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University of Nebraska, 2012
Adviser: Mustafa Cenk Gursoy and Senem Velipasalar

This dissertation deals with various issues in wireless communications under statistical
quality of service (QoS) constraints. Effective capacity, which provides the maximum
constant arrival rate that a wireless channel can sustain while satisfying statistical
QoS constraints, is adopted as the performance metric. Energy efficiency of point-to-
point links is first studied by characterizing the spectral efficiency-bit energy tradeoft
in the low-power and wideband regimes. Different transmission strategies (with vari-
able or fixed rate) and power policies are studied. Then, the effective capacity region
for fading multiple-access channels (MAC) is investigated for different transmission
strategies: Superposition coding with successive decoding and time division multi-
ple acess (TDMA). With fixed power, it is shown that varying the decoding order
with respect to the channel states can significantly increase the achievable through-
put region. In the two-user case, the optimal decoding strategy is determined for
the scenario in which the users have the same QoS constraints. The optimal power
allocation policies for any partition of the channel state space are identified. With
the characterization of effective capacity regions, the energy efficiency of MAC is
investigated by quantizing the minimum bit energy and wideband slope regions for
different transmission strategies. In addition, the throughput for the two-hop wireless
communication links with individual QoS constraints at the source and relay nodes

is determined as a function of the QoS parameters and signal-to-noise ratios at the



source and relay, and the fading distributions of the links. The analysis is performed
for both full-duplex and half-duplex relaying. Finally, the throughput with finite
blocklength channel codes is analyzed for variable-rate and fixed-rate transmissions
in single-user settings. The optimum error probability for variable-rate transmission

and the optimum coding rate for fixed-rate transmission are shown to be unique.
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Chapter 1

Introduction

Fueled by the fourth generation (4G) wireless standards, smart phones and tablets,
social networking tools and video-sharing sites, wireless transmission of multimedia
content has significantly increased in volume and is expected to be the dominant traffic
in data communications. Such wireless multimedia traffic requires certain quality-of-
service (QoS) guarantees so that acceptable performance and quality levels can be
met for the end-users. For instance, in voice over IP (VoIP), interactive-video (e.g.,
videoconferencing), and streaming-video applications in wireless systems, latency is
a key QoS metric. In such cases, information has to be communicated with minimal
delay. Hence, certain constraints on the queue length should be imposed in order
to have the data not wait too long in the buffer at the transmitter. At the same
time, satisfying these QoS considerations is challenging in wireless communication
scenarios. Due to mobility, changing environment and multipath fading, the power
of the received signal, and hence the instantaneous rates supported by the channel,
fluctuate randomly [I]. In such a volatile environment, providing deterministic delay
guarantees either is not possible or, when it is possible, requires the system to operate

pessimistically and achieve low performance underutilizing the resources. Therefore,



wireless systems are better suited to support statistical QoS guarantees.

While providing powerful results, information-theoretic studies generally do not
address delay and QoS constraints [2]. For instance, results on the channel capac-
ity give insights on the performance levels achieved when the blocklength of codes
becomes large [3]. The impact upon the queue length and queueing delay of transmis-
sion using codes with large blocklength can be significant. Situation is even further
exacerbated in wireless channels in which the ergodic capacity has an operational
meaning only if the codewords are long enough to span all fading states. Now, we
also have dependence on fading, and in slow fading environments, large delays can
be experienced in order to achieve the ergodic capacity. Due to these considerations,
performance metrics such as capacity versus outage [4] and delay limited capacity [5]
have been considered in the literature for slow fading scenarios. For a given outage
probability constraint, outage capacity gives the maximum transmission rate that
satisfies the outage constraint. Delay-limited capacity is defined as the outage capac-
ity associated with zero outage probability, and is a performance level that can be
attained regardless of the values of the fading states. Hence, delay limited capacity
can be seen as a deterministic service guarantee. However, delay limited capacity can
be low or even zero, for instance in Rayleigh fading channels even if both the receiver
and transmitter have perfect channel side information.

More recently, delay constraints are more explicitly considered and their impact
on communication over fading channels is analyzed in [6] and [7]. In these studies,
the tradeoff between the average transmission power and average delay is identified.
In [6], this tradeoff is analyzed by considering an optimization problem in which
the weighted combination of the average power and average delay is minimized over
transmission policies that determine the transmission rate by taking into account the

arrival state, buffer occupancy, channel state jointly together.



In this thesis, we follow a different approach to solving problems arising in wireless
communications under QoS constraints. we employ the notion of effective capacity
[8], which can be seen as the maximum throughput that can be achieved by the
given energy levels while providing statistical QoS guarantees. Effective capacity
formulation uses the large deviations theory and incorporates the statistical QoS
constraints by capturing the rate of decay of the buffer occupancy probability for

large queue lengths (see e.g., [9], [10], [11], and [12]).

1.1 Effective Capacity

In [8] [13] [14] [15], Wu and Negi defined the effective capacity as the maximum
constant arrival rate that a given service process can support in order to guarantee a
statistical QoS requirement specified by the QoS exponent . The effective capacity

is formulated as

1
o) = — Jim % log, E{e 1} bits/s, (1.1)
where the expectation is with respect to S[t] = !_; s[i], which is the time-accumulated

service process, and {s[i],i = 1,2,...} denotes the discrete-time stationary and er-
godic stochastic service process.

Operational meaning of the effective capacity is the following. If the constant
arrival rate to the buffer is equal to the effective capacity C(#), then the queue length
process converges in distribution to a random variable () that satisfies

>
lim log Pr(Q > q)

q—o0 q

= —0. (1.2)

Above, () can be seen as the stationary queue length, and 0 as the asymptotic decay



rate of the tail distribution of the queue length (). Hence, effective capacity specifies
the maximum constant arrival rate that can be supported by the time-varying chan-
nel while the queue-overflow probability is guaranteed to behave as Pr(Q > q) ~ e~%
for large overflow-threshold ¢. Therefore, the QoS exponent § can be regarded as a
parameter that specifies the asymptotic exponential decay-rate of the overflow prob-
ability and describes how strict the QoS constraints are. For instance, larger 6 corre-
sponds to more strict QoS constraints while smaller # implies looser QoS guarantees.
As noted in [I6], when we have Pr(Q > ¢q) ~ e¢~%, then the delay violation proba-
bility can be approximated as Pr(D > d) ~ e~% for large d, where D denotes the
steady-state delay experienced in the buffer and ¢ is determined by the arrival and
service processes. In a more specific scenario in which the arrival rate is constant, Liu
and Chamberland in [I7] showed that Pr(D > d) < ¢y/Pr(Q > q) where ¢ is some
constant, ¢ = ad, and a is the constant arrival rate.

Since the average arrival rate is equal to the average departure rate when the
queue is in steady-state [I8], effective capacity, which characterizes the maximum
constant arrival rate, can also be seen as the maximum throughput in the presence
of constraints on the buffer or delay violation probabilities. Note that requiring
the tail probabilities of buffer/delay violations to decay exponentially is a stronger
condition than stability or having the average buffer length or delay to be finite.
Therefore, throughput in the presence of QoS limitations will in general be less than
the throughput under stability constraints.

In the following, in order to simplify the analysis while considering general fading
distributions, we assume that the fading coefficients stay constant over the frame
duration 7" and vary independently for each frame and each user. In this scenario,

s[i] = T'R[i], where RJ[i] is the instantaneous service rate in the ith frame duration



[iT; (i +1)T'). Then, (LIJ) can be written as

1

CO)=—g1

log, E,{e TR} bits/s, (1.3)

where R[i] is in general a function of the fading state z, which will be discussed in de-
tails in later chapters. (IL3]) is obtained using the fact that instantaneous rates { R[i]}
vary independently from one frame to another. It is interesting to note that as 8 — 0
and hence QoS constraints relax, effective capacity approaches the ergodic capacity,
i.e., C(0) — E,{R[i]}. On the other hand, as shown in [19], C'(#) converges to the
delay limited capacity as 6 grows without limit (i.e., # — oo0) and QoS constraints
become increasingly more strict. Therefore, effective capacity enables us to study the
performance levels between the two extreme cases of delay limited capacity, which
can be seen as a deterministic service guarantee or equivalently as a performance level
attained under hard QoS limitations, and ergodic capacity, which is achieved in the
absence of any QoS considerations.

Throughout the rest of the dissertation, we use the effective capacity normalized

by bandwidth B, which is denoted by

c()

C(0) = 5 bits/s/Hz. (1.4)

1.2 Spectral Efficiency-Bit Energy Tradeoff in the
Low-SNR regime

In wireless systems, mobile wireless systems can only be equipped with limited energy
resources, and hence energy efficient operation is a crucial requirement in most cases.

Indeed, one of the features of fourth generation (4G) wireless systems is the ability



to support multimedia services at low transmission costs [20, Chap. 23, available
online]. To measure and compare the energy efficiencies of different systems and
transmission schemes, one can choose as a metric the energy required to reliably
send one bit of information. Information-theoretic studies show that energy-per-bit
requirement is generally minimized, and hence the energy efficiency is maximized, if
the system operates at low signal-to-noise ratio (SNR) levels and hence in the low-
power or wideband regimes. Recently, Verdd in [21] has determined the minimum
bit energy required for reliable communication over a general class of channels, and
studied the spectral efficiency—bit energy tradeoff in the wideband regime while also
providing novel tools that are useful for analysis at low SNRs.

In this section, we focus on the energy efficiency aspect of wireless transmissions
under the aforementioned statistical queueing constraints. Since energy efficient op-
eration generally requires operation at low-SNR levels, our analysis in Chapters 2]

and @ is carried out in the low-SNR regime. We define SNR = 2=, which can be seen

NoB”
more clearly in the following chapters. Therefore, low SNR means either low average

= . . . . E
power P or high bandwidth B. Then, it can be easily seen that Moo under QoS

constraints can be obtained from [21]

E, Y SNR 1 (15)
- — 1m = = . .
Nomin  SNR—0 Cg(SNR)  Cg(0)

At ﬁ—‘;min, the slope Sy of the spectral efficiency versus Ej, /Ny (in dB) curve is defined

as [21] .
Cp(Ee
Sy = lim — £(x) ——101og;, 2. (1.6)

Considering the expression for normalized effective capacity, the wideband slope can



be found from!
2(Cp(0))?

ATy

log, 2 (1.7)

where Cg(0) and C(0) are the first and second derivatives, respectively, of the func-

tion Cg(SNR) in bits/s/Hz at zero SNR [21]. %min and Sy provide a linear approxi-

mation of the spectral efficiency curve at low spectral efficiencies, i.e.,

E S E E
Cp (—”) =2 <—” -2 ) te (1.8)
N() 1010g102 N() dB NOmm dB
where f,—g o 10 log; % and € = o (% - ﬁ—‘;min). Note that the expressions in

(L3) and (T7) for fixed rate transmissions studied in Chapters Bl and M will change

accordingly to accommodate the transmission schemes.

1.3 Review of Research on Multiple-access fading
channels

In wireless networks, the design and analysis of efficient transmissions strategies have
been of significant interest for many years. In particular, fading multiple access
channels (MAC) have been extensively studied from an information-theoretic point
of view [3][22][23][24][25][26] [27]. For instance, Tse and Hanly [23] have characterized
the capacity region of and determined the optimal resource allocation policies for
multiple access fading channels. They have shown that the boundary surface points
are in general achieved by superposition coding and successive decoding techniques,
and obtaining each boundary point can be associated with an optimization problem in

which a weighted sum rate is maximized. Vishwanath et al. [26] derived the explicit

'We note that the expressions in ([F) and (1) differ from those in [2I] by a constant factor
due to the fact that we assume that the units of Cg is bits/s/Hz rather than nats/s/Hz.



optimal power and rate allocation schemes (similar to waterfilling) by considering
that the users are successively decoded in the same order for all channel states. For
the convex capacity region, the unique decoding order was shown to be the reverse
order of the priority weight. While superposition coding and successive decoding
strategies provide superior performance, time-division multiple access (TDMA) may
in certain cases be preferred due to its simplicity. Note that the performance of
TDMA approaches that of the optimal strategy as the signal-to-noise ratio (SNR)
vanishes but, as shown by Caire et al. in [27], TDMA is strictly suboptimal when
SNR is low but nonzero.

While establishing the fundamental performance limits, the aforementioned stud-
ies have not explicitly taken into account buffer constraints and random arrivals. In
[28] and [29], Yeh and Cohen considered multiaccess fading channels with random
packet arrivals to buffered transmitters, and characterized rate and power allocation
strategies that maximize the stable throughput of the system. The maximum stable
throughput region was shown in [30] to be the same as the MAC capacity region. In
[31], the same authors investigated rate allocation policies that minimize the average
packet delay in multiaccess fading channels again under the assumption of randomly
arriving packets. More recently, Ehsan and Javidi in [32] studied delay optimal rate
allocation strategies as well in two-user multiaccess channels but in the presence of
asymmetric arrival processes, processing rates, and packet length distributions. Yang
and Ulukus in [33] also considered an asymmetric setting and analyzed how to control
the transmission probabilities in order to minimize the average delay in a two-user
multiaccess scenario.

In Chapter B, we also investigate the performance under buffer constraints but pro-
vide a perspective different from those of previous studies. In particular, we consider

statistical quality of service (QoS) constraints in the form of limitations on the buffer



violation probabilities, and study the achievable rate region under such constraints
in multiaccess fading channels. In [34], Liu et al. considered a two-user cooperative
multiple access fading channel and analyzed the rate region achieved with frequency-
division multiplexing when the users are operating under QoS constraints in the form
of limitations on buffer overflow probabilities. In this study, cooperation among the
users is shown to significantly improve the achievable rate region if the quality of the
wireless link between the users is better than those of the links between the users and
the destination. We note that since the transmitters are assumed to not know the
channel conditions, power and rate adaptation policies are not studied in [34]. Addi-
tionally, since orthogonal transmission schemes are considered, superposition coding

and successive decoding strategies are not addressed in detail.

1.4 Main Contributions

The analysis and application of effective capacity in various settings has attracted
much interest recently (see e.g., [16][17][34][35][36][37][38][39][40][41] and references
therein). Motivated by this observation, we attempt to make progress towards a
better understanding of wireless communications under QoS constraints and draw
valuable insights for the design of communication systems.

Chapter 2] deals with the energy efficiency in fading channels with variable rate
transmissions [19]. Spectral efficiency—bit energy tradeoff is analyzed in the low-
power and wideband regimes by employing the effective capacity formulation, rather
than the Shannon capacity. Through this analysis, energy requirements under QoS
constraints are identified. The analysis is conducted under two assumptions: perfect
channel side information (CSI) available only at the receiver and perfect CSI available

at both the receiver and transmitter. In particular, it is shown in the low-power
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regime that the minimum bit energy required under QoS constraints is the same
as that attained when there are no such limitations. However, this performance is
achieved as the transmitted power vanishes. Through the wideband slope analysis,
the increased energy requirements at low but nonzero power levels in the presence of
QoS constraints are determined. A similar analysis is also conducted in the wideband
regime. The minimum bit energy and wideband slope expressions are obtained. In
this regime, the required bit energy levels are found to be strictly greater than those
achieved when Shannon capacity is considered.

ChapterBlsolves the problem of energy efficiency with fixed rate transmissions [42].
When only the receiver has CSI, transmitter is assumed to send the information at a
fixed rate. A two-state (ON-OFF) transmission model is adopted, where information
is transmitted reliably at a fixed rate in the ON state while no reliable transmission
occurs in the OFF state. We obtain the bit energy required at zero spectral efficiency
and the wideband slope in both wideband and low-power regimes. Initially, the
wideband regime with multipath sparsity is investigated, and the minimum bit energy
and wideband slope expressions are found. It is shown that the minimum bit energy
requirements increase as the QoS constraints become more stringent. Subsequently,
the low-power regime, which is also equivalent to the wideband regime with rich
multipath fading, is analyzed. In this case, bit energy requirements are quantified
through the expressions of bit energy required at zero spectral efficiency and wideband
slope. It is shown for a certain class of fading distributions that the bit energy
required at zero spectral efficiency is indeed the minimum bit energy for reliable
communications. Moreover, it is proven that this minimum bit energy is attained in
all cases regardless of the strictness of the QoS limitations. The impact upon the
energy efficiency of multipath sparsity and richness is quantified.

In Chapterd] we consider the energy efficiency when neither the transmitter or the
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receiver has the perfect CSI [43]. In this case, the channel coefficients are estimated
at the receiver via minimum mean-square-error (MMSE) estimation with the aid of
training symbols. The optimal fraction of power allocated to training is identified. It
is shown that the bit energy increases without bound in the low-power regime as the
average power vanishes. A similar conclusion is reached in the wideband regime if
the number of noninteracting subchannels grow without bound with increasing band-
width. On the other hand, it is proven that if the number of resolvable independent
paths and hence the number of noninteracting subchannels remain bounded as the
available bandwidth increases, the bit energy diminishes to its minimum value in
the wideband regime. For this case, expressions for the minimum bit energy and
wideband slope are derived. Overall, energy costs of channel uncertainty and queue-
ing constraints are identified, and the impact of multipath richness and sparsity is
determined.

Chapter [ studies the effective capacity region of fading MACs in the presence
of quality of service (QoS) constraints [44]. Perfect channel side information (CSI)
is assumed to be available at both the transmitters and the receiver. With fixed
power, the performance achieved by superposition coding with successive decoding
techniques is investigated. It is shown that varying the decoding order with respect to
the channel states can significantly increase the achievable throughput region. In the
two-user case, the optimal decoding strategy is determined for the scenario in which
the users have the same QoS constraints. The performance of orthogonal transmission
strategies is also analyzed. It is shown that for certain QoS constraints, time-division
multiple-access (TDMA) can achieve better performance than superposition coding if
fixed successive decoding order is used at the receiver side. When power control poli-
cies are incorporated, we identify the optimal power allocation policies for any fixed

decoding order over all channel states. For a given variable decoding order strategy,
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the conditions that the optimal power control policies must satisfy are determined,
and an algorithm that can be used to compute these optimal policies is provided.

In Chapter [6, the minimum bit energy levels and wideband slope regions of fad-
ing MAC have been characterized for different transmission and reception strategies,
namely time-division multiple-access (TDMA), superposition coding with fixed de-
coding order, and superposition coding with variable decoding order [45]. In the low-
power regime, it has been shown that the minimum received bit energies achieved by
these different strategies are the same and independent of the QoS constraints. For
the case of superposition coding, it has been found that varying the decoding order at
the receiver with the fading realizations does not enlarge the wideband slope region.
Also, the suboptimality of TDMA with respect to superposition schemes has been
proved except for the special case in which the fading states are linearly dependent.
In the wideband regime, the minimum bit energies achieved by different strategies are
the same for each user but vary with the QoS constraints. One stark difference from
the results in the low-power regime is that varying the decoding order at the receiver
with the fading realizations expands the wideband slope region. Also, unlike in the
low-power regime, it is shown that TDMA can interestingly outperform superposition
coding with fixed decoding order when wideband slope regions are considered. Con-
versely, the condition under which TDMA slope region is inside that of superposition
coding with fixed decoding order has been determined.

In Chapter [1l a two-hop wireless communication link in which a source sends
data to a destination with the aid of an intermediate relay node is studied [46].
It is assumed that there is no direct link between the source and the destination,
and the relay forwards the information to the destination by employing the decode-
and-forward scheme. Both the source and intermediate relay nodes are assumed to

operate under statistical quality of service (QoS) constraints imposed as limitations
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on the buffer overflow probabilities. The maximum constant arrival rates that can be
supported by this two-hop link in the presence of QoS constraints are characterized by
determining the effective capacity of such links as a function of the QoS parameters
and signal-to-noise ratios at the source and relay, and the fading distributions of
the links. The analysis is performed for both full-duplex and half-duplex relaying.
Through this study, the impact upon the throughput of having buffer constraints
at the source and intermediate relay nodes is identified. The interactions between
the buffer constraints in different nodes and how they affect the performance are
studied. The optimal time-sharing parameter in half-duplex relaying is determined,
and performance with half-duplex relaying is investigated.

Finally, in Chapter [§, we study the finite-blocklength channel codes for transmis-
sion [47]. A block fading model, in which fading stays constant in each coherence
block and changes independently between blocks, is considered. It is assumed that
channel coding is performed over multiple coherence blocks. An approximate low-
er bound on the transmission rate is obtained from Feintein’s Lemma. This lower
bound is considered as the service rate and is incorporated into the effective capacity
formulation. The optimum error probability for variable-rate transmission and the
optimum coding rate for fixed-rate transmission are shown to be unique. The tradeoffs
and interactions between the throughput, the number of blocks over which channel
coding is performed, error probabilities, channel coherence duration, and queueing

constraints are identified.
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Chapter 2

Energy Efficiency for Variable Rate

Transmissions

We first study the variable-rate/variable-power and variable-rate/fixed-power trans-
mission schemes with different assumptions on the availability of channel side in-
formation (CSI) at the transmitter and receiver [48]. We obtain the minimum bit
energy and wideband slope expressions, and in the variable-power case, we analyze

the impact of power control policies on energy efficiency.

2.1 System Model

We consider a point-to-point communication system in which there is one source
and one destination. The general system model is depicted in Fig2.1] and is similar
to the one studied in [35]. In this model, it is assumed that the source generates
data sequences which are divided into frames of duration 7'. These data frames are
initially stored in the buffer before they are transmitted over the wireless channel.

The discrete-time channel input-output relation in the i*" symbol duration is given
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Figure 2.1: The system model
by
y[i] = hliali) +nli] i=1,2,.... (2.1)

where z[i] and y[i] denote the complex-valued channel input and output, respectively.
The channel input is subject to an average power constraint E{|z[i]|>} < P for all
i, and we assume that the bandwidth available in the system is B. Above, n[i] is
a zero-mean, circularly symmetric, complex Gaussian random variable with variance
E{|n[i]|*} = No. The additive Gaussian noise samples {n[i]} are assumed to form
an independent and identically distributed (i.i.d.) sequence. Finally, hli] denotes
the channel fading coefficient, and {h[i]} is a stationary and ergodic discrete-time
process. We assume that perfect channel state information (CSI) is available at the
receiver while the transmitter has either no or perfect CSI. The availability of CSI

at the transmitter is facilitated through CSI feedback from the receiver. Note that
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if the transmitter knows the channel fading coefficients, it employs power and rate
adaptation. Otherwise, the signals are sent with constant power.

Note that in the above system model, the average transmitted signal-to-noise
ratio is SNR = P/(NyB). We denote the magnitude-square of the fading coefficient
by z[i] = |h[i]|?, and its distribution function by p.(z). When there is only receiver
CSI, instantaneous transmitted power is P[i] = P and instantaneous received SNR is
expressed as [i] = Pz[i]/(NoB). Moreover, the maximum instantaneous service rate
RJi] is

RJi] = Blog, (1 + SNRZ[@']) bits/s. (2.2)

We note that although the transmitter does not know z[i], recently developed rateless
codes such as LT [49] and Raptor [50] codes enable the transmitter to adapt its rate
to the channel realization and achieve R[i] without requiring CSI at the transmitter
side [51], [52]. For systems that do not employ such codes, service rates are smaller
than that in (22)), and the results in this chapter serve as upper bounds on the
performance.

When the transmitter also has CSI, the instantaneous service rate is
R[i] = Blog, <1 + Lopt (0, Z[Z])Z[Z]) bits/s (2.3)

where /1, (0, 2) is the power-adaptation policy that maximizes the effective capacity,
which has been discussed in Section [Tl This optimal power policy is determined in

[35]:

ope(0,2) = { @71 ) (2.4)
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where 6 is the QoS exponent defined in (L2), 5 = 1?37;—32 is the normalized QoS exponent

and « is the channel threshold chosen to satisfy the average power constraint:
1 1
SNR = E{popt (0, 2)} = E¢ | —/——F — - |7(a) (2.5)

1 ifz>a«
where 7(a) = 1{z > a} = is the indicator function. Note that

0 ifz<a
Lopt (6, 2) depends on the average power constraint only through the threshold «a.

Moreover, power allocation strategy piopt (6, 2), while varying with the instantaneous
values of the fading coefficients, depends on the queueing constraints statistically only
through the QoS exponent ¢, and hence is not a function of the instantaneous queue
lengths.

We finally note that since the maximum service rates are equal to the instanta-
neous channel capacity values, we assume through information-theoretic arguments
that when the transmitter transmits at the rate R[] given in (22) and (23), the
information is reliably received at the receiver and no retransmissions are required.

It can be easily shown that effective capacity specializes to the Shannon capacity
and delay-limited capacity in the asymptotic regimes. As 6 approaches to 0, con-
straints on queue length and queueing delay relax, and effective capacity converges

to the Shannon ergodic capacity:

E{Blog,(1 + SNRz)} CSI at the RX
lim Cg(SNR, ) = (2.6)
00 E {Blog, (1 + pept(0,2)2)} CSI at the RX and TX
where expectations are with respect to z. Note that in (2.0, popt(0, 2) is the water-

filling power adaptation policy, which maximizes the Shannon capacity. On the other

hand, as # — 0o, QoS constraints become more and more strict and effective capacity
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approaches the delay-limited capacity which as described before can be seen as a

deterministic service guarantee:

Blog,y(1 + SNRzyi,) CSI at the RX

Glim CE(SNR, ) = (2.7)
o Blog, (1 + o) CSI at the RX and TX
where o = Es{ll\l/lj} and Zp, is the minimum value of the random variable z, i.e.,

2 > Zmin > 0 with probability 1. Note that in Rayleigh fading, ¢ = 0 and z,;, = 0,
and hence the delay-limited capacities are zero in both cases and no deterministic
guarantees can be provided.

We first have the following preliminary result.

Proposition 1 The normalized effective capacity, Cg(SNR), given in (1.4) is a con-

cave function of SNR with the transmission schemes described above.

Proof: Tt can be easily seen that e 7%l where R[i] = Blog,(1+SNRz[i]), is a log-
convex function of SNR because — R[] is a convex function of SNR. Since log-convexity
is preserved under sums, g(z) = [ f(x,y)dy is log-convex in x if f(z,y) is log-convex

—O0TR[Y 5 also

in x for each y [53]. From this fact, we immediately conclude that E{e
a log-convex function of SNR. Hence, log, E{e~7#l1} is convex and — log, E{e~ i1}
Is concave in SNR.

When the transmitter also has CSI, we have R[i] = Blogy(1 + popt (0, 2[i])2[7]).
In this case, the concavity of Cg in SNR can be easily proven using the facts that
E{e~9TEl} is an non-decreasing, concave function of the threshold value o (specified

in (24))) and approaches zero as « diminishes to zero, and « is a non-increasing

function of SNR. U
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2.2 Energy Efficiency in the Low-Power Regime

As discussed in the previous section, the minimum bit energy is achieved as SNR =
% — 0, and hence energy efficiency improves if one operates in the low-power
regime in which P is small, or the high-bandwidth regime in which B is large. From
the Shannon capacity perspective, similar performances are achieved in these two
regimes, which therefore can be seen as equivalent. However, as we shall see in this
chapter, considering the effective capacity leads to different results at low power and
high bandwidth levels. In this section, we consider the low-power regime for fixed

bandwidth, B, and study the spectral efficiency vs. bit energy tradeoff by finding the

minimum bit energy and the wideband slope.

2.2.1 CSI at the Receiver Only

We initially consider the case in which only the receiver knows the channel conditions.
Substituting (2Z:2]) into (L)), we obtain the spectral efficiency given 0 as a function

of SNR:

Cp(SNR) = log, E{e0TBloga(1+5NR2)y log, B{(1 4+ SNRz) "} (2.8)

- 9TB - 9TB

0TB

log. 2° Note that since the analysis is performed for fixed 6 throughout

where again § =
the chapter, we henceforth express the effective capacity only as a function of SNR to
simplify the expressions. The following result provides the minimum bit energy and

the wideband slope.

Theorem 1 When only the receiver has perfect CSI, the minimum bit energy and
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wideband slope are

E, log, 2 iS 2
—_Z — an 0 = B .
NOmz'n E{Z} (6+1) Efz }2 _B

(2.9)

Proof: The first and second derivative of Cg(SNR) with respect to SNR are given by

. 1 E{(1+SNRz)~ 1z}
Cu(SNR) = d 2.10
e R (IS DR S (2.10)

) B (E{(l + SNRZ)(ﬁ+1)z}>2 B+ 1E{(1 + SNRz)~(3+2 32}

Cg(SNR) = _
BNR) = 1 5\ TE{1 + snme) 7 log,2  E{(1+ SNR2)-7}

, (2.11)

respectively, which result in the following expressions when SNR = 0:

1
log, 2

e

<(6 FE{?) - B(E{z})Q). (2.12)

Substituting the expressions in (ZI2]) into (L) and (L) provides the desired result.

O
From the above result, we immediately see that %min does not depend on ¢
and the minimum received bit energy is =+ = £&  E{z} = log,2 = —1.59 dB.

No min No min

Note that if the Shannon capacity is used in the analysis, i.e., if § = 0 and hence
p =0, ﬁ—b;mm = —1.59 dB and &y = 2/(E{2?}/E?{z}). Therefore, we conclude from
Theorem [ that as the average power P decreases, energy efficiency approaches the
performance achieved by a system that does not have QoS limitations. However, we
note that wideband slope is smaller if § > 0. Hence, the presence of QoS constraints
decreases the spectral efficiency or equivalently increases the energy requirements for
fixed spectral efficiency values at low but nonzero SNR levels.

Fig. plots the spectral efficiency as a function of the bit energy for different
values of # in the Rayleigh fading channel with E{|h|*} = E{z} = 1. Note that the
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CSI known at receiver only

Shannon capacity (6=0)
= = =6=0.001
6=0.01
------ 6=0.1
- e =-6-1

Spectral efficiency: b/s/Hz

Figure 2.2: Spectral efficiency vs. E,/Nj in the Rayleigh fading channel with fixed
B; CSI known at the receiver only.

curve for § = 0 corresponds to the Shannon capacity. Throughout the chapter, we
set the frame duration to 7' = 2ms in the numerical results. For the fixed bandwidth
case, we have assumed B = 10° Hz. In Fig. 2.2, we observe that all curves approach
%mm = —1.59 dB as predicted. On the other hand, we note that the wideband
slope decreases as 6 increases. Therefore, at low but nonzero spectral efficiencies,
more energy is required as the QoS constraints become more stringent. Considering

the linear approximation in ([L§]), we can easily show for fixed spectral efficiency

C (%) for which the linear approximation is accurate that the increase in the bit

_ L

energy in dB, when the QoS exponent increases from 6; to s, is % N

1 1 E
( S 80’61) C (£)10log;y2.

dB,02 dB,601
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2.2.2 CSI at both the Transmitter and Receiver

We now consider the case in which both the transmitter and receiver have perfect

CSI. Substituting (23] into (I4]), we have

" 0TB ;
g (ro 2 () Tow)) e

where F(a) = E{1{z < a}}. We note that the normalized effective capacity ex-

1 — o) o z)z
Co(SNR) = logeE{e 0T Blog, (1+u pt(6,2) )}

pression in (2I3]) is obtained assuming that the optimal power-adaptation policy
Lopt (6, 2) given in (24) is employed in the system. Maximizing the effective capacity,
this optimal power allocation policy minimizes the bit energy requirements. For this

case, following an approach similar to that in [54], we obtain the following result.

Theorem 2 When both the transmitter and receiver have perfect CSI, the minimum

bit energy with optimal power control and rate adaptation becomes

E, log, 2
— == 2.14
NO min Zmax ( )

where zZmax 1S the essential supremum of the random variable z, i.e., z < Zypax with

probability 1.

Proof: We assume that zpax is the maximum value that the random variable z can
take, i.e., P(z < zmax) = 1. From (ZI), we can see that as SNR vanishes, a increases
t0 Zmax, because otherwise while SNR approaches zero, the right most side of (23]

does not. Then, we can suppose for small enough SNR that o = zax —n where n — 0
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as SNR — 0. Replacing a by zmax — 1 in (Z3) and ([Z13)), we get

E, , SNR
— = lim
Nomin  SNR—0 C(SNR)

E{[ 1; B _%}T(zmax_n)}
(zmax—n) P+ zF+1

= lir% 3 (2.15)
n— . -7
_m“% log, (F(Zmax —n)+ E{ (m) BHT(ZmaX - 77)})
fzzrrr?a?;fn ( 1; B %)pz(z)dz
= lim (emax —w) P2 2P (2.16)
n—0 _B_

Zmax—"n

o 18 ( S @)z + T (S )B“pzu)cﬂ)

1 (2 _ )*% zZmax Pz(z)dz
B+1 \~max n zmax-—n 2

~ lim (2.17)

=0 —L(Zmax—ﬂ)_ﬁ [rmax  pz(2) g,
1 B+1 zmax—" zﬁﬁl
- Blog, 2 — B
fOZmax*npz(z)derfZZrInH;;w(ngxw) BHPZ(Z)dZ
__B_
‘ <fozmaxn pa(2)dz + [[R2X (m) 5+1pz(z)dz) log, 2
= lim (2.18)
n— Zmax — 1]
log_ 2
= = (2.19)
max

where p, is the distribution of channel gain z. (ZI6]) is obtained by expressing the
expectations in (2.I7]) as integrals. (2I7) follows by using the L’Hospital’s Rule and
applying Leibniz Integral Rule. (ZI8) is obtained after straightforward algebraic
simplifications and the result follows immediately.

Above, we have implicitly assumed that z,,.y is finite. For fading distributions with
unbounded support, 2. = 00. In this case, the result can be shown by replacing in

(2I6) zmax by 00, and zpax — n by the threshold «, and letting a@ — oo. After these

log, 2 __

steps, the final expression, which is akin to that in ([Z19), becomes lim,_, ,

proving that (2I4]) also holds for the case in which 2z« = 0. O
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Note that for distributions with unbounded support, we have z,,., = oo and hence

Ey
No min

= 0 = —oo dB. In this case, it is easy to see that the wideband slope is Sy = 0.

Example 1 Specifically, for the Rayleigh fading channel, as in [55], it can be shown

Co(SNR)
og () 08 2

Ci(SNR) =~ SNRlog,(gyp)log, 2, so

that limgngr_o gypy = 1. Then, spectral efficiency can be writlen as

E, SNR 1

— = lim —— = lim
Nomin  SNR—0 Cg(SNR)  SNR-0 log,(zap) log, 2

which also verifies the above result.

Remark: We note that as in the case in which there is CSI at the receiver, the
minimum bit energy achieved under QoS constraints is the same as that achieved by
the Shannon capacity [54]. Hence, the energy efficiency again approaches the perfor-
mance of an unconstrained system as power diminishes. Searching for an intuitive
explanation of this observation, we note that arrival rates that can be supported
vanishes with decreasing power levels. As a result, the impact of buffer occupancy
constraints on the performance lessens. Note that in contrast, increasing the band-
width increases the arrival rates supported by the system. Therefore, limitations on
the buffer occupancy will have significant impact upon the energy efficiency in the
wideband regime as will be discussed in Section

Fig. plots the spectral efficiency vs. bit energy for different values of 6 in
the Rayleigh fading channel with E{z} = 1. In all cases, we observe that the bit
energy goes to —oo as the spectral efficiency decreases. We also note that at small

but nonzero spectral efficiencies, the required energy is higher as # increases.
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Figure 2.3: Spectral efficiency vs. E,/Nj in the Rayleigh fading channel with fixed
B; CSI known at the transmitter and receiver.

2.3 Energy Efficiency in the Wideband Regime

In this section, we study the performance at high bandwidths while the average power

P is kept fixed. We investigate the impact of 6 on L& " and the wideband slope &

No mi

in this wideband regime. Note that as the bandwidth increases, the average signal-

to-noise ratio SNR = P/(NyB) and the spectral efficiency decreases.

2.3.1 CSI at the Receiver Only

We define ( = % and express the spectral efficiency (Z.8) as a function of (:

Cu(C) = —% log, E{e T o0+552)y (2.20)
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The bit energy is again defined as
P P
E, SNR

No = Cal(sSR) ~ Ca(O) — Cal(0)/C (2:21)

It can be readily verified that Cg(¢)/¢ monotonically increases as ( — 0 (or equiva-

lently as B — o0) (see Appendix [A]). Therefore

E, . PC/Ny B P /Ny
-— = 111m = =
NO min (=0 CE(C) CE(O)

(2.22)

where Cp (0) is the first derivative of the spectral efficiency with respect to ¢ at ¢ = 0.
The wideband slope Sy can be obtained from the formula (L7) by using the first and

second derivatives of the spectral efficiency Cg(¢) with respect to .

Theorem 3 When only the receiver has CSI, the minimum bit energy and wideband
slope, respectively, in the wideband regime are given by
E 9TP
b = Mo and (2.23)

AT - 0T P )
NO min loge E{e_ No logeQZ}

E{ 71\791T15 2Z} 1 E{ 7N61T13 22} ?
Ny log, 24 2 Efe Mo (oge e Folose )
80:2( 0 98 )

01T P

__eTP (2'24)
E{e Molosc272}

Proof: The first and second derivative of Cg(() are given by

E{ —GTTlogQ(l—l—lj\foz) 10%2(1+1;3\,<OZ) . ﬁ]

. 1 _oT 14 B¢z ¢ 1+5e2

CE(C) — _H_TlogeE{e ¢ oga (14 No )} - o 1 — No ’
E{e ¢ loga(1+ No )}

(2.25)
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_ B 5 2
2 P¢z Pz
E 67% 10g2(1+};\§0 ) 1Og2(1+ Ng ) _ Nplog2
0T

&4 0 S
B(C) = — T
¢ E{e—e%logQ(l-i-%)}
PCz 15(2 Pz 2 Pz 2
_ N R
E{€*%10g2(1+PN_%Z)}
(2.26)
. . 10822(1+%) %
First, we define the function f(¢) = 0 — ~02ke? Then, we can show that
¢ 1+ s

1032(1+PN—%2) 7

IO =
Pz Pz Pz
— lim _log, {1+ ) 4 Nolog. 2 +(N010g62)210g p
(=0 ¢? 145 0\ 4 Be ‘
0 0
-2
1 Pz
— i il
I O+ fog.2 <N0>
which yields
=\ 2
1 Pz
li = — 2.27
Cl—r>r(l)f(<) 2log, 2 (N()) 227
Using (2.27)), we can easily find from (2:20) that
lim C L og, E { oot 2.28
lim C(C) = — - log E {2} (228)

from which ([2:23)) follows immediately. Moreover, from (226, we can derive

_ __erpP 2
1 (P)2E{e Nologc 2722}
No/ Rl e}

lim Ce(Q) = (2.29)

a log, 2

Evaluating (L7) with (228) and (2:29) provides (2.24]). O
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It is interesting to note that unlike the low-power regime results, we now have

0T P 9T P
E, N S Ny _ log, 2

Nomin log, B{e ™"} Bflog,e Wbt} B

where Jensen’s inequality is used. Therefore, we will be operating above —1.59 dB

unless there are no QoS constraints and hence § = 0. For the Rayleigh channel, we

can specialize (Z.23)) and ([2.24) to obtain

0T P
Ly = No and
NOmin lOge(]. + Nf’ll;lg:;z)
Ny log, 2 0T P orP \’
So=—"2="10g (1 +-——) +1log, (1 + — 2.30
0 < orp gLt o) losd +Nolog62> (2.30)

It can be easily seen that in the Rayleigh channel, the minimum bit energy mono-
tonically increases with increasing . Fig. 2.4 plots the spectral efficiency curves as a
function of bit energy in the Rayleigh channel. In all the curves, we set P/Ny = 10%.
We immediately observe that more stringent QoS constraints and hence higher values
of 6 lead to higher minimum bit energy values and also higher energy requirements at
other nonzero spectral efficiencies. The wideband slope values are found to be equal to
Sp = {1.0288,1.2817,3.3401, 12.3484} for § = {0.001,0.01,0.1, 1}, respectively. Note
that the wideband slope increases with increasing #, indicating that the increment in
the bit energy required to increase the spectral efficiency by a fixed amount in the
wideband regime is smaller when 6 is larger. We also note that despite this observa-
tion, since the minimum bit energy is also higher for larger 8, the absolute bit energy
requirements at a given spectral efficiency are higher when € is increased.

We finally note that ﬁ—gmin and Sy now depend on # and N%. Fig. plots
Ev a5 a function of these two parameters. Probing into the inherent relationships

No min

among these parameters can give us some interesting results, which are helpful in
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CSl known at receiver
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Figure 2.4: Spectral efficiency vs. Ej/Nj in the Rayleigh fading channel with fixed

P; CSI known at the receiver only.
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designing wireless networks. For instance, for some P /N, required to achieve some
specific transmission rate, we can find the most stringent QoS guarantee possible
while attaining a certain efficiency in the usage of energy, or if a QoS requirement 6

is specified, we can find the minimum power P to achieve a specific bit energy.

2.3.2 CSI at both the Transmitter and Receiver

To analyze %min in this case, we initially obtain the following result and identify the

limiting value of the threshold « as the bandwidth increases to infinity.

Theorem 4 In wideband regime, the threshold o in the optimal power adaptation

scheme (24) satisfies

%iir(l)oz(g) =a" (2.31)

where o s the solution to
2\ 1 0T P
E<|L — ) = ) [ I 2.32
{[oge (a*) Z] rla )} Nylog, 2 (2.32)

Moreover, for 6 >0, aj,, < co.

Proof: Recall from (Z5) that the optimal power adaptation rule should satisfy the

average power constraint:

SNR — % _ E{ (ﬁ _ %)T(@)} _ E{ K(E)T _ 1) ﬂT(a)} (2.33)

0rB or
log,2 =~ (log.2°

from (233)) that

For the case in which 6 = 0, if we let ¢ — 0, we obtain

0=E { Kagpt . 1) ﬂ T(agpt)} (2.34)

where § =
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where o

oot = lime o (C). Using the fact that log,z < 2 — 1 for z > 1, we have

log, ( z ) < = — 1 for z > aj,, which implies that

CVopt - opt

0< 5 {log, (=) ﬂ ()} <E { Kagpt - 1) ﬂ T(a;pt)} — 0
= &{flos. (1) 2] )} -

proving (232)) for the case of § = 0.

1 ¢loge 2
In the following, we assume 6 > 0. We first define ¢g(¢) = (é) = (é) ¢lose 40T
and take the logarithm of both sides to obtain
¢ log, 2 z
1 =—log, —. 2.35
0g. 9(¢) Tlog. 2 + 0T %% (2.35)
Differentiation over both sides leads to
) oo 2 &

9(0) ~ (Clog, 2+ 0T **a (log,2+ 6T a

where ¢ and & denote the first derivatives g and «, respectively, with respect to (.

Noting that ¢(0) = 1, we can see from (2.36) that as ( — 0, we have

log, 2 z
7(0) = ——1 2.37
9(0) = e lom. (2.37)

where o = lim¢ o (). For small values of ¢, the function g admits the following

Taylor series:

9O = (2)7 =90+ 5O+ 0O =1+ 5O +0(O). (239
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Therefore, we have

<3>T 1= 100%;2 log, (Of ) ¢+ 0(0). (2.39)

opt

Then, from (Z33), we can write

SNR = E { Kloegji? log, () ¢+ o(g)> ﬂ T(a)} | (2.40)

If we divide both sides of (240) by SNR = % and let ¢ — 0, we obtain

. SNR .. SNR Nolog, 2 z \1 .
- S () ) o
0

from which we conclude that E{[loge (ai) ﬂ T(a*)} = TP proving (232) for

No log, 27
6 > 0.
Using the fact that log, (§> < Z for z > 0, we can write

0<E { [loge <3) 1] T(a)} < E{ET(Q)} < é (2.42)

a/) z «

Assume now that limq,oa(() = o}, = oco. Then, the rightmost side of (2.42)

opt

becomes zero in the limit as ¢ — 0 which implies that E { [loge (agpt) %} T(aj;pt)} = 0.
From (232)), this is clearly not possible for # > 0. Hence, we have proved that
Qopt < 00 when 6 > 0. U

Remark: As noted before, wideband and low-power regimes are equivalent when
6 = 0. Hence, as in the proof of Theorem [2, we can easily see in the wideband regime
that the threshold a approaches the maximum fading value z,.x as ¢ — 0 when 6 = 0.

Hence, for fading distributions with unbounded support, & — oo with vanishing (.

The threshold being very large means that the transmitter waits sufficiently long until
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Figure 2.6: Threshold of channel gain a vs. ¢ in the Rayleigh fading channel; CSI
known at the transmitter and receiver.

the fading assumes very large values and becomes favorable. That is how arbitrarily
small bit energy values can be attained. However, in the presence of QoS constraints,
arbitrarily long waiting times will not be permitted. As a result, a approaches a

finite value (i.e., aj, < oo) as ¢ — 0 when 6§ > 0. Moreover, from (2.32), we

*

opt has to decrease. This fact can also

can immediately note that as 6 increases, «
be observed in Fig. in which « vs. ( is plotted in the Rayleigh fading channel.
Consequently, arbitrarily small bit energy values will no longer be possible when 6§ > 0

as will be shown in Theorem [Al.

The spectral efficiency with optimal power adaptation is now given by

(67

Cul(¢) = —eiT log, <F(a) +E{ (QWT‘WT(Q)}) (2.43)

where again F(a) = E{1{z < a}} and 7(a) = 1{7 > a}.

Theorem 5 When both the receiver and transmitter have CSI, the minimum bit en-
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erqy and wideband slope in the wideband regime are given by

E oTP 1 210 2
B e Elosglos,
0T (52 + a(0)E{ 7(a}ye)})

— 2.44
NO min 1Oge g ( )

where § = F(a*) + E{%7(a*)}, and &(0) is the derivative of o with respect to ¢,

evaluated at ¢ = 0.

Proof: Substituting (Z43) into (222]) leads to

Ey ) P¢ /Ny

NO min Cir(l] - 9T+g?og8 2
— £ log, (F(a) —l—E{ <§) T(a)})

_ 0T P
Nolog, (F(a*) + E{%T(OJ*)}) .

(2.45)

After denoting & = F(a*) + E{%7(a*)}, we obtain the expression for minimum bit

energy in (Z44).

Meanwhile, Cg(¢) has the following Taylor series expansion up to second order:
. 1.
Cu(Q) = Cu(0)¢+ 5Cr(0)C% + o(C). (2.46)

Therefore, the second derivative of Cp with respect to ¢ at ( = 0 can be computed

from

C(0) = 21im Cpl6) = CE(O)C.

limy e (2.47)

From the derivation of (2:45]) and ([2:22)), we know that

Cp(0) = _GLT log, <F(04*) + E{&—*T(O{*)}). (2.48)

z
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Then,

[%)

JogeaT (a)}>

Q |n

CE(O) - 2%{% <_9%loge <F(a) +E£2< >9T+

% log, (F((x*) + E{ aﬁ;ch(a:pt)}> )

+ 2
F(a)+]E{ (Q) 9T+§+g627'(a)}
log, - -

2 . F(azpt)+]E{ 2 T(azpt)} -
o ¢ (2.49)
a\oTTHs 0T log, 2 o 0Té

E{(;)eﬂm ( — lon g, (2) + W)T(O‘>}
= ——lim
0T ¢—0 F(agy) + E{%T(af,pt)}
(2.50)
o z * 0T & %
2 log 2 E{ zpt 1Oge (azm)T(aopt)} + gge(g)E{iT(aopt)}
=) , (2.51)

(07)? F(aky) + E{@T(aépt)}

where ¢ is the derivative of a with respect to . Above, (2Z350) is obtained by using
L’Hospital’s Rule. Evaluating (IL7) with (248) and (2351), and combining with the
result in (Z32)), we obtain the expression for Sy in (2.44]). O

It is interesting to note that the minimum bit energy is strictly greater than zero
for # > 0. Hence, we see a stark difference between the wideband regime and low-
power regime in which the minimum bit energy is zero for fading distributions with
unbounded support. Fig. 27 plots the spectral efficiency curves in the Rayleigh
fading channel and is in perfect agreement with the theoretical results. Obviously,
the plots are drastically different from those in the low-power regime (Fig. [Z3)
where all curves approach —oo as the spectral efficiency decreases. In Fig. 2.7 the

minimum bit energy is finite for the cases in which § > 0. The wideband slope
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Figure 2.7: Spectral efficiency vs. E,/Ny in the Rayleigh fading channel with fixed

P

N = 10*; CSI known at the transmitter and receiver.
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Figure 2.8: JJ\E/_me vs. # and P/Ny in the Rayleigh fading channel; CSI known at the
transmitter and receiver.



37

values are computed to be equal to Sy = {0.3081,1.0455,2.5758,4.1869}. Fig. 2§
plots the ﬁ—‘;min as a function of § and P/Ny. Generally speaking, due to power and
rate adaptation, %min in this case is smaller compared to that in the case in which
only the receiver has CSI. This can be observed in Fig. where the minimum
bit energies are compared. From Fig. 2.9 we note that the presence of CSI at the
transmitter is especially beneficial for very small and also large values of 4. While
the bit energy in the CSIR case approaches —1.59 dB with vanishing 6, it decreases
to —oo dB when the transmitter also knows the channel. On the other hand, when
0 ~ 1073, we interestingly observe that there is not much to be gained in terms of
the minimum bit energy by having CSI at the transmitter. More specifically, power
adaptation in this case does not result in significant improvements in the asymptotic
value of the (unnormalized) effective capacity Cg achieved as B — oo. We note from
(223) and ([2.44]) that the minimum bit energy expressions have a common expression
in the numerator while the expressions in the denominator are proportional to the
asymptotic value of Cz. When P/Ny = 106, T = 2ms and § = 1073, we can easily
compute for the Rayleigh channel that —log, E{e_f\’cflTTfe?Z} = 1.357. In the case of
CSIT, we have af, = 0.0716 and —log,§ = 1.507, verifying our conclusion above.
For § > 1073, we again start having improvements with the presence of CSIT.
Throughout the chapter, numerical results are provided for the Rayleigh fading
channel. However, note that the theoretical results hold for general stationary and
ergodic fading processes. Hence, other fading distributions can easily be accommo-

dated as well. In Fig. 10, we plot the spectral efficiency vs. bit energy curves for

the Nakagami-m fading channel with m = 2.
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2.4 Conclusion

In this chapter, we have analyzed the energy efficiency in fading channel under
QoS constraints by considering the effective capacity as a measure of the maximum
throughput under certain statistical QoS constraints, and analyzing the bit energy
levels. Our analysis has provided a characterization of the energy-bandwidth-delay
tradeoff. In particular, we have investigated the spectral efficiency vs. bit energy
tradeoff in the low-power and wideband regimes under QoS constraints. We have
elaborated the analysis under two scenarios: perfect CSI available at the receiver and
perfect CSI available at both the receiver and transmitter. We have obtained expres-
sions for the minimum bit energy and wideband slope. Through this analysis, we
have quantified the increased energy requirements in the presence of delay-QoS con-
straints. While the bit energy levels in the low-power regime can approach those that
can be attained in the absence of QoS constraints, we have shown that strictly higher
bit energy values are needed in the wideband regime. We have provided numerical
results by considering the Rayleigh and Nakagami fading channels and verified the

theoretical conclusions.
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Chapter 3

Energy Efficiency for Fixed Rate

Transmissions

In this chapter, we assume that the transmitter does not have channel knowledge
and it sends the information at a fixed rate and fixed power. For this fixed rate
scenario, we adopt a two state (ON-OFF) transmission model, where information is
transmitted reliably at a fixed rate in the ON state while no transmission occurs in
the OFF state. We investigate the wideband regime in sparse multipath fading, in
which the number of subchannels remains bounded as bandwidth increases, and also
in rich multipath fading, in which the number of non-interacting subchannels increases
without bound with increasing bandwidth. The minimum bit energy and wideband
slope expressions are found for the wideband regime with multipath sparsity. The
expressions for bit energy required at zero spectral efficiency and wideband slope are
quantified for the low-power regime, which is also equivalent to the wideband regime
with rich multipath fading. It is shown for a certain class of fading distributions that
the bit energy required at zero spectral efficiency is indeed the minimum bit energy

for reliable communications.
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3.1 System Model

We consider a point-to-point wireless link in which there is one source and one des-
tination. The system model is depicted in Figure B.Il It is assumed that the source
generates data sequences which are divided into frames of duration 7. These data
frames are initially stored in the buffer before they are transmitted over the wireless
channel. The discrete-time channel input-output relation in the ™" symbol duration

is given by
yli] = hlilzld] +n[i] i=1,2,.... (3.1)

where z[i] and y[i] denote the complex-valued channel input and output, respectively.
We assume that the bandwidth available in the system is B and the channel input is
subject to the following average energy constraint: E{|z[i]|?} < P/B for all i. Since
the bandwidth is B, symbol rate is assumed to be B complex symbols per second,
indicating that the average power of the system is constrained by P. Above in B0,
n[i] is a zero-mean, circularly symmetric, complex Gaussian random variable with
variance E{|n[i]|*} = Ny. The additive Gaussian noise samples {n[i]} are assumed to
form an independent and identically distributed (i.i.d.) sequence. Finally, h[i] denotes
the channel fading coefficient, and {h[i]} is a stationary and ergodic discrete-time
process. We denote the magnitude-square of the fading coefficients by z[i] = |h[i]]?.
In this chapter, we consider the scenario in which the receiver has perfect chan-
nel side information and hence perfectly knows the instantaneous values of {h[i]}

while the transmitter has no such knowledge. In this case, the instantaneous channel

capacity with channel gain z[i]=|h[i]|? is

Cli] = Blogy(1 4 SNRz[i]) bits/s (3.2)



42

ata Dat]"(‘
Sin
Source i
Transmitter v Receiver
Buffer Buffer
K
A 4
QoS Modulation Channel Demodulation
Constraint and Coding Estimation and Decoding
K
K

h[i] n[i]
Fading
Channel

Figure 3.1: The general system model.

where SNR = P/(NyB) is the average transmitted signal-to-noise ratio. Since the
transmitter is unaware of the channel conditions, information is transmitted at a
fixed rate of r bits/s. When r < C, the channel is considered to be in the ON
state and reliable communication is achieved at this rate. From information-theoretic
arguments, this is possible if strong codes with large blocklength is employed in the
system. Since there are T'B symbols in each block, we assume T'B is large enough
to establish reliable communication. If, on the other hand, » > C, outage occurs.
In this case, channel is in the OFF state and reliable communication at the rate
of r bits/s cannot be attained. Hence, effective data rate is zero and information
has to be resent. We assume that a simple ARQ mechanism is incorporated in the
communication protocol to acknowledge the reception of data and to ensure that the
erroneous data is retransmitted [38)].

Fig. depicts the two-state transmission model together with the transition

probabilities. In this chapter, we assume that the channel fading coefficients stay
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p21
pll p22

pl2
Figure 3.2: ON-OFF state transition model.

constant over the frame duration 7. Hence, the state transitions occur at every T

seconds. Now, the probability of staying in the ON state, pss, is defined as follows!:

p2 = P{r < Cli+TB]|r < Cli]}

= P{z[i + TB] > a|z[i] > a} (3.3)
where
25 — 1
Q= (3.4)

Note that pys depends on the joint distribution of (z[i+71 B], z[i]). For the Rayleigh
fading channel, the joint density function of the fading amplitudes can be obtained
in closed-form [56]. In this chapter, with the goal of simplifying the analysis and
providing results for arbitrary fading distributions, we assume that fading realizations
are independent for each frame?. Hence, we basically consider a block-fading channel
model. Note that in block-fading channels, the duration 7" over which the fading
coefficients stay constant can be varied to model fast or slow fading scenarios.

Under the block fading assumption, we now have pypy = P{z[i + TB] > a} =

!The formulation in (B3] assumes as before that the symbol rate is B symbols/s and hence we
have T'B symbols in a duration of 7" seconds.

2This assumption also enables us to compare the results of this chapter with those in ChapterRlin
which variable-rate/variable-power and variable-rate/fixed-power transmission schemes are studied
for block fading channels.
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AO) 1 1
% =9 log, (5 (pn + pae’™" + \/(Pn + p22e?")? + 4(p11 + pa2 — 1)69”))- (3.6)

P{z > a}. Similarly, the other transition probabilities become

pu=pn =P{z<a} = /0 p.(2)dz and

paa = p1o = P{z > a} = /:O p.(2)dz (3.5)

where p, is the probability density function of z. Throughout the chapter, we assume
that both p,(z) and the cumulative distribution function P{z < a} are differentiable.
We finally note that 1" bits are successfully transmitted and received in the ON state,

while the effective transmission rate in the OFF state is zero.

3.2 Preliminary

For this chapter, with (II)) in mind, we know that s[i{] = 7T or 0 depending on the
channel state being ON or OFF, respectively. In [10] and [I2, Section 7.2, Exam-
ple 7.2.7], it is shown that for such an ON-OFF model, the log-moment generating
function normalized by 0, i.e., #, is given by (B.6) at the top of the page.

Using the formulation in ([3.6) and noting that p;; + pes = 1 in our model, we
express the effective capacity normalized by the frame duration 7" and bandwidth B,

or equivalently spectral efficiency in bits/s/Hz, for a given statistical QoS constraint
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0, as [12]

RE(SNR, 0)

_ A(=9)

= el - =) 57)
1

= I{}gg‘{ T 9TB log, (pn +p22€9TT)} (3.8)

= ! —0Tr

_I?gg{{_eTB loge (1_P{Z>Oé}(1—€ ))} (39)

= —1 —0Tropt .

=—575 log, <1 — P{z> aopt}<1 —e )) bits/s/Hz (3.10)

Topt

where 7op¢ is the maximum fixed transmission rate that solves (8.9) and aopy = (275 —
1)/SNR. Note that both gy and rqp are functions of SNR and 6.

The normalized effective capacity, Rg, provides the maximum throughput under
statistical QoS constraints in the fixed-rate transmission model. It can be easily

shown that
, T
(195% Re(SNR, 0) = max — P{z > a}. (3.11)

Hence, the QoS requirements relax, the maximum constant arrival rate approaches the
average transmission rate. On the other hand, for § > 0, Rg < % max,>orP{z > a}
in order to avoid violations of QoS constraints.

In this chapter, we focus on the energy efficiency of wireless transmissions under
the aforementioned statistical QoS limitations. Since energy efficient operation gen-
erally requires operation at low-SNR levels, our analysis throughout the chapter is
carried out in the low-SNR regime. In this regime, the tradeoff between the normal-

SNR

ized effective capacity (i.e, spectral efficiency) Rg and bit energy f,o = RL(SNR) is a

key tradeoff in understanding the energy efficiency, and is characterized by the bit
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energy at zero spectral efficiency and wideband slope provided, respectively, by

E, , SNR 1
— = lim = = , and
Nolg,—o SNR-0Rg(SNR)  Rg(0) (3.12)
oK ) .
S5y = —2ReO)" )y
Re(0)

where Rp(0) and Rp(0) are the first and second derivatives with respect to SNR,

respectively, of the function Rg(SNR) at zero SNR [21]. % and Sy provide a
Rp=0

linear approximation of the spectral efficiency curve at low spectral efficiencies, i.e.,

By, So B,
R <—) L e te 3.13
ANy~ 10log,,2 (NO Ru—0.d5 313)

RE=O)

= 10log,, ]’\E[—Z When the spectral efficiency Rg is a non-decreasing

Ey
No

dB

_ E, _ E
where € = o ( A

By
Above, N

dB
concave function of SNR, the bit energy % diminishes with decreasing spectral effi-
ciency. Hence, in this case, the bit energy required at zero spectral efficiency is indeed

Ey
’ No

_ B

the minimum one, i.e. oo
0 min

Re=0

3.3 Energy Efficiency in the Wideband Regime

In this section, we consider the wideband regime in which the bandwidth is large.

We assume that the average power P is kept constant. Note that as the bandwidth

B increases, SNR = ﬁ approaches zero and we operate in the low-SNR regime.

Following the approach generally employed in information-theoretic analyses, we

assume that the wideband channel is decomposed into N parallel subchannels. We

further assume that each subchannel has a bandwidth that is equal to the coherence
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bandwidth, B.. Therefore, independent flat-fading is experienced in each subchan-
nel, and we have B = NB,. Similar to ([3.I)), the input-output relation in the k'

subchannel can be written as

The fading coefficients {hy }_, in different subchannels are assumed to be independen-

By

Nos. where P, denotes

t. The signal-to-noise ratio in the &*® subchannel is SNR;, =
the power allocated to the k™™ subchannel and we have SN, P, = P. Over each
subchannel, the same transmission strategy as described in Section B.1] is employed.
Therefore, the transmitter, not knowing the fading coefficients of the subchannels,
sends the data over each subchannel at the fixed rate of r. If r < B.log(1 4 SNRyzx[i])
where 25, = |hy|?, then transmission over the k™ subchannel is successful. Otherwise,
retransmission is required. Hence, we have an ON-OFF state model for each sub-
channel. On the other hand, for the transmission over N subchannels, we have a
state-transition model with N + 1 states because we have overall the following N + 1
possible total transmission rates: {0,77,2rT,..., NrT}. For instance, if all N sub-
channels are in the OFF state simultaneously, the total rate is zero. If 7 out of N
subchannels are in the ON state, then the rate is jr7T.

Now, assume that the states are enumerated in the increasing of order of the
total transmission rates supported by them. Hence, in state j € {1,..., N + 1}, the
transmission rate is (j—1)r7T". The transition probability from state ¢ € {1,..., N+1}
to state j € {1,..., N + 1} is given by (BI5) on the next page where Z;_; denotes
a subset of the index set {1,..., N} with j — 1 elements. The summation in (315
is over all such subsets. Moreover, in (3.15), 77, denotes the complement of the set

Z;—q,and o = 2S§—R_,€1 Note in the above formulation that the transition probabilities,
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pij = p; = P{(j — 1) subchannels out of N subchannels are in the ON state}

= ¥ IT P{z>a} IT (1= Plz > a}) (3.15)

Z;1c{1,...N} \k€Z;1 keTs |

Dij, do not depend on the initial state i due to the block-fading assumption. If, in
addition to being independent, the fading coefficients and hence {z; }i_; in different
subchannels are identically distributed, then p;; in (BI5]) simplifies and becomes a

binomial probability:

N i1 N—j+1
Dij = pj = (P{z>a}) " (1=P{z>a})" 7. (3.16)
7—1
Note that if the fading coefficients are i.i.d., the total power should be uniformly

distributed over the subchannels. Hence, in this case, we have P, = £ and therefore

z2l

SNRy = Nf 5= % = %B = SNR which is equal to the original SNR definition

T

used in (B2)). Now, we have the same o = % for each subchannel.
The effective capacity of this wideband channel model is given by the following

result.

Theorem 6 For the wideband channel with N parallel noninteracting subchannels
each with bandwidth B. and independent flat fading, the normalized effective capacity
in bits/s/Hz is

1 N+1 )
Rz (SNR,0) = — ] e 0G-1rT 3.17
5 (SNE, 0) max { TR 08 (;pye (3.17)

P>0 s.t. Y P,<P

where p; is given in (313). If {2z}, are identically distributed, then the normalized
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effective capacity expression simplifies to

Re(SNR, ) = max {—

r>0

TR Lo (1-P{z>a}(1 - e_HTT))} . (3.18)

By _ P
TNE and SNR = NoB-

2

where o =

Proof: See Appendix [Bl

Theorem [0 shows that the effective capacity of a wideband channel with N sub-
channels each with i.i.d. flat fading has an expression similar to that in ([8.9]), which
provides the effective capacity of a single channel experiencing flat fading. The only
difference between (39) and (BI8)) is that B is replaced in (8I8)) by B., which is the
bandwidth of each subchannel.

In this section, we consider the wideband regime in which the overall bandwidth
of the system, B, is large. In particular, we analyze the performance in the scenario
of sparse multipath fading. Motivated by the recent measurement studies in the
ultrawideband regime, the authors in [57] and [58] considered sparse multipath fading
channels and analyzed the performance under channel uncertainty, employing the
Shannon capacity formulation as the performance metric. In particular, [57] and [58]
noted that the number of independent resolvable paths in sparse multipath channels
increase at most sublinearly with the bandwidth, which in turn causes the coherence
bandwidth B, to increase with increasing bandwidth. To characterize the performance
of sparse fading channels in the wideband regime, we assume in this section that
B, = o0 as B — oo. We further assume that the the number of subchannels N
remains bounded and hence the degrees of freedom are limited. For instance, this
case arises if the number of resolvable paths are bounded even at infinite bandwidth.
Such a scenario is considered in [59] where the capacity and mutual information

are characterized under channel uncertainty in the wideband regime with bounded
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number of paths.

The case of rich multipath fading in which the B, remains fixed and N grows
without bound and the scenario in which both B. and N increase to infinity are
treated in Section [3.4] because each subchannel in these cases operates in the low-
power regime as N increases.

We first introduce the notation ¢ = B%' Note that as B, — oo, we have ( — 0.
Moreover, with this notation, the normalized effective capacity in (BI8) given for

i.i.d. fading can, after maximization, be expressed as®
Re(SNR) = ——= log, (1 — P{z > aopt}<1 - eeT“’P“)). (3.19)

Note that agp, and rop are also in general dependent on B, and hence ¢. The following
result provides the expressions for the minimum bit energy, which is achieved at zero
spectral efficiency (i.e., as B — oo and B. — o0), and the wideband slope, and
characterizes the spectral efficiency-bit energy tradeoff in the wideband regime when
multipath fading is sparse, the number of subchannels is bounded, and the fading

coefficients are i.i.d. in different subchannels.

Theorem 7 In sparse multipath fading wideband channels with bounded number of
subchannels each with i.7.d. fading coefficients, the minimum bit energy and wideband

slope are given by

Eb —610g 2
= = oe” 2
NO min logef and (3 0)
2¢ log?
Sy = §log. & (3.21)

(5&zpt)2p{z > Of(;pt}e_(SOézm7

3Since the results in the chapter are generally obtained for fixed but arbitrary 6, the normalized
effective capacity is often expressed in the chapter as Rg(SNR) instead of Rg(SNR,8) to avoid
cumbersome expressions.
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; _ __ oTP o " —8a? . .
respectively, where § = 570hl— and € = 1= P{z > o}, }(1 — e ). aj, is defined
* 12 % .
as ay,, = lime 0 oy and o, satisfies

(3.22)

P{z > a}
da, = log, <1 + 5M> .

pz(aﬁpt)
Proof: See Appendix [

Remark: Theorem [1], through the minimum bit energy and wideband slope ex-
pressions, quantifies the bit energy requirements in the wideband regime when the
system is operating subject to statistical QoS constraints specified by 6. Note that
both %mm and Sy depend on the QoS exponent 6 through §. As will be observed
in the numerical results, ﬁ—gmin and the bit energy requirements at nonzero spectral
efficiency values generally increase with increasing . Moreover, when compared with
the results in Section [3.4] it will be seen that sparse multipath fading and having a
bounded number of subchannels incur energy penalty in the presence of QoS con-
straints while performances do not depend on the multipath sparsity when there are
no such constraints and hence 6 = 0.

Having analytically characterized the spectral efficiency—bit energy tradeoff in the
wideband regime in Theorem [, we now provide numerical results to illustrate the
theoretical findings. Fig. plots the spectral efficiency curves as a function of

the bit energy in the Rayleigh channel. In all the curves, we have P/(NNy) = 10%.

Moreover, we set 7' = 2 ms in the numerical results throughout the chapter. As

predicted by the result of Theorem [7, % = ﬁ—g _in all cases in Fig. B3 It
RE:O min

can be found that o, = {1,0.9858,0.8786,0.4704,0.1177} from which we obtain

ﬁ—gmm = {2.75,2.79,3.114,5.061, 10.087}dB for § = {0,0.001,0.01,0.1, 1}, respective-

ly. For the same set of § values in the same sequence, we compute the wideband slope

values as Sy = {0.7358,0.7463,0.8345,1.4073, 3.1509}. We immediately observe that
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Figure 3.3: Spectral efficiency vs. E,/Ny in the Rayleigh channel.

more stringent QoS constraints and hence higher values of 8 lead to higher minimum
bit energy values and also higher energy requirements at other nonzero spectral effi-
ciencies. Fig. B4 provides the spectral efficiency curves for Nakagami-m fading chan-
nels for different values of m. In this figure, we set # = 0.01. For m = 0.6, 1, 2,5, we
find that of

and Sy = {0.6382,0.8345,1.1220, 1.4583}, respectively. Note that as m increases

— {1.0567,0.8786,0.7476,0.6974}, 22— {3.618,3.114,2.407, 1.477},
0 min

and hence the channel conditions improve, the minimum bit energy decreases and
the wideband slope increases, improving the energy efficiency both at zero spectral
efficiency and at nonzero but small spectral efficiency values. As m — oo, the per-
formance approaches that of the unfaded additive Gaussian noise channel (AWGN)

for which we have %mm = —1.59 dB and S, = 2 [21].
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Figure 3.4: Spectral efficiency vs. FEj/Np in Nakagami-m channels; 6 = 0.01, m =
0.6,1,2,5.

3.4 Energy Efficiency in the Low-Power Regime

In this section, we investigate the spectral efficiency-bit energy tradeoff in a single
flat-fading channel as the average power P diminishes. We assume that the bandwidth
allocated to the channel is fixed. Note that SNR = P/(NyB) vanishes with decreasing
P, and we again operate in the low-SNR regime similarly as in Section Note

further from (BI0) that the effective capacity of a flat-fading channel is given by

1
RE(SNR) = — - log, <1 — P{z> agu}(1 - e—"Trom)>. (3.23)

On the other hand, we remark that the results derived here also apply to the wide-
band regime under the assumption that the number of non-interacting subchannels
increases without bound with increasing bandwidth. Note that in such a case, each
subchannel operates in the low-power regime.

The following result provides the expressions for the bit energy at zero spectral
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efficiency and the wideband slope.

Theorem 8 In the low-power regime, the bit energy at zero spectral efficiency and

wideband slope are given by

Eb 10g 2
— = - and 3.24
NO Rg=0 azptP{Z > azpt} ( )
2P{z > a}
Sy = { oot} —, (3.25)
1 +6(1 - P{Z > aopt})
respectively, where [ = lg—BQ is the normalized QoS constraint. In the above formula-

tion, o, is defined as o, = IimgNR_,o Qopt, and o, satisfies

OJZpth(Oész = P{Z > QZpt}‘ (326)

Proof: See Appendix [Dl

Corollary 1 The same bit energy and wideband slope expressions as in (3.24) and
(Z23) are achieved in the wideband regime as B — oo if the fading coefficients in
different subchannels are i.i.d. and also if the number of subchannels N increases
linearly with increasing bandwidth (as in rich multipath fading channels), keeping the

coherence bandwidth fixed.

Under the assumptions stated in Corollary [l the effective capacity is given by

P/N
NoB-

(BI8). Moreover, as B — 0o, we have B, fixed while N — co. Hence, SNR = —
0. This setting is exactly the same as the low-power regime considered in Theorem
Bl Therefore, the results of Theorem [8 apply immediately.

Next, we show that equation (3.26]) that needs to be satisfied by af; has a unique

solution for a certain class of fading distributions.
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Theorem 9 Assume that the probability density function of z, denoted by p,(-), is
differentiable, and both p.(-) and its derivative p,(-) at the origin do not contain
impulses or higher-order singularities and are finite. Assume further that the support
of p.(+) is [0,00). Under these assumptions, if 2p,(x)+xp.(x) = 0 is solved at a single
point xo > 0 among all x € (0,00), then the equation o,p.(aj,,) = P{z > a},} has

a unique solution.

Proof: We first define f(x) = ap,(z) — P{z > x} for x > 0.Under the conditions
stated in Theorem [ we can easily see that f(0) = —1 and f(oco) = 0. Moreover,
f(z) > —1 for all x > 0 because p,(x) > 0 and P{z > 2} < 1. It can also be seen
that [5° f(z)dx = [5° ap.(z)dx — [° P{z > x}dr = E{z} — E{z} = 0. Therefore,
there exists z > 0 such that f(z) > 0.

Differentiating f(z) with respect to x gives f(z) = 2p.(z) 4+ xp.(z). Note that
£(0) = 2p.(0) > 0. Since f(z) > —1 and f(0) = —1, f is necessarily an increasing
function initially. Hence, f(x) > 0 for all = € (0,z0) where g is the point at which
f (xg) = 0. Since xq is the only positive point for which the derivative is zero, and
f(z) > 0 for some x as discussed above and f(z) has to approach zero as © — oo, we
conclude that f(z) is a decreasing function for all > x4, and hence f(z) < 0 for all
x> xy. Otherwise, if f(z) > 0 for some z, f(x) never becomes zero again, and f(z)
increases indefinitely. Furthermore, we can see that f(z) > 0 for all x > z because if
f(z) <0 for some = > zy, f(z) should start increasing to zero as  — oco. However,
this is not possible because f(z) < 0 for all z > .

Therefore, we have concluded that f(0) = —1 and f(x) is an increasing function
in the range = € (0,z0). Moreover, f(zo) > 0 and f(z) decreases to zero without
being negative as © — oo. From this, we conclude that f(z) intersects the horizontal

axis only once at an x value in between 0 and xy. Therefore, f(z) = 0 has a unique
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solution. (l
Remark: The conditions of Theorem [J] are satisfied by a general class of distribu-

tions, including the Gamma distribution,

zal

() = S

P\z )
BT (a)

where 2, a, 8 > 0, and Lognormal distribution,

1 _ (loge z—m)?

where z > 0, —oo < m < oo, and o > 0. Note that in Nakagami-m and Rayleigh
fading channels, the distribution of z = |h|? can be seen as special cases of the Gamma
distribution. In Fig. and 3.6, where the function f(-) is plotted for Gamma
and Lognormal distributions, we indeed observe that these distributions satisfy the
conditions of Theorem [0 and the function f(-) is equal to zero at a unique point.
Remark: Theorem [§ shows that the ﬁ—’; fo for any 0 > 0 depends only on «g .

From Theorem [, we know under certain conditions that a; is unique and hence is

the same for all § > 0. We immediately conclude from these results that £ o also

Rp=0
has the same value for all § > 0 and therefore does not depend on 6 for the class of
distributions and channels given in the above Remark.

Moreover, using the results of Theorem [ above and Theorem [7] in Section [B.3],

we can further show that % is the minimum bit energy. Note that this implies
Rp=0

that the same minimum bit energy can be attained regardless of how strict the QoS

constraint is. On the other hand, we note that the wideband slope &; in general varies

with 6.

Corollary 2 In the low-power regime, when 8 = 0, the minimum bil energy is
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achieved as P — 0, i.e., ﬁ—g
Rp=0

= Lo Moreover, if the probability density func-

No min

tion of z satisfies the conditions stated in Theorem [d, then the minimum bit energy

L,

N =L for all 6 > 0.

is achieved as P — 0, i.e. »
NOmln

Rg=0

Proof: Recall from (311 that in the limit as 6 — 0,

2% — 1
Re(SNR,0) = él_)l% Re(SNR, 0) = max %P {z > 27 } : (3.27)

Since the optimization is performed over all » > 0, it can be easily seen that the

above maximization problem can be recast as follows:

27 —1
Re(SNR,0) = max xz P {z > R } . (3.28)

From (B.:28)), we note that Rg(SNR, 0) depends on B only through SNR = ﬁ. There-
fore, increasing B has the same effect as decreasing P. Hence, low-power and wide-
band regimes are equivalent when 6 = 0. Consequently, the result of Theorem [7],
which shows that the minimum bit energy is achieved as B — oo, implies that the
minimum bit energy is also achieved as P — 0.

Note that Rg(SNR, ) < Rg(SNR,0) for § > 0. Therefore, the bit energy required
when 6 > 0 is larger than that required when 6 = 0. On the other hand, as we have
proven in Theorem [ o is unique and the bit energy required as P — 0 is the same
for all & > 0 when p, satisfies certain conditions. Since the minimum bit energy in
the case of # = 0 is achieved as P — 0, and the same bit energy is attained for all
6 > 0, we immediately conclude that ﬁ—g fo = %mm forall 8 >0 O

Next, we provide numerical results which confirm the theoretical conclusions and

illustrate the impact of QoS constraints on the energy efficiency. We set B = 10° Hz in

the computations. Fig. 3.1 plots the spectral efficiency as a function of the bit energy
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Figure 3.7: Spectral efficiency vs. E,/Ny in the Rayleigh channel (equivalently
Nakagami-m channel with m = 1).

for different values of § in the Rayleigh fading channel (or equivalently Nakagami-m
fading channel with m = 1) for which E{|h|?} = E{z} = 1. In all cases in Fig. B.7 we

readily note that % = L Moreover, as predicted, the minimum bit energy

0|p _n  Nomin
is the same and is e?u_aol to the one achieved when there are no QoS constraints
(i.e., when 0 = 0). From the equation o p.(al,) = P{z > af,}, we can find
that o, = 1 in the Rayleigh channel for which p.(cf,) = P{z > al,} = e .
Hence, the minimum bit energy is %mm = 2.75 dB. On the other hand, the wideband
slopes are Sy = {0.7358, 0.6223, 0.2605, 0.0382,0.0040} for # = {0,0.001,0.01,0.1, 1},
respectively. Hence, Sy decreases with increasing € and consequently more bit energy
is required at a fixed nonzero spectral efficiency. Assuming that the minimum bit
energies are the same and considering the linear approximation in (3I3]), we can

easily show for fixed spectral efficiency Rg (%) for which the linear approximation is

accurate that the increase in the bit energy in dB, when the QoS exponent increases
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As observed in Fig. B (and also as will be seen in Fig. [B.8]), spectral efficiency
curves are almost linear in the low-power regime, validating the accuracy of the linear

and Sj.

Rp=0
Fig. B8 plots the spectral efficiency curves as a function of the bit energy for

approximation in (3.I3]) obtained through %

0

Nakagami-m channels for different values of m. 6 is set to be 0.01. For m =

{0.6,1,2,5}, we compute that o {1.2764,1,0.809,0.7279},

opt =

E
b ={3.099,2.751,2.176,1.343}

NOmin
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Figure 3.9: Spectral efficiency vs. Ej/Ny in the Rayleigh channel; § = 0.001.

, and

Sp = {0.1707,0.2605, 0.4349, 0.7479 }

, respectively. We observe that as m increases and hence the channel quality improves,
lower bit energies are required. Finally, in Fig. 3.9, we plot the spectral efficiency
vs. Ey/Ny for different transmission strategies. The variable-rate/variable-power
and variable-rate/fixed-power strategies are studied in Chapter 2 We immediately
see that substantially more energy is required for fixed-rate/fixed-power transmission
schemes considered in this chapter.

Remark: From the result of Corollary [Il, we note that the analytical and numer-
ical results in this section apply to wideband channels with rich multipath fading.
Comparison of Fig. B.7 with Fig. B3, where sparse multipath fading scenario is
considered, leads to several insightful observations. Note that in both figures, the

performance is the same when # = 0. Hence, in the absence of QoS constraints, mul-
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tipath sparsity or richness has no effect. This also confirms the claim in the proof of
Corollary [2 that low-power and wideband regimes are equivalent when 6. However,
we see a stark difference when 6 > 0. We observe that multipath sparsity and having
the number of subchannels bounded in the wideband regime increases the bit energy
requirements significantly especially when 6 is large. Moreover, while the minimum
bit energy is the same for all 6 in Fig. 3.7 the minimum bit energy increases with
increasing 6 in Fig. 3.3]

In Section B3] the number of subchannels are assumed to be bounded. In this
section, we have considered the rich multipath fading channels in which the number of
subchannels increases linearly with bandwidth. A scenario in between these two cases
is the one in which the number of subchannels N increases but only sublinearly with
increasing bandwidth. As N increases, each subchannel is allocated less power and
operate in the low-power regime. At the same time, since N increases sublinearly with
B, the coherence bandwidth B. = B/N also increases. Therefore, the minimum bit
energy and wideband slope expressions for this scenario can be obtained by letting B
in the results of Theorem [ go to infinity. Note that under the conditions of Theorem

@, af, is unique and hence does not depend on the bandwidth.

Corollary 3 In the wideband regime, if the number of subchannels N increases sub-
linearly with B and if fading coefficients in different subchannels are i.i.d. and the
probability density function p, satisfies the conditions in Theorem [, then the mini-

mum bit energy and wideband slope are given by

Eb lOg 2
— = = and 3.30
NO min Oéf;ptP{Z > azpt} ( )

2P{z>aj;,} 0=0

Sy = : (3.31)
0 >0
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Figure 3.10: Spectral efficiency vs. E,/Ny in the Rayleigh channel. The number of
subchannels N increases sublinearly with bandwidth.

In this result, we see that although the same minimum bit energy is attained for
all & > 0, approaching this minimum energy level is extremely slow and demanding

when 6 > 0 due to zero wideband slope. This result is illustrated numerically in Fig.

B.10

3.5 Conclusion

In this chapter, we have considered the effective capacity as a measure of the maxi-
mum throughput under statistical QoS constraints, and analyzed the energy efficiency
of fixed-rate transmission schemes over fading channels. In particular, we have in-
vestigated the spectral efficiency—bit energy tradeoff in the low-power and wideband
regimes. We have obtained expressions for the bit energy at zero spectral efficiency
and the wideband slope, which provide a linear approximation to the spectral efficien-

cy curve at low SNRs. In the initial analysis of the wideband regime with bounded
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number of resolvable paths and hence bounded number of subchannels, we have de-
termined that the bit energy required at zero spectral efficiency (or equivalently at
infinite bandwidth) is the minimum bit energy. In this case, we have noted that the
minimum bit energy and wideband slope in general depend on the QoS exponent
0. As the QoS constraints become more stringent and hence 6 is increased, we have
observed in the numerical results that the required minimum bit energy increases.
Subsequently, we have considered the low-power regime, which can also be equiva-
lently regarded as the wideband regime with rich multipath fading. We have obtained
expressions for the bit energy required at zero spectral efficiency, and wideband slope.
For a certain class of fading distributions, we have shown that the bit energy at zero
spectral efficiency is indeed the minimum bit energy and is achieved regardless of
how strict the QoS constraints are. However, we have also noted that the wideband
slope decreases as 6 increases, increasing the energy requirements at nonzero spectral
efficiency values. Overall, we have quantified the increased energy requirements in
the presence of QoS constraints in both wideband and low-power regimes, and iden-
tified the impact upon the energy efficiency of multipath sparsity and richness in the

wideband regime.
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Chapter 4

Energy Efficiency for Training

Based Transmissions

In this chapter, we consider the scenario in which neither the transmitter nor the
receiver has CSI prior to transmission and the channel coefficients are estimated
at the receiver via minimum mean-square-error (MMSE) estimation with the aid
of training symbols. For this scenario, we identify the optimal fraction of power
allocated to training. We show that the bit energy increases without bound in the
low-power regime as the average power vanishes. A similar conclusion is reached
in the wideband regime if the number of noninteracting subchannels grows without
bound with increasing bandwidth. On the other hand, it is proven that if the number
of resolvable independent paths and hence the number of noninteracting subchannels
remain bounded as the available bandwidth increases, the bit energy diminishes to

its minimum value in the wideband regime.
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Figure 4.1: The general system model.

4.1 Channel Model

We consider a point-to-point wireless link. Figure 1] illustrates the functional dia-
gram of the system. It is assumed that the source generates data sequences which are
divided into frames of duration T'. These data frames are initially stored in the buffer
before they are transmitted over the wireless channel. The discrete-time channel

input-output relation in the ™ symbol duration is given by

yli] = hli]x[i] + n[i] i=1,2,.... (4.1)

where z[i] and y[i] denote the complex-valued channel input and output, respectively.
We assume that the bandwidth available in the system is B and the channel input
is subject to the following average energy constraint: E{|z[i]|’} < P/B for all i.

Since the bandwidth is B, symbol rate is assumed to be B complex symbols per
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second, indicating that the average power of the system is limited by P. Above in
([@1), n[i] is a zero-mean, circularly symmetric, complex Gaussian random variable
with variance E{|n[i]|*} = N, i.e., n[i| ~ CN(0, Ny). The additive Gaussian noise
samples {n[i]} are assumed to form an independent and identically distributed (i.i.d.)
sequence. Finally, h[i], which denotes the channel fading coefficient, is assumed to
be a zero-mean Gaussian random variable with variance E{|h|?} = ~. Therefore,
the wireless channel is modeled as a Rayleigh fading channel. We consider a block-
fading channel model. Hence, we assume that the fading coefficients stay constant
during the frame duration of T" seconds and change independently from one frame to
another. Finally, we assume that neither the transmitter nor the receiver has channel
side information prior to transmission. While the transmitter remains unaware of the
actual realizations of the fading coefficients throughout the transmission, the receiver

attempts to learn them through training.

4.2 Training and Data Transmission

4.2.1 Training Phase

The system operates in two phases: training phase and data transmission phase. In
the training phase, known pilot symbols are transmitted to enable the receiver to
estimate the channel conditions, albeit imperfectly. We assume that minimum mean-
square-error (MMSE) estimation is employed at the receiver to estimate the channel
coefficient h[i]. Since the MMSE estimate depends only on the training energy and not
on the training duration [60] and the fading coefficients are assumed to stay constant
during the frame duration of 7" seconds, it can be easily seen that transmission of a

single pilot at every T seconds is optimal. Note that in every frame duration of T
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seconds, we have T'B symbols and the overall available energy is PT. We now assume
that each frame consists of a pilot symbol and T'B — 1 data symbols. The energies of
the pilot and data symbols are

(1—p)PT

£, =pPT, and &, = U

(4.2)

respectively, where p is the fraction of total energy allocated to training. Note that
the data symbol energy &, is obtained by uniformly allocating the remaining energy

among the data symbols.

In the training phase, the transmitter sends the pilot symbol z, = \/gp = \/pPT

and the receiver obtains!

y[l] = hy/E, +n1]. (4.3)

Based on the received signal in this phase, the receiver obtains the MMSE esti-

mate hes = E{h‘y[l]} which can be easily seen to be a circularly symmetric, com-

’725p
'ng+NO )

plex, Gaussian random variable with mean zero and variance ie., heg ~

CN (O, %) [61]. Now, the channel fading coefficient h can be expressed as h =

hest + Nerr Where he,.. is the estimate error and he,.. ~ CN(0, WEZJIONO)‘

4.2.2 Data Transmission Phase and Capacity Lower Bound

Data transmission follows the training phase. Since the receiver is now equipped

with the channel estimate, the channel input-output relation in one frame in the data

1Since the analysis in this section focuses on a single frame in which the fading stays constant,
we drop the time index in h[i] and express the fading coefficient as h. In [@3]), y[1] and n[1] denote
the received symbol and noise sample, respectively, in the training phase. Note that the first symbol
duration in each frame is allocated for the training phase in which a single pilot symbol is sent.
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transmission phase can be expressed as
ylt] = hestz[i] + herpx[i] +nli] i=2,3,...,TB. (4.4)

Since finding the capacity of the channel in ([&4) is a difficult task [61], a capacity lower
bound is generally obtained by treating he,.x[i] + n[i] as Gaussian distributed noise
. . . . N
with variance E{|herr2[i] + n[i]|*} = of & + No where o3, = E{|hey [} = 5755

is the variance of the estimate error. Under these assumptions, a lower bound on the

instantaneous capacity is given by [60], [61]

TB —1 &
C = 1 1+ ————|heal?
T ( MR )
TB -1
— log, (1 + SNReg|w|2) bits/s (4.5)
where the effective SNR is
Eso}
SNRyg = 2 Thest 46
H O_}QLETTSS —'—NO ( )
2 AR > . .
and o, = E{|hest|’} = o s the variance of the estimate h.s. Note that the

expression in (5] is obtained by defining hes; = o, w where w is a standard complex
Gaussian random variable with zero mean and unit variance, ie., w ~ CN(0,1).
Henceforth, we base our analysis on C}, to understand the impact of the imperfect

channel estimate.

4.2.3 Fixed-Rate Transmission and ON-OFF Model

Since the transmitter is unaware of the channel conditions, it is assumed that in-
formation is transmitted at a fixed rate of r bits/s. When r < Cy, the channel is

considered to be in the ON state and reliable communication is achieved at this rate.
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Note that under the block-fading assumption, the channel stays in the ON state for
T seconds and the number of bits transmitted in this duration is 7T". If, on the other
hand, » > (', we assume that outage occurs. In this case, channel is in the OFF state
during the frame duration and reliable communication at the rate of r bits/s cannot
be attained. Hence, effective data rate is zero and information has to be resent. The

probability of the channel being in the OFF state is

pot = Pr{r > Cr} =1—¢ (4.7)
where ot .
TB—1 —
o= —. (4.8)
SNRes

Rightmost expression in (£7) follows from the fact that |w|? is an exponential ran-
dom variable with mean 1. Noting that |w|? gives the normalized estimated channel
strength, we see that the channel is in the OFF state if this channel strength is less

than the threshold a. Similarly, the probability of being in the ON state is

Pon = Pr{r < C1} = Pr{|w|’* > a} = ™= (4.9)

We finally remark that since the fading coefficients (and consequently h.s;, w, and C})
change independently from one frame to another under the block-fading assumption,
the channel, in any given frame, is either in the ON or OFF state independently of

its previous state.
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4.3 Preliminary

With the transmission scheme described above, similar to Chapter 3, for the ON-OFF
channel model described in Section 123 the effective capacity normalized by the
frame duration 7" and bandwidth B, or equivalently spectral efficiency in bits/s/Hz,

for a given QoS delay constraint specified by 6 is given by?,

1
Re(SN = —

0<p<1

lOge (poff + poneieTT)

= max L log, (1 —e (1 — e’GT’"))

r>0  0TB
0<p<1
— 1 —Qopt _HTTopt
= gz log, (1—eom(1—e ). (4.10)

where 74, and opy are the optimal values of r and o, and p,, and pog, as described
in Section .23 are the probabilities of channel being in the ON and OFF states,
respectively. Note that the optimal values rop and ap are functions of SNR in general.
Note further that Rg is obtained by optimizing both the fixed transmission rate r
and the fraction of power allocated to training, p. The dependence of the normalized

effective capacity on p is through the threshold o which depends on SNReg.

2The formulation in (#I0) applies to the case in which the channel’s currently being in the ON
or OFF state is independent of its state in the previous frame. This arises due to block fading
assumption. In a correlated fading scenario in which the current channel state has dependence on
the previous one, we have a two-state (ON-OFF) Markov chain. For such a Markov model, using the
result in [I2] Section 7.2, Example 7.2.7], we can show that the effective capacity can be expressed
as

1 1 —0Tr
max 4’§§§§10ge<5(poﬁ‘%pone
0<p<1

+ \/(poff + p0116_9T7‘)2 - 4(poff + Pon — 1)6_9717‘))-

We can immediately see that the above expression specializes to (£I0) by noting that peg + pon = 1
in the block fading scenario.
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Also, it can easily be seen that

Re(SNR,0) = (lg% RE(SNR, 6)

ol SN
r _2T]7_‘371 1
=max e SNReg (4.11)
0<p<1

Hence, as the QoS requirements relax, the maximum constant arrival rate approaches

4
B

max ,>o re ¢

the average transmission rate. On the other hand, for 8 > 0, Rg < >
0<p<1

in order to avoid violations of buffer constraints. Now, combine the discussion in
Section[3.2] we can carry out the energy efficiency analysis for the transmission scheme

described in this chapter.

4.3.1 Optimal Training Power

Before performing the energy efficiency analysis, we first obtain the following result
on the optimal value of p, the fraction of the total energy allocated to training in the

presence of QoS constraints.

Proposition 2 At a given SNR level, the optimal fraction of power poy that solves
the mazximization problem above ({-10) does not depend on the QoS exponent § and

the transmission rate v, and is given by

Popt = /NN +1) =7 (4.12)

where

YTBSNR+TB — 1 I avm P
= an = .
= " TB(TB - 2)sNk NoB

(4.13)
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Proof: See Appendix [El

4.4 Energy Efficiency in the Low-Power Regime

In this section, we analyze the spectral-efficiency vs. bit energy tradeoff in the low
power regime in which the average power of the system, P, is small.
With the optimal value of p given in Proposition Bl we can now express the

normalized effective capacity as

rT
_ 2TB-1_,
Re(SNR, 0) = max — s log, [1—e SNRemopt (1 — ¢=0T7) (4.14)
ToptT
1 _ 2TB—-1 _q
= log, | 1—e SNRetopt (1 — ¢=0Tront) (4.15)

" OTB

where 7o is the optimal value of r that solves (4.14]), and

®(SNR)SNR?
SNReft opt = , 4.16
opt = S (SNR)SNR + TB — 1 (4.16)
and
P(SNR) = popt (1 — POpt)’YQTQBQa
(4.17)

(SNR) = (1 + (TB = 2)pop ] TB.

With these notations, we obtain the following result that shows us that operation at

very low power levels is extremely energy inefficient and should be avoided.

Theorem 10 In the presence of channel uncertainty, the bit energy for all 6 > 0
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increases without bound as the average power P and hence SNR vanishes, i.e.,

E, . B, ' SNR 1
No|g,—o SNE—0 Ny  SNRE-o Rp(SNR)  Rg(0)
Proof: See Appendix [l
Remark: Theorem [I0 shows that % = oo for any # > 0. Note that this

0
RE=0
is a cautionary result. As will be evident in the numerical results, energy efficiency

still improves if one operates at low power levels. However, if the power is reduced
below a certain threshold, bit energy requirements start increasing and the required
bit energy level grows without bound as power vanishes. One reason for this behavior
is that although channel estimation at very low power levels does not provide reliable
estimates, the receiver regards this estimate as perfect. Hence, in the low-power
regime, we have both diminishing power and deteriorating channel estimate, which
affect the performance adversely. The result of Theorem [ also indicates that the
minimum bit energy, which can be identified numerically, is achieved at a non-zero
power level. In the numerical results, we will observe that both the minimum required
bit energy and the other bit energy values required at a given level of spectral efficiency
increase as the QoS constraints become more stringent.

Fig. plots the spectral efficiency vs. bit energy for = {1,0.1,0.01,0.001}

when B = 105 Hz in Rayleigh channel with E{|h|?} = v = 1. We notice that as

Ep
No

spectral efficiency Rg decreases, the bit energy initially decreases. However, as
predicted by the result of Theorem [I0, the bit energy achieves its minimum value at
a certain nonzero spectral efficiency below which % starts increasing without bound.
Hence, operation below the spectral efficiency or SNR level at which %min is attained
should be avoided. We also note in Fig. that the bit energy requirements in

general and the minimum bit energy in particular increases with increasing 6 value,
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Figure 4.2: Spectral efficiency vs. Ej/Np in the Rayleigh channel with E{|A|*} = 1.
B = 10°.

indicating the increased energy costs as the QoS limitations become more stringent.
In Fig. 4.3 we plot ﬁ—‘; as a function of SNR for different bandwidth levels assuming
6 = 0.01. We again observe that the minimum bit energy is attained at a nonzero SNR
value below which % requirements start increasing. Furthermore, we see that as the
bandwidth increases, the minimum bit energy tends to decrease and is achieved at a
lower SNR level. Finally, we plot in Fig. [£4] the minimum bit energy as a function
of the bandwidth, B. We note that increasing B generally decreases %mm value.
However, there is diminishing returns as B gets larger. Analysis in the wideband

regime in the following section will provide more insight into the impact of large

bandwidth.
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4.5 Energy Efficiency in the Wideband Regime

In this section, we consider the wideband regime in which the bandwidth is large.

We assume that the average power P is kept constant. Note that as the bandwidth

B increases, SNR = ﬁ approaches zero and we operate in the low-SNR regime.

4.5.1 Decomposing the Wideband Channel

In Section 4.1, we have described a flat fading channel model. However, flat fad-
ing assumption will not hold in the wideband regime as the bandwidth B increases
without bound. On the other hand, if we decompose the wideband channel into N
parallel subchannels, and suppose that each subchannel has a bandwidth that is equal
to the coherence bandwidth, B., then we can assume that independent flat-fading is
experienced in each subchannel. Note that we have B = N B.. Similar to (4£1]), the

input-output relation in the ™ subchannel can be written as

The fading coefficients {hy, 1, in different subchannels are assumed to be independen-

t zero-mean Gaussian distributed with variances E{|h;|*} = ;. The signal-to-noise

ratio in the k'™ subchannel is SNRy, = Nf - where P, denotes the power allocated to

the k"™ subchannel and we have fo:l P, = P 3. Over each subchannel, the same
transmission strategy as described in Section [£.2.3]is employed. Therefore, the trans-
mitter, not knowing the fading coefficients of the subchannels, sends the data over

each subchannel at the fixed rate of r. Now, we can find that Cf, ; for each subchannel

3While not equipped with the knowledge of the instantaneous values of the fading coefficients,
the transmitter is assumed to know the statistics of the fading coefficients, and possibly allocate
different power levels to different subchannels with this knowledge.
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is given by L8~ log, (1 + SNReg|w|?) bits/s, in which

2
gs’ko-hk,est

SNRegf 1 = (420)
) 2
Uhk e'rrgS?k + NO
o (17pk)TPk _ D 2 _ ’YkNO 2 R 'Y]%gp,k
where gs,k — T TB.-1 gp:k - kaPk’ ghk,err T Epet+No and ghk,est T M et+No®

Similarly as before, if r < Cp, 1., then transmission over the k"™ subchannel is successful.
Otherwise, retransmission is required. Hence, we have ON and OFF states for each
subchannel. On the other hand, for the transmission over N subchannels, we have a
state model with V+1 states because we have overall the following N+1 possible total
transmission rates: {0,77T,2rT,..., NrT}. For instance, if all N subchannels are in
the OFF state simultaneously, the total rate is zero. If j out of N subchannels are in
the ON state, then the rate is jrT. We note that such a decomposition strategy is also
employed in [42] where the receiver is assumed to have perfect channel information.
Although similar, this strategy is also discussed here for the sake of completeness.
Now, assume that the states are enumerated in the increasing order of the total
transmission rates supported by them. Hence, in state j € {1,...,N + 1}, the
transmission rate is (j — 1)rT. The probability of being in state j € {1,..., N + 1}
is given by (£22)) in the next page, where Z;_; denotes a subset of the index set
{1,..., N} with j — 1 elements. The summation in (£22) is over all such subsets.
Also, in (£22]), 77, denotes the complement of the set Z; 1, and a; = %.
Note in the above formulation that, similarly as in Section 423 the probability
of currently being in state j, i.e., g;, does not depend on the state in the previous
frame again due to the block-fading assumption. Moreover, the product form inside
the summation in (AZI]) is due to having noninteracting subchannels. If fading in
different subchannels are correlated, g; can be written as (A23) in the next page,

which, in general, depends on the joint distribution of {|w:|?, ..., |wx|*}.
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¢; = Pr{(j — 1) subchannels out of N subchannels are in the ON state}

= > I Pr{lwf >} ] (1—Pr{lw]*> ai}) (4.21)

Ij,1C{1 ..... N} kEIj,1 kEI;71
= > IT e JI @—e) (4.22)
Ij,1C{1 ..... N} kEIj,1 kEI;71

g = Z Pr ( ﬂ {Jwi.|* > ak}) ﬂ ﬂ {lwp]* < oy} (4.23)

Ij,1C{1 ..... N} k‘GIj,1 kEIJQ_l

If, in addition to being independent, the fading coefficients hy in different sub-
channels are identically distributed (i.e., the variances {v;}&_, are the same) and also
if the total power is uniformly distributed over the subchannels and the fraction of
energy, pi, allocated to training in each subchannel is the same, then ¢; in (£22)
simplifies and becomes a binomial probability:

N—j+1

G =1 (Pr{|w|2 > a})j_l (1 — Pr{|w|* > a})

= (e_o‘)j_l (1 - e_o‘)N_jH : (4.24)

and therefore SNR;, =

z2lw

Note that with equal power allocation, we have P, =

Nf b= Nfg)]N = % = SNR which is equal to the original SNR used in ([@I3]). Since

{SNReffJg}]kV:l are also equal due to having equal p;’s, we have the same o = “SNR.,
for each subchannel.
The effective capacity of this wideband channel model with N subchannels is given

by the following result.
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Corollary 4 For the wideband channel with N parallel noninteracting subchannels
each with bandwidth B. and independent flat fading, the normalized effective capacity
in bits/s/Hz is given by

1 N+1 }
RE(SNR,0) = max {_HTB log, (Z q; e_H(J_l)rT) } (4.25)
Py>0 s.t. 3 Pp<P =1
0<pr<1Vk

where q; is given in ({.28). If {hi}_, are identically distributed Gaussian ran-
dom wvariables with zero mean and variance v and the data and training energies
are uniformly allocated over the subchannels, then the normalized effective capacity

expression simplifies to

1 —« —0Tr
Re(SNR,0) = max {_GTBC log, (1 —e*l—e ))} . (4.26)
0<p<1
o TBT 1 p(1—p)*T>B2SNR®

in which SNR =

where o = SNR. and SNRey = VT Bo(TBe—2)SNR++TB.SNR+TBe—1’

P _ P

NoB =~ NNoB:®

Proof: See Appendix Bl

Remark: Although we concentrate on noninteracting subchannels, the effective
capacity result in (A27]) is general and holds for the case in which the fading in
different subchannels are correlated and ¢; is given as in (£23).

Remark: Corollary M shows that if the fading coefficients in different subchannels
are i.i.d. and the data and training energies are uniformly allocated over the subchan-
nels, then the effective capacity of a wideband channel has an expression similar to
that in (4I0), which provides the effective capacity of a single channel experiencing
flat fading. The only difference between (£I0) and (£26) is that B is replaced in
(Z26)) by B., which is the bandwidth of each subchannel.
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4.5.2 Rich and Sparse Multipath Fading Scenarios

After the characterization in Corollary [4], we henceforth limit our analysis to the case
in which the effective capacity is given by ([4.28]) because optimization over the power
allocation schemes and obtaining closed-form expressions are in general difficult tasks
in the wideband regime in which the number of subchannels is potentially high. Under

these assumptions, we investigate two scenarios:

1. Rich multipath fading: In this case, we assume that the number of independent
resolvable paths increases linearly with the bandwidth. This in turn implies
that as the bandwidth B increases, the number of noninteracting subchannels

N increases while B, stays fixed.

2. Sparse multipath fading: In this case, we assume that the number of indepen-

dent resolvable paths increases at most sublinearly with the bandwidth. This

B

assumption implies the coherence bandwidth B, = ¢ increases with increasing

bandwidth B [57], [58]. We can identify two subcases:

a) If the number of resolvable paths remains bounded in the wideband regime
(as considered for instance in [59]), then N remains bounded while B,

increases linearly with B.

b) If the number of resolvable paths increases but only sublinearly with B,

then both N and B, grow without bound with B.

We first consider scenario (1) where rich multipath fading is assumed. In this case, as

. . . . P P . ~
B increases, the signal-to-noise ratio SNR = NoB = NNoB. approaches zero while B, s

tays fixed. From these facts and the similarity of the formulations in ({I0) and (Z24]),

we immediately conclude that the wideband regime analysis of the rich multipath case

is the same as the low-power regime analysis conducted in Section [4.4l Therefore, as
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B — o0 in the rich multipath fading scenario, we have ﬁ—g Roe0 — limgNR 0 ﬁ—g = 00
for all & > 0. Therefore, the minimum bit energy is attained at a high but finite
bandwidth level that can be identified through numerical analysis. If the bandwidth
is further increased, a penalty in energy efficiency starts to be experienced due to in-
creased uncertainty. Note that we have high diversity in rich multipath fading as the
number of noninteracting subchannels increase linearly with bandwidth. On the other
hand, since independent fading coefficients are only imperfectly known and moreover
the receiver’s ability to estimate the subchannels diminishes with decreasing SNR, we
have high uncertainty as well. Hence, uncertainty becomes the more dominant factor
and extreme energy-inefficiency is experienced in the limit as B — oc.

Next, we analyze the performance in the scenario of sparse multipath fading.
We note that the authors in [57] and [58], motivated by the recent measurement
studies in the ultrawideband regime, considered sparse multipath fading channels
and analyzed the performance under channel uncertainty, employing the Shannon
capacity formulation as the performance metric. We in this chapter consider channel
uncertainty and queueing constraints jointly and use the effective capacity to identify
the performance. We first consider scenario (2a) where the the number of subchannels
N remains bounded and the degrees of freedom are limited. The following result
provides the expressions for the bit energy at zero spectral efficiency and the wideband
slope, and characterize the spectral efficiency-bit energy tradeoff in the wideband
regime when N is fixed and B, grows linearly with B. It is shown that the bit energy

required at zero spectral efficiency is indeed the minimum bit energy.

Theorem 11 For sparse multipath fading channel with bounded number of indepen-

dent resolvable paths, the minimum bit energy and wideband slope in the wideband
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regime are given by

E E E —0
= =2 = lim = and (4.27)
Nomin — No Rp=0 ONE—0 Ny log. &
log? ¢ log, 2
So = log, log, . (4.28)
0T o5, (1 — &) (% (4 1+ 7\[1;?0 _ 1) + s020m)
— . 9Tnpo¢z;pt
respectively, where § = %, =1—e %rt(l —e T2 ), and
P NN, [N\
¥ = 1+ —=- —
NNy vyPT yPT
-y 18 defined as o, = lime 0 oy and o, satisfies
log, 2 0T p
ot = g 108 | 1 : 4.29
Gort = g 8¢ <  Tog, 2) (4.29)

Above, we define ( = Bic.

Proof: See Appendix [Gl

Remark: We note that the minimum bit energy in the sparse multipath case with
bounded degrees of freedom is achieved as B — oo and hence as SNR — 0. This
is in stark contrast to the results in the low-power regime and rich multipath cases
in which the bit energy requirements grow without bound as SNR vanishes. This is
due to the fact that in sparse fading with bounded number of independent resolvable
paths, uncertainty does not grow without bound because the number of subchannels
N is kept fixed as B — oo.

Remark: Theorem [I1], through the minimum bit energy and wideband slope ex-
pressions, quantifies the bit energy requirements in the wideband regime when the

system is operating subject to both statistical QoS constraints specified by 6 and
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Figure 4.5: Spectral efficiency vs. E, /N in the Rayleigh channel with E{|h[*} =y =
1. P/NN, = 10%.

channel uncertainty. Note that both %mm and Sy depend on # through 6 and &.
As will be observed in the numerical results, ﬁ—gmm and the bit energy requirements
at nonzero spectral efficiency values generally increase with increasing 6. Moreover,
when compared with the results in Section 4] it will be seen that sparse multipath
fading and having a bounded number of subchannels incur energy penalty whether
there are QoS constraints or not (0 = 0), which is in stark contrast with previous
results when there is perfect CSI at the receiver [42].

After having obtained analytical expressions for the minimum bit energy and wide-
band slope, we now provide numerical results. Fig. L3l plots the spectral efficiency—bit
energy curve in the Rayleigh channel for different 6 values. In the figure, we assume
that P/(NNp) = 10%. As predicted, the minimum bit energies are obtained as SNR
and hence the spectral efficiency approach zero. %min are computed to be equal to
{4.6776,4.7029,4.9177,6.3828,10.8333} dB for § = {0,0.001,0.01,0.1, 1}, respective-
ly. Moreover, the wideband slopes are Sy = {0.4720,0.4749,0.4978,0.6151, 0.6061 }
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Figure 4.6: Comparison of spectral efficiency; P/NNy = 10%, 6 = 0.01, and E{|h|*} =
v=1.

for the same set of # values. As can also be seen in the result of Theorem [I1], the
minimum bit energy and wideband slope in general depend on #. In Fig. (L3 we
note that the bit energy requirements (including the minimum bit energy) increase
with increasing 0, illustrating the energy costs of stringent queueing constraints. Fi-
nally, in this chapter, we have considered fixed-rate/fixed-power transmissions over
imperfectly-known channels. In Fig. 46 we compare the performance of this sys-
tem with those in which the channel is perfectly-known and fixed- or variable-rate
transmission is employed. The latter models have been studied in Chapters 2 and Bl
This figure demonstrates the energy costs of not knowing the channel and sending
the information at fixed-rate.

We finally consider the sparse multipath fading scenario (2b) in which the number
of subchannels NV increases but only sublinearly with increasing bandwidth. Note that
in this case, the bit energy required as B — oo can be obtained by letting /N in the

result of Theorem [II], where N is assumed to be fixed, go to infinity.
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Figure 4.7: Spectral efficiency vs. E, /N in the Rayleigh channel with E{|h[*} = v =
1. P/NN, = 10%.

Corollary 5 In the wideband regime, if the number of subchannels N increases sub-

linearly with B, then the bit energy required in the limit as B — 0o is

Ey

= 00 (4.30)
No RE=0

Remark: As N increases, each subchannel is allocated less power and operate in
the low-power regime. Therefore, it is not surprising that we obtain the same bit
energy result as in the low-power regime. Additionally, since the number of sub-
channels N increases without bound, uncertainty in the wideband channel increases
as well. Hence, similarly as in rich multipath fading, extreme energy-inefficiency is
experienced as B — oo.

Fig. [ confirms the theoretical results. In this figure, we observe that the bit
energy requirements initially decrease with decreasing spectral efficiency. However,

below a certain spectral efficiency level, £ starts growing without bound for all > 0.

Ep
No
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4.6 Conclusion

In this chapter, we have analyzed the energy efficiency of fixed-rate wireless trans-
missions for the communication scenario in which queueing constraints are present
and the channel coefficients are estimated imperfectly by the receiver with the aid
of training symbols. We have considered the effective capacity as a measure of the
maximum throughput under statistical QoS constraints. We have identified the opti-
mal fraction of power allocated to training and shown that this optimal fraction does
not depend on the QoS exponent ¢ and the transmission rate. In particular, we have
investigated the spectral efficiency—bit energy tradeoff in the low-power and wideband
regimes. We have quantified the increased energy requirements in the presence of QoS
constraints in the low-power and wideband regimes, and identified the impact upon
the energy efficiency of channel uncertainty and multipath sparsity and richness. The

key conclusions of this chapter on energy efficiency are the following:

1. Having very low power per degree of freedom has a detrimental impact on
energy efficiency. Indeed, the bit energy requirements grow without bound
as the power per degree of freedom vanishes by either letting the power in a
narrowband channel become small or increasing the bandwidth and having the
power per subchannel in a wideband scenario diminish. This is tightly linked
to the fact that the system’s ability to reliably estimate the channel conditions

decreases as power gets small.

2. Although operating at low power levels or at wide bandwidths improves the
energy efficiency, care should be exercised under channel uncertainty. In the
low-power regime, the minimum bit energy is achieved at a certain small but
non-zero power level. Unless sparse multipath fading with bounded number

of independent resolvable paths is experienced, the minimum bit energy in the
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wideband regime is attained at a large but finite bandwidth value. These critical
power and bandwidth levels depend in general on the QoS constraints and can

be obtained through numerical analysis.

If the power decreases or bandwidth increases beyond these minimum-bit-energy-
achieving levels, energy efficiency starts degrading. These results have signifi-

cant practical implications on wireless systems.

. In the presence of QoS constraints and channel uncertainty, diversity in the fre-
quency domain acts as a double-edged sword. Increasing the bandwidth and the
number of noninteracting subchannels initially improves the energy efficiency by
decreasing the required bit energy. This initial increase in the diversity is also
beneficial in satisfying the QoS constraints. However, if the number of nonin-
teracting subchannels increases without bound, the bit energy values eventually
start growing without bound as well. Hence, beyond a certain threshold, the
benefits of the presence of large number of subchannels are outweighed by the
increased channel uncertainty due to the imperfect-knowledge of the conditions

in these channels.

Note that such a behavior is not exhibited if the number of subchannels remains

bounded.

. In general, required bit energy values increase as the QoS constraints become
more stringent. The analysis in this chapter enable us to quantify these increases

in the energy requirements.
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Chapter 5

Power and Rate Control for

Multiple-Access Fading Channels

In this chapter, we consider the scenario in which both the transmitters and the
receiver have perfect channel side information (CSI). First, assuming that no power
control is employed in the transmission, we characterize the rate regions for both
superposition transmission strategies and TDMA. Unlike the results obtained in [22]
and [26], varying the decoding order with respect to the channel states is shown to
significantly increase the achievable rate region (i.e., throughput region) under QoS
constraints. Also, it is demonstrated that time sharing strategies among the vertex of
the rate regions can no longer achieve the boundary surface of the throughput region.
Additionally, we show that if we take the sum-rate throughput, or the sum effective
capacity, as the performance metric, TDMA can in certain cases even achieve better
performance than superposition coding when a fixed decoding order is employed at
the receiver. Next, we incorporate power control policies into the model. For this
case, we first obtain closed-form expressions for the optimal power control policies

under the assumption that the decoding order is fixed at the receiver side. When
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User 1

receiver

User M

Figure 5.1: The system model.

the decoding order is variable, we identify the conditions the optimal power control

policies should satisfy. We also describe an algorithm to determine such policies.

5.1 System Model and MAC Capacity Region

As shown in Figure B.0], we consider an uplink scenario where M users with individ-
ual power and buffer constraints (i.e., QoS constraints) communicate with a single
receiver. It is assumed that the transmitters generate data sequences which are di-
vided into frames of duration T'. These data frames are initially stored in the buffers
before they are transmitted over the wireless channel. The discrete-time signal at the

receiver in the i*" symbol duration is given by

Vi) => bl X;li] +nli], i=1,2,... (5.1)

j=1

where M is the number of users, Xj[i] and h;[i] denote the complex-valued chan-
nel input and the fading coefficient of the jth user, respectively. We assume that
{h;[i]}’s are jointly stationary and ergodic discrete-time processes, and we denote

the magnitude-square of the fading coefficients by z;[i] = |h;[i]|>. Above, n[d] is a
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zero-mean, circularly symmetric, complex Gaussian random variable with variance
E{|n[i]|*} = Ny. The additive Gaussian noise samples {n[i|} are assumed to form an
independent and identically distributed (i.i.d.) sequence. Finally, Y[i] denotes the
received signal.

The channel input of user j is subject to an average energy constraint E{|z;[i]|*} <
]5]- /B for all j, where B is the bandwidth available in the system. Assuming that
the symbol rate is B complex symbols per second, we can see that this formulation

indicates that user j is subject to an average power constraint of ]5J With these

N

definitions, the average transmitted signal to noise ratio of user j is SNR; = WJB.

Now, if we denote P;[z] as the instantaneous transmit power as a function of the

fading states z = (z1, -+, 2y ), the instantaneous transmitted SNR level becomes
wilz] = %. Then, the average power constraint is equivalent to the average SNR

constraint E{y;[z]} < SNR; for user j.

5.1.1 Fixed Power and Variable Rate

First, we consider the case in which the transmitters operate at fixed power and hence
do not employ any power adaptation policies. The capacity region of this channel is

given by [22], [23]
7QIMAC = { (Rcwg,la ) Ravg,M) :

JeES

R,y (9) < BE, {log2 (1 +> SNRij) } :

VSC{l,...,M}} (5.2)
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where Ry (S) = Yicg Ravg,i- As well-known, there are M! vertices of the polyhedron
defined in (52). The vertex Ry, = (ngm(l), e ,Ravgm(M)> corresponds to a
permutation 7, or the successive decoding order at the receiver, i.e., users are decoded

in the order given by (1), -, mw(M). This vertex is specified by the average rates

SNRz (k) Zr (k)
Ravgn(e) = BE, {log <1 + ( (5.3)
gm(k) 2 1+ ng-{-l SNR 7 (5) 2 ()

in bits/s for k = 1,---, M. With this characterization, we see that for the given

decoding order 7, the maximum instantaneous service rate for user (k) is

SNRﬂ(k)Zﬂ(k)
14+ 300,11 SNRa(i) 2 (i)

Ry = Blog, <1 + ) bits/s. (5.4)

Time sharing among these M! permutations of decoding orders yields any point on
the boundary surface of Ryac [1]. As also discussed in [26], it can be easily verified
that varying the decoding order according to the channel states does not provide any

improvement on the capacity region.

5.1.2 Variable Power and Variable Rate

Now, we suppose that dynamic power and rate allocation is performed according
to time-variations in the channels. For a given set of power allocation policies U =
{ma, -+, par}, where pi; > 0 is the power control policy of the jth user, the achievable

rate region is described by [23]

R(U) = {ng : Ry (9) < E, {B log, (1 +> uj(z)zj) } ,

JjeSs

VS {1, ,M}}. (5.5)
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For a given decoding order at the receiver, the individual average and instantaneous
rates of the users can be obtained similar to (5.3]) and (54), respectively, with SNR

replaced by p. The capacity region is given by

Ruac = |J RU) (5.6)

uer

where F is the set of all feasible power control policies that satisfy the average power

constraint

F={U:E,{uj(z)} <SNRj,p; >0, Vj}. (5.7)

5.1.3 TDMA

For simplicity, we assume that the time division strategy is fixed prior to transmission.
Let ¢; denote the fraction of time allocated to user j. Note that we have Zj]\il d; = 1.
In each frame, each user occupies the entire bandwidth to transmit the signal in the
corresponding fraction of time. Then, the instantaneous service rate for user j in each

frame is given by

SNR;
R;(SNR,;) = Blog, <1 + 5 ]zj> bits/s (5.8)
J

Above, note that user j is assumed to transmit with the higher average power of

P;/d; in the allocated §; fraction of the time.

5.2 Throughput Region

At this point, it is also important to note that the transmission strategies (such as

superposition coding schemes, time-division multiple-access methods, and power con-
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trol policies) and reception strategies (such as the successive decoding order) will
henceforth be designed and analyzed as functions of the fading states and the QoS
exponent #. Hence, our transmission and reception policies take into account the
statistical queueing constraints through the QoS exponents but not the actual queue
lengths and states. We note that the authors in [62], [63], and [64] have recently
studied queue-length based policies in the context of wireless scheduling in broadcast
scenarios. In these works, only one user at a time is served by the transmitter in a
downlink model. Shakkottai in [62] investigated the effective capacity achieved by a
greedy scheduling rule that picks the user with the highest channel rate and a max-
queue rule that picks the user with the largest product of the queue length and the
channel rate. Even though an i.i.d. channel model (akin to our block-fading assump-
tion) is considered in this work, it is described that the main difficulty in the analysis
of queue-length based policies arises from the fact that these policies statistically cou-
ple the rates allocated to various users across time. Therefore, due to correlation over
time, the effective capacity formula in (1)) cannot be simplified to that in (L3)). In
such cases, effective capacity cannot be computed directly and certain technical diffi-
culties are encountered. In particular, the techniques of sample path large deviations
and calculus of variations are needed to determine the performance. In [62], these
approaches are applied to relatively simple scenarios with two users, each of which
experiences a two-state (ON-OFF) channel. More recently, using the sample-path
large deviation principle, Venkataramanan and Lin in [63] studied wireless schedul-
ing algorithms that maximize asymptotic decay rate of the queue-overflow probability
in a more general downlink scenario with N users and M possible channel states.

In this chapter, we consider more complex channel models with continuous fading
and more sophisticated transmission strategies such as superposition coding (rather

than orthogonal transmissions) and power control techniques in a multiple-access
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scenario. By addressing only the statistical queueing constraints, we formulate a
tractable problem for more practically appealing system models. At the same time,
we note that queue-length based policies have the potential to attain a higher ef-
fective capacity than those achieved by greedy policies that take into account only
the channel states (see e.g., [62, Fig. 3]). Hence, from this perspective, our results,
which incorporate the channel states and the QoS exponents but not the actual queue
states in the transmission and reception, can be regarded as baselines with which the
performances of queue-length based policies can be compared.

Suppose that © = (6;,--- ,0)) is a vector composed of the QoS constraints of M
users. Let C(©) = (Cy(01),- -, Cap(0ar)) denote the vector of the normalized effective

capacities. We first have the following characterization.

Definition 1 The effective throughput region s described as

Crmac(©, SNR)

= U {C(@) >0:G(h;) < _Qj;B log, E, {e*GTRj} } (5.9)

R
s.t. ]E{R}ERMAC

where R = {Ry, Ry, -+, Ry} represents the vector composed of the instantaneous
transmission (or equivalently service) rates of M users. Note that the union is over

the distributions of the vector R such that the expected value E{R} lies in the MAC

capacity region.

Remark: The throughput region given in Definition [ represents the set of all
vectors of constant arrival rates C() that can be supported in the fading multiple
access channel in the presence QoS constraints specified by © = (6, ---,0,,). Since
reliable communication is considered, the arrival rates are supported by instantaneous

service rates whose expected values are in the MAC capacity region. For instance, in
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the absence of power control, the maximum instantaneous service rates for a given
decoding order are given by (5.4)).
Using the convexity of the MAC capacity region Ryac, we obtain the following

preliminary result on the effective throughput region defined in (5.9)).
Theorem 12 The throughput region Cpac(©, SNR) is conver.

Proof: Let the vectors C(©) and C'(©) belong to Cyac(©, SNR). Then, there exist
some rate vectors R and R/ for C(©) and C'(©), respectively, such that E{R} and
E{R’} are in the MAC capacity region. By a time sharing strategy, for any « € (0, 1),
we know from the convexity of the MAC capacity region that E{aR + (1 — a)R'} €

Rayiac. Now, we can write

aC(®) + (1 - a)C'(0)
: @TBlOge (B (Efeom™) ™ (5.10)

log, E{(e GTO‘R

><( {(e OT(-e)R7) e T })H (5.11)

@T aRJr 11—« R/)} ) (512)

@TB

=~ @TB log, E {e”

Above, in (BI0) through (BI12), all operations, including the logarithm and expo-
nential functions and expectations, are component-wise operations. For instance, the

expression in (5.I0) denotes a vector whose components are

M

(o (2fem ) @l o))

J=1

. Similarly, the inequalities in (5.10) and (512)) are component-wise inequalities. The
inequality in (5I0) follows from the definition in (59]). Moreover, (512) follows from
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Hélder’s inequality and leads to the conclusion that aC + (1 — a)C’ still lies in the
throughput region, proving the convexity result. U

We are interested in the boundary of the region. Now that Cyac(©,SNR) is
convex, we can characterize the boundary surface by considering the following opti-

mization problem [23]:
max A - C(©) subject to: C(0) € Cyac(O, SNR). (5.13)

for all priority vectors A = (Ar, -+, Apr) in RY with 3, A; = 1.

5.3 Transmissions without Power Control

In this section, we assume that the signals are transmitted at a constant power level
in each frame and hence power adaptation with respect to the fading states is not
performed. Under this assumption, we initially consider the scenario in which the
receiver decodes the users in a fixed order. Subsequently, we analyze the case of

variable decoding order.

5.3.1 Fixed Decoding Order

We first assume that the receiver decodes the users in a fixed order in each frame.
Hence, the decoding order does not change with respect to the realizations of the
fading coefficients. If a single decoding order is used in the frame, it is obvious that
only the vertices of the boundary region can be achieved. We consider a slightly
more general case in which time sharing technique is employed in each frame among
different decoding orders. Note that the time sharing strategy is also independent of

the channel states and hence is fixed in different blocks. We denote the fraction of
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time allocated to decoding order m,, as 7,,. Naturally, the fractions of time satisfy
Ty > 0 and Z%’Zl Tm = 1. Varying the values of 7,, enables us to characterize the
throughput region. Under these assumptions, the effective capacity for each user on

the boundary surface is

1 —orSM . p oL
C;(0;) = " 0.TB log, E, {e BT 2 o (])} (5.14)
J

where R_-1 (j) represents the maximal instantaneous service rate of user j at a given
m

decoding order T,,, which is given by

SNR.; z:
R = Blog, [1+ 1 5.15
T (7) 082 ( 1+ Tt )smsi () SNRizi> (5.15)

where 7! is the inverse trace function of m,,.

Remark:  Note that R -1, is the maximum instantaneous service rate achieved
with superposition coding and a particular decoding order. Hence, the correspond-
ing effective capacities characterize the throughput achieved with this strategy in the
presence of QoS constraints. Note also that B - () which represents the information-
theoretic limit for instantaneous rates, can be approached if codes with large block-
lengths are employed. Therefore, in order to have operational significance in the
results, we assume throughout the chapter that the number of symbols T'B in a
frame duration of T' seconds is sufficiently large. If T'B is relatively small, rates
attained with finite blocklength channel codes in the presence of possible decoding
errors should be considered as addressed in [65] and [47].

Remark: Throughout the rest of the chapter, we generally specify the effective
capacity values on the boundary surface for simplicity and brevity. Effective capacity

regions can immediately be specified using these boundary points. For instance, the
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effective capacity (or equivalently throughput) region for superposition coding and

fixed decoding order is

1 0,7 M R i
C6) <~ Vo5 B {e T T ) (5.16)
where the union is over different time allocation strategies.
Next, for comparison, we consider the TDMA case in which we also have similar
time allocation strategies but only one user transmits in its specific fraction of time.

We first have the following definition.

Definition 2 The throughput region for TDMA can be seen as the achievable vectors
of arrival rates with each component bounded by the effective capacity obtained when
the instantaneous service rate is given by (2.8). More specifically, the maximum

effective capacity for user j is

1 —6;6,TBlog, <1+ S];[Rj zj>
J

——— _log,E
0,18 5\ ¢

/P9 =

(5.17)

where 0; 1is the fraction of time allocated to user j, and 0 < §; < 1. We again
assume that 0,TB is sufficiently large so that the expression in ([58) is a realistic

representation of the service rate.

An immediate result can be obtained as follows:
Theorem 13 The throughput region for TDMA is convex.

Proof: Note that the points on the boundary surface is given in (5.17). Consider

the function f(§) = —d0T Blog, (1 + % ) It can be easily verified that f(0) is
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NR, )
_6‘7'9‘7'TB log2 (1—|— S 6?‘7 z]-) SNR. SljRJ 2
E<e log, (1 + 5 zj) — —gkm—loga €
aj 1+ 5]' J zZj
95, N SNR —r=0
oy —6;0;TBlog, (1+ - jz]-)
E<e !
(5.19)

a convex function in 6. Then, e/ is a log-convex function. Since weighted non-

negative sum preserves the log-convexity [53, Section 3.5], we know that E,{ef(®}

SNR
—00T B log, (1+ z . . .
R } is a concave function in 9.

is log-convex. Then —z=log, E{e
Hence, we immediately see that the throughput region for TDMA is convex. 0
The optimal time allocation policy that maximizes the weighted sum can be ob-

tained through the optimization problem

M )\j | —6;0;TBlog, (1+ Slj_Rf zj)
_ E ! 5.18
W aTE R -

M
s.t. 25J = 175j Z 0.

Jj=1

The objective function in the above problem is concave, and we can use the La-
grangian maximization approach. Taking the derivative of the Lagrangian function
with respect to d;, we obtain, for each user, the optimality condition given in (5.19)
at the top of this page, where k is the Lagrange multiplier whose value is chosen to
satisfy the constraint ij\il d; = 1. If the optimal value of §; turns out to be negative,
then the optimal value of §; should be 0. When A\; = Ay = --- = Ay, the obtained
values of {0,} are the ones that achieve the maximal sum-rate throughput, i.e., the
sum of the effective capacities of the users. Although obtaining closed-form solutions

is unlikely, the maximization problem in (5I8) can be easily solved numerically using
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convex optimization tools. Numerical results are provided in Section (.33l

5.3.2 Variable Decoding Order

We now study the case in which the receiver varies the decoding order with respect
to the fading states z = (z1,...,2y). In its most general form, we assume that the
receiver, for each fading state z, employs a time sharing of the decoding orders in
which the fraction of time allocated to decoding order 7, is 7,,(z) for m = 1,... M.
Hence, for each fading state z, the receiver now has the freedom to use possibly a

different decoding order or a different time sharing of multiple decoding orders. For

M!

-1, the effective capacity of user j is

a given time sharing policy {7,,(z)

Ci(6;) = — e} — log, E, {erTfo’-ﬂm<z>me} (5.20)
where R -1, is given by (5I5). In this scheme, the instantaneous transmission
rates for the users are selected from any point on the dominant face of the MAC
instantaneous capacity region.

A more restrictive but simpler scheme for the receiver is to eliminate the time-
sharing and employ a particular single decoding order for each fading state z. In this
case, the instantaneous transmission rates are chosen from the vertices of the MAC
instantaneous capacity region. More specifically, we assume that the vector space
R of the possible values for z is partitioned into M! disjoint regions {Z,,}ML, with
respect to decoding orders {m,,}M' . Hence, each region corresponds to a unique
decoding order. For instance, when z € Z;, the receiver decodes the information in
the order m;. Therefore, this scheme corresponds to the special case of the general
time-sharing approach with 7,,(z) = 1 when z € Z,, and zero otherwise for all

m=1,... M.
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Now, for a given partition {Z,,}M!  the maximum effective capacity that can be
achieved by the jth user is
_ 1 —0,TR,;
C;(0;) = “OTE log, E, {e } (5.21)
1y % / ¢ "0, (2)dz (5.22)
- GJTB ge = 2c2,, pZ .

where p, is the distribution function of z and R, -1, is given in (5I3). Akin to the
optimization in (5.13), the optimal partition {Z,,}M! that maximizes the weighted

sum of the effective capacities can be identified by solving the following optimization

problem:
M
max A -C(O) =max > \C;(6; 5.23
s C0) = a3 AG(6) (5:23)
M
Aj
= ma —
{zﬁ; 6,TB

M!
x log, ( > /ez e_HjTR”ml<j>pz(z)dz). (5.24)
m=1"%&=m

Note that the optimal partition depends on the weight vector A = (Ay, ..., Ay). By
solving a sequence of optimization problems for different values of A, we can trace the
boundary of the effective throughput region.

Considering the expression for effective capacity and the optimization problem
in (524)), we note that finding closed-form analytical expressions for the optimal
partitions of the channel state space seems intractable for a general scenario. With
this in mind, we consider a simplified case in which all users have the same QoS
constraint described by #. This case arises, for instance, if users do not have priorities

over others in terms of buffer limitations or delay constraints.
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5.3.2.1 Two-user MAC

First, we consider the two-user MAC case and suppose that the two users have the
same QoS exponent 6. Similar to the discussion in [41], finding an optimal decoding
order function can be reduced to finding a function z; = g(z1) in the state space such
that users are decoded in the order (1,2) if zo < g(2;) and users are decoded in the
order (2,1) if zo > g(z1). Hence, the function g partitions the space of the possible

values of z = (z1, z2). With this, the optimization problem in (5.23) becomes
max MCi(0,9(z1)) + (1 — A)Ca(f,9(21)) (5.25)

where Cy(60, g(21)) and Cy(0, g(z1)) are expressed as

Ci(0,9(21))

—1 0000 _ SNR.
— 1 // HTBlogQ(l-i- 121) y ’ d d
0TB Oge( 0 9(21)6 Pz(21, 22)dzod 2y

ocorg(z1) — o SNR, =
+//g 1 . GTBIg2<1+1+SNR2Z2)pZ(z1,Zg)dz2d2'1>, (5.26)
0J0

Ca(0,9(21))

-1 oorg(z1) o .
" 9TB tog. (/0/0 ¢ 0Bl (148NRaz) ), () o) dzadz
SNR, -
00ro0 T RBI1 222
n // . T Blog, (1+1+SNR121)pZ(2h22)d22d21)_ (5_27)
0 Jg(z1)

Note that the maximization in (5.25)) is over the choice of the function g(z;). Implic-
itly, g(21) should always be larger than zero as implied in (5.20) and (5:27). In cases
in which this condition is not satisfied, we need to find a function z; = f(z2) instead,

as will be specified below.
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Theorem 14 The optimal decoding order as a function of the fading state z = (z1, z9)
for a specific common QoS constraint 6 in the two-user case is characterized by the

following functions:

(14 SNRyz) K7 — 1

g(z1) = SV, ., if K €[l,00) and (5.28)
fo) = LE SNR;;ﬁlKE —L fKep) (5.20)

where B = g—% and K € [0,00) is a constant that depends on the weight Ay in (225)

and the values of the double integrals in (2.20) and (527). Note that the function

used to partition the state space is either g or f depending on the value of K.

Proof: Suppose that the optimal decoding order is specified by the function zo = g(21).
We define

J(9(21)) = MCi(0,9(21)) + (1 = A1)Ca(0, G(21)) (5.30)

where §(z1) = g(21)+sn(21). g(21) is the optimal function, s is any constant, and 1(z;)
represents arbitrary perturbation. A necessary condition that needs to be satisfied is

i
L T6=)| =0 (5.31)

ds o0



We define the following:

o0 o0
¢1 = /0 / e " 10g2(1+SNR1Z1)pZ(217 29)dzadzy
9

(21)
oo rg(21) —gTBI 1+ SNR; -
+ / / e OgQ( 1+SNR2Z2>pz(21,Zz)ded21,
0 0

oo rg(z1)
¢2:/0 /o eieTBlogQ(HSNRQZQ)pz(Zl,22)d2’2d21

SNR, -

00 00 _TBlog, (14 -2ev2z2
+/ / e 0g2< 1+SNR121)pz(z1,zg)dzgdzl.
0 Jg(=1)

By noting that % = (1), and from (31)-(E33), we can derive
/OO _ A R0 B—(1+SNRz)‘5
0 0T Bo, 1+ SNRog(z1) e

1— X\ 3 SNRog(z1) \ "
~ 3T 54, ((1 + SNRpg(21)) " — (1 L SNR121> ) )

- pa(21, 9(21))n(21)dz1 = 0

Since the above equation holds for any 7(z;), it follows that

-8
)\1 SNR121 -8
- 14— 5 ) (1 48NR
6T Boy (( +1+SNRgg(zl)> (L SNR2) )

-8
_ 1A ((1 + SNRag(21)) P — (1 4 M) ) —0

0T B, 1 + SNR; 21

which after rearranging and defining K as follows yields

SNRyz |\ ~? P
(Lt mSRa)  —OFsNRz) a—aer

SNRag(z1)) 7 - A
(1+ Sg8E) T — (1 + SNRog(21)) ™ 102

105

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)



106

Obviously, K > 0. Notice that after a simple computation, (5.36) becomes

-8
_LHSNRis ) (5.37)
1+ SNRag(21)

which leads to (5.28)) after rearranging. Note here that if K < 1, g(z;) < 0 for
7 < I(S;\IiéRzl‘ Then, the expressions in (0.26) and (B.27) are not well-defined. In
this case, we denote the optimal function as z; = f(z3) instead. Following a similar
approach as shown in (5.20) through (5.37) yields (5.29). O

Remark: Above, we have assumed that the users are decoded in the order (1,2)
when zy < g(z1) (or 21 > f(z2) if K < 1) and decoded in the order (2,1) when
2o > g(21) (or 23 < f(zo) if K < 1). It is interesting note that if we switch the
decoding orders in the regions (i.e., if users are decoded in the order (1,2) when
29 > g(z1)), exactly the same partition functions as in (5.28) and (5:29)) are obtained
due to the symmetric nature of the problem. Hence, the structure of the optimal
functions that partition the space of channel states (z1, z2) into two non-overlapping
regions does not depend on which decoding order is used in which region.

Remark: Although the partition does not depend on the choice of the decoding or-
ders in different regions, the performance definitely does. Our numerical computations
show that the order selected originally at the beginning of our discussion (i.e., using
the decoding order (1,2) when z5 < g(21) or z; > f(22)) provides a larger throughput
region than otherwise. This observation leads to an interesting conclusion. Note that
partition functions ¢(z1) in (528) and f(29) in (529) are linear functions of z; and

29, respectively. When K > 1 and

(14 SNRy 2 ) K7 — 1
SNR,

20 < g(z1) = ) (5.38)
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user 1 is decoded first and user 2 is decoded last. Hence, for instance, when z; is
much larger than 2z, and user 1 is enjoying much better channel conditions, user 1 is
decoded first in the presence of interference caused by user 2’s received signal. User 2,
who has less favorable conditions, is decoded subsequently without experiencing any
interference. Note that such an operation is the opposite of an opportunistic behavior
and leads to a more fair treatment of users. This is rather insightful since the users
are assumed to operate under similar QoS limitations (i.e., they have the same QoS
exponent ). Note that if the decoding orders are switched, users having favorable
channel conditions will be decoded last and hence experience no interference. In such
a case, there is a bias towards users with better channel conditions, which leads to
inefficient performance when both users operate under similar buffer constraints.
Our observations above have led us to propose the following suboptimal decoding

order strategy for a scenario with more than 2 users.

5.3.2.2 Suboptimal Decoding Order

In this section, we consider an arbitrary number of users. When all users have the

same QoS constraint specified by 6, we propose a suboptimal decoding order given

by

Ar Ar A
W) 2@ o 2 (5.39)

Zr(1)  Zr(2) ~ Ze(m)

due to the observation that the user with the largest weight A should be decoded
last, and the fact that the higher the value of z, the less power is needed to achieve

a specific effective capacity. Considering a two-user example, we, with this choice of
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Figure 5.2: The throughput region of two-user MAC case. SNR; = SNRy, = 0 dB.
0, = 6, = 0.01. The solid, dotted, dot-dashed, and dashed lines represent the regions
achieved with optimal variable decoding order, suboptimal variable decoding order,
fixed decoding with time sharing, and the TDMA respectively.

the decoding order, can express the points on the boundary surface as

Ci(0) =

1 [ _9TBlog,(1+SNR1 21
 0TB log, (/0 /% ¢ o )pz(zla 29)dzadz

SNR, -,

221
A e*GTBlogg (1+1+SNR222)}9Z(2’1,Zz)dzzdzl) (540)

CQ(Q) =

QTBl b (// e 0T Blog, 1+SNR222)pZ(21,ZQ)dZQd21

oorc0 —0TBlog 1+7SNR2 2
///\2 1 2< ! 121)pz(21’ 22)d22d21) . (541)
0 /\—f
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5.3.3 Numerical Results

We have performed numerical analysis for independent Rayleigh fading channels with
E{z} = 1. In Fig. 52| the throughput region of a two-user MAC is plotted for super-
position strategies with different decoding ordering methods at the receiver, and also
for TDMA. In the figure, the solid and dotted curves provide the throughput regions
achieved by employing optimal and suboptimal variable decoding orders, respectively,
at the receiver. Note that in the optimal strategy described by the results of Theorem
[I4l the receiver chooses the decoding order according to the channel states such that
the weighted sum of effective capacities, i.e., summation of log-moment generating
functions, is maximized. We see that the suboptimal strategy described in Section
can achieve almost the same rate region as the optimal strategy, indicating
the efficiency of this approach. In the same figure, dot-dashed curve provides the
throughput region achieved by employing a fixed decoding order for all channel s-
tates. Here, we observe that the strategy of using a fixed decoding order at the
receiver is strictly suboptimal even when the users are operating under similar buffer
constraints, and varying the decoding order with the respect to the channel gains can
significantly increase the achievable region. Finally, the throughput region of TDMA
is given by the dashed curve. We immediately note that TDMA can achieve some
points outside of the throughput region attained with fixed decoding order at the re-
ceiver side. These numerical results show that markedly different strategies may need
to be employed when systems are operating under buffer constraints. In the absence
of such constraints, the performance is captured by the ergodic capacity region which
cannot be improved by varying the decoding order with respect to the channel states
[26]. Hence, using a fixed decoding order at the receiver is an optimal strategy when

there are no QoS constraints. Moreover, TDMA is always suboptimal with respect
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Figure 5.3: The sum-rate throughput as a function of 8. SNR; = 10 dB; SNRy = 0
dB.

to the superposition schemes regardless of the decoding-order strategy [27].

In Fig. (53], sum-rate throughput, i.e. the sum of the effective capacities, is plotted
as a function of the QoS exponent 6. Here, we note that as # increases, the curves
of different strategies converge. In particular, TDMA performance approaches that
of the superposition coding with variable decoding. Hence, orthogonal transmission
strategies start being efficient in terms of attaining the sum rate under stringent buffer
constraints. Note that the sum-rate throughput generally decreases with increasing
0, and we conclude from the figure that this diminished throughput can be captured
by having each user concentrate its power in a certain fraction of time in the TDMA
scheme. We also see that for approximately # > 0.006, TDMA starts outperforming
superposition transmission when a fixed decoding order is employed at the receiver.
Such an observation is also noted in the discussion of Fig. B2 In contrast, we
observe that as 6 approaches 0 and hence the QoS constraints relax, TDMA is the

strategy with the worst performance. Note that when the performance metric is the
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Figure 5.4: K vs. :\\—; SNR; = 10dB. SNRy, = 0 dB. 6; = 6, = 0.01.

ergodic capacity and hence no queueing constraints are considered, this suboptimality
of TDMA with respect to superposition strategies is well-known (see e.g., [27]).
We are also interested in the values of parameter K that appears in the functions

in Theorem [I4] . In Fig. B4l we plot K as a function of :\\—; = 1:\—31 It is interesting

to note that log, K seems to be linear with respect to log, (12\1)

5.4 Transmissions with Power Control

In this section, we analyze the case in which the transmitter employs power control
policies in the transmission. Similarly as before, we initially investigate the scenario
in which the decoding order is fixed for all channel states. Subsequently, we study
variable decoding order schemes. Note that varying the decoding order with respect
to the channel states, according to the analysis in Section [5.3] has the potential to

significantly affect the achievable rates.
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5.4.1 Power Control Policy for Fixed Decoding Order

Here, we characterize the optimal power allocation policies when the decoding order
is fixed for all channel states. Due to the convexity of Cyac, there exist Lagrange
multipliers k = (k1,...,ky) € RY such that C*(O) on the boundary surface can be

obtained by solving the optimization problem
max A-CO,p) —k-E{u} (5.42)

where = (p1, ..., par) represents the collection of the power control policies of all
users, A = (Aq, ..., A\y) is the weight vector, and C(O, u) = (Cy (01, ), . .., Car(Oar, 1))
is the vector of maximum effective capacities of the users for given decoding order
and power allocation policies. Note that p; = % (defined in Section [B.] as the
instantaneous transmitted SNR level) describes the power control policy of the jth

user. For a given permutation 7 and set of power allocations y, C;(6;, i) is given by

Ci(0;, 1) =

1 —0;TBlog (1+1 it _z')
~9TH log. Eqe ’ it i) L (5.43)
J

Now, the optimization problem (5.42) can be rewritten as

M 1
max ) = AigTp

=1

—0,TBlog, (1+ Hi5 )
log, Eqe I e

=2 mBiug) (5.44)

The following result identifies the optimal power adaptation policies that solve the

above optimization problem.
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Theorem 15 Assume that the receiver, for all channel states, decodes the users in
a fized order specified by the permutation 7. Then, the optimal power allocation

allocation policies that solve the optimization problem in (5.44) are given by

B
_ (1 T X)) “Z> o
o 5
Oéj] Zj]
Jr
1 + i) >T=1(y i%i ]
B Z L(3)> 1(])/1/ ) fOf,"j = ]_72,...,M (545)
Zj

where f; = fggﬂ; is the normalized QoS exponent, (x)* = max{z,0}, and (a1, -+, an)

are constants that are introduced to satisfy the average power constraints.

Proof: Note that with a fixed decoding order, the user w(M) sees no interference
from the other users, and hence the derivative of (5.44]) with respect to pir(r) will
only be related to the effective capacity formulation of user 7(M). Therefore, we can
solve an equivalent problem by maximizing Cy ) instead. After we derive fi(ar), the
derivative of (5.44)) with respect to jix(a/—1) Will only be related to the effective capacity
formulation of user (M — 1). By repeated application of this procedure, for given
A, (B44) can be further decomposed into the following M sequential optimization

problems

—6;TB log, <1+ 1+Z HjZj , >
max — A log, Eqe w1 >l () Hi%

1
e JGJTB

—rB{p;p jef{l,---, M} (5.46)
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in the inverse order of 7. Similarly as in [35], due to the monotonicity of the logarithm,
solving the above M optimizations is the same as solving

HiZj

—6,TB log <1+ : >
minEle 11y + mE{p;} (5.47)

K

for j € {1,---,M}. Differentiating the above Lagrangian with respect to u; and
setting the derivative to zero yield the intended result in (5.45). U
Remark:  Exploiting the result in (5.45]), we can find that instead of adapting
the power according to only its channel state as in [35] where a single-user scenario
is studied, the user adapts the power with respect to its channel state normalized by
the observed interference and the noise.
Remark: To give an explicit idea of the power control policy, we consider a two-

user example in which the decoding order is (2,1). For this case, we can easily find

that
1 1
1 AL, ~l > Qg
B+l _Bi+1
,Ul = aq 1 2 1 5 (548)
0 otherwise
and
L -1 < d
T s 2 zZ1 S (p and zo > Qg,
a232+1 Z232+1
( f? ) s
z1 | (B1+D(B2+1 (Z_l) 1+ 1
H2 = <a1) 2 z1 > o and 22 > (z_l) Bl (5.49)

1 B2 V%) a2
Bo+1 pBo+1
2 %2

0 otherwise

where a; and as are chosen to satisfy the average power constraints of the two users.
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5.4.2 Power Control Policy for Variable Decoding Order

In this section, we study the optimal power allocation policy when the receiver varies
the decoding order with respect to the channel fading states. We mainly concentrate
on the two-user scenario. The key idea we introduce here is to consider the power
allocation policy of each user j for each region Z,, (in which decoding is performed
according to permutation m,,) while requiring the average power constraint to be
satisfied by the joint power over all regions {Z,,}.

For the two-user case, due to the convexity of the throughput region, there exist
Lagrange multipliers £ = (K1, ko) € R such that C*(©) on the boundary surface can

be obtained by solving the optimization problem
HlﬁlX /\1C1(,u, Z) + /\QCQ(/,L, Z) — lilE{,ul} — K/QE{MQ} (550)

where u = (p1, pe) are the power control policies, (A1, A2) are the weights in the
weighted sum, and Z = (2, Z5) denotes a particular partition of the space of the
positive values of z = (z1, 22) '. Hence, power control policies that solve (5.50) are
the optimal ones for a given partition. In the following, since we assume Z is given,
the notation C;(u, Z) is replaced by C;(u) for brevity.

Recalling the discussion in Section B.3.2] we can express the effective capacities
of the two users as in (5.26) and (B.27) by only replacing SNR; with 4;(z) in these
expressions. The Lagrangian (which is the objective function in (5.50)) can now be
expressed as in (B.5]]) given on the next page. In (5.51]), the expressions in regions

Z, and Z, are written separately due to the reason that possibly different power

!Similarly as discussed in Section [(.3.2) different decoding orders are employed in Z; and Z,.



—pB1
A1 iz
J=———1log, / 2(21, 22)dz1dz
B log, 2 & ( 2631< L+ pozo b

+ (1+ Mlzl)iﬁl Pa(21, 22)d21d22>
zZEZo

A2 H2Z2 e
— ——log, / 1+ (21, 22)dz1dz
2 log, 2 & zE€Z3 < I+ M121> b

+ s (1 +,u222)752 pz(ZhZQ)lede)
z 1

— F1(Bzez, {1} + Egez {11}) — F2(Baez, {2} + Esez, {12})-
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(5.51)

allocation strategies are employed in different regions. We define

(121 —B1
— 14+ = 2 (21, 20)dz1d
01 /Z621 ( + 1 +,u222> Da(21, 22)dz1d 2o

+ (1+ M1Z1)7ﬁ1

Pa(21, 22)d21d 29,
zEZo

and

H2Z2 e
- ]-+ Z ) d d
b2 /ZGZQ< 1+M121> Pa(21, 22)dz1d 2o

+ (1+ M2Z2)7ﬁ2

Pa(21, 22)d2z1d2s.
z€Z,

(5.52)

(5.53)

Note that the values of these functions are obtained for given power control policies

i = (u1, p2) and given partition Z = (2, 2Z5).

Now, we consider the power control policy of each user in each decoding order

region Z;, ¢ = 1,2. By differentiating the Lagrangian, we can find the following
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optimality conditions:

A1
1) ————(1 —ht
) & log62( + p121) 21
_ A2 (1 i H2Z2 >_ﬁ2_1 M2z221
(bg lOge 2 1+ H121 (1 -+ ,ulZl)Q
— R = 0 Vze Zl (554)
—B2—1
A2 Hazo 22
2 1 — ko =0 V Z 5.95
) 45210%@2( +1+M121 L+ py21 2 “E = ( )
gy M (g A R VI (5.56)
¢1log, 2 I+ p2ze L+ poz2 ! ? .
4) — _N (1 + - H1z1 )ﬁll H1Z122
¢1 IOge 2 1 + U222 (1 + /1222)2
A
+ ¢T2gQ(1 + H222)7527122 — K9 = 0 Vz € ZQ (557)
2 e

where (5:54) and (5.55]) are obtained by differentiating the Lagrangian with respect
to py and po, respectively, over z € Z;. Similarly, (5.56) and (557) are obtained
by differentiating with respect to p; and ps, respectively, over z € Z;. Due to the
convexity, whenever p;,7 = 1,2 is negative valued, we set u; = 0,7 = 1,2. Although
obtaining closed form expressions from the optimality conditions seems to be unlikely,

we can gather several insights on the power control policies by analyzing the equations

(B.54)-(.57).

log, 2 log, 2 log, 2
Let us ﬁrst deﬁne al f— W%’ a2 f— "62@%’ a12 f— m%’ and a21 f—
log, 2 1 .
"“@%, where k1, kg are the Lagrange multipliers whose values are chosen to satisfy

the average power constraint (5.7) with equality, and ¢, and ¢ are defined in (552))
and (B.53). Now, consider (5.54]) and (5.55]). The channel state lies in Z;. Through
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a simple computation using (5.55)), we can derive

_Ba_
(1+ ,ulzl)@il 14z

Ho = 7 (5.58)
BTl Batl 29
2" 22
which tells us that py =0 if
22
— < . 5.59
1+ mz ? ( )
If po = 0, we have from (5.54)) that
L(l%—u 2) Py — k=0 (5.60)
o log, 2 121 1 1 :
which gives us that
1 1
e S i, (5:61)
061/31+1 Z131+1 1
which implies that py = 0 if
21 < Qj. (562)

Now, if we substitute (5.58)) into (5.54]), we obtain the following additional condition

for having p; = 0: the equation

L1 4 pyz) Y
(631

1
Bo+1
_ A < = )2 1] -1=0 (5.63)
22019 as(1+ p121)

has a solution that returns a negative or zero value for p;. The above discussion

enables us to characterize the regions in which one user transmits while the other

one is silent. We also have a closed-form formula in (5.61) for the optimal power
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adaptation policy when only one user transmits. Indeed, this is the optimal power
control policy derived in [35] for a single-user system. When both users transmit,
the power control policies (u1, p2) are given directly by the non-negative solution of
(554) and (B.55).

Note that the conditions and characterizations provided in (5.58)-(5.63)) pertain
to the case in which the channel state is in region Z;. Following a similar analysis
of (B56]) and (557), we can obtain similar results for the cases in which the channel
state is in Zs.

For a given partition {Z;, Z5}, the optimal power control policy can be deter-
mined numerically using the optimality conditions in (554)) — (557). Additionally,
the equations and inequalities in (B.58) through (5.63]) can be used to guide the nu-
merical algorithms as they specify under which conditions at most one user transmits,
and provide the optimal power control policy in such cases. However, there is one
difficulty. (B.58) — (B.63) depend on «, ag, a2, and g which in turn depend on ¢y,
¢2, K1, and kg which are in general functions of the power control policies. In such a
situation, the following iterative procedure can be employed in search of the solution.
We can first choose certain values for ¢, ¢9, k1, and k9, and then determine the op-
timal power allocation policies for these selected values. Subsequently, we can check
whether the obtained policy satisfies the average power constraint with equality. This
enables us to determine if the selected k; and ko values are accurate. We can also
compute ¢ and ¢ using the obtained policy and see if they agree with the initial
values of ¢ and ¢5. If there is no sufficient match or if the power constraint is not
satisfied with equality, then we update the values of ¢1, ¢, K1, and ko, and reiterate
the search of the optimal policy.

With this insight, we propose the following algorithms that can be used to deter-

mine the optimal power allocated to each channel state:
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input : A\, \g, the partition Z, z
output: Optimal p*
1 Initialize ¢q, ¢o;

Initialize k1 and ks;

K1¢1log, 2 _ kag¢olog, 2
N 2T T

N

k1¢2log, 2.
A2 )

K2 ¢1 IOge 2

Determine ay = ™

y Q12 = y Qo1 =
Determine pq, po by Algorithm 2;
Check if the obtained power control policies p; and ps satisfy the power
constraint with equality;
if not satisfied with equality then
‘ update the values of k; and ks and return to Step 2
else
‘ move to Step 1T}
10 Evaluate ¢ and ¢o with the obtained power control policies;
11 Check if the new values of ¢; and ¢, agree (up to a certain margin) with those
used in Step 2%
12 if do not agree then

13 ‘ update the values of ¢; and ¢ and return to Step [I}

ok ®

© o N o

14 else

15 declare the obtained power allocation policies py and ps as the optimal
ones.

16

Algorithm 1: Power Control Algorithm

Note that we above have not specified how the values of k1, ks, 1, and ¢y are
updated for each iteration in order to keep the algorithm 1 generic. In our numerical
computations, we have updated x; and ko using the bisection search algorithm. The
values of ¢; and ¢ are updated in Step 13 of the algorithm by assigning them the
values evaluated in Step 11. Hence, the most recent values are carried over to the
new iteration.

In Fig. 5.5 we plot the optimal power allocation policies ;1 and ps as functions of
channel fading states z; and z,. We assume that 6, = 6, = 0.01, SNR; = SNRy, = 0 dB,
and A\; = Ay = 0.5. We consider the partition specified by the suboptimal decoding
order given in (5.39). Hence, since we have A\; = Xy = 0.5, decoding orders (1,2)

and (2,1) are used when 2, < z; and z9 > 27, respectively. Under these assumptions,
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[uny

10
11

12

13
14
15
16

17

18

19

20

21
22
23
24

25

26
27

input : A\, \g, the partition Z, z, aq, as, a9 and as

output: py, fi2

if z € Z; then

if 29 > (2 then

1 1

M2 = 1 , ﬁgl - 57
0252-*- 2252-*-

1
if 2L (14 pyzy)” Y - 202 << =2 )ﬁ2+1 — 1> — 1 =0 returns

[e51 Z2021 ag(14+p121)
nonpositive j1; then
| 1 =0;
1
else if 2 < (z—l) 71t then
aQ a1
+
_ _ 1 1] .
po =0, = [ Y —z] ;
af1+lzf1+1

else

| Compute p, pi2 from (5:54) and (E.50);

else

+
M2:07M1:{ﬁ_i] ;

B1+1 _B1+1
Qg %1

else if z € Z, then

if z; > a; then
_ 1 1.

lu‘l - 1 _B1 - Z?
alﬂl+12151+1

1
if 2 (1+ fipzy) P 22 << 2L ))51“ — 1> — 1 =0 returns

21021 o1 (14+p2z2

nonpositive ji2 then
| p2=0;
1
else if 2L < (Z—Q) #2*! then
a1 ag
Jr
_ _ 1 Lo
=0, p1o = [ T Br —g] ;
a232+1z232+1

else
| Compute p, pi2 from (5:56) and (E57);

else

+

_ _ 1 1| .

p1 =0, pp = [7; B2 —g] ;
Oé2ﬁ2+122ﬁ2+1

Algorithm 2: Evaluating Power over All Channel State
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we computed the optimal values as k] = 0.0470, x5 = 0.0462, ¢7 = 0.5550, and
¢35 = 0.5538. In the figure, we observe that each user, not surprisingly, allocates most
of its power to the regions in which it is decoded last and hence does not experience
interference. However, due to the introduction of QoS constraints, we also note that
each user also allocates certain power to the cases in which it is decoded first. This
is performed in order to continue transmission and avoid buffer overflows.

So far, we have assumed that the partition Z is given. The optimal partition Z
that maximizes the weighted sum-rate can be derived through the following optimiza-

tion similarly as in [67]:
C* =sup MGy (i, 2) + MaCo(p, Z) (5.64)
z

where C* is the optimal weighted sum value for given pair of (Ay, A2), and p = (p1, p2)

are the optimal power control policies for given Z.

5.5 Conclusion

In this chapter, we have studied the achievable throughput regions in multiple access
fading channels when users operate under QoS constraints. We have assumed that
both the transmitters and the receiver have perfect CSI. We have employed the ef-
fective capacity as a measure of the throughput under buffer constraints. We have
defined the effective capacity region and shown its convexity. We have considered
different transmission and reception scenarios e.g., superposition coding, different s-
trategies for the decoding order, and TDMA. When transmission with superposition
coding is performed, we have shown that varying the decoding order at the receiver

with respect to the fading states can significantly increase the achievable rate region
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compared to that achieved with fixed decoding order schemes. For the case of two
users with the same QoS constraints, we have derived the optimal strategy for varying
the decoding order. We have noted that when the two users operate under similar QoS
limitations and one user enjoys much more favorable channel conditions, the efficient
strategy is to first decode the user with the better channel and subsequently decode
the other user so that the user with worse channel conditions does not experience
interference. Motivated by this observation, we have proposed for general multiple
user scenarios a simpler suboptimal decoding rule which can almost perfectly match
the optimal throughput region. We have also studied the performance of orthogo-
nal transmission strategies by considering TDMA. In the numerical results, we have
demonstrated that TDMA can perform better than superposition coding with fixed
decoding order for certain QoS constraints. More specifically, we have noted that
TDMA can support arrival rate pairs that are strictly outside the region achieved
when fixed decoding order is employed at the receiver. We have also observed that
the performance of TDMA approaches that of the optimal strategy of superposition
coding with variable decoding order as € increases (i.e., as the QoS constraints become
more stringent).

In the second part of the chapter, we have incorporated power adaptation strate-
gies into the model. For a given fixed decoding order at the receiver, we have identified
the optimal power control policies. We have seen that the optimal schemes adapt the
power by treating the observed interference as additional noise. Since the observed
interference depends on the power control policies of the other users that will be de-
coded later, a coupling is introduced between the optimal policies. For cases in which
a variable decoding order strategy is adopted by the transmitter, we have obtained
the conditions that the optimal strategies should satisfy and described an algorithm

to achieve these optimal schemes.
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Chapter 6

Energy Efficiency in MAC

In this chapter, we employ the tools provided in [2I] and [27] to investigate the bit
energy and wideband slope regions of fading MAC under QoS constraints in the low-
power and wideband regimes. With the results obtained in Chapter Bl the main

contributions of this chapter are summarized in the following:

1. We show that different transmission and reception strategies do not affect the
minimum bit energy levels required by each user. Additionally, we prove that
while the minimum bit energies are independent of the QoS constraints in the

low power regime, they vary with the QoS constraints in the wideband regime.

2. We determine that superposition coding with variable decoding order does not
improve the performance in terms of slope region with respect to fixed decoding
order in the low power regime, while it can achieve larger slope region in the

wideband regime.

3. When wideband slope regions are considered, we show that TDMA is always
suboptimal in the low power regime except the special case in which fading

states are linearly dependent. On the other hand, TDMA in certain cases is
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demonstrated to perform better than superposition coding with fixed decoding
order in the wideband regime. We also identify the condition for TDMA to be

suboptimal in this regime.

6.1 Effective Capacity Region of the MAC

Channel

As shown in Chapter [l the effective capacity regions for the different transmission
strategies are given as follows.
The effective capacity regions of the multi-access channel for different scheduling

policies have been characterized. The effective capacity region achieved by TDMA is

—6;6,TBlog, <1+ Slj_Rj zj>
log Eqe ’ (6.1)

1
U {C(@) >0:C(0;) < ~9TH

{95} Y

where J; is the fraction of time allocated to user j.
The effective capacity region achieved by superposition coding with fixed decoding

order is given by

1 . M! T 1
U {C(@) >0:G(0)) < s logeEz{e 0T Y iea Tl m}} (6.2)
J

{Tm }

where 7, is the fraction of time allocated to a specific decoding order 7, R, -1 )
represents the maximal instantaneous service rate of user j at a given decoding order

Tm, Which is given by

SNR; z;
R 1, = Blog, [1+ 2 6.3
T () 082 ( L+ Y 1 ismnl () SNRizi> (©.3)



127

where 7! is the inverse trace function of m,,.

Decoding orders can be varied for each channel fading state z. Suppose the vector

M!

space ‘ﬁf\f of the possible values for z is partitioned into M! disjoint regions {Z,,} .,

with respect to decoding orders {,,}** . Then, the maximum effective capacity that

can be achieved by the jth user is

_ 1 —0;TR;
Cj(ej) = _QJTB lOgeEz {6 }
1y % / ¢ M 0, (2)dz (6.4)
QJTB ge — ZEZm pZ .
for j = 1,..., M, where p, is the distribution function of z and R, -1(;) is given in

©.3).

6.2 Energy Efficiency in the Low-Power Regime

As described above, in order to transmit energy efficiently and achieve bit energy levels
close to the minimum level, one needs to operate in the low-SNR regime in which either
the power is low or bandwidth is large. In this section, we consider the low-power
regime. We concentrate on the two-user multiaccess channel. Below, we first note
the maximum effective capacities attained through different transmission strategies
described in Section (.3l Subsequently, we identify the corresponding minimum bit
energies and the wideband slopes.

Now, for the two-user TDMA, if we fix the fraction of time allocated to user 1

as 0 € [0, 1], the maximum effective capacities of the two-users in the TDMA region
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given by (6.1)) become

Ci1(SNRy) = (6.5)

—001TBlog, (1—1—%)
0.TB

log, E, {e
and

C2(SNRy) =

—(1-8)02TBlog, (1+SN?R5222)} (6.6)

———_log, E,
0,TB % {6

respectively,

Next, consider superposition coding with fixed decoding order. We fix the ratio

ggg; = A. Additionally, we let 7 denote the fraction of time in which the decoding

order (2,1) is employed. Note that if the decoding order is (2, 1), the receiver first
decodes the second user’s signal in the presence of interference from first user’s signal,
and subsequently decodes the first user’s signal with no interference. Note that the
symmetric case occurs when the decoding order is (1,2) in the remaining (1 — 7)
fraction of the time. When this strategy is used, the maximum effective capacities in

the region described in (6.2) can now be expressed as

Ci(SNR,) = log, E,

—0,TB <f log (1+-SNRy 21)+(1—7) log, (1+1+§§%)>
- e
0, TB

CQ (SNRQ) =

1 —02TB (Tlog2 (1-{—%)4—(1—7) log2(1+SNRgzg)>
———log, E (¢ .
0,TB " °°

Finally, we turn our attention to superposition coding with variable decoding

order. In this case, the decoding order depends on the fading coefficients (21, 22).
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We define z; = g(SNR;) = g(ASNRy) as the partition function in the z; — 2y spacel.

Depending on which decoding order is employed in each region, we have different
effective capacity expressions. If users are decoded in the order (1,2) when 2z <
g(SNR;) and are decoded in the order (2,1) when z2 > g(SNR;), the effective capacities

are given by

Cl(SNRl) = —

lOge (/ / e—GlTBlog2(1+SNR121)pz(21, Zz)ngle
0 Jg

1
0,TB (SNR»)

o~ rg(SNR1) _p o _SNRys
+/ / 1 e o gQ(HHSNRm/*)pZ(zl,zg)dzgdzl , (6.9)
o Jo

C2(SNR2) = —

1 oo rg(ASNRy)
S loge (/0 /0 2 e_GgTB 10g2(1+SNR222)pZ(21’ ZQ)dZQle
2

SNR,; =,

oo oo —62T B log, (1+7)
+/ / e LASNRy21 /) (24, 20)dzod 2y . 6.10
0 Jg\SNRy) Pa(21, 22)d2adz (6.10)

Similar effective capacity expressions can be derived if users are decoded in the order

(2,1) if z3 < g(SNR;) and decoded in the order (1,2) if zo > g(SNR;).

Assumption 1 Throughout the chapter, we consider the partition functions g(SNR;)

that satisfy the following properties:
1. ¢(0) s finite.

2. The first and second derivatives of g with respect to SNRy, g(SNRy) and §(SNR;),

exist. Moreover, §(0) and §(0) are finite.

Denote If\’;o = % as the bit energy of user ¢ = 1,2. The received bit energy is

By, By
Ny, Ny

E{z}. (6.11)

!The partition function can in general be a function of z; as well, i.e., g(SNR;) = g(21, SNRy).
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As the following result shows, the minimum received bit energies for the different

strategies are the same.

Theorem 16 For all A = g%g; and all g(z1, SNRy) satisfying the properties in As-
sumption [, the minimum received bit energy for the multiaccess fading channel at-
tained through TDMA, superposition coding with fixed decoding order, or superposition
decoding with varying decoding order, is the same and is given by

r r
Eb,l - Eb,2
NO min NO min

—log,2=—1.59 dB (6.12)

Proof: Consider the TDMA strategy. Taking the first derivative of the functions in

(6H) and (6.6) and letting SNR; = 0, SNRy = 0, we obtain

¢,(0) = 2

= 6.13

log, 2’ (6.13)
: E{z}

Cy(0) = . 6.14

A0) = (6.14)
Substituting (613) and (614 into (LX), we have
Ebl lOg 2

1 OBt 6.15

NO min ]E{Zl} ( )

Eb’g . lOge 2 (6 16)

NO min B ]E{ZQ}

which imply (612]) according to (G.IT).

For the superposition coding with fixed decoding, evaluating the first derivative
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of (67) and (68) at SNR; = 0 and SNRy = 0, we immediately obtain

C1(0) = % (6.17)
Cz(O) = Iitg}

(6.18)

which again imply (6.12)) taking into consideration (LH) and (G.1T)).
Next, we prove the result for the variable decoding case. First, we consider (6.9)
and (GI0) with the associated decoding order assignment. The first derivative of

([63) can be expressed as

C1(SNR;) = —#110&2
_ —m (_ [ Ry ) e g8NR))g(sNR) Oz,
— b1 /OOO /g:;NRl)(l + SNRlzl)_ﬂl_lzlp(zl, 29)dzo21
+ /O - <1 + - +SN§I;E:;R1) /)\>_51p(zl,g(SNRl))g(SNRl)dzl

oo rg(SNR1) SNR; 2 et z
- 51/ / 14— : 3P(21, 22)dzpdzy
o Jo 1+ SNRyzo/A (1 + SNRjz2/A)

(6.19)
where ¢, is the first derivative of ¢;, which is defined as
gbl = /0 /( - )e91TBlog2(1+SNRlz1)pZ(Zl’ ZQ)dZdel
g\z1, 1
o r9(=1.SNR1)  _g,7Blog, (14 —oNRuz
+/ / e 1 0g2( +1+SNR122/*)1)Z(21,Zg)ngdzl. (620)
o Jo

Under the assumptions that g(0) and ¢(0) are finite, we can easily see from (G19)
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that letting SNR; = 0 leads to

¢, (0) = i{;g. (6.21)

Similarly, taking the first derivative of (G.I0) and letting SNRy = 0, we obtain

~ E{z}

C:(0) = log, 2"

(6.22)

Applying the definitions (LH) and (6I1]), we prove (GI2) for this decoding order
assignment. For the reverse decoding order assignment (i.e., users are decoded in the
order (2,1) if zo < g(SNR;) and decoded in the order (1,2) if zo > g(SNRy)), following
similar steps, we again obtain the result in (€.12). O

Remark: The result of Theorem [I6 shows that different transmission strategies
(e.g., TDMA or superposition coding) and different reception schemes (e.g., fixed or
variable decoding orders) lead to the same fundamental limit on the minimum bit
energy. Similarly as in [27], TDMA is optimally efficient in the asymptotic regime in
which the signal-to-noise ratio vanishes. More interestingly, we note that this result
is obtained in the presence of QoS constraints. Additionally, the minimum bit energy
is clearly independent of the QoS limitations parametrized by the QoS exponents 6,
and 5. Hence, the energy efficiency is not adversely affected by the buffer constraints
in this asymptotic regime in which SNR — 0.

Having shown that the minimum bit energies achieved by different transmission
and reception strategies are the same for each user, we note that the wideband slope
regions have become more interesting since they quantify the performance in the non-
asymptotic regime in which SNRs are small but nonzero. With the analysis approach

introduced in [27], we have the following results.
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Theorem 17 The multiaccess slope region achieved by TDMA is given by

K11K12 K21K22
ki1 — 81 ko1 — &2

52{(31,32)10§51§5fp, 0< 8 <SP, §1+/€12+/€22}

(6.23)
where
S — Q(E{Zl})z
LB (B{z) — (B{21})?) + {2}
S — Q(E{ZQ})2
P B (B{z3) - (B{2})?) + E{z3}’
o 2AE(a
B (B{z1} — (E{=1})?)’
B
P B (B{F) - (B{1})?)
2B
B2 (E{23} — (E{22})?)’
E{-3}

Koo = )
27 By (BE{22} — (E{2})?)
p1 = 6T Blog, e and By = 0,17 B log, e.

Proof: Taking the second derivatives of the functions in (6.5]) and (6.6]) and letting

SNR; = 0, SNRy, = 0, we obtain

€\(0) = —

> (51 (b2 B2 - 5B (6:21)

and

G0) = g (8 (B —BGR) - 5B . (629)

e
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Combining (€13), (€14), (€24), and (6.25) with (7)), we now get

B AE{21})?
5 = R (E(a)) + B (6.26)
S, = 2(E{z)) (6.27)

- B (B{A} — (B{2})?) + 5E{5}

which, after eliminating &, provide us the third condition in (G.23]). O
The following results provide the wideband slope expressions when superposition

transmission is employed.

Theorem 18 For any A\ = g%g;, the multiaccess slope region achieved by the super-

position coding with fixed decoding order is

S:{(Sl,SQ):OS(SHSS%p, OSSQSS;W,

i (5 w) e (s ) 1p o

where 8 and S5 are the same as defined in Theorem [I7.

Proof: The second derivatives of the functions (6.7) and (6.8)) at zero signal-to-noise

ratio are
Ci(0) = logle 5 (ﬁl(E{Zl})Q — (B + 1)E{27} — @E{leﬁ)
€a(0) = 2 (BlE{za} = (e + DE(:H) — 2ArE(12)) (6.29)
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Then, the wideband slopes are given by

S = g Q(E{Zl})22 ) (630)
B (E{z1} — (E{z1})?) + E{z7} + =57 E{z122}
2Lz} (6.31)

Sy = .

B (E{B) — (E{2))?) + E{z3} + 207 E{z12}
After solving for 7 in (G30) and (6.31]) and subtracting the resulting equations, we
obtain the third condition in (G:28]). O

Theorem 19 For any A = g%g;, and any g(SNRy) satisfying the properties in As-

sumption[d], the multiaccess slope region achieved by superposition coding with variable

decoding order is

S:{(81782):0§81§8fp’ OSSQSS%LP,

SUE(3 ) B g) ) e

where §;F and S;¥ are the same as defined in Theorem 172,

Proof: See Appendix [Hl

Remark: Comparing (H.4) with (L.6) or (H.E) with (HL.7), we see that different
decoding orders do not change the wideband slope values for given user only if g(0) =
21, i.e., the 21 — 25 space is equally divided. One more interesting remark is that if
we compare the third conditions in (6.28) and (632), we notice that fixed decoding
order achieves the same performance as variable decoding order.

Remark: Tt is interesting to note in the above results that, unlike the minimum
bit energy levels, the wideband slopes depend on the QoS exponents ¢; and 6, through
f1 and Bs. Indeed, as can be seen from the expressions of the upper bounds S;” and

S;7, the wideband slopes tend to diminish as QoS constraints become more stringent
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and A, and 05 increase. Therefore, a penalty in energy efficiency is experienced in the
presence of buffer limitations.

In the following result, we establish the suboptimality of TDMA.

Theorem 20 The wideband slope region of TDMA is inside the one attained with

superposition coding.

Proof: We only need to consider the third conditions of (6.23]) and (€.28]). Substituting
([630) and (637)) into the left-hand side (LHS) of the third constraint in (6.23]), we

obtain

E{:}) E{:3) 633

K12 + Ko + + .
" . E{z2} + 2(1—/\77)153{2122} E{23} + 2A\TE{ 2122}

Comparing the sum of the last two terms with 1 (or more precisely subtracting 1 from

the sum), we can write

E{=} n E{%3} B
E{27} + @E{Zl@} E{23} + 2A\TE{21 2}
_ E{:}E{} —4r (E{z120})* + 4 (E{z120})* 72 |
(B{z2} + 2B 2120} ) (E{23} + 2\ E{z12:})

(6.34)

We are interested in the numerator which is a quadratic function of the parameter 7.

We note that the discriminant of this quadratic function satisfies

A =16 (E{z122})" — 16 (E{z120})* E{z} }E{23}

=16 (B{z122})” ((E{z122})” — E{z}}E{23}) < 0 (6.35)

where the Cauchy-Schwarz inequality (E{z 2,})* < E{22}E{22} is used. Thus, the

numerator of (.34 is always nonnegative, i.e., the slope region achieved by TDMA
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Figure 6.1: The slope regions for independent Rayleigh fading channels.

is inside the one achieved by superposition coding. The equality holds only if z; and
2y are linearly dependent. U

In Fig. [6.1 we plot the slope regions in independent Rayleigh fading channels
with variances E{z;} = E{23} = 1. We assume ; = 1 and 2 = 2. From the figure,
we immediately observe the suboptimality of TDMA compared with superposition

coding.

6.3 Energy Efficiency in the Wideband Regime

In this section, we consider the wideband regime in which the overall bandwidth of

the system B is large. Let ( = %. Similar as in Chapters 2 we know that the

minimum bit energy achieved in sparse multipath fading channels® as B — oo (or

2As discussed in Chapters [ and [§ wideband and low-power regimes are equivalent if rich
multipath fading is experienced. Hence, in such a case, the same minimum bit energy and wideband
slope expressions are obtained in both regimes.
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equivalently ¢ — 0) can be expressed as

Ey; ~ im P,¢/No _ éz’/No ;
Nomin <=0 Ci(Q) Ci(0)

=1,2. (6.36)

To make the analysis more clear, below we first express the capacity expressions

in (6.0)-(6.10) as functions of ¢. (G.5]) and (G.6]) can be rewritten as

Ci(¢) = — QleogeE{ MITI"?(”P;;;C)}, (6.37)
and

Co(C) = —92%10& E, {e et on (14556 §>2160>}, (6.38)
respectively.

For superposition coding with fixed decoding order, and fixed A = SNR, —

Pi¢/Ng _ P
B¢ /No B (67) and (€8) now become

P121€
01 Pyz1¢
_T<Tlog2(1+ )+(1—7) logy <1—|—1 Pz C))
Ci(0) =~ 57 Jos, E, { HEIL (6s0)

Pozo¢

g _QT (Tlogg <1+1+p121<>+(1—7) 10g2(1+PQNL02C)>
C(¢) = log, E, No | 610

60,7

Note that we can write g(SNR;) as ¢ (TOC)’ so similarly we can write (6.9) and
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(610) as functions of ¢

0o 0O _ 6T gy Pz
C1(§) = _—C log, (/0 / e ¢ o <1+ Mo )Pz(21722)d22dz1
g

0. T (R
Pyz1¢
s ra(BLS) —%m%u%)
+ e C pz(zl,ZQ)dZ2d21) (6.41)
o Jo
oo 928 e Pyzac
Cg(g) = _%loge( i i No e ¢ og2(1+ No >pz(21,22)d22d21
2
0, L
0o [00 _QTIOgQ 1+1370
1+—}\flC
+/ /Pg € 0/ pa(21, 22)dzad2 |. (6.42)
0 Ja(F)

Then we immediately have the following result.

Theorem 21 For all g(SNRy) satisfying the properties in Assumption 1, the mini-
mum bit energies for the two-user multiaccess fading channel in the wideband regime
attained through TDMA, superposition coding with fized decoding order, and superpo-
sition decoding with varying decoding order, depend on the individual QoS constraints

at the users and are given by

Eb,l B 61]?51
T . - _091T151 ’ (643)
0 min loge Ezl {6 Ny log, 271 }
02T P,
Boa ~ N . (6.44)

Ny i _ TP,
min loge Ezg e Nologe2
respectively.

Proof: See Appendix [l
Remark: As Theorem 2Ilshows, the same minimum bit energy is achieved through

different transmission strategies (e.g., TDMA or superposition coding) and different
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reception schemes (e.g., fixed or variable decoding orders), and therefore TDMA is
optimally efficient in the wideband regime as B — 0.
Remark: A stark difference from the result in Theorem [I] is that the minimum

bit energy now varies with the specific QoS constraints at the users. When 6 = 0,

we can immediately show that the right-hand sides of (6.23) and (6.44) become > {g;12}

log,, 2
E{z2}”

and respectively, which is equivalent to (6.12]). For 6 > 0, the energy efficiency

is now adversely affected by the buffer constraints in the wideband regime.
Similarly as in Section [6.2] we next investigate the wideband slopes in order to

quantify the performances and energy efficiencies of different transmission and recep-

tion methods in the non-asymptotic regime in which the bandwidth B is large but

finite. We have the following results.

Theorem 22 [n the wideband regime, the multiaccess slope region achieved by TD-

MA is given by

S S
S:{(Sl,Sg):Ogé’lgSfp, OSSQSS;I), 3—“11’_'_3—“21’§1} (645)
1 2
where
E _aTh | & _aTh 2
tog 217 {0 (g 2, e siEn)
- ) ,
)
2 E { ) (log B, {2 1)
Nyl 2 2 (€ NoloBe? }(Oge 29 {6 0loge 2 })
S;p:2< OO%Le) 0, TP :
0,1 Py E, {61\70210&32&22}
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Proof: The second derivatives of (6.37) and (6.38) at ( = 0 are

B _ 61TP; .

— 2 No loge 2 12

.. 1 P 21 {6 1}

Ci(0) = — — = 6.46

1(0) 0log, 2 <N0> E {ezveoligiﬂl} (640
05T P

C (O) B 1 p2 2 EZQ {e_ N02105€22222%} (6 47)

2T (1 =6)log, 2 \ Ny ’

01T P .
T Np logg 272
E,, (e Nolose

Using the definition in (L7), we can express the wideband slopes as

E, [ i) (log B, {e il

Notag, 2y B {557} (g, B, {eAte )

31:25< 006 ) —_— (6.48)
E., {e_wzlz%}

05T Py 05T P 2
N 1 2 2 EZQ {e_NO logeQZQ} (lOg EZQ {e_NO 108e222})
S, =2(1 - 4) < 008 ) __ (6.49)
6.T P, E@{gﬁﬁﬁmg}
which after simple computation give us the third condition in (6.49). O

Theorem 23 In the wideband regime, the multiaccess slope region achieved by su-

perposition coding with fized decoding order is

S = {(51,32) 0<8 <85% 0<8 <87,

_ TPy 2 __0Th
Nolog. 2 Nolog. 2
oy b [ ) )y

0, T 5 B Ik S S
1 P1P2Ez e N010ge221212’2 ! 1

- |\ g [
. <NO 10g62>2 (lOge EZ2 {6 0 loge }) EZ2 {6 0 loge } < 1 1 ) 1}
_ 05T Py < Qu | —
0T PRE, {om sz, | & 5

(6.50)
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where S;* and 8" are defined in Theorem [22.

Proof: Evaluating the second derivatives of (6.39) and (6.40) at ¢ = 0 yields

1 (ﬁ)z Ez 67%21 2’2 + wﬂzz 67 1\790117;5812Z1Z122

.. No 1 1 No

Cl(O) = — 01T P (651)
loge 2 Ezl {e_mzl}

1 (%)ZEZ2 {6_%2223} + —27—]{:;12152Ez {6_%222122}

. 0 0

CQ(O) = — 69T Py (652)
loge 2 Ezg {6 No 1056222}

and as a result, the wideband slopes are given by

| E _aTh 2E _aTh
Nyl 2 (Oge z1 {e Nologe 2 }) z1 {6 Nologe 2 }
81 —9 < 0 Oge

)2
_ 01 TP _ 01T P-
0T PE,, {e o Tog 271 z%} +2(1 — 7)PRE, {e NollogelQlelZg}

(6.53)

| E _ TPy 2E _ TPy
N l 2 2 (Oge 29 {6 Ny loge 2 }) 29 {6 N loge 2 }
Sy =2 < e -1 ) (6.54)

92T = _ 03TPy 22 9 _ _ 03TPy 2
PQEZQ e Nologe2™ 23 —|—27'P1P2EZ e Nologe2™ 2 25

After solving for 7 in (653 and (6.54]) and subtracting the resulting equations, we
have the third condition in (6.50). O

Theorem 24 For any g(SNRy) satisfying the properties in Assumption 1, the multi-

access slope regions achieved by superposition coding with variable decoding order in
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the wideband regime are different for different decoding orders. The slope region is

s=U {(51,32)1

{9(0)}
0, TPy 2 01 TPy
log E e Nologe2*! E e Nologe2*!
Nylog, 2 2 e oz 1
0<8 <222 =e _ _
0, B _ TP — 0 — 0P
PZE,, {e No loge 2 z%} + 2P P [;° fog e Nologe2™ 21 zom(21, 29)dzadzy
05T P, 2 05T P,
Nolog, 2\? (logeE” {eﬁﬂ) E”{ew@}
0<8,<2 ( 0 Zoe > _
0T 09T Py

_ _ 6TPy — — _ G2l
P22E22 {6 No 10ge222z3} + 2P P fgo fgo(oo) e No 10562222122]?(21,ZQ)dZQle

(6.55)

if the decoding order is (1,2) when zo < g(z1, SNRy), and the decoding order is (2,1)

when zs > g(z1, SNRy). The slope region is

s= | {(51,52):
o)

_ TP 2 __0rh
Nglog ) 2 (logeEzl {e N loge 2 1}) Ezl {e No loge 2 1}
e
o0.T ) _ _61TP; _ _61TP;
! P12Ez1 {6 No log 2 °1 z%} + 2P P f(?o fgo(%) e Nolog.2°1 zlep(Zl,ZQ)dZdel

_ TPy 2 _ 0oTPy
s
€

05T Py

_ 92T Py _
—_—— 4 0 —_—— 4
P22EZ2 {e No logeQZQZ%} + 2P1P2 fooo fé}( )e No 10g62z2z1z2p(zl, ZQ)dZQle

038132(

(6.56)

if the decoding order is (2,1) when zo < g(z1, SNRy), and the decoding order is (1,2)

when zo > (21, SNRy).

Proof: See Appendix [Jl
Remark: Unlike previous discussions, we have no closed form expression for the
wideband slope region achieved by superposition coding with variable decoding order

in the wideband regime. Another observation in the above result is that different
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decoding orders can result in different wideband slope regions.
Below we show the superiority of superposition coding with variable decoding

compared with fixed decoding order.

Theorem 25 Superposition coding with variable decoding order achieves better per-
formance in terms of wideband slope region with respect to superposition coding with

fixed decoding order.

Proof: See Appendix [Kl
In the following, we present the condition under which the suboptimality of TDMA

compared with superposition coding with fixed decoding order can be established.

Theorem 26 If the following is satisfied
61 TP 69T Py 01 TPy 69T Py
EZ {6 No 1oge_gzlzlz2} Ez {6 No 1og_62222122} S E21 {6 No 1oge_gzlz§} ]EZQ {6 No 1oge—QZQZ§} ’
(6.57)

then the wideband slope region of TDMA is inside the one attained with superposition

coding with fized decoding order.

Proof: We consider the third conditions in (6.45) and ([650). Substituting (€.53) and
([6.54) into the LHS of the third condition in (6.453]), we have

_ _ 0 TP P
2(1 - 1)RE, {e No Toge 2 12122}

1—- _ _ TP _ TP
PE_, {e No Toge 2 12%} +2(1 —7)E, {e No Toge 2 12122}
_ 05T P
PE., {eN—zé}
+ 05T P (658)

_ __0oTPy _ __02TPy
PE,, {e NoToge 22224 + 27 PR, e Mowose2™ 2 2,
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So if the wideband slope region is inside the one attained with superposition coding
with fixed decoding order, we must have the above value to be greater than 1 for all

0 <7 < 1. After subtracting 1 from (6.58), we can obtain

Py
_ _ 601TPg 2 _ 601TPy 2
PE, {e No loge 2 z%} +2(1 —17)E, {e No loge 2 2122}

Py
05T Py 05T Py

D -2z D — 52
PE.,, {e Nologe 2?22 4 4+ 27 P E, < € Nolee 27z 29
_ 601TPy 2 _ 6TPy 2 9
x | 4E, {e No Toge 2 leg}Ez {e No Toge 2 2122}7'
61 TPy 2 69T Py 2
—4FE, {e N loge 2 2122} E, {e N log, 2 2122} T

__aTh o, __0TPy .
+E., {e No Tog. 2 Zl}EZQ {e No log 2 22} (6.59)

The first two terms of the multiplication are positive values. The minimum value
of the third term which is a quadratic function of 7 is achieved at 7 = %, and the

minimum value is

_ﬂz _ 03TPy P 61 TP; ~ _ 65TPy »
E., {e o 1zf}Ez2 {e o 225} — B, {e rone? 121z2}Ez {e o 221z2}

(6.60)

Thus, we obtain the condition stated in (6.57) for TDMA to be suboptimal. O
Remark: It is interesting that if the condition (6.57) is not satisfied, TDMA can
achieve some points outside the wideband slope region attained with superposition
coding with fixed decoding order. This tells us that TDMA can be a better choice
compared with superposition coding with fixed decoding order in some cases.
In the numerical results, we plot the wideband slope regions for independent

Rayleigh fading channels with variances E{z;} = E{z} = 1. We assume 6; = 0.01,
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0y = 0.1, T =2 ms. In Fig. 6.2, we assume ]{D,—(l) = 2% = 10*. The left-hand side of
([E51) is 0.1009, while the right-hand side is 0.1283. Hence, the inequality is satisfied.
From the figure, we can see that TDMA is suboptimal compared with superposition

Py

coding. In Fig. [C.3] we assume - = f,—i = 10%. The left-hand side of (6.57)) is 0.0131,

1
2
while the right-hand side is 0.006. Hence, the inequality is not satisfied. Confirming
the above discussion, we can observe in the figure that TDMA indeed achieves points

outside the slope region attained with superposition coding with fixed decoding order.

6.4 Conclusion

In this chapter, we have analyzed the energy efficiency of multiaccess fading chan-
nels under QoS constraints by employing the effective capacity as a measure of the
maximal throughput under QoS constraints. We have characterized the minimum
bit energy and the wideband slope regions for different transmission strategies. We
have conducted our analysis in two regimes: low-power regime and wideband regime.
Through this analysis, we have shown the impact of QoS constraints on the energy
efficiency of multiaccess fading channels. More specifically, we have found that the
minimum bit energies are the same for each user when different transmission and
reception techniques are employed. While these minimum values are equal those that
can be attained in the absence of QoS constraints in the low-power regime, we have
shown that strictly higher bit energy values, which depend on the QoS constraints, are
needed in the wideband regime. We have also seen that while TDMA is suboptimal in
the low-power regime when wideband slope regions are considered, it can outperform
superposition coding with fixed decoding order in the wideband regime. Moreover,
we have proven in the wideband regime that varying the decoding order can achieve

larger slope region when compared with fixed decoding order for superposition coding.



148

Numerical results validating our results are provided as well.
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Chapter 7

Throughput for Two-Hop

Communication Systems

In this chapter, we consider two-hop wireless links and investigate the throughput
in the presence of QoS constraints by studying the effective capacity. We note that
references [68] and [69] have also recently investigated the effective capacity of relay
channels. Tang and Zhang in [68] analyzed the power allocation policies in relay
networks under the assumption that the relay node has no buffer constraints. Parag
and Chamberland in [69] provided a queueing analysis of a butterfly network with
constant rate for each link. However, they assumed that there is no congestion at the
intermediate nodes. In this work, as a significant departure from previous studies,
we assume that both the source and the relay nodes are subject to QoS constraints
specified by the QoS exponents ¢; and 6. Now, we face a more challenging scenario in
which the buffer constraints at the source and relay interact. Moreover, we consider
a general relay channel model in which the fading coefficients for each link can have
arbitrary distributions. We concentrate on the decode-and-forward (DF) relaying

scheme. Assuming that the relay operates in full-duplex or half-duplex mode, we
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Figure 7.1: The system model.

determine the effective capacity as a function of 6; and 5. Through this analysis, we
characterize the impact of the presence of QoS constraints at the relay and also of

half-duplex operation on the throughput of the two-hop link.

7.1 System Model and Preliminaries

7.1.1 System Model

The two-hop communication link is depicted in Figure [l Il In this model, source S is
sending information to the destination D with the help of the intermediate relay node
R. We assume that there is no direct link between S and D (which, for instance,
holds, if these nodes are sufficiently far apart in distance). Both the source and
the intermediate relay node operate under QoS constraints (i.e., buffer constraints)
specified by the QoS exponents #; and 6s, respectively. Hence, the source and relay

buffer violation probabilities should, for some large (Q)y.x, satisfy
Pr{Qs Z Qmax} ~ e_elQmax (7]_)

and

Pr{Qr > Quax} ~ ¢ #29me, (7.2)
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respectively. Above, @), and @, denote the stationary queue lengths at the source
and relay, respectively.

We consider both full-duplex and half-duplex relay operation. The full-duplex
relay can receive and transmit simultaneously while the half-duplex relay first listens
and then transmits. Therefore, reception and transmission at the half-duplex relay
occur in non-overlapping intervals.

Next, we identify the discrete-time input and output relationships. In the ith
symbol duration, the signal Y, received at the relay from the source and the signal

Y, received at the destination from the relay can be expressed as

Yo [i] = gi[i] Xa[1] + nad] (7.3)

Yali] = go[i] Xa[d] + nod] (7.4)

where X for j = {1, 2} denote the inputs for the links S—R and R —D, respectively.
More specifically, X; is the signal sent from the source and X; is sent from the
relay. The inputs are subject to individual average energy constraints E{|X;[*} <
P;/B,j = {1,2} where B is the bandwidth. Assuming that the symbol rate is B
complex symbols per second, we can easily see that the symbol energy constraint
of Pj /B implies that the channel input has a power constraint of ]5] We assume
that the fading coefficients g;, j = {1, 2} are jointly stationary and ergodic discrete-
time processes, and we denote the magnitude-square of the fading coefficients by
;1] = |g;[¢]|*. Above, in the channel input-output relationships, the noise component
n;li] is a zero-mean, circularly symmetric, complex Gaussian random variable with
variance E{|n;[i]|*} = N; for j = 1,2. The additive Gaussian noise samples {n;[i|}
are assumed to form an independent and identically distributed (i.i.d.) sequence. We

P

denote the signal-to-noise ratios as SNR; = 5.
J
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7.1.2 Characterization of Effective Capacity

We first state the following result from [I8], which identifies the QoS exponent for

given arrival and departure processes under certain conditions.

Lemma 1 ([18]) Consider a queueing system, and suppose that the queue is stable
and that both the arrival process a[n],n = 1,2, ... and service process c[n|,n = 1,2, ...
satisfy the Gdartner-Ellis limit, i.e., for all @ > 0, there exists a differentiable asymp-

totic logarithmic moment generating function (LMGF) AA(0) defined as*
loo 6’2?: ali]
Aa(0) = Tim CBEAT T (7.5)

n—oo n

and a differentiable asymptotic LMGF Ac(0) defined as

loc E GZ?:1CM
Ao(0) = Tim 20BEL 3 (7.6)

n—oo n

If there exists a unique 8* > 0 such that

Aa(07) + Ao (=07) =0, (7.7)
then
log P
lim 08P > Qmark (7.8)
Qmaz—o0 Qmaz
where Q) is the stationary queue length. U

Now, we discuss the implications of this result on the two-hop link we study.

Assume that the constant arrival rate at the source is R > 0, and the channels

!Throughout the text, logarithm expressed without a base, i.e., log(-), refers to the natural
logarithm log,(+).
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operate at their capacities. To satisfy the QoS constraint at the source, we should

have

™
AV

>
i

(7.9)

where 6 is the solution to

(7.10)

and A (6) is the LMGF of the instantaneous capacity of the S — R link.
According to [18], the LMGF of the departure process from the source, or equiv-

alently the arrival process to the relay node, is given by

R0, <0

IA
SS

An(0) = (7.11)

0
RO+ A, (0—10), 6

V
™

Therefore, in order to satisfy the QoS of the intermediate relay node R, we must have

0 > 6, (7.12)

where 6 is the solution to

An(0) + Ara(—0) = 0. (7.13)

Above, A,4(0) is the LMGF of the instantaneous capacity of the R — D link.
After these characterizations, effective capacity of the two-hop communication

model can be formulated as follows.

Definition 3 The effective capacity of the two-hop communication link with the QoS
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constraints specified by 61 at the source and 0y at the relay node is given by

RE(Ql, 02) = sup R (714)

ReR

where R is the collection of constant arrival rates R for which the solutions 0 and 0
of (Z10) and (713) satisfy 6> 6, and § > 65, respectively. Hence, effective capacity
is the maximum constant arrival rate that can be supported by the two-hop link in the

presence of QoS constraints at both the source and relay nodes.

7.2 Effective Capacity of a Two-Hop Link in

Block Fading Channels

We assume that the channel state information of the links S—R and R—D is available
at S and R, and the channel state information of the link R — D is available at R
and D. The transmission power levels at the source and the intermediate-hop node
are fixed and hence no power control is employed (i.e., nodes are subject to short-
term power constraints). We further assume that the channel capacity for each link
can be achieved, i.e., the service processes are equal to the instantaneous Shannon
capacities of the links. Moreover, we consider a block fading scenario in which the
fading stays constant for a block of T" seconds and change independently from one

block to another.
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7.2.1 Full-Duplex Relay

In this part, we consider the full-duplex relay. The instantaneous capacities of the

S — R and R — D links in each block are given, respectively, by

TBlogy(1+SNRyz;) and T Blogy(l+ SNRyzs) (7.15)

in the units of bits per block or equivalently bits per T" seconds. These can be regarded
as the service processes at the source and relay.
Under the block fading assumption, the logarithmic moment generating functions

for the service processes of links S — R and R — D as functions of § are given by? [35]

Ar(0) = log E,, {77 1oz t5NRa1) | (7.16)
Ara(0) = log ., {7 ozl T5NRz2) | (7.17)
and as a result
R0, 0<6<46
A(0) = . (7.18)

Ré + log Ezl {e(ﬁ—é)TBlogQ(l—I—SNRlzl)}’ 0> é

With these formulations for A,,, A,4, and A,, we can now more explicitly express the

equations in ((ZI0) and (TI3) as

~ 1 ~
R=g(0) = —logEs, {em0TBloe(145NR2) | (7.19)

2Due to the assumption that the fading changes independently from one block to another, we

4 § " ali] 1 " R{efalil
. . . . i=1 . og | I . {e }
can, for instance, simplify (TH) as A4 = lim, 00 logl{e =411} — lim, o —t=l o

n 0ali n
Zi:l log E{e?2l}

limy, oo - = lim,, o %ﬁg‘””} — log E{efell]}.
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and
—~1logE,, {e~0TB o8, (1+5NRaz2) | 0<f<é
s oA _1 —0TBlog,(1+SNRy 2
R=1(0,0) = 7 <10g E., {e 082 2 2)} o | (7.20)
0>0
+logE,, {e(é*é)TB 10822(1+SNR121)} )
respectively.

We seek to identify the constant arrival rates R that can be supported in the
presence of QoS constraints specified by the QoS exponents 6; for the S — R link and
0y for the R — D link. In this quest, we have the following characterization. The
rates R, which simultaneously satisfy the equations in (ZI9) and (Z.20) with some
6 > 0, and 6 > 65, are the arrival rates that can be supported by the two-hop link
while having the buffer violation probabilities, for large Q,.x, behave approximately
as Pr{Qs > Qumax} ~ e~ 0Qmax < =01Qmax anq Pr{Q, > Quax} ~ e~ 0Qmax < e~ 02Qmax
where () and (), are the stationary queue lengths at the source and relay, respectively.

We first establish an upper bound on these arrival rates.

Theorem 27 The constant arrival rates, which can be supported by the two-hop link
in the presence of QoS constraints with QoS exponents 6, and 0y at the source and

relay, respectively, are upper bounded by

R< min{_i log E., {efelTBlogQ(lJrSNRlzl)} ’ 1 log E.., {efGQTBlogQ(lJrSNRng)}
91 92

(7.21)

Proof: We can see from (7.9) and (T.19) that

1 5 1
R=—7lgE,, {em0TBlos0+SNR) < ~ 5 logEx, {e=0TBlog,(4SNRuz) ) (7 99)
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Note that the inequality above follows from the assumption that § > 6; and the

fact that —A(Gfé) = —logE,, {e‘éTB k’g?(HSNRlzl)} is a decreasing function of 0 s-

ince larger # implies a faster decay in the buffer violation probabilities and hence
more stringent QoS constraints. Another upper bound can be obtained through the
following arguments. Consider the idealistic scenario in which the S — R link is de-
terministic (i.e., there is no fading) and can support any constant arrival rate R (i.e.,
the capacity of this link is unbounded and R — D link is the bottleneck). In such
a case, the arriving data can immediately be sent without waiting and consequently
there is no need for buffering at the source. Hence, any source QoS constraint can be
satisfied. More specifically, if the service rate matches the constant arrival rate, the

equation in (ZI0) holds for any 0, i.c.,

R=-—=r_7 = —% logE{e "} = —=(~0R) = R (7.23)

where instantaneous service rate is assumed to be equal to the constant arrival rate
R (rather than the random quantity 7'Blog,(1 4+ SNR;2;) as we have in the fading
channel case). Since no buffering is now required at the source, we can freely impose

the most strict QoS constraints and assume 6 to be unbounded as well. Then, we

have § < @ for any §. With this, we see from (Z.20) that

1 : 1
R = =5 logE,, {¢ THon(tSNIe=} < — o log B, T PimiSNibm - (7.24)

where, similarly as before, the inequality is due to the assumption that 6 > 0,.
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Combining the bounds in (Z.22) and (.24]), we can equivalently write

R S min {_i 10g E21 {e—GlTB 10g2(1+SNR121)} ’ _i 10g Ezg {e—GgTB 10g2(1+SNR222)}}
91 6)2

(7.25)

concluding the proof. O

Remark: Note that —% logE., {e“ngB 1°g2(1+SNR121)} is the effective capacity of
the S — R link with QoS exponent 6;. Similarly, —é logE,, {e*GQTBIOgQ(HSNR?Z?)}
is the effective capacity of the R — D link with QoS exponent #;. Hence, the arrival
rates that can be supported by the two-hop link are upper bounded by the minimum
of the effective capacities of the individual links.

Below, we identify, for full-duplex relaying, the effective capacity of the two-hop
link, i.e., maximum of the arrival rates that can be supported in the two-hop link
in the presence of QoS constraints. According to [I8], we know that the queues are
not stable if the average transmission rate of link R — D is less than the average
transmission rate of link S — R. Therefore, in order to ensure stability, we assume
that the condition E_, {log,(1 + SNR;21)} < E,,{log,(1 + SNRyzy)} is satisfied in the

following result.

Theorem 28 The effective capacity of the two-hop communication system as a func-

tion of 0, and 6y is given by the following:

Case I: If 0, > 05,

1
Rg(01,60) = min { s logE,, {efelTBlogQ(HSNRlzl)} ,
1

1
— —log K, {e "B losal1 5N hz2) | } (7.26)
02
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Case II: If 0, < 0y and 6, < 6,
1

Rp(6:,02) = A log ., {e_ngBlogQ(HSNRlzl)} (7.27)
1

where 0 is the unique value of 6 for which we have the following equality satisfied:

1 1
_9_1 logE., {6—6’1TB 10g2(1+SNR12’1)} - _ 9—1<log E., {e—aTBlogQ(HSNRgZQ)}

+logE,, {6(6—61)TB10g2(1+SNR121)}>' (7.28)
Case III: Assume 0; < 04 and 05 > 0.

IILa: [f_é logE., {6792TBlog2(l+SNRQZQ)} > —LlogE,, {efGQTBlogQ(lJrSNRlzl)}’ then

”
Ri(6;,6,) = _51_* logE., {e—é*TBlog2(1+SNR1z1)} (7.29)
where 0% is the smallest solution to
_% log E., {6_5T310g2(1+51v3121>} _ %<log E., {6_92T310g2(1+SNR222)}

+ lOg EZI {6(927§)TB log2(1+SNR1Z1)} ) .

(7.30)

IILY: If — 3 1ogE., {e 0T Blon(+5NRoa) | o and

log Ezl {6792’1—‘3 10g2(1+SNR1Z1) }

1
02

_ é logE,, {6792TBlog2<1+5NR222>} > TBlogy(1 + SNR1 21 min),

]_ 0%
RE(01;92) _ _; lOgE21 {6—6 TBlOgQ(l-I—SNRlZl)} (731)
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where 21 min @5 the essential infimum of z1, and 0" is the solution to

1 5 1
L ogE,, {e TSR Ly fo0itmin0sSNRmY (7 39)
0 0,

III.c: Otherwise,

1
Rp(61,05) = —5-logE., {7t Blors (145N Ry2) L (7.33)
2

Proof: See Appendix [l

Remark: We see that in Case I in which 6, > 65, the effective capacity upper
bound identified in Proposition 27] is attained.

Remark: Note that if 6; > 65, then the source is operating under more stringent

QoS constraints then the relay. In this case, if we have
1
L —01TBlogy(1+SNR 21) L —02T Blogy(1+SNR222)
logE,, {e L 2 1 } < 0 logE,, {e 2 2 222 }, (7.34)
then
1
Rp(01,0,) = — - log Es, {etTBloa 5N Rz L (7.35)
1

Therefore, under these assumptions, the effective capacity is equal to the effective
capacity of the S — R link, and the performance is not affected by the presence of the
buffer constraints at the relay node R. This is because of the fact that the effective
bandwidth of the departure process from the source can be completely supported by
the R — D link when the QoS exponent imposed at the relay node R is smaller.
The inequality in ((T34) is, for instance, satisfied when z; and zy (which are the

fading powers in the S — R and R — D links) have the same distribution, and we
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have SNR; < SNR,. We can easily see that

_l lOg Ezz {e—GgTB log2(1+SNRgzg)} > _i 10g Ezg {e—GlTB 10g2(1+SNR222)} (736)

p—— 10g E21 {e—GlTB log2(1+SNR121)} (737)

where (Z30) and (Z37) follow from the facts that —3 logE, {e*GTB logQ(HSNRz)} is
a decreasing function in €, and a increasing function in SNR. This discussion also
suggests that even if the source operates under more strict buffer constraints, if the
fading in the R —D link is worse than that in the S—R link and/or the signal-to-noise

ratio of the relay is smaller, i.e., SNR; > SNRy, then we can have

1
Rg(6,05) = min { s logE,, {efelTB log?(HSNRlzl)} ,
1

1
— logE,, {e—GQTBlogg(lJrSNRQ@)} } (7.38)
6
_ 1 log E.., {e—GQTBlog2(1+SNR2Z2)}, (7.39)
0

and hence experience the R — D link as the bottleneck.

7.2.2 Half-Duplex Relay

In the case of half-duplex relaying with a fixed time-sharing parameter 7 € (0, 1),
we assume that the source first transmits in the 7 fraction of the block of T" seconds
during which the relay listens. Subsequently, in the remaining (1 — 7) fraction of the
time, the relay transmits to the destination. Hence, the transmission or service rates

(in bits per T seconds) at the source and relay become

7T Blogy(1 +SNRy21) and (1 —7)TBlog,(1 4 SNRazs). (7.40)
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Now, the logarithmic moment generating functions for the service processes of links

S — R and R — D as functions of 8 are given by

Asr(e) — lOg Ezl {eTGTB log2(1+SNR1z1)} (741)

Ard(e) — lOg EZ2 {e(lfT)GTB 10g2(1+SNR222)} (742)

and as a result, we have

R0, 0 <0

IA
SS

A (6) =
Ré—l— log Ezl {67(6—§)TB log2(1+SNR1z1)} . 0> é

With these expressions, equations in (ZI0) and (ZI3) can be written, for fixed 7, as

_ 1 .
R= 9(6) _ _5 log ., {e—TGTBlog2(1+SNR121)} (7'43)

and

_% log E., {ef(lfT)éTB 10g2(1+SNR2zg)}
R=h(0,0) = —% <10g E., {67(177)9TB10%2(1+SNR2Z2)}

+ log Ezl {eT(éfé)TB log, (1+SNR1 21) } )

(]
IN
D>
AN
™

, (7.44)

>
vV
™

respectively. As in full-duplex relaying, the rates R for which the equations in (Z.43))
and ((C44) are simultaneously satisfied for some 0 > #; and 0 > @, are the rates that
can be supported by the two-hop link in the presence of QoS constraints specified
by 6; and 65. The following result provides the effective capacity, which is defined
as the supremum of such rates. Similarly as in full-duplex relaying, we assume that
the average transmission rate of the S — R link is less than the average transmission

rate of the R — D link in order to ensure stability in the buffers. Therefore, we
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suppose E, {71log,(14+SNR;21)} < E,,{(1—7)logy(1 + SNRy22)}. Accordingly, in the
following result, we assume that the feasible values of 7 for half-duplex relaying are

upper bounded by

E.,{log,(1 + SNRyz3)}
E.,{logy(1 + SNRy21)} + E_,{logy(1 4+ SNRg22) }

(7.45)

T<Ty=

Theorem 29 In half-duplex relaying, the effective capacity of the two-hop commu-
nication link with statistical QQoS constraints at the source and the intermediate relay

nodes is given by

1 N
Case I 01 > 0y: Rg(0,0;) = — log E., {e*TelTBlogz(HSNRm)} (7.46)
1

1 .
Case II 0, <0y : Rg(01,05) = — logE., {e*T"lTBlng(HSNRm)} (7.47)
1

where T = min{, 7} and 7 is the solution to

1 1
_ lOg Ez1 {67791T310g2(1+SNR1Z1)} — _0_2 lOg EZQ {67(177)92’1—‘310g2(1+SNR2Z2)}

(7.48)

and 7 = min{7y, 7'} and 7’ is the solution to

1 —7601TBlogy (1+SNR: z1)
— 9—1 log EZ1 {6 2 }
_ —%(log E,, {e—(l—T)HQTBlog2(1+SNR2Z2)} + logE,, {eT(GQ_Gl)TBlogQ(HSNRlzl)} )
1
(7.49)

Proof: See Appendix M
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Figure 7.2: The relay model.
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Figure 7.3: The effective capacity as a function of 6;. d = 0.5.

7.2.3 Numerical Results

We consider the relay model depicted in Fig. The source, relay, and destination
nodes are located on a straight line. The distance between the source and the desti-
nation is normalized to 1. Let the distance between the source and the relay node be
d € (0,1). Then, the distance between the relay and the destination is 1 —d. We as-
sume the fading distributions for S—R and R — D links follow independent Rayleigh
fading with means E{z;} = 1/d* and E{z} = 1/(1 — d)°, respectively, where we
assume that the path loss o = 4. We assume that SNR; = 0 dB and #; = 0.01 in the

following numerical results.
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Figure 7.4: ¢}, vs. SNRy for d = 0.5.

In Fig. [[3, we plot the effective capacity as a function of the QoS constraints of
the full-duplex relay node for different SNRy values. We fix d = 0.5, in which case the
S—R and R —D links have the same channel conditions. From the figure, we can see
that the effective capacity does not decrease for a certain range of 65, and this range
is increased by increasing SNRy. Motivated by this observation, we plot the value of
0%, up to which the effective capacity is unaffected, as a function of SNR, in Fig. [[4l
Note that for all values of the pair (SNR, 5) below the curve shown in the figure, the
QoS constraints of the relay node do not impose any negative effect on the effective
capacity. This provides us with useful insight on the design of wireless systems. In Fig.
[C.5 we plot the effective capacity as d varies. We assume 6, = {0.001,0.01,0.05,0.1}.
We are interested in the range in which the condition for stable queues (as stated
above Theorem 28)) is satisfied. More specifically, we note that the optimal d is lower
bounded by the value at which we have E, {log,(14+SNRy21)} = E,,{log,(14+SNRg25)}.

We can see from the figure that for small 6 (i.e., for f = 0.001 and 6, = 0.01), the
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Figure 7.5: The effective capacity as a function of d.

effective capacity curves overlap. In these cases, S — R link is the bottleneck and the
throughput is determined by the effective capacity of this link. When 65 is greater
than 6, (i.e., when 6, = 0.05 or 0.1), it is interesting that the effective capacity
decreases first and then increases until the S — R link becomes again the bottleneck,
in which case the curves overlap. This tells us that with stringent QoS constraints at
the relay, having symmetric channel conditions for the links S — R and R — D, i.e.,
having d = 0.5, generally leads to lower performance.

In Fig. [L8 we plot the effective capacity as a function of 5 for half-duplex
relaying. We set d = 0.5. From the figure, we can find that the effective capacity stays
constant for small 6, i.e., the QoS constraints at the relay node does not impose any
negative effect on the effective capacity of the system. We can also see that as SNRy
increases, larger QoS constraints at the relay node can be supported while having the
effective capacity of the system unaltered. One stark difference from the full-duplex

relay is that as SNRy increases, the effective capacity of the system increases as well
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Figure 7.6: The effective capacity as a function of #y. d = 0.5. SNRy = {3, 10,20} dB.

even for small fy. This is due to the nature of the half-duplex operation. As SNR,
increases, more time can be allocated to the transmission between the source and
relay nodes while satisfying (.45]).

In Fig. [77 we plot the effective capacity as d and 0y varies. We assume SNRy = 3
dB. As we can see from the figure, there exists an optimal d that maximizes the
effective capacity of the system. Besides, the optimal d increases as 6, increases.
This is due to the fact that as the QoS constraints at the relay node become more
stringent, the effective bandwidth supported by the R — D link decreases and this
link becomes the bottleneck of the system. In order to counterbalance this negative
effect, the channel conditions of the R — D link should be improved, which results
in a larger d. It is also interesting that the curve is nearly flat for small 6, when d is
large. So, we plot the effective capacity as d varies for 5 = {0.001,0.01,0.1} in Fig.
7.8 Confirming the observation in Fig. [[7], we see that the two curves for 6, = 0.001

and 0y = 0.01 overlap as d increases. This is because the upperbound for 7 specified
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Figure 7.7: The effective capacity v.s. d and ;. SNRy = 3 dB.

in ((C45) is achieved for both curves.

7.3 Conclusion

In this chapter, we have analyzed the maximum arrival rates that can be supported by
a two-hop communication link in which the source and relay nodes are both subject
to statistical QoS constraints. We have determined the effective capacity in the block-
fading scenario as a function of the signal-to-noise ratio levels SNR; and SNRy, and
the QoS exponents ¢, and 6, for both full-duplex and half-duplex relaying. Through
this analysis, we have quantified the throughput of a two-hop link operating under
buffer constraints. In particular, we have shown that effective capacity can have
different characterizations depending on how buffer constraints at the source and
relay or more specifically how 6; and 6, compare. We have noted that if 6; > 65,
the upper bound on the effective capacity is attained. We have also seen that under

certain conditions depending on the SNR levels and fading distributions, S — R link
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becomes the bottleneck and buffer constraints at the relay do not incur performance
losses when the QoS exponent 65 is sufficiently small but nonzero. In the numerical
results, the threshold for 6, above which the effective capacity starts diminishing is
identified and is shown to increase with increasing SNRy. In a simple linear setting, we
have numerically investigated the impact of the location of the relay on the effective
capacity for different values of the QoS exponents. In half-duplex relaying, we have
determined the optimal time-sharing parameter 7. In the numerical results, we have
had several interesting observations. We have shown that as the SNR level at the relay
node increases, the effective capacity of the system increases for all 65. Additionally,
as the QoS constraints at the relay node become more stringent, we have observed
that the effective capacity of the system can be increased by improving the channel

conditions in the R — D link through having the relay node approach the destination.
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Chapter 8

Throughput for Finite Blocklength
Codes

In most prior work, the service rates supported by the wireless channel are assumed
to be equal to the instantaneous channel capacity values and no decoding errors are
considered, which, from an information theoretic view, is achieved as the coding block-
length grows without bound. On the other hand, practical communication systems
employ channel codes with finite blocklengths and operate at rates less than the chan-
nel capacity with nonzero probability of decoding error. This is particularly true for
systems operating under delay/buffer constraints. For delay sensitive services, using
extremely long channel codes can be prohibitive, and hence, results obtained under
the idealistic assumption of operation at the channel capacity may not be a faithful
representation or prediction of the performance. Therefore, it is of significant interest
to study what can be attained with finite-blocklength channel codes in the presence
of decoding errors and buffer limitations. Despite their importance, there has only
been a handful of work offering insights on such issues. For instance, in [70], Negi

and Goel considered the maximization of the joint exponent of the decoding error
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and delay violation probability through the appropriate choice of the transmission
rate for given delay bound and constant arrival rate. More recently, reference [38] has
analyzed the performance of finite blocklength codewords in the presence of statistical
QoS constraints. In particular, the effective capacity is formulated by incorporating
the recent channel coding results in [71]. However, in [38], coding is assumed to be
performed over one coherence block in which the fading stays constant.

In this chapter, we consider a more general setting and assume that codewords
are sent over multiple coherence blocks. Hence, each codeword experiences multiple
fading realizations. Coding over multiple blocks generally improves the performance
since protection against severe fading can be provided as codewords see multiple chan-
nel states. At the same time, coding over a large number of blocks may also lead to
long delays or buffer overflows especially in the presence of decoding errors and re-
transmission requirements. Due to these tradeoffs, a throughput analysis of channel
coding over multiple coherence blocks in the presence of buffer constraints is called
for to identify whether there exists an optimal number of blocks over which coding
needs to be performed. With this motivation, we use the following approach and
obtain the ensuing original contributions. By making use of the Feinstein’s Lemma
and employing a Gaussian approximation, we initially derive an approximate lower
bound for the instantaneous transmission rate. Then, we regard this lower bound
as the service rate and determine, by identifying the effective rate, the arrival rates
that can be supported by the channel with certain service guarantees. Subsequently,
for both variable- and fixed-rate transmissions, we investigate the interplay between
effective rate, coding blocklength, decoding error probabilities, queueing constraints,
and signal-to-noise ratio (SNR). In particular, we show that for given coding block-
length, QoS exponent and SNR, the effective rate is maximized at a unique decoding

error probability, giving insight on the strength of efficient channel codes for the con-
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sidered buffer-constrained systems. We further demonstrate that as the blocklength
increases (by coding over a larger number of coherence blocks), effective rate improves
if stronger channel codes with lower error probabilities are used. Conversely, we show
that if the error probability remains strictly bounded away from zero, effective rate
starts diminishing to zero as the blocklength grows without bound. We also investi-
gate the case in which the transmission rate is fixed and error probability varies with
the channel fading. In this scenario, the optimal transmission rate that maximizes

the throughput is also proven to be unique.

8.1 System Model

We consider a block flat-fading channel, and assume that the fading coefficients stay
constant for a coherence block of n symbols and change independently from one block
to another. The discrete-time input and output relationship in the I*" block is given
by

where x; and y; are the complex-valued channel input and output, respectively, in
the " symbol duration of the {** block, h; is the channel fading coefficient in the
lth block, and wj; is the circularly symmetric complex Gaussian noise with zero mean
and variance Ny, i.e., w; ~ CN(0,Ny). We assume that the receiver has perfect
channel side information (CSI) and hence perfectly knows the realizations of the
fading coefficients {h;}. On the other hand, we consider both cases of perfect and no
CSI at the transmitter.

The channel input is assumed to be subject to E{|z;|*} < &,. It is well-known that
when the receiver has perfect CSI, the capacity achieving input for the above fading

Gaussian channel is Gaussian distributed. Hence, we assume that z; ~ CN(0,&;).
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Since the input and noise are Gaussian distributed, the output is also conditional-
ly Gaussian given the channel fading coefficient, i.e., y;|h; ~ CN(0,E|l|? + No).
Moreover, the output is also conditionally Gaussian distributed given h; and the
input x;, i.e., yilz;, hy ~ CN(hz;, Ng). We further assume that the input is inde-
pendent and identically distributed (i.i.d.) i.e., ps» = [I7 4 P, (2;), which implies

Pyn|zn by = HLl Py, (yz|$z, hl), and Pyrin, = H?:l pyi|hl(yi|hl)-

8.2 Mutual Information Density and Channel

Coding Rate

As detailed in Section [l effective capacity is determined by specifying the service
rate or equivalently the instantaneous transmission rate. We assume that the trans-
mitter performs channel coding over m coherence blocks where m = 1,2, ... There-
fore, it sends codewords of length nm and each codeword experiences m independent
channel conditions. An upper bound on the maximum decoding error probabilities

of random codes of length nm is given by Feinstein’s Lemma [72], [73]:

1
e <Pr (—i(x"m; IR < R+ 7) P ¢ Sn) + €™ (8.2)
nm
where 4 > 0 is an arbitrary constant, S, = {x”m N } is the con-

straint set, i(z™"; y™™|h7") is the mutual information density conditioned on the fad-
ing coefficients (hy, ha, ..., h,) seen in m coherence blocks. The conditional mutual

information density is defined as

p(y™™ =™, hi")
p(y™™m|hi")

i(x™™; y" ™ A = log,
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Next, we obtain an expression for the mutual information density of the considered
channel and input models (i.e., fading Gaussian channel with Gaussian input), and
derive, under certain assumptions, an approximate lower bound on the rates attained
by coding over m coherence blocks.

For the system model introduced in Section Rl we have

1
nmz(x 'Y ‘ 1 )
1 & ,
=—> Z iz yi| ) (8.4)

2T = (-t

I & & Fyilwin Wilzi, By)
- log Yi| T, ) (85)
nim ;z (lzlgnJrl ’ fyi|hl (yi, u)

Es|h|? vil’logae  |yi — huai*logy e
S log, (1 - 8.6
Ly g (g< P BINEY | g i (56)

M = 1

1 58|h1| 10%2 lyil? lyi — hui|?
B aefs - : 87)
M= No I=1i=(—1)n+1 |hl|2‘€s + No No
Denoting SNR = 50 and extending the results in [72] and [73], we can immediately

show that i(x™™;y™™|h}")/(nm) has the same distribution as the random variable

1 & log, e & SNR|ly|? &
— 3 " logy (1 + SNR|Iy[?) + —=2-3 ", E 8.8
m; 083 [hul®) nm = \ 1+ SNR||? = (8.:8)

where wy;’s are i.i.d. Laplace random variables, each with zero mean and variance 2.

The sum of nm i.i.d. Laplace random variables has a Bessel-K distribution [72] and
generally is difficult to deal with directly. On the other hand, for large enough values
of the blocklength nm, the random variable in (88]) can be well approximated by a
Gaussian random variable [73]. Therefore, the mutual information density achieved

with the codewords of length nm spreading over m coherence blocks can be regarded
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to approximately have the following Gaussian distribution:

1 JR log3 2SNR
(™ R ~ CA (E 3 log,(1 + SNR2), Oif = i ) (8.9)
=1

m
nm — nm(1 + SNRz)

where we have defined z; = |Iy|?>. With this approximation, the first probability
expression on the right-hand side of (82) can be written in terms of the Gaussian

@-function:

(8.10)

Pr( 1 ):Q L3 logy(1 4 SNRz) — R — v

nm ( ’ | ! ) log2 e som 2SNRz
m =1 nm(1+SNRz;)

By noting that the @-function is invertible, we can rewrite the upper bound in (8.2
as a lower bound on the instantaneous rate achieved by coding over m coherence

blocks:

1 m
R >—" "log,(1 + SNRz)
mi—

log%e 2SNRz; _1 _
- —Pr(z™ & 5,,,) —e ") — Q.11
$ Y i @ € P S~ = (811

for any v > 0. Although the above lower bound can also be used in the subsequent
analysis, we opt to further simplify it to make the analysis more tractable analyti-
cally. We first note that the terms Pr(z™ ¢ S,,,,) and e™™" decrease exponentially
fast with increasing nm and become very small relatively quickly. (For the proof of
the exponential decay of Pr(z™ ¢ S,,,), we refer to Appendix [N where a closed-
form expression for Pr(z"™ ¢ S,,,) is also given, which can be used to facilitate an
analysis with the lower bound in (8I1l)). With this observation, we assume that nm

is sufficiently large and we neglect these terms for the sake of simplification in the
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formulations. Note that these approximations are accurate if Pr(z" ¢ S,,,) and
e ™ are much smaller than the error probability €, which we generally observe in
the numerical results. Moreover, after the eliminations of these terms, we can see
that since the lower bound holds for any v > 0, an approximate lower bound for the

transmission rate is

logs e 2SNRz; _1
R>R 6:— log, (1 4+ SNRz;) 8.12
= e =17 zz; 8 1) $ ; 11 SNRzl)Q (€) ( )

where the notation R;. is used to emphasize that this is a lower bound for rates

achieved with decoding error probability €. Henceforth, the analysis is based on R .

8.3 Effective Throughput

The rate lower bound in (812) gives a characterization of the tradeoffs and interac-
tions between the instantaneous transmission rate, decoding error probability and the
fading coefficients when channel coding is performed over multiple coherence blocks
using finite blocklength random codes. In particular, we note that R;. is achieved
with probability 1 —e. With probability €, decoding error occurs. We assume that the
receiver reliably detects the errors, and applies a simple ARQ mechanism and sends
a negative acknowledgement requesting the retransmission of the message in case of
an erroneous reception. Therefore, the data rate is effectively zero when error occurs.
Under this assumption, the service rate (in bits per nm symbols) is
0, with probability e

ry = : (8.13)
nmR; ., with probability 1 — €
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Similarly as in [38], we obtain the following result on the effective rate by inserting
the above service rate formulation into the definition in (LI]) and noting that the
service rate varies independently from one sequence of m blocks to another due to

the block fading assumption.
Proposition 3 The effective rate (in bits per channel use) at a given SNR, error

probability €, codeword length nm, and QoS exponent 0 is

1
Re(6) = —5— log, I, {e+ 1= tmmhinel (8.14)

where Ry is given in (813), and the expectation is with respect to z = (z1,. .., 2m),
which is composed of the magnitude squares of the channel fading coefficients experi-

enced in m blocks.

Proof: The result is immediately obtained through the following steps:

Re(0) = — Jim, - log, B{e™*} = — lim — log, e~ Tinanll} (8-15)
= —tlirgo % log, (E {e_ers})t (8.16)
=— t]i)I& %tloge E {679’"5} (8.17)
- _% log, E {e="} (8.18)
1

_ = . —O0mnR .
- elogeEz{e+(1 €)e b (8.19)

Above, ([BI6) follows from the fact that the service process r4(i), which depends
on the fading vector z, changes independently from one sequence of m blocks to
another and has the same distribution for each sequence. This fact is due to the block
fading assumption. Hence, E{e‘gz;l“m} = B{ITt_, e (1} = Tt E{e~ 0} =

(E{e=?:})!. The term inside the expectation in (8I9) is obtained by evaluating the
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—0Ors

expected value of e for fixed z. Finally, the effective rate expression in (814 is
obtained by normalizing (8I9) by nm to have the effective rate in the units of bits
per channel use. (l

Remark:  Proposition [3 provides the effective rate achieved with finite block-
length codes with possible decoding errors. It is also interesting to consider the
idealistic scenario in which the transmission is assumed to be performed at the rate
of channel capacity with no decoding errors. In such a case, the transmission rate is

R = LY logy(1 4+ SNRz). Now, the effective rate, again under the block-fading

assumption, can be written as

1 m

RE,ideal(e) = — p— loge Ez {e—ﬁnm% Zl:l log2(1+SNRzl)}
_ 1 s —0nlog,(1+SNRz;)
=7 1ogel:1_[1Ezl {e 2 ! } (8.20)
_ 1 —Onlogy(14+SNR2)1\™
-———ennlloge(Ez{e 3 (8.21)
_ 1 —0nlogy(1+SNR2)
-———EﬁlogeEz{e 2 } (8.22)

where (820) is obtained from the assumption of the independence of the fading coefhi-
cients for each block, and (821)) is due to the fact that fading coefficients in different
blocks are identically distributed. Interestingly, (8.22) shows us that the effective
rate is independent of the number of blocks, m, over which the coding takes place
(as long as m is finite). However, we observe in (8I4)) that the performance depends
on m in the presence of decoding errors. Additionally, we can show using (822]) that
limp_,0 Rpideal(0) = E.{log,(1 + SNRz)}. Therefore, in the idealistic case, effective
rate becomes equal to the ergodic capacity if queueing constraints are not imposed

(ic., if 6 =0).
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The effective rate in ([8I4]) provides a lower bound on the throughput as a function
of SNR, decoding error probability €, fading coefficients, coherence blocklength n, the
number of blocks m over which coding is performed, and the QoS exponent . Note
that using very strong codes and having small error probabilities in the transmission
necessitates small transmission rates leading to small throughput. On the other hand,
if higher transmission rates with relatively weak channel coding are preferred, then
communication reliability degrades and more retransmissions are required again low-
ering the throughput. With the next result, we show that these effects are balanced
when the channel code has a certain strength level specified by its decoding error

probability.

Theorem 30 Given the values of m > 0,n > 0,0 > 0 and SNR > 0, the function
U(e) = By, {e+ (1 — ) mmfie} (8.23)

is strictly convez in €, and hence the optimal € > 0 that minimizes V(€), or equivalently

mazximizes the effective rate in (8:17)), is unique.

Proof: See Appendix
Note that the above result holds for # > 0. If there are no QoS constraints, i.e.,

6 = 0, we have the following result.

Corollary 6 When 0 = 0, the effective rate becomes
—

where Ry is given by (812). Rg(0) is strictly concave in € and hence the optimal €

that mazimizes Rg(0) is unique.
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Figure 8.1: The effective rate as a function of € for different values of m. n = 50.

The result on the limiting behavior as # — 0 can be obtained in a straightforward
fashion and the concavity can be shown using similar steps as in the proof of Theorem
Due to these, the proof is omitted for brevity.

Note that Rg(0) is the average transmission rate averaged over all possible channel
state vectors, and the result tells us that this arrival rate can be supported in the
long term by transmitting over all possible channel states if QoS constraints are not
imposed.

Next, we present several numerical results, verifying the theoretical observations
and identifying the interplay between some parameters. In Fig. B, we plot the
effective rate as a function of € in the Rayleigh fading channel with E{z} = 1. Here,
we assume SNR = 0 dB and # = 0.01. In Figs. BIHE3l we also assume that n = 50.
In Fig. Bl we provide curves for different values of m. We can see that the effective
rate is indeed maximized at a unique €*, as predicted by Theorem B0l We also observe

that as m increases, the optimal €* decreases, and the effective rate attained at this
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Figure 8.2: The effective rate optimized over € as a function of m. n = 50.

optimal €* is higher. Therefore, coding over an increasing number of coherence blocks
is beneficial in terms of increasing the effective rate if the decoding error probability
is suitably lowered.

In Fig. B2l we plot the effective rate optimized over € as a function of m for differ-
ent values of 6. From top to bottom, the curves correspond to 8 = 0, 0.0001, 0.001, 0.01,
respectively. Note that when 6§ = 0, no queueing constraints are imposed. We see in
the figure that all curves increase with m. That is, coding over an increasing number
of blocks is always helpful if the decoding error probability is optimized. At the same
time, we observe that the rate of increase is smaller for higher values of m, especially
if 0 is relatively large. Hence, we have diminishing returns as the number of blocks
m increases. It is also important to note that as m grows, code complexity and cod-
ing and decoding delays increase as well. Hence, these tradeoffs should be carefully

considered in the choice of the codeword length.
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Figure 8.3: The optimal error probability ¢* as a function of m. n = 50.

In Fig. B3] we plot the optimal error probability € (at which the effective rate is
maximized) as a function of m. As expected, the optimal error probability decreases
with increasing m. We also observe that as the QoS constraints become more strin-
gent (i.e., as 0 increases), lower decoding error probabilities are required. This can
be attributed to the tendency of the more severely buffer-limited system to reduce
the number of retransmissions to avoid buffer overflows. The situation is even more
critical when m is large and long codewords are transmitted, because when decoding
errors occur, the entire long codeword should be retransmitted, and data cannot be
cleared from the buffer until successful transmission is achieved. Hence, decoding fail-
ures can be quite detrimental under buffer constraints especially for large m. Indeed,
in Fig. B3], we see that while the error probability curves are relatively close to each

other for small values of m, the gap widens as m and 6 increase.
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8.3.1 Bounded or Fixed error probability

As we have shown in the previous section, coding over multiple blocks is generally
beneficial because transmitted codewords experience multiple channel fading realiza-
tions and may not get exceedingly affected by severe fading in one block. At the
same time, these benefits are realized if the decoding error probabilities are decreased
as the number of blocks over which coding is performed increases. Hence, stronger
channel codes should be used if codewords are to be transmitted over a larger number
of coherence blocks. This is because coding over many blocks with a relatively high
frequency of retransmissions may lead to unacceptable delays in systems operating
under buffer constraints captured by the QoS exponent # in this chapter. Hence, we
expect to have the optimal error probabilities vanish as m — oo. Conversely, we can
show that if the error probability is bounded away from zero, then Rg(6) approaches

zero as m increases without bound.

Theorem 31 Assume that € > 0 and the decoding error probability, €,,, which in
general depends on m, is lower bounded as €,, > ¢, > 0. Then, we have

lim Rg(6) = 0. (8.25)

m—r00

Proof: See Appendix [Pl

In order to demonstrate this behavior, we assume in the following numerical results
that the error probabilities are kept fixed at a certain level that is strictly greater than
zero. In Fig. B4l we plot the effective rate as a function of m for different 0 values
with fixed ¢ = 0.01. In the figure, we observe that the optimal m that maximizes
the effective rate under a given e varies with §. When 6 = 0 and therefore there are

no buffer constraints, effective rate increases with increasing m. Coding over ever
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Figure 8.4: The effective rate as a function of m. n = 50. ¢ = 0.01.

increasing number of blocks improves the performance. However, we see a strikingly
different behavior in the presence of QoS limitations. We note that for 6 > 0, effective
rate is maximized at a finite value of m, and as predicted by Theorem BT}, approaches
zero as m grows without bound. Moreover, the optimal value of m diminishes as 6
increases. Therefore, coding over fewer blocks should be preferred under stringent
buffer limitations and fixed error probability.

In Fig. BE we plot the optimal m that maximizes the effective rate as n varies
from 1 to 200 for different 6 > 0 values. We again assume ¢ = 0.01. We see that as
n increases and hence coherence blocks are larger, smaller m is preferred. Recalling
that the codeword length is mn, we here observe that, for fixed error probability,
increase in n is being offset by the decrease in m to avoid increases in the codeword
length. This is expected in light of the damaging effects of using very long codewords
with fixed or bounded decoding error probability as observed in Fig. 84l We further

see in Fig. that the optimal m decreases with increasing 6 similarly as in Fig. 84l
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Finally, in Fig. B.0] we plot the optimal effective rate as n varies. It is interesting that
while the maximal effective rate does not change much for small 6, it significantly
decreases with n for relatively large values of 6. The reason lies in the fact that
since n is the coherence duration over which the fading state remains fixed, larger
n corresponds to slower fading and slow fading can lead to long durations of deep
fading. In such cases, system becomes more conservative and supports lower arrival
rates to avoid buffer overflows. While this undermining effect is not as deleterious for
loose buffer constraints, it becomes more pronounced with stringent QoS constraints.
Overall, we notice that increase in the code blocklength due to increase in coherence

duration n has different consequences than that caused by the increase in m.

8.3.2 Fixed Rate Transmissions

Heretofore, we have implicitly assumed that the transmitter has perfect CSI and
considered the scenario in which the transmitter employs variable-rate transmissions
with rates characterized by R;. given in (8I2). Note that in order to transmit at
the rate R; ., the transmitter needs to know the fading coefficients. A more practical
scenario is the one in which the transmitter does not know the channel states and
send the information at a fixed rate of R. Note that in this case, the decoding error
probability varies with the fading coefficients in each set of m blocks. The codeword

error probability for a given channel state z and fixed-transmission rate R is

" log,(1 + SNRz) — R
e(z Oga(1 + SNR) — (8.26)

_ 2SNRz,
\/ Zl 1 nm(1+SNRz) logQ €
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obtained by using (812)). The effective rate is now expressed as

_ 1 —OnmR
i — log, E, {e(z, R)+ (1 —¢€(z,R))e }
S B { Ly logy(1 4 SNR2) — R
= —5—log, .
\/ Zl 1 nm(zls—ll—\IS%ll{z) 10g2 €
1o mEEilos(l + SNR2) — R e—"”mR}. (8.27)

2SNR,
\/ 2051 (1SN 1082 €

After this formulation, we have the following result that shows that there exists
a unique transmission rate that maximizes the throughput for given n, m, 6 > 0
and SNR > 0. The reasoning is that very high rates result in frequent errors and
retransmissions while very low rates inescapably lead to low throughput even though
transmissions are more reliable. Hence, the best performance is attained at a certain

transmission rate at which the competing effects are balanced.

Theorem 32 Assume that the values of n, m, 0 > 0 and SNR > 0 are fized, then the

function

{ Ly log,(1+ SNRz) — R
~ 2SNRy
\/ S S loga €
Zz 1 logy(1 4+ SNRz) — R e@nmR}

i SNR
2 z
\/ Zz 1 nm( 1+5thl) log2 €

is minimized at a unique R and hence the optimal R that minimizes ®(R) or equiva-

lently maximizes the effective rate in (827) is unique.

Proof: See Appendix
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From the proof, we know that the effective rate is maximized at a unique R*, and
®(R*) = 0. Numerical methods such as bisection method can be used to determine
the optimal R*.

In Fig. B we plot the effective rate as a function of the fixed transmission rate
R for different m values. We assume that 6 = 0.01. It is noted that there is a unique
R that maximizes the effective throughput for each m. We can also see in the figure
that the maximum effective throughput grows as m increases from 1 to 10, and this
improvement is achieved by lowering the transmission rate and consequently the error
probabilities. In Fig. B8] we plot the optimal effective rate as a function of m for
different 6 values. We again notice that the effective rate increases with m.

Motivated to see the performance difference between the variable-rate and fixed-
rate transmissions, we plot for both transmission schemes the optimal effective rate

as a function of 6 for different m values in Fig. 89 We observe for both transmission

schemes that m = 5 achieves the highest effective rate for small 6 values while m =
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1 begins to perform better as @ increases. Another interesting observation is that
fixed-rate transmission outperforms variable-rate transmission for large 6 values or
equivalently for stringent QoS constraints. We note that the performance of variable-
rate schemes are plotted for optimized error probabilities. In Fig. R0, we provide
the optimal error probability as a function of 8 for different m values. We notice in
all cases that the optimal error probability initially decreases with # and then starts

to increase after a certain threshold 8 value.

8.4 Conclusion

We have analyzed the performance of coding over multiple coherence blocks with pos-
sible decoding errors in the presence of queueing constraints. We have characterized
the throughput in this scenario by identifying a lower bound on instantaneous trans-
mission rates and determining the effective rate expression. We have investigated two

different transmission strategies. For the case of variable-rate transmissions, we have
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proven that the optimal error probability that maximizes the effective throughput is
unique for given blocklength, QoS exponent #, and SNR. We have shown that the
throughput improves as channel coding is performed over an increasing number of
coherence blocks if the probability of decoding errors are lowered accordingly. Ad-
ditionally, we have remarked that coding over a very large number of blocks can be
detrimental if the error probabilities are fixed or cannot be sufficiently decreased.
This observation is made for the case in which 6 > 0. If, on the other hand, no buffer
constraints are imposed i.e., # = 0, we have noted that using codewords of longer
length is always beneficial. Through numerical results, we have further investigated
the interplay between effective rate, coherence duration n, QoS exponent 6, and the
code blocklength.

In cases in which the transmitter sends the information at a fixed rate R, we
have remarked that error probabilities vary with the channel conditions and we have
formulated the effective rate. We have shown that the effective rate is maximized at
a unique value of R. We have again demonstrated that the performance improves
with increasing m but this time if R is suitably lowered. We have further observed
interestingly that as QoS constraints become more stringent or equivalently as 6
increases, fixed-rate transmission schemes outperform variable-rate ones and moreover

coding over a smaller number of coherence blocks starts leading to better performance.
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Chapter 9

Conclusions and Future Works

In summary, we have analyzed the energy efficiency in single- and multi- user set-
tings. We have obtained the spectral efficiency-bit energy tradeoff in the low-power
and wideband regimes for point-to-point links. We have characterized the minimum
bit energy levels and wideband slope regions of fading MAC for different transmission
and reception strategies, namely TDMA, superposition coding with fixed decoding
order, and superposition coding with variable decoding order. Also, we have studied
the effective capacity region of fading MACs, broadcast channels, and secrecy chan-
nels under QoS constraints. We have investigated the throughput of two-hop relay
channels with QoS constraints at both the source and relay nodes, and the throughput
of transmission with finite-blocklength codes.

In the future, we plan to do energy efficiency analysis in network settings, such
as broadcast channels and secrecy channels. Practical systems generally operate in
multi-user scenario. The energy efficiency in such cases will be of significant interest.
We also plan to analyze the throughput of more general relay channels. Our prime
results on the throughput of the two-hop relay channels are expected to extend to a

wide range of relay channels, such as two-way relay and multiple-relay channels. Also,
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our results on the throughput for finite-blocklength codes were carried out in point-
to-point links. The performance of finite-block length codes under QoS constraints
in the multi-user scenario will be interesting. Some other potential interesting topics
may arise in the future as well.
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Appendix A

Proof of monotonicity of CEC(O in ¢

Considering (Z20)), we denote

0s(6) = ) = L tog e ) (A1)

The first derivative of C'r({) with respect to ¢ is given by

B 09 g 1+ ) - )

Cul0) = —rs A (A2

E = — — .
CQ loge 2 E{ef% 10g2(1+§—gz)}

We let v = %z > 0, and define y(v) = log.(1 + v) — %, where y(0) = 0. It can be

easily seen that y = W > 0, so y(v) > 0 holds for all v. Then, we immediately

observe that Cp(¢) < 0 for ¢ > 0. Therefore, CEC(O monotonically increases with

decreasing C. O
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Appendix B

Proof of Theorem

In [12, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

20 = L og, s (2(0)P) (B.1)
where sp (®(0)P) is the spectral radius (i.e., the maximum of the absolute values of
the eigenvalues) of the matrix ®(0)P, P is the transition matrix of the underlying
Markov process, and ®(f) is a diagonal matrix whose j™ component, ¢;(6), is the
moment generating function of the random process y;(¢) given in this state. Hence,
we have ¢;(0) = E{e% )},

The transmission model described for the wideband channel with N subchannels
is a Markov-modulated process where the underlying Markov process has N +1 states
with the transition probabilities given in (B.I5). Hence, the transition matrix is given
by (B.2) on the next page. Note that the rows of P are identical due to the fact
that the transition probabilities do not depend on the initial state. In each state, the
transmission rate is non-random and fixed. Recall that in state j, the transmission

rate is equal to (j — 1)rT. The moment generating function of this deterministic
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P11 P12 -« Pi,N+1 p1 P2 .- . PN+
PN+11 PN+12 - - PN+1,N+1 P1 P2 . . PN41
10 . 0 Pr p2 - - PNt
orT
P ( Q)P _ 0 e 0 0 . .
L0 0 .0 T P1r P2 - . PN+l
®(9) P
[ m P2 . PN+1
_ 2 691"T Ps e@rT o pN+1€9rT . (B3>
| pleGNrT erﬁNrT o pN+1€6NTT

process is ¢;(0) = E{e?U~YUrT} = ef0—UrT  Therefore, we can express ®(0)P as in
(B3) at the top of this page.
Note that the rows of ®(#)P are multiples of each other, and hence ®(0)P is a

matrix of unit rank. This leads to the conclusion that

N+1

sp (®(0)P) = trace(®(0)P) = Z p; P, (B.4)

Therefore, for the wideband channel in consideration, we have

INC: 1 1 N+1 .
% = 5 log, 5p (®(0)P) = ~log, ( > pye’V 1’”) : (B-5)
=1

Applying the definition

1 A(—6
Re(SNR,0) =~ max { _ M} (B.6)
P>0st. Y P<P
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S p =S ( A ) (PLz> @)y~ (1= P{e > ap)¥ 7+ 0707
(B.7)
= ; < ];[ ) (P{z > oz}eerT)i (1—P{z>ap)"" (B.8)
= (1 - P{z>a}+ P{z>a}e)N (B.9)
= (1 — P{z>a}(1 — ")V, (B.10)

where we have maximization over the transmission rates and power allocation strate-
gies, we immediately obtain (317).

Assume now that {z,}1_, are identically distributed and therefore p; is in the
binomial form given in ([3I6). Then, we can easily obtain (B.7)-(B.I0) at the top
of this page. Note that (B.8) is obtained by applying a change of variables with
i = j — 1 and combining the second and fourth terms in the summation in (B.7)
to write (P{z > Oc}eerT)i. (B.9) follows from the Binomial Theorem. Now, the

expression in ([3I8) is readily obtained by noting that % = B.. O
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Appendix C

Proof of Theorem [7

Assume that the Taylor series expansion of o, with respect to small ¢ = B% is

Tapt = Topt T Topt (0)¢ + 0(C) (C.1)

where 77 = lime 0 7ope and 7opi(0) is the first derivative with respect to ¢ of rop

evaluated at ¢ = 0. From (84]), we can find that

9ronC _ |
ot = 5
N Ny
X (r* . log, 2)2
rai1og. 2 rop(0)log, 2 4 —R=—
_ ptﬁg + opt( ) g = 2 C+0(C) (CQ)

NNy NNy

from which we have as ( — 0 that

*
. Topt log, 2
opt T P
N Ny

a and (C.3)

. (r* . log, 2)?
. Topt (0) log, 2 4 —2t——
Grope (0) = Teel D) 1082 T (€4

NNo
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_ _ .
Ey — lim N?VOC _ .Ni)VO _ _Nj;\i _ —dlog, 2
Nolg,—o  ¢0Re(¢)  Rg(0) log, (1 — P{z> o, }(1 - e’GT’"gpt)) log, €

(C.5)

where dopt(0) is the first derivative with respect to ¢ of apt evaluated at ¢ = 0.

According to (C3), r},; ]\,;\?71"0232 We can now derive (C.H) at the top of this page

where Rp(0) is the derivative of Ry with respect to ¢ at ¢ = 0,

_0TP
~ NNylog, 2’
and
=1—P{z>al,}(1—e ).
B
Since L& = Ffj;(vg) , the result that £ = %min follows from the fact that Rg(¢)/¢

R Rg=0
monotonically decreases with increasing ¢, and hence achieves its maximum as ¢ — 0.

Therefore, we prove (3.20).

The second derivative RE(O), required in the computation of the wideband slope

Pa*

ch)gt2' Note that

So, is derived through (C.6)-(C.9) on the next page where Topt =
(C.) and (C.9) follow by using L’Hospital’s Rule and applying Leibniz Integral Rule

[74].
Next, we derive an equality satisfied by 7. Consider the objective function in

B.I3)

~9TEB. log, ( — P{z>a}(1l - e’eTT)>. (C.10)

It can easily be seen that both as r — 0 and » — oo, this objective function approaches
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Re(¢) — Re(0)¢

Re(0) = lim 2 G (C.6)
: 1 1 —0Tropt
:%%26<_ﬁ10g6 (1—P{z>aopt}(1—e ))
1 * —OTr*
+ o og, (1- Pz > aj (1 — e opc))) (C.7)
2 (P=(Qopt) opt () (1 = €70770) — P{z > atgpy }OT =T 7ov 5 (C) )
= lim ——
=0 0T 1—P{z> aopt}(l - e*"TTopt)
(C.8)
2 (pz(azpt)dopt(O)(l — e o) — P{z > azpt}QTe_gTrgpthpt(O)) (©9)

0T 1—P{z> agpt}(l — e_eTrgm)

zero'. Hence, (CI0) is maximized at a finite and nonzero value of r at which the

derivative of (C.I0) with respect to r is zero. Differentiating (C.10) with respect to r
and making it equal to zero leads to the following equality that needs to be satisfied

at the optimal value rgp:

2ropccpz(aopt_)NN0 log, 2 (1 — e~0Tromt)

= 0Te "Tror PLz > agp} (C.11)

where ¢ = 1/B.. For given 0, as the bandwidth increases (i.e., ¢ — 0), 7ops —> 755
Clearly, r;, # 0 in the wideband regime. Because, otherwise, if 7o — 0 and
consequently oy, — 0, the left-hand-side of (C.11l) becomes zero, while the right-

hand-side is different from zero. So, employing (C.3)) and taking the limit of both

I'Note that « increases without bound with increasing r.
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sides of (C.11)) as ¢ — 0, we can derive

1 — e NNgloge2 opt

p.(a Opt)]\U\fologe ( __oTP )

= QTefNNeoTlfgeQQ;PtP{Z > gyt (C.12)

which, after rearranging, yields

0T P TP P{z>
Qgpr = loge< bz a(’pt}) (C.13)

NNQ 1Oge NNO 10&;2 pz( opt)

Denoting 6 = N]\‘?O:qu 5, we obtain the condition (B.22)) stated in the theorem.

Combining (C.I2) and (C4) with (C.9) gives us

NNplog?2 1, ”pa(ady,) (1 — e o)
OTP 11— P{z > a;ﬁpt}(l — e*GT’"OPt>
*P{z > o e Tort log, 2

- C.14
1 P{z > Ocopt}(l —e GTTopt) ( )

RE(O) =

Substituting (C14) and the expression for Ry (0) in (C.5) into ([BIZ), we obtain (3.21)).
UJ
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Appendix D

Proof of Theorem [§

We first consider the Taylor series expansion of 74 in the low-SNR regime:
Topt = aSNR + bSNR? + 0(SNR?) (D.1)

where a and b are real-valued constants. Substituting (D.I]) into ([B:4]), we obtain the

Taylor series expansion for agp:

alog, 2 blog,2 = a?log’?2
Gort =g B 2B?

) SNR + o(SNR). (D.2)

From (D.2), we note that in the limit as SNR — 0, we have

. alog, 2
Oéopt = B

. (D.3)

Next, we obtain the Taylor series expansion with respect to SNR for P{z > aqp}
using the Leibniz Integral Rule [74] as in (D.4)) on the next page.

Using (D.1)), (D.2)), and (D.4]), we find the series expansion for Rg given in (310)
as in (D.5) on the next page. Then, using (D.3), we immediately derive from (D.5)
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blog. 2 a?log??2
Ee i Ee

P{z > agpi} = P{z > aj, } — < B 552 )p (5pt)SNR + 0(SNR).  (D.4)

1 . blog,2 a?log?2
Re(SNR) = “OTB log, [ - (P{Z > ot} — ( ge + 2326 )p (a opt)SNR+0(SNR))

2
X (AT aSNR + (0Tb — (m;a) )SNR? 4 0(SNR?))
_ aP{z > aj,} 1 HTa, ang(a;pt) log? 2
_ TSNR—}—E( P{z > aly) - S
0T (P{z > a},}a)?
IENGAE _ CoptJO) )SNR2+0(SNR2). (D.5)
that
: P{z>a’,}
R.(0) = opt opt D6
#(0) o (D6)
) i Ppdal )
R O - opt 7z opt
£(0) log, 2
_ 0TBag,’ i}
10g2 2pt P{Z > aopt}( P{Z > aopt})’ (D7)

Similarly as in the discussion in the proof of Theorem [7]in section [3.3] the optimal

fixed-rate 7op, akin to (C.IIJ), should satisfy

21"opt/sz (aopt) loge 2

BSNR (1 — e Trort) = 9T e Trort PLy > qgp ). (D.8)

Taking the limits of both sides of (D.§]) as SNR — 0 and employing (D.1]), we obtain

ap- (a:pt) 1Oge 2
B

= P{z>aj,}. (D.9)
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From (D.3), (D.9) simplifies to
azptpz(a;pt) = P{Z > aZpt}’ (D]'O)

proving the condition in (8:26). Moreover, using (D.I0), the first term in the expres-

* 2 *
ot P{z>«

sion for Rg(0) in (D7) becomes — oot} Together with this change, evaluating

log, 2

the expressions in (3.12)) with the results in (D.6) and (D.1), we obtain ([3.24) and
B25). O
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Appendix E

Proof of Proposition

From the maximization problem above (£I0) and the definition of « in (L)), we can
easily see that for fixed r, the only term in the objective function in this maximization
that depends on p is a. Moreover, a has this dependency through SNReg. Therefore,
Popt that maximizes the objective function can be found by minimizing «, or equiv-
alently maximizing SNReg. Substituting the definitions in (£.2) and the expressions
for o and o7 into (8], we have

Esop p(1 — p)y*T?B?SNR?
o2 E+No pyTB(IB—2)SNR+~TBSNR+ 1B — 1

SNRegf = (E.1)

where SNR = Nf 5. Evaluating the derivative of SNReg with respect to p and making

it equal to zero leads to the expression in (£I2). Clearly, pop is independent of 6 and
T.

Above, we have implicitly assumed that the maximization is performed with re-
spect to first p and then r. However, the result will not alter if the order of the

maximization is changed. Note that the objective function in the maximization above
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T
QTg—l 1
1

= log. | 1— ¢ SNRi (1 — tr £.2
s, [1-¢ N1 (B

9(SNReg, 1) =

is a monotonically increasing function of SNRg for all r. It can be easily verified that
maximization does not affect the monotonicity of g, and hence max, > g(SNRes, )
is still a monotonically increasing function of SNR.g. Therefore, in the outer maxi-
mization with respect to p, the choice of p that maximizes SNRqg will also maximize

max,>o §(SNResr, '), and the optimal value of p is again given by (£I12). O
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Appendix F

Proof of Theorem

Note that as SNR — 0, transmission rates also approach zero and therefore we have
ropt — 0. Using this fact, it can be shown that the derivative of Ry in (£I5) with

respect to SNR at SNR = 0 is

. . 1 _ . _ ) _ _
Rp(0) = lim e ope e Tt — o G (L M) (R

where 7o, and dop are the derivatives of rqp and ap, respectively, with respect to

ToptT
SNR, and agpt = ﬁ. Next, we investigate how SNReg opt Scales as SNR vanishes.

Note that as SNR — 0, 1 — 00, popt — 1/2, and hence ¢(SNR) — 1/49*T?B?. Then,

we have

’}/2T2B2

msm{2 + o(SNR?). (F.2)

SNReff,opt =

Therefore, SNReg opt decreases as SNR? as SNR diminishes to zero. Now, we consider
the behavior of rope at low SNRs. If 745 diminishes slower than SNR? (for instance, if
Topt decreases as SNR® where 0 < a < 2), then it can be verified that aqp, — oo as

SNR — 0 from which we can immediately see that RE(O) = 0 due to exponentially
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decreasing term e~“°r*. On the other hand, if ro,; reduces to zero faster than or as
SNR? (e.g., as SNR® where a > 2), e approaches a finite value. However in this
case, we can show that 7p; — 0 and dps (1 — e T7ert) — 0 as SNR — 0, leading again

the conclusion that Rg(0) = 0. O
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Appendix G

Proof of Theorem [11

We define ( = B%' Recall that in the scenario considered in Theorem [I1] B, grows

linearly with B while N is kept fixed. Therefore, we have ( — 0 as B — co. According

to the expression of SNRqg given in the line below (4.26]), we have the following result

similar to (£I2) for pept in this case:

Popt = 77<77 + 1) -7 (Gl)
where
vTB,SNR + TB, — 1 P
= d SNR = . G.2
"= ATB.TB.-2)s\xe NoB (G-2)

We first derive the following asymptotic expansion for the optimal fraction pops

Popt = p:;pt + Popt(0)C + 0(C) (G.3)

where p is the asymptotic value of p,p; attained as ¢ — 0, and pap(0) is the first
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2P2T * P . PT
. (NNo)?2 . o . (1 - 2100pt)]\?]\70 + popt(o) 7\7]\/0
W= == | Popt (0)(1 2p0pt) P
1 + popt'yPT 1 + popt'yPT
N Ny N Ng

1
T * >k
popt(]‘ - popt))

— 2 —
P NN, NN, PT
- 14220 [T 1+ 222 o (G.8)
NN,T ~PT ~vPT NN
derivative of pop evaluated at ¢ = 0. We can easily find that
NN, NN NN
Pt =\~ |1+ =5 | — —5- (G4)
yPT vyPT vyPT
and
_ 2
, 1 ~PT NN NN
opt (0) = —1| 1 + 1+ —= - — . G.5
Pori(0) = o7 NN, <\/ ~PT \/fyPT) (G-5)
Furthermore, SNRf opt defined in the line below (.20) satisfies
SNReH,opt = ()DC + WCQ + O(<2> <G6)

where _
2p21

-
0

~vPT ;

and w is given by (G.8) at the top of this page.

P = 0o ) gz AP L4 VN NN,
vyPT

)2 (G.7)

Now, assume that the Taylor series expansion of 7., with respect to small ¢ is

Topt = r;pt + 7opt (0)¢ + 0(C)

(G.9)

where Topt = lime_,o ropt and 7op(0) is the first derivative with respect to ¢ of rep

evaluated at ¢ = 0. From (£8) and the above asymptotic expansions of pop and

SNRefr opt; We can find agp as ([G.10) in the next page, from which we have as ( — 0
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2% -1
Clopt = SNReff,opt
* r;pt . (r;pt log, 2)?
Topt 10g€2 + {( T + ropt(o)) logeQ + fg} €+ O(C)
a p +w(+0(¢)
r* log, 2 Fopt(0)log, 2 75, log.2 (1  w r* . log, 2)?
_ pt g _'_( pt( ) ge + pt g (___>+( pt g ) >C+0(C)
® © ® T 2¢
(G.10)
that
r* log 2
= ot e (G.11)
2
and that
oot (0)log, 2 73 log, 2 (1 r . log, 2)?
gy (0) = ot 108: 2 o log <— - f) 1 {rop log. 27 (G.12)
© © T 2¢

where At (0) is the first derivative with respect to ¢ of aypt evaluated at ¢ = 0. Note

pa .
also that we have r, = <& according to (G.1I).
€

Note that the derivative with respect to r of the objective function in the maxi-
mization in (£26) is zero at the optimal value 7 = rqp. Combining (G.6) and (G.11))

and letting ¢ — 0 in this derivative expression at r = rq,, we obtain

log, 2 _0Tvaopy .

08 (1 — e T ) — 9T = (G.13)
2
from which we get
log, 2 0T p
=21 1 ) G.14
aopt QT()O Oge ( + loge 2) ( )
_b_

Since % = Rj\g\(’?), the result that ﬁ—g = ﬁ—g - follows from the fact that

3 Rp=0 min

REe(¢)/¢ monotonically decreases with increasing ¢, and hence achieves its maximum
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Re(¢) — Re(0)¢

Re(0) = %1_% 2 (2
1 1 1 2 —0Tropt
_%%22<—ﬁ10ge (]_—P{|'LU| Zaopt} (1_6 ))
1 "
+ g log, (1= P{luf? 2 gy, 11— ) )
I 2e™ Yopt
= lim —
=0 0T (1 — P{|w|? > apept } (1 — =07t ))
% (dom(C)(l — e Orer) — eTeieTTOPWOPt(C)) (G.16)
B 26~ Yopt
0T (1 — P{Jw|* > ajy} (1 — e "T7on))
X (ropt (0)(1 = e~#Tew) — 9T e owr7op (0) ) (G.17)
as ¢ — 0. We now have
Ey . NIJD\TOC . _Je\fq;\lfz

— =lim = .
Nomin  ¢20Rp(C)  log, (1 — P{|w|?> > af, }(1 - e*GT’"opt)>

5
— — _NNo G.15
lOge g RE(O) ( )

where Rg(0) is the derivative of Rp with respect to ¢ at ¢ = 0, § = f\%};, and
9Tnpo¢z;pt
2

§=1—P{lw]* > aj, }(1 —e T2 ). Obviously, (GI5) provides [.27).
Note that the second derivative Rg(0), required in the computation of the wide-

band slope Sy, can be obtained from (G.I6)(GIT) at the top of this page, where
iy = %1:’;2. (G.16) and (G.I7) follow by using L’Hospital’s Rule and applying

Leibniz Integral Rule.
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Meanwhile, substituting (G.13)) and (G.12)) into (G.17) gives us
. Qefa;pt
Re(0) = — .
E( ) 0T (1 . P{|w|2 > aépt} (1 _ e—GTrOpt))

. 1 o
X ag (1 — e~ mopt) ( 2+ ‘ Opt)

T o 2
_ 2<1 - é)a:pt l B g + Soa/:pt
0T¢ T o 2

2(1 - f)oﬁ‘pt 1 ~PT ook
= > O 1 -1 op G.18
oTE¢ T + NNy + 2 ( )

Combining (G.18) and (G.I5), we can prove (£28)) using the wideband slope formula
in (3.12).

U
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Appendix H

Proof for Theorem

We need to consider the wideband slopes for different decoding order assignments.
Due to the complex expressions involved, we here state the derivation for &; for the
case in which the decoding order is (1,2) when 2z < g(21,SNR;), and the decoding
order is (2,1) when zo > g(z1,SNR;). Taking the second derivative of (6.9), we have

3 o191 — (1)

Cl(SNRl) == 51¢% log 2 (Hl)
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where ¢, is provided in (619) and ¢, is given by

Iy o SNR121 —B }
=) U SNR1))ii(SNR1 )d
o /0 ( 1y SNng(SNRl)/)\) p(21, 9(SNR1))§(SNR1)dz1

0g [ SNR; 2 —Ai-l 2
— 25 / 1+ 2
0 1+ SNR1g(SNRq)/A (1 + SNR1g(SNRq1)/A)

X p(21, 9(SNR1))g(SNR1)d21

o SNR1 21 —h1 . ) 5
1 SNR SNR1))%d
+/ < T T SNRig( SNRl)/)\) p(z1,9(SNR1)) (9(SNR1))" dz

SNR; 21 —B1—2 Z%
+ +1) / / ( ) 21, 22)dzodz
Bi(by 1+ SNRy21/A 1 +SNng(SNR1)/)\)4p( 1> 22)dead

2ﬁ1 g(SNRy) SNR; 21 Al 2129
/ / _ SNRaz (21, 20)dzodz)
1 + SNRlzl/)\ (1 + SNng(SNRl)/)\)

—/ (14 SNR121) P'p(21, g(SNR1))G(SNRy)d2

0

+ 20 / (14 SNRy21) "7 121p(21, 9(SNR1))§(SNR1 )dz
0

- /0 (1+ SNR121)?'p(21, g(SNR1)) (§(SNR1))* dz

+ B1(B1 + 1)/0 /(SNR )(1 + SNR121) P17 228p(21, 20)dzadz. (H.2)
g 1

Letting SNR; = 0 and supposing that ¢g(0), ¢(0), and §(0) are finite, we have

. oo rg(0)

¢1(0) = —10;62 (51 (B{=2} — (B{=1})?) + E{=2} + % /O /O ’ legp(zl,ZQ)dZQd21>
(H.3)

Substituting (L.3)) and (6.21)) into (7)), we obtain

_m(E{z%}—(E{zl})>+E{z%}+ I3 89 212021, 20)dzadzy
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Similarly, we can derive

_ 2(E{z})?
2= Ba (E{23} — (E{22})?) + E{23} + 22X [§° [y{0) 2122P(21, 20)d2ad2y (H.5)

If the decoding order is (2,1) when 2z, < g(z1, SNRq), and is (1,2) when 25 > ¢(21, SNRy),

following the steps described above, we can obtain

B 2(E{z1})?
5= BB — E()) FECD + L o (e, a)dade )

2E{2})? )
5o (E{=3} — (B{})?) + E{:3} + 205§ zvzap(er, z)deadn

Combining (H.4) and (HL.H) and eliminating g(0), we can obtain the third condition in
([6.32). It is interesting that combining (H.6) and (H.7) and eliminating g(0), we still
get the same third condition stated in (6.32). This shows us that the slope regions

for different decoding order assignments overlap. O
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Appendix 1

Proof of Theorem 21

Taking the first derivatives of (6.37) and (€.38) and letting ¢ = 0, we obtain

. 1 __01TP 2
C1(0) = 5 log, B, {e oz | (L1)

. 1 _ 03TPy o
CQ(O) = _92—T lOge EZQ {6 No loge 2 } . (12)

Substituting (L) and ([.2)) into (6.36]), we get the results in (6.43) and (G.44).

Next, we consider the superposition coding with fixed decoding. Evaluating the

first derivative of (6.39) and (6.40) at ¢ = 0, we again get

. 1 _ 0Tk
C1(0) =~ 05, Ex, {ermmaizn ] (1.3)
. 1 - 05T Py .
Co(0) =~ 105, Bz, {e N es.2 } (1.4)

which imply the results in ([6.43]) and (6.44)).

We can also prove the results for the variable decoding case similarly as in the

proof of Theorem Consider (6.41]) and (6.42) with the associated decoding order.
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The first derivative of (G.4I]) can be expressed as

1 ¢
QlT ge ¢1 91T¢1 (15)

C1(C) =
where ¢ is

SIS 7@1T1 1+P121C
= AL dzyd
¢1 = 0 5. € pZ(ZlaZQ) 20z,
g

()
Y He
+/ / Mol 1+ Pa(21, 22)dzodz; (1.6)
o Jo

and ¢; is

. o0 ]5 P - T02 P}vﬂg D
= 9<N§> Py 2o () o, i

Pz

-at 10g2<1+1>121c) 0T Plle T Nylog,?
s e T ) T Y e |l

N,

P1z1¢
Mlog <1+70>
P S 2 M D
+/ ( 1() LE I+ =2 Pz(21, 9(P1¢/No))dz
0

P1z1¢
— GT —
0o ro(RE) 1710&(”7@2%) 0uT B
+/ / ¢ %) (D tog, [ 14+ —N
o Jo ¢?

1+ Fazd
0
P1Z1
‘91T Ng log, 2
- s Pzch)(l N Pm( n szQ() pa(21, 22)dzodz1. (L7)



If we define f(() =

91T 10g2(1 + P1Z1<) _ 91T Ng loge 2

15121

No ERIET Pmc, we can show that

logy(1+ Plzlg) Nf%olQ
¢ JEEREET;
. _ . 5
%g%f(C)—Hng% ¢
1 PaiC. 1w (h 2
= 6,7 lim log,(1 + —1>) 4 — _Holog.2 L o
Vel ¢ 2l No ) C1+ 820 (14 Balyiog 2
HlT Plzl
=—1
i F(O + log, 2 < No
which gives us that
. QlT Plzl
1 —
b (C) 21og, 2 ( No
Similarly, we can show that
P1ZIC Plzl
0, T Nolog, 2
lim [ —-log, | 1+ —2¢ — _ 0 O8e _
0 ( ¢ ( L+ P?éf) C O+ B+ R+ 59
_ 91T ]5121 2 91TI511522122
2log. 2 \ Ny Nglog, 2

With (L9) and (LI0) in mind, we

. 0, T
Ez
C—>0 m o= 2log, {

i

and hence

Cl(o) =

can obtain

_ — 2
0,TP;
e Nologe2”! Pz
No

TP P1P22122
e Nologe 72
NO

p(21, 22)dzad2zy

91TP1 21
log, E,, {e Nologe 2 } .
0T

222

(1.9)

(1.10)

(L11)

(1.12)
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Similarly, taking the derivative of ([6.42]) and letting ¢ = 0, we have

1

CQ(O) — (92T

05T Py
log E,, {e No loge2z2} (I.13)

which, after incorporating (6.30]), again gives us the results in (6.43]) and (G.44]). For

the reverse decoding order assignment, following similar steps, we still get the results

in (6.43) and (6.44]). O



224

Appendix J

Proof of Theorem

Similar to Theorem [19, we here present the derivation for S; for the case when the
decoding order is (1,2) when 25 < g(z1,SNR;), and the decoding order is (2,1) when
29 > g(z1,SNRq). The second derivative of (G.41]) is

_ 2@1 _ C(le(bl - Qﬁ)
61T ¢ 0T ¢3

Cl(C) = (J-l)
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where ¢ and ¢, are ([6) and ([7), respectively, and ¢; is given by

. o0 2 -4l 2 P
== <va ) (w) R T

.y /oo PIC i - logg <1+ Plle) E 10g2 1 n ]5121C (91T No llozgl6
0 No ) No° ¢? No o1y —P}Vzolf
p(z1, 9(P1¢/No))dz
B /oo PlC 6——10 2(1+P121€) Hl_T log 1 n P1Z1C 01T Ny lloZg1 2
0 No NO ¢z No ) ¢ 1B
p(z1, 9(P1¢/No))dz
0 oo 91T o 2(1+P121C) (91T P121< (91T ) 1102 5 2
+/ / X s |y Praid
0 g(N;O) ¢? 0 ¢ 1+ 12

Pz Pz 2
(91T P121C (91T No log, 2 HlT N
log, [ 1 0 dzod
C ( CQ ( + NQ C 1+ P12'1C * ClogeQ 1+ P}\?Olc p(Z1’ZQ) #2044

P121¢

2 —91—Tlog (1—}—7 0 )
P ¢ 2 Pyg(P1¢/Ng)¢
+/ < 1C>< 0) ‘ T p(z1, 9(P1(/Np))dz

151le
0T Nog _
00 plc 151 *lTlogg <1+‘+p2g(p1g/1\70 ) 01 PlTZlC
+2/ 9\ |~=¢ log, [ 1+ _—0
0 No ) No C 1+ P29(P]1VC/N0)C
o
P121
‘91T No log, 2 )
- Prg (P 7 5P (21, 9(P1¢/No))d=
¢ (14 ey (14 Bady FuaPg/)

Pyz1¢

2 —91—Tlog (1—}—7 0 )
P ¢ e Pag(P1¢/Ng)C
+/ ( < 1C> No) ‘ A (21, 9(P1¢/No))dz

. Pyz¢

z _ur _No

o g(N%f) L~ log, 1+1+13222€
0 0

2
P P
><< HlTlog 1—1—7%201 hT Nollozglez
, | _ : _
¢ 14+ Bac ] O (14 B2d) (14 Bad y Bad)

2 (6,7 has 0,7 fa
s ( 52 108 (1+ 1+Ji502402<) - 1? (1+ %) J(Vloljg;mc + PMC))
(91T N(f)llozgl ; (Pzzz (1 + P1Z1C + PQZQC) + (P1zl + PQZQ) (1 + PQZQC))
C (1+ PQZQC) (1+ Pzl + PQZQC) )

p(z1, z2)dz2dzy

(1.2)
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By letting ¢ = 0 and recalling (L9)) and (L10), we can show that

B2 S VS E 2P, P, 9(0 e T
. (TE) E, {e N Toge 2 2} o o e Noleee2™ 21 zop(21, 22)d22dzy

1 2 _ TP
OBe Ezl e Nologe2™!

C1(0) = —

(1.3)

Combining ([12) and (I3]) with (I7), we have

0,TP; ° 2 __01TP -
loge e ~ Ny log, 2 EZl e Nologe2

01TP;

Ny log, 2
81:2( 0108,

(J.4)

Following similar steps, we can derive that

L oaTPy 2 L 0aTPy
(loge EZQ {6 Ng loge 2 }) EZ2 {6 Ng loge 2 }

05T P

Ny log, 2
82:2( 0108,

(1.5)

If the decoding order is (2,1) when zy < ¢(z1,SNRy), and is (1,2) when 2z, >

g(z1,SNR;), following the steps described above, we can obtain

0,TP, 2 0, TPy
Nolog, 22 (logeEz1 {e No Tog 2 1}) E, {e NoTog, 2 1}
0
S1=2 ( ) > 0, TP

_01TPy A
P2Ezl {6 No loge 271 2} —|—2P1P2 fO f(O e NologeQZ ZlZ2p(Zl,ZQ)dZQd21

(1.6)

65T P

log. E, 027P 2E _ TPy

Ny log, 2 Ng loge 2
Nolog 27 (o8, - {077 }) B {5
82 —9 ( 0 10g, >

(92T 05T Py P

(J.7)

0. T ) _ 6, TP; _ B :
! P12E21 {e No 10582212’%} + 2P P f(?o ng(O) e No 10g6221212’2p(2’1’ZQ)dZQle

05T ) ) TRy 2 ICYIoN .
P E., {e Ny log, 2 }+2P1P2 fO fg(O e Nologe2™ 2 zop(21, 29)dzadzy

)

x .
P EZQ {e Nologe2 2 2} +2P1P2 fO g(O e Nologe2 2z1z2p(z1,z2)d2’2d2’1
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Also note that the wideband slopes have non-negative values and we have the in-

equalities in (6.55]) and (6.50). O
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Appendix K

Proof of Theorem

We need to compare the upper bound of the slope region in (650) with the upper

bounds of both (E.55]) and (E.56]).

By moving the term with ¢g(0) to the LHS of the equation, we can rewrite (L4))

and (L3) as

co g(0) _ﬂ21
Jo2 Jo e Notore 2™ 2y 2o (21, 29)d2zad 2y

01 Thy 2
EZ {6 N loge 2 2122}

| E _aTh 2E _Th
Nylog. 2> (Oge 21 {e Nolose 2 }> 21 {e Molose 2 } 1 1
_ ( 0 OB ) <_ ) (K.1)

0, T 5 5 _ TP
1 PIPE, e Nokse2™ 2 2,

and

09T Py
00 00 ~ Nploz. 272
Jo~ Jyloy € VorEe2 z120p (21, 20)dzod 2y

_ 6TPy .
E, {e No loge 2 2’122}

05T Py 05T Py

2
~ N, Tog, 272 ~ Np log 2 1
No 1 9 2 (lggeEzg {6 No loge }) EZ1 {e 0 loge } 1 1

0T _— ~opTh N
2 PPE, e M2z 2,

S, S
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Denote

co (g(0) _arh .,
Jo Jo e Molmez 21 29p(21, 22)d2zed 2y

M= _ TP
EZ {6 Ng loge 2 12122}

69T Py
o0 00 - 22
o Sy e o2 z20p (21, 22)dzod 2

2 __09TPy
EZ {e Ng loge 2 22/122}

We know that 0 < <1 and 0 < 7, <1 vary with different g(0). Substitute (K.IJ)

and (K.2)) into the third condition of (6.50), we can obtain

_oaTh 1\ 2 _aTh
<N010g€2>2 (logeEzl {6 Ny loge 2 }) Ez1 {6 Ny loge 2 }<1 ] )

0T e S S
1 P1P2Ez e N010ge2212’12’2 ! 1

YU _ TRy
i <N010g62>2 (logeEz2 {6 Ny log, 2 }) Ez1 {6 Ny loge 2 }<1 ) )

0T TS 5
2 PIPE, e Mooec2™z 2 2 2

=71+ Y2 (K.5)

Following similar steps, we can get from (L6) and (L7)

_arh 2 _arh
<N010g62>2 <10geEz1 {6 No loge 2 }) Ezl {6 No log 2 }<1 1 )

6,7 Y (T S
1 P1P2Ez e Nologe2 12122

S S
*ﬂz 2 7ﬂz
+ (NO 10g52>2 <1OgeEzz {6 Ng loge 2 2}) EZl {e N log, 2 1} < . . )

0,T _ 0T Py e Qup
2 P1P2Ez e N01°g8222212’2

S, S

=2—m =" (K6)

Considering (K.5l) and (K.6), we know that either 71 4+ 5 or 2 — 73 — 72 must be

less than 1, which implies that variable decoding order achieves points outside the
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region attained with fixed decoding order, proving the theorem. O
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Appendix L

Proof of Theorem

Case I 0, > 0,:

For this case, we can show that the upper bound in (Z2I]) can be attained. First

assume that
1
_ log Ezg {6792T310g2(1+SNR222)} S _0_1 log Ezl {6791T310g2(1+SNR1Z1)} . (L1>

Hence, the second term on the right-hand side of ((Z.21]) is the minimum one. Now,
set § = 6, in (Z20). Assume that § > 0 = 6, where 6 is the solution to (ZI9). The
validity of this assumption will be shown later below. Under these assumptions, we

see from ((C.20) that
R = h(é, 92> - IOgEzg {6792TBIO.§2(1+SNR222)} for all é > é — 92. (LQ)

Now, in order to show that this rate can be supported, we have to prove that the
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equation in ((ZI9) is also satisfied for this choice of R, i.e., we should have

_ 1 —02TBlogy(1+SNRoz2) U __ (3} _ 1 —0TBlogy(1+SNR 21)
R——0—2logE22{e 2 2 222 }—g((‘))——glogﬂﬂz1 {e 2 121 }
(L.3)
for some 0 satisfying 6 > 6, and 0 > 0 = 6,. From (L) and (L.2), we have
R S _i 10g E21 {e—é’lTBlogQ(l—l—SNRlzl)} ) (L4)
01

Since —3 log ., {e*GTB log?(HSNRlzl)} is a decreasing function of 6, ([.4]) implies that

there exists a 6 > ¢, such that
1 5 1
R == logR,, {e MMHonteSNa} < — o log B, {emnTPlm3SNIba} - (L5)

showing that ([.3)) holds. Note that in Case I, the original assumption is that 6; > 6,.
Then, we have > 0, > 0 = 6,. Hence, in case I, we satisfy 6 > = 05, verifying the
earlier assumption. In summary, we have shown that (Z.19) and ((Z.20) simultaneously

hold for 6 > 6, and 0= 0, when we have

1 1
R = mi {__1 E, —61TBlogy(1+SNR1 21) ——logE, —02T Blogy (14+SNR222) }
min 0, og 1{6 } 0 og 2{6 }
(L.6)
2

Hence, the upper bound in (.2]) can be achieved and this is the effective capacity.

Above, we have assumed that the second term in (T.2]]) is the minimum one. On
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the other hand, if we have

——logE., {6—61TBlog2(1+SNR121)} < —eilOgEZQ {6—02TB10g2(1+SNR222)}’ (L.8)
2

similar arguments follow. In particular, we can choose § = 6; in this case, and have

from (7.19)

1
R = g(61) = —5-1og E., {emhTBloea(1¥5NRaz) | (L.9)

Through a similar approach as above, we can show that (Z.20) can be satisfied with
f > 6, for this choice of R and establish that the upper bound in (72I) is again

attained.

Case II: 0, < 65 and 6, < 0:

Suppose that the effective capacity is decided by the S —R link and 6 = 6; returns
the highest R. Hence, we set § = 6, in (Z19) and have

R=——1logE_, {eiGlTBlogQ(HSNRlzl)} ) (L.10)

Clearly, this rate can be supported by the S — R link while the QoS constraint at the
source is satisfied. In order to prove that this rate is viable for the two-hop link in
the presence of the QoS constraint at the relay, we have to show that the equality
in (C20)) is satisfied as well for some 0 > 5. Note that the assumption in Case II is

0 = 0, < 5. Then, having 0 >, implies that 0>0= f,. Consequently, in order to
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satisfy ((C20), we should have

R=—— (lOg Ezg {e—éTBlog2(1+SNR2zg)} + 10g E21 {e(é—ﬁl)TBlogQ(l-l—SNRlzl)}) (L]_l)

where we have used the assumption that § = ;. Our goal is to see whether (L.10)
and (C.II) for some A > 6, can be satisfied simultaneously. In this quest, we first

show several properties of the function on the right-hand side of (L.11)).

Lemma 2 Consider the function

f((‘)) _ _i (logE {e—GTBIOg2(1+SNR222)} +logE {6(6’—6’1)TB10g2(1+SNR121)}) for 6 > 0.
0, -

(L.12)

This function has the following properties:
a) f(0) is a continuous function of 6.
b) f(O) — _% IOgE {e—GlTBlogQ(l-i-SNRlzl)}.

¢) The first derivative of f(0) with respect to 0 at 6 = 0 is positive, i.e., f(0) > 0.
Hence, f(0) is initially an increasing function in the vicinity of the origin as 0

increases.
d) f(0) is a concave function of 6.

e) If TBlogy(1 + SNR121 max) > T'Blogy(1 + SNR222 1min) Where 21 max 5 the essential
supremum of the random variable z; and zomin s the essential infimum of zo, then

there exists a 6* > 0 such that f(6*) = 0.

Proof:
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a) The continuity can be shown by noting the continuity of the logarithm and expo-
nential functions and employing the Dominated Convergence Theorem and Mono-
tone Convergence Theorem for the justification of the interchange of the limit and
expectations. For the first expectation in ([L12), we can apply the Dominated
Convergence Theorem by observing that we have |e~07Blos2(1+8NR222)| < 1 for a]]
6 > 0 and the bounding function is integrable, i.e., E{1} = 1 < oo. For the
second expectation, we immediately note that e(@—00)TBle:(1+SNRiz1) i nonnega-
tive and increases with increasing 6, and consequently we can use the Monotone

Convergence Theorem to justify the interchange of limit and expectation.
b) This property can be readily seen by evaluating the function at 6 = 0.

¢) The first derivative of f with respect to 6 can be evaluated as

1 /-E., {e’eTB logy(1+5NR222) 7 B log,(1 + SNRgzg)}
E., {efeTB 10g2(1+SNR2Z2)}

E21 {6(9791)TB log2(1+SNR1z1)TB 10g2(1 4 SNR, 21)}
E., {e@-0TB108,(1+SNRian) |

). (L.13)

Then, f(0) can be written as

- TB E., {e #17Blos(1+5NR1z1) 100 (1 4+ SNR;2)}
f(0) = 9—1 (EZQ{logz(l + SNRg22) } — EZI{e—HlTBlog2(1+SNR1Z1)} )

(L.14)

Let us define

E. {e 1TBlos2(1+5NR1z1) 60 (1 4+ SNR;2)}

a(01) = E.,{logy(1 + SNRp2,) } — E., {e-0:17Blog;(1+SNR1=1)}

(L.15)
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We can see that «(0) = E.,{log,(1 + SNRg22)} — E,, {logy(1 + SNRy21)} > 0 (due
to our original assumption to ensure stability). The first derivative of a(f;) with

respect to 0, is

1
(Ezl {e—é’lTB log2(1+SNR121)}>2

a(6y) = TB
% (EZl{eelTB log,(1+SNR1 21) (10g2(1 + SNRlzl))Q}Ezl{e’elTB log2(1+SNR1z1)}

- (Ezl{e’elTB log; (1-+5NR121) log,(1 + SNRlzl)}>2> (L.16)

By Cauchy-Schwarz inequality, we know that E{ X2}E{Y?} > (E{XY})®. Then,

denoting

X = \/6791TBlog2(1+SNR1z1) (10g2(1+SNR121))2 and YV = \/efelTBlogQ(lJrSNRlzl)’

we easily see that &(f;) > 0 for all ;. Thus, «(6;) is an increasing function and

we have a(;) > a(0) > 0. Hence, f(0) > 0.
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d) The second derivative of f with respect to 6 can be expressed as

1 1
fo) = - :
1 (EZ2 {e—GTB log2(1+SNR2z2)})
> <E22 {e—GTB logs(1+SNR222) (TB 10g2(1 + SNRQZQ))Q} EZQ {e—GTB 1og2(1+SNR2z2)}

- (E” {e_GTB loga(14+5NRaz2) p g log, (1 + SNR222)})2>
1
(EZI {3(9791)TB log2(1+SNR1Z1)})2

_|_

X <Ezl {e("“gl)TBl"gﬂ”SNR”l) (TBlog,(1 + SNRlzl))2}

x E., {6(6—61)TB 10g2(1+SNR121)}
2
— (B, {el-TBIn0SNRDT B log, (1 1 5Ny 21) ) )) (L.17)

(L.18)

where Cauchy-Schwarz inequality is used again. With this characterization, we

establish that f is a concave function of 6.

e) We first express f(6) in the following form:

f(e) _ 1 (lOgE , {e—GTBlogQ(lJrSNRzzz)} + lOgE ) {6(9791)TBlog2(1+SNR121)})
0, ? ’

(L.19)

_ 0 1 —0T Blog, (1+SNR222)
_E(—alogEzg{e }

0, 1

_ _ (9791)T310g2(1+SNR1Z1)
<1 9> =g, 08 E=, {e })
9

o (Ec(6) = Es(6 - 02)

(L.20)
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where

1
Ec(6) = —5 log B, {7 losa(t 5N Taz) (L.21)

is the virtual effective capacity with respect to 6, and

0, 1
_ (6—61)TBlogy(1+SNR 21)
EB(Q 91) = (]_ 9 ) 9 91 logE21 {6 1 2 121 }

is the virtual effective bandwidth with respect to #—60;. Similar to the discussion in
[8], we know that E¢(0) is decreasing in 6. Moreover, when 6 = 0, we have E¢(0) =
E., {T'Blog,(1 + SNRy23)}, and as 6 — oo, Ec(f) approaches the delay limited
capacity [19], i.e., Ec(8) — TBlogy(1 4+ SNRy2o min) Where 25 i, is the essential
infimum of the random variable z,. Furthermore, Ep(6 — ;) is an increasing
function of 6. For 0 < 6,, E(6 — ;) has a negative value. At 6 = 60;, we have
Eg(0y —6,) = Eg(0) = 0. As 8 — oo, Eg(f — 6,) approaches the highest rate
of the S — R link, i.e., Eg(6 — 61) — T Blogy(1 + SNR1 21 max) Where 2y may is the
essential supremum of the random variable z;. Therefore, as long as T'Blog,(1 +
SNR1 21 max) > T'Blogy (1 + SNR229 min), the decreasing curve Ex(6) and increasing
curve Ep(6 — 0;) will meet at some point § = * > 0 at which we have f(6*) =
% (Ec(0%) — Ep(0" —61)) = 0.

A numerical result provides a visualization of the above discussion. In Fig. [.1],
we plot the virtual effective capacity and virtual effective bandwidth normalized
by T'B as a function of € in the Rayleigh fading channel. We assume that 7" = 2
ms, B = 10° Hz, 6; = 0.01, SNR; = 0 dB, and SNR, = 10 dB. Note that we have

21 max = 00 and 22 min = 0 in the Rayleigh fading model. O

Recall that we are seeking to establish whether (L.10) and (L.11)) can simultane-
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Figure L.1: The virtual effective capacity and virtual effective bandwidth as a function
of 6 in Rayleigh fading channels with full-duplex relay. E{z;} = E{z} = 1.

ously be satisfied for some 6 > 6,. With the definition of the function f(-) whose
properties are delineated in Lemma [ the equations in ([L.10) and (L.II]) can be

combined to write
f(é) — —log E21 {e—elTB log2(1+SNR121)} . (L22)

Hence, our goal is to see whether the equation in ([.22)) can be satisfied for some
0 > 0,. In Lemma ] we have noted that the function f(6) is equal to the right-hand
side of ([L.22)) at & = 0, and then it increases. At some point, f(#) approaches zero.
Since it is a concave function, we immediately see that f(#) is a function that initially
increases, hits a peak value, and then starts decreasing. This leads us to conclude

that f(6) becomes equal to the right-hand side of ([L.22]) once again at some unique
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6 > 0. Let us denote this unique point as . Hence,
— 1
f(0) = — - log E., {e~ TPl SRz (L.23)

If 0 > 0,, then ([L22) is satisfied for § = 6 > 6,. Therefore, (10) and (L11) are

satisfied simultaneously. Hence, the arrival rate
R - lOgE21 {6791T310g2(1+SNR121)} (L24)

can be supported by the two-hop link. Since this rate is an upper bound on the arrival
rates as proved in Proposition 27, this arrival rate is the effective capacity, proving
(C27) in Theorem 28

It is important to note that the above result implicitly assumes that 7'B log,(1 +
SNR1 21 max) > T Blogy(1 + SNRo2g min) Which is a condition in part e) of Lemma 2]
Note that if this condition does not hold, then it means that the maximum service
rate from the source is equal to or lower than the minimum service rate from the
relay. Hence, the relay can immediately support any arrival rate without requiring
any buffering. The bottleneck is the S — R link and arrival rates are limited by the

effective capacity of this link. Therefore, we again have effective capacity of the two-

hop link given by ((Z.27)).

Case IIT: Assume 6; < 05 and 6, > 6:

Above, we have discussed the case in which 8 > 6,. If, on the other hand, 6 < 65,
then (L22) and consequently (1) cannot be satisfied for some § > 6,. Hence,

the arrival rate in ([.24]) cannot be supported by the two-hop link, and we need to
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consider possibly smaller rates, i.e.,
1 ~
R g(e) 5 10g E21 {e—GTB log2(1+SNR1z1)} (I 25)

for some 6 > 6. The rate given above is supported by the two-hop link if the equation

g(0) = h(0,0) (L.26)

is satisfied for some > 05 and 0 > #1. Recall that the function A is defined in ([.20)

as

_% 10g Ezg {efGTBlogQ(lJrSNRQZQ)} 0<6< é
n.0) = 5| logEs, {e TP rmltSNRaz) | e (L.27)
+logE,, {0-0TPom04SNR 1)) ) N

A

We first note that for fixed 6, h(0,0) is a decreasing function of  because as 0
increases, the QoS constraints at the relay become more stringent and consequently
lower rates can be supported by the relay. Therefore, in order to identify the highest
arrival rates R, we consider the smallest allowed value of 6 and set 6 = 65. We now

consider the equation
9(0) = h(0,0,) (L.28)

and seek whether this equation is satisfied for some 0 > 0. At 0 = 01, the left-hand

side of (L.28) becomes

1
9(01) _ _0_1 logE., {6—61T310g2(1+SNR121)} (L29)
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while the right-hand side is

1
h(01, 02) _ _0_ (log Ezg {6—62T310g2(1+SNR222)} + log E21 {e(Gg—Gl)TBlog2(1+SNR121)})
1

(L.30)

= [(62) (L.31)

where f(-) is the function defined in Lemma 2l Note that our assumption in this case

is 0 > 6. Recalling (L.23), we know that
f(0) = — - 1ogE., {e~"TPlosiSNRi=0L — g(g)). (L.32)

Then, from the properties of f and the assumption that 6, > 6, we immediately see

that
1
F(6s) = h(6:,0,) < - log ., {6—61TBlog2(1+SNR121)} = g(6). (L.33)

Therefore, at § = 6y, the left-hand side of (L28) is larger than the value at the
right-hand side.

Now, let us consider the values at § = 6,. The left-hand and right-hand sides of

(L.28) become, respectively,

1
9(02) 92 10g E21 {6—62T310g2(1+SNR1z1)} (L34)
and

1
W03, 02) = — - log B, {¢~ TP om1t5N ez (L.35)
2
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If we have

1
g(0y) = % logE., {e—GQTBlogQ(H—SNRlZl)}

1

S h(02a92) - _0_
2

log K., {e 0270 lor(1+5NRaz) L (L.36)

then the left-hand side of ([.28) is smaller that the value of the right-hand side at 6,.
Therefore, being continuous functions, ¢(f) and h(6,6;) meet at some 6; < § < 6.
Denote the smallest value of @ for which we have g(f) = h(6,6,) as 6*. Then, the

highest rate that can be supported by the two-hop link is

1 0%
R = g(e*) _ _; lOg EZl {6—6 TBlog2(1+SNR121)} (L37)

Above result is obtained under the assumption that g(6) < h(6s,6s). Let us now
consider the other possibility in which g(62) > h(fs,6;). For this case, we first have

the following lemma.

Lemma 3 Assume that g(6;) > h(6,0). Then, h(0,6) is an increasing function of
0 for 6 < 0,.

Proof: For 6 < 6, we can express

h(e’ 92> - _ (lOg EZ2 {6792T310g2(1+SNR2Z2)} + lOg E21 {e(Ggfé)TBlogQ(lJrSNRlzﬂ}) )

Y

(L.38)
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The first derivative of h(f,6) with respect to 6 is

h(ea 02) = ﬁ

~ 1 ~E21 {e(egfé)TBlog2(1+SNR121)TB 10g2(1 + SNRlZl)}
0 e(02—0)T Blog, (14+SNR, 1)

—f—logEzl{ (62— )TB10g2(1+SNR121)}+1OgEz2 {e—GgTBlogQ(l—l—SNRgm)}). (L.39)

Let us define

Ezl { (62— )TB 10g2(1+SNR121 TB 10g2(1 + SNRlZl)}

0)=10
6( ) Ezl {6(9279)TB log2(1+SNR1zl)}

+ log E21 {e(egfé)TB 10g2(1+SNR1Z1)} _'_ log Ezg {efegTB 10g2(1+SNR222)} ) (L40)

We can show that 3() is nonnegative.

The first derivative of 5(f) with respect to 6 is

. 0
IB(G) {6(92 )TB log2(1+SNR1z1)}>2

< Eﬂ (92 GTBIOgQ(”SNRlZl)(TBlog2(1+SNR1z1))2}Ezl{ (62— )TBlog2(1+SNR1z1)}

2
+ (E21 { —0)TBlogy(1+SNR1z1)p logy (1 + SNRlzl)}) ) (L.41)

<0 (L.42)

where Cauchy-Schwarz inequality is used for (L42). Therefore, 5(f) is a decreasing
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function of é, and hence for 6 < 5 we have

B(0) > B(62) = 05, {T Blog,(1+ SNRyz1)} + log B, {27 Blosallt5NRaz2) |
(L.43)

1
— 0, (—TBEZl {10g2(1 + SNRlzl)} . 9_ log E., {692T310g2(1+SNR222)})
2

(L.44)
Note that our assumption is that
1 — O z
9(92> = _0_ logEz1 {6 62151 g2(1+SNR1 1)}
2
1
> h(0y,05) = ~ logE., {e’eQTBlOg?(HSNR?Z?)}. (L.45)
2

Since TBE., {logy(1 + SNRy21)} > —5-logE., {e‘eQTBlOg?(HSNRlZl)}, the above in-

equality implies that

1
TBE., {logy(1 + $NRiz1)} > — - log B, {e” 7P los: (15N} (L.46)
2

which further implies that $(f2) > 0. Finally, we immediately see that

~ 1 1
h(0,6y) = ﬁﬁ(e) > ﬁﬁ(eg) >0 (L.47)
proving that h(#,6,) is an increasing function of @ for 6 < 6,. O

In effect, we have shown that if h(6s,6;) < g(f2), then h(0,6,) < g(6,) for all

6 < 0,. Note that since g(f) is a decreasing function, g(6s) < g() for all < 6.
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Combining these, we observe that
h(0,02) < g(02) < g(f) V0 < 6. (L.48)

Therefore, the equality g(é) = h(é, ) cannot be satisfied for any 6; < 0 < 6,. Hence,

we should have @ > 6,. Note that for > 6y, h(f, 6;), which can be expressed as
h(B,02) = =~ log ., {e 2" Pos(1t5NRe) (L.49)
is a constant for given #,. On the other hand,
g(f) = _% log E., {6_5T310g2(1+SNR121>} (L.50)

is a decreasing function with minimum value given by

lim ¢(0) = T Blog,(1 + SNR121 min) (L.51)

6—00

where 2y iy is the essential infimum of z;. Hence, if
TBlogy(1 + SNRy 21 min) < (0, 602) = —— log E.,, {e~#TPlesa(t8NRez)} (1, 59)

then the equation g(f) = h(f,6,) can be satisfied at some § = 6* > 6, and the

maximum arrival rate is given by

~ 1 0*
R=g(0") = —5 logE., (e TBlen( SRRz L (L.53)
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If, on the other hand,
~ 1
T Blog,(1 4 SNRy 21 min) > h(0,60,) = — logE., {e—HQTBlogQ(l-i-SNRQZQ)} , (L.54)
2

the bottleneck is the R — D link, and the highest arrival rate that can be supported

by the two-hop link is
R =—_-logE., {e TP lomlt5NR=) ] (L.55)

Note that this arrival rate is smaller than the smallest possible transmission rate of

the source and hence no buffering is needed at the source in this extreme case. [
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Appendix M

Proof of Theorem

We first identify the following upper bound on the rates that can be supported with

half-duplex relaying in the two-hop link:

1
R < sup min{ 7 logE., {6—791T310g2(1+SNR1z1)} :

T€[0,7m0) 1
1 log E.., {67(177)92@31og2(1+SNRzzz)} } (M.1)
0
) 012
th

where 7 = min{r, 7"} and 7* is the solution to

_ L osE,, {67791TB10g2(1+SNR121)} _ —QilogEZQ {67(177)92TBlog2(1+SNRQZQ)} (M.3)
2

and 79, as defined in ([C45), is the upper bound on the time-sharing parameter 7.
Above, (M.I]) can be easily obtained by using a similar approach as in the proof of
Proposition 271 (M.2)) follows from the fact that the first term inside the minimization
in (M.I)) is an increasing function of 7 while the second term is a decreasing function.

Hence, the upper bound in (M.1J) is maximized at 7* at which the two terms inside the
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minimization are equal to each other. If 7% < 7y, the optimal value of 7 is selected as
7*. If, on the other hand, 7" exceeds the upper bound, i.e., 7* > 7y, then the optimal
value is 73.

Case 16, > 0,:

In this case in which the QoS constraint at the source is more stringent, we can
show that the upper bound in (M.2)) can be achieved or be approached arbitrarily
closely. Let us set 0 =0, 0 = 0y, and choose the time-sharing parameter as 7 = 7 =

min{7y, 7*}. Now, the equation in (Z.43) becomes
1 .
R=g(0)) = - logE., {em70TBlon (45N iz L (M.4)
1
Since § = 6, < § = 6, by our assumption in Case I, (Z44) reduces to

1 logE,, {e—(lf%)GQTB10g2(1+SNR222)}. (M.5)

R — h(91,92) - —9—
2

Now, first assume that 7 = 7*. As seen in (M.3)), we have, by the definition of 7,
that the right-hand sides of (M.4]) and (M.5)) are equal and therefore these equations
are simultaneously satisfied.

Next, consider the other possibility in which 7 = min{7, 7"} = 75 which implies

that 79 < 7*. Note again that 7* is the value of 7 at which the functions

_i log E21 {e—TelTBlogQ(l-i-SNRlzl)} (M6)
and

- 10g Ezg {e—(l—T)GgTB log2(1+SNR222)} (M?)
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are equal. Note that the function in (ML.G]) increases with increasing 7 while the

function in (M.7) decreases. They meet at 7*. Therefore, at 7 = 75 < 7, we have

1 —1001T Blogy(14+SNR1 21) 1 —(1—70)02T Blogy (1+SNR222)
_Q_IIOgEa{e 001 2 11}§_0_210gEZ2{€ 0)02 2 22}.

(M.8)

Hence, the rate
R 1 log E.. {efToelTB 10g2(1+SNR121)} (M.9)

can be supported. More specifically, the equations in (743) and (7.44]) can simulta-
neously be satisfied by setting § = 61, 7 = 79, and also by choosing 6 > 6, so that the
right-hand side of (7.44]) becomes smaller than —é logE,, {e_(l_m)@?TB 10%2(1+SNR222)}
and matches —5-logE., {e‘TOngBlo&(HSNRlZl)}.

One subtlety in the above argument is the following. Note that we have the strict
inequality 7 < 79. Hence, we cannot actually set 7 = 75 but we can select a value of
7 that is arbitrarily close to 75. Therefore, since the function in (M.6]) increases with
increasing 7, we can approach the maximum rate —% logE., {e”oelTB IOgQ(HSNRlzl)}
arbitrarily closely. Because the effective capacity is defined as the supremum of
rates (see e.g., (CI4), R = —% logE,, {e”oelTB logZ(HSNRlzl)} is indeed the effective
capacity.

Case II 6, < 05:

We now consider the scenario in which the relay node is subject to a more stringent
QoS constraint. In this case, the approach behind the proof is identical to the one
employed in Case I. Again, we set § = 6; and 0 = 6,. Because, otherwise if we have

6 > 6, and /or 6 > 0>, we impose more strict QoS constraints than necessary and

hence end up supporting only lower arrival rates. Now, for fixed 7, the equations in



251
(C43)) and (C.44) become

1
R— 9(01) _ _0_ 10g E21 {6—761T310g2(1+SNR1z1)} (MlO)
1
and

1
R= h(el’ 02) _ _0_ <10g Ezg {e—(l—T)GgTBlog2(1+SNR222)}
1

+log E,, {er®-0TBlosa(1+5N =) | ) , (M.11)

respectively. Note that (MIT) follows from (Z44) by noting that § = 6, > 6; = 0 in
this case. Similarly as before, the right-hand side of (M.I0) is an increasing function
of 7 while the right-hand side of (M.11)) is a decreasing function. Therefore, the
equations in (M.I0) and (M.II]) can simultaneously be satisfied by choosing 7 = 7/

where 7’ is solution to

1 { o TNTB log2(1+SNR1z1)}
1
- (lOg Ezg {67(177)92TB10g2(1+SNR222)} + 10g E21 {67’(92791)TB10g2(1+SNR1z1)}) .
(M.12)

Choosing values other than 6 = 6, 6 = 0y, and 7 = 7’ will lead to smaller arrival

rates. Hence, the effective capacity is given by

1 /
Rg(6y,0) = —7 logE., {e’T elTBlogQ(”SNRlzl)} ) (M.13)
1

Above discussion implicitly assumes that 7/ < 75. If 7/ exceeds the threshold 79,

then the optimal value of the time-sharing parameter is set to 7 = 7y. Using similar
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ideas as in Case I, we can show that the effective capacity in this case is

1
Rp(61,0:) = - log E., {emmonTBloa0+SNRiz) ] (M.14)
1
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Appendix N

Exponential Decay of Pr(z"" ¢ Sy,

with nm

Assume that the codewords ™™ = (x1, T3, . . ., Tpy, ) are generated randomly with each
component independent and identically distributed according to x; ~ CN(0,& — 0)

for some arbitrarily small § > 0. Now, we have

Pr(z"™ ¢ Spm) = Pr <% g |z |? > 5) (N.1)
= Pr (% |z * > nmé') (N.2)

v (nm,nm%)
=1- (nm — 1;! : (N-3)

The expression in (N.3)) is obtained by noting that >} |x;|? is a central chi-square
random variable with 2nm degrees of freedom and E{|z;|*} = £ — 6 for all 4, and
observing that the probability in (N.2]) is the complementary cumulative distribution
function of this chi-square random variable. In (N.3]), v(-,) is the lower incomplete

Gamma function defined as
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v s—1 _-—t
y(s,y):/o t* e " dt. (N.4)

For positive integer nm, the lower incomplete Gamma function has the following

equivalent expression [75 Section 8.352]:

(. y) = (nm — 1)1 (1 e ngl %) (N.5)

Making use of this expression, we can write

nm—1 _4 i
nm —anm a (nm)
i=1 :
nm—1 i
S e—anmanmfl Z (nT'n) (N7>
=1
—anm ,nm—1 - (nm)l
<e a 3 - (N.8)
i1 1.
_ e—anmanm—lenm (Ng)
— e_(a—l—IOge a)nm—log, a (NlO)

where we have defined a = % > 1. Above, the upper bound in (N.7)) is obtained by
noting that for a > 1, we have a’ < a™ ! for all i = 1,...,nm — 1. (.§) follows by
increasing the upper limit of the summation to infinity. (N.9) follows from the fact
that the sum expression in (N.8)) is the power series of the exponential function and
is equal to ™. (N.10) is obtained by expressing a™”~! = ("1 and combining
the exponential functions. Finally, noting the fact that a — 1 —log,a > 0 for a > 1,
we immediately see from the upper bound in (N.I0) that Pr(z™™ ¢ S,,,) decreases

exponentially fast with increasing nm. U
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Appendix O

Proof of Theorem

We first prove the following proposition whose proof uses some techniques also em-

ployed in [76].

Proposition 4 The function

£(e) = (1 — e~tom. (0.1)
is strictly convex in e.
Proof: Denote
—OnmR. = aQ '(e) +b (0.2)
where we, from (8I2), define
a=10 - ZNSNRz log,e and b= —HnilogQ(l + SNRz;). (0.3)

1+ SNRz

=1 =1
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Note that a > 0 since, by our assumption, SNR > 0 and ¢ > 0 and also we also
consider the interesting case in which at least one fading coefficient is strictly greater

than zero'. Then, we can rewrite (O.1)) as
fle) = (1—e)e"@ (e, (0.4)
The first and second derivative of f(e) with respect to € are

£0) = (aQ (1 - 9 — 1) e 05)
fle) = (a(l —9(079)" =207 () + (1 - E)Ql(e)) @O (0.6)
where Q' (¢) and Q! (¢) denote the first and second derivatives of Q' (¢) with respect
to e. Note that for an invertible and differentiable function g, we have g(g~!(z)) = z.

Taking the derivative of both sides, we have

glg7 @)y (@) =1= g7 (@) = —— (0.7)
where ¢(g~1(x)) denotes the first derivative of g evaluated at ¢g~*(z), and ¢~!(z) is
the derivative of g~! with respect to x. Noting that

22

© 1 t2 . 1
Q(z) :/m \/%e’Tdt and Q(z) = —\/—Q_We’T, (0.8)
we can derive the following
O (e) = —v/2me =2 (0.9)

f 2, = 0 for all [, then R, = 0 and consequently f(e) = (1 —¢) is a linear function of €. Hence,
the strict convexity will not be affected by this linear behavior when the expectation is taken over
all possible values of z as will also be more explicitly discussed at the end of Appendix
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Note that Q~'(¢) < 0 for 0 < € < 1. Differentiating Q' (e) with respect to €, we have

O~ (e) = 27Q Y ()el@ 1), (0.10)

Next, we consider the following two cases:

1) e < 1: We have @ !(e) > 0 for this case and hence @~ '(¢) > 0. Together with
the fact that Q~!(e) < 0, we can immediately see that f(€) >0 for e < 1.

2) € > 1: We have Q7 '(e) < 0 for this case. Substituting (O.9) and (Q.10)

into (O.6) and denoting z = Q7 '(¢), the expression inside the parentheses on the
right-hand side of (O.6)) can be written as

a1 - ) (Q70) =207 () + (1 - 907 (¢) (0.11)
— a(1 — )2 @O L 9\ /are S L (1 - 27Q (@O (0.12)
— a(1— Q())2meT + 2V2meT + (1 — Q(x))2mze™ (0.13)
. < (%(1 ~ Q)+ a)eT + 2\/%) (0.14)
> ¢ <27r(1 —Qx))zeT + 2@) (0.15)

2?2 1 _z2 22
>e (27‘(‘m6 re? + 2@) (0.16)
= % (—V21 + 2V/27) = €T V21 > 0 (0.17)

where (O.15)) follows from the facts that @ > 0 and hence x + a > z. (O.I6) is

obtained from the following upper bound

1 _a?
1 -Qx) =Q(—x) < me 7 for <0 (0.18)
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and the facts that z = Q'(¢) < 0 for this case and as a result z(1 — Q(z)) can be

2
2

lower bounded by xme . Therefore, f(e) > 0 for € > :.

Also note that € =  means Q' (e) = 0, so we have

a(l= (Q19) =207 () + (1 - 9Q7(0) (0.19)
— a(1 — )2 @O L 0\ are S L (1 - 27Q (@O (0.20)
= ar +2v21 >0 (0.21)

and as a result f(e) > 0.
From the above discussion, we can find that f(e) > 0 for all € € [0,1]. f(e) is
strictly convex in e. O
Now, let ¢(€) = e + (1 — e)e "™Fie = e + f(e). We have i(e) = f(e) > 0. Hence,
¥(€) is also strictly convex. Moreover, since the nonnegative weighted sum of strictly
convex functions is strictly convex [53] and the addition of a constant does not alter

the strict convexity (note that in the case in which z; = 0 for all [, we have R, =0

and 1(e) = 1), we can conclude that U(e) = E{t(€)} is strictly convex in e. O
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Appendix P

Proof of Theorem 31

We first write the the effective rate expression

1

Re(0) = - Onm

log, E, {em +(1— em)e*G"levEM} (P.1)

where the subscript m in €,, is used to explicitly indicate the dependence of the
decoding error probability on m. Recall that we assume ¢, > €, > 0 for all m. Under

this assumption, we first show the boundedness of the function inside the expectation

in (PI)).

Lemma 4 Assume that €, > €, > 0 for all m. Then, there exists an integer M such

that for all m > M, we have
€0 < €m + (1 — €)™ I Bem < 1, (P.2)

Proof: The lower bound is immediate as ¢, < €, < 1 and (1 — em)e*G”MRlvém >0,
and actually holds for all m. Additionally, it is easy to see that the upper bound in
(P.2) holds when R, ., > 0. Being a lower bound, the nonnegativity of R;,, in (812
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is not guaranteed for any given ¢,,. Note that for arbitrarily small €,,, Q" '(¢,,) is
arbitrarily large, which can lead to negative values for R, ., . However, we show below
that when ¢,, is lower bounded by ¢, > 0, R;,, is nonnegative for sufficiently large

values of m. We first establish the following lower bound:

1 & logs e ™ 2SNRz 1
R.. =—Y log,(1+ SNRz) — . P.3
I N e S e G Y
1 & log; e 2SNRz 1
> — Y log, (1 + SNRz;) — o P4
> -3 logg(1 + sk -\ PECS A0 () (P.4)
1 & 2logs e
> — > logy(1+ SNRz) — - Zloge (14 SNRz)Q ' (e,) (P.5)
m i nm? =

=1

= J%ﬁ:logZ(l—i—SNRzl) (\J ! z:log2 1+ SNRz;) — 210g2 —=2—Q (e ))
=1

(P.6)

where (P.A4) is due to the observation that Q@ '(e,) > Q !(¢,) for €, > ¢€,, and (P.5)
follows from the fact that log,(1+z) > l-i-ia: for all x > 0. By the law of large numbers,
we know that L 37" logy (1 +SNRz;) — E{log, (14 SNRz)} as m — oo. On the other
hand, \/%Q_l(eo) — 0 as m increases. Hence, from the lower bound in (P.6)), we

conclude that there exists M such that for allm > M, R, > 0, proving the Lemma.

O
The result of Lemma [ implies that for sufficiently large m, we have
¢ <E, {em +(1— em)e*G"le»em} <1 (P.7)
and hence
0< lim —log E, {em + (1 - em)e’G"le»Em} < —log, €, < o0 (P.8)
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showing that the numerator in (P.l) approaches a finite value with increasing m.
On the other hand, the denominator in (P.I) increases linearly with m. Therefore,

limy,e0 R (6) = 0. 0
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Appendix Q

Proof of Theorem

First, for any given channel state pair z = (21, 22, ...,z ), we define
1 m
p=—"> log,(1+ SNRz), (Q.1)
ma4
1 2SNR2;
o= ,|— 1 2
$ m ; nm(1 4+ SNRz;) 082¢ (Q:2)

and note that © > 0, 6 > 0. We can find that ®(0) = 1, ®(c0) = 1, and ®(R) < 1 for
all R € (0,00). Note that




263

The first and second derivatives of ®(R) in R are given by

b(R) = E, { T } (1) —um (1- 5@ (L5 2) ) e

=y

1 _w=-r?p—

CI)(R) =E, {me 202 5 } (1 _ e—@nmR)
ot ({25 ) g (1w {0 (450)])).

Now, we need the following result.

Proposition 5 ®(R) = 0 has only one solution.

Proof: Obviously, ®(0) > 0. Letting ®(R) = 0 and performing a simple computation,

we have

e {5 {o(=2))
z me 2 52 } 1 — Ez % efGnmR
_ =0nm |2+ 0nm T = (Q.6)

1L o~ " 352 1 752
Ez{me 26 } Ez{me 5 }

First, we can show that the left-hand side (LHS) of (Q.6)) is a nondecreasing function

in R. Let
1 (n=R)*
R)=E,{ —e 27 ;. 7
o) = f 5t @)
1 _wem? o L .
€ 2 Isa log-concave function in R for all z, and since integration over z does

not change the log-concavity, g(R) is also a log-concave function [53]. And hence
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—log, g(R) is convex. Note that

LHS = d

5 (—log, g(R)) Q)

thus the derivative of LHS of (Q.6)) is greater than or equal to 0, and as a result it is
nondecreasing in R.

Next, we can prove that the right-hand side (RHS) of (Q.0]) is a strictly decreasing

function in R. Note that 77,”:'12 is strictly decreasing with increasing R. Let
t—R 1 e
|- E, {Q (T)} ~E,{ [T = Tty = f(u(R)) (Q.9)
—0o0 s

where f(x) = E, {ffoo \/%;e_t?dt} and u(R) = £ We know that f(z) is a log-
concave function [53], and from [53, Eq. 3.10], we can see that log, f is concave and
nondecreasing, and u is concave (actually linear) in R, and hence log, f(u(R)) is a

concave function in R directly. Now that

B ] )

d
1-E {Q(58))  J®) ~ R

log, f(u(R))) (Q.10)

(u—R)?
252

E.

1
V2ms ©
and —log, f(u(R)) is a convex function. So, —— EIE=I) is a nondecreasing func-

EJQ(S

1B {Q(45)}
L - (u*IS)Q
Ez{ Vorra }

nm —E, p—R
decreasing behavior of 7TWRR and the facts that fnm | 2 + Onm—— {ot50)} >

L - (u#;)Q
Bz amse  ®
—O0nmR

0 and *—gmmr > 0 for n,m, 0 > 0, the RHS of (Q.6)) is strictly decreasing in R, and

tion, i.e., is a nonincreasing function in R. Thus, due to the strictly

hence (((Q.6) has only one solution. O
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Denote the unique solution to ®(R) = 0 as R'. We know that ®(R) > 0 for
all R < R', or ®(R) is increasing equivalently, and ®(R) < 0 for all R > R', or
®(R) is decreasing equivalently. Note here that [* ®(R)dR = ®(cc0) — ®(0) = 0,
d(0) = —fnm(1 — E, {Q(%)}) < 0, so ®(R') > 0. Otherwise, ®(R) is decreasing
for R > R', and hence ®(R) < 0, [° ®(R)dR < 0, leading to a contradiction. Also
note that ®(co) = 0, so ®(R) > 0 for R > R'. Thus, there is only one solution to
®(R) = 0. This solution is in the range R € (0, R'), and ®(R) is minimized at this

value. ]
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