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This dissertation deals with various issues in wireless communications under statistical

quality of service (QoS) constraints. Effective capacity, which provides the maximum

constant arrival rate that a wireless channel can sustain while satisfying statistical

QoS constraints, is adopted as the performance metric. Energy efficiency of point-to-

point links is first studied by characterizing the spectral efficiency-bit energy tradeoff

in the low-power and wideband regimes. Different transmission strategies (with vari-

able or fixed rate) and power policies are studied. Then, the effective capacity region

for fading multiple-access channels (MAC) is investigated for different transmission

strategies: Superposition coding with successive decoding and time division multi-

ple acess (TDMA). With fixed power, it is shown that varying the decoding order

with respect to the channel states can significantly increase the achievable through-

put region. In the two-user case, the optimal decoding strategy is determined for

the scenario in which the users have the same QoS constraints. The optimal power

allocation policies for any partition of the channel state space are identified. With

the characterization of effective capacity regions, the energy efficiency of MAC is

investigated by quantizing the minimum bit energy and wideband slope regions for

different transmission strategies. In addition, the throughput for the two-hop wireless

communication links with individual QoS constraints at the source and relay nodes

is determined as a function of the QoS parameters and signal-to-noise ratios at the



source and relay, and the fading distributions of the links. The analysis is performed

for both full-duplex and half-duplex relaying. Finally, the throughput with finite

blocklength channel codes is analyzed for variable-rate and fixed-rate transmissions

in single-user settings. The optimum error probability for variable-rate transmission

and the optimum coding rate for fixed-rate transmission are shown to be unique.
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I thank Professors Lance C Pérez and Byrav Ramamurthy for serving as my thesis

readers and defense committee members. Their valuable feedback and insights have

strengthened this dissertation in every aspect.

I would like to thank my officemates and friends: Junwei Zhang, Qing Chen, Youlu

Wang, Zhe Zhang, Li He, Bo Liang, Sami Akin, Mauricio Casares, and Alvaro Pinto,

with whom I have experienced a great time in my graduate study. I would also like to

thank my friends in Lincoln who have left unforgettable memories, especially Yunbo

Wang, Xingling Dai, Yijia Zhao, and Dong Lin for their help during my first year in

Lincoln.

Finally, I am grateful to my family for their understanding and support: my

mother, my father, my brothers, my sisters, my aunts, and my uncles. No words could

express my deepest gratitude for my grandmother, who has a far-reaching impact on

my life. To them I dedicate this dissertation.



v

Contents

Contents v

List of Figures x

1 Introduction 1

1.1 Effective Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Spectral Efficiency-Bit Energy Tradeoff in the Low-SNR regime . . . 5

1.3 Review of Research on Multiple-access fading channels . . . . . . . . 7

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Energy Efficiency for Variable Rate Transmissions 14

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Energy Efficiency in the Low-Power Regime . . . . . . . . . . . . . . 19

2.2.1 CSI at the Receiver Only . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 CSI at both the Transmitter and Receiver . . . . . . . . . . . 22

2.3 Energy Efficiency in the Wideband Regime . . . . . . . . . . . . . . . 25

2.3.1 CSI at the Receiver Only . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 CSI at both the Transmitter and Receiver . . . . . . . . . . . 30

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



vi

3 Energy Efficiency for Fixed Rate Transmissions 40

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Energy Efficiency in the Wideband Regime . . . . . . . . . . . . . . . 46

3.4 Energy Efficiency in the Low-Power Regime . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Energy Efficiency for Training Based Transmissions 65

4.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Training and Data Transmission . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Data Transmission Phase and Capacity Lower Bound . . . . . 68

4.2.3 Fixed-Rate Transmission and ON-OFF Model . . . . . . . . . 69

4.3 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Optimal Training Power . . . . . . . . . . . . . . . . . . . . . 72

4.4 Energy Efficiency in the Low-Power Regime . . . . . . . . . . . . . . 73

4.5 Energy Efficiency in the Wideband Regime . . . . . . . . . . . . . . . 77

4.5.1 Decomposing the Wideband Channel . . . . . . . . . . . . . . 77

4.5.2 Rich and Sparse Multipath Fading Scenarios . . . . . . . . . . 81

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Power and Rate Control for Multiple-Access Fading Channels 89

5.1 System Model and MAC Capacity Region . . . . . . . . . . . . . . . 90

5.1.1 Fixed Power and Variable Rate . . . . . . . . . . . . . . . . . 91

5.1.2 Variable Power and Variable Rate . . . . . . . . . . . . . . . . 92

5.1.3 TDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Throughput Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



vii

5.3 Transmissions without Power Control . . . . . . . . . . . . . . . . . . 97

5.3.1 Fixed Decoding Order . . . . . . . . . . . . . . . . . . . . . . 97

5.3.2 Variable Decoding Order . . . . . . . . . . . . . . . . . . . . . 101

5.3.2.1 Two-user MAC . . . . . . . . . . . . . . . . . . . . . 103

5.3.2.2 Suboptimal Decoding Order . . . . . . . . . . . . . . 107

5.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Transmissions with Power Control . . . . . . . . . . . . . . . . . . . . 111

5.4.1 Power Control Policy for Fixed Decoding Order . . . . . . . . 112

5.4.2 Power Control Policy for Variable Decoding Order . . . . . . . 115

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Energy Efficiency in MAC 125

6.1 Effective Capacity Region of the MAC Channel . . . . . . . . . . . . 126

6.2 Energy Efficiency in the Low-Power Regime . . . . . . . . . . . . . . 127

6.3 Energy Efficiency in the Wideband Regime . . . . . . . . . . . . . . . 137

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Throughput for Two-Hop Communication Systems 149

7.1 System Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . 150

7.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.2 Characterization of Effective Capacity . . . . . . . . . . . . . 152

7.2 Effective Capacity of a Two-Hop Link in Block Fading Channels . . . 154

7.2.1 Full-Duplex Relay . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2.2 Half-Duplex Relay . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



viii

8 Throughput for Finite Blocklength Codes 170

8.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.2 Mutual Information Density and Channel Coding Rate . . . . . . . . 173

8.3 Effective Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.3.1 Bounded or Fixed error probability . . . . . . . . . . . . . . . 183

8.3.2 Fixed Rate Transmissions . . . . . . . . . . . . . . . . . . . . 186

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9 Conclusions and Future Works 192

A Proof of monotonicity of CE(ζ)
ζ

in ζ 197

B Proof of Theorem 6 198

C Proof of Theorem 7 201

D Proof of Theorem 8 205

E Proof of Proposition 2 208

F Proof of Theorem 10 210

G Proof of Theorem 11 212

H Proof for Theorem 19 217

I Proof of Theorem 21 220

J Proof of Theorem 24 224

K Proof of Theorem 25 228



ix

L Proof of Theorem 28 231

M Proof of Theorem 29 248

N Exponential Decay of Pr(xnm /∈ Snm) with nm 253

O Proof of Theorem 30 255

P Proof of Theorem 31 259

Q Proof of Theorem 32 262

Bibliography 266



x

List of Figures

2.1 The system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Low-power result with CSIR in variable rate transmissions. . . . . . . . . 21

2.3 Low-power result with CSIT in Variable rate transmissions. . . . . . . . 25

2.4 Wideband result with CSIR for variable rate transmissions. . . . . . . . . 29

2.5 Eb

N0 min
with CSIR over θ and P̄ /N0. . . . . . . . . . . . . . . . . . . . . . 29

2.6 Optimal threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Wideband result with CSIT for variable rate transmissions. . . . . . . . . 36

2.8 Eb

N0 min
over θ and P̄ /N0 with CSIT. . . . . . . . . . . . . . . . . . . . . . 36

2.9 Eb

N0 min
comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Result for Nakagami-m fading channel. . . . . . . . . . . . . . . . . . . . 38

3.1 The general system model. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 ON-OFF state transition model. . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Spectral efficiency vs. Eb/N0 in the Rayleigh channel. . . . . . . . . . . . 52

3.4 Result for different m in wideband regime. . . . . . . . . . . . . . . . . . 53

3.5 The plot of the function f(z) for Gamma distribution. . . . . . . . . . . 57

3.6 The plot of the function f(z) for Lognormal distribution. . . . . . . . . . 57

3.7 Result for Rayleigh channel. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Result for different m in low-power regime. . . . . . . . . . . . . . . . . . 60



xi

3.9 Comparison of results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Result for sparse fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 The general system model. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Result for low-power regime. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Eb/N0 vs. SNR in the Rayleigh channel with E{|h|2} = 1. θ=0.01. . . . . 76

4.4 Eb

N0 min
vs. B in the Rayleigh channel with E{|h|2} = 1. . . . . . . . . . . . 76

4.5 Result for wideband regime. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Comparison of results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Result for sparse fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 The system model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Throughput region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Sum-rate comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 K vs. λ1

λ2
. SNR1 = 10dB. SNR2 = 0 dB. θ1 = θ2 = 0.01. . . . . . . . . . . 111

5.5 The optimal power control policies µ1 and µ1. . . . . . . . . . . . . . . . 123

6.1 The slope regions for independent Rayleigh fading channels. . . . . . . . 137

6.2 The slope regions for independent Rayleigh fading channels. . . . . . . . 146

6.3 The slope regions for independent Rayleigh fading channels. . . . . . . . 146

7.1 The system model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 The relay model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 The effective capacity as a function of θ2. d = 0.5. . . . . . . . . . . . . . 164

7.4 θ′
2 vs. SNR2 for d = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.5 The effective capacity as a function of d. . . . . . . . . . . . . . . . . . . 166

7.6 The effective capacity as a function of θ2. d = 0.5. SNR2 = {3, 10, 20} dB. 167

7.7 The effective capacity v.s. d and θ2. SNR2 = 3 dB. . . . . . . . . . . . . . 168



xii

7.8 The effective capacity as d varies. SNR2 = 3 dB. θ2 = {0.001, 0.01, 0.1}. . 169

8.1 The effective rate as a function of ǫ for different values of m. n = 50. . . 180

8.2 The effective rate optimized over ǫ as a function of m. n = 50. . . . . . . 181

8.3 The optimal error probability ǫ∗ as a function of m. n = 50. . . . . . . . 182

8.4 The effective rate as a function of m. n = 50. ǫ = 0.01. . . . . . . . . . . 184

8.5 The optimal m vs. n. ǫ = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 185

8.6 The optimal effective rate vs. n. ǫ = 0.01. . . . . . . . . . . . . . . . . . 185

8.7 The effective rate as a function of R. n = 50. . . . . . . . . . . . . . . . 188

8.8 The effective rate as a function of m. n = 50. . . . . . . . . . . . . . . . 189

8.9 The effective rate as a function of θ for different transmission schemes. . 189

8.10 The optimal error probability ǫ∗ as a function of θ. n = 50. . . . . . . . . 190

L.1 The virtual effective capacity and virtual effective bandwidth. . . . . . . 239



xiii

List of Algorithms

1 Power Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 120

2 Evaluating Power over All Channel State . . . . . . . . . . . . . . . . 121



1

Chapter 1

Introduction

Fueled by the fourth generation (4G) wireless standards, smart phones and tablets,

social networking tools and video-sharing sites, wireless transmission of multimedia

content has significantly increased in volume and is expected to be the dominant traffic

in data communications. Such wireless multimedia traffic requires certain quality-of-

service (QoS) guarantees so that acceptable performance and quality levels can be

met for the end-users. For instance, in voice over IP (VoIP), interactive-video (e.g.,

videoconferencing), and streaming-video applications in wireless systems, latency is

a key QoS metric. In such cases, information has to be communicated with minimal

delay. Hence, certain constraints on the queue length should be imposed in order

to have the data not wait too long in the buffer at the transmitter. At the same

time, satisfying these QoS considerations is challenging in wireless communication

scenarios. Due to mobility, changing environment and multipath fading, the power

of the received signal, and hence the instantaneous rates supported by the channel,

fluctuate randomly [1]. In such a volatile environment, providing deterministic delay

guarantees either is not possible or, when it is possible, requires the system to operate

pessimistically and achieve low performance underutilizing the resources. Therefore,
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wireless systems are better suited to support statistical QoS guarantees.

While providing powerful results, information-theoretic studies generally do not

address delay and QoS constraints [2]. For instance, results on the channel capac-

ity give insights on the performance levels achieved when the blocklength of codes

becomes large [3]. The impact upon the queue length and queueing delay of transmis-

sion using codes with large blocklength can be significant. Situation is even further

exacerbated in wireless channels in which the ergodic capacity has an operational

meaning only if the codewords are long enough to span all fading states. Now, we

also have dependence on fading, and in slow fading environments, large delays can

be experienced in order to achieve the ergodic capacity. Due to these considerations,

performance metrics such as capacity versus outage [4] and delay limited capacity [5]

have been considered in the literature for slow fading scenarios. For a given outage

probability constraint, outage capacity gives the maximum transmission rate that

satisfies the outage constraint. Delay-limited capacity is defined as the outage capac-

ity associated with zero outage probability, and is a performance level that can be

attained regardless of the values of the fading states. Hence, delay limited capacity

can be seen as a deterministic service guarantee. However, delay limited capacity can

be low or even zero, for instance in Rayleigh fading channels even if both the receiver

and transmitter have perfect channel side information.

More recently, delay constraints are more explicitly considered and their impact

on communication over fading channels is analyzed in [6] and [7]. In these studies,

the tradeoff between the average transmission power and average delay is identified.

In [6], this tradeoff is analyzed by considering an optimization problem in which

the weighted combination of the average power and average delay is minimized over

transmission policies that determine the transmission rate by taking into account the

arrival state, buffer occupancy, channel state jointly together.
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In this thesis, we follow a different approach to solving problems arising in wireless

communications under QoS constraints. we employ the notion of effective capacity

[8], which can be seen as the maximum throughput that can be achieved by the

given energy levels while providing statistical QoS guarantees. Effective capacity

formulation uses the large deviations theory and incorporates the statistical QoS

constraints by capturing the rate of decay of the buffer occupancy probability for

large queue lengths (see e.g., [9], [10], [11], and [12]).

1.1 Effective Capacity

In [8] [13] [14] [15], Wu and Negi defined the effective capacity as the maximum

constant arrival rate that a given service process can support in order to guarantee a

statistical QoS requirement specified by the QoS exponent θ. The effective capacity

is formulated as

C(θ) = − lim
t→∞

1

θt
loge E{e−θS[t]} bits/s, (1.1)

where the expectation is with respect to S[t] =
∑t

i=1 s[i], which is the time-accumulated

service process, and {s[i], i = 1, 2, . . .} denotes the discrete-time stationary and er-

godic stochastic service process.

Operational meaning of the effective capacity is the following. If the constant

arrival rate to the buffer is equal to the effective capacity C(θ), then the queue length

process converges in distribution to a random variable Q that satisfies

lim
q→∞

log Pr(Q ≥ q)

q
= −θ. (1.2)

Above, Q can be seen as the stationary queue length, and θ as the asymptotic decay
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rate of the tail distribution of the queue length Q. Hence, effective capacity specifies

the maximum constant arrival rate that can be supported by the time-varying chan-

nel while the queue-overflow probability is guaranteed to behave as Pr(Q ≥ q) ≈ e−θq

for large overflow-threshold q. Therefore, the QoS exponent θ can be regarded as a

parameter that specifies the asymptotic exponential decay-rate of the overflow prob-

ability and describes how strict the QoS constraints are. For instance, larger θ corre-

sponds to more strict QoS constraints while smaller θ implies looser QoS guarantees.

As noted in [16], when we have Pr(Q ≥ q) ≈ e−θq, then the delay violation proba-

bility can be approximated as Pr(D ≥ d) ≈ e−θξd for large d, where D denotes the

steady-state delay experienced in the buffer and ξ is determined by the arrival and

service processes. In a more specific scenario in which the arrival rate is constant, Liu

and Chamberland in [17] showed that Pr(D > d) ≤ c
√

Pr(Q > q) where c is some

constant, q = ad, and a is the constant arrival rate.

Since the average arrival rate is equal to the average departure rate when the

queue is in steady-state [18], effective capacity, which characterizes the maximum

constant arrival rate, can also be seen as the maximum throughput in the presence

of constraints on the buffer or delay violation probabilities. Note that requiring

the tail probabilities of buffer/delay violations to decay exponentially is a stronger

condition than stability or having the average buffer length or delay to be finite.

Therefore, throughput in the presence of QoS limitations will in general be less than

the throughput under stability constraints.

In the following, in order to simplify the analysis while considering general fading

distributions, we assume that the fading coefficients stay constant over the frame

duration T and vary independently for each frame and each user. In this scenario,

s[i] = TR[i], where R[i] is the instantaneous service rate in the ith frame duration
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[iT ; (i+ 1)T ). Then, (1.1) can be written as

C(θ) = − 1

θT
loge Ez{e−θT R[i]} bits/s, (1.3)

where R[i] is in general a function of the fading state z, which will be discussed in de-

tails in later chapters. (1.3) is obtained using the fact that instantaneous rates {R[i]}

vary independently from one frame to another. It is interesting to note that as θ → 0

and hence QoS constraints relax, effective capacity approaches the ergodic capacity,

i.e., C(θ) → Ez{R[i]}. On the other hand, as shown in [19], C(θ) converges to the

delay limited capacity as θ grows without limit (i.e., θ → ∞) and QoS constraints

become increasingly more strict. Therefore, effective capacity enables us to study the

performance levels between the two extreme cases of delay limited capacity, which

can be seen as a deterministic service guarantee or equivalently as a performance level

attained under hard QoS limitations, and ergodic capacity, which is achieved in the

absence of any QoS considerations.

Throughout the rest of the dissertation, we use the effective capacity normalized

by bandwidth B, which is denoted by

C(θ) =
C(θ)

B
bits/s/Hz. (1.4)

1.2 Spectral Efficiency-Bit Energy Tradeoff in the

Low-SNR regime

In wireless systems, mobile wireless systems can only be equipped with limited energy

resources, and hence energy efficient operation is a crucial requirement in most cases.

Indeed, one of the features of fourth generation (4G) wireless systems is the ability
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to support multimedia services at low transmission costs [20, Chap. 23, available

online]. To measure and compare the energy efficiencies of different systems and

transmission schemes, one can choose as a metric the energy required to reliably

send one bit of information. Information-theoretic studies show that energy-per-bit

requirement is generally minimized, and hence the energy efficiency is maximized, if

the system operates at low signal-to-noise ratio (SNR) levels and hence in the low-

power or wideband regimes. Recently, Verdú in [21] has determined the minimum

bit energy required for reliable communication over a general class of channels, and

studied the spectral efficiency–bit energy tradeoff in the wideband regime while also

providing novel tools that are useful for analysis at low SNRs.

In this section, we focus on the energy efficiency aspect of wireless transmissions

under the aforementioned statistical queueing constraints. Since energy efficient op-

eration generally requires operation at low-SNR levels, our analysis in Chapters 2, 3

and 4 is carried out in the low-SNR regime. We define SNR = P̄
N0B

, which can be seen

more clearly in the following chapters. Therefore, low SNR means either low average

power P̄ or high bandwidth B. Then, it can be easily seen that Eb

N0 min
under QoS

constraints can be obtained from [21]

Eb

N0 min

= lim
SNR→0

SNR

CE(SNR)
=

1

ĊE(0)
. (1.5)

At Eb

N0 min
, the slope S0 of the spectral efficiency versus Eb/N0 (in dB) curve is defined

as [21]

S0 = lim
Eb
N0

↓ Eb
N0 min

CE( Eb

N0
)

10 log10
Eb

N0
− 10 log10

Eb

N0 min

10 log10 2. (1.6)

Considering the expression for normalized effective capacity, the wideband slope can
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be found from1

S0 = −2(ĊE(0))2

C̈E(0)
loge 2 (1.7)

where ĊE(0) and C̈E(0) are the first and second derivatives, respectively, of the func-

tion CE(SNR) in bits/s/Hz at zero SNR [21]. Eb

N0 min
and S0 provide a linear approxi-

mation of the spectral efficiency curve at low spectral efficiencies, i.e.,

CE

(
Eb

N0

)

=
S0

10 log10 2

(

Eb

N0

∣
∣
∣
∣
∣
dB

− Eb

N0 min

∣
∣
∣
∣
∣
dB

)

+ ǫ (1.8)

where Eb

N0

∣
∣
∣
∣
dB

= 10 log10
Eb

N0
and ǫ = o

(
Eb

N0
− Eb

N0 min

)

. Note that the expressions in

(1.5) and (1.7) for fixed rate transmissions studied in Chapters 3 and 4 will change

accordingly to accommodate the transmission schemes.

1.3 Review of Research on Multiple-access fading

channels

In wireless networks, the design and analysis of efficient transmissions strategies have

been of significant interest for many years. In particular, fading multiple access

channels (MAC) have been extensively studied from an information-theoretic point

of view [3][22][23][24][25][26][27]. For instance, Tse and Hanly [23] have characterized

the capacity region of and determined the optimal resource allocation policies for

multiple access fading channels. They have shown that the boundary surface points

are in general achieved by superposition coding and successive decoding techniques,

and obtaining each boundary point can be associated with an optimization problem in

which a weighted sum rate is maximized. Vishwanath et al. [26] derived the explicit

1We note that the expressions in (1.5) and (1.7) differ from those in [21] by a constant factor
due to the fact that we assume that the units of CE is bits/s/Hz rather than nats/s/Hz.
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optimal power and rate allocation schemes (similar to waterfilling) by considering

that the users are successively decoded in the same order for all channel states. For

the convex capacity region, the unique decoding order was shown to be the reverse

order of the priority weight. While superposition coding and successive decoding

strategies provide superior performance, time-division multiple access (TDMA) may

in certain cases be preferred due to its simplicity. Note that the performance of

TDMA approaches that of the optimal strategy as the signal-to-noise ratio (SNR)

vanishes but, as shown by Caire et al. in [27], TDMA is strictly suboptimal when

SNR is low but nonzero.

While establishing the fundamental performance limits, the aforementioned stud-

ies have not explicitly taken into account buffer constraints and random arrivals. In

[28] and [29], Yeh and Cohen considered multiaccess fading channels with random

packet arrivals to buffered transmitters, and characterized rate and power allocation

strategies that maximize the stable throughput of the system. The maximum stable

throughput region was shown in [30] to be the same as the MAC capacity region. In

[31], the same authors investigated rate allocation policies that minimize the average

packet delay in multiaccess fading channels again under the assumption of randomly

arriving packets. More recently, Ehsan and Javidi in [32] studied delay optimal rate

allocation strategies as well in two-user multiaccess channels but in the presence of

asymmetric arrival processes, processing rates, and packet length distributions. Yang

and Ulukus in [33] also considered an asymmetric setting and analyzed how to control

the transmission probabilities in order to minimize the average delay in a two-user

multiaccess scenario.

In Chapter 5, we also investigate the performance under buffer constraints but pro-

vide a perspective different from those of previous studies. In particular, we consider

statistical quality of service (QoS) constraints in the form of limitations on the buffer
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violation probabilities, and study the achievable rate region under such constraints

in multiaccess fading channels. In [34], Liu et al. considered a two-user cooperative

multiple access fading channel and analyzed the rate region achieved with frequency-

division multiplexing when the users are operating under QoS constraints in the form

of limitations on buffer overflow probabilities. In this study, cooperation among the

users is shown to significantly improve the achievable rate region if the quality of the

wireless link between the users is better than those of the links between the users and

the destination. We note that since the transmitters are assumed to not know the

channel conditions, power and rate adaptation policies are not studied in [34]. Addi-

tionally, since orthogonal transmission schemes are considered, superposition coding

and successive decoding strategies are not addressed in detail.

1.4 Main Contributions

The analysis and application of effective capacity in various settings has attracted

much interest recently (see e.g., [16][17][34][35][36][37][38][39][40][41] and references

therein). Motivated by this observation, we attempt to make progress towards a

better understanding of wireless communications under QoS constraints and draw

valuable insights for the design of communication systems.

Chapter 2 deals with the energy efficiency in fading channels with variable rate

transmissions [19]. Spectral efficiency–bit energy tradeoff is analyzed in the low-

power and wideband regimes by employing the effective capacity formulation, rather

than the Shannon capacity. Through this analysis, energy requirements under QoS

constraints are identified. The analysis is conducted under two assumptions: perfect

channel side information (CSI) available only at the receiver and perfect CSI available

at both the receiver and transmitter. In particular, it is shown in the low-power
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regime that the minimum bit energy required under QoS constraints is the same

as that attained when there are no such limitations. However, this performance is

achieved as the transmitted power vanishes. Through the wideband slope analysis,

the increased energy requirements at low but nonzero power levels in the presence of

QoS constraints are determined. A similar analysis is also conducted in the wideband

regime. The minimum bit energy and wideband slope expressions are obtained. In

this regime, the required bit energy levels are found to be strictly greater than those

achieved when Shannon capacity is considered.

Chapter 3 solves the problem of energy efficiency with fixed rate transmissions [42].

When only the receiver has CSI, transmitter is assumed to send the information at a

fixed rate. A two-state (ON-OFF) transmission model is adopted, where information

is transmitted reliably at a fixed rate in the ON state while no reliable transmission

occurs in the OFF state. We obtain the bit energy required at zero spectral efficiency

and the wideband slope in both wideband and low-power regimes. Initially, the

wideband regime with multipath sparsity is investigated, and the minimum bit energy

and wideband slope expressions are found. It is shown that the minimum bit energy

requirements increase as the QoS constraints become more stringent. Subsequently,

the low-power regime, which is also equivalent to the wideband regime with rich

multipath fading, is analyzed. In this case, bit energy requirements are quantified

through the expressions of bit energy required at zero spectral efficiency and wideband

slope. It is shown for a certain class of fading distributions that the bit energy

required at zero spectral efficiency is indeed the minimum bit energy for reliable

communications. Moreover, it is proven that this minimum bit energy is attained in

all cases regardless of the strictness of the QoS limitations. The impact upon the

energy efficiency of multipath sparsity and richness is quantified.

In Chapter 4, we consider the energy efficiency when neither the transmitter or the
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receiver has the perfect CSI [43]. In this case, the channel coefficients are estimated

at the receiver via minimum mean-square-error (MMSE) estimation with the aid of

training symbols. The optimal fraction of power allocated to training is identified. It

is shown that the bit energy increases without bound in the low-power regime as the

average power vanishes. A similar conclusion is reached in the wideband regime if

the number of noninteracting subchannels grow without bound with increasing band-

width. On the other hand, it is proven that if the number of resolvable independent

paths and hence the number of noninteracting subchannels remain bounded as the

available bandwidth increases, the bit energy diminishes to its minimum value in

the wideband regime. For this case, expressions for the minimum bit energy and

wideband slope are derived. Overall, energy costs of channel uncertainty and queue-

ing constraints are identified, and the impact of multipath richness and sparsity is

determined.

Chapter 5 studies the effective capacity region of fading MACs in the presence

of quality of service (QoS) constraints [44]. Perfect channel side information (CSI)

is assumed to be available at both the transmitters and the receiver. With fixed

power, the performance achieved by superposition coding with successive decoding

techniques is investigated. It is shown that varying the decoding order with respect to

the channel states can significantly increase the achievable throughput region. In the

two-user case, the optimal decoding strategy is determined for the scenario in which

the users have the same QoS constraints. The performance of orthogonal transmission

strategies is also analyzed. It is shown that for certain QoS constraints, time-division

multiple-access (TDMA) can achieve better performance than superposition coding if

fixed successive decoding order is used at the receiver side. When power control poli-

cies are incorporated, we identify the optimal power allocation policies for any fixed

decoding order over all channel states. For a given variable decoding order strategy,
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the conditions that the optimal power control policies must satisfy are determined,

and an algorithm that can be used to compute these optimal policies is provided.

In Chapter 6, the minimum bit energy levels and wideband slope regions of fad-

ing MAC have been characterized for different transmission and reception strategies,

namely time-division multiple-access (TDMA), superposition coding with fixed de-

coding order, and superposition coding with variable decoding order [45]. In the low-

power regime, it has been shown that the minimum received bit energies achieved by

these different strategies are the same and independent of the QoS constraints. For

the case of superposition coding, it has been found that varying the decoding order at

the receiver with the fading realizations does not enlarge the wideband slope region.

Also, the suboptimality of TDMA with respect to superposition schemes has been

proved except for the special case in which the fading states are linearly dependent.

In the wideband regime, the minimum bit energies achieved by different strategies are

the same for each user but vary with the QoS constraints. One stark difference from

the results in the low-power regime is that varying the decoding order at the receiver

with the fading realizations expands the wideband slope region. Also, unlike in the

low-power regime, it is shown that TDMA can interestingly outperform superposition

coding with fixed decoding order when wideband slope regions are considered. Con-

versely, the condition under which TDMA slope region is inside that of superposition

coding with fixed decoding order has been determined.

In Chapter 7, a two-hop wireless communication link in which a source sends

data to a destination with the aid of an intermediate relay node is studied [46].

It is assumed that there is no direct link between the source and the destination,

and the relay forwards the information to the destination by employing the decode-

and-forward scheme. Both the source and intermediate relay nodes are assumed to

operate under statistical quality of service (QoS) constraints imposed as limitations
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on the buffer overflow probabilities. The maximum constant arrival rates that can be

supported by this two-hop link in the presence of QoS constraints are characterized by

determining the effective capacity of such links as a function of the QoS parameters

and signal-to-noise ratios at the source and relay, and the fading distributions of

the links. The analysis is performed for both full-duplex and half-duplex relaying.

Through this study, the impact upon the throughput of having buffer constraints

at the source and intermediate relay nodes is identified. The interactions between

the buffer constraints in different nodes and how they affect the performance are

studied. The optimal time-sharing parameter in half-duplex relaying is determined,

and performance with half-duplex relaying is investigated.

Finally, in Chapter 8, we study the finite-blocklength channel codes for transmis-

sion [47]. A block fading model, in which fading stays constant in each coherence

block and changes independently between blocks, is considered. It is assumed that

channel coding is performed over multiple coherence blocks. An approximate low-

er bound on the transmission rate is obtained from Feintein’s Lemma. This lower

bound is considered as the service rate and is incorporated into the effective capacity

formulation. The optimum error probability for variable-rate transmission and the

optimum coding rate for fixed-rate transmission are shown to be unique. The tradeoffs

and interactions between the throughput, the number of blocks over which channel

coding is performed, error probabilities, channel coherence duration, and queueing

constraints are identified.
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Chapter 2

Energy Efficiency for Variable Rate

Transmissions

We first study the variable-rate/variable-power and variable-rate/fixed-power trans-

mission schemes with different assumptions on the availability of channel side in-

formation (CSI) at the transmitter and receiver [48]. We obtain the minimum bit

energy and wideband slope expressions, and in the variable-power case, we analyze

the impact of power control policies on energy efficiency.

2.1 System Model

We consider a point-to-point communication system in which there is one source

and one destination. The general system model is depicted in Fig.2.1, and is similar

to the one studied in [35]. In this model, it is assumed that the source generates

data sequences which are divided into frames of duration T . These data frames are

initially stored in the buffer before they are transmitted over the wireless channel.

The discrete-time channel input-output relation in the ith symbol duration is given
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Figure 2.1: The system model

by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (2.1)

where x[i] and y[i] denote the complex-valued channel input and output, respectively.

The channel input is subject to an average power constraint E{|x[i]|2} ≤ P̄ for all

i, and we assume that the bandwidth available in the system is B. Above, n[i] is

a zero-mean, circularly symmetric, complex Gaussian random variable with variance

E{|n[i]|2} = N0. The additive Gaussian noise samples {n[i]} are assumed to form

an independent and identically distributed (i.i.d.) sequence. Finally, h[i] denotes

the channel fading coefficient, and {h[i]} is a stationary and ergodic discrete-time

process. We assume that perfect channel state information (CSI) is available at the

receiver while the transmitter has either no or perfect CSI. The availability of CSI

at the transmitter is facilitated through CSI feedback from the receiver. Note that
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if the transmitter knows the channel fading coefficients, it employs power and rate

adaptation. Otherwise, the signals are sent with constant power.

Note that in the above system model, the average transmitted signal-to-noise

ratio is SNR = P̄ /(N0B). We denote the magnitude-square of the fading coefficient

by z[i] = |h[i]|2, and its distribution function by pz(z). When there is only receiver

CSI, instantaneous transmitted power is P [i] = P̄ and instantaneous received SNR is

expressed as γ[i] = P̄ z[i]/(N0B). Moreover, the maximum instantaneous service rate

R[i] is

R[i] = B log2

(

1 + SNRz[i]
)

bits/s. (2.2)

We note that although the transmitter does not know z[i], recently developed rateless

codes such as LT [49] and Raptor [50] codes enable the transmitter to adapt its rate

to the channel realization and achieve R[i] without requiring CSI at the transmitter

side [51], [52]. For systems that do not employ such codes, service rates are smaller

than that in (2.2), and the results in this chapter serve as upper bounds on the

performance.

When the transmitter also has CSI, the instantaneous service rate is

R[i] = B log2

(

1 + µopt(θ, z[i])z[i]
)

bits/s (2.3)

where µopt(θ, z) is the power-adaptation policy that maximizes the effective capacity,

which has been discussed in Section 1.1. This optimal power policy is determined in

[35]:

µopt(θ, z) =







1

α
1

β+1 z
β

β+1

− 1
z

z ≥ α

0 z < α

(2.4)
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where θ is the QoS exponent defined in (1.2), β = θT B
loge 2

is the normalized QoS exponent

and α is the channel threshold chosen to satisfy the average power constraint:

SNR = E{µopt(θ, z)} = E

{[

1

α
1

β+1z
β

β+1

− 1

z

]

τ(α)

}

(2.5)

where τ(α) = 1{z ≥ α} =







1 if z ≥ α

0 if z < α
is the indicator function. Note that

µopt(θ, z) depends on the average power constraint only through the threshold α.

Moreover, power allocation strategy µopt(θ, z), while varying with the instantaneous

values of the fading coefficients, depends on the queueing constraints statistically only

through the QoS exponent θ, and hence is not a function of the instantaneous queue

lengths.

We finally note that since the maximum service rates are equal to the instanta-

neous channel capacity values, we assume through information-theoretic arguments

that when the transmitter transmits at the rate R[i] given in (2.2) and (2.3), the

information is reliably received at the receiver and no retransmissions are required.

It can be easily shown that effective capacity specializes to the Shannon capacity

and delay-limited capacity in the asymptotic regimes. As θ approaches to 0, con-

straints on queue length and queueing delay relax, and effective capacity converges

to the Shannon ergodic capacity:

lim
θ→0

CE(SNR, θ) =







E{B log2(1 + SNRz)} CSI at the RX

E {B log2 (1 + µopt(0, z)z)} CSI at the RX and TX
(2.6)

where expectations are with respect to z. Note that in (2.6), µopt(0, z) is the water-

filling power adaptation policy, which maximizes the Shannon capacity. On the other

hand, as θ → ∞, QoS constraints become more and more strict and effective capacity
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approaches the delay-limited capacity which as described before can be seen as a

deterministic service guarantee:

lim
θ→∞

CE(SNR, θ) =







B log2(1 + SNRzmin) CSI at the RX

B log2 (1 + σ) CSI at the RX and TX
(2.7)

where σ = SNR
E{1/z} and zmin is the minimum value of the random variable z, i.e.,

z ≥ zmin ≥ 0 with probability 1. Note that in Rayleigh fading, σ = 0 and zmin = 0,

and hence the delay-limited capacities are zero in both cases and no deterministic

guarantees can be provided.

We first have the following preliminary result.

Proposition 1 The normalized effective capacity, CE(SNR), given in (1.4) is a con-

cave function of SNR with the transmission schemes described above.

Proof : It can be easily seen that e−θT R[i], where R[i] = B log2(1+SNRz[i]), is a log-

convex function of SNR because −R[i] is a convex function of SNR. Since log-convexity

is preserved under sums, g(x) =
∫

f(x, y)dy is log-convex in x if f(x, y) is log-convex

in x for each y [53]. From this fact, we immediately conclude that E{e−θT R[i]} is also

a log-convex function of SNR. Hence, loge E{e−θT R[i]} is convex and − loge E{e−θT R[i]}

is concave in SNR.

When the transmitter also has CSI, we have R[i] = B log2(1 + µopt(θ, z[i])z[i]).

In this case, the concavity of CE in SNR can be easily proven using the facts that

E{e−θT R[i]} is an non-decreasing, concave function of the threshold value α (specified

in (2.4)) and approaches zero as α diminishes to zero, and α is a non-increasing

function of SNR. �
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2.2 Energy Efficiency in the Low-Power Regime

As discussed in the previous section, the minimum bit energy is achieved as SNR =

P̄
N0B

→ 0, and hence energy efficiency improves if one operates in the low-power

regime in which P̄ is small, or the high-bandwidth regime in which B is large. From

the Shannon capacity perspective, similar performances are achieved in these two

regimes, which therefore can be seen as equivalent. However, as we shall see in this

chapter, considering the effective capacity leads to different results at low power and

high bandwidth levels. In this section, we consider the low-power regime for fixed

bandwidth, B, and study the spectral efficiency vs. bit energy tradeoff by finding the

minimum bit energy and the wideband slope.

2.2.1 CSI at the Receiver Only

We initially consider the case in which only the receiver knows the channel conditions.

Substituting (2.2) into (1.4), we obtain the spectral efficiency given θ as a function

of SNR:

CE(SNR) = − 1

θTB
loge E{e−θT B log2(1+SNRz)} = − 1

θTB
loge E{(1 + SNRz)−β} (2.8)

where again β = θT B
loge 2

. Note that since the analysis is performed for fixed θ throughout

the chapter, we henceforth express the effective capacity only as a function of SNR to

simplify the expressions. The following result provides the minimum bit energy and

the wideband slope.

Theorem 1 When only the receiver has perfect CSI, the minimum bit energy and
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wideband slope are

Eb

N0 min

=
loge 2

E{z} and S0 =
2

(β + 1) E{z2}
(

E{z}
)2 − β

. (2.9)

Proof : The first and second derivative of CE(SNR) with respect to SNR are given by

ĊE(SNR) =
1

loge 2

E{(1 + SNRz)−(β+1)z}
E{(1 + SNRz)−β} and, (2.10)

C̈E(SNR) =
β

loge 2

(

E{(1 + SNRz)−(β+1)z}
E{(1 + SNRz)−β}

)2

− β + 1

loge 2

E{(1 + SNRz)−(β+2)z2}
E{(1 + SNRz)−β} , (2.11)

respectively, which result in the following expressions when SNR = 0:

ĊE(0) =
E{z}
loge 2

and C̈E(0) = − 1

loge 2

(

(β + 1)E{z2} − β
(

E{z}
)2
)

. (2.12)

Substituting the expressions in (2.12) into (1.5) and (1.7) provides the desired result.

�

From the above result, we immediately see that Eb

N0 min
does not depend on θ

and the minimum received bit energy is
Er

b

N0 min
= Eb

N0 min
E{z} = loge 2 = −1.59 dB.

Note that if the Shannon capacity is used in the analysis, i.e., if θ = 0 and hence

β = 0,
Er

b

N0 min
= −1.59 dB and S0 = 2/(E{z2}/E2{z}). Therefore, we conclude from

Theorem 1 that as the average power P̄ decreases, energy efficiency approaches the

performance achieved by a system that does not have QoS limitations. However, we

note that wideband slope is smaller if θ > 0. Hence, the presence of QoS constraints

decreases the spectral efficiency or equivalently increases the energy requirements for

fixed spectral efficiency values at low but nonzero SNR levels.

Fig. 2.2 plots the spectral efficiency as a function of the bit energy for different

values of θ in the Rayleigh fading channel with E{|h|2} = E{z} = 1. Note that the
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Figure 2.2: Spectral efficiency vs. Eb/N0 in the Rayleigh fading channel with fixed
B; CSI known at the receiver only.

curve for θ = 0 corresponds to the Shannon capacity. Throughout the chapter, we

set the frame duration to T = 2ms in the numerical results. For the fixed bandwidth

case, we have assumed B = 105 Hz. In Fig. 2.2, we observe that all curves approach

Eb

N0 min
= −1.59 dB as predicted. On the other hand, we note that the wideband

slope decreases as θ increases. Therefore, at low but nonzero spectral efficiencies,

more energy is required as the QoS constraints become more stringent. Considering

the linear approximation in (1.8), we can easily show for fixed spectral efficiency

C

(
Eb

N0

)

for which the linear approximation is accurate that the increase in the bit

energy in dB, when the QoS exponent increases from θ1 to θ2, is Eb

N0

∣
∣
∣
∣
∣
dB,θ2

− Eb

N0

∣
∣
∣
∣
∣
dB,θ1

=

(

1
S0,θ2

− 1
S0,θ1

)

C

(
Eb

N0

)

10 log10 2.
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2.2.2 CSI at both the Transmitter and Receiver

We now consider the case in which both the transmitter and receiver have perfect

CSI. Substituting (2.3) into (1.4), we have

CE(SNR) = − 1

θTB
loge E

{

e
−θT B log2

(

1+µopt(θ,z)z

)
}

= − 1

θTB
loge

(

F (α) + E

{(
z

α

)− β
β+1

τ(α)
})

(2.13)

where F (α) = E{1{z < α}}. We note that the normalized effective capacity ex-

pression in (2.13) is obtained assuming that the optimal power-adaptation policy

µopt(θ, z) given in (2.4) is employed in the system. Maximizing the effective capacity,

this optimal power allocation policy minimizes the bit energy requirements. For this

case, following an approach similar to that in [54], we obtain the following result.

Theorem 2 When both the transmitter and receiver have perfect CSI, the minimum

bit energy with optimal power control and rate adaptation becomes

Eb

N0 min

=
loge 2

zmax
(2.14)

where zmax is the essential supremum of the random variable z, i.e., z ≤ zmax with

probability 1.

Proof : We assume that zmax is the maximum value that the random variable z can

take, i.e., P (z ≤ zmax) = 1. From (2.5), we can see that as SNR vanishes, α increases

to zmax, because otherwise while SNR approaches zero, the right most side of (2.5)

does not. Then, we can suppose for small enough SNR that α = zmax −η where η → 0
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as SNR → 0. Replacing α by zmax − η in (2.5) and (2.13), we get

Eb

N0 min

= lim
SNR→0

SNR

C(SNR)

= lim
η→0

E

{[

1

(zmax−η)
1

β+1 z
β

β+1

− 1
z

]

τ(zmax − η)

}

− 1
θT B

loge

(

F (zmax − η) + E

{(
z

zmax−η

)− β
β+1 τ(zmax − η)

}) (2.15)

= lim
η→0

∫ zmax
zmax−η

(

1

(zmax−η)
1

β+1 z
β

β+1

− 1
z

)

pz(z)dz

− 1
θT B

loge

(

∫ zmax−η
0 pz(z)dz +

∫ zmax
zmax−η

(
z

zmax−η

)− β
β+1pz(z)dz

) (2.16)

= lim
η→0

1
β+1

(zmax − η)− β+2
β+1

∫ zmax
zmax−η

pz(z)

z
β

β+1

dz

− 1
β loge 2

− β
β+1

(zmax−η)
− 1

β+1
∫ zmax

zmax−η

pz(z)

z

β
β+1

dz

∫ zmax−η

0
pz(z)dz+

∫ zmax
zmax−η

(
z

zmax−η

)− β
β+1

pz(z)dz

(2.17)

= lim
η→0

(
∫ zmax−η

0 pz(z)dz +
∫ zmax

zmax−η

(
z

zmax−η

)− β
β+1pz(z)dz

)

loge 2

zmax − η
(2.18)

=
loge 2

zmax
(2.19)

where pz is the distribution of channel gain z. (2.16) is obtained by expressing the

expectations in (2.15) as integrals. (2.17) follows by using the L’Hospital’s Rule and

applying Leibniz Integral Rule. (2.18) is obtained after straightforward algebraic

simplifications and the result follows immediately.

Above, we have implicitly assumed that zmax is finite. For fading distributions with

unbounded support, zmax = ∞. In this case, the result can be shown by replacing in

(2.16) zmax by ∞, and zmax − η by the threshold α, and letting α → ∞. After these

steps, the final expression, which is akin to that in (2.19), becomes limα→∞
loge 2

α
= 0,

proving that (2.14) also holds for the case in which zmax = ∞. �
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Note that for distributions with unbounded support, we have zmax = ∞ and hence

Eb

N0 min
= 0 = −∞ dB. In this case, it is easy to see that the wideband slope is S0 = 0.

Example 1 Specifically, for the Rayleigh fading channel, as in [55], it can be shown

that limSNR→0
CE(SNR)

SNR loge( 1

SNR
) loge 2

= 1. Then, spectral efficiency can be written as

CE(SNR) ≈ SNR loge(
1

SNR
) loge 2, so

Eb

N0 min

= lim
SNR→0

SNR

CE(SNR)
= lim

SNR→0

1

loge(
1

SNR
) loge 2

= 0

which also verifies the above result.

Remark: We note that as in the case in which there is CSI at the receiver, the

minimum bit energy achieved under QoS constraints is the same as that achieved by

the Shannon capacity [54]. Hence, the energy efficiency again approaches the perfor-

mance of an unconstrained system as power diminishes. Searching for an intuitive

explanation of this observation, we note that arrival rates that can be supported

vanishes with decreasing power levels. As a result, the impact of buffer occupancy

constraints on the performance lessens. Note that in contrast, increasing the band-

width increases the arrival rates supported by the system. Therefore, limitations on

the buffer occupancy will have significant impact upon the energy efficiency in the

wideband regime as will be discussed in Section 2.3.

Fig. 2.3 plots the spectral efficiency vs. bit energy for different values of θ in

the Rayleigh fading channel with E{z} = 1. In all cases, we observe that the bit

energy goes to −∞ as the spectral efficiency decreases. We also note that at small

but nonzero spectral efficiencies, the required energy is higher as θ increases.
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Figure 2.3: Spectral efficiency vs. Eb/N0 in the Rayleigh fading channel with fixed
B; CSI known at the transmitter and receiver.

2.3 Energy Efficiency in the Wideband Regime

In this section, we study the performance at high bandwidths while the average power

P̄ is kept fixed. We investigate the impact of θ on Eb

N0 min
and the wideband slope S0

in this wideband regime. Note that as the bandwidth increases, the average signal-

to-noise ratio SNR = P̄ /(N0B) and the spectral efficiency decreases.

2.3.1 CSI at the Receiver Only

We define ζ = 1
B

and express the spectral efficiency (2.8) as a function of ζ :

CE(ζ) = − ζ

θT
loge E{e− θT

ζ
log2(1+ P̄ ζ

N0
z)}. (2.20)
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The bit energy is again defined as

Eb

N0
=

SNR

CE(SNR)
=

P̄ ζ
N0

CE(ζ)
=

P̄
N0

CE(ζ)/ζ
. (2.21)

It can be readily verified that CE(ζ)/ζ monotonically increases as ζ → 0 (or equiva-

lently as B → ∞) (see Appendix A). Therefore

Eb

N0 min

= lim
ζ→0

P̄ ζ/N0

CE(ζ)
=
P̄ /N0

ĊE(0)
(2.22)

where ĊE(0) is the first derivative of the spectral efficiency with respect to ζ at ζ = 0.

The wideband slope S0 can be obtained from the formula (1.7) by using the first and

second derivatives of the spectral efficiency CE(ζ) with respect to ζ .

Theorem 3 When only the receiver has CSI, the minimum bit energy and wideband

slope, respectively, in the wideband regime are given by

Eb

N0 min

= −
θT P̄
N0

loge E{e− θT P̄
N0 loge 2

z}
, and (2.23)

S0 = 2
(
N0 loge 2

θT P̄

)2E{e− θT P̄
N0 loge 2

z}
(

loge E{e− θT P̄
N0 loge 2

z}
)2

E{e− θT P̄
N0 loge 2

z
z2}

. (2.24)

Proof : The first and second derivative of CE(ζ) are given by

ĊE(ζ) = − 1

θT
loge E{e− θT

ζ
log2(1+ P̄ ζz

N0
)} −

E

{

e
− θT

ζ
log2(1+ P̄ ζz

N0
)
[

log2(1+ P̄ ζz
N0

)

ζ
−

P̄ z
N0 loge 2

1+ P̄ ζz
N0

]}

E{e− θT
ζ

log2(1+ P̄ ζz
N0

)}
,

(2.25)
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C̈E(ζ) =
θT

ζ









E

{

e
− θT

ζ
log2(1+ P̄ ζz

N0
)
[

log2(1+ P̄ ζz
N0

)

ζ
−

P̄ z
N0 loge 2

1+ P̄ ζz
N0

]}

E{e− θT
ζ

log2(1+ P̄ ζz
N0

)}









2

−
E

{

e
− θT

ζ
log2(1+ P̄ ζz

N0
)

[

θT
ζ

(
log2(1+ P̄ ζz

N0
)

ζ
−

P̄ z
N0 loge 2

1+ P̄ ζz
N0

)2

+ loge 2
( P̄ z

N0 loge 2

1+ P̄ ζz
N0

)2
]}

E{e− θT
ζ

log2(1+ P̄ ζz
N0

)}

.

(2.26)

First, we define the function f(ζ) =
log2(1+ P̄ ζz

N0
)

ζ2 −
P̄ z

N0ζ loge 2

1+ P̄ ζz
N0

. Then, we can show that

lim
ζ→0

f(ζ) = lim
ζ→0

log2(1+ P̄ ζz
N0

)

ζ
−

P̄ z
N0 loge 2

1+ P̄ ζz
N0

ζ

= lim
ζ→0

(

−
log2(1 + P̄ ζz

N0
)

ζ2
+

P̄ z
N0 loge 2

1 + P̄ ζz
N0

+
( P̄ z

N0 loge 2

1 + P̄ ζz
N0

)2

loge 2

)

= − lim
ζ→0

f(ζ) +
1

loge 2

(

P̄ z

N0

)2

which yields

lim
ζ→0

f(ζ) =
1

2 loge 2

(

P̄ z

N0

)2

(2.27)

Using (2.27), we can easily find from (2.25) that

lim
ζ→0

ĊE(ζ) = − 1

θT
loge E

{

e
− θT P̄

N0 loge 2
z
}

(2.28)

from which (2.23) follows immediately. Moreover, from (2.26), we can derive

lim
ζ→0

C̈E(ζ) = − 1

loge 2

(
P̄

N0

)2E{e− θT P̄
N0 loge 2

z
z2}

E{e− θT P̄
N0 loge 2

z}
. (2.29)

Evaluating (1.7) with (2.28) and (2.29) provides (2.24). �
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It is interesting to note that unlike the low-power regime results, we now have

Eb

N0 min

=
−θT P̄

N0

loge E{e− θT P̄
N0 loge 2

z}
≥

−θT P̄
N0

E{loge e
− θT P̄

N0 loge 2
z}

=
loge 2

E{z}

where Jensen’s inequality is used. Therefore, we will be operating above −1.59 dB

unless there are no QoS constraints and hence θ = 0. For the Rayleigh channel, we

can specialize (2.23) and (2.24) to obtain

Eb

N0 min

=
θT P̄
N0

loge(1 + θT P̄
N0 loge 2

)
and

S0 =

(

N0 loge 2

θT P̄
loge(1 +

θT P̄

N0 loge 2
) + loge(1 +

θT P̄

N0 loge 2
)

)2

. (2.30)

It can be easily seen that in the Rayleigh channel, the minimum bit energy mono-

tonically increases with increasing θ. Fig. 2.4 plots the spectral efficiency curves as a

function of bit energy in the Rayleigh channel. In all the curves, we set P̄ /N0 = 104.

We immediately observe that more stringent QoS constraints and hence higher values

of θ lead to higher minimum bit energy values and also higher energy requirements at

other nonzero spectral efficiencies. The wideband slope values are found to be equal to

S0 = {1.0288, 1.2817, 3.3401, 12.3484} for θ = {0.001, 0.01, 0.1, 1}, respectively. Note

that the wideband slope increases with increasing θ, indicating that the increment in

the bit energy required to increase the spectral efficiency by a fixed amount in the

wideband regime is smaller when θ is larger. We also note that despite this observa-

tion, since the minimum bit energy is also higher for larger θ, the absolute bit energy

requirements at a given spectral efficiency are higher when θ is increased.

We finally note that Eb

N0 min
and S0 now depend on θ and P̄

N0
. Fig. 2.5 plots

Eb

N0 min
as a function of these two parameters. Probing into the inherent relationships

among these parameters can give us some interesting results, which are helpful in
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designing wireless networks. For instance, for some P̄ /N0 required to achieve some

specific transmission rate, we can find the most stringent QoS guarantee possible

while attaining a certain efficiency in the usage of energy, or if a QoS requirement θ

is specified, we can find the minimum power P̄ to achieve a specific bit energy.

2.3.2 CSI at both the Transmitter and Receiver

To analyze Eb

N0 min
in this case, we initially obtain the following result and identify the

limiting value of the threshold α as the bandwidth increases to infinity.

Theorem 4 In wideband regime, the threshold α in the optimal power adaptation

scheme (2.4) satisfies

lim
ζ→0

α(ζ) = α∗ (2.31)

where α∗ is the solution to

E

{[

loge

(
z

α∗

)
1

z

]

τ(α∗)
}

=
θT P̄

N0 loge 2
. (2.32)

Moreover, for θ > 0, α∗
opt < ∞.

Proof : Recall from (2.5) that the optimal power adaptation rule should satisfy the

average power constraint:

SNR =
P̄ ζ

N0
= E

{(
1

α
1

β+1z
β

β+1

− 1

z

)

τ(α)

}

= E

{[((
z

α

) 1
β+1 − 1

)

1

z

]

τ(α)

}

(2.33)

where β = θT B
loge 2

= θT
ζ loge 2

. For the case in which θ = 0, if we let ζ → 0, we obtain

from (2.33) that

0 = E

{[(

z

α∗
opt

− 1

)

1

z

]

τ(α∗
opt)

}

(2.34)
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where α∗
opt = limζ→0 α(ζ). Using the fact that loge x ≤ x − 1 for x ≥ 1, we have

loge

(

z
α∗

opt

)

≤ z
α∗

opt
− 1 for z ≥ α∗

opt which implies that

0 ≤ E

{[

loge

(
z

α∗

)
1

z

]

τ(α∗)
}

≤ E

{[(

z

α∗
opt

− 1

)

1

z

]

τ(α∗
opt)

}

= 0

=⇒ E

{[

loge

(
z

α∗

)
1

z

]

τ(α∗)
}

= 0

proving (2.32) for the case of θ = 0.

In the following, we assume θ > 0. We first define g(ζ) =
(

z
α

) 1
β+1 =

(
z
α

) ζ loge 2
ζ loge 2+θT

and take the logarithm of both sides to obtain

loge g(ζ) =
ζ loge 2

ζ loge 2 + θT
loge

z

α
. (2.35)

Differentiation over both sides leads to

ġ(ζ)

g(ζ)
=

θT loge 2

(ζ loge 2 + θT )2
loge

z

α
− ζ loge 2

ζ loge 2 + θT

α̇

α
(2.36)

where ġ and α̇ denote the first derivatives g and α, respectively, with respect to ζ .

Noting that g(0) = 1, we can see from (2.36) that as ζ → 0, we have

ġ(0) =
loge 2

θT
loge

z

α∗
opt

(2.37)

where α∗
opt = limζ→0 α(ζ). For small values of ζ , the function g admits the following

Taylor series:

g(ζ) =
(
z

α

) 1
β+1

= g(0) + ġ(0)ζ + o(ζ) = 1 + ġ(0)ζ + o(ζ). (2.38)
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Therefore, we have

(
z

α

) 1
β+1 − 1 =

loge 2

θT
loge

(

z

α∗
opt

)

ζ + o(ζ). (2.39)

Then, from (2.33), we can write

SNR = E

{[(

loge 2

θT
loge

(
z

α

)

ζ + o(ζ)

)

1

z

]

τ(α)

}

. (2.40)

If we divide both sides of (2.40) by SNR = P̄ ζ
N0

and let ζ → 0, we obtain

lim
ζ→0

SNR

SNR
= lim

ζ→0

SNR

P̄ ζ
N0

= 1 =
N0 loge 2

θT P̄
E

{[

loge

(

z

α∗
opt

)

1

z

]

τ(α∗
opt)

}

(2.41)

from which we conclude that E

{[

loge

(
z

α∗

)
1
z

]

τ(α∗)
}

= θT P̄
N0 loge 2

, proving (2.32) for

θ > 0.

Using the fact that loge

(
z
α

)

< z
α

for z ≥ 0, we can write

0 ≤ E

{[

loge

(
z

α

)
1

z

]

τ(α)
}

≤ E

{

1

α
τ(α)

}

≤ 1

α
. (2.42)

Assume now that limζ→0 α(ζ) = α∗
opt = ∞. Then, the rightmost side of (2.42)

becomes zero in the limit as ζ → 0 which implies that E
{[

loge

(

z
α∗

opt

)

1
z

]

τ(α∗
opt)

}

= 0.

From (2.32), this is clearly not possible for θ > 0. Hence, we have proved that

α∗
opt < ∞ when θ > 0. �

Remark: As noted before, wideband and low-power regimes are equivalent when

θ = 0. Hence, as in the proof of Theorem 2, we can easily see in the wideband regime

that the threshold α approaches the maximum fading value zmax as ζ → 0 when θ = 0.

Hence, for fading distributions with unbounded support, α → ∞ with vanishing ζ .

The threshold being very large means that the transmitter waits sufficiently long until
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Figure 2.6: Threshold of channel gain α vs. ζ in the Rayleigh fading channel; CSI
known at the transmitter and receiver.

the fading assumes very large values and becomes favorable. That is how arbitrarily

small bit energy values can be attained. However, in the presence of QoS constraints,

arbitrarily long waiting times will not be permitted. As a result, α approaches a

finite value (i.e., α∗
opt < ∞) as ζ → 0 when θ > 0. Moreover, from (2.32), we

can immediately note that as θ increases, α∗
opt has to decrease. This fact can also

be observed in Fig. 2.6 in which α vs. ζ is plotted in the Rayleigh fading channel.

Consequently, arbitrarily small bit energy values will no longer be possible when θ > 0

as will be shown in Theorem 5.

The spectral efficiency with optimal power adaptation is now given by

CE(ζ) = − ζ

θT
loge

(

F (α) + E

{(
z

α

)− θT
θT +ζ loge 2

τ(α)
})

(2.43)

where again F (α) = E{1{z < α}} and τ(α) = 1{τ ≥ α}.

Theorem 5 When both the receiver and transmitter have CSI, the minimum bit en-
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ergy and wideband slope in the wideband regime are given by

Eb

N0 min

= −
θT P̄
N0

loge ξ
and S0 =

ξ(loge ξ)
2 loge 2

θT (
P̄α∗

opt

N0
+ α̇(0)E{1

z
τ(α∗

opt)})
(2.44)

where ξ = F (α∗) + E{α∗

z
τ(α∗)}, and α̇(0) is the derivative of α with respect to ζ,

evaluated at ζ = 0.

Proof : Substituting (2.43) into (2.22) leads to

Eb

N0 min

= lim
ζ→0

P̄ ζ/N0

− ζ
θT

loge

(

F (α) + E

{(

z
α

)− θT
θT +ζ loge 2

τ(α)
})

= − θT P̄

N0 loge

(

F (α∗) + E

{

α∗

z
τ(α∗)

}) . (2.45)

After denoting ξ = F (α∗) + E{α∗

z
τ(α∗)}, we obtain the expression for minimum bit

energy in (2.44).

Meanwhile, CE(ζ) has the following Taylor series expansion up to second order:

CE(ζ) = ĊE(0)ζ +
1

2
C̈E(0)ζ2 + o(ζ2). (2.46)

Therefore, the second derivative of CE with respect to ζ at ζ = 0 can be computed

from

C̈E(0) = 2 lim
ζ→0

CE(ζ) − ĊE(0)ζ

ζ2
. (2.47)

From the derivation of (2.45) and (2.22), we know that

ĊE(0) = − 1

θT
loge

(

F (α∗) + E

{
α∗

z
τ(α∗)

})

. (2.48)
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Then,

C̈E(0) = 2 lim
ζ→0

(− ζ
θT

loge

(

F (α) + E

{(

z
α

)− θT
θT +ζ loge 2

τ(α)
})

ζ2

+

ζ
θT

loge

(

F (α∗) + E

{
α∗

opt

z
τ(α∗

opt)
})

ζ2

)

= − 2

θT
lim
ζ→0

loge

F (α)+E

{(
α
z

) θT
θT +ζ loge 2

τ(α)

}

F (α∗
opt)+E

{
α∗

opt
z

τ(α∗
opt)

}

ζ
(2.49)

= − 2

θT
lim
ζ→0

E

{

(α
z
)

θT
θT +ζ loge 2

(

− θT loge 2
(θT +ζ loge 2)2 loge

(
α
z

)

+ θT α̇
(θT +ζ loge 2)α

)

τ(α)

}

F (α∗
opt) + E

{
α∗

opt

z
τ(α∗

opt)
}

(2.50)

= −2 loge 2

(θT )2

E

{

α∗
opt

z
loge

(

z
α∗

opt

)

τ(α∗
opt)

}

+ θT α̇(0)
loge 2

E{1
z
τ(α∗

opt)}

F (α∗
opt) + E

{
α∗

opt

z
τ(α∗

opt)
} , (2.51)

where α̇ is the derivative of α with respect to ζ . Above, (2.50) is obtained by using

L’Hospital’s Rule. Evaluating (1.7) with (2.48) and (2.51), and combining with the

result in (2.32), we obtain the expression for S0 in (2.44). �

It is interesting to note that the minimum bit energy is strictly greater than zero

for θ > 0. Hence, we see a stark difference between the wideband regime and low-

power regime in which the minimum bit energy is zero for fading distributions with

unbounded support. Fig. 2.7 plots the spectral efficiency curves in the Rayleigh

fading channel and is in perfect agreement with the theoretical results. Obviously,

the plots are drastically different from those in the low-power regime (Fig. 2.3)

where all curves approach −∞ as the spectral efficiency decreases. In Fig. 2.7, the

minimum bit energy is finite for the cases in which θ > 0. The wideband slope
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vs. θ and P̄ /N0 in the Rayleigh fading channel; CSI known at the

transmitter and receiver.
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values are computed to be equal to S0 = {0.3081, 1.0455, 2.5758, 4.1869}. Fig. 2.8

plots the Eb

N0 min
as a function of θ and P̄ /N0. Generally speaking, due to power and

rate adaptation, Eb

N0 min
in this case is smaller compared to that in the case in which

only the receiver has CSI. This can be observed in Fig. 2.9 where the minimum

bit energies are compared. From Fig. 2.9, we note that the presence of CSI at the

transmitter is especially beneficial for very small and also large values of θ. While

the bit energy in the CSIR case approaches −1.59 dB with vanishing θ, it decreases

to −∞ dB when the transmitter also knows the channel. On the other hand, when

θ ≈ 10−3, we interestingly observe that there is not much to be gained in terms of

the minimum bit energy by having CSI at the transmitter. More specifically, power

adaptation in this case does not result in significant improvements in the asymptotic

value of the (unnormalized) effective capacity CE achieved as B → ∞. We note from

(2.23) and (2.44) that the minimum bit energy expressions have a common expression

in the numerator while the expressions in the denominator are proportional to the

asymptotic value of CE. When P̄ /N0 = 106, T = 2ms and θ = 10−3, we can easily

compute for the Rayleigh channel that − loge E{e− θT P̄
N0 loge 2

z} = 1.357. In the case of

CSIT, we have α∗
opt = 0.0716 and − loge ξ = 1.507, verifying our conclusion above.

For θ > 10−3, we again start having improvements with the presence of CSIT.

Throughout the chapter, numerical results are provided for the Rayleigh fading

channel. However, note that the theoretical results hold for general stationary and

ergodic fading processes. Hence, other fading distributions can easily be accommo-

dated as well. In Fig. 2.10, we plot the spectral efficiency vs. bit energy curves for

the Nakagami-m fading channel with m = 2.
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2.4 Conclusion

In this chapter, we have analyzed the energy efficiency in fading channel under

QoS constraints by considering the effective capacity as a measure of the maximum

throughput under certain statistical QoS constraints, and analyzing the bit energy

levels. Our analysis has provided a characterization of the energy-bandwidth-delay

tradeoff. In particular, we have investigated the spectral efficiency vs. bit energy

tradeoff in the low-power and wideband regimes under QoS constraints. We have

elaborated the analysis under two scenarios: perfect CSI available at the receiver and

perfect CSI available at both the receiver and transmitter. We have obtained expres-

sions for the minimum bit energy and wideband slope. Through this analysis, we

have quantified the increased energy requirements in the presence of delay-QoS con-

straints. While the bit energy levels in the low-power regime can approach those that

can be attained in the absence of QoS constraints, we have shown that strictly higher

bit energy values are needed in the wideband regime. We have provided numerical

results by considering the Rayleigh and Nakagami fading channels and verified the

theoretical conclusions.
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Chapter 3

Energy Efficiency for Fixed Rate

Transmissions

In this chapter, we assume that the transmitter does not have channel knowledge

and it sends the information at a fixed rate and fixed power. For this fixed rate

scenario, we adopt a two state (ON-OFF) transmission model, where information is

transmitted reliably at a fixed rate in the ON state while no transmission occurs in

the OFF state. We investigate the wideband regime in sparse multipath fading, in

which the number of subchannels remains bounded as bandwidth increases, and also

in rich multipath fading, in which the number of non-interacting subchannels increases

without bound with increasing bandwidth. The minimum bit energy and wideband

slope expressions are found for the wideband regime with multipath sparsity. The

expressions for bit energy required at zero spectral efficiency and wideband slope are

quantified for the low-power regime, which is also equivalent to the wideband regime

with rich multipath fading. It is shown for a certain class of fading distributions that

the bit energy required at zero spectral efficiency is indeed the minimum bit energy

for reliable communications.
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3.1 System Model

We consider a point-to-point wireless link in which there is one source and one des-

tination. The system model is depicted in Figure 3.1. It is assumed that the source

generates data sequences which are divided into frames of duration T . These data

frames are initially stored in the buffer before they are transmitted over the wireless

channel. The discrete-time channel input-output relation in the ith symbol duration

is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (3.1)

where x[i] and y[i] denote the complex-valued channel input and output, respectively.

We assume that the bandwidth available in the system is B and the channel input is

subject to the following average energy constraint: E{|x[i]|2} ≤ P̄ /B for all i. Since

the bandwidth is B, symbol rate is assumed to be B complex symbols per second,

indicating that the average power of the system is constrained by P̄ . Above in (3.1),

n[i] is a zero-mean, circularly symmetric, complex Gaussian random variable with

variance E{|n[i]|2} = N0. The additive Gaussian noise samples {n[i]} are assumed to

form an independent and identically distributed (i.i.d.) sequence. Finally, h[i] denotes

the channel fading coefficient, and {h[i]} is a stationary and ergodic discrete-time

process. We denote the magnitude-square of the fading coefficients by z[i] = |h[i]|2.

In this chapter, we consider the scenario in which the receiver has perfect chan-

nel side information and hence perfectly knows the instantaneous values of {h[i]}

while the transmitter has no such knowledge. In this case, the instantaneous channel

capacity with channel gain z[i]=|h[i]|2 is

C[i] = B log2(1 + SNRz[i]) bits/s (3.2)
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Figure 3.1: The general system model.

where SNR = P̄ /(N0B) is the average transmitted signal-to-noise ratio. Since the

transmitter is unaware of the channel conditions, information is transmitted at a

fixed rate of r bits/s. When r < C, the channel is considered to be in the ON

state and reliable communication is achieved at this rate. From information-theoretic

arguments, this is possible if strong codes with large blocklength is employed in the

system. Since there are TB symbols in each block, we assume TB is large enough

to establish reliable communication. If, on the other hand, r ≥ C, outage occurs.

In this case, channel is in the OFF state and reliable communication at the rate

of r bits/s cannot be attained. Hence, effective data rate is zero and information

has to be resent. We assume that a simple ARQ mechanism is incorporated in the

communication protocol to acknowledge the reception of data and to ensure that the

erroneous data is retransmitted [38].

Fig. 3.2 depicts the two-state transmission model together with the transition

probabilities. In this chapter, we assume that the channel fading coefficients stay
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Figure 3.2: ON-OFF state transition model.

constant over the frame duration T . Hence, the state transitions occur at every T

seconds. Now, the probability of staying in the ON state, p22, is defined as follows1:

p22 = P{r < C[i+ TB]
∣
∣
∣ r < C[i]}

= P{z[i+ TB] > α
∣
∣
∣ z[i] > α} (3.3)

where

α =
2

r
B − 1

SNR
. (3.4)

Note that p22 depends on the joint distribution of (z[i+TB], z[i]). For the Rayleigh

fading channel, the joint density function of the fading amplitudes can be obtained

in closed-form [56]. In this chapter, with the goal of simplifying the analysis and

providing results for arbitrary fading distributions, we assume that fading realizations

are independent for each frame2. Hence, we basically consider a block-fading channel

model. Note that in block-fading channels, the duration T over which the fading

coefficients stay constant can be varied to model fast or slow fading scenarios.

Under the block fading assumption, we now have p22 = P{z[i + TB] > α} =

1The formulation in (3.3) assumes as before that the symbol rate is B symbols/s and hence we
have T B symbols in a duration of T seconds.

2This assumption also enables us to compare the results of this chapter with those in Chapter 2 in
which variable-rate/variable-power and variable-rate/fixed-power transmission schemes are studied
for block fading channels.
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Λ(θ)

θ
=

1

θ
loge

(
1

2

(

p11 + p22e
θT r +

√

(p11 + p22eθT r)2 + 4(p11 + p22 − 1)eθT r

))

. (3.6)

P{z > α}. Similarly, the other transition probabilities become

p11 = p21 = P{z ≤ α} =
∫ α

0
pz(z)dz and

p22 = p12 = P{z > α} =
∫ ∞

α
pz(z)dz (3.5)

where pz is the probability density function of z. Throughout the chapter, we assume

that both pz(z) and the cumulative distribution function P{z ≤ α} are differentiable.

We finally note that rT bits are successfully transmitted and received in the ON state,

while the effective transmission rate in the OFF state is zero.

3.2 Preliminary

For this chapter, with (1.1) in mind, we know that s[i] = rT or 0 depending on the

channel state being ON or OFF, respectively. In [10] and [12, Section 7.2, Exam-

ple 7.2.7], it is shown that for such an ON-OFF model, the log-moment generating

function normalized by θ, i.e., Λ(θ)
θ

, is given by (3.6) at the top of the page.

Using the formulation in (3.6) and noting that p11 + p22 = 1 in our model, we

express the effective capacity normalized by the frame duration T and bandwidth B,

or equivalently spectral efficiency in bits/s/Hz, for a given statistical QoS constraint
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θ, as [12]

RE(SNR, θ)

=
1

TB
max
r≥0

{

− Λ(−θ)
θ

}

(3.7)

= max
r≥0

{

− 1

θTB
loge

(

p11 + p22e
−θT r

)}

(3.8)

= max
r≥0

{

− 1

θTB
loge

(

1 − P{z > α}(1 − e−θT r)
)}

(3.9)

= − 1

θTB
loge

(

1 − P{z > αopt}
(

1 − e−θT ropt

))

bits/s/Hz (3.10)

where ropt is the maximum fixed transmission rate that solves (3.9) and αopt = (2
ropt

B −

1)/SNR. Note that both αopt and ropt are functions of SNR and θ.

The normalized effective capacity, RE, provides the maximum throughput under

statistical QoS constraints in the fixed-rate transmission model. It can be easily

shown that

lim
θ→0

RE(SNR, θ) = max
r≥0

r

B
P{z > α}. (3.11)

Hence, the QoS requirements relax, the maximum constant arrival rate approaches the

average transmission rate. On the other hand, for θ > 0, RE < 1
B

maxr≥0 rP{z > α}

in order to avoid violations of QoS constraints.

In this chapter, we focus on the energy efficiency of wireless transmissions under

the aforementioned statistical QoS limitations. Since energy efficient operation gen-

erally requires operation at low-SNR levels, our analysis throughout the chapter is

carried out in the low-SNR regime. In this regime, the tradeoff between the normal-

ized effective capacity (i.e, spectral efficiency) RE and bit energy Eb

N0
= SNR

RE(SNR)
is a

key tradeoff in understanding the energy efficiency, and is characterized by the bit
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energy at zero spectral efficiency and wideband slope provided, respectively, by

Eb

N0

∣
∣
∣
∣
∣
RE=0

= lim
SNR→0

SNR

RE(SNR)
=

1

ṘE(0)
, and

S0 = −2(ṘE(0))2

R̈E(0)
loge 2

(3.12)

where ṘE(0) and R̈E(0) are the first and second derivatives with respect to SNR,

respectively, of the function RE(SNR) at zero SNR [21]. Eb

N0

∣
∣
∣
∣
RE=0

and S0 provide a

linear approximation of the spectral efficiency curve at low spectral efficiencies, i.e.,

RE

(
Eb

N0

)

=
S0

10 log10 2




Eb

N0

∣
∣
∣
∣
∣
dB

− Eb

N0

∣
∣
∣
∣
∣
RE=0,dB



+ ǫ (3.13)

where ǫ = o



Eb

N0
− Eb

N0

∣
∣
∣
∣
∣
RE=0



.

Above, Eb

N0

∣
∣
∣
∣
dB

= 10 log10
Eb

N0
. When the spectral efficiency RE is a non-decreasing

concave function of SNR, the bit energy Eb

N0
diminishes with decreasing spectral effi-

ciency. Hence, in this case, the bit energy required at zero spectral efficiency is indeed

the minimum one, i.e., Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
.

3.3 Energy Efficiency in the Wideband Regime

In this section, we consider the wideband regime in which the bandwidth is large.

We assume that the average power P̄ is kept constant. Note that as the bandwidth

B increases, SNR = P̄
N0B

approaches zero and we operate in the low-SNR regime.

Following the approach generally employed in information-theoretic analyses, we

assume that the wideband channel is decomposed into N parallel subchannels. We

further assume that each subchannel has a bandwidth that is equal to the coherence
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bandwidth, Bc. Therefore, independent flat-fading is experienced in each subchan-

nel, and we have B = NBc. Similar to (3.1), the input-output relation in the kth

subchannel can be written as

yk[i] = hk[i]xk[i] + nk[i] i = 1, 2, . . . and k = 1, 2, . . . , N. (3.14)

The fading coefficients {hk}n
k=1 in different subchannels are assumed to be independen-

t. The signal-to-noise ratio in the kth subchannel is SNRk = P̄k

N0Bc
where P̄k denotes

the power allocated to the kth subchannel and we have
∑N

k=1 P̄k = P̄ . Over each

subchannel, the same transmission strategy as described in Section 3.1 is employed.

Therefore, the transmitter, not knowing the fading coefficients of the subchannels,

sends the data over each subchannel at the fixed rate of r. If r < Bc log(1+SNRkzk[i])

where zk = |hk|2, then transmission over the kth subchannel is successful. Otherwise,

retransmission is required. Hence, we have an ON-OFF state model for each sub-

channel. On the other hand, for the transmission over N subchannels, we have a

state-transition model with N + 1 states because we have overall the following N + 1

possible total transmission rates: {0, rT, 2rT, . . . , NrT}. For instance, if all N sub-

channels are in the OFF state simultaneously, the total rate is zero. If j out of N

subchannels are in the ON state, then the rate is jrT .

Now, assume that the states are enumerated in the increasing of order of the

total transmission rates supported by them. Hence, in state j ∈ {1, . . . , N + 1}, the

transmission rate is (j−1)rT . The transition probability from state i ∈ {1, . . . , N+1}

to state j ∈ {1, . . . , N + 1} is given by (3.15) on the next page where Ij−1 denotes

a subset of the index set {1, . . . , N} with j − 1 elements. The summation in (3.15)

is over all such subsets. Moreover, in (3.15), Ic
j−1 denotes the complement of the set

Ij−1, and αk = 2
r

Bc −1
SNRk

. Note in the above formulation that the transition probabilities,
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pij = pj = P{(j − 1) subchannels out of N subchannels are in the ON state}

=
∑

Ij−1⊂{1,...,N}






∏

k∈Ij−1

P{zk > αk}
∏

k∈Ic
j−1

(1 − P{zk > αk})




 (3.15)

pij , do not depend on the initial state i due to the block-fading assumption. If, in

addition to being independent, the fading coefficients and hence {zk}N
k=1 in different

subchannels are identically distributed, then pij in (3.15) simplifies and becomes a

binomial probability:

pij = pj =







N

j − 1







(P{z > α})j−1 (1 − P{z > α})N−j+1 . (3.16)

Note that if the fading coefficients are i.i.d., the total power should be uniformly

distributed over the subchannels. Hence, in this case, we have P̄k = P̄
N

and therefore

SNRk = P̄k

N0Bc
= P̄ /N

N0B/N
= P̄

N0B
= SNR which is equal to the original SNR definition

used in (3.2). Now, we have the same α = 2
r

Bc
−1

SNR for each subchannel.

The effective capacity of this wideband channel model is given by the following

result.

Theorem 6 For the wideband channel with N parallel noninteracting subchannels

each with bandwidth Bc and independent flat fading, the normalized effective capacity

in bits/s/Hz is

RE(SNR, θ) = max
r≥0

P̄k≥0 s.t.
∑

P̄k≤P̄






− 1

θTB
loge





N+1∑

j=1

pj e
−θ(j−1)rT










(3.17)

where pj is given in (3.15). If {zk}N
k=1 are identically distributed, then the normalized
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effective capacity expression simplifies to

RE(SNR, θ) = max
r≥0

{

− 1

θTBc
loge

(

1 − P{z > α}(1 − e−θT r)
)}

. (3.18)

where α = 2
r

Bc −1
SNR

and SNR = P̄
N0B

.

Proof : See Appendix B.

Theorem 6 shows that the effective capacity of a wideband channel with N sub-

channels each with i.i.d. flat fading has an expression similar to that in (3.9), which

provides the effective capacity of a single channel experiencing flat fading. The only

difference between (3.9) and (3.18) is that B is replaced in (3.18) by Bc, which is the

bandwidth of each subchannel.

In this section, we consider the wideband regime in which the overall bandwidth

of the system, B, is large. In particular, we analyze the performance in the scenario

of sparse multipath fading. Motivated by the recent measurement studies in the

ultrawideband regime, the authors in [57] and [58] considered sparse multipath fading

channels and analyzed the performance under channel uncertainty, employing the

Shannon capacity formulation as the performance metric. In particular, [57] and [58]

noted that the number of independent resolvable paths in sparse multipath channels

increase at most sublinearly with the bandwidth, which in turn causes the coherence

bandwidth Bc to increase with increasing bandwidth. To characterize the performance

of sparse fading channels in the wideband regime, we assume in this section that

Bc → ∞ as B → ∞. We further assume that the the number of subchannels N

remains bounded and hence the degrees of freedom are limited. For instance, this

case arises if the number of resolvable paths are bounded even at infinite bandwidth.

Such a scenario is considered in [59] where the capacity and mutual information

are characterized under channel uncertainty in the wideband regime with bounded
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number of paths.

The case of rich multipath fading in which the Bc remains fixed and N grows

without bound and the scenario in which both Bc and N increase to infinity are

treated in Section 3.4 because each subchannel in these cases operates in the low-

power regime as N increases.

We first introduce the notation ζ = 1
Bc

. Note that as Bc → ∞, we have ζ → 0.

Moreover, with this notation, the normalized effective capacity in (3.18) given for

i.i.d. fading can, after maximization, be expressed as3

RE(SNR) = − ζ

θT
loge

(

1 − P{z > αopt}
(

1 − e−θT ropt

))

. (3.19)

Note that αopt and ropt are also in general dependent on Bc and hence ζ . The following

result provides the expressions for the minimum bit energy, which is achieved at zero

spectral efficiency (i.e., as B → ∞ and Bc → ∞), and the wideband slope, and

characterizes the spectral efficiency-bit energy tradeoff in the wideband regime when

multipath fading is sparse, the number of subchannels is bounded, and the fading

coefficients are i.i.d. in different subchannels.

Theorem 7 In sparse multipath fading wideband channels with bounded number of

subchannels each with i.i.d. fading coefficients, the minimum bit energy and wideband

slope are given by

Eb

N0 min

=
−δ loge 2

loge ξ
and (3.20)

S0 =
2ξ log2

e ξ

(δα∗
opt)2P{z > α∗

opt}e−δα∗
opt
, (3.21)

3Since the results in the chapter are generally obtained for fixed but arbitrary θ, the normalized
effective capacity is often expressed in the chapter as RE(SNR) instead of RE(SNR, θ) to avoid
cumbersome expressions.
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respectively, where δ = θT P̄
NN0 loge 2

and ξ = 1 −P{z > α∗
opt}(1 − e−δα∗

opt). α∗
opt is defined

as α∗
opt = limζ→0 αopt and α∗

opt satisfies

δα∗
opt = loge

(

1 + δ
P{z > α∗

opt}
pz(α

∗
opt)

)

. (3.22)

Proof: See Appendix C.

Remark: Theorem 7, through the minimum bit energy and wideband slope ex-

pressions, quantifies the bit energy requirements in the wideband regime when the

system is operating subject to statistical QoS constraints specified by θ. Note that

both Eb

N0 min
and S0 depend on the QoS exponent θ through δ. As will be observed

in the numerical results, Eb

N0 min
and the bit energy requirements at nonzero spectral

efficiency values generally increase with increasing θ. Moreover, when compared with

the results in Section 3.4, it will be seen that sparse multipath fading and having a

bounded number of subchannels incur energy penalty in the presence of QoS con-

straints while performances do not depend on the multipath sparsity when there are

no such constraints and hence θ = 0.

Having analytically characterized the spectral efficiency–bit energy tradeoff in the

wideband regime in Theorem 7, we now provide numerical results to illustrate the

theoretical findings. Fig. 3.3 plots the spectral efficiency curves as a function of

the bit energy in the Rayleigh channel. In all the curves, we have P̄ /(NN0) = 104.

Moreover, we set T = 2 ms in the numerical results throughout the chapter. As

predicted by the result of Theorem 7, Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
in all cases in Fig. 3.3. It

can be found that α∗
opt = {1, 0.9858, 0.8786, 0.4704, 0.1177} from which we obtain

Eb

N0 min
= {2.75, 2.79, 3.114, 5.061, 10.087}dB for θ = {0, 0.001, 0.01, 0.1, 1}, respective-

ly. For the same set of θ values in the same sequence, we compute the wideband slope

values as S0 = {0.7358, 0.7463, 0.8345, 1.4073, 3.1509}. We immediately observe that
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Figure 3.3: Spectral efficiency vs. Eb/N0 in the Rayleigh channel.

more stringent QoS constraints and hence higher values of θ lead to higher minimum

bit energy values and also higher energy requirements at other nonzero spectral effi-

ciencies. Fig. 3.4 provides the spectral efficiency curves for Nakagami-m fading chan-

nels for different values of m. In this figure, we set θ = 0.01. For m = 0.6, 1, 2, 5, we

find that α∗
opt = {1.0567, 0.8786, 0.7476, 0.6974}, Eb

N0 min
= {3.618, 3.114, 2.407, 1.477},

and S0 = {0.6382, 0.8345, 1.1220, 1.4583}, respectively. Note that as m increases

and hence the channel conditions improve, the minimum bit energy decreases and

the wideband slope increases, improving the energy efficiency both at zero spectral

efficiency and at nonzero but small spectral efficiency values. As m → ∞, the per-

formance approaches that of the unfaded additive Gaussian noise channel (AWGN)

for which we have Eb

N0 min
= −1.59 dB and S0 = 2 [21].
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Figure 3.4: Spectral efficiency vs. Eb/N0 in Nakagami-m channels; θ = 0.01, m =
0.6, 1, 2, 5.

3.4 Energy Efficiency in the Low-Power Regime

In this section, we investigate the spectral efficiency–bit energy tradeoff in a single

flat-fading channel as the average power P̄ diminishes. We assume that the bandwidth

allocated to the channel is fixed. Note that SNR = P̄ /(N0B) vanishes with decreasing

P̄ , and we again operate in the low-SNR regime similarly as in Section 3.3. Note

further from (3.10) that the effective capacity of a flat-fading channel is given by

RE(SNR) = − 1

θTB
loge

(

1 − P{z > αopt}
(

1 − e−θT ropt

))

. (3.23)

On the other hand, we remark that the results derived here also apply to the wide-

band regime under the assumption that the number of non-interacting subchannels

increases without bound with increasing bandwidth. Note that in such a case, each

subchannel operates in the low-power regime.

The following result provides the expressions for the bit energy at zero spectral
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efficiency and the wideband slope.

Theorem 8 In the low-power regime, the bit energy at zero spectral efficiency and

wideband slope are given by

Eb

N0

∣
∣
∣
∣
∣
RE=0

=
loge 2

α∗
optP{z > α∗

opt}
and (3.24)

S0 =
2P{z > α∗

opt}
1 + β(1 − P{z > α∗

opt})
, (3.25)

respectively, where β = θT B
loge 2

is the normalized QoS constraint. In the above formula-

tion, α∗
opt is defined as α∗

opt = limSNR→0 αopt, and α∗
opt satisfies

α∗
optpz(α

∗
opt) = P{z > α∗

opt}. (3.26)

Proof: See Appendix D.

Corollary 1 The same bit energy and wideband slope expressions as in (3.24) and

(3.25) are achieved in the wideband regime as B → ∞ if the fading coefficients in

different subchannels are i.i.d. and also if the number of subchannels N increases

linearly with increasing bandwidth (as in rich multipath fading channels), keeping the

coherence bandwidth fixed.

Under the assumptions stated in Corollary 1, the effective capacity is given by

(3.18). Moreover, as B → ∞, we have Bc fixed while N → ∞. Hence, SNR = P̄ /N
N0Bc

→

0. This setting is exactly the same as the low-power regime considered in Theorem

8. Therefore, the results of Theorem 8 apply immediately.

Next, we show that equation (3.26) that needs to be satisfied by α∗
opt has a unique

solution for a certain class of fading distributions.
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Theorem 9 Assume that the probability density function of z, denoted by pz(·), is

differentiable, and both pz(·) and its derivative ṗz(·) at the origin do not contain

impulses or higher-order singularities and are finite. Assume further that the support

of pz(·) is [0,∞). Under these assumptions, if 2pz(x)+xṗz(x) = 0 is solved at a single

point x0 > 0 among all x ∈ (0,∞), then the equation α∗
optpz(α∗

opt) = P{z > α∗
opt} has

a unique solution.

Proof : We first define f(x) = xpz(x) − P{z > x} for x ≥ 0.Under the conditions

stated in Theorem 9, we can easily see that f(0) = −1 and f(∞) = 0. Moreover,

f(x) ≥ −1 for all x ≥ 0 because pz(x) ≥ 0 and P{z > x} ≤ 1. It can also be seen

that
∫∞

0 f(x)dx =
∫∞

0 xpz(x)dx − ∫∞
0 P{z > x}dx = E{z} − E{z} = 0. Therefore,

there exists x > 0 such that f(x) > 0.

Differentiating f(x) with respect to x gives ḟ(x) = 2pz(x) + xṗz(x). Note that

ḟ(0) = 2pz(0) ≥ 0. Since f(x) ≥ −1 and f(0) = −1, f is necessarily an increasing

function initially. Hence, ḟ(x) > 0 for all x ∈ (0, x0) where x0 is the point at which

ḟ(x0) = 0. Since x0 is the only positive point for which the derivative is zero, and

f(x) > 0 for some x as discussed above and f(x) has to approach zero as x → ∞, we

conclude that f(x) is a decreasing function for all x > x0, and hence ḟ(x) < 0 for all

x > x0. Otherwise, if ḟ(x) > 0 for some x, ḟ(x) never becomes zero again, and f(x)

increases indefinitely. Furthermore, we can see that f(x) > 0 for all x ≥ x0 because if

f(x) < 0 for some x ≥ x0, f(x) should start increasing to zero as x → ∞. However,

this is not possible because ḟ(x) < 0 for all x > x0.

Therefore, we have concluded that f(0) = −1 and f(x) is an increasing function

in the range x ∈ (0, x0). Moreover, f(x0) > 0 and f(x) decreases to zero without

being negative as x → ∞. From this, we conclude that f(x) intersects the horizontal

axis only once at an x value in between 0 and x0. Therefore, f(x) = 0 has a unique
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solution. �

Remark: The conditions of Theorem 9 are satisfied by a general class of distribu-

tions, including the Gamma distribution,

pz(z) =
zα−1e− z

β

βαΓ(α)
,

where z, α, β > 0, and Lognormal distribution,

pz(z) =
1

σz
√

2π
e− (loge z−m)2

2σ2 ,

where z > 0, −∞ < m < ∞, and σ > 0. Note that in Nakagami-m and Rayleigh

fading channels, the distribution of z = |h|2 can be seen as special cases of the Gamma

distribution. In Fig. 3.5 and 3.6, where the function f(·) is plotted for Gamma

and Lognormal distributions, we indeed observe that these distributions satisfy the

conditions of Theorem 9 and the function f(·) is equal to zero at a unique point.

Remark: Theorem 8 shows that the Eb

N0

∣
∣
∣
∣
RE=0

for any θ ≥ 0 depends only on α∗
opt.

From Theorem 9, we know under certain conditions that α∗
opt is unique and hence is

the same for all θ ≥ 0. We immediately conclude from these results that Eb

N0

∣
∣
∣
∣
RE=0

also

has the same value for all θ ≥ 0 and therefore does not depend on θ for the class of

distributions and channels given in the above Remark.

Moreover, using the results of Theorem 9 above and Theorem 7 in Section 3.3,

we can further show that Eb

N0

∣
∣
∣
∣
RE=0

is the minimum bit energy. Note that this implies

that the same minimum bit energy can be attained regardless of how strict the QoS

constraint is. On the other hand, we note that the wideband slope S0 in general varies

with θ.

Corollary 2 In the low-power regime, when θ = 0, the minimum bit energy is
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Figure 3.5: The plot of the function f(z) for Gamma distribution pz(z) = zα−1e
− z
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with α = β = 3.
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2σ2 with σ = 1, m = 2.
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achieved as P̄ → 0, i.e., Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
. Moreover, if the probability density func-

tion of z satisfies the conditions stated in Theorem 9, then the minimum bit energy

is achieved as P̄ → 0, i.e. Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
, for all θ ≥ 0.

Proof: Recall from (3.11) that in the limit as θ → 0,

RE(SNR, 0) = lim
θ→0

RE(SNR, θ) = max
r≥0

r

B
P

{

z >
2

r
B − 1

SNR

}

. (3.27)

Since the optimization is performed over all r ≥ 0, it can be easily seen that the

above maximization problem can be recast as follows:

RE(SNR, 0) = max
x≥0

xP
{

z >
2x − 1

SNR

}

. (3.28)

From (3.28), we note that RE(SNR, 0) depends on B only through SNR = P̄
N0B

. There-

fore, increasing B has the same effect as decreasing P̄ . Hence, low-power and wide-

band regimes are equivalent when θ = 0. Consequently, the result of Theorem 7,

which shows that the minimum bit energy is achieved as B → ∞, implies that the

minimum bit energy is also achieved as P̄ → 0.

Note that RE(SNR, θ) ≤ RE(SNR, 0) for θ > 0. Therefore, the bit energy required

when θ > 0 is larger than that required when θ = 0. On the other hand, as we have

proven in Theorem 9, α∗
opt is unique and the bit energy required as P̄ → 0 is the same

for all θ ≥ 0 when pz satisfies certain conditions. Since the minimum bit energy in

the case of θ = 0 is achieved as P̄ → 0, and the same bit energy is attained for all

θ > 0, we immediately conclude that Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
for all θ ≥ 0 �

Next, we provide numerical results which confirm the theoretical conclusions and

illustrate the impact of QoS constraints on the energy efficiency. We set B = 105 Hz in

the computations. Fig. 3.7 plots the spectral efficiency as a function of the bit energy
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Figure 3.7: Spectral efficiency vs. Eb/N0 in the Rayleigh channel (equivalently
Nakagami-m channel with m = 1).

for different values of θ in the Rayleigh fading channel (or equivalently Nakagami-m

fading channel with m = 1) for which E{|h|2} = E{z} = 1. In all cases in Fig. 3.7, we

readily note that Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
. Moreover, as predicted, the minimum bit energy

is the same and is equal to the one achieved when there are no QoS constraints

(i.e., when θ = 0). From the equation α∗
optpz(α

∗
opt) = P{z > α∗

opt}, we can find

that α∗
opt = 1 in the Rayleigh channel for which pz(α∗

opt) = P{z > α∗
opt} = e−α∗

opt .

Hence, the minimum bit energy is Eb

N0 min
= 2.75 dB. On the other hand, the wideband

slopes are S0 = {0.7358, 0.6223, 0.2605, 0.0382, 0.0040} for θ = {0, 0.001, 0.01, 0.1, 1},

respectively. Hence, S0 decreases with increasing θ and consequently more bit energy

is required at a fixed nonzero spectral efficiency. Assuming that the minimum bit

energies are the same and considering the linear approximation in (3.13), we can

easily show for fixed spectral efficiency RE

(
Eb

N0

)

for which the linear approximation is

accurate that the increase in the bit energy in dB, when the QoS exponent increases
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Figure 3.8: Spectral efficiency vs. Eb/N0 in Nakagami-m channels; θ = 0.01, m =
0.6, 1, 2, 5.

from θ1 to θ2, is

Eb

N0

∣
∣
∣
∣
∣
dB,θ2

− Eb

N0

∣
∣
∣
∣
∣
dB,θ1

=

(

1

S0,θ2

− 1

S0,θ1

)

RE

(
Eb

N0

)

10 log10 2. (3.29)

As observed in Fig. 3.7 (and also as will be seen in Fig. 3.8), spectral efficiency

curves are almost linear in the low-power regime, validating the accuracy of the linear

approximation in (3.13) obtained through Eb

N0

∣
∣
∣
∣
RE=0

and S0.

Fig. 3.8 plots the spectral efficiency curves as a function of the bit energy for

Nakagami-m channels for different values of m. θ is set to be 0.01. For m =

{0.6, 1, 2, 5}, we compute that α∗
opt = {1.2764, 1, 0.809, 0.7279},

Eb

N0 min

= {3.099, 2.751, 2.176, 1.343}
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Figure 3.9: Spectral efficiency vs. Eb/N0 in the Rayleigh channel; θ = 0.001.

, and

S0 = {0.1707, 0.2605, 0.4349, 0.7479}

, respectively. We observe that as m increases and hence the channel quality improves,

lower bit energies are required. Finally, in Fig. 3.9, we plot the spectral efficiency

vs. Eb/N0 for different transmission strategies. The variable-rate/variable-power

and variable-rate/fixed-power strategies are studied in Chapter 2. We immediately

see that substantially more energy is required for fixed-rate/fixed-power transmission

schemes considered in this chapter.

Remark: From the result of Corollary 1, we note that the analytical and numer-

ical results in this section apply to wideband channels with rich multipath fading.

Comparison of Fig. 3.7 with Fig. 3.3, where sparse multipath fading scenario is

considered, leads to several insightful observations. Note that in both figures, the

performance is the same when θ = 0. Hence, in the absence of QoS constraints, mul-
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tipath sparsity or richness has no effect. This also confirms the claim in the proof of

Corollary 2 that low-power and wideband regimes are equivalent when θ. However,

we see a stark difference when θ > 0. We observe that multipath sparsity and having

the number of subchannels bounded in the wideband regime increases the bit energy

requirements significantly especially when θ is large. Moreover, while the minimum

bit energy is the same for all θ in Fig. 3.7, the minimum bit energy increases with

increasing θ in Fig. 3.3.

In Section 3.3, the number of subchannels are assumed to be bounded. In this

section, we have considered the rich multipath fading channels in which the number of

subchannels increases linearly with bandwidth. A scenario in between these two cases

is the one in which the number of subchannels N increases but only sublinearly with

increasing bandwidth. As N increases, each subchannel is allocated less power and

operate in the low-power regime. At the same time, since N increases sublinearly with

B, the coherence bandwidth Bc = B/N also increases. Therefore, the minimum bit

energy and wideband slope expressions for this scenario can be obtained by letting B

in the results of Theorem 8 go to infinity. Note that under the conditions of Theorem

9, α∗
opt is unique and hence does not depend on the bandwidth.

Corollary 3 In the wideband regime, if the number of subchannels N increases sub-

linearly with B and if fading coefficients in different subchannels are i.i.d. and the

probability density function pz satisfies the conditions in Theorem 9, then the mini-

mum bit energy and wideband slope are given by

Eb

N0 min

=
loge 2

α∗
optP{z > α∗

opt}
and (3.30)

S0 =







2P{z > α∗
opt} θ = 0

0 θ > 0
. (3.31)
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Figure 3.10: Spectral efficiency vs. Eb/N0 in the Rayleigh channel. The number of
subchannels N increases sublinearly with bandwidth.

In this result, we see that although the same minimum bit energy is attained for

all θ ≥ 0, approaching this minimum energy level is extremely slow and demanding

when θ > 0 due to zero wideband slope. This result is illustrated numerically in Fig.

3.10.

3.5 Conclusion

In this chapter, we have considered the effective capacity as a measure of the maxi-

mum throughput under statistical QoS constraints, and analyzed the energy efficiency

of fixed-rate transmission schemes over fading channels. In particular, we have in-

vestigated the spectral efficiency–bit energy tradeoff in the low-power and wideband

regimes. We have obtained expressions for the bit energy at zero spectral efficiency

and the wideband slope, which provide a linear approximation to the spectral efficien-

cy curve at low SNRs. In the initial analysis of the wideband regime with bounded
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number of resolvable paths and hence bounded number of subchannels, we have de-

termined that the bit energy required at zero spectral efficiency (or equivalently at

infinite bandwidth) is the minimum bit energy. In this case, we have noted that the

minimum bit energy and wideband slope in general depend on the QoS exponent

θ. As the QoS constraints become more stringent and hence θ is increased, we have

observed in the numerical results that the required minimum bit energy increases.

Subsequently, we have considered the low-power regime, which can also be equiva-

lently regarded as the wideband regime with rich multipath fading. We have obtained

expressions for the bit energy required at zero spectral efficiency, and wideband slope.

For a certain class of fading distributions, we have shown that the bit energy at zero

spectral efficiency is indeed the minimum bit energy and is achieved regardless of

how strict the QoS constraints are. However, we have also noted that the wideband

slope decreases as θ increases, increasing the energy requirements at nonzero spectral

efficiency values. Overall, we have quantified the increased energy requirements in

the presence of QoS constraints in both wideband and low-power regimes, and iden-

tified the impact upon the energy efficiency of multipath sparsity and richness in the

wideband regime.
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Chapter 4

Energy Efficiency for Training

Based Transmissions

In this chapter, we consider the scenario in which neither the transmitter nor the

receiver has CSI prior to transmission and the channel coefficients are estimated

at the receiver via minimum mean-square-error (MMSE) estimation with the aid

of training symbols. For this scenario, we identify the optimal fraction of power

allocated to training. We show that the bit energy increases without bound in the

low-power regime as the average power vanishes. A similar conclusion is reached

in the wideband regime if the number of noninteracting subchannels grows without

bound with increasing bandwidth. On the other hand, it is proven that if the number

of resolvable independent paths and hence the number of noninteracting subchannels

remain bounded as the available bandwidth increases, the bit energy diminishes to

its minimum value in the wideband regime.
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Figure 4.1: The general system model.

4.1 Channel Model

We consider a point-to-point wireless link. Figure 4.1 illustrates the functional dia-

gram of the system. It is assumed that the source generates data sequences which are

divided into frames of duration T . These data frames are initially stored in the buffer

before they are transmitted over the wireless channel. The discrete-time channel

input-output relation in the ith symbol duration is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (4.1)

where x[i] and y[i] denote the complex-valued channel input and output, respectively.

We assume that the bandwidth available in the system is B and the channel input

is subject to the following average energy constraint: E{|x[i]|2} ≤ P̄ /B for all i.

Since the bandwidth is B, symbol rate is assumed to be B complex symbols per
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second, indicating that the average power of the system is limited by P̄ . Above in

(4.1), n[i] is a zero-mean, circularly symmetric, complex Gaussian random variable

with variance E{|n[i]|2} = N0, i.e., n[i] ∼ CN (0, N0). The additive Gaussian noise

samples {n[i]} are assumed to form an independent and identically distributed (i.i.d.)

sequence. Finally, h[i], which denotes the channel fading coefficient, is assumed to

be a zero-mean Gaussian random variable with variance E{|h|2} = γ. Therefore,

the wireless channel is modeled as a Rayleigh fading channel. We consider a block-

fading channel model. Hence, we assume that the fading coefficients stay constant

during the frame duration of T seconds and change independently from one frame to

another. Finally, we assume that neither the transmitter nor the receiver has channel

side information prior to transmission. While the transmitter remains unaware of the

actual realizations of the fading coefficients throughout the transmission, the receiver

attempts to learn them through training.

4.2 Training and Data Transmission

4.2.1 Training Phase

The system operates in two phases: training phase and data transmission phase. In

the training phase, known pilot symbols are transmitted to enable the receiver to

estimate the channel conditions, albeit imperfectly. We assume that minimum mean-

square-error (MMSE) estimation is employed at the receiver to estimate the channel

coefficient h[i]. Since the MMSE estimate depends only on the training energy and not

on the training duration [60] and the fading coefficients are assumed to stay constant

during the frame duration of T seconds, it can be easily seen that transmission of a

single pilot at every T seconds is optimal. Note that in every frame duration of T
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seconds, we have TB symbols and the overall available energy is P̄ T . We now assume

that each frame consists of a pilot symbol and TB− 1 data symbols. The energies of

the pilot and data symbols are

Ep = ρP̄T, and Es =
(1 − ρ)P̄ T

TB − 1
, (4.2)

respectively, where ρ is the fraction of total energy allocated to training. Note that

the data symbol energy Es is obtained by uniformly allocating the remaining energy

among the data symbols.

In the training phase, the transmitter sends the pilot symbol xp =
√

Ep =
√

ρP̄T

and the receiver obtains1

y[1] = h
√

Ep + n[1]. (4.3)

Based on the received signal in this phase, the receiver obtains the MMSE esti-

mate hest = E{h
∣
∣
∣y[1]} which can be easily seen to be a circularly symmetric, com-

plex, Gaussian random variable with mean zero and variance γ2Ep

γEp+N0
, i.e., hest ∼

CN
(

0, γ2Ep

γEp+N0

)

[61]. Now, the channel fading coefficient h can be expressed as h =

hest + herr where herr is the estimate error and herr ∼ CN (0, γN0

γEp+N0
).

4.2.2 Data Transmission Phase and Capacity Lower Bound

Data transmission follows the training phase. Since the receiver is now equipped

with the channel estimate, the channel input-output relation in one frame in the data

1Since the analysis in this section focuses on a single frame in which the fading stays constant,
we drop the time index in h[i] and express the fading coefficient as h. In (4.3), y[1] and n[1] denote
the received symbol and noise sample, respectively, in the training phase. Note that the first symbol
duration in each frame is allocated for the training phase in which a single pilot symbol is sent.
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transmission phase can be expressed as

y[i] = hestx[i] + herrx[i] + n[i] i = 2, 3, . . . , TB. (4.4)

Since finding the capacity of the channel in (4.4) is a difficult task [61], a capacity lower

bound is generally obtained by treating herrx[i] + n[i] as Gaussian distributed noise

with variance E{|herrx[i] + n[i]|2} = σ2
herr

Es + N0 where σ2
herr

= E{|herr|2} = γN0

γEp+N0

is the variance of the estimate error. Under these assumptions, a lower bound on the

instantaneous capacity is given by [60], [61]

CL =
TB − 1

T
log2

(

1 +
Es

σ2
herr

Es +N0

|hest|2
)

=
TB − 1

T
log2

(

1 + SNReff|w|2
)

bits/s (4.5)

where the effective SNR is

SNReff =
Esσ

2
hest

σ2
herr

Es +N0
, (4.6)

and σ2
hest

= E{|hest|2} = γ2Ep

γEp+N0
is the variance of the estimate hest. Note that the

expression in (4.5) is obtained by defining hest = σhestw where w is a standard complex

Gaussian random variable with zero mean and unit variance, i.e., w ∼ CN (0, 1).

Henceforth, we base our analysis on CL to understand the impact of the imperfect

channel estimate.

4.2.3 Fixed-Rate Transmission and ON-OFF Model

Since the transmitter is unaware of the channel conditions, it is assumed that in-

formation is transmitted at a fixed rate of r bits/s. When r < CL, the channel is

considered to be in the ON state and reliable communication is achieved at this rate.
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Note that under the block-fading assumption, the channel stays in the ON state for

T seconds and the number of bits transmitted in this duration is rT . If, on the other

hand, r ≥ CL, we assume that outage occurs. In this case, channel is in the OFF state

during the frame duration and reliable communication at the rate of r bits/s cannot

be attained. Hence, effective data rate is zero and information has to be resent. The

probability of the channel being in the OFF state is

poff = Pr{r ≥ CL} = 1 − e−α (4.7)

where

α =
2

rT
T B−1 − 1

SNReff

. (4.8)

Rightmost expression in (4.7) follows from the fact that |w|2 is an exponential ran-

dom variable with mean 1. Noting that |w|2 gives the normalized estimated channel

strength, we see that the channel is in the OFF state if this channel strength is less

than the threshold α. Similarly, the probability of being in the ON state is

pon = Pr{r < CL} = Pr{|w|2 > α} = e−α. (4.9)

We finally remark that since the fading coefficients (and consequently hest, w, and CL)

change independently from one frame to another under the block-fading assumption,

the channel, in any given frame, is either in the ON or OFF state independently of

its previous state.
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4.3 Preliminary

With the transmission scheme described above, similar to Chapter 3, for the ON-OFF

channel model described in Section 4.2.3, the effective capacity normalized by the

frame duration T and bandwidth B, or equivalently spectral efficiency in bits/s/Hz,

for a given QoS delay constraint specified by θ is given by2,

RE(SNR, θ) = max
r≥0

0≤ρ≤1

− 1

θTB
loge

(

poff + pone
−θT r

)

= max
r≥0

0≤ρ≤1

− 1

θTB
loge

(

1 − e−α(1 − e−θT r)
)

= − 1

θTB
loge

(

1 − e−αopt(1 − e−θT ropt)
)

. (4.10)

where ropt and αopt are the optimal values of r and α, and pon and poff, as described

in Section 4.2.3, are the probabilities of channel being in the ON and OFF states,

respectively. Note that the optimal values ropt and αopt are functions of SNR in general.

Note further that RE is obtained by optimizing both the fixed transmission rate r

and the fraction of power allocated to training, ρ. The dependence of the normalized

effective capacity on ρ is through the threshold α which depends on SNReff.

2The formulation in (4.10) applies to the case in which the channel’s currently being in the ON
or OFF state is independent of its state in the previous frame. This arises due to block fading
assumption. In a correlated fading scenario in which the current channel state has dependence on
the previous one, we have a two-state (ON-OFF) Markov chain. For such a Markov model, using the
result in [12, Section 7.2, Example 7.2.7], we can show that the effective capacity can be expressed
as

max
r≥0

0≤ρ≤1

− 1

θT B
loge

(1

2

(

poff + pone−θT r

+
√

(poff + pone−θT r)2 − 4(poff + pon − 1)e−θT r

))

.

We can immediately see that the above expression specializes to (4.10) by noting that poff + pon = 1
in the block fading scenario.
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Also, it can easily be seen that

RE(SNR, 0) = lim
θ→0

RE(SNR, θ)

= max
r≥0

0≤ρ≤1

r

B
Pr






|w|2 > 2

rT
T B−1 − 1

SNReff







= max
r≥0

0≤ρ≤1

r

B
e

− 2
rT

T B−1 −1

SNReff . (4.11)

Hence, as the QoS requirements relax, the maximum constant arrival rate approaches

the average transmission rate. On the other hand, for θ > 0, RE < 1
B

max r≥0
0≤ρ≤1

re−α

in order to avoid violations of buffer constraints. Now, combine the discussion in

Section 3.2, we can carry out the energy efficiency analysis for the transmission scheme

described in this chapter.

4.3.1 Optimal Training Power

Before performing the energy efficiency analysis, we first obtain the following result

on the optimal value of ρ, the fraction of the total energy allocated to training in the

presence of QoS constraints.

Proposition 2 At a given SNR level, the optimal fraction of power ρopt that solves

the maximization problem above (4.10) does not depend on the QoS exponent θ and

the transmission rate r, and is given by

ρopt =
√

η(η + 1) − η (4.12)

where

η =
γTBSNR + TB − 1

γTB(TB − 2)SNR
and SNR =

P̄

N0B
. (4.13)
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Proof: See Appendix E.

4.4 Energy Efficiency in the Low-Power Regime

In this section, we analyze the spectral-efficiency vs. bit energy tradeoff in the low

power regime in which the average power of the system, P̄ , is small.

With the optimal value of ρ given in Proposition 2, we can now express the

normalized effective capacity as

RE(SNR, θ) = max
r≥0

− 1

θTB
loge




1 − e

− 2
rT

T B−1 −1

SNReff,opt (1 − e−θT r)




 (4.14)

= − 1

θTB
loge







1 − e
− 2

roptT

T B−1 −1

SNReff,opt (1 − e−θT ropt)







(4.15)

where ropt is the optimal value of r that solves (4.14), and

SNReff,opt =
φ(SNR)SNR2

ψ(SNR)SNR + TB − 1
, (4.16)

and

φ(SNR) = ρopt(1 − ρopt)γ
2T 2B2,

ψ(SNR) = (1 + (TB − 2)ρopt)γTB.

(4.17)

With these notations, we obtain the following result that shows us that operation at

very low power levels is extremely energy inefficient and should be avoided.

Theorem 10 In the presence of channel uncertainty, the bit energy for all θ ≥ 0
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increases without bound as the average power P̄ and hence SNR vanishes, i.e.,

Eb

N0

∣
∣
∣
∣
∣
RE=0

= lim
SNR→0

Eb

N0
= lim

SNR→0

SNR

RE(SNR)
=

1

ṘE(0)
= ∞. (4.18)

Proof : See Appendix F.

Remark: Theorem 10 shows that Eb

N0

∣
∣
∣
∣
RE=0

= ∞ for any θ ≥ 0. Note that this

is a cautionary result. As will be evident in the numerical results, energy efficiency

still improves if one operates at low power levels. However, if the power is reduced

below a certain threshold, bit energy requirements start increasing and the required

bit energy level grows without bound as power vanishes. One reason for this behavior

is that although channel estimation at very low power levels does not provide reliable

estimates, the receiver regards this estimate as perfect. Hence, in the low-power

regime, we have both diminishing power and deteriorating channel estimate, which

affect the performance adversely. The result of Theorem 10 also indicates that the

minimum bit energy, which can be identified numerically, is achieved at a non-zero

power level. In the numerical results, we will observe that both the minimum required

bit energy and the other bit energy values required at a given level of spectral efficiency

increase as the QoS constraints become more stringent.

Fig. 4.2 plots the spectral efficiency vs. bit energy for θ = {1, 0.1, 0.01, 0.001}

when B = 105 Hz in Rayleigh channel with E{|h|2} = γ = 1. We notice that as

spectral efficiency RE decreases, the bit energy Eb

N0
initially decreases. However, as

predicted by the result of Theorem 10, the bit energy achieves its minimum value at

a certain nonzero spectral efficiency below which Eb

N0
starts increasing without bound.

Hence, operation below the spectral efficiency or SNR level at which Eb

N0 min
is attained

should be avoided. We also note in Fig. 4.2 that the bit energy requirements in

general and the minimum bit energy in particular increases with increasing θ value,
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Figure 4.2: Spectral efficiency vs. Eb/N0 in the Rayleigh channel with E{|h|2} = 1.
B = 105.

indicating the increased energy costs as the QoS limitations become more stringent.

In Fig. 4.3, we plot Eb

N0
as a function of SNR for different bandwidth levels assuming

θ = 0.01. We again observe that the minimum bit energy is attained at a nonzero SNR

value below which Eb

N0
requirements start increasing. Furthermore, we see that as the

bandwidth increases, the minimum bit energy tends to decrease and is achieved at a

lower SNR level. Finally, we plot in Fig. 4.4 the minimum bit energy as a function

of the bandwidth, B. We note that increasing B generally decreases Eb

N0 min
value.

However, there is diminishing returns as B gets larger. Analysis in the wideband

regime in the following section will provide more insight into the impact of large

bandwidth.
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4.5 Energy Efficiency in the Wideband Regime

In this section, we consider the wideband regime in which the bandwidth is large.

We assume that the average power P̄ is kept constant. Note that as the bandwidth

B increases, SNR = P̄
N0B

approaches zero and we operate in the low-SNR regime.

4.5.1 Decomposing the Wideband Channel

In Section 4.1, we have described a flat fading channel model. However, flat fad-

ing assumption will not hold in the wideband regime as the bandwidth B increases

without bound. On the other hand, if we decompose the wideband channel into N

parallel subchannels, and suppose that each subchannel has a bandwidth that is equal

to the coherence bandwidth, Bc, then we can assume that independent flat-fading is

experienced in each subchannel. Note that we have B = NBc. Similar to (4.1), the

input-output relation in the kth subchannel can be written as

yk[i] = hk[i]xk[i] + nk[i] i = 1, 2, . . . and k = 1, 2, . . . , N. (4.19)

The fading coefficients {hk}N
k=1 in different subchannels are assumed to be independen-

t zero-mean Gaussian distributed with variances E{|hk|2} = γk. The signal-to-noise

ratio in the kth subchannel is SNRk = P̄k

N0Bc
where P̄k denotes the power allocated to

the kth subchannel and we have
∑N

k=1 P̄k = P̄ 3. Over each subchannel, the same

transmission strategy as described in Section 4.2.3 is employed. Therefore, the trans-

mitter, not knowing the fading coefficients of the subchannels, sends the data over

each subchannel at the fixed rate of r. Now, we can find that CL,k for each subchannel

3While not equipped with the knowledge of the instantaneous values of the fading coefficients,
the transmitter is assumed to know the statistics of the fading coefficients, and possibly allocate
different power levels to different subchannels with this knowledge.
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is given by T Bc−1
T

log2 (1 + SNReff,k|w|2) bits/s, in which

SNReff,k =
Es,kσ

2
hk,est

σ2
hk,err

Es,k +N0
(4.20)

where Es,k = (1−ρk)T P̄k

T Bc−1
, Ep,k = ρkT P̄k, σ2

hk,err
= γkN0

γkEp,k+N0
and σ2

hk,est
=

γ2
kEp,k

γkEp,k+N0
.

Similarly as before, if r < CL,k, then transmission over the kth subchannel is successful.

Otherwise, retransmission is required. Hence, we have ON and OFF states for each

subchannel. On the other hand, for the transmission over N subchannels, we have a

state model with N+1 states because we have overall the following N+1 possible total

transmission rates: {0, rT, 2rT, . . . , NrT}. For instance, if all N subchannels are in

the OFF state simultaneously, the total rate is zero. If j out of N subchannels are in

the ON state, then the rate is jrT . We note that such a decomposition strategy is also

employed in [42] where the receiver is assumed to have perfect channel information.

Although similar, this strategy is also discussed here for the sake of completeness.

Now, assume that the states are enumerated in the increasing order of the total

transmission rates supported by them. Hence, in state j ∈ {1, . . . , N + 1}, the

transmission rate is (j − 1)rT . The probability of being in state j ∈ {1, . . . , N + 1}

is given by (4.22) in the next page, where Ij−1 denotes a subset of the index set

{1, . . . , N} with j − 1 elements. The summation in (4.22) is over all such subsets.

Also, in (4.22), Ic
j−1 denotes the complement of the set Ij−1, and αk = 2

rT
T Bc−1 −1
SNReff,k

.

Note in the above formulation that, similarly as in Section 4.2.3, the probability

of currently being in state j, i.e., qj , does not depend on the state in the previous

frame again due to the block-fading assumption. Moreover, the product form inside

the summation in (4.21) is due to having noninteracting subchannels. If fading in

different subchannels are correlated, qj can be written as (4.23) in the next page,

which, in general, depends on the joint distribution of {|w1|2, . . . , |wN |2}.



79

qj = Pr{(j − 1) subchannels out of N subchannels are in the ON state}

=
∑

Ij−1⊂{1,...,N}






∏

k∈Ij−1

Pr{|w|2 > αk}
∏

k∈Ic
j−1

(1 − Pr{|w|2 > αk})




 (4.21)

=
∑

Ij−1⊂{1,...,N}






∏

k∈Ij−1

e−αk
∏

k∈Ic
j−1

(1 − e−αk)




 (4.22)

qj =
∑

Ij−1⊂{1,...,N}




Pr










⋂

k∈Ij−1

{|wk|2 > αk}



⋂






⋂

k∈Ic
j−1

{|wk|2 ≤ αk}















 (4.23)

If, in addition to being independent, the fading coefficients hk in different sub-

channels are identically distributed (i.e., the variances {γk}N
k=1 are the same) and also

if the total power is uniformly distributed over the subchannels and the fraction of

energy, ρk, allocated to training in each subchannel is the same, then qj in (4.22)

simplifies and becomes a binomial probability:

qj =







N

j − 1







(

Pr{|w|2 > α}
)j−1 (

1 − Pr{|w|2 > α}
)N−j+1

=







N

j − 1







(

e−α
)j−1 (

1 − e−α
)N−j+1

. (4.24)

Note that with equal power allocation, we have P̄k = P̄
N

and therefore SNRk =

P̄k

N0Bc
= P̄ /N

N0B/N
= P̄

N0B
= SNR which is equal to the original SNR used in (4.13). Since

{SNReff,k}N
k=1 are also equal due to having equal ρk’s, we have the same α = 2

rT
T Bc−1 −1
SNReff

for each subchannel.

The effective capacity of this wideband channel model with N subchannels is given

by the following result.



80

Corollary 4 For the wideband channel with N parallel noninteracting subchannels

each with bandwidth Bc and independent flat fading, the normalized effective capacity

in bits/s/Hz is given by

RE(SNR, θ) = max
r≥0

P̄k≥0 s.t.
∑

P̄k≤P̄
0≤ρk≤1 ∀k






− 1

θT B
loge





N+1∑

j=1

qj e−θ(j−1)rT










(4.25)

where qj is given in (4.22). If {hk}N
k=1 are identically distributed Gaussian ran-

dom variables with zero mean and variance γ and the data and training energies

are uniformly allocated over the subchannels, then the normalized effective capacity

expression simplifies to

RE(SNR, θ) = max
r≥0

0≤ρ≤1

{

− 1

θTBc
loge

(

1 − e−α(1 − e−θT r)
)}

. (4.26)

where α = 2
rT

T Bc−1 −1
SNReff

and SNReff = ρ(1−ρ)γ2T 2B2
c SNR

2

ργT Bc(T Bc−2)SNR+γT BcSNR+T Bc−1
, in which SNR =

P̄
N0B

= P̄
NN0Bc

.

Proof : See Appendix B.

Remark: Although we concentrate on noninteracting subchannels, the effective

capacity result in (4.25) is general and holds for the case in which the fading in

different subchannels are correlated and qj is given as in (4.23).

Remark: Corollary 4 shows that if the fading coefficients in different subchannels

are i.i.d. and the data and training energies are uniformly allocated over the subchan-

nels, then the effective capacity of a wideband channel has an expression similar to

that in (4.10), which provides the effective capacity of a single channel experiencing

flat fading. The only difference between (4.10) and (4.26) is that B is replaced in

(4.26) by Bc, which is the bandwidth of each subchannel.
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4.5.2 Rich and Sparse Multipath Fading Scenarios

After the characterization in Corollary 4, we henceforth limit our analysis to the case

in which the effective capacity is given by (4.26) because optimization over the power

allocation schemes and obtaining closed-form expressions are in general difficult tasks

in the wideband regime in which the number of subchannels is potentially high. Under

these assumptions, we investigate two scenarios:

1. Rich multipath fading: In this case, we assume that the number of independent

resolvable paths increases linearly with the bandwidth. This in turn implies

that as the bandwidth B increases, the number of noninteracting subchannels

N increases while Bc stays fixed.

2. Sparse multipath fading: In this case, we assume that the number of indepen-

dent resolvable paths increases at most sublinearly with the bandwidth. This

assumption implies the coherence bandwidth Bc = B
N

increases with increasing

bandwidth B [57], [58]. We can identify two subcases:

a) If the number of resolvable paths remains bounded in the wideband regime

(as considered for instance in [59]), then N remains bounded while Bc

increases linearly with B.

b) If the number of resolvable paths increases but only sublinearly with B,

then both N and Bc grow without bound with B.

We first consider scenario (1) where rich multipath fading is assumed. In this case, as

B increases, the signal-to-noise ratio SNR = P̄
N0B

= P̄
NN0Bc

approaches zero while Bc s-

tays fixed. From these facts and the similarity of the formulations in (4.10) and (4.26),

we immediately conclude that the wideband regime analysis of the rich multipath case

is the same as the low-power regime analysis conducted in Section 4.4. Therefore, as
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B → ∞ in the rich multipath fading scenario, we have Eb

N0

∣
∣
∣
RE=0

= limSNR→0
Eb

N0
= ∞

for all θ ≥ 0. Therefore, the minimum bit energy is attained at a high but finite

bandwidth level that can be identified through numerical analysis. If the bandwidth

is further increased, a penalty in energy efficiency starts to be experienced due to in-

creased uncertainty. Note that we have high diversity in rich multipath fading as the

number of noninteracting subchannels increase linearly with bandwidth. On the other

hand, since independent fading coefficients are only imperfectly known and moreover

the receiver’s ability to estimate the subchannels diminishes with decreasing SNR, we

have high uncertainty as well. Hence, uncertainty becomes the more dominant factor

and extreme energy-inefficiency is experienced in the limit as B → ∞.

Next, we analyze the performance in the scenario of sparse multipath fading.

We note that the authors in [57] and [58], motivated by the recent measurement

studies in the ultrawideband regime, considered sparse multipath fading channels

and analyzed the performance under channel uncertainty, employing the Shannon

capacity formulation as the performance metric. We in this chapter consider channel

uncertainty and queueing constraints jointly and use the effective capacity to identify

the performance. We first consider scenario (2a) where the the number of subchannels

N remains bounded and the degrees of freedom are limited. The following result

provides the expressions for the bit energy at zero spectral efficiency and the wideband

slope, and characterize the spectral efficiency-bit energy tradeoff in the wideband

regime when N is fixed and Bc grows linearly with B. It is shown that the bit energy

required at zero spectral efficiency is indeed the minimum bit energy.

Theorem 11 For sparse multipath fading channel with bounded number of indepen-

dent resolvable paths, the minimum bit energy and wideband slope in the wideband
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regime are given by

Eb

N0 min

=
Eb

N0

∣
∣
∣
∣
∣
RE=0

= lim
SNR→0

Eb

N0
=

−δ
loge ξ

and (4.27)

S0 =
ξ log2

e ξ loge 2

θTα∗
opt(1 − ξ)

(

1
T

(√

1 + γP̄ T
NN0

− 1
)

+
ϕα∗

opt

2

) , (4.28)

respectively, where δ = θT P̄
NN0

, ξ = 1 − e−α∗
opt(1 − e

−
θT ϕα∗

opt
loge 2 ), and

ϕ =
γP̄

NN0

(√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2

. α∗
opt is defined as α∗

opt = limζ→0 αopt and α∗
opt satisfies

α∗
opt =

loge 2

θTϕ
loge

(

1 +
θTϕ

loge 2

)

. (4.29)

Above, we define ζ = 1
Bc

.

Proof: See Appendix G.

Remark: We note that the minimum bit energy in the sparse multipath case with

bounded degrees of freedom is achieved as B → ∞ and hence as SNR → 0. This

is in stark contrast to the results in the low-power regime and rich multipath cases

in which the bit energy requirements grow without bound as SNR vanishes. This is

due to the fact that in sparse fading with bounded number of independent resolvable

paths, uncertainty does not grow without bound because the number of subchannels

N is kept fixed as B → ∞.

Remark: Theorem 11, through the minimum bit energy and wideband slope ex-

pressions, quantifies the bit energy requirements in the wideband regime when the

system is operating subject to both statistical QoS constraints specified by θ and
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Figure 4.5: Spectral efficiency vs. Eb/N0 in the Rayleigh channel with E{|h|2} = γ =
1. P̄ /NN0 = 104.

channel uncertainty. Note that both Eb

N0 min
and S0 depend on θ through δ and ξ.

As will be observed in the numerical results, Eb

N0 min
and the bit energy requirements

at nonzero spectral efficiency values generally increase with increasing θ. Moreover,

when compared with the results in Section 4.4, it will be seen that sparse multipath

fading and having a bounded number of subchannels incur energy penalty whether

there are QoS constraints or not (θ = 0), which is in stark contrast with previous

results when there is perfect CSI at the receiver [42].

After having obtained analytical expressions for the minimum bit energy and wide-

band slope, we now provide numerical results. Fig. 4.5 plots the spectral efficiency–bit

energy curve in the Rayleigh channel for different θ values. In the figure, we assume

that P̄ /(NN0) = 104. As predicted, the minimum bit energies are obtained as SNR

and hence the spectral efficiency approach zero. Eb

N0 min
are computed to be equal to

{4.6776, 4.7029, 4.9177, 6.3828, 10.8333} dB for θ = {0, 0.001, 0.01, 0.1, 1}, respective-

ly. Moreover, the wideband slopes are S0 = {0.4720, 0.4749, 0.4978, 0.6151, 0.6061}
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Figure 4.6: Comparison of spectral efficiency; P̄ /NN0 = 104, θ = 0.01, and E{|h|2} =
γ = 1.

for the same set of θ values. As can also be seen in the result of Theorem 11, the

minimum bit energy and wideband slope in general depend on θ. In Fig. 4.5, we

note that the bit energy requirements (including the minimum bit energy) increase

with increasing θ, illustrating the energy costs of stringent queueing constraints. Fi-

nally, in this chapter, we have considered fixed-rate/fixed-power transmissions over

imperfectly-known channels. In Fig. 4.6, we compare the performance of this sys-

tem with those in which the channel is perfectly-known and fixed- or variable-rate

transmission is employed. The latter models have been studied in Chapters 2 and 3.

This figure demonstrates the energy costs of not knowing the channel and sending

the information at fixed-rate.

We finally consider the sparse multipath fading scenario (2b) in which the number

of subchannels N increases but only sublinearly with increasing bandwidth. Note that

in this case, the bit energy required as B → ∞ can be obtained by letting N in the

result of Theorem 11, where N is assumed to be fixed, go to infinity.
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Figure 4.7: Spectral efficiency vs. Eb/N0 in the Rayleigh channel with E{|h|2} = γ =
1. P̄ /NN0 = 104.

Corollary 5 In the wideband regime, if the number of subchannels N increases sub-

linearly with B, then the bit energy required in the limit as B → ∞ is

Eb

N0

∣
∣
∣
∣
∣
RE=0

= ∞ (4.30)

Remark: As N increases, each subchannel is allocated less power and operate in

the low-power regime. Therefore, it is not surprising that we obtain the same bit

energy result as in the low-power regime. Additionally, since the number of sub-

channels N increases without bound, uncertainty in the wideband channel increases

as well. Hence, similarly as in rich multipath fading, extreme energy-inefficiency is

experienced as B → ∞.

Fig. 4.7 confirms the theoretical results. In this figure, we observe that the bit

energy requirements initially decrease with decreasing spectral efficiency. However,

below a certain spectral efficiency level, Eb

N0
starts growing without bound for all θ ≥ 0.
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4.6 Conclusion

In this chapter, we have analyzed the energy efficiency of fixed-rate wireless trans-

missions for the communication scenario in which queueing constraints are present

and the channel coefficients are estimated imperfectly by the receiver with the aid

of training symbols. We have considered the effective capacity as a measure of the

maximum throughput under statistical QoS constraints. We have identified the opti-

mal fraction of power allocated to training and shown that this optimal fraction does

not depend on the QoS exponent θ and the transmission rate. In particular, we have

investigated the spectral efficiency–bit energy tradeoff in the low-power and wideband

regimes. We have quantified the increased energy requirements in the presence of QoS

constraints in the low-power and wideband regimes, and identified the impact upon

the energy efficiency of channel uncertainty and multipath sparsity and richness. The

key conclusions of this chapter on energy efficiency are the following:

1. Having very low power per degree of freedom has a detrimental impact on

energy efficiency. Indeed, the bit energy requirements grow without bound

as the power per degree of freedom vanishes by either letting the power in a

narrowband channel become small or increasing the bandwidth and having the

power per subchannel in a wideband scenario diminish. This is tightly linked

to the fact that the system’s ability to reliably estimate the channel conditions

decreases as power gets small.

2. Although operating at low power levels or at wide bandwidths improves the

energy efficiency, care should be exercised under channel uncertainty. In the

low-power regime, the minimum bit energy is achieved at a certain small but

non-zero power level. Unless sparse multipath fading with bounded number

of independent resolvable paths is experienced, the minimum bit energy in the
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wideband regime is attained at a large but finite bandwidth value. These critical

power and bandwidth levels depend in general on the QoS constraints and can

be obtained through numerical analysis.

If the power decreases or bandwidth increases beyond these minimum-bit-energy-

achieving levels, energy efficiency starts degrading. These results have signifi-

cant practical implications on wireless systems.

3. In the presence of QoS constraints and channel uncertainty, diversity in the fre-

quency domain acts as a double-edged sword. Increasing the bandwidth and the

number of noninteracting subchannels initially improves the energy efficiency by

decreasing the required bit energy. This initial increase in the diversity is also

beneficial in satisfying the QoS constraints. However, if the number of nonin-

teracting subchannels increases without bound, the bit energy values eventually

start growing without bound as well. Hence, beyond a certain threshold, the

benefits of the presence of large number of subchannels are outweighed by the

increased channel uncertainty due to the imperfect-knowledge of the conditions

in these channels.

Note that such a behavior is not exhibited if the number of subchannels remains

bounded.

4. In general, required bit energy values increase as the QoS constraints become

more stringent. The analysis in this chapter enable us to quantify these increases

in the energy requirements.
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Chapter 5

Power and Rate Control for

Multiple-Access Fading Channels

In this chapter, we consider the scenario in which both the transmitters and the

receiver have perfect channel side information (CSI). First, assuming that no power

control is employed in the transmission, we characterize the rate regions for both

superposition transmission strategies and TDMA. Unlike the results obtained in [22]

and [26], varying the decoding order with respect to the channel states is shown to

significantly increase the achievable rate region (i.e., throughput region) under QoS

constraints. Also, it is demonstrated that time sharing strategies among the vertex of

the rate regions can no longer achieve the boundary surface of the throughput region.

Additionally, we show that if we take the sum-rate throughput, or the sum effective

capacity, as the performance metric, TDMA can in certain cases even achieve better

performance than superposition coding when a fixed decoding order is employed at

the receiver. Next, we incorporate power control policies into the model. For this

case, we first obtain closed-form expressions for the optimal power control policies

under the assumption that the decoding order is fixed at the receiver side. When



90

Figure 5.1: The system model.

the decoding order is variable, we identify the conditions the optimal power control

policies should satisfy. We also describe an algorithm to determine such policies.

5.1 System Model and MAC Capacity Region

As shown in Figure 5.1, we consider an uplink scenario where M users with individ-

ual power and buffer constraints (i.e., QoS constraints) communicate with a single

receiver. It is assumed that the transmitters generate data sequences which are di-

vided into frames of duration T . These data frames are initially stored in the buffers

before they are transmitted over the wireless channel. The discrete-time signal at the

receiver in the ith symbol duration is given by

Y [i] =
M∑

j=1

hj [i]Xj [i] + n[i], i = 1, 2, . . . (5.1)

where M is the number of users, Xj [i] and hj [i] denote the complex-valued chan-

nel input and the fading coefficient of the jth user, respectively. We assume that

{hj[i]}’s are jointly stationary and ergodic discrete-time processes, and we denote

the magnitude-square of the fading coefficients by zj [i] = |hj [i]|2. Above, n[i] is a
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zero-mean, circularly symmetric, complex Gaussian random variable with variance

E{|n[i]|2} = N0. The additive Gaussian noise samples {n[i]} are assumed to form an

independent and identically distributed (i.i.d.) sequence. Finally, Y [i] denotes the

received signal.

The channel input of user j is subject to an average energy constraint E{|xj [i]|2} ≤

P̄j/B for all j, where B is the bandwidth available in the system. Assuming that

the symbol rate is B complex symbols per second, we can see that this formulation

indicates that user j is subject to an average power constraint of P̄j. With these

definitions, the average transmitted signal to noise ratio of user j is SNRj =
P̄j

N0B
.

Now, if we denote Pj[z] as the instantaneous transmit power as a function of the

fading states z = (z1, · · · , zM), the instantaneous transmitted SNR level becomes

µj[z] =
Pj [z]

N0B
. Then, the average power constraint is equivalent to the average SNR

constraint E{µj [z]} ≤ SNRj for user j.

5.1.1 Fixed Power and Variable Rate

First, we consider the case in which the transmitters operate at fixed power and hence

do not employ any power adaptation policies. The capacity region of this channel is

given by [22], [23]

RMAC =






(Ravg,1, . . . , Ravg,M ) :

Ravg(S) ≤ BEz






log2



1 +
∑

j∈S

SNRjzj










,

∀S ⊂ {1, . . . ,M}





(5.2)
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where Ravg(S) =
∑

i∈S Ravg,i. As well-known, there are M ! vertices of the polyhedron

defined in (5.2). The vertex Ravg,π =
(

Ravg,π(1), · · · , Ravg,π(M)

)

corresponds to a

permutation π, or the successive decoding order at the receiver, i.e., users are decoded

in the order given by π(1), · · · , π(M). This vertex is specified by the average rates

Ravg,π(k) = BEz

{

log2

(

1 +
SNRπ(k)zπ(k)

1 +
∑M

i=k+1 SNRπ(i)zπ(i)

)}

(5.3)

in bits/s for k = 1, · · · ,M . With this characterization, we see that for the given

decoding order π, the maximum instantaneous service rate for user π(k) is

Rπ(k) = B log2

(

1 +
SNRπ(k)zπ(k)

1 +
∑M

i=k+1 SNRπ(i)zπ(i)

)

bits/s. (5.4)

Time sharing among these M ! permutations of decoding orders yields any point on

the boundary surface of RMAC [1]. As also discussed in [26], it can be easily verified

that varying the decoding order according to the channel states does not provide any

improvement on the capacity region.

5.1.2 Variable Power and Variable Rate

Now, we suppose that dynamic power and rate allocation is performed according

to time-variations in the channels. For a given set of power allocation policies U =

{µ1, · · · , µM}, where µj ≥ 0 is the power control policy of the jth user, the achievable

rate region is described by [23]

R(U) =






Ravg : Ravg(S) ≤ Ez






B log2



1 +
∑

j∈S

µj(z)zj










,

∀S ⊂ {1, · · · ,M}





. (5.5)
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For a given decoding order at the receiver, the individual average and instantaneous

rates of the users can be obtained similar to (5.3) and (5.4), respectively, with SNR

replaced by µ. The capacity region is given by

RMAC =
⋃

U∈F
R(U) (5.6)

where F is the set of all feasible power control policies that satisfy the average power

constraint

F ≡ {U : Ez {µj(z)} ≤ SNRj , µj ≥ 0, ∀j} . (5.7)

5.1.3 TDMA

For simplicity, we assume that the time division strategy is fixed prior to transmission.

Let δj denote the fraction of time allocated to user j. Note that we have
∑M

j=1 δj = 1.

In each frame, each user occupies the entire bandwidth to transmit the signal in the

corresponding fraction of time. Then, the instantaneous service rate for user j in each

frame is given by

Rj(SNRj) = B log2

(

1 +
SNRj

δj
zj

)

bits/s (5.8)

Above, note that user j is assumed to transmit with the higher average power of

P̄j/δj in the allocated δj fraction of the time.

5.2 Throughput Region

At this point, it is also important to note that the transmission strategies (such as

superposition coding schemes, time-division multiple-access methods, and power con-
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trol policies) and reception strategies (such as the successive decoding order) will

henceforth be designed and analyzed as functions of the fading states and the QoS

exponent θ. Hence, our transmission and reception policies take into account the

statistical queueing constraints through the QoS exponents but not the actual queue

lengths and states. We note that the authors in [62], [63], and [64] have recently

studied queue-length based policies in the context of wireless scheduling in broadcast

scenarios. In these works, only one user at a time is served by the transmitter in a

downlink model. Shakkottai in [62] investigated the effective capacity achieved by a

greedy scheduling rule that picks the user with the highest channel rate and a max-

queue rule that picks the user with the largest product of the queue length and the

channel rate. Even though an i.i.d. channel model (akin to our block-fading assump-

tion) is considered in this work, it is described that the main difficulty in the analysis

of queue-length based policies arises from the fact that these policies statistically cou-

ple the rates allocated to various users across time. Therefore, due to correlation over

time, the effective capacity formula in (1.1) cannot be simplified to that in (1.3). In

such cases, effective capacity cannot be computed directly and certain technical diffi-

culties are encountered. In particular, the techniques of sample path large deviations

and calculus of variations are needed to determine the performance. In [62], these

approaches are applied to relatively simple scenarios with two users, each of which

experiences a two-state (ON-OFF) channel. More recently, using the sample-path

large deviation principle, Venkataramanan and Lin in [63] studied wireless schedul-

ing algorithms that maximize asymptotic decay rate of the queue-overflow probability

in a more general downlink scenario with N users and M possible channel states.

In this chapter, we consider more complex channel models with continuous fading

and more sophisticated transmission strategies such as superposition coding (rather

than orthogonal transmissions) and power control techniques in a multiple-access
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scenario. By addressing only the statistical queueing constraints, we formulate a

tractable problem for more practically appealing system models. At the same time,

we note that queue-length based policies have the potential to attain a higher ef-

fective capacity than those achieved by greedy policies that take into account only

the channel states (see e.g., [62, Fig. 3]). Hence, from this perspective, our results,

which incorporate the channel states and the QoS exponents but not the actual queue

states in the transmission and reception, can be regarded as baselines with which the

performances of queue-length based policies can be compared.

Suppose that Θ = (θ1, · · · , θM) is a vector composed of the QoS constraints of M

users. Let C(Θ) = (C1(θ1), · · · ,CM(θM)) denote the vector of the normalized effective

capacities. We first have the following characterization.

Definition 1 The effective throughput region is described as

CMAC(Θ, SNR)

=
⋃

R

s.t. E{R}∈RMAC






C(Θ) ≥ 0 : Cj(θj) ≤ − 1

θjTB
loge Ez

{

e−θT Rj

}






(5.9)

where R = {R1, R2, · · · , RM} represents the vector composed of the instantaneous

transmission (or equivalently service) rates of M users. Note that the union is over

the distributions of the vector R such that the expected value E{R} lies in the MAC

capacity region.

Remark: The throughput region given in Definition 1 represents the set of all

vectors of constant arrival rates C(θ) that can be supported in the fading multiple

access channel in the presence QoS constraints specified by Θ = (θ1, · · · , θM ). Since

reliable communication is considered, the arrival rates are supported by instantaneous

service rates whose expected values are in the MAC capacity region. For instance, in



96

the absence of power control, the maximum instantaneous service rates for a given

decoding order are given by (5.4).

Using the convexity of the MAC capacity region RMAC, we obtain the following

preliminary result on the effective throughput region defined in (5.9).

Theorem 12 The throughput region CMAC(Θ, SNR) is convex.

Proof: Let the vectors C(Θ) and C
′(Θ) belong to CMAC(Θ, SNR). Then, there exist

some rate vectors R and R′ for C(Θ) and C
′(Θ), respectively, such that E{R} and

E{R′} are in the MAC capacity region. By a time sharing strategy, for any α ∈ (0, 1),

we know from the convexity of the MAC capacity region that E{αR + (1 − α)R′} ∈

RMAC. Now, we can write

αC(Θ) + (1 − α)C′(Θ)

≤ − 1

ΘTB
loge

(

E

{

e−ΘT R
})α (

E

{

e−ΘT R′
})1−α

(5.10)

= − 1

ΘTB
loge

(

E

{(

e−ΘT αR
) 1

α

})α

×
(

E

{(

e−ΘT (1−α)R′
) 1

1−α

})1−α

(5.11)

≤ − 1

ΘTB
loge E

{

e−ΘT (αR+(1−α)R′)
}

. (5.12)

Above, in (5.10) through (5.12), all operations, including the logarithm and expo-

nential functions and expectations, are component-wise operations. For instance, the

expression in (5.10) denotes a vector whose components are

{

1

θjTB
loge

(

E

{

e−θjT Rj

})α (

E

{

e−θT R′
j

})1−α
}M

j=1

. Similarly, the inequalities in (5.10) and (5.12) are component-wise inequalities. The

inequality in (5.10) follows from the definition in (5.9). Moreover, (5.12) follows from
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Hölder’s inequality and leads to the conclusion that αC + (1 − α)C′ still lies in the

throughput region, proving the convexity result. �

We are interested in the boundary of the region. Now that CMAC(Θ, SNR) is

convex, we can characterize the boundary surface by considering the following opti-

mization problem [23]:

max λ · C(Θ) subject to: C(Θ) ∈ CMAC(Θ, SNR). (5.13)

for all priority vectors λ = (λ1, · · · , λM) in R
M
+ with

∑M
j=1 λj = 1.

5.3 Transmissions without Power Control

In this section, we assume that the signals are transmitted at a constant power level

in each frame and hence power adaptation with respect to the fading states is not

performed. Under this assumption, we initially consider the scenario in which the

receiver decodes the users in a fixed order. Subsequently, we analyze the case of

variable decoding order.

5.3.1 Fixed Decoding Order

We first assume that the receiver decodes the users in a fixed order in each frame.

Hence, the decoding order does not change with respect to the realizations of the

fading coefficients. If a single decoding order is used in the frame, it is obvious that

only the vertices of the boundary region can be achieved. We consider a slightly

more general case in which time sharing technique is employed in each frame among

different decoding orders. Note that the time sharing strategy is also independent of

the channel states and hence is fixed in different blocks. We denote the fraction of



98

time allocated to decoding order πm as τm. Naturally, the fractions of time satisfy

τm ≥ 0 and
∑M !

m=1 τm = 1. Varying the values of τm enables us to characterize the

throughput region. Under these assumptions, the effective capacity for each user on

the boundary surface is

Cj(θj) = − 1

θjTB
loge Ez

{

e
−θjT

∑M!

m=1
τmR

π
−1
m (j)

}

(5.14)

where Rπ−1
m (j) represents the maximal instantaneous service rate of user j at a given

decoding order πm, which is given by

Rπ−1
m (j) = B log2

(

1 +
SNRjzj

1 +
∑

π−1
m (i)>π−1

m (j) SNRizi

)

(5.15)

where π−1
m is the inverse trace function of πm.

Remark: Note that Rπ−1
m (j) is the maximum instantaneous service rate achieved

with superposition coding and a particular decoding order. Hence, the correspond-

ing effective capacities characterize the throughput achieved with this strategy in the

presence of QoS constraints. Note also that Rπ−1
m (j), which represents the information-

theoretic limit for instantaneous rates, can be approached if codes with large block-

lengths are employed. Therefore, in order to have operational significance in the

results, we assume throughout the chapter that the number of symbols TB in a

frame duration of T seconds is sufficiently large. If TB is relatively small, rates

attained with finite blocklength channel codes in the presence of possible decoding

errors should be considered as addressed in [65] and [47].

Remark: Throughout the rest of the chapter, we generally specify the effective

capacity values on the boundary surface for simplicity and brevity. Effective capacity

regions can immediately be specified using these boundary points. For instance, the
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effective capacity (or equivalently throughput) region for superposition coding and

fixed decoding order is

⋃

{τm}






C(Θ) ≥ 0 :

Cj(θj) ≤ − 1

θjTB
loge Ez

{

e
−θjT

∑M!

m=1
τmR

π−1
m (j)

}





(5.16)

where the union is over different time allocation strategies.

Next, for comparison, we consider the TDMA case in which we also have similar

time allocation strategies but only one user transmits in its specific fraction of time.

We first have the following definition.

Definition 2 The throughput region for TDMA can be seen as the achievable vectors

of arrival rates with each component bounded by the effective capacity obtained when

the instantaneous service rate is given by (5.8). More specifically, the maximum

effective capacity for user j is

C
TD
j (θj) = − 1

θjTB
loge E







e
−δjθjT B log2

(

1+
SNRj

δj
zj

)





(5.17)

where δj is the fraction of time allocated to user j, and 0 ≤ δj ≤ 1. We again

assume that δjTB is sufficiently large so that the expression in (5.8) is a realistic

representation of the service rate.

An immediate result can be obtained as follows:

Theorem 13 The throughput region for TDMA is convex.

Proof: Note that the points on the boundary surface is given in (5.17). Consider

the function f(δ) = −δθTB log2

(

1 + SNR
δ
z
)

. It can be easily verified that f(δ) is
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∂J
∂δj

= λj

E







e
−δjθjT B log2

(

1+
SNRj

δj
zj

)


log2(1 + SNRj

δj
zj) −

SNRj
δj

zj

1+
SNRj

δj
zj

log2 e











E







e
−δjθjT B log2

(

1+
SNRj

δj
zj

)





− κ = 0

(5.19)

a convex function in δ. Then, ef(δ) is a log-convex function. Since weighted non-

negative sum preserves the log-convexity [53, Section 3.5], we know that Ez{ef(δ)}

is log-convex. Then − 1
θT B

loge E{e−δθT B log2

(

1+SNR
δ

z

)

} is a concave function in δ.

Hence, we immediately see that the throughput region for TDMA is convex. �

The optimal time allocation policy that maximizes the weighted sum can be ob-

tained through the optimization problem

max
{δj}

M∑

j=1

− λj

θjTB
loge E







e
−δjθjT B log2

(

1+
SNRj

δj
zj

)





, (5.18)

s.t.
M∑

j=1

δj = 1, δj ≥ 0.

The objective function in the above problem is concave, and we can use the La-

grangian maximization approach. Taking the derivative of the Lagrangian function

with respect to δj , we obtain, for each user, the optimality condition given in (5.19)

at the top of this page, where κ is the Lagrange multiplier whose value is chosen to

satisfy the constraint
∑M

j=1 δj = 1. If the optimal value of δj turns out to be negative,

then the optimal value of δj should be 0. When λ1 = λ2 = · · · = λM , the obtained

values of {δj} are the ones that achieve the maximal sum-rate throughput, i.e., the

sum of the effective capacities of the users. Although obtaining closed-form solutions

is unlikely, the maximization problem in (5.18) can be easily solved numerically using
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convex optimization tools. Numerical results are provided in Section 5.3.3.

5.3.2 Variable Decoding Order

We now study the case in which the receiver varies the decoding order with respect

to the fading states z = (z1, . . . , zM). In its most general form, we assume that the

receiver, for each fading state z, employs a time sharing of the decoding orders in

which the fraction of time allocated to decoding order πm is τm(z) for m = 1, . . .M !.

Hence, for each fading state z, the receiver now has the freedom to use possibly a

different decoding order or a different time sharing of multiple decoding orders. For

a given time sharing policy {τm(z)}M !
m=1, the effective capacity of user j is

Cj(θj) = − 1

θjTB
loge Ez

{

e
−θjT

∑M!

m=1
τm(z)R

π
−1
m (j)

}

(5.20)

where Rπ−1
m (j) is given by (5.15). In this scheme, the instantaneous transmission

rates for the users are selected from any point on the dominant face of the MAC

instantaneous capacity region.

A more restrictive but simpler scheme for the receiver is to eliminate the time-

sharing and employ a particular single decoding order for each fading state z. In this

case, the instantaneous transmission rates are chosen from the vertices of the MAC

instantaneous capacity region. More specifically, we assume that the vector space

R
M
+ of the possible values for z is partitioned into M ! disjoint regions {Zm}M !

m=1 with

respect to decoding orders {πm}M !
m=1. Hence, each region corresponds to a unique

decoding order. For instance, when z ∈ Z1, the receiver decodes the information in

the order π1. Therefore, this scheme corresponds to the special case of the general

time-sharing approach with τm(z) = 1 when z ∈ Zm and zero otherwise for all

m = 1, . . .M !.
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Now, for a given partition {Zm}M !
m=1, the maximum effective capacity that can be

achieved by the jth user is

Cj(θj) = − 1

θjTB
loge Ez

{

e−θjT Rj

}

(5.21)

= − 1

θjTB
loge





M !∑

m=1

∫

z∈Zm

e
−θjT R

π−1
m (j)pz(z)dz



 (5.22)

where pz is the distribution function of z and Rπ−1
m (j) is given in (5.15). Akin to the

optimization in (5.13), the optimal partition {Zm}M !
m=1 that maximizes the weighted

sum of the effective capacities can be identified by solving the following optimization

problem:

max
{Zm}

λ · C(Θ) = max
{Zm}

M∑

j=1

λjCj(θj) (5.23)

= max
{Zm}

M∑

j=1

− λj

θjTB

× loge





M !∑

m=1

∫

z∈Zm

e
−θjT R

π−1
m (j)pz(z)dz



. (5.24)

Note that the optimal partition depends on the weight vector λ = (λ1, . . . , λM). By

solving a sequence of optimization problems for different values of λ, we can trace the

boundary of the effective throughput region.

Considering the expression for effective capacity and the optimization problem

in (5.24), we note that finding closed-form analytical expressions for the optimal

partitions of the channel state space seems intractable for a general scenario. With

this in mind, we consider a simplified case in which all users have the same QoS

constraint described by θ. This case arises, for instance, if users do not have priorities

over others in terms of buffer limitations or delay constraints.
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5.3.2.1 Two-user MAC

First, we consider the two-user MAC case and suppose that the two users have the

same QoS exponent θ. Similar to the discussion in [41], finding an optimal decoding

order function can be reduced to finding a function z2 = g(z1) in the state space such

that users are decoded in the order (1,2) if z2 < g(z1) and users are decoded in the

order (2,1) if z2 > g(z1). Hence, the function g partitions the space of the possible

values of z = (z1, z2). With this, the optimization problem in (5.23) becomes

max
g
λ1C1(θ, g(z1)) + (1 − λ1)C2(θ, g(z1)) (5.25)

where C1(θ, g(z1)) and C2(θ, g(z1)) are expressed as

C1(θ, g(z1))

=
−1

θTB
loge





∫ ∞

0

∫ ∞

g(z1)
e−θT B log2(1+SNR1z1)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ g(z1)

0
e

−θT B log2

(

1+
SNR1z1

1+SNR2z2

)

pz(z1, z2)dz2dz1



, (5.26)

C2(θ, g(z1))

=
−1

θTB
loge





∫ ∞

0

∫ g(z1)

0
e−θT B log2(1+SNR2z2)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ ∞

g(z1)
e

−θT B log2

(

1+
SNR2z2

1+SNR1z1

)

pz(z1, z2)dz2dz1



. (5.27)

Note that the maximization in (5.25) is over the choice of the function g(z1). Implic-

itly, g(z1) should always be larger than zero as implied in (5.26) and (5.27). In cases

in which this condition is not satisfied, we need to find a function z1 = f(z2) instead,

as will be specified below.
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Theorem 14 The optimal decoding order as a function of the fading state z = (z1, z2)

for a specific common QoS constraint θ in the two-user case is characterized by the

following functions:

g(z1) =
(1 + SNR1z1)K

1
β − 1

SNR2
, if K ∈ [1,∞) and (5.28)

f(z2) =
(1 + SNR2z2)K− 1

β − 1

SNR1

, if K ∈ [0, 1) (5.29)

where β = θT B
loge 2

and K ∈ [0,∞) is a constant that depends on the weight λ1 in (5.25)

and the values of the double integrals in (5.26) and (5.27). Note that the function

used to partition the state space is either g or f depending on the value of K.

Proof: Suppose that the optimal decoding order is specified by the function z2 = g(z1).

We define

J (ĝ(z1)) = λ1C1(θ, ĝ(z1)) + (1 − λ1)C2(θ, ĝ(z1)) (5.30)

where ĝ(z1) = g(z1)+sη(z1). g(z1) is the optimal function, s is any constant, and η(z1)

represents arbitrary perturbation. A necessary condition that needs to be satisfied is

[66]

d

ds
(J (ĝ(z1)))

∣
∣
∣
∣
∣
s=0

= 0. (5.31)
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We define the following:

φ1 =
∫ ∞

0

∫ ∞

g(z1)
e−θT B log2(1+SNR1z1)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ g(z1)

0
e

−θT B log2

(

1+
SNR1z1

1+SNR2z2

)

pz(z1, z2)dz2dz1, (5.32)

φ2 =
∫ ∞

0

∫ g(z1)

0
e−θT B log2(1+SNR2z2)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ ∞

g(z1)
e

−θT B log2

(

1+
SNR2z2

1+SNR1z1

)

pz(z1, z2)dz2dz1. (5.33)

By noting that dĝ(z1)
ds

= η(z1), and from (5.31)–(5.33), we can derive

∫ ∞

0



− λ1

θTBφ1





(

1 +
SNR1z1

1 + SNR2g(z1)

)−β

− (1 + SNR1z1)
−β





− 1 − λ1

θTBφ2



(1 + SNR2g(z1))
−β −

(

1 +
SNR2g(z1)

1 + SNR1z1

)−β








· pz(z1, g(z1))η(z1)dz1 = 0 (5.34)

Since the above equation holds for any η(z1), it follows that

− λ1

θTBφ1





(

1 +
SNR1z1

1 + SNR2g(z1)

)−β

− (1 + SNR1z1)
−β





− 1 − λ1

θTBφ2



(1 + SNR2g(z1))
−β −

(

1 +
SNR2g(z1)

1 + SNR1z1

)−β


 = 0 (5.35)

which after rearranging and defining K as follows yields

(

1 + SNR1z1

1+SNR2g(z1)

)−β − (1 + SNR1z1)
−β

(

1 + SNR2g(z1)
1+SNR1z1

)−β − (1 + SNR2g(z1))
−β

=
(1 − λ1)φ1

λ1φ2
= K. (5.36)
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Obviously, K ≥ 0. Notice that after a simple computation, (5.36) becomes

(

1 + SNR1z1

1 + SNR2g(z1)

)−β

= K (5.37)

which leads to (5.28) after rearranging. Note here that if K < 1, g(z1) < 0 for

z1 < K
− 1

β −1
SNR1

. Then, the expressions in (5.26) and (5.27) are not well-defined. In

this case, we denote the optimal function as z1 = f(z2) instead. Following a similar

approach as shown in (5.26) through (5.37) yields (5.29). �

Remark: Above, we have assumed that the users are decoded in the order (1, 2)

when z2 < g(z1) (or z1 > f(z2) if K < 1) and decoded in the order (2, 1) when

z2 > g(z1) (or z1 < f(z2) if K < 1). It is interesting note that if we switch the

decoding orders in the regions (i.e., if users are decoded in the order (1, 2) when

z2 > g(z1)), exactly the same partition functions as in (5.28) and (5.29) are obtained

due to the symmetric nature of the problem. Hence, the structure of the optimal

functions that partition the space of channel states (z1, z2) into two non-overlapping

regions does not depend on which decoding order is used in which region.

Remark: Although the partition does not depend on the choice of the decoding or-

ders in different regions, the performance definitely does. Our numerical computations

show that the order selected originally at the beginning of our discussion (i.e., using

the decoding order (1,2) when z2 < g(z1) or z1 > f(z2)) provides a larger throughput

region than otherwise. This observation leads to an interesting conclusion. Note that

partition functions g(z1) in (5.28) and f(z2) in (5.29) are linear functions of z1 and

z2, respectively. When K ≥ 1 and

z2 < g(z1) =
(1 + SNR1z1)K

1
β − 1

SNR2
, (5.38)
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user 1 is decoded first and user 2 is decoded last. Hence, for instance, when z1 is

much larger than z2 and user 1 is enjoying much better channel conditions, user 1 is

decoded first in the presence of interference caused by user 2’s received signal. User 2,

who has less favorable conditions, is decoded subsequently without experiencing any

interference. Note that such an operation is the opposite of an opportunistic behavior

and leads to a more fair treatment of users. This is rather insightful since the users

are assumed to operate under similar QoS limitations (i.e., they have the same QoS

exponent θ). Note that if the decoding orders are switched, users having favorable

channel conditions will be decoded last and hence experience no interference. In such

a case, there is a bias towards users with better channel conditions, which leads to

inefficient performance when both users operate under similar buffer constraints.

Our observations above have led us to propose the following suboptimal decoding

order strategy for a scenario with more than 2 users.

5.3.2.2 Suboptimal Decoding Order

In this section, we consider an arbitrary number of users. When all users have the

same QoS constraint specified by θ, we propose a suboptimal decoding order given

by

λπ(1)

zπ(1)
≤ λπ(2)

zπ(2)
· · · ≤ λπ(M)

zπ(M)
, (5.39)

due to the observation that the user with the largest weight λ should be decoded

last, and the fact that the higher the value of z, the less power is needed to achieve

a specific effective capacity. Considering a two-user example, we, with this choice of
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Figure 5.2: The throughput region of two-user MAC case. SNR1 = SNR2 = 0 dB.
θ1 = θ2 = 0.01. The solid, dotted, dot-dashed, and dashed lines represent the regions
achieved with optimal variable decoding order, suboptimal variable decoding order,
fixed decoding with time sharing, and the TDMA respectively.

the decoding order, can express the points on the boundary surface as

C1(θ) =

− 1

θTB
loge





∫ ∞

0

∫ ∞

λ2z1
λ1

e−θT B log2(1+SNR1z1)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ λ2z1
λ1

0
e

−θT B log2

(

1+
SNR1z1

1+SNR2z2

)

pz(z1, z2)dz2dz1



 (5.40)

C2(θ) =

− 1

θTB
loge





∫ ∞

0

∫ λ2z1
λ1

0
e−θT B log2(1+SNR2z2)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ ∞

λ2z1
λ1

e
−θT B log2

(

1+
SNR2z2

1+SNR1z1

)

pz(z1, z2)dz2dz1



. (5.41)
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5.3.3 Numerical Results

We have performed numerical analysis for independent Rayleigh fading channels with

E{z} = 1. In Fig. 5.2, the throughput region of a two-user MAC is plotted for super-

position strategies with different decoding ordering methods at the receiver, and also

for TDMA. In the figure, the solid and dotted curves provide the throughput regions

achieved by employing optimal and suboptimal variable decoding orders, respectively,

at the receiver. Note that in the optimal strategy described by the results of Theorem

14, the receiver chooses the decoding order according to the channel states such that

the weighted sum of effective capacities, i.e., summation of log-moment generating

functions, is maximized. We see that the suboptimal strategy described in Section

5.3.2.2 can achieve almost the same rate region as the optimal strategy, indicating

the efficiency of this approach. In the same figure, dot-dashed curve provides the

throughput region achieved by employing a fixed decoding order for all channel s-

tates. Here, we observe that the strategy of using a fixed decoding order at the

receiver is strictly suboptimal even when the users are operating under similar buffer

constraints, and varying the decoding order with the respect to the channel gains can

significantly increase the achievable region. Finally, the throughput region of TDMA

is given by the dashed curve. We immediately note that TDMA can achieve some

points outside of the throughput region attained with fixed decoding order at the re-

ceiver side. These numerical results show that markedly different strategies may need

to be employed when systems are operating under buffer constraints. In the absence

of such constraints, the performance is captured by the ergodic capacity region which

cannot be improved by varying the decoding order with respect to the channel states

[26]. Hence, using a fixed decoding order at the receiver is an optimal strategy when

there are no QoS constraints. Moreover, TDMA is always suboptimal with respect
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Figure 5.3: The sum-rate throughput as a function of θ. SNR1 = 10 dB; SNR2 = 0
dB.

to the superposition schemes regardless of the decoding-order strategy [27].

In Fig. 5.3, sum-rate throughput, i.e. the sum of the effective capacities, is plotted

as a function of the QoS exponent θ. Here, we note that as θ increases, the curves

of different strategies converge. In particular, TDMA performance approaches that

of the superposition coding with variable decoding. Hence, orthogonal transmission

strategies start being efficient in terms of attaining the sum rate under stringent buffer

constraints. Note that the sum-rate throughput generally decreases with increasing

θ, and we conclude from the figure that this diminished throughput can be captured

by having each user concentrate its power in a certain fraction of time in the TDMA

scheme. We also see that for approximately θ > 0.006, TDMA starts outperforming

superposition transmission when a fixed decoding order is employed at the receiver.

Such an observation is also noted in the discussion of Fig. 5.2. In contrast, we

observe that as θ approaches 0 and hence the QoS constraints relax, TDMA is the

strategy with the worst performance. Note that when the performance metric is the
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ergodic capacity and hence no queueing constraints are considered, this suboptimality

of TDMA with respect to superposition strategies is well-known (see e.g., [27]).

We are also interested in the values of parameter K that appears in the functions

in Theorem 14 . In Fig. 5.4, we plot K as a function of λ1

λ2
= λ1

1−λ1
. It is interesting

to note that loge K seems to be linear with respect to loge

(
λ1

1−λ1

)

.

5.4 Transmissions with Power Control

In this section, we analyze the case in which the transmitter employs power control

policies in the transmission. Similarly as before, we initially investigate the scenario

in which the decoding order is fixed for all channel states. Subsequently, we study

variable decoding order schemes. Note that varying the decoding order with respect

to the channel states, according to the analysis in Section 5.3, has the potential to

significantly affect the achievable rates.
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5.4.1 Power Control Policy for Fixed Decoding Order

Here, we characterize the optimal power allocation policies when the decoding order

is fixed for all channel states. Due to the convexity of CMAC, there exist Lagrange

multipliers κ = (κ1, . . . , κM) ∈ R
M
+ such that C

∗(Θ) on the boundary surface can be

obtained by solving the optimization problem

max
µ

λ · C(Θ, µ) − κ · E{µ} (5.42)

where µ = (µ1, . . . , µM) represents the collection of the power control policies of all

users, λ = (λ1, . . . , λM) is the weight vector, and C(Θ, µ) = (C1(θ1, µ), . . . ,CM(θM , µ))

is the vector of maximum effective capacities of the users for given decoding order

and power allocation policies. Note that µj =
Pj

N0B
(defined in Section 5.1 as the

instantaneous transmitted SNR level) describes the power control policy of the jth

user. For a given permutation π and set of power allocations µ, Cj(θj , µ) is given by

Cj(θj , µ) =

− 1

θjTB
loge E







e
−θjT B log2

(

1+
µjzj

1+
∑

π−1(i)>π−1(j)
µizi

)





. (5.43)

Now, the optimization problem (5.42) can be rewritten as

max
µ

M∑

j=1

− λj
1

θjTB
loge E







e
−θjT B log2

(

1+
µj zj

1+
∑

π−1(i)>π−1(j)
µizi

)





−
M∑

j=1

κjE{µj}. (5.44)

The following result identifies the optimal power adaptation policies that solve the

above optimization problem.
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Theorem 15 Assume that the receiver, for all channel states, decodes the users in

a fixed order specified by the permutation π. Then, the optimal power allocation

allocation policies that solve the optimization problem in (5.44) are given by

µj =





(

1 +
∑

π−1(i)>π−1(j) µizi

) βj
βj+1

α
1

βj +1

j z

βj
βj+1

j

− 1 +
∑

π−1(i)>π−1(j) µizi

zj





+

for j = 1, 2, . . . ,M (5.45)

where βj =
θjT B

loge 2
is the normalized QoS exponent, (x)+ = max{x, 0}, and (α1, · · · , αM)

are constants that are introduced to satisfy the average power constraints.

Proof: Note that with a fixed decoding order, the user π(M) sees no interference

from the other users, and hence the derivative of (5.44) with respect to µπ(M) will

only be related to the effective capacity formulation of user π(M). Therefore, we can

solve an equivalent problem by maximizing Cπ(M) instead. After we derive µπ(M), the

derivative of (5.44) with respect to µπ(M−1) will only be related to the effective capacity

formulation of user π(M − 1). By repeated application of this procedure, for given

λ, (5.44) can be further decomposed into the following M sequential optimization

problems

max
µj

− λj
1

θjTB
loge E







e
−θjT B log2

(

1+
µj zj

1+
∑

π−1(i)>π−1(j)
µizi

)





− κjE{µj} j ∈ {1, · · · ,M} (5.46)
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in the inverse order of π. Similarly as in [35], due to the monotonicity of the logarithm,

solving the above M optimizations is the same as solving

min
µj

E







e
−θjT B log2

(

1+
µj zj

1+
∑

π−1(i)>π−1(j)
µizi

)





+ κjE{µj} (5.47)

for j ∈ {1, · · · ,M}. Differentiating the above Lagrangian with respect to µj and

setting the derivative to zero yield the intended result in (5.45). �

Remark: Exploiting the result in (5.45), we can find that instead of adapting

the power according to only its channel state as in [35] where a single-user scenario

is studied, the user adapts the power with respect to its channel state normalized by

the observed interference and the noise.

Remark: To give an explicit idea of the power control policy, we consider a two-

user example in which the decoding order is (2, 1). For this case, we can easily find

that

µ1 =







1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

z1 > α1,

0 otherwise

, (5.48)

and

µ2 =







1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

z1 ≤ α1 and z2 > α2,

(
z1
α1

) β2
(β1+1)(β2+1)

α

1
β2+1
2 z

β2
β2+1
2

−
(

z1
α1

) 1
β1+1

z2
z1 > α1 and z2

α2
>
(

z1

α1

) 1
β1+1

0 otherwise

, (5.49)

where α1 and α2 are chosen to satisfy the average power constraints of the two users.
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5.4.2 Power Control Policy for Variable Decoding Order

In this section, we study the optimal power allocation policy when the receiver varies

the decoding order with respect to the channel fading states. We mainly concentrate

on the two-user scenario. The key idea we introduce here is to consider the power

allocation policy of each user j for each region Zm (in which decoding is performed

according to permutation πm) while requiring the average power constraint to be

satisfied by the joint power over all regions {Zm}.

For the two-user case, due to the convexity of the throughput region, there exist

Lagrange multipliers κ = (κ1, κ2) ∈ R
2
+ such that C

∗(Θ) on the boundary surface can

be obtained by solving the optimization problem

max
µ

λ1C1(µ,Z) + λ2C2(µ,Z) − κ1E{µ1} − κ2E{µ2} (5.50)

where µ = (µ1, µ2) are the power control policies, (λ1, λ2) are the weights in the

weighted sum, and Z = (Z1,Z2) denotes a particular partition of the space of the

positive values of z = (z1, z2) 1. Hence, power control policies that solve (5.50) are

the optimal ones for a given partition. In the following, since we assume Z is given,

the notation Cj(µ,Z) is replaced by Cj(µ) for brevity.

Recalling the discussion in Section 5.3.2, we can express the effective capacities

of the two users as in (5.26) and (5.27) by only replacing SNRj with µj(z) in these

expressions. The Lagrangian (which is the objective function in (5.50)) can now be

expressed as in (5.51) given on the next page. In (5.51), the expressions in regions

Z1 and Z2 are written separately due to the reason that possibly different power

1Similarly as discussed in Section 5.3.2, different decoding orders are employed in Z1 and Z2.
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J = − λ1

β1 loge 2
loge





∫

z∈Z1

(

1 +
µ1z1

1 + µ2z2

)−β1

pz(z1, z2)dz1dz2

+
∫

z∈Z2

(1 + µ1z1)−β1 pz(z1, z2)dz1dz2





− λ2

β2 loge 2
loge





∫

z∈Z2

(

1 +
µ2z2

1 + µ1z1

)−β2

pz(z1, z2)dz1dz2

+
∫

z∈Z1

(1 + µ2z2)−β2 pz(z1, z2)dz1dz2





− κ1(Ez∈Z1{µ1} + Ez∈Z2{µ1}) − κ2(Ez∈Z1{µ2} + Ez∈Z2{µ2}). (5.51)

allocation strategies are employed in different regions. We define

φ1 =
∫

z∈Z1

(

1 +
µ1z1

1 + µ2z2

)−β1

pz(z1, z2)dz1dz2

+
∫

z∈Z2

(1 + µ1z1)−β1 pz(z1, z2)dz1dz2, (5.52)

and

φ2 =
∫

z∈Z2

(

1 +
µ2z2

1 + µ1z1

)−β2

pz(z1, z2)dz1dz2

+
∫

z∈Z1

(1 + µ2z2)−β2 pz(z1, z2)dz1dz2. (5.53)

Note that the values of these functions are obtained for given power control policies

µ = (µ1, µ2) and given partition Z = (Z1,Z2).

Now, we consider the power control policy of each user in each decoding order

region Zi, i = 1, 2. By differentiating the Lagrangian, we can find the following
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optimality conditions:

1)
λ1

φ1 loge 2
(1 + µ1z1)−β1−1z1

− λ2

φ2 loge 2

(

1 +
µ2z2

1 + µ1z1

)−β2−1
µ2z2z1

(1 + µ1z1)2

− κ1 = 0 ∀z ∈ Z1 (5.54)

2)
λ2

φ2 loge 2

(

1 +
µ2z2

1 + µ1z1

)−β2−1
z2

1 + µ1z1
− κ2 = 0 ∀z ∈ Z1 (5.55)

3)
λ1

φ1 loge 2

(

1 +
µ1z1

1 + µ2z2

)−β1−1
z1

1 + µ2z2
− κ1 = 0 ∀z ∈ Z2 (5.56)

4) − λ1

φ1 loge 2

(

1 +
µ1z1

1 + µ2z2

)−β1−1
µ1z1z2

(1 + µ2z2)2

+
λ2

φ2 loge 2
(1 + µ2z2)−β2−1z2 − κ2 = 0 ∀z ∈ Z2 (5.57)

where (5.54) and (5.55) are obtained by differentiating the Lagrangian with respect

to µ1 and µ2, respectively, over z ∈ Z1. Similarly, (5.56) and (5.57) are obtained

by differentiating with respect to µ1 and µ2, respectively, over z ∈ Z2. Due to the

convexity, whenever µi, i = 1, 2 is negative valued, we set µi = 0, i = 1, 2. Although

obtaining closed form expressions from the optimality conditions seems to be unlikely,

we can gather several insights on the power control policies by analyzing the equations

(5.54)–(5.57).

Let us first define α1 = κ1φ1 loge 2
λ1

, α2 = κ2φ2 loge 2
λ2

, α12 = κ2φ1 loge 2
λ1

, and α21 =

κ1φ2 loge 2
λ2

, where κ1, κ2 are the Lagrange multipliers whose values are chosen to satisfy

the average power constraint (5.7) with equality, and φ1 and φ2 are defined in (5.52)

and (5.53). Now, consider (5.54) and (5.55). The channel state lies in Z1. Through
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a simple computation using (5.55), we can derive

µ2 =
(1 + µ1z1)

β2
β2+1

α
1

β2+1

2 z
β2

β2+1

2

− 1 + µ1z1

z2

(5.58)

which tells us that µ2 = 0 if

z2

1 + µ1z1

< α2. (5.59)

If µ2 = 0, we have from (5.54) that

λ1

φ1 loge 2
(1 + µ1z1)−β1−1z1 − κ1 = 0 (5.60)

which gives us that

µ1 =
1

α
1

β1+1

1 z
β1

β1+1

1

− 1

z1
(5.61)

which implies that µ1 = 0 if

z1 < α1. (5.62)

Now, if we substitute (5.58) into (5.54), we obtain the following additional condition

for having µ1 = 0: the equation

z1

α1
(1 + µ1z1)−(β1+1)

− z1α2

z2α12





(

z2

α2(1 + µ1z1)

) 1
β2+1

− 1



− 1 = 0 (5.63)

has a solution that returns a negative or zero value for µ1. The above discussion

enables us to characterize the regions in which one user transmits while the other

one is silent. We also have a closed-form formula in (5.61) for the optimal power
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adaptation policy when only one user transmits. Indeed, this is the optimal power

control policy derived in [35] for a single-user system. When both users transmit,

the power control policies (µ1, µ2) are given directly by the non-negative solution of

(5.54) and (5.55).

Note that the conditions and characterizations provided in (5.58)–(5.63) pertain

to the case in which the channel state is in region Z1. Following a similar analysis

of (5.56) and (5.57), we can obtain similar results for the cases in which the channel

state is in Z2.

For a given partition {Z1,Z2}, the optimal power control policy can be deter-

mined numerically using the optimality conditions in (5.54) – (5.57). Additionally,

the equations and inequalities in (5.58) through (5.63) can be used to guide the nu-

merical algorithms as they specify under which conditions at most one user transmits,

and provide the optimal power control policy in such cases. However, there is one

difficulty. (5.58) – (5.63) depend on α1, α2, α12, and α21 which in turn depend on φ1,

φ2, κ1, and κ2 which are in general functions of the power control policies. In such a

situation, the following iterative procedure can be employed in search of the solution.

We can first choose certain values for φ1, φ2, κ1, and κ2, and then determine the op-

timal power allocation policies for these selected values. Subsequently, we can check

whether the obtained policy satisfies the average power constraint with equality. This

enables us to determine if the selected κ1 and κ2 values are accurate. We can also

compute φ1 and φ2 using the obtained policy and see if they agree with the initial

values of φ1 and φ2. If there is no sufficient match or if the power constraint is not

satisfied with equality, then we update the values of φ1, φ2, κ1, and κ2, and reiterate

the search of the optimal policy.

With this insight, we propose the following algorithms that can be used to deter-

mine the optimal power allocated to each channel state:
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input : λ1, λ2, the partition Z, z
output: Optimal µ∗

1 Initialize φ1, φ2;
2 Initialize κ1 and κ2;

3 Determine α1 = κ1φ1 loge 2
λ1

, α2 = κ2φ2 loge 2
λ2

, α12 = κ2φ1 loge 2
λ1

, α21 = κ1φ2 loge 2
λ2

;

4 Determine µ1, µ2 by Algorithm 2;
5 Check if the obtained power control policies µ1 and µ2 satisfy the power

constraint with equality;
6 if not satisfied with equality then
7 update the values of κ1 and κ2 and return to Step 2;
8 else
9 move to Step 10;

10 Evaluate φ1 and φ2 with the obtained power control policies;
11 Check if the new values of φ1 and φ2 agree (up to a certain margin) with those

used in Step 2;
12 if do not agree then
13 update the values of φ1 and φ2 and return to Step 1;
14 else
15 declare the obtained power allocation policies µ1 and µ2 as the optimal

ones.
16

Algorithm 1: Power Control Algorithm

Note that we above have not specified how the values of κ1, κ2, φ1, and φ2 are

updated for each iteration in order to keep the algorithm 1 generic. In our numerical

computations, we have updated κ1 and κ2 using the bisection search algorithm. The

values of φ1 and φ2 are updated in Step 13 of the algorithm by assigning them the

values evaluated in Step 11. Hence, the most recent values are carried over to the

new iteration.

In Fig. 5.5, we plot the optimal power allocation policies µ1 and µ2 as functions of

channel fading states z1 and z2. We assume that θ1 = θ2 = 0.01, SNR1 = SNR2 = 0 dB,

and λ1 = λ2 = 0.5. We consider the partition specified by the suboptimal decoding

order given in (5.39). Hence, since we have λ1 = λ2 = 0.5, decoding orders (1,2)

and (2,1) are used when z2 < z1 and z2 > z1, respectively. Under these assumptions,
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input : λ1, λ2, the partition Z, z, α1, α2, α12 and α21

output: µ1, µ2

1 if z ∈ Z1 then
2 if z2 > α2 then
3 µ2 = 1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

;

4 if z1

α1
(1 + µ1z1)

−(β1+1) − z1α2

z2α21

((
z2

α2(1+µ1z1)

) 1
β2+1 − 1

)

− 1 = 0 returns

nonpositive µ1 then
5 µ1 = 0;

6 else if z2

α2
<
(

z1

α1

) 1
β1+1 then

7 µ2 = 0, µ1 =



 1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1





+

;

8 else
9 Compute µ1, µ2 from (5.54) and (5.55);

10

11 else

12 µ2 = 0, µ1 =



 1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1





+

;

13

14 else if z ∈ Z2 then
15 if z1 > α1 then
16 µ1 = 1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

;

17 if z2

α2
(1 + µ2z2)

−(β2+1) − z2α1

z1α21

((
z1

α1(1+µ2z2)

) 1
β1+1 − 1

)

− 1 = 0 returns

nonpositive µ2 then
18 µ2 = 0;

19 else if z1

α1
<
(

z2

α2

) 1
β2+1 then

20 µ1 = 0, µ2 =



 1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2





+

;

21 else
22 Compute µ1, µ2 from (5.56) and (5.57);
23

24 else

25 µ1 = 0, µ2 =



 1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2





+

;

26

27

Algorithm 2: Evaluating Power over All Channel State
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we computed the optimal values as κ∗
1 = 0.0470, κ∗

2 = 0.0462, φ∗
1 = 0.5550, and

φ∗
2 = 0.5538. In the figure, we observe that each user, not surprisingly, allocates most

of its power to the regions in which it is decoded last and hence does not experience

interference. However, due to the introduction of QoS constraints, we also note that

each user also allocates certain power to the cases in which it is decoded first. This

is performed in order to continue transmission and avoid buffer overflows.

So far, we have assumed that the partition Z is given. The optimal partition Z

that maximizes the weighted sum-rate can be derived through the following optimiza-

tion similarly as in [67]:

C
∗ = sup

Z
λ1C1(µ,Z) + λ2C2(µ,Z) (5.64)

where C
∗ is the optimal weighted sum value for given pair of (λ1, λ2), and µ = (µ1, µ2)

are the optimal power control policies for given Z.

5.5 Conclusion

In this chapter, we have studied the achievable throughput regions in multiple access

fading channels when users operate under QoS constraints. We have assumed that

both the transmitters and the receiver have perfect CSI. We have employed the ef-

fective capacity as a measure of the throughput under buffer constraints. We have

defined the effective capacity region and shown its convexity. We have considered

different transmission and reception scenarios e.g., superposition coding, different s-

trategies for the decoding order, and TDMA. When transmission with superposition

coding is performed, we have shown that varying the decoding order at the receiver

with respect to the fading states can significantly increase the achievable rate region
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Figure 5.5: The optimal power control policies µ1 and µ1 of users 1 and 2, respectively,
as a function of (z1, z2). λ1 = 0.5, λ2 = 0.5.
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compared to that achieved with fixed decoding order schemes. For the case of two

users with the same QoS constraints, we have derived the optimal strategy for varying

the decoding order. We have noted that when the two users operate under similar QoS

limitations and one user enjoys much more favorable channel conditions, the efficient

strategy is to first decode the user with the better channel and subsequently decode

the other user so that the user with worse channel conditions does not experience

interference. Motivated by this observation, we have proposed for general multiple

user scenarios a simpler suboptimal decoding rule which can almost perfectly match

the optimal throughput region. We have also studied the performance of orthogo-

nal transmission strategies by considering TDMA. In the numerical results, we have

demonstrated that TDMA can perform better than superposition coding with fixed

decoding order for certain QoS constraints. More specifically, we have noted that

TDMA can support arrival rate pairs that are strictly outside the region achieved

when fixed decoding order is employed at the receiver. We have also observed that

the performance of TDMA approaches that of the optimal strategy of superposition

coding with variable decoding order as θ increases (i.e., as the QoS constraints become

more stringent).

In the second part of the chapter, we have incorporated power adaptation strate-

gies into the model. For a given fixed decoding order at the receiver, we have identified

the optimal power control policies. We have seen that the optimal schemes adapt the

power by treating the observed interference as additional noise. Since the observed

interference depends on the power control policies of the other users that will be de-

coded later, a coupling is introduced between the optimal policies. For cases in which

a variable decoding order strategy is adopted by the transmitter, we have obtained

the conditions that the optimal strategies should satisfy and described an algorithm

to achieve these optimal schemes.
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Chapter 6

Energy Efficiency in MAC

In this chapter, we employ the tools provided in [21] and [27] to investigate the bit

energy and wideband slope regions of fading MAC under QoS constraints in the low-

power and wideband regimes. With the results obtained in Chapter 5, the main

contributions of this chapter are summarized in the following:

1. We show that different transmission and reception strategies do not affect the

minimum bit energy levels required by each user. Additionally, we prove that

while the minimum bit energies are independent of the QoS constraints in the

low power regime, they vary with the QoS constraints in the wideband regime.

2. We determine that superposition coding with variable decoding order does not

improve the performance in terms of slope region with respect to fixed decoding

order in the low power regime, while it can achieve larger slope region in the

wideband regime.

3. When wideband slope regions are considered, we show that TDMA is always

suboptimal in the low power regime except the special case in which fading

states are linearly dependent. On the other hand, TDMA in certain cases is
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demonstrated to perform better than superposition coding with fixed decoding

order in the wideband regime. We also identify the condition for TDMA to be

suboptimal in this regime.

6.1 Effective Capacity Region of the MAC

Channel

As shown in Chapter 5, the effective capacity regions for the different transmission

strategies are given as follows.

The effective capacity regions of the multi-access channel for different scheduling

policies have been characterized. The effective capacity region achieved by TDMA is

⋃

{δj}






C(Θ) ≥ 0 : Cj(θj) ≤ − 1

θjTB
loge E







e
−δjθjT B log2

(

1+
SNRj

δj
zj

)










(6.1)

where δj is the fraction of time allocated to user j.

The effective capacity region achieved by superposition coding with fixed decoding

order is given by

⋃

{τm}






C(Θ) ≥ 0 : Cj(θj) ≤ − 1

θjTB
loge Ez

{

e
−θjT

∑M!

m=1
τmR

π−1
m (j)

}





(6.2)

where τm is the fraction of time allocated to a specific decoding order πm, Rπ−1
m (j)

represents the maximal instantaneous service rate of user j at a given decoding order

πm, which is given by

Rπ−1
m (j) = B log2

(

1 +
SNRjzj

1 +
∑

π−1
m (i)>π−1

m (j) SNRizi

)

(6.3)
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where π−1
m is the inverse trace function of πm.

Decoding orders can be varied for each channel fading state z. Suppose the vector

space R
M
+ of the possible values for z is partitioned into M ! disjoint regions {Zm}M !

m=1

with respect to decoding orders {πm}M !
m=1. Then, the maximum effective capacity that

can be achieved by the jth user is

Cj(θj) = − 1

θjTB
loge Ez

{

e−θjT Rj

}

= − 1

θjTB
loge





M !∑

m=1

∫

z∈Zm

e
−θjT R

π
−1
m (j)pz(z)dz



 (6.4)

for j = 1, . . . ,M , where pz is the distribution function of z and Rπ−1
m (j) is given in

(6.3).

6.2 Energy Efficiency in the Low-Power Regime

As described above, in order to transmit energy efficiently and achieve bit energy levels

close to the minimum level, one needs to operate in the low-SNR regime in which either

the power is low or bandwidth is large. In this section, we consider the low-power

regime. We concentrate on the two-user multiaccess channel. Below, we first note

the maximum effective capacities attained through different transmission strategies

described in Section 5.3. Subsequently, we identify the corresponding minimum bit

energies and the wideband slopes.

Now, for the two-user TDMA, if we fix the fraction of time allocated to user 1

as δ ∈ [0, 1], the maximum effective capacities of the two-users in the TDMA region
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given by (6.1) become

C1(SNR1) = − 1

θ1TB
loge Ez

{

e
−δθ1T B log2

(

1+
SNR1z1

δ

)}

(6.5)

and

C2(SNR2) = − 1

θ2TB
loge Ez

{

e
−(1−δ)θ2T B log2

(

1+
SNR2z2

1−δ

)}

, (6.6)

respectively,

Next, consider superposition coding with fixed decoding order. We fix the ratio

SNR1

SNR2
= λ. Additionally, we let τ denote the fraction of time in which the decoding

order (2, 1) is employed. Note that if the decoding order is (2, 1), the receiver first

decodes the second user’s signal in the presence of interference from first user’s signal,

and subsequently decodes the first user’s signal with no interference. Note that the

symmetric case occurs when the decoding order is (1, 2) in the remaining (1 − τ)

fraction of the time. When this strategy is used, the maximum effective capacities in

the region described in (6.2) can now be expressed as

C1(SNR1) = − 1

θ1TB
loge Ez






e

−θ1T B

(

τ log2(1+SNR1z1)+(1−τ) log2

(

1+
SNR1z1

1+SNR1z2/λ

)
)






,

(6.7)

C2(SNR2) = − 1

θ2TB
loge Ez






e

−θ2T B

(

τ log2

(

1+
SNR2z2

1+λSNR2z1

)

+(1−τ) log2(1+SNR2z2)

)






. (6.8)

Finally, we turn our attention to superposition coding with variable decoding

order. In this case, the decoding order depends on the fading coefficients (z1, z2).
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We define z2 = g(SNR1) = g(λSNR2) as the partition function in the z1 − z2 space1.

Depending on which decoding order is employed in each region, we have different

effective capacity expressions. If users are decoded in the order (1,2) when z2 <

g(SNR1) and are decoded in the order (2,1) when z2 > g(SNR1), the effective capacities

are given by

C1(SNR1) = − 1

θ1TB
loge





∫ ∞

0

∫ ∞

g(SNR1)
e−θ1T B log2(1+SNR1z1)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ g(SNR1)

0
e

−θ1T B log2

(

1+
SNR1z1

1+SNR1z2/λ

)

pz(z1, z2)dz2dz1



, (6.9)

C2(SNR2) = − 1

θ2TB
loge





∫ ∞

0

∫ g(λSNR2)

0
e−θ2T B log2(1+SNR2z2)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ ∞

g(λSNR2)
e

−θ2T B log2

(

1+
SNR2z2

1+λSNR2z1

)

pz(z1, z2)dz2dz1



. (6.10)

Similar effective capacity expressions can be derived if users are decoded in the order

(2,1) if z2 < g(SNR1) and decoded in the order (1,2) if z2 > g(SNR1).

Assumption 1 Throughout the chapter, we consider the partition functions g(SNR1)

that satisfy the following properties:

1. g(0) is finite.

2. The first and second derivatives of g with respect to SNR1, ġ(SNR1) and g̈(SNR1),

exist. Moreover, ġ(0) and g̈(0) are finite.

Denote
Eb,i

N0
= SNRi

Ci
as the bit energy of user i = 1, 2. The received bit energy is

Er
b,i

N0

=
Eb,i

N0

E{zi}. (6.11)

1The partition function can in general be a function of z1 as well, i.e., g(SNR1) = g(z1, SNR1).
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As the following result shows, the minimum received bit energies for the different

strategies are the same.

Theorem 16 For all λ = SNR1

SNR2
and all g(z1, SNR1) satisfying the properties in As-

sumption 1, the minimum received bit energy for the multiaccess fading channel at-

tained through TDMA, superposition coding with fixed decoding order, or superposition

decoding with varying decoding order, is the same and is given by

Er
b,1

N0 min

=
Er

b,2

N0 min

= loge 2 = −1.59 dB. (6.12)

Proof: Consider the TDMA strategy. Taking the first derivative of the functions in

(6.5) and (6.6) and letting SNR1 = 0, SNR2 = 0, we obtain

Ċ1(0) =
E{z1}
loge 2

, (6.13)

Ċ2(0) =
E{z2}
loge 2

. (6.14)

Substituting (6.13) and (6.14) into (1.5), we have

Eb,1

N0 min

=
loge 2

E{z1} , (6.15)

Eb,2

N0 min

=
loge 2

E{z2} (6.16)

which imply (6.12) according to (6.11).

For the superposition coding with fixed decoding, evaluating the first derivative
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of (6.7) and (6.8) at SNR1 = 0 and SNR2 = 0, we immediately obtain

Ċ1(0) =
E{z1}
loge 2

(6.17)

Ċ2(0) =
E{z2}
loge 2

(6.18)

which again imply (6.12) taking into consideration (1.5) and (6.11).

Next, we prove the result for the variable decoding case. First, we consider (6.9)

and (6.10) with the associated decoding order assignment. The first derivative of

(6.9) can be expressed as

Ċ1(SNR1) = − φ̇1

β1φ1 loge 2

= − 1

β1φ1 loge 2



−
∫ ∞

0
(1 + SNR1z1)−β1p(z1, g(SNR1))ġ(SNR)dz1

− β1

∫ ∞

0

∫ ∞

g(SNR1)
(1 + SNR1z1)−β1−1z1p(z1, z2)dz2z1

+
∫ ∞

0

(

1 +
SNR1z1

1 + SNR1g(SNR1)/λ

)−β1

p(z1, g(SNR1))ġ(SNR1)dz1

− β1

∫ ∞

0

∫ g(SNR1)

0

(

1 +
SNR1z1

1 + SNR1z2/λ

)−β1−1
z1

(1 + SNR1z2/λ)2p(z1, z2)dz2dz1





(6.19)

where φ̇1 is the first derivative of φ1, which is defined as

φ1 =
∫ ∞

0

∫ ∞

g(z1,SNR1)
e−θ1T B log2(1+SNR1z1)pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ g(z1,SNR1)

0
e

−θ1T B log2

(

1+
SNR1z1

1+SNR1z2/λ

)

pz(z1, z2)dz2dz1. (6.20)

Under the assumptions that g(0) and ġ(0) are finite, we can easily see from (6.19)
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that letting SNR1 = 0 leads to

Ċ1(0) =
E{z1}
loge 2

. (6.21)

Similarly, taking the first derivative of (6.10) and letting SNR2 = 0, we obtain

Ċ2(0) =
E{z2}
loge 2

. (6.22)

Applying the definitions (1.5) and (6.11), we prove (6.12) for this decoding order

assignment. For the reverse decoding order assignment (i.e., users are decoded in the

order (2,1) if z2 < g(SNR1) and decoded in the order (1,2) if z2 > g(SNR1)), following

similar steps, we again obtain the result in (6.12). �

Remark: The result of Theorem 16 shows that different transmission strategies

(e.g., TDMA or superposition coding) and different reception schemes (e.g., fixed or

variable decoding orders) lead to the same fundamental limit on the minimum bit

energy. Similarly as in [27], TDMA is optimally efficient in the asymptotic regime in

which the signal-to-noise ratio vanishes. More interestingly, we note that this result

is obtained in the presence of QoS constraints. Additionally, the minimum bit energy

is clearly independent of the QoS limitations parametrized by the QoS exponents θ1

and θ2. Hence, the energy efficiency is not adversely affected by the buffer constraints

in this asymptotic regime in which SNR → 0.

Having shown that the minimum bit energies achieved by different transmission

and reception strategies are the same for each user, we note that the wideband slope

regions have become more interesting since they quantify the performance in the non-

asymptotic regime in which SNRs are small but nonzero. With the analysis approach

introduced in [27], we have the following results.
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Theorem 17 The multiaccess slope region achieved by TDMA is given by

S =

{

(S1, S2) : 0 ≤ S1 ≤ Sup
1 , 0 ≤ S2 ≤ Sup

2 ,
κ11κ12

κ11 − S1
+

κ21κ22

κ21 − S2
≤ 1 + κ12 + κ22

}

(6.23)

where

Sup
1 =

2(E{z1})2

β1 (E{z2
1} − (E{z1})2) + E{z2

1} ,

Sup
2 =

2(E{z2})2

β2 (E{z2
2} − (E{z2})2) + E{z2

2} ,

κ11 =
2(E{z1})2

β1 (E{z2
1} − (E{z1})2)

,

κ12 =
E{z2

1}
β1 (E{z2

1} − (E{z1})2)
,

κ21 =
2(E{z2})2

β2 (E{z2
2} − (E{z2})2)

,

κ22 =
E{z2

2}
β2 (E{z2

2} − (E{z2})2)
,

β1 = θ1TB log2 e and β2 = θ2TB log2 e.

Proof: Taking the second derivatives of the functions in (6.5) and (6.6) and letting

SNR1 = 0, SNR2 = 0, we obtain

C̈1(0) =
1

loge 2

(

β1

(

(E{z1})2 − E{z2
1}
)

− 1

δ
E{z2

1}
)

(6.24)

and

C̈2(0) =
1

loge 2

(

β2

(

(E{z2})2 − E{z2
2}
)

− 1

1 − δ
E{z2

2}
)

. (6.25)
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Combining (6.13), (6.14), (6.24), and (6.25) with (1.7), we now get

S1 =
2(E{z1})2

β1 (E{z2
1} − (E{z1})2) + 1

δ
E{z2

1} (6.26)

S2 =
2(E{z2})2

β2 (E{z2
2} − (E{z2})2) + 1

1−δ
E{z2

2} (6.27)

which, after eliminating δ, provide us the third condition in (6.23). �

The following results provide the wideband slope expressions when superposition

transmission is employed.

Theorem 18 For any λ = SNR1

SNR2
, the multiaccess slope region achieved by the super-

position coding with fixed decoding order is

S =

{

(S1,S2) : 0 ≤ S1 ≤ Sup
1 , 0 ≤ S2 ≤ Sup

2 ,

λ(E{z1})2

E{z1z2}

(

1

S1
− 1

Sup
1

)

+
(E{z2})2

λE{z1z2}

(

1

S2
− 1

Sup
2

)

= 1

}

, (6.28)

where Sup
1 and Sup

2 are the same as defined in Theorem 17.

Proof: The second derivatives of the functions (6.7) and (6.8) at zero signal-to-noise

ratio are

C̈1(0) =
1

loge 2

(

β1(E{z1})2 − (β1 + 1)E{z2
1} − 2(1 − τ)

λ
E{z1z2}

)

C̈2(0) =
1

loge 2

(

β2(E{z2})2 − (β2 + 1)E{z2
2} − 2λτE{z1z2}

)

. (6.29)
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Then, the wideband slopes are given by

S1 =
2(E{z1})2

β1 (E{z2
1} − (E{z1})2) + E{z2

1} + 2(1−τ)
λ

E{z1z2}
(6.30)

S2 =
2(E{z2})2

β2 (E{z2
2} − (E{z2})2) + E{z2

2} + 2λτE{z1z2} . (6.31)

After solving for τ in (6.30) and (6.31) and subtracting the resulting equations, we

obtain the third condition in (6.28). �

Theorem 19 For any λ = SNR1

SNR2
, and any g(SNR1) satisfying the properties in As-

sumption 1, the multiaccess slope region achieved by superposition coding with variable

decoding order is

S =

{

(S1,S2) : 0 ≤ S1 ≤ Sup
1 , 0 ≤ S2 ≤ Sup

2 ,

λ(E{z1})2

E{z1z2}

(

1

S1
− 1

Sup
1

)

+
(E{z2})2

λE{z1z2}

(

1

S2
− 1

Sup
2

)

= 1

}

, (6.32)

where Sup
1 and Sup

2 are the same as defined in Theorem 17.

Proof: See Appendix H.

Remark: Comparing (H.4) with (H.6) or (H.5) with (H.7), we see that different

decoding orders do not change the wideband slope values for given user only if g(0) =

z1, i.e., the z1 − z2 space is equally divided. One more interesting remark is that if

we compare the third conditions in (6.28) and (6.32), we notice that fixed decoding

order achieves the same performance as variable decoding order.

Remark: It is interesting to note in the above results that, unlike the minimum

bit energy levels, the wideband slopes depend on the QoS exponents θ1 and θ2 through

β1 and β2. Indeed, as can be seen from the expressions of the upper bounds Sup
1 and

Sup
2 , the wideband slopes tend to diminish as QoS constraints become more stringent
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and θ1 and θ2 increase. Therefore, a penalty in energy efficiency is experienced in the

presence of buffer limitations.

In the following result, we establish the suboptimality of TDMA.

Theorem 20 The wideband slope region of TDMA is inside the one attained with

superposition coding.

Proof: We only need to consider the third conditions of (6.23) and (6.28). Substituting

(6.30) and (6.31) into the left-hand side (LHS) of the third constraint in (6.23), we

obtain

κ12 + κ22 +
E{z2

1}
E{z2

1} + 2(1−τ)
λ

E{z1z2}
+

E{z2
2}

E{z2
2} + 2λτE{z1z2} . (6.33)

Comparing the sum of the last two terms with 1 (or more precisely subtracting 1 from

the sum), we can write

E{z2
1}

E{z2
1} + 2(1−τ)

λ
E{z1z2}

+
E{z2

2}
E{z2

2} + 2λτE{z1z2}
− 1

=
E{z2

1}E{z2
2} − 4τ (E{z1z2})2 + 4 (E{z1z2})2 τ 2

(

E{z2
1} + 2(1−τ)

λ
E{z1z2}

)

(E{z2
2} + 2λτE{z1z2})

. (6.34)

We are interested in the numerator which is a quadratic function of the parameter τ .

We note that the discriminant of this quadratic function satisfies

∆ = 16 (E{z1z2})4 − 16 (E{z1z2})2
E{z2

1}E{z2
2}

= 16 (E{z1z2})2
(

(E{z1z2})2 − E{z2
1}E{z2

2}
)

≤ 0 (6.35)

where the Cauchy-Schwarz inequality (E{z1z2})2 ≤ E{z2
1}E{z2

2} is used. Thus, the

numerator of (6.34) is always nonnegative, i.e., the slope region achieved by TDMA
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Figure 6.1: The slope regions for independent Rayleigh fading channels.

is inside the one achieved by superposition coding. The equality holds only if z1 and

z2 are linearly dependent. �

In Fig. 6.1, we plot the slope regions in independent Rayleigh fading channels

with variances E{z1} = E{z2} = 1. We assume β1 = 1 and β2 = 2. From the figure,

we immediately observe the suboptimality of TDMA compared with superposition

coding.

6.3 Energy Efficiency in the Wideband Regime

In this section, we consider the wideband regime in which the overall bandwidth of

the system B is large. Let ζ = 1
B

. Similar as in Chapters 2, we know that the

minimum bit energy achieved in sparse multipath fading channels2 as B → ∞ (or

2As discussed in Chapters 2 and 3, wideband and low-power regimes are equivalent if rich
multipath fading is experienced. Hence, in such a case, the same minimum bit energy and wideband
slope expressions are obtained in both regimes.
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equivalently ζ → 0) can be expressed as

Eb,i

N0 min

= lim
ζ→0

P̄iζ/N0

Ci(ζ)
=
P̄i/N0

Ċi(0)
, i = 1, 2. (6.36)

To make the analysis more clear, below we first express the capacity expressions

in (6.5)–(6.10) as functions of ζ . (6.5) and (6.6) can be rewritten as

C1(ζ) = − ζ

θ1T
loge Ez

{

e
− δθ1T

ζ
log2

(

1+
P̄1z1ζ

δN0

)}

, (6.37)

and

C2(ζ) = − ζ

θ2T
loge Ez

{

e
− (1−δ)θ2T

ζ
log2

(

1+
P̄2z2ζ

(1−δ)N0

)}

, (6.38)

respectively.

For superposition coding with fixed decoding order, and fixed λ = SNR1

SNR2
=

P̄1ζ/N0

P̄2ζ/N0
= P̄1

P̄2
, (6.7) and (6.8) now become

C1(ζ) = − ζ

θ1T
loge Ez






e

− θ1T

ζ

(

τ log2(1+
P̄1z1ζ

N0
)+(1−τ) log2

(

1+

P̄1z1ζ
N0

1+
P̄2z2ζ

N0

))






, (6.39)

C2(ζ) = − ζ

θ2T
loge Ez






e

− θ2T

ζ

(

τ log2

(

1+

P̄2z2ζ
N0

1+
P̄1z1ζ

N0

)

+(1−τ) log2(1+
P̄2z2ζ

N0
)

)






. (6.40)

Note that we can write g(SNR1) as g
(

P̄1ζ
N0

)

, so similarly we can write (6.9) and
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(6.10) as functions of ζ

C1(ζ) = − ζ

θ1T
loge





∫ ∞

0

∫ ∞

g(
P̄1ζ

N0
)
e

− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

)

pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ g(
P̄1ζ
N0

)

0
e

− θ1T
ζ

log2

(

1+

P̄1z1ζ
N0

1+
P̄2z2ζ

N0

)

pz(z1, z2)dz2dz1



 (6.41)

C2(ζ) = − ζ

θ2T
loge





∫ ∞

0

∫ g(
P̄2ζ
N0

)

0
e

− θ2T
ζ

log2

(

1+
P̄2z2ζ

N0

)

pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ ∞

g(
P̄2ζ
N0

)
e

− θ2T

ζ
log2

(

1+

P̄2z2ζ
N0

1+
P̄1z1ζ

N0

)

pz(z1, z2)dz2dz1



. (6.42)

Then we immediately have the following result.

Theorem 21 For all g(SNR1) satisfying the properties in Assumption 1, the mini-

mum bit energies for the two-user multiaccess fading channel in the wideband regime

attained through TDMA, superposition coding with fixed decoding order, and superpo-

sition decoding with varying decoding order, depend on the individual QoS constraints

at the users and are given by

Eb,1

N0 min

=
−θ1T P̄1

N0

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

} , (6.43)

Eb,2

N0 min

=
−θ2T P̄2

N0

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

} . (6.44)

respectively.

Proof: See Appendix I.

Remark: As Theorem 21 shows, the same minimum bit energy is achieved through

different transmission strategies (e.g., TDMA or superposition coding) and different
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reception schemes (e.g., fixed or variable decoding orders), and therefore TDMA is

optimally efficient in the wideband regime as B → ∞.

Remark: A stark difference from the result in Theorem 16 is that the minimum

bit energy now varies with the specific QoS constraints at the users. When θ = 0,

we can immediately show that the right-hand sides of (6.43) and (6.44) become loge 2
E{z1}

and loge 2
E{z2} , respectively, which is equivalent to (6.12). For θ > 0, the energy efficiency

is now adversely affected by the buffer constraints in the wideband regime.

Similarly as in Section 6.2, we next investigate the wideband slopes in order to

quantify the performances and energy efficiencies of different transmission and recep-

tion methods in the non-asymptotic regime in which the bandwidth B is large but

finite. We have the following results.

Theorem 22 In the wideband regime, the multiaccess slope region achieved by TD-

MA is given by

S =

{

(S1,S2) : 0 ≤ S1 ≤ Sup
1 , 0 ≤ S2 ≤ Sup

2 ,
S1

Sup
1

+
S2

Sup
2

≤ 1

}

(6.45)

where

Sup
1 = 2

(

N0 loge 2

θ1T P̄1

)2 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

} ,

Sup
2 = 2

(

N0 loge 2

θ2T P̄2

)2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

} .
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Proof: The second derivatives of (6.37) and (6.38) at ζ = 0 are

C̈1(0) = − 1

δ loge 2

(

P̄1

N0

)2 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

} (6.46)

C̈2(0) = − 1

(1 − δ) loge 2

(

P̄2

N0

)2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

Ez2

{

e
− θ1T P̄1

N0 loge 2
z2

} (6.47)

Using the definition in (1.7), we can express the wideband slopes as

S1 = 2δ

(

N0 loge 2

θ1T P̄1

)2 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

} (6.48)

S2 = 2(1 − δ)

(

N0 loge 2

θ2T P̄2

)2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

} (6.49)

which after simple computation give us the third condition in (6.45). �

Theorem 23 In the wideband regime, the multiaccess slope region achieved by su-

perposition coding with fixed decoding order is

S =

{

(S1,S2) : 0 ≤ S1 ≤ Sup
1 , 0 ≤ S2 ≤ Sup

2 ,

(

N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

(

1

S1

− 1

Sup
1

)

+

(

N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

P̄1P̄2Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

(

1

S2

− 1

Sup
2

)

= 1

}

(6.50)
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where Sup
1 and Sup

2 are defined in Theorem 22.

Proof: Evaluating the second derivatives of (6.39) and (6.40) at ζ = 0 yields

C̈1(0) = − 1

loge 2

(
P̄1

N0

)2
Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2(1−τ)P̄1P̄2

N2
0

Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

} (6.51)

C̈2(0) = − 1

loge 2

(
P̄2

N0

)2
Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2τP̄1P̄2

N2
0

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

} (6.52)

and as a result, the wideband slopes are given by

S1 = 2

(

N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄ 2
1 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2(1 − τ)P̄1P̄2Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

(6.53)

S2 = 2

(

N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

P̄ 2
2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2τP̄1P̄2Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

} (6.54)

After solving for τ in (6.53) and (6.54) and subtracting the resulting equations, we

have the third condition in (6.50). �

Theorem 24 For any g(SNR1) satisfying the properties in Assumption 1, the multi-

access slope regions achieved by superposition coding with variable decoding order in
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the wideband regime are different for different decoding orders. The slope region is

S =
⋃

{g(0)}

{

(S1, S2) :

0 ≤ S1 ≤ 2

(
N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄ 2
1 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2P̄1P̄2
∫∞

0

∫ g(0)
0 e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

0 ≤ S2 ≤ 2

(
N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

P̄ 2
2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2P̄1P̄2
∫∞

0

∫∞
g(0) e

− θ2T P̄2
N0 loge 2

z2z1z2p(z1, z2)dz2dz1

}

(6.55)

if the decoding order is (1,2) when z2 < g(z1, SNR1), and the decoding order is (2,1)

when z2 > g(z1, SNR1). The slope region is

S =
⋃

{g(0)}

{

(S1, S2) :

0 ≤ S1 ≤ 2

(
N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄ 2
1 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2P̄1P̄2
∫∞

0

∫∞
g(0) e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

0 ≤ S2 ≤ 2

(
N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

P̄ 2
2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2P̄1P̄2
∫∞

0

∫ g(0)
0 e

− θ2T P̄2
N0 loge 2

z2z1z2p(z1, z2)dz2dz1

}

(6.56)

if the decoding order is (2,1) when z2 < g(z1, SNR1), and the decoding order is (1,2)

when z2 > g(z1, SNR1).

Proof: See Appendix J.

Remark: Unlike previous discussions, we have no closed form expression for the

wideband slope region achieved by superposition coding with variable decoding order

in the wideband regime. Another observation in the above result is that different
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decoding orders can result in different wideband slope regions.

Below we show the superiority of superposition coding with variable decoding

compared with fixed decoding order.

Theorem 25 Superposition coding with variable decoding order achieves better per-

formance in terms of wideband slope region with respect to superposition coding with

fixed decoding order.

Proof: See Appendix K.

In the following, we present the condition under which the suboptimality of TDMA

compared with superposition coding with fixed decoding order can be established.

Theorem 26 If the following is satisfied

Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

≤ Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

2

}

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

,

(6.57)

then the wideband slope region of TDMA is inside the one attained with superposition

coding with fixed decoding order.

Proof: We consider the third conditions in (6.45) and (6.50). Substituting (6.53) and

(6.54) into the LHS of the third condition in (6.45), we have

1 −
2(1 − τ)P̄2Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

P̄1Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2(1 − τ)Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

+
P̄2Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

P̄2Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2τP̄1Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

} (6.58)
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So if the wideband slope region is inside the one attained with superposition coding

with fixed decoding order, we must have the above value to be greater than 1 for all

0 ≤ τ ≤ 1. After subtracting 1 from (6.58), we can obtain

P̄1

P̄1Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2(1 − τ)Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

P̄2

P̄2Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2τP̄1Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

×


4Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

τ 2

− 4Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

τ

+ Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}


 (6.59)

The first two terms of the multiplication are positive values. The minimum value

of the third term which is a quadratic function of τ is achieved at τ = 1
2
, and the

minimum value is

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

− Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

(6.60)

Thus, we obtain the condition stated in (6.57) for TDMA to be suboptimal. �

Remark: It is interesting that if the condition (6.57) is not satisfied, TDMA can

achieve some points outside the wideband slope region attained with superposition

coding with fixed decoding order. This tells us that TDMA can be a better choice

compared with superposition coding with fixed decoding order in some cases.

In the numerical results, we plot the wideband slope regions for independent

Rayleigh fading channels with variances E{z1} = E{z2} = 1. We assume θ1 = 0.01,
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Figure 6.2: The slope regions for independent Rayleigh fading channels.
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Figure 6.3: The slope regions for independent Rayleigh fading channels.
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θ2 = 0.1, T = 2 ms. In Fig. 6.2, we assume P̄1

N0
= 2 P̄2

N0
= 104. The left-hand side of

(6.57) is 0.1009, while the right-hand side is 0.1283. Hence, the inequality is satisfied.

From the figure, we can see that TDMA is suboptimal compared with superposition

coding. In Fig. 6.3, we assume P̄1

N0
= 1

2
P̄2

N0
= 104. The left-hand side of (6.57) is 0.0131,

while the right-hand side is 0.006. Hence, the inequality is not satisfied. Confirming

the above discussion, we can observe in the figure that TDMA indeed achieves points

outside the slope region attained with superposition coding with fixed decoding order.

6.4 Conclusion

In this chapter, we have analyzed the energy efficiency of multiaccess fading chan-

nels under QoS constraints by employing the effective capacity as a measure of the

maximal throughput under QoS constraints. We have characterized the minimum

bit energy and the wideband slope regions for different transmission strategies. We

have conducted our analysis in two regimes: low-power regime and wideband regime.

Through this analysis, we have shown the impact of QoS constraints on the energy

efficiency of multiaccess fading channels. More specifically, we have found that the

minimum bit energies are the same for each user when different transmission and

reception techniques are employed. While these minimum values are equal those that

can be attained in the absence of QoS constraints in the low-power regime, we have

shown that strictly higher bit energy values, which depend on the QoS constraints, are

needed in the wideband regime. We have also seen that while TDMA is suboptimal in

the low-power regime when wideband slope regions are considered, it can outperform

superposition coding with fixed decoding order in the wideband regime. Moreover,

we have proven in the wideband regime that varying the decoding order can achieve

larger slope region when compared with fixed decoding order for superposition coding.



148

Numerical results validating our results are provided as well.
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Chapter 7

Throughput for Two-Hop

Communication Systems

In this chapter, we consider two-hop wireless links and investigate the throughput

in the presence of QoS constraints by studying the effective capacity. We note that

references [68] and [69] have also recently investigated the effective capacity of relay

channels. Tang and Zhang in [68] analyzed the power allocation policies in relay

networks under the assumption that the relay node has no buffer constraints. Parag

and Chamberland in [69] provided a queueing analysis of a butterfly network with

constant rate for each link. However, they assumed that there is no congestion at the

intermediate nodes. In this work, as a significant departure from previous studies,

we assume that both the source and the relay nodes are subject to QoS constraints

specified by the QoS exponents θ1 and θ2. Now, we face a more challenging scenario in

which the buffer constraints at the source and relay interact. Moreover, we consider

a general relay channel model in which the fading coefficients for each link can have

arbitrary distributions. We concentrate on the decode-and-forward (DF) relaying

scheme. Assuming that the relay operates in full-duplex or half-duplex mode, we
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Figure 7.1: The system model.

determine the effective capacity as a function of θ1 and θ2. Through this analysis, we

characterize the impact of the presence of QoS constraints at the relay and also of

half-duplex operation on the throughput of the two-hop link.

7.1 System Model and Preliminaries

7.1.1 System Model

The two-hop communication link is depicted in Figure 7.1. In this model, source S is

sending information to the destination D with the help of the intermediate relay node

R. We assume that there is no direct link between S and D (which, for instance,

holds, if these nodes are sufficiently far apart in distance). Both the source and

the intermediate relay node operate under QoS constraints (i.e., buffer constraints)

specified by the QoS exponents θ1 and θ2, respectively. Hence, the source and relay

buffer violation probabilities should, for some large Qmax, satisfy

Pr{Qs ≥ Qmax} ≈ e−θ1Qmax (7.1)

and

Pr{Qr ≥ Qmax} ≈ e−θ2Qmax, (7.2)
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respectively. Above, Qs and Qr denote the stationary queue lengths at the source

and relay, respectively.

We consider both full-duplex and half-duplex relay operation. The full-duplex

relay can receive and transmit simultaneously while the half-duplex relay first listens

and then transmits. Therefore, reception and transmission at the half-duplex relay

occur in non-overlapping intervals.

Next, we identify the discrete-time input and output relationships. In the ith

symbol duration, the signal Yr received at the relay from the source and the signal

Yd received at the destination from the relay can be expressed as

Yr[i] = g1[i]X1[i] + n1[i] (7.3)

Yd[i] = g2[i]X2[i] + n2[i] (7.4)

where Xj for j = {1, 2} denote the inputs for the links S−R and R−D, respectively.

More specifically, X1 is the signal sent from the source and X2 is sent from the

relay. The inputs are subject to individual average energy constraints E{|Xj |2} ≤

P̄j/B, j = {1, 2} where B is the bandwidth. Assuming that the symbol rate is B

complex symbols per second, we can easily see that the symbol energy constraint

of P̄j/B implies that the channel input has a power constraint of P̄j. We assume

that the fading coefficients gj, j = {1, 2} are jointly stationary and ergodic discrete-

time processes, and we denote the magnitude-square of the fading coefficients by

zj [i] = |gj[i]|2. Above, in the channel input-output relationships, the noise component

nj [i] is a zero-mean, circularly symmetric, complex Gaussian random variable with

variance E{|nj [i]|2} = Nj for j = 1, 2. The additive Gaussian noise samples {nj[i]}

are assumed to form an independent and identically distributed (i.i.d.) sequence. We

denote the signal-to-noise ratios as SNRj =
P̄j

NjB
.
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7.1.2 Characterization of Effective Capacity

We first state the following result from [18], which identifies the QoS exponent for

given arrival and departure processes under certain conditions.

Lemma 1 ([18]) Consider a queueing system, and suppose that the queue is stable

and that both the arrival process a[n], n = 1, 2, . . . and service process c[n], n = 1, 2, . . .

satisfy the Gärtner-Ellis limit, i.e., for all θ ≥ 0, there exists a differentiable asymp-

totic logarithmic moment generating function (LMGF) ΛA(θ) defined as1

ΛA(θ) = lim
n→∞

logE{eθ
∑n

i=1
a[i]}

n
, (7.5)

and a differentiable asymptotic LMGF ΛC(θ) defined as

ΛC(θ) = lim
n→∞

logE{eθ
∑n

i=1
c[i]}

n
. (7.6)

If there exists a unique θ∗ > 0 such that

ΛA(θ∗) + ΛC(−θ∗) = 0, (7.7)

then

lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

= −θ∗. (7.8)

where Q is the stationary queue length. �

Now, we discuss the implications of this result on the two-hop link we study.

Assume that the constant arrival rate at the source is R ≥ 0, and the channels

1Throughout the text, logarithm expressed without a base, i.e., log(·), refers to the natural
logarithm loge(·).
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operate at their capacities. To satisfy the QoS constraint at the source, we should

have

θ̃ ≥ θ1 (7.9)

where θ̃ is the solution to

R = −Λsr(−θ̃)
θ̃

(7.10)

and Λsr(θ) is the LMGF of the instantaneous capacity of the S − R link.

According to [18], the LMGF of the departure process from the source, or equiv-

alently the arrival process to the relay node, is given by

Λr(θ) =







Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + Λsr(θ − θ̃), θ > θ̃
. (7.11)

Therefore, in order to satisfy the QoS of the intermediate relay node R, we must have

θ̂ ≥ θ2 (7.12)

where θ̂ is the solution to

Λr(θ̂) + Λrd(−θ̂) = 0. (7.13)

Above, Λrd(θ) is the LMGF of the instantaneous capacity of the R − D link.

After these characterizations, effective capacity of the two-hop communication

model can be formulated as follows.

Definition 3 The effective capacity of the two-hop communication link with the QoS
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constraints specified by θ1 at the source and θ2 at the relay node is given by

RE(θ1, θ2) = sup
R∈R

R (7.14)

where R is the collection of constant arrival rates R for which the solutions θ̃ and θ̂

of (7.10) and (7.13) satisfy θ̃ ≥ θ1 and θ̂ ≥ θ2, respectively. Hence, effective capacity

is the maximum constant arrival rate that can be supported by the two-hop link in the

presence of QoS constraints at both the source and relay nodes.

7.2 Effective Capacity of a Two-Hop Link in

Block Fading Channels

We assume that the channel state information of the links S−R and R−D is available

at S and R, and the channel state information of the link R − D is available at R

and D. The transmission power levels at the source and the intermediate-hop node

are fixed and hence no power control is employed (i.e., nodes are subject to short-

term power constraints). We further assume that the channel capacity for each link

can be achieved, i.e., the service processes are equal to the instantaneous Shannon

capacities of the links. Moreover, we consider a block fading scenario in which the

fading stays constant for a block of T seconds and change independently from one

block to another.
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7.2.1 Full-Duplex Relay

In this part, we consider the full-duplex relay. The instantaneous capacities of the

S − R and R − D links in each block are given, respectively, by

TB log2(1 + SNR1z1) and TB log2(1 + SNR2z2) (7.15)

in the units of bits per block or equivalently bits per T seconds. These can be regarded

as the service processes at the source and relay.

Under the block fading assumption, the logarithmic moment generating functions

for the service processes of links S−R and R −D as functions of θ are given by2 [35]

Λsr(θ) = logEz1

{

eθT B log2(1+SNR1z1)
}

(7.16)

Λrd(θ) = logEz2

{

eθT B log2(1+SNR2z2)
}

(7.17)

and as a result

Λr(θ) =







Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + logEz1

{

e(θ−θ̃)T B log2(1+SNR1z1)
}

, θ > θ̃
. (7.18)

With these formulations for Λsr, Λrd, and Λr, we can now more explicitly express the

equations in (7.10) and (7.13) as

R = g(θ̃) = −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

(7.19)

2Due to the assumption that the fading changes independently from one block to another, we

can, for instance, simplify (7.5) as ΛA = limn→∞
logE{e

θ

∑
n

i=1
a[i]

}
n

= limn→∞
log
∏

n

i=1
E{eθa[i]}

n
=

limn→∞

∑
n

i=1
log E{eθa[i]}

n
= limn→∞

n log E{eθa[1]}
n

= logE{eθa[1]}.
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and

R = h(θ̃, θ̂) =







−1
θ̂

logEz2

{

e−θ̂T B log2(1+SNR2z2)
}

0 ≤ θ̂ ≤ θ̃

−1
θ̃

(

logEz2

{

e−θ̂T B log2(1+SNR2z2)
}

+ logEz1

{

e(θ̂−θ̃)T B log2(1+SNR1z1)
}
) θ̂ ≥ θ̃

, (7.20)

respectively.

We seek to identify the constant arrival rates R that can be supported in the

presence of QoS constraints specified by the QoS exponents θ1 for the S − R link and

θ2 for the R − D link. In this quest, we have the following characterization. The

rates R, which simultaneously satisfy the equations in (7.19) and (7.20) with some

θ̃ ≥ θ1 and θ̂ ≥ θ2, are the arrival rates that can be supported by the two-hop link

while having the buffer violation probabilities, for large Qmax, behave approximately

as Pr{Qs ≥ Qmax} ≈ e−θ̃Qmax ≤ e−θ1Qmax and Pr{Qr ≥ Qmax} ≈ e−θ̂Qmax ≤ e−θ2Qmax,

where Qs andQr are the stationary queue lengths at the source and relay, respectively.

We first establish an upper bound on these arrival rates.

Theorem 27 The constant arrival rates, which can be supported by the two-hop link

in the presence of QoS constraints with QoS exponents θ1 and θ2 at the source and

relay, respectively, are upper bounded by

R ≤ min
{

− 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}}

.

(7.21)

Proof : We can see from (7.9) and (7.19) that

R = −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

≤ − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (7.22)
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Note that the inequality above follows from the assumption that θ̃ ≥ θ1 and the

fact that −Λ(−θ̃)

θ̃
= −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

is a decreasing function of θ̃ s-

ince larger θ̃ implies a faster decay in the buffer violation probabilities and hence

more stringent QoS constraints. Another upper bound can be obtained through the

following arguments. Consider the idealistic scenario in which the S − R link is de-

terministic (i.e., there is no fading) and can support any constant arrival rate R (i.e.,

the capacity of this link is unbounded and R − D link is the bottleneck). In such

a case, the arriving data can immediately be sent without waiting and consequently

there is no need for buffering at the source. Hence, any source QoS constraint can be

satisfied. More specifically, if the service rate matches the constant arrival rate, the

equation in (7.10) holds for any θ̃, i.e.,

R = −Λsr(−θ̃)
θ̃

= −1

θ̃
logE

{

e−θ̃R
}

= −1

θ̃
(−θ̃R) = R (7.23)

where instantaneous service rate is assumed to be equal to the constant arrival rate

R (rather than the random quantity TB log2(1 + SNR1z1) as we have in the fading

channel case). Since no buffering is now required at the source, we can freely impose

the most strict QoS constraints and assume θ̃ to be unbounded as well. Then, we

have θ̂ ≤ θ̃ for any θ̂. With this, we see from (7.20) that

R = −1

θ̂
logEz2

{

e−θ̂T B log2(1+SNR2z2)
}

≤ − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

(7.24)

where, similarly as before, the inequality is due to the assumption that θ̂ ≥ θ2.
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Combining the bounds in (7.22) and (7.24), we can equivalently write

R ≤ min
{

− 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}}

(7.25)

concluding the proof. �

Remark: Note that − 1
θ1

logEz1

{

e−θ1T B log2(1+SNR1z1)
}

is the effective capacity of

the S − R link with QoS exponent θ1. Similarly, − 1
θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

is the effective capacity of the R − D link with QoS exponent θ2. Hence, the arrival

rates that can be supported by the two-hop link are upper bounded by the minimum

of the effective capacities of the individual links.

Below, we identify, for full-duplex relaying, the effective capacity of the two-hop

link, i.e., maximum of the arrival rates that can be supported in the two-hop link

in the presence of QoS constraints. According to [18], we know that the queues are

not stable if the average transmission rate of link R − D is less than the average

transmission rate of link S − R. Therefore, in order to ensure stability, we assume

that the condition Ez1{log2(1 + SNR1z1)} < Ez2{log2(1 + SNR2z2)} is satisfied in the

following result.

Theorem 28 The effective capacity of the two-hop communication system as a func-

tion of θ1 and θ2 is given by the following:

Case I: If θ1 ≥ θ2,

RE(θ1, θ2) = min






− 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

,

− 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}






. (7.26)
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Case II: If θ1 < θ2 and θ2 ≤ θ̄,

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

(7.27)

where θ̄ is the unique value of θ for which we have the following equality satisfied:

− 1

θ1

logEz1

{

e−θ1T B log2(1+SNR1z1)
}

= − 1

θ1

(

logEz2

{

e−θT B log2(1+SNR2z2)
}

+ logEz1

{

e(θ−θ1)T B log2(1+SNR1z1)
})

. (7.28)

Case III: Assume θ1 < θ2 and θ2 > θ̄.

III.a: If − 1
θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

≥ − 1
θ2

logEz1

{

e−θ2T B log2(1+SNR1z1)
}

, then

RE(θ1, θ2) = − 1

θ̃∗ logEz1

{

e−θ̃∗T B log2(1+SNR1z1)
}

(7.29)

where θ̃∗ is the smallest solution to

−1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

= − 1

θ̃

(

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

+ logEz1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
}



.

(7.30)

III.b: If − 1
θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

< − 1
θ2

logEz1

{

e−θ2T B log2(1+SNR1z1)
}

and

− 1
θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

≥ TB log2(1 + SNR1z1,min),

RE(θ1, θ2) = − 1

θ̃∗ logEz1

{

e−θ̃∗T B log2(1+SNR1z1)
}

(7.31)
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where z1,min is the essential infimum of z1, and θ̃∗ is the solution to

−1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

= − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

. (7.32)

III.c: Otherwise,

RE(θ1, θ2) = − 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

. (7.33)

Proof : See Appendix L.

Remark: We see that in Case I in which θ1 ≥ θ2, the effective capacity upper

bound identified in Proposition 27 is attained.

Remark: Note that if θ1 ≥ θ2, then the source is operating under more stringent

QoS constraints then the relay. In this case, if we have

− 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

≤ − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (7.34)

then

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (7.35)

Therefore, under these assumptions, the effective capacity is equal to the effective

capacity of the S−R link, and the performance is not affected by the presence of the

buffer constraints at the relay node R. This is because of the fact that the effective

bandwidth of the departure process from the source can be completely supported by

the R − D link when the QoS exponent imposed at the relay node R is smaller.

The inequality in (7.34) is, for instance, satisfied when z1 and z2 (which are the

fading powers in the S − R and R − D links) have the same distribution, and we
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have SNR1 ≤ SNR2. We can easily see that

− 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

≥ − 1

θ1
logEz2

{

e−θ1T B log2(1+SNR2z2)
}

(7.36)

≥ − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

(7.37)

where (7.36) and (7.37) follow from the facts that −1
θ

logEz

{

e−θT B log2(1+SNRz)
}

is

a decreasing function in θ, and a increasing function in SNR. This discussion also

suggests that even if the source operates under more strict buffer constraints, if the

fading in the R−D link is worse than that in the S−R link and/or the signal-to-noise

ratio of the relay is smaller, i.e., SNR1 ≥ SNR2, then we can have

RE(θ1, θ2) = min






− 1

θ1

logEz1

{

e−θ1T B log2(1+SNR1z1)
}

,

− 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}






(7.38)

= − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (7.39)

and hence experience the R − D link as the bottleneck.

7.2.2 Half-Duplex Relay

In the case of half-duplex relaying with a fixed time-sharing parameter τ ∈ (0, 1),

we assume that the source first transmits in the τ fraction of the block of T seconds

during which the relay listens. Subsequently, in the remaining (1 − τ) fraction of the

time, the relay transmits to the destination. Hence, the transmission or service rates

(in bits per T seconds) at the source and relay become

τTB log2(1 + SNR1z1) and (1 − τ)TB log2(1 + SNR2z2). (7.40)
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Now, the logarithmic moment generating functions for the service processes of links

S − R and R − D as functions of θ are given by

Λsr(θ) = logEz1

{

eτθT B log2(1+SNR1z1)
}

(7.41)

Λrd(θ) = logEz2

{

e(1−τ)θT B log2(1+SNR2z2)
}

(7.42)

and as a result, we have

Λr(θ) =







Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + logEz1

{

eτ(θ−θ̃)T B log2(1+SNR1z1)
}

, θ > θ̃
.

With these expressions, equations in (7.10) and (7.13) can be written, for fixed τ , as

R = g(θ̃) = −1

θ̃
logEz1

{

e−τ θ̃T B log2(1+SNR1z1)
}

(7.43)

and

R = h(θ̃, θ̂) =







−1
θ̂

logEz2

{

e−(1−τ)θ̂T B log2(1+SNR2z2)
}

0 ≤ θ̂ ≤ θ̃

−1
θ̃

(

logEz2

{

e−(1−τ)θ̂T B log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ̂−θ̃)T B log2(1+SNR1z1)
}) θ̂ ≥ θ̃

, (7.44)

respectively. As in full-duplex relaying, the rates R for which the equations in (7.43)

and (7.44) are simultaneously satisfied for some θ̃ ≥ θ1 and θ̂ ≥ θ2 are the rates that

can be supported by the two-hop link in the presence of QoS constraints specified

by θ1 and θ2. The following result provides the effective capacity, which is defined

as the supremum of such rates. Similarly as in full-duplex relaying, we assume that

the average transmission rate of the S − R link is less than the average transmission

rate of the R − D link in order to ensure stability in the buffers. Therefore, we
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suppose Ez1{τ log2(1 + SNR1z1)} < Ez2{(1 − τ) log2(1 + SNR2z2)}. Accordingly, in the

following result, we assume that the feasible values of τ for half-duplex relaying are

upper bounded by

τ < τ0 =
Ez2{log2(1 + SNR2z2)}

Ez1{log2(1 + SNR1z1)} + Ez2{log2(1 + SNR2z2)} . (7.45)

Theorem 29 In half-duplex relaying, the effective capacity of the two-hop commu-

nication link with statistical QoS constraints at the source and the intermediate relay

nodes is given by

Case I θ1 ≥ θ2 : RE(θ1, θ2) = − 1

θ1

logEz1

{

e−τ̃ θ1T B log2(1+SNR1z1)
}

(7.46)

Case II θ1 < θ2 : RE(θ1, θ2) = − 1

θ1

logEz1

{

e−τ̂ θ1T B log2(1+SNR1z1)
}

(7.47)

where τ̃ = min{τ0, τ
∗} and τ ∗ is the solution to

− 1

θ1

logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

= − 1

θ2

logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}

(7.48)

and τ̂ = min{τ0, τ
′} and τ ′ is the solution to

− 1

θ1

logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

= − 1

θ1

(

logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ2−θ1)T B log2(1+SNR1z1)
})

.

(7.49)

Proof : See Appendix M.
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Figure 7.2: The relay model.
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Figure 7.3: The effective capacity as a function of θ2. d = 0.5.

7.2.3 Numerical Results

We consider the relay model depicted in Fig. 7.2. The source, relay, and destination

nodes are located on a straight line. The distance between the source and the desti-

nation is normalized to 1. Let the distance between the source and the relay node be

d ∈ (0, 1). Then, the distance between the relay and the destination is 1 − d. We as-

sume the fading distributions for S−R and R −D links follow independent Rayleigh

fading with means E{z1} = 1/dα and E{z2} = 1/(1 − d)α, respectively, where we

assume that the path loss α = 4. We assume that SNR1 = 0 dB and θ1 = 0.01 in the

following numerical results.
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In Fig. 7.3, we plot the effective capacity as a function of the QoS constraints of

the full-duplex relay node for different SNR2 values. We fix d = 0.5, in which case the

S−R and R−D links have the same channel conditions. From the figure, we can see

that the effective capacity does not decrease for a certain range of θ2, and this range

is increased by increasing SNR2. Motivated by this observation, we plot the value of

θ′
2, up to which the effective capacity is unaffected, as a function of SNR2 in Fig. 7.4.

Note that for all values of the pair (SNR, θ2) below the curve shown in the figure, the

QoS constraints of the relay node do not impose any negative effect on the effective

capacity. This provides us with useful insight on the design of wireless systems. In Fig.

7.5, we plot the effective capacity as d varies. We assume θ2 = {0.001, 0.01, 0.05, 0.1}.

We are interested in the range in which the condition for stable queues (as stated

above Theorem 28) is satisfied. More specifically, we note that the optimal d is lower

bounded by the value at which we have Ez1{log2(1+SNR1z1)} = Ez2{log2(1+SNR2z2)}.

We can see from the figure that for small θ2 (i.e., for θ2 = 0.001 and θ2 = 0.01), the
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Figure 7.5: The effective capacity as a function of d.

effective capacity curves overlap. In these cases, S − R link is the bottleneck and the

throughput is determined by the effective capacity of this link. When θ2 is greater

than θ1 (i.e., when θ2 = 0.05 or 0.1), it is interesting that the effective capacity

decreases first and then increases until the S − R link becomes again the bottleneck,

in which case the curves overlap. This tells us that with stringent QoS constraints at

the relay, having symmetric channel conditions for the links S − R and R − D, i.e.,

having d = 0.5, generally leads to lower performance.

In Fig. 7.6, we plot the effective capacity as a function of θ2 for half-duplex

relaying. We set d = 0.5. From the figure, we can find that the effective capacity stays

constant for small θ2, i.e., the QoS constraints at the relay node does not impose any

negative effect on the effective capacity of the system. We can also see that as SNR2

increases, larger QoS constraints at the relay node can be supported while having the

effective capacity of the system unaltered. One stark difference from the full-duplex

relay is that as SNR2 increases, the effective capacity of the system increases as well
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Figure 7.6: The effective capacity as a function of θ2. d = 0.5. SNR2 = {3, 10, 20} dB.

even for small θ2. This is due to the nature of the half-duplex operation. As SNR2

increases, more time can be allocated to the transmission between the source and

relay nodes while satisfying (7.45).

In Fig. 7.7, we plot the effective capacity as d and θ2 varies. We assume SNR2 = 3

dB. As we can see from the figure, there exists an optimal d that maximizes the

effective capacity of the system. Besides, the optimal d increases as θ2 increases.

This is due to the fact that as the QoS constraints at the relay node become more

stringent, the effective bandwidth supported by the R − D link decreases and this

link becomes the bottleneck of the system. In order to counterbalance this negative

effect, the channel conditions of the R − D link should be improved, which results

in a larger d. It is also interesting that the curve is nearly flat for small θ2 when d is

large. So, we plot the effective capacity as d varies for θ2 = {0.001, 0.01, 0.1} in Fig.

7.8. Confirming the observation in Fig. 7.7, we see that the two curves for θ2 = 0.001

and θ2 = 0.01 overlap as d increases. This is because the upperbound for τ specified
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Figure 7.7: The effective capacity v.s. d and θ2. SNR2 = 3 dB.

in (7.45) is achieved for both curves.

7.3 Conclusion

In this chapter, we have analyzed the maximum arrival rates that can be supported by

a two-hop communication link in which the source and relay nodes are both subject

to statistical QoS constraints. We have determined the effective capacity in the block-

fading scenario as a function of the signal-to-noise ratio levels SNR1 and SNR2 and

the QoS exponents θ1 and θ2 for both full-duplex and half-duplex relaying. Through

this analysis, we have quantified the throughput of a two-hop link operating under

buffer constraints. In particular, we have shown that effective capacity can have

different characterizations depending on how buffer constraints at the source and

relay or more specifically how θ1 and θ2 compare. We have noted that if θ1 ≥ θ2,

the upper bound on the effective capacity is attained. We have also seen that under

certain conditions depending on the SNR levels and fading distributions, S − R link
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Figure 7.8: The effective capacity as d varies. SNR2 = 3 dB. θ2 = {0.001, 0.01, 0.1}.

becomes the bottleneck and buffer constraints at the relay do not incur performance

losses when the QoS exponent θ2 is sufficiently small but nonzero. In the numerical

results, the threshold for θ2 above which the effective capacity starts diminishing is

identified and is shown to increase with increasing SNR2. In a simple linear setting, we

have numerically investigated the impact of the location of the relay on the effective

capacity for different values of the QoS exponents. In half-duplex relaying, we have

determined the optimal time-sharing parameter τ . In the numerical results, we have

had several interesting observations. We have shown that as the SNR level at the relay

node increases, the effective capacity of the system increases for all θ2. Additionally,

as the QoS constraints at the relay node become more stringent, we have observed

that the effective capacity of the system can be increased by improving the channel

conditions in the R −D link through having the relay node approach the destination.



170

Chapter 8

Throughput for Finite Blocklength

Codes

In most prior work, the service rates supported by the wireless channel are assumed

to be equal to the instantaneous channel capacity values and no decoding errors are

considered, which, from an information theoretic view, is achieved as the coding block-

length grows without bound. On the other hand, practical communication systems

employ channel codes with finite blocklengths and operate at rates less than the chan-

nel capacity with nonzero probability of decoding error. This is particularly true for

systems operating under delay/buffer constraints. For delay sensitive services, using

extremely long channel codes can be prohibitive, and hence, results obtained under

the idealistic assumption of operation at the channel capacity may not be a faithful

representation or prediction of the performance. Therefore, it is of significant interest

to study what can be attained with finite-blocklength channel codes in the presence

of decoding errors and buffer limitations. Despite their importance, there has only

been a handful of work offering insights on such issues. For instance, in [70], Negi

and Goel considered the maximization of the joint exponent of the decoding error
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and delay violation probability through the appropriate choice of the transmission

rate for given delay bound and constant arrival rate. More recently, reference [38] has

analyzed the performance of finite blocklength codewords in the presence of statistical

QoS constraints. In particular, the effective capacity is formulated by incorporating

the recent channel coding results in [71]. However, in [38], coding is assumed to be

performed over one coherence block in which the fading stays constant.

In this chapter, we consider a more general setting and assume that codewords

are sent over multiple coherence blocks. Hence, each codeword experiences multiple

fading realizations. Coding over multiple blocks generally improves the performance

since protection against severe fading can be provided as codewords see multiple chan-

nel states. At the same time, coding over a large number of blocks may also lead to

long delays or buffer overflows especially in the presence of decoding errors and re-

transmission requirements. Due to these tradeoffs, a throughput analysis of channel

coding over multiple coherence blocks in the presence of buffer constraints is called

for to identify whether there exists an optimal number of blocks over which coding

needs to be performed. With this motivation, we use the following approach and

obtain the ensuing original contributions. By making use of the Feinstein’s Lemma

and employing a Gaussian approximation, we initially derive an approximate lower

bound for the instantaneous transmission rate. Then, we regard this lower bound

as the service rate and determine, by identifying the effective rate, the arrival rates

that can be supported by the channel with certain service guarantees. Subsequently,

for both variable- and fixed-rate transmissions, we investigate the interplay between

effective rate, coding blocklength, decoding error probabilities, queueing constraints,

and signal-to-noise ratio (SNR). In particular, we show that for given coding block-

length, QoS exponent and SNR, the effective rate is maximized at a unique decoding

error probability, giving insight on the strength of efficient channel codes for the con-
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sidered buffer-constrained systems. We further demonstrate that as the blocklength

increases (by coding over a larger number of coherence blocks), effective rate improves

if stronger channel codes with lower error probabilities are used. Conversely, we show

that if the error probability remains strictly bounded away from zero, effective rate

starts diminishing to zero as the blocklength grows without bound. We also investi-

gate the case in which the transmission rate is fixed and error probability varies with

the channel fading. In this scenario, the optimal transmission rate that maximizes

the throughput is also proven to be unique.

8.1 System Model

We consider a block flat-fading channel, and assume that the fading coefficients stay

constant for a coherence block of n symbols and change independently from one block

to another. The discrete-time input and output relationship in the lth block is given

by

yi = hlxi + wi i = 1, 2, . . . , n (8.1)

where xi and yi are the complex-valued channel input and output, respectively, in

the ith symbol duration of the lth block, hl is the channel fading coefficient in the

lth block, and wi is the circularly symmetric complex Gaussian noise with zero mean

and variance N0, i.e., wi ∼ CN (0, N0). We assume that the receiver has perfect

channel side information (CSI) and hence perfectly knows the realizations of the

fading coefficients {hl}. On the other hand, we consider both cases of perfect and no

CSI at the transmitter.

The channel input is assumed to be subject to E{|xi|2} ≤ Es. It is well-known that

when the receiver has perfect CSI, the capacity achieving input for the above fading

Gaussian channel is Gaussian distributed. Hence, we assume that xi ∼ CN (0, Es).
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Since the input and noise are Gaussian distributed, the output is also conditional-

ly Gaussian given the channel fading coefficient, i.e., yi|hl ∼ CN (0, Es|hl|2 + N0).

Moreover, the output is also conditionally Gaussian distributed given hl and the

input xi, i.e., yi|xi, hl ∼ CN (hlxi, N0). We further assume that the input is inde-

pendent and identically distributed (i.i.d.) i.e., pxn =
∏n

i=1 pxi
(xi), which implies

pyn|xn,hl
=
∏n

i=1 pyi|xi,hl
(yi|xi, hl), and pyn|hl

=
∏n

i=1 pyi|hl
(yi|hl).

8.2 Mutual Information Density and Channel

Coding Rate

As detailed in Section 1.1, effective capacity is determined by specifying the service

rate or equivalently the instantaneous transmission rate. We assume that the trans-

mitter performs channel coding over m coherence blocks where m = 1, 2, . . . There-

fore, it sends codewords of length nm and each codeword experiences m independent

channel conditions. An upper bound on the maximum decoding error probabilities

of random codes of length nm is given by Feinstein’s Lemma [72], [73]:

ǫ ≤ Pr
(

1

nm
i(xnm; ynm|hm

1 ) ≤ R + γ
)

+ Pr(xnm /∈ Snm) + e−nmγ (8.2)

where γ > 0 is an arbitrary constant, Snm =
{

xnm : 1
nm

∑nm
i=1 |xi|2 ≤ E

}

is the con-

straint set, i(xnm; ynm|hm
1 ) is the mutual information density conditioned on the fad-

ing coefficients (h1, h2, . . . , hm) seen in m coherence blocks. The conditional mutual

information density is defined as

i(xnm; ynm|hm
1 ) = log2

p(ynm|xnm, hm
1 )

p(ynm|hm
1 )

. (8.3)
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Next, we obtain an expression for the mutual information density of the considered

channel and input models (i.e., fading Gaussian channel with Gaussian input), and

derive, under certain assumptions, an approximate lower bound on the rates attained

by coding over m coherence blocks.

For the system model introduced in Section 8.1, we have

1

nm
i(xnm; ynm|hm

1 )

=
1

nm

m∑

l=1

ln∑

i=(l−1)n+1

i(xi; yi|hl) (8.4)

=
1

nm

m∑

l=1

ln∑

i=(l−1)n+1

log2

fyi|xi,hl
(yi|xi, hl)

fyi|hl
(yi, hl)

(8.5)

=
1

nm

m∑

l=1

ln∑

i=(l−1)n+1



 log2

(

1 +
Es|hl|2
N0

)

+
|yi|2 log2 e

|hl|2Es +N0

− |yi − hlxi|2 log2 e

N0



 (8.6)

=
1

m

m∑

l=1

log2(1 +
Es|hl|2
N0

) +
log2 e

nm

m∑

l=1

ln∑

i=(l−1)n+1

(

|yi|2
|hl|2Es +N0

− |yi − hlxi|2
N0

)

(8.7)

Denoting SNR = Es

N0
and extending the results in [72] and [73], we can immediately

show that i(xnm; ynm|hm
1 )/(nm) has the same distribution as the random variable

1

m

m∑

l=1

log2(1 + SNR|hl|2) +
log2 e

nm

m∑

l=1

√
√
√
√

SNR|hl|2
1 + SNR|hl|2

n∑

i=1

wli (8.8)

where wli’s are i.i.d. Laplace random variables, each with zero mean and variance 2.

The sum of nm i.i.d. Laplace random variables has a Bessel-K distribution [72] and

generally is difficult to deal with directly. On the other hand, for large enough values

of the blocklength nm, the random variable in (8.8) can be well approximated by a

Gaussian random variable [73]. Therefore, the mutual information density achieved

with the codewords of length nm spreading over m coherence blocks can be regarded
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to approximately have the following Gaussian distribution:

1

nm
i(xnm; ynm|hm

1 ) ∼ CN
(

1

m

m∑

l=1

log2(1 + SNRzl),
log2

2 e

m

m∑

l=1

2SNRzl

nm(1 + SNRzl)

)

(8.9)

where we have defined zl = |hl|2. With this approximation, the first probability

expression on the right-hand side of (8.2) can be written in terms of the Gaussian

Q-function:

Pr
(

1

nm
i(xnm; ynm|hm

1 ) ≤ R + γ
)

= Q







1
m

∑m
l=1 log2(1 + SNRzl) −R − γ
√

log2
2 e

m

∑m
l=1

2SNRzl

nm(1+SNRzl)






. (8.10)

By noting that the Q-function is invertible, we can rewrite the upper bound in (8.2)

as a lower bound on the instantaneous rate achieved by coding over m coherence

blocks:

R ≥ 1

m

m∑

l=1

log2(1 + SNRzl)

−
√
√
√
√

log2
2 e

m

m∑

l=1

2SNRzl

nm(1 + SNRzl)
Q−1(ǫ− Pr(xnm /∈ Snm) − e−nmγ) − γ (8.11)

for any γ > 0. Although the above lower bound can also be used in the subsequent

analysis, we opt to further simplify it to make the analysis more tractable analyti-

cally. We first note that the terms Pr(xnm /∈ Snm) and e−nmγ decrease exponentially

fast with increasing nm and become very small relatively quickly. (For the proof of

the exponential decay of Pr(xnm /∈ Snm), we refer to Appendix N where a closed-

form expression for Pr(xnm /∈ Snm) is also given, which can be used to facilitate an

analysis with the lower bound in (8.11)). With this observation, we assume that nm

is sufficiently large and we neglect these terms for the sake of simplification in the



176

formulations. Note that these approximations are accurate if Pr(xnm /∈ Snm) and

e−nmγ are much smaller than the error probability ǫ, which we generally observe in

the numerical results. Moreover, after the eliminations of these terms, we can see

that since the lower bound holds for any γ > 0, an approximate lower bound for the

transmission rate is

R ≥ Rl,ǫ =
1

m

m∑

l=1

log2(1 + SNRzl) −
√
√
√
√

log2
2 e

m

m∑

l=1

2SNRzl

nm(1 + SNRzl)
Q−1(ǫ) (8.12)

where the notation Rl,ǫ is used to emphasize that this is a lower bound for rates

achieved with decoding error probability ǫ. Henceforth, the analysis is based on Rl,ǫ.

8.3 Effective Throughput

The rate lower bound in (8.12) gives a characterization of the tradeoffs and interac-

tions between the instantaneous transmission rate, decoding error probability and the

fading coefficients when channel coding is performed over multiple coherence blocks

using finite blocklength random codes. In particular, we note that Rl,e is achieved

with probability 1−ǫ. With probability ǫ, decoding error occurs. We assume that the

receiver reliably detects the errors, and applies a simple ARQ mechanism and sends

a negative acknowledgement requesting the retransmission of the message in case of

an erroneous reception. Therefore, the data rate is effectively zero when error occurs.

Under this assumption, the service rate (in bits per nm symbols) is

rs =







0, with probability ǫ

nmRl,ǫ, with probability 1 − ǫ
. (8.13)
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Similarly as in [38], we obtain the following result on the effective rate by inserting

the above service rate formulation into the definition in (1.1) and noting that the

service rate varies independently from one sequence of m blocks to another due to

the block fading assumption.

Proposition 3 The effective rate (in bits per channel use) at a given SNR, error

probability ǫ, codeword length nm, and QoS exponent θ is

RE(θ) = − 1

θnm
loge Ez

{

ǫ+ (1 − ǫ)e−θnmRl,ǫ

}

(8.14)

where Rl,ǫ is given in (8.12), and the expectation is with respect to z = (z1, . . . , zm),

which is composed of the magnitude squares of the channel fading coefficients experi-

enced in m blocks.

Proof: The result is immediately obtained through the following steps:

RE(θ) = − lim
t→∞

1

θt
loge E{e−θS[t]} = − lim

t→∞
1

θt
loge E{e−θ

∑t

i=1
rs[i]} (8.15)

= − lim
t→∞

1

θt
loge

(

E

{

e−θrs

})t
(8.16)

= − lim
t→∞

1

θt
t loge E

{

e−θrs

}

(8.17)

= −1

θ
loge E

{

e−θrs

}

(8.18)

= −1

θ
loge Ez

{

ǫ+ (1 − ǫ)e−θmnRl,ǫ

}

(8.19)

Above, (8.16) follows from the fact that the service process rs(i), which depends

on the fading vector z, changes independently from one sequence of m blocks to

another and has the same distribution for each sequence. This fact is due to the block

fading assumption. Hence, E{e−θ
∑t

i=1
rs[i]} = E{∏t

i=1 e
−θrs[i]} =

∏t
i=1 E{e−θrs[i]} =

(E{e−θrs})t. The term inside the expectation in (8.19) is obtained by evaluating the
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expected value of e−θrs for fixed z. Finally, the effective rate expression in (8.14) is

obtained by normalizing (8.19) by nm to have the effective rate in the units of bits

per channel use. �

Remark: Proposition 3 provides the effective rate achieved with finite block-

length codes with possible decoding errors. It is also interesting to consider the

idealistic scenario in which the transmission is assumed to be performed at the rate

of channel capacity with no decoding errors. In such a case, the transmission rate is

R = 1
m

∑m
l=1 log2(1 + SNRzl). Now, the effective rate, again under the block-fading

assumption, can be written as

RE,ideal(θ) = − 1

θnm
loge Ez

{

e−θnm 1
m

∑m

l=1
log2(1+SNRzl)

}

= − 1

θnm
loge

m∏

l=1

Ezl

{

e−θn log2(1+SNRzl)
}

(8.20)

= − 1

θnm
loge

(

Ez

{

e−θn log2(1+SNRz)
})m

(8.21)

= − 1

θn
loge Ez

{

e−θn log2(1+SNRz)
}

(8.22)

where (8.20) is obtained from the assumption of the independence of the fading coeffi-

cients for each block, and (8.21) is due to the fact that fading coefficients in different

blocks are identically distributed. Interestingly, (8.22) shows us that the effective

rate is independent of the number of blocks, m, over which the coding takes place

(as long as m is finite). However, we observe in (8.14) that the performance depends

on m in the presence of decoding errors. Additionally, we can show using (8.22) that

limθ→0 RE,ideal(θ) = Ez{log2(1 + SNRz)}. Therefore, in the idealistic case, effective

rate becomes equal to the ergodic capacity if queueing constraints are not imposed

(i.e., if θ = 0).
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The effective rate in (8.14) provides a lower bound on the throughput as a function

of SNR, decoding error probability ǫ, fading coefficients, coherence blocklength n, the

number of blocks m over which coding is performed, and the QoS exponent θ. Note

that using very strong codes and having small error probabilities in the transmission

necessitates small transmission rates leading to small throughput. On the other hand,

if higher transmission rates with relatively weak channel coding are preferred, then

communication reliability degrades and more retransmissions are required again low-

ering the throughput. With the next result, we show that these effects are balanced

when the channel code has a certain strength level specified by its decoding error

probability.

Theorem 30 Given the values of m > 0, n > 0, θ > 0 and SNR > 0, the function

Ψ(ǫ) = Ez

{

ǫ+ (1 − ǫ)e−θnmRl,ǫ

}

(8.23)

is strictly convex in ǫ, and hence the optimal ǫ > 0 that minimizes Ψ(ǫ), or equivalently

maximizes the effective rate in (8.14), is unique.

Proof: See Appendix O.

Note that the above result holds for θ > 0. If there are no QoS constraints, i.e.,

θ = 0, we have the following result.

Corollary 6 When θ = 0, the effective rate becomes

RE(0) = lim
θ→0

RE(θ) = (1 − ǫ)Ez{Rl,ǫ} (8.24)

where Rl,ǫ is given by (8.12). RE(0) is strictly concave in ǫ and hence the optimal ǫ

that maximizes RE(0) is unique.
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Figure 8.1: The effective rate as a function of ǫ for different values of m. n = 50.

The result on the limiting behavior as θ → 0 can be obtained in a straightforward

fashion and the concavity can be shown using similar steps as in the proof of Theorem

30. Due to these, the proof is omitted for brevity.

Note that RE(0) is the average transmission rate averaged over all possible channel

state vectors, and the result tells us that this arrival rate can be supported in the

long term by transmitting over all possible channel states if QoS constraints are not

imposed.

Next, we present several numerical results, verifying the theoretical observations

and identifying the interplay between some parameters. In Fig. 8.1, we plot the

effective rate as a function of ǫ in the Rayleigh fading channel with E{z} = 1. Here,

we assume SNR = 0 dB and θ = 0.01. In Figs. 8.1–8.3, we also assume that n = 50.

In Fig. 8.1, we provide curves for different values of m. We can see that the effective

rate is indeed maximized at a unique ǫ∗, as predicted by Theorem 30. We also observe

that as m increases, the optimal ǫ∗ decreases, and the effective rate attained at this
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Figure 8.2: The effective rate optimized over ǫ as a function of m. n = 50.

optimal ǫ∗ is higher. Therefore, coding over an increasing number of coherence blocks

is beneficial in terms of increasing the effective rate if the decoding error probability

is suitably lowered.

In Fig. 8.2, we plot the effective rate optimized over ǫ as a function of m for differ-

ent values of θ. From top to bottom, the curves correspond to θ = 0, 0.0001, 0.001, 0.01,

respectively. Note that when θ = 0, no queueing constraints are imposed. We see in

the figure that all curves increase with m. That is, coding over an increasing number

of blocks is always helpful if the decoding error probability is optimized. At the same

time, we observe that the rate of increase is smaller for higher values of m, especially

if θ is relatively large. Hence, we have diminishing returns as the number of blocks

m increases. It is also important to note that as m grows, code complexity and cod-

ing and decoding delays increase as well. Hence, these tradeoffs should be carefully

considered in the choice of the codeword length.
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Figure 8.3: The optimal error probability ǫ∗ as a function of m. n = 50.

In Fig. 8.3, we plot the optimal error probability ǫ∗ (at which the effective rate is

maximized) as a function of m. As expected, the optimal error probability decreases

with increasing m. We also observe that as the QoS constraints become more strin-

gent (i.e., as θ increases), lower decoding error probabilities are required. This can

be attributed to the tendency of the more severely buffer-limited system to reduce

the number of retransmissions to avoid buffer overflows. The situation is even more

critical when m is large and long codewords are transmitted, because when decoding

errors occur, the entire long codeword should be retransmitted, and data cannot be

cleared from the buffer until successful transmission is achieved. Hence, decoding fail-

ures can be quite detrimental under buffer constraints especially for large m. Indeed,

in Fig. 8.3, we see that while the error probability curves are relatively close to each

other for small values of m, the gap widens as m and θ increase.
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8.3.1 Bounded or Fixed error probability

As we have shown in the previous section, coding over multiple blocks is generally

beneficial because transmitted codewords experience multiple channel fading realiza-

tions and may not get exceedingly affected by severe fading in one block. At the

same time, these benefits are realized if the decoding error probabilities are decreased

as the number of blocks over which coding is performed increases. Hence, stronger

channel codes should be used if codewords are to be transmitted over a larger number

of coherence blocks. This is because coding over many blocks with a relatively high

frequency of retransmissions may lead to unacceptable delays in systems operating

under buffer constraints captured by the QoS exponent θ in this chapter. Hence, we

expect to have the optimal error probabilities vanish as m → ∞. Conversely, we can

show that if the error probability is bounded away from zero, then RE(θ) approaches

zero as m increases without bound.

Theorem 31 Assume that θ > 0 and the decoding error probability, ǫm, which in

general depends on m, is lower bounded as ǫm ≥ ǫo > 0. Then, we have

lim
m→∞

RE(θ) = 0. (8.25)

Proof: See Appendix P.

In order to demonstrate this behavior, we assume in the following numerical results

that the error probabilities are kept fixed at a certain level that is strictly greater than

zero. In Fig. 8.4, we plot the effective rate as a function of m for different θ values

with fixed ǫ = 0.01. In the figure, we observe that the optimal m that maximizes

the effective rate under a given ǫ varies with θ. When θ = 0 and therefore there are

no buffer constraints, effective rate increases with increasing m. Coding over ever
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Figure 8.4: The effective rate as a function of m. n = 50. ǫ = 0.01.

increasing number of blocks improves the performance. However, we see a strikingly

different behavior in the presence of QoS limitations. We note that for θ > 0, effective

rate is maximized at a finite value of m, and as predicted by Theorem 31, approaches

zero as m grows without bound. Moreover, the optimal value of m diminishes as θ

increases. Therefore, coding over fewer blocks should be preferred under stringent

buffer limitations and fixed error probability.

In Fig. 8.5, we plot the optimal m that maximizes the effective rate as n varies

from 1 to 200 for different θ > 0 values. We again assume ǫ = 0.01. We see that as

n increases and hence coherence blocks are larger, smaller m is preferred. Recalling

that the codeword length is mn, we here observe that, for fixed error probability,

increase in n is being offset by the decrease in m to avoid increases in the codeword

length. This is expected in light of the damaging effects of using very long codewords

with fixed or bounded decoding error probability as observed in Fig. 8.4. We further

see in Fig. 8.5 that the optimal m decreases with increasing θ similarly as in Fig. 8.4.
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Figure 8.5: The optimal m vs. n. ǫ = 0.01.
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Figure 8.6: The optimal effective rate vs. n. ǫ = 0.01.
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Finally, in Fig. 8.6, we plot the optimal effective rate as n varies. It is interesting that

while the maximal effective rate does not change much for small θ, it significantly

decreases with n for relatively large values of θ. The reason lies in the fact that

since n is the coherence duration over which the fading state remains fixed, larger

n corresponds to slower fading and slow fading can lead to long durations of deep

fading. In such cases, system becomes more conservative and supports lower arrival

rates to avoid buffer overflows. While this undermining effect is not as deleterious for

loose buffer constraints, it becomes more pronounced with stringent QoS constraints.

Overall, we notice that increase in the code blocklength due to increase in coherence

duration n has different consequences than that caused by the increase in m.

8.3.2 Fixed Rate Transmissions

Heretofore, we have implicitly assumed that the transmitter has perfect CSI and

considered the scenario in which the transmitter employs variable-rate transmissions

with rates characterized by Rl,ǫ given in (8.12). Note that in order to transmit at

the rate Rl,ǫ, the transmitter needs to know the fading coefficients. A more practical

scenario is the one in which the transmitter does not know the channel states and

send the information at a fixed rate of R. Note that in this case, the decoding error

probability varies with the fading coefficients in each set of m blocks. The codeword

error probability for a given channel state z and fixed-transmission rate R is

ǫ(z, R) = Q







1
m

∑m
l=1 log2(1 + SNRzl) − R

√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e







(8.26)
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obtained by using (8.12). The effective rate is now expressed as

RE(θ, R)

= − 1

θnm
loge Ez

{

ǫ(z, R) + (1 − ǫ(z, R))e−θnmR
}

= − 1

θnm
loge Ez






Q







1
m

∑m
l=1 log2(1 + SNRzl) − R

√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e







+







1 −Q







1
m

∑m
l=1 log2(1 + SNRzl) −R

√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e












e−θnmR






. (8.27)

After this formulation, we have the following result that shows that there exists

a unique transmission rate that maximizes the throughput for given n, m, θ > 0

and SNR > 0. The reasoning is that very high rates result in frequent errors and

retransmissions while very low rates inescapably lead to low throughput even though

transmissions are more reliable. Hence, the best performance is attained at a certain

transmission rate at which the competing effects are balanced.

Theorem 32 Assume that the values of n, m, θ > 0 and SNR > 0 are fixed, then the

function

Φ(R) = Ez






Q







1
m

∑m
l=1 log2(1 + SNRzl) −R

√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e







+







1 −Q







1
m

∑m
l=1 log2(1 + SNRzl) − R

√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e












e−θnmR







is minimized at a unique R and hence the optimal R that minimizes Φ(R) or equiva-

lently maximizes the effective rate in (8.27) is unique.

Proof: See Appendix Q.
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Figure 8.7: The effective rate as a function of R. n = 50.

From the proof, we know that the effective rate is maximized at a unique R∗, and

Φ̇(R∗) = 0. Numerical methods such as bisection method can be used to determine

the optimal R∗.

In Fig. 8.7, we plot the effective rate as a function of the fixed transmission rate

R for different m values. We assume that θ = 0.01. It is noted that there is a unique

R that maximizes the effective throughput for each m. We can also see in the figure

that the maximum effective throughput grows as m increases from 1 to 10, and this

improvement is achieved by lowering the transmission rate and consequently the error

probabilities. In Fig. 8.8, we plot the optimal effective rate as a function of m for

different θ values. We again notice that the effective rate increases with m.

Motivated to see the performance difference between the variable-rate and fixed-

rate transmissions, we plot for both transmission schemes the optimal effective rate

as a function of θ for different m values in Fig. 8.9. We observe for both transmission

schemes that m = 5 achieves the highest effective rate for small θ values while m =



189

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m

E
ffe

ct
iv

e 
ra

te
 (

bi
ts

/c
ha

nn
el

 u
se

)

θ=0

θ=0.0001

θ=0.001

θ=0.01

Figure 8.8: The effective rate as a function of m. n = 50.
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Figure 8.9: The effective rate as a function of θ for different transmission schemes.
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Figure 8.10: The optimal error probability ǫ∗ as a function of θ. n = 50.

1 begins to perform better as θ increases. Another interesting observation is that

fixed-rate transmission outperforms variable-rate transmission for large θ values or

equivalently for stringent QoS constraints. We note that the performance of variable-

rate schemes are plotted for optimized error probabilities. In Fig. 8.10, we provide

the optimal error probability as a function of θ for different m values. We notice in

all cases that the optimal error probability initially decreases with θ and then starts

to increase after a certain threshold θ value.

8.4 Conclusion

We have analyzed the performance of coding over multiple coherence blocks with pos-

sible decoding errors in the presence of queueing constraints. We have characterized

the throughput in this scenario by identifying a lower bound on instantaneous trans-

mission rates and determining the effective rate expression. We have investigated two

different transmission strategies. For the case of variable-rate transmissions, we have
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proven that the optimal error probability that maximizes the effective throughput is

unique for given blocklength, QoS exponent θ, and SNR. We have shown that the

throughput improves as channel coding is performed over an increasing number of

coherence blocks if the probability of decoding errors are lowered accordingly. Ad-

ditionally, we have remarked that coding over a very large number of blocks can be

detrimental if the error probabilities are fixed or cannot be sufficiently decreased.

This observation is made for the case in which θ > 0. If, on the other hand, no buffer

constraints are imposed i.e., θ = 0, we have noted that using codewords of longer

length is always beneficial. Through numerical results, we have further investigated

the interplay between effective rate, coherence duration n, QoS exponent θ, and the

code blocklength.

In cases in which the transmitter sends the information at a fixed rate R, we

have remarked that error probabilities vary with the channel conditions and we have

formulated the effective rate. We have shown that the effective rate is maximized at

a unique value of R. We have again demonstrated that the performance improves

with increasing m but this time if R is suitably lowered. We have further observed

interestingly that as QoS constraints become more stringent or equivalently as θ

increases, fixed-rate transmission schemes outperform variable-rate ones and moreover

coding over a smaller number of coherence blocks starts leading to better performance.
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Chapter 9

Conclusions and Future Works

In summary, we have analyzed the energy efficiency in single- and multi- user set-

tings. We have obtained the spectral efficiency–bit energy tradeoff in the low-power

and wideband regimes for point-to-point links. We have characterized the minimum

bit energy levels and wideband slope regions of fading MAC for different transmission

and reception strategies, namely TDMA, superposition coding with fixed decoding

order, and superposition coding with variable decoding order. Also, we have studied

the effective capacity region of fading MACs, broadcast channels, and secrecy chan-

nels under QoS constraints. We have investigated the throughput of two-hop relay

channels with QoS constraints at both the source and relay nodes, and the throughput

of transmission with finite-blocklength codes.

In the future, we plan to do energy efficiency analysis in network settings, such

as broadcast channels and secrecy channels. Practical systems generally operate in

multi-user scenario. The energy efficiency in such cases will be of significant interest.

We also plan to analyze the throughput of more general relay channels. Our prime

results on the throughput of the two-hop relay channels are expected to extend to a

wide range of relay channels, such as two-way relay and multiple-relay channels. Also,
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our results on the throughput for finite-blocklength codes were carried out in point-

to-point links. The performance of finite-block length codes under QoS constraints

in the multi-user scenario will be interesting. Some other potential interesting topics

may arise in the future as well.
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Appendix A

Proof of monotonicity of CE(ζ)
ζ in ζ

Considering (2.20), we denote

CE(ζ) =
CE(ζ)

ζ
= − 1

θT
loge E{e− θT

ζ
log2(1+ P̄ ζ

N0
z)}. (A.1)

The first derivative of CE(ζ) with respect to ζ is given by

ĊE(ζ) = − 1

ζ2 loge 2

E{e− θT
ζ

loge 2(1+ P̄ ζ
N0

z)
[

loge(1 + P̄ ζ
N0
z) −

P̄ ζ
N0

z

1+ P̄ ζ
N0

z

]

}

E{e− θT
ζ

log2(1+ P̄ ζ
N0

z)}
. (A.2)

We let ν = P̄ ζ
N0
z ≥ 0, and define y(ν) = loge(1 + ν) − ν

1+ν
, where y(0) = 0. It can be

easily seen that ẏ = ν
(1+ν)2 ≥ 0, so y(ν) ≥ 0 holds for all ν. Then, we immediately

observe that ĊE(ζ) < 0 for ζ > 0. Therefore, CE(ζ)
ζ

monotonically increases with

decreasing ζ . �
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Appendix B

Proof of Theorem 6

In [12, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge sp (Φ(θ)P) (B.1)

where sp (Φ(θ)P) is the spectral radius (i.e., the maximum of the absolute values of

the eigenvalues) of the matrix Φ(θ)P, P is the transition matrix of the underlying

Markov process, and Φ(θ) is a diagonal matrix whose jth component, φj(θ), is the

moment generating function of the random process yj(t) given in this state. Hence,

we have φj(θ) = E{eθyj(t)}.

The transmission model described for the wideband channel with N subchannels

is a Markov-modulated process where the underlying Markov process has N+1 states

with the transition probabilities given in (3.15). Hence, the transition matrix is given

by (B.2) on the next page. Note that the rows of P are identical due to the fact

that the transition probabilities do not depend on the initial state. In each state, the

transmission rate is non-random and fixed. Recall that in state j, the transmission

rate is equal to (j − 1)rT . The moment generating function of this deterministic
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P =








p1,1 p1,2 . . p1,N+1

. .

. .
pN+1,1 pN+1,2 . . pN+1,N+1








=








p1 p2 . . pN+1

. .

. .
p1 p2 . . pN+1







. (B.2)

Φ(θ)P =








1 0 . . 0
0 eθrT 0 . 0
. .
0 0 . 0 eθNrT








︸ ︷︷ ︸

Φ(θ)








p1 p2 . . pN+1

. .

. .
p1 p2 . . pN+1








︸ ︷︷ ︸

P

=








p1 p2 . . pN+1

p1e
θrT p2e

θrT . . pN+1e
θrT

. .
p1e

θNrT p2e
θNrT . . pN+1e

θNrT







. (B.3)

process is φj(θ) = E{eθ(j−1)rT } = eθ(j−1)rT . Therefore, we can express Φ(θ)P as in

(B.3) at the top of this page.

Note that the rows of Φ(θ)P are multiples of each other, and hence Φ(θ)P is a

matrix of unit rank. This leads to the conclusion that

sp (Φ(θ)P) = trace(Φ(θ)P) =
N+1∑

j=1

pj e
θ(j−1)rT . (B.4)

Therefore, for the wideband channel in consideration, we have

Λ(θ)

θ
=

1

θ
loge sp (Φ(θ)P) =

1

θ
loge





N+1∑

j=1

pj e
θ(j−1)rT



 . (B.5)

Applying the definition

RE(SNR, θ) =
1

TB
max
r≥0

P̄k≥0 s.t.
∑

P̄k≤P̄

{

− Λ(−θ)
θ

}

(B.6)
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N+1∑

j=1

pj e
θ(j−1)rT =

N+1∑

j=1

(

N
j − 1

)

(P{z > α})j−1 (1 − P{z > α})N−j+1 eθ(j−1)rT

(B.7)

=
N∑

i=0

(

N
i

)
(

P{z > α}eθrT
)i

(1 − P{z > α})N−i (B.8)

= (1 − P{z > α} + P{z > α}eθrT )N (B.9)

= (1 − P{z > α}(1 − eθrT ))N . (B.10)

where we have maximization over the transmission rates and power allocation strate-

gies, we immediately obtain (3.17).

Assume now that {zk}N
k=1 are identically distributed and therefore pj is in the

binomial form given in (3.16). Then, we can easily obtain (B.7)–(B.10) at the top

of this page. Note that (B.8) is obtained by applying a change of variables with

i = j − 1 and combining the second and fourth terms in the summation in (B.7)

to write
(

P{z > α}eθrT
)i

. (B.9) follows from the Binomial Theorem. Now, the

expression in (3.18) is readily obtained by noting that B
N

= Bc. �
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Appendix C

Proof of Theorem 7

Assume that the Taylor series expansion of ropt with respect to small ζ = 1
Bc

is

ropt = r∗
opt + ṙopt(0)ζ + o(ζ) (C.1)

where r∗
opt = limζ→0 ropt and ṙopt(0) is the first derivative with respect to ζ of ropt

evaluated at ζ = 0. From (3.4), we can find that

αopt =
2roptζ − 1

P̄ ζ
NN0

=
r∗

opt loge 2
P̄

NN0

+
ṙopt(0) loge 2 +

(r∗
opt loge 2)2

2
P̄

NN0

ζ + o(ζ) (C.2)

from which we have as ζ → 0 that

α∗
opt =

r∗
opt loge 2

P̄
NN0

and (C.3)

α̇opt(0) =
ṙopt(0) loge 2 +

(r∗
opt loge 2)2

2
P̄

NN0

(C.4)
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Eb

N0

∣
∣
∣
∣
∣
RE=0

= lim
ζ→0

P̄
NN0

ζ

RE(ζ)
=

P̄
NN0

ṘE(0)
=

− θT P̄
NN0

loge

(

1 − P{z > α∗
opt}(1 − e−θT r∗

opt)
) =

−δ loge 2

loge ξ

(C.5)

where α̇opt(0) is the first derivative with respect to ζ of αopt evaluated at ζ = 0.

According to (C.3), r∗
opt =

P̄ α∗
opt

NN0 loge 2
. We can now derive (C.5) at the top of this page

where ṘE(0) is the derivative of RE with respect to ζ at ζ = 0,

δ =
θT P̄

NN0 loge 2
,

and

ξ = 1 − P{z > α∗
opt}(1 − e−δα∗

opt).

Since Eb

N0
=

P̄
NN0

RE (ζ)

ζ

, the result that Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
follows from the fact that RE(ζ)/ζ

monotonically decreases with increasing ζ , and hence achieves its maximum as ζ → 0.

Therefore, we prove (3.20).

The second derivative R̈E(0), required in the computation of the wideband slope

S0, is derived through (C.6)–(C.9) on the next page where r∗
opt =

P̄ α∗
opt

NN0 loge 2
. Note that

(C.8) and (C.9) follow by using L’Hospital’s Rule and applying Leibniz Integral Rule

[74].

Next, we derive an equality satisfied by α∗
opt. Consider the objective function in

(3.18)

− 1

θTBc
loge

(

1 − P{z > α}(1 − e−θT r)
)

. (C.10)

It can easily be seen that both as r → 0 and r → ∞, this objective function approaches
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R̈E(0) = lim
ζ→0

2
RE(ζ) − ṘE(0)ζ

ζ2
(C.6)

= lim
ζ→0

2
1

ζ

(

− 1

θT
loge

(

1 − P{z > αopt}
(

1 − e−θT ropt

))

+
1

θT
loge

(

1 − P{z > α∗
opt}(1 − e−θT r∗

opt)
))

(C.7)

= lim
ζ→0

− 2

θT

(

pz(αopt)α̇opt(ζ)(1 − e−θT ropt) − P{z > αopt}θTe−θT ropt ṙopt(ζ)
)

1 − P{z > αopt}
(

1 − e−θT ropt

)

(C.8)

= − 2

θT

(

pz(α∗
opt)α̇opt(0)(1 − e−θT r∗

opt) − P{z > α∗
opt}θTe−θT r∗

opt ṙopt(0)
)

1 − P{z > α∗
opt}

(

1 − e−θT r∗
opt

) (C.9)

zero1. Hence, (C.10) is maximized at a finite and nonzero value of r at which the

derivative of (C.10) with respect to r is zero. Differentiating (C.10) with respect to r

and making it equal to zero leads to the following equality that needs to be satisfied

at the optimal value ropt:

2roptζpz(αopt)NN0 loge 2

P̄
(1 − e−θT ropt)

= θTe−θT roptP{z > αopt} (C.11)

where ζ = 1/Bc. For given θ, as the bandwidth increases (i.e., ζ → 0), ropt → r∗
opt.

Clearly, r∗
opt 6= 0 in the wideband regime. Because, otherwise, if ropt → 0 and

consequently αopt → 0, the left-hand-side of (C.11) becomes zero, while the right-

hand-side is different from zero. So, employing (C.3) and taking the limit of both

1Note that α increases without bound with increasing r.
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sides of (C.11) as ζ → 0, we can derive

pz(α
∗
opt)NN0 loge 2

P̄

(

1 − e
− θT P̄

NN0 loge 2
α∗

opt

)

= θTe
− θT P̄

NN0 loge 2
α∗

optP{z > α∗
opt} (C.12)

which, after rearranging, yields

θT P̄

NN0 loge 2
α∗

opt = loge

(

1 +
θT P̄

NN0 loge 2

P{z > α∗
opt}

pz(α∗
opt)

)

. (C.13)

Denoting δ = θT P̄
NN0 loge 2

, we obtain the condition (3.22) stated in the theorem.

Combining (C.12) and (C.4) with (C.9) gives us

R̈E(0) = −NN0 log2
e 2

θT P̄

r∗
opt

2pz(α
∗
opt)(1 − e−θT r∗

opt)

1 − P{z > α∗
opt}

(

1 − e−θT r∗
opt

)

= −r∗
opt

2P{z > α∗
opt}e−θT r∗

opt loge 2

1 − P{z > α∗
opt}

(

1 − e−θT r∗
opt

) (C.14)

Substituting (C.14) and the expression for ṘE(0) in (C.5) into (3.12), we obtain (3.21).

�
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Appendix D

Proof of Theorem 8

We first consider the Taylor series expansion of ropt in the low-SNR regime:

ropt = aSNR + bSNR2 + o(SNR2) (D.1)

where a and b are real-valued constants. Substituting (D.1) into (3.4), we obtain the

Taylor series expansion for αopt:

αopt =
a loge 2

B
+

(

b loge 2

B
+
a2 log2

e 2

2B2

)

SNR + o(SNR). (D.2)

From (D.2), we note that in the limit as SNR → 0, we have

α∗
opt =

a loge 2

B
. (D.3)

Next, we obtain the Taylor series expansion with respect to SNR for P{z > αopt}

using the Leibniz Integral Rule [74] as in (D.4) on the next page.

Using (D.1), (D.2), and (D.4), we find the series expansion for RE given in (3.10)

as in (D.5) on the next page. Then, using (D.3), we immediately derive from (D.5)
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P{z > αopt} = P{z > α∗
opt} −

(

b loge 2

B
+
a2 log2

e 2

2B2

)

pz(α∗
opt)SNR + o(SNR). (D.4)

RE(SNR) = − 1

θT B
loge

[

1 −
(

P{z > α∗
opt} −

(
b loge 2

B
+

a2 log2
e 2

2B2

)

pz(α∗
opt)SNR + o(SNR)

)

× (

θT aSNR + (θT b − (θT a)2

2
)SNR2 + o(SNR2)

)

]

=
aP{z > α∗

opt}
B

SNR +
1

B

(

− θT a2

2
P{z > α∗

opt} − a3pz(α∗
opt) log2

e 2

2B2

+
θT (P{z > α∗

opt}a)2

2

)

SNR2 + o(SNR2). (D.5)

that

ṘE(0) =
α∗

optP{z > α∗
opt}

loge 2
, (D.6)

R̈E(0) = −α∗
opt

3pz{α∗
opt}

loge 2

− θTBα∗
opt

2

log2
e 2

P{z > α∗
opt}(1 − P{z > α∗

opt}). (D.7)

Similarly as in the discussion in the proof of Theorem 7 in section 3.3, the optimal

fixed-rate ropt, akin to (C.11), should satisfy

2ropt/Bpz(αopt) loge 2

BSNR
(1 − e−θT ropt) = θTe−θT roptP{z > αopt}. (D.8)

Taking the limits of both sides of (D.8) as SNR → 0 and employing (D.1), we obtain

apz(α∗
opt) loge 2

B
= P{z > α∗

opt}. (D.9)
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From (D.3), (D.9) simplifies to

α∗
optpz(α∗

opt) = P{z > α∗
opt}, (D.10)

proving the condition in (3.26). Moreover, using (D.10), the first term in the expres-

sion for R̈E(0) in (D.7) becomes −α∗
opt

2P {z≥α∗
opt}

loge 2
. Together with this change, evaluating

the expressions in (3.12) with the results in (D.6) and (D.7), we obtain (3.24) and

(3.25). �
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Appendix E

Proof of Proposition 2

From the maximization problem above (4.10) and the definition of α in (4.8), we can

easily see that for fixed r, the only term in the objective function in this maximization

that depends on ρ is α. Moreover, α has this dependency through SNReff. Therefore,

ρopt that maximizes the objective function can be found by minimizing α, or equiv-

alently maximizing SNReff. Substituting the definitions in (4.2) and the expressions

for σ2
hest

and σ2
herr

into (4.6), we have

SNReff =
Esσ2

hest

σ2
herr

Es + N0
=

ρ(1 − ρ)γ2T 2B2SNR2

ργT B(T B − 2)SNR + γT BSNR + T B − 1
(E.1)

where SNR = P̄
N0B

. Evaluating the derivative of SNReff with respect to ρ and making

it equal to zero leads to the expression in (4.12). Clearly, ρopt is independent of θ and

r.

Above, we have implicitly assumed that the maximization is performed with re-

spect to first ρ and then r. However, the result will not alter if the order of the

maximization is changed. Note that the objective function in the maximization above
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(4.10),

g(SNReff, r) = − 1

θTB
loge




1 − e

− 2
rT

T B−1 −1

SNReff (1 − e−θT r)




 , (E.2)

is a monotonically increasing function of SNReff for all r. It can be easily verified that

maximization does not affect the monotonicity of g, and hence maxr≥0 g(SNReff, r)

is still a monotonically increasing function of SNReff. Therefore, in the outer maxi-

mization with respect to ρ, the choice of ρ that maximizes SNReff will also maximize

maxr≥0 g(SNReff, r), and the optimal value of ρ is again given by (4.12). �
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Appendix F

Proof of Theorem 10

Note that as SNR → 0, transmission rates also approach zero and therefore we have

ropt → 0. Using this fact, it can be shown that the derivative of RE in (4.15) with

respect to SNR at SNR = 0 is

ṘE(0) = lim
SNR→0

1

B
e−αopt ṙopt e−θT ropt − 1

θT B
α̇opt e−αopt(1 − e−θT ropt) (F.1)

where ṙopt and α̇opt are the derivatives of ropt and αopt, respectively, with respect to

SNR, and αopt = 2
roptT

T B−1 −1
SNReff,opt

. Next, we investigate how SNReff,opt scales as SNR vanishes.

Note that as SNR → 0, η → ∞, ρopt → 1/2, and hence φ(SNR) → 1/4γ2T 2B2. Then,

we have

SNReff,opt =
γ2T 2B2

4(TB − 1)
SNR2 + o(SNR2). (F.2)

Therefore, SNReff,opt decreases as SNR2 as SNR diminishes to zero. Now, we consider

the behavior of ropt at low SNRs. If ropt diminishes slower than SNR2 (for instance, if

ropt decreases as SNRa where 0 < a < 2), then it can be verified that αopt → ∞ as

SNR → 0 from which we can immediately see that ṘE(0) = 0 due to exponentially
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decreasing term e−αopt . On the other hand, if ropt reduces to zero faster than or as

SNR2 (e.g., as SNRa where a ≥ 2), αopt approaches a finite value. However in this

case, we can show that ṙopt → 0 and α̇opt(1−e−θT ropt) → 0 as SNR → 0, leading again

the conclusion that ṘE(0) = 0. �
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Appendix G

Proof of Theorem 11

We define ζ = 1
Bc

. Recall that in the scenario considered in Theorem 11, Bc grows

linearly with B while N is kept fixed. Therefore, we have ζ → 0 as B → ∞. According

to the expression of SNReff given in the line below (4.26), we have the following result

similar to (4.12) for ρopt in this case:

ρopt =
√

η(η + 1) − η (G.1)

where

η =
γTBcSNR + TBc − 1

γTBc(TBc − 2)SNR
and SNR =

P̄

N0B
. (G.2)

We first derive the following asymptotic expansion for the optimal fraction ρopt

ρopt = ρ∗
opt + ˙ρopt(0)ζ + o(ζ) (G.3)

where ρ∗
opt is the asymptotic value of ρopt attained as ζ → 0, and ˙ρopt(0) is the first
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ω =

γ2P 2T
(NN0)2

1 +
ρ∗

optγP̄ T

NN0

(

˙ρopt(0)(1 − 2ρ∗
opt) −

(1 − 2ρ∗
opt)

γP̄
NN0

+ ˙ρopt(0) γP̄ T
NN0

− 1
T

1 +
ρ∗

optγP̄T

NN0

ρ∗
opt(1 − ρ∗

opt)

)

= − γP̄

NN0T

(√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2





√
√
√
√1 +

γP̄T

NN0

− 2




 . (G.8)

derivative of ρopt evaluated at ζ = 0. We can easily find that

ρ∗
opt =

√
√
√
√
NN0

γP̄T

(

1 +
NN0

γP̄T

)

− NN0

γP̄T
(G.4)

and

˙ρopt(0) =
1

2T

√
√
√
√1 +

γP̄T

NN0

(√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2

. (G.5)

Furthermore, SNReff,opt defined in the line below (4.26) satisfies

SNReff,opt = ϕζ + ωζ2 + o(ζ2) (G.6)

where

ϕ =
ρ∗

opt(1 − ρ∗
opt)

γ2P̄ 2T
(NN0)2

1 +
ρ∗

optγP̄T

NN0

=
γP̄

NN0

(√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2

(G.7)

and ω is given by (G.8) at the top of this page.

Now, assume that the Taylor series expansion of ropt with respect to small ζ is

ropt = r∗
opt + ṙopt(0)ζ + o(ζ) (G.9)

where r∗
opt = limζ→0 ropt and ṙopt(0) is the first derivative with respect to ζ of ropt

evaluated at ζ = 0. From (4.8) and the above asymptotic expansions of ρopt and

SNReff,opt, we can find αopt as (G.10) in the next page, from which we have as ζ → 0



214

αopt =
2

roptζ

1−ζ/T − 1

SNReff,opt

=
r∗

opt loge 2 +
[(

r∗
opt

T
+ ṙopt(0)

)

loge 2 +
(r∗

opt loge 2)2

2

]

ζ + o(ζ)

ϕ + ωζ + o(ζ)

=
r∗

opt loge 2

ϕ
+

(

ṙopt(0) loge 2

ϕ
+
r∗

opt loge 2

ϕ

(

1

T
− ω

ϕ

)

+
(r∗

opt loge 2)2

2ϕ

)

ζ + o(ζ)

(G.10)

that

α∗
opt =

r∗
opt loge 2

ϕ
(G.11)

and that

α̇opt(0) =
ṙopt(0) loge 2

ϕ
+
r∗

opt loge 2

ϕ

(

1

T
− ω

ϕ

)

+
(r∗

opt loge 2)2

2ϕ
(G.12)

where α̇opt(0) is the first derivative with respect to ζ of αopt evaluated at ζ = 0. Note

also that we have r∗
opt =

ϕα∗
opt

loge 2
according to (G.11).

Note that the derivative with respect to r of the objective function in the maxi-

mization in (4.26) is zero at the optimal value r = ropt. Combining (G.6) and (G.11)

and letting ζ → 0 in this derivative expression at r = ropt, we obtain

loge 2

ϕ

(

1 − e
−

θT ϕα∗
opt

loge 2

)

− θTe−θT r∗
opt = 0 (G.13)

from which we get

α∗
opt =

loge 2

θTϕ
loge

(

1 +
θTϕ

loge 2

)

. (G.14)

Since Eb

N0
=

P̄
NN0

RE (ζ)

ζ

, the result that Eb

N0

∣
∣
∣
∣
RE=0

= Eb

N0 min
follows from the fact that

RE(ζ)/ζ monotonically decreases with increasing ζ , and hence achieves its maximum
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R̈E(0) = lim
ζ→0

2
RE(ζ) − ṘE(0)ζ

ζ2

= lim
ζ→0

2
1

ζ

(

− 1

θT
loge

(

1 − P{|w|2 ≥ αopt}
(

1 − e−θT ropt

))

+
1

θT
loge

(

1 − P{|w|2 ≥ α∗
opt}(1 − e−θT r∗

opt)
))

= lim
ζ→0

− 2e−αopt

θT (1 − P{|w|2 ≥ αopt} (1 − e−θT ropt))

×
(

α̇opt(ζ)(1 − e−θT ropt) − θTe−θT ropt ṙopt(ζ)
)

(G.16)

= − 2e−α∗
opt

θT
(

1 − P{|w|2 ≥ α∗
opt}

(

1 − e−θT r∗
opt

))

×
(

α̇opt(0)(1 − e−θT r∗
opt) − θTe−θT r∗

opt ṙopt(0)
)

(G.17)

as ζ → 0. We now have

Eb

N0 min

= lim
ζ→0

P̄
NN0

ζ

RE(ζ)
=

− θT P̄
NN0

loge

(

1 − P{|w|2 ≥ α∗
opt}(1 − e−θT r∗

opt)
)

=
−δ

loge ξ
=

P̄
NN0

ṘE(0)
(G.15)

where ṘE(0) is the derivative of RE with respect to ζ at ζ = 0, δ = θT P̄
NN0

, and

ξ = 1 − P{|w|2 ≥ α∗
opt}(1 − e

−
θT ϕα∗

opt
loge 2 ). Obviously, (G.15) provides (4.27).

Note that the second derivative R̈E(0), required in the computation of the wide-

band slope S0, can be obtained from (G.16)(G.17) at the top of this page, where

r∗
opt =

P̄α∗
opt

NN0 loge 2
. (G.16) and (G.17) follow by using L’Hospital’s Rule and applying

Leibniz Integral Rule.
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Meanwhile, substituting (G.13) and (G.12) into (G.17) gives us

R̈E(0) = − 2e−α∗
opt

θT
(

1 − P{|w|2 ≥ α∗
opt}

(

1 − e−θT r∗
opt

))

× α∗
opt(1 − e−θT r∗

opt)

(

1

T
− ω

ϕ
+
ϕα∗

opt

2

)

= −2(1 − ξ)α∗
opt

θTξ

(

1

T
− ω

ϕ
+
ϕα∗

opt

2

)

= −2(1 − ξ)α∗
opt

θTξ






1

T






√
√
√
√1 +

γP̄T

NN0

− 1




+

ϕα∗
opt

2




 (G.18)

Combining (G.18) and (G.15), we can prove (4.28) using the wideband slope formula

in (3.12). �
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Appendix H

Proof for Theorem 19

We need to consider the wideband slopes for different decoding order assignments.

Due to the complex expressions involved, we here state the derivation for S1 for the

case in which the decoding order is (1,2) when z2 < g(z1, SNR1), and the decoding

order is (2,1) when z2 > g(z1, SNR1). Taking the second derivative of (6.9), we have

C̈1(SNR1) = − φ̈1φ1 − (φ̇1)2

β1φ2
1 loge 2

(H.1)
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where φ̇1 is provided in (6.19) and φ̈1 is given by

φ̈1 =

∫ ∞

0

(

1 +
SNR1z1

1 + SNR1g(SNR1)/λ

)−β1

p(z1, g(SNR1))g̈(SNR1)dz1

− 2β1

∫ ∞

0

(

1 +
SNR1z1

1 + SNR1g(SNR1)/λ

)−β1−1 z1

(1 + SNR1g(SNR1)/λ)2

× p(z1, g(SNR1))ġ(SNR1)dz1

+

∫ ∞

0

(

1 +
SNR1z1

1 + SNR1g(SNR1)/λ

)−β1

ṗ(z1, g(SNR1)) (ġ(SNR1))2 dz1

+ β1(β1 + 1)

∫ ∞

0

∫ ∞

0

(

1 +
SNR1z1

1 + SNR1z1/λ

)−β1−2 z2
1

(1 + SNR1g(SNR1)/λ)4 p(z1, z2)dz2dz1

+
2β1

λ

∫ ∞

0

∫ g(SNR1)

0

(

1 +
SNR1z1

1 + SNR1z1/λ

)−β1−1 z1z2

(1 + SNR1g(SNR1)/λ)3 p(z1, z2)dz2dz1

−
∫ ∞

0
(1 + SNR1z1)−β1p(z1, g(SNR1))g̈(SNR1)dz1

+ 2β1

∫ ∞

0
(1 + SNR1z1)−β1−1z1p(z1, g(SNR1))ġ(SNR1)dz1

−
∫ ∞

0
(1 + SNR1z1)−β1 ṗ(z1, g(SNR1)) (ġ(SNR1))2 dz1

+ β1(β1 + 1)

∫ ∞

0

∫ ∞

g(SNR1)
(1 + SNR1z1)−β1−2z2

1p(z1, z2)dz2dz1. (H.2)

Letting SNR1 = 0 and supposing that g(0), ġ(0), and g̈(0) are finite, we have

C̈1(0) = − 1

loge 2

(

β1

(

E{z2
1} − (E{z1})2

)

+ E{z2
1} +

2

λ

∫ ∞

0

∫ g(0)

0
z1z2p(z1, z2)dz2dz1

)

(H.3)

Substituting (H.3) and (6.21) into (1.7), we obtain

S1 =
2(E{z1})2

β1 (E{z2
1} − (E{z1})2) + E{z2

1} + 2
λ

∫∞
0

∫ g(0)
0 z1z2p(z1, z2)dz2dz1

. (H.4)
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Similarly, we can derive

S2 =
2(E{z2})2

β2 (E{z2
2} − (E{z2})2) + E{z2

2} + 2λ
∫∞

0

∫∞
g(0) z1z2p(z1, z2)dz2dz1

. (H.5)

If the decoding order is (2,1) when z2 < g(z1, SNR1), and is (1,2) when z2 > g(z1, SNR1),

following the steps described above, we can obtain

S1 =
2(E{z1})2

β1 (E{z2
1} − (E{z1})2) + E{z2

1} + 2
λ

∫∞
0

∫∞
g(0) z1z2p(z1, z2)dz2dz1

(H.6)

S2 =
2(E{z2})2

β2 (E{z2
2} − (E{z2})2) + E{z2

2} + 2λ
∫∞

0

∫ g(0)
0 z1z2p(z1, z2)dz2dz1

. (H.7)

Combining (H.4) and (H.5) and eliminating g(0), we can obtain the third condition in

(6.32). It is interesting that combining (H.6) and (H.7) and eliminating g(0), we still

get the same third condition stated in (6.32). This shows us that the slope regions

for different decoding order assignments overlap. �
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Appendix I

Proof of Theorem 21

Taking the first derivatives of (6.37) and (6.38) and letting ζ = 0, we obtain

Ċ1(0) = − 1

θ1T
loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

(I.1)

Ċ2(0) = − 1

θ2T
loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

. (I.2)

Substituting (I.1) and (I.2) into (6.36), we get the results in (6.43) and (6.44).

Next, we consider the superposition coding with fixed decoding. Evaluating the

first derivative of (6.39) and (6.40) at ζ = 0, we again get

Ċ1(0) = − 1

θ1T
loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

(I.3)

Ċ2(0) = − 1

θ2T
loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

. (I.4)

which imply the results in (6.43) and (6.44).

We can also prove the results for the variable decoding case similarly as in the

proof of Theorem 16. Consider (6.41) and (6.42) with the associated decoding order.
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The first derivative of (6.41) can be expressed as

Ċ1(ζ) = − 1

θ1T
loge φ1 − ζφ̇1

θ1Tφ1
(I.5)

where φ1 is

φ1 =
∫ ∞

0

∫ ∞

g(
P̄1ζ

N0
)
e

− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

)

pz(z1, z2)dz2dz1

+
∫ ∞

0

∫ g(
P̄1ζ

N0
)

0
e

− θ1T
ζ

log2

(

1+

P̄1z1ζ
N0

1+
P̄2z2ζ

N0

)

pz(z1, z2)dz2dz1 (I.6)

and φ̇1 is

φ̇1 = −
∫ ∞

0
ġ

(

P̄ ζ

N0

)

P̄1

N0
e

− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

)

pz(z1, g(P̄1ζ/N0))dz1

+

∫ ∞

0

∫ ∞

g(
P̄1ζ

N0
)
e

− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

) 


θ1T

ζ2
log2(1 +

P̄1z1ζ

N0
) − θ1T

ζ

P̄1z1
N0 loge 2

1 + P̄1z1ζ
N0



 pz(z1, z2)dz2dz1

+

∫ ∞

0
ġ

(

P̄1ζ

N0

)

P̄1

N0
e

− θ1T

ζ
log2

(

1+

P̄1z1ζ
N0

1+
P̄2g(P̄1ζ/N0)ζ

N0

)

pz(z1, g(P̄1ζ/N0))dz1

+

∫ ∞

0

∫ g(
P̄1ζ

N0
)

0
e

− θ1T

ζ
log2

(

1+

P̄1z1ζ
N0

1+
P̄2z2ζ

N0

)

(

θ1T

ζ2
log2



1 +

P̄1z1ζ
N0

1 + P̄2z2ζ
N0





− θ1T

ζ

P̄1z1
N0 loge 2

(1 + P̄2z2ζ
N0

)(1 + P̄1z1ζ
N0

+ P̄2z2ζ
N0

)

)

pz(z1, z2)dz2dz1. (I.7)
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If we define f(ζ) = θ1T
ζ2 log2(1 + P̄1z1ζ

N0
) − θ1T

ζ

P̄1z1
N0 loge 2

1+
P̄1z1ζ

N0

, we can show that

lim
ζ→0

f(ζ) = θ1T lim
ζ→0

log2(1+
P̄1z1ζ

N0
)

ζ
−

P̄1z1
N0 loge 2

1+
P̄1z1ζ

N0

ζ

= θ1T lim
ζ→0




− 1

ζ2
log2(1 +

P̄1z1ζ

N0
) +

1

ζ

P̄1z1

N0 loge 2

1 + P̄1z1ζ
N0

+

(
P̄1z1

N0

)2

(1 + P̄1z1ζ
N0

)2 loge 2






= − lim
ζ→0

f(ζ) +
θ1T

loge 2

(

P̄1z1

N0

)2

(I.8)

which gives us that

lim
ζ→0

f(ζ) =
θ1T

2 loge 2

(

P̄1z1

N0

)2

. (I.9)

Similarly, we can show that

lim
ζ→0




θ1T

ζ2
log2



1 +
P̄1z1ζ

N0

1 + P̄2z2ζ
N0



− θ1T

ζ

P̄1z1

N0 loge 2

(1 + P̄2z2ζ
N0

)(1 + P̄1z1ζ
N0

+ P̄2z2ζ
N0

)





=
θ1T

2 loge 2

(

P̄1z1

N0

)2

+
θ1T P̄1P̄2z1z2

N2
0 loge 2

. (I.10)

With (I.9) and (I.10) in mind, we can obtain

lim
ζ→0

φ̇1 =
θ1T

2 loge 2
Ez






e

− θ1T P̄1
N0 loge 2

z1

(

P̄1z1

N0

)2






+
θ1T

loge 2

∫ ∞

0

∫ g(0)

0
e

− θ1T P̄1
N0 loge 2

z1
P̄1P̄2z1z2

N2
0

p(z1, z2)dz2dz1 (I.11)

and hence

Ċ1(0) = − 1

θ1T
loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

. (I.12)
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Similarly, taking the derivative of (6.42) and letting ζ = 0, we have

Ċ2(0) = − 1

θ2T
loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

(I.13)

which, after incorporating (6.36), again gives us the results in (6.43) and (6.44). For

the reverse decoding order assignment, following similar steps, we still get the results

in (6.43) and (6.44). �
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Appendix J

Proof of Theorem 24

Similar to Theorem 19, we here present the derivation for S1 for the case when the

decoding order is (1,2) when z2 < g(z1, SNR1), and the decoding order is (2,1) when

z2 > g(z1, SNR1). The second derivative of (6.41) is

C̈1(ζ) = − 2φ̇1

θ1Tφ1

−
ζ
(

φ̈1φ1 − φ̇2
1

)

θ1Tφ
2
1

(J.1)
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where φ1 and φ̇1 are (I.6) and (I.7), respectively, and φ̈1 is given by

φ̈1 = −
∫ ∞

0
g̈

(

P̄1ζ

N0

)(

P̄1

N0

)2

e
− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

)

p(z1, g(P̄1ζ/N0))dz1

− 2

∫ ∞

0
ġ

(

P̄1ζ

N0

)

P̄1

N0
e

− θ1T
ζ

log2

(

1+
P̄1z1ζ

N0

) 


θ1T

ζ2
log2

(

1 +
P̄1z1ζ

N0

)

− θ1T

ζ

P̄1z1
N0 loge 2

1 + P̄1z1ζ
N0





p(z1, g(P̄1ζ/N0))dz1

−
∫ ∞

0

(

ġ

(

P̄1ζ

N0

)

P̄1

N0

)2

e
− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

) 


θ1T

ζ2
log2

(

1 +
P̄1z1ζ

N0

)

− θ1T

ζ

P̄1z1
N0 loge 2

1 + P̄1z1ζ
N0





ṗ(z1, g(P̄1ζ/N0))dz1

+

∫ ∞

0

∫ ∞

g

(
P̄1ζ

N0

) e
− θ1T

ζ
log2

(

1+
P̄1z1ζ

N0

)(


θ1T

ζ2
log2

(

1 +
P̄1z1ζ

N0

)

− θ1T

ζ

P̄1z1
N0 loge 2

1 + P̄1z1ζ
N0





2

− 2

ζ




θ1T

ζ2
log2

(

1 +
P̄1z1ζ

N0

)

− θ1T

ζ

P̄1z1
N0 loge 2

1 + P̄1z1ζ
N0



+
θ1T

ζ loge 2





P̄1z1
N0

1 + P̄1z1ζ
N0





2)

p(z1, z2)dz2dz1

+

∫ ∞

0
g̈

(

P̄1ζ

N0

)(

P̄1

N0

)2

e

− θ1T

ζ
log2

(

1+

P̄1z1ζ
N0

1+
P̄2g(P̄1ζ/N0)ζ

N0

)

p(z1, g(P̄1ζ/N0))dz1

+ 2

∫ ∞

0
ġ

(

P̄1ζ

N0

)

P̄1

N0
e

− θ1T

ζ
log2

(

1+

P̄1z1ζ
N0

1+
P̄2g(P̄1ζ/N0)ζ

N0

)

(

θ1T

ζ2
log2



1 +

P̄1z1ζ
N0

1 + P̄2g(P̄1ζ/N0)ζ
N0





− θ1T

ζ

P̄1z1
N0 loge 2

(

1 + P̄2g(P̄1ζ/N0)ζ
N0

) (

1 + P̄1z1ζ
N0

+ P̄2g(P̄1ζ/N0)ζ
N0

)

)

p(z1, g(P̄1ζ/N0))dz1

+

∫ ∞

0

(

ġ

(

P̄1ζ

N0

)

P̄1

N0

)2

e

− θ1T

ζ
log2

(

1+

P̄1z1ζ
N0

1+
P̄2g(P̄1ζ/N0)ζ

N0

)

ṗ(z1, g(P̄1ζ/N0))dz1

+

∫ ∞

0

∫ g

(
P̄1ζ

N0

)

0
e

− θ1T

ζ
log2

(

1+

P̄1z1ζ
N0

1+
P̄2z2ζ

N0

)

×
(


θ1T

ζ2
log2



1 +

P̄1z1ζ
N0

1 + P̄2z2ζ
N0



− θ1T

ζ

P̄1z1
N0 loge 2

(

1 + P̄2z2ζ
N0

) (

1 + P̄1z1ζ
N0

+ P̄2z2ζ
N0

)





2

− 2

ζ




θ1T

ζ2
log2



1 +

P̄1z1ζ
N0

1 + P̄2z2ζ
N0



− θ1T

ζ

P̄1z1
N0 loge 2

(

1 + P̄2z2ζ
N0

) (

1 + P̄1z1ζ
N0

+ P̄2z2ζ
N0

)





+
θ1T

ζ

P̄1z1
N0 loge 2

(
P̄2z2
N0

(

1 + P̄1z1ζ
N0

+ P̄2z2ζ
N0

)

+
(

P̄1z1
N0

+ P̄2z2
N0

)(

1 + P̄2z2ζ
N0

))

(

1 + P̄2z2ζ
N0

)2 (

1 + P̄1z1ζ
N0

+ P̄2z2ζ
N0

)2

)

p(z1, z2)dz2dz1

(J.2)
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By letting ζ = 0 and recalling (I.9) and (I.10), we can show that

C̈1(0) = − 1

loge 2

(
P̄1
N0

)2
Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2P̄1P̄2

N2
0

∫∞
0

∫ g(0)
0 e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

(J.3)

Combining (I.12) and (J.3) with (1.7), we have

S1 = 2

(
N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄ 2
1 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2P̄1P̄2
∫∞

0

∫ g(0)
0 e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

.

(J.4)

Following similar steps, we can derive that

S2 = 2

(
N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

P̄ 2
2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2P̄1P̄2
∫∞

0

∫∞
g(0) e

− θ2T P̄2
N0 loge 2

z2z1z2p(z1, z2)dz2dz1

.

(J.5)

If the decoding order is (2,1) when z2 < g(z1, SNR1), and is (1,2) when z2 >

g(z1, SNR1), following the steps described above, we can obtain

S1 = 2

(
N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄ 2
1 Ez1

{

e
− θ1T P̄1

N0 loge 2
z1z2

1

}

+ 2P̄1P̄2
∫∞

0

∫∞
g(0) e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

,

(J.6)

S2 = 2

(
N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

}

P̄ 2
2 Ez2

{

e
− θ2T P̄2

N0 loge 2
z2z2

2

}

+ 2P̄1P̄2
∫∞

0

∫ g(0)
0 e

− θ2T P̄2
N0 loge 2

z2z1z2p(z1, z2)dz2dz1

.

(J.7)
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Also note that the wideband slopes have non-negative values and we have the in-

equalities in (6.55) and (6.56). �
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Appendix K

Proof of Theorem 25

We need to compare the upper bound of the slope region in (6.50) with the upper

bounds of both (6.55) and (6.56).

By moving the term with g(0) to the LHS of the equation, we can rewrite (J.4)

and (J.5) as

∫∞
0

∫ g(0)
0 e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

=

(

N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

(

1

S1

− 1

Sup
1

)

(K.1)

and

∫∞
0

∫∞
g(0) e

− θ2T P̄2
N0 loge 2

z2z1z2p(z1, z2)dz2dz1

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

=

(

N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez1

{

e
− θ2T P̄2

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

(

1

S2

− 1

Sup
2

)

(K.2)
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Denote

γ1 =

∫∞
0

∫ g(0)
0 e

− θ1T P̄1
N0 loge 2

z1z1z2p(z1, z2)dz2dz1

Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

} (K.3)

γ2 =

∫∞
0

∫∞
g(0) e

− θ2T P̄2
N0 loge 2

z2z1z2p(z1, z2)dz2dz1

Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

} (K.4)

We know that 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1 vary with different g(0). Substitute (K.1)

and (K.2) into the third condition of (6.50), we can obtain

(

N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

(

1

S1

− 1

Sup
1

)

+

(

N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez1

{

e
− θ2T P̄2

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

(

1

S2
− 1

Sup
2

)

= γ1 + γ2 (K.5)

Following similar steps, we can get from (J.6) and (J.7)

(

N0 loge 2

θ1T

)2

(

loge Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

})2

Ez1

{

e
− θ1T P̄1

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ1T P̄1

N0 loge 2
z1z1z2

}

(

1

S1

− 1

Sup
1

)

+

(

N0 loge 2

θ2T

)2

(

loge Ez2

{

e
− θ2T P̄2

N0 loge 2
z2

})2

Ez1

{

e
− θ2T P̄2

N0 loge 2
z1

}

P̄1P̄2Ez

{

e
− θ2T P̄2

N0 loge 2
z2z1z2

}

(

1

S2
− 1

Sup
2

)

= 2 − γ1 − γ2 (K.6)

Considering (K.5) and (K.6), we know that either γ1 + γ2 or 2 − γ1 − γ2 must be

less than 1, which implies that variable decoding order achieves points outside the
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region attained with fixed decoding order, proving the theorem. �
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Appendix L

Proof of Theorem 28

Case I θ1 ≥ θ2:

For this case, we can show that the upper bound in (7.21) can be attained. First

assume that

− 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

≤ − 1

θ1

logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (L.1)

Hence, the second term on the right-hand side of (7.21) is the minimum one. Now,

set θ̂ = θ2 in (7.20). Assume that θ̃ ≥ θ̂ = θ2 where θ̃ is the solution to (7.19). The

validity of this assumption will be shown later below. Under these assumptions, we

see from (7.20) that

R = h(θ̃, θ2) = − 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

for all θ̃ ≥ θ̂ = θ2. (L.2)

Now, in order to show that this rate can be supported, we have to prove that the
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equation in (7.19) is also satisfied for this choice of R, i.e., we should have

R = − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

= g(θ̃) = −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

(L.3)

for some θ̃ satisfying θ̃ ≥ θ1 and θ̃ ≥ θ̂ = θ2. From (L.1) and (L.2), we have

R ≤ − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (L.4)

Since −1
θ

logEz1

{

e−θT B log2(1+SNR1z1)
}

is a decreasing function of θ, (L.4) implies that

there exists a θ̃ ≥ θ1 such that

R = −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

≤ − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

(L.5)

showing that (L.3) holds. Note that in Case I, the original assumption is that θ1 ≥ θ2.

Then, we have θ̃ ≥ θ1 ≥ θ̂ = θ2. Hence, in case I, we satisfy θ̃ ≥ θ̂ = θ2, verifying the

earlier assumption. In summary, we have shown that (7.19) and (7.20) simultaneously

hold for θ̃ ≥ θ1 and θ̂ = θ2 when we have

R = min
{

− 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}}

(L.6)

= − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

. (L.7)

Hence, the upper bound in (7.21) can be achieved and this is the effective capacity.

Above, we have assumed that the second term in (7.21) is the minimum one. On
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the other hand, if we have

− 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

≤ − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (L.8)

similar arguments follow. In particular, we can choose θ̃ = θ1 in this case, and have

from (7.19)

R = g(θ1) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (L.9)

Through a similar approach as above, we can show that (7.20) can be satisfied with

θ̂ ≥ θ2 for this choice of R and establish that the upper bound in (7.21) is again

attained.

Case II: θ1 < θ2 and θ2 ≤ θ̄:

Suppose that the effective capacity is decided by the S−R link and θ̃ = θ1 returns

the highest R. Hence, we set θ̃ = θ1 in (7.19) and have

R = − 1

θ1

logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (L.10)

Clearly, this rate can be supported by the S − R link while the QoS constraint at the

source is satisfied. In order to prove that this rate is viable for the two-hop link in

the presence of the QoS constraint at the relay, we have to show that the equality

in (7.20) is satisfied as well for some θ̂ ≥ θ2. Note that the assumption in Case II is

θ̃ = θ1 < θ2. Then, having θ̂ ≥ θ2 implies that θ̂ > θ̃ = θ1. Consequently, in order to
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satisfy (7.20), we should have

R = − 1

θ1

(

logEz2

{

e−θ̂T B log2(1+SNR2z2)
}

+ logEz1

{

e(θ̂−θ1)T B log2(1+SNR1z1)
})

(L.11)

where we have used the assumption that θ̃ = θ1. Our goal is to see whether (L.10)

and (L.11) for some θ̂ ≥ θ2 can be satisfied simultaneously. In this quest, we first

show several properties of the function on the right-hand side of (L.11).

Lemma 2 Consider the function

f(θ) = − 1

θ1

(

logE
{

e−θT B log2(1+SNR2z2)
}

+ logE
{

e(θ−θ1)T B log2(1+SNR1z1)
})

for θ ≥ 0.

(L.12)

This function has the following properties:

a) f(θ) is a continuous function of θ.

b) f(0) = − 1
θ1

logE
{

e−θ1T B log2(1+SNR1z1)
}

.

c) The first derivative of f(θ) with respect to θ at θ = 0 is positive, i.e., ḟ(0) > 0.

Hence, f(θ) is initially an increasing function in the vicinity of the origin as θ

increases.

d) f(θ) is a concave function of θ.

e) If TB log2(1 + SNR1z1,max) > TB log2(1 + SNR2z2,min) where z1,max is the essential

supremum of the random variable z1 and z2,min is the essential infimum of z2, then

there exists a θ∗ > 0 such that f(θ∗) = 0.

Proof :
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a) The continuity can be shown by noting the continuity of the logarithm and expo-

nential functions and employing the Dominated Convergence Theorem and Mono-

tone Convergence Theorem for the justification of the interchange of the limit and

expectations. For the first expectation in (L.12), we can apply the Dominated

Convergence Theorem by observing that we have |e−θT B log2(1+SNR2z2)| ≤ 1 for all

θ ≥ 0 and the bounding function is integrable, i.e., E{1} = 1 < ∞. For the

second expectation, we immediately note that e(θ−θ1)T B log2(1+SNR1z1) is nonnega-

tive and increases with increasing θ, and consequently we can use the Monotone

Convergence Theorem to justify the interchange of limit and expectation.

b) This property can be readily seen by evaluating the function at θ = 0.

c) The first derivative of f with respect to θ can be evaluated as

ḟ(θ) = − 1

θ1

(−Ez2

{

e−θT B log2(1+SNR2z2)TB log2(1 + SNR2z2)
}

Ez2

{

e−θT B log2(1+SNR2z2)
}

+
Ez1

{

e(θ−θ1)T B log2(1+SNR1z1)TB log2(1 + SNR1z1)
}

Ez1

{

e(θ−θ1)T B log2(1+SNR1z1)
}

)

. (L.13)

Then, ḟ(0) can be written as

ḟ(0) =
TB

θ1

(

Ez2{log2(1 + SNR2z2)} − Ez1{e−θ1T B log2(1+SNR1z1) log2(1 + SNR1z1)}
Ez1{e−θ1T B log2(1+SNR1z1)}

)

.

(L.14)

Let us define

α(θ1) = Ez2{log2(1 + SNR2z2)} − Ez1{e−θ1T B log2(1+SNR1z1) log2(1 + SNR1z1)}
Ez1{e−θ1T B log2(1+SNR1z1)} .

(L.15)
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We can see that α(0) = Ez2{log2(1 + SNR2z2)} − Ez1{log2(1 + SNR1z1)} > 0 (due

to our original assumption to ensure stability). The first derivative of α(θ1) with

respect to θ1 is

α̇(θ1) = TB
1

(

Ez1{e−θ1T B log2(1+SNR1z1)}
)2

×


Ez1{e−θ1T B log2(1+SNR1z1) (log2(1 + SNR1z1))
2}Ez1{e−θ1T B log2(1+SNR1z1)}

−
(

Ez1{e−θ1T B log2(1+SNR1z1) log2(1 + SNR1z1)}
)2



 (L.16)

By Cauchy-Schwarz inequality, we know that E{X2}E{Y 2} ≥ (E{XY })2. Then,

denoting

X =
√

e−θ1T B log2(1+SNR1z1) (log2(1 + SNR1z1))2 and Y =
√
e−θ1T B log2(1+SNR1z1),

we easily see that α̇(θ1) ≥ 0 for all θ1. Thus, α(θ1) is an increasing function and

we have α(θ1) ≥ α(0) > 0. Hence, ḟ(0) > 0.
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d) The second derivative of f with respect to θ can be expressed as

f̈(θ) = − 1

θ1




1

(

Ez2

{

e−θT B log2(1+SNR2z2)
})2

×
(

Ez2

{

e−θT B log2(1+SNR2z2) (TB log2(1 + SNR2z2))2
}

Ez2

{

e−θT B log2(1+SNR2z2)
}

−
(

Ez2

{

e−θT B log2(1+SNR2z2)TB log2(1 + SNR2z2)
})2

)

+
1

(

Ez1

{

e(θ−θ1)T B log2(1+SNR1z1)
})2

×
(

Ez1

{

e(θ−θ1)T B log2(1+SNR1z1) (TB log2(1 + SNR1z1))
2
}

× Ez1

{

e(θ−θ1)T B log2(1+SNR1z1)
}

−
(

Ez1

{

e(θ−θ1)T B log2(1+SNR1z1)TB log2(1 + SNR1z1)
})2

)

 (L.17)

≤ 0 (L.18)

where Cauchy-Schwarz inequality is used again. With this characterization, we

establish that f is a concave function of θ.

e) We first express f(θ) in the following form:

f(θ) = − 1

θ1

(

logEz2

{

e−θT B log2(1+SNR2z2)
}

+ logEz1

{

e(θ−θ1)T B log2(1+SNR1z1)
})

(L.19)

=
θ

θ1



− 1

θ
logEz2

{

e−θT B log2(1+SNR2z2)
}

−
(

1 − θ1

θ

)

1

θ − θ1
logEz1

{

e(θ−θ1)T B log2(1+SNR1z1)
}





=
θ

θ1

(EC(θ) − EB(θ − θ1)) (L.20)
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where

EC(θ) = −1

θ
logEz2

{

e−θT B log2(1+SNR2z2)
}

(L.21)

is the virtual effective capacity with respect to θ, and

EB(θ − θ1) =

(

1 − θ1

θ

)

1

θ − θ1

logEz1

{

e(θ−θ1)T B log2(1+SNR1z1)
}

is the virtual effective bandwidth with respect to θ−θ1. Similar to the discussion in

[8], we know that EC(θ) is decreasing in θ. Moreover, when θ = 0, we have EC(0) =

Ez2 {TB log2(1 + SNR2z2)}, and as θ → ∞, EC(θ) approaches the delay limited

capacity [19], i.e., EC(θ) → TB log2(1 + SNR2z2,min) where z2,min is the essential

infimum of the random variable z2. Furthermore, EB(θ − θ1) is an increasing

function of θ. For θ < θ1, EB(θ − θ1) has a negative value. At θ = θ1, we have

EB(θ1 − θ1) = EB(0) = 0. As θ → ∞, EB(θ − θ1) approaches the highest rate

of the S − R link, i.e., EB(θ − θ1) → TB log2(1 + SNR1z1,max) where z1,max is the

essential supremum of the random variable z1. Therefore, as long as TB log2(1 +

SNR1z1,max) > TB log2(1 + SNR2z2,min), the decreasing curve EC(θ) and increasing

curve EB(θ − θ1) will meet at some point θ = θ∗ > 0 at which we have f(θ∗) =

θ∗

θ1
(EC(θ∗) −EB(θ∗ − θ1)) = 0.

A numerical result provides a visualization of the above discussion. In Fig. L.1,

we plot the virtual effective capacity and virtual effective bandwidth normalized

by TB as a function of θ in the Rayleigh fading channel. We assume that T = 2

ms, B = 105 Hz, θ1 = 0.01, SNR1 = 0 dB, and SNR2 = 10 dB. Note that we have

z1,max = ∞ and z2,min = 0 in the Rayleigh fading model. �

Recall that we are seeking to establish whether (L.10) and (L.11) can simultane-
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Figure L.1: The virtual effective capacity and virtual effective bandwidth as a function
of θ in Rayleigh fading channels with full-duplex relay. E{z1} = E{z2} = 1.

ously be satisfied for some θ̂ ≥ θ2. With the definition of the function f(·) whose

properties are delineated in Lemma 2, the equations in (L.10) and (L.11) can be

combined to write

f(θ̂) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (L.22)

Hence, our goal is to see whether the equation in (L.22) can be satisfied for some

θ̂ ≥ θ2. In Lemma 2, we have noted that the function f(θ) is equal to the right-hand

side of (L.22) at θ = 0, and then it increases. At some point, f(θ) approaches zero.

Since it is a concave function, we immediately see that f(θ) is a function that initially

increases, hits a peak value, and then starts decreasing. This leads us to conclude

that f(θ) becomes equal to the right-hand side of (L.22) once again at some unique
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θ > 0. Let us denote this unique point as θ̄. Hence,

f(θ̄) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

. (L.23)

If θ̄ ≥ θ2, then (L.22) is satisfied for θ̂ = θ̄ ≥ θ2. Therefore, (L.10) and (L.11) are

satisfied simultaneously. Hence, the arrival rate

R = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

(L.24)

can be supported by the two-hop link. Since this rate is an upper bound on the arrival

rates as proved in Proposition 27, this arrival rate is the effective capacity, proving

(7.27) in Theorem 28.

It is important to note that the above result implicitly assumes that TB log2(1 +

SNR1z1,max) > TB log2(1 + SNR2z2,min) which is a condition in part e) of Lemma 2.

Note that if this condition does not hold, then it means that the maximum service

rate from the source is equal to or lower than the minimum service rate from the

relay. Hence, the relay can immediately support any arrival rate without requiring

any buffering. The bottleneck is the S − R link and arrival rates are limited by the

effective capacity of this link. Therefore, we again have effective capacity of the two-

hop link given by (7.27).

Case III: Assume θ1 < θ2 and θ2 > θ̄:

Above, we have discussed the case in which θ̄ ≥ θ2. If, on the other hand, θ̄ < θ2,

then (L.22) and consequently (L.11) cannot be satisfied for some θ̂ ≥ θ2. Hence,

the arrival rate in (L.24) cannot be supported by the two-hop link, and we need to
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consider possibly smaller rates, i.e.,

R = g(θ̃) = −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

(L.25)

for some θ̃ ≥ θ1. The rate given above is supported by the two-hop link if the equation

g(θ̃) = h(θ̃, θ̂) (L.26)

is satisfied for some θ̂ ≥ θ2 and θ̃ ≥ θ1. Recall that the function h is defined in (7.20)

as

h(θ̃, θ̂) =







−1
θ̂

logEz2

{

e−θ̂T B log2(1+SNR2z2)
}

0 ≤ θ̂ ≤ θ̃

−1
θ̃

(

logEz2

{

e−θ̂T B log2(1+SNR2z2)
}

+ logEz1

{

e(θ̂−θ̃)T B log2(1+SNR1z1)
}
) θ̂ ≥ θ̃

. (L.27)

We first note that for fixed θ̃, h(θ̃, θ̂) is a decreasing function of θ̂ because as θ̂

increases, the QoS constraints at the relay become more stringent and consequently

lower rates can be supported by the relay. Therefore, in order to identify the highest

arrival rates R, we consider the smallest allowed value of θ̂ and set θ̂ = θ2. We now

consider the equation

g(θ̃) = h(θ̃, θ2) (L.28)

and seek whether this equation is satisfied for some θ̃ ≥ θ1. At θ̃ = θ1, the left-hand

side of (L.28) becomes

g(θ1) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

(L.29)
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while the right-hand side is

h(θ1, θ2) = − 1

θ1

(

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

+ logEz1

{

e(θ2−θ1)T B log2(1+SNR1z1)
})

(L.30)

= f(θ2) (L.31)

where f(·) is the function defined in Lemma 2. Note that our assumption in this case

is θ2 > θ̄. Recalling (L.23), we know that

f(θ̄) = − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

= g(θ1). (L.32)

Then, from the properties of f and the assumption that θ2 > θ̄, we immediately see

that

f(θ2) = h(θ1, θ2) ≤ − 1

θ1
logEz1

{

e−θ1T B log2(1+SNR1z1)
}

= g(θ1). (L.33)

Therefore, at θ̃ = θ1, the left-hand side of (L.28) is larger than the value at the

right-hand side.

Now, let us consider the values at θ̃ = θ2. The left-hand and right-hand sides of

(L.28) become, respectively,

g(θ2) = − 1

θ2

logEz1

{

e−θ2T B log2(1+SNR1z1)
}

(L.34)

and

h(θ2, θ2) = − 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

(L.35)
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If we have

g(θ2) = − 1

θ2
logEz1

{

e−θ2T B log2(1+SNR1z1)
}

≤ h(θ2, θ2) = − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (L.36)

then the left-hand side of (L.28) is smaller that the value of the right-hand side at θ2.

Therefore, being continuous functions, g(θ̃) and h(θ̃, θ2) meet at some θ1 ≤ θ̃ ≤ θ2.

Denote the smallest value of θ̃ for which we have g(θ̃) = h(θ̃, θ2) as θ̃∗. Then, the

highest rate that can be supported by the two-hop link is

R = g(θ̃∗) = − 1

θ̃∗ logEz1

{

e−θ̃∗T B log2(1+SNR1z1)
}

(L.37)

Above result is obtained under the assumption that g(θ2) ≤ h(θ2, θ2). Let us now

consider the other possibility in which g(θ2) > h(θ2, θ2). For this case, we first have

the following lemma.

Lemma 3 Assume that g(θ2) > h(θ2, θ2). Then, h(θ̃, θ2) is an increasing function of

θ̃ for θ̃ ≤ θ2.

Proof: For θ̃ ≤ θ2, we can express

h(θ̃, θ2) = −1

θ̃

(

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

+ logEz1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
})

.

(L.38)
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The first derivative of h(θ̃, θ2) with respect to θ̃ is

ḣ(θ̃, θ2) =
1

θ̃2



θ̃
Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1)TB log2(1 + SNR1z1)
}

e(θ2−θ̃)T B log2(1+SNR1z1)

+ logEz1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
}

+ logEz2

{

e−θ2T B log2(1+SNR2z2)
}



. (L.39)

Let us define

β(θ̃) = θ̃
Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1)TB log2(1 + SNR1z1)
}

Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
}

+ logEz1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
}

+ logEz2

{

e−θ2T B log2(1+SNR2z2)
}

. (L.40)

We can show that β(θ̃) is nonnegative.

The first derivative of β(θ̃) with respect to θ̃ is

β̇(θ̃) =
θ̃

(

Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
})2

×
(

−Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1) (T B log2(1 + SNR1z1))2
}

Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1)
}

+
(

Ez1

{

e(θ2−θ̃)T B log2(1+SNR1z1)T B log2(1 + SNR1z1)
})2

)

(L.41)

≤ 0 (L.42)

where Cauchy-Schwarz inequality is used for (L.42). Therefore, β(θ̃) is a decreasing
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function of θ̃, and hence for θ̃ ≤ θ2 we have

β(θ̃) ≥ β(θ2) = θ2Ez1 {TB log2(1 + SNR1z1)} + logEz2

{

e−θ2T B log2(1+SNR2z2)
}

(L.43)

= −θ2

(

−TBEz1{log2(1 + SNR1z1)} − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
})

(L.44)

Note that our assumption is that

g(θ2) = − 1

θ2

logEz1

{

e−θ2T B log2(1+SNR1z1)
}

> h(θ2, θ2) = − 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

. (L.45)

Since TBEz1{log2(1 + SNR1z1)} ≥ − 1
θ2

logEz1

{

e−θ2T B log2(1+SNR1z1)
}

, the above in-

equality implies that

TBEz1{log2(1 + SNR1z1)} > − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

(L.46)

which further implies that β(θ2) > 0. Finally, we immediately see that

ḣ(θ̃, θ2) =
1

θ̃2
β(θ̃) ≥ 1

θ̃2
β(θ2) > 0 (L.47)

proving that h(θ̃, θ2) is an increasing function of θ̃ for θ̃ ≤ θ2. �

In effect, we have shown that if h(θ2, θ2) < g(θ2), then h(θ̃, θ2) < g(θ2) for all

θ̃ ≤ θ2. Note that since g(θ̃) is a decreasing function, g(θ2) ≤ g(θ̃) for all θ̃ ≤ θ2.
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Combining these, we observe that

h(θ̃, θ2) < g(θ2) ≤ g(θ̃) ∀θ̃ ≤ θ2. (L.48)

Therefore, the equality g(θ̃) = h(θ̃, θ2) cannot be satisfied for any θ1 ≤ θ̃ ≤ θ2. Hence,

we should have θ̃ > θ2. Note that for θ̃ > θ2, h(θ̃, θ2), which can be expressed as

h(θ̃, θ2) = − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (L.49)

is a constant for given θ2. On the other hand,

g(θ̃) = −1

θ̃
logEz1

{

e−θ̃T B log2(1+SNR1z1)
}

(L.50)

is a decreasing function with minimum value given by

lim
θ̃→∞

g(θ̃) = TB log2(1 + SNR1z1,min) (L.51)

where z1,min is the essential infimum of z1. Hence, if

TB log2(1 + SNR1z1,min) ≤ h(θ̃, θ2) = − 1

θ2

logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (L.52)

then the equation g(θ̃) = h(θ̃, θ2) can be satisfied at some θ̃ = θ̃∗ ≥ θ2, and the

maximum arrival rate is given by

R = g(θ̃∗) = − 1

θ̃∗ logEz1

{

e−θ̃∗T B log2(1+SNR1z1)
}

. (L.53)
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If, on the other hand,

TB log2(1 + SNR1z1,min) > h(θ̃, θ2) = − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

, (L.54)

the bottleneck is the R − D link, and the highest arrival rate that can be supported

by the two-hop link is

R = − 1

θ2
logEz2

{

e−θ2T B log2(1+SNR2z2)
}

. (L.55)

Note that this arrival rate is smaller than the smallest possible transmission rate of

the source and hence no buffering is needed at the source in this extreme case. �
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Appendix M

Proof of Theorem 29

We first identify the following upper bound on the rates that can be supported with

half-duplex relaying in the two-hop link:

R ≤ sup
τ∈[0,τ0)

min

{

− 1

θ1

logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

,

− 1

θ2
logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}
}

(M.1)

= − 1

θ1
logEz1

{

e−τ̃ θ1T B log2(1+SNR1z1)
}

(M.2)

where τ̃ = min{τ0, τ
∗} and τ ∗ is the solution to

− 1

θ1

logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

= − 1

θ2

logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}

(M.3)

and τ0, as defined in (7.45), is the upper bound on the time-sharing parameter τ .

Above, (M.1) can be easily obtained by using a similar approach as in the proof of

Proposition 27. (M.2) follows from the fact that the first term inside the minimization

in (M.1) is an increasing function of τ while the second term is a decreasing function.

Hence, the upper bound in (M.1) is maximized at τ ∗ at which the two terms inside the



249

minimization are equal to each other. If τ ∗ < τ0, the optimal value of τ is selected as

τ ∗. If, on the other hand, τ ∗ exceeds the upper bound, i.e., τ ∗ ≥ τ0, then the optimal

value is τ0.

Case I θ1 ≥ θ2:

In this case in which the QoS constraint at the source is more stringent, we can

show that the upper bound in (M.2) can be achieved or be approached arbitrarily

closely. Let us set θ̃ = θ1, θ̂ = θ2, and choose the time-sharing parameter as τ = τ̃ =

min{τ0, τ
∗}. Now, the equation in (7.43) becomes

R = g(θ1) = − 1

θ1
logEz1

{

e−τ̃ θ1T B log2(1+SNR1z1)
}

. (M.4)

Since θ̂ = θ2 ≤ θ̃ = θ1 by our assumption in Case I, (7.44) reduces to

R = h(θ1, θ2) = − 1

θ2
logEz2

{

e−(1−τ̃ )θ2T B log2(1+SNR2z2)
}

. (M.5)

Now, first assume that τ̃ = τ ∗. As seen in (M.3), we have, by the definition of τ ∗,

that the right-hand sides of (M.4) and (M.5) are equal and therefore these equations

are simultaneously satisfied.

Next, consider the other possibility in which τ̃ = min{τ0, τ
∗} = τ0 which implies

that τ0 ≤ τ ∗. Note again that τ ∗ is the value of τ at which the functions

− 1

θ1
logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

(M.6)

and

− 1

θ2

logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}

(M.7)
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are equal. Note that the function in (M.6) increases with increasing τ while the

function in (M.7) decreases. They meet at τ ∗. Therefore, at τ = τ0 ≤ τ ∗, we have

− 1

θ1

logEz1

{

e−τ0θ1T B log2(1+SNR1z1)
}

≤ − 1

θ2

logEz2

{

e−(1−τ0)θ2T B log2(1+SNR2z2)
}

.

(M.8)

Hence, the rate

R = − 1

θ1
logEz1

{

e−τ0θ1T B log2(1+SNR1z1)
}

(M.9)

can be supported. More specifically, the equations in (7.43) and (7.44) can simulta-

neously be satisfied by setting θ̃ = θ1, τ = τ0, and also by choosing θ̂ > θ2 so that the

right-hand side of (7.44) becomes smaller than − 1
θ2

logEz2

{

e−(1−τ0)θ2T B log2(1+SNR2z2)
}

and matches − 1
θ1

logEz1

{

e−τ0θ1T B log2(1+SNR1z1)
}

.

One subtlety in the above argument is the following. Note that we have the strict

inequality τ < τ0. Hence, we cannot actually set τ = τ0 but we can select a value of

τ that is arbitrarily close to τ0. Therefore, since the function in (M.6) increases with

increasing τ , we can approach the maximum rate − 1
θ1

logEz1

{

e−τ0θ1T B log2(1+SNR1z1)
}

arbitrarily closely. Because the effective capacity is defined as the supremum of

rates (see e.g., (7.14)), R = − 1
θ1

logEz1

{

e−τ0θ1T B log2(1+SNR1z1)
}

is indeed the effective

capacity.

Case II θ1 < θ2:

We now consider the scenario in which the relay node is subject to a more stringent

QoS constraint. In this case, the approach behind the proof is identical to the one

employed in Case I. Again, we set θ̃ = θ1 and θ̂ = θ2. Because, otherwise if we have

θ̃ > θ1 and/or θ̂ > θ2, we impose more strict QoS constraints than necessary and

hence end up supporting only lower arrival rates. Now, for fixed τ , the equations in
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(7.43) and (7.44) become

R = g(θ1) = − 1

θ1
logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

(M.10)

and

R = h(θ1, θ2) = − 1

θ1

(

logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ2−θ1)T B log2(1+SNR1z1)
}
)

, (M.11)

respectively. Note that (M.11) follows from (7.44) by noting that θ̂ = θ2 > θ1 = θ̃ in

this case. Similarly as before, the right-hand side of (M.10) is an increasing function

of τ while the right-hand side of (M.11) is a decreasing function. Therefore, the

equations in (M.10) and (M.11) can simultaneously be satisfied by choosing τ = τ ′

where τ ′ is solution to

− 1

θ1
logEz1

{

e−τθ1T B log2(1+SNR1z1)
}

= − 1

θ1

(

logEz2

{

e−(1−τ)θ2T B log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ2−θ1)T B log2(1+SNR1z1)
})

.

(M.12)

Choosing values other than θ̃ = θ1, θ̂ = θ2, and τ = τ ′ will lead to smaller arrival

rates. Hence, the effective capacity is given by

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−τ ′θ1T B log2(1+SNR1z1)
}

. (M.13)

Above discussion implicitly assumes that τ ′ < τ0. If τ ′ exceeds the threshold τ0,

then the optimal value of the time-sharing parameter is set to τ = τ0. Using similar
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ideas as in Case I, we can show that the effective capacity in this case is

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−τ0θ1T B log2(1+SNR1z1)
}

. (M.14)

�
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Appendix N

Exponential Decay of Pr(xnm /∈ Snm)

with nm

Assume that the codewords xnm = (x1, x2, . . . , xnm) are generated randomly with each

component independent and identically distributed according to xi ∼ CN (0, E − δ)

for some arbitrarily small δ > 0. Now, we have

Pr(xnm /∈ Snm) = Pr

(

1

nm

nm∑

i=1

|xi|2 > E
)

(N.1)

= Pr

(
nm∑

i=1

|xi|2 > nmE
)

(N.2)

= 1 −
γ
(

nm, nm E
E−δ

)

(nm− 1)!
. (N.3)

The expression in (N.3) is obtained by noting that
∑nm

i=1 |xi|2 is a central chi-square

random variable with 2nm degrees of freedom and E{|xi|2} = E − δ for all i, and

observing that the probability in (N.2) is the complementary cumulative distribution

function of this chi-square random variable. In (N.3), γ(·, ·) is the lower incomplete

Gamma function defined as
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γ(s, y) =
∫ y

0
ts−1e−t dt. (N.4)

For positive integer nm, the lower incomplete Gamma function has the following

equivalent expression [75, Section 8.352]:

γ(nm, y) = (nm− 1)!

(

1 − e−y
nm−1∑

i=1

yi

i!

)

(N.5)

Making use of this expression, we can write

Pr(xnm /∈ Snm) = e−anm
nm−1∑

i=1

ai(nm)i

i!
(N.6)

≤ e−anmanm−1
nm−1∑

i=1

(nm)i

i!
(N.7)

≤ e−anmanm−1
∞∑

i=1

(nm)i

i!
(N.8)

= e−anmanm−1enm (N.9)

= e−(a−1−loge a)nm−loge a (N.10)

where we have defined a = E
E−δ

> 1. Above, the upper bound in (N.7) is obtained by

noting that for a > 1, we have ai ≤ anm−1 for all i = 1, . . . , nm− 1. (N.8) follows by

increasing the upper limit of the summation to infinity. (N.9) follows from the fact

that the sum expression in (N.8) is the power series of the exponential function and

is equal to enm. (N.10) is obtained by expressing anm−1 = e(nm−1) loge a and combining

the exponential functions. Finally, noting the fact that a− 1 − loge a > 0 for a > 1,

we immediately see from the upper bound in (N.10) that Pr(xnm /∈ Snm) decreases

exponentially fast with increasing nm. �
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Appendix O

Proof of Theorem 30

We first prove the following proposition whose proof uses some techniques also em-

ployed in [76].

Proposition 4 The function

f(ǫ) = (1 − ǫ)e−θnmRl,ǫ (O.1)

is strictly convex in ǫ.

Proof: Denote

−θnmRl,ǫ = aQ−1(ǫ) + b (O.2)

where we, from (8.12), define

a = θ

√
√
√
√

m∑

l=1

2nSNRzl

1 + SNRzl
log2 e and b = −θn

m∑

l=1

log2(1 + SNRzl). (O.3)
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Note that a > 0 since, by our assumption, SNR > 0 and θ > 0 and also we also

consider the interesting case in which at least one fading coefficient is strictly greater

than zero1. Then, we can rewrite (O.1) as

f(ǫ) = (1 − ǫ)eaQ−1(ǫ)+b. (O.4)

The first and second derivative of f(ǫ) with respect to ǫ are

ḟ(ǫ) =
(

aQ̇−1(ǫ)(1 − ǫ) − 1
)

eaQ−1(ǫ)+b (O.5)

f̈(ǫ) =
(

a(1 − ǫ)
(

Q̇−1(ǫ)
)2 − 2Q̇−1(ǫ) + (1 − ǫ)Q̈−1(ǫ)

)

aeaQ−1(ǫ)+b (O.6)

where Q̇−1(ǫ) and Q̈−1(ǫ) denote the first and second derivatives ofQ−1(ǫ) with respect

to ǫ. Note that for an invertible and differentiable function g, we have g(g−1(x)) = x.

Taking the derivative of both sides, we have

ġ(g−1(x))ġ−1(x) = 1 ⇒ ġ−1(x) =
1

ġ(g−1(x))
(O.7)

where ġ(g−1(x)) denotes the first derivative of g evaluated at g−1(x), and ġ−1(x) is

the derivative of g−1 with respect to x. Noting that

Q(x) =
∫ ∞

x

1√
2π
e− t2

2 dt and Q̇(x) = − 1√
2π
e− x2

2 , (O.8)

we can derive the following

Q̇−1(ǫ) = −
√

2πe
(Q−1(ǫ))2

2 . (O.9)

1If zl = 0 for all l, then Rl,ǫ = 0 and consequently f(ǫ) = (1 − ǫ) is a linear function of ǫ. Hence,
the strict convexity will not be affected by this linear behavior when the expectation is taken over
all possible values of z as will also be more explicitly discussed at the end of Appendix O.
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Note that Q̇−1(ǫ) < 0 for 0 ≤ ǫ ≤ 1. Differentiating Q̇−1(ǫ) with respect to ǫ, we have

Q̈−1(ǫ) = 2πQ−1(ǫ)e(Q−1(ǫ))2

. (O.10)

Next, we consider the following two cases:

1) ǫ < 1
2
: We have Q−1(ǫ) > 0 for this case and hence Q̈−1(ǫ) > 0. Together with

the fact that Q̇−1(ǫ) < 0, we can immediately see that f̈(ǫ) > 0 for ǫ < 1
2
.

2) ǫ > 1
2
: We have Q−1(ǫ) < 0 for this case. Substituting (O.9) and (O.10)

into (O.6) and denoting x = Q−1(ǫ), the expression inside the parentheses on the

right-hand side of (O.6) can be written as

a(1 − ǫ)
(

Q̇−1(ǫ)
)2 − 2Q̇−1(ǫ) + (1 − ǫ)Q̈−1(ǫ) (O.11)

= a(1 − ǫ)2πe(Q−1(ǫ))2

+ 2
√

2πe
(Q−1(ǫ))2

2 + (1 − ǫ)2πQ−1(ǫ)eQ−1(ǫ))2

(O.12)

= a(1 −Q(x))2πe
x2

2 + 2
√

2πe
x2

2 + (1 −Q(x))2πxex2

(O.13)

= e
x2

2

(

2π(1 −Q(x))(x+ a)e
x2

2 + 2
√

2π
)

(O.14)

≥ e
x2

2

(

2π(1 −Q(x))xe
x2

2 + 2
√

2π
)

(O.15)

≥ e
x2

2

(

2π
1√

2π(−x)
e− x2

2 xe
x2

2 + 2
√

2π

)

(O.16)

= e
x2

2 (−
√

2π + 2
√

2π) = e
x2

2

√
2π > 0 (O.17)

where (O.15) follows from the facts that a > 0 and hence x + a > x. (O.16) is

obtained from the following upper bound

1 −Q(x) = Q(−x) ≤ 1√
2π(−x)

e− x2

2 for x < 0 (O.18)
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and the facts that x = Q−1(ǫ) < 0 for this case and as a result x(1 − Q(x)) can be

lower bounded by x 1√
2π(−x)

e− x2

2 . Therefore, f̈(ǫ) > 0 for ǫ > 1
2
.

Also note that ǫ = 1
2

means Q−1(ǫ) = 0, so we have

a(1 − ǫ)
(

Q̇−1(ǫ)
)2 − 2Q̇−1(ǫ) + (1 − ǫ)Q̈−1(ǫ) (O.19)

= a(1 − ǫ)2πe(Q−1(ǫ))2

+ 2
√

2πe
(Q−1(ǫ))2

2 + (1 − ǫ)2πQ−1(ǫ)eQ−1(ǫ))2

(O.20)

= aπ + 2
√

2π > 0 (O.21)

and as a result f̈(ǫ) > 0.

From the above discussion, we can find that f̈(ǫ) > 0 for all ǫ ∈ [0, 1]. f(ǫ) is

strictly convex in ǫ. �

Now, let ψ(ǫ) = ǫ+ (1 − ǫ)e−θnmRl,ǫ = ǫ+ f(ǫ). We have ψ̈(ǫ) = f̈(ǫ) > 0. Hence,

ψ(ǫ) is also strictly convex. Moreover, since the nonnegative weighted sum of strictly

convex functions is strictly convex [53] and the addition of a constant does not alter

the strict convexity (note that in the case in which zl = 0 for all l, we have Rl,ǫ = 0

and ψ(ǫ) = 1), we can conclude that Ψ(ǫ) = E{ψ(ǫ)} is strictly convex in ǫ. �
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Appendix P

Proof of Theorem 31

We first write the the effective rate expression

RE(θ) = − 1

θnm
loge Ez

{

ǫm + (1 − ǫm)e−θnmRl,ǫm

}

(P.1)

where the subscript m in ǫm is used to explicitly indicate the dependence of the

decoding error probability on m. Recall that we assume ǫm ≥ ǫo > 0 for all m. Under

this assumption, we first show the boundedness of the function inside the expectation

in (P.1).

Lemma 4 Assume that ǫm ≥ ǫo > 0 for all m. Then, there exists an integer M such

that for all m ≥ M , we have

ǫo ≤ ǫm + (1 − ǫm)e−θnmRl,ǫm ≤ 1. (P.2)

Proof: The lower bound is immediate as ǫo ≤ ǫm ≤ 1 and (1 − ǫm)e−θnmRl,ǫm ≥ 0,

and actually holds for all m. Additionally, it is easy to see that the upper bound in

(P.2) holds when Rl,ǫm ≥ 0. Being a lower bound, the nonnegativity of Rl,ǫm in (8.12)
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is not guaranteed for any given ǫm. Note that for arbitrarily small ǫm, Q−1(ǫm) is

arbitrarily large, which can lead to negative values for Rl,ǫm. However, we show below

that when ǫm is lower bounded by ǫo > 0, Rl,ǫm is nonnegative for sufficiently large

values of m. We first establish the following lower bound:

Rl,ǫm =
1

m

m∑

l=1

log2(1 + SNRzl) −
√
√
√
√

log2
2 e

m

m∑

l=1

2SNRzl

nm(1 + SNRzl)
Q−1(ǫm) (P.3)

≥ 1

m

m∑

l=1

log2(1 + SNRzl) −
√
√
√
√

log2
2 e

m

m∑

l=1

2SNRzl

nm(1 + SNRzl)
Q−1(ǫo) (P.4)

≥ 1

m

m∑

l=1

log2(1 + SNRzl) −
√
√
√
√

2 log2
2 e

nm2

m∑

l=1

loge(1 + SNRzl)Q
−1(ǫo) (P.5)

=

√
√
√
√

1

m

m∑

l=1

log2(1 + SNRzl)





√
√
√
√

1

m

m∑

l=1

log2(1 + SNRzl) −
√

2 log2 e

nm
Q−1(ǫo)





(P.6)

where (P.4) is due to the observation that Q−1(ǫo) ≥ Q−1(ǫm) for ǫm ≥ ǫo, and (P.5)

follows from the fact that loge(1+x) ≥ x
1+x

for all x ≥ 0. By the law of large numbers,

we know that 1
m

∑m
l=1 log2(1 + SNRzl) → E{log2(1 + SNRz)} as m → ∞. On the other

hand,
√

2 log2 e
nm

Q−1(ǫo) → 0 as m increases. Hence, from the lower bound in (P.6), we

conclude that there exists M such that for all m ≥ M , Rl,ǫm ≥ 0, proving the Lemma.

�

The result of Lemma 4 implies that for sufficiently large m, we have

ǫ∗ ≤ Ez

{

ǫm + (1 − ǫm)e−θnmRl,ǫm

}

≤ 1 (P.7)

and hence

0 ≤ lim
m→∞

− loge Ez

{

ǫm + (1 − ǫm)e−θnmRl,ǫm

}

≤ − loge ǫo < ∞ (P.8)
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showing that the numerator in (P.1) approaches a finite value with increasing m.

On the other hand, the denominator in (P.1) increases linearly with m. Therefore,

limm→∞ RE(θ) = 0. �
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Appendix Q

Proof of Theorem 32

First, for any given channel state pair z = (z1, z2, . . . , zm), we define

µ =
1

m

m∑

l=1

log2(1 + SNRzl), (Q.1)

δ =

√
√
√
√

1

m

m∑

l=1

2SNRzl

nm(1 + SNRzl)
log2 e (Q.2)

and note that µ > 0, δ > 0. We can find that Φ(0) = 1, Φ(∞) = 1, and Φ(R) < 1 for

all R ∈ (0,∞). Note that

Q(x) =
∫ ∞

x

1√
2π
e− t2

2 dt. (Q.3)
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The first and second derivatives of Φ(R) in R are given by

Φ̇(R) = Ez

{

1√
2πδ

e− (µ−R)2

2δ2

}
(

1 − e−θnmR
)

− θnm
(

1 − Ez

{

Q
(
µ− R

δ

)})

e−θnmR,

(Q.4)

Φ̈(R) = Ez

{

1√
2πδ

e− (µ−R)2

2δ2
µ−R

δ2

}
(

1 − e−θnmR
)

+ θnme−θnmR

(

Ez

{

2√
2πδ

e− (µ−R)2

2δ2

}

+ θnm
(

1 − Ez

{

Q
(
µ−R

δ

)}))

.

(Q.5)

Now, we need the following result.

Proposition 5 Φ̈(R) = 0 has only one solution.

Proof: Obviously, Φ̈(0) > 0. Letting Φ̈(R) = 0 and performing a simple computation,

we have

−
Ez

{

1√
2πδ
e− (µ−R)2

2δ2 µ−R
δ2

}

Ez

{

1√
2πδ
e− (µ−R)2

2δ2

} = θnm







2 + θnm
1 − Ez

{

Q
(

µ−R
δ

)}

Ez

{

1√
2πδ
e− (µ−R)2

2δ2

}







e−θnmR

1 − e−θnmR
. (Q.6)

First, we can show that the left-hand side (LHS) of (Q.6) is a nondecreasing function

in R. Let

g(R) = Ez

{

1√
2πδ

e− (µ−R)2

2δ2

}

. (Q.7)

1√
2πδ
e− (µ−R)2

2δ2 is a log-concave function in R for all z, and since integration over z does

not change the log-concavity, g(R) is also a log-concave function [53]. And hence
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− loge g(R) is convex. Note that

LHS =
d

dR
(− loge g(R)) (Q.8)

thus the derivative of LHS of (Q.6) is greater than or equal to 0, and as a result it is

nondecreasing in R.

Next, we can prove that the right-hand side (RHS) of (Q.6) is a strictly decreasing

function in R. Note that e−θnmR

1−e−θnmR is strictly decreasing with increasing R. Let

1 − Ez

{

Q
(
µ− R

δ

)}

= Ez

{
∫ µ−R

δ

−∞

1√
2π
e− t2

2 dt

}

= f(u(R)), (Q.9)

where f(x) = Ez

{
∫ x

−∞
1√
2π
e− t2

2 dt
}

and u(R) = µ−R
δ

. We know that f(x) is a log-

concave function [53], and from [53, Eq. 3.10], we can see that loge f is concave and

nondecreasing, and u is concave (actually linear) in R, and hence loge f(u(R)) is a

concave function in R directly. Now that

Ez

{

1√
2πδ
e− (µ−R)2

2δ2

}

1 − Ez

{

Q
(

µ−R
δ

)} = − ḟ(u(R))

f(u(R))
=

d

dR
(− loge f(u(R))) (Q.10)

and − loge f(u(R)) is a convex function. So,

Ez

{

1√
2πδ

e
−

(µ−R)2

2δ2

}

1−Ez{Q(µ−R
δ )} is a nondecreasing func-

tion, i.e.,
1−Ez{Q(µ−R

δ )}
Ez

{

1√
2πδ

e
−

(µ−R)2

2δ2

} is a nonincreasing function in R. Thus, due to the strictly

decreasing behavior of e−θnmR

1−e−θnmR and the facts that θnm







2 + θnm
1−Ez{Q(µ−R

δ )}
Ez

{

1√
2πδ

e
−

(µ−R)2

2δ2

}






>

0 and e−θnmR

1−e−θnmR > 0 for n,m, θ > 0, the RHS of (Q.6) is strictly decreasing in R, and

hence (Q.6) has only one solution. �
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Denote the unique solution to Φ̈(R) = 0 as R′. We know that Φ̈(R) > 0 for

all R < R′, or Φ̇(R) is increasing equivalently, and Φ̈(R) < 0 for all R > R′, or

Φ̇(R) is decreasing equivalently. Note here that
∫∞

0 Φ̇(R)dR = Φ(∞) − Φ(0) = 0,

Φ̇(0) = −θnm(1 − Ez

{

Q(µ
δ
)
}

) < 0, so Φ̇(R′) > 0. Otherwise, Φ̇(R) is decreasing

for R > R′, and hence Φ̇(R) ≤ 0,
∫∞

0 Φ̇(R)dR < 0, leading to a contradiction. Also

note that Φ̇(∞) = 0, so Φ̇(R) > 0 for R > R′. Thus, there is only one solution to

Φ̇(R) = 0. This solution is in the range R ∈ (0, R′), and Φ(R) is minimized at this

value. �
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