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This dissertation presents the analog harmonic transform (AHT) and a first im-

plementation in an integrated circuit. The transform is designed for a regular and

simple hardware structure. It provides coefficients relating to an input signal’s spec-

trum. These coefficients also have a simple relationship to the signal’s Fouriér series

coefficients.

The AHT is defined in its ideal form and evaluated for two example signal classi-

fication applications. Both military vehicle and bearing fault classification tasks are

presented which validate the ability of a neural network to use the AHT coefficients

to correctly classify the input signals. Because any real use of the AHT for classi-

fication would include various errors, a study determining the required hardware

specifications is described.

These specifications are used to inform the design of a hardware implementation

of the AHT coefficient generation. A prototype system in a 0.13 µm mixed-signal

CMOS process was designed to confirm the new system’s utility. The prototype

chip included two separate blocks of AHT circuitry along with an on-board custom

microprocessor to implement system control and supervision in a 4× 4mm die area.

A new digitally-controlled operational transconductance amplifier (OTA) was

designed as the core circuit element to support the AHT calculations. The OTA’s

offset and gain can be calibrated after fabrication to yield lower errors without sig-

nificant increases in chip area or power consumption. This enables hardware imple-



mentation of applications, such as the AHT, which have strict offset requirements

to maintain good system-level performance.

Testing of fabricated prototype chips confirms the ability of digital offset tuning

to yield amplifiers having sub-10 mV output-referred offset with both low power

and small die area. An algorithm was created to adaptively find the optimum tun-

ing code, needed because the tuning characteristic is not guaranteed monotonic.

Testing also confirms the reliable operation of OTAs with extremely large (giga-

ohm) output impedances. Low-frequency operation with long time constants re-

quires these impedance levels to minimize integration capacitor size, the dominant

factor in determining die area.
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Chapter 1

Introduction

1.1 Motivation

Sensor systems typically operate by transducing some physical quantity (e.g. pres-

sure, velocity, flux) into the electrical domain and applying signal conditioning.

They then compute “features” of the sensed signal relevant to its cause and make

decisions or perform actions as a result of the extracted information. Because digi-

tal computers are best suited for information processing and decision-making tasks,

there must be an analog-to-digital conversion (ADC) as part of the system-level

operation. Where the domain conversion happens in the signal processing chain can

affect implementation characteristics such as hardware/software complexity, energy

consumption, and service lifetime.

The majority of signal detection and classification schemes first transform the

acquired signal into a representation that can reveal significant characteristics in

a relatively condensed feature vector. Fouriér and wavelet transforms have proven

to generate suitable features for many signal detection and classification tasks in-

cluding speech recognition, vehicle detection and classification, and bearing fault



2

detection. Several low power monitoring schemes use statistical parameters as fea-

tures, including the signal mean, standard deviation, and extreme values. These

parameters are obtained directly from the time domain signal to generate signal

features for identification, but they are limited in the amount of classification infor-

mation they contain compared with spectral features. Discrete Fouriér and wavelet

features require sampling the signal at relatively high rates prior to processing.

Co-optimization of both the hardware and the signal processing it implements

can achieve the best energy efficiency. This efficiency facilitates a wider application

and deployment of small sensors. The term “Internet of Things” (IoT) is a current

buzzword to describe the (future) ubiquity of these sensors [5]. Data from these

“things” can be collected and used for monitoring, control, and analysis.

1.2 Contributions of this Dissertation

The primary contributions of this dissertation are the design, implementation, and

qualification of a new analog transform for harmonic signals. More specific contribu-

tions include the following:

• Formulation of the analog harmonic transform (AHT) in its ideal form.

• Demonstration of the efficacy of AHT features for signal classification applica-

tions.

• Exploration of the effect of hardware-related imperfections on back-end sys-

tem performance.

• Design, fabrication, and testing of an integrated circuit (IC) to calculate the

AHT coefficients in parallel.
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Several novel circuit techniques were created to support the AHT’s hardware

requirements:

• Digitally-controlled OTA for post-fabrication offset and gain calibration.

• Search algorithm for finding the optimal digital tuning code to minimize am-

plifier offset in the presence of a non-monotonic tuning characteristic.

Fabrication of the AHT integrated circuit prototype was subsidised with a fabri-

cation grant through MOSIS [6]. The MOSIS Educational Program (MEP) research

account program accepts proposals to assist in the fabrication of designs without

external funding sources. For the 0.13 µm process and 4 mm× 4 mm die area utilized

for the prototype, the un-subsidised fabrication charges are currently $75 000, not

including wire-bonding and packaging costs.

Peer-reviewed publications related to this work:

[1] D. J. White, P. E. William, M. W. Hoffman, S. Balkir, and N. Schemm,

“Analog Sensing Front-End System for Harmonic Signal Classification,” in Proc.

IEEE Int Circuits and Systems (ISCAS) Symp, May 2012, pp. 1155 –1158.

[3] D. J. White, P. E. William, M. W. Hoffman, and S. Balkir, “Low-Power

Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Clas-

sification,” Sensors, vol. 13, no. 8, pp. 9604–9623, July 2013.

[7] D. J. White, M. W. Hoffman, and S. Balkir, “Digital Offset Cancellation for

Long Time-Constant Sub-Threshold OTA-C Integrators,” submitted for publication

in IEEE Transactions on Circuits and Systems II – Express Briefs, 2014
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1.3 Other Public Contributions

Throughout the course of this work, several open source software packages were

used. These packages were used for schematic drawing, circuit simulation, printed

circuit board artwork, large simulation data analysis, and interfacing with USB

ports.

Several packages had existing or new bugs or lacked functionality directly useful

for design and analysis with this project. Due to the open, collaborative nature of

these software projects, several patches and improvements were made to the code

and were reported to the upstream authors and incorporated into subsequently

released versions. A brief summary of these contributions follows:

• gEDA - gschem [8]: schematic drawing utility

– Fix which prevents accidental data loss.

• gEDA - gnetlist : schematic data translation and manipulation engine

– makedepend : new backend script which extracts multi-page and multi-

level schematic dependencies.

– spice-sdb backend script outputting SPICE netlists from schematics.

Added capabilities for parameterized sub-circuits and flexible MOSFET

model references.

• gEDA - refdes renum: utility to re-number circuit element references. Safer

support for renaming functional devices with multiple symbols.

• gEDA - PCB : PCB layout software

– Patch to allow selection of multiple associated schematic sheet refer-

ences.
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– distaligntext : plugin extension to align groups of text in various orienta-

tions.

– ElementUpdate: plugin extension to update existing part footprints with

updated library versions.

• gwave - sp2sp [9]: circuit simulation waveform viewer, data translation.

– Option to directly write NumPy [10] arrays to disk including waveform

metadata. This allowed processing simulation data which is larger than

the available computer RAM via memory-mapped access.

• libFTDI [11]: C language library for using FTDI’s Hi-Speed USB 2.0 UART/FIFO

slave converter chips [12]. Added automatic extraction of in-source library

documentation to the python language bindings. This enabled interactive

documentation references using IPython [13].

• IEEEtran BibTeX style [14]: Updated the list of IEEE journal abbreviations

to match the official preferred long and short versions.

1.4 Outline of Dissertation

This dissertation is organized into six chapters with Chapter 1 as this Introduction.

Background and review of the existing literature on the major topics discussed here

is in Chapter 2. Chapter 3 presents the new Analog Harmonic Transform (AHT) as

a technique to extract spectral information from a signal. Chapter 4 presents the

design of an integrated circuit system which can implement the AHT in hardware

including a supervisory on-chip micro-processor. The chapter also includes details

of a new wide-range digitally-tunable amplifier which forms the core active element
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in a hardware-based AHT system. Chapter 5 details the testing of the prototype

chip and the design of an automated testing fixture. Finally, Chapter 6 concludes

the dissertation and outlines directions for future work.

Appendix A is a brief tutorial overview of MyHDL, the tool used to design the

custom digital sections of the chip. This chip is the second known silicon-verified

design using the tool. Appendices B and C contain the source code and schematics

respectively of the chip and test fixture.
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Chapter 2

Literature Review

2.1 Introduction

Three main issues provide background for this work: minimum energy signal pro-

cessing, long time constant integrators in integrated circuits, and signal feature

extraction. Each section gives an overview of the major work and problems in the

subject areas.

2.2 Fundamental Signal Processing Energy

Requirements

Low-power signal processing and circuit techniques are labeled as such in compari-

son to current implementations. The absolute minimum energy required for a given

processing task can be derived from first principles and gives a gauge on how well

new techniques achieve lowest-power operation.

In the context of signal processing, it is appropriate to normalize the power re-

quirements by the signal bandwidth. This yields a metric in units of energy per
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bandwidth. Communications signals are frequently mixed to higher carrier frequen-

cies for various reasons while still only occupying a narrow range of frequencies.

The following derivation assumes the signal to be at baseband, or centered around

0 Hz. These are either native baseband signals like audio or communications signals

after their center frequencies have been translated to 0 Hz.

2.2.1 Analog

Continuous-time and continuous-amplitude, or analog, circuits always have at least

one capacitance C forming a low-pass pole. Because any conductive object sepa-

rated from another has a related mutual capacitance, this capacitor need only repre-

sent the various terminals of the circuit. It will be assumed that the active parts of

the circuit operate with perfect efficiency and there is zero power dissipation with

no signal present.

Driving an RMS signal voltage of Vsig across this capacitor through a non-zero

real impedance at a frequency of f requires a power of at least

P = 8fCV 2
sig. (2.1)

Accounting for only thermal noise, such a circuit has a minimum total voltage noise

variance of

V 2
N =

kT

C
(2.2)

where k is the Boltzmann constant and T in kelvin. These can be expressed as the

minimum energy per cycle and per pole as

Pa

f
= 8kT

(
Vsig
VN

)2

. (2.3)
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This is independent of design or other technique and represents the analog energy

limit for a required precision and bandwidth. It is achieved in practice by a simple

RC low-pass filter. [15]

Adaptive biasing and operation outside of Class-A bias conditions can be used

to assist analog circuits in lowering their total power dissipation without reduc-

ing signal ranges. Adaptive biasing refers to varying an amplifier’s bias current

in response to the input signal, thereby reducing the overall power consumption

[16]. Extension of the technique has been on-going [17, 18, 19]. Related to adap-

tive biasing is the development of high-drive CMOS buffers [20, 21]. Operation in

Class-AB and Class-B modes where individual output devices only handle positive

or negative-going peaks is common in macro-scale power amplifiers but serves to

enhance power efficiency on-chip as well [22, 23].

2.2.2 Digital

To compare digital and analog processing, express the resolution in bits as a ratio

of signal to quantization noise power. As with analog processing, assume there is

zero static power consumption with no signal present. For an ideal n-bit quantizer

with a full-scale sinusoidal input, this yields a signal-to noise ratio of

(
Vsig
VN

)2

=
3

2
· 22n. (2.4)

The number of digital operations, m, required per input cycle depends on the

bit-resolution of the signal and the specific algorithm. Each of these unit operations

uses an energy of Etr each and a dynamic power consumption per cycle of [24]

Pd

f
= mEtr. (2.5)
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For comparison purposes with the simple analog RC low-pass filter, consider the

first-order IIR difference equation implementing a digital low-pass filter with input

x[n] and output sequence y[n]

y[n] = a1y[n−1] + b0x[n]. (2.6)

Assume a unit operation is represented by a gate-level transition. A full adder

then requires about 3 unit operations per bit, and a full n × n multiplication uses

n2 full adders. Computation of each sample of the difference equation requires

two n-bit multiplications, an n-bit addition, and a n-bit shift. This then is about

3(n2 + n) + n unit operations per sample. Assume also the sample rate is 10 times

the signal frequency which allows for filtering of frequencies 2.3 octaves above the

desired frequency. Under these conditions, the number of digital gate operations

per signal cycle is

m = 30n2 + 40n. (2.7)

Figure 2.1 plots the two minimum processing energy curves from the above equa-

tions, similar to [15, 24, 25]. It graphically illustrates the relationship between the

two processing modes. High precision or large signal-to-noise ratio processing is

most efficiently performed with digital techniques. Analog processing, however, re-

tains a theoretical advantage at low SNRs, even in the limit of minimum digital

energy usage of Etr = 8kT . This crossover occurs at an SNR of 28.2 dB or a digital

resolution of 4.1 bit. Relative implementation efficiencies of real circuitry moves this

boundary in either direction.

Sub-threshold and asynchronous digital circuit styles achieve the lowest energy

usage per operation. At supply voltages in the hundreds of millivolt range, the

optimum energy point depends on the relative significance of dynamic and leakage
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Figure 2.1: Analog and digital minimum energy requirements per pole per band-
width. The digital curves are for the absolute minimum and several higher Etr

values. The hatched region is the unachievable energy/SNR region. The theoretical
crossover between domains occurs at an SNR of 28.2 dB or 4.1 bit resolution.

components [26]. Source-coupled logic (SCL) circuits, formerly used for high-speed,

find use in low power applications operating in weak inversion [27]. These circuits

use PMOS devices in an isolated well and connect the body terminal not to the

higher potential source but to the drain node to implement the load resistors of the

traditional SCL style. Finally, fully asynchronous digital circuits avoid the clock

distribution power overhead of synchronous circuits. Design techniques discussed in

[28] allow reliable operation and timing using critical-path replica delay lines. This

allows an inherent mitigation of process variations.
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2.2.3 Alternative techniques

Systems are not strictly limited to the analog domain of continuous-time, continuous-

values or the digital domain of discrete-time, discrete-values [25]. They may also

operate in the discrete-time, continuous-value domain used by switched-capacitor

circuits or the continuous-time, discrete-value domain used by neural-like systems.

Processing approaches in these two domains follow similar derivations for minimum

energy requirements.

Analog processing encodes the entire information content of a signal onto a sin-

gle wire while digital techniques spread the information across several bit wires.

Hybrid processing can balance the information transmitted per wire against parallel

numbers of wires [25]. The curves of Figure 2.1 suggest the number of information

bits transmitted per wire in such a scheme may be around 4 bits per wire.

2.3 Long time constants on ICs

Energy available for signal processing is necessarily limited in very low power sys-

tems. For both analog and digital signal processing systems, the power consump-

tion is directly proportional to signal bandwidth. Integration is a common oper-

ation in signal processing, appearing at the end of the processing chain for corre-

lation and projection operations. Realization of very long time constants for low-

bandwidth signals is difficult for on-chip implementations.

The simplest resistor-capacitor low-pass filter operates as an integrator with an
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integration time constant and operating frequency range of

τ = R× C (2.8)

fop >
1

2πRC
(2.9)

This relationship serves as a basis for illustrating the issues inherent in building

long time constant analog integrators with integrated circuits.

Construction of large-valued linear capacitors on chip is fundamentally limited

by available area. For example, the IBM 8RF fabrication process limits the total ca-

pacitor area on a die to 2× 106 µm2. Dual-MIM capacitors are the process’ highest

density capacitors at 4.10 fF/µm2 This yields a design rule limited maximum total

chip capacitance of 8.2 nF. Achieving a R-C integrator time constant of 1 s then

requires at least a 121 MΩ resistance. Even at minimum width, this represents a re-

sistor approximately 97 mm long and is clearly impractical. Available and practical

capacitances in the process are only several hundred picofarads, which increases the

need for extremely high equivalent resistances in order to achieve very long time

constants.

Electro-chemical super capacitors can achieve charge storage densities many

times greater than parallel-plate capacitors. Traditionally, these types of capacitors

have not been possible to construct in silicon semiconductors because of chemical

incompatibility. Recently, a process compatible with silicon substrates has been

demonstrated [29]. That work suggests future IC processes with the capability of

integrated super capacitors. For the time being, on-chip linear capacitors suitable

for integrator construction are limited by available die area and high permittivity

insulators.

Due to the inherent issues with fabricating large valued resistors, a common
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alternative is to use operational transconductance amplifiers (OTA) to realize very

low conductances or very high resistances. These OTA-C integrators have time

constants of

τ =
C

Gm

(2.10)

where Gm is the OTA’s transconductance. This suggests the need to design OTAs

with transconductances on the same order as the available capacitance, e.g. 100 pS

Gm and 100 pF capacitor for a 1 s time constant.

2.3.1 Low-Gm OTA Design

Since large capacitances are not realizable on integrated circuits, the design of large

on-chip time constants focuses on lowering the transconductance of the associated

amplifiers. Design issues such as achievable (low) Gm, small bias currents, linear

input ranges, and statistical variations converge at these low values, giving a range

of techniques. Though generally closely related, these issues will be discussed sepa-

rately in the following sections.

2.3.2 Gm Reduction

Individual MOS transistor gm scales with (W/L)
√
ID when biased into strong in-

version. Reducing the bias current, in combination with the transistor aspect ra-

tio, causes the FET to begin to operate in the weak inversion mode where gm =

ID/(nVT ) [30]. This decouples a transistor’s size from its transconductance, leading

to a focus on bias current reduction.

One of the earlier techniques aside from bias current reduction was an output

current mirror division technique [31]. In this technique the goal is reduction of

die area compared with previous techniques by using a traditional OTA biased in
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strong inversion driving a current mirror with an input:output ratio of approxi-

mately 37 500 : 1. Arnaud, Fiorelli, and Galup-Montoro generalized and extended

this mirror division technique using an OTA core operating in weak inversion [32].

Constructing each mirror input and output branch transistor from n/m series-

parallel unit transistors allows well-controlled division factors with regular layout

patterns.

Another reduction technique cascades amplifier stages in a gm, 1/gm series as

implemented in [33, 34]. The 1/gm stages are implemented by readily-available

small-value resistors. With a variable bias current, this attenuation technique was

shown to realize time constants ranging from 1 s to 17 s [34].

Finally, the implementation of large effective resistances has been used within

OTAs. This technique applies the input signal across a circuit exhibiting an approx-

imately linear V/I relationship made from one to several MOS transistors. Within

an OTA, this is an extreme form of source degeneration where the amplifier’s total

Gm reduces to the effective conductance of the degeneration element. MOSFETs

used as linear resistors provide a natural control terminal for large variations in con-

ductance. Kwan and Martin [35] use a novel circuit de-coupling the MOS-resistor’s

gate voltage from the control port to allow a tunable, floating, resistor. Later vari-

ations from [36, 37, 38] extend the concept to progressively lower bias currents.

Tajalli and Leblebici [38] retain the floating property and exploit weak inversion op-

eration by connecting the transistors’ body terminal to the drain instead of source.

The selection of a Gm-reduction technique is influenced by its sensitivity to ran-

dom errors such as process variations. Pachnis et al. [39] investigated this sensitiv-

ity for the three main techniques of current mirror division, current cancellation,

and cascaded gm − 1/gm stages. It was shown that current division was the most

reliable in terms of analog mismatches.
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2.3.3 Small Bias Currents

The direct way to reduce an OTA’s transconductance is to reduce its bias current.

In weak inversion operation, transconductance is directly proportional to bias cur-

rent [24]. Achieving small Gm with this strategy then focuses on the reliable genera-

tion of pA to nA currents.

Dividing a master reference current to very low values is, in principle, possible

down to the magnitude of the transistor drain-body p-n junction’s reverse leakage

current. Linares-Barranco et al. discuss techniques to achieve pA-range currents

in practice [40]. These techniques center on circuits which create negative gate-

source potentials to bring MOS transistors closer to a true “off” state by raising

the source terminal’s potential. They also emphasize the difficulty of measuring on-

chip pA and fA currents by bringing those signals off-chip as the pad connections

themselves leak more than the entire measured signal magnitude.

Switched-capacitor circuits can be used to assist in generating bias currents as

shown in [41]. In that paper, the resistor used in a constant-gm bias generator is

replaced by its switched-capacitor equivalent. This change allows easy bias current

control by varying a clock frequency.

The ability of a MOS device to operate as a charge pump was first observed

in 1969 [42]. Only relatively recently (2003) has this charge pumping effect been

put to use in the generation of ultra-low current sources [43]. These structures

utilize the normally undesirable charge-trapping behavior of an imperfect gate

oxide/channel interface. Again, this allows varying the bias current easily and over

wide ranges by a clock frequency. An OTA which uses the interface-trap charge

pump for its bias source was subsequently demonstrated by Becker-Gómez, et al.

for the design of a sub-hertz low-pass filter [44].
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Continuous tuning of bias current and gain has also been achieved using floating-

gate transistors [45]. Those transconductors were constructed with MOS second

generation current conveyors (CCII) [46, 47] and MOS resistors.

2.3.4 OTA Linearization

In part because OTA integrators are used in open-loop configurations, the linear

input range of an amplifier is frequently extended by several strategies. A direct

linearization technique is to merely attenuate the input signal, therefore increas-

ing the overall input linear range along with a proportional reduction in gain [48].

Firth and Andreou provided an overview of the major linearization techniques of

degeneration via a single diffusor (resistance), degeneration via symmetric diffusors,

and asymmetric differential pairs [49].

The first natural and common technique is the addition of degeneration resis-

tance in the transconductor [35, 49, 36, 50, 38]. Degrauwe, et al. also used degener-

ated current mirrors to assist in linearizing amplifiers for switched-capacitor circuits

[51]. In complement to Gm reduction, these added resistances need to be large for

good linearization and small transconductance.

Adaptive or signal-dependent variation of the bias current can also extend the

linear range [52, 36, 37, 53, 50]. These generally increase the core transconductor’s

current at larger signal amplitudes to avoid the normal gm drop. Circuits for opera-

tion in both strong inversion [52] and weak inversion [48] use this type of lineariza-

tion.

The third major technique is having several differential transconductors in paral-

lel with asymmetric sizes [49, 54]. Koziel and Szczepanski use three cross-connected

pairs, each biased at different currents, to strategically yield a wider overall linear
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input range [54].

2.3.5 Offset, Mismatch, and Process Variations

Though an omnipresent consideration in all analog integrated circuit design, the

impact of device mismatch and process-related parameter variations is enhanced

at very low currents. MOS transistor drain current mismatch reaches its maximum

in weak inversion [55]. These random variations limit the un-corrected precision of

amplifier circuits in parameters such as gain and offset.

The noise and offset characterization for design is well-described by [56, 57, 58,

59] and others. Recent work demonstrates a ring-gate layout technique which specif-

ically minimizes wafer-to-wafer matching in modern CMOS processes which use

shallow trench isolation [60].

Low-frequency 1/f noise and offset can be mitigated by auto-zeroing, correlated

double sampling, and chopper stabilizing techniques [61]. The chopper and other

integrator based solutions operate continuously and are used in a wide range of

applications such as radio receivers [62] and very low offset amplifiers [63].

The major technique for offset reduction in low-frequency amplifiers is to in-

crease the gate area of matching transistors. This reduces the mismatch related to

process variations to a lower fraction of the device’s electrical parameters, reduc-

ing by the square-root of area [57]. Unfortunately, this technique cannot achieve

arbitrary reduction in offset, which may still be too large for certain applications.

Systems whose performance is critically dependent on amplifier offset may not be

practical for low-frequency, low-power, on-chip implementation. This suggests the

need for additional techniques to mitigate offset to retain the benefits of integrated

circuit construction.
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2.4 Signal Feature Extraction

Correlation-based transforms and coefficient series representations makeup a large

class of available signal analysis tools. The results of these can be used as sets of

signal features for the extraction of signal-related information. These analyses for

continuous time domain input signals s(t) have the form

ai = Ki

t1∫

t0

s(t) · gi(t− t0)dt (2.11)

where i is the coefficient index, Ki a scaling constant, and gi(t) a basis function for

the particular transform. Similarly for discrete time signals

bi = κi

n1∑

n=n0

s(n) · gi(n− n0). (2.12)

The properties of the transform are determined by the chosen set of basis func-

tions gi. This form of signal decomposition requires integration and multiplication,

common operations possible in analog circuitry. As such, the calculation of the

transform coefficients is a candidate for direct electronic implementation.

2.4.1 Fouriér Methods

By far the most popular class of spectral feature extraction methods is the Fouriér

representation. Computation of Fouriér series coefficients is tractable in an analog

circuit due to readily available multipliers and integrators. One example using

analog computers is described in [64].

Discrete Fouriér transforms (DFT) and its more computationally efficient fast

fourier transform (FFT) are used in varied applications. Hardware-based FFT



20

circuits minimize the energy required to perform the computation or maximize the

speed of computation. Architectures for computing the real-valued FFT re-use logic

blocks and other common circuits [65].

Analog circuits have been used to calculate the DFT with various strategies

[66, 67, 68, 69, 70]. Replacing the FFT butterfly structure with a bank of tunable

transconductors before analog-to-digital conversion gives a net dynamic range im-

provement for OFDM receivers [66, 68]. Similar work using analog butterfly imple-

mentation reduces the number of unique weighting factors to just three. The three

weight factors were reduced to small rational divisors readily implemented by cur-

rent mirror unit cells of 3/10, 7/10, and 9/10 [67]. Subsequent improvements on the

technique uses current mirrors for all scaling and signal copying [69]. Floating gate-

based arrays have also been used to implement analog DFTs [70]. This structure

also uses current-mode operation for the addition of signals within the array.

Passive computation of the Fouriér transform using an LC lattice was simu-

lated in [71]. There, the applied signal was modulated onto a high-frequency carrier

and applied to one edge of the lattice. Analogous to thin-slit diffraction, the sig-

nal propagates across the lattice and arrives at the opposite edge as the spatial

Fouŕıer transform of the spatial input. Correcting the phase shifting between thin-

slit diffraction and transform is a “lens” in the middle of the lattice where the node

capacitance is greater, with similar properties as the optical version.

2.4.2 Square Functions

Square basis functions using amplitudes of ±1 only, possibly scaled by a constant.

The Walsh set of waveforms are ordered according to sequency, or sign changes

per transform length [72]. Arranged in sequency order and arranged into a matrix,
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Walsh functions then become the Hadamard transform.

These waveforms may be generated with digital circuitry and computation of the

basis function projections do not require multiplication. Circuit implementations

of the transform utilize this property [73]. The functions also find use in communi-

cations context, for example, in coding the forward channel of the CDMA cellular

phone scheme [74].

It is not the case that Walsh waveforms are merely the sign portion of a sinusoid.

This is true for low sequency functions but not in general. Walsh waveforms form

an orthogonal set just as the set of harmonic sinusoids of the Fouriér series, while

waveforms constructed by the sign of a sinusoid do not form an orthogonal set.

The relationship between Walsh functions and their Fouriér series was described

in [75]. A small number of superimposed square waveforms may be used to gener-

ate signals which have a suppressed harmonic. For example, the digital modulation

scheme “HD” used in broadcast FM radio can result in an increase in noise for com-

mon sub-carrier analog demodulation techniques. These use a square wave locked

to twice the 19 kHz pilot tone for demodulation of the stereo L − R channel cen-

tered at 36 kHz. The digital modulation sidebands have significant energy at the

fifth harmonic of this waveform 190 kHz causing the energy to be mixed with the

stereo audio information. Using Walsh waveforms, the third and fifth harmonic of

the mixer oscillator waveform is suppressed, eliminating this self-noise source [76].

Another use of Walsh functions for harmonic cancellation is in DC-AC power

inverters [77, 78]. These systems arrange pulse-width modulation waveforms in

Walsh sequences, both two state waveforms. The converse conversion, with an AC

source can make use of active loads to control and minimize the current harmonics

drawn from the source [79].
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2.4.3 Compressed Sensing

The relatively new field of compressed sensing utilizes random-like and non-orthogonal

basis functions. Through various back-end processing techniques, the outputs of

these projections can be used to reconstruct a limited amount of information from

the input signal. Its advantage is the ability to extract information spread across

a wide bandwidth but containing a low information rate [80]. Nyquist sampling of

these signals is prohibitive in relation to the information content.

The basis functions or chipping sequences for the random demodulator of [80]

are operated at greater than twice the maximum signal frequency to achieve the

required randomness. Constructing the modulating waveforms as run-length limited

sequences can increase the available sensed bandwidth. This increased bandwidth

comes at the expense of signal sparsity [81].

Circuit implementations have focused on random ±1 basis sequences [82, 83, 84].

Circuit simulations for an implementation for detecting a 100, 200, 300 MHz signal

group used a 2 GHz basis sequence [82]. The system of Chen, et al. uses a PN se-

quence of up to 3 GHz and parallel projection channels generating multiple outputs

in successive integration windows [83]. P parallel paths, each with Q windows, are

equivalent to P ·Q single-window paths, thus trading hardware area and complexity.

Similar to the successive windows of [83] is the parallel segmented compressed

sensing scheme by [85]. Following its introductions, the authors simulated the sys-

tem performance under circuit errors such as timing jitter and settling time. With

a least mean-squared algorithm proposed to calibrate realized systems, they found

that training the system on dense instead of sparse training signals accelerated the

error convergence [86].

A modulated wideband converter system named “Xampling” is described in
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[87, 84]. This scheme modulates several spectrum slices into a composite down-

converted signal which is then sampled at a rate between the signal bandwidth and

the signals’ maximum frequency. Instead of a pseudorandom ±1 sequence, the basis

functions are only required to be periodic over the integration time with at least as

many transitions as there are parallel channels [87].

2.5 Conclusion

For low precision computation, analog computation retains a theoretical energy

efficiency advantage. Maintaining low power consumption also requires low band-

width and low frequency operation. Circuit design at these low frequencies raises

issues such as practical implementation and reliable operation with the larger errors.

Techniques are needed to further reduce these amplifier errors, especially offset, to

enable integrated circuit implementations.

Extraction of signal features centers on spectral techniques which all include an

integration stage whose bandwidth is related to the received signal characteristics.

Square basis functions and modulating waveforms are convenient to generate and

have exhibited properties which relate well to several processing schemes. Design

choices in light of the current art are discussed in Chapter 4.
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Chapter 3

Analog Harmonic Transform

3.1 Introduction

Comparisons of the power and area required to implement signal-processing op-

erations at a given precision between analog or digital integrated circuitry have

been described by [24, 25], and others. Figure 3.1 plots the shape of power require-

ments for digital and analog computation as precision, given as SNR, is varied.

Both power and area scale linearly with SNR for analog and as log2(SNR) for digi-

tal operations. The magnitude and crossover point is dependent on factors such as

task, technology, and skill level of the designers [25].

Clearly from Figure 3.1, applications requiring high precision computation are

best served by digital systems. However, systems which can tolerate lower SNRs

can utilize an analog implementation’s fundamental energy advantage, especially

with SNRs below about 40 dB, indicated by the shaded region. The challenge for

energy-efficient signal processing systems is then to find algorithms and architec-

tures which maintain good system-level performance with low precision or noisy

computations. The AHT focuses on the feature extraction phase of harmonic sig-
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Figure 3.1: Analog and digital power requirements for signal processing as a
function of SNR. Power is in arbitrary units and normalized to signal bandwidth.

nal classification tasks to take advantage of analog techniques, as suggested by the

energy usage data from [88].

3.2 Harmonic Signals

Sensed harmonic signals originating from rotating machinery or other periodic

phenomena may be modeled as a sum of two components: a deterministic harmonic

signal model approximating the revolving parts and a non-deterministic component

approximating all other components. Selective features extracted from these signals

are sufficient for signal/source discrimination as shown in [89, 90, 91]. A harmonic
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signal can be described as

x(t) =
M∑

k=1

αk cos(2πkf1t+ φk) + n(t) (3.1)

where αk and φk are the amplitude and phase of the kth deterministic harmonic

component, respectively, f1 is the fundamental frequency (FF), M is the largest

harmonic number, and n(t) is the non-deterministic signal component. The signal’s

harmonic part is therefore completely defined by 2M+1 parameters. If the FF and

number of harmonics are known, the optimum solution in additive white noise for

estimating the amplitude and phase set is the Least Squares (LS) solution, i.e. the

signal’s Fouriér series (FS) coefficients.

An alternate solution for estimating the harmonic parameters is to locate spec-

tral peaks that maintain a line series, presented in [92, 93] as Harmonic Line As-

sociation (HLA). HLA, however, requires narrow frequency resolution (long FFT)

and a complex approach for the selection of harmonically related peaks. In con-

trast, the time domain harmonics’ amplitudes (TDHA) method extracts harmonic

signal information with lower complexity than the FFT [91] but still operates in

the digital domain and requires multiplication. Described here is a new transform

for calculating these harmonic parameters well-suited for efficient analog-domain

implementation.

3.3 Analog Basis Projection

To estimate the kth harmonic’s amplitude αk and phase φk, the input signal is

first low-pass filtered to Mf1 and then projected onto a pair of quadrature basis
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functions with frequency kf1 and integrated over T =1/f1 as

yIk =

∫ T

0

x(t) ψIk(t)dt

yQk =

∫ T

0

x(t) ψQk(t)dt

(3.2)

where k∈{1, 2, · · · ,M}, with basis functions given as

ψIk(t) = sgn
(
cos(2πkf1t)

)

ψQk(t) = sgn
(
sin(2πkf1t)

)
,

(3.3)

sgn(x) =





1 x ≥ 0

−1 x < 0

. (3.4)

The AHT scheme takes the Fouriér series’ sinusoidal basis functions and uses

only their signs as shown in Equation (3.3). This change greatly simplifies analog

implementation of the projection implementation as described in Chapter 4. Figure

3.2 plots the basis pairs for harmonic numbers 1, 2, and 5 with f1 = 1/T .

3.4 Feature Extraction

The harmonic part of the signal in Equation (3.1) can be expressed as in-phase and

quadrature components by

x(t) =
M∑

k=1

αk cos(φk)cos(2πkft)−
M∑

k=1

αk sin(φk)sin(2πkft) (3.5)

Substituting Equations (3.3) and (3.5) into (3.2) and evaluating the integration
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Figure 3.2: Quadrature basis function waveforms for k=1, 2, 5.

gives

yIk =
T

2π

M∑

p=1

αp cos(φp)

p

2k∑

r=1

(−1)r−1 sin

(
(2r − 1)πp

2k

)

yQk =
−T
2π

M∑

p=1

αp sin(φp)

p

2k∑

r=1

(−1)r−1 cos

(
2rπk

2p

) (3.6)

The result of each in-phase and quadrature projection therefore represents the sum

of scaled in-phase and quadrature harmonics’ amplitudes, respectively. To better

illustrate the relationship between the harmonic parameters (αk, φk) and the ba-

sis projections (yIk, yQk), the parameter sets can be represented in column vector

format as

yI = {yIk} yQ = {yQk}

aI = {aIk =αk cos(φk)} aQ = {aQk =αk sin(φk)} .
(3.7)
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The relation may then be written as

yI =
T

2π
UI aI (3.8)

yQ = − T

2π
UQ aQ (3.9)

with

UI =




1 0 -1
3

0 1
5

0 -1
7

0 1
9

0 . . .

0 1 0 0 0 -1
3

0 0 0 1
5

. . .

0 0 1 0 0 0 0 0 -1
3

0 . . .

...
. . .

...

0 0 0 . . . . . . . . . . 0 0 0 1




(3.10)

UQ =




1 0 1
3

0 1
5

0 1
7

0 1
9

0 . . .

0 1 0 0 0 1
3

0 0 0 1
5

. . .

0 0 1 0 0 0 0 0 1
3

0 . . .

...
. . .

...

0 0 0 . . . . . . . . . . 0 0 0 1




. (3.11)

The in-phase and quadrature amplitude vectors may then be calculated by

aI =
2π

T
UI

−1yI (3.12)

aQ = −2π

T
UQ

−1yQ . (3.13)

Individual harmonic magnitude and phase estimates may be calculated from the
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rectangular parameters via

αk =
√
a2
Ik + a2

Qk φk = tan−1

(
aQk

aIk

)
. (3.14)

3.5 Computational Considerations

Matrices UI and UQ are sparse, upper-triangular, and unipotent. These properties

ensure their inverses are well-conditioned and independent of any signal charac-

teristics for a given M . From the upper-triangular property, aIk and aQk may be

calculated by a simplified back-substitution while the sparsity greatly reduces the

number of computations actually required. Figure 3.3 shows the non-zero matrix

entries to illustrate the sparse and well-structured properties of the matrix; all main

diagonal entries are 1.



31

Table 3.1: Comparison of digital real-valued operations to compute Fouriér se-
ries coefficients from the AHT back-substitution (M = 32, 64) or real-input FFT
algorithm (N=64, 128). From [3].

FS AHT RSR-FFT Savings
Coeff’s mult+add Total mult+add Total Total

1. . . 32 74+74 148 98+420 518 71%
3. . . 32 52+52 104 98+420 518 80%
1. . . 64 194+194 388 258+1028 1286 70%
4. . . 64 82+82 164 258+1028 1286 87%

Note that the projection operation of Equation (3.2) requires no multiplications

in practice due to the basis functions’ shape. This is in contrast with the FFT

and other methods like TDHA. Multiplication is only required to back-calculate

the equivalent FS coefficients from the yI and yQ vectors. Calculating a pseudo-

harmonic amplitude with the yIk and yQk values directly as
√
y2
Ik + y2

Qk bypasses

even this operation and may be sufficient for many classification applications [4].

To illustrate the digital computation savings, Table 3.1 lists the number of real-

valued multiplications and additions to recover the Fouriér series coefficients from

the AHT projected values and compares with the equivalent FFT operation to yield

the same coefficient set. The highest 2/3 of the FFT coefficients are directly known

from the corresponding AHT coefficients. Because the input data is purely real,

the number of operations required for the FFT may be reduced by employing a

specialized algorithm. The efficient Real Split-Radix FFT (RSR-FFT) algorithm

discussed in [94] is therefore used for comparison purposes. Operation counts for

the FFTs assume 3 multiplications and 3 additions per complex multiply by using

Gauss’ algorithm and observing that two of the additions may be pre-computed due

to the constant twiddle factors [94]. The AHT back-substitution uses real values

only.

Unlike the FFT, which produces all coefficients in the signal’s bandwidth, it
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is not necessary to calculate all the AHT coefficients if the back-end application

will not use them. For example, if the lower 5% of the coefficients (3 harmonics for

M = 64) do not increase the system-level performance, they need not be calculated.

Due to the UI,Q matrix’s structure, this would reduce the number of multiplication

and addition operations by 30% and 58%, respectively, to calculate the top 95%

of the coefficients. Advanced energy-aware detection and classification algorithms

may selectively disable the unneeded harmonic projection channels for a further

reduction in energy usage. Such fine-grained, adaptive energy management is not

possible when generating frequency coefficients using FFT only.

Finally, it has been shown in [4] that calculating a pseudo-amplitude as
√
y2
Ik + y2

Qk

in place of the FS amplitudes results in minimal system-level classification perfor-

mance degradation. This means that the AHT coefficient to FS coefficient calcula-

tion may be skipped all-together, with its attendant energy savings.

3.6 Ideal System Evaluation

Two case studies are presented to validate the use of the AHT for harmonic signal

classification applications. The first is classification of vehicle types from acous-

tic recordings while the second is the identification of machine bearing faults from

attached accelerometer signals. System classification performance for both applica-

tions will be shown to be comparable to existing studies using considerably more

complex front-end processing techniques on the same data sets. These studies were

first presented in [4]; the major contribution in this work is a thorough discussion of

the hardware error modelling for system-level simulation of the classification system

in Section 3.7.
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Figure 3.4: Time-Frequency acoustic response of two heavy-weight, tracked mili-
tary vehicles.

3.6.1 Case Study I: Classification of military vehicles

Monitoring large regions for military vehicle activity for peacekeeping purposes

is an application well-suited for wireless sensor modules. The acoustic emissions

of such ground vehicles contain a wealth of information for purposes such as clas-

sification [95]. The main sources of acoustic emissions are from the engine and

propulsion mechanism and can be approximated using a harmonic signal model

[96, 97].

For ground vehicles, the engine-related FF of the acoustic signal typically lies

within the range 8 Hz to 20 Hz [93, 96]. The time-frequency responses of sample

runs of the acquired acoustic signals from two tracked military vehicles passing by a

sensor node are shown in Figure 3.4. The harmonic structure and the time-varying

nature of the signals are apparent.

The acoustic data of 9 different vehicles covering all combinations of wheeled/tracked

and heavy/light-weight types (Leopard 1, Leopard 2, Wiesel, Jaguar, M48, Fuchs,
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Hermelin, Unimog, and Mercedes-Benz 1017) were recorded by the Bochum Ver-

ification Project (BVP) during verification experiments in 2000 [89, 98]. The re-

searchers equipped each of two stations with acoustic and seismic sensors to record

signatures of the vehicles driving along four different lanes (paved and unpaved).

Only the acoustic data is considered in this case study since the harmonic structure

is more pronounced. Each run represents one vehicle passing by two stations placed

101.4 m apart on opposite sides of the lanes. More than 365 runs were recorded at

variable speeds, from different directions and on different surfaces. The acoustic

data was originally sampled at 20 kHz and re-sampled to 5 kHz prior to detection

and feature extraction. Each recording was started manually when the vehicle en-

tered within 200 m of the sensor stations.

To determine the presence of a vehicle, an adaptive Constant False Alarm Rate

(CFAR) detector [91] was used to output a decision every 0.5 s, based on the aver-

age energy level of the acoustic signal. As an energy-based detector, it also detected

events with no clear harmonic signature. Note that these events are included in

the classification rate in the results presented. The number of detected event win-

dows per run then depended on the vehicle itself and its speed. At normal speeds,

medium and lightweight vehicles were detected within 50 m of the sensor station,

while heavyweight tracked vehicles were detected beyond 100 m. Due to this vari-

ation, the total number of detection events per vehicle ranged between 1200 and

5500. Averaging over the nine vehicles, 96.64% of the acoustic energy for more than

32000 detected events was found to be in the range 0 Hz to 250 Hz.

For classification, a three-layer feed-forward neural network (FNN) was utilized

with sigmoid neuron transfer functions. Harmonic amplitudes from each window

(ak or αk) were used as the feature vectors and fed as the FNN input layer. Forty

hidden neurons made up the middle layer, while the output layer consisted of 9 neu-
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rons representing each of the vehicles. The network was trained using the resilient

back-propagation algorithm (Rprop) [99]. For all results, 1/3 of the total number of

detected events were randomly selected for network training with the remaining 2/3

used for testing.

Harmonic amplitudes were calculated using the AHT of Section 3.3 with three

harmonic models each with an assumed F̂F = 5 Hz (less than half the expected

range of 8 Hz to 20 Hz) and M={25, 50, 100}. This approximated the deterministic

signature in the bands 5–125 Hz, 5–250 Hz, and 5–500 Hz, respectively. Single-event

detection, false alarm, and classification rates are shown in Table 3.2. Military

vehicle acoustic signature single-event classification rates ≥ 80% are considered

excellent [100].

From Table 3.2, we conclude the transform was capable of extracting distinctive

features sufficient for acceptable vehicle discrimination. Note that this was with-

out estimation of the fundamental frequency or exact number of harmonics. For

constant spectral resolution (5 Hz), the capability to discriminate among military

vehicles using harmonic amplitudes increased with bandwidth (increasing M) up to

250 Hz. Further increase in bandwidth beyond 250 Hz gave little improvement. This

matches with the sample spectrograms in Figure 3.4 which show little signal energy

above 250 Hz except when the vehicle is passing very near the station. Separate

studies reducing the spectral resolution below 5 Hz for the same bandwidths did

not yield significantly better classification rates considering the increase in feature

vector length [4].

Previously published classification results from this data set include the original

research [89] and more recent work [91]. The first study extracted spectral informa-

tion with the FFT and employed learning vector quantization (LVQ) for classifica-

tion. For 5 Hz resolution, a 88.02% average correct single-event classification rate
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Table 3.2: Military vehicle single-event detection, false alarm and classification
rates, from [4]

Number of harmonics, M 25 50 100

Vehicle Type F̂F = 5 Hz

D
et

ec
ti

on
ra

te
(%

)

Leopard 1 TH 92.87 96.20 95.83
Leopard 2 TH 81.25 90.91 91.85
Jaguar TH 80.09 90.16 88.79
M48 TH 88.09 95.62 95.47
Wiesel TL 77.42 82.95 86.62
Fuchs WH 81.89 88.79 87.66
Hermelin WH 53.04 66.77 64.82
MB1017 WL 49.39 59.02 65.94
Unimog WL 56.81 64.20 63.77

F
al

se
al

ar
m

ra
te

(%
) Leopard 1 TH 1.33 0.89 1.09

Leopard 2 TH 5.15 2.48 2.69
Jaguar TH 3.87 2.30 2.14
M48 TH 2.08 0.63 0.55
Wiesel TL 3.29 2.27 2.21
Fuchs WH 2.49 1.98 1.64
Hermelin WH 1.58 1.26 0.89
MB1017 WL 2.10 1.54 1.70
Unimog WL 1.04 0.56 0.59

Classification rate (%) 80.00 87.73 88.14

Type key: T=tracked, W=wheeled, H=heavy-weight, L=light-weight

was achieved. Both estimated and fixed fundamental frequencies were used with the

time-domain harmonic amplitude (TDHA) spectral extraction of [91]; the classifi-

cation rate with a fixed FF of 5 Hz was 85.20% while using an estimated F̂F close

to 5 Hz raised the rate to 90.38%. Feature vectors obtained from the first 50 coef-

ficients of a 5 kHz, 1024-point FFT (4.88 Hz resolution) were also evaluated in [91]

and gave a 88.02% classification rate. These results are comparable to the 88.14%

single-event classification rate achieved here but with substantial reduction in com-

putation complexity especially compared with FFT. Extensive cross-validation

studies were done between randomly-selected sets of events for training and test-

ing similar to those done in [91]. The processing approach described in this work
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presents comparable performance with the promise of much lower power require-

ments.

3.6.2 Case Study II: Identification of bearing faults in

rotating machinery

Induction motor failures may be classified as bearing, stator, broken rotor bar, end

ring, or eccentricity-related faults [101]. These faults may lead to increased vibra-

tion and noise levels and can be detected by monitoring machine vibrations, acous-

tic emissions, or motor current signals.

Unlike the other fault classes which have signatures directly related to shaft

speed, bearing-related faults are difficult to represent with a single harmonic model.

The natural mechanical resonance frequencies of the machine are modulated by the

defect frequency resulting in spectral components that are not harmonics of either

the defect frequency or the machine’s natural resonance frequencies [101]. The de-

fect frequencies generated from specific faults depend on their location within the

bearing structure (inner or outer race, ball, cage) and the bearing assembly’s geom-

etry. Amplitudes of the defect frequencies have been shown to be an indication of

the severity in [102].

The data set from [103] is a collection of accelerometer data from the introduc-

tion of single-point faults to test bearings mounted in a 3-horsepower induction

motor. Bearings were separately prepared with 7, 14, and 21 mil diameter faults on

a ball, inner race, or outer race. The signal from an accelerometer mounted on the

motor housing at the drive end was recorded at motor loads of 0− 3 horsepower. Fig-

ure 3.5 shows representative vibration spectra of the signals for normal operation

and with the different bearing fault types.
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Figure 3.5: Vibration spectra of an electric motor with various drive-end bearing
faults at 1772 RPM and 2 HP load.

Under normal operation, most energy is concentrated below about 2 kHz while

the presence of faults moves this energy into the 2 kHz to 4 kHz band. A single

harmonic model with F̂F = 100 Hz was chosen to give sufficient resolution to ex-

tract the spectral envelope without attempting to identify and match individual

intermodulation components. Doing so would require sub-Hertz resolution and

knowledge of the exact shaft speed and bearing geometry as shown in [104]. A

similar neural network and training procedure to the one used in Case Study I in

Section 3.6.1 was used for classification of the bearing fault.

Table 3.3 shows the classification results for three values of M={10, 20, 40} cor-

responding to upper frequencies of 1, 2, and 4 kHz, respectively. It is clear that the

lower 10 harmonic amplitudes are sufficient for discriminating a healthy bearing but

not for identifying the type of defect. To identify the defect type, at least 20 har-
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Table 3.3: Bearing fault single-event detection, false alarm, and classification
rates, from [4]

Number of harmonics, M 10 20 40

Bearing Fault F̂F = 100 Hz

D
et

.
(%

) No fault 99.68 99.83 100.00
Ball fault 83.80 94.34 98.79
Inner race fault 86.70 96.04 98.93
Outer race fault 76.73 94.90 98.49

F
.A

.
(%

) No fault 0.10 0.03 0.00
Ball fault 9.28 2.16 0.45
Inner race fault 1.22 0.85 0.33
Outer race fault 6.23 1.66 0.39

Classification rate (%) 87.20 96.42 99.09

monics are required to reliably approximate motor vibrations. A harmonic model

with more than 40 harmonics has little advantage since there was little vibration

energy above 4 kHz. Previously published classification rates using this data set

were in the range 82.8–100%, as summarized in [104].

3.7 Feasibility of Hardware Implementation

The Analog Harmonic Transform has features well-suited to analog-domain imple-

mentation. The results of using this approach in Section 3.6 show that it is compet-

itive in terms of classification performance with state-of-the-art techniques, while

presenting the promise of very low-power analog implementations. This section ex-

plores an example system model which exploits these analog-friendly features and

deterimines relevant hardware specifications that would be required to maintain

good system-level performance.

Figure 3.6 shows a top-level block diagram of such a system. The input ampli-

fier low-pass filters the signal to the maximum expected harmonic frequency and

distributes the resulting signal to the projection blocks. Each harmonic projection
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Figure 3.7: Differential ±1 multiplier.

shares the common input and global timing signals, and receives individual configu-

ration information from the Main Control. The circuitry for each projection block

can then be identical, allowing a highly regular circuit implementation to minimize

inter-channel differences.

3.7.1 Transform Features and Architecture

Chapter 4 presents a complete, integrated-circuit design of a system which can

implement the AHT. Here, the major and common characteristics of any circuit-

level AHT implementation are discussed.
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Figure 3.8: Harmonic projection channel block diagram.

Multiplication of the input signal by the basis function values of ±1 may be

viewed as a conditional signal pass-through or inversion. Using a differential signal

path, this inversion is simply a re-labeling of the signal branches as illustrated in

Figure 3.7. This reduces the signal-basis multiplication operation to a double-pole

double-throw switch which is readily implemented with analog switches. Without

this simplification, the necessary continuous-valued four-quadrant analog multi-

plier would dominate the noise and distortion performance of the signal path. In

addition, the real-time basis function generation circuitry does not need to create

synchronized sets of quadrature sinusoids of sufficient purity. The required switch

timing signals may be readily generated by several analog or digital techniques such

as multiplying phase-locked loops or numerically-controlled oscillators (NCO).

Figure 3.8 shows the general contents of each harmonic projection block. A dig-

ital NCO is shown generating the basis functions under control of a system clock

and frequency control word. The modulated signal is then integrated by a number

of techniques which could be as simple as an RC filter of appropriate time constant.

Depending on the integrator implementation, the time constant can be made to

span orders of magnitude, supporting applications with wide-ranging fundamen-
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tal frequencies such as vehicle classification (8–20 Hz) and bearing fault detection

(100–1000 Hz) with the same circuitry.

Other projection systems use a similar hardware topology but employ Com-

pressive Sensing concepts for basis function generation [105, 80, 84, 83]. However,

the basis function generators in [80] must be operated at greater than twice the

maximum signal frequency to achieve the required randomness for CS-based re-

construction. The chipping rate can be reduced to sub-Nyquist [81] under certain

signal-dependent assumptions but is still tied to the signal’s maximum frequency.

For the AHT, the basis functions are always less than or equal to the maximum

signal frequency and equal to the desired harmonic frequency which is, in general,

substantially lower than the maximum frequency.

Also featured in this topology is the low bandwidth requirements placed on

the active circuitry; only the input buffer amplifier must operate over the entire

signal bandwidth. The integrators in the projection blocks only need response on

the order of the integration time window T . Power dissipation in many integrators

is inversely proportional to their time constant, leading to inherently low-power

operation.

3.7.2 Hardware Error Sources

Errors introduced into the computation of Equation (3.2) by hardware may result

in degraded system-level performance. The effects of non-ideal computation must

be accounted for in order to both determine the system’s feasibility and to set the

required hardware design specifications which maintain acceptable system-level

performance. These errors may be combined into five classes: timing, distortion,

random noise, gain, and offset. Figure 3.9 shows a simulation model of the har-



43

T∫
0

dt

T∫
0

dt

yI,Qk

noiseh gain1 offset1

gainM offsetM

x(t)

noisei

noiseh

Nonlinear
distortion

Figure 3.9: Simulation model of hardware error sources.

monic projection paths which model the major sources of errors. Varying the ran-

dom noise magnitude, the gain variance, and the offset variance and evaluating

the resulting simulated system-level performance allows mapping a set of hardware

specifications to achieve for a successful circuit design.

3.7.2.1 Timing Errors

These errors come from basis function generation and reset/readout delays in the

integrators. Jitter in the basis function waveforms broadens the spectral sensitivity

of the channel. For an NCO-based function generator, employing a sufficient num-

ber of phase accumulator bits and reducing the ratio of highest frequency harmonic

to digital clock rate fM/fclk can render these errors insignificant. For example, if

a system clock of 32.768 kHz is used in the system from Case I with a 16-bit phase

accumulator, the highest harmonic of 200 Hz would have a peak cycle-to-cycle vari-

ation of only 0.6%. Using n · FF multiplying PLLs would give exact timing at the

expense of increased startup time to achieve phase lock and larger power consump-

tion. Due to the general ease of minimizing timing-related errors compared to the

other types, they are not included in the simulation modelling.



44

3.7.2.2 Distortion Errors

Waveform distortion from input amplifier and integrator nonlinearity generates

additional signal-related frequency content in addition to that of the original in-

put signal. The net effect of this is additional terms in the matrices UI,Q in Equa-

tion (3.8) below the diagonal entries, invalidating its upper-triangular property, and

compression of the diagonal entries at large input amplitudes.

The input amplifier and the integrators are the only active elements in the signal

path which would typically contribute significant waveform distortion. Generally,

distortion is to be avoided in the signal path and may be assumed to be mild and

primarily related to the amplifiers’ finite input range. This suggests a frequency-

independent model which describes output clipping behavior. The specific function

shape, vout = f(vin), is extracted from transistor-level simulation of the hardware

design from Chapter 4. Because this is independent of time and a function of ampli-

tude only, it has the same effect at any point before the idealized integrator in the

simulated signal path. To ease the computational burden, the distortion function is

placed at the input to the system. Figure 3.10 plots the transfer characteristic used

in the study.

3.7.2.3 Random Noise Errors

Random noise including 1/f, thermal, and switching noise will add random variation

to the input signal. The total effect, after projection, may be modelled as a random

variable added to each output yIk and yQk. An alternate model, and preferred in

this case, of these sources is to collapse all noise sources into a source at the signal

input with an equivalent total spectral density. Each projection channel shares the

common input signal but is operated independently from the others. Therefore,
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Figure 3.10: Static vout = f(vin) transfer function extracted from circuit simula-
tion of the designed amplifier.

one noise source at the signal input models the equivalent input noise of the input

buffer and low-pass filter while a source at the input to each projection channel

models their equivalent input noise. The spectral densities of the channel noise

(noiseh) are identical because they represent identical circuits, but the time-domain

noise samples must be generated independently. Noise source (noisei) then only

represents the noise contribution of the input amplifier. Figure 3.11 plots the noise

spectral density used for simulation. This density represents the output current

noise of the designed amplifier.

3.7.2.4 Gain Errors

Gain errors arise from unequal amplifier gains from the input to the individual

projection blocks and integrator time constant variations; the latter may vary by
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Figure 3.11: Spectral density vs. frequency for noise modelling.

as much as a factor of three with poor design and physical layout. The cumulative

effect is a random scaling of each harmonic amplitude. Due to their nature, these

errors may be considered fixed for a given IC sample and operating conditions.

This error type directly challenges the assumption that each hardware projection

channel operates identically. Fortunately, once the gain-related error for a given

channel has been characterized, its output may be scaled by the inverse of the gain

error.

The modelling of this error simulates selecting a “virtual chip instance” (VCI)

which represents a unique set of channel gains or gain vector. Any usage of this

VCI in subsequent system testing scales the individual channel outputs by the in-

stance’s set of channel gains. They are assumed to be samples of a random variable

with mean of one and variance describing the across-chip, or across-wafer varia-

tions expected or measured for the design. For this study the random variable was
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assumed to be normally distributed.

3.7.2.5 Offset Errors

Each projection path output will also yield a non-zero output for a zero input sig-

nal due to DC shifts and offsets accumulated through the signal path. Transistor

mismatch in the integrator, residual charge injection from the multiplier switches

and reset/read integrator switches contribute to this error. Harmonic amplitude

outputs then appear with a static shift in value. Amplifier offset calibration along

with correlated double-sampling techniques can be effective for reducing this type of

static error.

Similar to the gain errors, these offsets are relatively fixed for a particular VCI

channel. These are samples of a zero-mean random variable. Additionally, they are

are assumed to be normally distributed in this study.

3.7.3 MATLAB Modelling

Modelling of both random noise and random fabrication errors was included in

Matlab by system instance generator function makesystem, whose call signature is

summarized in Table 3.4 and example usage in Table 3.5. Each call to makesystem

yields a randomly-generated set of gain and offset coefficients which corresponds to

a single VCI. This allows investigation of classifier robustness to training and test-

ing on the same simulated chip instance, training and testing on different hardware

instances, or training on an ideal system and testing a hardware sample.

System instance noise generators sys.inoise and sys.hnoise use spectral den-

sities and power levels obtained from transistor-level simulations. At the low fre-

quencies used for the example applications, circuit noise will be dominated by 1/f
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Table 3.4: makesystem function signature description.

sys = makesystem(measfile, nChan, Fs, seed)

Inputs:

measfile - data from analog simulations in .mat file

nChan - number of channels to instantiate (= 2 * nHarmonics)

Fs - sample rate

seed - initialization seed for random number generator

Output sys structure members:

.h - nChannels length vector of structures

.h(n).gain - instance gain, N(1, gain_variance)

.h(n).offset - instance gain, N(0, offset_variance)

.inoise(k) - function yielding k samples of input amp noise spectrum

.hnoise(k) - function yielding k samples of channel noise spectrum

.amplifier(vec) - function applying amplifier nonlinearity to vec

Table 3.5: Example harmonic coefficient generation including hardware modelling.

inst_seed = rand();

sys = makesystem(’amp_meas.mat’, 50, 44100, inst_seed);

vec = vec + sys.inoise(nsamples); % add input amp noise

vec = sys.amplifier(vec); % amplifier nonlinearity

for n = 1:nHarmonics

% dot product, mult-int

c(n) = basis_i(n) * (vec + sys.hnoise(nsamples));

s(n) = basis_q(n) * (vec + sys.hnoise(nsamples));

% instance gain + offset errors

c(n) = (sys.h(n).gain * c) + sys.h(n).offset;

s(n) = (sys.h(n).gain * s) + sys.h(n).offset;

end
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noise and it is therefore important to use colored noise for modelling. Individual

channel gain and offset errors are dominated by geometry and doping variations

and are considered fixed for a given instance. Temperature variations are not mod-

elled.

3.7.4 System Classification Rates with Hardware Errors

Verification of the technique including estimated analog hardware error sources was

conducted by replacing the explicit computation of Equation (3.2) with the system

described by Figure 3.9 and calculated similar to the pseudo-code in Table 3.5. In-

stances of noiseh have identical spectral densities but are generated independently.

The low FF of the vehicle classification case study presents very severe hardware

requirements (much longer time constant) and correspondingly larger potential

errors than those of bearing fault detection in Section 3.6.2. Initialization data

for the error modelling was obtained from a system design implemented in a stan-

dard 0.13 µm CMOS process [1]. Because the amplifier/integrator distortion can

be estimated a priori, event windows randomly selected for training the FNN were

subjected to the same memoryless nonlinear distortion function, extracted from

transistor-level simulation.

Neural network training was performed on a system instance which included the

distortion but whose σgain, σoffset, and noise magnitudes were set to zero. Signal-

to-noise ratios (SNR) were set by scaling the input amplitude with respect to the

noise density and power extracted from transistor-level simulations. Therefore, the

total vehicle recording is considered “signal” for these simulations even though the

recordings contain additional environmental and other noise. System-level vehicle

classification rates were then simulated at two noise levels and over a range of gain
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Figure 3.12: Average classification rate variation over gain/offset standard devia-

tion and added noise values.

and offset error standard deviations.

Figure 3.12 plots a contour map of average system-level classification results

for a range of gain/offset standard deviations and noise levels. It is clear that gain

variations with standard deviations up to 25% have little effect on classification per-

formance. However, classification rates are much more sensitive to offset variations.

Offsets have the effect of consistently over-estimating the signal energy at that har-

monic, even if there is insignificant signal content at that particular frequency.

The boxed region of Figure 3.12 then indicates the range of errors allowable to

maintain good system-level performance. For full-scale circuit outputs of ±1.2 V,

this represents relative offset variations on the order of 1%. This region therefore

sets the target hardware design parameters for the vehicle classification application

of Section 3.6.1.
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Chapter 4

Hardware Design

4.1 Introduction

This chapter describes the design of the major sub-modules of a prototype chip

which can perform the AHT operations. It includes extensive digital control to

achieve the required performance and to facilitate collection of repeatable, docu-

mented testing conditions and data.

Before more detailed design and chip layout activities were done, the primary

digitally-tuned OTA-C integrator was designed and simulated to determine the

feasibility of the system in Section 4.2. The prototype chip’s overall architecture is

described in Section 4.3 while the AHT system circuitry is found in Section 4.4.

Section 4.5 describes the AHT hardware design in increasing levels of detail. A

comprehensive description of the OTA as fabricated is provided in Section 4.6.

To assist with managing the many digital tuning control points of the system, a

micro-processor was included on the chip. The adaptation of a MSP430-compatible

design fabricated in a 0.18 µm process to this 0.13 µm chip forms the content of

Section 4.7.
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Figure 4.1: Scatter plot (top) and histograms showing pre- and post-calibration
integrator offset error for 100 Monte Carlo simulations. Pre-calibration values in
the scatter plot are in blue while the post-calibration offset values are red. Note the
horizontal scale change for the right post-calibration histogram. Adapted from [1]

Appendices A and B include additional information relating to the use of My-

HDL [106] for the design and unit-testing of the custom digital modules. This is a

hardware description language (HDL) based on the Python programming language

which eases the creation and testing of digital designs.

4.2 Initial Design Exploration

To determine whether the target offset values generated in Chapter 3 are feasible,

we performed Monte Carlo simulations of a transistor-level integrator design which

included offset calibration circuitry. Figure 4.1 summarizes the offset error from 100
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random instances both before and after internal calibration [1]. Circuit calibration

brought the unacceptable offset standard deviation of 41 mV down to around 1 mV.

Because this simulated post-calibration error is well below the estimated 10 mV

upper bound, it is expected that most chip instances from this design would be

able to achieve acceptable system-level performance [1]. Such on-chip calibration is

necessary to achieve (offset) errors within the feasible region of Figure 3.12.

The single-channel integrator used for this study dissipated 200 nW when tuned

for a 5 Hz FF [1]. Thus, with two projections per harmonic and the parameters

M = 50 with a 200 ms integration time of Case Study I, the feature vector compu-

tation would consume 4 µJ of energy. This energy consumption is three orders of

magnitude less than the 5100 µJ FFT computation energy measured in [88] for a

similar military vehicle classification application. After projection, the ADC would

sample the 100 quadrature projection results and pass the data to the classifier or

other back-end system processing.

On-chip custom FFT implementations can naturally use less energy for compu-

tation, such as [65] using 116 nJ per 128-point transform. This does not include the

system overhead for loading the input data and reading the result. Common pro-

cessors utilized for wireless sensor systems include the MSP430 series [107] which

requires approximately 1.5 nJ per instruction to move data in memory. For the

128-point custom hardware, this requires loading 128 real values and reading 64

complex values for a total energy use of 0.69 µJ. Circuitry used in the AHT can be

re-purposed for other signal processing tasks when not actively projecting, reducing

the increased die area penalty. Due to their continuous-time operation, they can

be also used as a real-time spectral energy detector to trigger further digital pro-

cessing; FFT-based techniques by their nature require the system processor to be

active.
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4.3 Prototype chip architecture

A prototype chip was created to evaluate the hardware-level performance of the

AHT system, its sub-parts had several features to enable testing. A functional

block view of the chip is shown in Figure 4.2.

A 0.13 µm mixed-signal CMOS process from IBM, “8RF,” was used for the pro-

totype. The initial part of the design effort was to update the UNL Advanced

Chip Design Group’s portfolio of capabilities to include this process. Prior to

this project, the most advanced process available for research prototyping was the

previous-generation IBM 0.18 µm CMOS process, “7RF.”

Critical to configuring the software environment for the new process design kit
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(PDK) was verifying the proper setup to integrate both full-custom schematic and

hand layout with an automated digital design flow. Some differing conventions

between the full-custom and digital portions of the PDK were un-documented and

found to be in error. These errors were fixed to bring the PDK configuration in line

with IBM’s master process documentation.

Finally, the design rule checking scripts provided in the PDK were inconsistent

with the published design rules. One such configuration error caused the digital

design flow to generate artwork guaranteed to fail the design rule checks. Another

necessary change was the addition of rules to properly check layouts which included

black-box intellectual property (IP) cells whose complete layout was not available.

After the PDK setup and validation with this project, the IBM “8RF” process is

available for other advanced prototype chip designs. For example, this accelerated

the design of the “PIRANHA” imager with focal-plane digital processing. This

design is inherently an analog/digital hybrid and therefore required a PDK with

consistent and correct checking and setup.

The core of the design is the “AHT Harmonics” block which contains a parallel

bank of 48 quadrature harmonic paths. These, and the other bank, share a com-

mon differential input, inA / inB, and common-mode input, cm. The architecture

and design of this module is described in later Sections 4.4, 4.5, and 4.6. Analog

coefficient signal outputs from each of the integrators is applied to a multiplexer

and buffered by a pad driver for off-chip measurements.

A second bank of 16 projection channels is included as “Arbitrary Fn.” For

these channels, the internal digital NCO basis function generator is disconnected

from the multiplier. The multiplier inputs are provided from the on-chip micro-
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processor to use arbitrary ±1 functions besides the AHT’s 50% duty-cycle quadra-

ture square waves. Also, two of the integrator outputs are routed to both the multi-

plexer and directly to pads. This allows observation signals before the multiplexer,

bypassing the pad drivers.

Block “NS430” is a custom micro-processor which is code-compatible with the

TI MSP430 family of commercial micro-controllers. Through a switch, it can con-

trol the rest of the chip via SPI, a serial data connection. Section 4.7 describes the

processor in more detail.

4.4 AHT System Architecture

Figure 4.3 shows the AHT system architecture implemented in the hardware, first

shown in Figure 3.6. The basis function projection blocks represent the majority

of the system design work. For the prototype, the Input Amplifier and signal pre-

processing functions are performed off-chip and the Main Control is implemented in

software with a serial communication link to the controlled projection blocks.

4.5 Basis Function Projection

Each quadrature projection section consists of a local digital block and two identi-

cal multiply-integrate channels. The digital section uses the 1.2 V nominal digital

supply while the channels operate from the 2.5 V nominal analog supply rail. Logi-

cal control signals cross the boundary through a level translator block.
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4.5.1 Local Digital and Switching

The digital section contains the quadrature basis function generator, two OTA tun-

ing registers, integrator control, and a serial communication port. Figure 4.4 illus-

trates the hardware description level (HDL) design hierarchy and inter-connections.

These modules used MyHDL [106] as the design input language and made use of

the software’s automatic Verilog or VHDL output conversion.

All configuration information is passed into the SPI register and distributed

to the NCO and switch control. The reference clock for the NCO is separately

passed in. To facilitate abutting the harmonic blocks in the circuit layout, the SPI

and NCO clock signals pass through each block on opposite edges. The following

sections describe the digital sub-blocks in more detail.
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4.5.1.1 Serial Communication

The serial peripheral interface (SPI) was chosen for simple communication of the

harmonic control parameters from the system host processor. It is a serial interface

with a dedicated clock signal scl, serial data input din, active-low chain select cs,

and serial data output. Daisy-chaining the next harmonic’s din to the previous’

dout causes the interface to appear to the processor as a long shift register. The

register is 48-bits wide with the logical layout given later in Table 4.1.

Figure 4.5 shows a schematic representation of the serial peripheral interface

(SPI) for loading configuration values from the processor. The configuration corre-

sponds to the standard SPI mode denoted by CPOL=0 and CPHA=0, or mode 0. This

mode corresponds to the clock line scl which idles low (CPOL=0), and which samples

data on the clock’s rising edge while propagating data on the clock’s falling edge

(CPHA=0). Start of a data transfer is indicated by a falling edge on the cs line. Data

is then applied to the din pin synchronized with the scl data clock line. When all

bits have been shifted in, the controller raises the cs line which latches the current

state of the shift register into the data output storage. This ensures that the data

output bits do not change as a new data word is being shifted in.

The relative timing or skew between the SPI signals can degrade as they propa-

gate through a long chain of harmonic sections, possibly violating register setup/hold

times at the end of the chain. Also, the clock scl, chain-select cs, and reset sig-

nals are common to all sections and could present a large load to the input driver.

Buffers inserted in these signal lines minimize the load and allow the signal to prop-

agate evenly down the chain. Finally, the D flip-flop labeled “sample” in Figure 4.5

samples the incoming data bit on the rising edge of scl while the data is shifted on

the falling edge of scl. This bi-phase sample-shift operation ensures there will be
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Figure 4.6: Numerically-controlled oscillator with M-bit phase accumulator, M-
bit phase increment word, and quadrature output bits.

no skew-related timing errors at any point in the chain if the condition that the scl

period is longer than twice the longest propagation delay through the entire chain

is satisfied — the interface has a maximum shift rate but by design it has no lower

rate limit and is inherently immune to timing skew.

Appendix A describes the MyHDL code for the SPI slave module in detail as an

example of digital module development using the tool. One advantage with using

MyHDL is the ease of implementing test benches for verification of modules. The

fact that the tool is written in python, a general-purpose programming language,

with features added to describe digital hardware at the register transfer level en-

ables natural description of digital behavior. This is in contrast with the prevailing

HDL languages Verilog and VHDL, which must use the limitations of a hardware-

oriented language to describe high-level behavior.

4.5.1.2 Basis Function Generator

The quadrature basis function generator is implemented as a numerically-controlled

oscillator (NCO). Figure 4.6 shows the functionality of the NCO, consisting of a

phase accumulator (PA) register which holds the current phase value, an adder
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for incrementing the phase by the value FCWL, and an adder which increments

a static 1/4 of a phase accumulator offset. The most-significant bit of the phase

accumulator is used as the quadrature output. Calculation of the in-phase offset in

practice does not require a full-width N-bit adder, it only uses a 2-bit adder for the

upper two bits of the PA and therefore has little hardware impact.

For a given reference clock frequency fref , N-bit phase accumulator width, and

phase increment FCW, the average output frequency and available frequency resolu-

tion are

fout = fref
FCW

2N
(4.1)

∆f =
fref

2N
. (4.2)

While the average period of the output signals are as described by Equation (4.1),

the instantaneous periods vary between the two integer multiples of the reference

clock period fref on either side of the average value.

4.5.1.3 Tuning and Projection Control

The digital block SwitchCtl from Figure 4.4 is a combinational logic block which

translates the multiplier command and settings from the SPI register and outputs

control signals to the various switches. Table 4.1 describes the bit layout of the

48-bit SPI configuration register. For each quadrature harmonic projection block,

there are two instances of projection channels and one digital control block which

handles both channels.

Besides the global chip reset, the NCO basis function generator has a reset con-

figuration bit rst to ensure all the generators operate with a known phase relation-

ship to other harmonic projection blocks. The projection channels are configured to



62

bit # 47 [46:32] [31:16] [15:0]
block Ch.-A,B NCO Channel-A Channel-B
name cal rst FCW13:0 cintA zeroA seA fastA tuneA11:0 (same)

Table 4.1: Bit layout of the 48-bit SPI register for each harmonic projection.

cal se Description
0 0 Differential input signal multiplied by basis function.

OTA in open-loop.

0 1 sigA or sigB connected to OTA + input based on mult state.
OTA in unity-gain feedback.

1 0 Both OTA inputs connected to CMI.
No feedback.

1 1 CMI connected to OTA + input.
OTA in unity-gain feedback.

Table 4.2: Projection channel operation mode as a function of the cal and se
configuration bits.

be run in both single-ended and differential input modes during operation according

to the state of the se bit. Configuration bit cal turns on the offset calibration mode.

The OTA’s switchable mirror ratio discussed in the next section is controlled by the

fast bit. Finally, bit Cint controls whether the integration capacitor is connected

to the amplifier output and bit zero resets the integration capacitor’s voltage to a

mid-supply level.

Nine transmission gates switch signals around the OTA and integration capaci-

tor under control of the SwitchCtl block according to the selected mode. Table 4.2

describes the four operation modes provided by the cal and se configuration bits.

Digital offset and gain tuning control for each OTA are provided by the two 12-

bit tuneA and tuneB words. For the current design, the gain and offset tuning code

values used 4- and 8-bit resolutions, respectively. This feature is described in more

detail later in Section 4.6.1.

Figure 4.7 shows a higher-level overview of the analog portion of the projection
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Figure 4.7: Conceptual schematic of analog projection channel showing multi-
plier, OTA, and integrating capacitor along with control signals.

channel. Two of these channels are included to implement the in-phase and quadra-

ture portions of the harmonic projection. The input signal x is applied differentially

as x = xa− xb, multiplying by ±1 under control of the mult signal. The zero and

cint switches allow disconnection of the integration capacitor from the output node

and to reset its voltage to the common-mode voltage (the functional “zero” level

for bi-polar integration outputs). Figure 4.8 shows the schematic of the projection

channel circuitry with the nine transmission gate switches, OTA, and integration

capacitor.

4.5.1.4 Level Translators

The digital portion operates from a nominal 1.2 V supply rail while all analog cir-

cuitry operates from a separate 2.5 V nominal supply rail. Control signals which

cross the digital-analog boundary must then be translated to the appropriate logic

levels. Each translation cell handles a single, differential pair of control signals.

Figure 4.9 shows a single cell of the level-translation circuitry as a bi-stable latch

structure. Digital inputs are applied as signals inA and inB to the 2.5 V-capable

input transistors T2 and T3. Cross-coupled transistor pair T1 and T0 provide a

positive-feedback action to quickly snap the output nodes outA and outB to either
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node out.
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Figure 4.9: Level translator schematic.

the analog supply voltage AVDD or zero. Input transistors are sized to apply a

strong enough pull-down to force the latch out of its current state. The PMOS

cross-coupled pair are sized to provide a very weak pull-up, with a weak aspect

ratio of (W/L)p = 0.48/2.40µm.

4.5.2 Analog Integrator

The multiplied waveform is integrated in the analog domain with an OTA-C type

integrator. A voltage input signal is converted to an output current with the op-

erational transconductance amplifier (OTA) with a transfer ratio of Gm A/V as in

Equation (4.3). This current is applied directly to a linear capacitor Cint and the

output Vout is taken as the capacitor voltage. Equation (4.4) shows the relation-

ship between an input signal integrated for time T and the resulting output voltage

value.

iout(t) = GmVin(t) (4.3)
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Vout =
1

Cint

T∫

0

iout(t)dt =
Gm

Cint

T∫

0

Vin(t)dt (4.4)

Figure 4.7 shows a representative schematic of the tunable OTA-C integrator.

The integrator time constant required, τ = Cint/Gm, depends on the integra-

tion time, input voltage amplitude, and output voltage range. At very long time

constants, the capacitor should be as large as possible to relax the corresponding

OTA’s ultra-low Gm requirement.

The IBM-8RF process used for the prototype has a dual-MIM, or metal-oxide-

metal-oxide-metal, parallel-plate capacitor option which allows relatively high den-

sity, linear capacitors. The lower and upper plates are shorted together to make

one plate while the middle metal forms the second plate of the capacitor. Active

circuitry is allowed below the capacitors in the process and thus allows area-efficient

implementations utilizing large capacitors. For this design, the integration capacitor

Cint was set to 44 pF. This value corresponds to a capacitor which is only slightly

larger than the rest of the OTA layout. Such a capacitor size ensures maximum

utilization of available chip area. Due to the complexity of the OTA designed for

this system, it is described separately in Section 4.6.

4.5.3 Off-Chip Analog Output

Each of the 48 quadrature harmonic projection channels has two analog outputs. It

is not generally feasible to bring all 96 analog voltages off-chip for analog-to-digital

conversion at the end of an integration period. A multiplexer and analog pad buffer

are used to route each quadrature set signals to a pair of analog output pins on

the chip. These two output pins are routed to external ADCs under control of the

system processor.
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One analog output path multiplexes the in-phase harmonic output while the

second routes the quadrature channels. This configuration allows the simultaneous

sampling of a quadrature harmonic pair of channels to minimize time-dependent

leakage errors. The output to route off-chip and other settings in configured through

an SPI-based digital block similar to the OTA configuration block.

Each multiplexer output feeds the input to an amplifier which isolates the sen-

sitive on-chip nets from external influence. To reduce design effort, this buffer was

implemented as a copy of the channel OTA with a different digital SwitchCtl block

to allow unity-gain buffering and local offset calibration. This buffer is sub-optimal

due to its high output impedance and slow step response but is sufficient for proto-

type evaluation.

4.6 Wide-Range Digitally-Tunable OTA

Figure 4.10 shows the OTA implementation, described in detail in the following

sections. Bias currents I1 and I2 are digitally-tunable to change the OTA’s Gm

and to zero the offset current/voltage, described in Section 4.6.1. Differential input

transistors M1 and M2, along with linearization elements Ma and Mb perform the

main V/I conversion. Output current is generated as the difference between the

M1 and M2 drain currents scaled by the mirroring ratios of (M3:M5×M6:M7) and

(M4:M5), respectively. For this design, the mirror ratio (M3:M5) was set to unity,

while the output node mirrors were constructed with a switchable transfer ratio.

The mirror ratio switching is described in Section 4.6.2.
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Figure 4.10: OTA core schematic with common-mode generation.

4.6.1 Gain and offset digital bias current source

Because the major source of errors within the OTA are fabrication-related mis-

match, geometrical, and doping variations, they can be considered relatively con-

stant for a particular die-amplifier instance. Tuning techniques such as laser-trimming

and fusible links are not feasible for this type of system due to the large number of

instances present on a given die — it would be cost-prohibitive to measure and

tune each OTA after fabrication for small, inexpensive sensor node applications.

Due to the strict offset requirements of the application from Chapter 3, the

circuit offset must be tuned after fabrication to achieve acceptable system-level

performance. Though there are several offset-reduction techniques available as dis-

cussed in Chapter 2, the one here features a binary interface compatible with a

software-controlled tuning using the system’s already-present processor. In contrast
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Figure 4.11: Magnitude and offset bias current DAC.

with chopper-based and other self-adaptive techniques, there is no tuning-related

switching activity after the tuning procedure has finished. This reduces power con-

sumption and eliminates the need to shield or isolate the amplifier from the tuning

circuitry. The results of post-fabrication tuning will only vary as a result of envi-

ronmental factors such as temperature changes and common-mode variations, the

latter being minimized by the input conditioning circuitry.

Post-fabrication Gm and Vos tuning is achieved in this case by varying the two

core transconductor bias currents I1 and I2 in Figure 4.10. Increasing both cur-

rents increases Gm only, to a first order. Skewing the values effectively changes

the output offset voltage and current. If the current sources are implemented as

current-output DACs, a digital system controller has direct and repeatable control

of an individual amplifier’s Gm and offset. In systems already utilizing an analog-

to-digital converter and digital processor, calibration of the amplifiers requires no

additional hardware and can be performed on-line as needed when environmental

conditions change.

The amplifier bias current sources are composed of three coupled switched-
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current cells. Figure 4.11 illustrates the cell connections. Transconductance tun-

ing cells are M-bits wide and shunt the “off” current as shown in Figure 4.11. The

offset-tuning DAC has N-bits of resolution and steers its current to either the I1 or

I2 output. Transistors M1a and M1b of Figure 4.11 add a constant “pedestal” cur-

rent to each branch to narrow the Gm tuning range and increase resolution. Finally,

cascode devices M11 and M12 buffer current to the OTA.

Partitioning a (M +N)-bit tuning word into unsigned M-bit Gm (m) and signed

N-bit offset (n) values causes the two branch currents to vary as

I1 = Iref

(
ks + kg

m

2M
+ ko

n

2N−1

)
, (4.5)

I2 = Iref

(
ks + kg

m

2M
− ko

n

2N−1

)
, (4.6)

The terms ks, kg, and ko represent the ratios between the pedestal current, maxi-

mum gain, and maximum offset current magnitudes to a global reference Iref. Reso-

lution and span of the Gm and offset tuning ranges are varied by appropriate sizing

of the corresponding DAC sections.

Design of typical DAC cells expend significant effort on ensuring a linear and

monotonic output-versus-code behavior [108]. The DACs here operate within the

overall amplifier tuning system, meaning their errors simply contribute to the over-

all amplifier errors. They may then be compactly constructed with minimum-sized

transistors provided their range and resolutions are designed to be sufficient to tune

the composite gain/offset errors. Gradient-based tuning methods may settle in a

local minimum if the controlling DAC does not have a monotonic output versus

code characteristic.

Figure 4.12 shows the implementation of the switched-current cell. The volt-

age Vbias is generated by the global reference generator and is hence set by Iref .
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Figure 4.12: Current-steering I-DAC implementation schematic.
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Figure 4.13: IDAC outputs versus input code. Each of the 16 gain steps increase
both currents while there are 256 steps for each gain value which skew the two
output currents to tune the offset.

Binary-weighted currents are generated by the N-bit M/2M ladder with transistors

M2,3,6,7,10. Each current output is switched between nodes IoutA and IoutB ac-

cording to the state of the gate voltages of transistors M4,5 and M8,9. For example,

as drawn, each control bit generates true and inverse signals for the switch cells.

If bit b0 is low, M8 is switched on while M9 is off, steering the least-significant

current magnitude to the IoutA node.
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Figure 4.14: Current mirror ratio switching schematic.

Figure 4.13 plots simulation results of the designed gain/offset IDAC. The

“pedestal” current provided by transistors M11 and M12 in Figure 4.11 was set to

about 2 nA, demonstrated in Figure 4.13 as the minimum, non-zero value of each of

the two output currents.

4.6.2 Switched-ratio current mirror

The OTA transconductance is directly proportional to its bias current when the

input transistors are operated in weak inversion. Making the Gm range decades-

wide then requires stable master reference current variation over the same range.

Because the OTA reduces its transconductance by the current mirror technique, it

is relatively easy to change the output mirror ratio, allowing the bias reference to

operate over a smaller range.

Figure 4.14 illustrates the NMOS version of the switched mirror ratio. Transis-

tors M4a and M4b are composed of Ma and Mb unit-sized transistors in parallel,
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respectively, while transistors M8a and M8b are composed of the Na and Nb unit-

sized transistors in series, respectively, with a common gate connection. When the

switch signal fast is asserted, the gate of S1 is low and the gate of S2 is high. This

turns off switch S1 and forces all mirror input current through M4a. Switch S2

is turned on and nearly all the mirror output current flowing through M8a effec-

tively bypasses M8b. When the switch signal slow is asserted, the gate of S1 is high

and the gate of S2 is low. Switch S1 is then on, allowing the input current to flow

through the parallel combination of the diode-connected transistors M4a and M4b.

Since switch S2 is now off, the output current flows through the series combination

of M8a and M8b.

The resulting mirror transfer ratio in each mode is then

Iout
Iin

(fast) =
1

NaMa

(4.7)

Iout
Iin

(slow) =
1

(Na +Nb)(Ma +Mb)
. (4.8)

Achieving a factor of x decrease in output current (transconductance) from fast to

slow mode results in the relations

Na = (
√
x− 1)Nb (4.9)

Ma = (
√
x− 1)Mb. (4.10)

For the design, an approximately decade change was desired and the numbers of

unit transistors were set as

Na = 2.2Nb (4.11)

Ma = 2.2Mb, (4.12)
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Figure 4.15: Simulated OTA output current and calculated transconductance
versus differential input voltage for the slow and fast modes, 4 nA reference current
bias.

resulting in a factor of 10.89 change between fast and slow modes.

Figure 4.15 plots Iout and Gm versus differential input voltage at a 4 nA nominal

bias current in slow and fast modes. The designed OTA had sizing relationships of

L8b = 2.2L8a and W4b = 2.2W4a, mode switches then cause an approximately 10×

change in output current and transconductance. The plot also shows the character-

istic “dip” in Gm when both linearization diffusors are in triode mode. The range

for < 1% Gm variation is typically |Vid| = 115 mV.

Figure 4.16 shows simulated Gm versus bias current Iref with 10× range switch-

ing. Sub-pS operation indicated at pS-range reference currents suffer from numeri-

cal simulation issues. The device models used in these simulations are not qualified

at these extremely low currents. In fast mode and at the higher reference currents

transistors begin to transition into moderate inversion operation and reduce their

gm/iD efficiency as shown. This OTA is intended to operate at Gm’s from 10 pS to
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modes. Transistors leave the weak inversion region at the larger currents. Avail-
able device models from the foundry are not characterized at pA current levels.

100 nS. Mode-switching ratios greater than 10× may be designed to allow narrower

ranges of reference biases.

4.6.3 Linearization

Sub-threshold operation, required to achieve the low Gm, severely restricts the

OTA’s linear range. The single-diffusor, triode transistor was shown to be capa-

ble of the largest linear range, its disadvantage being the required generation of a

common-mode bias voltage for the triode transistor gate [49].

Differential pair degeneration simultaneously reduces Gm and moderately in-

creases the transconductor linear range. Large linearity increases require auxiliary

bias- or input-shaping [109] circuitry with corresponding increase in total amplifier

bias current and power, reducing efficiency.

For this design, two triode-mode transistors, Ma and Mb, are in parallel as the

diffusors. The body connections allow transistor groups M1,Ma and M2,Mb to
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share floating N-wells.

To generate the required diffusor gate bias with no external connections, we

employ the inherent leakage and parasitic capacitance of back-to-back Schottky

diodes D1-4 available in the CMOS fabrication process employed in the design.

Internal nodes between D1/D2 and D3/D4 vary between [Vinb, Vcm] and [Vcm, Vina],

respectively, but the center node between D2 and D3 extracts the common-mode

voltage due to the structural symmetry. The overall OTA schematic in Figure 4.10

shows the linearization transistors and common-mode biasing diodes.

4.7 NS430 Local processor

Included on the chip is an embedded processor which is code-compatible with the

TI MSP430x series of micro-controllers which include the 20-bit extended mem-

ory addressing instruction extensions. Original design and implementation of the

processor is described by Schemm in [110]. This processor core differs from the

TI version by adding some extended addressing and post-increment instructions.

Though the CPU instruction set itself is compatible with the TI parts, most of the

included peripherals are different in function and configuration. Only the differ-

ences from the last 0.18 µm CMOS version in [110] are discussed here, the primary

being porting the design to a new 0.13 µm CMOS process.

4.7.1 MSP430X-compatible CPU

The processor implementation is code-compatible with the TI MSP430X instruction

set, which adds 20-bit memory addressing to the original MSP430 features. Notable

exceptions to the compatibility is an addressing mode enhancement and a faster

multiplier module.
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Program code words beginning with the bits 00011 indicate the word is an ex-

tension and provides either the highest 4-bits of a 20-bit source/destination address

or specifies additional addressing modes and other features [107]. This processor

adds “indirect register” and “indirect auto-increment” addressing modes to those

specified by the original TI version [110]. Indirect auto-increment modes support

single-instruction, multiple-data operation, useful for multiply-accumulate opera-

tions of vectorized data.

The hardware multiplier peripheral for the processor is one clock cycle faster

than the TI version [110]. This eliminates the need to have a 1-cycle delay instruc-

tion following a multiply operation with certain addressing modes. Combined with

the addressing mode, this processor yields slightly higher performance for signal-

processing tasks.

Besides a small mask-programmable read-only-memory (ROM), described in

Section 4.7.3, the only program or data storage space is provided by 48 KiB static

RAM (SRAM).

4.7.2 Clock Selection Module

Two crystal oscillators were included on the chip. One intended for a 32.768 kHz

timing crystal and the second for an operation frequency in the tens of megahertz.

Both timing sources may be used as the CPU’s master clock. Bits 7:6 of the CPU’s

status register are named SCG1 and SCG0, respectively. The first bit in this imple-

mentation enables the high-frequency clock while the second bit selects the clock

source between the two options.

Clock switching circuitry must insure that glitches do not occur in the master

clock signal. These short-duration transitions can violate timing constraints of the
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CPU’s various registers and cause unpredictable behavior. Figure 4.17 shows the

schematic of a clock selection circuit which is guaranteed glitch-free from [2].

A multiplexer for data only uses only the last AND-OR stage of the figure. Each

clock is applied to a multiplexer input and is allowed to propagate to the OR gate

when the appropriate select code is applied. The modification of Figure 4.17 for

clock switching uses D flip-flop (DFF) synchronizers to re-time the one-hot select

signal into the respective input clock timing domain. For an arbitrary number of

clock inputs, the input to each synchronizer is a “1” only after the previous one-

hot select signal’s 1→ 0 transition has propagated through the last-selected clock

synchronizer. After a rising and falling edge of the previously-selected clock, a “1”

propagates through the newly-selected clock synchronizer on a rising then falling

edge and finally allows the output multiplexer to pass the new clock signal. The

net effect is to first disable the previous clock and then enable the next clock signal

in sequence, thus preventing glitches. Metastability is still possible at the input to

the first DFF in the chains, but has such a low probability to be negligible for most

applications – one in 150 years for two 100 MHz clocks [111]. A second DFF stage

exponentially reduces the occurrence of metastability problems in the synchronizer.

Appendix B.3 contains the myHDL code to generate a clock selection module

for an arbitrary number of clock inputs. The file also instantiates a 2-input version

which was included in the NS430’s digital design modules.

4.7.3 Boot ROM

Unlike the TI processors, this version does not include programmable non-volatile

memory such as EEPROM or flash. At power-up, all RAM locations are in an un-

known state and therefore unsuitable for code execution. A small mask-programmable
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Figure 4.17: Glitch-free clock switching for two inputs. Image from [2].

ROM is present to assist in initializing the processor and RAM to a known state.

The program counter is loaded with the first ROM address location by design

and code execution proceeds with the ROM contents. Code stored in the prototype

chip’s ROM was able to initialize an externally-connected flash chip via SPI port

0, copy its contents into the static RAM, and then jump to the first RAM location.

This feature allows programming the flash chip by other means and also pre-filling

the processor’s memory with custom code and data.

4.8 Conclusion

This chapter described the design of the prototype chip and its various digital and

analog sub-modules. The initial design exploration showed that an OTA with digi-

tal offset tuning was capable of reducing post-fabrication offsets to a level to main-

tain good system-level performance. Successive sections described the top-down

design of the hardware from the overall layout to the core tunable OTA of the AHT

coefficient calculation circuitry. Finally, aspects of the NS430 processor not de-
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scribed in previous documents were discussed.
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Chapter 5

Prototype System Testing

5.1 Introduction

The design described in Chapter 4 was fabricated in a 0.13 µm CMOS process and

received for testing. Figure 5.1 is a composite microscope photograph of a fabri-

cated die. The layout follows the architecture description of Section 4.3, shown in

Figure 4.2. The NS430 processor is clearly seen in the lower-left while the regular

structure of the 48 main harmonic channels and 16 auxiliary channels wrap around

it.

Testing a prototype of this complexity required the design of a custom chip test

fixture to control, stimulate, and measure the chip’s function. The fixture and its

capabilities are described in Section 5.2. Software drivers and packages written to

provide a unified environment for testing sequences are separately covered in Sec-

tion 5.3. Appendix C includes schematics for the test fixture boards for reference.

Nearly all of the prototype chip sub-systems described in Chapter 4 were tested

and verified functional. Table 5.1 summarizes the state of each major or tested as-

pect of the system. The only failure was related to the mask-programmable ROM
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Figure 5.1: Die photograph assembled from a composite of optical microscope
pictures. The outer dimensions are 4 mm × 4 mm. Lower-left quarter of the die is
the NS430 processor with 48 kiB static RAM. The three full-width rows above the
processor are the 48 harmonic projection blocks while the shorter rows to the right
of the processor are 16 additional projection blocks whose multiplier inputs are
directly connected to the processor. To the right of the projection groups are the
four analog output multiplexers and pad buffers.
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code in the NS430 which prevented execution of the ROM-resident interactive com-

mand line interpreter. The bugs in the ROM were discovered after the chip submis-

sion by disassembling the provided ROM bit file by hand. All other aspects of the

prototype chip were either fully verified or performed with reduced functionality.

Section 5.4 discusses the analog signal path’s measurement. A full characteri-

zation of the parallel AHT bank of channels was not possible due to a pad driver

issue. However, the ability for the amplifier offset to be digitally calibrated was

verified functional. This offset tuning is critical to achieve good system-level perfor-

mance in the classification applications described in Chapter 3.

5.2 Chip Test Fixture

Due to the large number of control and measurement points designed into the pro-

totype chip, a general-purpose testing fixture was also designed and constructed.

This fixture provided the following features, most programmable through serial

interfaces accessible by either a USB-connected PC or the on-chip processor:

• Six voltage regulators, four of which are independently-programmable power

supply voltages for the chip’s analog and digital sub-systems.

• Power supply current monitoring on all four test chip supply rails.

• Analog system master bias current control.

• Jumper selection of AHT control between the on-chip processor or an external

serial port.

• Eight digital-to-analog converters to generate analog input signals and bias

control tuning values.
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Table 5.1: Summary of prototype chip functionality. Section references point to
the component’s design description.

Name Good Partial Bad
Local Digital and Switching, 4.5.1

SPI Slave, 4.5.1.1 X
NCO, 4.5.1.2 X
SwitchCtl, 4.5.1.3 X
Level translators, 4.5.1.4 X
Transmission gates, 4.5.1.3 X

Off-Chip Analog Output, 4.5.3
Mux input selection X
Pad buffer X

Wide-Range Digitally-Tunable OTA, 4.6
OTA gain tuning, 4.6.1 X
OTA offset tuning, 4.6.1 X
OTA diff/S.E connections, 4.5.1.3 X
OTA fast/slow switching, 4.6.2 X
OTA Gm measurement, 4.5.2 X

Auxiliary channels, 4.3
NS430 mult inputs, X
Arb0,1 direct amp access, X

NS430 Local Processor, 4.7
Load code from flash X
Boot to ROM interpreter X
SRAM read/write X
Multiplier module X
Clock switching module X
SPI 0,1 modules X
UART 0,1 modules X
I2C module X
Control of AHT config. X
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Figure 5.2: Chip test fixture and USB PC interface.

• Eight analog-to-digital channels to measure analog chip outputs, power supply

currents, and generated bias voltages.

• High-frequency crystal clock oscillator monitor and injection.

• Ultra-low leakage amplifiers to buffer the high-impedance analog chip outputs.

• Non-volatile flash memory for processor code and general data storage.

While USB-based single-port asynchronous serial port (RS-232) converters are

readily available, there are few multi-port, flexible general digital interfaces avail-

able which use a host’s USB port for control. Such flexible interfaces were readily

implemented using a PC’s parallel port for bi-directional communication and many

examples are available. Modern PCs, however, have long since ceased including

parallel ports in their construction, opting for the now-ubiquitous USB port. The

FT4232H chip made by FTDI provides four 8-bit I/O ports with flexible configura-

tion with USB communication to a host. Two of the ports include hardware serial

engines which can handle synchronous serial communication and be configured to

be compliant with most serial interfaces. All four ports can also act as RS-232 asyn-

chronous serial ports or be configured as 8 general-purpose input and/or output

pins. This chip was selected to link the test fixture to a host PC for all communi-

cation and control. There were no commercially-available USB interfaces which
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Figure 5.3: Test fixture printed circuit board layout, 1:1 scale, top view. The
small filled square in the center represents the location of the test chip die and the
surrounding square is the size of the QFN package (12 mm × 12 mm). The upper-
left section has the 6 power supply regulators, with circuitry to digitally control
four. The left connectors provide power and external serial communications. An
8-channel ADC is in the bottom-left while the 8-channel DAC is on the right-center
side. The pads for the 100-pin test chip package socket interposer surround the
center section of the board.

used this chip without compromising its flexibility. Therefore, a new USB interface

board was designed and constructed for this project.

Figure 5.2 is a photograph of the USB interface and test fixture. The fixture

sub-systems are described in more detail in the following sub-sections. Figure 5.3

shows a top view of the test fixture’s printed circuit board design while Figure 5.4

shows the corresponding bottom view. Schematics for this board are included in

Appendix C.1.

A socket was used to connect the prototype chips to the test fixture to facilitate

measurements on each of the copies. The socket used is pictured in Figure 5.5,
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Figure 5.4: Bottom view of the test fixture circuit board. The upper-left de-
vice is the 1 megabit flash memory. The upper-center group of parts implement
the clock oscillator monitor and auxiliary clock generator. Parts near the center
implement the programmable bias current generator control.

Figure 5.5: 100-pin QFN socket manufactured by Plastronics.
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shown with the lid open. Each pad of the 100-pin QFN package rests on a tiny

spring-loaded pin and when the lid is closed a spring-loaded slug compresses the

package into the bottom pins for a solid connection. Connections are routed from

the package pins to an array of through-hole pins on the bottom of the socket. An

interposer printed circuit board was designed to hold the socket and mate with four

25-position sockets which mate to the test fixture board. This arrangement allows

the (expensive) socket to be re-used in other test fixtures.

5.2.1 Programmable power supplies

All six power supply rails are derived from an external 3.3 V source. Two triple-

output low dropout (LDO) linear regulators then drop this voltage to the individ-

ual power domains. Components implementing these supplies are in the upper-left

region of the board shown in Figure 5.3. The power rail names, ranges, and pur-

poses are summarized in Table 5.2.

Table 5.2: Test fixture power supply names, ranges, and usage.

Name Range (V) Purpose

AVdd dev 2.7 ADC, DAC, DigiPot, flash
Vdd dev 2.5 Auxiliary for external devices
Vdd digi 0.50− 1.30 AHT digital
AVdd atoi 1.30− 2.75 AHT analog
Vdd ns430 0.50− 1.30 NS430 core
DVdd ns430 1.30− 2.75 NS430 pad I/O

Varying the LDO output is accomplished by a pair of resistors and yields the

following voltage

Vreg = 0.5

(
1 +

R2

R1

)
V . (5.1)

In all cases, resistor R1 is fixed-value. Resistor R2, however, is implemented by

a combination of a fixed resistor R2 and a digitally-controlled potentiometer con-
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nected as a variable resistor. If x is the fractional position of the potentiometer’s

wiper with an end-to-end resistance of Rpot, the output voltage then becomes

Vreg(x) = 0.5

(
1 +

R2 + xRpot

R1

)
V . (5.2)

Appropriate selection of the resistances ensures the voltage spans the required

range and, most importantly, never allows an over-voltage condition at any po-

tentiometer setting. The digital potentiometers used in the fixture have 8-bit resolu-

tion and are controlled over a common I2C bus with hard-wired addresses.

Each of the four power supplies for the AHT and NS430 include a current shunt

for monitoring the supply current. The shunt voltage is amplified by individual

OTAs with outputs which may be disabled. Only two ADC channels were available

for monitoring the four currents and the enable inputs of the OTAs provide a conve-

nient method for multiplexing the measurements. These enable pins are controlled

by general-purpose output pins provided with the digital potentiometers and are

hence under I2C control.

Figure 5.6 plots the measured supply current as a function of programmed volt-

age for the AHT digital circuitry named Vdd digi in Table 5.2. The plot shows an

unexpectedly-high current which varied strongly with voltage. This output only

drives static CMOS logic gates and should have a sub-1 mA current. This excess

supply current did not seem to affect the operation of the AHT digital circuitry,

however. The plot suggests a forward-biased diode characteristic with a high series

resistance. It is unknown the source of this error, but is presumed to be a layout

error as it was observed on all chips tested.
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Figure 5.6: AHT digital circuitry 1.2 V nominal power supply current over the
entire variable supply voltage range. Curve suggests a forward-biased p-n junction.
The excess current did not seem to affect the digital circuit functionality.

5.2.2 Analog-to-digital converters

Eight channels of analog digitizers are provided by a single chip in the lower-right

of Figure 5.3. The device chosen has 12-bit resolution and includes a programmable-

gain amplifier. Multiple operating modes allow triggered burst sampling and data

storage for later retrieval. All operation is controlled over a SPI bus interface. Ta-

ble 5.3 lists the ADC channels and the connected signal.

Table 5.3: ADC input channels.

Channel Signal

1 Main pad multiplexer A
2 Main pad multiplexer B
3 Auxiliary pad multiplexer A
4 Auxiliary pad multiplexer B
5 Supply current OTA outputs 1 and 2
6 Supply current OTA outputs 3 and 4
7 AHT analog bias generator monitor 1
8 AHT analog bias generator monitor 2



91

5.2.3 Digital-to-analog converters

The test board employs an 8-channel, 16-bit DAC for test signal generation, shown

in Figure 5.3 on the right-center of the board. Flexible loading and updating of out-

put values is done over an SPI port. A voltage reference is provided on the chip. It

is used as the master reference for both the DAC and ADC to reduce measurement

errors. With the 2.5 V reference, the DAC’s resolution is approximately 38 µV per

count. Table 5.4 lists the signals generated by the DAC.

Table 5.4: DAC output channels.

Channel Signal

1 Main differential input, Vin,A

2 Main differential input, Vin,B

3 Common-mode input, Vcm

4 Core bias current generation
5 Pad buffer bias current generation
6 Unused
7 Unused
8 Unused

5.2.4 Ultra-high impedance buffer

Initial testing of the pad buffer amplifiers revealed that their output impedances,

even in unity-gain buffer mode, was extremely high and on the order of the simu-

lated value. Attaching a 10 MΩ oscilloscope probe to the output pins would indi-

cate a characteristic capacitor discharge and a maximum output of around 250 mV.

The output responded proportionally to tuning commands and input voltages but

would remain very low, closely matching the effect a 10 : 1 attenuator in the circuit.

Switching to a 1 MΩ probe confirmed the indication that the pad buffer amplifiers

had a minimum output impedance of an estimated 100 MΩ.
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Computer simulation of the pad buffer OTA circuit yielded an open-loop small-

signal output resistance of 32 000 MΩ and a gain of about 320 V/V or 50 dB. An

amplifier under unity-gain feedback reduces its effective output impedance from

the open-loop value by the loop gain. This then gives a predicted unity-gain buffer

output impedance of 32 000 MΩ/320 = 100 MΩ, which closely matches the observed

behavior. Such an extremely high resistance is a direct effect of the cascode, long

channel length, low current output stage. It was nevertheless surprising to observe

such a high-impedance output which also matched the simulator’s prediction so

closely.

Since the amplifier was behaving properly as designed, it was necessary to mea-

sure voltages at the pad buffer pins with a loading impedance significantly greater

than 100 MΩ. A simple non-inverting op-amp buffer was added to the test fixture

board to buffer between the on-chip pad buffers and the ADC. The opamp selected

was designed for ultra-low input bias current and leakage at the input nodes, with

specified values of Iib < 1 pA and Ricm > 1 GΩ. Installation of this additional buffer

allowed observation of the full-range of output voltages from the chip.

5.3 Digital Testing

Nearly every aspect of the prototype system was designed to be digitally controlled

or instrumented. This control on-chip was provided through a single SPI compati-

ble serial port with four selectable destinations: the main 48-harmonic AHT chain,

the main chain’s output multiplexers and pad buffers, the secondary arbitrary-AHT

chain, the secondary chain’s output multiplexers and pad buffers. One pin on the

chip was used to switch control of the SPI port to either the on-chip processor or

an external PC connection via the chip test fixture. Because of the complexity of
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coordinating the control points, most system testing was done using the PC connec-

tion.

5.3.1 PC libraries

The python programming language was used to develop the testing software in

a hierarchical method. The software provided an object-oriented interface to the

channel calibration and control bits and the chip test fixture’s control points. When

running the code under IPython [13], the entire environment is real-time interactive.

This software-based, interactive control has the following benefits:

• Exploration of the chip’s response to control commands.

• Real-time visualization with an oscilloscope of pin voltages while changing

parameters.

• Documentation of the test procedures and conditions.

Included here are two listings which demonstrate the ease of accessing and modi-

fying any accessible digital control point on both the fixture and the chip in an in-

tegrated fashion. The first listing loads a default set of fixture and chip parameters,

routes the desired outputs to the pad buffer, and places both OTAs into calibration

mode. From then, the amplifier offsets can be tuned to zero by writing appropriate

values into the a0.otaA.offset and a0.otaB.offset parameters and measuring

the offset with either the test fixture’s ADC or by external metering.

1 #
2 # Put the first two OTAs in the auxiliary chain into calibration mode
3 #
4 import devboard as dev
5
6 # load default values for every subsystem
7 dev.init_breadboard(’devboard-defaults.yaml’)
8
9 arb = dev.arb # auxilary chain class

10 amux = dev.amux # aux mux + pad buffer
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11
12 a0 = arb.h[0] # first harmonic in the chain
13
14 #route the first harmonic outputs to the pad buffer, off-chip
15 amux.selA = 0
16 amux.write() # send the configuration to the chip
17
18 # set both integrators to calibration mode
19 a0.cal = 1
20
21 a0.otaA.se = 0
22 a0.otaA.fast = 1
23 a0.otaA.gain = 10
24 a0.otaA.cint = 1
25
26 a0.otaB.se = a0.otaA.se # same settings for both
27 a0.otaB.fast = a0.otaA.fast # quadrature paths
28 a0.otaB.gain = a0.otaA.gain
29 a0.otaB.cint = a0.otaA.cint
30
31 arb.write() # send and activate the configuration
32
33 # zero then release the outputs
34 a0.otaA.zero = 1
35 a0.otaB.zero = 1
36 arb.write()
37
38 a0.otaA.zero = 0
39 a0.otaB.zero = 0
40 arb.write()

The following listing was used to ensure correct functioning of the test fixture’s

ADC and DAC. It sets up the ADC into full manual control mode, writes sequen-

tial values to one channel of the digital-to-analog converter. This output is directly

connected to an input channel of the ADC with a jumper wire. Proper operation of

the system yields a staircase plot of 212 levels with 16 samples at each level. This is

the expected result of measuring a 16-bit DAC with a 12-bit ADC.

1 # devboard jumper:
2 # dac.vina (ch 2) --> adc.ch4
3 # J604 -- J210
4
5 from matplotlib import * # plotting
6 import devboard
7
8 adc = devboard.adc
9

10 adc.triggerMode(adc.MODE_IDLE) # config must happen in idle mode
11 adc.average(16, True) # average 16 sequential conversions
12 adc.convst_spi(1) # trigger conversion from SPI activity
13
14
15 #ch4 setup
16 adc.mux(4)
17 adc.channelMode(4, adc.SE)
18 adc.channelGain(4, 1)
19
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20 # go to mode 2 (full manual control)
21 adc.triggerMode(adc.MODE_MANUAL_MANUAL)
22
23 n = []
24 r = []
25 nbits = 16 # DAC resolution
26 for i in range(2**nbits):
27 dac.set(2, i)
28 adc.read() #sham to trigger conversion
29 sleep(160e-6) #ensure 160us conversion time delay
30 n.append(i)
31 v = adc.read()
32
33 # should show a rising staircase from 0 to 2**12-1
34 # ADC resolution is only 12 bits compared to the DAC’s 16-bit.
35 plot(n, v)

5.3.2 USB Interface Drivers

The manufacturer of the USB interface chip provides a few libraries for communi-

cating with the FT4232H. Unfortunately, they do not make the source code avail-

able for the libraries nor is there a Python binding available. The libFTDI [11]

project is an alternate library for driving FTDI’s series of USB interface chips. It

includes bindings for several languages, including Python, in addition to the normal

C library.

A convenient feature of IPython when in interactive mode is instant access to

function documentation while typing. The system displays either the short or long

documentation included in the function’s source code. While documentation is in-

cluded within the C source code in libFTDI, the text was stripped off and therefore

unavailable when constructing the python bindings. I added a step to the library

build system to automatically extract and include the documentation in the python

version. The modification reduced the need to have the library’s documentation

open in a second window while writing code, speeding development.

Available I2C or SPI libraries built on either of these base libraries were vari-

ously deficient in several aspects. Because the test fixture requires the use of all the
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flexibility of the FTDI interface chip, custom I2C and SPI libraries were written on

top of the libFTDI base library.

I2C driver. Capabilities included in the new library and not completely present

in other available software includes:

• Bus clock stretching. Slave devices can implement a type of flow control by

holding the clock line low during a bus transaction. Other libraries were not

compliant with this I2C specification and would corrupt the sent or received

data.

• Bus arbitration. The I2C specification allows multiple master nodes on a bus.

When two devices attempt to use the bus at the same time, they are required

to detect the collision and yield the bus to the “winning” master. The new

library would properly detect a collision, properly release the bus, and report

the loss of control to the calling code to allow a later transaction re-try.

• Open-collector pins. The two pins involved in the I2C connection are driven

low but never explicitly driven high by any device on the bus, they are pulled

high by a resistor. This allows the clock stretching and arbitration features

with the “wired-OR” connection. It also allows I2C connections between de-

vices having different power supply voltages; the USBIO board used 3.3 V

while the test fixture had several power supplies around 2.5 V. Other libraries

could only implement an I2C connection on the pins allocated to the hard-

ware serial engine, which was not capable using open-collector outputs while

enabled. The new library can implement an I2C interface on any of the 8

pins on any of the 4 ports available on the FT4232H chip and still leave the

remaining pins available for general purpose I/O.”
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SPI driver. Similar to the I2C driver, the SPI driver has features necessary for

control of the test fixture but not available in existing drivers. The features of the

new library include:

• Chip select, CS. All other libraries used a single pin to activate the CS pin

of a connected device, the same pin described in FTDI’s application notes.

This usage was not strictly required by the hardware architecture of the chip.

Any general bit pattern can be used as a chip select with the new driver. This

includes the common single-pin-per-device connection to select the destination

of the bus’ communication. It also allows external decoding of the applied bit

pattern to control up to 25−1 or 31 SPI devices from one 8-bit port. The latter

feature was used to select between 4 devices with the 2 available pins on the

interface.

• Pins not used in any of the SPI activities are available for general-purpose

I/O. None of the other libraries could do this without significant modification.

• The communication clock rate could be requested to be any value. The soft-

ware would calculate the required setup parameters and report back the ac-

tual rate being used. Bit rates up to 30 MHz were possible.

• Simultaneous read/write. No other libraries would both write a command

to an SPI slave device and read the device’s output bits at the same time.

This capability is essential for SPI slaves configured as shift registers. An

exchange() function was added to the libMPSSE library as a contribution

back to the community, but the library itself was not used for the above rea-

sons.
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5.3.3 Chip digital testing

This section describes the procedures and results of testing the prototype chip’s

digital sections. In summary, all the tested design elements were verified through

either direct measurement or by their effect on the system operation.

SPI interface. The USB interface was used to send data into the chip’s SPI port.

As the input bits were shifted in, the output bits were recorded also. Due to the

shift-register operation of the AHT digital section, the shifted-out block of bits

should be equal to the bits shifted in during the previous operation.

A test script repeatedly shifted into all four of the selectable configuration ports

random data and recorded the output data. The script then compared the received

data with the expected values and would abort operation on any bit errors. Bit

rates up to the USB interface’s maximum of 30 MHz were used with zero observed

errors over operation times of several hours. The chip’s maximum bit rate is un-

known. The longest configuration has 48 harmonics, each with 48 bits, or 2304 bits

per transaction. At 30 MHz, a full bus transaction would only take 76.8 µs, a small

fraction of the typical 400 ms integration time used in the vehicle classification ap-

plication.

NCO. The outputs of the numerically-controlled oscillator digital block were

not directly accessible through any pins. In the standard harmonic correlation

mode, the NCO outputs determine the analog ±1 multiplier state. As such, the

OTA outputs were observed while integrating a DC input voltage. This would yield

steadily increasing or decreasing output voltages depending on the state of the

NCO output.

The clock supplying all the NCOs has its own input pin on the chip and could
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be directly clocked at arbitrary rates down to zero. The procedure used to verify

correct NCO operation was as follows:

• Reset the NCO internal state to zero via the SPI port and load the NCO with

a fcw value.

• Calculate the expected period on the output in terms of the number of input

clock cycles.

• Apply a DC input voltage.

• Clock the NCO clk input pin.

• Count the clock rising edges until the OTA output changes direction.

• Continue clocking until the output changes back to the original direction.

The test procedure was repeated for several representative frequency control

words. Each test yielded the expected number input clocks for the given control

word. The digital behavior of the NCO had been thoroughly tested during the

design phase by the myHDL test bench simulations, co-simulation between myHDL and

two Verilog simulators, and simulation of the final logic including parasitic delays

by a Verilog simulator.

SwitchCtl and level translators. The logic accepting the configuration and

NCO outputs and outputting the appropriate control signals to the analog switches

was not directly observable. Testing the NCO by its effect necessarily used both the

SwitchCtl logic and the level translators. Because changing configuration bits and

observing the OTA output voltages resulted in the expected behaviors with regard

to operation modes, these design elements were implicitly verified.
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5.4 Analog Measurements

This section describes and reports the measurements performed on the proto-

type chips to characterize and verify the operation of the AHT harmonic channels

and associated support circuitry. The operation and performance of the digitally-

controlled OTA calibration is included in this section.

5.4.1 Pad Buffers

The pad buffers utilized the existing OTA core design instead of a new buffer de-

sign to save development time. They are normally used in a closed-loop, unity-gain

feedback configuration where the output node is connected to the inverting input.

Output from the multiplexer is connected to the non-inverting OTA input.

It was discovered that in addition to the large output impedance of the pad

buffer amplifier (from earlier Section 5.2.4), the amplifier had a restricted common-

mode input range. This was a direct consequence of connecting the common-mode

input signals for both the harmonic amplifiers and the pad buffers to the same sig-

nal. Only one pin on the chip was allocated to provide the input common-mode

voltage for the OTA’s linearization transistors – all OTAs were connected to this

signal, but it is inappropriate for the pad buffer OTAs to be connected to this sig-

nal. When operated in unity-gain feedback mode, the buffers need the common-

mode input voltage to track the input to properly supply a gate voltage to the Gm-

reduction transistors in the input differential circuit. The effect of this is varying

the transconductance of the input stage as the input varies. Since the input pair

and diffuser transistors are p-type, the input stage only functions when the input is

around or above the common-mode input level.

Figure 5.7 shows the output of the pad buffer attempting to track a sinusoidal
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Figure 5.7: Output of pad buffer with multiplexer set to the output of a channel
which was integrating a sinusoid with a 2 s period. This corresponds to an OTA
output current of about ±40 pA peak-to-peak. The internal OTA output node is
assumed to trace a complete sinusoid, with the lower-half saturation showing the
pad buffer’s inability to track inputs lower than the common-mode voltage.

input signal. The amplifier correctly buffers the input signal when above the common-

mode voltage of 1.25 V, the mid-level between the power supply voltages of 0 V and

2.5 V. Below the common-mode level, the buffer fails to track the input signal be-

cause the input stage transistors are turned off as predicted by analysis.

Further investigation of the pad buffer’s performance limitations is shown in

Figure 5.8 which plots raw data obtained from the following repetitive sequence of

operations while continuously sampling the output voltage:

• Zero the integrating capacitor.

• Apply a differential input voltage.

• Release the integrating capacitor zero switch.
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Figure 5.8: Sampled time-domain data from sequential integrate-reset sequences
for a differential input voltage varying from −80 mV to 80 mV. For these measure-
ments, the pad buffer was run in single-ended, unity-gain mode. The OTA outputs
as measured through the pad buffer are inverted in relation to the internal sig-
nals. Due to the discussed limitation of the buffer’s common-mode connection, its
open-loop gain and output range are severely compromised for inputs below the
half-supply level, causing the pad buffer’s output to no longer track the on-chip
multiplexer output.

• Wait for a fixed delay.

• Set the differential input to zero.

Figure 5.9 shows the calculated harmonic channel OTA’s incremental output

current inferred from the data of Figure 5.8, measured through the pad buffer and

assuming an integrating capacitance of 44 pF. Differential inputs from −80 mV

up through around +20 mV show a linear relationship between applied voltage

and output current, giving a relatively constant Gm as expected. Inputs greater

than +20 mV cause output voltages to move outside the range able to be buffered

by the pad buffer and show no dependence on input magnitude, leading to a zero

calculated incremental Gm. This effectively does not allow direct measurement of
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Figure 5.9: Shape of the Gm versus differential input voltage of an internal OTA
integrator extracted from the data of Figure 5.8. The effect of the pad buffer’s
limited negative-going common-mode input range is also evident in the flat-topping
for positive output swings. The reported and effective differential input voltage are
inverted with respect to each other.

the harmonic channel OTAs.

5.4.2 OTA Gm characterization

The auxiliary chain of harmonic channels had two internal OTA outputs wired both

to the output multiplexer and directly off-chip. This allowed direct measurement

of two OTAs per chip copy by bypassing the multiplexer pad buffer. Figure 5.10

shows the raw data obtained from integrating DC differential inputs to these acces-

sible OTAs. Due to the extremely long time constants created by these integrators,

an adaptive measurement scheme was used.

At large magnitudes, the output current is relatively large and the output rises/falls

from the zero reference relatively quickly. Avoiding output saturation then requires

limiting the integration time. When the input magnitude is smaller, the output



104

−2 −1 0 1 2
−1.0

−0.5

0.0

0.5

1.0

V
o
u
t

(V
)

offset code
105

−2 −1 0 1 2

Vd (V)

0.0
0.5
1.0
1.5
2.0

t i
n
t

(s
)

Figure 5.10: Raw measured data from measuring the integrated output cur-
rent versus differential input voltage of OTA “arb0” on chip #14. The upper
plot records the measured output voltage by the test fixture’s ADC through the
high-impedance buffer while the integration time used in the adaptive algorithm is
shown in the lower plot. The full, power-supply-limited differential input voltage is
shown, demonstrating the very wide linear input range of the OTA.

changes proportionally less rapidly. Adaptively changing the integration time such

that the output voltage neither saturates nor is too small for a precise measurement

gives a more complete picture of the amplifier’s Gm. The lower plot of Figure 5.10

records the integration time used for a given differential input while the upper plot

shows the resulting output voltage at the end of the integration time.

The data from Figure 5.10 was post-processed to infer the output current charg-

ing the capacitor from the resulting final integrated voltage using the equation

Iout =
CintVout
tint

. (5.3)
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Figure 5.11: From top to bottom: calculated output current, incremental Gm,
and effective Gm versus differential input voltage for the OTA “arb0” on chip #14.
The apparent reduction of non-linearity in the bottom plot is a direct consequence
of the definition. For input signals with an average value of 0 V, the lower plot best
represents the non-linearity observed at the output. An offset code of 100 provides
insufficient bias to the OTA, resulting in severe non-linearity. Other offset values
show the characteristic Gm “wobble” and wide input range predicted by simulation.



106

The integration capacitance was taken to be 50 pF, which includes the 44 pF inte-

grating capacitor and an estimated 6 pF parasitic capacitance added by bringing

the internal OTA output node to a package pin. These extracted values are plotted

against the input Vid in the top plot of Figure 5.11 for several values of the offset-

tuning code.

Calculation of the overall OTA’s transconductance may take two forms: the

incremental Gm and the effective Gm. The incremental form is the slope of the

Iout vs. Vid curve as a function of differential input voltage Vid, or merely the deriva-

tive. This is the middle plot of Figure 5.11 and is calculated from the data as

Gm(Vid)inc =
dIout
dVid

=
Cint

tint
· dVout
dVid

(5.4)

Effective transconductance is defined here as the output current which flows in

response to a given input voltage. By this definition, Gm is simply the ratio of the

quantities Iout and Vid, given as

Gm(Vid)eff =
Cint

tint
· Vout
Vid

(5.5)

The effective transconductance of Equation (5.5) is the one experienced by an

input signal centered around zero as it is converted to an output current and is the

most appropriate version for calculating non-linearity. Ignoring the case with the

offset code of 100, the variation in Gm about the mean value for the lower plot of

Figure 5.11 is approximately ±15% over the entire input signal range and much less

for inputs restricted to ±1.5 V.

The shape of the measured Gm curve is consistent with simulations. For this

circuit topology, the transconductance is not necessarily maximum around zero
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input, but has a “wobble” on the outer regions of the plot.

5.4.3 Offset calibration

Initial design hardware requirements discussed in Chapter 3 indicated offset as the

most severe performance specification on the integrators. To maintain good perfor-

mance for the vehicle classification application, the amplifier offsets should have a

standard deviation of 10 mV or less. Chapter 4 describes the OTA in this project

which included post-fabrication digital offset calibration. This section presents re-

sults of tuning the offset on the set of 96 amplifiers in each chip tested.

The process of tuning each channel is a search for the digital offset code which

minimizes the output current of an amplifier with a zero differential input voltage.

Due to the extremely high output impedance of the OTA (estimated > 32 000 MΩ

from Section 5.2.4), the offset current is considered to be proportional to offset volt-

age. Minimizing the measured output offset voltage would then also minimize the

desired output offset current. This simplification allows disconnecting the OTA’s

integrating capacitor Cint, speeding up the settling time by several orders of magni-

tude.

Because each amplifier operates independently, all channels may be calibrated

simultaneously. This then limits the minimum calibration time to be proportional

to the settling time of the output multiplexer and associated amplifiers. With the

described test fixture, it was necessary to wait approximately 400 ms for the output

channel A and B amplifiers to settle after changing the multiplexer input. Mea-

suring the two output channels simultaneously doubles the effective measurement

throughput.

Process variations in the individual amplifiers caused some calibration values to
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Figure 5.12: Time to convergence of repeated calibration runs for one chip.
These times are for calibrating the offset of the two multiplexer pad buffers and
all 96 OTAs in the main bank of 48 harmonic channels. The majority of the time is
waiting for the pad buffers’ outputs to settle to make a measurement.

converge faster than others. In these cases, the algorithm would no longer change

or measure the offset of a declared “converged” OTA. This avoids unnecessary

measurements and therefore speeds up calibration of the entire system. Figure 5.12

plots the time to calibration convergence for many repeated calibration runs for a

single chip.

As an optimization problem, there are a multitude of ways to search for the code

giving the minimum offset besides brute-force search. Restricting the hardware

design to guarantee a monotonic code versus offset function shape allows utilizing

the large class of optimization routines which expect “smooth” objective functions.

This restriction is not strictly necessary as it effectively increases the chip area of

the calibration circuitry. This area increase is multiplied by the number of integra-

tors in the system, which with the AHT scheme can be large.

Several algorithms were tried for the offset code search including binary search,
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direct Newton’s method, and related quasi-Newton methods like BFGS [112]. Due

largely to the fact that the hardware was designed for minimum calibration cir-

cuitry area and not guaranteed monotonicity, none of these algorithms gave accept-

able overall performance. For OTAs which did have monotonic tuning curves, they

found the minimum offset in the least number of steps. However, when a curve

was not monotonic, the algorithms would diverge and sometimes enter large limit

cycles.

The secant method [112] with a convergence detection heuristic was found to

have stable performance and generally resulted in convergence to the best tuning

value in fewer steps than a binary search during testing. Though both the mea-

sured offset values from the ADC and the calibration codes are integers, internal

calculations should use higher precision. Rounding to the next xn+1 value should

only be done at the end. Not doing so greatly increased the likelihood that the

algorithm would enter a limit cycle with an amplitude greater than one.

Table 5.5 describes the core algorithm, omitting rounding, saturation, and range

checking. According to the algorithm, the first step is a fixed guess which is the

value of the pad buffer’s offset code and the second step is another guess as a com-

bination of the offset’s sign and proportion of available tuning range. After these

first two steps, the secant method is used to search for the minimum-offset code.

For the last steps in the convergence process, the algorithm typically makes code

changes of ±1 only. This is the feature which ensures a reliable convergence – the

selected code will oscillate between two adjacent codes. The current termination

condition detects only one oscillation cycle to balance the time to convergence with

the certainty of finding the true optimum code.
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Table 5.5: Secant method algorithm for calibrating the OTA offset.

• Start with the ending code from a previous calibration. Typically
this code was that of the pad buffer.

• Wait for the buffer to settle after changing the multiplexer.

• Measure the offset with this initial value.

• Calculate the next input value by the following equation where
k∈(0, 1) (typically 0.1) and sgn(·) returns the argument’s sign:

x1 = x0 − k · (xmax − xmin) · sgn (f(x0)) (5.6)

• Measure the offset after the buffer settling time.

• Repeat the following steps until declared convergence or the
maximum number of steps have been reached:

– Calculate the next value by:

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
(5.7)

– Measure the offset f(xn+1).

– If one of the two following conditions are true,
declare the channel converged:

∗ The input has remained the same for three iterations.

∗ The input has changed +1,−1,+1, or −1,+1,−1 between
the last three iterations.

�
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Figure 5.13: Representative calibration trajectories from chips #1 and #2 for
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plots the input calibration code integer while the bottom row plots the resulting
measured offset at each step of the algorithm.

Figure 5.13 shows representative calibration trajectories for an example run for

two channels on each of two chips. The upper row displays the offset code while

the bottom row plots the resulting measured offset at each algorithm step. Due to

the high gain, observing the output voltage with a zero input allows rapid deter-

mination of the required offset tuning value. Trajectories for the tuning value and

output offset followed the same pattern for all the channels on the chip.

Histograms of the converged offset code and resulting offset voltage are shown in

Figure 5.14 for many calibration runs, 428 for chip #1 and 114 for chip #2. These

were performed sequentially – when the calibration for all the channels finished, the

test software would cycle power to the chip, load a default set of parameters, and

begin another calibration run. As indicated, even for similar environmental condi-

tions, an individual channel would not always converge to the same value. Typical
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Figure 5.14: Histograms of calibration results for channels #1,00-A, #1,02-A,
#2,00-A, and #2,02-A from many runs. The upper row is the tuning code while to
lower row shows the post-calibrating residual offsets. All channels in this plot met
the AHT application’s requirement of offset standard deviations below 10 mV. Data
for Chip #1 is for 428 runs while Chip #2 is for 114 runs.

channels converged to two adjacent values whose proportion was related to how

close each corresponding offset was to zero. Noise and the convergence heuristic

account for these variations.

Data from Channel #2-02A in both Figures 5.13 and 5.14 show the typical be-

havior of a marginal channel. The specific set of fabrication-related variations for

this channel instance did not have a good offset code available to reach a zero offset

voltage. One effect was the channel took more steps to converge than other more

“well-behaved” channels. According the histogram of Figure 5.14, however, the algo-

rithm declared the code 63 to be the best value in all 114 runs. It is unsurprising

to observe this behavior at the current-output DAC (IDAC) code boundaries where

many bits change in the code, in this case from a tuning code of 00111111 (63)

to 01000000 (64). Such changes code boundaries magnify the effect of transistor
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variations in binary-coded digital-to-analog converters.

The resulting offset from Channel #2-02A’s code of 63 had a mean residual off-

set of around −80 mV but with an acceptable standard deviation of 7.8 mV. Higher-

level software could observe this residual offset on this and similar channels and

apply an post-integration offset to shift the mean back to zero. This would increase

the yield of usable channels on a given chip.

Figures 5.15, 5.16, 5.17, and 5.18 show a different view of the calibration results

in light of anticipated performance in the vehicle classification application of Chap-

ter 3. Each figure plots the mean and ±1σ standard deviation levels for individual

channels. The horizontal lines are at ±10 mV to indicate the range of offset allow-

able to maintain “good” classification performance. Titles on the figures report the

number of passing channels, according to the magnitude of their offset variations,

on that particular chip.

This type of testing data is rarely reported in the literature which includes pro-

totype testing results. It is typical to show measurements of a “golden” chip and

not comment on the prototype batch yield. These figures highlight the main issue

of offset performance across a large number of channels as critical to keep good

system-level performance. The amplifier tuning circuitry design can be optimized

for specific applications to increase yield without unnecessary increase in the re-

quired chip area.
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Figure 5.15: Chip #01 individual channel calibration statistics. The horizontal
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tion performance per Chapter 3, section 3.7.4.
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Figure 5.16: Chip #02 individual channel calibration statistics.
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Figure 5.17: Chip #03 individual channel calibration statistics.
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Figure 5.18: Chip #04 individual channel calibration statistics.
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Figure 5.19 shows a final view of the calibration data which illustrates the re-

duction in offset variance after tuning. It shows the same four chips as the previous

figures, but instead plots histograms of the converged tuning codes instead of the

resulting output offset for all available calibration data. Each chip has clearly differ-

ent mean code values, but the spans and distributions are similar. Optimum values

span a majority of the available tuning range. This indicates the tuning range is a

good match to the range of un-tuned offsets.

Chip #01, 428 runs, N=41088

Chip #02, 114 runs, N=10944

Chip #03, 85 runs, N=8160
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Figure 5.19: Aggregate histograms of the converged offset tuning DAC code for
chips #1-4. Data is from consecutive calibration runs and includes all 96 OTAs
in the main AHT group of channels. Across the four chips, this is data for 384
fabricated OTAs.
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It should be noted that no particularly great effort was used in the design of the

OTAs with regard to a low inherent offset deviation. The point was to demonstrate

the feasibility of on-chip, on-line digital calibration of critical analog parameters.

Chips #01 and #04 had a high number of usable channels while chip #03 demon-

strated considerable variations. The fabrication service did not provide information

on the location of particular dies within a wafer or even if the chips were from dif-

ferent wafers, so no conclusions can be drawn about cross-wafer variations.

An advantage of having parallel hardware paths is that re-tuning can be per-

formed on a rolling basis. Since each channel is topologically identical, a small

fraction of channels may be taken “out of service” for several integration times in

order to re-zero the channel. With a small fraction increase in die area, such a sys-

tem can continuously operate with good performance even during environmental

changes such as temperature variations.

5.4.4 Harmonic projections

Figure 5.20 shows transistor-level time-domain simulations of the expected out-

puts of a harmonic channel’s two quadrature outputs for three input frequencies.

Equation (3.6) in Chapter 3 describes the expected output at the end of the inte-

gration period, indicated by the solid blue lines and filled red squares in Figure 5.20.

Letting C be a constant including the T/2π term and signal path gain, the yQ coef-

ficients reduce to the following for inputs at frequencies at n multiples of the basis

function frequency with relative starting phases of ∆φ:

yQ,n(∆φ) =





C

n
cos(∆φ) n ∈ 1, 3, 5, · · ·

0 n ∈ 2, 4, 6, · · ·
(5.8)
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Figure 5.20: Transistor-level simulation of yQ and yI outputs during a 400 ms
integration time for a 5 Hz harmonic channel. The first row is for an x(t) input at
the harmonic frequency with a starting phase equal to that of the ψQ basis function.
The second and third rows are for input frequencies at twice and three times the
harmonic frequency of 10 Hz and 15 Hz, respectively. Filled red squares are the
values read out at the end of the period as the yQ coefficients. The amplifier gain
was set so the yQ output at a 0◦ phase difference was unity for a full-scale input.

Access to the two direct integrator outputs on the auxiliary bank of 16 harmon-

ics allowed testing of the signal path’s performance in calculating AHT coefficients.

Figure 5.21 plots the coefficients obtained from a 5 Hz harmonic with an input si-

nusoid of 5 Hz with varying relative starting phases. These are the yQ,1(∆φ) values

predicted by Equation (5.8). At 0◦ and 180◦, the signal is in phase with the basis

function and gives maximal or minimal coefficient values. At relative phases of 90◦

and 270◦, the two functions are in quadrature and should result in a zero output



119

0 45 90 135 180 225 270 315 360

∆φ, deg

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

y Q
,1

(V
)

FF = 5 Hz, Input = 5 Hz

data

cos()

Figure 5.21: AHT yQ coefficients resulting from correlating an input 5 Hz sinu-
soid with a 5 Hz harmonic frequency at various relative starting phase differences
∆φ. The data is plotted against the expected cosine function scaled to match the
zero phase measurement.

voltage. For reference, the filled red squares in Figure 5.20 plot the values of yQ,1(0),

yQ,2(0), and yQ,3(0).

Not shown are the similar measurements for the yI values. For single-tone in-

puts, they will be maximum at 90◦ and 270◦ and zero at 0◦ and 180◦. Taken as a

complex pair, their magnitude should remain constant, or
√
y2
I + y2

Q = C/n.

Figure 5.22 plots the measured outputs for input frequencies at the first seven

harmonics of the 5 Hz basis function. The first plot, for n = 1, is the same data as

Figure 5.21. According to Equation (5.8), the outputs should be all zeros for even

harmonics and vary as the cosine of the relative phase for odd harmonics. Errors of

various origin contribute to the even harmonic outputs being non-zero. Similarly,

for the odd harmonics dynamic errors vary the amplitudes from the expected 1/n

magnitudes as the harmonic number increases.

These dynamic errors increase when the fundamental frequency and the input
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phase between the basis function and input sinusoid over a complete cycle. Plots
with blue circles indicate input frequencies where the results are expected to be
non-zero. Higher frequencies for both the basis function and input reveal the pres-
ence of a dynamic error source caused by the non-symmetric single-ended integra-
tor.
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Figure 5.24: Time-domain simulation of a harmonic channel with 200 mV DC
input and 100 Hz basis function. The ideal shape should be triangular only. Asym-
metrical slew rate and switching time is evident by the output steps at each basis
function edge.

frequency increase. Figure 5.23 uses the same input frequencies, but uses a 10 Hz

basis function. All outputs are then expected to be zero except for the first har-

monic input of 10 Hz and the third harmonic of 30 Hz. Especially for the third har-

monic, signal-dependent errors accumulate to shift the outputs lower to a non-zero

mean value over the changes in relative starting phase.

These errors are directly related to the size and number of waveform discontinu-

ities applied to the OTA-C integrator. Non-zero input voltages at the time of a ±1

edge of the basis function can exceed the OTA’s slew rate. When this happens, the

unequal delays through the OTA from each input to the single-ended output gen-

erate a charge pulse into the capacitor. For the present circuit, the pull-down path

is faster, which explains the downward shift of the outputs at certain input/basis

function frequency combinations.

The time-domain simulation of Figure 5.24 shows a channel’s output waveform

when a DC input is applied. Instead of a triangular shape, the waveform has dif-
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Figure 5.25: Simulation of a harmonic channel’s output after an integration pe-
riod. The dynamic offset is linearly dependent on both the input step size and the
number of rise/fall transitions in a period (harmonic number). The basis function
frequency was 5 Hz with a 400 ms integration time.

ferent glitch amplitudes depending on the sign and magnitude of the integrator’s

input change. Because the fast path pulls down the output for a longer time than it

pulls up, the effect is to introduce a net negative trend to the output in addition to

the normal integrating shape.

This dynamic error magnitude should increase linearly with both the number of

transitions and for larger input amplitudes at the moment of switching. Figure 5.25

shows simulations performed to verify that this effect was indeed the dominant

offset source. While this dynamic error can be well-characterized for DC inputs and

by extension for known input amplitudes at the switching instant, its effect cannot

be removed for arbitrary signal inputs.

Since the dynamic offset is the result of asymmetry in the integrator, the solu-

tion is to make the integrator path fully differential. Slewing delays in each half

of the circuit would be matched by design to minimize this error source. A second
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advantage for using a differential circuit is a factor of two increase in signal range

and a simlar increase in dynamic range.

A fully-differential circuit requires more chip area. However, for low fundamental

frequency operation, the integration capacitor requires the most die area. It is ex-

pected that a new OTA structure would still be able to be implemented completely

under this capacitor, resulting in better performance with still no additional die

area.

5.5 Conclusion

This chapter described the prototype chip testing, including its support circuitry.

Most of the chip’s modules were either directly accessible and functioned properly

or were verified to be working in cooperation with other modules. Table 5.1 from

the beginning of the chapter summarized those results.

The chip test fixture was designed to allow digitally-controlled and repeatable

measurements of the chip. Having a software-controlled testing environment al-

lowed documentation of both the output data and the specific conditions and se-

quence under which the measurements were taken. Because of this consistency, the

recorded data could be analyzed across chip copies and over time.

Due to the pad buffer’s common-mode connection, a limited amount of measure-

ments could be performed on the parallel AHT channels. This was mostly limited

to offset tuning and characterization and could not include the full, parallel, AHT

coefficient generation for an input signal.

The offset measurements confirmed both the proper operation and necessity of a

post-fabrication tuning step. As described in Chapter 3, Section 3.7.4, the vehicle

classification task required strict limits for the hardware offset. Digital offset tuning
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circuitry which could meet the specification was validated through simulation and

verified with the measurements of Section 5.4.3.
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Chapter 6

Conclusions and Future Work

This chapter briefly summarizes and draws some conclusions from the work as well

as presents some future exploration opportunities relating to implementation of the

AHT and its underlying circuitry.

6.1 Conclusions

The analog harmonic transform presented in this dissertation is an alternative

spectral feature extraction technique to traditional FFT or other transforms. It

is specifically designed to have a simple, regular hardware implementation.

The aspects of the AHT which set it apart from previous approaches are:

• Fouriér series coefficients may be calculated from the AHT coefficients by sim-

ple back-substitution. Under the assumption of a band-limited input signal

and precision computations, the calculated FS coefficients are exact.

• Each quadrature set of AHT coefficient calculations are mutually independent.

This is in strong contrast to most efficient digital transforms where all coef-

ficients must be calculated simultaneously. Because of this independence, all
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hardware associated with coefficients which are not used in back-end process-

ing may be powered off to save energy.

In addition to the transform design, the corresponding hardware implementa-

tion prototyped a new digitally-controlled OTA tuning structure. The offset tuning

was shown to reduce an amplifier’s DC offset to levels acceptable for long time con-

stant integrators. These levels of offset are below the offset achievable without a

post-fabrication calibration step. Because the control and tuning of the amplifiers is

digital, a system processor can tune channels on-demand in response to environmen-

tal or application needs.

6.2 Future Work

Broadly, future work can focus on two aspects: development of back-end algorithms

and applications which use the AHT’s ability to extract only selected coefficients,

and improving the range of available amplifier tuning techniques suited to use in

AHT hardware.

6.2.1 AHT Applications

Sections 3.6.1 and 3.6.1 of Chapter 3 detailed only two specific applications. It was

shown that the AHT provided sufficient information to a neural network back-end

to achieve similar classification rates compared with existing techniques using the

same data sets. It is of interest to determine other application areas which can

directly benefit from the AHT’s unique feature set. These areas would typically be

sensor systems with severe energy constraints.
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Also, this work focused on AHT for signal analysis only. For band-limited sig-

nals, it would be interesting to evaluate and compare using the AHT and recon-

struction with scaled basis functions to more traditional filtering operations. An

application which may benefit from this technique is the signal path of hearing

aids.

6.2.2 Amplifier Calibration

A large emerging area focused on small, low-energy sensors is “internet of things”

(IoT). Wide deployment of simple sensors benefits from circuitry which implements

only the required precision for the application. Such circuitry can be made smaller

and lower-power with the addition of post-fabrication calibration such as provided

with the prototype OTA. Other methods of tuning besides the current-steering

DAC used in this work are worthy of study in light of these new application areas.

Re-design of the OTA to be fully-differential (FD) will eliminate the dynamic

offset error source caused by waveform discontinuities arising from the switching-

type ±1 multiplication. This FD structure is better suited to the current-steering

DAC structure for offset and gain tuning.

To optimally include post-fabrication tuning circuitry, it will be useful to gen-

erate a higher level analysis of the circuitry’s range and precision. The range and

bits of precision allocated to the gain and offset tuning of the OTA were informally

determined through simulation. An optimal balance of die area and power allocated

to the amplifier and to its tuning circuitry could be found for certain combinations.

This would facilitate automated methods of generating low-power, precision ampli-

fier schematics and layouts.
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Appendix A

Digital Design With MyHDL

MyHDL [106] is an open-source package for using the Python programming lan-

guage as a hardware description and verification language. It utilizes Python gen-

erators to model hardware concurrency. Each hardware module is described by a

function which returns a group of generators which implement its functionality. In

addition to a built-in simulator with waveform tracing, it can perform co-simulation

with an external Verilog or VHDL simulator. A subset of the functionality provided

in MyHDL can be converted to either Verilog or VHDL files for hardware synthesis.

These converted files may then be used as part of a hardware design flow.

Python and associated modules were extensively used for general scripting, data

analysis and plotting, and circuit simulation control. Version 0.7 of MyHDL was

available at the beginning of the project; but later the developmental code for

version 0.8 was used for the design, simulation, and testing of all the local digital

blocks except for the MSP430-compatible processor itself.

The code implementing the complete digital hierarchy is included in the Ap-

pendices. Here, two blocks are described which together utilize the major features

provided by MyHDL.
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A.0.3 SPI Slave module

Each module was written in separate files for this design, though it is not necessary

to do so.

The SPI slave module is specifically described to illustrate the procedure of

developing a digital module with MyHDL. Its conceptual design was shown in Fig-

ure 4.5 and described in Section 4.5.1.1.

1 from myhdl import *
2
3 ACTIVE_LOW, ACTIVE_HIGH = 0,1
4

The first statement populates the root namespace with the myhdl module contents.

Only the Signal class, the always(), always_seq(), and always_comb() function

decorators, and the instances() helper function are actually used in this case.

Line 3 defines a symbolic constant to represent symbolic logic states – this is useful

for easily changing the logic sense of e.g. reset signals which are typically asserted

with a low voltage.

5 def SPISlave(reset, scl, cs, din, dout, data):
6 """Harmonic digital control
7
8 Signals:
9 reset - async reset to default values

10 scl - input clock
11 cs - Chip Select: low:shift in data, high:latch to outputs
12 din - serial data in
13 dout - serial data out
14
15 data - latched data (read-only)
16 """
17

This is the sole function defined in this file. It is not the SPI module, instead, it

returns a group of generators which implement the module. This difference is a

primary reason which allows the full power of the Python language to make con-

figurable and parameterized digital module constructors. The function definition

signature and docstring together describe the usage and function of the parame-

ters. By personal convention, the first arguments give specific parameters for the
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following parameterized module generator. The last set of arguments are the Signal

objects which represent, in order, the input and output communication ports of the

module.

18 N = len(data)
19 reg = Signal(intbv(0)[N:])
20 sample = Signal(intbv(0)[0])
21

The width of the SPI register is implicitly defined by the width of the data signal;

line 18 extracts this parameter for later use in constructing the module function-

ality. Lines 19–20 define two internal Signal objects. The intbv(0)[N:] creates

an intbv object initialized to zero then only takes the last N bits, implicitly creat-

ing an unsigned, N-bit integer object. Signal sample is defined as only bit-0 of the

initial zero value, or a 1-bit signal.

22 @always_seq(scl.posedge, reset=reset)
23 def SampleInput():
24 sample.next = din
25

This defines the first concurent block named SampleInput, the always seq() deco-

rator specifies the generator’s signal sensitivity and the reset signal for the inferred

registers. The generator is activated on the positive edge of the scl signal when the

reset signal is not active. It stores the current value of the din signal into the 1-bit

register sample.

26 @always_comb
27 def wire_dout():
28 dout.next = reg[N-1]
29

This is a combinational logic block which wires the most-significant bit of the shift

register reg to the output signal dout.

30 @always_seq(scl.negedge, reset=reset)
31 def InputRegister():
32 if cs == ACTIVE_LOW:
33 reg.next = concat(reg[N-1:], sample)
34
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On the opposite (negative) edge of the input scl signal, the InputRegister block

left-shifts the sampled data bit into the internal register reg. The input bit is

placed into the least-significant bit position.

35 @always(cs.posedge)
36 def ChipSelect():
37 if cs == ACTIVE_HIGH:
38 data.next = reg
39

When the cs signal rises, the internal data register contents are latched into the

output data register data.

40 return instances()

The instances() function automatically introspects the containing function defini-

tion and returns the defined generators. In this case, it is a convenient equivalent

for the return statement

40 return (SampleInput, wire_dout, InputRegister, ChipSelect)

A.0.4 Test bench for SPISlave module

MyHDL may be used as a front-end to help generate parameterized synthesizable

Verilog or VHDL code. It’s feature set beyond the convertible subset is what allows

constructing digital systems with MyHDL to shine.

Verification of hardware modules is an essential part of a digital design flow to

ensure correct behavior. Test benches are constructed which instantiate a mod-

ule under test, exercise its inputs, and check for the expected outputs. The test

benches are then run in a digital simulator.

Writing these test benches directly in Verilog or VHDL can be difficult due to

the lack of high-level language features and general programming constructs. With

MyHDL, the entire expressivity of the Python programming language may be uti-

lized to construct simulations and describe complex behavior. Additional Python
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packages can be used to e.g. construct plots, interact with a network, or perform

other analyses.

The verification for the SPISlave module is described here to demonstrate the

features which allow complete testing of parameterized modules. The pytest [113]

software was used to assist in collecting and running the test elements. It inspects

the input file for class definitions beginning with the name Test instantiates each

class and calls the class methods beginning with the name test , reporting the

number of passing and failing tests. It also looks for for top-level function defini-

tions named test for additional tests to run.

1 import random
2
3 from myhdl import *
4
5 from SPISlave import SPISlave
6
7
8 PERIOD = 10
9

Python coding convention places most package and module imports at the top of a

file. Built-in packages are loaded first, followed by additional packages, then local

modules. The constant PERIOD defines the clock period in simulation steps.

10 # SPI bus transaction helper
11 def start(spi):
12 spi.cs.next = 0
13 yield spi.clk.posedge
14
15 def sendBit(spi, b):
16 spi.scl.next = 0
17 spi.din.next = b
18 yield spi.clk.posedge
19 spi.scl.next = 1
20 yield spi.clk.posedge
21
22 def stop(spi):
23 spi.scl.next = 0
24 yield spi.clk.posedge
25 spi.cs.next = 1
26 yield spi.clk.posedge
27
28 def tx(spi, word):
29 yield start(spi)
30 for i in downrange(len(word)):
31 yield sendBit(spi, word[i])
32 yield stop(spi)
33
34
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These define several Python generators which define the functional behavior of

an SPI bus transaction. They accept an spi object which contains the SPI bus

signals cs, scl, and din. Because these generators directly, they are not convertible

to Verilog or VHDL and are used for MyHDL simulation only. They do, however,

model the high-level functional behavior of a SPI bus master.

Each bus transaction begins with the cs line going low, modelled by calling the

start(spi) function which sets the cs line low and waits to return until global

simulation clock clk line rises. Ending an SPI bus transaction is modelled by the

stop(spi) function which sets the scl line low (to the SPI mode 0 clock idle state),

waits for a simulation clock time step, then un-asserts the Chip Select line cs.

For SPI mode 0 transactions, as discussed in Section 4.5.1.1, a bit is sent to a

slave module by changing the input bit din while the bus clock line scl is low and

sampling its value on the scl rising edge. This is modelled by generator sendBit(spi,

b) whose second parameter is the current bit value to send. Sending a bit therefore

requires waiting for two rising edges of the simulation clock clk to complete, making

the SPI clock rate (scl) one-half the clk rate.

Finally, the tx(spi, word) function models a complete bus transaction given

a container holding the given SPI bus lines and the word to send. The transac-

tion is functionally described by first performing a bus start operation, sequentially

sending the word bits starting with the most-significant, then ending the bus trans-

action. MyHDL convenience function downrange(x) returns a descending list of

integers like {x−1, x−2, · · · , 0}.
35 class TestShiftRegister:

This TestShiftRegister class wraps several test routines which use similar func-

tionality.

36 def makeN_tester(self, N):
37 reset = ResetSignal(0, active=0, async=True)
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38 clk = Signal(bool(0))
39 scl, cs = [Signal(bool(0)) for i in range(2)]
40 din = Signal(intbv(0)[0])
41 dout = Signal(intbv(0)[0])
42
43 class SPI:
44 pass
45 spi = SPI()
46 spi.clk = clk
47 spi.scl = scl
48 spi.cs = cs
49 spi.din = din
50 spi.dout = dout
51
52 # dependent signals
53 data = Signal(intbv(0)[N:])
54 indata = Signal(intbv(0)[N:])
55
56 spislave = SPISlave(
57 reset, scl, cs, din,
58 dout, data)
59
60
61 # system clock generator
62 @always(delay(PERIOD//2))
63 def clkgen():
64 clk.next = not clk
65
66 # feed some random input words
67 @instance
68 def tester():
69 spi.cs.next = 1
70 reset.next = 1
71 for iteration in range(10):
72 collector = intbv(0)[N:]
73 reset.next = 0
74 indata.next = intbv(random.randrange(2**32))[N:]
75 yield clk.posedge
76
77 reset.next = 1
78 yield clk.posedge
79
80 yield tx(spi, indata)
81 assert data == indata
82
83 # shift out data
84 yield start(spi)
85 for i in downrange(N):
86 yield sendBit(spi, 0)
87 collector[i] = dout
88 yield stop(spi)
89
90 assert collector == indata
91
92 raise StopSimulation
93
94 return instances()
95

The makeN tester(self, N) method constructs a simulation clock generator and a

single SPISlave instance which has a N -bit wide data register. Lines 37–41 create

the serial input and output bit lines for communicating with the module. Lines 43–
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50 defines an empty class SPI, instantiates it, then assigns named attributes. This

provides a convenient logical container which holds the signals related to a single

SPI bus communication lines.

The output register data is created along with a second signal for holding an

input word. Their bit widths are set to the given desired width of the module in-

stance to be tested. Lines 56–58 create an instance of the SPISlave module with

the appropriate input and output signals whose register size is implicitly deter-

mined by data’s width. Lines 61–65 define a concurrent module which simply tog-

gles the simulation system clock every half-period time steps.

Finally, the simulation block tester is created using the instance function

decorator. This identifies the following generator to be elaborated and a part of

the simulation. Such generators are not convertible to Verilog or VHDL and are for

describing complex behavior within a simulation.

Lines 69–70 ensure the chip-select and reset lines are not asserted. The collector

variable is initialized to zeros and will collect the output bits of the SPI slave as

they are clocked out. The reset signal is asserted and a random N -bit vector is

generated to transmit; testing operations resume on the rising edge of the next sim-

ulation clk. The reset signal is un-asserted and allowed to propagate through the

system by waiting for another clk rising edge, simulating a system reset.

Line 80 simulates sending the complete vector indata’s contents across the SPI

bus by calling the helper function tx(spi, indata). When the transmission is fin-

ished, tester resumes execution and checks that the latched output of SPISlave

matches the random data sent. Failure of this condition raises an exception, effec-

tively causing the test to fail.

Because the SPI slave is implemented as a shift register, a second way to test

proper operation is to shift in additional bits and check that the output bits match
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the previously input bits in the proper order. Lines 83–90 perform this operation by

starting a second transaction, sending N zero bits while storing each output bit in

the expected bit position in collector, then stopping the transaction. Again, the

shifted-out data should match the data sent originally.

Ten test iterations are performed with random data. A complete test of this

functional aspect would require 2N iterations, sending in all possible data values.

The behavior of the module may be sufficiently evaluated by only a few non-trivial

(e.g. all-zero or all-one) inputs. When the iterations finish, the special StopSimulation

exception is raised which indicates successful termination of the simulation. The

method makeN tester(self, N) returns, in line 94, the simulation generators

which implement the above-described test for a single register width N.

96 def test_dataOut(self):
97 for N in [2,4,8,16,32,48]:
98 tb = self.makeN_tester(N)
99 sim = Simulation(tb)

100 sim.run()
101

The test dataOut() method is called by the py.test framework with no argu-

ments. It creates and runs several simulations of differing bit-width SPISlave mod-

ules for proper functionality. The sim.run() statement exits when a StopSimulation

exception is raised, exiting the containing function as well. By convention of the

test framework, test * functions pass when they do not propagate an un-handled

exception.

102 def bench_seriesDevices(self):
103 reset = ResetSignal(0, active=0, async=True)
104 clk = Signal(bool(0))
105 scl, cs = [Signal(bool(0)) for i in range(2)]
106 din = Signal(intbv(0)[0])
107 d0 = Signal(intbv(0)[0])
108 d1 = Signal(intbv(0)[0])
109 d2 = Signal(intbv(0)[0])
110 dout = Signal(intbv(0)[0])
111
112 class SPI:
113 pass
114 spi = SPI()
115 spi.clk = clk
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116 spi.scl = scl
117 spi.cs = cs
118 spi.din = din
119 spi.dout = dout
120
121 N = 16
122 N_SERIES = 4
123 # intbv is 64bit max...
124 assert (N*N_SERIES) <= 64
125
126 # dependent signals
127 data0 = Signal(intbv(0)[N:])
128 data1 = Signal(intbv(0)[N:])
129 data2 = Signal(intbv(0)[N:])
130 data3 = Signal(intbv(0)[N:])
131
132 spi0 = SPISlave(reset, scl, cs, din, d0, data0)
133 spi1 = SPISlave(reset, scl, cs, d0, d1, data1)
134 spi2 = SPISlave(reset, scl, cs, d1, d2, data2)
135 spi3 = SPISlave(reset, scl, cs, d2, dout, data3)
136 indata = Signal(intbv(0)[N_SERIES*N:])
137
138
139 # system clock generator
140 @always(delay(PERIOD//2))
141 def clkgen():
142 clk.next = not clk
143
144 # feed some random input words
145 @instance
146 def tester():
147 collector = intbv(0)[N_SERIES*N:]
148 assert len(indata) == len(collector)
149 for iteration in range(10):
150 indata.next = random.randrange(2**(N_SERIES*N))
151 reset.next = 1
152 yield tx(spi, indata)
153
154 # shift out data
155 # sample dout when SCL == 1
156 yield start(spi)
157 for i in downrange(N_SERIES*N):
158 yield sendBit(spi, 0)
159 collector[i] = dout
160 yield stop(spi)
161 assert collector == indata
162 raise StopSimulation
163
164 return instances()
165

Method bench seriesDevices tests proper shifting when four SPISlave modules

are chained in series. In this implementation, the data to end up in all four mod-

ules is created as a single bit-vector. Line 124 ensures that this large vector will be

a maximum of 64 bits wide, which is the width limitation of the intbv object type.

Lines 126–135 create output data registers and instantiate four modules with serial

connection of their din and dout ports. The shift behavior is evaluated in the same



154

way as the previous test.

166 def test_seriesDevices(self):
167 tb = self.bench_seriesDevices()
168 sim = Simulation(tb)
169 sim.run()
170

171 def vcd_test_timing(self):
172 def bench_SPISlave():
173 return self.makeN_tester(8)
174
175 tb = traceSignals(bench_SPISlave)
176 sim = Simulation(tb)
177 sim.run()
178
179
180 if __name__ == ’__main__’:
181 TestShiftRegister().vcd_test_timing()
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Appendix B

MyHDL Code Listings

B.1 src/HarmonicInterface.py

Top-level assembly of the harmonic projection channel pair digital functions.

1 #!/usr/bin/env python
2
3 from myhdl import *
4
5 from SPISlave import SPISlave
6 from NCO import NCO
7 from SwitchCtl import SwitchCtl
8
9 def HarmonicInterface(clk_in, reset_in, scl_in, cs_in, din,

10 nco_i, nco_q, multA, multB,
11 clk_out, reset_out, scl_out, cs_out, dout,
12 swAp, swAn,
13 cintAn, zeroAn, fastAn, tuneAn,
14 cintAp, zeroAp, fastAp, tuneAp,
15 swBp, swBn,
16 cintBn, zeroBn, fastBn, tuneBn,
17 cintBp, zeroBp, fastBp, tuneBp):
18 """Harmonic digital interface
19
20 clk - input clock
21 reset - async reset to default values
22 scl - SPI clock
23 cs - SPI chip select
24 din - SPI MOSI
25 dout - SPI MISO
26
27 swXx - multiplier switches
28 cintXx - Cap on
29 zeroXx - Reset cap to Vcm
30 fastXx - gm x10
31 tuneXx - 12bit IDAC word
32 """
33
34 N = 16
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35 N_DATA_BITS = 16 + 2*N
36
37 # SPI
38 cdata = Signal(intbv(0)[N_DATA_BITS:])
39 spiSlave = SPISlave(reset_in, scl_in, cs_in, din, dout, cdata)
40
41 # pull out slices of SPI words
42 cal = cdata(47)
43 rst = cdata(46)
44 seA = cdata(29)
45 seB = cdata(13)
46 fcw = cdata(46,32)
47
48 # NCO
49 nco = NCO(N, clk_in, reset_in, rst, fcw, nco_i, nco_q)
50
51 # Channels
52 sA = Signal(intbv(0)[7:])
53 sB = Signal(intbv(0)[7:])
54 channelA = SwitchCtl(multA, cal, seA, sA)
55 channelB = SwitchCtl(multB, cal, seB, sB)
56
57 @always(clk_in.posedge)
58 def switchOut():
59 swAn.next = sA
60 swAp.next = ~sA
61 swBn.next = sB
62 swBp.next = ~sB
63
64 @always(cdata)
65 def passthru():
66 cintAn.next = cdata[31]
67 cintAp.next = not cdata[31]
68
69 zeroAn.next = cdata[30]
70 zeroAp.next = not cdata[30]
71
72 fastAn.next = cdata[28]
73 fastAp.next = not cdata[28]
74
75 tuneAn.next = cdata[28:16]
76 tuneAp.next = ~intbv(cdata[28:16], max=2**12)
77
78 cintBn.next = cdata[15]
79 cintBp.next = not cdata[15]
80
81 zeroBn.next = cdata[14]
82 zeroBp.next = not cdata[14]
83
84 fastBn.next = cdata[12]
85 fastBp.next = not cdata[12]
86
87 tuneBn.next = cdata[12:0]
88 tuneBp.next = ~intbv(cdata[12:0], max=2**12)
89
90 @always_comb
91 def thrulines():
92 clk_out.next = clk_in
93 reset_out.next = reset_in
94 scl_out.next = scl_in
95 cs_out.next = cs_in
96
97 return instances()
98
99

100 def convert():
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101 clk_in, reset_in, scl_in, cs_in = [Signal(intbv(0)[0]) for i in range(4)]
102 clk_out, reset_out, scl_out, cs_out = [Signal(intbv(0)[0]) for i in range(4)]
103 din, dout = [Signal(intbv(0)[0]) for i in range(2)]
104 nco_i, nco_q = [Signal(intbv(0)[0]) for i in range(2)]
105 multA, multB = [Signal(intbv(0)[0]) for i in range(2)]
106
107 swAn = Signal(intbv(0)[7:])
108 swAp = Signal(intbv(0)[7:])
109 swBn = Signal(intbv(0)[7:])
110 swBp = Signal(intbv(0)[7:])
111
112 cintAn, zeroAn, fastAn = [Signal(intbv(0)[0]) for i in range(3)]
113 cintAp, zeroAp, fastAp = [Signal(intbv(0)[0]) for i in range(3)]
114
115 cintBn, zeroBn, fastBn = [Signal(intbv(0)[0]) for i in range(3)]
116 cintBp, zeroBp, fastBp = [Signal(intbv(0)[0]) for i in range(3)]
117
118 tuneAn = Signal(intbv(0)[12:])
119 tuneAp = Signal(intbv(0)[12:])
120
121 tuneBn = Signal(intbv(0)[12:])
122 tuneBp = Signal(intbv(0)[12:])
123
124 toVerilog(
125 HarmonicInterface,
126 clk_in, reset_in, scl_in, cs_in, din,
127 nco_i, nco_q, multA, multB,
128 clk_out, reset_out, scl_out, cs_out, dout,
129 swAp, swAn,
130 cintAn, zeroAn, fastAn, tuneAn,
131 cintAp, zeroAp, fastAp, tuneAp,
132 swBp, swBn,
133 cintBn, zeroBn, fastBn, tuneBn,
134 cintBp, zeroBp, fastBp, tuneBp)
135
136 if __name__ == ’__main__’:
137 convert()

B.1.1 src/SPISlave.py

Serial Peripheral Interface slave module.

1 from myhdl import *
2
3 ACTIVE_LOW, ACTIVE_HIGH = 0,1
4
5 def SPISlave(reset, scl, cs, din, dout, data):
6 """Harmonic digital control
7
8 Signals:
9 reset - async reset to default values

10 scl - input clock
11 cs - Chip Select: low:shift in data, high:latch to outputs
12 din - serial data in
13 dout - serial data out
14
15 data - latched data (read-only)
16 """
17
18 N = len(data)
19 reg = Signal(intbv(0)[N:])
20 sample = Signal(intbv(0)[0])
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21
22 @always_seq(scl.posedge, reset=reset)
23 def SampleInput():
24 sample.next = din
25
26 @always_comb
27 def wire_dout():
28 dout.next = reg[N-1]
29
30 @always_seq(scl.negedge, reset=reset)
31 def InputRegister():
32 if cs == ACTIVE_LOW:
33 reg.next = concat(reg[N-1:], sample)
34
35 @always(cs.posedge)
36 def ChipSelect():
37 if cs == ACTIVE_HIGH:
38 data.next = reg
39
40 return instances()
41
42 # temp typesetting column-width ruler
43 # 1 2 3 4 5 6 7 8
44 # 345678901234567890123456789012345678901234567890123456789012345678901234567890

B.1.2 src/NCO.py

Numerically-controlled oscillator with quadrature outputs.

1 #!/usr/bin/env python
2
3 from myhdl import *
4
5 ACTIVE_LOW, ACTIVE_HIGH = 0,1
6
7 def NCO(N, clk, reset, rst, fcw, outi, outq):
8 """Numerically controlled oscillator.
9

10 N - phase accumulator bit-width CONFIG
11 clk - clock input
12 reset - global actLow asynchronous reset-to-zero
13 rst - local reset-to-zero
14 fcw - phase increment tuning word
15 outi - in-phase output
16 outq - quadrature output
17 """
18 assert(N >= 2)
19
20 acc_max = 2**N
21 offset = 2**(N-2)
22
23 MSB = N-1
24
25 phase = Signal(intbv(0)[N:])
26 phase_delay = Signal(intbv(0)[N:])
27 x = Signal(intbv(0)[N:])
28
29 @always_seq(clk.negedge, reset=reset)
30 def loopdelay():
31 phase_delay.next = phase
32
33 @always_seq(clk.posedge, reset=reset)
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34 def ncoLogic():
35 if rst == ACTIVE_LOW:
36 phase.next = 0
37 outi.next = 0
38 outq.next = 0
39 else:
40 phase.next = (phase_delay + fcw) % acc_max
41 tmp = (phase_delay + offset) % acc_max
42 outi.next = intbv(tmp)[MSB]
43 outq.next = phase[MSB]
44
45 return instances()

B.1.3 src/SwitchCtl.py

Transmission gate switch control logic.

1 from myhdl import *
2
3
4 def SwitchCtl(mult, cal, se, sw):
5 """TX gate multiplier control
6
7 mult - 0=+1, 1=-1
8 cal - 0:normal, 1:short inputs to CM
9 se = 0:diff, 1:feedback

10
11 Switch control outputs, 1 == on
12 a - ina-siga switch
13 b - inb-siga switch
14 c - ina-sigb switch
15 d - inb-sigb switch
16 e - cm-siga
17 f - cm-sigb
18 g - out-sigb
19 """
20
21 @always_comb
22 def logic():
23 if cal == 0:
24 # normal +-1 diff mult
25 if se == 0:
26 if mult:
27 sw.next = 0b0110000
28 else:
29 sw.next = 0b1001000
30
31 # SE mult of A only, B-out
32 else:
33 if mult:
34 sw.next = 0b0100001
35 else:
36 sw.next = 0b1000001
37
38 else:
39 # Calibrate to CM open-loop
40 if se == 0:
41 sw.next = 0b0000110
42
43 # Calibrate to CM closed-loop
44 else:
45 sw.next = 0b0000101
46
47 return instances()
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B.2 src/Chain0Ctl.py

Main 48-harmonic block output multiplexer and pad driver control.

1 #!/usr/bin/env python
2
3 from myhdl import *
4
5 from SPISlave import SPISlave
6 from AnalogMuxCtl import AnalogMuxCtl
7 from BufferCtl import BufferCtl
8
9 N = 16

10 N_DATA_BITS = 16 + 2*16
11 N_MUX_INPUTS = 49 #48 harmonics + CMI
12
13 def Chain0Ctl(
14 reset, scl, cs, din,
15 dout,
16 txAn, txAp,
17 txBn, txBp,
18 swAn, swAp,
19 swBn, swBp,
20 fastAn, fastAp,
21 fastBn, fastBp,
22 tuneAn, tuneAp,
23 tuneBn, tuneBp):
24 """Harmonic chain 0 multiplexer and pad buffer control
25
26 Inputs:
27 reset - reset SPI register
28 scl - SPI SCLK
29 cs - SPI CS
30 din - SPI MOSI
31
32 Outputs:
33 dout - SPI MISO
34 txXn - one-hot mux A/B NMOS control
35 txXn - one-cold mux A/B PMOS control
36 swXn - buffer A/B mode NMOS switches
37 swXp - buffer A/B mode PMOS switches
38 fastXn - buffer A/B gm config
39 fastXp - buffer A/B gm config
40 tuneXn - IDAC A/B switches
41 tuneXp - IDAC A/B complementary switches
42 """
43
44 # SPI
45 cdata = Signal(intbv(0)[N_DATA_BITS:])
46 spiSlave = SPISlave(reset, scl, cs, din, dout, cdata)
47
48 # pull out slices of SPI words
49 unusedA = cdata(48,46)
50 muxSelA = cdata(46,40)
51
52 unusedB = cdata(40,38)
53 muxSelB = cdata(38,32)
54
55 bufModeA = cdata(32,29)
56 fastA = cdata(28)
57 tuneA = cdata(28,16)
58
59 bufModeB = cdata(16,13)
60 fastB = cdata(12)
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61 tuneB = cdata(12,0)
62
63
64 # Analog Mux
65 tAn, tAp, tBn, tBp = [Signal(intbv(0)[N_MUX_INPUTS:]) for i in range(4)]
66 muxA = AnalogMuxCtl(N_MUX_INPUTS, 0, muxSelA, tAn, tAp)
67 muxB = AnalogMuxCtl(N_MUX_INPUTS, 0, muxSelB, tBn, tBp)
68
69 # Buffer switch control
70 sA, sB = [Signal(intbv(0)[4:]) for i in range(2)]
71 bufSwCtlA = BufferCtl(bufModeA, sA)
72 bufSwCtlB = BufferCtl(bufModeB, sB)
73
74
75 @always_comb
76 def muxbits():
77 txAn.next = tAn
78 txAp.next = tAp
79 txBn.next = tBn
80 txBp.next = tBp
81
82 @always_comb
83 def passthru():
84 swAn.next = sA
85 swAp.next = ~sA
86
87 swBn.next = sB
88 swBp.next = ~sB
89
90 fastAn.next = fastA
91 fastAp.next = not fastA
92
93 fastBn.next = fastB
94 fastBp.next = not fastB
95
96 tuneAn.next = tuneA
97 tuneAp.next = ~tuneA
98
99 tuneBn.next = tuneB

100 tuneBp.next = ~tuneB
101
102 return instances()
103
104
105 def convert():
106 reset, scl, cs, din, dout = [Signal(intbv(0)[0]) for i in range(5)]
107 txAn, txAp, txBn, txBp = [Signal(intbv(0)[N_MUX_INPUTS:]) for i in range(4)]
108 swAn, swAp, swBn, swBp = [Signal(intbv(0)[4:]) for i in range(4)]
109 fastAn, fastAp, fastBn, fastBp = [Signal(intbv(0)[0]) for i in range(4)]
110 tuneAn, tuneAp, tuneBn, tuneBp = [Signal(intbv(0)[12:]) for i in range(4)]
111
112 toVerilog(
113 Chain0Ctl,
114 reset, scl, cs, din,
115 dout,
116 txAn, txAp,
117 txBn, txBp,
118 swAn, swAp,
119 swBn, swBp,
120 fastAn, fastAp,
121 fastBn, fastBp,
122 tuneAn, tuneAp,
123 tuneBn, tuneBp)
124
125 if __name__ == ’__main__’:
126 convert()
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B.2.1 src/SPISlave.py

Serial Peripheral Interface slave module, an instance of the module in Appendix B.1.1.

B.2.2 src/AnalogMuxCtl.py

Transmission gate multiplexer control decoder. Invalid selector codes use an explicitly-

defined default selection.

1 #!/usr/bin/env python
2
3 from math import ceil, log
4
5 from myhdl import *
6
7
8 def AnalogMuxCtl(N, default, sel, swN, swP):
9 """TX gate multiplexer control

10
11 Construction:
12 N - N switches (constructor)
13 default - output if sel>=N
14
15 Inputs:
16 sel - ceil(log2(N))-bit selector
17
18 Outputs:
19 swN - N-long one-hot output vector for NMOS switches
20 swP - N-long one-cold output vector for PMOS switches
21 """
22
23 Nbits = int(ceil(log(N, 2)))
24 SELECTOR = [2**i for i in range(N)]
25
26 # explicitly fill in unused cases with default value
27 for i in range(N, 2**Nbits):
28 SELECTOR.append(int(default))
29
30 SELECTOR = tuple(SELECTOR)
31
32 x = Signal(intbv(0)[N:])
33
34 @always_comb
35 def logic():
36 x.next = SELECTOR[sel]
37
38 @always(x)
39 def outputs():
40 swN.next = x
41 swP.next = ~x
42
43 return instances()
44
45
46 def convert():
47 N = 48
48 Nbits = ceil(log(N, 2))
49 default = intbv(0)[Nbits:]
50
51 sel = Signal(intbv(0)[Nbits:])
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52 swN = Signal(intbv(0)[N:])
53 swP = Signal(intbv(0)[N:])
54
55 toVerilog(AnalogMuxCtl, N, default, sel, swN, swP)
56
57 if __name__ == ’__main__’:
58 convert()

B.2.3 src/BufferCtl.py

Pad driver OTA control. The analog circuit is the same OTA used in the harmonic

channel but with a different input switching configuration.

1 #!/usr/bin/env python
2
3 from myhdl import *
4
5
6 ACTIVE_HIGH, INACTIVE_LOW = 1,0
7 ACTIVE_LOW, INACTIVE_HIGH = 0,1
8
9 def BufferCtl(mode, sw):

10 """TX gate multiplier control
11
12 cint - unused
13 zero - +input to CMI
14 se = 0:openloop, 1:follower
15
16 mode - [cint, zero, se] bit vector (as integer)
17
18 Switch control outputs, 1 == on
19 a - mux-inA
20 b - CMI-inA
21 c - CMI-inB
22 d - inB-out
23 """
24
25 # mode[2] is unused, don’t care
26 # only mode[1:0] used
27 MODE_SWITCHES = (
28 0b1010, #mux cmp
29 0b1010, #mux cmp
30
31 0b1001, #mux buff
32 0b1001, #mux buff
33
34 0b0110, #tune fast
35 0b0110, #tune fast
36
37 0b0101, #tune slow
38 0b0101, #tune slow
39 )
40
41 @always_comb
42 def logic():
43 sw.next = MODE_SWITCHES[int(mode)]
44
45 return instances()
46
47
48 def convert():
49 mode = Signal(intbv(0)[3:])
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50 sw = Signal(intbv(0)[4:])
51
52 toVerilog(BufferCtl, mode, sw)
53
54
55 if __name__ == ’__main__’:
56 convert()

B.3 src/CpuClkSel.py

Additional module added to implement clock source switching in the NS430. The

converted Verilog was included into the processor module synthesis within Ca-

dence’s Encounter tool.

1 #!/usr/bin/env python
2
3 from myhdl import *
4
5 from ClockMux import ClockMux
6
7 # FIXME: give a Fail-Safe state, or not-allowed ’sel’ combinations
8 # to avoid shooting one’s self in the foot.
9 #

10 # Here, sel=10b disables the HFxtal and also selects it (<-- BAD)
11 # DO NOT rely on proper coding to ensure this state is never reached,
12 # do this in hardware!!
13 # (the ns430 bootloader code does exactly this, compiled to ROM code
14 # before Dan completely audited the boot code)
15 #
16 def CpuClkSel(reset, sel, hfxtal, lfxtal, hf_en, cpu_clk):
17 """NS430 system clock select, HF enable
18
19 reset - Nrst system reset
20 sel - SysClkSel<1:0> from NS430
21 hfxtal - HF crystal output
22 lfxtal - 32k crystal output
23
24 hf_en - Enable HF crystal
25 cpu_clk - Main clock for NS430
26
27 sel[1] is ~hf_en or "Disable HFXTAL"
28 sel[0] selects [hf, lf] xtal inputs
29 """
30
31 clk_sel = Signal(intbv(0)[0])
32 in_clocks = Signal(intbv(0)[2:])
33
34 @always_comb
35 def cheat():
36 in_clocks.next[0] = hfxtal
37 in_clocks.next[1] = lfxtal
38
39 clkMux = ClockMux(2, reset, clk_sel, in_clocks, cpu_clk)
40
41 @always_comb
42 def hf_en_logic():
43 hf_en.next = ~sel[1]
44
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45 @always_comb
46 def clk_sel_logic():
47 if sel == 0:
48 clk_sel.next = 0
49 else:
50 clk_sel.next = 1
51
52 return instances()
53
54
55 def convert():
56 reset = Signal(intbv(0)[0])
57 sel = Signal(intbv(0)[2:])
58 hfxtal = Signal(intbv(0)[0])
59 lfxtal = Signal(intbv(0)[0])
60 hf_en = Signal(intbv(0)[0])
61 cpu_clk = Signal(intbv(0)[0])
62
63 toVerilog(CpuClkSel, reset, sel, hfxtal, lfxtal, hf_en, cpu_clk)
64
65
66 if __name__ == ’__main__’:
67 convert()

B.3.1 src/ClockMux.py

Generalized N-input glitch-free clock multiplexer. The clock selector’s control lines

are mutually synchronized to ensure no glitches appear at the clock output. This

module makes use of the elaboration phase of MyHDL module construction. Func-

tion Synchronizer() returns a group of generators which implement a single clock-

enable synchronizer. Likewise, function EnableLogic() returns a combinational

block which detects the condition when only the select bit corresponding to its own

index is asserted and none others. This condition only occurs when all the enable

signals have propagated according to their respective clocks.

1 #!/usr/bin/env python
2
3 """
4 Idea from: Techniques to make clock switching glitch free
5 by Rafey Mahmud
6
7 http://www.eetimes.com/electronics-news/4138692/Techniques-to-make-clock-switching-glitch-free
8
9 Adapted to arbitrary number of inputs.

10 """
11
12 import sys
13 from math import ceil, log
14
15 from myhdl import *
16
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17
18 ACTIVE_LOW, ACTIVE_HIGH = 0,1
19
20
21 def ClockMux(N, reset, sel, in_clocks, out_clock):
22 """Glitch-free clock multiplexer
23
24 N - number of clocks
25
26 reset - async actLow reset
27 sel - clock select index
28 in_clocks - vector of input clock lines
29
30 Outputs:
31 out_clock - selected output clock
32 """
33
34 assert int(ceil(log(N, 2))) == len(sel)
35
36 # internal signals
37 in_enables = [Signal(intbv(0)[0]) for i in range(N)]
38 out_enables = [Signal(intbv(0)[0]) for i in range(N)]
39 sync_clocks = [Signal(intbv(0)[0]) for i in range(N)]
40 sync_clocks_concat = ConcatSignal(*reversed(sync_clocks))
41
42
43 def Synchronizer(reset, clk_in, en_in, en_out, clk_out):
44 """Single synchronizer stage. Only enables clock iff en is asserted,
45 which is iff it is the only one asserted.
46
47 clk_in - input clock
48 en - enable this clock
49
50 not_en - delayed, inverted enable
51 """
52 d0, d1 = [Signal(intbv(0)[0]) for i in range(2)]
53
54 @always_seq(clk_in.posedge, reset=reset)
55 def stage0():
56 d0.next = en_in
57
58 @always_seq(clk_in.negedge, reset=reset)
59 def stage1():
60 en_out.next = d0
61
62 @always_comb
63 def clkOut():
64 clk_out.next = (en_out and clk_in)
65
66 return instances()
67
68
69 def EnableLogic(index, sel, en):
70 """Exclusive enable
71 output = en and (not any(others))
72 """
73 them = [out_enables[j] for j in range(N) if j != i]
74 if len(them) == 1:
75 others = them[0]
76 else:
77 others = ConcatSignal(*reversed(them))
78
79 @always_comb
80 def enLogic():
81 if ((sel == index) and
82 (others == 0)):
83 en.next = 1
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84 else:
85 en.next = 0
86 return instances()
87
88 #make the exclusive-enable combinational blocks
89 enableBlocks = []
90 for i in range(N):
91 enableBlocks.append(EnableLogic(i, sel, in_enables[i]))
92
93 #make the synchronizers
94 syncBlocks = []
95 for i in range(N):
96 syncBlocks.append(
97 Synchronizer(
98 reset,
99 in_clocks(i),

100 in_enables[i],
101 out_enables[i],
102 sync_clocks[i]
103 )
104 )
105
106 @always_comb
107 def clockOr():
108 out_clock.next = (sync_clocks_concat != 0) # OR of all vectors
109
110 return instances()
111
112
113 def convert():
114 N = 3
115 reset = Signal(intbv(0)[0])
116 sel = Signal(intbv(0)[2:])
117 in_clocks = Signal(intbv(0)[N:])
118 out_clock = Signal(intbv(0)[0])
119
120 toVerilog(ClockMux, N, reset, sel, in_clocks, out_clock)
121
122
123 if __name__ == ’__main__’:
124 convert()
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Appendix C

Schematics
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