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Plug-in hybrid electric vehicles (PHEVs) are gaining increasing interest for both 

residential and commercial transportation applications. In PHEV design, energy storage 

system (EES) is a critical component which will impact the overall design efficiency, 

performance, cost and etc. This dissertation aims to design an advanced energy storage 

system for a small plug-in hybrid electric vehicle, whose performance will approach very 

closely to the optimal possible, in terms of energy efficiency and acceleration, for 

passenger road vehicles application. Moreover, practical automotive requirements are 

considered during ESS design, such as cost, life time, safety and volume. 

This dissertation utilizes ultracapacitors in conjunction with Lithium-ion batteries to 

combine the power performance ability of the former with the greater energy storage 

capability of the latter. This combination can improve vehicle performance, battery life 

time and safety issue with appropriate design. This dissertation describes the entire ESS 

design, from energy storage size optimization (determination of power and capacity), 

multi-source control strategy, to associated power electronics design and testing. 

An economical 16-phase interleaved bidirectional DC/DC converter connected 

between ultracapacitors and batteries, is presented featuring smaller input/output filters, 



 
 

faster dynamic response and lower device stress advantages, which are highly preferable 

in high power applications. Discontinuous conduction mode (DCM) methodology is 

applied in the proposed converter to reduce imbalance current between phases so that the 

current control loop in each phase can be removed. The high current ripples associated 

with DCM operation are then alleviated by interleaving. The design, construction and 

testing of hardware prototype are presented with experimental results. Moreover, a novel 

ZVS/ZCS soft switch is proposed for the DC/DC converter based on DCM operation to 

improve efficiency, reduce spike voltage between MOSFET, and reduce Electromagnetic 

Interference (EMI). Both simulation model and experiment circuit have been built for one 

stage DC/DC converter to verify the proposed method. 

In addition, a battery charger for residential application with power factor correction 

(PFC) capability is designed. A single stage of boost converter is proposed to achieve 

both PFC and battery charging control simultaneously. A modified charger system is 

proposed by utilizing ultracapacitor combined with bidirectional DC/DC converter, to 

remove large filtering capacitor requirement in traditional charger system, due to the fact 

that the power absorbed from the single phase AC supply has a large 120 Hz component.
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Chapter 1.  

INTRODUCTION 

1.1 Background 

The automotive industry has prompted the progress of the world’s economy and 

brought the convenience of human life.  Every year, tens of millions of vehicles are sold 

all around the world. However, most of automobiles using internal combustion engine 

(ICE) have caused and continuously cause serious problems, such as air pollution, global 

warming, and the rapid depletion of the Earth’s petroleum resources. According to [1] , 

transportation emissions is the second largest source of greenhouse gas emissions in U.S. 

and global temperature has increased on average 0.6 degree C in last 50 years [2]. The 

rate of oil discovery has been falling since 1981 that will lead to falling in production and 

increasing in oil price [3]. The recent crude oil price fall is merely the impacting of 

economic crisis, but eventually will continue to growth.  Therefore, people began to 

reduce dependence on oil and emphasize on the development of higher efficiency and 

cleaner transportation vehicles. Electric vehicles (EV), hybrid electric vehicles (HEV), 

and fuel cell vehicles are the three typical vehicles that are proposed to replace 

conventional vehicles with ICE in the near future [4] [5].  

It is believed that the electric vehicles will eventually replace the conventional 

vehicles [6]. However, currently, the performance is far behind the requirement because 

of poor energy storage capability of batteries [7]. Thus, in recent years, advanced vehicle 

technology research has been turned to focus on HEV or plug-in HEV (PHEV) [8][9]. In 



 

 

2

last decade, HEV has been commercialized, such as Toyota Prius, Honda Insight and 

Civic Hybrid. In order to further reduce vehicles’ dependence on oil and provide lower-

emission or zero-emission, plug-in HEV has been widely studied. 

This project covered in this dissertation is proposed to develop a small series plug-in 

HEV for city driving with 20 miles range on electric power alone. Since the typical daily 

driving distance is between 10-30 miles [10],  a 20 miles range plug-in HEV would allow 

most people consume no gasoline while use the vehicle for urban driving. Recharging 

would be accomplished by plugging their car batteries into an electric outlet at night. This 

practice would not only reduce consumers’ dependency and cost on oil, but also 

significantly reduce the vehicle emissions. The original vehicle emission from oil is 

transferred to the electric power plants which typically have higher efficiency, or even 

eliminated if renewable energy resources. For those whose daily driving distance are 

farther than 20 miles and have to use additional gasoline in their cars, the technology of 

PHEV will also have less fuel cost. 

1.2 HEV Classifications by Drive train Architectures 

One of the most common ways to classify HEV is based on configuration of vehicle 

drive train. There are mainly three architectures used in current hybrid vehicle market: 

series, parallel and series-parallel [11][12].  

1.2.1 Series Hybrid System 

One of the basic types of HEV is series hybrid. In this configuration, as shown in 

Figure 1.1, the vehicle is driven by electric motor, which is powered by energy storage 

system (ESS) or generator or both of them. A small internal combustion engine is turned 



 

 

3

on intermittently to generate electric power. During braking regeneration, the electric 

motor operates as generator to absorb braking power and recharge energy storage system. 

For plug-in HEV, the energy storage system can be recharged not only from the generator 

but also from the electric utility grid.  

One advantage of series hybrid architecture is that the control system is relatively 

simple due to the lack of a mechanical link between the combustion engine and the 

wheels. The combustion engine runs at a constant speed and torque at its peak efficiency 

point, even when the speed of car changes. During the stop-and-go type city driving, 

series hybrids are relatively the most efficient. Another advantage is that series hybrid 

operation is very similar with electric vehicle.  

 

Figure 1.1 Series hybrid system configuration 
 

1.2.2 Parallel Hybrid System 

In parallel configurations, shown in Figure 1.2, both the engine and the motor 

provide traction power to the wheels, which means that the hybrid power is summed at a 

mechanical node to power the vehicle. In this system, the motor is powered by the battery 

to drive the wheels, and is also used as a generator to recharge the battery. Consequently, 

the motor cannot be used to generate electricity while the car is running. The parallel 
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hybrid vehicles usually use the same gearboxes of the counterpart conventional vehicles, 

either in automatic or manual transmissions. The control of parallel hybrid system is 

more complex than that of a series hybrid system, due to the mechanical coupling 

between the engine and the driven wheels. 

 

Figure 1.2 Parallel hybrid system configuration 
 
 

 

Figure 1.3 Series-parallel hybrid system configuration 
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1.2.3 Series-Parallel Hybrid System  

In the series-parallel configurations, shown in Figure 1.3, the vehicles have features 

of both series and parallel hybrids. This design depends on the presence of two 

motors/generators and the connections between them, which can be both electrical and 

mechanical. The connections between the engine and electric machines are usually 

accomplished by planetary gears known as power-splitting devices. The main principle 

behind this system is the decoupling of the power supplied by the gas/petrol engine from 

the power demanded by the driver. The battery is charged by regenerative braking or with 

surplus power generated by gas/petrol engine. It takes advantage of the energy-efficient 

electric motors when the car runs in the low speed range, and calls on the gas/petrol 

engine when the car runs in the higher speed range. Toyota Prius is using this type 

configuration. 

1.3 Energy Storage System and Power Electronics Requirements 

Energy storage technologies, especially batteries, are critical enabling technologies 

for the development of hybrid vehicles or pure electric vehicles. Recently, the batteries 

widely used for vehicle mainly include three types: Lead Acid, Nickel-Metal Hydride and 

Lithium-ion. In fact, most of hybrid vehicles in the market currently use Nickel-Metal-

Hydride due to high voltage requirement in its battery system. Lithium-ion batteries are 

expected to be the battery chemistry of choice for hybrid vehicle or even electric vehicles 

because they have relatively lighter weight and higher energy density. However, there are 

still many technical barriers which have to be overcome before the batteries are widely 

used. These barriers include cost, performance, life, and durability [13][14][26]. 
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Ultracapacitors, like batteries, are energy storage devices and store charges 

electrostatically. Ultracapacitor can provide a very high power, rapidly charged and 

discharge, long life time and maintenance free [15][16]. Ultracapacitors can be the 

primary energy source during acceleration and hill climbing, as well as regenerating 

braking energy. Using of ultracapacitor in conjunction with a battery combines the power 

performance of the former with the greater energy storage capability of the latter. This 

combination can extend the life of the battery, reduce the size of battery, and improve the 

performance of vehicle since ultracapacitor can provide high peak power whenever 

necessary [18]. The ultracapacitor can capture and store large amounts of electrical 

energy during braking in short time and release it fast during the next acceleration. Thus, 

the ultracapacitor can greatly improve fuel efficiency under stop-and-go urban driving 

conditions. However, the combination of ultracapacitors and batteries requires additional 

power electronics, such as a bidirectional DC/DC converter [18][19][20]. The additional 

cost and weight of ultracapacitor and power electronics may be justified by the 

downsized battery and the IC engine, and improved the battery life time. Meanwhile, the 

cost of ultracapacitors has been decreasing markedly over the last few years [21][22]. In 

addition, not only hybrid vehicle, many other applications can benefit from 

ultracapacitors [23][24][25]. 

The power electronics and electric drive system are the technology foundation for 

hybrid electric vehicles and electric vehicles. It is necessary to develop the power 

electronics research to support and promote the design, development, and demonstration 

of power electronic components and systems that will overcome major technical barriers 

to the commercialization of hybrid electric vehicle technologies [26]. The main 
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components of power electronics in hybrid vehicles include DC/DC converters, AC/DC 

rectifier, the motor controller and inverters that condition the electrical signal between the 

power generation unit (ultracapacitor or battery) and the electric motor to provide power 

to various components. 

The power electronics requirements for energy storage system include: 1). 

Bidirectional DC/DC converters to boost battery pack voltage to high voltage bus or 

boost/buck between different energy storage devices (such as between ultracapacitor and 

battery); 2) the battery charger with special charging strategy and power factor correction 

(PFC) capability, in order to recharge the battery from power grid; 3) battery 

management system for battery pack; 4) circuit protection.  

The selection of power semiconductor devices, control and switching strategies, the 

packaging of the individual units, and the system integration are also very crucial to the 

development of efficient and high performance energy storage system. The 

Electromagnetic Interference (EMI) filters needs to be considered due to the switching of 

the devices. Soft switch techniques could be applied if necessary to lower switching 

losses and lower EMI [27]. 

1.4 Project Overview 

This dissertation aims to design an advanced energy storage system for a small plug-

in hybrid electric vehicle whose performance will approach very closely to the optimal 

possible, in terms of energy efficiency, for passenger road vehicles. The efficiency will 

be higher that of currently commercially available hybrid vehicles, whose structure has 

been customized to be accepted in the larger market place. This dissertation will adopt 
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the series hybrid system due to its simple control system and high efficiency in the urban 

drive condition. 

Following is the outline of this dissertation: 

Chapter 2 describes different types of energy storage device and selection of two 

types energy storage device (dual-source energy storage system) for this dissertation. A 

simulation model is built to determine the size of energy storage including the capacity 

(kWh) for a 20 miles range on PHEV and the peak power during urban driving. 

Chapter 3 describes the power train among different energy sources for the series 

plug-in HEV, especially the power flow control strategy between the battery and the 

ultracapacitor in energy storage system. A simulation based on MATLAB Simulink is 

built to validate the power train control strategy. 

Chapter 4 describes a 45 kW power rating bidirectional DC/DC converter between 

the battery pack and the ultracapacitor pack. The interleaving technique is adopted for 

this converter to reduce the input/output current ripple and decrease device stress. A 16-

phase interleaved bidirectional DC/DC converter based on discontinuous conduction 

mode (DCM) is proposed. The design, construction and testing of the hardware prototype 

are presented, and the experimental results are included. 

Chapter 5 proposes a novel ZVS/ZCS soft switch for DC/DC converter based on 

DCM operation to improve efficiency and decrease EMI.  

Chapter 6 describes the charger design for battery pack from power grid. Two types 

of charger design are proposed and simulated. One uses a large output capacitor and the 

other utilizes ultracapacitor and the dc/dc converter described at Chapter 4 as capacitance 

filter which removes the requirement of large output capacitors.  
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Chapter 7 concludes the dissertation and provides a discussion of future work.  
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Chapter 2.  

ENERGY STORAGE SYSTEM FOR HEV 

2.1 Introduction 

The focus of HEV design is mostly on energy storage system (ESS) which is closely 

related with their performance, fuel economy, cost, safety, weight and volume. There are 

different energy storage devices available for HEV in current market, such as Nickel 

Metal Hydride (NiMH) batteries, Lithium-ion batteries and ultracapacitors. The size of 

the ESS is determined to provide sufficient energy storage capacity (kWh) and adequate 

peak power (kW) ability. Too large capacity and high peak power will increase the cost, 

volume and complexity of the control system, while too small capacity and low peak 

power will decrease the performance of the vehicle and the operating range on electrical 

power alone in plug-in HEV. This requirement can be obtained once the vehicle is 

specified and the performance target is established. However, it is a challenging to find 

an optimal ESS design that would satisfy the special characteristics. In addition, the life 

cycle and hardware cost have to be appropriately considered. 

2.2 Energy Storages Technologies 

Currently, energy storage devices mainly include chemical batteries, flywheels, 

ultracapacitors and fuel cells. Figure 2.1 shows the energy density and power density of 

most widely used energy storage devices [28]. ESS can use one or more types of energy 

storage devices. Most hybrid vehicles choose battery as energy storage system, some of 
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them choose a combination of battery with ultracapacitor since battery has high energy 

density and ultracapacitor has high power density characteristics. At present, there are 

three types of batteries that are widely used: lead acid (L-A), Ni-MH, and Lithium-ion 

(Li-ion). With the differences of battery chemistry, there are tradeoffs between energy 

density and power density. Different types of energy storage device have different 

advantages and disadvantages. 

 

Figure 2.1 Energy density vs power density of different energy-storage devices 

2.2.1 Lead Acid  

Lead acid batteries are the most prevalent batteries used for vehicle starting and 

other ancillary power functions. They have advantages of low cost per watt-hour, robust, 

durable, low self-discharge rate, and no memory effect characteristics. The drawbacks of 

the lead acid battery include low power and energy densities, and potential environmental 

impact, where the lead electrodes and electrolyte can cause environmental harm if not 

disposed properly at a recycling facility [30].  

http://www.ika.rwth-aachen.de/r2h/images/5/54/Energy_and_power_density_2.jpg�
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2.2.2 Nickel Metal Hydride Battery (Ni-MH) 

The Ni-MH has been on the market since 1992. Its characteristics are similar to 

those of the nickel/cadmium battery. The Ni-MH battery is the most widely used battery 

in commercial hybrid vehicle. The Ni-MH battery has a higher energy density than a 

Lead acid battery. It is also relatively environmentally friendly, has good endurance 

against misuse, and more maturity technology than Li-Ion. The disadvantages of Ni-MH 

include high self-discharge, memory effect and low recharging energy efficiency. Ni-MH 

battery pack has higher cost than a lead acid battery pack and lower power and energy 

density than lithium-ion battery pack.  

2.2.3 Lithium Ion Battery 

Lithium ion is the most potential battery type used as energy storage in hybrid 

vehicle due to high power and energy density. It also has advantages of no memory effect, 

low self-discharge and high recharging energy efficiency. Lithium-ion batteries can be 

formed into a wide variety of shapes and sizes, thus, they can efficiently fill the limited 

space of the devices that they power for. The major concerns of using Li-ion battery on a 

hybrid vehicle are the over-heating problem during recharging, safety and high cost. 

2.2.4 Ultracapacitor 

Ultracapacitors are electrochemical capacitors that have an extremely high energy 

density compared to common capacitors. Energy is storied in the double layer formed at a 

solid/electrolyte interface [29]. Advances in new materials and new ultracapacitor 

designs have considerably improved the energy storage capability and cost of this 

emerging electrical energy storage device. The advantages of ultracapacitor include long 
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life, high output power, reliable and very high rates of charge and discharge. The 

disadvantage is high cost. The ultracapacitor generally used in combination with the 

battery as energy storage in HEV. The ultracapacitor devices are commercially available 

from several companies, including Maxwell, Ness, and EPCOS. The capacitance of their 

products, range from 1000-5000 F. 

2.3  Size and Types of Energy Storage Devices 

The size of the ESS is determined to provide sufficient energy storage capacity 

(kWh) and adequate peak power (kW) ability, which is related with vehicle performance 

and cost. The cost of energy storage system is still very high; therefore it is a major 

obstacle for plug-in HEV to be viable. Thus, it is vital important to estimate energy 

storage size to make reasonable choice for energy storage devices. Generally, the 

estimation can be obtained once the vehicle is specified and the performance target is 

established.  

In order to determine the size of energy storage system, a simulation model is built 

to simulate the battery state of charge (SOC) and the battery output power during the pure 

electric power drive with a given driving condition. This model will consider rolling 

resistance, aerodynamic drag, grading resistance (or potential energy charge with 

altitude), regeneration braking, system energy loss, and the battery efficiency. 

This simulation is based on practical urban driving test around Lincoln city, 

Nebraska. The total distance of the test route is 18.2 miles, and total time is 2980 s. From 

the driving test, the vehicle speed data and roads longitude and latitude data are obtained. 

These data are measured by a Global Position System device (Delorme Tripmate GPS 
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Navigation). This simulation model also considers the potential energy changes with 

altitude. The altitude data is acquired by checking topographic map according to 

measured longitude and latitude. Current hybrid vehicles, in the urban driving condition, 

do not have adequate storage for the often much larger potential energy changes with 

altitude, which are quite noticeable even in cities such as Lincoln, significant in hilly 

cities such as San Francisco, and dominate in mountainous areas.  

2.3.1 Simulation Model 

Most roads have a non-zero gradient. While the vehicle is moving, there is 

resistance that tries to block its movement. The resistance usually includes tire rolling 

resistance Froll, aerodynamic drag Faero, and uphill resistance Fg (which becomes an 

impetus during downhill), as shown in Figure 2.2. The tractive effort, Ftot, is produced by 

the battery energy and is transferred through the transmission and final drive to the 

wheels. The tractive effort is required to overcome the resistance effort and to accelerate 

the vehicle. In the longitudinal direction, the dynamic equation of vehicle motion can be 

described by the following relation: 

tot roll aero g accF F F F F= + + +                                            (2-1) 

According to [30], equation (2-1) can be expressed as: 

21cos ( ) sin
2tot r f D w v v

dVF Pf a A C V V m g a m
dt

ρ= + + + +            (2-2) 

    P is the normal load, acting on the center of the rolling wheel. In here, P = mvg. 

    fr is the rolling resistance coefficient. 

    α is the road angle (refer to Figure 2.2). 

    ρ is air density, 1.202 kg/m3. 
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 Af is vehicle frontal area. 

 CD is the aerodynamic drag coefficient. 

    V is the vehicle speed. 

  Vw is the wind speed in the vehicle’s moving direction. 

  mv is the mass of vehicle. 

  g is acceleration of gravity. 

 

Figure 2.2 Forces acting on the vehicle 

 

   
dV
dt

 is the acceleration of the vehicle. 

According to Mechanical power definition and equation (2-2), the total tractive 

energy Jtot and demand power Pdemand can be expressed as: 

21( cos ( ) sin )
2tot tot r f D w v v

dVJ F s Pf a A C V V m g a m s
dt

ρ= = + + + +   (2-3) 

21( cos ( ) sin )
2demand tot r f D w v v

dVP F V Pf a A C V V m g a m
dt

ρ= = + + + + V   (2-4) 

where s is the driving distance of the vehicle and V is the vehicle speed. 



 

 

16

/

It is assumed that the energy loss from the battery due to vehicular energy 

management is Jloss and the battery discharge/charge efficiency is ηd/ηc. The battery 

energy Jbattery during discharge and charge can be expressed, respectively, as: 

( )battery tot loss dJ J J η= +                                           (2-5) 

( )ba ttery to t loss g cJ J J η η= +                                         (2-6) 

And the battery output power Pbattery can be expressed as: 

battery battery
battery

dJ J
P

dt t
Δ

= =
Δ                                      (2-7) 

Where ηg is the regeneration efficiency and t is the vehicle drive time. 

2.3.2  Initialization of Simulation 

According to the simulation model, the vehicle parameters need to be initialized, 

such as CD, mv and Af, energy losses, vehicle speed and the road gradients. Relevant 

vehicle technical parameters for this simulation are listed in Table 2-1 [31][32], which is 

taken from the specifications for the 2004 Toyota Prius. However, the energy storage 

parameters are different with the Toyota Prius, as shown in Table 2-2. There are two 

simulations, one is based on Lithium ion batteries, and another is based on NiMH. The 

simulation results are then compared.  

 

Table 2-1 Toyota 2004 Prius specifications 
Mass mv 

(lb) 

Wheel dia. 

(inch) 
fr CD 

Af 

(m2) 

2890 15 0.008 0.26 2.16 
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Table 2-2 Energy storage specifications for the simulation 

Battery Wh/kg 
Useable 

SOC 
ηd ηc 

Lithium Ion 143 ~70% 0.95 0.95 

NiMH 46 ~40% 0.84 0.84 

 

Energy loss Jloss includes electric circuit losses and hybrid drive system losses. The 

electric circuit losses are assumed to be 5%. The hybrid drive system losses include gear 

losses, motor-rotor losses, and other gear losses. According to [33], the hybrid drive 

system losses in 2004 Toyota Prius vehicle are related to the motor shaft speed, as shown 

in Figure 2.3.  

 

Figure 2.3 Hybrid electric drive system losses at different motor shaft speeds 

 

During simulation, road features and vehicle speeds are the two main dominating 

factors. Road features are the geographic properties of the road, such as up-hill grades 

and down-hill grades. Vehicle speeds contains stops (velocity of zero), acceleration, 

constant speed, and braking or deceleration. Both road features and vehicle speeds were 
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initially treated as random variables, but are determined by the regions where the vehicles 

are running, and traffic situations. 

 

Figure 2.4 The driving test route around Lincoln urban 

 

 

Figure 2.5 Altitude variation of road 

 
Therefore, in order to achieve a more realistic result in the simulation, these entire 

road features and vehicles speeds need to be considered during the calculations. This 

research involved logging a driving test on a specific route around the city of Lincoln, 

Nebraska. The route is shown in Figure 2.4. The total distance of the test route is 18.2 
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miles, and total time is 2980 s. The altitude of roads is measured by topographic map 

according to its longitude and latitude, and the results are shown in Figure 2.5. The 

vehicle speed is measured by a Global Position System device, (Delorme Tripmate GPS 

Navigation), and results are shown in Figure 2.6. The maximum speed of vehicle is 44.2 

mph (miles per hour) and average speed is 22.0 mph.  

 

Figure 2.6 Driving speed schedule of vehicle 

 

Figure 2.7 Battery energy consumption during driving 
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2.3.3  Result of Simulation 

According to equations (2-3), (2-5), (2-6) and the test data shown in section 2.3.2, 

the demands on battery energy at different distances and times can be calculated, and the 

results are shown in Figure 2.7. The simulation results show how much battery energy is 

consumed at different driving distances. For example, designing an energy system with a 

15 miles range on battery power alone, it needs 2.54 kWh usable energy using Lithium 

ion batteries, while it needs 3.07 kWh usable energy using NiMH batteries. The 

difference of requirement for these two type batteries is caused by different 

charge/discharge efficiency, shown in Table 2-2. From the simulation results, the battery 

transfer energy has almost linear relationship with the driving distances. For a 15 miles 

range on all electrical power, the useable energy and capacity requirements are shown in 

Table 2-3.  

Table 2-3 Battery requirement for a 15 miles range 

Battery Type 
Useable energy 

(kWh) 

Capacity 

(kWh) 

Weight 

(kg) 

NiMH 3.07 7.68 167 

Li-Ion 2.54 3.63 26 

 

Figure 2.8 is the state of charge of Lithium ion battery between 20%-90%, and 

NiMH battery between 40%-80%. The results show that expanding the usable SOC 

window drastically reduces the total battery capacity requirement, which can 

substantially reduce the energy storage system cost and volume. Hence, the selection of 

battery and battery parameters, especially the usable SOC window, are crucial and 

dramatically affect the ranges operating on battery power alone.  
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Figure 2.8 Battery SOC during drive cycle 

 

Figure 2.9 Output power of the battery along a graded road 

 

According to equation (2-7), the battery output power can be simulated, shown in 

Figure 2.9. The energy storage system is chosen as a Lithium ion battery, and the road 

altitude profile is shown in Figure 2.5. The result shows that the peak output power is 

nearly 41kW. The battery power works in a broad region and change very quickly and 

frequently. In order to decrease the battery peak power, improve battery cycle lifetime 
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and reduce system cost, the ultracapacitors are applied to combine with chemical 

batteries in energy storage system [34][35]. The ultracapacitors are designed to provide 

peak power to meet high power requirement during vehicle acceleration, or absorb the 

peak charging power during regenerative braking. 

2.4 Conclusion 

According to simulation, the energy storage capacity is almost linear with driving 

distance. Thus, for 20 miles range plug-in HEV with Lithium ion battery pack, the energy 

storage capacity is 4.84 kWh. For a 1.2 factor of safety, the battery pack capacity should 

be around 5.8 kWh. 

This project is based on modifying Toyota Prius vehicle, so the battery system 

should be compatible with Prius vehicle. The Prius NiMH pack nominal voltage is 

201.6V, ranging from 180V to 270V during use. Therefore, this project uses 64 cells of 

3.7V 25Ah of Lithium ion battery with 5.9 kWh capacity. The battery pack nominal 

voltage is 236.8 V and working range is from 180V to 268V. 

The peak output power is more than 40 kW and the power of the electric motor in 

Prius vehicle is 50 kW. The battery can only provide 5.9 kWh, so the extra power will be 

provide by ultracapacitor.  
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Chapter 3.  

CONTROL STRATEGY FOR DUAL-SOURCE ENERGY 

STORAGE SYSTEM  

3.1 Introduction 

Due to the existence of multiple energy sources, power train control strategy needed 

be developed. There are many different control strategies used for HEV in order to 

achieve the best performance and the highest efficiency during driving [17][18][36][37]. 

Reference [18] proposes a control strategy to determine both the ultracapacitor current 

and battery current based on load current frequency. According to [18], battery provides 

current with low frequency component and ultracapacitor provides extra current with 

high frequency component. This control strategy does not consider particular condition 

such as ultracapacitor energy is low and needs recharging from battery. In another 

strategy presented by [36], the battery is designed to provide a minimum power for a 

request power and any remaining required power is supplied by ultracapacitor. If the full 

power cannot be supplied by the ultracapacitor then the remaining is supplied by the 

batteries. In [37] the different control strategies are summarized and compared for 

ultracapacitor and battery combination storage system. 

In the proposed series plug-in HEV system design in this dissertation, there are three 

types of energy sources: battery, ultracapacitor and a small internal combustion (IC) 

engine. Two main operation modes are studied in this system. One is pure electrical 

operation mode, while IC engine is turned off; another is hybrid operation mode, while 
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IC engine is turned on and combined with ultracapacitor and battery to provide power. 

Figure 3.1 is the architecture of power train control system. This chapter mainly focuses 

on pure electrical operation mode. The ultracapacitor current is determined by the load 

demand, vehicle speed, ultracapacitor SOC and battery SOC.  

 

Figure 3.1 Power train control system architecture 

3.2 Electrical Operation Mode 

When the dual-source (ultracapacitor and battery) energy storage system can provide 

enough power and energy during driving, the vehicle will work on pure electrical mode 

and IC engine is kept off. Since the battery power is low in this system, the ultracapacitor 

should not only provide enough power for acceleration but also absorb enough power 

during regenerative braking. Therefore, the ultracapacitor SOC should be maintained in a 

range which can obtain both acceleration and braking performance.  

The energy of ultracapacitor will be kept between Ea and Ed according to vehicle 

speed. Ea is the energy of UC to guarantee the vehicle acceleration from current speed to 

a demand speed in a short time, and it is a function of vehicle speed. The maximum 

demand speed at different current vehicle speed is shown in Table.3.1. Ed is designed to 
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ensure the ultracapacitor has enough room to absorb regeneration energy when vehicle 

speed is decelerated from current speed to zero in a short time. The maximum energy of 

ultracapacitor Emax minus Ed is the room for regeneration energy. Ea and Ed can be 

calculated at different vehicle speed based on simulation in chapter 2. The calculation 

results are shown in Table 3-1, in which the battery discharge/charge during 

acceleration/deceleration is already considered.   

 

Table 3-1 Acceleration energy and regeneration energy according to vehicle speed 
Vehicle Speed 

(m/s) 

Maximum Demand 

Speed (m/s) 

Ea 

(J) 

Emax - Ed 

(J) 

0 24 377313 0 

4 24 373606 2569 

8 24 349896 23746 

12 24 303158 62749 

15 24 250637 103051 

18 25 222088 150612 

21 26 173977 208244 

24 27 117257 285148 

28 29 40710 399303 

30 31 14634 460677 

 

Since the energy of ultracapacitor is a function of voltage, ultracapacitor energy Euc, 

Ea and Ed can be calculated by following equations: 

21
2ucE C V=                (3-1) 
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2 2
m in

1 (
2a aE C V V= − )        (3-2) 

2
m ax m ax

1 (
2d

2 )dE E C V V− = −       (3-3) 

C: capacitance of ultracapacitor, 46.875 F in this system. 

V: ultracapacitor voltage. 

Va: ultracapacitor voltage to guarantee sufficient energy for acceleration from current 

speed to the maximum demand speed. 

Vd: ultracapacitor voltage to guarantee sufficient room to absorb regeneration energy 

when vehicle speed is decelerated from current speed to zero. 

Vmin: minimum ultracapacitor voltage, 86.4 V in this system. 

Vmax: maximum ultracapacitor voltage, 172.8 V in this system. 
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Figure 3.2 Ultracapacitor voltage working range 

According to equations (3-2) and (3-3), the control system can keep ultracapacitor 

voltage between Va and Vd so that the ultracapacitor energy can be maintained between Ea 
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and Ed. According to the data in Table 3-1, Va and Vd can be calculated and the results are 

shown in Figure 3.2. The ultracapacitor can provide sufficient energy for acceleration and 

enough room for regeneration as long as the ultracapacitor voltage is kept between Va and 

Vd.  

The rule for power flow among ultracapacitor Puc, battery Pbatt and load Pdemand are 

shown in as follow: 

a). If |Pdemand| <= |Pbatt_max|, Puc is zero and Pbatt is equal to Pdemand. 

b). If |Pdemand| > |Pbatt_max|, Pdemand is equal to the sum of Puc and Pbatt. 

c). If Vuc >Vd, Pbatt will be decreased but not smaller than - Pbatt_max. 

d). If Vuc <Va, Pbatt will be increased but not more than Pbatt_max. 

3.3 Hybrid Operation Mode 

When the SOC of battery is low, the IC engine will be turn on. The IC engine will 

be operated under the highest efficiency condition. The electricity generated by IC engine 

will charge the energy storage system till the battery SOC reaches at high level. Figure 

3.3 is the battery SOC at different operation mode. The first operation mode, electrical 

operation mode, is discussed in last section. The third operation mode is that the battery 

is charged by plugging into power grid when the vehicle is already stopped. This section 

will focus on the second operation mode: hybrid operation mode. 

Following are the rules for hybrid operation mode: 

a) If Pdemand <= Pengine, the load demand power is supplied by IC engine and the 

energy storage system will be charged in this condition. 
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b) If Pdemand > Pengine, the load demand power is supplied by both IC engine and 

ultracapacitor. 

c) During hybrid operation mode, the ultracapacitor power control is the same with 

electrical operation mode. The ultracapacitor voltage will be kept between Va and Vd. 

Battery SOC 

 

Figure 3.3 The battery SOC at different operation mode 

 

 

Figure 3.4 HEV power train system model based on MATLAB Simulink 
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3.4 Simulation Model for HEV Power Train System 

To demonstrate the performance of vehicle based on the rule discussed in section 3.2, 

a simulation model is built based on MATLAB Simulink, shown in Figure 3.4.  

The Energy Management Subsystem is the power train control system, which 

determines the reference signals for ultracapacitor, the electric motor drive, the electric 

generator drive and the IC engine in order to accurately distribute the power from 

different sources. These signals are calculated according to pedal position, vehicle speed, 

battery SOC and ultracapacitor SOC.  

The Electrical Subsystem is composed by six parts: the ultracapacitor, the battery, 

the generator, the electrical motor, and two bidirectional DC/DC converters. 

a) The battery is a 25 Ah, 236.8 V, 6 kW Lithium ion battery. 

b) The ultracapacitor is a 46.88 F, 172.8 V ultracapacitor. 

c) The electrical motor is a 500 Vdc, 50 kW interior permanent magnet synchronous 

machine (PMSM) with associated drive.  

d) The generator is a 500 Vdc, 10 kW PMAM with the associated drive. 

e) The first DC/DC converter between the battery and the motor/generator is 

voltage-regulated. The converter adapts the low voltage of the battery to the high voltage 

DC bus which feeds the AC motor at a voltage of 500V. 

f) The second DC/DC converter between the battery and ultracapacitor is to control 

the power flow from the ultracapacitor. This DC/DC converter is a bidirectional 16-phase 

interleaved converter based on DCM operation, and the detail discussion is shown in 

chapter 4. 
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The Vehicle Dynamics Subsystem models the mechanical parts of the vehicle. The 

IC engine is based on the model of Honda GX390 engine. 

3.5 Simulation Results 

The demonstration simulates the power flow between battery and ultracapacitor 

during different operation modes: accelerating and regenerative braking. The results are 

shown in Figure 3.4.  

a) 0 ~ 0.7 s, the vehicle speed starts from 0 km/h and the driver pushes the 

accelerator pedal to 70%. The electrical motor power is only fed by the battery as long as 

the power is lower than 6 kW. 

b) 0.7 ~ 10 s, the required power is greater than 6 kW. The electrical motor power 

comes from both battery and ultracapacitor. The battery power is kept constant and the 

ultracapacitor power varies with load power.  

c) 10 ~ 12 s, the required power is smaller than 6 kW at high speed. The 

ultracapacitor power falls to zero, and the electrical motor power is only fed by the 

battery. 

d) 12 ~ 15 s, the accelerator pedal is set to -50% and vehicle is operated under 

regenerative braking condition. The battery is kept recharging at aconstant power and 

other extra regenerative braking power is absorbed by ultracapacitor.  

Figure 3.5 shows the ultracapacitor voltage and working range Va and Vd. The 

ultracapacitor voltage is kept between Va and Vd during driving. Figure 3.6 shows the 

battery SOC, the voltages (DC bus, battery and ultracapacitor) and the currents (motor, 

battery and ultracapacitor). 
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Figure 3.5 Vehicle pedal position, car speed and electrical power distribution 

 



 

 

32

 
 

Figure 3.6 Ultracapacitor voltage and its work voltage range 

 

Figure 3.7 Electrical measurements 
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3.6 Conclusion 

For the application of broad range (from average to high peak) of power demand 

such as HEV, the dual-source energy storage system, battery plus ultracapacitor, can 

bring significant benefits, due to complementary characteristics of batteries and 

ultracapacitors. The proposed control strategy can keep the battery working at low peak 

power and low current ripple conditions, which will improve battery life and ensure 

battery working under safety range. Meanwhile, the control strategy also maintains the 

ultracapacitor SOC in a range depending on vehicle speed, which will improve the 

vehicle’s ability to meet power demands and the overall vehicle efficiency. 
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Chapter 4.  

16-PHASE BIDIRECTIONAL INTERLEAVED DC/DC 

CONVERTER BETWEEN ULTRACAPACITORS AND 

BATTERIES 

 

In this chapter, a 16-phase interleaved bidirectional DC/DC converter is presented 

featuring smaller input/output filters, faster dynamic response and lower device stress for 

hybrid vehicle applications. This converter is connected between the ultracapacitor (UC) 

pack and the battery pack in energy storage system of hybrid vehicle. Typically, multi-

phase interleaved converters require a current control loop in each phase to avoid current 

imbalance between phases. This increases system cost and control complexity. In order to 

minimize imbalance currents and remove the current control loop in each phase, the 

converter is designed to operate in the discontinuous conduction mode (DCM). The high 

current ripple associated with DCM operation is then alleviated by interleaving. The 

design, construction and testing of experimental hardware prototype are presented with 

the testing results are included in this chapter. 

4.1 Motivation and Background 

The transition from internal combustion engine (ICE) vehicles to pure electric 

vehicles (EVs), or hybrid electric vehicles (HEV) is very attractive and desirable, but 

there are still some serious issues in energy storage technology. The combination of 

batteries and ultracapacitors as an energy storage unit is considered as a potential solution 
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to improve vehicle performance, and battery lifetime and safety [37] [38]. This 

combination allows an excellent performance in both high acceleration and regenerative 

braking power. The typical topology of a battery and ultracapacitor energy storage 

system is shown in Figure 4.1. The battery pack is parallel connected with the 

ultracapacitor pack through a bi-directional DC/DC converter [39][40]. One objective of 

the design is that the converter has to achieve high power density with low 

current/voltage ripple, particularly on the battery side. Moreover, the converter also has 

to meet prevalent automotive requirements, such as high efficiency, low cost, low EMI, 

and compacted component size. Several different circuit topologies for high power 

applications have been published in [41][42][43][44][45]. A multi-phase interleaved 

DC/DC converter is adopted as a good solution for the application with high power and 

high current. 

 

Figure 4.1 Typical topology for battery and ultra-capacitor energy storage system 

Interleaving techniques have been used widely in power converters in recent 

years [45][46][48][49][50][51]. Typical benefits of interleaving techniques includes: 

reducing device stress by separating power into each separate phase, reducing filter size 

by increasing effective frequency, and cancellation of the current ripple effect. The 

interleaving techniques also enables some other beneficial technology changes, such as 
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from aluminum electrolytic or polymer organic capacitors to film, or even ceramic 

capacitors that would improve the equivalent series resistance, power density, and 

reliability in a rugged thermal environment.  

However, most of the published papers require a current control loop in each phase 

to achieve balanced phase currents and improve dynamic response [48][51][52][53]. The 

cost, weight, and control complexity grows when the number of phases increases, which 

limits the total number of phases to be considered. The optimum number of phases will 

be another issue that has to be considered [46][54][55]. Because imbalance current 

depends mainly on duty cycle differences, inductance value differences, and parasitic 

resistance differences among different phases, all of which integrate over time in a 

continuous conduction mode converter. In order to minimize imbalance currents and 

eliminate the current control loops, some authors designed a synchronous converter 

working in continuous conduction mode (CCM). However, the inductor current falls to a 

negative value during every switching cycle [49][50], which would lead to a higher 

current ripple per phase and lower efficiency, especially for light load condition. 

This chapter proposed a design of a 16-phase interleaved power converter operating 

in discontinuous conduction mode (DCM) that improves the current balance without 

using current control loops. The design also has a fast dynamic response since the phase 

current is reset to zero at every switching cycle. To verify the proposed approach, a 45-

kW hardware prototype has been constructed and tested with experimental results 

presented. 
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4.2 Multi-phase Interleaved DC/DC Converter on DCM 

4.2.1 Interleaved Converter Topology and Operation 

The multiphase interleaved DC/DC converter is a circuit topology where the basic 

converter circuits are placed in parallel between the input and output. The schematic 

diagram of the 16-phase interleaved DC/DC converter is shown in Figure 4.2. An 

ultracapacitor pack is placed on the low-voltage side and a battery pack is placed on the 

high-voltage side. The high-voltage side is also connected with the traction system or 

load. When the demand power is larger than battery pack rating power, the ultracapacitor 

supplements power for acceleration and the converter works in boost mode. When the 

energy stored in ultracapacitor is not full and regenerative braking power is larger than 

the battery’s maximum charging power, the ultracapacitor absorbs power from 

regenerative braking and the converter is operated in buck mode. 

 

Figure 4.2 Power stage of a 16-phase bidirectional DC/DC converter 
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The switch gate signals and inductor currents are shown in Figure 4.3. The gate 

signals for the phases are exactly shifted by 3600/N (N is the number of phases, here N = 

16). All the phase currents have the same waveform, and are also shifted 3600/N. The 

ripple in the low voltage side current iL, which is the sum of all low side phase-currents, 

is significantly reduced due to harmonic cancellation. Furthermore, the frequency of the 

ripple in iL is increased to N*fs (fs is switching frequency).  

Because of lower current ripple and less harmonic, the requirement of filter 

capacitance on the low voltage side can be greatly reduced or even be removed. The filter 

capacitance on the high side is composed of N capacitors, each one being placed 

physically close to its phase, in order to reduce the parasitic inductance between the 

switch and the capacitor. Each phase processes only 1/N of the total power, which greatly 

reduces the stresses on switch devices. 

 

 

Figure 4.3 The gate signal and inductor currents waveforms 
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4.2.2 DCM in Synchronous DC/DC converter 

In DCM operation, the main switch duty ratio is demanded by the output current. 

This allows the control system to respond very rapidly to the changes in the demanded 

load current. Figure 4.4 shows circuit diagram of single phase and Figure 4.5 shows the 

gate control signal and inductor current of the single phase in boost mode.  

In boost mode operation, the duty ratio of the main switch (low side switch Q1) is a 

function of output current, and can be calculated by following equation: 

2
2

2 ( )s H L
boost

L

Lf I V VD
V

−
=         (4-1) 

Where, L is the inductance in each phase; fs is the switch frequency; I2 is the average 

current on the low voltage side; IH is the average current on the high voltage side; VH is 

the voltage on the high voltage side; VL is the voltage on the low voltage side. 

 

 

Figure 4.4 Circuit diagram of single phase 
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Figure 4.5 Gate signal and inductor current waveform of boost mode 
 

 In CCM condition of synchronous converter, the duty ratio '   of the freewheeling 

MOSFET equals to

D

D  with necessary dead time. While in DCM condition, the 

freewheeling MOSFET has to be turned off by zero current detection in inductor current, 

or the on-time is estimated by the control stage. In this converter, the on-time of 

freewheeling MOSFET is estimated by the following equation in boost mode: 

 ' boost L
boost

H L

D VD
V V

⋅
=

−          (4-2) 

Figure 4.6 shows the tested waveforms of following four signals: the low side switch 

gate voltage vgs1, the high side switch gate voltage vg2 with ground as reference, the low 

side switch voltage vds1, and the inductor current iL in boost converter mode. The figure 

shows that the high side switch turns off close to where the inductor current reaches zero 

and thus that the D' estimation equation works well in the real system.  

Equations (4-3) and (4-4) are the duty ratio functions for main switch and 

freewheeling MOSFET in buck mode.  
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(
s L

buck
H H L

Lf I VD
V V V

=
− )           (4-3) 

( )' buck H L
buck

L

D V VD
V
⋅ −

=         (4-4) 

            

Figure 4.6 Measure waveforms for one phase 

 

From above equations, the imbalance current depends primarily on duty ratio 

differences and inductance differences. However, in DCM mode, the imbalance current is 

very small since each phase current starts from zero at every switching cycle. A 1% 

difference in duty cycle will causes a 2% current imbalance. In CCM mode, however, a 

1% difference in duty cycle can cause an unacceptable current imbalance (for example, 

84% imbalance current [46]) over time. In order to minimize the difference in each duty 

cycle, digital controllers, such as field-programmable gate arrays (FPGA), can generate 
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many signals simultaneously with high accuracy [47]. The phase shift techniques are also 

implemented in the digital controller. 

4.2.3 Control Stage Design 

- -

CT0-D-DT CT1-D-DT

> > > >

Counter

D

D’

Dead time
(DT)

> >

CTN-D-DT

Pulse 0 Pulse 0' Pulse 1'Pulse 1 Pulse N Pulse N’

CT0 CT1 CTN

CT0' CT1' C N'T

 

Figure 4.7 Phase-shifter structure implemented in a FPGA 

 

The control circuit will generate the driving signals for the 16 phases, that is, totally 

32 gate signals need to be generated. Input voltage, output voltage and high-voltage side 

current should be measured to generate pulses. Using digital control, these pulses can be 

kept to a high accuracy level therefore the imbalance current is very small. Thus, current 

control loop in each phase can be removed and the complexity of control circuit can be 

reduced. The main switch duty ratio can be calculated by equation (4-1) in boost mode 

and equation (4-3) in buck mode in the open-loop control system. Also, it can be 

achieved by a simple proportional-integral controller (PI) in the closed-loop control 
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i

system. The duty ratio of freewheeling transistor is calculated by equation (4-2) or 

equation (4-4). Each driving signal is shifted from the previous one.  

The gate signals are generated by making a comparison between duty cycle and 

counter. Each phase has its own counter. The phase shift is achieved by controlling the 

value of the counter. The phase-shifter structure is shown in Figure 4.7. There is a main 

counter, and the calculation of other counters is based on it (CT0 in Figure 4.7). For the 

main switch of each phase, these counters are the main counter minus some constants to 

get new counters, and then compare to the duty cycle. The main switch counter CTi and 

constants Ci to be added are: 

0iCT CT C= −          (4-5) 

1
p

i

i C
C

N
⋅

=
+           (4-6) 

For the slave switch of each phase, the counter can be calculated: 

'
i iCT CT D DT= − −         (4-7) 

Where, i is the phase number; N+1 is the number of phase; Cp is the resolution of 

period which is equal to the range of the counter; DT is the dead time. 

The FPGA NI 7831R has 40 MHz on board frequency generator with a high duty 

cycle resolution (400 different duty cycles for 100 kHz switch frequency). Figure 4.8 

shows part of the phase-shifter program for the 16-phase interleaving based on NI 

LabVIEW environment. 
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Figure 4.8 Phase-shifter program based on NI LabVIEW  
 

4.3   Circuit Parameter Optimization 

4.3.1 Inductor Design 

Generally, inductors are the largest, most expensive and inefficient items in a power 

system. A reasonable design in inductor can have a significant impact on the rest of the 

power electronics design. The inductors applied on this interleaved DC/DC converter are 

low value but will work under high frequency with high current ripple. Therefore, the 

inductor losses become a main issue during design. 

The inductor losses mainly include core loss and winding loss. Core loss, for a given 

frequency, is material dependent. The common core materials for inductor at 100 kHz 

frequency are ferrite cores and powdered metal cores. The ferrite cores are the most 
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popular core materials for inductor and fly back transform due to lower cost and lower 

loss than powdered metal core. Usually, an air gap is added in series with the core to 

provide the required energy storage capability, lower effective permeability and thus 

lower the operating flux density. The problem for this type of inductors is the gap-loss. 

Any winding turns positioned closed to the gap will most likely exist within the high flux 

density of the fringing field and huge eddy current losses can occur in those few turns 

close to the gap, which can cause severe localized heating problems, even leading to the 

failure of the inductor. To solve this problem of gap-loss, one way is to keep the windings 

to a single layer substantially mitigating copper losses; another way is to use a powdered 

metal core. Powdered core helps keep the operating flux density low without creating 

localized gap-loss problems. However, powdered cores typically have significantly 

higher core losses than ferrite cores, especially with relatively high ripple current at very 

high frequency.  

Core losses are a result of variable magnetic field in the core material. For a given 

material, the core loss curve can be found in its datasheet which is a function of operating 

frequency and flux swing. The core losses are due to hysteresis, eddy current and residual 

losses in the core material.  

For a typical square wave voltage across an inductor in a switching power supply on 

CCM shown in Figure 4.9, the biasing magnetic material with DC current will shift the 

minor alternating BH loop, shown in Figure 4.10. It is only the alternating flux density 

(ΔB) that generates core loss. The value of peak AC flux density used with the core loss 

curve in datasheet can be calculated: 
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5 pk
pk

E t
B

A N
⋅ ⋅

=
⋅         (4-5) 

Where, Bpk is the peak AC flux density (ΔB/2) (unit: mT); Epk is the peak voltage 

across coil during “t” (unit: volt); t is the time of applied voltage (us); A is the cross-

sectional area (cm2); N is the number of turns. 

 

 

Figure 4.9 The Square wave voltage across an inductor on the CCM. 

 

 

Figure 4.10 BH loop with DC current on CCM 
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Figure 4.11 The voltage across an inductor on DCM 

 

Figure 4.12 BH loop with DC current on DCM 

      

On the DCM operation, the current falls to zero and is kept at zero until next cycle.  

The core loss is very small and can be ignored after the current falls to zero on each cycle. 

The voltage across an inductor and the BH loop during DCM operation are shown in 

Figure 4.11 and Figure 4.12. The peak AC flux density can be calculated by: 

1 1 25 (pk
pk

p

)E t t t
B

A N t
⋅ ⋅ ⋅ +

=
⋅ ⋅       (4-6) 
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Since the current ripple on DCM operation is more than twice of average current 

value, the core loss in an inductor might become a noticeable effect on the whole circuit 

efficiency. The core loss is calculated for different core material and different core size at 

a specific condition. Assuming the 16-phase interleaved dc converter working at power 

rating with boost converter, so each phase is working at 2.8 kW. The low side voltage is 

87 V and the high side voltage is 268V. Other specific work conditions for an inductor 

are listed in Table 4-1.  

Table 4-1 Specifications for the inductor 

L (μH) Epk (V) t1 (μs) t2 (μs) f (kHz) 

5 87 5 2.4 100 

 

Table 4-2 is the powdered core properties and core loss calculation results. Table 4-3 

is the ferrite core properties and core loss calculation results.  Comparing with these two 

tables, the core loss of powdered core materials is much greater than the core loss of 

ferrite core materials. Therefore, the ferrite core 3C94 has been chosen for the inductor in 

DC/DC converter.  

The gap-loss has to be considered, especially for high-current, high-ripple inductors 

with air gap. To reduce the gap-loss and avoid the winding being melted, following 

action were taken during experiment hardware design: 1) Using Litz wire winding to 

reduce ac winding loss; 2) Keeping the windings positioned close to the air gap to a 

single layer; 3) Keeping other windings a little distance from air gap. Figure 4.13 is a 

photo of a hardwired inductor in the DC/DC converter circuit. The bobbin has been 

eliminated to save the space in the board. 
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Table 4-2 Powdered core properties and calculation results 

Core 

Material 

AL 

(nH/N2) 

le 

(cm) 

Ae 

(cm2) 

Ve 

(cm3) 

Turns 

 N 

Bpk 

(mT) 

Core Loss 

(W) 

XFlux 135 10.74 1.99 21.3 6 132.9 63.9 

Cx60 85.32 19.612 2.2192 43.523 7.6 94.8 27.4 

-M125 628 6.496.49 2.636 17.12 2.8 216.4. 66.8 

-66 130 33.1 5.24 173 6.2 49.6 88.2 

 

Table 4-3 Ferrite core properties and calculation results 

Core 

material 
μ 

le 

(cm) 

Ae 

(cm2) 

Ve 

(cm3) 
Turns N 

Bpk 

(mT) 

Core Loss 

(W) 

3F3 1660 12.7 2.80 35.5 6.6113 86.95 2.0 

3C90 1770 12.7 2.80 35.5 6.54301 87.85 2.0 

3C94 1770 12.7 2.80 35.5 6.54301 87.85 1.6 

3C96 1660 12.7 2.80 35.5 6.6113 86.95 1.1 

 

 

Figure 4.13 Photo of a hardwired inductor 
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4.3.2 PCB Board Topology 

In order to minimize imbalance current between phases, the structure differences 

between phases should be minimized. The heat sink and inductor occupy a large volume 

in each phase therefore it would be congested if all 16 phases been put on a single circuit 

board. Therefore, the 16 phases are separated into two boards and each board has 8 

phases, distributed as a star-shaped with optimized phase order. Figure 4.14 shows the 

physical phase positions of two boards with phase number labeled. One board hosts the 

odd phases and is ordered with optimized parasitics. Another board hosts the even phase 

and is also ordered with optimized parasitics. The capacitors in high voltage side are 

composed of 16 film capacitors, and each one is placed closed to its phase, to reduce 

harmonics in the circuit. The star-shaped distribution is to maintain the same physical 

position of each phase. The optimized phase orders not only keeps each phase under the 

same operation condition but also allows precise harmonic cancellation and current ripple 

reduction in the high side capacitor. 

 

                   

              a) Physical positions of the odd phases             b) physical positions of the even phases 

Figure 4.14 Optimized order for two boards 
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Based on above design methodology, a 16-phase bidirectional DC/DC converter 

without current control loops has been built and tested. A photo of the 16-phase prototype 

is shown in Figure 4.15, which is composed two circuit board with each one hosts 8-

phase converter. Figure 4.16 shows a view of one of the two circuit boards. 

 

      

Figure 4.15 Prototype of 16-phase interleaved DC/DC converter 

 

Figure 4.16 Prototype of 8-phase on one board 
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4.3.3 Circuit Protection 

For the purpose to prevent over-current or short circuit conditions of the 

experimental circuit board during testing, a circuit protection module was developed. 

Though existing devices, such as a circuit breaker or a fuse, are capable to perform the 

same functions, the speed of fuse or circuit breaker is not fast enough to clear the fault 

current, such as within several seconds for 200% of rating current. The red dotted line in 

Figure 17 is the schematic diagram of the circuit protection for over current protection 

between ultracapacitor and DC/DC converter, which can be opened in µs during over 

current condition. The diode D1 in the circuit is to keep the voltage positive in the diode 

and avoid the over voltage of MOSFET when over current happened.   

 

 

Figure 4.17 Over current protection circuit 
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4.4 Experiment and Results 

In the experimental hardware design, following components has been used: Power 

MOSFET IRFP4242; Gate driver FAN7390; Inductor 5 μH, ETD54 core and 3C94 

material with Litz wire winding; Low side capacitor 30 μF ; High side capacitor 240 μF 

which is composed of 16 film capacitors of 15 μF each (one capacitor close to one phase). 

The gate control signal has been implemented by applying an FPGA board (National 

Instrument NI-7831R FPGA, 40 MHz) programmed by PC. The complete converter 

power rating is 45 kW, and the switching frequency is 100 kHz. 

The imbalance currents are mainly caused by the differences in inductance and duty 

ratio between each phase. Figure 4.18 shows the inductor current of each phase and the 

total current before/after capacitor filter. The differences of each phase current are 

primarily caused by the inductance differences since those inductors are made by hand 

and the unequal inductance values are inevitable. The differences on the duty ratio 

between each phase are very small because of high accuracy driving signals generated by 

FPGA. The values of inductance and current on each phase are shown in Table 4-4.  The 

results show that based on the proposed design discussed above, the imbalance current 

between these phases is very small. In theory, 1% difference in inductance would case 

1% of current imbalance. It is concluded from testing that generally a 5% difference in 

inductance causes just a 10% or less current imbalance. The ripple of total current from 

16 phases before capacitor is much smaller than that of individual phase current. 

Therefore, it is possible to get a lower ripple current in the low side of converter by using 

a small capacitor filter. 
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Table 4-4 Inductance and current in each phase 

Phase 
number Phase1 Phase2 Phase3 Phase4 Phase5 Phase6 Phase7 Phase8 

Inductance 
(uH) 4.86 5.28 4.99 5.29 4.92 4.95 5.25 5.14

Inductance 
deviation 

(%) 
5.1% -3.0% 2.7% -3.3% 4.1% 3.4% -2.5% -0.2%

Phase 
current (A) 1.43 1.21 1.39 1.25 1.34 1.32 1.32 1.30

Current 
deviation  

-
10.1% 6.0% -6.0% 3.6% -3.5% -1.6% -1.8% -0.6%

Phase 
number Phase9 Phase10 Phase11 Phase12 Phase13 Phase14 Phase15 Phase16

Inductance 
(uH) 4.91 5.09 5.06 5.18 5.23 5.29 5.29 5.28

Inductance 
deviation  4.3% 0.8% 1.3% -1.1% -2.0% -3.3% -3.3% -3.0%

Phase 
current (A) 1.31 1.29 1.27 1.27 1.29 1.23 1.24 1.25

Current  
deviation -1.2% 0.2% 1.9% 1.9% 0.3% 4.7% 4.1% 3.2%

 

 

Figure 4.18 Phase currents and their total currents 
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Table 4-5 Imbalance current induced by differential duty ratio 

 
Average current in 

Phase14 
(A) 

Average current in 
Phase15 

(A) 
1-I_14/I_15 

Without extra duty 
ratio 

1.32 1.31 0.8% 

Extra 0.5% duty 
ratio in phase 14 

1.38 1.32 4.5% 

Extra 1% duty 
ratio in phase 14 

1.48 1.33 11% 

 

To validate the effectiveness of this approach, an external 0.5% and 1% extra duty 

cycle has been applied to Phase 14 to compare the inductor current with and without 

extra duty cycle condition. Figure 4.19 – Figure 4.21 and Table 4-5 show the results of 

this experiment. Phase 15 is chosen to compare with Phase 14 in Table 4-5 since the 

inductance in these two phases are very close. The results are shown that the current 

imbalance is still acceptable or the performance is very good even with extra 1% duty 

cycle. Normally, the differences on the duty ratio in an FPGA are very small, which is 

less than 0.25% in this application. 

  

Figure 4.19 Phase currents without extra duty cycle 
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Figure 4.20 Phase current with extra 0.5% duty cycle in phase 14 

 

  

Figure 4.21 Phase current with extra 1% duty cycle in phase 14 
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Figure 4.22 One stage boost/buck converter efficiency against input power 

 

 

Figure 4.23 Efficiency of boost converter with 2, 8 and 16 phases against input power 

 

The power rating for this DC/DC converter is 45 kW, so the power rating separated 

in each phase is 2.82 kW. Due to equipment limits, only 5.5 kW power experiment can be 
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carried out in the lab. The efficiency as a function of input power for one stage 

boost/buck converter is shown in Figure 4.22. The efficiency of buck converter is a little 

higher than that of boost converter. And the efficiency values for 2 phases, 8 phases and 

16 phases of boost converter is shown in Figure 4.23. The efficiency for 16 phases is very 

high and there is a trend that the efficiency will be higher if more power were taken from 

it. The switch loss in this type converter is one of the major loss due to large peak current 

on the inductor and the high switching frequency. 

One stage of boost converter with power rating has been tested and the results are 

shown in Figure 4.24. The low side voltage is 172 V and the high side voltage is 220 V. 

The peak inductor current IL is 48.1 A. Vds1 is the voltage between drain and source in the 

low side of MOSFET. There is high voltage spike in voltage Vds2 due to high di/dt value. 

The efficiency for one stage boost converter is 93.2% at 2.82 kW.  

The test results from one stage of buck converter with 2.8 kW power are shown in 

Figure 4.25. The low side voltage is 170 V and the high side voltage is 200 V. The peak 

of inductor current IL is 35.9 A. Vgs1 is the voltage between gate and source of low side 

MOSFET, which is estimated by Equation (4-4). Vg2 is the gate voltage of the high side 

MOSFET to the ground. Vd2 is the drain voltage of the high side MOSFET to the ground. 

The efficiency of one stage buck converter is 95.2% at 2.8 kW power. 

Two phases of boost converter with 5.4 kW power has been test and the results are 

shown in Figure 4.26. The low side voltage is 172.8 V and the high side voltage is 236 V. 

The peak of inductor current IL is 50.3 A.  The efficiency for two-phase boost converter is 

94.9%. 
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Eight phases of boost converter with 5.1 kW power has been test and the results are 

shown in Figure 4.27. The low side voltage is 172.4 V and the high side voltage is 200V. 

The peak of inductor current IL is 18 A.  The efficiency is 95.2%. 

Sixteen phases of boost converter with 5.1 kW power has been test and the results 

are shown in Figure 4.28. The low side voltage is 163 V and the high side voltage is 

195V. The peak of inductor current IL is 14.22 A.  The efficiency is 95.3%. 

The ultracapacitors have been connected to the low voltage side of 16-phase DC/DC 

converter. The test result is shown in Figure 4.29. The input/output voltage and current 

data is collected by NI DAQ. 

Vds1 (50V/div)

IL (10A/div)

 

Figure 4.24 Inductor current and MOSFET voltage Vds1 of one phase 
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Figure 4.25 Waveforms of buck converter at rating power 

 
 

 
 

Figure 4.26 Inductor current and MOSFET voltage Vds1 of two-phase boost converter 
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Figure 4.27 Inductor current and MOSFET voltage Vds1 of 8-phase boost converter 

 

 

Figure 4.28 Inductor current and MOSFET voltage Vds1 of 16-phase boost converter 



 

 

62

 

 
Figure 4.29 Experiment results for 16-phase boost converter connected with ultracapacitor 

 

4.5 Conclusion 

The imbalance current between phases in the proposed design based on DCM 

operation is small and acceptable, thus the current control loop in each phase can be 

removed allowing cost-effective converters with a high number of phases. Another 

advantage of DCM operation is that it can reduce inductance in each phase. The high 

current ripple in each phase associated with DCM operation can be alleviated by 

interleaving. By interleaving techniques, the power and current can be separated in each 

phase, and the device stress can be reduced. The current ripple is also reduced, 

particularly on the battery side which might improve the battery life time. The proposed 

method makes it possible to increase switch frequency and reduce filter size requirements 

that can benefit the smaller volume, lower cost, and higher safety. Moreover, high 
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efficiency can be achieved with proper design. The proposed design is generic and is also 

applicable for other applications.  
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Chapter 5.  

ZVS/ZCS SOFT SWITCH FOR DC/DC CONVERTER 

BASED ON DCM 

 

5.1 Introduction 

DCM operation has the advantage of zero current turn-on. However, this operation 

significantly increases turnoff loss because the main switch is turned off at more than 

twice of the inductor average current. This drawback not only increases power losses but 

also induces current/voltage parasitic ringing. Soft switching techniques provide a 

solution for this problem.  

DC/DC converter with soft switching techniques can achieve both benefit of switch 

transition control and switching loss reduction. This gives the potential to increase switch 

frequency and decrease filter size. The soft switching techniques have evolved from 

series and parallel resonant techniques (RC), quasi-resonant converters (QRC), multi-

resonant converters (MRC) to soft switching PWM converters. In all the resonant 

converters, the output power is depended on the changing of switching frequency which 

makes difficult to optimally design the resonant converter elements [58][59]. Another 

disadvantage is that the switch current rating and/or voltage rating required is 

significantly increased compared with hard switch. To overcome this problem, ZVS with 

clamped voltage topologies was proposed in [58][60]. The disadvantage of these 

converters is that inductor current must be operated in CCM, which would not be a good 

choice for the multi-phase interleaving converter on DCM operation. 
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Another commonly solution is soft switch with half bridge (HB) or full bridge (FB) 

DC converter which have become an important research topic during recent years. A bi-

directional FB DC converter uses phase shifted PWM control and adds auxiliary active 

clamping circuits to achieve zero-voltage and zero-current switching [61][62]. The bi-

directional FB DC converter has higher cost than other topologies. It is too expensive and 

complex to utilize in multi-phase interleaving DC converter. 

To reduce switch losses, a novel zero voltage zero current switch (ZVZCS) for 

bidirectional DC/DC converter based on DCM operation is proposed. An auxiliary circuit 

is added in each phase of the converter to achieve ZVS/ZCS PWM converter and 

improve efficiency. The proposed converter can operate at fixed frequency and has a very 

similar control system with hard switching converter. And it does not increase current 

rating or voltage rating on switch device. Furthermore, the Radio Frequency Interference 

(RFI) and Electromagnetic Interference (EMI) can be decreased by increasing switch rise 

and fall times (lower dv/dt and di/dt) [63][64][65]. 

5.2  Proposed ZVS/ZCS Topology for DCM Operation 

A novel topology is proposed to achieve ZVS/ZCS for the DC/DC converter on the 

DCM operation, shown in Fig5.1.  

A). Boost converter operation 

In the boost mode, Q1 turns on under ZCS and turns off under ZVS, Q2 turns on and 

off under ZVS. The auxiliary switch Q3 turns on under ZCS and turns off under ZVZCS. 

The waveforms of boost operation are shown in Figure 5.2. 
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Figure 5.1 Proposed soft switch topology. 
 

 

 

Figure 5.2 The operation waveform on the boost mode. 
t1 t2 t3 t4 t5 t0 

IC3 

VC

VDs_Q1 

IQ1 

IL 

Q3 

Q2 

Q1 

 

Mode 1 [t0<t<t1]: At t0, Q1 turns on at zero current since the inductor current IL 

already fall to zero before t0. Then inductor current IL will be increased till t1. During this 

mode, the auxiliary switch Q3 turns on under ZCS. This is because no current flow 

auxiliary circuit since both VC3 and VDS_Q1 are kept at zero. 
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Mode 2 [t1<t<t2]: At t1, Q1 turns off under ZVS and IL charge C3 till VC3 reach to 

high side voltage VH. 

Mode 3 [t2<t<t3]: After VC3 reach to VH, Q2 turns on under ZVS when the anti-

parallel body diode is conducting. Q2 would be turned off before inductor current IL falls 

to zero so that Q2 turns off under ZVS. The auxiliary switch Q3 turns off after Q2 turns 

on and before Q2 turns off, so Q3 turns off under ZVZCS. 

Mode 4 [t3<t<t4]:  Inductor current IL falls to zero and both Q1 and Q2 keep off after 

t3. The inductor L and capacitor C3 compose a series LC resonant circuit, and Q3 anti-

body diode is conducting. The voltage VC3 is fall to zero at t4. 

Mode 5 [t4<t<t5]: VC3 is camped at zero, so inductor current IL has to flow anti-

parallel body diode of Q1 till IL decrease to zero.  

Mode 6 [t>t6]: During this mode, inductor L and parasitical capacitor/inductor 

produce oscillation circuit till VDS_Q1 stabled at VL or till next cycle. 

 

Q1 

Q2 
Q4 

-IL 

IQ2 

VDs_Q2 

VC

t1 t2 t3 t4 t5 t0 

IC4 

Figure 5.3 The operation waveforms on the buck mode. 
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B). Buck converter operation. 

The operation of buck converter is very similar with boost converter. The auxiliary 

switch Q3 turns off all the time. And switch Q4 turns on before Q2 turns off and turns off 

after Q1 turns on. The circuit waveforms of buck converter are shown in Figure 5.3. 

5.3 Simulation and Results 

To verify the theoretical analysis of proposed topology, simulation model is built in 

PSpice for one stage converter using the following design specification:  L = 5 μH, C3 = 

C4 = 47 nF and switching frequency fs = 100kHz; VL = 90 V with R_load = 51 ohm 

connected to VH for boost mode operation. And VH =220 V with R_load = 11ohm 

connected to VL for buck mode operation. The switches used in this simulation are the 

model of MOSFET IRFP4242 which is built by International Rectifier Inc. 

The simulation results of boost mode are shown in Figure 5.4, and the results of buck 

mode are shown in Figure 5.5. The inductor current IL, main switch Q1 voltage VDS_Q1 

and current ID_Q1, auxiliary switch Q3 voltage VDS_Q3 and current ID_Q3, and capacitor C3 

voltage VC3 are displayed in the boost mode. The inductor current IL, main switch Q2 

voltage VDS_Q2 and current ID_Q2, auxiliary switch Q4 voltage VDS_Q4 and current ID_Q4, 

and capacitor C4 voltage VC4 are displayed in the buck mode. 

In the boost mode, there are two different operations compared with the hard 

switched topology. One is the period of transition from Q1 turn-off to Q2 turn-on; and 

another is the period of series LC resonance (inductor L and capacitor C3) after the 

inductor current has reached zero. The auxiliary switch Q3 turns on before the main 

switch turns off, so that Q1 turns off at zero voltage due to the capacitor C3. Q3 turns off 
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before the high side switch Q2 turns off. After the inductor current IL falls to zero, the 

inductor L and capacitor C3 compose a series LC resonant circuit, until C3 voltage VC3 

falls to zero, and then VC3 will be clamped at zero. All switches in this circuit is turn 

on/off at zero voltage, or zero current, or both. The circuit has a similar operation in the 

buck converter mode. 

The proposed method can improve efficiency, reduce the heat sink size for the main 

switch and allow reduction of both di/dt and dv/dt by increasing the gate drive resistor. 

Since the losses in auxiliary switches are very small, it’s not necessary to use a heat sink 

for the auxiliary switches. This proposed method can be used for future research. 

 

 

Figure 5.4 Simulation results of the boost mode 
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Figure 5.5 Simulation results of the buck mode 

5.4 Experiment and Results 

A 400 W hardware prototype is designed, built and tested to verify the proposed soft 

switch and evaluate its performance. A 16.8 nF capacitor and IRFP4242 MOSFET are 

used in the circuit. The frequency for main switch is 100 kHz. The control signal is 

generated by FPGA.  

The result is shown in Figure 5.6 on the boost mode without any snubber and 

external gate resistor. Figure 5.7 is zooming in of Figure 5.6 when the main switch Q1 

turns off. The input voltage is 50 V and output voltage is 120V. The efficiency is 92%. 

Similar operation for hard switch is also tested and compared with soft switch. Figure 5.8 

and Figure 5.9 are the experiment results for hard switch topology with gate resistor 2.7 
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ohm. The efficiency is 91.5% for hard switch. Comparing soft switch with hard switch, 

the efficiency does not improve significantly. However, the spike voltage and the voltage 

ringing of soft switch are reduced even without external gate resistor. The noise of soft 

switch gate signal is also smaller than that of hard switch. 

 
Figure 5.6 Experiment result for proposed soft switch with Rg = 0 ohm 

 

     
Figure 5.7 Zoom in of Figure 5.6 when Q1 turns off 
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Figure 5.8 Experiment result for hard switch with Rg = 2.7 ohm 

 

 
Figure 5.9 Zoom in of Figure 5.8 when Q1 turns off 

 

5.5 Conclusion 

The simulation results and experiment results of proposed soft switch topology 

match well with the theory analysis. The control system is simple and similar with hard 

switch. The proposed method can reduce switch loss and improve efficiency which 
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makes it possible to increase frequency and reduce heat sink for the main switch. It’s not 

necessary to use a heat sink for auxiliary switch since the losses in it are small enough. 

The EMI is also reduced since the spike voltage and ringing voltage are reduced. The 

limitations of proposed method are that it only works for DCM operation and the ratio of 

high side voltage and low side voltage should be larger than 2. However it is still worth to 

apply proposed soft switch in multi-phase interleaved converter for some special 

applications, such as 14-V/42-V power converter in automobiles. 
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Chapter 6.  

A NOVEL BATTERY CHARGER DESIGN 

6.1 Introduction 

Compared with traditional HEV technology, one of the most promising features of 

plug-in HEV is that PHEVs have a high capacity battery pack which can be recharged 

from power grid. The full exploitation of the battery capacity and the respect of the 

nominal lifetime are strongly influenced by the characteristics of the battery charger. 

Thus the smart charger for PHEVs becomes a valuable topic. 

The prime requirement for the battery system is that provides a rapid and efficient 

charge without damage to the battery. The common charging strategy is constant-

current/constant-voltage (CC-CV) [66][67]. The first charging phase is at constant 

current and with the battery voltage progressively rising. As soon as the battery voltage 

reaches the trickle level, the constant-voltage charging method should be applied, with 

the charging current progressively falling down to cut-off current [68]. Since the power 

of the battery charger for EV or PHEV is mostly larger than 1 kW, the AC current 

supplied by the distribution system must respect the international standards of high power 

factor and low harmonics distortion [69]. The power factor correction (PFC) has to be 

considered in the charger system to decrease the impact to power grid. Different battery 

charger circuits with PFC have been published [68][70][71][72]. In generally, the battery 

charger includes two stages: one stage is a boost converter to achieve PFC function; 

another stage is a dc/dc converter to achieve CC-CV charging control. 
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This chapter is proposing a boost converter to achieve both PFC and battery 

charging control simultaneously. Single stage charger is reducing the switch devices and 

simplifying the control system that would also decrease the cost and minimize the size of 

charger. Figure 6.1 shows the schematic diagram design for the battery charger. The 

control system includes voltage controller, outside current controller and inside current 

controller. These controllers determine a gate signal for MOSFET switch finally 

according to the rectified voltage from power grid and the inductor current. 

  

 

Figure 6.1 Schematic diagram of battery charger circuit 

6.2 Three Control Loops Design  

The operating principle of a commonly used single-phase PFC is shown in Figure 

6.2, where, between the utility supply and the battery bus, a boost DC/DC converter is 

introduced. This boost converter consists of a MOSFET, a diode, and a small inductor L. 
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Using the average model of the boost converter as shown in Figure 6.3 and neglecting a 

small voltage drop across the inductor [73], 

1
| | 1 ( )

d

s

V
v d

=
− t          (6-1) 

Thus, 

ˆ | sin( ) |( ) 1 s

d

V td t
V

ω
= −        (6-2) 

The switch duty ratio is plotted in Figure 6.4. The output current can be calculated 

from ideal transformer: 

2
ˆ ˆ( ) (1 ) ( ) | sin( ) |s

d L L
d

Vi t d i t I t
V

ω= − =       (6-3) 

 

Figure 6.2 Single-phase PFC circuit 

 

Figure 6.3 Average model of PFC circuit 
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Figure 6.4 PFC circuit waveforms 
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Figure 6.5  Battery charger control loops with PFC 

 

In controlling a PFC, the main objective is to draw a sinusoidal input current, in-

phase with the utility voltage. In the charging control, the main objective is to draw a 

constant output current during CC charging, or to regulate a constant output voltage 

during CV charging. These objectives lead to three control loops, as shown in Figure 6.5, 

to pulse-width modulate the switch of the boost converter: the inside current control loop, 

outside current control loop and voltage control loop. 
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The inside current control loop ensures the form of iL
*(t) and is shown in Figure 6.6 

(a). An average current mode control is used with a high bandwidth, where the error 

between the reference and the measured inductor current iL(t) is amplified by current 

controller Gi(s) to produce the control voltage vc(t). A PID controller is adopted for Gi(s) 

according to the transfer functions of power stage and PWM IC. The control voltage vc(t) 

is compared with a ramp signal with a peak of Vr_pk at PWM IC. The PWM IC and power 

stage transfer functions are: 

_

( ) 1
( )c r

d s
v s V

=
%

% pk
        (6-4) 
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(c) Voltage control loop 

Figure 6.6 Three control loops 
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The outside current control loop determines the amplitude ÎL of iL
*(t) based on the 

output current (battery charging current) feedback. By comparing the output current with 

reference current, the current control loop adjusts the inductor current amplitude to bring 

the output current to its reference value. The closed current loop transfer function is equal 

to 1. The power stage transfer function is: 

ˆ( )
2ˆ ( )

d

dL

i s V
VI s

=
%

%
s

         (6-6) 

The operation of voltage control loop is similar with outside current control loop, 

shown in Figure 6.6 (c). The power stage transfer function is: 

ˆ( )
2 1ˆ ( )

d s

dL

v s V R
V sRI s

=
+

%
% C        (6-7) 

A simply PI controller can be adopted for both outside current controller and voltage 

controller in the charging system. 

6.3 Charger Simulation Model and Results 

The battery pack used in this project is composed by 64 Li-ion cells connected in 

series. The individual capacity of each cell is 25 Ah and the nominal voltage is 3.7 V. 

The total energy is 5.92 kWh for the whole battery pack. The standard charging current 

for this battery pack is 0.2 C (5 A), and the quick charging current is 0.5 C (12.5 A). The 

charger utilizes a common charging strategy: constant-current/constant-voltage (CC-CV). 

At beginning of charging, the charger works on the constant current charging operation 

until the battery pack voltage rise to 268 V (64*4.2), then the charger transit to the 
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constant voltage charging operation until the charging current falls to lower than the cut-

off current (0.05C). 

 

Figure 6.7 Battery charger simulation circuit based on MATLAB Simulink 

 

The charger simulation model is built based on the MATLAB Simulink, shown in 

Figure 6.7. The PFC subsystem includes these three control loops mentioned above. The 

reference of constant charging current is set to 5 A and constant charging voltage is set 

268 V. The power absorbed from the single phase AC supply has a large 120 Hz 

component that cannot be accumulated by a small output capacitor. Thus, a large output 

capacitor 20 mF is applied in this simulation model. The output capacitor rating is 

influenced by the systems hold up requirements and the maximum RMS current rating. 

The hold-up time should be the time of half cycle at least. In generally, the capacitance 

value is greater than the minimize size and should provide a holdup time of one full 

cycle [56]. In this simulation, in order to reduce 120 Hz component in the charging 

voltage/current, the output capacitor is much greater than the minimize size. 

The capacitance required for a given hold-up time is given by [57]: 
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The simulation results for the constant charging current operation are shown in 

Figure 6.8. The battery voltage is 252.2 ± 0.32V; battery charging current is 5 ± 0.5 A, 

and power factor (P.F.) is as high as 0.99. The results for the constant charging voltage 

operation are shown in Figure 6.9. The battery voltage is reach to 268V, the charging 

current is 3.6 ± 0.37 A, and P.F. is ~ 0.99. Figure 6.10 is the battery charging transit state 

from CC charging to CV charging. 

 

Figure 6.8 Simulation results of battery charger during CC charging 

From the simulation results, the power factors are close to 1 on both CC charging 

and CV charging. The charging current/voltage is matching well with the reference 

current/voltage. The simulation results validate the feasibility of the proposal charger 

system. The drawback is this charger need a large filter capacitor connected to battery 

pack so that the battery can be charged with low current ripple. The 120 Hz current ripple 
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is still remarkable even using a large capacitor. The output capacitor makes up a 

significant portion of cost and volume in the charger system. 

 

Figure 6.9 Simulation results of battery charger during CV charging 

 

 

Figure 6.10 Transit from CC charging state to CV charging state 
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Figure 6.11 Modified charger circuit utilizing ultracapacitor as filter capacitor 

6.4 Modified Charger by Utilizing Ultracapacitor 

As stated in last section, the charger needs a large filter capacitor to reduce 120 Hz 

component, which would increase the cost and the volume significantly. A modified 

charger system is proposed in this section by utilizing the ultracapacitors and the 16-

phase interleaved dc/dc converter which is connected between ultracapacitor pack and 

battery pack, so that the current ripple can be filtered by ultracapacitors and the capacitor 

size can be reduced significantly or removed. The modified charger circuit is shown in 

Figure 6.11. The output capacitor in the charger system is removed (a small capacitor 

already exists in the 16-phase DC/DC converter system), and the battery pack is 

connected with ultracapacitors through a 16-phase interleaved dc/dc convert. The 16-
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phase interleaved dc/dc converter has been described detail in Chapter 4. When the 

battery charging current/voltage is larger than the reference signals, the DC/DC converter 

works on the buck mode and the ultracapacitors absorb extra charging power. When the 

battery charging current/voltage is smaller than the reference signals, the DC/DC 

converter works on the boost mode and the ultracapacitors supply extra power to charge 

the battery.   

 

Figure 6.12 Simulation results for modified charger circuit 

 

Figure 6.12 shows the simulation results for the modified charger circuit. The 

battery charging current is 5 ± 1 A. The current ripple is acceptable when the large output 

capacitor is removed. There is some high frequency harmonics in the current which is 

induced by the high frequency DC/DC converter connected between ultracapacitors and 

batteries. Power factor is still around 0.99. Figure 6.13 shows the currents in the battery, 

ultracapacitor and the phase currents in DC/DC converter. When the battery charging 
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current is larger than 5A, the ultracapacitors will be recharged; when the battery charging 

current is smaller than 5A, the ultracapacitors will be discharged. 

As shown in simulation results, the ultracapacitors through a DC/DC converter can 

replace a large output capacitor to achieve the filter function that would reduce the cost 

and the volume significantly in the whole system since both ultracapacitors and DC/DC 

converter are already existed. 

 

 

Figure 6.13 The results of battery current, ultracapacitor current and phase current in dc/dc 

converter 

6.5 Conclusion 

An economical single stage AC/DC topology with power factor correction is 

proposed for battery charger system. Operation, features and practical values of the 

proposed approach are illustrated and verified by the simulation model. However, the 

battery current has a significant 120 Hz component which requires a large capacitor to 
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filter. Therefore, a novel modified battery charger is proposed to reduce capacitor 

significantly by utilizing ultracapacitor and DC/DC converter as filter function since they 

are already existed in the system and won’t increase any additional cost but reduce the 

whole system volume. A simulation based on MATLAB Simulink has been built to 

verify the proposed method. It is worth to build hardware prototype for the future 

research. 
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Chapter 7. SUMMARY 

An energy storage system design has been discussed in detail, from the selection of 

energy devices, evaluation of energy storage size, determining power flow control among 

different energy sources, to the design of associated power electronics. The aim of this 

dissertation is to develop an advanced energy storage system for a small plug-in HEV 

whose performance can approach very closely to the optimal possible, in terms of energy 

efficiency, peak power, cost and volume.   

The size of energy storage would impact hybrid vehicle performance directly. To get 

more realistic results, a model for evaluating the energy size is studied based on a real 

driving test around Lincoln city which included the entire road feature and vehicle speed. 

A dual-source (battery and ultracapacitor) energy storage system is chosen to improve 

battery life cycle, reduce the cost and size, while getting high power rating. The dual-

source energy storage system combines higher power performance of the ultracapacitor 

with greater energy storage capability of the battery. The power flow control strategy 

among different sources is studied to achieve the best performance. A simulation model 

is built to validate the control strategy. 

The power electronics design including battery charger, power converter between 

ultracapacitors and batteries, and circuit protection has been presented. A 16-phase 

interleaved bidirectional DC/DC converter is proposed to connect between battery pack 

and ultracapacitor pack. The proposed DC/DC converter has the feature of smaller 

input/output filters, faster dynamic response and lower device stress. This converter 

works on DCM in order to minimize the imbalance current and remove the current 
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control loop in each phase which can simplify the control system and reduce the 

converter cost. The high current ripple associated with DCM operation is alleviated by 

16-phase interleaving. The design, construction and testing of hardware prototype with 

45 kW power rating is presented. The experimental results show that this converter has 

high efficiency and low imbalance current. The current ripples at both low side and high 

side of the converters are small, even with the using of small capacitors only. Also, a 

ZVS/ZCS soft switching topology is proposed for the 16-phase DC/DC converter to 

reduce the switching losses and improve efficiency. 

A single stage charger without large output capacitor is proposed, which utilizes the 

existing ultracapacitor through this DC/DC converter as filter capacitor instead of a large 

output capacitor. The cost and volume are decreased significantly by removing the large 

capacitor. The simulation model is built to verify the proposed method. 

In the future research, the number of phases in the multi-phase DC/DC converter 

should be optimized according to energy efficiency, cost and size. The EMI and noise in 

the circuit should be analyzed in order to reduce the effect between phases and improve 

circuit reliability. The proposed multi-phase DC/DC converter can also be applied in 

other application, especially for high current applications. Dual-source energy storage 

system with a DC/DC converter can not only be used in hybrid vehicles, but also applied 

in other applications. Following are brief examples of potential application of the dual-

source energy storage system with a DC/DC converter: 

1. Interface of renewable energy system and grid system  

Because of the intermittent characters of some renewable energy system, such 

as Wind and Photovoltaic, energy storage system is necessary to be applied. The 



 

 

89

developed dual-source energy storage system with a DC/DC converter can be applied in 

the interface of the energy storage system and grid system, to absorb/release high power 

while decreasing the magnitude of spike voltage and currents.  

2. Power quality improvement 

The developed system can also be applied in power supply system, such as 

Uninterrupted Power Supply (UPS), for battery management. With UC used, the system 

can improve the capacity of the power that can be delivered or absorbed, compared with 

traditional UPS system 
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