitesimal motion. After the

optical flow Iw is extracted, differentials of optical flow are calculated using a few

different mechanisms. The spatial and orientation histogram are calculated on each

block of the optical flow differential image in the same way as HOG. The final feature

vector is the concatenation of the HOF over all of the blocks in the image window.

Readers can refer to Chapter 6 of [29] for further details of the algorithms.

3.1.3 Classification Algorithms

K-Means Clustering K-Means clustering algorithm is a classical unsupervised

machine learning algorithm. Given a dataset contains multiple data instances with the

same dimensionality, the K-Means algorithm is aimed to classify these data instances
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into a certain number of clusters. As the name K-Means clustering indicates, the

output of this algorithm would be K clusters. There is a initialization step before

this algorithm runs into loops. First, K centroids are defined, each centroid is for

each cluster. Then all the data points in the dataset are associated with the nearest

centroids which we just defined in the initialization step. After all the data points

are processed, the new K centroids’ positions are computed based on the association

of clusters for all the data points in the dataset which is determined in the previous

step. A new binding has to be done between the same dataset points and the newly

computed centroid. Next, the described procedure is repeated and runs in a loop.

Although the K centroids’ locations change step by step, the loop terminates when

there is no change on the positions of the K clusters. This algorithm aims to minimize

the following objective function:

E =
K∑
j=1

n∑
i=1

‖ x(j)i − cj ‖2 (3.4)

in which ‖ x(j)i − cj ‖2 is distance measure between a data point x
(j)
i and the cluster

center cj. This indicates the distance of the n data points from their corresponding

cluster centers. The initial selected cluster centers have great effect on the performance

of this algorithm. A good initialization should make all these initial cluster centers

as far as possible from each other. Usually random selection is common method to

generate the initial cluster centers. Running this algorithm several times and using

the averaged result is also another strategy to make the result more promising.

K-Nearest Neighbors The k-nearest neighbor (KNN) is a machine learning algo-

rithm for classifying objects based on the most similar training samples in the feature

space. KNN is a type of lazy learning, in which no training model is built before
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recognition. Thus, it is one of the simplest machine learning algorithms. Given a

test sample, the distance between the test sample and all the training samples in the

training set are calculated based on some distance metric. Euclidean distance and

Hamming distance are some common choices adopted. The distances are utilized to

represent the similarity between training sample and test sample. The smaller the

distance is , the more similarity is shared between the two samples. KNN algorithm

selects the k nearest neighbors with the k smallest distances. The class which wins

the majority voting on the k nearest neighbors is assigned to the label of the training

sample. When k is 1, the KNN algorithm seeks the nearest neighbor and the label

of the training sample is recognized as its nearest neighbor’s class. The advantage

of KNN algorithm is that it is simple and easy to implement. However, when the

training set is large, the algorithm requires large memory and the prediction accuracy

can quickly degrade when the number of attributes grows.

Support Vector Machine Support Vector Machine (SVM) is among the best

“off-the-shelf” supervised learning algorithms. SVM is originally a binary classifier.

Given a set of feature vectors with labels as {−1,+1}, SVM aims to discover pattern

structure from the training samples and predict the labels of incoming test samples.

Mathematically, the theory of SVM is to find a separating hyperplane with the maximal

margin to separate the training dataset into two parts. Figure 3.3 demonstrates the

example of maximum-margin hyperplane for two sets of data points. The samples

on the margin are called the support vectors. SVM is actually solving the following

optimization problem:

minw,b,ε
1

2
wTw + C

l∑
i=1

εi (3.5)

Subject to : yi(w
Tφ(xi) + b) ≥ 1− εi(εi > 0) (3.6)
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Figure 3.3: Example of hyperplane for categorizing point set

The mathematical details of SVM can be found in [30]. In this thesis project,

we utilize a linear SVM model to classify the human actions. To recognize different

human actions from multiple action categories, the one-against-all approach is utilized

to perform multi-class classification.

3.2 System Model

3.2.1 Spatial-temporal Interest Points Detection

Features from spatial-temporal interest points have been shown to be effective in human

action recognition since they can provide rich descriptors and powerful representations.

The interest points for a video sequence are localized in three dimensions: x, y for the

spatial dimension and t for the temporal dimension. To extract the spatial-temporal
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interest points, the response function:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (3.7)

is used to find strong response to periodic motion as well as the spatial-temporal

corners. In the response function, I is the stack of images from the video sequence,

g(x, y;σ) is the 2D Gaussian smoothing kernel, applied along the spatial dimensions,

and hev and hod are a quadrature pair of 1D Gabor filters applied along the temporal

dimension.

hev(t; τ, ω) = −cos(2πtω)e−
t2

τ2 (3.8)

hod(t; τ, ω) = −sin(2πtω)e−
t2

τ2 (3.9)

The two parameters σ and τ correspond to the spatial scale and temporal scale of

the detector respectively. They determine the scale at which the detector detects the

interest points in all three dimensions. In the implementation, we set ω = 4/τ thus

making the number of undetermined parameters to be 2. The spatial-temporal interest

points are extracted by finding the local maxima of the response function. In Dollár

et al.[12], they indicated that any region with spatially distinguishing characteristics

undergoing a complex motion can induce a strong response using the above spatial-

temporal interest point detector. However, regions undergoing pure translational

motion or without spatially distinguishing features will not induce a strong response.

In our implementation, when the spatial scale σ and temporal scale τ are set to be

2 and 3 respectively, the input of the spatial-temporal interest point detector is each

sequence from the dataset, in which only one single action is included. After the non-

maximal suppression is performed on the response function 3.7, the spatial-temporal

interest points detector finds the corresponding spatial-temporal interest points in the



27

sequence. The number of interest points can be adjusted by changing the window

size used in non-maximal suppression. The detected interest points are sufficient

for representing the video sequence. There are six human action categories in the

adopted dataset: boxing, handclapping, handwaving, jogging, running and walking.

To illustrate the distribution of extracted spatial-temporal interest points in the video

sequences, Figure 3.4 demonstrates the spatial-temporal interest points in 3-D with

the three axis as x, y and frame. x and y can be regarded as the two-dimensional

image plane, frame is the temporal dimension, in which the frames in video sequences

are accumulated. There is one example figure for each human action category.

3.2.2 Bag of Words Representation of Action Instance

Extract Space-Time Cuboid After the spatial-temporal interest points are de-

tected, small video patches can be extracted around these interest points to form the

descriptors for each action instance. In this project, we extract the 3D space-time

volume instead of 2D patches since cuboid contains spatial-temporally windowed

pixels values and should provide more discriminative information. The size of cuboid

is set to be about six times the scale at which they were detected. Each cuboid is

a very high dimensional data vector due to the considerable amount of pixel values

inside the window.

In our implementation, we generate the cuboid around the interest point detected

by the spatial-temporal interest point detector. Therefore, each cuboid is a three

dimensional array with size 13× 13× 19. Figure 3.5 shows the region of generated

cuboid in one frame of an walking sequence. Figure 3.6 shows a series of continuous

frames inside the extracted cuboid corresponding to the spatial-temporal interest

point in Figure 3.5. As we can see from Figure 3.6, this cuboid is extracted around
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Figure 3.4: Extracted spatial-temporal interest points displayed in 3-D space
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the articulation of the legs and contains the information of local movement of the

legs in a few frames. The other cuboids are extracted around the arms, hands and

shoulders etc. All of the extracted cuboids demonstrate the periodic movement of the

human body, which is a good representation of the human action sequence. Figure 3.7

demonstrates a few other cuboid examples with different pixel intensity patterns in

its original 3D form generated from other spatial-temporal interest points.

Figure 3.5: Extracted region of cuboid in one frame of walking video sequence
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Figure 3.6: Continuous frames of an extracted cuboid

Calculate HOGHOF Descriptor After the cuboid is derived, each video sequence

is represented as a set of space-time volumes within the cuboid extracted around those

spatial-temporal interest points. However, the number of pixels in each cuboid is a

few thousands, which is still relatively large. Thus, the original pixel vector in each

cuboid is not appropriate to perform as the input feature vector to the classification

algorithms. Instead, each cuboid is divided into 3 × 3 × 2 blocks with overlapping.

HOG descriptor with 4 bins and HOF descriptor with 5 bins are calculated for each

block within a cuboid. The derived HOG and HOF descriptors are normalized and

then concatenated into a one-dimensional feature vector with length 162 (HOG: 72,

HOF: 90). The dimensionality of each cuboid is now greatly reduced from a few

thousands to a few hundreds.
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Figure 3.7: Extracted cuboids with different intensity patterns in 3D space

Generate Histogram of Visual Words For each action sequence, a number of

cuboid can be generated after the cuboid extraction. Theoretically, the number of

possible different cuboids is unlimited. However, the number of different types of

cuboid should be relatively small since there are some similarities among the spatial-

temporal interest points even when these interest points are in different human actions.

Therefore, during the process of human action recognition, the exact form of the

HOGHOF descriptor for each cuboid is not important any more, its type matters

instead. The following notion of cuboid actually denotes its corresponding HOGHOF

descriptor.

The K-Means clustering algorithm is applied here to cluster a large number of

cuboid extracted from the training data into a few cuboid prototypes. These cuboid
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prototypes are the visual words in the bag-of-words model. In the clustering phase,

when the algorithm requires a random component, the results are averaged over a few

runs. The cuboid extracted in the test dataset can also be assigned a type from the

cuboid prototype library by finding its nearest neighbor. Now each action sequence

can be represented as a histogram of the visual words in the codebook. The histogram

of visual words can be used as the feature vector in the machine learning framework.

Figure 3.8 shows example of visual words histograms for action instances from different

action classes when the number of clusters is set to be 1000. These visual words

histograms are the actual inputs to the different classification algorithms.

3.2.3 Classification Framework based on Sparse

Representation

Since the feature vector that is used in the machine learning framework is extracted,

the action recognition problem can be simplified as a pure machine learning task. The

conventional machine learning algorithms used in the field of human action recognition

typically include SVM and KNN. However, inspired by the recent research work of

Wright et al.[23], which is about face recognition via sparse representation, we consider

recognizing human actions via this sparse representation based classification (SRC)

technique.

The goal of basic recognition problem is to determine which classes a new test

sample belongs to when giving the labeled training sample from all distinct k classes.

In SRC, we formalize the given ni training samples for the ith class as the columns data

of a matrix Ai = [vi,1,vi,2, ...,vi,ni ] ∈ Rm×ni . In our human action recognition scenario,

each column in this matrix is the visual words histogram with predefined number of

bins which is actually the cluster number determined at the cuboid clustering step.
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Figure 3.8: Examples of visual words histogram for different human actions
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We assume that the training samples from a single human action lie on a subspace

since the subspace model is with enough flexibility to capture the variation in the real

human action datasets. Therefore, we can try to represent the test sample as a sparse

linear combination of training samples. For instance, when enough training samples

from the ith class in a human action dataset are provided: Ai = [vi,1,vi,2, ...,vi,ni ] ∈

Rm×ni , any new test sample y ∈ Rm from the same action class would be approximately

represented as a linear weighted sum of the training samples:

y = αi,1vi,1 + αi,2vi,2 + ...+ αi,nvi,ni , (3.10)

for some coefficients, αi,j ∈ R, j = 1, 2, ..., ni. Since we cannot determine the actual

action class of one test sample y at the beginning of recognition, the matrix A has to

be rewritten to incorporate the n training samples from all the k action classes:

A = [A1, A2, ..., Ak] = [v1,1,v1,2, ...,vk,nk ]. (3.11)

Therefore, the linear representation of the test sample y can be rewritten in terms of

all the training samples which perform as a over-complete dictionary:

y = Ax0 ∈ Rm, (3.12)

where x0 = [0, ..., 0, αi,1, αi,2, αi,ni , 0, ..., 0]T ∈ Rm have zeros entries except those

coefficients associated with the ith class. Therefore, x can be derived by solving the

linear equations y = Ax0. Obviously, if m > n, the system of equation y = Ax0 is

overdetermined thus leading x0 to its unique correct solution. However, in our action

recognition scenario, the dimension of the feature vectors is usually less than 1000, and

the number of training samples are relatively large (more than 1500) due to the large
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size of the human action dataset, making the linear equation system under-determined.

Therefore, the solutions will not be unique. Conventionally, minimum `2-norm solution

is selected to resolve the non-uniqueness:

(`2) : x̂2 = arg min ‖ x ‖2 subject to Ax = y (3.13)

Although this optimization can be easily solved, the solution x̂2 is not discriminative

enough to recognize the test sample y since the non-zero entries of the derived

coefficients vector are dense. The ideal coefficients vector should be sparse since the

test sample only has high correlation with a few training samples in the same class.

Therefore, only a small amount of coefficients are large, the rest of the coefficients are

zero or approximately are zero. This motivates us to find the sparsest solution which

means the coefficients vector with smallest number of non-zero entries is the optimal

solution. The following optimization problem:

(`0) : x̂0 = arg min ‖ x ‖0 subject to Ax = y (3.14)

is the mathematical expression for finding the minimum `0-norm solution. However,

this problem of finding the sparsest solution of under-determined system of linear

equation is NP-hard and even very difficult to approximate. Alternatively, we solve

the following `1-norm minimization problem:

(`1) : x̂1 = arg min ‖ x ‖1 subject to Ax = y (3.15)

This problem can be solved via standard linear programming methods in polynomial

time. In practice, noise cannot be avoided in the real data. The equation 3.12 does
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not hold exactly. Equation 3.12 can be modified as:

y = Ax0 + z (3.16)

to incorporate the effect of dense noise. z ∈ Rm is a noise term with bounded energy

‖ z ‖< ε. The sparse solution can be approximately derived by solving the following

stable `1-minimization problem:

(`1s) : x̂1 = arg min ‖ x ‖1 subject to ‖ Ax− y ‖2≤ ε (3.17)

This problem can be solved via second-core programming[16]. However, since the

above optimization problem is usually solved by converting the primal problem to a

Lagrangian dual problem, the actually algorithm adopted in this thesis project is the

one that solves a `1-regularized least squares problem as indicated in Equation 2.5:

minimize ‖ Ax− y ‖22 +λ ‖ x ‖1.

After the sparse representation x̂1 is recovered via Equation 2.5, we perform

classification on the corresponding test sample y in terms of the closeness between y

and each reproduction of y that is derived by the coefficients associated with all the

training samples in each action class. Here we define δi : Rn → Rn as the function

to select the coefficients only associate with the class i. For x ∈ Rn, δi(x) ∈ Rn

represents the vector whose non-zero entries are the entries associated with the ith

class. Therefore, ŷi = Aδi(x̂1) is the approximation of y only using the coefficients

associated with the ith class. y is classified as an action instance in the class that has

the minimal residual between y and ŷi:

min
i
ri(y) =‖ y − Aδi(x̂1) ‖2 (3.18)
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Algorithm 1 summarizes the complete SRC algorithm.

Algorithm 1 Sparse Representation-based Classification (SRC)

1: Input: a matrix of training samples A = [A1, A2, ..., Ak] ∈ Rm×n for k classes, a
test sample y ∈ Rm, (and an optional error tolerance ε > 0.)
2: Normalize the columns of A to have unit `2-norm.
3: Solve the `1-minimization problem:

x̂1 = arg min ‖ x ‖1 subject to Ax = y (3.19)

Or alternatively, solve

x̂1 = arg min ‖ x ‖1 subject to ‖ Ax− y ‖2≤ ε (3.20)

4: Compute the residuals ri(y) =‖ y − Aδi(x̂1) ‖2 for i = 1, ..., k.
5: Output: identify(y) = argminiri(y).

Figure 3.9 demonstrates the derived sparse coefficient vector after performing

SRC and the calculated residuals in terms of each action class for a boxing action

instance and a walking action instance. As can be observed from Figure 3.9, the

reconstructed two coefficient vectors are quite sparse in terms of the number of the

training samples. Only a small amount of entries in these coefficient vectors are non-

zero. The calculated residuals clearly indicate the correct recognition of corresponding

human action instances.
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Figure 3.9: Human action recognition based on sparse representation
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Chapter 4

System Implementation and

Experiment Results

4.1 KTH Human Action Dataset

The objective of this project is to recognize the categories of the human actions shown

in the video files of the public test dataset. The dataset that is used in the thesis

project is the KTH human motion dataset[31] (Figure 4.1) and can be obtained from

the website http://www.nada.kth.se/cvap/actions/. The KTH human motion

dataset contains six actions (walking, jogging, running, boxing, hand waving and

hand clapping), performed by 25 different actors. There are four different scenarios

for all the sequences in the dataset: outdoors, outdoors with variations, outdoors

with different clothing and indoors. The dataset contains 2391 sequences and all the

sequences were taken over homogeneous backgrounds with a static camera with 25fps

frame rate. Apart from the zooming scenario, the backgrounds are relatively static

with sometimes slight camera movement. The sequences have the spatial resolution of

160× 120 and have a length of four seconds in average. All sequences are stored using

http://www.nada.kth.se/cvap/actions/
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AVI file format. There are 600 video files in total corresponding to all the combination

of 25 performers, 6 action categories and 4 scenarios. Each file contains about four

subsequences, each of which is used as a sequence in the experiments. The subdivision

of each file into sequences in terms of start frame and end frame as well as the list of

all sequences can also be obtained from the website mentioned above.

4.2 Evaluation Methodology

The proposed human action recognition system is evaluated in two manners: Leave

One Out Cross Validation (LOOCV) and Leave Part Out Cross Validation (LPOCV).

In LOOCV, each action instance in the dataset is treated as the test sample, the rest

of the whole action dataset is the training set. The overall accuracy is calculated as the

percentage of right recognition for all the action instances in the dataset. In LPOCV,

the KTH dataset are divided into four groups according to the performing individuals;

Table. 4.1 shows the division of groups. One of the four groups is used as test set and

the rest three are used as training set. For each test set, the recognition accuracy

is calculated; then the overall accuracy is the result combined over all the test sets.

For conditions where there exist random components such as clustering, the accuracy

is the average value over several runs. The accuracies are then put into a confusion

matrix as the final results. To examine the effectiveness of SRC algorithm in the

human action recognition problem, we also perform the experiments with KNN and

SVM in the same conditions. In addition, the computational complexity of SRC, the

effects of the training set size and regularization parameter λ on the overall recognition

accuracy are also investigated.
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Group Performer
1 1 - 6
2 7 - 13
3 14 - 19
4 20 - 25

Table 4.1: The groups for evaluation

Figure 4.1: KTH human action dataset

4.3 Experimental Results and Analysis

4.3.1 Leave One Out Cross Validation

In the first experiment, the LOOCV strategy is adopted to evaluate the effectiveness

of SRC in human action recognition problem. In LOOCV, each action instance is

chosen as the test sample, and the rest action instances are chosen as the test set.

For SRC, the highest recognition accuracy is 96.65% which is achieved when

codebook size is 1000. The corresponding confusion matrix is shown in 4.2.

For KNN, the highest recognition accuracy is 96.16% which is achieved when the
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Figure 4.2: LOOCV recognition accuracy for SRC when codebook size is 1000

codebook size is 750. The corresponding confusion matrix is shown in 4.3.

Figure 4.4 demonstrates the changes of average recognition accuracy in LOOCV

with the variation of codebook size. The average recognition accuracy is examined for

the codebook size varying from 50 to 1000 with the interval set to be 50. As shown

in Figure 4.4, SRC outperforms KNN for most of codebook size. One thing worth

noting is that performing SVM algorithm on the human action recognition problem

in LOOCV is enormously time-consuming because one specific training model of

SVM has to be generated for each different combination of the training samples. The

number of different training models have to be generated is the same as the number

of actions instances in the human action dataset. Therefore, we do not evaluate the

performance of SVM in LOOCV.
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Figure 4.3: LOOCV recognition accuracy for KNN when codebook size is 750
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4.3.2 Leave Part Out Cross Validation

In this experiment, the performance of LPOCV is examined. Each group is regarded

as the test set, the remaining three groups are regarded as the training set. The

overall recognition accuracy is derived by combining the results from the four different

scenarios. Still, the average recognition accuracy is examined for the codebook size

varying from 50 to 1000 with the interval set to be 50. We also compare the performance

among SRC, SVM and KNN.

The highest recognition accuracy for SRC is 89.01% which is achieved when

the codebook size is 1000. The corresponding matrices for the four scenarios are

demonstrated in Figure 4.5.

The highest recognition accuracy for SVM is 87.98% which is achieved when

the codebook size is 950. The corresponding matrices for the four scenarios are

demonstrated in Figure 4.6.

The highest recognition accuracy for KNN is 81.91% which is achieved when

the codebook size is 300. The corresponding matrices for the four scenarios are

demonstrated in Figure 4.7.

The direct comparisons of average recognition accuracy derived from SRC, SVM,

KNN along with the variations of codebook size is shown in Figure 4.8.
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Figure 4.5: Confusion matrices derived from SRC on four different scenarios
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Figure 4.8: Average recognition accuracy comparison for SRC, SVM and KNN.
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Figure 4.6: Confusion matrices derived from SVM on four different scenarios

As shown in Figure 4.8, although SRC achieves lower recognition rate when the

codebook size is very small, SRC demonstrates overall higher recognition rate than

SVM and KNN for most codebook sizes. SRC demonstrates an overall increasing

trend of recognition accuracy with the increase of codebook size. There is obvious

fluctuation of recognition accuracy for SVM when the codebook size increases. For

KNN, the average recognition accuracy decreases a little bit when the codebook

size increase. Therefore, SRC demonstrates better robustness with the variation of

codebook size compared with SVM and KNN. By observing the confusion matrix of
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Figure 4.7: Confusion matrices derived from KNN on four different scenarios

SRC, the performance of SRC algorithm on different human action classes can be

analyzed. SRC derive very impressive recognition accuracy on the action class boxing,

handclapping, handwaving and walking with average recognition accuracy over 95%.

However, the recognition accuracy on action classes jogging and running are relative

low. There are more miss classifications between these two action categories. This is

mainly due to the great similarities shared between these two human actions classes.

Sometimes, it is even difficult for human individuals to discriminate one from the

other since the definitions of jogging and running are not quite clear to some extent.
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4.3.3 Computational complexity analysis with different

visual codebook sizes

The computational complexity of SRC is investigated in terms of the variation of visual

codebook size. The average running time for recognizing one test sample is calculated

based on the total running time for recognizing the whole test dataset. The human

action recognition system is implemented in Matlab and runs on a PC with Dual Core

3.33GHz CPU and 4GB RAM. Figure 4.9 demonstrates the corresponding result. The

average running time shown in Figure 4.9 does not take the computational cost of

video sequence preprocessing into consideration. It is all about the computational

complexity of the classification algorithms. Based on the results shown in Figure

4.9, we can tell that the running time for SRC increases when the visual codebook

size grows. It is approximately a linear relationship between the running time and

the codebook size. When the codebook size is 1000, SRC achieves its maximal

computational complexity, which requires about 3.5 seconds in average to recognize a

test sample. In addition, the direct comparison of the computational complexity for

different algorithms is also demonstrated in Figure 4.9. The KNN and SVM algorithms

indicate similar relationships between the running time and the codebook size as SRC.

However, these two algorithms have much smaller computational complexity than

SRC since SRC needs to do iterations containing the PCG steps many times to finish

the optimization problem which is quite time consuming. Therefore, SRC derives

overall better performance in recognition rate at the cost of increasing computational

complexity.
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Figure 4.9: Comparisons of Average running time for recognizing one test sample with
different codebook sizes

4.3.4 The effect of training sample size on recognition

accuracy

The effect of training set size on average recognition accuracy is also investigated for

SRC and SVM. Since SRC and SVM outperform KNN a lot in LPOCV according

to the experimental results presented in the previous subsection, we do not compare

SRC and SVM with KNN in this experiment. In this experiment, Group 3 is adopted

as the test set. All the possible combination of the remaining three groups are chosen

as the training set. Therefore, there are 7 possible training set combinations which

are shown in Table 4.2.
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Test Set Training Set

Group 3 Group 1

Group 3 Group 2

Group 3 Group 4

Group 3 Group 1, 2

Group 3 Group 1, 4

Group 3 Group 2, 4

Group 3 Group 1, 2, 4

Table 4.2: Different combinations of training set

The codebook size is set to be 500. The average recognition accuracy for SRC and

SVM is shown in Table 4.3.

Test Set Training Set SRC SVM

Group 3 Group 1 84.15% 82.68%

Group 3 Group 2 85.99% 82.54%

Group 3 Group 4 85.85% 79.23%

Group 3 Group 1, 2 88.68% 86.69%

Group 3 Group 1, 4 86.17% 85.57%

Group 3 Group 2, 4 90.24% 87.46%

Group 3 Group 1, 2, 4 89.34% 87.60%

Table 4.3: Comparison of recognition accuracy for SRC and SVM with different

combination of training samples
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To compare the performance of SRC and SVM in terms of the variation of training

set, the mean and standard deviation are calculated for the two groups of recognition

accuracy. For SRC, the mean recognition accuracy is 87.2%, the standard deviation is

2.22%; for SVM, the mean recognition accuracy is 84.54%, the standard deviation is

3.14%. Thus, SRC does not only demonstrate higher average recognition accuracy

than SVM, but also show more robustness with regard to variation of training set

than SVM.

4.3.5 The effect of regularization parameter on recognition

accuracy

The sparse representation based classification (SRC) result is actually derived by

solving an `1-regularized least squares (an extension of `1-minimization problem),

whose mathematical representation is denoted in Equation 2.5.

The term λ in Equation 2.5 is the regularization parameter. The relative tolerance

of the above problem is set to be 0.001, which means that the derived solution would

never be worse than 0.1% suboptimal. We want to investigate the effect of the value

change in regularization parameter on the average recognition accuracy. The average

recognition accuracy is evaluated using the same methodology introduced above,

however, with regularization parameter λ being set to a series of different values from

0.001 to 10. Figure 4.10 demonstrates the corresponding result.

Table 4.4 demonstrates the detailed recognition accuracy with different regulariza-

tion parameters. Through the observation from Figure 4.10 and Table 4.4, we can

draw the conclusion that the overall recognition accuracy does not vary a lot across a

vast range of regularization parameter values. In other words, the performance of SRC

is close to parameter-independent and demonstrates great robustness on the variation
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Figure 4.10: Average recognition accuracy with different regularization parameters

of regularization parameters. Smaller λ results in longer execution time in solving the

`1-regularized least squares. Therefore, larger λ can achieve accelerated running time

and acceptable recognition accuracy without obvious compromise.

λ 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10

Result 88.67% 88.43% 89.01% 88.65% 88.46% 89.02% 88.84% 88.63% 87.78%

Table 4.4: Average recognition accuracy with different regularization parameters
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Chapter 5

Conclusion and Future Work

In this thesis, the human action recognition problem is first examined by investigating

the previously established solutions and then solved from a novel sparse represen-

tation perspective. In this sparse representation framework, each action instance

is represented as a collection of spatial-temporal words. First a large number of

spatial-temporal interest points are extracted in the video sequence. Then, a cuboid is

extracted centered at each spatial-temporal interest points. The histogram of oriented

gradients (HOG) and histogram of flow (HOF) descriptor for the cuboid are computed

and concatenated into a one-dimensional vector. The K-Means clustering algorithm

is used to cluster these cuboid feature vectors into only a few cuboid prototypes

which are called visual codewords. After all the processing, each action instance is

represented as a histogram of the visual codewords. Sparse representation can achieve

great efficiency and performance in classification problems and can be embedded into

machine learning frameworks. We apply this technique in the human action recognition

problem. Each action instance in the test set is represented approximately as a linear

weighted sum of all the action instances in the training set. Since the linear weight

vector is sparse, we can use the convex optimization technique called `1-minimization
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which is widely used in compressed sensing and sparse representation problems to

derive the result. The action category of the test instance is recognized by calculating

the residual between the test instance itself and its corresponding representation using

the action instances in each action class. The test action instance falls into the action

class with the smallest residual. Our proposed human action recognition system is

tested and evaluated on the famous and challenging KTH human motion dataset. The

derived experimental results using our method are compared with the results derived

using conventional machine learning techniques such as K-Nearest Neighbor (KNN)

and Support Vector Machines (SVM) and show that the proposed framework yield

considerable performance improvement in many aspects. In addition to comparison

with SVM and KNN, the computational complexity of SRC, the effects of training set

size and regularization parameters on the performance of SRC are also investigated

thoroughly.

Some future work could be performed to further improve the performance and

results. For instance, better results may be obtained by further tuning the parameters.

Although the HOGHOF descriptor is adopted in the thesis project, the algorithm

gives a framework of action recognition thus making it possible to incorporate other

image descriptors into the framework to investigate the performance of SRC with

regard to different image descriptors. It is also possible to combine more than one

descriptor at the same time and see how they perform. In this project we used

the k-means algorithm to build the visual codebook. It is a relative simple and

straightforward clustering algorithm. More sophisticated clustering algorithms such as

spectral clustering could be utilized to perform the visual codewords clustering. Also,

other extensions of `1-minimization algorithms can be adopted to improve the overall

performance of the human action recognition system.
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