
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

Winter 12-30-2012

ONLINE NONINTRUSIVE CONDITION
MONITORING AND FAULT DETECTION
FOR WIND TURBINES
Xiang Gong
University of Nebraska-Lincoln, soargong@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses

Part of the Electrical and Electronics Commons, Power and Energy Commons, and the Signal
Processing Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Gong, Xiang, "ONLINE NONINTRUSIVE CONDITION MONITORING AND FAULT DETECTION FOR WIND TURBINES"
(2012). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 46.
http://digitalcommons.unl.edu/elecengtheses/46

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses/46?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

ONLINE NONINTRUSIVE CONDITION 

MONITORING AND FAULT DETECTION FOR 

WIND TURBINES  

 

By 

Xiang Gong 

 

A DISSERTATION 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Doctor of Philosophy 

 

Major: Interdepartmental Area of Engineering 

(Electrical Engineering) 

 

Under the Supervision of Professor Wei Qiao 

 

 

Lincoln, Nebraska 

August, 2012 



 

 

ONLINE NONINTRUSIVE CONDITION MONITORING AND FAULT DETECTION 

FOR WIND TURBINES 

Xiang Gong, Ph.D. 

University of Nebraska, 2012 

Advisor:  Wei Qiao 

 The goal of this dissertation research is to develop online nonintrusive condition 

monitoring and fault detection methods for wind turbine generators (WTGs). The 

proposed methods use only the current measurements that have already been used by the 

control and protection systems of WTGs; no additional sensors or data acquisition 

devices are needed. Current-based condition monitoring and fault detection techniques 

have great economic benefits and the potential to be adopted by the wind energy industry. 

However, there are challenges in using current measurements for wind turbine condition 

monitoring and fault detection. First, it is a challenge to extract WTG fault signatures 

from nonstationary current measurements, due to variable-speed operating conditions of 

WTGs. Moreover, the useful information in current measurements for wind turbine 

condition monitoring and fault detection usually has a low signal to noise ratio, which 

makes the condition monitoring and fault detection difficult. 

WTG faults can be classified into two categories: the faults with characteristic 

frequencies (i.e., Type 1 faults) and the faults without characteristic frequencies (i.e., type 

2 faults). For type 1 faults, appropriate demodulation methods have been proposed to 

calculate the frequency and the amplitude of the current measurements. Two 1P-invariant 

power spectrum density (PSD) method have then been proposed to use appropriate 



 

 

resampling algorithms to convert the variable characteristic frequencies of WTG faults in 

the frequency domain of the current demodulated signals to constant values, where 1P 

stands for the shaft rotating frequency of the WTG. An impulse detection method has 

then been designed to find out the excitations in the 1P-invariant PSD of the current 

demodulated signals, where the excitations at the characteristic frequencies of WTG 

faults are extracted as the fault signatures. Finally, a fault signature evaluator has been 

designed to evaluate the WTG condition for fault detection. For Type 2 faults, a wavelet 

filter-based method has been developed to generate the fault index, which is then 

evaluated by a statistical control method-based fault index evaluator for fault detection. 

The proposed methods have been validated by extensive computer simulations and 

experiments for small direct-drive WTGs. 
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Chapter 1 Introduction 

The penetration of wind power has increased greatly over the last decade in the United 

States and across the world. During the first quarter of 2012, the U.S. wind industry 

installed 1,695 megawatts (MW) across 17 states. This brings cumulative U.S. wind 

power capacity installations to 48,611 MW by the end of March 2012. Moreover, there 

are currently over 8,900 MW under construction across 31 states plus Puerto Rico [1]. 

The U.S. Department of Energy has envisioned that wind energy will provide 20% of 

U.S. electricity need by 2030 [2]. The European Wind Energy Association’s scenarios 

show that wind energy will meet 15.7% (230 GW) and 28.5% (400 GW) of European 

electricity demand by 2020 and 2030, respectively [3]. The report of National 

Development and Reform Commission of P. R. China foresees wind power capacity 

reaching 200 GW by 2020, 400 GW by 2030, and 1000 GW by 2050 [4]. 

As the number of wind turbine generators (WTGs) continues to grow, it becomes 

more and more challenging for engineers to do inspection and maintenance for WTGs. 

As many WTGs are situated on high towers, installed in remote rural areas, distributed 

over large geographic regions, exposed to harsh environment, and subject to relatively 

high failure rates [5], inspection and maintenance for the WTGs requires significant effort 

and cost. It was reported [6]-[8] that the maintenance costs for onshore and offshore wind 

turbines are in the order of 10-15% and 20-35%, respectively, of the total cost of the 

electricity generated. On average, each WTG was shut down for 52-237 hours per year 

due to failures [9] caused by manufacturing or installation errors, aging effects, harsh 

environment, variable loading conditions experienced by wind turbine components, etc. 
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Furthermore, additional cost and significant downtime may be caused, if WTGs are not 

maintained timely. For instance, the failure of a $1,500 bearing, if not repaired or 

replaced timely, could result in a $100,000 gearbox replacement, a $50,000 generator 

rewind, and $70,000 in expenses to replace other failed components [10]. For offshore 

WTGs, bad weather conditions, e.g., storms, high tides, etc., can prevent any repair 

actions for several weeks [11]. The downtime of WTGs in turn results in significant 

losses of electric energy production. To make wind energy competitive with traditional 

forms of energy resources for electricity generation, it is necessary to minimize the 

maintenance costs and improve the reliability of WTGs.  

The maintenance methods for WTGs can be divided into three categories: 

corrective maintenance, preventive maintenance, and condition-based maintenance [12]. 

A comparison of the maintenance methods for WTGs is summarized in Table 1.1 [13]. To 

achieve condition-based maintenance, online condition monitoring and fault detection is 

required for WTGs using condition monitoring data. Maintenance service is expected to 

be applied right before a pending failure [14]. Online condition monitoring and fault 

detection is an effective means to not only increase the reliability, but also reduce the 

costs associated with operation and maintenance of WTGs. 
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Table 1.1:  A Comparison of Maintenance Methods. 

Method Advantage Disadvantage 

Corrective 

maintenance 

 Low maintenance costs 

during operation. 

 Components will be used for 

a maximum lifetime. 

 High risk in consequential 

damages resulting in extensive 

downtime. 

 Maintenance scheduling is not 

possible. 

 Spare part logistics is 

complicated. 

 It is likely to have long delivery 

periods for parts. 

 High one-time maintenance cost. 

Preventive 

maintenance 

 Expected downtime is low. 

 Maintenance can be 

scheduled. 

 Spare part logistics is easy. 

 Components will not be used for 

the maximum lifetime. 

 Maintenance costs are higher 

compared to corrective 

maintenance. 

Condition-

based 

maintenance 

 Components will be used 

close to their full lifetime. 

 Expected downtime is low. 

 Maintenance activities can 

be scheduled. 

 Spare part logistics is easy 

given that a failure can be 

detected in an early stage. 

 Reliable information about the 

remaining lifetime of the 

components is required. 

 Additional condition monitoring 

hardware and software are 

required. 

 The market for condition 

monitoring systems within wind 

power industry is not mature. 

 

The goal of this dissertation research is to develop novel current-based methods 

for online nonintrusive condition monitoring and fault detection for WTGs. The proposed 

methods are based on advanced signal processing and statistical analysis techniques. The 

proposed methods use only the generator current measurements that have been used by 
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the control and protection systems of the WTGs; no additional sensors or data acquisition 

devices are needed. Current signals are reliable and easily accessible from the ground 

without intruding the WTGs that are situated on high towers and installed in remote 

areas. The proposed methods are anticipated to be able to detect major failures in WTG 

components, including bearings, blades, generators, and shaft systems. The proposed 

methods can be easily integrated into existing WTG control, protection and monitoring 

systems and can be implemented remotely from the WTGs being monitored. The 

proposed methods provide an alternative to vibration measurement-based condition 

monitoring and fault detection. This will reduce the cost and hardware complexity of 

wind turbine condition monitoring and fault detection systems. The proposed methods 

can also be combined with vibration measurement-based methods to improve the 

accuracy and reliability of wind turbine condition monitoring and fault detection systems. 

When there are problems with vibration measurements, the proposed methods will ensure 

proper condition monitoring and fault detection for the WTGs, including their sensing 

systems. In conclusion, the proposed methods offer an effective means to achieve 

condition-based smart maintenance for WTGs and have a great potential to be adopted by 

the wind energy industry due to their almost no-cost, nonintrusive features. 

This chapter will review common WTG faults and condition monitoring and fault 

detection methods in terms of sensor measurements and signal processing technologies 

used. 

1.1  WTG Faults 

The main components of a WTG that need to be monitored are shown in Figure 

1.1, including blades, rotor and shaft, gearbox, yaw system, and the electric generator. All 
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of these components are inevitably subject to failure during operation of the WTG. This 

section briefly reviews the faults in these main components of the WTG. 

 

Figure 1.1:  Main components of a WTG to be monitored. 

 

1.1.1 Typical faults in wind turbine components 

Blade imbalance and aerodynamic asymmetry are two major faults in WTG 

blades. Blade imbalance can be caused by errors in manufacturing and construction, 

icing, deformation due to aging, or wear and fatigue during the operation of WTGs [15]-

[18]. Components tend to shift and wear in varying degrees over time, causing imbalance 

on the rotating blades. Aerodynamic asymmetry can be caused by several factors, 

including high wind shear and errors in the control mechanism [19]-[21]. If the pitch of 

one blade is slightly different from the other two blades due to errors in the control 

mechanism, the torque on the rotating shaft will not be balanced, leading to aerodynamic 

asymmetry. 
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Faults in the rotor and shaft of a WTG include shaft imbalance, impending cracks, 

shaft bearing faults, etc. The rotor and shaft of a WTG transmit variable mechanical 

energy generated from kinetic energy of wind to the electric generator and is always 

considered an important component for condition monitoring and fault detection of 

WTGs [17], [22], [23]. 

Faults of wind turbine gearboxes include tooth wear or breaks, eccentricity of 

tooth wheels, gearbox bearing faults, etc. [24], [25]. The gearbox has compact structure, 

fixed transmission ratio, great drive torque, complicated load, and changeable state in the 

running process [26]. It reports that gearboxes are considered highly critical for 

maintenance purpose [23]. 

The yaw system of a WTG controls how the tower turns, because as the wind 

direction turns the nacelle needs to adjust itself to face the wind properly [13]. A yaw 

system may be subject to yaw angle offset and wear or break of yaw gear tooth and has a 

high failure rate in WTGs [27]-[29]. 

Currently, most WTGs are equipped with a doubly-fed induction generator 

(DFIG) or a direct-drive permanent-magnet synchronous generator (PMSG). Faults in 

generators include generator rotor damage, bearing faults, stator turn faults, overheating, 

etc. Many technologies have been developed for condition monitoring and fault detection 

of electric machines based on current measurements [30]-[34]. Therefore, electric 

generator faults are not in the scope of this dissertation research. 

Bearing faults constitute a significant portion of all faults in WTGs. As mentioned 

before, bearing faults may occur in rotors and shafts, gearboxes, or generators of WTGs. 
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The experience feedback from the wind energy industry corroborates that bearing failure 

is one of the typical failures in WTGs [10], [23]. According to different stages of the fault 

development process, bearing faults can be categorized into two types [35]: 1) single-

point defect, which is defined as a single and localized defect on an otherwise relatively 

undamaged bearing surface; and 2) generalized roughness, which is a type of incipient 

fault where the condition of a bearing surface has degraded considerably over a large area 

and becomes rough, irregular, or deformed. 

1.1.2 The failure frequency and downtime 

The failure frequency and the associated downtime vary among main components 

of WTGs. To find the most critical components of a WTG, both the failure frequencies 

and the associated downtime of the WTG components should be considered [36]. Since 

wind turbine failure statistics are usually considered a trade secret of wind turbine 

manufacturers, there are few publications discussing failure frequencies and associated 

downtime of wind turbine components. The failure frequencies and associated downtime 

of wind turbine main components are summarized in Table 1.2 according to [5], [13], 

[27], [28], [36]. 
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Table 1.2:  Wind Turbine Failure Statistics. 

Main components Failure frequency distribution Downtime distribution 

Blade 5% - 13.4% 9.4% 

Rotor and shaft N/A N/A 

Gearbox 9.8% - 12% 19.4% 

Yaw system 6.7% - 8% 13.3% 

Generator 5% - 5.5% 8.9% 

 

In Table 1.2, the faults in wind turbine main components at least contribute to 

26.5% to 38.9% of the total faults and 41.9% of the total downtime of WTGs. Moreover, 

gearbox has the most high failure frequency and downtime among the wind turbine main 

components listed in Table 1.2. It should be mentioned that bearing faults are a typical 

type of faults in gearboxes [23], [37]. In WTGs, 40% of failures are related to bearings 

[38]. Therefore, bearing faults have significant contribution to the total faults and 

downtime of WTGs. 

1.2  WTG Condition Monitoring and Fault Detection 

Methods 

According to the sensor measurements used, most methods for condition 

monitoring and fault detection of WTGs can be classified into following categories: 

vibration monitoring, torque monitoring, temperature monitoring, oil/debris analysis, 

acoustic emission monitoring, optical fiber monitoring, and current/power monitoring. 
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The requirements of using these sensors and performance of these sensors are discussed 

in this section and summarized in Table 1.3. 

1.2.1 Vibration monitoring 

Most faults generated in the main components of WTGs cause vibrations of the 

WTGs. The blade or shaft imbalance of a WTG generates vibrations of the nacelle in the 

horizontal direction, due to a larger stiffness in the vertical direction and a smaller 

stiffness in the horizontal direction of the wind turbine tower [39], [40]. It has been 

reported that bolt loosing at the root of a blade would increase the vibration of the wind 

turbine nacelle [41]. A fault, e.g., surface pitting or tooth wear or break, in a gearbox may 

lead to the vibration of the gearbox [25], [42]. A bearing defect can generate a radial rotor 

movement and a shaft torque variation in the WTG, and consequently vibration of the 

wind turbine nacelle [43]-[47]. Therefore, commercial WTG condition monitoring and 

fault detection systems mostly employ vibration-based techniques, which are 

sophisticated, and the sensors and cabling are costly [48]. 

The vibration monitoring has been intensively studied in academia and widely 

used in industrial applications. The standards for vibration-based monitoring, ISO 10816, 

have been well accepted and provide guidance for evaluating vibration severity in electric 

machines operating in the 10 to 200 Hz (600 to 12,000 RPM) shaft rotating frequency 

range [49], [50]. However, one of the major disadvantages of vibration monitoring is high 

cost [51]. The second disadvantage is that vibration sensors are mounted on the surface of 

WTG components, which are situated on high towers and are difficult to access during 

WTG operation. Moreover, the sensors and equipment are inevitably subject to failure, 

which could cause additional problems with system reliability and additional operating 
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and maintenance costs. It has been reported that sensor failures contribute directly to 

more than 14% of failures in WTG systems, and more than 40% of WTG failures are 

related to the failure of sensors [5]. 

1.2.2 Torque monitoring 

Torque oscillations can be detected in a blade or rotor imbalance condition of 

WTGs [20]. Torque monitoring has been utilized to detect the faults of a wind turbine’s 

blades and rotors by measuring the torque on the shaft of the WTG [52]-[54]. Torque 

monitoring has also been applied to detect stator short-circuit faults in the generator of a 

WTG [55]. However, the complexity and cost of using torque monitoring is high. For 

instance, a torque transducer needs to be installed in the shaft in order to measure the 

torque of the wind turbine shaft, which increases the structure complexity of the WTG. 

Therefore, torque monitoring is rarely used in the wind industry. 

1.2.3 Temperature monitoring 

Bearing temperature should be in a certain range during wind turbine normal 

operating conditions. The IEEE standard 841 points out that the stabilized bearing 

temperature rises at the rated load should not exceed 45 °C [56]. Abrupt temperature 

increases while in the ordinary operating condition often means the failure of wind 

turbine bearings [22]. For example, the lack of lubrication will lead to abrupt increases in 

the bearing temperature. Similarly, the temperature of gearbox oil should be in a certain 

range during wind turbine rated operating conditions [57]. Therefore, temperature 

monitoring is able to disclose the health condition of wind turbine bearings and 

gearboxes. The major disadvantage of temperature monitoring is that the measured 

temperature is determined by multiple factors. Research shows that bearing temperature 
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depends on bearing fault, environment temperature, stator current heating, and generator 

rotating speed [58]. Therefore, further analysis is required to find the reason of abnormal 

temperature conditions in WTGs. Since a WTG normally works in rough conditions, the 

environment temperature changes frequently. It is complicated to simply use temperature 

monitoring for bearing and gearbox fault detection of WTGs. 

1.2.4 Oil/debris analysis 

Oil/debris analysis is currently one of the important means of condition 

monitoring in industry [59]. By analyzing the composition, content, size, and 

classification of wear particles in the lubrication oil of wind turbine components, their 

health conditions can be evaluated. In the wind industry, the oil/debris analysis data is 

one of the typical data for condition-based maintenance of WTGs [60]. However, the use 

of oil/debris analysis requires oil for lubrication and/or cooling of wind turbine bearings 

and gearboxes. Therefore, this method only works for high power rating WTGs with oil-

lubricated bearings and gearboxes. For WTGs whose lubrication of bearings and 

gearboxes is sealed inside, oil/debris analysis methods are not practical [61]. 

1.2.5 Acoustic emission monitoring 

Acoustic emission monitoring (from 1 kHz to 2 MHz) can provide a significant 

improvement over vibration monitoring, especially in the situation with high surrounding 

noise [62]. In the wind industry, acoustic emission monitoring is a typical method for 

condition-based maintenance of WTGs [60], [63]. For instance, when a low-speed rolling 

bearing is loaded and stress reaches the limit of the material strength, it will result in a 

slight gap of the failed bearing components to emit some stress to keep energy balance 

[64]. The stress wave generated by a broken bearing can be measured and applied to 
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detect the bearing fault of WTGs [65]. In [66], acoustic emission monitoring has been 

successfully applied to detect wind turbine bearing faults. The disadvantage of acoustic 

emission monitoring is its high cost. Since the frequency of acoustic emission signal is up 

to 100 MHz, sensors and data acquisition equipment are much more expensive than those 

used in other fault detection methods.  

1.2.6 Optical fiber monitoring 

Optical fiber monitoring can detect multiple physical parameters, e.g., 

temperature and strain of wind turbine components. Therefore, more and more attention 

is drawn to apply optical fiber monitoring in the wind industry. An optical fiber sensor 

system has been used to detect the structural states of wind turbine blades for condition-

based maintenance [67]. To prevent consequential damages due to lightning on WTGs, 

the optical fiber monitoring has also been used for WTG lighting detection [68]. 

However, the optical fibers need to be mounted on the surface or embedded into the body 

of WTG components being monitored. Therefore, optical fiber monitoring is more 

complicated in real-world applications compared to other condition monitoring and fault 

detection methods. 

1.2.7 Current/power monitoring 

Current/power monitoring uses WTG current and/or voltage measurements that 

have been used by the control system of the WTG; no additional sensors or data 

acquisition equipment is needed. Moreover, current and/or voltage signals are reliable 

and easily accessible from the ground without intruding the WTGs. Therefore, 

current/power monitoring, as a nonintrusive monitoring method, has great economic 

benefits and potential to be adopted by the wind power industry. Some research has been 
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done on bearing fault detection of WTGs by using current measurements. For example, 

current measurements have been applied for bearing fault detection of DFIG and PMSG 

wind turbines [69]-[71]. Power measurements have also been used for bearing fault and 

generator fault detection of WTGs [72]. Ice accumulation on WTGs can be estimated by 

using d−q axis components of the WTG currents [73]. It has been reported that wind 

turbine blade faults can be successfully detected by using current measurements or power 

measurements [15], [74]. Moreover, current and power measurements have been used 

together for wind turbine rotor imbalance fault detection and gearbox failure detection 

[55], [75]. 

However, there are still challenges in using current and/or voltage signals for 

wind turbine condition monitoring and fault detection. First, the useful information in 

current and/or voltage signals has nonstationary statistics [18], due to the variable-speed 

operating condition of WTGs [76], [77]. It is a problem to extract WTG fault signatures 

from nonstationary current and/or voltage signals by using traditional spectrum analysis 

methods. Moreover, the dominant components of current and voltage signals are the 

fundamental-frequency component. Therefore, the useful information in current and 

voltage signals for wind turbine condition monitoring and fault detection usually has a 

low signal-to-noise ratio (SNR), which makes the condition monitoring and fault 

detection difficult. 
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Table 1.3:  Summary of WTG Condition Monitoring and Fault Detection Methods 

Monitoring methods 
WTG components that 

can be monitored 
Major disadvantages 

Vibration monitoring 
Blade, gearbox, bearing, 

generator 
High cost, intrusive 

Torque monitoring Blade, shaft, generator 
High cost, high complexity, 

intrusive 

Temperature monitoring 
Gearbox, bearing, 

generator 

Multiple factors affect sensor 

outputs, intrusive 

Oil/debris analysis Gearbox, bearing 

Only for oil cooled or 

lubricated components, 

intrusive 

Acoustic emission 

monitoring 
Bearing, blade, gearbox High cost, intrusive 

Optical fiber monitoring Blade High complexity, intrusive 

Current/power monitoring 
Blade, gearbox, bearing, 

shaft, generator 
Low SNR 

 

1.3  Current-Based Condition Monitoring and Fault Detection 

Techniques 

As mentioned in Section 1.2.7, the current signals of WTGs are not acquired for 

condition monitoring and fault detection in the existing WTG systems. The useful 

information in current signals for wind turbine condition monitoring and fault detection 

usually has a low SNR. Therefore, it is much more difficult to use current signals than 

other signals, i.e. vibration signals, for wind turbine condition monitoring and fault 
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detection. Advanced signal processing and statistical analysis techniques need to be 

developed for online nonintrusive condition monitoring and fault detection of WTGs 

using generator current measurements. This section will summarize the current-based 

condition monitoring and fault detection system for WTGs proposed in this dissertation. 

The signal processing techniques, which have already been applied in wind turbine 

condition monitoring and fault detection systems, will be reviewed. 

Several signal processing techniques, e.g., the classical power spectral density 

(PSD) analysis, wavelet analysis, demodulation methods, and Hilbert-Huang transform, 

are the candidates for current-based condition monitoring and fault detection of WTGs. 

The PSD analysis is a classical method in the area of signal processing. The 

definition of this method can be found in many textbooks of signal processing. The PSD 

analysis has been widely used to find the excitations generated by fault components at the 

fault characteristic frequencies for condition monitoring and fault detection of WTGs,. In 

[17], [18], [20], [39], [41], [74], [78], the characteristic frequency of blade imbalance was 

found by using the PSD method based on current or vibration measurements. In [46], 

[79]-[82], the PSD method has been successfully applied to extract the characteristic 

frequencies of bearing faults for the generators of WTGs and electric machines based on 

current or vibration measurements. In 1995, it was firstly reported that the PSD method 

can be applied for bearing fault detection by using current signals of electric machines 

[43]. 

Wavelet analysis offers a powerful tool for feature extraction, data compression, 

and noise reduction in processing nonstationary signals [83]. Wavelet analysis has 
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already been applied for fault detection of WTGs and electric machines owing to its 

capability of frequency analysis for nonstationary signals. Rotor circuit imbalance fault of 

a WTG has been detected by using wavelet analysis during variable shaft rotating speed 

conditions [45]. That paper also mentioned that bearing faults of WTGs can also be 

detected by using the same method. It was reported in [84] that unbalanced stator 

windings of WTGs could be found by using a wavelet-based method. In [64], [85], [86], 

wavelet analysis has been applied for detection of broken rotor bars and bearing faults in 

electric machines. The gearbox faults of WTGs have also been analyzed by using the 

wavelet method [87]-[90]. It has been reported that both mechanical and electrical fault-

like perturbations were successfully detected by using a continuous wavelet transform 

method for the wind turbines equipped with a DFIG and a PMSG [48], [91]. 

Demodulation methods, consisting of amplitude demodulation and frequency 

demodulation, can separate the useful information related to a WTG fault from the 

dominant components in the current signals to facilitate fault signature extraction. It has 

been proved that amplitude demodulation methods are able to discover bearing faults via 

stator current measurements for wind turbines equipped with DFIGs [70], [71], [92]. In 

other papers [93], [94], fundamental frequencies of stator currents were used for electric 

machine bearing fault detection. Fundamental frequencies are actually frequency 

demodulated signals of stator currents. The amplitude demodulation method based on 

Cepstrum and Hilbert transform has also been reported for fault detection of wind turbine 

gearboxes [95]. 

Hilbert-Huang transform can characterize both nonstationarity and nonlinearity of 

a signal [96], [97]. Recognition of the types of defects in gearboxes and blades of WTGs 
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has been developed by using Hilbert-Huang transform, which converts the measured 

current signals into time-frequency domain for analysis [98]. In [66], Hilbert-Huang 

transform was used to characterize the acoustic emission signals released from a wind 

turbine bearing. Demagnetization in PMSG has also been diagnosed by using Hilbert-

Huang transform via current measurements [99]. 

The features of the aforementioned signal processing methods are listed in Table 

1.4. The classical PSD analysis can identify WTG faults based on their characteristic 

frequencies in the measured signals. However, this capability is only available for 

stationary signals. As mentioned in Section 1.2.7, the measured current signals of WTGs 

are normally nonstationary. Therefore, the PSD analysis is able to be applied directly for 

condition monitoring and fault detection of WTGs. Wavelet analysis, demodulation 

methods, and Hilbert-Huang transform are able to extract WTG fault signatures from 

nonstationary signals. However, they cannot clearly identify WTG faults from 

interferences that have similar patterns as the faults in the time or frequency domain. 

Furthermore, these methods usually have low resolution and require high computational 

resources compared to the PSD analysis. Therefore, a computationally efficient, highly 

sensitive signal processing method is desired for current-based online condition 

monitoring and fault detection for WTGs operating in variable-speed conditions. 
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Table 1.4:  Features of Signal Processing Methods. 

Signal processing methods 
Faulted components 

detected in WTGs 
Major disadvantages 

PSD analysis Blade, bearing 
Only for constant rotating 

speed WTGs 

Wavelet analysis Generator, gearbox 
Low resolution in frequency 

domain 

Demodulation methods Bearing, gearbox Low accuracy 

Hilbert-Huang transform Blade, bearing, gearbox 
Require high computational 

resources 

 

1.4  Current-based condition monitoring and fault detection 

of WTGs 

Wind turbines equipped with DFIGs or PMSGs are used in most large wind 

power plants. Compared to fixed-speed WTGs, the use of DFIG wind turbines increases 

wind energy capture capability, reduces stresses of the mechanical structure, mitigates 

acoustic noise, and make the active and reactive power controllable for better grid 

integration [100], [101]. For PMSG wind turbines, less maintenance, higher efficiency, 

and better performance are the major advantages to make them a more attractive choice 

among different types of wind turbine systems [102], [103]. 

This dissertation research focuses on condition monitoring and fault detection of 

the mechanical components, including bearings, blades, and shafts, of the wind turbines 

equipped with DFIGs and PMSGs. The stator current signals of PMSGs and the rotor 

current signals of DFIGs, which are always used for controlling WTGs, are used for 
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condition monitoring and fault detection. The WTG faults considered in this research are 

classified into two types: Type 1 faults, which have specific characteristic frequencies in 

the frequency spectra of the current signals, and Type 2 faults, which are incipient faults 

without any characteristic frequency in the frequency spectra of the current signals. The 

schematic diagram of the proposed wind turbine online nonintrusive condition 

monitoring and fault detection system is shown in Figure 1.2. The current measurements 

are firstly processed such that the information of WTG faults can be easily extracted from 

these measurements. The signatures of bearing faults, blades imbalance, and shaft 

imbalance, etc., are then extracted from the fault information contained in the current 

measurements. Then, based on the results of fault signature extraction, the physical 

condition of wind turbine components is estimated. This information will be used to 

schedule maintenance for the WTG.  

 

Figure 1.2:  The proposed online nonintrusive condition monitoring and fault detection 

system for WTGs. 
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The dissertation is organized as following. Chapter 2 will analyze the frequency 

and amplitude modulation of current signals in WTG fault conditions, and introduce the 

corresponding demodulation methods to facilitate WTG fault detection. Chapter 3 will 

propose novel PSD methods of using nonstationary generator current signals for online 

condition monitoring and fault detection of WTGs operating in variable-speed conditions. 

Chapter 4 will propose a novel wavelet filter-based method for WTG incipient bearing 

fault detection using generator current measurements. Chapter 5 will propose an impulse 

detection method to detect WTG faults, which generate excitations at the fault 

characteristic frequencies in the 1P-invariant PSDs of the current demodulated signals, 

and introduce a statistical control method to design a fault index evaluator to detect the 

Type 2 WTG faults. In Chapter 6, simulation and experimental setups will be described to 

facilitate other researchers to verify the methods proposed in this dissertation research. 

Simulation and experimental results will be presented in Chapter 7 to verify the proposed 

methods for online nonintrusive condition monitoring and fault detection of WTGs. 
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Chapter 2 Current Signals in WTG Fault 

Conditions 

In previous research, current signals have been used directly for fault detection of electric 

machines. The harmonics of current signals are analyzed and used for generator fault 

detections, including broken rotor bars, unbalanced voltages, stator winding faults, and 

eccentricity problems [104], [105]. In electric machines, the generalized roughness of 

bearings can be detected by using the increasing energy of current signals in high 

frequencies bands [35], [106]-[109].  

A fault in a WTG may cause radial rotor movement and shaft torque variation of 

the WTG. These fault effects will modulate the amplitude and frequency of the generator 

current signals of the WTG. In has been reported that a bearing fault would generate 

stator current amplitude modulation in electric machines [43], [110]-[112]. According to 

[44], [113], a bearing fault of electric machines also leads to stator current frequency 

modulation. In a PMSG wind turbine, imbalance faults of the blades or rotor usually 

generates stator current frequency modulation [74]. The modulation of the current signal 

can be used for gearbox fault detection in electric machines and DFIG wind turbines [24], 

[95].  

The current signal C of a healthy WTG can be modeled as follows: 

C = I1∙sin(2π∙f1∙t + φ1) + C
n
                                            (2.1) 

where t is the time index in second; I1, f1 and φ1 are the amplitude, frequency and phase 

of the fundamental component of the current signal, respectively;  C
n
 represents the high 
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order harmonics in the current signal. The modulated current signal Cf of a faulted WTG 

can be modeled as: 

Cf = (I1 + If) ∙sin[2π∙(f1 + ff)∙t + (φ1 + φf)] + C
n
 + Hf                              (2.2) 

where If, ff and φf are the current components due to amplitude modulation, frequency 

modulation and phase modulation generated by WTG faults, respectively; Hf is the 

harmonics and other excitations of the current signal in WTG fault conditions. One of the 

major objectives of online nonintrusive WTG condition monitoring and fault detection is 

to detect If, ff, φf and Hf, which are the signatures of the WTG fault in the current signal. 

This chapter will analyze the frequency and amplitude modulation of current signals in 

WTG fault conditions. The corresponding demodulation methods to facilitate fault 

detection will then be introduced. 

2.1  Modulation of Wind Turbine Current Signals 

In WTG fault conditions, current signals usually suffer amplitude modulation and 

frequency modulation generated by the effects of faults. The effects of faults include 

radial rotor movement and shaft torque variation of the WTGs. Radial rotor movement is 

the eccentricity of the wind turbine rotor generated by the fault. Shaft torque variation 

stands for the torque oscillation in the wind turbine shaft generated by the fault. The 

former has only been reported for bearing fault detection of WTGs. Furthermore, the 

effect of a radial rotor movement is negligible in some real applications of bearing fault 

detection [94]. This section will focus on the modulation of current signals by shaft 

torque variation generated by WTG faults. 
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2.1.1 Torque variation generated by WTG faults 

As examples, the torque variations generated by WTG blade imbalance, 

aerodynamic asymmetry and bearing faults are discussed in this section. The blade 

imbalance fault stands for that the mass distribution of one blade is different from others. 

When a blade imbalance fault occurs on the shaft of a WTG, a torque variation will be 

induced in the shaft, which in turn will induce vibrations in the shaft rotating frequency 

fr , which is named as 1P frequency, of the WTG and generate vibrations of the wind 

turbine nacelle. Figure 2.1 shows the effect generated by a blade imbalance fault, where 

mR is the equivalent imbalance mass; rR is the distance between the equivalent imbalance 

mass and the center of the shaft; and ωr is the angular shaft rotating speed. When the 

equivalent imbalance mass rotates from the top to the bottom of the rotating plane, the 

power of gravity increases the torque on the shaft. On the other hand, when the 

equivalent imbalance mass rotates from the bottom to the top of the rotating plane, the 

power of gravity decreases the torque on the shaft. Consequently, the shaft torque 

vibrates at the frequency of 1P or fr. Furthermore, the centrifugal force generated by the 

imbalance mass leads to vibration of the WTG at the frequency of fr due to a larger 

stiffness in the vertical direction and a smaller stiffness in the horizontal direction of the 

WTG [39]. 
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Figure 2.1:  Effect of a blade imbalance fault. 

 

Aerodynamic asymmetry occurs when the force affected on one blade is different 

from those on other blades. A fault in the pitch control system may introduce an 

aerodynamic asymmetry in the WTG. Aerodynamic asymmetry along with yaw error, 

wind shear, or tower shadow together influences the shaft torque of the WTG. For 

example, Figure 2.2 shows the effect of an aerodynamic asymmetry caused by wind 

shear, where Fwind is the force of the wind flow affected on the blades; Ft is the force of 

the wind flow affected on the blade that is on the top of the rotating plane; Fb is the force 

of the wind flow affected on the blade that is at the bottom of the rotating plane. The 

amplitude of Ft is always greater than that of Fb due to the effect of wind shear, which 

follows the following power law: 
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                                                      (2.3) 

where U(z) and U(zr) are wind velocities at height z and the reference height zr, 

respectively; and αe is the power law exponent, which is approximately 1/7 [114]. 

Normally, a blade has the largest load caused by Ft and the smallest load caused by Fb. 
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Therefore, a vibration at the 3P frequency, which is the frequency of 3×fr, is produced in 

the shaft torque by wind shear in a balanced wind turbine with three blades. In the case of 

an aerodynamic asymmetry, a blade of the WTG has different Ft and Fb from the other 

two blades. As a result, the acceleration and deceleration of the imbalanced blade produce 

a vibration at the 1P frequency in the shaft torque of the WTG. On the other hand, the 

other two blades have different Ft and Fb from the imbalanced one. As a result, a 

vibration also appears at the 2P frequency, which is the frequency of 2×fr, in the shaft 

torque of the WTG. 

 

 

Figure 2.2:  Effect of an aerodynamic asymmetry caused by wind shear. 

 

A WTG bearing fault also modulates the current signal. The configuration of a 

ball bearing is shown in Figure 2.3, where Db is the ball diameter; Dc is the pitch 

diameter; and θ is the ball contact angle, which is normally zero. If there is a fault in the 

outer race of the ball bearing, a torque variation will be generated due to the high friction 

at the fault point in the outer race compared to other parts of the outer race. Each time a 

ball passes through the fault, a mechanical resistance will appear when the ball tries to 

Fwind

Ft

Fb
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leave the fault. The consequence is a small increase of the load torque at each contact 

between the fault and the bearing balls [44]. The characteristic frequencies of the torque 

variation generated by WTG bearing faults depend on the bearing geometry and the 1P 

frequency of the wind turbine. The theoretical characteristic frequencies of the typical 

four types of single-point bearing faults in vibration measurements are given below [115], 

[116]: 
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where fi is the characteristic frequency of an inner-race fault; fo is the characteristic 

frequency of an outer-race fault; fb is the characteristic frequency of a ball fault; fc is the 

characteristic frequency of a cage fault; fr is the rotating frequency of the bearing; and NB 

is the number of balls in the bearing. 
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Figure 2.3:  Configuration of a ball bearing. 

 

2.1.2 Current modulation generated by torque variation 

Suppose that a WTG fault leads to a shaft torque variation at the frequency of 

ffault, where ffault can be 1P, 2P, fi, fo, etc., depending on the types of the WTG faults. The 

WTG current signals are frequency and amplitude modulated by the shaft torque 

variation at the corresponding characteristic frequency ffault, which is analyzed below. 

The shaft torque of a faulted WTG can be modeled as follows: 

T(t) = T0(t) + Tv∙cos(2π∙ffault∙t)                                            (2.8) 

where T is the torque on the wind turbine shaft; T0 is the torque due to variable wind 

power; Tv is the amplitude of the shaft torque variation created by the WTG fault. The 

shaft torque variation has a characteristic frequency of ffault, which is assumed to be 

constant in steady-state operation of the WTG, where the steady state stands for that the 

shaft speed varies slowly due to variable wind power. 
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If the shaft system of the WTG is simply represented by a one-mass model, the 

motion equation is given by [117]: 

( )
( ) ( ) ( )r

e r

d t
J T t T t D t

dt


                                            (2.9) 

ωr(t) = 2π∙fr(t)                                                     (2.10) 

where J is the total inertia constant of the WTG; ωr is the angular shaft rotating speed of 

the WTG; dωr(t)/dt is the angular acceleration; Te is the electric torque of the WTG; and 

D is the damping coefficient, which is approximately zero. If the WTG with the fault is 

operated at steady state, the electric torque Te can be expressed by: 

Te(t) = Te.0(t) + Te.v∙cos(2π∙ffault∙t + φe)                                    (2.11) 

where Te.0 and Te.v∙cos(2π∙ffault∙t + φe) are the electric torques induced by T0 and 

Tv∙cos(2π∙ffault∙t), respectively; φe is the phase shift between the torque variations in the 

shaft and in the generator created by the WTG fault. Therefore, the angular shaft rotating 

speed is derived from (2.8), (2.9) and (2.11): 
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where 

Tf∙cos(2π∙ffault∙t + φf) = Tv∙cos(2π∙ffault∙t) – Te.v∙cos(2π∙ffault∙t + φe)                (2.13) 

Tf = {[Tv – Te.v∙cos(φe)]
2
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2
}

1/2
                               (2.14) 
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The angular shaft rotating speed can then be calculated by integrating the right-hand side 

of (2.12), given by: 

 .0 0 .0

1 1
( ) [ ( ) ( )] cos(2π )r r e f fault ft T t T t dt T f t dt

J J
                

         (2.16) 

Equation (2.16) can be rewritten as: 

ωr(t) = ωr.0 + ωr.w(t) + ωr.v∙sin(2π∙ffault∙t + φf)                               (2.17) 

where ωr.0 is the constant component of the angular shaft rotating speed due to the 

integration operation; ωr.w is the angular shaft rotating speed generated by the variable 

wind power; ωr.v is the amplitude of the excitation in the angular shaft rotating speed due 

to the WTG fault. ωr.w and ωr.v are expressed as follows: 
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Using (2.10), the shaft rotating frequency of a WTG with a fault can be modeled 

as: 

fr(t) = fr.w(t) + fr.v∙sin(2π∙ffault∙t + φf)                                       (2.20) 

where 
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If the WTG system is equipped with a PMSG, the relationship between the shaft 

rotating frequency and the fundamental frequency f1 of the stator current signal is given 

below: 

f1(t) = p × fr(t)                                                        (2.23) 

where p is the number of pole pairs of the PMSG. Using (2.20) and (2.23), the 

fundamental frequency of the stator current signal is: 

f1(t) = p∙fr.w(t) + p∙fr.v∙sin(2π∙ffault∙t + φf)                                    (2.24) 

Therefore, the stator current signal Cs of the PMSG can be modeled as follows: 

. .( ) ( ) sin{2π [ ( ) sin(2π )] }s s r w r v fault fC t I t p f t p f f t dt                          (2.25) 

where the harmonics of the stator current Cs are not considered due to their low 

magnitudes compared to the fundamental-frequency component; Is is the amplitude of the 

stator current signal. It shows that the stator current signal of a direct-drive PMSG wind 

turbine is frequency modulated by the shaft torque variation generated by the WTG fault. 

The amplitude of the voltage Es induced in a given stator phase of a PMSG is 

shown below [118]: 

Es(t) = K∙ϕ∙f1(t)                                                     (2.26) 

where K is a constant representing the structure of the PMSG; ϕ is the total flux in the 

PMSG. The amplitude of the phase current Is is: 
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                                                    (2.27) 
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where Zs is the equivalent complex impedance of the generator stator circuit and the 

external circuit or load to which the PMSG is connected. According to (2.24), (2.26) and 

(2.27), the amplitude of the stator current signal Is can be presented as: 

Is(t) = Is.w(t) + Is.v(t)∙sin(2π∙ffault∙t + φf)                                    (2.28) 
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It shows that the stator current signal of the PMSG is amplitude modulated by the shaft 

torque variation created by the WTG fault. 

If the WTG system is equipped with a DFIG, the relationship between the shaft 

rotating frequency and the electrical frequency frotor of the rotor current signal is given 

below: 

frotor(t) = p × fr(t) – fsyn                                                (2.31) 

where p is the number of pole pairs of the DFIG; fsyn is the frequency of the DFIG stator 

current, which is normally constant at 50 Hz or 60 Hz. Using (2.20) and (2.31), the 

electrical frequency of the rotor current signal is: 

frotor(t) = p∙fr.w(t) + p∙fr.v∙sin(2π∙ffault∙t + φf) – fsyn                            (2.32) 

Therefore, the rotor current signal Cr of the DFIG can be modeled as follows: 

. .( ) ( ) sin{2π [ ( ) sin(2π ) ] }r r r w r v fault f synC t I t p f t p f f t f dt                       (2.33) 
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where Ir is the amplitude of the rotor current signal. It shows that the rotor current signal 

of a DFIG wind turbine is frequency modulated by the shaft torque variation generated by 

the WTG fault. 

The amplitude of the induced rotor voltage Er in a DFIG is [118]: 

Er(t) = – s∙Er0                                                        (2.34) 

( )rotor
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f


                                                         (2.35) 

where s is the slip of the DFIG; Er0 is the magnitude of the induced rotor voltage at 

locked-rotor conditions, which is a constant at a given stator voltage level. The amplitude 

of the DFIG rotor current Ir is: 
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                                                      (2.36) 

where Zr is the equivalent complex impedance of the DFIG rotor circuit and the external 

circuit to which the DFIG rotor windings are connected. According to (2.31), (2.34), 

(2.35) and (2.36), the amplitude of the rotor current signal Ir can be presented as: 

Ir(t) = Ir.w(t) + Ir.v(t)∙sin(2π∙ffault∙t + φf)                                    (2.37) 
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It shows that the rotor current signal of the DFIG is amplitude modulated by the shaft 

torque variation created by the WTG fault. 
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2.2  Demodulation Methods for Current Signal 

As mentioned in Section 2.1, the torque variation generated by a WTG fault 

always modulates the frequency and amplitude of the WTG current signals. Therefore, 

appropriate demodulation methods which separate the useful information related to the 

WTG fault from the dominant components in the WTG current signals can facilitate the 

extraction of fault signatures from the current signals. Instead of using WTG current 

signals directly, the current demodulated signals are applied for online nonintrusive 

condition monitoring and fault detection. 

According to (2.25), (2.29), (2.33) and (2.37), the stator current Cs of a PMSG 

and the rotor current Cr of a DFIG are expressed in (2.40) and (2.41), respectively: 

( ) ( ) sin[2π ( ) ]s s rC t I t p f t dt                                        (2.40) 

( ) ( ) sin{2π [ ( ) ] }r r r synC t I t p f t f dt                                  (2.41) 

Therefore, both frequency and amplitude demodulation methods can be used to discover 

the excitations in fr(t), Is(t) and Ir(t)  created by the WTG fault.  

2.2.1 Amplitude demodulation by using square law 

The square law is a classical method for amplitude demodulation or envelope 

detection [119]. For online nonintrusive condition monitoring and fault detection of 

WTGs, the square law can be used to extract the variable amplitudes of the current 

signals. The analysis of using the square law for the fault modulated stator current signals 

is given below. 



34 

 

According to (2.28), the current signal of a WTG equipped with a PMSG in (2.40) 

can be rewritten as: 

Cs(t) = [Is.w(t) + Is.v(t)∙sin(2π∙ffault∙t + φf)]∙sin[θ(t)]                             (2.42) 

where 

( ) 2π ( )rt p f t dt                                                      (2.43) 

Apply the square law to the signal Cs: 

Cs(t)
2
 = {[Is.w(t) + Is.v(t)∙sin(2π∙ffault∙t + φf)]∙sin[θ(t)]}

2
                        (2.44) 

Rewrite (2.44) by using trigonometric functions and sort the components form low 

frequency to high frequency: 

2 2

, , ,

1
( ) ( ) ( ) sin(2 ) ( ) cos(4 2 )

4

n

s DC s w s v fault f s v fault fC t I I t I t f t I t f t I                  (2.45) 

where IDC is the constant component of Cs
2
; I

n
 stands for the high-frequency components 

of Cs
2
. The second component in (2.45) is an excitation due to the shaft torque variations 

created by the WTG fault. The third component in (2.45) is the second harmonic of the 

excitation generated by the shaft torque variations. Both terms can be easily separated 

from other components of Cs
2
 that are not related to the WTG fault by using frequency 

spectrum analysis. Since the fundamental-frequency component is the dominant 

component in the stator current signals, the amplitude of Is.w(t) is much larger than that of 

Is.v(t). Therefore, the second harmonic of the excitation generated by the WTG fault 

usually has a lower magnitude than the second component in (2.45) and can be neglected. 
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2.2.2 Amplitude demodulation by using Hilbert transform 

Considering measured current data C(n), n = 1, 2, 3, … N, where N is the length 

of C(n), the discrete Hilbert transform of C(n) is given by [120]: 

ℋ [C(n)] = ℱ −1
{ ℱ [C(n)]∙u(n)}                                         (2.46) 

where ℱ () and ℱ −1
() stand for the fast Fourier transform (FFT) and inverse FFT (IFFT), 

respectively; and u(n) is defined as: 

1, 0, / 2
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u n n N

n N N
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  
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                                        (2.47) 

The amplitude of C(n), which is presented by I1(n), can be calculated by using the Hilbert 

transform of C(n): 

I1(n) = {C
2
(n) + {ℋ [C(n)]}

2
}

1/2
                                        (2.48) 

It needs to be pointed out that Hilbert transform cannot be used to calculate the 

amplitude of an arbitrary time series. The C(n) need to be an intrinsic mode function 

component, which is defined as any time series having the same number of zero-

crossings and extrema, and also having symmetric envelopes defined by local maxima 

and minima, respectively [121]. Since the dominant component of the measured current 

data C(n) is sinusoidal, C(n) meets the requirement to be an intrinsic mode function 

component. Therefore, Hilbert transform can be used for amplitude demodulation of the 

measured current data C(n) for condition monitoring and fault detection of the WTG. 

Using the square law for amplitude demodulation of current signals requires low 

computational resources compared with using Hilbert transform. However the Cs(t)
2
 in 
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(2.45) have the components I
n
, which may interfere with the amplitude demodulation of 

the current signals. The Hilbert transform-based method leads to a better performance for 

amplitude demodulation. 

2.2.3 Frequency demodulation by using phase lock loop 

The frequency of the current signal of a WTG can be calculated by using the 

phase lock loop (PLL) method [122], which has been widely applied in control systems 

of electric machines. A PLL is designed in this research, as shown in Figure 2.4. Firstly, 

the Hilbert transform is used to calculate the instantaneous amplitude of the measured 

current data C(n). The current measurement is then normalized by the calculated 

amplitude. The normalization eliminates the interference generated by the variable 

amplitude of the current signal. A modified mixer phase detector-based PLL is applied to 

calculate the stator current fundamental frequency f1 of a PMSG or the rotor current 

electrical frequency frotor of a DFIG [123]. A proportional integral derivative (PID) 

module is employed as the lowpass filter in the proposed PLL. The fundamental 

frequency f1 or electrical frequency frotor is the frequency demodulation signal of the 

measured current data C(n). 

 

 



37 

 

 

Figure 2.4:  The proposed PLL method for signal frequency demodulation. 

 

The PLL algorithm has already been embedded into microcontrollers and 

dedicated chips [122], [124]. Therefore, using the PLL method for frequency 

demodulation of WTG current signals does not require additional hardware or 

computational resource. 
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Chapter 3 1P-Invariant PSD Method 

As mentioned in Chapter 1, the classical PSD analysis can identify WTG faults based on 

their characteristic frequencies in the frequency domain of processed signals. For 

instance, the characteristic frequency of a blade imbalance fault in the WTG shaft torque 

is the shaft rotating frequency fr [18], [20], [74]; the characteristic frequencies of a 

bearing single-point fault in vibration measurements depend on the bearing geometry and 

rotating frequency, as listed in (2.4)-(2.7). The classical PSD analysis can be applied to 

detect these characteristic frequencies for WTG condition monitoring and fault detection. 

However, this capability is only available for stationary signals. This chapter proposes 

novel PSD methods of using nonstationary generator current signals for online condition 

monitoring and fault detection of WTGs operating in variable-speed conditions. 

3.1  1P-Invariant PSD Method 

Since the WTG fault characteristic frequencies vary with shaft rotating speed, 

which is variable when a WTG operates in variable-speed conditions [125], it is difficult 

to extract the fault signatures from the nonstationary current demodulated signals of the 

WTG by using classical spectrum analysis methods [18], [45], where the fault signatures 

are typically the excitations of the frequency spectra of the current demodulated signals at 

the fault characteristic frequencies. However, as mentioned in [18], [43], [44], if a WTG 

rotates at a constant speed, the classical PSD analysis could extract the signatures of 

WTG faults effectively. Therefore, if the WTG current demodulated signals are 

preprocessed in a way such that the variable shaft rotating frequency of the WTG is 

converted to a fixed value, the classical PSD analysis then can be used to detect the faults 
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of the WTG in variable-speed operating conditions. The proposed method, named 1P-

invariant PSD method, is presented and verified by using artificial data in the following 

sections. 

3.1.1 Proposed 1P-invariant PSD method 

WTG current signal is the only required measurement in the proposed method. 

The current signal is firstly demodulated by using the methods presented in Section 2.2. 

Define Ωr the normalized frequency of the WTG shaft rotating frequency or 1P frequency 

signal, which is calculated from the current measurements; and define fs the sampling 

frequency of the current measurement. The relationship among fr, fs and Ωr can be written 

as: 

( ) ( )

2

r r

s

t f t

f





                                                     (3.1) 

where Ωr(t) is expected to be constant for the subsequent PSD analysis. Therefore, if the 

sampling frequency fs is changed continuously with fr(t) to make the right-hand side of 

(3.1) constant by resampling the current demodulated signal, Ωr(t) will become constant. 

Then classical PSD analysis can then be applied for the extraction of WTG fault 

signatures, in which the sampling frequency of the resampled current demodulated 

signals is treated as a constant value. Therefore, the shaft rotating frequency and the 

consequent WTG fault characteristic frequency are both constant values in the PSD of the 

resampled current demodulated signal. The proposed 1P-invariant PSD method is shown 

in Figure 3.1 and is implemented in the following steps. 
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Figure 3.1:  Schematic diagram of the 1P-invariant PSD method. 

 

(1)  Choose an up-sampling ratio M and a base value of the down-sampling step size L. 

(2)  Sample the measured nonstationary current of the WTG with a fixed sampling rate; 

the result is C(n), where n = 1, 2, 3, …, N and N is the length of the current 

measurement. 

(3)  Demodulate the frequency and amplitude of the nonstationary current signal C(n) by 

using PLL and Hilbert transform, respectively; the results are a current frequency 

demodulated signal sf(n) and a current amplitude demodulated signal sa(n). 
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(4)  Estimate the shaft rotating frequency fr(n) by using the current frequency 

demodulated signal sf(n); and choose a base frequency fb based on fr(n). For a PMSG, 

fr(n) = sf(n)/p; for a DFIG, fr(n) = [sf(n) + fsyn]/p. 

(5)  Interpolate (up-sample) fr(n), sf(n) and sa(n) by a constant up-sampling ratio of M; the 

results are fr,up(k), sf,up(k) and sa,up(k), respectively, where k = 1, 2, 3, …, M×N. 

(6)  Down-sample sf,up(k) and sa,up(k) by a variable down-sampling step size; the results 

are sf,down(j) and sa,down(j), respectively, where j = 1, 2, 3, …, J and J is determined by 

M, N, and L. Suppose that sdown(j) stands for sf,down(j) or sa,down(j); and sup(k) stands for 

sf,up(k) or sa,up(k). In the down-sampling process: 

sdown(1) = sup(1)                                                    (3.2) 

If sdown(j) = sup(k), then, 

,
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                                    (3.3) 

where 
, ( )

b
round

r up

L f
R

f k

 
  
 

 is the variable down-sampling step size, which depends on the 

up-sampled shaft rotating frequency fr,up(k); and Rround(∙) stands for rounding a number 

to the nearest integer. The down-sampling process to obtain sdown(j) is equivalent to 

resampling the original or up-sampled current demodulated signal, s(n) or sup(k), 

respectively, with a variable sampling frequency fs(k), whose value is proportional to 

the value of fr,up(k). According to (3.1), the normalized frequency of sdown(j), which is 

Ωdown(j), is given by: 



42 

 

( ) ( )

2 ( )

down down

s

j s j

f j





                                                 (3.4) 

where Ωdown(j) is now a constant value. 

(7)  Calculate the classical PSD of the down-sampled current demodulated signal sdown(j) 

for the extraction of WTG fault signature. 

By using the proposed method, the variable 1P frequency and consequently the 

variable characteristic frequency ffault of a WTG fault becomes a constant value in the 

frequency spectrum of sdown(j). Therefore, the resulting PSD spectrum is called the 1P-

invariant PSD spectrum; and the amplitude of the excitation at ffault in the PSD spectrum 

of sdown(j) can be used as a signature to clearly identify and quantify the WTG fault. In the 

proposed method, the constant base value of the down-sampling step size, L, should be 

chosen based on two criteria. First, L should be large enough to eliminate the quantization 

error due to the requirement of an integral down-sampling step size. Second, L should be 

small enough to ensure that the sampling frequency after down sampling is greater than 

twice the ffault. Normally, L should be larger than 10. The base frequency fb is chosen to be 

the mean value of the estimated shaft rotating frequency fr(n). Furthermore, if the 

measured current is sampled with a sufficiently high sampling rate in Step (2) such that 

the sampling frequency of the down-sampled signal sdown(j) without using up sampling is 

greater than twice the characteristic frequency of the WTG fault, then M is 1 and Step (5) 

is not necessary. 
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3.1.2 Verification of 1P-invariant PSD method 

The proposed 1P-invariant PSD method is verified by using artificial sinusoidal 

data. The length of the artificial data is 10 seconds with a sampling frequency of 1 kHz. 

The artificial data is given by: 

Fa(t) = Aa ∙ sin(2π∙ fa∙t)                                                (3.5) 

where Aa is the amplitude of artificial data and is equal to 1; fa is the frequency of the 

artificial data, which increases from 0.1 Hz to 1 Hz linearly, as shown in Figure 3.2. 

The artificial data are processed by using the proposed 1P-invariant PSD method, 

where the base value of the down-sampling step size L and up-sampling ratio of M are 

both 20, and fb is set to be 0.5 Hz. The original artificial sinusoidal signal and its 

processed result by using the 1P-invariant PSD method are compared in Figure 3.3. By 

using the proposed method, the variable frequency of the artificial sinusoidal signal is 

converted to a constant value. The classical and 1P-invariant PSDs of the artificial 

sinusoidal signal are compared in Figure 3.4. The excitations of the artificial sinusoidal 

signal are in the range of 0.1 Hz to 1 Hz; the excitation of the 1P-invariant PSD method 

processed result appears only at 0.5 Hz, which is fb. These results verify the viability of 

the proposed 1P-invariant PSD method for converting the variable frequency of a 

sinusoidal signal to a constant value. 
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Figure 3.2:  Frequency of the sinusoidal artificial data. 

 

 

Figure 3.3:  Comparison between the artificial sinusoidal signal and its processed result 

by using 1P-invarant PSD method. 
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Figure 3.4:  Classical and 1P-invariant PSDs of the artificial sinusoidal signal. 

 

3.2  High-Performance 1P-Invariant PSD Method 

The 1P-invariant PSD method proposed in Section 3.1 is a good approach to 

discover the excitations of WTG faults when the WTG operates in variable-speed 

operating conditions. However, the 1P-invariant PSD method requires significant 

memory space to store the up-sampled data, and has inevitable quantization error due to 

the requirement of an integral down-sampling step size. These limitations degrade the 

performance of the 1P-invariant PSD method, which may only be applicable to the low-

frequency WTG fault detection due to limited computational resources of a WTG system. 

To improve the performance of the 1P-invariant PSD method, a high-performance 1P-
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3.2.1 Proposed high-performance 1P-invariant PSD method 

The objective of the high-performance 1P-invariant PSD method is also to 

convert the WTG shaft rotating frequency fr, and consequently the WTG fault 

characteristic frequency, to a constant value in the PSD of the resampled current 

demodulated signal. The high-performance 1P-invariant PSD method is implemented in 

the following steps and shown in Figure 3.5. 

(1)  Sample the measured nonstationary current of the WTG with a fixed sampling rate; 

the result is C(n), where n = 1, 2, 3, …, N and N is the length of the current 

measurement. 

(2)  Demodulate the frequency and amplitude of the nonstationary current signal C(n); the 

results are a current frequency demodulated signal sf(n) and a current amplitude 

demodulated signal sa(n). 

(3)  Estimate the shaft rotating frequency fr(n) by using the current frequency 

demodulated signal sf(n). For a PMSG, fr(n) = sf(n)/p; for a DFIG, fr(n) = [sf(n) + 

fsyn]/p. 

(4)  Assume sampling interval of fr(n), sf(n), and sa(n) between consecutive samples is 1. 

The location Xi(n) of the time series fr,i(n), sf,i(n), and sa,i(n) is calculated, where i = 0, 

1, 2, …, is the iteration number in the interpolation process described in Steps (5) and 

(6); X0(n) = n and fr,0(n) = fr(n) are the initial values  of the interpolation process. 

(5)  Define ,

, ,

1
( )

( ) ( 1)
r i

r i r i

T n
f n f n


 

, the objective locations of each sample of the time 

series fr,i(n), sf,i(n), and sa,i(n) in the interpolation are: 

Xi+1(1) = 1                                                          (3.6) 



47 

 

Xi+1(N) = N                                                         (3.7) 
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 
  


                                      (3.8) 

(6)  The fr(n), sf(n) and sa(n) are interpolated [126] to get fr,i(n), sf,i(n) and sa,i(n), 

respectively, based on the objective locations Xi+1(n) of the time series fr,i(n), sf,i(n), 

and sa,i(n) in Step (5). 

(7)  Repeat (4)-(6) until cr(i) in (3.9) is smaller than Ct, where Ct is chosen to be the 

criterion to stop the iteration. 

1

1

( ) ( ) ( )
N

t i i

n

c i X n X n



                                                (3.9) 

(8)  Calculate the classical PSD of the resampled current demodulated signal sf,i(n) and 

sa,i(n) for WTG fault signature extraction. 

By using the proposed high-performance 1P-invariant PSD method, the variable 

characteristic frequency ffault of a WTG fault becomes a constant value in the frequency 

spectra of sf,i(n) and sa,i(n). The amplitude of the excitation at ffault is used as a signature to 

identify and quantify the appearance and degree of WTG faults, respectively.  
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Figure 3.5:  Schematic diagram of the high-performance 1P-invariant PSD method. 
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of the original current signal. Therefore, the resulting PSD spectrum has higher 

performance than the previous 1P-invariant PSD spectrum described in section 3.1 in 

terms of frequency resolution. However, the cost is that more CPU time is needed by the 

high-performance 1P-invariant PSD method. Decreasing the value of criterion Ct in Step 

(7) leads higher performance of the proposed method to convert the variable 

characteristic frequency ffault of a WTG fault to a constant value in the frequency spectra 

of the resamped current demodulated signals sf,i(n) and sa,i(n) but a longer calculation 

time. In real-world applications a tradeoff between performance and computational 

resource should be considered to determine the value of Ct. 

An example of the proposed high-performance 1P-invariant PSD method is given 

in Figure 3.6, where sf,i(n) is the processed time series; N is 4; i = 0, 1. In the first 

iteration of the interpolation process (i.e., resampling), the sampling frequency fs,1 needs 

to be proportional to the shaft rotating frequency fr,0 to make the right-hand side of (3.1) 

constant, as given below: 

,1 ,0( ) ( )s rf n f n                                                 (3.10) 

The sampling interval Ts,1 between two consecutive samples is defined to be the 

reciprocal of the average sampling frequencies of the two samples: 

,1

,1 ,1

2
( )

( ) ( 1)
s

s s

T n
f n f n


 

                                         (3.11) 

Based on (3.10) and (3.11), the relationship between Ts,1 and fr,0 is given below to make 

the right-hand side of (3.1) constant: 
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                                  (3.12) 

Then the objective of a constant Ωr can be achieved by the setting Tr,0(n) in the 

interpolation process as follows, where Tr,0(n) determines the objective locations of the 

samples of the processed time series sf,i(n) in the interpolation: 
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r
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





                                                  (3.13) 

Equation (3.13) meets the proportional constraint of Ts,1 and Tr,0 given in (3.12). 

In the proposed high-performance 1P-invariant PSD method, the sampling 

interval Ts,1 for the interpolation is based on the previous shaft rotating frequency signal 

fr,0, as given in (3.8). However, shaft rotating frequency signal changes from fr,0 to fr,1 due 

to the interpolation. Normally we have: 

,0 ,1

,1 3 3

,0 ,1

1 1

3 ( ) 3 ( )
( )

( ) ( )

r r

s

r r

k k

T n T n
T n

T k T k
 

 
 

 
                                        (3.14) 

Therefore, one-step interpolation cannot convert Ωr to a constant value for WTG fault 

detection. A recursive process is needed to keep searching for a better solution until an 

acceptable cr, defined in (3.9), is achieved, where the difference between fr,i and fr,i+1 is 

small and negligible. 
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Figure 3.6:  An example of implementation of the high-performance 1P-invariant PSD 

method. 

 

In the following classical PSD calculation, the shaft rotating frequency fr becomes 

a constant value Fr in the high-performance 1P-invariant PSD of the current demodulated 

signal. The value of Fr needs to be determined for WTG fault detection. In the proposed 

method, the total number of cycles of the shaft rotating frequency signal are the same 
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                                         (3.15) 

where Ts,0 is sampling interval of the current signal and is a constant value. Therefore, the 

constant shaft rotating frequency Fr in the high-performance 1P-invariant PSD of the 

current demodulated signal is the mean value of the estimated shaft rotating frequency 

signal fr (n), given as follows. 
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3.2.2 Verification of high-performance 1P-invariant PSD method 

The high-performance 1P-invariant PSD method is validated by using the same 

artificial sinusoidal signal in section 3.1. The artificial sinusoidal signal is processed by 

using the proposed method to illustrate the convergence and the performance of 

converting the variable frequency of the artificial sinusoidal signal to a constant value, 

where the number of iterations is three. The artificial sinusoidal signal and its processed 

results after each iteration of the proposed method are compared in Figure 3.7. By using 

the high-performance 1P-invariant PSD method, the nonstationary artificial sinusoidal 

signal is converted to a stationary signal step by step. In Figure 3.7, the processed result 

of the artificial sinusoidal signal after the third iteration is almost a stationary sinusoidal 

signal. The PSDs of the artificial sinusoidal signal and its processed result after the third 

iteration are compared in Figure 3.8. The excitations of the artificial sinusoidal signal are 

in the range of 0.1 Hz to 1 Hz; while the excitation of the high-performance 1P-invariant 

PSD method processed result of the artificial sinusoidal signal after the third iteration is 

constant at 0.55 Hz, which is the average frequency of the artificial sinusoidal signal. The 

result demonstrates the effectiveness of the high-performance 1P-invariant PSD method 

for converting the variable frequency of a sinusoidal signal to a constant value. 
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(c) 

Figure 3.7:  Comparison between the artificial sinusoidal signal and its processed results 

after (a) the first iteration, (b) the second iteration, and (c) the third iteration. 

 

 

Figure 3.8:  PSDs of the sinusoidal artificial signal and its high-performance 1P-invariant 

PSD method processed result after the third iteration. 
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3.3  Benefits of Using Current Demodulated Signals 

In previous research, current measurements have been directly used for electric 

machine fault detection. For instance, to directly apply current measurements for electric 

machine bearing fault detection, the influence of bearing faults in the current signals 

needs to be modeled. The most frequently used model is given in [43] for induction 

machine bearing fault detection. Reference [44] extended the result of [43] by taking into 

account both the radial rotor movement and the shaft torque variation of electric 

machines in bearing fault condition. The current signals are modulated by the 

characteristic frequency ffault of a bearing fault in vibration measurements, where ffault is 

one of the bearing fault characteristic frequencies given in (2.4)-(2.7). The characteristic 

frequencies of bearing faults in the modulated current signals are summarized in Table 

3.1, where l = 1, 2, ∙∙∙; fc.i, fc.o, fc.b and fc.c are the characteristic frequencies of a bearing 

inner-race fault, outer-race fault; ball fault; and cage fault in current signals, respectively; 

and f1 is the fundamental frequency of the current signal. The harmonics of electric 

machine current signals are also modulated by the bearing fault characteristic frequencies 

in vibration measurements [127]. Since the harmonics of current signals have much lower 

magnitudes than the fundamental-frequency component, the excitations at the harmonics 

due to bearing faults are minor and are not listed here. 
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Table 3.1:  Characteristic Frequencies of Bearing Faults in Current Measurements 

 
Radial rotor 

movement [43] 

Radial rotor 

movement [44] 

Shaft torque 

variation [44] 

Inner-race fault fc.i = f1 ± l∙fi fc.i = f1 ± fr ± l∙fi fc.i = f1 ± l∙fi 

Outer-race fault fc.o = f1 ± l∙fo fc.o = f1 ± l∙fo fc.o = f1 ± l∙fo
 

Ball fault fc.b = f1 ± l∙fb fc.b = f1 ± fc ± l∙fb fc.b = f1 ± l∙fb
 

Cage fault fc.c = f1 ± l∙fc N/A N/A 

 

Similarly, the current signal is also modulated by the characteristic frequency ffault 

of other WTG faults, which generates oscillations in the shaft torque of the WTG with a 

characteristic frequency of ffault. Therefore, the characteristic frequency of a WTG fault in 

the modulated current signal is: 

fc.fault = f1 ± l∙ ffault                                                   (3.9) 

Using the current demodulated signals for WTG fault detection has obvious 

advantages over directly using the current measurements. The major noise in the current 

signals and the current demodulated signals are fundamental-frequency component and 

the DC component, respectively. The DC component can be easily removed compared to 

the fundamental-frequency component. However, useful information for WTG fault 

detection is easily interfered by fundamental-frequency component when the WTG 

operates in variable-speed operating conditions. Moreover, when a WTG fault occurs, 

only one main fault characteristic frequency ffault will appear in the current demodulated 
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signals. On the other hand, there are multiple characteristic frequencies, as given in Table 

3.1, in current signals. If current measurements are directly used for WTG fault 

detections, the energy of excitations related to WTG faults are dispersed into multiple 

characteristic frequencies. Therefore, the magnitudes of excitations at those multiple 

characteristic frequencies are less detectable than that of excitation at ffault in the current 

demodulated signals, which have only one characteristic frequency ffault of the WTG fault. 
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Chapter 4 Wavelet-Based Filter 

As mentioned in Chapter 1, not all WTG faults lead to an excitation at the characteristic 

frequency. For instance, bearing faults can be categorized as two types: single-point faults 

and generalized roughness (incipient bearing faults), according to different stages of the 

fault development process. Incipient bearing faults do not generate any excitation at the 

characteristic frequency [35]. Much research effort has gone into the detection of single-

point faults, where the fault characteristic frequencies are clear indicators for a present 

damage [93]. In fact, generalized roughness faults have also been observed in a 

significant number of cases of failed bearings from various industrial applications [35]. 

This type of faults exhibits degraded bearing surfaces, but not necessarily distinguished 

faults. However, little research has been done on detection of incipient generalized 

roughness faults, which will be the objective of this chapter. This chapter proposes a 

novel wavelet filter-based method for WTG incipient bearing fault detection using 

generator current measurements. The proposed wavelet-based filter is based on the 

discrete wavelet transform (DWT) and wavelet shrinkage [128]. The latter is a classical 

algorithm for noise elimination by using DWT. 

4.1  Wavelet-Based Filter for WTG Incipient Bearing Fault 

Detection 

In the frequency domain, the dominant components of current signals of an 

induction machine are the fundamental-frequency component and its multiple harmonics, 

e.g., the eccentricity, slot and saturation harmonics, and other components from unknown 

sources including environmental noise [129]. This conclusion is also true for the 

generators used in WTGs. These dominant components are not created by bearing faults. 
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In this sense, they are treated as noise in the problem of bearing fault detection. To 

discover the bearing fault index in the current measurements, it is desired to remove those 

dominant noise components from the measured current signals. 

Since the incipient bearing faults do not have characteristic frequencies [35], 

traditional frequency-domain analysis based methods are not effective to detect this type 

of faults. In this chapter, the energy of the bearing fault related component in a current 

signal is extracted by using a wavelet-based filter, where the energy is defined as the 

square of the signal processed. Because the vibration of an electric machine is positively 

correlated to the degradation of bearings, the amplitude of the energy of the bearing fault 

related component indicates a physical condition of the bearing. If the amplitude of the 

fault related energy remains at a high level or vibrates with a large magnitude, it means 

the degradation of the bearing and maintenance is required. This section proposes a 

wavelet-based filter, which can eliminate the dominant components in the current 

measurements that are not related to the bearing faults. The energy of the filtered current 

signal is then chosen as the fault index for incipient bearing fault detection. 

4.1.1 Wavelet decomposition 

The continuous wavelet transform (CWT) of a time-domain signal f(t) is given by 

[130]: 

1/ 2( , ) ( )CWT

t b
W a b a f t dt

a
  

   
 

                                     (4.1) 
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where ψ is a wavelet function; a is a scaling parameter; and b is a time shifting parameter. 

For incipient bearing fault detection of WTGs, the discrete wavelet transform is applied 

by discretizing (4.1) and the result is given by [130]: 

/2

0 0( , ) ( ) ( )m m

DWTW m n a f t a t nb dt                                     (4.2) 

where m and n are integers; a0 > 1 and b0 > 0 are constant. 

In the algorithm of DWT, a wavelet function is associated with a scaling function. 

The wavelet function and the scaling function are finite vectors. The original data is 

decomposed into trend subsignals by the scaling function and into fluctuations by the 

wavelet function. The wavelet decomposition is recursive, as shown in Figure 4.1. This is 

known as multiresolution analysis [131]. Each of the trend subsignals and fluctuations 

contains the time-domain features of the original data in a finite frequency band. 

 

 

Figure 4.1:  Schematic diagram of a wavelet decomposition. 
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Assume that the wavelet function is W(x) = [w1, w2, ∙∙∙, w2k] and the scaling 

function is V(x) = [v1, v2, ∙∙∙, v2k], where k is a positive integer. The wavelets and scaling 

signals need to be generated first for the wavelet decomposition. The wavelets Wi,m are: 

Wi,m = [0,…0, w1, w2, ∙∙∙, w2k, 0,…0], m = 1,∙∙∙, Ni-1/2-k+1                      (4.3) 

Wi,m = [w2j+1, …w2k,0,…0, w1, …w2j,], m = Ni-1/2-k+2,∙∙∙, Ni-1/2                 (4.4) 

where i = 1, 2, 3,∙∙∙ is the level of the wavelet decomposition in Figure 4.1; j is a positive 

integer, which is smaller than k; the length of Wi,m is Ni-1; w1 is the (2m-1)
th 

element of 

Wi,m in (4.3) and (4.4). The scaling signals Vi,m are: 

Vi,m = [0,…0, v1, v2, ∙∙∙, v2k, 0,…0], m = 1,∙∙∙, Ni-1/2-k+1                       (4.5) 

Vi,m = [ v2j+1, …v2k, 0,…0, v1, …v2j,], m = Ni-1/2-k+2,∙∙∙, Ni-1/2                   (4.6) 

where the length of Vi,m is Ni-1; v1 is the (2m-1)
th 

element of Vi,m in (4.5) and (4.6). 

At each level of the wavelet decomposition, the value di,m of each element of the 

fluctuation Di=(di,1, di,2, …, di,m) is [83]: 

di,m = Ai-1∙Vi,m,    m = 1,∙∙∙, Ni-1/2                                       (4.7) 

where Vi,m is the scaling signal at the level i generated from the scaling function by using 

(4.5) and (4.6). 

The performance of the DWT depends on the wavelet function chosen for 

decomposition. In this research, the Coiflet wavelet is applied due to its feature of 

vanishing moments. The vanishing moments of a wavelet function means that several 

moments of the wavelet function are zero. The vanishing moments of the Coiflet wavelet 
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are designed not only in the wavelet function but also in the scaling function. The 

following equations illustrate such a feature for a continuous Coiflet wavelet [130]: 

( ) 1;V x dx                                                          (4.8) 

( ) 0, : 0,1,..., 1;l

wx W x dx for l L                                        (4.9) 

( ) 0, : 1,2,..., 1;l

wx V x dx for l L                                       (4.10) 

Ns = 3∙Lw–1                                                        (4.11) 

where W(x) is the wavelet function; V(x) is the scaling function; Lw is the order of the 

Coiflet wavelet; Ns is the support length of the Coiflet wavelet. The support length 

measures the effective width of a wavelet function. Equations (4.9) and (4.10) give the 

vanishing moments in the wavelet function and the scaling function of the Coiflet 

wavelet, respectively. Because of this feature, the Coiflet wavelet has the features of 

symmetry and compactness for numerical analysis applications [132]. In this research, 

the dominant noise components in the current measurement that are irrelevant to the 

bearing fault needs to be maximally compacted. The Coiflet wavelet is a good candidate 

to implement such compaction. 

4.1.2 Choosing the support length for wavelet functions 

The support length is an important parameter of a wavelet function. It determines 

the capability of compacting energy of a wavelet function in the DWT. The Coiflet 

wavelet functions with different support lengths are used to design the wavelet transform 

to maintain a close match between the trend values and the original signal values [83]. 

However, there are no rules for selecting the support length of the Coiflet wavelet in the 



63 

 

DWT. Therefore, a pretreatment scheme is proposed to choose the support length of the 

wavelet function in the filter. 

When the WTG bearing is in the healthy condition, the Coiflet wavelets of 

different support lengths are applied to decompose the current signal. The Coiflet wavelet 

that can compact the largest energy of the current signal to a certain percent (e.g., 5%) of 

the whole length of the data is selected as the wavelet function for following fault 

detection. The resulting Coiflet wavelet is assumed to have the most powerful capability 

to compact the dominant noise components of the current signal into subsignals through 

the DWT. The schematic diagram of the pretreatment scheme is illustrated in Figure 4.2, 

where Lw is an even integer. 

 

 

Figure 4.2:  Schematic diagram of the pretreatment for choosing the support length of the 

Coiflet wavelet. 
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4.1.3 Proposed wavelet-based filter 

The proposed wavelet-based filter is based on the DWT and wavelet shrinkage. 

The DWT is used to decompose the current signals into different components; and the 

wavelet shrinkage works in a similar way to an adaptive notch filter to remove the 

dominant noise components from the decomposed current signals. The resulting filtered 

signal is mainly related to the bearing fault. 

The wavelet shrinkage is a traditional method for filter design [128]. In this 

research, the bearing fault signature in raw current measurements is subtle and broad-

band. Therefore, the wavelet shrinkage should be operated to cancel the dominant noise 

components that are irrelevant to the bearing faults. The proposed wavelet-based filter is 

implemented as follows: 

(1)  Decompose a batch of current signal C(n) = [c(1), c(2), ∙∙∙, c(N)] by using the DWT 

with a 2
nd

-order Coiflet wavelet and the result is Cw(n) = [cw(1), cw(2), ∙∙∙, cw(N)]. 

(2)  Calculate the energy of Cw(n) and the result is Ew(n) = [ew(1), ew(2), ∙∙∙, ew(N)], where 

ew(n) = cw
2
(n).  

(3)  Calculate the sum from Ew(N/2+1) to Ew(N) and the result is Iw，which is the total 

energy of fluctuations in the wavelet decomposed current samples Cw(n). Iw is defined 

as an index of the energy of the components related to the bearing fault, i.e., the fault 

signature, in the current signal. 

The amplitude of Iw indicates the physical condition of the bearing. If the 

amplitude of Iw remains at a high level or vibrates with a large magnitude, it indicates the 

degradation of the bearing and maintenance is required. 
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The DWT decomposes the original signal into two parts: trend subsignal and 

fluctuation. The high energy components of the original signal are compacted into its 

trend subsignal; while the fluctuation only contains the weak energy components. This is 

called the compaction of energy, which is one of the main characteristics of the DWT 

[83]. The proposed wavelet-based filter can eliminate the high energy components in the 

current signals, which are the dominant noise components irrelative to the bearing faults. 

Therefore, the fault signature can be discovered by using the wavelet filtered current 

signals. As the physical condition of the bearing becomes worse and worse, the energy of 

the fault related components in current signals becomes more and more significant, which 

results in an increase of Iw. 

The schematic diagram of the proposed wavelet filter-based bearing fault 

detection algorithm is illustrated in Figure 4.3. The low-pass filters are used for anti-

aliasing. The baseline current signals are the first several samples obtained from the 

healthy bearing, as it is assumed that the bearing is healthy initially. These baseline data 

are used to determine the support length of the Coiflet wavelet. 

 

 

Figure 4.3:  Schematic diagram of the proposed wavelet filter-based bearing fault 

detection algorithm. 
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4.2  Validating the Wavelet-Based Filter Using Artificial Data 

The effectiveness of the proposed wavelet-based filter is validated by using 

artificial data. The artificial data consist of two parts. One part emulates the narrow-band 

dominant noise components in the current measurements that are irrelevant to bearing 

faults, defined as: 

1

( ) sin( )
nbM

m m m

m

g n A n 


                                              (4.12) 

where g(n) is the fault-irrelevant noise components, n = 1, 2, 3, …, N and N is the length 

of the artificial data; Am, ωm and θm are the amplitude, angular frequency and phase angle 

of each sinusoidal component. In this research, Mrb is 4 in (4.12), where the angular 

frequencies ωm of the four different fault-irrelevant noise components are π/3, 2π/3, π and 

4π/3, respectively. They emulate the fundamental current signal and its multiple 

harmonics. The broad-band bearing fault component is assumed to be a Gaussian white 

noise. A Gaussian white noise with a higher magnitude means a worse physical condition 

of the bearing. Therefore, the whole emulated current signal sw(n) is: 

sw(n) = g(n) + NGaussian(n)                                          (4.13) 

where NGaussian (n) is the Gaussian white noise. 

One hundred realizations of sw(n) are generated to emulate the degradation of the 

bearing condition through adding a Gaussian white noise in each realization. The SNR of 

sw(n) reduces linearly from 50 dB for the first realization to 30 dB for the last realization. 

The reduction of the SNR leads to the increase of the Gaussian white noise in sw(n). In 
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order to simulate the variable-speed operation of a WTG, the amplitude Am, angular 

frequency ωm, and phase angle θm of g(n) in (4.12) are randomly varied in a range of 0.8 

to 1.2, 0.8×ωm to 1.2×ωm, and −π to π, respectively. 

When applying the proposed wavelet-based filter to the artificial data, the 6
th

 

order wavelet function, Coiflet3, is used. The simulation results are shown in Figures 4.4 

and 4.5. Figure 4.4 shows the PSDs of four realizations, which obviously have different 

narrow-band dominant frequencies with each other, indicating emulated variable-speed 

condition of a WTG. Figure 4.5 shows the remaining energy of the emulated fault 

component, i.e., the Gaussian white noise, obtained from the wavelet-based filter, which 

clearly shows that the energy of the broad-band fault component increases with the 

number of realization. These results demonstrate the effectiveness of the proposed 

method, namely, the wavelet-based filter is able to detect the increasing energy of the 

broad-band bearing fault component in WTG current measurements. 
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Figure 4.4:  PSDs of four realizations. 

 

 

Figure 4.5:  Energy of the emulated fault component vs. number of realization. 
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Chapter 5 Fault Signature Evaluation 

As shown in Figure 1.2 of Chapter 1, the fault signatures of Type 1 WTG faults and fault 

indexes of Type 2 WTG faults need to be further analyzed to evaluate the physical 

condition of the WTGs. The excitations in the processed current signals generated by 

WTG faults will be found by using an impulse detection method. Once an impulse at the 

characteristic frequency of a WTG fault is detected, it indicates the occurrence of the 

fault and maintenance is required. For the WTG fault which does not have a characteristic 

frequency, a fault index evaluator is applied to the wavelet-based filter processed current 

signals to determine the physical condition of the wind turbine component and whether 

maintenance is required. This chapter proposes an impulse detection method to detect 

WTG Type 1 faults, which generate excitations at the fault characteristic frequencies in 

the 1P-invariant PSDs of the current demodulated signals. A statistical control method 

[108] is applied to design a fault index evaluator to detect the Type 2 WTG faults. 

5.1  Impulse Detection Method 

In practical applications, it is desired to evaluate the physical condition of WTGs 

solely based on the fault signature in real time. When a WTG fault signature is detected, 

it indicates that the WTG component corresponding to the fault signature is in a 

deteriorated condition and maintenance is required. For a WTG fault which generates 

excitations at the desired fault characteristic frequencies in the 1P-invariant PSDs of the 

processed current demodulated signals, an impulse detection method can be applied to 

find out the signature of the WTG fault. There are many impulse detection methods based 

on signal statistics [133], fuzzy algorithm [134], and median filter [135]. The design of an 
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impulse detection algorithm depends on the patterns of the signals to be processed. An 

effective method for detecting impulses in the frequency spectra of the processed current 

demodulated signals is desired in this research. 

This section proposes a current-based online WTG fault signature evaluation 

method via impulse detection. The proposed impulse detection method is able to detect 

and quantize the excitations (i.e., impulses) generated by the WTG faults in the 1P-

invariant PSDs of the current demodulated signals. The impulses detected are then used 

to evaluate the health condition of the corresponding wind turbine components. The 

proposed method is validated by using artificial data. 

5.1.1 Proposed impulse detection method 

The proposed 1P-invariant PSD methods can be used to convert the variable-

frequency excitations of WTG faults to constant-frequency values in the frequency 

domain. To facilitate the implementation of the WTG fault detection in real-world 

automatically controlled and operated wind turbine systems, an impulse detection method 

is developed for automatic extraction of fault signatures in the 1P-invariant PSDs of the 

current demodulated signals.  

In a PSD spectrum, the amplitude at a frequency represents the energy of the 

time-domain signal at that frequency. If the signal has high energy around a certain 

frequency, it will generate an impulse in the PSD at that frequency. The proposed impulse 

detection method is able to find out the high-energy frequency component in the 1P-

invariant PSDs of current demodulated signals. It has been reported that the spectra of the 

vibration of a WTG with three blades are determined by certain events. For instance, the 
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vibration at 3P frequency, which is three times the shaft rotating frequency fr of a WTG, 

is generated by the effect of yaw error, wind shear, or tower shadow [136]. This is also 

true for the WTG current demodulated signals. The 3P frequency excitations in the 1P-

invariant PSDs of the current demodulated signals are noise in WTG fault detection. 

Therefore, the excitations at 3P frequency of the 1P-invariant PSD signals are firstly 

removed as a pretreatment. Furthermore, the 1P-invariant PSDs of the current 

demodulated signals usually have nonstationary amplitudes in the frequency domain. 

Therefore, the 1P-invariant PSDs need to be processed locally in terms of the frequency 

for impulse detection, which is described as follows. 

Assume that XPSD(f) is the sampled 1P-invariant PSD of a current demodulation 

signal, where f = 1, 2, 3, … F; and F is the length of XPSD(f).  Define the energy of the 

current demodulated signal at frequency f to be: 

Px(f) = XPSD(f)                                                           (5.1) 

If a moving window of length 2Ww+1 is applied to XPSD (f), the energy in the 

window is defined as: 

PW(f) = XPSD(f – Ww) + XPSD(f – Ww+1) + … + XPSD(f+Ww)                      (5.2) 

A ratio R(f) is defined to be the percentage of the energy of the current 

demodulated signal at the frequency f with respect to the total energy at all the 

frequencies contained in the moving window: 

R(f) = Px(f) / PW(f)                                                   (5.3) 

The resulting R(f) represents the locally normalized 1P-invariant PSD of the 

current demodulated signal. If R(f) at a certain frequency point is greater than a threshold 
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Ti, it indicates that there is an impulse at that frequency. In practice, it is important to 

automatically generate the threshold Ti from the locally normalized 1P-invariant PSD 

signals. The median filter, which is a well-known nonlinear filter for impulse removal 

[135], is applied to determine the threshold Ti. Define Rf(f) the result of R(f) processed by 

a median filter. The threshold Ti is then set to be the maximum value of Rf(f). Since the 

impulses that are not generated by WTG faults have been removed in the pretreatment of 

the 1P-invariant PSDs of the current demodulated signals, the impulses generated by 

WTG faults have the highest amplitudes in the locally normalized 1P-invariant PSDs of 

the current demodulated signals and can be detected effectively by the proposed method. 

In this work a 3
rd

-order median filter is chosen to calculate the threshold Ti. The Rf(f) is 

calculated by: 

Rf(f) =  FMedian[R(f – 1), R(f), R(f + 1)]                                     (5.4) 

where f = 1, 2, 3, … F; FMedian[∙] stands for selecting the median in the set. The threshold 

Ti is then determined to be: 

Ti = FMax[Rf(f)]                                                           (5.5) 

where FMax[∙] stands for choosing the maximum value in Rf(f) for f = 1, 2, 3, … F. 

In the 1P-invariant PSDs, the amplitudes of the impulses at the characteristic 

frequencies of WTG faults are the signatures for WTG fault detection. Since there are no 

impulses at the characteristic frequencies of the WTG faults when the WTGs are in 

healthy conditions, if an impulse is detected at the characteristic frequency of a WTG 

fault, it indicates a faulted condition of the WTG. In this case an alert is generated. 
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5.1.2 Verification of the impulse detection method 

To verify the proposed impulse detection method, an artificial PSD of a current 

demodulated signal is used. Since the dominant components of WTG current 

demodulated signals spread over the low-frequency region in the frequency domain, the 

amplitude of the low-frequency part of the artificial PSD signal is higher than that of the 

high-frequency part. To simulate an excitation generated by a WTG fault, an impulse is 

added at a particular frequency. The artificial PSD of the current demodulated signal xp(f) 

in WTG fault conditions is shown in Figure 5.1 and given by: 

xp(f) = xp,h(f) + Af∙δ(f)                                                 (5.6) 

where xp,h(f) is the artificial PSD of the current demodulated signal obtained when the 

WTG is in the healthy condition, whose low-frequency part has high amplitude; δ(f) is 

the impulse related to the WTG fault added at 9 Hz; Af is the amplitude of the impulse. 

δ(f) is given by: 

1, 9
( )

0, 9

f
f

f



 


                                                   (5.7) 
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Figure 5.1:  Artificial PSD of a current demodulated signal in WTG fault conditions. 
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in Figure 5.2. The threshold Ti is calculated to be 0.052. The impulse appears at 9 Hz, 

which is the excitation generated by the simulated WTG fault. In Figure 5.1, the 

excitation at 9 Hz is not the global maximum value. Therefore, it is difficult to detect the 

9-Hz impulse directly in the artificial PSD signal without the locally normalization. By 

using the locally normalization process in the proposed method, the 9-Hz impulse 

becomes the maximum value in Figure 5.2. By using the third-order median filter to 

determine the threshold, the 9-Hz impulse is successfully detected by using the proposed 

method. 
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Figure 5.2:  Locally normalized artificial PSD of a current demodulated signal in WTG 

fault condition. 
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5.2.1 Standard deviation 

Standard deviation is a measure of extent of variation of the data processed. The 

standard deviation perhaps can be most easily explained in terms of normal distribution 

(μ, σ
2
), where μ and σ are the mean (or center) and standard deviation, respectively. If the 

measurements from a stationary random process are normally distributed, then 68.3% of 

the measurements will fall within 1-σ distance from the central μ, 95.4% within 2-σ, and 

99.7% within 3-σ. A normal distribution (0, σ
2
) is shown in Figure 5.3. Therefore, one 

may be confident that almost all measurements will lie between the values of μ±3σ if the 

process is stationary. In other words, if new measurements of the process frequently fall 

outside the 3-σ region, then the process is no longer stationary. If an individual 

measurement from the stationary random process is not normally distributed, according 

to the central limit theorem, the distribution of sample means will tend to have a normal 

distribution with a mean and a standard deviation. The larger the number of samples is, 

the greater this tendency will be. Therefore, for practical engineering problems, it can be 

assumed that the distribution of the sample means is normal even if the original samples 

are not normally distributed [137]. 
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Figure 5.3:  A normal distribution (0, σ
2
). 

 

5.2.2 Threshold determination 
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2

1

( ( ) ) /
N

n

I n N 


                                                   (5.9) 

The fault index increases when the physical condition of the corresponding WTG 

component degrades. In this case, the fault index samples will frequently exceed the 

value of μ+3σ calculated by (5.8) and (5.9). Therefore in this research, the value μ+3σ of 

the fault index obtained when the WTG is in healthy condition is chosen as the threshold 

to determine the physical condition of the corresponding WTG component. When the 

fault index frequently exceeds the threshold μ+3σ, it indicates that the WTG is in a 

deteriorated condition and maintenance is required. 

Base on the analysis in Chapter 2, the characteristic frequency of wind turbine 

imbalance fault is 1P, i.e., the shaft rotating frequency fr. In ideal conditions, there is no 

any excitation at the 1P frequency in the 1P-invariant PSD spectra of the current 

demodulated signals. However, WTGs are inevitably subjected to a certain degree of 

imbalance due to manufacturing and construction errors, icing, deformation, etc. 

Therefore, small excitations may appear at the 1P frequency in the 1P-invariant PSD 

spectra of the current demodulated signals obtained from a healthy WTG. The proposed 

statistical control-based method can also be used for wind turbine imbalance fault 

evaluation by setting the amplitude of the excitation at the 1P frequency as the fault 

index. 
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Chapter 6 WTG Simulation and 

Experimental Setups 

Simulations and experiments are performed in this research to verify the proposed online 

nonintrusive WTG condition monitoring and fault detection methods. The simulation 

study is based on a finite element WTG model. A commercial wind turbine is used in the 

experimental study. In this chapter, the simulation and experimental setups are described 

to facilitate other researchers to verify the methods proposed in this work. 

6.1  Simulation Setup 

FAST (Fatigue, Aerodynamics, Structures, and Turbulence) version 7.0 is chosen 

for simulation studies of this research. FAST, an aeroelastic code developed initially by 

Oregon State University, is one of the most advanced design codes for horizontal-axis 

wind turbine [138]. Much work has been done by using FAST in the area of wind energy. 

A DFIG wind turbine was simulated by using FAST and Simulink to study the interaction 

of all three factors affecting the operation of the WTG [139]. The impact of tower 

shadow, yaw error, and wind shears on wind turbines was studied by using FAST 

software in [136]. FAST was also applied to DFIG wind turbines to demonstrate the 

correctness of an individual pitch control strategy [140]. TurbSim, a program developed 

by the National Renewable Energy Laboratory (NREL), is a stochastic, full-field, 

turbulent wind simulator [141]. TurbSim is often used to provide three-dimensional wind 

speed data to FAST for wind turbine simulations [78], [136], [139]. 

This section describes the simulation platform used to validate the WTG 

condition monitoring and fault detection methods proposed in this research. The 
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dynamical model of a WTG is developed in a combined environment of TurbSim, FAST 

and Simulink, where TurbSim generates the wind speed data; FAST simulates the 

dynamics of the turbine and other mechanical components; and Simulink simulates the 

dynamics of the generator and other electrical components of the WTG system. 

Furthermore, the methods of generating WTG faults and the available measurements of 

the WTG model developed are also presented. 

6.1.1 WTG model 

The dynamical model of a 10-kW WTG system is built in a TurbSim, FAST and 

Simulink combined environment, as shown in Figure 6.1. In this simulation setup, FAST 

works as a subroutine in Simulink. The signals of the electric power, electric torque, and 

rotating speed are used to connect the FAST and Simulink models of the WTG system. 

The files used in FAST for wind turbine simulation are listed in Table 6.1. 

Table 6.1:  Files Used in FAST 

Function File name 

Simulation input file Test17.fst 

Model of blades SWRT_Blade.dat 

Model of furl SWRT_Furl.dat 

Model of tower SWRT_Tower.dat 

Wind turbine rotor aerodynamic parameters Test17_AD.ipt 

 

The model wind turbine in FAST mainly includes tower, blades, shaft, furl and 

support platform. The hub height of the wind turbine is 34 m. The wind turbine has 3 
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blades with a rotor diameter of 2.9 m. The wind turbine has an upwind configuration, 

which means the blades are upwind of the tower. A 48 pole pair PMSG is simulated in 

Simulink to convert mechanical energy from the wind turbine into electric energy. The 

measured data includes stator current, output electric power, WTG shaft torque and shaft 

rotating speed. 

 

Figure 6.1:  Model WTG in FAST/Simulink combined simulation platform. 
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6.1.2 Wind speed data 

TurbSim is used in the simulation study to produce wind speed vectors in a time 

series across the entire rotating plane of the wind turbine’s blades. The average wind 

speed is chosen to determine the strength of wind power. The International 

Electrotechnical Commission (IEC) Kaimal turbulence model is used to generate wind 

turbulence in all simulations [142]. The cross-section area (8m×8m) of the wind flow is 

divided into a 6×6 grid where the wind velocity and direction are calculated by TurbSim 

for each grid cell. The output of TurbSim contains a time series of wind speed, which is 

used for the aeroelastic simulation in FAST. The overall structure of the simulation 

platform is show in Fig. 6.2. 

 

 

Figure 6.2:  Structure of the WTG model with wind data in TurbSim/FAST/Simulink 

combined simulation platform. 
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6.1.3 Fault simulation 

Some WTG faults, e.g., blade imbalance and aerodynamic asymmetry, can be 

emulated in model WTG for validating the proposed online nonintrusive condition 

monitoring and fault detection methods. The blade imbalance is simulated by changing 

the mass density of one blade, which creates an uneven distribution of mass of the blades 

with respect to the rotor. The aerodynamic asymmetry is simulated by adjusting the pitch 

angle of one blade, which creates an uneven torque across the rotor. Moreover, control 

errors of the yaw system can also be simulated in FAST. Files and parameters of FAST 

software used for simulating blade imbalance, aerodynamic asymmetry, and control 

errors of yaw system are listed in Table 6.2. 

Table 6.2:  Files and Parameters Used for WTG Fault Simulation 

WTG fault File name Parameter 

Blade imbalance SWRT_Blade.dat AdjBlMs 

Aerodynamic asymmetry Test17.fst BlPitch 

Control errors of yaw system Test17.fst NacYaw 

 

6.1.4 Simulation results 

A case study of the modeled WTG in the healthy condition is performed to test 

the PMSG wind turbine model. The information of wind speed, stator current of the 

PMSG, PMSG output power, turbine shaft torque, and shaft rotating speed are plotted 

below. The model WTG is operated in a variable-speed condition with an average wind 

speed of 16 m/s. In Figure 6.3, the wind speed varies from 12-21m/s. Figure 6.4 shows 
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that the amplitude of the current is 35 A in the maximum wind speed condition at 17 s of 

the simulation. As shown in Figure. 6.5, the output power of the PMSG is in the range of 

7-14 kW, where the limitation of the maximum power generation of the PMSG is not 

modeled. The shaft rotating speed is in the range of 180-360 rpm. 

 

Figure 6.3:  Wind speed in the simulation. 
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Figure 6.4:  PMSG stator currents in the simulation. 

 

 

Figure 6.5:  PMSG output power in the simulation. 
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Figure 6.6:  Shaft torque in the simulation. 

 

 

Figure 6.7:  Shaft rotating speed in the simulation. 
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6.2  Experimental Setup 

A wind tunnel was built for experimental verification of the proposed online 

nonintrusive WTG condition monitoring and fault detection methods using real WTGs. 

Wind tunnels are widely used in academia and industry [143], [144]. However, little work 

has been reported on using wind tunnels for research of wind turbine condition 

monitoring and fault detection. This section describes a wind tunnel-based experimental 

setup used in this research. 

6.2.1 Wind tunnel and testing wind turbine 

The six pole pairs, 160-W Southwest Windpower Air Breeze direct-drive PMSG 

wind turbines are used for experimental studies. The WTGs are operated in a wind tunnel 

with the dimensions of 2.5 meter × 2.5 meter × 6.5 meters in the UNL’s Power & Energy 

systems Laboratory, as shown in Figure 6.8. The wind tunnel uses a 7-feet (diameter) 

variable-speed fan driven by a 60-hp adjustable-speed induction motor drive to generate 

controllable wind flows with the speed in the range from 0 to 10 m/s. Consequently, the 

testing WTGs can be operated in variable-speed conditions. 
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Figure 6.8:  The wind tunnel with a testing WTG. 

 

6.2.2 Sensing and data acquisition system 

Figure 6.9 shows the sensing and data acquisition system used for the testing 

WTGs in the experiments. One phase stator current of the PMSG was recorded via a 

Fluke 80i-110s AC/DC current clamp. A general-purpose accelerometer (Wilcoxon-777B) 

was mounted on the testing WTG to measure its vibration. The amplitude of vibration in 

the horizontal direction of the nacelle of the testing WTG is much greater than that in the 
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vertical direction due to large stiffness in the vertical direction and small stiffness in the 

horizontal direction of the WTG nacelle [39]. Therefore, the accelerometer was mounted 

on the surface of the nacelle to detect the vibration in the horizontal direction of the wind 

turbine. 

 

Figure 6.9:  Sensing and data acquisition system for the testing WTG. 
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antialiasing filter; the PCIe-6251 card is an A/D converter; the SCXI-1305 and SCXI-

1000 are the interface and enclosure of the data acquisition system, respectively. The 

sampling rate of the vibration and current data was 10 kHz. The current and vibration 

samples were acquired by the LabView software operating in a lab computer. These 

samples were then used to verify the proposed online nonintrusive condition monitoring 

and fault detection methods. 

6.2.3 Measured data 

A case study of the testing WTG operating in variable-speed condition is 

performed. The acquired one phase stator current and vibration amplitude of the testing 

WTG are plotted in Figures 6.10 and 6.11, respectively. The figures show these quantities 

of the testing WTG in the healthy condition. 

 

Figure 6.10:  One phase stator current of the testing WTG. 
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Figure 6.11:  Vibration amplitude of the testing WTG. 

 

  

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (s)

A
c
c
e
le

ra
ti
o
n
 (

g
)



92 

 

Chapter 7 Simulation and Experimental 

Verification 

Simulations and experiments have been performed to verify the proposed methods for 

online nonintrusive condition monitoring and fault detection of WTGs, which include the 

1P-invariant PSD method, high-performance 1P-invariant PSD method, impulse 

detection method, wavelet-based filter method, and fault index evaluator. 

7.1  Simulation Verification of 1P-Invariant PSD Method 

The model WTG in Chapter 6 was used for simulation verification of the 

proposed 1P-invariant PSD method. Simulations were performed for the model WTG in 

the healthy condition (i.e., the baseline case) as well as in two WTG imbalance fault 

conditions: blade imbalance and aerodynamic asymmetry. One phase stator current of the 

WTG was recorded in the simulations. The proposed 1P-invariant PSD method was then 

applied to extract the signatures of the WTG faults by using the measured current signals 

in the frequency domain. 

7.1.1  Blade imbalance fault 

The mass density of one blade was scaled up and down in the simulations of blade 

imbalance. Four fault scenarios were simulated with the mass density of one blade 

adjusted by -1%, +2%, -3%, and +4%; while the mass densities of the other two blades 

were unchanged. Here the negative sign indicates a decrease of the mass density and the 

positive sign indicates an increase of the mass density. The sampling rate of the current 

measurements is 2 kHz. The proposed method was applied to calculate the 1P-invariant 

PSD of the stator current frequency demodulated signals for the baseline case and the 
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four blade imbalance scenarios. The base frequency was chosen to be 3 Hz (i.e., 180 

rpm), the ratio M of up-sampling was 5, and the base value of the down-sampling step 

size L was 20. The variable characteristic frequency of 1P (from 2 to 4 Hz) of the blade 

imbalance faults in the current frequency demodulated signal was converted to the base 

frequency, which is a constant value of 3 Hz. The results are compared in Figures 7.1 and 

7.2. The results clearly show that in the blade imbalance scenarios excitations are evident 

at 1P, which is fixed at 3 Hz by using the proposed 1P-invariant PSD method. The 

imbalance was caused by an eccentric mass rotating with a frequency of 1P. The stator 

current frequency demodulated signal was affected by the imbalance in blades and also 

vibrates with a frequency of 1P. Furthermore, Figures 7.2 shows that the magnitude of the 

excitation at the 1P frequency increases with the increase of the degree of blade 

imbalance. On the other hand, no excitation is observed at the 1P frequency in the PSD 

curve for the wind turbine with healthy blades. 
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Figure 7.1:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the blade imbalance scenarios against the baseline case in a wide 

frequency range. 

 

Figure 7.2:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the blade imbalance scenarios against the baseline case in a 

frequency range around 1P. 
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7.1.2  Aerodynamic asymmetry 

In order to simulate aerodynamic asymmetry faults of the wind turbine, the pitch 

angle of one blade was adjusted by -2 degree, +4 degree, -6 degree, and +8 degree from 

the original pitch angle of 11.44 degree; while the pitch angles of the other two blades 

were unchanged at 11.44 degree.  Figures 7.3, 7.4 and 7.5 compare the 1P-invariant PSD 

spectra of the stator current frequency demodulated signals generated by the proposed 

method for the wind turbine in the four aerodynamic asymmetry scenarios against the 

baseline case. Again, the variable 1P frequency of the WTG was converted to a constant 

value of 3 Hz by using the proposed method. Excitations appeared at both 1P and 2P 

frequencies in the four aerodynamic asymmetry scenarios, which agree with the 

theoretical analysis in Chapter 2. Moreover, the magnitudes of the excitations at the 

characteristic frequencies in the PSD plots become more significant when the degree of 

aerodynamic asymmetry becomes greater. 

 

 



96 

 

 

Figure 7.3:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the aerodynamic asymmetry scenarios against the baseline case 

in a wide frequency range. 

 

Figure 7.4:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the aerodynamic asymmetry scenarios against the baseline case 

in a frequency range around 1P. 
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Figure 7.5:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the aerodynamic asymmetry scenarios against the baseline case 

in a frequency range around 2P. 
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7.2.1  Blade imbalance fault 

To create a blade imbalance, additional masses were added close to the tip of a 

blade of the testing WTG, as shown in Figure 7.6. The mass of a healthy blade was 

measured to be 181 g. Four blade imbalance scenarios were tested by adding a mass of 2 

g, 4 g, 6 g, and 8 g, respectively, to a blade. Therefore, the weight of the blade was 

increased by approximately 1%, 2%, 3%, and 4%, respectively. During the experiments, 

the testing WTG was operated with a variable speed in the range of 6-13 Hz (360-780 

rpm), which is the variable 1P frequency. The sampling rate of the current and vibration 

measurements is 10 kHz. 

 

Figure 7.6:  A blade with an additional mass to create a blade imbalance fault. 
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base value of the down-sampling step size L was 100. The results were compared in 

Figures 7.7 and 7.8, where excitations are clearly observed at the fixed 1P frequency of 

10 Hz in the blade imbalance scenarios. Thus, the magnitude of this excitation provides 

an effective index for detecting blade imbalance faults. The greater the magnitude of the 

excitation appears at the 1P frequency, the higher degree the blade imbalance is. 

Therefore, the proposed method can not only identify but can also quantify the degree of 

blade imbalance of the WTG. 

 

Figure 7.7:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the blade imbalance scenarios against the baseline case in a wide 

frequency range. 
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Figure 7.8:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the blade imbalance scenarios against the baseline case in a 

frequency range around 1P. 

The PSD of the stator current frequency demodulated signals was also calculated 
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Figure 7.9:  Comparison of the PSD of the stator current frequency demodulated signals 

obtained directly from the classical PSD analysis for the blade imbalance scenarios 

against the baseline case. 

 

Since vibration signals are widely used for condition monitoring and fault 

detection of WTGs [23], the measured acceleration (vibration) data of the testing WTG 

were also used for the blade imbalance fault detection. Firstly, the root mean square 

(RMS) values of the vibration measurements were calculated for the four blade 

imbalance scenarios and the baseline case, as shown in Figure 7.10. The RMS values of 

the vibration measurements increase with the increasing degree of blade imbalance. 

Therefore, the WTG blade imbalance fault was successfully detected by using the 

vibration measurements. Moreover, the proposed method was applied to obtain the 1P-

invariant PSD of the vibration measurements of the WTG in each scenario. The results 

were given in Figure 7.11 and 7.12. Excitations at the characteristic frequency of 10 Hz 

are found in the PSD plots of the WTG blade imbalance fault scenarios. Same as the 1P-
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invariant PSD of the current frequency demodulation signals, the greater the magnitude 

of the excitation appears at the 1P frequency, the higher degree the blade imbalance fault 

is. Therefore, by using the proposed 1P-invariant PSD method, the current measurement-

based WTG fault detection achieved similar results as the vibration measurement-based 

fault detection.  

 

Figure 7.10:  The RMS values of the WTG vibration measurements for the blade 

imbalance scenarios against the baseline case. 
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Figure 7.11:  Comparison of the 1P-invariant PSD of the WTG vibration measurements 

for the blade imbalance scenarios against the baseline case in a wide frequency range. 

 

Figure 7.12:  Comparison of the 1P-invariant PSD of the WTG vibration measurements 

for the blade imbalance scenarios against the baseline case in a frequency range around 

1P. 
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7.2.2  Blade with defects 

A blade with defects can generate an imbalance fault in the testing WTG. A blade 

with two-point defects and a blade with four-point defects were created, as shown in 

Figure 7.13. During the experiments, the WTG was operated with a variable speed in the 

range of 6-13 Hz. The sampling rate of the current measurements is 10 kHz. 

 

Figure 7.13:  Two defected blades used for experiments. 

 

Figures 7.14 and 7.15 compare the 1P-invariant PSD of the stator current 

frequency demodulated signals of the WTG for the blade defect scenarios against the 

baseline case. The 1P-invariant PSD was obtained by using the proposed method with the 

same base frequency fb and base value of the down-sampling step size L as in the blade 

imbalance study. As shown in Figures 7.14 and 7.15, an excitation appears at a fixed 

frequency of 1P (10 Hz) in the PSD plots of the blade defect cases. The magnitude of the 

1P excitation provides an effective index for detecting and quantifying the defects on the 

blade. Similar to the WTG blade imbalance detection, the vibration measurements of the 

testing WTG were also used for detection of defects on the blade for comparison purpose, 
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as shown in Figures 7.16 and 7.17. The 10 Hz excitation appears in the PSD plots of the 

blade defect cases when using vibration measurements as well. 

 

Figure 7.14:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the blade defect scenarios against the baseline case in a wide 

frequency range. 
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Figure 7.15:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the blade defect scenarios against the baseline case in a 

frequency range around 1P. 

 

 

Figure 7.16:  Comparison of the 1P-invariant PSD of the WTG vibration measurements 

for the blade defect scenarios against the baseline case in a wide frequency range. 
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Figure 7.17:  Comparison of the 1P-invariant PSD of the WTG vibration measurements 

for the blade defect scenarios against the baseline case in a frequency range around 1P. 
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Figure 7.18:  A generator rotor with an additional magnet in the testing WTG. 

 

To detect the WTG rotor fault, the proposed method was applied to obtain the 1P-

invariant PSD of the stator current frequency demodulated signals of the WTG for the 

two rotor fault scenarios and the baseline case. The results were plotted in Figures 7.19 

and 7.20, where excitations at the fixed 1P frequency of 10 Hz are clearly observed in the 

rotor fault scenarios. Thus, the magnitude of this excitation provides an effective 

signature for detecting the rotor faults. As a comparison, the 1P-invariant PSD of the 

vibration signals are compared in Figures 7.21 and 7.22. Excitations at the fixed 1P 

frequency of 10 Hz are also clearly observed in Figures 7.21 and 7.22. 
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Figure 7.19:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the rotor fault scenarios against the baseline case in a wide 

frequency range. 

 

 

Figure 7.20:  Comparison of the 1P-invariant PSD of the stator current frequency 

demodulated signals for the rotor fault scenarios against the baseline case in a frequency 

range around 1P. 
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Figure 7.21:  Comparison of the 1P-invariant PSD of the WTG vibration measurements 

for the rotor fault scenarios against the baseline case in a wide frequency range. 

 

Figure 7.22:  Comparison of the 1P-invariant PSD of the WTG vibration measurements 

for the rotor fault scenarios against the baseline case in a frequency range around 1P. 
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7.3  Experimental Verification for High-Performance 1P-

Invariant PSD and Impulse Detection Method 

The testing WTG, wind tunnel, and the data acquisition equipment in Chapter 6 

were also used for experimental verification of the proposed high-performance 1P-

invariant PSD method and impulse detection method. Experiments were performed for 

the testing WTG in the healthy condition (i.e., the baseline case) as well as in two WTG 

fault conditions: bearing outer-race fault and bearing cage fault. One phase stator current 

signal and acceleration (vibration) signal of the testing WTG were sampled in the 

experiments for faults detection. The proposed methods were then applied to detect the 

WTG faults by using the measured current data. The vibration data were processed by the 

proposed high-performance 1P-invariant PSD method for comparison purpose. 

7.3.1 Bearing outer-race fault 

A bearing outer-race fault was generated artificially in a testing bearing, as 

illustrated in Figure 7.23. The healthy bearing and the bearing with an outer-race fault 

were installed in the testing WTG, respectively. The length of the stator current record in 

each case was 50 seconds. The WTG was operated with a variable speed in the range of 

6-13 Hz in this experiment. The sampling rate of the current measurements is 10 kHz. 
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Figure 7.23:  Testing bearing with an outer-race fault. 

 

Figure 7.24 compares the high-performance 1P-invariant PSD of the current 

amplitude demodulated signals for the testing WTG with an outer-race bearing fault 

against that with a healthy bearing, where in the high-performance 1P-invariant PSD the 

variable 1P frequency of 6-13 Hz was converted to a constant value of 10 Hz. As shown 

in Figure 7.24, an excitation appears at a fixed frequency of 30.8 Hz in the PSD plot of 

the bearing outer-race fault case. This fault characteristic frequency is the same as one 

calculated from (2.5) for the WTG operating with a fixed shaft rotating frequency of 10 

Hz. Therefore, the excitation at 30.8 Hz in the high-performance 1P-invariant PSD 

spectrum of the current amplitude demodulated signal is an effective signature for the 

bearing outer-race fault diagnosis. The high-performance 1P-invariant PSD of the 

vibration signals are compared in Figure 7.25. An excitation is also observed at a fixed 

frequency of 30.8 Hz for the bearing outer-race fault case. 
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Figure 7.24:  Comparison of the high-performance 1P-invariant PSDs of the current 

amplitude demodulated signals for the WTG with a bearing outer-race fault against that 

with a healthy bearing. 

 

Figure 7.25:  Comparison of the high-performance 1P-invariant PSDs of the vibration 

measurements for the WTG with a bearing outer-race fault against that with a healthy 

bearing. 
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The experimental result in Figure 7.24 for outer-race bearing fault detection was 

further analyzed by the proposed impulse detection method. As shown in Figure 7.26, the 

proposed impulse detection method was successfully applied to extract the excitations in 

the 1P-invariant PSD for bearing outer-race fault detection. The length of the window, 

Ww, was chosen to be 101. A third-order median filter was used to calculate the threshold. 

The locally normalized PSD [i.e., R(f)] of the bearing outer-race fault case is plotted in 

Figure 7.26, where the threshold was calculated to be 0.054. Figure 7.26 clearly shows 

that the proposed impulse detection method successfully found the excitation at 30.8 Hz 

corresponding to the bearing out-race fault. 

 

 

Figure 7.26:  Locally normalized PSD and threshold generated by the impulse detection 

method for bearing outer-race fault detection. 
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7.3.2 Bearing cage fault 

As illustrated in Figure 7.27, a bearing cage fault was generated artificially for a 

testing bearing. One clinch bolt of the bearing cage was broken. The healthy bearing and 

the bearing with the cage fault were installed in the testing WTG, respectively. The length 

of the stator current record in each case was 50 seconds. The WTG was operated with a 

variable speed in the range of 6-13 Hz in this experiment. The sampling rate of the 

current measurements is 10 kHz. 

 

 

Figure 7.27:  Testing bearing with a cage fault. 

 

The high-performance 1P-invariant PSD of the current amplitude demodulated 

signals for the WTG with a healthy bearing and a cage faulted bearing are compared in 

Figure 7.28, where the variable 1P frequency in the range of 6 to 13 Hz was converted to 

a constant value of 10 Hz. As shown in Figure 7.28, an excitation appears in the PSD of 

the current amplitude demodulated signal at a fixed frequency of 3.85 Hz in the bearing 

cage fault case. This fault characteristic frequency is the same as one calculated from 

(2.6) for the WTG operating with a constant shaft rotating frequency of 10 Hz. Thus, the 

A bearing 
cage fault
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excitation at 3.85 Hz in the high-performance 1P-invariant PSD of the current amplitude 

demodulated signal is an effective signature for bearing cage fault detection. Similar to 

the WTG bearing outer-race fault detection, the vibration measurements of the testing 

WTG were also used for detection of the bearing cage fault, as shown in Figure 7.29. The 

excitation at 3.85 Hz can be clearly identified in the high-performance 1P-invariant PSD 

of the vibration signal as well. 

 

 

Figure 7.28:  Comparison of the high-performance 1P-invariant PSDs of the current 

amplitude demodulated signals for the WTG with a bearing cage fault against that with a 

healthy bearing. 
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Figure 7.29:  Comparison of the high-performance 1P-invariant PSDs of the vibration 

measurements for the WTG with a bearing cage fault against that with a healthy bearing. 
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method. To accelerate the degradation of the testing bearing, it was pretreated by wiping 
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variable speed in the range of 10-13 Hz for approximately 25 hours. The WTG stator 

current signal was recorded every 20 minutes. The length of each record was 50 seconds. 

The sampling rate of the current measurements is 10 kHz. The wind turbine stopped 

rotating at the end of the experiment due to the damage of the bearing cage. Figure 7.30 

illustrates the bearing before and after the experiment. 
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Figure 7.30:  Testing bearing before and after the experiment. 

 

By using the high-performance 1P-invariant PSD method, the PSD of the current 

frequency demodulated signals for the healthy bearing case and the bearing cage fault 

case are compared in Figure 7.31, where the variable 1P frequency in the range of 6-13 

Hz was converted to a constant value of 10 Hz. As shown in Figure 7.31, an excitation 

appears in the 1P-invariant PSD of the current frequency demodulated signal at a fixed 

frequency of 4 Hz in the bearing cage fault case. 

The proposed impulse detection method was applied to extract the excitations in 

the 1P-invariant PSD for bearing cage fault detection. The length of the window, Ww, was 

chosen to be 101. A third-order median filter was designed for threshold calculation. The 

locally normalized PSD [i.e., R(f)] of the last record (bearing with cage fault) is plotted in 

Figure 7.32. The threshold was calculated to be 0.11. The impulses appear at 4 Hz and 8 

Hz, where the impulse at 4 Hz indicates the signature of a bearing cage fault; the impulse 

at 8 Hz is the second-order harmonic of the excitation generated by bearing cage fault. 
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Figure 7.31:  Comparison of the high-performance 1P-invariant PSDs of the current 

frequency demodulated signals for the WTG with a bearing cage fault against that with a 

healthy bearing. 

 

 

Figure 7.32:  Locally normalized PSD and threshold generated by the impulse detection 

method for bearing cage fault case. 
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The proposed impulse detection method was also applied to determine whether 

there is a signature of the bearing cage fault in the 1P-invariant PSD of the current 

frequency demodulated signal during the entire 25-hour experiment. The result is given in 

Figure 7.33. It shows that the signature of the bearing cage fault appears from the 6
th

 hour 

onwards of the experiment. The fault signature indicates a degradation of the bearing 

cage and maintenance should be taken immediately. Since there was no maintenance 

taken after the 6
th

 hour of the experiment, the bearing was damaged and the testing WTG 

was stopped at the 25
th

 hour of the experiment by the protection system. 

 

Figure 7.33:  Amplitudes of the locally normalized PSDs at the bearing cage fault 

characteristic frequency of 4 Hz during the 25-hour experiment. 
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the raw current measurement for the second bearing cage fault case in Section 7.3.2 is 

plotted in Figure 7.34. The variable WTG shaft rotating frequency was converted to a 

constant value of 10 Hz by using the 1P-invariant PSD method. Based on Table 4.1, (2.7), 

and the six pole pairs of the testing WTG, the excitations due to the bearing cage fault 

should appear at 60±4∙n Hz, where n = 1, 2, ∙∙∙. However, these excitations were totally 

masked by the sidebands of the current fundamental-frequency component of 60 Hz due 

to its high magnitude. The 1P-invariant PSD method failed to detect the bearing cage 

fault for the testing WTG by using the current measurements directly. 

 

Figure 7.34:  1P-invariant PSD of the current measurement in the second bearing cage 

fault case in Section 7.3.2. 
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current frequency modulation with the 1P frequency, the fault characteristic frequencies 

should appear at 60Hz ±1P, which are 50 Hz and 70 Hz. The variable 1P frequency has 

been converted to a constant value of 10 Hz. The results are compared in Figures 7.35, 

7.36 and 7.37, where excitations were observed at 50 Hz and 70 Hz only in the worst 4% 

blade imbalance scenario, but excitations cannot be clearly observed in other blade 

imbalance scenarios, because the fault characteristic frequencies in the current signal are 

too close to the 60 Hz fundamental-frequency component and, therefore, are masked by 

the sidebands of the fundamental-frequency component in the 1P-invariant PSD. 

 

 

Figure 7.35:  Comparison of the 1P-invariant PSD of the current measurements for the 

blade imbalance scenarios against the baseline case in a wide frequency range. 
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Figure 7.36:  Comparison of the 1P-invariant PSD of the current measurements for the 

blade imbalance scenarios against the baseline case around 50 Hz. 

 

 

Figure 7.37:  Comparison of the 1P-invariant PSD of the current measurements for the 

blade imbalance scenarios against the baseline case around 70 Hz. 
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7.5  Experimental Verification for Wavelet-Based Filter 

The testing WTG with a pretreated bearing (no lubricant) was operated in the 

wind tunnel. During the experiment, the wind turbine was operated in variable-speed 

conditions with the shaft speed in the range of 360-700 rpm, which reached the maximum 

shaft speed of this testing WTG. Operating the wind turbine at high speeds can help 

accelerate the failure process of the bearing. In each 6-minute period the A/D converter 

records data for 120 seconds with a 10 kHz sampling frequency. The experiment took 

approximately 4.5 hours. 

The proposed wavelet filter-based method was applied to the measured stator 

current signals for incipient bearing fault detection. The energy of the resulting wavelet-

filtered signals represent the energy of the components in the current measurements 

related to the bearing fault and was used as the signature for incipient bearing fault 

detection. The results are shown in Figure 7.38. The fault index Iw of the wavelet-filtered 

stator currents kept increasing during the experiment, since the bearing condition was 

degrading quickly during this period due to the lack of lubricant. Therefore, the proposed 

wavelet-based filter can be used to extract the fault signature from the stator current 

measurements. The fault index Iw can be used to discover the physical condition of the 

wind turbine bearing effectively. The RMS value of the vibration measurement is 

compared in Figure 7.39, which confirms the health degradation of the testing bearing in 

the last one hour of the experiment. 
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Figure 7.38:  Fault index for current-based incipient bearing fault detection. 

 

 

Figure 7.39:  RMS value of the vibration measurement. 
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The experimental result of incipient bearing fault detection in Figure 7.38 was 

further analyzed by using the statistical control method-based fault index evaluator. The 

bearing was assumed to be in the healthy condition in the first hour of the experiment. 

Therefore, the bearing fault index Iw in the first hour were applied to calculate the 

threshold μ+3σ, which was calculated to be 1.824. As shown in Figure 7.40, the energy of 

the WTG bearing fault index keeps increasing during the experiment due to the degrading 

bearing condition. From the beginning to the 3.5th hour of the experiment, all the bearing 

fault index samples are below the threshold. Form the 3.5th hour to the end of the 

experiment, 60% of bearing fault index samples exceeds the threshold. Therefore, the 

testing WTG bearing was in a deteriorated physical condition in the last hour of the 

experiment. 

 

Figure 7.40:  The bearing fault index with the threshold generated by the fault index 

evaluator. 
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Chapter 8 Conclusions, Contributions, and 

Recommendations for Future Research 

The goal of this research is to develop novel generator current measurement-

based online nonintrusive condition monitoring and fault detection methods for WTGs. 

The proposed methods do not require any additional sensors or data acquisition 

equipment, since generator current signals have already been used for wind turbine 

control. Most major faults in WTGs, including the faults in bearings, blades, and 

shaft/rotor systems, are able to be detected by using the proposed methods. Furthermore, 

the proposed methods can be easily integrated into existing wind turbine control, 

protection and monitoring systems and offer a means to achieve condition-based smart 

maintenance for WTGs. 

Two types of WTG faults have been considered in this research: Type 1 faults, 

such as blade imbalance, aerodynamic asymmetric, and generator rotor faults, which have 

characteristic frequencies in the frequency spectra of current signals; and Type 2 faults, 

such as WTG incipient bearing faults, which are incipient faults in WTG components 

without any characteristic frequencies in the frequency spectra of current signals. 

The vibrations of WTGs generated by the WTG shaft torque variations caused by 

WTG faults modulate the amplitude and the frequency of the WTG current signals. A 

model has been derived to analyze the effects of WTG faults on current signals for both 

direct-drive PMSG wind turbines and DFIG wind turbines. Based on this model, 

appropriate frequency and amplitude demodulation methods have been proposed to 

facilitate WTG condition monitoring and fault detection using only one phase generator 
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current measurement. Experimental results have validated the model and the proposed 

demodulation methods for WTG fault detection. The advantages of using current 

frequency or/and amplitude demodulated signals over directly using current 

measurements have also been demonstrated by experimental results. 

Two 1P-invariant PSD methods have been proposed to extract the signatures of 

Type1 WTG faults. The methods process the WTG current demodulated signals in a way 

such that the variable characteristic frequencies of WTG faults become constant values in 

the 1P-invariant PSD spectra of current demodulated signals. Simulation studies have 

been carried out in a FAST, TurbSim and Simulink combined environment for a 10-kW 

direct-drive WTG with blade imbalance and aerodynamic asymmetry faults. 

Experimental studies have been performed in a wind tunnel facility for a 160-W direct-

drive WTG with blade imbalance, blade defects, generator rotor fault, and bearing faults. 

Both simulation and experimental data have been processed by using the proposed 

methods and the results have confirmed that the proposed methods are effective to detect 

and quantify various WTG faults in variable-speed operating conditions by only using 

one phase current measurements. The proposed methods are able to clearly identify 

excitations at the characteristic frequencies of WTG faults. Therefore, it is sensitive to 

faults and is immune from interferences near fault characteristic frequencies. Compared 

to other signal analysis methods, such as wavelet analysis, Hilbert-Huang transform, etc., 

the proposed methods are less complex and have a lower computational cost and, 

therefore, are good for online fault detection. Furthermore, the traditional PSD analysis is 

a well-developed method for fault detection of rotating machines. Therefore, the 
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proposed 1P-invariant PSD methods can be easily integrated into existing condition 

monitoring and fault detection systems used in the wind industry.  

Moreover, an impulse detection method has then been designed to evaluate the 

fault signatures of Type 1 WTG faults. If an impulse is detected at the characteristic 

frequency of a WTG fault, an alert will be generated and maintenance of the WTG is 

required. Experimental studies for the testing WTG have shown that the proposed 

impulse detection method can effectively detect impulses generated by various faults for 

the WTG operating in variable-speed conditions. 

A novel wavelet filter-based algorithm has been developed for detecting 

generalized roughness of WTG bearings (Type 2 WTG faults) only using current 

measurements. The method decomposes the current measurements by using DWT. The 

fault-related components in current signals are located in the fluctuations of the wavelet 

filtered current signals due to the subtle and broad-band features of the fault components. 

The total energy of fluctuations in the wavelet filtered current signals are then calculated 

and used as the index of the incipient bearing faults. Experimental data have been 

obtained from the testing WTG with a developed bearing generalized roughness fault. 

These data have been used by the proposed method for incipient bearing fault detection. 

The results have shown that the proposed method is effective for incipient bearing fault 

detection of WTGs operating in variable-speed conditions. To evaluate the physical 

condition of WTGs having incipient bearing faults, a statistical control method has been 

designed to provide a threshold or limit for the fault index of the incipient bearing faults. 

The mean μ and standard deviation σ of the fault index when the bearing is in the healthy 

condition were calculated to determine the threshold μ+3σ. When the fault index 
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frequently exceeds the threshold, it indicates that the WTG is in a deteriorated condition 

and maintenance is required. The incipient bearing fault in the experimental study was 

successfully identified by using the proposed statistical control method-based fault index 

evaluator. 

 

The contributions of this dissertation are summarized as follows: 

 The existing methods for WTG condition monitoring and fault detection and the 

signal processing methods used for current-based WTG fault detection have been 

reviewed in this dissertation research. 

 A current-based framework has been proposed for online nonintrusive condition 

monitoring and fault detection for WTGs. WTG faults have been categorized into two 

classes. For Type 1 WTG faults, two 1P-invariant PSD methods and an impulse 

detection method have been developed to evaluate the physical condition of the wind 

turbine components. A wavelet-based filter and a stochastic control method-based 

fault index evaluator have been developed to extract the fault signatures to detect 

Type 2 WTG faults. 

 The effects of WTG faults on generator current signals have been modeled and 

analyzed. Base on the model and analysis, current frequency and amplitude 

demodulation methods have been developed to facilitate the detection of Type 1 WTG 

faults. 

 Two novel 1P-invariant PSD methods have been developed for fault signature 

extraction of Type 1 WTG faults using current demodulated signals. In the proposed 
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methods, the current demodulated signals are resampled based on the shaft rotating 

frequencies (i.e., 1P frequencies) of the WTGs. Consequently, the variable 

characteristic frequencies of Type 1 WTG faults are converted to constant values 

when the WTGs operate in variable-speed conditions. The classical PSD analysis is 

then used to extract the signatures of Type 1 WTG faults in the resampled current 

demodulated signals. 

 An impulse detection method has been designed to detect the excitations in the 1P-

invariant PSD spectra of current demodulated signals. The method firstly converts the 

1P-invariant PSD spectra to locally normalized spectra. A median filter has then been 

designed to generate a threshold to identify impulses in locally normalized 1P-

invariant PSD signals, from which the excitations corresponding to WTG faults can 

be identified. 

 A wavelet-based filter has been developed to filter out the dominant noise 

components in current signals. The total energy of the filtered current signals is then 

used as the fault index for detection of Type 2 WTG faults. 

 A 10 kW WTG equipped with a PMSG has been modeled in a FAST, TurSim and 

Simulink combined software platform. Simulation studies have been performed for 

verification of the 1P-invariant PSD method using the model WTG. 

 Extensive experimental studies have been performed in a wind tunnel for small 

direct-drive PMSG wind turbines with blade imbalance fault, blade defects, generator 

rotor fault, and bearing faults. Results have been used to demonstrate the 

effectiveness of the proposed 1P-invariant PSD methods, impulse detection method, 



132 

 

wavelet filter-based method, and statistical control-based fault index evaluator for 

online nonintrusive condition monitoring and fault detection for WTGs. 

 

Recommendations for future research are listed as follows: 

 Future work could focus on identification the locations and root causes of WTG 

faults. Many Type 1 WTG faults mentioned in this dissertation share same 

characteristic frequencies in 1P-invariant PSD spectra of current demodulated signals. 

It is desired to identify the locations and root causes of WTG faults to facilitate the 

maintenance. To achieve this objective, further research on the effects of WTG faults 

on current signals is needed. 

 It is desired that the physical condition of WTGs is prognosed by using the extracted 

fault features. Prognosis of WTG physical condition is important to improve the 

reliability of WTGs. If maintenance can be scheduled just before the live time of wind 

turbine components, the components can be fully used and the cost related to wind 

turbine faults can be reduced. 

 To improve the performance of WTG condition monitoring and fault detection, 

multiple electrical measurements (voltages and currents) are recommended to be 

used, instead of only using one phase current measurement. Measurements of 

voltages and currents constitute a multi-sensor fusion, which may increase the 

accuracy of fault detection and then improve the reliability of the WTGs. 

 Experiments on large-scale wind turbines are suggested in the future research to 

further validate the proposed WTG condition monitoring and fault detection methods. 
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Such extension is an important step before deploying the proposed methods in real-

world applications. 
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