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Three-dimensional (3D) spiral photonic crystals (PhCs) have a periodic varied refractive 

index (RI) with the periodicity comparable to the wavelength of incident light. They can 

pass circularly polarized (CP) light with handedness opposite to their own structures’ 

handedness while block the polarization state with the same handedness. Three-

dimensional spiral PhCs for use as circular polarizers have two main advantages over 

conventional circular polarizers. On the one hand, it has wide operation wavelength based 

on the photonic band gap caused by PhCs and the interaction between CP light and each 

individual spiral structure. On the other hand, the height of each spiral structure can be 

made within the range of several incident light’s wavelengths, therefore, compact circular 

polarizers can be fabricated through 3D spiral PhCs.  

In this work, the Finite-difference time domain (FDTD) method was used to investigate 

the circular polarization selection of 3D spiral PhCs. Optical transmittance spectra of 3D 

spiral PhCs illuminated  by two orthogonal CP lights have been calculated. Transparent 

materials with different RIs were adapted to demonstrate that higher RI material could 

have broader operation wavelength. Furthermore, dispersive materials like aluminum 

with different structures and pitch numbers were investigated to increase the operation 

wavelength of 3D spiral PhCs.  



Fabrication work was aimed at high-quality 3D spiral PhCs with operation in the near-

infrared range. The FDTD tool was utilized to predict the transmittance of 3D spiral PhCs 

based on transparent and dispersive materials.  

Three-dimensional spiral PhCs were fabricated from glassy arsenic trisulfide (As2S3) with 

high RI (n=2.45). This material was chosen to strongly modulate the light propagation 

and to obtain a broader operation band. Thermal vapor deposition was used to prepare the 

desired thickness of As2S3 thin films as photoresists. A laser direct writing system based 

on two-photon absorption was used to achieve 3D micro-structure fabrication by point-

by-point laser exposure. The unexposed area was removed with appropriate development 

solution to reveal the 3D spiral PhCs. Large size (280µm by 280µm) spiral PhCs were 

fabricated.   
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1.1 Motivations 

A circular polarizer is a device that distinguishes between different circularly polarized 

(CP) light based on the polarization states in a specific wavelength range. It has many 

applications in optical communications, optical remote sensors, color displays [1, 2] and 

circular dichroism imaging microscopy [3]. A conventional circular polarizer is a 

combination of a quarter wave plate and a linear polarizer. In the past ten years, 

researchers found chiral planar metamaterials exhibit circular polarization selection effect 

[4]. In the same year 2007, 3D spiral photonic crystals [5] were fabricated and designed 

to demonstrate that these could have much higher distinction ratio (optical transmittance 

contrast between two polarization states) than planar chiral metamaterials. Three 

dimensional spiral PhCs are a subclass of photonic crystals. They exhibit a photonic band 

gap (PBG) like other PhCs and additionally process unique polarization selection effect – 

they can only pass left- or right- handed circularly polarized light based on their own 

structure handednesses. Three dimensional spiral PhCs as circular polarizers surpass 

conventional circular polarizers because they can be made more compact and also have 

broader operation wavelength.  

Photonic crystals have periodically alternating high and low refractive indices which can 

confine and guide the light propagation [6, 7]. Photonic crystals with PBG are 

comparable to semiconductors which form an electronic bang gap. Based on their high 

photon localization and low-loss transmission, photonic crystals have been rapidly 

developed for super-lens [8], waveguide [9], light-emitting diode [10] and photonic 

crystal fibers [11]. At first, the structures of PhCs were generally restricted to few 

structures like the woodpile-shape [12] and the layer-by-layer particle thin film [13]. 
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With the maturity of laser direct writing (LDW) based on two-photon absorption [14],3D 

spiral PhCs can be fabricated as an important class in the PhC family. 

Laser direct writing is a very powerful tool for the fabrication of arbitrary microstructures. 

Based on two-photon absorption, photoresist will only be exposed in the focal point. 

Therefore, while conventional lithography can only manufacture a 2D pattern, 3D 

microstructures can be obtained by the LDW system. By using laser direct writing, 

researchers have obtained “slanted pore” [12], woodpile [15] , and spiral [16] PhCs.  

In this work, the polarization selection property of 3D spiral PhCs with the help of the 

finite-difference time domain (FDTD) method has been demonstrated. Optical 

transmittances of transparent and dispersive materials were calculated by using the FDTD 

method. Simulation results showed 3D spiral PhCs based on As2S3 with higher refractive 

index (RI) or more pitch numbers had broader operation wavelength than low RI 

materials. For the dispersive materials, increased pitch numbers of spiral structures 

present more obvious polarization selection effect while double-helix spiral structures 

have broader operation wavelength then the single-helix spiral structures. 

Three dimensional spiral PhCs with lattice constants in the near infrared spectra were 

fabricated by LDW. The writing parameters including laser power, defocus factor and 

structure size as well as etching time and the concentration of the development solution 

were optimized. Glassy arsenic trisulfide (As2S3) was used as a photoresist because of its 

high RI (n=2.45) and strong mechanical support. In contrast, traditional photoresist’s RI 

was relatively low (n=1.5) with instability under high temperature environment and poor 

mechanical strength.  
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1.2 Thesis Outline 

Chapter 2 will briefly introduce the basics of polarization optics, interactions between 

circularly polarized light with spiral PhCs and the basic theory of PhCs. In Chapter 3, 

transparent and dispersive materials will be used for transmittance calculation. The 

polarization selection property of 3D spiral PhCs based on different RIs and pitch 

numbers of 3D spiral structures will be investigated. The fabrication part in Chapter 4 

will focus on the photoresist preparation by thermal vapor deposition, 3D spiral PhCs 

writing by laser direct writing system and the photoresist development. Two-photon 

absorption will be discussed to demonstrate the mechanism of 3D microstructure 

fabrication. Many writing and development parameters like laser power defocus factor, 

structure size, etching time and the development solution concentration are optimized to 

improve the quality of the 3D spiral PhCs. Scanning electron microscopy graphs are 

obtained to prove the good quality of 3D spiral PhCs.  In Chapter 5, our current 

achievements and proposed future work are summarized.  
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Photonic crystals without chirality couldn’t distinguish the circularly polarized (CP) light 

with different polarization states. Three dimensional spiral PhCs can not only perform 

like common PhCs with PBGs but also distinguish CP light with different handednesses. 

In order to understand the polarization states of light and the basic theories of 3D spiral 

PhCs, section 2.1 introduces the mathematic expression of polarized light and the 

interaction between light and materials. Section 2.2 presents the definition and optical 

properties of PhCs derived from Maxwell equations and the unique advantages of direct 

laser writing (DLW) system compared with other methods for 3D PhCs fabrication. 

2.1 Polarization optics 

2.1.1  Mathematic expression of polarized light 

Polarized light can be represented as the vector sum of two orthogonal electric fields [1].  

( , ) ( , )x yE E z t E z t
  

       (2.1) 

0( , ) cos( )
 

 x xE z t x E kz wt
    

(2.2) 

0( , ) cos( )
 

  y yE z t y E kz wt
   

(2.3) 

where  is the relative phase difference between the two orthogonal waves, both of which 

are traveling along the z direction. From Eqs (2.1) to (2.3), we can easily find that 


E  is 

rotating along z direction upon propagation. The endpoint of E


will trace out an ellipse. 

By removing the ( )kz wt  dependence, Eqs (2.1) to (2.3) lead to: 

2 2

2

0 0 0 0

2 cos( ) sin ( ) 
      

           
      

y yx x

y x x y

E EE E

E E E E
  

2.4) 
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FIGURE 2.1shows three polarization configurations when
0 0x yE E . For CP light, two 

requirements 
2

   and 
0 0x yE E are needed. The tip of 



E  will trace a helix. When 

we look at the series of tips by following the propagation axis, the endpoints form a circle. 

If 
2

   , the polarization is called right circular polarization (RCP) light; while 

2
   , it is left circular polarization light (LCP). The linear polarization will be 

formed when  0 or  . Generally speaking, if 0 0x yE E , varied phase difference 

yields various polarization configurations.  

 

FIGURE 2.1 Various polarization configurations: (a) circular, (b) linear, (c) 

elliptical polarization. 

2.1.2  Interaction between light and materials 

Polarization selection refers to the selective absorption of one of two orthogonal electric 

fields. For the circular polarization selection of circular polarizers, they have preferred 

absorption on LCP or RCP while passing RCP or LCP. 

Conventional circular polarizers consist of a quarter wave plate and a linear polarizer. A 

quarter wave plate is an optical element that introduces a phase relative shift of 
2

   . 

By introducing the 
2

 phase change, it can convert LCP and RCP light into orthogonal 
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polarized (LP) light. With one LP light parallel to the principle axis of linear polarizer, 

this LP light can pass the linear polarizer while another LP light perpendicular to the 

principle axis. FIGURE 2.2 shows the optical configuration of conventional circular 

polarizers. 

 

FIGURE 2.2 Optical configuration of conventional circular polarizers[2]. 

Three dimensional spiral PhCs use a different mechanism than conventional circular 

polarizers to achieve the polarization selection. The polarization selection mechanism is 

based on the interference within the structure which results in total reflection for one 

polarization state but large transmittance for another polarization state. If we slice the 

spiral structure into many layers, the spiral structure is working exactly like cholesteric 

liquid crystal structure as shown in FIGURE 2.3. When the pitch is of the same order as 

the wavelength, this can cause cholesteric liquid crystal structure to exhibit Bragg 

reflection to the circularly polarized light having the same handedness with the structure. 

The center wavelength 0 p*n  while the operation bandwidth p* n   , where n is 

the refractive index contrast in parallel and perpendicular direction.  

Linear polarizer 

Quarter wave plate 
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FIGURE 2.3 Cholesteric liquid crystal structure; p and n refers to the chiral 

pitch and refractive index respectively [3]. 

2.2 Photonic crystals 

2.2.1 Definition of photonic crystals 

Photonic crystals have periodic variation in refractive index. They can be classified by 

one-, two- and three-dimensional photonic crystals as shown in FIGURE 2.4 [5]. 

Photonic crystals with varied refractive index in one, two or three direction(s) are 

respectively called one- two- and three-dimensional photonic crystals.  

 

FIGURE 2.4 Examples of one-, two- and three-dimensional photonic crystals. 

The different colors in the graphs stands for different refractive 

indices. [4] 

A quarter-wave stack is a widely used optical device which consists of alternate layers 

with different RIs. Incident light with proper wavelength can be fully reflected because of 

the interference effects among multiple light beams reflected from each interface. In 
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FIGURE 2.5, the diffraction relationship with wave vector vs frequency is plotted with 

different dielectric constant contrast. With larger dielectric constant contrast, wide PBG 

can be formed [5].  

 

FIGURE 2.5 The diffraction relationship between wave vector and frequency. 

(a): dielectric constant contrast 1 2: 13:13   . (b): 1 2: 13:12   . 

(c): 1 2: 13:1   . [4] 

Compared with one-dimensional photonic crystals, two-dimensional crystals can confine 

light propagation in two directions. Wave guides based on two-dimensional photonic 

crystals have been made [6].  More interestingly, three-dimensional PhCs can modulate 

light propagation in all three directions [7].  

2.2.2  Eigenmodes of photonic crystals 

Eigenmodes are the certain frequencies of the light that can exist in photonic crystals. 

Maxwell’s equations are a good starting point for understanding photonic crystals. In SI 

units, these four equations are: 

0B


         (2.5 a) 

0
B

E
t


 

  
      

(2.5 b) 

D 


        (2.5 c) 

(b) (c) (a) 
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D
H J

t


 

  
      

(2.5 d) 

The PhCs usually don’t vary with time, and they don’t carry free charges or currents. 

Therefore, we can set 0  and 0J


 . Furthermore, some assumptions are considered 

for simplifying these above equations. Firstly, in most cases, the field strengths are very 

small. Under this case, the electric field E


and electrical displacement field D


is linear. 

Secondly, the material is assumed to be isotropic and non-dispersive. Therefore, r


is 

scalar and independent of light frequencies. Thirdly, for most dielectric materials, the 

relative magnetic permeability  varies only slightly. Therefore, this term can be ignored. 

Combining all above assumptions [5], Maxwell’s equations can be simplified to  

( , ) 0H r t
 

        (2.6 a) 

0

( , )
( , ) 0

H r t
E r t

t



  

  
     

(2.6 b) 

[ ( ) ( , )] 0r E r t
  

       (2.6 c) 

0

( , )
( , ) ( ) ] 0

E r t
H r t r

t
 

 
   

  
    

(2.6 d) 

Both E


and H


 vary sinusoidally (harmonically) with time. Therefore, we can write a 

harmonic mode as the following format: 

( , ) ( ) i tH r t H r e 
   

      (2.7 a) 

( , ) ( ) i tE r t E r e 
   

      (2.7 b) 



14 

 

 

 

Substituting Eqs. (2.6) and (2.7), we can eliminate time dependence to get the following 

equations: 

( ) 0H r
 

        (2.8 a) 

0

( )
( ) 0

H r
E r i

t



  

  
     

(2.8 b) 

[ ( ) ( )] 0r E r
  

       (2.8 c) 

0

( )
( ) ( ) ] 0

E r
H r i r

t
 

 
   

  
    

(2.8 d) 

Solving Eqs. 2.8(b) and 2.8(d) together, we finally get the master equation 

2
1

( ) ( )

( )

H r H r
cr





   



 
      

   
     

(2.9) 

By using Eqs 2.7(a) and 2.7(c) and the master equation together, we can determine ( )H r
 

. 

Using Eqs 2.8(b) and 2.8(d), we can derive ( )E r
 

mode from ( )H r
 

. 

Eigenmodes of 3D spiral PhCs 

The polarization stop band can be predicted by solving the master equation to get the 

eigenmodes. By using the plane-wave expansion method, Chan has theoretically 

demonstrated 3D spiral PhCs can only allow one of the orthogonal circular polarizations 

[5]. The schematic diagram of the spiral structure and its Brillouin points is shown in 

FIGURE 2.6. 
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FIGURE 2.6 A schematic diagram of the spiral structure and its Brillouin 

points. (a) and (b) are size view and top view of the spiral 

structures respectively. (c) is the Brillouin zone of spiral 

structures with triangular symmetry. [7] 

The transmission spectra and the band structure of the right-handed  (RH) spiral structure 

are shown in FIGURE 2.7. The yellow bar in FIGURE 2.7 (c) clearly showed that there is 

a polarization gap in the second band. 

 

FIGURE 2.7 Transmission spectra and the band structure of RH spiral 

structure shown in Fig. (2.6). (a) and (b) are the transmittance of 

the LH and RH polarizations respectively. The dispersion 

relationship is shown in (c). The first and second bands of the two 

orthogonal polarizations are marked with red and blue colors 

respectively [7]. 
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2.2.3  Basic properties of photonic crystals 

Based on light confinement and localization of PhCs, many promising applications have 

been achieved. For example, 3D PhCs can guide light propagation with very low energy 

loss. Also, a narrow band filter can be made by selectively passing the desired 

frequencies. For homogeneous medium, the speed of light is inversely proportional to the 

RI of the medium as described by Eq. (2.10). For PhCs as non-homogenous medium, 

there is a PBG between top and bottom band as shown in FIGURE 2.5 (c). All properties 

of PhCs result from their PBG. 

( )
ck

k


      (2.10) 

Photonic bang gap 

According to electromagnetic energy and the vibrational principle [4], the high frequency 

modes have a larger proportion of their energy in low  regions while the low frequency 

modes mainly concentrate in the high  regions as shown in FIGURE 2.5. 

 

FIGURE 2.8 The modes associated with the lowest band gaps shown in Figure 

2.5(c). The RI ratio is 13:1. 

Based on the energy redistribution in high and low refractive index materials, PBGs are 

formed. The width of the band gap is proportional to the dielectric contrast ( 2 1     ). 
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Over the years, high RI 3D photonic crystals with larger band gaps have been fabricated 

by various methods like repetitive deposition and etching of multiple dielectric films [8] 

and silicon chemical vapor deposition (CVD) [9]. 

Scalability 

Scalability is a unique feature of electromagnetism in dielectric material. It means that we 

can determine all other length scales from the solution at one wavelength scale. In the far-

field situation, Maxwell equations of PhCs are scalable. Therefore, its solutions are 

scalable. This conclusion has been drawn in reference 7 through a relatively simple scale 

transformation. The scaling property is very useful for fabrication process. For example, 

larger scales of PhCs can be fabricated to predict the optical performances of smaller 

scales when the smaller scales are difficult to fabricate under current experimental 

circumstances.  

We need to note that when the dielectric constant is dependent on the size [10], the 

scaling law won’t be applicable anymore. Furthermore, most of the dielectric materials 

are dispersive which make the scalability of the PhCs not applicable. However, if the 

dielectric materials are not highly dispersive, scalability is still a good approximation tool. 

Time reversal symmetry 

Time reversal symmetry is another important property of the PhCs. It means that Eq. (2.9) 

is invariant when we change the sign of the time variable. The dispersion relation has 

inversion symmetry based on the time reversal symmetry [7]. Eq. (2.10) shows the 

inversion symmetry of the dispersion relation. 
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      (2.10) 

Eq. (2.10) is still applicable even if the PhCs don’t exhibit inversion symmetry. 

2.2.4  Fabrication of PhCs 

Extensive investigations of the fabrication of PhCs can be found in some review articles 

[11, 12]. One dimensional PhCs have been produced and used for a long time. It has wide 

application in anti-reflection coating, notch filters and distributed Bragg reflectors. All of 

them are essentially a stack of films. However, the fabrication of 2D and 3D PhCs are 

challenging. Since two seminal papers published in 1987 [13, 14] to theoretically prove 

3D PhCs can guide and confine light propagation with minimum energy loss, researchers 

from all around the world have proposed various methods to fabricate PhCs. The first 3D 

PhCs with complete PBG [15] were fabricated by drilling millimeter holes with 

chemical-beam-assisted ion etching. The size leads to its operation wavelength to be in 

the microwave regime. Based on whether the 3D PhCs are fabricated by building up 

basic units or from bulk materials, all fabrication methods can be categorized into two 

kinds of methods: “bottom-up” or “top-down” approaches. 

Self-assembly is a common bottom-up growth method with the usage of colloidal crystals 

[16]. Colloids refer to the structures comprising small particles suspended in a liquid. By 

immersing substrate into colloidal crystals, particles will be deposited in a periodic array 

on the surface of substrate layer-by-layer after removing the solvent under the 

temperature near the boiling point [17-19]. Usually, the colloidal crystals will be 

infiltrated with various materials for increasing RI contrast or implanting functions from 

other materials like silicon [20,21], stibnite (Sb2S3) [22], Indium phosphide (InP) [23] 
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and titania (TiO2) [24]. Self-assembly is very suitable for low-cost and large area 3D 

photonic crystals [25]. However, it has two disadvantages. On the one hand, because of 

the defects, the long-range highly organized 3D PhCs are difficult to fabricate. Therefore, 

the 3D PhCs sample obtained by self-assembly is not strictly true 3D PhCs because its 

structure is not completely periodic. On the other hand, only certain structures such as 

face-centered cubic structure can be fabricated (FCC) [26,28].  

Glancing angle deposition (GLAD) is another popular bottom-up method to produce 

photonic crystals. During the GLAD process, the vapor flux arrives at the substrate with 

an oblique angle from the substrate normal. The resulting structures grow towards the 

vapor source. Therefore, with substrate rotation, spiral structures can be made [29, 30].    

Based on multiple-beam interference, holographic lithography is widely used to fabricate 

2D and 3D PhCs [31-34]. It’s a top-down fabrication method. Because the light intensity 

distribution is periodic through optical light interference, photo-resist is periodically 

exposed. After the development procedure, the exposed area can be kept or removed 

depending on whether photo-resist is negative or positive. Large-scale (over 1 cm
2
) high-

quality 3D FCC-type PhCs structures can be produced by using a simple single refracting 

prism holographic lithography technique [35]. However, like self-assembly methods, 

holographic lithography is restricted to fabricating limited structures such as the simple 

cubic, diamond-like, gyroid-like[32] and FCC structure [31, 33]. 

The LDW approach is an innovative and promising top-down method which has true 3D 

fabrication capability. In the LDW system, femtosecond laser pulses are tightly focused 

in the photoresist when the laser intensity is below to the two-photon absorption 

threshold. In contrast, at the focal point, the laser intensity is above the two-photon 
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threshold. Due to two-photon absorption, the photoresist will be exposed. By moving the 

relative position between the sample stage and laser focal point, the desired places can be 

exposed by femtosecond pulses. In negative photoresist, the exposed area will be 

revealed; the exposed area will be removed for the positive photoresist. Three 

dimensional nanostructures with feature size smaller than 100nm [36-39] have been 

fabricated by overcoming the diffraction limit. The minimum feature size down to 40nm 

has been achieved in 2009 by one-color initiation and deactivation of polymerization [39]. 

Among all fabrication mentioned above, laser direct writing is the only method having 

the capability to arbitrarily fabricate various structures such as spirals [40, 41], woodpile 

structures [42,43] , “slanted pore” structures [44] and quasicrystals [45,46]. Furthermore, 

the fabricated structures used as templates and infiltrated with gold [47], silicon [42, 43] 

or other semiconductor and metals for optical performance modifications. 
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FIGURE 2.9 shows 3D PhCs fabricated by different approaches.

 

FIGURE 2.9 3D PhCs fabricated by (a) self-assembly of colloidal (b) self-

assembly plus CVD deposition and hydrofluoric acid etching, (c) 

glancing angle deposition [46], (d) holographic lithography [29], 

scar bar: 10 µm, (e-f) LDW system based on IP-L and As2 S3 

chalcogenide glass. 
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CHAPTER 3 OPTICAL SIMULATION OF 3D SPIRAL 

PHOTONIC CRYSTALS  
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The commercial software package OptiFDTD was used to simulate the response to 

circularly polarized light of 3D spiral PhCs. The simulation results can guide the 

fabrication to produce appropriate structures. OptiFDTD is mainly based on the finite 

difference time-domain (FDTD) method. Therefore, we briefly introduce the basics of 

FDTD in section 3.1. In section 3.2, optical transmittance spectra of 3D spiral PhCs 

fabricated by transparent materials are calculated based on different RI contrast and pitch 

numbers. Both LCP and RCP incident light are used. Dispersive material like aluminum 

as another type of material is investigated in section 3.3.  Section 3.4 will summarize 

conclusions.  

3.1 Introduction of FDTD 

The FDTD method is used for simulating optical performance of diffractive optic devices 

[1, 2]. It has the capacity to model light propagation, reflection and polarization effects of 

optic devices. The essence of the FDTD approach is to solve time-dependent Maxwell’s 

curl equations. For 3D simulations, a cubic box will be chosen as the calculation 

boundary. This cubic box is meshed in the space domain as shown in FIGURE 3.1. Both 

electrical and magnetic field are represented by a 3D array --- ( , , )xE i j k , ( , , )yE i j k , 

( , , )zE i j k , ( , , )xH i j k , ( , , )yH i j k , ( , , )zH i j k . Note that the E and H components are 

interleaved at intervals of 
1

h
2
 in space and 

1
t

2
 in time for implementing a leapfrog 

algorithm. The new value of H and E field are calculated based on the old value of H and 

E field. The initial field will be introduced on the left boundary. By using discrete 

equations derived from Maxwell’s curl equations, all area’s E and H field can be derived 

step by step using step spacing. 
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FIGURE 3.1 Displacement of the electric and magnetic field vector components 

about a cubic unit cell of the Yee space lattice [3]. 

To maintain the accuracy, numerical dispersion and the stability of the FDTD method, 

the step size for the time and space are constrained by equation 3.1 and 3.2 respectively 

[3]. 

min

max

min imum( x, y, z)
10n


   

    

(3.1) 

2 2 2

1

1 1 1

( ) ( ) ( )

t

x y z


 

 
  

    

(3.2) 

In equation 3.1 and 3.2,  refers to the speed of light in the dielectric materials and maxn is 

the maximum RI value in the computational domain. Also, the refractive index in FDTD 

algorithm is independent on the size. Therefore, whenever size features are small enough 

to comparable with the Debye length, FDTD simulation breaks down. 
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3.2 Optical transmittance of 3D spiral PhCs 

3.2.1 Optical transmittance of 3D spiral PhCs with different RI contrast 

Photoresist SU-8 and 2 3As S have been chosen for optical transmittance calculations. Like 

most other photoresist, the RI of the SU-8 is around 1.5. During the simulation process, 

RI of SU-8 is 1.54+0.002i while 2 3As S ’s is 2.45+0.002i. The imaginary part of complex 

index refers to the absorption coefficient. The excitation sources are LCP and RCP light 

respectively. The schematic diagram of the optical simulation for 3D spiral structures is 

shown in FIGURE 3.2.  

 

FIGURE 3.2 Schematic of optical simulation for 3D spiral structures. 
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In order to calculate a broad wavelength range excitation source, a Gaussian-distributed 

pulsed light source is used. Its mathematical expression can be written as  

2

1
( ) exp[ sin( )

2

off

w

t t
T t t

t


 
   

      

(3.3) 

where 
offt is the offset time, wt is the half width of the pulse, and  is the central 

frequency of the excitation light.  

FIGURE 3.3 shows the schematic diagram of 3D spiral PhCs. By utilizing the scalability 

of PhCs, we choose the feature sizes of the simulated structures smaller than the as-

fabricated structures for the purpose of shifting the operation wavelength close to visible 

light regime.  For the structure parameters, DW, NS, SG, LP and DS refer to the diameter 

of spiral wires, the number of spiral turns, the spacing of the grid, the length of spiral 

pitches and the diameter of spiral structures respectively. The structures with DW=390nm, 

NS=8, SG=1.3  , LP=1.3    and DS=780nm are used for numerical simulation. 
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FIGURE 3.3 Front and side view of 3D spiral PhCs for numerical simulations. 

The basic FDTD method needed to be modified at the boundaries of computational 

domain. The boundaries along X and Y directions were simulated by periodic boundary 

conditions (PBC) [4] because of the structure periodicity. The boundary along the Z 

direction was perfectly matched layers (PBL) [5] to prevent the incident wave reflecting 

from interface. 

SG 

DW 

LP 

DS 

Z

 

X

 

X

 

Y

 

NS*LP 

Y

 



33 

 

 

 

For the spiral structures, the spiral shape couldn’t be directly drawn through the 

OptiFDTD software. The software only provides four basic 3D shapes: sphere, cylinder, 

ellipsoid, and block. The basic ellipsoid is used by following the trajectory of a 3D spiral 

PhCs to draw simulated structures with the help of VB script. This process is exactly the 

same as the fabrication process through point-by-point scanning writing in the LDW 

system. The shape of the small focal volume in the LDW system is also ellipsoid. The 

detailed code programmed by VB script is listed in Appendix A. In order to save 

computer memory and increase simulation speed, 64 bit simulator and 64 bit personal 

computer have been chosen for computational simulation. 

The layout of 3D spiral structures in OptiFDTD is shown in FIGURE 3.4. The input field 

is the element to define the incident light. Observation point is used to record the data 

like electric or magnetic field at the desired point. Like the observation point, the 

observation area can record the data in the interested area. Also, it can be used to 

calculate the transmittance and reflectance of a designed structure. Spacing in the x, y and 

z directions is chosen as 50 nm. The time step is chosen 0.08329fs. Both space and time 

steps are chosen reasonably to meet equations (3.1) and (3.2), respectively. The total 

calculation domain is 18 µm by 1.3 µm by 1.3 µm. 

 

FIGURE 3.4 The layout of 3D spiral structures in OptiFDTD. 
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After setting up refractive index, structure parameters, excitation source, mesh size and 

boundaries of the computation domain, we get the optical transmittance of 3D spiral 

PhCs based on SU-8 and As2S3 as shown in FIGURE 3.5. The SU-8 and As2S3 are two 

photorests we have used for microstructure fabrication. 

 

FIGURE 3.5 Calculated optical transmittance of 3D spiral structures for (a) 

SU-8 and (b) As2S3. 

Both FIGURE 3.5(a) and (b) represent the circular polarization effect. Compared with 

SU-8, 3D spiral PhCs based on As2S3 show broader circular polarization over larger 

wavelength range since they a broader so-called “stop band”.  The conclusion is 

consistent with the theory of cholesteric liquid crystal structure. In cholesteric liquid 

crystal structure , the center operation wavelength 0 p*n  while the operation 

bandwidth p* n   , where n is the refractive index contrast in parallel and 

perpendicular direction. The stop band in FIGURE 3.5 is determined by the extension 

ratio which is defined by the ratio between two incident lights’ optical transmittances. 

When the ratio is above the exponential value e, we consider the 3D spiral PhCs have 

circular polarization effect in this specific wavelength. In addition, the relevant stop band 

blue-shifts with the increased RI. 
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For As2S3, the wavelength of 2.4 µm has the most effective polarization effect. The light 

propagation in this wavelength point is simulated in FIGURE 3.6 to show the electric 

field differences in the y direction (Ey) for two orthogonal lights. The left-handed 3D 

spiral PhCs can pass the RCP light while it forbids or reflects the LCP light. The electric 

field intensity versus running time for two different positions is shown in Figure 3.7. 

Compared with the RCP light, the LCP light is strongly suppressed after it passes through 

the 3D spiral structures. 

 

Figure 3.6 Light propagation for RCP and LCP incident light in As2S3 3D 

spiral structures. Ey denotes the electric field in y direction. 
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Figure 3.7 Ey intensity vs time in different observation point. The dark profile 

is for observation point 1 while the blue one is for observation 2. 

These two points are before and behind the 3D spiral structures 

respectively. 

3.2.2  Optical transmittance of 3D spiral PhCs with different pitch numbers 

Except for the RI contrast, the pitch numbers of the 3D spiral PhCs are another important 

factor for affecting the circular polarization effect. Based on the same structure 

parameters we used above for the RI contrast investigation, we investigated the pitch 

number of 1, 2, 4 and 6. FIGURE 3.8 shows different transmittance spectra based on the 

pitch numbers. The increased pitch numbers will establish the polarization effect since 

the spiral structure provides the necessary pathway for interaction with light. FIGURE 

3.8 has proved this assumption and also demonstrated that the polarization effect has 

almost reached the maximum performance when the pitch number is 6. Also, the center 

operation wavelength 0 is fixed which is consistent to the equation: 0 p*n  . 

(b) LCP 

(a) RCP  
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FIGURE 3.8 Polarization selection effect of 3D spiral PhCs with different pitch 

numbers: 1, 2, 4 and 4 respectively.  

3.3 Optical transmittance of dispersive material 

Metal materials can be a good candidate for fabricating 3D spirals PhCs as circular 

polarizers. Broadband circular polarizers based on metal 3D spiral photonic crystals have 

been fabricated [6]. In a single metal helix, the internal resonance of an individual metal 

helix will lead to a narrow frequency response. Also, the Bragg resonances originating 

from PhCs can also exhibit a narrow frequency response. The combination of these two 

effects, however, can lead to a broadband circular polarizer.  

Aluminum (Al) as a dispersive material was used for optical transmittance calculation of 

3D spiral PhCs. During the simulation process, a Lorentz-Drude model as represented in 

(a) (b) 

(c) (d) 
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Eq. (3.3) was used for precisely describing the metal’s dielectric function by Lorentz-

Drude model. This form separated explicitly the intraband effects (also referred to as free 

electron effects) from interband effect (also referred to as bound-electron effects). The 

intraband part ( )f

r  is described by the well-known Drude model while the bound-

electron part ( )b

r   is presented by Lorentz model. 
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   (3.3) 

In Eq. (3.3), 
p is the plasma frequency associated with intraband transitions with 

oscillator strength 0f and damping constant 0 ; k is the number of oscillators related to 

the frequency j , strength jf and the lifetime 1/ j . 

The structure parameters used in Ref. (7) have been chosen for validating our simulation 

results. Two types of structures have been studied: single-helix and double-helix. 

Following the structure parameter definition in section 4.2.1, we have chosen DW=50nm, 

NS=3, SG=190nm, LP=200nm and DS=100nm. The specific parameters of Lorentz-

Drude are quoted from Ref. (3) and (8).  

The optical transmittances of single- and double-helix 3D spiral PhCs for Al is presented 

in FIGURE 3.9. The blue line represents polarization suppression ratio between LCP and 

RCP transmittance. The simulation wavelength range is from 0.4 m to 1.8 m. It shows 

that the operation band can be increased by increasing one more helix in each individual 

unit. This is because denser Al material can interact with incident light more efficiently. 

These results are consistent with Ref. (8). 
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FIGURE 3.9 Optical transmittances of single- and double- helix 3D spiral PhC 

for Al. 

3.4 Conclusions 

The FDTD method is a very powerful simulation tool for designing and investigating the 

optical performances of the optical devices. In our simulation work, we attempted to 

obtain the optical transmittance of 3D spiral PhCs. Three-dimensional spiral structures 

were approximated by a series of ellipsoids by following spiral trajectory. The simulation 

results showed that 3D spiral PhCs possess circular polarization effect for both low and 

high RI materials. Higher refractive index materials provide broader stop bands ( 

increases). Also, the electrical field intensity distribution for both LCP and RCP waves 

was obtained to further prove 3D spiral structure’s polarization effect. Furthermore, an 

absorptive (metal) for potential use as a broadband circular polarizer was investigated. 

The simulation results of Al material showed the denser structure with double helix in 

each unit had broader operation wavelength then the single-helix 3D spiral PhC but 

results in lower polarization selection ratios than for the dielectric structure.  

Pol. sup. ratio  
Pol. sup. ratio  
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CHAPTER 4 FABRICATION OF 3D SPIRAL PHOTONIC 

CRYSTALS 
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Three dimensional PhCs are artificial materials which have periodically varing refractive 

index (RI) for localizing and guiding the light propagation. The concept of 3D PhCs has 

been proposed more than 20 years ago [1, 2]. However, the fabrication of arbitrary 

structures with relatively high RI is still a big challenge. The self-assembly method and 

holographic laser lithography discussed in Chapter 2 are restricted to a few structures 

with “high symmetry” like the face-centered cubic.  The layer-by-layer method with 

alternate repetition of deposition and etching required high-precision alignment and long 

fabrication time. In our work, in order to avoid these disadvantage, we adapted direct 

laser writing system (LDW) to fabricate 3D spiral PhCs with desired structure parameters. 

Compared with other fabrication methods, the LDW system could write arbitrary 

structures based on point-to-point scanning. Furthermore, arsenic-sulfide (As2S3) glasses 

have been used for 3D spiral PhCs because of their dual advantages: high RI and strong 

mechanical support. Usually, the RI of photo-resist is as low as 1.5 while As2S3 has RI up 

to 2.5 which can strongly modulate light propagation to obtain complete photonic band 

gap and broad operation wavelength for circular polarization selection. 

 

In this work, the fabrication of high quality 3D spiral PhCs with high RI will be 

demonstrated. The FIGURE 4.1 describes the fabrication processes. The first step is the 

thermal evaporation with a source temperature below 390 . As2S3 will evaporate and 

deposit on a glass substrate. In the second step, LDW system locally exposes the 

photoresist prepared by the thermal evaporation deposition. With two-photon absorption 

(TPA), a selective etching rate between the exposed and unexposed areas will result. 
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Finally, wet etching with higher etching rate of the unexposed area will reveal 3D spiral 

structures. 

 

FIGURE 4.1 The three fabrication steps [3]. 1) Thermal evaporation of glassy 

As2S3  2) Direct writing system exposes photoresist in desired 

place 3) Removal of unexposed photo-resist to obtain 3D spiral 

PhCs. 

We will briefly discuss thermal evaporation deposition in section 4.1. In section 4.2, the 

mechanism of the LDW system will be introduced. Two-photon absorption as a crucial 

part of LDW system will be explained. Wet etching will be presented in section 4.3. 

Together with these three sections, high-quality 3D spiral PhCs will be presented and 

discussed in section 4.4 with SEM micrographs.  

4.1 Thermal evaporation deposition 

In this work, 10 µm thick As2S3 as photoresist was prepared by thermal evaporation. The 

thickness of As2S3 photoresist was measured by XP series stylus profilers (AMBios 

technology Inc.). Solid glassy As2S3 (Amorphous Materials Inc.) was used as the 

precursor material. Silica glass coverslips of 30 mm diameter (Warner Instruments, 170 
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µm) were used as substrates. The diameter of the silica glass substrate was perfectly 

matched to the substrate holder in the LDW system while the 170 µm thickness was used 

for adapting the working distance of the optical microscopy. For accommodating the size 

of the sample holder of the thermal vapor evaporation chamber, the glassy As2S3 was 

mashed into small pieces by a hammer. Through thermal evaporation at a temperature  of 

380 , the glassy As2S3 was converted to As4S6. A high content of As4S6 is desirable to 

obtain two-photo absorption [3, 4]. The vacuum pressure of the evaporation chamber was 

maintained around 66 8 10  torr. The deposition rate was controlled by adjusting 

evaporation temperature and measured with a quartz microbalance. The whole process 

for As2S3 preparation takes around two hours. FIGURE 4.2 shows that the as-deposited 

photoresist is orange and transparent. 

 

FIGURE 4.2 As2S3 photoresist produced by thermal vapor deposition. 

4.2 Laser direct writing system 

4.2.1 Two-photon absorption effect 

The essence of the LDW system is two-photon absorption (TPA). Compared with a 

conventional lithography system, which can fabricate two-dimensional patterns, LDW 

system can write almost arbitrary micro-structures. In FIGURE 4.3, the photoresist 

simultaneously absorbs two near-infrared (IR) photons whose collective energy is equal 
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to an ultraviolet photon [5]. The rate of the TPA is proportional to the square of the light 

intensity which causes that TPA mainly occurs around the laser focal point. The linear 

relationship between TPA and the quadratic light intensity causes the TPA area size 

beyond the diffraction limit of the incident light wavelength.  

 

FIGURE 4.3 Two-photon polymerization induced by a focused laser beam [5]. 

FIGURE 4.4 is the optical absorption spectrum of an unexposed SU-8 film. Without TPA, 

SU-8 film has negligible absorption in the near-IR regime. After TPA, the absorption 

intensity can be reached close to the absorbance peak around the UV regime where the 

laser beam is tightly focused into a tiny volume.  

 

FIGURE 4.4 Optical absorption spectrum of an unexposed SU-8 film [6]. 
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With the capability of 3D micro-fabrication and submicron resolution, TPA is widely 

used for fluorescence image techniques [7], 3D data storage [8] and 3D micro-fabrication 

[3, 9-10].  

Arbitrary structures can be fabricated by a LDW system because it exposes a very small 

point each time. By moving the relative position between the laser focal point and the 

photoresist, we can draw any desired pattern by point-by-point scanning. FIGURE 4.5 

presents different 3D microstructures fabricated by a LDW system. 

 

FIGURE 4.5 Different 3D microstructures fabricated by two-photo 

polymerization. (a) connected spiral PhCs in IP-L material. (b) 

micron bull [11]. Scale bar, 2 µm (c) microtweezers with 

submicron probe tips [12] (d) slanted pore PhCs [13]. Scale bar, 3 

µm. 

 

(b) (a) 

(c) (d) 
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4.2.2  Laser direct writing system 

Photonic Professional system (Nanoscribe GmbH) is the commercial LDW system used 

for 3D micro-structure fabrication in this work. The whole system as shown in FIGURE 

4.6 was located in a yellow light room for preventing unintentional light exposure. It 

consists of three elements: the laser and optics cabinet, the inverse microscope and the 

electronic rack. The laser source provides short pulses (around 150fs) at a center 

wavelength of 780nm±10nm. The repetition rate of the laser is 100MHz. Even though the 

single pulse peak power is very high, the average light power is low (100mW) because 

the total pulse width of the single pulse is five orders of magnitude higher than the single 

pulse. The sample is mounted on a computer controlled three-axes piezo electrical 

scanning stage. The piezo range is 300µm            . That’s the maximum size 

of the fabricated structures without the help of the motorized scanning stage. An acousto 

optic modulator (AOM) controlled by the computer can adjust the laser intensity. The 

light pulses are tightly focused into the As2S3 as photoresist by a 100  oil immersion 

objective with high numerical aperture (NA=1.4). The expansion lens expands the laser 

beam size to match the oil objective size. 
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FIGURE 4.6 Nanoscribe Photonic Professional system: (a) LDW system in the 

yellow light room, (b) diagram of all main components. 

Influence of the index mismatch on the voxel shape of the laser beam becomes significant 

because the RI of As2S3 photoresist is very high [3]. Intuitively, the rays will be refracted 

in the interface between As2S3 photoresist and glass substrate as shown in FIGURE 4.7. 

Without defocus factor adjustment, the discrepancy between the actual and intended 

writing position will vary a lot. The defocus factor is chosen as 0.62 by referring the 

relationship between the defocus factor and the RI of the refraction [14]. 

(a) 

(b) 
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FIGURE 4.7 Focus point influence of the index mismatch. 

The GWL script language is used in the LDW system to maximize the flexibility of the 

writing process. Laser power, focus place, point distance, writing speed and other related 

writing parameters can be defined by GWL language. Also, GWL working together with 

Matlab or Labview software can easily generate the codes for any specific structures’ 

writing. The GWL script of the spiral 3D PhCs is attached in Appendix B. 

4.3 Wet etching 

After the laser exposure by LDW system, the development solution is used to remove the 

unexposed area. Diisopentylamine (Alfa Aesar) with concentrations between 0.05% to 3 

mol-% was used. Diisopentylamine slowly dissolves the exposed areas (crosslinked

2 3As S ) while rapidly dissolving unexposed area which is mainly 4 6As S . Another liquid, 

dimenthylsulfoxide, is used to dilute the diisopentylamine. As high concentration of 
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diisopentylamine etches the sample too rapidly which can ultimately cause the sample to 

peel off the glass substrate; while a low concentration doesn’t dissolve the unexposed 

area. Different concentrations of diisopentylamines are tested to optimize the etching 

speed. Finally, we found 0.5mol-% diisopentylamine solution is an optimized 

development solution. 

The wet etching process requires a clean substrate. Otherwise, the glassy As2S3 

photoresist easily peels off from the glass substrate during the wet etching process. Figure 

4.8 shows a homemade glass substrate holder for cleaning. Three solutions: acetone, 

isopropanol alcohol and deionized water were used sequentially for ten minutes in 

ultrasonic device to clean the glass substrate. 

 

Figure 4.8 Homemade glass substrate holder. 

4.4 Results and discussions of the as-fabricated 3D spiral PhCs 

To obtain high-quality of 3D spiral PhCs, several factors are crucial. Laser power, 

defocus factor, structure size, etching time and development solutions were investigated.  

4.4.1 3D spiral PhCs produced with different laser power 

As2S3 material was used to fabricate the same size spiral structures with different laser 

power. Laser powers of 7.8, 6.6 and 5.4mW were used. In Figure 4.9, 7.8mW laser power 

exposed more area than the design area because of the increased focal volume caused by 



51 

 

 

 

increased laser power. 5.4mW laser power in Figure 4.9 (c) was too small to expose the 

focal point fully. As a result, some places in the exposed area were also washed away by 

the development solution. Figure 4.9 (d) is the close-up of Figure 4.9 (c). The spiral was 

split into several branches because of over-etching. 6.6 mW laser power can produce best 

spiral structures among these three powers.  

                 

Figure 4.9 The SEM graphs of 3D spiral structures produced by different laser 

powers. (a) 7.8 mW, (b) 6.6mW, (c) 5.4 mW, (d) the close-up of 

(c).Scale bar is 20 µm for (a)-(c) but 5 µm for (d). 

4.4.2 3D spiral PhCs produced with different defocus factor 

Defocus factor becomes very important when the photoresist has a high RI which can 

lead to an index mismatch. Compared with the spiral structures in Figure 4.10 (a), the 

structures in Figure 4.10 (b) has higher resolution because the defocus factor adjustment 

can effectively avoid the voxel elongation. 

(b) 

(d) (c) 

(a) 
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Figure 4.10 Influence of the index mismatch. a) without defocus factor 

adjustment. b) with defocus factor adjustment. 

4.4.3 3D spiral PhCs produced with different etching times 

Etching time can directly determine whether the unexposed area is removed thoroughly. 

FIGURE 4.11 clearly represents the important role of etching time. With proper etching 

time, 3D spiral PhCs are well revealed. In figure 3.7, 10    spiral structures have lattice 

constant with 3   and spiral radius with 2.5µm. FIGURE 4.11(a), the fabricated 

structures are not fully revealed because of too short etching time. With longer etching 

time in FIGURE 4.11(b), the microstructures are clearly revealed. 

 

FIGURE 4.11 (a) etching time 10 minutes, (b) etching time 15 minutes. The 

sample thickness is 10µm. 

(a) (b) 

(b) (a) 
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4.4.4 3D spiral PhCs produced with different concentrations of development 

solutions 

The concentrations of diisopentylamine solution between 0.05 and 3mol-% were made up 

to investigate the best concentration for wet etching. We found 0.05mol-% 

diisopentylamine is too weak to etch the unexposed area while 3mol-% will cause the 

whole sample fall off from the glass substrate. 0.5mol-% is the best value for wet-etching. 

4.4.5 3D spiral PhCs produced with different structure sizes 

Through simply adjusting the GWL code, 3D spiral PhCs with different structure sizes 

were obtained. An etching time of 15mintues yields the best results. 

 

FIGURE 4.12 3D spiral PhCs with different sizes. Lattice constant is denoted as 

a while the spiral radius is denoted as r here. (a)a=4µm, r=2.5µm; 

(b) a=5µm, r=2.5µm;(c) a=6µm, r=2.5µm;(d) a=2µm, r=1µm. 

(a) (b) 

(c) (d) 
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By using 4.8mW laser intensity and optimized concentration of wet etching solution, 

FIGURE 4.12 demonstrates that LDW system has the capability to fabricate arbitrary 

sizes very easily. 

4.4.6 Large size 3D spiral PhCs 

In order to implement optical characterization of 3D spiral PhCs , large area size is 

needed. However, large area size more than 1mm by 1mm takes more than one day to 

fabricate. Among all structure sizes in section 4.4.5, 2 µm lattice constant was chosen to 

achieve that the 3D spiral PhCs that can work in a relatively short wavelength regime. In 

this work, 280µm by 280µm large size area was made for optical characterization. The 

total writing time by LDW system was around four and half hours. FIGURE 4.13 

demonstrates spiral PhCs still maintained very uniform structure throughout the whole 

area without defects. This is a big advantage over self-assembly. Usually in self-assembly 

it is almost impossible to maintain defect-free structure over a large area. 
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FIGURE 4.13 Large area size of 3D spiral structures. 

By tilting the sample stage of SEM system with 35 , we can observe the vertical topology 

of 3D spiral structures. FIGURE 4.14 shows the uniform 3D structures with two 

connected neighboring pitches. 
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FIGURE 4.14 SEM graphs of 3D spiral structures with 35° tilt angle of sample 

stage of SEM system. 

4.4.7 3D spiral PhCs produced based on alternative material: IP-L 

As2S3 was used for 3D spiral PhCs fabrication above. The LDW system can use many 

other materials to fabricate microstructures. For example, scaffolds based on Ormocer 

photoresist were made for cell force measurements [15] in the biotechnology area. Spiral 

structures fabricated with different sizes in IP-L (Nanoscribe GmbH) are shown in Figure 

4.15. 

    

Figure 4.15 Spiral structures fabricated with different sizes in IP-L. (a) Scale 

bar, 5µm ; (b) Scale bar, 5µm. 

(a) (b) 
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4.5 Conclusions 

In the fabrication chapter, 3D spiral structures were fabricated by using thermal 

evaporation, two-photon absorption effect and wet-etching together. Electric current in 

the vacuum chamber was adjusted to control the deposition rate of the glassy 2 3As S . A 

quartz microbalance was used to measure the deposition rate. Glassy 2 3As S with desired 

thickness can be obtained by adjusting the deposition rate and time. 

Computer controlled LDW system can control plenty of writing parameters such as laser 

power and focal position to obtain optimized writing performance. Almost any arbitrary 

structures can be fabricated by the LDW system. 

During wet etching section, the proper etching time and solution concentration have been 

chosen to reveal the exposed photo-resist.   
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 
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5.1 Conclusions 

Photonic crystals (PhCs) have gone from inception to maturity during the short span of 

twenty years. Unlike self-assembly and holographic laser lithography methods, laser 

direct writing (LDW) system can fabricate almost any arbitrary microstructure by 

programed code control. Three dimensional spiral PhCs used as circular polarizers have 

been fabricated and simulated in this work. As2S3 with a high refractive index has been 

used in order to create broader circular polarization selection effect.  

The results are summarized as follows: 

 Simulated the 3D spiral PhCs structures through an ellipsoid approximation by 

following the spiral trajectory; 

 Obtained and investigated optical transmittance of 3D spiral PhCs based on 

transparent materials with different RI contrast and dispersive material. 

 Investigated the writing parameters like laser power, defocus factor, and structure 

sizes for LDW fabrication; 

 Optimized concentration of development solution and etching time for revealing 

3D spiral PhCs after laser exposure; 

5.2 Future work  

Besides fabrication and simulation work, optical characterization by spectrometer is 

another crucial factor for optical device design. In order to finish optical characterization 

of 3D spiral PhCs, the test system is expected to meet two requirements: small beam size 

and circularly polarized light. We plan to set up a characterization system as follows. 

Lambda 900 spectrometer with the working wavelength range between 170 to 3300nm 

can be used to measure the optical transmittance spectra. However, Lambda 900 
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spectrometer couldn’t generate circularly polarized light. Therefore, a linear polarizer and 

a super-achromatic quarter-wave plate will be installed on the optical bench of Lambda 

900 for generating circularly polarized light.  
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APPENDICES 

Appendix A: Transmittance calculation of 3D spiral PhCs by using 

OptiFDTD 7 

OptiFDTD includes three modules: OptiFDTD Designer, OptiFDTD Simulator and 

OptiFDTD Analyzer [1]. Since OptiFDTD can finish most tasks in OptiFDTD Simulator 

and Analyzer automatically, we mainly talk about OptiFDTD designer. 

 

FIGURE A. 1 FDTD simulation flow chart in OptiFDTD [1]. 

AA. Structure parameters of 3D spiral structures 

For the convenience of our simulation work, we set up and change the layouts, materials 

property, boundary types, excitation sources type, structure size and all other parameters 

by programming VB code. After running VB code, all structure parameters will be 

updated based on VB setting-up. The following is an example of VB code we used for 

transmittance calculation. 

VB code: 

dLh = 1.3                     'Length of the helix pitches     
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dPi = 3.14159265358         'PI      

dSpace =1.3                'the spacing of the grid      

nXdirection = 1             'number of periods (X direction), X+1      

nYdirection = 1             'number of periods (Y direction), Y+1      

nZdirection = 7             'the number of helix periods (Z direction), Z+1      

dRadius = 0.39              'Radius of wire      

dDh = 0.39                      'the radius of the helix      

Zoffset = 2.5   

      

for X=-(nXdirection-1)/2 to (nXdirection-1)/2                     

for Y=-(nXdirection-1)/2 to (nXdirection-1)/2                              

for Z=0 to nZdirection                              

for m=0.00 to 360 step 360/130     

   

Set Ellipsoid1 = WGMgr.CreateObj ( "WG3DEllipsoid",  "Ellipsoid1"& 

Cstr(m)&Cstr(X)&Cstr(Y)&Cstr(Z))     

     

'Set position for Ellipsoid1    

   

Ellipsoid1.SetPosition dSpace*X+dDh*Cos(m*dPi/180), 

dSpace*Y+dDh*Sin(m*dPi/180) ,(m/360+Z)*dLh+Zoffset   '   'helical radius is 0.5 , 

helical pitch is 2, left handed      

   

'Set orientation for Ellipsoid1     

Ellipsoid1.SetOrientationExpr "", "", ""      

Ellipsoid1.SetOrientationOffset    0,    0,    0    

   

'Set clipping plane for Ellipsoid1     

     

Ellipsoid1.SetAExpr "0.19"     

Ellipsoid1.SetBExpr "0.19"     

Ellipsoid1.SetCExpr "0.513"      

'Set material name for Ellipsoid1     

Ellipsoid1.SetMaterial "N=1.5"   'Ag-Lorentz-Drude model parameters      

      

next      

next      

next      

next   

  

Dim InputPlane1  

Set InputPlane1 = InputPlaneMgr.CreateInputObj ( "Pulse", "Rectangular", 

"InputPlane1", "Vertical" )  

'Common data for 2D and 3D.  

InputPlane1.SetPosition  0.5  

InputPlane1.SetDirection "Forward"  
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InputPlane1.SetWaveLength "1.6"  

InputPlane1.SetTimeHalfWidth "40e-16"  

InputPlane1.SetTimeOffset "15e-15"  

InputPlane1.SetEnabled  True  

'Data for 2D.  

InputPlane1.SetAmplitudeOrPower "Amplitude", "1.0"  

InputPlane1.SetRefLocal  

InputPlane1.SetCenterPos "0.0"  

InputPlane1.SetHalfWidth "0.5"  

InputPlane1.SetTiltingAngle "0"  

'Data for 3D.  

InputPlane1.SetAmplitudeExpr3D "1.0"  

InputPlane1.SetRefLocal3D  

InputPlane1.SetCenterPosExpr3D "0.0", "0.0"  

InputPlane1.SetHalfWidthExpr3D "1", "1"  

InputPlane1.SetTiltingAngleExpr3D "0"  

InputPlane1.SetRHPolarization3D  

InputPlane1.RefreshInputField   

  

Dim ObservationPoint1  

Set ObservationPoint1 = ObservePtMgr.CreateObservationPoint ( "ObservationPoint1" )  

ObservationPoint1.SetCenter  1.3,    0  

ObservationPoint1.SetDepthExpr ""  

ObservationPoint1.SetEnabled  True  

ObservationPoint1.Collect2DTE  False, False  

ObservationPoint1.Collect2DTM  False, False  

ObservationPoint1.Collect3D  True, True, False, False, False, False  

  

Dim ObservationArea2  

Set ObservationArea2 = ObservePtMgr.CreateObservationArea ( "ObservationArea2", 

False, False, True )  

ObservationArea2.SetCenter   15,    0  

ObservationArea2.SetDepthExpr ""  

ObservationArea2.SetEnabled  True  

ObservationArea2.Collect3D  True, True, True, True, True, True  

ObservationArea2.SetWidthOffset  0.000  

ObservationArea2.SetHeightOffset  1.300  

ObservationArea2.SetWidthExpr  ""  

ObservationArea2.SetHeightExpr  ""  

  

  

Dim ObservationPoint3  

Set ObservationPoint3 = ObservePtMgr.CreateObservationPoint ( "ObservationPoint3" )  

ObservationPoint3.SetCenter   14,    0  

ObservationPoint3.SetDepthExpr ""  

ObservationPoint3.SetEnabled  True  
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ObservationPoint3.Collect2DTE  False, False  

ObservationPoint3.Collect2DTM  False, False  

ObservationPoint3.Collect3D  True, True, False, False, False, False  

 

AB. Simulation parameters set-up 

In order to save computer memory and increase simulation speed, 64 bit simulator and 64 

bit personal have been chosen for computational simulation. In figure A.2, reasonable 

parameters have been chosen based on step requirement for both time and space. The 

number of time steps should be long enough to make sure the incident light’s 

convergence. 

 

FIGURE A. 2 Simulation parameters set-up. 

From Fig. (A.3), we have used the PBC boundaries for x and y directions and PML 

boundary for z direction.  
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FIGURE A. 3 Boundary conditions setup for all three directions. 

After we have set up all design parameters, we open the Design Summary dialog box to 

review all details of the design as shown in Fig. (A.4).  

 

FIGURE A. 4 Design Summary dialog box. 
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Appendix B: GWL code for LDW system writing 

The operation of the Photonic Professional system is controlled by the software 

Nanowrite. The software interface is shown in Fig. (B.1). 

 

FIGURE B.  1 the graphical user interface of the Nanowrite software. 

The most writing parameters are controlled by GWL code as shown below. Each line of 

the GWL script is used to execute the specific operation like setting up operation mode, 

line mode, switching on or off the connection points functions et al.   

PerfectShapeOff 

OperationMode 1 

ConnectPointsOn 

LineStartMode 1 

DwellTime 150 

LineNumber 1 

PointDistance 20 

UpdateRate 1500 

PowerScaling 0.3 

%  use defocus 
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DefocusFactor 0.62 

Xoffset 0 

Yoffset 0 

Zoffset 0 

 

LaserPower 16 

FindInterfaceAt 1 

%%%%%%%%%%%%%%%%%%%% 

% lattice constant is 2 

% radius is 1 

% x:10 y: 10 z: 2 

 

1.00000020000000 0 2.40000000000000 

1.15643470000000 0.0123117000000000 2.37000000000000 

1.30901720000000 0.0489435000000000 2.34000000000000 

1.45399070000000 0.108993600000000 2.31000000000000 

1.58778540000000 0.190983100000000 2.28000000000000 

1.70710690000000 0.292893400000000 2.25000000000000 

1.80901710000000 0.412214900000000 2.22000000000000 

1.89100660000000 0.546009700000000 2.19000000000000 

…………………  
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