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Multiple cameras have been used to improve the coverage and accuracy of visual surveillance

systems. Nowadays, there are estimated 30 million surveillance cameras deployed in the

United States. The large amount of video data generated by cameras necessitate automatic

activity analysis, and automatic object detection and tracking are essential steps before any

activity/event analysis. Most work on automatic tracking of objects across multiple camera

views has considered systems that rely on a back-end server to process video inputs from

multiple cameras. In this dissertation, we propose distributed camera systems in peer-to-

peer communication. Each camera in the proposed systems performs object detection and

tracking individually and only exchanges a small amount of data for consistent labeling.

With the lightweight and robust algorithms running in each camera, the systems are capable

of tracking multiple objects in a real-time manner.

The cameras in the system may have overlapping or non-overlapping views. With par-

tially overlapping views, the object labels can be handed off between cameras based on

geometric relations. Most camera systems with overlapping views attach cameras to PCs

and communicate via Ethernet, which hinders the flexibility and scalability. With the ad-

vances in VLSI technology, smart cameras have been introduced. A smart camera not only

captures images, but also includes a processor, memory and communication interface making

it a stand-alone unit. We first present a wireless embedded smart camera system for coop-

erative object tracking and detection of composite events. Each camera is a CITRIC mote



consisting of a camera board and a wireless mote. All the processing is performed on camera

boards. Power consumption of the proposed system is analyzed based on the measurements

of operating currents for different scenarios.

On the other hand, in wide-area tracking applications, it is not always realistic to assume

that all the cameras in the system have overlapping fields of view. Tracking across non-

overlapping views present more challenges due to lack of spatial continuity. To address this

problem, we present another distributed camera system based on a probabilistic Petri Net

framework. We combine appearance features of objects as well as the travel-time evidence

for target matching and consistent labeling across disjoint camera views. Multiple features

are combined by adaptive weights, which are assigned based on the reliability of the features

and updated online. We employ a probabilistic Petri Net to account for the uncertainties of

the vision algorithms and to incorporate the available domain knowledge.

Synchronization is another important problem for multi-camera systems, because it is

essential to have the precise relevance between the video data captured by different cameras.

We present a computationally efficient and robust method for temporally calibrating video

sequences from unsynchronized cameras. As opposed to expensive hardware-based synchro-

nization methods, our algorithm is solely based on video processing. This algorithm is to

match and align the object trajectories using the Longest Consecutive Common Subsequence,

and thus to recover the frame offset between video sequences.

With the increasing number of cameras in the system, cost and flexibility are important

factors to consider. The cost of each camera node increases with the increasing resolution

of the image sensor. A possible way of employing low-cost low-resolution sensors to achieve

higher resolution images is presented. In this system, four embedded cameras with low-

resolution customized sensors are tiled in different arrangements. With the customized

CMOS imager, we perform edge and motion detection on the focal plane, then stitch the

four edge images together to get a higher-resolution edge map.
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Chapter 1

Introduction

1.1 Background

Cameras are widely employed in military and commercial applications, and public trans-

portation scenarios for purposes of surveillance, statistics gathering, and traffic flow mon-

itoring. Nowadays, there are estimated 30 million surveillance cameras deployed in the

United States. The scale and complexity of camera systems have been continuously increas-

ing to have better coverage and accuracy. The large amount of video data generated by

multi-camera systems necessitates automatic activity analysis.

1.1.1 Overview of Object Tracking

Instead of viewing the recorded videos and detecting objects by human eyes, automatically

detecting foreground objects is the first step of automatic video analysis. Existing methods

for foreground object detection can be generally classified into two categories: temporal

difference methods[42, 43], and background subtraction methods[3, 47, 39, 14, 19, 38, 30, 40].

Temporal difference methods subtract two consecutive frames and then apply a threshold to

the output. The pixels with a difference higher than the threshold are considered foreground
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pixels. These methods do not need to deal with the problem caused by the background

changing over time. However, they cannot detect all the pixels of a moving object, as the

overlapping part of the objects will be removed. On the other hand, background subtraction

methods build a model of the background and subtract this from the current frame to detect

the foreground pixels in the scene. The background model is usually required to be updated

over time and adapt to changes in the environment. Most of the state-of-the-art tracking

algorithms for fixed cameras employ the background subtraction methods [9].

After the foreground pixels are detected, they are represented in a binary frame, wherein

the 1s indicate the foreground pixels and 0s indicate the background pixels. The foreground

pixels need to be grouped into blobs with a certain connected component analysis method.

Each blob corresponds to an object. For each detected object, a label is assigned and a

tracker with a suitable representation of the object is formed. The purpose of the tracker

is to generate the trajectory of the object by locating its position in every frame. The

representation of the object normally contains the location of the object and the descriptors

of some features, such as color, shape, size and texture. Then additional analysis can be

performed based on the object trajectories to recognize their behaviors. In visual surveillance,

this analysis often refers to detecting suspicious activities or events of interest [9].

Object tracking with multi-camera systems can be desired for varying scenarios, such as

monitoring smaller areas with overlapping views, or tracking objects across wide areas with

disjoint camera views. Using multiple cameras with overlapping views fuses the information

of objects from different angles. This helps to resolve tracking difficulties caused by occlu-

sion and crowdedness, and thus enhance the accuracy. With partially overlapping views, the

consistent labels of the tracked objects can be handed off from one camera to another based

on the geometric relations. Thus, a larger area can be monitored with multiple cooperative

cameras. On the other hand, in wide-area tracking applications, it is not always realistic to

assume that all cameras will have overlapping fields of view. Tracking across non-overlapping
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views presents more challenges due to lack of spatial continuity, and the difficulty of recov-

ering geometric relations. To re-identify the objects and achieve consistent labeling across

disjoint views, more features and more complex models are needed.

1.1.2 Object Tracking with Distributed Cameras

Most work on autonomous tracking of objects across multiple camera views has considered

systems that rely on a back-end server to process video inputs from multiple cameras. Yuan

et al. [48], Collins et al. [7, 8], Nguyen et al. [28], Lo et al. [26] and Krumm et al. [23] present

systems where a server/controller performs the coordination and integration of the data from

individual nodes. But, these systems have a bandwidth scaling problem, since the central

server can quickly become overloaded with the aggregate sum of messages/requests from the

nodes. Also, the server is a single point of failure for the whole system. In addition, server-

based systems are not practical in many realistic environments, and have high installation

costs. These problems of server-based systems necessitate the use of peer-to-peer (P2P)

systems, where individual nodes communicate with each other without going through a

centralized server.

More recently, multi-camera systems communicating in a P2P fashion have been intro-

duced. Each camera node has its own processing power, and is able to detect and track

objects by itself. Camera nodes cooperate to solve the consistent labeling problems, by ex-

changing object labels, and retrieve the locations of the occluded objects. Thus, the amount

of data that need to be exchanged can be reduced significantly. Also each node has the ability

to initiate a request, produce a reply, and make its own decisions. This removes the necessity

of a central server and decreases the required communication bandwidth. Therefore, these

systems are usually capable of performing object tracking in real time.

In most distributed multi-camera systems, each camera is attached to a different CPU
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and communication is performed over wired links [1, 15, 44]. These systems are assumed

to be wall-powered and have bulky sizes. These affect the flexibility of camera installation

as well as mobility, and incur significant costs, especially when more cameras are desired

nowadays for wider areas and more complicated scenarios.

1.1.3 Object Tracking with Embedded Smart Cameras

With the advances in VLSI technology and embedded computing, smart cameras have been

introduced, and it has now become viable to install many spatially-distributed cameras

interconnected by wireless links. A smart camera not only captures images, but also includes

a processor, memory and communication interface making it a stand-alone unit. Yet, many

system- and algorithm-wise challenges remain to be addressed to have operational wireless

smart-camera networks (Wi-SCaNs).

Embedded smart cameras have limited processing power, memory, energy and bandwidth.

Although many methods have been introduced for robust foreground object detection and

tracking, much less attention has been paid to the memory requirement and the portability of

these algorithms to an embedded processor. Due to limited resources, most of the embedded

smart camera systems [6, 20, 33] use relatively simple and sometimes less robust methods

such as temporal difference and running average. Robust and feasible algorithms which

require less memory, less computation and are optimized for the hardware architecture, need

to be developed.

Another challenge is related to the wireless communication and data exchange between

embedded cameras. Frequent transfer of large-sized data consumes more energy and incurs

more communication delay. In many systems, communication is 100 to 1000 times more

expensive in energy than computation [34]. Unlike wall-powered multiple cameras connected

to CPUs, and communicating via Ethernet, wireless smart cameras have much less memory
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for storage, limited bandwidth and limited power supply. Due to these constraints, it is not

viable to transfer or save every frame or every object trajectory. The tracking algorithms in

each camera should be able to process and abstract the raw data as much as possible, and

should only require minimal amount of information from other cameras.

Moreover, instead of transferring or saving every frame or every trajectory, there should

be a mechanism to detect events of interest. Events of interest can be defined beforehand,

and simpler events can be combined in a sequence to define semantically higher-level and

composite events. Moreover, event scenarios can span multiple camera views, which make

the definition of more complex events possible. Cameras communicate with each other about

the portions of a scenario to detect an event that spans different camera views.

1.2 Related Work

1.2.1 Related Work on Multi-camera Multi-object Tracking

1.2.1.1 Multi-camera Tracking with Overlapping Camera Views

In a multi-camera setup, usually every single camera has the ability of tracking the objects

individually. Cameras collaborate with each other to track objects consistently for longer pe-

riods of time, or resolve merge/split problems caused by objects interacting. Object tracking

with partially overlapping camera views has been researched extensively in the last decade

[44, 100, 76, 95, 79, 77, 69, 62, 71, 68, 8, 10, 71].

With partially overlapping camera views, the geometric relationship between the cameras

can be recovered and utilized as an important cue. Converting all coordinates into a common

3D coordinate system is a popular approach to relate the objects across multiple cameras

[76, 77, 8, 10, 23, 62, 119]. This approach requires the cameras to be fully calibrated, which

is expensive and sometimes inconvenient. With all objects moving in a common 3D space, a
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tracking algorithm similar to 2D tracking can be adopted, such as Kalman filter [10, 76] or

particle filter [77]. Most of the proposed systems have some degree of distributed processing,

wherein each camera has the ability of object detection/tracking. But at the end, they still

need a central processing unit to integrate the simplified data from the sensors, convert them

into the common 3D space and make the decisions.

Blanco et al. [77] argue that 3D tracking based on partially erroneous 2D tracks are likely

to fail when handling multiple-people interaction. To address this problem, they propose

a Bayesian framework for combining 2D low-level cues from multiple cameras directly into

the 3D world through 3D Particle Filters, instead of combining the tracking results from

each camera. Dockstader et al. [10] propose a Kalman filter-based approach in 3D space,

targeted at resolving the problem of occlusion and human interacting. The corrected state

vectors from each view provide input observations to a Bayesian belief network, in the

central processor. Then, a layer of Kalman filtering is employed to update the 3D state

estimates. Collins et al. [8] also adopt a distributed-processing and central-decision-making

framework. The central control unit uses a 3D geometric site model to integrate symbolic

object trajectory information accumulated by each sensor node, and presents the results to

the user on a map-based graphical user interface. The feasibility of real-time processing is

demonstrated.

Another useful and reasonable assumption for most tracking scenarios is that all of the

objects moving on the same planar ground. With the common ground plane assumption, a

homography matrix between every two adjacent cameras can be computed, which is easier

than full calibration [44, 79, 69]. Khan and Shah [69] use a planar homography constraint

that combines foreground likelihood information from different views to resolve occlusions

and determine ground plane locations of people. The homography constraint indicates that

only the pixels of people’s feet (on the ground) will consistently warp to foreground regions

in every view. The field-of-view (FOV) lines [95] is also introduced by Khan and Shah so
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that the labels can be handed off when the objects enter other cameras’ fields of view. In this

way, the consistent labeling is achieved. Calderara et al. [79] propose a method to detect

the FOV lines automatically. Kayumbi et al. [24] propose a registration algorithm based a

statistical homography estimation. Then, a mosaic scene is generated with the registration

of the trajectories from multiple camera views.

There are other works that use feature matching approaches to avoid camera calibration.

Moller et al. [100] propose a calibration-free method that use color histogram matching

based on the mean shift[12] tracking algorithm. But a coarse knowledge of the transfer

points between two camera views is still required. Cai et al. [68] employ multivariate normal

distributions to model the features, such as location, intensity, and geometric features. The

correspondences are established using a set of feature points in a Bayesian probability frame-

work. Chang et al. [16] also use Bayesian networks to fuse multiple features for matching

subjects between consecutive frames and between multiple camera views. They divide the

features into two groups: geometry-based modalities and recognition-based modalities. The

former includes epipolar geometry, homography and landmark modalities; the latter includes

apparent height and apparent color.

1.2.1.2 Object Tracking across Non-overlapping Camera Views

In wide-area tracking and wide-area surveillance applications, it is not always realistic to

assume that all the cameras in the system will have overlapping fields of view. Tracking

across disjoint camera views is a more challenging problem due to lack of spatial continuity,

and thus having blind regions. In this case, recovering geometric relations may become

difficult or infeasible in some scenarios. Feature-based matching is commonly used to solve

the object re-identification problem. The cues that are used for object matching typically

include appearance features, spatio-temporal evidence or the combination of these two types

of information.
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Color is one of the most commonly used appearance features. Color information is often

represented by color histograms in the RGB or HSV color spaces. HSV is more robust to

illumination changes due to its inherent properties. In the HSV color space, the luminance

information is placed in the V channel and the chromaticity information is placed in the H

(hue) and S (saturation) channels. The separation of the brightness information from the

chromaticity reduces the effect of illumination change across difference camera views. In

the RGB color space, each channel of Red, Green and Blue stores the brightness informa-

tion and color information, which makes RGB histogram more vulnerable to different light

condition or camera characteristics. To reduce this effect, Porikli [109] proposed a cross cor-

relation model function for pair-wise inter-camera color calibration. The correlation matrix

is computed from 1D RGB color histograms, and the model function is obtained from a

minimum cost path traced within the matrix. The minimum cost path, which represents a

mapping from one camera’s color histogram to that of the other, is obtained by dynamic

programming. This method could be computationally expensive. A more efficient way to

map the color histograms from one camera to another is calculating the Brightness Transfer

Function (BTF). Javed et al. [92] proposed a subspace-based BTF using probabilistic PCA

to calculate the subspace of BTFs for a set of known correspondences. Their method relies

on a large number of training data with a good range of clothing colors to give an accurate

mean BTF (MBTF). Prosser et al. [111] proposed to use cumulative BTF (CBTF) instead

of MBTF, which makes use of the available color information from a very sparse training set.

A comparison of these two different BTFs can be found in [86], which demonstrates simi-

lar behaviors of the two methods when the simple association problem needs to be solved.

Their experiments also show that appearance matching relying exclusively on color is not

reliable when the scenario is more complicated than simple association, such as new object

detection. Cheng et al. [81] proposed to cluster color into a subset of “major colors”, named

Major Color Spectrum Histogram Representation (MCSHR). The illumination variations



10

are compensated by a cumulative histogram equalization. Again, only examples of simple

object association are shown in their work. Jeong and Jaynes [93] use UY channels to build

a 2D Gaussian Mixture Model and Affine Transformation to find the warping function (color

transfer function) between the two models.

In addition to color information, some other appearance features can be combined for

object re-identification. For example, height is used together with MCSHR for people track-

ing [96]. Texture or edge features are also useful for object matching. Cohen et al. [83]

use a covariance matrix-based function integrating color and texture features (gradients) to

represent each blob. This method requires a lot of data to be saved for post-processing: each

blob’s data for all blobs in all frames need to be saved. Then, the blobs are clustered into

trajectories based on the appearance similarity. Cai et al. [78] present a human appearance

model by using the region signatures centered at points on the edges of the human objects.

The region signatures include the domain color representation and geometric constraints.

Their proposed matching method is sequence-to-sequence matching, not frame-to-frame.

Similar to [83], their algorithm is computationally expensive, and not intended to be used

for real-time processing.

Spatio-temporal information is another important evidence to be considered for object

re-identification. One way of using spatio-temporal constraints is predicting the objects’

positions when they are in the blind region. With the assumption of linear motion model, a

Kalman filter or a similar mechanism is employed [102, 82]. The positions of the objects could

also be inferred based on a common ground assumption, which allows the warping between

the cameras’ views using a homography matrix [94]. In [108], expanded triangulation with

motion constrains, which assumes linear motion of the objects, is employed for inferring the

positions of the objects. The algorithm was only applied to the applications with small gaps

between the cameras.

Another category of research also uses spatio-temporal information, but focuses on recov-
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ery of camera network topology, and not the object tracking. Rahimi et al. [112] recover the

calibration parameters of the cameras and the targets’ trajectories using MAP estimation.

Huang et al. [88] use the transition time as the only evidence to infer the traffic flow status

across non-overlapping views. A Gaussian Mixture Model (GMM) of the transition time is

built without identifying the object correspondences explicitly. Niu et al. [104] use the ap-

pearance model to measure the similarity between disappearing and reappearing trajectories,

then detect the possible link between the disjoint views, and estimate the transition time

by the weighted cross correlated model. Finally, the non-overlapping network topology is

recovered based on the estimated mutual information. Makris et al. [98] build up transition

probability models based on transition time between the exits and entries. The topology of

the camera networks is recovered by finding the maxima of the cross correlation functions.

To achieve more robust tracking results, spatio-temporal evidence is often combined

with multiple appearance features. Javed et al. [91] combine color and travel time in a

Bayesian formulation for object association. The best match is found by maximizing the

posteriori. Kang et al. [94] use a spatio-temporal Joint Probability Data Association Filter

(JPDAF) to formulate a joint probability model encoding objects’ appearance and motion.

Two non-overlapping camera views are warped in the reference of a moving camera view

and merged into a mosaic. Thus, the object’s motion can be inferred when it is in the gap

between two stationary cameras. Chilgunde et al. [82] use position and size changes for

object matching. With the assumption of constant velocity model, Kalman filter is used to

predict the positions in the blind region. Monari et al. [102] intend to track objects in both

overlapping and non-overlapping camera networks. They use 3D positions combined with

CIE color space features to perform object association. The 3D positions in the blind region

are predicted by a Kalman filter.

Huang and Russell [89] use multiple features for vehicle matching in a Bayesian formula-

tion. Different from most of the related work, an association matrix is employed for finding
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the best assignments for multiple objects, which travel close to each other. They use mul-

tiple features, including lane information, size, color and travel time, to identify vehicles

in a traffic application with a 2-camera setup. By adding additional elements of transition

probabilities, the possibility of new and missing vehicles is also considered.

1.2.2 Related Work on Embedded Smart Cameras

Common computing platforms for smart cameras are FPGAs, digital signal processors

(DSPs), and/or general purpose microprocessors [34]. Different smart camera systems have

been introduced recently. Fleck et al. [18] present a network of smart cameras for tracking

multiple people. They use commercial IP-based cameras, which consist of a CCD image

sensor, a Xilinx FPGA for low-level image processing and a Motorola PowerPC CPU. The

system uses color-based particle filters for tracking, but handoff of the objects is based upon

a centralized model of the observed scene. Quaritsch et al. [32] employ smart cameras with

multiple DSPs for data processing and a mobile agent framework for handling the handoff

between cameras. Bramberger et al. [2] present another smart camera architecture de-

veloped from common off-the-shelf components, including a CMOS image sensor, multiple

Texas Instruments TMS320C64x DSPs for image processing and an Intel XScale IXP425 for

network processing. They provide two IP-based external communication: wired Ethernet

and wireless GSM/GPRS. While this high-end platform provides sufficient capabilities for

image processing, it requires an average power consumption of 35 W.

Wired or IP-based cameras have powerful processing capabilities and relatively high

bandwidth for communication. However, they have high power consumption and are larger

in size. Many embedded vision platforms, designed for wireless sensor networks, have been

developed more recently [36, 20, 33, 17, 22, 13, 25]. The MeshEye platform [20] integrates two

low-resolution image sensors and one VGA image sensor. It uses an ARM7 microcontroller
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with 55 MHz speed, and has 64 KB RAM and 256 KB flash memory. The Cyclops platform

[33] is developed as a sister board for the Mica2 and MicaZ sensor boards, and has a 7.3 MHz-

processor. However, in both of these platforms the processing power is still limited. The

platform introduced by Kleihorst et al. [22] has an 84 MHz XETAL-II SIMD processor. It

has higher resolution but has 128 KB of memory. The CMUcam2 [36] is a low-cost embedded

camera with 75 MHz RISC processor and 384 KB SRAM. Due to the limited memory and

processing power, only low-level image processing can be performed. The image processing

algorithm cannot be modified after deployment since it is integrated in the firmware of the

processor. Panoptes platform [17], which hosts a 206 MHz processor and 64 MB of RAM,

is developed to generate medium-resolution video at high frame rates. It uses a USB web

camera as a video sensor and 802.11 for wireless communications. This platform can perform

more sophisticated processes in this high-end architecture, but the high energy consumption

of the node limits the lifetime of a wireless application or necessitates wall-powered operation.

Rinner et al. [35] presented a comparison of various smart camera platforms.

1.2.3 Related Work on Event Detection

Most of the previous work on event detection focused on detecting a finite set of specific

and predefined events [54, 19, 57, 61, 63, 65, 70]. Stringa and Regazzoni [65], and Sacchi

and Regazzoni [63] present surveillance systems for the detection of abandoned objects. The

system proposed by Haritaoglu et al. [19] can recognize events such as depositing/removing

an object or exchanging bags. Rota and Thonnat [61] use two sets of a priori information

for video sequence interpretation: contextual information and predefined scenarios. Medioni

et al. [57] analyze a set of predefined scenarios in video streams obtained from an airborne

moving platform. Watanabe et al. [70] introduce a system for detecting events in which

a person enters or leaves a room and/or an object appears or disappears. In addition to
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predefined events, research community has worked on unusual event or abnormal behavior

detection [50, 52, 55, 59, 60, 38, 66, 72, 73].

However, an event detection system should be generic enough to detect broad range of

events by giving users the flexibility to customize their own events with varying complexity.

In other words, event definitions should not be predefined and hard-coded into the system,

nor should they be limited in number. The system introduced by Black et al. [51] supports

various SQL activity queries such as returning objects that have followed a certain path over

a specific time interval. Yet, it does not discuss specification and detection of more complex

events. Other approaches have been introduced that use event description or programming

languages to enter the events of interest to the system [53, 64, 67]. Ivanov and Bobick [56]

use a parser, which requires the interaction structure described to it in terms of stochastic

context free grammar. Nevatia et al. [27, 58] introduce an event ontology for video event

representation. The work in [27] mostly focuses on the event representation and markup

languages but not the actual recognition of those events. As stated in [58], the definitions

in their event representation language are similar to the function definitions of a computer

programming language. These methods require familiarity with programming languages

and, thus, event specification may require expert intervention. Moreover, although these

methods provide some ability to define customized events, they remain limited in terms of

event complexity. They mostly focus on detecting events on a single camera view, i.e., event

definitions do not span multiple camera views. Also, the focus has not been on performing

the event detection across the fields of view of multiple embedded smart cameras.

1.3 Contributions and Dissertation Outline

The novel contribution in this dissertation is divided into three parts. The first part presents

a wireless embedded smart camera system for cooperative object tracking and detection of
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composite, semantically high-level and user-defined events spanning multiple partially over-

lapping camera views. The second part presents a probabilistic Petri-net based framework

for object tracking across disjoint camera views, which utilizes multiple features and fuses

them with adaptively updated weights. The third part includes other applications related

to multi-camera systems. An efficient and robust algorithm for temporal calibration of un-

synchronized cameras is proposed. In addition, a tiled low-cost low-power embedded system

is presented, with the ability of focal plane image processing.

In the proposed wireless embedded smart camera system, each camera node has the

ability to perform multi-object tracking individually. They only exchange data with the

neighbors for the purpose of consistent labeling and event detection. Each camera node is a

CITRIC mote [6] that consists of a camera board with a microprocessor, and a wireless mote.

Lightweight and robust foreground detection and tracking algorithms are implemented and

run on the microprocessor of the camera board. Chapter 2 describes the algorithms that

run on each smart camera board for object detection and tracking, including the background

subtraction algorithm designed for embedded cameras, a fast connected component labeling

method and a lightweight tracking algorithm.

In Chapter 3, the approaches for cooperative object tracking and composite event detec-

tion are described. The cameras have partially overlapping fields of view. They exchange

data in a P2P manner over wireless links to track objects with consistent labels, to update

locations of occluded or lost objects, and also to inform other cameras about the occurrence

of a primitive event in a composite event scenario. Even if an object is totally occluded in

one camera view, its location can still be updated from other cameras. The protocols of

peer-to-peer communications are explained in detail.

To address limited energy, limited memory and bandwidth issues, we detect events of in-

terest so that interesting and important video portions and trajectories can be determined.

In the presented system, events of interest can be defined beforehand by users, and primitive
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events can be combined in a time sequence to define composite, spatio-temporal and seman-

tically higher-level events. Event scenarios can span multiple camera views. The complexity

of event scenarios can be increased by increasing the number of primitive events, and/or the

number of camera views they span.

After an event is detected, that portion of the live video can be saved or transferred.

Another functionality provided is the ability to record the last portion of an event scenario

from different camera views if possible. When a camera detects that a defined event scenario

is occurring, it determines the other cameras that can see this region, if there is any. Then, it

can send out a Record message addressed to those cameras so that they can start recording as

well. This provides multiple views of the event of interest and, thus, additional information.

Multiple real-time experiments are performed with two and three camera setups. Many

different event scenarios are detected, which are composed of multiple primitives spanning

different camera views.

Moreover, since energy is limited for embedded smart cameras, power consumption anal-

ysis of the camera systems is essential. The energy consumption and performance of the

proposed system during different parts of processing a frame and during different message

exchanges between camera nodes are analyzed, and presented in Chapter 4. The energy con-

sumption analysis when tracking different numbers of objects, and when tracking different-

sized objects are also presented. In addition, a more efficient blob forming algorithm is

implemented, and compared it with the previous version to show the significant improve-

ment in the processing time and, thus, energy consumption. To calculate the power con-

sumption, the currents drawn by the embedded smart camera board for different scenarios

are measured. We also compared the operating currents when transmitting and receiving

different-sized packets. The results provide additional insight in terms of computation ver-

sus communication tradeoff and how to efficiently place the cameras in the scene. They also

demonstrate and emphasize the importance of carefully designing a communication protocol
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and implementing lightweight algorithms in these resource-constrained environments.

In Chapters 5, 6 and 7, multiple object tracking with non-overlapping views are explored.

In Chapter 5, we present a real-time distributed system with non-overlapping camera views.

Although many methods have been developed that focus on building statistical or non-

statistical models for object matching, much less attention has been paid to designing and

implementing algorithms for real-time applications, and distributed processing. In this sys-

tem, each camera is connected to a PC and the PCs communicate with each other through

TCP/IP. The tracking algorithms are inherited from the previous system, and we combine

multiple features to match objects across non-overlapping views. This is our first prototype

system of real-time distributed object tracking with disjoint views.

In Chapter 6, a more sophisticated approach for object matching is proposed to improve

the robustness of the multi-feature algorithm. Each feature is modeled more accurately

and the weight of each feature is assigned adaptively based on their reliability. A common

method to associate objects across disjoint camera views is using Bayesian formulation or

maximum a posteriori (MAP) estimation. This type of algorithms normally find the best

match by finding a best path through the graphic model or finding the object that maximizes

the a posteriori probability. But as stated in Section 1.2.1, most of the methods only work

for simple object association but have difficulty in distinguishing the new objects from the

already observed ones. To account for this problem, we adopt a threshold-based method to

match the “seen-before” objects as well as detect “never-seen-before” objects. A weighted

sum of the similarity scores of multiple features is the criterion for object matching. The

weights of features are learned automatically during training based on the reliability of

each feature. If the similarity score obtained for a feature is in accordance with the overall

matching outcome, this feature is considered to be reliable. To adapt to changes in the

environment, these reliability values are updated online using the data from matched objects.

In Chapter 7, a distributed camera system for object tracking across disjoint camera
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views is presented. We incorporate domain knowledge to account for the information related

to the environment and the system setup. Our system is capable of processing more com-

plicated object tracking or event detection tasks with incorporating the domain knowledge,

compared to the related work that only solves the object association problem. Considering

the uncertainties caused by vision algorithms, a probabilistic result is preferred to a deter-

ministic one. To incorporate the uncertainties of each stage (foreground detection, tracking

and object matching) in a proper way, we employ a probabilistic Petri Net (pPN) based

approach. In our system, the tracking process within a single camera and object matching

across adjacent cameras are modeled by the pPN and a score of each object’s tracking and

matching result is yielded as the output of the pPN. Another advantage of employing the

pPN is that the domain knowledge can be efficiently incorporated into the algorithm. When

a rich set of domain knowledge is available, the pPN also helps to implement and control

the work flow.

The proposed approach can be generalized to various surveillance applications involving

disjoint camera views, such as indoor human tracking or outdoor human/vehicle tracking. In

Chapter 7, we first present the wide-area tracking of vehicles as an example. This example

shows how we fuse multiple features, train the parameters, and handle blind regions and

“never-seen-before” objects. Then, a similar approach together with a different set of domain

knowledge is employed for tracking people in another example with a disjoint camera setup.

This example is more challenging, because unlike vehicles moving in certain lanes in fixed

directions, people’s routes are more diverse. These different examples and results illustrate

how our framework can be applied to different scenarios with different domain knowledge.

We also present the pPN for each scenario, where the domain knowledge is incorporated in

the work flow.

In Chapter 8, a frame-level temporal calibration approach of unsynchronized cameras

is presented. Temporal calibration is essential for all multi-camera systems. Instead of
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hardware-based synchronization, image processing-based recovery of the time offset is an

easier and less expensive alternative. The proposed approach is based on finding the longest

consecutive common subsequence (LCCS) between the corresponding trajectories from two

camera views. Since this approach avoids the exhaustive search among all the trajectory

points, the efficiency is improved significantly. Then, the offset between the two cameras can

be recovered by finding the time difference between the two matched trajectories. A robust

confidence check step is performed to select the most reliable offset.

Chapter 9 presents our work on image processing on the focal plane with customized

camera sensors. In a large sensor network, the cost of each node becomes an important

factor. Camera sensors with high resolution have larger silicon areas, more complex designs

and thus higher costs. In this chapter, a possible way of employing low-cost low-resolution

sensors to obtain higher resolution images is presented. The frames from four low resolution

embedded smart cameras are tiled in two different arrangements. Edge and motion detection

are performed on the focal plane, and the results can be tiled to a larger frame in the same

way.

1.4 Publications

The above work has been published in prestigious and peer-reviewed journals and conference

proceedings. The publications are listed below:

Peer-reviewed Published Journal Papers:

[J1] Youlu Wang, Senem Velipasalar, Mustafa Cenk Gursoy, “Distributed Wide-Area Multi-

Object Tracking with Non-Overlapping Camera Views,” Springer Int’l Journal on Mul-

timedia Tools and Applications, pp. 1–33, Nov. 2012 (DOI 10.1007/s11042-012-1267-

x).
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[J2] Youlu Wang, Senem Velipasalar, Mauricio Casares, “Cooperative Object Tracking and

Composite Event Detection With Wireless Embedded Smart Cameras,” IEEE Trans.

on Image Processing, vol. 19, no. 10, pp. 2614–2633, Oct. 2010.

Peer-reviewed Published Conference Papers:

[C1] Youlu Wang, Senem Velipasalar, Mustafa Cenk Gursoy, “Wide-area Multi-Object

Tracking with Non-Overlapping Camera Views,” Proc. of the IEEE Int’l Conf. on

Multimedia and Expo, pp. 1–6, July 2011.

[C2] Youlu Wang, Li He, Senem Velipasalar, “Real-time Distributed Tracking with Non-

Overlapping Cameras,” Proc. of the IEEE Int’l Conf. on Image Processing, pp. 697–

700, Sept. 2010.

[C3] Youlu Wang, Mauricio Casares, Senem Velipasalar, “Cooperative Object Tracking and

Event Detection with Wireless Smart Cameras,” Proc. of the IEEE Int’l Conf. on

Advanced Video and Signal Based Surveillance, pp. 394–399, Sept. 2009.

[C4] Youlu Wang, Senem Velipasalar, Mauricio Casares, “Detection of Composite Events

Spanning Multiple Camera Views with Wireless Embedded Smart Cameras,” Proc. of

the ACM/IEEE Int’l Conf. on Distributed Smart Cameras, pp. 1–8, Aug. 2009.

[C5] Youlu Wang, Senem Velipasalar, “Frame-level Temporal Calibration of Unsynchronized

Cameras by Using Longest Consecutive Common Subsequence,” Proc.of the IEEE Int’l

Conf. on Acoustics, Speech and Signal Processing, pp. 813–816, Apr. 2009.

Our work on the wireless embedded smart camera system, described in Chapter 2, Chapter

3 and Chapter 4, is published in part in [J2], [C4] and [C3]. The real-time object tracking

system with non-overalpping camera views, that is presented in Chapter 5, is published

in [C2]. [J1] and [C1] include the multi-feature object matching algorithm and Petri-Net
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based framework for object tracking across disjoint views, that are described in Chapter 6

and Chapter 7, respectively. [C5] presents the work on frame-level temporal calibration in

Chapter 8.
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Part II

Object Tracking and Event Detection

with Wireless Embedded Smart

Cameras
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Chapter 2

Embedded Smart Cameras and

Lightweight Vision Algorithms

Due to the limited processing power and limited memory of the embedded smart cameras,

it is critical to design lightweight computer vision algorithms that require less computation

and less memory, and consume less power. We designed and implemented lightweight algo-

rithms on our smart camera boards. All the processing, which includes foreground detection,

morphological operations, connected component labeling, blob forming, object tracking and

event detection, is done onboard on the microprocessor of the smart camera unit. With the

attached wireless motes, the camera nodes communicate with each other in a peer-to-peer

manner, which removes the necessity of a central controller.

In this chapter, we firstly introduce the embedded camera boards and the attached wire-

less motes that are employed in our system. Then, the algorithms running on each individual

camera are described.
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2.1 The Wireless Embedded Smart Camera Platform

The wireless embedded smart camera platform employed in our system is a CITRIC mote [6].

It consists of a camera board and a wireless mote, and is shown in Figure 2.1. The camera

board captures video frames by a CMOS image sensor, and then processes them. An em-

bedded Linux system runs on the camera board. Each camera board connects to a wireless

mote via a serial port.

(a) (b)

Figure 2.1: The wireless embedded smart camera platform employed in the proposed system.

2.1.1 CITRIC: The Camera Board

The camera board is composed of an image sensor, a fixed-point microprocessor, external

memories and other supporting circuits. The camera is capable of operating at 15 frames

per second (fps) in VGA and lower resolutions.

The image sensor of the camera board is an Omni Vision OV9655, which is a low voltage

SXGA CMOS image sensor and designed to perform well in low-light conditions. It supports
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image sizes SXGA (1280×1024), VGA (640×480), and any size scaling down from VGA. The

microprocessor PXA270 is a fixed-point processor from Marvell with a maximum speed of 624

MHz, 256 KB of internal SRAM and a wireless MMX coprocessor to accelerate multimedia

operations. It is capable of working in low voltage and low frequency, as low as 0.85 V

and 13 MHz, to achieve low power consumption. The typical CPU frequencies that the

CITRIC platform supports are 208, 312, 416, 520 MHz. Besides the internal memory of the

microprocessor, the PXA270 is connected to 64 MB of SDRAM and 16 MB of NOR FLASH.

64 MB is the largest size of the Single Data Rate (SDR) mobile SDRAM components natively

supported by the PXA270 currently available in the market [6].

All of our experiments were run in real-time with QVGA (320× 240) resolution. All the

algorithms run on the embedded Linux system ported onto the PXA270 microprocessor. The

embedded Linux system includes the JPEG compression library. Since we only store detected

events of interest, with this compressing functionality, 64 MB SDRAM provides enough space

for our experiments. All the programming data and saved results are transferred by the

UART port of the PXA270. A USB-to-UART bridge controller is connected between the

PXA270 UART port and USB port on a PC. The camera board can be powered by a USB

port from a PC, or four AA batteries.

2.1.2 TelosB: The Wireless Mote

The wireless mote connected to the camera board is a TelosB mote from Crossbow Technol-

ogy. The TelosB uses a Texas Instruments MSP430 microcontroller and Chipcon CC2420

IEEE 802.15.4-compliant radio, both for low-power operation [6].

The Texas Instruments MSP430 MCU operates at 8MHz with 10KB RAM. The TelosB

is a commercial off-the-shelf mote loaded with TinyOS/NesC and multi-hopping commu-

nication protocols. Thus, we can easily utilize them to perform wireless communication
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and exchange data between camera nodes. Since the maximum data rate of the 802.15.4 is

250kbps, it is not viable to transfer whole video frames between camera nodes. Also, due

to high power consumption of wireless communication and small buffer size of the mote,

transferring large-sized packets should be avoided. We need to buffer and transfer as few

and as small-sized packets as possible. We designed and implemented our algorithms and

the communication protocol by taking this fact into account.

We focus on the lightweight algorithms, their energy requirement, P2P event detection

and the application-layer protocol, and use the preloaded lower layer protocols in the TelosB

mote. When TelosB is idle, no serial communication is performed between the camera board

and the wireless mote. When the camera needs necessary information from other cameras,

and needs to exchange data, only then it performs serial communication with the wireless

mote to send and receive packets.

2.2 Foreground Detection

Many methods have been introduced for background subtraction and foreground object

detection [14, 19, 21, 30, 31, 38, 47, 49]. However, most of these methods have been developed

and tested on PCs instead of embedded smart cameras, and much less attention has been

paid to the memory requirement and the portability of these algorithms to an embedded

platform. Lighting variations and non-static backgrounds make the foreground detection

problem even more challenging, since we are interested only in salient motion in tracking

applications. We need to separate cases of uninteresting motion, such as swaying trees and

water fountains, from the salient motion regions. The necessity of handling these challenging

cases increases the algorithm complexity, and thus memory requirements. However, due to

resource constraints, most of the embedded smart camera systems [6, 20, 33] use relatively

simpler and sometimes less robust methods, such as temporal difference and running average,
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for foreground detection. The outputs are not robust enough for reliable tracking.

An efficient algorithm for salient foreground detection is proposed in [5]. This algorithm

is designed for embedded systems, and takes into account the memory requirements as well as

the computational complexity. It is highly robust against lighting variations and non-static

backgrounds including scenes with swaying trees, water fountains and rain. It provides

better or comparable foreground detection results, and requires the least amount of memory

when compared with the state-of-the-art background subtraction algorithms. In addition,

this algorithm avoids floating point computations. This provides additional advantage when

running it on embedded smart cameras, since most of the microprocessors do not integrate

a floating point unit. We implemented both this algorithm and the adaptive Mixture of

Gaussians (MoG) [38] on our smart camera board to compare their performances. The MoG

algorithm runs at 1.6 frames per second (fps), and our lightweight algorithm runs at 12.5

fps, when there is one foreground object in the scene.

This algorithm employs a temporal difference method until a complete background model

is built. It differentiates between salient and non-salient motion based on the history of a

pixel’s location, and by considering neighborhood information. At each frame, each pixel

is classified either as a background or a foreground pixel, and its state is set to be 0 or 1,

respectively. For a pixel at location (i, j), a counter h(i, j) holds the number of changes in

the state of this pixel during the last 100 frames, i. e. the counter h(i, j) keeps the number

of times a pixel’s state changes from 0 to 1 or vice versa. The stability of a pixel at location

(i, j) is determined by this counter h(i, j). The motivation is that the lower the value

of h(i, j), the more stable and reliable that location is, or vice versa. Thus, rather than

saving many values for each pixel location, such as averages for three color values, multiple

Gaussian distribution means and variances, multiple codewords with multiple entries, only

the h counter and background model need to be saved.

This method selectively updates the background model with an automatically adaptive
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rate. If a pixel location is determined to be consistently reliable, the value of this pixel is

incorporated to the background model with a higher weight. Also, the number of mem-

ory accesses and instructions are adaptive, and are decreased even more depending upon

the amount of activity in the scene and on a pixels history. The algorithm requires 6.25-

byte memory for the data saved for each pixel, whereas original mixture of Gaussians [38],

Eigenbackground [29] and Codebook [21] methods require 32, 28 and 91 bytes per pixel,

respectively. We imported this algorithm to our embedded smart camera boards to perform

foreground detection.

2.3 Fast Blob Forming and Connected Component

Labeling

After performing foreground detection, a binary image is obtained in which white and black

pixels represent the foreground and background pixels, respectively. This binary image usu-

ally contains some white pixels that do not correspond to salient motions, but are caused by

sensing errors, changing lighting conditions, non-salient motions or other interferences, in-

stead. These pixels will be referred to as noise pixels. To remove noise pixels from foreground

and then group the foreground pixels into blobs, the conventional method is performing mor-

phological operations followed by a connected component labeling algorithm.

First, we implemented classic morphological operations using a 5× 5 DISK shape struc-

turing element [37] on the microprocessor of the smart cameras. An opening operation is

performed, followed by a closing operation to remove the noise and fill the holes. Then, we

perform connected component labeling using union-find structure [37]. The binary image is

searched row-by-row three times to form foreground blobs. In Chapter 4, the energy con-

sumption when using this multi-pass connected component labeling algorithm is presented.
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It is shown that this algorithm runs very slow and consumes more energy on the camera

boards.

To reduce the processing time and, thus, the energy consumption, we designed and imple-

mented another algorithm that uses a combined and more efficient approach to accomplish

noise removal and blob forming in a single pass. At the beginning, all pixels in the binary

frame are marked as unvisited. The algorithm starts searching through every pixel in the

binary image. Once an unvisited foreground pixel is reached, a search is performed around

this pixel to grow a blob until no white pixels remain connected to the previously found ones.

Every searched pixel is then marked as visited. A threshold is predefined for the minimum

blob size. If the number of pixels in a blob is smaller than the threshold, it is removed from

the foreground to eliminate noise pixels, by setting all the pixels in the blob to 0.

If a blobs size is greater than the size threshold, and it is the first blob formed in this

frame, this blob is saved. Then, the search continues to find next unvisited foreground pixel

to form new blobs. Once a new blob is formed, the distance between this blob and each of

the saved blobs is calculated. A distance threshold is employed to determine if this new blob

is a fragment of a bigger blob, and if it should be grouped together with one of the previously

found blobs. If the calculated distance between the new blob and one of the saved blobs is

smaller than the threshold, this new blob is grouped together with the saved one and their

pixels get the same label. The previous steps are repeated until no unvisited foreground

pixels remain. Thus, noise removal and connected component labeling are accomplished in

a single pass. In Chapter 4, a comparison of the currents drawn and energy consumption

between the classic multi-pass approach and our single-pass efficient approach is presented.

The processing time and energy consumption are significantly reduced using the proposed

approach.
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2.4 Object Tracking Algorithm

Tracking multiple objects becomes more challenging when tracking needs to be performed

on an embedded smart camera with limited processing power, energy and memory. In [44], a

P2P multi-camera system is presented wherein each camera is attached to a different CPU.

This system employs efficient and robust algorithms for tracking and consistent labeling.

Each camera performs its own tracking and keeps its own trajectories for each target object,

which provides fault tolerance. And this system is also fully distributed by removing the

necessity for a central controller. Although it is developed in PCs, it is feasible to run in the

wireless embedded cameras because of its efficiency and sparse message traffic. We started

with this algorithm, optimized it, and implemented it on the microprocessor of our camera

boards.

After performing foreground detection and connected component analysis, a rectangular

bounding box is formed around each foreground blob. When a new foreground blob is

detected within the camera view, a new tracker is created, and the intensity histogram of

the foreground object is built and saved as the model histogram of the tracker. The tracker

also holds the coordinates of the bounding box of this object, and a label that will be used

during tracking.

At each frame, the trackers are matched to detected foreground blobs by using a compu-

tationally efficient blob tracker which uses a matching criterion based on the bounding box

intersection and the Bhattacharyya coefficient [12]. The Bhattacharya coefficient is derived

from the sample data by using:

ρ̂(y) ≡ ρ[p̂(y), q̂] =
m∑

u=1

√
p̂u(y), q̂u (2.1)

where q̂ = {q̂u}u=1...m, and p̂(y) = {p̂u(y)}u=1...m are the probabilities estimated from the



31

m-bin histogram of the model in the tracker and the candidate blobs, respectively. These

probabilities are estimated by normalizing the intensity histogram of the blob or the model

histogram of the tracker. If the bounding box of a foreground blob intersects with that of

the tracker, the Bhattacharya coefficient between the model histogram of the tracker and the

histogram of the foreground blob is calculated by using Eq. (2.1). The tracker is assigned to

the foreground blob which results in the highest Bhattacharya coefficient and whose resultant

Bhattacharya coefficient is higher than a threshold. Thus the bounding box of the tracker

is updated using the coordinates of the matched blob. The Bhattacharya coefficient with

which the tracker is matched to its object is called the similarity coefficient. If the similarity

coefficient is greater than a predefined distribution update threshold, the model histogram

of the tracker is updated to be the intensity histogram of the foreground blob to which it is

matched.

Based on this matching criterion, if objects merge, multiple trackers are matched to one

foreground blob, as shown in Figure 2.2 (b). The trackers that are matched to the same

foreground blob are put into a merge state, and in this state their model histograms are not

updated. Here we use a variable to record the merge state, where 1 indicates the tracker is

in merge state. Their bounding boxes are updated by the coordinates of the merged blob.

When objects split from each other, trackers are matched to their objects based on the

bounding box intersection and Bhattacharya coefficient mentioned above. The variable for

merge state is reset to 0.

Figure 2.2 shows an example of resolving a merge. In Figure 2.2 (a), there are two

objects in the view with labels 21 and 22, respectively. They are detected to be merging

into one blob as shown in Figure 2.2 (b). In the merge state, both of the labels 21 and

22 are displayed on the blob. They split later and are matched to their correct trackers in

Figure 2.2 (c). However, there may be some unfavorable cases that they are not matched to

their correct trackers after they split. This may happen if their appearances are very similar.
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Figure 2.2: Example of resolving a merge.

Then an additional checking step need to be performed to differentiate them. The details of

the additional checking step can be found in [44].

One advantage of this algorithm is that it requires very little memory and computation for

keeping and matching the trackers. Table 2.1 shows the data that are contained in a tracker.

In a tracker, we just need an integer that represents the label, an integer that indicates if

the object is in merge state, four integers (xmin, xmax, ymin, ymax) for the coordinates of the

bounding box, and a 32-bin model histogram. Although the normalized histogram should

contain 32 fractions, we scale it by 10000 and round it into integers for faster processing.

Thus, there are totally 38 integers saved in a tracker. For a 32-bit microprocessor, the size

of an integer is 4 bytes, and thus, the size of a tracker will be 152 bytes.

Another advantage is that this tracking algorithm allows for sparse message traffic by

handling the cases of merging and splitting within a single camera view without sending

request messages to other cameras. The cameras only need to request additional information

from other cameras in consistent labeling and lost labeling scenarios. This will be introduced

in the following chapter.
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Table 2.1: Data contained in a tracker

Tracker

label 4 bytes

merge state 4 bytes

xmin 4 bytes

xmax 4 bytes

ymin 4 bytes

ymax 4 bytes

model histogram 32× 4 bytes

2.5 Conclusions

In this chapter, the embedded smart cameras with the attached wireless motes have been

introduced. These CITRIC cameras are equipped with the state-of-the-art low-power mi-

croprocessors and can be powered by batteries. An embedded Linux system runs on the

camera boards. The wireless motes are 802.15.4-compliant and also have very low-power

consumption. They have the maximum data rate of 250 kbps.

Lightweight and robust algorithms are designed and implemented on the embedded cam-

eras. The foreground detection algorithm separates the non-salient motions from the salient

motions by taking into account the stability and reliability of the pixels. As opposed to most

other background subtraction algorithms that require to save many variables for each pixel,

very little memory is required by this algorithm. Moreover, this algorithm avoids complex

computations and floating point processing, which makes it suitable for running embedded

platforms.

After the foreground pixels are found, an efficient single-pass approach for connected

component labeling is employed. This approach reduces the processing time and energy

consumption compared to the classic approach based on the morphological operations.
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Every moving object is assigned a unique label and a tracker is built to contain the

descriptors of this object. In each incoming frame, a matching process is performed between

the trackers and the blobs. The matched trackers are updated based on the information of

the corresponding blobs. If there are unmatched blobs, new trackers are created for them.

This algorithm can also successfully resolve the merge/split problem of the objects without

any input from other cameras, which helps to reduce the communication load.
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Chapter 3

Cooperative Object Tracking and

Event Detection

In order to solve the consistent labeling problem, we employ the Field of View (FOV) lines.

When a new object enters the scene, the camera determines if this object is already in other

cameras’ view by checking the relation between the object’s location and the FOV lines of

other cameras. If it is determined that this object is already being tracked by other cameras,

this camera sends a request message addressed to those cameras to request the label of the

object.

A camera also uses the FOV lines to determine to which cameras the request messages

should be addressed. For instance, if the camera loses an object due to occlusion, it first

figures out which other camera(s) can see this object by using the FOV lines. It then sends

a request to retrieve and update the location of the occluded object.

We name the above cases of communication as New Label case and Lost Label case,

respectively. Other than these types of communications, we also define composite events

spanning multiple camera views, with primitive events that are defined on different views.

Informing other cameras of the occurrences of the primitives is another function fulfilled by
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the P2P wireless communications.

In this chapter, the approaches for recovering the FOV lines and achieving consistent

labeling are described. Also, the details of the composite event definition and detection are

explained. The application layer communication protocol that is designed for this system is

presented.

3.1 Consistent Labeling

3.1.1 Recovery of FOV Lines

The FOV lines were introduced by Khan and Shah [95]. We recover the FOV lines off-line

as described in [44]. As stated in Chapter 1.2.1, homography is a commonly-used constraint

for consistent labeling, with the assumption of a common ground plane. Given four pairs of

corresponding points on the same plane, the homography matrix can be computed using the

Direct Linear Transformation (DLT) algorithm [142].

1
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Figure 3.1: Recovery of the FOV lines

Figure. 3.1 shows an example of the corresponding points that are chosen for homography
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estimation in a pair of camera views. These points are denoted as p1 = {p11, p12, p13, p14} and

p2 = {p21, p22, p23, p24} in Camera 1 and Camera 2, respectively. For DLT computation, the

homogeneous coordinates are used. The homogeneous coordinates of the points are in the

form of �pi
k = (xi

k, y
i
k, 1)

T , where i ∈ {1, 2}, k ∈ {1, . . . , 4}. The computed homography

between the ground planes in Camera 1 and Camera 2 is denoted as H, which is a 3 × 3

matrix. With H, any point p1
a on the ground plane of Camera 1 and its corresponding point

p2
a in Camera 2 satisfy:

�p2
a

∼= H�p1
a (3.1)

�p1
a

∼= H−1�p2
a (3.2)

In Eq.(3.1), to convert the homogeneous coordinates �p2
a to 2D coordinates p2

a, �p
2
a needs to

be normalized so that its third entry equals to 1. Then the first two entries of the normalized

�p2
a is p2

a. The same operation is needed to retrieve p1
a from Eq.(3.2).

Given that two points define a straight line, the FOV lines of Camera 1 in Camera 2 can

be determined by converting two points on each boundary of one camera to the corresponding

points in the view of the other camera, using Eq. (3.1) and Eq. (3.2). A boundary of a

camera’s view is denotes as s, where s ∈ {l, r, t, b}. Since H is the homography for the

ground plane, only the boundaries on the ground need to be converted. And four boundaries

are not necessarily all visible in the view. Figure 3.1 shows the recovered FOV lines in the

two camera views. Only two boundaries of each camera have their correspondences in the

other view. In Figure 3.1 (a), the red line (L2
l ) and the blue line (L2

b) correspond to the

left boundary and bottom boundary of the ground plane in Camera 2, respectively. And in

Figure 3.1 (b), the green line (L1
r) and the yellow line (L1

b) correspond to the right boundary

and bottom boundary of the ground plane in Camera 1, respectively.
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3.1.2 Checking the Visibility of Objects

When a new foreground object enters a camera’s FOV, the camera first checks if this object

can be seen by any other cameras by employing the FOV lines. The midpoint of the bottom

line of an object’s bounding box is considered as its location. The location (xi
o, y

i
o) of an

object in Camera i is

xi
o =

xi
o,min + xi

o,max

2

yio = yio,max

where xi
o,min and xi

o,max are the minimum and maximum x coordinates, and yio,max is the

maximum y coordinate of the bounding box. To check if this location is in the FOV of Camera

j, one of the four points that are used for homography computation will be employed. Let us

assume that all the FOV lines of Camera j in Camera i have the form as y = sx+ c. If this

point lies on the visible side of all the FOV lines, then for every FOV line, sign(yio−sxi
o−c) =

sign(yik − sxi
k − c), which means these two points are on the same side of this line, where

(xi
k, y

i
k) are the coordinates of any one of the points in pi. Then, it is deduced that this

object is visible by Camera j. In this case, a request for a label addressed to Camera j

will be sent out by wireless communication to achieve consistent labeling. This message will

include the coordinates of this object (xi
o, y

i
o). Meanwhile, Camera i will assign a temporary

label to this object, waiting for its correct label to be sent back. When Camera j receives

this request, it converts the received coordinates (xi
o, y

i
o) into its own coordinates (xj

o, y
j
o),

using Eq. (3.1) or Eq. (3.2), accordingly. Then Camera j checks all the trackers it has,

finds the closest tracker whose distance from the object is within a threshold, and returns

the label of this tracker to the requester. Camera i will then replace the temporary label by

the received label.

As stated previously, a camera also uses a similar approach to retrieve the location of a
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lost or occluded object. When an object is occluded in the scene, the camera checks if its last

location is in the FOV of another camera. If it is, it sends out a request message containing

the label of the lost object to that camera. When the other camera receives the label, it

finds the label in its trackers, and sends back the coordinates of the tracker to the requester.

The requesting camera needs to convert the received coordinates into its own coordinates

using the homography matrix, before updating the location of the tracker.

Details of the packets that are sent out for the New Label and Lost Label requests and

replies are described in Section 3.3.

3.2 Composite and Spatio-temporal Event Detection

Object tracking is widely employed in visual surveillance systems. However, object tracking

by itself is not sufficient for most applications. Tracking results should be analyzed to detect

occurrences of events of interest. For instance, in the surveillance scenarios, the main interest

is detecting instances of events such as objects entering a prohibited region or a person

entering through an exit-only door. Detection of events of interest is especially important

in wireless smart camera systems, since it is not possible to transfer or save every frame or

every object trajectory.

We present a wireless embedded smart camera system that can detect composite, spatio-

temporal and semantically higher-level events. Event scenarios are defined beforehand and

they can span multiple camera views. More complicated events can be built by using simpler

basic building blocks [27]. We define semantically higher-level events by using the building

blocks, which are henceforth called the primitive events or simply primitives. Primitive

events are connected to each other by a sequence operator, since the most fundamental

relation among component events is one of sequence [27]. The current primitive events in

the presented system are motion detection (MD), tripwire crossing (TW) and abandoned
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object (AO). MD primitive is defined by specifying a rectangular region of interest (ROI) on

a camera view. If motion is detected in this region, it will be concluded that MD primitive

has occurred. TW primitive is defined by specifying a line, and a direction on a camera

view. If an object crosses this line in the specified direction, it will be concluded that TW

primitive has occurred. AO primitive is defined by specifying a rectangular region and the

waiting time before considering the object abandoned.

Multiple primitives can be defined on one or more camera views and can be connected

to each other by a sequence operator to define higher-level events spanning different camera

views. The desired time interval between each primitive can also be specified. For instance,

let the event scenario of interest be detecting a person entering into the scene in the first

camera view, and then intruding a region defined in the second camera view in a time interval

of m seconds. The entry of a person can be detected by defining a TW primitive (E1) at

the entrance watched by the first camera. The intrusion of the prohibited region can be

detected by defining a MD primitive (E2) on the second camera view. These events are then

connected by a time sequence operator so that E1 happens first and then E2 happens in

less than m seconds. The complexity of event scenarios can be increased by increasing the

number of primitives on a camera view, and/or the number of camera views they span.

In the proposed system, different cameras have partially overlapping fields of view, but the

primitive events can be defined in the non-overlapping regions. Thus, cameras communicate

with each other about the portions of a scenario to detect an event that spans different

camera views.

The definition of each primitive event, for instance the TW or the ROI, is saved on the

camera that is responsible for detecting this primitive. Each camera also has an array (CamID)

containing the camera IDs in the same order as their primitives are in the defined composite

event scenario. The first camera in this array is responsible for detecting the first primitive

event in the sequence. If the first primitive event occurs in its view, this camera will send a
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Primitive Occurred message addressed to the next camera in the CamID array. This message

includes the label of the object performing this event. The details of communication and

packet contents are described in Section 3.3. After receiving this message, the next camera

in the CamID list will be checking if the next primitive event is performed by the same object.

The cameras in the CamID list will only detect a primitive and inform the next camera in

the list, when they are informed of the occurrence of the previous primitive. When all of

the primitive events in the defined scenario are performed by the same object, the entire

scenario occurs and is detected.

Let an event scenario be composed of three primitive events, E1, E2 and E3. Let E1, E2

and E3 be defined in the views of the first, second and third camera, respectively. Also, let

all events be defined in the non-overlapping regions of the FOVs, i.e. only the first camera

can see the region where E1 is defined, only the second camera can see the region where E2

is defined, and only the third camera can see the region where E3 is defined. When the first

camera detects that E1 has occurred, it will broadcast a message addressed to the second

camera to inform the occurrence of E1. This message also contains the label L of the object

involved in E1 so that the camera which is responsible for detecting E2 can check if the

object involved in E2 has the same label L. If E2 occurs in the second camera view within a

pre-defined time interval after it receives the message from the first camera, and if the object

performing E2 has label L, the second camera will broadcast a message addressed to the

third camera. If the third camera detects that E3 has occurred, and the label of the object

involved is L, it will declare that the defined event scenario has occurred.

In many cases, the second camera will receive the message, informing the occurrence of

a primitive, and including the label L of the object, before this object actually enters its

own FOV. Thus, when it receives the Primitive Occurred message, it will save the object’s

label L. When a new object enters its view, FOV lines will be used to determine which

camera can see this object, and a message will be sent to that camera to retrieve the label
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of the object. If the retrieved label is L, then this is the object that should be performing

the following primitives.

Another important point to note is the potential race conditions when detecting a com-

posite event. Consider a scenario where the first primitive is detected on the first camera

view, and it broadcasts the Primitive Occurred message containing label L of the object.

Let this object enter the FOV of the second camera, which is responsible with detecting

the second primitive in the sequence. This object will be given a temporary label T until

the second camera gets the correct label for this object from another camera. If this object

performs the second primitive before the correct label is received, i.e., while it still has the

temporary label T , this might cause the compound event to be missed. To avoid this, the

second camera can save the instances of primitive events performed by objects with tem-

porary labels. Once the correct label for an object with temporary label T is received, the

camera can associate it with the primitive event detected previously.

In an embedded smart camera, it is not possible to save or transfer all the captured frames

or every object trajectory due to limited resources. Thus, by detecting events of interest, we

can save only those portions of video where the defined event scenario occurs, and/or we can

save or transfer only the trajectories involved in an event scenario. For instance, when an

object is detected entering a prohibited region, only the frames where the object is crossing

the ROI are saved on the corresponding camera board. Some example scenarios, and the

saved frames are presented in Section 4.2.

3.3 Communication between Cameras

The embedded smart cameras in our system communicate in a P2P manner over wireless

links. Compared to server-based approaches, this provides important advantages in terms

of bandwidth. Also, thanks to the P2P communication, cameras do not need to send the
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state of each tracker to a centralized location at each frame. This decreases the number of

messages that need to be sent around significantly.

Since sending large-sized packets requires more energy, and incurs more communication

delay, it is very important to carefully design when to communicate and what to communi-

cate, and to employ algorithms that do not require transfer of large data between cameras.

In the following subsections, we describe how the decisions about when to communicate, with

whom to communicate and what to communicate are made. We also describe the details of

the message packets sent between the cameras.

3.3.1 Packet Formats

We use the default packet formats provided by CITRIC developers for serial and wireless

communication. Serial packet format, shown in Figure 3.2, contains two 1-byte delimiters,

a 3-byte serial packet header, a 2-byte footer and an Active Message (AM) packet. The AM

Packet shown in Figure 3.2 is the packet format for wireless communication with a 7-byte

header and no footer. When a TelosB receives a serial packet from the camera board, it can

just easily take the AM packet and send it out, without further encapsulating. And each

AM packet payload is filled by a Camera Board (CB) packet, which contains a 3-byte header

and the CB payload. The first byte of the CB header indicates the type of this packet and

is divided into 2 halves — values [0 ∼ 127] are restricted types used by the CITRIC API,

while values [128 ∼ 255] are user values available for application specific data. We define

our application message types in this field. Every type of the message that is described in

Section 3.3.5 is assigned a unique number in the range of [128 ∼ 255].The other two bytes

in the CB header are the originating source mote ID on a multi-hop network. This will be

equal to the source ID in the AM packet header on a single hop network.

Once a packet is sent, TelosB will wait for an acknowledgement from the receiver. If
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Wireless Comm

New Label Request

x y Temp Label

2 bytes 1 byte 1 byte

New Label Reply

Temp Label Answer Label

1 byte 1 byte

Lost Label Request

Lost Label

1 byte

Lost Label Reply

Lost Label

1 byte

x y

2 bytes 1 byte

Primitive Occurred Message

Primitive ID Object Label

1 byte 1 byte

CB Payload Types

Delimiter  Serial packet header  AM packet

Delimiter
Protocol 

type

Sequence

number
Dispatch

1 byte 1 byte 1 byte 1 byte

AM packet header AM packet payload

 Serial packet footer

CRC

2 bytes... ...

Delimiter

Delimiter

1 byte

 AM packet header

Dest ID Src ID
Payload

length

2 bytes 2 bytes 1 byte

 AM packet payload

CB Packet

...

Group ID

1 byte

Handler ID

1 byte

 CB packet header

Packet

type

Actual src 

ID

1 byte 2 bytes

 CB packet payload

payload

...

Serial Packet

Active Message (AM) Packet

Camera Board (CB) Packet

Figure 3.2: Packet Format of Wireless and Serial Communication.

TelosB does not receive an acknowledgement packet, it will send the data packet again after

a certain amount of time. The number of retries and the time interval between each retry

can be set by the users. The default number of retries is 20 and the time interval between

retries is 200 ms.

3.3.2 Flow of Processing and Communication

The camera board and the TelosB mote perform their tasks in parallel and communicate via a

serial port. The TelosB mote and the camera board draw current from the same power supply

instead of TelosB having its own separate power supply. When TelosB is not transmitting a

packet, it is in idle mode. The drawn current increases when the TelosB transmits or receives

a packet. The effect of wireless communication on the power consumption will be analyzed

in Chapter 4.
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Thanks to the advantages of the multi-threading scheme in embedded Linux systems, a

separate thread is employed for communicating with the wireless mote. An incoming queue

and an outgoing queue are shared between the main thread and the communication thread.

If the camera needs to send a packet, it wraps the message in the CB packet and puts it in the

outgoing queue, waiting for the communication thread to send it out. The communication

thread keeps polling the serial port. If there is a packet comes in, it takes the message out

of the AM packet and puts in the incoming queue for the main thread to process.

Figure 3.3 illustrates the process of sending a request and receiving a reply between two

camera nodes. During the processing of a frame, if the camera board needs to send a request

message, it puts the message in the outgoing queue. The message will be sent over the serial

port to the wireless mote immediately. For instance, Camera 1 sends a request packet while

processing the current frame, and its wireless mote transmits it immediately addressed to

Camera 2. When the packet is received, the message will be put in the incoming queue

of Camera 2, since the main thread of Camera 2 is still busy with processing the current

frame. After finishing the processing of the current frame, the main thread gets the request

message, and then sends a reply. The reply will be transmitted immediately by the wireless

mote. The main thread of Camera 1 will receive the reply after it finishes processing of the

current frame.

In our wireless embedded smart camera system, each camera node is in the single-hop

communication range of the others. Thus, each message exchange is performed in single-

hop. In our experiments, using the previously described message exchange process, Camera

1 sends out a request during the processing of the current frame, and will receive the reply

by the end of the next frame. Thus, the time interval between sending the request and

receiving the reply is less than 100 ms. This alleviates coherent data transfer problem.

However, in the cases of multihop communication and unbalanced workload on different

nodes, a synchronization mechanism would be necessary.
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3.3.3 When to Communicate

A camera needs to communicate with other cameras when 1) a new object appears in its

FOV, 2) a tracker cannot be matched to its target object, and 3) a primitive event that is part

of a pre-defined composite event scenario occurs in its field of view. These three cases will

be referred to as New Label, Lost Label and Primitive Occurred cases, respectively. These

cases have been explained previously and are summarized here as the following.

When a new object is detected in the current camera view, it is possible that this object is

being tracked by other cameras. If this is the case, the camera will issue a New Label request

addressed to those cameras to require the existing label of this object, and to maintain

consistent labeling.

If a tracker cannot be matched to its object due to occlusion or failure of the background

subtraction, then the camera will send a Lost Label request to obtain and update the location

of the object from the other cameras that can see the same object.

Also, as described in Section 3.2, we define composite and semantically high-level events

as a sequence of primitive events, and these primitives can be defined on different camera

views. When a camera detects a primitive event, it sends a Primitive Occurred message

addressed to the next camera in the sequence to let it know about the occurrence of this

primitive event, and the label of the object performing the primitive.

3.3.4 With Whom to Communicate

In the New Label and Lost Label cases, before sending the request, the current camera checks

the visibility of the target by other cameras by employing the FOV lines. If it is deduced

that this object is visible by another camera, the ID of that camera will be included in the

request message. This way, when a camera receives a broadcasted message, it will drop the

message if the target ID in the message does not match its own ID.
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In the Primitive Occurred case, since the primitives and their sequence are all pre-defined,

we already know which primitive is defined on which camera view. When a primitive event

occurs in one camera, it will address the message to the next camera in the sequence of

events.

3.3.5 What to Communicate

Small-sized packets are exchanged between cameras to reduce power consumption and delay.

The contents of messages for different scenarios are described in the following. As aforemen-

tioned, each type of message is assigned a unique type ID, which will be inserted into the

CB header (Figure 3.2) in the packet.

1) New Label Request

When a new object appears in the current camera view, a tracker is created for it. If it is

determined by using FOV lines that another camera can see this object, a temporary label

is assigned to the object and a request message addressed to that camera is created. The ID

of the camera to which this message is addressed is inserted into the destination ID in the

AM packet header. The AM packet for this message has the following format:

AM header CB header x y Tmp label

where x and y are the coordinates of the object in the current camera view. Tmp label is

the temporary label assigned to this newly found object. When a reply is received, this

temporary label is replaced by the received label. In this case, we need 7 bytes for the AM

header, 3 bytes for the CB header, 2 bytes for x, 1 byte for y (the width of the frame is

greater than 256 and the height of the frame is less than 256), and 1 byte for the Tmp label.

Thus, we only use 14 bytes for a New Label request packet.
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2) New Label Reply

When a camera node receives a packet that is addressed to itself, and if this packet is for a

New Label request, the camera node will calculate the object’s corresponding location in its

own view by using the received coordinates and the homography matrix calculated off-line.

Then, it will find the distance of the closest tracker to the calculated location. If this distance

is smaller than a threshold, it will send the label of this tracker as reply in the following

packet form:

AM header CB header Tmp label Ans label

where Tmp label is the temporary label the requesting camera is using, and Ans label is the

reply label. A unique number indicating that this packet is for a New Label reply is also

assigned in the CB header. Destination ID is the source ID found in the received packet. In

this case, we only use 12 bytes in the New Label reply packet.

3) Lost Label Request

For a tracker that cannot be matched to its object, a camera that can see the most recent

location of this tracker is found by using the FOV lines. Then, a Lost Label request packet

is formed, which has the following format:

AM header CB header Lost label

where Lost label is the label of the tracker which could not be matched to an object. We

only use 11 bytes for a Lost Label request.
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4) Lost Label Reply

When a camera node receives a packet that is addressed to itself, and if this packet is for a

Lost Label request, the camera node sends the current location of the tracker, whose label is

the same as the Lost Label entry of the request message, as reply. The reply packet has the

following format:

AM header CB header Lost label x y

where Lost label is the label of the tracker received from the requester, and x and y are the

coordinates of the object. In this case, we use 14 bytes in the Lost Label reply packet.

When the requesting camera receives the reply, it calculates the corresponding location

of the object in its own view, and updates the tracker’s location.

In our experiments, when the object is partly or fully occluded, we sent the Lost Label

request every frame to see and show the continuous update of the objects location. This is

for visualization purposes only. Sending the request every frame is not very efficient in terms

of energy consumption, since transmitting and receiving a message increase the operating

current, as shown in Chapter 4. Instead of sending the request every frame, when we detect a

new blob (reappearing after occlusion), we can retrieve its label using the New Label request.

5) Primitive Occurred Message

As described previously, composite and semantically higher level events of interest are defined

beforehand by connecting primitive events in a sequence. If a defined primitive event is

detected in a camera node, this node sends out a Primitive Occurred message to inform the

next camera node in the defined event sequence. Thus, it does not need any replies. When

the first primitive event occurs in the view on which it was defined, this camera sends a

message addressed to the camera that is responsible to detect the next primitive event in

the sequence. Once the second primitive occurs, and if the third primitive is defined on a
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different camera view, the second camera sends a message addressed to that camera. The

form of the packet for the Primitive Occurred message is:

AM header CB header Prim ID Obj label

where Prim ID is the order number of the primitive event in the sequence, and Obj label

is the label of the object performing this event. In this case, we only use 12 bytes for the

Primitive Occurred message.

In the current version, when a camera receives a Primitive Occurred message, it resets a

counter, and starts counting the frames to determine if the time interval criterion is satisfied

between two consecutive primitive events.

3.4 Conclusions

We presented a wireless embedded smart camera system for cooperative object tracking

and detection of composite, semantically high-level events spanning multiple camera views.

With sharing a common planar ground across the partially overlapping camera views, the

FOV lines of the neighboring cameras in the current camera view can be recovered using the

homography matrices. If an object is deduced visible in another camera view, the current

camera can either send a New Label request addressed to that camera to retrieve the label

for a newly detected object, or send a Lost Label request to retrieve the updated location of

an occluded object.

The presented embedded smart camera system can detect composite event scenarios span-

ning multiple camera views. Semantically higher level events can be defined by connecting

primitive events in a time sequence. The complexity of event scenarios can be increased by

increasing the number of primitives on a camera view, and/or the number of camera views
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they span.

Cameras exchange data in a P2P manner over wireless links to track objects with consis-

tent labels, to update locations of occluded or lost objects, and also to inform other cameras

about the occurrence of a primitive event in a composite event scenario. The cameras only

need to send 14 bytes for New Label request, 12 bytes for New Label reply, 11 bytes for

Lost Label request, 14 bytes for Lost Label reply and 12 bytes for Primitive Occurred mes-

sage.
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Chapter 4

Power Analysis and Experimental

Results

Power Consumption is critical for embedded cameras powered by batteries. From the per-

spective of algorithms, well-designed algorithms that are optimized for the hardware archi-

tecture help to reduce the power consumption significantly. To analyze the factors that

influence the power consumption of our system, and demonstrate the efficiency of the pro-

posed algorithms, we performed experiments in different tracking scenarios and estimated

the average power consumptions by measuring the operating currents. The results also pro-

vide additional insight in terms of computation versus communication tradeoff and careful

camera placement, and demonstrate and emphasize the importance of carefully designing a

communication protocol in these resource-constrained environments.

In the second part of this chapter, to demonstrate the successfulness of the algorithms

that are proposed in Chapter 2 and Chapter 3, we performed experiments for each sce-

nario including New Label, Lost Label and Primitive Occurred cases. Multiple examples of

composite event detection involving different numbers of cameras and different numbers of

primitives are presented.
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4.1 Power Consumption and Performance Analysis

We performed a detailed analysis of the energy consumption and performance of the pre-

sented system during different parts of processing a frame, when tracking different number

of objects, when tracking different-sized objects, and when transmitting and receiving mes-

sage packets. We also compared the energy requirement when transmitting different-sized

packets.

For this analysis, we measured the operating current of the embedded smart camera for

different scenarios, which are listed in the following. To measure the currents, we used a

precise oscilloscope and a 1Ω resistor configuration placed at the input of the supply source.

We then computed the energy consumption of the proposed system during different tasks

based upon the measured operating currents.

4.1.1 Operating Currents while Tracking Different Number of

Objects

The energy consumption of the camera board depends highly upon the amount of activity.

Different number of objects in the scene causes some variations in the operating current of

the camera board, and more importantly in the processing time. Amount of current and

processing time also depend upon the algorithms used.We measured the operating current

when there were different number of objects in the scene. We used three remote-controlled

cars, and employed two different algorithms, described in Chapter 2.3, for blob forming.

The blue, red, and green plots in Figure 4.1 (a) are the currents drawn during the

processing of one frame when tracking one, two and three cars, respectively, and when

using the multiple pass connected component labeling algorithm. For the one-car case, the

processing of the frame takes 168 ms. This number includes the time needed for frame

capturing, foreground detection, connected component labeling and tracking. When there
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One Car in the View Two Cars in the View Three Cars in the View

168 ms

180 ms
198 ms

12 ms 18 ms

Frame
Grabbing

Frame
Buffering

Frame Processing

(a)

87 ms

91 ms

96 ms
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5 ms

Frame Grabbing

Frame Buffering

Frame Processing

(b)

Figure 4.1: Amount of the current drawn by the camera board over time while tracking one,
two and three remote-controlled cars and when using: (a) multi-pass connected component
labeling algorithm and (b) single-pass blob forming algorithm.
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Table 4.1: Power and energy consumption for different scenarios when using the multi-pass
connected component labeling

One-Car Two-Cars Three-Cars One Bigger Car Two Smaller Cars

Current (mA) 202 202 204 204 202

Power Consumption (W) 1.171 1.171 1.182 1.182 1.171

Time (msec) 168 180 198 207 180

Engery (J) 0.197 0.211 0.234 0.245 0.211

Table 4.2: Power and energy consumption for different scenarios when using the single-pass
blob forming algorithm

One-Car Two-Cars Three-Cars One Bigger Car Two Smaller Cars

Current (mA) 201 201 199 198 201

Power Consumption (W) 1.166 1.166 1.154 1.149 1.166

Time (msec) 87 91 96 99 91

Engery (J) 0.101 0.106 0.111 0.114 0.106

are two cars in the scene, it takes 12 ms more to finish processing of one frame (red plot).

When three cars are tracked, it takes 18 ms longer for the camera to finish processing one

frame compared to the two-car case.

From Figure 4.1 (a), we can see that when embedded smart cameras track multiple objects

with comparable sizes, they consume more energy with increasing number of objects. The

energy required for processing a frame containing one car is E = P × T = Vboard × I × T =

(6−202mA×1Ω)×202mA×168ms = 0.197J , where Vboard is the voltage across the camera

board, and 6 volt is the power supply we used in our experiments. Then Vboard is equal to

the power supply minus the voltage across the 1Ω resistor. Similarly, the energy required for

processing frames containing two and three cars are 0.211J and 0.234J , respectively. These

values were obtained when TelosB was not attached to the camera board. We also measured

the operating currents with TelosB attached. All operating currents and computed energy
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values are summarized in Table 4.1.

We also performed a similar experiment when running the more efficient, one-pass blob

forming algorithm. Figure 4.1 (b) shows the obtained operating currents while tracking

different number of objects. As can be seen, the processing time of each frame decreases

significantly. Specifically, it decreases to 87, 91, and 96 ms for tracking one, two and three

cars, respectively. This, in turn, provides significant savings in the energy consumption. The

decrease in energy consumption can be seen by comparing Tables 4.1 and 4.2.

4.1.2 Operating Currents while Tracking Different-Sized Objects

We also analyzed the effect of the size of the tracked objects on the operating current of the

embedded camera board. We compared the measured operating currents when tracking two

smaller objects and when tracking one larger object. We placed the camera closer to the

scene to capture a larger view of one of the cars, and measured the operating current for one

frame by using the oscilloscope.

Figure 4.2 (a) shows the current amounts drawn by the camera board when using the

multi-pass connected component labeling algorithm. Due to the nature of the algorithm,

the number of foreground pixels in the image will have an influence on the speed of building

connected components. Thus, it is expected to have increased energy consumption. As

seen in Figure 4.2 (a), when tracking one larger-sized car, it takes 27 ms more to finish the

processing of one frame.

Figure 4.2 (b) shows the current amounts drawn by the camera board when using the more

efficient blob forming algorithm. As expected, compared to the multi-pass algorithm, the

processing time increases less with increasing number of foreground pixels. When tracking

one larger-sized car, it takes 8 ms more to finish the processing of one frame, compared to

tracking two smaller-sized cars. In this experiment, two smaller-sized cars occupy 390 and
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One Car in the View Two Cars in the View

180 ms
207 ms
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Frame
Grabbing
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(a)
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Frame Buffering
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(b)

Figure 4.2: Operating currents of the camera board while tracking one larger car and two
smaller cars, and when using: (a) multi-pass connected component labeling algorithm and
(b) single-pass blob forming algorithm.



59

604 pixels in the frame. In the case, where camera is set up closer to the scene, the larger-

sized car occupies 1944 pixels. The computed energy values for two different algorithms are

listed in Tables 4.1 and 4.2.

This analysis also provides additional insight on how to efficiently place the resource-

constrained cameras in the scene. Since tracking more of smaller objects consume less

energy, it may be preferable to install the cameras further from the scene depending upon

the application.

4.1.3 Operating Currents while Tracking One Car with

Communication

To be able to capture the instances of a camera communicating wirelessly, we designed an

experiment in which we force the camera to send a new label request to the other camera

every five frames. Thus, the camera also receives the new label reply every five frames.

Figure 4.3 (a) and (b) show peaks in the drawn current caused by transmitting and receiving,

respectively. In this experiment, the camera is tracking one car in the scene, and the single-

pass blob forming algorithm is used.

As stated previously, once a packet is sent to other wireless nodes, TelosB will wait for an

acknowledgement from the receiver. If TelosB does not receive an acknowledgement packet,

it will send the data packet again after a certain amount of time. The default number of

retries is 20 and the time interval between retries is 200 ms. There is a delay between the

time the camera sends its request to TelosB and the time TelosB transmits. This time delay

is measured to be 10 ms. The peak in the operating current caused by transmitting a packet

is marked in Figure 4.3 (a).

The peaks caused by receiving a new label request packet and transmitting a new label

reply packet are shown in Figure 4.3 (b). We can see that with data exchange, there are ap-
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8 ms

259 mA

(a)

8 ms

292 mA

258 mA

One Frame Another Frame

(b)

Figure 4.3: Operating current of the camera when (a) transmitting a new label request, and
(b) when receiving a new label request and transmitting a new label reply.
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parent peaks in the operating current caused by the wireless communication. The additional

energy consumption caused by transmitting and receiving a packet is analyzed in Section

4.1.4.

We also measured the average operating current for different parts of the processing of

a frame, i.e., we measured the average operating current for grabbing a frame, buffering

the frame, and for performing foreground detection and tracking on the frame. Then, we

calculated the average consumed power during these different portions as described in Section

4.1.4.

4.1.4 Power and Energy Consumption of the Embedded Smart

Cameras

In order to calculate the energy consumption, we use

E = P × t = V × I × t = (6− I × 1Ω)× I × t (4.1)

where 6 volt is the voltage supply used, and I×1Ω is the voltage drop across the 1Ω resistor.

First, we computed the energy consumption while tracking one, two and three cars, and when

using the multi-pass connected component labeling and single-pass blob forming algorithms.

In order to observe the current drawn only by the camera board, we first measured the

currents when the TelosB is not attached. The measured current values, and the computed

energy consumption when using the two different blob forming algorithms are listed in Tables

4.1 and 4.2. As can be seen, when there are more objects in the scene, or there are larger-

sized objects in the scene, the energy consumption increases. Also, morphological operations

followed by the multi-pass connected component labeling algorithm consume significantly

more energy than the single-pass blob forming algorithm.

We also measured the drawn current, when the TelsoB is attached to the camera board.
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According to our measurements, TelosB causes an increase of 25 to 28 mA in the drawn

current.

We also analyzed the additional power and energy consumption caused by transmitting

and receiving packets. In Figure 4.3 (a), the packet is being transmitted while the camera

is grabbing a frame. The average current while transmitting a packet is 256 mA, and

transmission takes 8 ms. The average current when grabbing a frame is 213 mA. Thus,

the additional power consumption caused by transmitting a new label request packet is

(6− 0.256)× 0.256− (6− 0.213)× 0.213 = 0.24W , and the additional energy consumption

is 0.24× 8ms = 1.92mJ .

In Figure 4.3 (b), the packet is being received while the camera is buffering a frame. The

average operating current while receiving a packet is 285 mA, and it takes 4 ms. The average

operating current when buffering a frame is 241 mA. Thus, the additional power consumption

caused by receiving a new label request packet is (6− 0.285)× 0.285− (6− 0.241)× 0.241 =

0.24W , and the additional energy consumption is 0.24× 4ms = 0.96mJ .

In another experiment, we measured the operating current drawn over time when trans-

mitting a packet containing color histogram information for a tracked object, and when

transmitting a whole image. The size of the 3-D histogram payload is 4096 B, and the size

of the whole JPEG image payload is 10.5 KB. As can be seen in Figure 4.4, transmitting a

3-D histogram is completed in 3.56 s, and transmitting a whole JPEG image is completed in

7.25 s. Thus, transmitting a whole image or other large-sized data packets incur significant

energy consumption and delay. When the 3-D histogram is transmitted, it causes an addi-

tional 0.641 J of energy consumption. Transmitting the whole image incurs an additional

1.131 J consumption. Compared to these, transmitting a new label request message in our

application layer protocol takes significantly less time (8 ms) and consumes significantly less

energy (1.92 mJ). Hence, it is very important to design algorithms that require transfer of

small-sized packets between nodes. It is also very important to design efficient protocols to
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Transmitting a 3-D Histogram
3.56 s

(a)

Transmitting a Whole Frame
7.25 s

(b)

Figure 4.4: Current amounts drawn over time when transmitting (a) a packet containing
color histogram of a tracked object (b) a whole image.
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a frame(with and without TelosB)

decrease the message traffic.

We also calculated the average consumed power during different parts of processing a

frame. These parts are grabbing a frame, buffering the frame, and performing vision pro-

cessing, i.e., foreground detection and tracking. The obtained values are displayed in Figure

4.5.

We performed another experiment, and based upon the measurements of operating cur-

rents during wireless communication and tracking multiple objects, we calculated the av-

erage power consumption for different parts of processing a frame while tracking two cars

and transmitting or receiving a packet. Figure 4.6 shows the obtained results. When a car

enters into the FOV of the camera, it transmits a New label request message, and during

the transmission, the average power consumption is 1.481 W as seen in Figure 4.6. The
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average power consumption during foreground detection, blob forming and tracking is 1.283

W. When the camera receives the reply message, the average power consumption is 1.666

W.

These results demonstrate the importance of carefully designing a communication pro-

tocol, implementing lightweight algorithms, and configuring camera placements in these

resource-constrained environments. Deciding what data to send and when to send is very

important since communication is expensive, and even sending or receiving a 14-B packet

causes jumps in the power consumption. Camera placements also make a difference since

tracking one larger object consumes more energy than tracking multiple smaller objects as

shown in our experiments.
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4.2 Object Tracking and Event Detection

Experimental Results

CAM 3

CAM 1

CAM 2

VIEW OF CAMERA 1 VIEW OF CAMERA 2 VIEW OF CAMERA 3

Figure 4.7: The three-camera setup.

We performed different sets of experiments for different scenarios with the presented

wireless embedded smart camera system. Experiments were carried out by tracking people

as well as remote-controlled cars. Below, we present results of tracking with consistent

labels, updating locations of lost/occluded objects, and detecting composite events spanning

multiple camera views.

In the first set of experiments, we used two CITRIC cameras with partially overlapping

fields of view, and tracked remote-controlled cars. Then, we set up three CITRIC cameras
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(a) Camera 1 (b) Camera 1 (c) Camera 2 (d) Camera 2

Figure 4.8: Two cars being tracked across different camera views with consistent labels.

to track people and detect events of interest. Event scenarios were defined so that they span

over three different camera views.

The configuration of the camera positions is as shown in Figure 4.7. Camera 1 and

Camera 3, and Camera 2 and Camera 3 have overlapping fields of view; whereas the fields

of view of Camera 1 and Camera 2 do not overlap. Thus, we only compute the homography

matrix between Camera 1 and Camera 3, and between Camera 2 and Camera 3. If an object

moves from the view of Camera 1 into the view of Camera 3 and then Camera 2, Camera 3

needs to act as a bridge, and transfer the label that it receives from Camera 1 to Camera 2.

4.2.1 Consistent Labeling

We first performed experiments where multiple cars are tracked with consistent labels across

different camera views. As seen in Figure 4.8 (a), when a car enters the FOV of the first

camera it is assigned a temporary label 0. Then, when the camera receives the correct label

from the other camera, the temporary label is changed to the correct one (11) as shown in

Figure 4.8 (b). Figure 4.8 (c) and (d) show the second camera tracking the object.

Figures 4.10, 4.11 and 4.12 show key frames from different composite event detection

experiments. These figures also include several examples of successful label transfer, and

show cars being tracked with consistent labels across different camera views. As seen in

Figures 4.10 (b), 4.11 (d), 4.12 (c), 4.12 (g) and 4.12 (i), when a car enters the FOV of
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a camera, it is first assigned a temporary label 0. Then, this camera sends a New Label

request message to the other camera if it determines that the other camera can see the same

object. When the requesting camera receives the correct label from the other camera, the

temporary label is replaced by the correct label, as shown in Figures 4.10 (c), 4.11 (e), 4.12

(d), 4.12 (h) and 4.12 (j).

Figures 4.13 and 4.14 show multiple people being tracked with consistent labels by three

embedded smart cameras. As seen in Figures 4.13 (k), 4.14 (h) and 4.14 (j), when a person

enters the FOV of a camera, it is first assigned a temporary label 0. Then, this camera

sends a New Label request message to the other camera(s) if it determines that the other

camera(s) can see this person. When the requesting camera receives the correct label from

the other camera, the temporary label is replaced by the correct label, as shown in Figures

4.13 (l), 4.14 (i) and 4.14 (k).

4.2.2 Updating the Location of a Lost Object

For this experiment, we used two cameras, and placed an occluding structure in the scene as

seen in Figure 4.9. The first camera can see and track the car, whereas the second camera

loses it at some point since it is occluded by the box. Figure 4.9 (a) shows an example frame

from the first camera view. When the second camera loses the object, it can still update

its location by exchanging data with the first camera as seen in Figures 4.9 (b) and (c). In

Figure 4.9 (d) and (e), the car reappears and the tracker is locked back to its object.

4.2.3 Event Detection Experiments

We defined different composite and spatio-temporal event scenarios spanning two and three

different camera views. The composite event scenarios consist of two, three or four primitives

connected in sequence. The definition of each primitive event is saved as a structure, which
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Figure 4.9: A car being occluded in the second camera view.

contains the primitive ID, the type of the primitive (MD, TW or AO), the ID of the camera

that is responsible of detecting this primitive, and the parameters of the primitive event

(such as point coordinates defining the ROI, location and direction of the defined tripwire

etc).

We performed event detection experiments by tracking people as well as remote-controlled

cars. The maximum time interval between the primitive events was set to be 100 frames in

all the experiments.

1) Event Scenario Composed of Two Primitive Events Spanning Two Camera

Views

The first event scenario of interest is detecting a car going through a region of interest on

the first camera view, and then exiting the scene on the second camera view. Thus, this

event spans two different camera views. This scenario was defined as a sequence of two
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Figure 4.10: An event scenario composed of two primitive events spanning two different
camera views.

primitive events, namely MD in the first camera view, and TW in the second camera view.

Figure 4.10 (a) shows the first primitive event being detected on the first camera view. When

this primitive is detected, the first camera sends a Primitive Occurred message addressed to

the second camera, and this message includes the label 10, which is the label of the object

performing the event. At this time, the second camera cannot see this object yet, and saves

this label. In Figure 4.10 (b) a new car just enters into the FOV of the second camera, and

is assigned a temporary label 0. The second camera sends a new label request to the first

camera, and receives the correct label 10 from the first camera as seen in Figure 4.10 (c). The

second primitive event is detected on the second camera view as shown in Figure 4.10 (d)

and Figure 4.10 (e). Since the label of the object performing the second primitive event is the

same as the label in the received Primitive occurred message, and the time interval between

these two primitive events is less than the specified interval, the overall event scenario occurs,
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Figure 4.11: An event scenario composed of three primitive events spanning two different
camera views.

and is successfully detected.

2) Event Scenario Composed of Three Primitive Events Spanning Two Camera

Views

The second event scenario of interest is detecting a car entering the scene in the second

camera view, and then going through a region of interest in the first camera view, and then

parking in a region defined on the first camera view. This scenario was defined as a sequence

of three primitive events, namely TW in the second camera view, followed by MD in the

first camera view, followed by AO in the first camera view.

Figure 4.11 (a) and (b) shows the first primitive event being detected on the second

camera view. When this primitive is detected, the second camera sends a Primitive Occurred

message addressed to the first camera, and this message includes the label 20, which is the

label of the object performing the event. At this time [Figure 4.11 (c)], the first camera

cannot see this object yet, and saves this label. In Figure 4.11 (d), a new car just enters into

the FOV of the first camera, and is assigned a temporary label 0. The first camera sends a
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Figure 4.12: An event scenario composed of four primitive events spanning two different
camera views.

new label request to the second camera, and receives the correct label 20 as seen in Figure

4.11 (e). The second primitive event is detected on the first camera view as shown in Figure

4.11 (f). The third primitive event is detected on the first camera view as shown in Figure

4.11 (g) and (h). Since the label of the object performing the second and third primitive

events in the first camera view is the same as the label 20 in the Primitive Occurred message

received from the second camera, and the time intervals between primitive event pairs are less

than the specified intervals, the overall event scenario occurs, and is successfully detected.
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3) Event Scenario Composed of Four Primitive Events Spanning Two Camera

Views

The event scenario of interest is detecting a car entering the scene in the second camera

view, and then going through a region of interest in the first camera view, and then crossing

a line in the first camera view, and then exiting the scene in the second camera view. This

scenario was defined as a sequence of four primitive events, namely TW in the second camera

view, followed by MD in the first camera view, followed by TW in the first camera view,

followed by another TW in the second camera view. Figure 4.12 shows the key frames, and

the detection of each primitive event. This scenario is interesting since the object leaves the

view of the second camera, is continued to be tracked in the first camera, and then reenters

into the FOV of the second camera. Since the first and last primitives are defined on the

second camera view, correct label exchange, and exchanges of Primitive Occurred messages

are essential. When the second camera detects the first primitive (Figure 4.12 (a)) it sends

a Primitive Occurred message addressed to the first camera, and this message includes the

label 20, which is the label of the object crossing the tripwire. At this time, the first camera

cannot see this object yet (Figure 4.12 (b)), and saves this label. The label of a new object

entering into the view of the first camera is received from the second camera as seen in

Figure 4.12 (d). The second and third primitive events are detected on the first camera

view as shown in Figures 4.12 (e) and 4.12 (f), respectively. At this time this car is no

longer visible in the second camera view. The label of a new object entering into the view of

the second camera is received from the first camera as seen in Figure 4.12 (h). The fourth

primitive event is detected on the second camera view as shown in Figures 4.12 (i) and 4.12

(j). Since the labels of the objects performing all the primitive events are the same, and the

time intervals between primitive event pairs are less than the specified intervals, the overall

event scenario occurs, and is successfully detected.
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4) Event Scenario Composed of Three Primitive Events Spanning Three

Camera Views

The defined event scenario is detecting a person crossing a tripwire in the second camera

view, and then going through a region of interest in the third camera view, and then going

through another region of interest in the first camera view. Figure 4.13 shows the key

frames, and detection of each primitive event. An interesting point to note is that, in this

experiment, two different people perform the defined sequence of events at different times,

i.e. the defined scenario occurs twice. The system can successfully detect the occurrences of

both instances.

Figure 4.13 (a) shows the first primitive event detected with Object 20 in the second

camera view, and then in Figure 4.13 (b) and (c) the third camera sees Object 20 and

retrieves the correct label from the second camera. Then Object 20 enters the first camera

and its label retrieved from the third camera Figure 4.13 (d) and(e). Object 20 is observed

with the second primitive event in Figure 4.13 (f) and the third primitive event in Figure 4.13

(j).

Meanwhile, another object labeled 21 is detected with the first primitive event in the

second camera view, as in Figure 4.13 (g). Then it is correctly labeled in the third camera [

Figure 4.13 (h-i)], and in the first camera [Figure 4.13 (k-l)]. The second primitive event of

Object 21 is detected in the third camera view in Figure 4.13 (m), and the third primitive

event is detected in the first camera view in Figure 4.13 (n).

5) Event Scenario Composed of Four Primitive Events Spanning Three Camera

Views

The defined event scenario is detecting a person crossing a tripwire in the second view, and

then going through a region of interest in the third camera view, and then going through
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Figure 4.13: An event scenario composed of three primitive events spanning three different
camera views.
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another region of interest in the first camera view, and then finally leaving the scene by

crossing a tripwire in the second camera view. Figure 4.14 shows the key frames, and the

detection of the each primitive event.

In Figure 4.14 (a) the first primitive event is detected with Object 20 in the second camera

view. The third camera sees Object 20 and retrieves the correct label from the second camera

[Figure 4.14 (b-c)] and the first camera sees Object 20 and retrieves the correct label from

the third camera [Figure 4.14 (d-e)]. The second primitive event is detected with Object 20

in the third camera view as shown in Figure 4.14 (f). The third primitive event is detected

with Object 20 in the first camera view in Figure 4.14 (g). Later on, Object 20 return to

the third camera view in Figure 4.14 (h-i) and then return to the second camera view in

Figure 4.14 (j-k). Finally, the fourth primitive event is detected in the second camera view

with Object 20 in Figure 4.14 (l).

4.3 Conclusions

We measured the operating currents of the cameras for different scenarios and evaluated

the power consumption of the system. We analyzed the power consumption during different

parts of the processing and during different message exchanges between camera nodes. We

also evaluated the power consumption when tracking different number of objects, and when

tracking different-sized objects. Since power is a limited resource for embedded smart cam-

eras, this analysis is very important. Additional to the power consumption, we also analyzed

the energy consumption, because efficient algorithms also reduce the processing time. Thus,

the processing time for one frame will be shorter, which results in a lower energy consumption

for one frame.

We also presented examples of consistent labeling and updating the location of occluded

or lost objects from other cameras. We showed examples of detecting composite and spatio-
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temporal event scenarios spanning multiple camera views. Examples include event scenarios

that are composed of two, three and four primitive events spanning two or three different

camera views. Experiments were performed by tracking remote-controlled cars as well as

multiple people. The results show the success of the proposed system.
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Part III

Distributed Object Tracking with

Non-overlapping Camera Views
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Chapter 5

Real-time Distributed Tracking with

Non-Overlapping Camera Views

5.1 Introduction

In previous chapters, we proposed a wireless smart embedded camera system for real-time

object tracking. The cameras in the system are assumed to have partially overlapped views

and share a common planar ground, thus the homography matrix can be used to recover the

FOV lines and maintain the consistent labeling.

With the success of object tracking with overlapping views, it is natural to attempt to

extend the framework to non-overlapping views. In Chapter 1, the related work of object

tracking with non-overlapping views has been reviewed. Although, methods have been de-

veloped that focus on building statistical or non-statistical models for object matching, much

less attention has been paid to designing and implementing algorithms for real-time applica-

tions, and distributed processing. In this chapter, we propose a real-time, distributed system

for multi-object tracking with non-overlapping cameras.

In our system, each camera is connected to a PC and the PCs communicate with each
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other through TCP/IP. Similar to previously introduced embedded camera system, each

camera performs multi-object tracking individually, and exchanges data in a P2P manner.

We combine multiple features to match objects across non-overlapping views. These features

are side of entry, color histogram, height, moving direction, speed and travel time. These

are extracted and transmitted to neighboring cameras at different points in time while the

object is being tracked in the current camera view. In the next camera, similarity scores

will be computed for each feature, and an overall similarity score will be obtained by taking

a weighted sum of the individual feature similarities. The system is first trained to learn

several parameters including camera placements, ratio of heights on different camera views,

average traveling time information from one camera view to the other and a threshold for

the overall similarity score.

This is our first prototype system that our tracking algorithms are extended to the

scenarios with non-overlapping views. The focus of this work is to build up a system for

successful real-time object tracking. A more sophisticated and more robust framework will

be introduced in Chapter 6 and Chapter 7.

5.2 Object Tracking across Non-overlapping Cameras

Firstly, like the previously proposed wireless embedded camera system, every camera in the

system performs the background subtraction, blob forming and tracking individually, and

inherits the same algorithms as described in Chapter 2. As there are no other cameras share

the view, each camera has to resolve the occlusion problem by it own. This will be discussed

in the more sophisticated framework presented in Chapter 7. Here, the only problem that

needs to be solved is the consistent labeling. Since it is difficult to retrieve the geometric

relation between the cameras, we have to find other cues to re-identify the objects. This

problem is also referred to as Object Re-identification problem.
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We combine similarities of multiple features to match objects across non-overlapping

views. These features are side of entry, color histogram, height, moving direction, speed and

travel time. The system is first trained to learn several parameters which are listed below:

Camera Configuration : The IDs of a camera’s right and left neighbors should be known

beforehand, or are learned during training. These IDs are saved in two separate lists for the

right and left sides.

Object’s height ratio in two cameras : An average ratio, RH , for the objects’ heights

at the entry locations of two different camera views is learned in the training stage.

Ratio of travel times : In the training stage, the amount of time it takes for an object

to go through the first camera’s view and through the blind region is measured and saved

as variables TC and TB, respectively. Then the ratio RT is calculated by RT = TB/TC . The

average for RT is found for different objects.

Threshold for similarity : We combine multiple features by calculating a weighted sum

of the similarity score of each feature. A proper threshold for the overall similarity is learned

during training stage.

In Section 5.2.1, we explain how we use each evidence to match objects during testing;

we describe the work flow of a camera, and explain the communication between cameras in

details in Section 5.2.2.

5.2.1 Weighted Matching Criteria

Figure 5.1 shows an example of the work flow of a camera in the testing stage. As can

be seen, this camera sends object’s height, color histogram, speed/travel times at different

points in time. The next camera receives these data and saves them in a structure as a

candidate, with the label of this object.

When a new tracker is created in the next camera, it tries to find a match among the

N received candidates. Each candidate, i ∈ {1 . . . N}, has K different features that are
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Figure 5.1: The work flow of object matching in one camera

described below. For each feature, j ∈ {1 . . . K}, a similarity score sij is calculated and is

given a weight wj. To combine multiple features, an overall similarity score is calculated.

The best matching candidate object O is found by

O = argmax
i∈N

∑
i∈N,j∈K

(wjs
i
j) (5.1)

If the overall similarity score of the object O is greater than a pre-defined threshold, then

the candidate object O is matched to this tracker, and the tracker is assigned the label of O.

Entry location and moving direction From checking the side of an object’s entry and

its moving direction, a camera knows two types of information: 1) which camera view(s)

may this object come from and 2) which camera(s) could possibly see this object when it

leaves this camera’s view. By knowing the former, the current camera checks if it has already
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received any object’s information from the neighbor who may have been tracking this object

previously. By knowing the second type of information, the current camera will send the

feature data to another camera who will possibly track this object next. The entry side

information is for judging if this object needs to be matched to the received candidates from

the previous camera, or if the current camera should send any data to the next camera. It

doesn’t contribute to the overall similarity score.

Color histogram The similarity of color histograms of the newly detected object and of

the received candidates is calculated using (2.1). Since similarity between color histograms

is a main evidence for appearance similarity, it is given the highest weight among all the

criteria. The color histogram is built and transmitted to the next camera when the object is

in a good position in the view, such as with a better resolution or when it is not occluded.

For instance, if the object is in the merge state, the color histogram will not be transmitted

until the object gets out of the merge.

Height If h1 and h2 are the object’s heights in the first camera and second camera views,

respectively, and RH is the ratio learned in the training stage, the similarity sH between two

heights is calculated by:

sH = 1−
∣∣∣∣h2 − h1 ∗RH

h1 ∗RH

∣∣∣∣ (5.2)

Speed and travel time As shown in Figure 5.1, the current camera sends the object’s

speed v1 and also the travel time tc when this object leaves its FOV. The next camera records

the time it receives this speed/travel time packet as trcv. When this object enters the next

camera view, the time it is detected, tdet, is also recorded. Then the travel time of this object

in the blind region, tb, is calculated by tb = tdet − trcv. Then the similarity sT of the travel

time is computed by:

sT = 1−
∣∣∣∣ tb − tc ·RT

tc ·RT

∣∣∣∣ (5.3)

where RT is the ratio of the travel time in blind region to the travel time in the first camera
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learned during training. Then the similarity sV between speeds v1 and v2 is calculated by:

sV = 1−
∣∣∣∣v1 − v2

v1

∣∣∣∣ (5.4)

5.2.2 Communication and Work Flow between Cameras

Communication between camera nodes is implemented via TCP/IP. Communication is per-

formed in a separate thread in parallel and share memory with frame processing. Thus, even

though we transmit relatively larger data sets such as 3-D histograms, the transmission is

finished before the object arrives. It does not create latency for the real-time tracking. Every

camera node is given a unique ID and maintains two lists containing the IDs of its right and

left neighbors.

There are three types of packets for transferring color histogram, object height and

speed/travel time. For each type of packet, the packet header contains a synchronization

word, node ID, packet type, object label and the payload length. The payload, which may

be the color histogram, object height or speed/travel time, follows the packet header.

For matching objects across multi-camera views, each camera node needs to receive in-

formation from the previous camera as well as send information to the next camera. In other

words, a camera node acts as a sender and a receiver at the same time.

Figure 5.1 shows an example of the work flow that one camera performs in our real-time

system. In this example, the camera shown is the left one in a two-camera configuration,

i.e., this camera has no neighbors on its left, and has one right neighbor. If more cameras

are added to the system, the cameras in between just need to combine both the left camera’s

tasks and the right camera’s task in one camera.

As a Receiver When there is a new object detected on one side of the view, the
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camera will check if there is a neighbor camera on this side. If no, a new label is assigned

to the object immediately. If there is a neighbor on that side, this object will be assigned a

temporary label 0 and start pending for the matching process until nth frame. n is a small

number such as 5 or 10 depending on the frame rate. The reason for waiting n frames is to

be able to see the full shape of the object, and obtain a more accurate color histogram. If the

object is in the merge state, the camera will wait until merge is resolved. After performing

the matching process at the nth frame, if it finds a match in the received candidates, the

matched object’s label will be assigned. If no match is found, a new label will be assigned.

As a Sender When there is a new object detected on one side of the view, the camera

will check if there is a neighbor camera on the other side. If not, the camera sends nothing

about this object. If there is, this camera will first send the object’s height at the mth frame

after the object is detected. m is also a small integer such as 5. Then, the color histogram

of the object is sent when it arrives the center region of the frame. And as we stated in

Sec 5.2.1, the speed and travel time will be sent when the object leaves the view. These

different sets of data will be saved in an object structure in the receiving camera, and will

be used in the matching process.

5.3 Experimental Results

We performed different experiments with a setup consisting of two non-overlapping cameras.

The weights of color histogram, height, travel time and speed are 0.5, 0.2, 0.2 and 0.1,

respectively. The threshold of the overall similarity for object matching is 0.8. The height

of the object is sent at the 5th frame. The object matching is performed at frame n = 10.

Figure 5.2 shows an experiment during which two people enter from the left side of the

right camera at different times. The person with label 11 was being tracked by the left

camera, as seen in Figure 5.2 (a). The features of this person was sent to the right camera
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11

(a)

20

(b)

11

(c)

Figure 5.2: Two people enter the view of the right camera from the same side (a) Person 11
is being tracked by the left camera (b) another person enters the right camera’s view before
Person 11 does, and gets the label 20 (c) Person 11 enters the right camera’s view and is
assigned the correct label.

according to the flow chart shown in Figure 5.1. After person with label 11 leaves the FOV

of the left camera, another person enters the right cameras view before the person with label

11 does (Figure 5.2 (b)). Since new person enters at the left side and the right camera has

received some candidate data, this person goes through the matching process and cannot

be matched to the received candidate data. Thus, it is assigned a new label 20. Then,

the person who has left the first cameras view, enters the view of the right camera, and is

assigned the correct label 11.

Figure 5.3 shows an experiment during which two objects with similar appearance are

tracked by the left camera. Object with labels 11 and 12 are tracked as seen in Figure 5.3

(a-b) and (c-d). Thus, the right camera receives the data for two candidates before they

arrive. Later in Figure 5.3 (e) Object 11 enters the view of the right camera, and is assigned

a temporary label 0. Then, this object is matched to the correct candidate and is assigned

the correct label 11 as shown in Figure 5.3 (f).

Figure 5.4 shows another experiment during which two people enter the right camera

view from opposite sides. Person 11 is tracked in the left camera first, as seen in Figure5.4
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11

(a)

11

(b)

12

(c)

12

(d)

0

(e)

11

(f)

Figure 5.3: Two people tracked by the left camera and one tracked by the right camera
(a-b),(c-d) People with labels 11 and 12 are tracked by the left camera; (e) a person enters
the right camera view and is assigned a temporary label 0; (f) new person is assigned the
correct label 11.

(a-b). Then, as seen in Figure5.4 (c), a person enters the right cameras view from the right

side. Right camera checks the side of entry, and assigns it a new label 20 since there is no

neighbor camera on the right. Then, the person who has left the left cameras view , enters

the view of the right camera, and is assigned a temporary label 0 first. Two people merge

and stay merged from frame 5 to 7. At the 10th frame, after people split, matching process

is performed, and the person who left the other camera, is assigned the correct label 11.
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(a)

11

(b)

20

(c)

20

0

(d)

20 & 0

(e)

20

11

(f)

Figure 5.4: Two people enter at the opposite side of the right camera (a-b) Person 11 is being
tracked by the left camera; (c) another person enters the right cameras view at the right
side and is assigned label 20; (d) person 11 enters the right cameras view and is assigned a
temporary label 0; (e) person 20 and person 0 merge during frames 5 to 7; (f) after the split,
person 0 is assigned the correct label 11 by matching process.

5.4 Conclusions

We presented a distributed real-time system for tracking across non-overlapping camera

views. Each camera attaches to a PC, performs multi-object tracking, and exchanges data in

a P2P manner via TCP/IP. With the difficulty of recovering the geometric relations of object

correspondences, multiple features are employed and combined by a weighted sum of the

similarities. These features are side of entry, color histogram, height, moving direction, speed

and travel time. The system is first trained to learn several parameters including camera

placements, ratio of heights on different camera views, average traveling time information
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from one camera view to the other and a threshold for the overall similarity score. Real-time

experiments with a two-camera setup are performed.
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Chapter 6

A More Robust Algorithm for Object

Re-identification

We presented a distributed tracking system wherein each camera performs object tracking

individually and employs multiple features for object re-identification in a real-time manner

in last chapter. Although this system is a good step toward a real-time object tracking

system for non-overlapping views, the algorithm for object matching is not robust enough.

Just a few features are selected and combined by weights. The weights are determined

empirically and do not adapt to the environment changes.

In this chapter, a more robust algorithm is proposed for object matching. More features

are utilized to improve the robustness and modeled more accurately. The weights are learned

based on the reliability of the features, and updated adaptively over time.

When an object leaves a camera’s view, this camera creates and sends a message packet

containing the appearance features, exit time and the label of this object. Appearance

features, travel-time evidence and the matching procedure are described in detail below. A

scenario of wide-area vehicle tracking is presented as an example.
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6.1 Multi-feature Object Matching

6.1.1 Color Histogram

In last chapter, 3D RGB histogram was employed as the color descriptor. However, RGB

histogram is sensitive to illumination change as every channel contains the brightness in-

formation. On the contrary, HSV color space is more robust due to its separation of the

brightness from the chromaticity. In this chapter, we performed a comparison between RGB

and HSV color models, and elected 3D HSV histogram. Each bin in the histogram corre-

sponds to an (H,S,V) range. The comparison results are shown in Chapter 7.4.1.

Due to the light reflection and reliability of foreground segmentation, the color of the

foreground pixels on the edges of the objects is less reliable than that of the pixels near the

center. If an object’s bounding box is centered at y with the height h and the width w, the

foreground pixels near to the center are assigned higher weights in the color histogram [80].

The weight assigned to each foreground pixel is

ω(r) =

⎧⎪⎪⎨
⎪⎪⎩
1− r2 if r < 1

0 otherwise

where r = |x−y|/a, |x−y| is the distance between the pixel x and the center y of the bounding

box, and a =
√
h2 + w2/2 is the maximum distance from a point inside the bounding box

to the center. Then, the histogram of the object is computed by

p̂u(y) = K

m∑
u=1

ω(
|x− y|

a
) • δ(b(x)− u), u = 1, . . . ,m (6.1)

where m is the size of the histogram, δ is the Kronecker delta function, b(x) denotes the
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color histogram index of pixel x, and K is the normalization factor defined as

K =
1∑m

u=1 ω(
|x−y|

a
)

It is used to ensure that
m∑

u=1

p̂u(y) = 1

The similarity score sC between two histograms is calculated by (2.1).

6.1.2 Texture

Texture is an important characteristic for the analysis of image properties. A wide variety

of measures for discriminating textures have been proposed. In [84], Histogram of Oriented

Gradients (HOG) descriptor is proposed for human detection. The local object textures

are modeled by calculating the distribution of the local intensity gradients and the edge

directions. HOG is one of the best features for capturing edge and shape information. One

weakness of HOG is that image regions with different contents may lead to a similar gradient

histogram, due to the nature of the histogram. LBP is considered as a complementary feature

for HOG and has been combined with HOG for human detection [116, 87]. LBP is originally

proposed by Ojala et al. [106]. It is invariant to monotonic gray-level changes and can

be computed efficiently. For the human detection application, a sliding window method is

normally employed. But in our case, since a foreground blob is already formed for each

object, there is no need for searching the whole frame with sliding windows of different

sizes. Thus, computation of texture features is not a time-consuming task in our system.

The foreground blob is divided into a fixed number of cells to form the HOG and LBP

descriptors.

One factor that influences the texture descriptors is the different camera angles in different
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(a) The object (b) Foreground pixels (c) Rotated pixels

Figure 6.1: Example of the angle correction for texture descriptors.

views. To address this problem in vehicle tracking, we rotate the foreground pixels by the

angle of the lane before building the HOG and LBP descriptors. Figure 6.1 shows an example

of the angle correction. Figures 6.1 (a) and (b) show the color image of the object and

the segmented foreground pixels, respectively. The bounding box is also drawn along the

direction of the lane in Fig. 6.1 (b). If the angle between the lane and x-axis is denoted by

θ, the foreground image (Fig. 6.1 (b)) is warped by the rotation matrix

⎡
⎢⎣ cosθ −sinθ

sinθ cosθ

⎤
⎥⎦

Figure 6.1 (c) shows the rotated foreground pixels.

6.1.2.1 Histogram of Oriented Gradients

A foreground blob is divided into n cells. For each cell, an m-bin HOG is built as described

in [84]. Each bin in the HOG corresponds to an orientation spanning. The combination of n

HOGs forms the HOG descriptor, with the size of m ∗ n bins. An important step described

in [84] is the local normalization, which helps to reduce the impacts of the illumination

and contrast variations. The cells are grouped into blocks and block-based normalization is

performed.
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6.1.2.2 Local Binary Patterns

A Local Binary Pattern (LBP) operator is obtained by thresholding the neighborhood of

each pixel with the center pixel value and considering the result as a binary number [107].

An LBP is usually denoted by LBPP,R, where (P,R) indicates the pixel neighborhood with

P sampling points in a circle of radius R. The binary pattern is transformed into a decimal

number. Figure 6.2 illustrates an example of computing the binary pattern and its decimal

value.

120

108 98 236

115207

22 135 186

0 0 1

01

0 1 1

Threshold Binary: 10110100

Decimal: 180

-12 -22 116

-587

-98 15 66

Difference

Figure 6.2: An example of LBP operator.

To reduce the length of the feature vector and implement a simple rotation-invariant

descriptor, an extension to the original operator has been introduced called uniform patterns

[107]. A local binary pattern is called uniform if the binary pattern contains at most two

bitwise transitions from 0 to 1 or vice versa when the bit pattern is considered circular.

When computing the LBP histogram, each uniform pattern is assigned a separate bin and

all nonuniform patterns are put in a single bin. By using uniform patterns, the number of

bins of the LBP histogram is reduced to 59. As suggested in [107], the best performance is

achieved by the (8,1) neighborhood using uniform patterns.
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6.1.2.3 Texture Similarity

HOG and LBP are treated as two separate features for object matching. If two HOG

descriptors denoted as A and B, the cosine similarity of HOG, sH , is calculated by

sH = cos(θ) =
A× B

‖A‖‖B‖ (6.2)

The similarity score sL of the LBP descriptors is also calculated by (6.2).

6.1.3 Aspect Ratio and Size

The aspect ratio is a useful feature that can be used to differentiate the compact cars and

large-sized vehicles in a traffic application. If the aspect ratios of the two objects are a1 and

a2 respectively, the similarity score is calculated by

sA = 1−
∣∣∣∣a1 − a2

a1

∣∣∣∣ (6.3)

The object size is also used as an appearance feature. It is the number of pixels in

the detected foreground blob. The size of an object varies depending on its distance from

the camera. Figure 6.3 shows an example, where the cars coming from Camera 1 travel in

different lanes in the view of Camera 3. Let the sizes of the two objects be s1 and s2 in the

previous camera and current camera, respectively. Also, let fl denote the size ratio of the

objects, i.e. fl = s1/s2. fl will be different depending on the lane the vehicle is traveling in.

The closer the object is to the camera, the bigger s2 is, and thus the smaller fl is. The fl

for different lanes are learned during training. The similarity score is then calculated by

sS = 1−
∣∣∣∣s1 − s2 ∗ fl

s1

∣∣∣∣ (6.4)
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128

(a) Camera 1

135

(b) Camera 1

128

(c) Camera 3

135

(d) Camera 3

Figure 6.3: Example of the different size factors of the cars in different lanes.

6.1.4 Travel Times

In traffic flow, travel times of the cars across the blind regions are dependent on the traffic

conditions and traffic lights. The travel time of a car is the difference between the time the

car enters the current camera view and the time the car exits the previous camera view.

Based on the domain knowledge, either a single Gaussian model or a Gaussian Mixture

Model (GMM) can be employed. If some traffic conditions are present in the blind region,

such as intersections and traffic lights, a single distribution is not accurate to model the

travel times. Thus, a GMM becomes necessary.

The parameters of the GMM are estimated in the training stage by using an Expectation-

Maximization(EM) algorithm. These parameters are the number of Gaussians (K), the mean

μ and the variance σ2 for each Gaussian distribution. Given N different transition times tn

(n ∈ {1 . . . N}), the parameters of the jth distribution are calculated by two steps at (i+1)th

iteration until the convergence:

1. E step:

p(j | tn) =
ω
(i)
j P (tn | j;μ(i)

j , σ
(i)
j )∑K

k=1 ω
(i)
k p(tn | k;μ(i)

k , σ
(i)
k )

(6.5)

2. M step:

ω
(i+1)
j =

1

N

N∑
n=1

p(j | tn) (6.6)
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μ
(i+1)
j =

∑N
n=1 tnp(j | tn)∑N
n=1 p(j | tn)

(6.7)

(σ2
j )

(i+1) =

∑N
n=1(tn − μ

(i+1)
j )2p(j | tn)∑N

n=1 p(j | tn)
(6.8)

For calculating the similarity score of the travel times between a candidate and detected

object, the travel time t is obtained by

t = to,e − tc,l (6.9)

where to,e is the time the object enters the current camera view, and tc,l is the time the

candidate leaves the previous camera view. Similar to the clustering or classification problems

that adopt a GMM, a Gaussian distribution that yields the highest probability is selected as

the distribution that this time value belongs to. Considering the various factors that may

influence the travel time, a travel time that falls into the range of mean ± one standard

deviation does not get penalized, i.e. it will have a score of 1. Otherwise, the similarity score

of travel time is calculated by

sTT = e−
(x−μ)2

2σ2 /e−
(μ+σ−μ)2

2σ2 = e−
(x−μ)2−σ2

2σ2 (6.10)

where μ and σ are the mean and the standard deviation of the Gaussian distribution

component that this object belongs to.

If the domain knowledge in the blind region is simple, i.e. there are no intersections or

traffic lights in the blind region, and vehicles move continuously, a single Gaussian distribu-

tion is adopted. The similarity of the travel time is also evaluated by (6.10).
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6.1.5 Weighted Matching Criteria

When a new object o enters into the view of the current camera from side S, we first check

if there are candidate packages sent by the neighboring camera(s) on side S. If there are,

the current camera tries to find a match among the C received candidates. Each candidate,

c ∈ {1 . . . C}, has different features that are described above, namely color histogram (CH),

HOG (H), LBP (L), aspect ratio (A), size (S) and travel time (TT). For each feature j ∈
F = {CH,H,L,A, S, TT}, a similarity score Sj(c, o) is calculated and is given a weight wj.

To combine multiple features, an overall similarity score is calculated. The best matching

candidate Ô(o) for object o is found by

Ô(o) = arg max
c∈{1...C}

∑
c∈{1...C},j∈F

wjSj(c, o) (6.11)

If the overall similarity score of the candidate Ô(o) is greater than a pre-defined threshold,

then the candidate Ô(o) is matched to this tracker, and the tracker is assigned the label of

Ô(o). Otherwise, a new label is assigned to this tracker.

With this method, not only object association problem can be addressed, but also new

objects are differentiated from the already observed ones.

6.2 Adaptive Parameter Updating

6.2.1 Online Updating of Travel Time Models Using Confidence

Score

For traffic scenarios, the travel times may change during different times of the day. The

Gaussian models of travel time need to be updated adaptively with changing traffic condi-

tions. If a GMM is employed and trained during the training stage, the mean and variance
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of each Gaussian are updated online by using the travel time of the matched object. Con-

sidering the existence of false positives, the matched object with a higher similarity score,

which indicates higher confidence in matching, should have more impact on the travel time

model; or vice versa. The mean and variance are updated by

μnew = (1− λ)μold + λtmatch (6.12)

σ2
new = (1− λ)σ2

old + λ(tmatch − μnew)
2 (6.13)

where tmatch is the travel time of the matched object; λ is the update parameter in the

range of [0, 1], which is defined as λ = α · S. α is a constant update factor which is a small

number such as 0.05. S is the confidence factor, which is equal to the overall similarity of a

matched pair. Thus, the matched objects with high similarity scores contribute more to the

parameter updating.

6.2.2 Adaptive Weight Estimation

There are many different cues that could be used for object re-identification. An individual

similarity for each cue can be evaluated, and then these similarities need to be combined for

a final evaluation. Weighted sum is a simple but effective way to achieve the information

integration. The problem is how to assign the weight to each cue. It is intuitive that a more

reliable cue should be assigned a higher weight. Observers or algorithms must evaluate the

degree of reliability of each cue and assign higher weights to the more reliable cues. The

reliability is normally context sensitive and changes with the environment [90]. There have

been some work to explore evaluating the reliability of the cues and combine them in a self-

organized manner. [113] proposed a method to integrate five visual cues for face detection.

In their work, each feature generates a two-dimensional salient map by comparing with a

prototype that describes the appearance of the face. Then, different features are combined
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by a method called Democratic Integration. We apply a similar method in our system to

evaluate the weights of the multiple features, and extend this method to an online adaptive

weight estimation, which suits the real-time systems.

To find a match among the received candidates for an incoming object, an overall simi-

larity score is calculated between the object and each candidate. The overall similarity score

is the weighted sum of various features, and we evaluate the reliability of each feature as

follows: if the similarity of a feature is in accordance with the result of the overall similarity

score, this feature is considered as reliable. For a correctly matched pair of an object and

the candidate, the higher the similarity of a single feature, the more reliable that feature

is. On the contrary, if the similarity of a feature is low enough, it is considered having zero

reliability. To compute the reliability quantitatively, the quality of a feature is introduced.

The similarity score of a feature for the best matched candidate is compared with the av-

erage score of this feature over all candidates. The higher the score (as compared to the

average), the more it contributes to the running evaluation of the reliability of this feature.

The quality of this feature is the difference between the similarity score and the average.

On the other hand, if the similarity score is lower than the average, the quality is set to

zero. The quality of each feature is calculated in this way, and then normalized over all the

features. The reliability of a feature is the running average of the quality of this feature.

Since the qualities are normalized, the reliability scores will add up to 1. The formulation

of the method is described below.

For Object o, given C candidates, a similarity score Sj(c, o) is calculated for each feature

j ∈ F = {CH,H,L,A, S, TT} of each candidate c ∈ {1 . . . C}. From the descriptions in

Section 6.1, we know that 0 ≤ Sj(c, o) ≤ 1. The overall similarity result of each object-

candidate pair is

R(c, o) =
∑
j∈F

rjSj(c, o) (6.14)



102

where rj is introduced as the reliability of the jth feature, with
∑

j rj = 1. Then the best

match for Object o is found by

Ô(o) = arg max
c∈{1...C}

{R(c, o)} (6.15)

When (6.11) is compared with (6.14) and (6.15), we can see that the weight wj assigned to

each feature is the reliability rj of that feature.

To estimate rj, the quality q̃j(o) is introduced, and 0 ≤ q̃j(o) ≤ 1. The quality q̃j(o)

measures how successful the feature predicts the result or how much it agrees with it. It is

calculated by

q̃j(o) = R(Sj(Ô(o), o)− < Sj(c, o) >)) (6.16)

where < . . . > denotes an average over all candidate similarity scores for Object o; R is the

ramp function:

R(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x ≤ 0

x if x > 0

In (6.16), the similarity score of each feature for the best matched candidate is compared to

the average score of this feature over all candidates. If the score of this feature is greater

than the average, the quality is the distance to that average; otherwise the quality is zero.

Normalized qualities qj(o) are computed by

qj(o) =
q̃j(o)∑
k∈F q̃k(o)

(6.17)

This definition ensures that ∑
j∈F

qj(o) = 1 (6.18)

Then the reliability rj computes a running average of qj(o). Due to the normalization of



103

qj(o), rj is also normalized. The sum of reliabilities over all features will be 1. Thus, the

reliabilities can be used as weights. A feature with a normalized quality higher than its

current reliability will tend to increase its reliability, and a feature with a normalized quality

lower than its current reliability will have its reliability lowered [113].

An initial set of rj can be estimated beforehand. With the system running, the environ-

ment conditions may change over time. For example, the light conditions may be different

during different times of the day. Then the reliability of color information might change.

When the color shift between two cameras is larger, a lower weight should be assigned. To

adapt to the changes in the environment, an online weight updating is applied. Since rj

is the running average of qj(o) over all object o, it is easily updated by incorporating the

results of newly matched objects. However, to reduce the impact of the false positives that

may corrupt the reliability of features, only the matched objects with the overall similarities

higher than a threshold are used to update the reliability scores.

6.3 Conclusions

Compared to the object re-identification method that is used in Chapter 5, a more robust

algorithm combining multiple features with adaptive weights is proposed. These features

include 3D color histograms, HOG and LBP descriptors, object sizes, aspect ratios and travel

times. The travel times can be modeled by the GMM or a single Gaussian model depending

on the domain knowledge in the blind region. The parameters of GMM are trained using

the EM algorithm in the training stage and updated online taking the confidence score of

the matched objects into account. The weight of each feature is estimated based on the

reliability of each feature and also trained in the training stage. Like the parameters of the

Gaussian models, the weights are also updated after every newly matched object is found,

which makes this system adaptive to environment changes.
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Chapter 7

A Petri Net-based Framework for

Tracking and Object Matching

7.1 Introduction

In last chapter, we employ multiple features and update their parameters adaptively to

improve the robustness of the tracking results. But we didn’t consider that some information

of the environment and the system setup may be helpful to simplify the matching process

and improve the robustness further more. For example, if we know the camera topology

and the map of the roads beforehand, we can exclude some candidates that are not possible

appearing in a certain direction. Or, if we know there are intersections or traffic lights in the

blind region, we can decide to use GMM over a single Gaussian to improve the accuracy of

the travel time model.

We name this type of information Domain Knowledge. Domain knowledge includes the

configuration of the cameras in the network, possible entrances/exits in or out of the cam-

era views, occluding structures, e.g. columns in the scene, useful traffic rules, reasonable

assumptions based on the environment conditions, etc.
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There are several benefits of involving the domain knowledge. First of all, our system

is capable of processing more complicated object tracking or event detection tasks. As

aforementioned, the related work has focused on object tracking and object matching across

disjoint camera views. Most of them only address the problem of object re-identification or

association, i.e. the objects observed in the current/downstream camera must have already

been seen/detected in the previous/upstream camera(s). Their algorithms and experiments

only focus on finding the object correspondences in adjacent cameras. In other words, new

objects coming from blind regions or observed objects disaappearing/leaving in the blind

regions are not considered, except in the work by Huang and Russell [89]. In the related

work that only solves the object association problem, they implicitly assume a simple domain

knowledge, which is that there is only a small gap between two adjacent cameras and no

entrances or exits exist in this gap. In our system, we consider more complicated scenarios

that involve entrances/exits and intersections in the blind regions. In these cases, the objects

that are detected in the downstream camera may be new objects coming from the blind region

(i.e. they do not exist in the candidate lists received from the upstream camera(s)), and/or

some of the objects in the candidate list will never show up in the downstream camera view.

These scenarios make our application even more challenging and realistic.

In this chapter, we propose a distributed camera system for object tracking across non-

overlapping views. Considering the uncertainties caused by vision algorithms, a probabilistic

result is preferred to a deterministic one. To incorporate the uncertainties of each stage

(foreground detection, tracking and object matching) in a proper way, we employ a pPN.

In our system, every camera performs multi-object tracking individually and then object

matching is performed if candidate data are received from the previous camera(s). The

tracking process within a single camera and object matching across adjacent cameras are

modeled by the pPN and a score of each object’s tracking and matching result is yielded as

the output of the pPN. In our example three-camera setup, vehicles travel from Camera 1
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and 2 to Camera 3. Camera 3 maintains a pPN, which includes the transitions from other

cameras or entrances from the blind region into Camera 3. Similarly, if there are more

cameras in the network, each camera that has upstream adjacent cameras needs to maintain

a pPN, which includes the possible transitions from the previous cameras to the current

camera.

Another advantage of employing the pPN is that the domain knowledge can be efficiently

incorporated into the algorithm. When a rich set of domain knowledge is available, the pPN

also helps to implement and control the work flow.

The proposed approach can be generalized to various surveillance applications involving

disjoint camera views, such as indoor human tracking or outdoor human/vehicle tracking. In

this chapter, we first present the wide-area tracking of vehicles as an example. This example

shows how we fuse multiple features, train the parameters, and handle blind regions and

“never-seen-before” objects. Then, a similar approach together with a different set of domain

knowledge is employed for tracking people in another example with a disjoint camera setup.

This example is more challenging, because unlike vehicles moving in certain lanes in fixed

directions, peoples routes are more diverse. In the traffic scenario, the upstream camera

assumes that a car will not reappear after leaving the camera view. On the other hand, a

person can always come back to the view. For such cases, we need to save object trackers

in a list for a certain amount of time after objects leave the view. These different examples

and results illustrate how our framework can be applied to different scenarios with different

domain knowledge. We also present the pPN for each scenario, where the domain knowledge

is incorporated in the work flow.

In the rest of this chapter, we first briefly review the definitions of Petri Net(PN) and

probabilistic Petri Net(pPN). Then our pPN-based framework is explained using an example

of wide-area vehicle tracking. Another people tracking example is also presented which

employs a different set of domain knowledge and shows how the occlusion can be handled by
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the pPN. Experiments and comparisons with related work are performed. The results show

that our system is not only able to track objects across disjoint cameras with high accuracy,

and also distinguish the new objects from the already observed objects successfully. At last,

a discussion about the scalability and information about how to collect domain knowledge

is presented.

7.2 Petri Nets

7.2.1 Definition of Petri Nets

A Petri Net (PN) is a graphic tool used for modeling the relations between the conditions and

events in dynamic systems. As a graphic tool, Petri Nets can help to visualize the complex

processes or systems similar to flow charts, block diagrams, and networks. In addition,

It can also simulate the dynamic and concurrent activities of systems [85, 103]. Petri Nets

have been widely used for years in many areas, such as manufacturing system modeling [101],

production scheduling [105], sequence control [110], power system design [97], communication

protocol modeling and analysis[114, 115], and software development[99], etc.

A Petri Net is a particular type of directed bipartite graph composed of places, transitions

and directed arcs. Places are illustrated as circles and transitions as bars or boxes, as shown

in Figure 7.1. The places and transitions are connected by arcs, where input arcs are from a

place to a transition and output arcs are from a transition to a place. Figure 7.1 (a) consists

of 6 places and 4 transitions. Each transition has input places and output places. For

instance, t1 has p1 as its input place, and p2 and p3 are its output places. A Petri Net may

contain self-loops where the input place and output place of a transition are the same. For

instance, in Figure 7.1 (b), the input place and output place of t5 are both p4. In modeling

a system with conditions and events, transitions can be considered as events. Input places
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Figure 7.1: Examples of Petri Nets

and output places can represent the preconditions and postconditions of events [103].

The places may contain none or a positive number of tokens. The tokens are represented

by black dots, as in the place p1 in Figure 7.1 (a). At any given time instance, the distribution

of tokens in places is called the Petri Net marking. For a Petri Net withm places, the marking

is represented by a m× 1 vector M . The elements of M , denoted as M(p), are nonnegative

integers indicating the number of tokens in place p, where p ∈ {1, . . . ,m}. A Petri Net

containing tokens is called a marked Petri net. For instance, the marking of the Petri Net

in Figure 7.1 (a) is (1, 0, 0, 0, 0, 0)T . Figure 7.1 (b) shows another Petri Net with a marking

(2, 0, 1, 0, 2, 0, 1)T . A Petri Net is formally defined in Table 7.1 [117].
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Table 7.1: Definition of a Petri Net

PN = (P, T, I, O,M0), where

1. P = {p1, p2, . . . , pm} is a finite set of places;

2. T = {t1, t2, . . . , tn} is a finite set of transitions, P ∪ T 
= ∅, and P ∩ T = ∅;
3. I : (P × T ) → N is an input function which defines directed arcs from places

to transitions, where N is a set of nonnegative integers;

4. O : (P × T ) → N is an output function that defines directed arcs

from transitions to places;

5. M0 : P → N is the initial marking.

Transitions are active components. If there are enough tokens in the input places, the

transitions are enabled. Transitions are only allowed to fire if they are enabled. When a

transition is enabled and the condition associated to this transition is satisfied, it fires.

When the transition fires, it moves tokens from its input places to its output places, which

may reflect the occurrence of events or execution of operations in a dynamic system.

7.2.2 Probabilistic Petri Nets

There have been various extensions of the Petri nets such as Colored PNs, Continuous PNs,

Stochastic timed PNs and Fuzzy PNs. Albanese et al. [74] proposed the probabilistic Petri

Net for modeling the uncertainty and inaccuracies in a visual surveillance system. Compared

to the original PNs, a probability is attached to every arc pointing from a place to a transition

in the pPN. A token is assigned the probability 1 at the initial place. When it moves to

the next place, the probability is multiplied by the probability attached to the arc. After

moving through the whole PN from the initial place to the end place, the final probability

is the product of the probabilities attached to the arcs through which the token has passed.

Figure 7.2 is an example of a pPN modeling the car pickup activity in the parking lot

that is presented in [74]. There are 8 places p0, . . . , p7 and 6 transitions t0, . . . , t5, where p0
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Figure 7.2: A probabilistic Petri Net for car pickup activity [74]

is the start node and p7 is the end node. Transition t0 is unconstrained. Whenever there

is a token in p0, t0 is fired immediately and place a token in both p1 and p2. The detected

objects are considered as tokens in this pPN. When a car enters the scene, t1 is fired and

the token is moved to p3. Then the t3 is enabled but it will not be fired until the attached

condition is satisfied — car stops. When “car stops” is detected, the token is moved to p5;

and when the car leaves the parking lot, t5 is fired and the token is moved to the end node

p7. Similarly, if the detected object is a person, it will be place in p4 and go down the other

path in the pPN.
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In Figure 7.2, there are also 6 unnumbered transitions called skip transitions. The skip

transitions are used to model the away deviations from the base activity pattern. Each

deviation is penalized by a low probability, which controls how tolerant the model is to

deviations from the base activity pattern.

A pPN is useful to model the activities of the interested objects/events in a visual

surveillance system. It helps to handle the complexity of multi-objects performing activ-

ities concurrently. With the attached probabilities and skip transitions, the uncertainties

and inaccuracies of the system are taken into account.

7.3 A Petri Net-based Framework for Tracking and

Object Matching

We adopt a pPN-based approach to perform object tracking and consistent labeling on a

camera. Figure 7.3 shows the graphical model of the steps employed by camera 3 in a

three-camera setup. The camera configuration can be seen on the upper left-hand corner

of the Figure 7.3. In this model, the uncertainties and inaccuracies could be created by

the background subtraction, the tracking algorithm or the object matching process, and are

modeled by probabilities pb, pt, and pm, respectively. The Tracking Box and the Matching

Box represent the processes of intra-camera tracking and inter-camera object matching,

respectively. The intra-camera tracking algorithm is inherited from Chapter 2; and the

inter-camera object matching approach is described in Chapter 6.

In Figure 7.3, an arc with no probability on it means that its probability is assumed to

be 1. In order not to confuse the places with the parameter probability p, we use l to denote

the places instead.

Once a new object is detected, it will be put in the START place l0. Then, it immediately
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moves into l1, since there is no condition attached to t0. From l1 to t1, a probability pb is

attached to the arc to model the reliability of the background subtraction. This probability

is learned during training. Then, the object is moved into the Tracking Box, where a tracker

for this object is created and updated every frame until it leaves the camera’s view. If

the object enters the view from side S and there are received packets from the neighboring

camera(s) on this side, this object will be assigned a temporary label first, and moved into

the Matching Box in an attempt to find a match from the received candidates which had

left the view of the neighboring camera(s). A probability pm will be attached to the token

as the output of the Matching Box. pm is the weighted overall similarity score if there is a

matched candidate found. If no candidate package has been received from other camera(s),

a new label will be assigned.

The tracking process is performed every frame and the probability pt indicating the track-

ing confidence is updated every frame until the object leaves the camera’s view. pt accounts

for the errors that may be caused by segmented objects and unresolved merges/splits, and

is the product of the average similarity coefficient and a confidence measure. The confidence

measure is based on the length of the trajectory. It is the ratio between the current trajec-

tory length and the length of the road in the view. When the object leaves the view, the

confidence measure of the trajectory length approaches 1.

Thus, for an object tracked by the system, the final probability of the tracking is:

p = pb · pm · pt (7.1)

The topology of the camera setup is shown on the upper left-hand corner of Figure 7.3.

Example images captured by these three cameras can be seen in Figure 7.4. Camera 3 is

watching a one-way road. When a vehicle enters into the view of Camera 3, it may have

come from the view of Camera 1, view of Camera 2, or from regions that are not watched
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by any cameras. In the latter case, camera 3 needs to detect this correctly, and assign a new

label to the vehicle. Thus, some of the domain knowledge is also incorporated in the pPN

implicitly.

7.4 Vehicle Tracking Experiments

We performed the wide-area vehicle tracking experiments with three disjoint cameras having

the configuration shown in Figure 7.3. We used 1 hours of video data for training, and

another 15 minutes of video data from three cameras for testing. Figure 7.4 shows the views

of the three cameras. In Camera 1 and Camera 2, the viewed roads are two-way, but only

the direction in which a car can travel towards Camera 3 was considered. Camera 3, on

the other hand, watches a one-way road. The cars entering into the view of Camera 3 may

come from Camera 1, Camera 2 or other blind regions that are not watched by any other

camera. The distance between Camera 1 and Camera 3 is approximately 150 meters, with

two intersections in the blind region. One of the intersections, which is close to Camera

2, has traffic lights. Due to these intersections, the travel times in the blind region vary

significantly. The distance between Camera 2 and Camera 3 is approximately 20 meters.

The cars that wait for the green light can still be seen in Camera 2’s view. Thus, this

intersection does not impact the travel time between Camera 2 and Camera 3 .

7.4.1 Comparison of RGB and HSV Color Model

To better address the color shifts and light changes between different camera views, we

have performed several experiments to compare the RGB and HSV color models. We can

generally divide the colors of vehicles into three major categories: light colors, such as white,

gray, gold; bright colors, such as red, yellow, blue; and darker colors - such as black and dark

blue.
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(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 7.4: Views of the three cameras.

In our experiments, we have used two different cameras (Camera 1 and Camera 3) to

compare RGB and HSV histogram for different color categories. As seen in Figure 7.5 and

Figure 7.6, Camera 3 has a noticeably darker view than Camera 1 does. Figure 7.5 shows

an example scenario for lighter-colored cars. A white car is first seen by Camera 1 (Figure

7.5 (a)), and is compared with two gray cars (Figure 7.5 (b) and (c)) and itself (Figure

7.5 (d)) seen by Camera 3. Lighter colors are easily influenced by the light condition or

the white balance settings. For this scenario, the similarity scores obtained by using 3D

RGB histogram are 0.6601, 0.6834 and 0.6487 for cars (b), (c) and (d) respectively. On the

other hand, when HSV histogram is used, the scores are 0.5324, 0.5117, 0.5784, respectively.

In summary, the gray cars wrongly received higher scores than the white car when RGB

histogram is used.

Figure 7.6 show another scenario involving red cars. In this case, using RGB histograms

results in similarity scores of 0.5293,0.4393 and 0.8282, respectively, while employing HSV

histograms gives scores of 0.5085, 0.3941 and 0.8356. HSV histograms perform relatively

better by resulting in higher score for the same car, and lower scores for the different cars as

compared to the RGB histograms.

We have adopted HSV histograms in this work.
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(a) Camera 1 (b) Camera 3 (c) Camera 3 (d) Camera 3

Figure 7.5: A scenario involving white and light gray cars.

(a) Camera 3 (b) Camera 1 (c) Camera 1 (d) Camera 1

Figure 7.6: A scenario involving cars with red colors.

7.4.2 Training Stage

7.4.2.1 Domain Knowledge

The first type of domain knowledge that should be learned during training is the camera

configuration. In Camera 1’s view, as shown in Figure 7.4 (a), there are two lanes, and the

view is close to an intersection. Based on the traffic rules, normally the cars that will turn

left/right will move to the left/right lane. Thus, by detecting lanes, the cars on the right

lane can be removed from the candidate list to be sent out.

Since there are two intersections in the blind region and one of them has the traffic lights,

there are more than one possible distributions to represent the travel times. Thus, a GMM

is built to model the travel times of the cars traveling from Camera 1’s view to Camera 3’s

view. In our experiments, a GMM with three mixtures is trained. The means, variations

and weights for each Gaussian distribution are (22.83, 24.30, 0.464), (39.37, 53.26, 0.427) and
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Figure 7.7: Gaussian Mixture Model of the travel time between Camera 1 and Camera 3.

(60.36, 123.92, 0.109), respectively. The plot of the GMM is shown in Fig. 7.7.

Camera 2 watches only one lane. The cars on the lane may turn left or right. Since the

cars are still in the view when they wait for the green light, there is no need to build a GMM

for the travel times. Thus, a single Gaussian distribution is used to model the travel time.

Also, the angles of the lanes with respect to the x axis are learned in the training stage.

This is used for correcting the texture descriptors.

7.4.2.2 Uncertainty

The reliability of background subtraction, pb, is 0.997. pt and pm are calculated in the

tracking box and the matching box for each object during the testing stage.

7.4.2.3 Weights of Features

The weights of the features are trained using the method described in Section 6.2.2 during

the training stage. The results are shown in Figure 7.8.
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Figure 7.8: Results of weight training.

7.4.3 Testing Stage

In the testing stage, the weights for the color, HOG, LBP, travel time, size and aspect ratio

are set to be 0.2079, 0.0435, 0.0993, 0.3456, 0.2283 and 0.0755 respectively. The threshold

for the overall similarity score is 0.77. In Camera 1, the cars leaving the view from the right

lane are not sent out as candidates to Camera 3. There are 34 candidate vehicles detected

and sent out by Camera 1. In Camera 2, 18 candidate vehicles are detected and sent out.

Camera 3 detects 55 cars entering its view from left. Among these 55 cars, 47 of them are

assigned correct labels after the matching process, and a success rate of 85.45% is achieved.

Our algorithms run on a PC with a 2.13-GHz Intel Core Duo processor and 4GB memory.

It takes 31ms to perform background subtraction; and 16 ∼ 32ms for tracking algorithm,

including feature extraction and object matching.

Figure 7.9 shows an example where three cars enter the view of Camera 3 consecutively.



119

111 112

(a) Camera 1

202

(b) Camera 2

303

(c) Camera 3

112

303

(d) Camera 3

202

(e) Camera 3

Figure 7.9: Example of matched cars.
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Figure 7.10: Example of handling new and left cars.
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Figure 7.11: Example of matched cars with similar features.

Object 112 came from Camera 1, Object 202 came from Camera 2 and Object 303 came from

the blind region (i.e. received a new label). They are all assigned correct labels. When the red

car entered the view of Camera 3 as seen in Figure 7.9 (c), there were two candidates received

from Camera 1 and one candidate from Camera 2. After going through the matching box,

the maximum matching score was smaller than the matching threshold 0.77. Thus, this car

is assigned a new label 303. In Figure 7.9 (d), a white car enters the scene. There were four

received candidate packages in total, three from Camera 1 and one from Camera 2. After

the matching process, the candidate with the label 112 has the maximum matching score of

0.8218, and the white car is assigned the correct label 112. The third car in Figure 7.9 (e)

were compared with the same four candidates. The candidate with the label 202 resulted in

the highest matching score of 0.8742, and the car was given the correct label of 202.

Figure 7.10 shows a scenario that involvs all of the following three cases: i) newly seen

cars (i.e. cars that were not seen by any other cameras before); ii) reentering cars (i.e. cars
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leaving the previous cameras’s view and entering the current camera’s view); iii) disappearing

cars (i.e. cars leaving the previous camera’s view, and leaving the scene in the blind region.

These cars are put in the candidate list, but they never enter the current camera’s view).

In this example scenario, there are three consecutive cars (Objects 132, 133 and 134 leaving

the view of Camera 1. Object 132 enters the view of Camera 3 first and is correctly labeled

(Figure 7.10 (d)). Then, three new cars 340, 341 and 342 enter the view of Camera 3 and

are correctly assigned new labels (Figure 7.10 (e), (f) and (g)). Then, Object 134 arrives

and consistently labeled (Figure 7.10 (h)). Object 133 that left the view of Camera 1 just

leaves the scene and does not appear again in the view of Camera 3.

Figure 7.11 shows a more challenging example where three consecutive cars with the same

color and similar texture enter the view of camera 3. The cars are matched to the correct

candidates with matching scores of 0.8299, 0.8507 and 0.8144, respectively. The matching

process performs well even if the objects have similar appearances.

7.4.4 Comparison with Other Work

As stated in Chapter 1.2.1, Huang and Russell’s work [89] is one of the most cited publi-

cations of object identification/tracking across non-overlapping views; and also one of the

few systems that take the new or left objects into account, not just simple association of

already seen objects. Due to the similar application of traffic scenarios and use of multiple

features, we present a comparison of our method with their approach. However, one thing

to note is that, in [89], they only used two cameras (downstream and upstream), allowing

possible exits or entrances, which is a simpler scenario than ours. We performed three sets

of experiments to compare the performances of the two systems.
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1) Object Association with 2 Cameras

This is the simplest scenario that involvs only 2 cameras (Camera 1 and Camera 3). In this

scenario, new objects in Camera 3 and disappearing objects from Camera 1 are manually

removed; i.e. the only remaining vehicles are the ones that leave Camera 1, and enter the view

of Camera 3. In this experiment, Huang and Russell’s algorithm achieved 100% recognition

rate and our approach resulted in 93.33% accuracy. The advantage of their algorithm is that

they use a group matching method instead of a one-by-one method. An association matrix

is employed to find the best assignment of a small group of vehicles that are close to each

other. Thus, a vehicle may not be assigned to the candidate that yields the highest score,

but the final assignments yield the high group score.

2) Object Association with 3 Cameras

In this experiment, we used three cameras instead of two. Similar to the above scenario, the

new and disappearing objects are still not involved, i.e. the vehicles detected in Camera 3

come from either Camera 1 or Camera 2. The algorithm in [89] achieved 70% recognition

rate and our method achieved 86.05% accuracy. The algorithm in [89] assumes that the blind

region does not involve intersections or other complicated traffic environments. Thus only a

single univariate Gaussian distribution is used to model the travel time between the upstream

and downstream cameras, which results in a decrease in the accuracy. On the other hand, we

employ GMMs to model the travel time, which is capable of handling different travel time

ranges caused by different traffic conditions. By taking the domain knowledge into account,

and employing the algorithms accordingly, our system can handle more complicated and

varying scenarios.
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3) Object Identification with 3 Cameras

In the last set of comparison experiments, our 3-camera scenarios involving new, reentering

and disappearing vehicles are tested. To address this problem, the algorithm in [89] adds ad-

ditional elements into the association matrix to account for the new and diappearing objects,

but requires a complicated training process. The prior probabilities of the disappearing and

new vehicles are added to the association matrix. Since their algorithm is based on group

matching of multiple cars, if an old car leaves and a new car enters, their appearance proba-

bilities are replaced by the prior probabilities, and then the association matrix is discounted.

Inherently, the group matching method will not handle the new/diappearing vehicle scenario

very well. In this pair of tests, the performance of their algorithm dropped significantly to

23.85% and our accuracy rate was 85.45%. This result is somewhat consistent with what

is claimed in the experimental results presented in [89], which is 100% accuracy with 14%

coverage, and 50% accuracy with 80% coverage.

From above groups of experiments, we can see that our system achieves a consistent

accuracy rate with increasing complexity of scenarios, thanks to use of domain knowledge

and the reliable fusion of multi-features.

7.5 People Tracking Experiment Incorporating New

Domain Knowledge

To illustrate the generalization of our proposed work to other scenarios, we tested it on the

3DPes dataset [75]. There are three cameras used in this dataset, and the camera setup is

shown in the upper left corner of Figure 7.12. The views of three cameras are covering three

different directions. Any object that comes from one of the directions may go to any of the

other two directions. Each of these three cameras will keep a pPN to involve the domain
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knowledge. Figure 7.12 shows the pPN that is kept by Camera 1. Since the three cameras

have similar domain knowledge, the other two pPNs will be similar.

S1

S1

S2

S3

S4

S5

(a) Camera 1

S1

S2

S4

S3

(b) Camera 2

S1

S4

S5 S3

S6 S2

(c) Camera 3

Figure 7.13: Views of the three cameras.

In this experiment, there are different kinds of domain knowledge compared to the above

traffic scenario. First of all, people may enter the view from any side of the view, while

vehicles always enter from a certain side of the view above. The domain knowledge that

can be utilized here is that not every person from every side needs to be compared with

the received candidates. When we know that there are no previous cameras from a specific

direction, we can assign new labels to those people. Another difference between the people

tracking and the vehicle tracking scenarios is that unlike vehicles moving in certain lanes

in fixed directions, people’s routes are more diverse. In the traffic scenario, the upstream

camera assumes that a car will not reappear after leaving the camera view. On the other

hand, a person can always come back to the view. There are two different cases in which

a person reenters the camera’s view: (i) a person leaves the current camera view, changes

his/her mind in the blind region and reenters the current view.For such cases, we need to

save object features in a list for a certain amount of time after objects leave the view. We

call this list saved object list ; (ii) a person leaves the current view, enters the next camera’s

view and comes back to the current view again. In this case, the label will be handed off

from the current camera to the next, and then handed back to the current camera again.
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Figure 7.13 shows example frames from three cameras. The notations used for the image

sides are also marked on each view, where S1 denotes the side where never-seen-before

objects enter. These are the objects that none of the three cameras has tracked previously.

Red rectangles mark the regions where never-seen-before objects come in the scene. Any

new objects detected in the red rectangles are considered as entering from side S1. Due to

the possibility of a person coming back to the view after leaving from side S1, that person’s

features are saved in a separate list, which is denoted by List-1 in Figure 7.12. When a new

object is detected in a red rectangle, it will be compared with the objects saved in List-1

first. If no match is found, the object will be assigned a new label. The objects saved in

List-1 will be removed after a certain amount of time. On the other hand, if an object

is detected near the sides other than S1, this object needs to be compared with received

candidates as well as the saved objects in List-2, which contains the objects that left from

other sides. Figure 7.12 shows the pPN that incorporates the new domain knowledge.

Another new and important domain knowledge shown in Figure 7.12 is the information

about the obstacles in the camera views. This kind of knowledge only involves a single

camera. The location of the obstacles could be learned beforehand. Obstacles are referred to

as the fixed structures in the background that occlude moving objects. If one moving object

is occluded by another moving object, this is referred to as the merge/split case, which is

handled by the algorithm described in Chapter 2. As stated in Chapter 2.4, when an object

is not occluded, we check if the bounding boxes in the current frame and the previous frame

intersect. If they intersect, we then compare the color histogram to determine if they are the

same object. Here, with the domain knowledge that there is an obstacle in the view with

a known location, if an object disappears from one side of the obstacle and another object

appears on its other side, we consider their bounding boxes virtually intersecting. Then the

color histograms are compared to determine if they are the same object, according to the

method described in Chapter 2.4.
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Besides the domain knowledge, some other features/assumptions may also be used in

people tracking scenarios. For example, we can assume that people walk vertically. So no

rotation is needed for texture matching. Also, we can use separate color histograms for

torso and legs. On the other hand, size and aspect ratios may not work for people since

people mostly have similar sizes and shapes from a far distance. Moreover, there are some

new features that only apply to people but may be very useful, such as gait information.

Since the main purpose here is to show an example of extending our framework to different

scenarios, seeking different sets of features are out of scope of the current work.

Since no training data is provided with the dataset, we set the parameters empirically,

and only use the features of color, texture and travel time. Figure 7.14 shows an example

where an object is matched to a saved one. Object 21 leaves Camera 2’s view and comes

back to the view shortly. Since his features were saved when he left, he is assigned the label

21 again when he returns.

21

(a) Camera 2

0

22
21

(b) Camera 2

2122

23

(c) Camera 2

Figure 7.14: An example of the saved object.

Figure 7.15 shows a person entering into the Camera 1’s view and then moving to Camera

3’s view later. This person enters from side S1 in Camera 1’s view (Figure 7.15 (a)). Since

there is no saved object yet, she is assigned a new label 11. Then she leaves from the right side

of Camera 2 (Figure 7.15 (d)) and is correctly labeled in Camera 3 (Figure 7.15 (e)). Figure

7.15 also shows an example of accurately handling occlusion thanks to the incorporated



128

11

(a) Camera 1

11

(b) Camera 1

1112

(c) Camera 1

11

(d) Camera 1

11

10

301

302&304

303
305

(e) Camera 3

Figure 7.15: An example of people tracking and occlusion handling.

domain knowledge. Object 11 goes behind the wall (Figure 7.15 (b)), reappears (Figure 7.15

(c)) and gets the correct label.

7.6 Discussions of Scalability and Domain Knowledge

With the efficient algorithms we propose, this system will be suitable for real-time appli-

cations with wide-area non-overlapping cameras. In our distributed system, each camera

node performs tracking individually and only exchanges the data of possible candidates in a

peer-to-peer manner. Only one packet of feature data needs to be sent to the downstream

camera(s) for an object when that object leaves the view. Thus, this system has the gen-

eral advantages of distributed and peer-to-peer systems over server-based systems, including

higher efficiency and scalability, low bandwidth requirements and no single point of failure.
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Figure 7.16: The Comparison of amount of data transmitted between a server-based system
and our peer-to-peer system.

One feature of this system is that each downstream camera needs to maintain a graph incor-

porating the domain knowledge. Since we consider wide-area and non-overlapping camera

settings, the system will involve fewer cameras compared to an entirely overlapping camera

setup. Thus, each camera will have a limited number of predecessors and successors.

To show the scalability with the number of cameras and targets, we created a server-

based scenario and compared it with our peer-to-peer system. In the server-based scenario,

each camera only detects the foreground objects, and sends the information about trackers

to the server at every frame. Thus, each camera node has to send every tracker at every

frame to the server. The server needs to keep the received trackers in a buffer, and track the

objects intensively. The amount of data that is received by the server in every minute can
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be computed by:

Dserver = o · c · f · ST (7.2)

where o is the average number of objects that are in the view, which indicates the crowdedness

of the scene; c is the number of camera nodes in the system; f is the number of frames per

minute; ST is the size of the data packet for a tracker. From Eq. (7.2), we can see that the

amount of data transmitted increases proportionally with o or c, but is also multiplied by a

large number f , which significantly magnifies any increase in o and c.

On the other hand, the amount of data that need to be transmitted in our distributed

peer-to-peer (p2p) system can be estimated by:

Dp2p = o · c · p ·
N∑
i=1

wini · SF (7.3)

where ni denotes the number of successors of a camera node, and 1 ≤ ni ≤ N . With

our wide-area, non-overlapping and sparse camera deployment, N is assumed to be a single

digit number. Each camera might have different number of successors, which depends on

the camera deployment. wi is the percentage of cameras having ni-many successors. In

addition, with the domain knowledge that we incorporated, we can discard some objects

that exit the scene in a direction towards which no successors exist. Thus, we do not send

packets for these objects. To account for this, we introduce a new parameter p in Eq. (7.3),

which denotes the probability that we will send a packet for the object, i.e. the probability

of objects going in the downstream camera direction. In some scenarios, p will be simply 1.

When Eq. (7.3) is compared with Eq. (7.2), it can be seen that
∑N

i=1 wini is much smaller

than f , and could be further reduced by p. SF is the size of the packet for feature data, and

is comparable with ST .

Figure 7.16 shows the amount of data that needs to be sent with different number of
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Figure 7.17: The flowchart for the users’ input of domain knowledge.

camera nodes and different number of objects (varying levels of crowdedness). For this

scenario, we assumed that the maximum number of successors for a camera (N) is 5. We

assumed that ni is uniformly distributed between 1 and 5, i.e. wi is 0.2 for all ni. In this

case, p is assumed to be 1 meaning that we send information about every exiting object

to the successors, which is a worst-case scenario in terms of number of messages. In our

experiment videos, the frame rate is 15 frames per second. Thus, f is 900. As can be seen

in Figure 7.16, compared to a server-based system, our p2p system is much more scalable

with increasing number of nodes and increasing number of objects even when we assume

that p = 1. More specifically, the amount of data transmitted does not increase significantly

as the number of nodes and objects are increased.

Although this system is scalable and efficient, the performance will be affected if it is
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applied to a crowded scenario. Another factor that may affect the performance would be the

travel times of objects. In our work, we assume that the objects are moving in a consistent

way. Even if there are traffic lights in the blind region, the travel time can still be modeled.

However, changes in the travel time in some completely random manner, for example when

a person decides to chat with somebody in the blind region, might cause assigning a new

label when the target enters the view of the next camera.

Another issue related to scalability is the collection of domain knowledge for each cam-

era. The users only need to provide basic information to set up the domain knowledge for a

particular camera, and a user interface can be built to receive this information. Figure 7.17

shows a flowchart for designing the user interface. The users need to input the location coor-

dinates of possible entrances, exits, intersections and obstacles during system initialization.

With a graphical user interface (GUI), the coordinates can be entered on the cameras view.

If the system is developed for vehicle tracking scenarios, the lane information could also be

entered as input.

7.7 Conclusions

We have presented a distributed wide-area multi-object tracking system composed of non-

overlapping cameras. A probabilistic Petri Net-based approach has been used to account for

the uncertainties of the vision algorithms and to incorporate the available domain knowledge.

Multiple features are used for object matching across non-overlapping views and combined

by adaptive weights, which make the system adapts to the environment changes.

We first presented wide-area tracking of vehicles, where we used three non-overlapping

cameras. Our method achieved high accuracy. It handles complicated scenarios well by

taking the domain knowledge into account. With the proposed method, not only already

observed objects can be re-identified in the current camera, but also never-seen-before objects
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coming from blind regions can be handled.

By using different sets of available domain knowledge, the proposed work can be ap-

plied/extended to other scenarios. We have used 3DPes dataset to demonstrate how our

method can be applied to a people tracking scenario. The domain knowledge helps to make

the tracking and matching process more efficient and the results more robust. It also helps

handling the occlusion of targets by fixed structures in a single camera view.

Although we only present the experimental results on three camera setups, the proposed

approach is feasible for larger camera networks, thanks to distributed processing and p2p

exchange of small amount of data. To collect the domain knowledge from users and set up

the pPN for each downstream camera, a graphical user interface may be implemented.
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Chapter 8

Frame-Level Temporal Calibration of

Unsynchronized Cameras

8.1 Introduction

We present a method for temporal calibration of video sequences from unsynchronized cam-

eras by using object trajectories. Temporal calibration identifies corresponding frames in

video sequences captured by different cameras. A low-level method for temporal calibration

is synchronization that forces cameras to capture the corresponding frames at the same time

by having a master clock. A generic temporal calibration method that is based only on image

information provides a solution for cameras without a common clock as well, and removes

the need for special equipment and hardware.

Temporal calibration is very important for multi-camera systems, because the transfer

of relevant data between cameras is essential. Hardware-based synchronization increases

installation cost. An alternative way is to use image/video processing to align frames from

the cameras and retrieve the frame offset.

Kuthirummal et al. [118] presented an approach in Fourier Domain, which requires at
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least seven stationary corresponding points in three views. Also, a point needs to be tracked

over a number of frames in three views. Lee et al. [119] introduced a method to align the

centroids of moving objects. However, centroid points are treated individually rather than

as a part of a trajectory, which increases the combinatorial complexity. Moreover, accuracy

can be affected by the height of the objects, thus by their distance to the cameras. Caspi et

al. [121] also introduced a trajectory-based algorithm. It is assumed that the temporal offset

between the two sequences is at most 25 frames. Tuytelaars and VanGool [122] proposed a

method that can deal with moving cameras and general 3D scenes. However, this method

requires tracking five corresponding points in two sequences, which are selected manually as

a subset of a feature point set tracked through the video sequence. Velipasalar and Wolf

[123] introduced a search algorithm to match and align trajectories obtained from different

sequences. This method is robust to errors caused by background subtraction or location

extraction. Yet, it performs an exhaustive type of search.

In this chapter, we describe a method based on finding the Longest Consecutive Common

Subsequence (LCCS). Longest Common Subsequence (LCS) was proposed by Vlachos et al.

[124] to find similar multi-dimensional trajectories, and was used by Buzan et al. [125] and

Cheriyadat and Radke [126] for finding similar trajectories in video sequences. Both [125]

and [126] focus on trajectory clustering in a single camera view. We present an LCCS-

based algorithm with a customized similarity criterion, and employ it in a multi-camera

application to find consecutive matching points as a part of our method. The proposed

algorithm provides significant improvement in terms of computational complexity, and has

comparable or better results with respect to the previous work described in [123].
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8.2 LCS and LCCS

Longest Common Subsequence (LCS) is a classic problem in finding the maximal common

characters in two sequences, in the same order but not necessarily consecutive [120]. For

example, there are two sequences as follows:

THISISEXAMPLEFORLCS

THATISNOTEXAMPLE

The longest common subsequence of the above two sequences is:

THISEXAMPLE

The LCS is extended to Longest Consecutive Common Subsequence that all the characters

in the longest common subsequence must be consecutive. It is also referred to as Longest

Common Substring. In the above example, the LCCS will be:

EXAMPLE

LCS is well-known as an example of dynamic programming [120]. If the lengths of the two

sequences are n and m respectively, the dynamic programming needs to create a (n + 1) ×
(m+ 1) table to save the intermediate results. And the characters of the LCS can be found

by tracing back the dynamic programming table.

In the video analysis applications, sequences with two-dimensional points are often com-

pared instead of characters. In this case, two points that are close enough can be considered

as “common characters”. A 2D trajectory matching application for LCS is proposed in [124].

In [124], the purpose of using LCS is that LCS allows time stretch (the common points are

not consecutive) and thus reduce the noise of the outliers. Their application is to find the
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similar trajectories that are created by different objects moving at different speeds.

However, in our application, we desire to match the two trajectories in two video se-

quences that are actually created by the same object. We do not need to consider the time

stretch problem. Thus, LCCS is more desirable for this case. Moreover, the noise in our

application is caused by the errors of the background subtraction and tracking algorithms.

The noise points may make the LCCS algorithm fail if we keep searching the consecutive

common points along the trajectories. To address this issue, we modify the LCCS algorithm

and only search for a consecutive common subsequence with a certain length. The length

of the already found consecutive common subsequence is the latest filled element in the dy-

namic programming table. Once it reaches the length threshold, LCCS searching stops. A

simpler but effective method is employed instead to continue searching similar points. This

LCCS-based algorithm is described as follows.

8.3 Trajectory Alignment Using LCCS

We detect, track and extract the location of each moving object, as described in more detail

in the previous work [123], to form trajectory data. Let Lc
tc be the label of the t

th
c trajectory

on the view of camera c. Thus, c ∈ {1, 2} and tc ∈ {1, 2, . . . , Nc} where Nc is the number of

trajectories in the sequence captured by the cth camera. The trajectory data for label Lc
tc is

in the following format:

Lc
tc →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
F

Lc
tc

1 , x
Lc
tc

E1
, y

Lc
tc

E1
, x

Lc
tc

C1
, y

Lc
tc

C1

)
(
F

Lc
tc

2 , x
Lc
tc

E2
, y

Lc
tc

E2
, x

Lc
tc

C2
, y

Lc
tc

C2

)
...(

F
Lc
tc

n , x
Lc
tc

En
, y

Lc
tc

En
, x

Lc
tc

Cn
, y

Lc
tc

Cn

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.1)
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where F
Lc
tc

i is the frame number for the ith point in the trajectory, PE(F
Lc
tc

i ) = (x
Lc
tc

Ei
, y

Lc
tc

Ei
)

is the extracted location of the foreground object at frame F
Lc
tc

i in the current view, and

PC(F
Lc
tc

i ) = (x
Lc
tc

Ci
, y

Lc
tc

Ci
) is the corresponding location of PE(F

Lc
tc

i ) in the other view, calculated

at frame F
Lc
tc

i by using an estimated homography [123].

8.3.1 LCCS-based Algorithm

Let L1
t1

and L2
t2

denote two trajectories containing n and m points, respectively, which are

expressed as

L1
t1
=

{
(F

L1
t1

1 , x
L1
t1

E1
, y

L1
t1

E1
, x

L1
t1

C1
, y

L1
t1

C1
), . . . ,

(F
L1
t1

n , x
L1
t1

En
, y

L1
t1

En
, x

L1
t1

Cn
, y

L1
t1

Cn
)
}

L2
t2
=

{
(F

L2
t2

1 , x
L2
t2

E1
, y

L2
t2

E1
, x

L2
t2

C1
, y

L2
t2

C1
), . . . ,

(F
L2
t2

m , x
L2
t2

Em
, y

L2
t2

Em
, x

L2
t2

Cm
, y

L2
t2

Cm
)
}

We define Head
(
L1
t1

)
and Head

(
L2
t2

)
as

Head
(
L1
t1

)
=

{
(F

L1
t1

1 , x
L1
t1

E1
, y

L1
t1

E1
, x

L1
t1

C1
, y

L1
t1

C1
), . . . ,
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t1
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L1
t1

En−1
, y

L1
t1

En−1
, x

L1
t1

Cn−1
, y

L1
t1

Cn−1
)
}

Head
(
L2
t2

)
=

{
(F

L2
t2

1 , x
L2
t2

E1
, y

L2
t2

E1
, x

L2
t2

C1
, y

L2
t2

C1
), . . . ,

(F
L2
t2

m−1, x
L2
t2

Em−1
, y

L2
t2

Em−1
, x

L2
t2

Cm−1
, y

L2
t2

Cm−1
)
}

The Euclidean distance between the nth extracted point in the first trajectory, and the

mth calculated point in the second trajectory is denoted by dEnCm .

Definition 1 Given a positive number ε, we define LCCSε

(
L1
t1
, L2

t2

)
as follows:
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LCCSε

(
L1
t1
, L2

t2

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + LCCSε

(
Head

(
L1
t1

)
, Head

(
L2
t2

))
if dEnCm < ε and dCnEm < ε

0 if L1
t1or L2

t2is empty or

dEnCm ≥ ε or dCnEm ≥ ε

The constant ε is the distance matching threshold. The points that are close in space are

regarded as matching points. If the extracted location in the first view and the calculated

corresponding location from the second view are close enough and the extracted location

in the second view and the calculated corresponding location from the first view are close

enough, then the matching score is increased by 1. LCCS searches all points in two tra-

jectories sequentially and collects the LCCS score in a recursive way. LCCS only saves the

number of consecutive matching points by resetting the LCCS score to 0 once the search

meets an unmatched pair.

Since we assume that cameras have the same frame rate, we can find all matching points

by LCCS without time stretching. However, there may be possible errors due to background

subtraction and/or location extraction. Thus, there may be points in a trajectory, which

make LCCS comparison fail, and reset the similarity score to 0. To avoid this, we introduce

a positive integer, M , as a threshold for the number of matched points. We only need to

find the first M matching points between the two trajectories. Then, we stop searching

for matching points by LCCS once we have LCCSε

(
L1
t1
, L2

t2

)
= M . We continue to search

the trajectory from the last matched point pair. For example, if ith and jth points in two

trajectories are the M th matched point pairs, then we stop LCCS at these points. We denote

the number of matched points as Nmatch, and Nmatch is set to be M when LCCS-based search

is stopped. Then, we compare the (i + 1)th and (j + 1)th points from the two trajectories,

respectively. If they match, Nmatch will be increased by 1, and it will be M + 1; if they do

not match, we move on to the points (i + 2) and (j + 2) without increasing Nmatch. We
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continue this search until we reach the end of one of the trajectories.

Definition 2 We define the similarity function S between two trajectories L1
t1
and L2

t2
, given

ε and M , as follows:

S
(
ε,M,L1

t1 , L
2
t2

)
=

Nmatch

min (n,m)

We define the similarity function S by normalizing Nmatch by the minimum length of the

two trajectories, thus 0 ≤ S ≤ 1. This similarity function S is used as the main criteria to

find the best matching trajectories.

Thus, for a trajectory L1
t1
in the first camera view, we calculate the value of S with every

trajectory from the second camera. In other words, if there are N2 trajectories in the second

camera view, we perform N2 many similarity computations. As described above, we have

two groups of location coordinates for every point in each trajectory: extracted location and

its calculated location in the other view. The distance between the points PC

(
F

L1
t1

i

)
and

PE

(
F

L2
t2

j

)
is denoted by dCiEj

, where t1 ∈ {1, 2, . . . , N1} and t2 ∈ {1, 2, . . . , N2}. With the

given distance threshold ε, we consider two points matching with each other when dCiEj
< ε

and dEiCj
< ε are both satisfied.

After computing the similarity scores between the L1
t1

and all the trajectories in the

second camera, we pick the trajectory in second camera view, which gives the highest S

value, as the match of the trajectory L1
t1
. Then, we can easily obtain the frame offset from

these two trajectories, since all matching point pairs have the same frame offset. The frame

offset from L1
t1
is denoted by OL1

t1 , and is obtained by subtracting the frame numbers of any

matched pair of points. Then, the two matched trajectories and their corresponding frame

offset value are saved as the input of the confidence check step.

We perform the above steps for every trajectory in the first camera view to find their

matching trajectory in the second view. The pseudo code for the proposed LCCS-based
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trajectory matching is presented in Table 1.

In Table 8.3.1, t′1 denotes the matching trajectory found for t1. After we obtain candidate

trajectory pairs, we obtain the median value Smed of their similarity scores. We keep the

trajectory pairs whose similarity score is greater than Smed. This decreases the number

of possible matches by half by removing the pairs with low scores. In addition to the

computational aspects, this step is useful since a trajectory may not have a real match in

the other camera view. This trajectory will have a low score, and will be removed with this

step.

8.3.2 Confidence Check for the Frame Offsets

In this step, we perform a confidence check to find the most reliable frame offset value among

the different offset values obtained from the matched trajectories. The confidence check is

inherited from [123] and described below. Let Λ denote the set of the trajectory numbers on

the current camera view, that are kept with their matched trajectories from the other view.

In other words, the set Λ is built from the elements of {1, 2, ...N1} such that the S value

calculated for the trajectories with labels {L1
t1

: t1 ∈ Λ} and their matched trajectories is

greater than Smed.

Let Tmatch be the saved data for the matched trajectories that are kept. Tmatch has the

following format:

Tmatch =
{(

L1
t1 , L

2
t′1
, OL1

t1

)
: t1 ∈ Λ

}

The confidence check is formulated as follows:

O∗ = argmin
O∈{OL1

t1 :t1∈Λ}

1

|Tmatch|
∑

τ∈{L1
t1
:

t1∈Λ}

⎛
⎝1

|τ |
|τ |∑
e=1

D(F τ
e , F

τ
e+O)

⎞
⎠ (8.2)
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for every L1
t1 , t1 ∈ {1 . . . N1}

Smax = 0;

for every L2
t2 , t2 ∈ {1 . . . N2}

n = length(L1
t1);

m = length(L2
t2);

set tablematch = [n+ 1] [m+ 1] all 0; k=1;

while k ≤ n ∗m
i = floor ((k − 1) /m) + 1;

j = k − (i− 1) ∗m;

if dCjEi < ε and dEjCi < ε

tablematch [i+ 1] [j + 1] = 1 + tablematch [i] [j] ;

if tablematch [i+ 1] [j + 1] == M

istop = i;

jstop = j;

Nmatch = M ;

break;

else k ++;

set i = istop;

set j = jstop;

while i < n and j < m

i++;

j ++;

if dCjEi < ε and dEjCi < ε

Nmatch = Nmatch + 1;

else continue;

S = Nmatch/min (n,m) ;

O
L1
t1

L2
t2

= F
L2
t2

jstop
− F

L1
t1

istop
;

if S > Smax

S
L1
t1

max = S; t′1 = t2; OL1
t1 = O

L1
t1

L2
t2

;

save

(
L1
t1 , L

2
t′1
, S

L1
t1

max, O
L1
t1

)

Table 8.1: Pseudo code for the LCCS-based trajectory matching
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The confidence check starts with a L1
t1
, where t1 ∈ Λ, and OL1

t1 which is the frame offset

candidate obtained from the corresponding trajectory pair. For all the track points of L1
t1
,

this offset candidate is added to their frame numbers. Then the points of a trajectory,

which exist at the resulting frames, in the other camera are found. The point-wise distance

D(F τ
e , F

τ
e+O) is calculated for each point pair, and the mean of the point-wise distance

measures over the number of trajectory points is found. If there are multiple trajectories

existing at the resulting frames in the other camera, the minimum of the mean point-wise

distance measures obtained from these trajectories is used. The same process is repeated,

again using OL1
t1 , for the track points of the next trajectory in Λ, and the overall mean of

the point-wise distance measure over different trajectories is obtained for the offset OL1
t1 .

All offset candidates are tried in this way, and the offset candidate that has the minimum

overall mean of point-wise distance over all different trajectories is the best frame offset that

we recover.

8.3.3 Comparison of the Proposed Method with the Previous

Work

The previous method presented in [123], calculates the distance of each point in each tra-

jectory of the first camera to the each point in each trajectory of the second camera. This

exhaustive search involves four main loops, which results in O (N1∗N2∗n∗m∗ C) operations.

N1, N2, n,m are the sizes of each nested loop. C is the number of operations inside the

innermost loop.

As seen in Table 8.3.1, we set up three loops at the beginning, and the initial sizes

of these loops are also N1, N2, n ∗ m. However, in most cases, the loops are not executed

completely. Once we find M many matching point pairs, all loops are broken. If the M

matching points are at the beginning of the trajectories, we only need M ∗m steps to find
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Table 8.2: The frame offsets obtained after the confidence check with the proposed method
and the previous work.

Frame Offsets

Video 1 Ground Truth 300 500 800 1000

Previous Method 301 499 792 989

Proposed Method 301 498 800 998

Accuracy 99.67% 99.6% 100% 99.8%

Video 2 Ground Truth 300 500 800 1000

Previous Method 300 500 807 1000

Propose Method 299 495 795 999

Accuracy 99.67% 99% 99.37% 99.9%

the first M matching pairs. There will be L = min (n− istop,m− jstop) more steps after the

LCCS stops. Thus, the number of operations becomes O(N1 ∗N2 ∗ (M ∗m ∗ C + L)). M is

normally much smaller than n, which reduces the total number of operations approximately

by M/n. In our experiments, (M/navg) < 0.2. Thus, the running time and complexity is

reduced significantly compared to the previous work in [123].

8.4 Experimental Results

The proposed algorithm is tested on the trajectory data obtained from the video sequences

in the PETS2001 database. One of the two sequences of each video set is delayed by a known

offset. In this way, the ground truth for the frame offset is known for each experiment. In

our experiments, we use ε = 20 and M = 5.

The examples of the matched trajectories from two cameras are shown in Figure 8.1.

As seen in Figure 8.1(d), the algorithm is robust to errors of the background subtraction

algorithm, which caused a zigzag-like trajectory. Table 8.2 shows the results obtained after
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(a) Trajectory on the 1st view (b) The match of the trajectory in (a)

(c) Trajectory on the 1st view (d) The match of the trajectory in (c)

Figure 8.1: Examples of matched trajectories in two cameras

the confidence check step together with the ground truth. Results obtained with the pro-

posed algorithm and the previous method in [123] are displayed together. The proposed

method, which provides significant improvement in terms of computational complexity, has

comparable or better results with respect to our previous work. If background subtraction

and location extraction results are more accurate, better results can be achieved with the

proposed method.



147

8.5 Conclusions

We presented a computationally efficient and robust algorithm to match and align object

trajectories from unsynchronized cameras, and thus to recover the frame offset. This method

employs LCCS during the trajectory matching. Compared to the previous work in [123],

which performs an exhaustive search, the proposed algorithm reduces the operation time by

a factor of M/navg, where M = 5 in the experiments, and navg is the average trajectory

length. While providing significant improvement in terms of computational complexity, the

proposed algorithm has comparable or better results with respect to our previous work. It is

reliable and robust to possible errors due to background subtraction or location extraction.

After performing the experiments with different frame offsets and different video sequences,

an average accuracy rate of 99.63% is achieved.
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Chapter 9

Edge And Motion Detection On Focal

Plane

9.1 Introduction

As presented in Part II, a smart camera usually consists of a CCD or CMOS image sensor,

an on-board processor, memory, communication interfaces and other supporting circuits.

Smart cameras with embedded processors have become stand-alone units, and will play an

increasingly important role in sensor networks. With wired or wireless interfaces, a smart

camera can form a sensor node in a sensor network, acquiring images, processing data, and

communicating with other sensor nodes.

In sensor networks, possibly with very large number of sensor nodes, cost of each node

becomes an important factor. Moreover, when nodes are battery-operated, the power source

is limited. Thus, it is very important to consider complexity, power consumption and cost

when designing image sensor chips for embedded smart camera nodes. Complex structure in

the image sensor will increase the silicon area, and will, in turn, increase the cost and power

consumption. Meanwhile, the resolution provided by the camera should be high enough for
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the computer vision tasks. However, fabricating a higher-resolution sensor as a single chip

requires more complex read-out circuitry and more area, and is much more expensive com-

pared to lower-resolution sensor chips. Salas et al. [129] provided a detailed comparison of

fabricating a higher-resolution sensor as a single chip and tiling lower-resolution embedded

smart cameras in terms of bandwidth, clock frequency, area, power, cost and global compu-

tations. They showed that if multiple lower-resolution cameras are tiled, this will provide

lower read-out bandwidth, lower read-out circuit complexity, higher robustness and lower

costs compared to a single-chip high-resolution sensor.

We built a tiled, embedded smart camera system with four cameras, and tiled the cameras

in two different combinations by placing them in 2×2 and 1×4 arrangements. We performed

experiments by stitching the individual camera images both automatic and semi-automatic

ways. By using two different camera placements and stitching, we obtained two different

higher-resolution images from four cameras. This flexibility is another advantage provided

by tiling multiple lower-resolution cameras instead of using a single-chip, higher-resolution

camera.

Another challenge of wireless sensor networks is that bandwidth is limited, and trans-

mitting data consumes energy. If the raw frame can be processed on the focal plane, it will

significantly reduce the processing time and the size of transmitted data. As stated in previ-

ous chapters, moving objects are often of interest. In this case, we can transmit reduced-sized

data by only sending information about the moving objects, such as their edge and color

information. Therefore, edge and motion detection in the embedded smart cameras will find

great use. However, smart camera nodes have limited processing power and memory. Thus,

it is very important to carefully use and allocate the processing power in the microprocessor

to different vision tasks.

Most of the previous work on edge detection has focused on implementing the algorithms

in the embedded processor. An alternative way is to perform edge detection on the focal
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plane. Edge detection on focal plane provides the advantages of having higher speed and

low power consumption. It also reduces the load on the embedded processor and spares the

precious memory and processing power. Image sensors with focal plane edge detection have

been fabricated [132][133]. In [133], a CMOS image sensor was introduced. The edges are

obtained by comparing the values of two neighbor rows in the sensor array. Since it can only

detect the difference between two rows, the edge strength in the horizontal direction will be

lost. In [132] a CCD image sensor is used, and edges are detected in both horizontal and

vertical directions. However, CCD sensors have relatively complex structure, higher power

consumption and higher cost.

In our embedded smart cameras, we used a CMOS image sensor with focal-plane edge

detection integrated. We can compute differences in the pixel values both in the horizontal

and vertical directions by this imager, and combine these two difference arrays in the micro-

processor to obtain an edge strength output. Then, we convert the edge images into binary

images by applying a threshold.

In addition to edge detection, our imager has the capability of performing motion detec-

tion on the focal plane. By subtracting the previous edge map from the edge map of the

current frame, we detect the edges of moving objects.

In the remainder of this chapter, the employed low-resolution smart cameras are first

introduced. Then edge detection on focal plane is explained in detail, from the structure

to particular circuits. Two possible tiling combinations to obtain a higher-resolution image

are shown, and our method to stitch individual views is discussed. Experimental results are

presented and this chapter is concluded at the end.
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9.2 The Low-Resolution Embedded Smart Camera

The properties of our low-resolution embedded smart camera have been presented in [129].

Here, a brief summary is given for continuity and convenience.

Each of the cameras consists of a customized CMOS imager, an embedded microprocessor,

interfaces and other supporting circuits. Figures 9.1 (a) and (b) are the photos of the existing

smart camera and the CMOS imager used in this camera, respectively [3].

(a) (b)

Figure 9.1: (a) the embedded smart camera, (b) the board and the CMOS imager used in
this camera.

The standard CMOS processes offer the advantage of being able to integrate analog,

digital, or mixed signal processing and computation circuits on the same silicon chip with

the sensor [135][136]. The integration of photo-detectors and computational circuitry opens

the possibility of performing image processing on the focal plane before the image is read

out. However, the photo-detectors available in standard CMOS processes suffer from lower

SNR, lower dynamic range and higher fixed pattern noise (FPN). In the CMOS imagers,

Active Pixel Sensor technology is employed that increases the signal-to-noise ratio (SNR),

and improves the dynamic range by integration of the active amplifier into each pixel. FPN

is also greatly reduced by employing Correlated Double Sampling (CDS) techniques.

A 32-bit RISC ARM microcontroller (AT91SAM7S256), with 64 KB internal, high-speed



152

SRAM and 256 KB internal high-speed flash memory, is used in this camera. Due to the

low resolution of the image sensor (80 × 44), this microcontroller has enough resources to

read out the image data from the imager, store the necessary data and process them before

transmission.

Thanks to the smart camera architecture, three hierarchical levels of processing are avail-

able as shown in Figure 9.2. At the sensor chip level, low-level vision operations such as edge

and motion detection can be performed. These operations are carried out by analog circuits

integrated on the focal plane, i.e. on the same chip the image sensor is on. The second

processing level is formed by embedded controllers. Due to their programmability and com-

putational power, they can perform higher level vision tasks like moving object segmentation.

The third level of processing comes from the distributed computation across the tiles.

Embedded
Processor

Sensor
Chip

Embedded
Processor

Sensor
Chip

Camera Network

Multi-camera
Processing

High-level
Vision Tasks

Low-level
Vision Tasks

Camera 1 Camera 2

Figure 9.2: Three levels of processing obtained by the smart camera architecture [129].
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9.3 Edge Detection on the Focal Plane

9.3.1 CMOS Imager Architecture

The CMOS imager adopts a column-level architecture. The advantage of column-parallel

architecture is that it relaxes the speed constraints of the analog-to-digital converters. It has

also the advantage of enabling a sequential conversion and readout [131].

The diagram of the column-level architecture is shown in Figure 9.3. There are two

vertical shift registers. The first one controls the reset transistors in one row and the second

one enables one row at a time for readout into the horizontal shift register. For each column

of the sensor array, there is a column-level processor. The column-level processor reads the

data from the horizontal shift register and then converts the analog signal to digital values.

A column-level processor is composed of an analog memory bank, a CDS circuit, a single-

slope A/D and read-out logic. The featured structure of the memory bank and CDS circuit

make edge and motion detection possible on the focal plane. The details will be explained

next in Section 9.3.2.

9.3.2 Focal Plane Processing

The CMOS imager has a structure that allows edge detection and subtraction of two consec-

utive frames to be performed on the focal plane. The operation to perform is selected based

on the values of three signals: intra/inter, W/N , and odd/even. These three signals can be

controlled by the microprocessor. If intra/inter = 0, it means that the inter-frame mode

is selected, and the current pixel values will be compared with the values from the previous

frame. Thus, the difference frame will be obtained by this selection. If intra/inter = 1, then

the pixel value will be compared with the west- or the north-neighbor, and edge detection

on the focal plane will be performed. By using the signal W/N , one of two modes can be
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selected for the edge detection. If W/N = 1, the pixel value of the west-neighbor will be read

and stored. If W/N = 0, then the pixel value of the north-neighbor will be stored. Thus,

edge gradient will be computed in horizontal or vertical direction depending on the value of

the W/N .

Another control signal is odd/even. The odd/even line alternates between 1 and 0 every

time the row number changes. If the active row number is an odd number, odd/even is set

to 1, otherwise it is reset to 0. We denote the current pixel value by X , the pixel value to

be compared with X by X̂. X̂ can either be the value from the previous frame or the value

of a neighboring pixel. Then, by alternating odd/even signal, X and X̂ will be presented to

the A/D converter in the right order.

APS array

mux

column-level
processors

horizontal
Shift register

shift register
and control logic

serial output

. . .

Figure 9.3: Diagram of the column-level architecture [131].
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CDS

CDS

Src

Ssc
Sra

Ssa

C1

C2Srd

Ssd
Srb

Ssb

C3

C4

two-way
mux

odd/even

left-neighbor
pixel bus

pixel bus

X̂
X

to A/D

Figure 9.4: The diagram of the edge detection circuit [131].

Figure 9.4 shows the diagram of the edge detection circuit. It consists of four capacitors,

eight switches, two correlated-double-sampling (CDS) blocks and a two-way MUX.

The capacitors C1 to C4 work as memory banks to store the voltages from the pixel values

X and X̂. The storage of the pixel value X is alternated between the capacitor pairs C1−C2

and C3−C4. This alternation is controlled by the eight switches (Sra, Srb, Src, Srd, Ssa, Ssb,

Ssc and Ssd). The odd/even line keeps track of the capacitor pair that currently stores the

pixel value X. The other capacitor pair will be storing the value of X̂. In different pairs of

capacitors, C1 and C3 store the reset voltages, while C2 and C4 store the voltages of either

X or X̂. The reason we alternate the storage between the capacitor pairs is to be able to

sample a new row of pixels while keeping the row sampled before, which after sampling the

new row becomes the previous row. When the edge detection is being performed, the imager
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intra/inter
=1

W/N=1

odd/even
=1

)ˆ(3 XresetC
)ˆ(4 XphotoC

)(2 XphotoC
)(1 XresetC

)(3 XresetC
)(4 XphotoC

)ˆ(2 XphotoC
)ˆ(1 XresetC

WX̂ NX̂

)(ˆ
fttXX

Start

end

Figure 9.5: The flow diagram of pixel selection [131].

does not need to read each row twice, which makes the readout process more efficient.

The pixel sampling process is illustrated in Figure 9.5. In this figure, the notation

X̂ = X(t − tf ), means that the time difference between the current and previous frame

is tf . When an odd row is being read-out, the reset voltages of X and X̂ are sampled in C1

and C3, respectively, and the photo-generated voltages are sampled in C2 and C4. Similarly,

when an even row is read-out, C2 and C4 store the reset voltages, and C1 and C3 store the

photo-generated voltages [131].
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The CDS circuit is a two-transistor differential amplifier [137][138]. Neglecting second

order effects, the output of the circuit is given by

Vout = VDD − (V r − V s)

where Vr represents the pixel reset voltage and Vs is the photo-generated pixel voltage. The

output of the CDS representing the difference between Vr and Vs, is the value of either X or

X̂. The function of the two-way multiplexer is to decide which output of two CDS circuits

is X and which one is X̂, and thus to guarantee that the values of X and X̂ are presented

to the A/D converter in the right order. Then, X and X̂ are quantized and read out to the

microcontroller.

9.3.3 Combination of Horizontal and Vertical Edge Strengths

Limited by the architecture presented above, either the horizontal edge gradient component

or the vertical gradient component can be computed at a time. IfW/N = 1, the pixel value of

the west-neighbor is stored. If W/N = 0, then the pixel value of the north-neighbor is stored.

Let Ew denote the difference between the current pixel value and its west-neighbor. Similarly,

let En denote the difference between the current pixel value and its north-neighbor. Instead

of computing edge strength in only one direction, we combine the gradient components to

obtain the full edge strength. We read out Ew and En one at a time separately, and combine

them in the microcontroller by using

E =
√

(E2
w + E2

n) (9.1)

where E represents the full edge strength. Then, we use a threshold T to build a binary

edge map. When E(i, j) > T , we set the pixel value at location (i, j) to be 1, otherwise we
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(a) (a1) (a2)

(b) (b1) (b2)

(c) (c1) (c2)

Figure 9.6: Comparison of the detected edges on the focal plane with the full edge strength
calculation and west-edge strength only: (a)(b)(c) Original images, (a1)(b1)(c1) edges ob-
tained with the proposed full-edge strength method, (a2)(b2)(c2) edges obtained with west-
edge strength only.

set it to be 0.

In the middle column of Figure 9.6, we present three edge maps detected on the focal

plane by using the proposed method. We also compare the edge maps obtained by the

proposed method and by using horizontal direction (Ew) only. As can be seen by comparing

the second and third columns of Figure 9.6, the proposed approach provides much better

edge maps.
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(a)

(b) (c) (d)

Figure 9.7: Edge-based detection of a moving bottle: (a) An example frame, (b)(c)(d) edges
of the moving object at different instances.

9.3.4 Motion Detection in the Microcontroller

With the structure presented above, our imager has the capability of motion detection on

the focal plane. This can be achieved by subtracting the consecutive frames. However, the

microcontroller has a slow processing cycle, and our current capacitors are too small to hold

the previous pixel value for longer periods of time. As future work, the microcontroller can

be replace by an FPGA to realize this functionality.

In order to illustrate what is possible on the focal plane, we implemented subtraction

of two consecutive edge maps in the microcontroller. This provides an edge-based motion

detection. Let Et and Et−1 denote the current and previous edge maps respectively. We

compute Ediff = Et − Et−1. Since edge maps are binary images, Ediff can be −1, 0 or 1.

We only keep the locations with value 1 in the output to get the current edges of the moving

object.

Figures 9.7 and 9.8 show the edges of the moving objects detected by our method.
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(a)

(b) (c) (d)

Figure 9.8: Edge-based detection of a moving mouse:a) An example frame, (b)(c)(d) edges
of the moving mouse at different instances.

9.4 Tiling of the Multiple Embedded Smart Cameras

9.4.1 Two Different Tiling Arrangements

Advantages of tiling multiple low-resolution embedded smart cameras instead of fabricating

a higher-resolution sensor as a single chip are discussed and demonstrated in [129]. These

(a) (b)

Figure 9.9: (a) 1× 4 array and (b) 2× 2 array of our smart cameras.
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advantages include lower read-out bandwidth, lower read-out circuit complexity, lower power

consumption, lower costs and higher robustness.

Another additional advantage of tiling multiple cameras is that they can be arranged in

multiple ways, and thus different higher resolution images can be obtained.

We tiled four smart cameras in two different ways: 2 × 2 tiling arrangement and 1 × 4

tiling arrangement. We then stitched individual camera images to obtain two different

higher-resolution images. If there are more cameras available, such as 16 or 32 cameras,

more tiling combinations become possible, and different resolution images can be obtained.

After stitching the original images, we stitch the edge maps, detected on the focal plane,

by using the same corresponding point locations and offsets, and obtain a higher-resolution

edge map.

Figure 9.9 shows the photos of the two ways we arrange our four embedded cameras. In

both arrangements, the cameras are placed so that their optical axes are parallel to each

other, and the distances between neighboring cameras in the horizontal direction are the

same.

9.4.2 Stitching Algorithm for Calibrated Cameras

Most of the previous work about stitching or mosaicking is based on Scale Invariant Feature

Transform (SIFT) [139] and RANSAC [140]. RANSAC takes the potential point matches

found by SIFT, and filters out the outliers by using a constraint, such as homography or

fundamental matrix constraint. This method is mostly suitable for relatively high-resolution

images, since finding the corresponding points becomes challenging otherwise. In our case,

due to the low resolution of images, we are not guaranteed to obtain eight or more corre-

sponding point pairs necessary to compute the fundamental matrix.

We implemented an alternative way to obtain the fundamental matrix and to pick the
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(a1) (a2) (a3) (a4)

(a5) (a6)

(b1) (b2) (b3) (b4)

(b5) (b6)

(c1) (c2) (c3) (c4)

(c5) (c6)

Figure 9.10: Automatically stitched higher-resolution images and edge maps obtained on the
focal plane.

best corresponding point pair. First, we calibrate our cameras and obtain the camera matrix

P for each camera. P includes both intrinsic and extrinsic parameters of a camera. Let P ,
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P ′ and e, e′ denote the two camera matrices and two epipoles in a stereo system. The

fundamental matrix F can be computed by

F = [e′]xP ′P+ (9.2)

where P+ is the pseudo-inverse of P :

P+ = P T (PP T )−1 (9.3)

and [e′]x is the corresponding skew-symmetric matrix of e′, defined as [142]:

[e′]x =

⎡
⎢⎢⎢⎢⎣

0 −e′(3) e′(2)

e′(3) 0 −e′(1)

−e′(2) e′(1) 0

⎤
⎥⎥⎥⎥⎦ (9.4)

We then use the SIFT algorithm [143] to find matched points in the image pairs. Since

we already computed the fundamental matrix by Eq. (9.2), we do not need many matched

points at this step. Let x and x′ denote two points on two images, respectively. If x′ is the

corresponding point of x, then

x′TFx = 0 (9.5)

We take the point pairs, which are the output of the SIFT algorithm, and find the pair for

which x′TFx is minimum. Our cameras are placed so that their optical axes are parallel to

each other. Thus, one corresponding point pair is sufficient to stitch these camera images.

By using the point pair for which x′TFx is minimum, we adjust the position of the left, right

or top/bottom images, and stitch them to one another. We stitch the edge maps in the same

way, by using the coordinates of the best matched points.
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(a) (b) (c)

(a1) (b1) (c1)

Figure 9.11: Higher-resolution images and edge maps obtained in the focal plane with the
2× 2 camera setup.

9.5 Experimental Results

The resolution of our embedded smart cameras is 80×44. To be able to obtain corresponding

points on different camera views, cameras are placed so that around one third of their fields

of view overlap. The final stitched images we obtained are around 170 × 50 for the 1 × 4

camera placement, and 125× 80 for the 2× 2 camera placement.

We first set up our cameras as shown in Figure 9.9 (a) in 1 × 4 arrangement. We

stitched the individual camera views as described in Section 9.4.2. Figure 9.10 shows the

automatically stitched, higher-resolution images and edge maps for three different cases.

Figures 9.10 (a1)-(a4), (b1)-(b4) and (c1)-(c4) are the images seen by each camera. Figures

9.10 (a5),(b5) and (c5) are the automatically stitched, higher-resolution images, and Figures

9.10 (a6),(b6) and (c6) are the higher-resolution edge maps.

We then set up our cameras as shown in Figure 9.9 (b) in 2 × 2 arrangement. We

automatically stitched the two images in the upper and lower rows among themselves. Figure
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9.11 shows examples of stitched images obtained with the 2× 2 camera placement.

However, the stitching algorithm is based on the assumption that the cameras are places

in a perfectly parallel direction. In practical, there might be minor disparity of the cameras

positions, which makes the output image might not be perfectly smooth. Due to the low

resolution of the smart cameras, there might be a small inaccuracy in the camera matrices

and the fundamental matrix. This inaccuracy might cause a mismatch when selecting a best

matching pair of corresponding points. In this situation, user’s input could be an alternative

way to select one best matching pair from the SIFT matching points.

9.6 Conclusions

We presented a customized CMOS imager with edge detection on the focal plane in this

chapter. With the featured structure of the CMOS imager, full edge strength maps are

obtained on the focal plane. Then, a simple frame differencing is performed based on the

edge maps in the microprocessor to detect moving objects. With the featured CMOS imager,

we built up four low-resolution embedded smart cameras. These four cameras are arranged

in two different position combinations to obtain two different higher-resolution images. We

also stitched the edge maps detected on the focal plane in the same way.
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