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  Electrochemical capacitors or ultracapacitors (UCs) that are commercially 

available today overcome battery limitations in terms of charging time (from tens of 

minutes to seconds) and limited lifetime (from a few thousand cycles up to more than one 

million) but still lack specific energy and energy density (2-5% of a lithium ion battery). 

The latest innovations in carbon nanomaterials, such as carbon nanotubes as an active 

electrode material for UCs, can provide up to five times as much energy and deliver up to 

seven times more power than today’s activated carbon electrodes. Further improvements 

in UC power density have been achieved by using state-of-the-art carbon nano-onions 

(CNOs) for ultracapacitor electrodes. CNO UCs could exhibit up to five times the power 

density of single-wall CNT UCs and could substantially contribute to reducing the size of 

an energy storage system as well as the volume and weight, thus improving device 

performance.  

 This dissertation describes the fabrication of CNO electrodes as part of an UC 

device, the measurement and analysis of the new electrode’s performance as an energy 

storage component, and development of a new circuit model that accurately describes the 

CNO UC electrical behavior. 



The novel model is based on the impedance spectra of CNO UCs and cyclic voltammetry 

measurements.  Further, the model was validated using experimental data and simulation.  

My original contributions are the fabrication process for reliable and repeatable 

electrode fabrication and the modeling of a carbon nano-onion ultracapacitor. The carbon 

nano-onion ultracapacitor model, composed of a resistor, an inductor, a capacitor (RLC), 

and a constant phase element (CPE), was developed along with a parameter extraction 

procedure for the benefit of other users. The new model developed, proved to be more 

accurate than previously reported UC models. 
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CHAPTER 1.  INTRODUCTION 

 The high cost of fossil fuel, national security concerns, and environmental 

awareness are driving efforts to find alternative solutions to the world’s energy needs.  

Renewable energy is a possible solution to these issues, and advanced energy storage that 

not only matches its intrinsic variability but also improves energy system reliability and 

performance is required [1].  With the implementation of energy storage, the economics 

of the overall system are also affected, requiring, for example, a decrease in premium 

fuels and the related waste of energy [2]. Advances in fast energy storage for regenerative 

braking in hybrid electric vehicles (HEVs) could significantly increase their mileage 

range [3], or the load leveling made by water storage reservoirs in a hydropower 

generation plant could improve performance and efficiency, decreasing the total 

generation cost [2].   

 Energy can be stored in three main ways:  mechanically, thermally, and 

electrochemically [2, 4].   

 A mechanical energy storage system includes:  1) a flywheel that uses the rotation 

of a mechanical device and its intrinsic moment of inertia to store rotational energy, 2) 

compressed air stored in underground reservoirs, extracted, heated, and expanded through 

a conventional gas turbine when needed [5], and 3) gravitational energy storage or 

pumped hydropower storage that utilizes the potential energy of the water to run turbines 

when needed.  

 Thermal energy can be stored:  1) as sensible heat, by increasing the temperature 

of a body, either liquid or solid; 2) as latent heat absorbed or released by a phase change 
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material when passing from one phase to another (gas, liquid, solid, or vice versa) and 3) 

by thermochemical reactions (energy transferred in the breaking and reforming of 

molecular bonds in a chemical reaction) [2].  

 Electrochemical energy storage includes either a Faradaic battery or non-Faradaic 

capacitor storage device.  The classification of electrochemical energy storage [6-7] is 

depicted in Figure 1.1.  (Chapter 3 provides more detail on electrochemical energy 

storage.) 

 

Figure 1.1.  Classification of electrochemical energy storage. 

 The transportation sector is responsible for about 20% of the world’s energy 

usage.  Hence, safe, light, compact, and reliable energy storage capable of 

accommodating fast charging is required.  Today’s batteries require a long charging time 

(4-6 hours) and have a limited lifetime of up to a thousand cycles.  This creates a 
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reliability problem.  In addition, recycling is a challenge once the batteries reach the end 

of their lifetime [8]. 

 To address some of these issues, research is currently focused on fast-charging, 

high-power, high-energy density, elevated charge-discharge cycle life energy storage for 

transportation applications [9].  Inside the electrochemical energy storage, batteries, 

especially lithium batteries, have been dominating the field of power sources and 

transportation [10].   

 Another family of electrochemical energy storage that has been receiving 

attention from researchers and industry is the electrochemical capacitor, also referred to 

as a double-layer capacitor or ultracapacitor (UC) due to its tremendous capacity density 

and almost unlimited charge-discharge cycle life [6, 11].  UCs have higher specific power 

than batteries and higher specific energy than regular capacitors [12].  A UC is an 

electrical energy storage apparatus that uses the ionic absorption at the interphase 

boundary between an electron conductor (e.g., aluminum foil) and an ionic conductor 

(e.g., ions in solution in electrolyte) by applying an electrostatic field across them [6].   

 For commercial UCs, it is common to find electrodes made of activated carbon [6, 

13-14] and, most recently, carbon nanomaterials, such as carbon nanotubes [15].  An 

emerging nanomaterial for UC electrodes is the carbon nano-onion (CNO). CNOs 

provide high specific power, good energy density, and elevated cycling capability [16-

18].  

 The objective of this research is to study the behavior of CNOs from an 

electrochemical point of view and to evaluate their applicability as an active material for 
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UC electrodes.  Also, there is interest in developing an electrical equivalent circuit model 

for a CNO UC based on its impedance spectra and extending the previous work 

accomplished with activated carbon [6, 19-20] to CNOs.  CNOs have been synthesized, 

and UCs made of CNOs have been assembled and characterized in the Nano-Engineering 

Laboratory at the University of Nebraska.  Electrochemical measurements have been 

completed and an electric equivalent model developed.  The simulation results match the 

experimental work precisely.  

 The development of an electric equivalent circuit model is important in providing 

engineers and designers with a new tool for studying advanced energy storage solutions 

for renewable energy applications, such as hybrid electric vehicles and consumer 

electronics. 

1.1 Motivation of the Work 

 In the context of the theme introduced above, this dissertation is based on the 

modeling of a UC focusing on the (CNO).   

 The knowledge that it is possible to store energy in the interphase between a solid 

electrode and a liquid electrolyte dates back to the late 1800s [11].  It was only a few 

decades later, in 1957, that H.I. Becker of General Electric presented the first electric 

devices utilizing double-layer charge storage (Low Voltage Electrolytic Capacitor, U.S. 

Patent 2,800,616).  Based on this discovery, R.A. Rightmire of Standard Oil of Ohio 

(SOHIO) invented, in 1962, the design that is commonly used today (Electrical Energy 

Storage Apparatus, U.S. Patent 3,288,641). This discovery opened a new era in energy 

storage devices dramatically increasing their energy-power density.  Fig. 1.2 shows the 
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Ragone plot of the specific energy and specific power of the ultracapacitor energy storage 

devices.  

 

Figure. 1.2.  Ragone plot. CNT-a:  Ionic-liquid-based gel electrolyte [21]; CNT/RuO
2
:  

single-walled [22]; CNT-b:  Single-walled, organic gel electrolyte [23]; CNT-c:  Single-

walled, aqueous gel electrolyte [22]; SWCNT:  Single-walled [22]; CNT/PANI:  

Polyaniline-based electrodes [24]; CNO:  Carbon nano-onion [25]. 

 It was almost 30 years later, in 1991, following advances in the research of high 

surface area materials, such as activated carbon, that the Japanese company, Nippon 

Electric Company, released the first activated carbon UC tremendously improving the 

capacity density of the device. 

 Formula 1 shows the dependence of the capacitance on the electrode’s surface 

area, A, that is strictly related to the electrodes’ material and the double layer distance, d 

(more details on the physics of a UC will be provided in the next chapter).  
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   (1) 

The improvement in the device’s capacitance affects its total energy as well, as presented 

in Formula 2.  

    
 

 
       (2) 

The key importance of electrode material in achieving high energy density devices is 

understandable.   

 A lot of research has been done to increase the surface area of electrodes 

(activated carbon reaches 760 m
2
/g [115] and increase the power and energy density.  

However, the microporous structure of an activated carbon electrode is unfavorable for 

electrolyte wetting and rapid ionic motions, limiting power and energy density [15]. The 

introduction of CNTs as an active electrode material is an improvement.  UCs made of 

CNTs can provide twice as much energy and deliver up to seven times more power than 

today’s activated carbon electrodes [116].  

 Further improvements in power density have been achieved by using CNO 

material for ultracapacitor electrodes [16, 18]. The result is that CNOs exhibit up to five 

times the power density of single-wall CNTs [15]. Recent studies on the activation of 

CNOs [25] have shown an increment in the surface area of the material resulting in a 

little more exploration of the upper-right corner of the Ragone plot (Fig. 1.3).  CNOs 

could substantially contribute to reducing the size of an energy storage system as well as 

the volume and weight, thus improving device performance. The physical aspect of CNO 

material could have a positive effect on the performance of electric vehicles with CNO 

UCs by increasing mileage or reducing weight. The more accessible surface area of CNO 
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material could enable a UC to handle peak currents and thereby fast charge/discharge 

applications. This feature could dramatically reduce, for example, the time required to 

charge portable devices such as laptops and cameras. The short charging time of UCs 

inspired us to design an advanced fast charger for an electric bicycle using CNO UCs for 

energy storage [26-27].   

 The potential uses highlight the need for computer simulation of CNO UCs which 

will extend the work achieved on activated carbon UCs to CNO UCs.  

1.2 Research Accomplishments and Relevant Publications 

 The scientific contributions of this work are summarized as follows: 

1. Characterization of a carbon nano-onion ultracapacitor 

2. Modeling of a carbon nano-onion ultracapacitor 

3. Development of a carbon nano-onion ultracapacitor application for 

electric bicycles 

Publications associated with this dissertation are: 

1. F. Parigi, J.L. Hudgins, Y.F. Lu, ―Model of Electrochemical Double-

Layer Capacitors Using Carbon Nano-Onion Electrode Structures.‖ 

(Currently in submission process for IEEE Transactions.) 

2. F. Parigi, T. Gachovska, Y. Gao, Y. Zhou, J.L. Hudgins and Y. Lu, 

―Carbon Nano-onions Ultracapacitor Model,‖ 2013 MRS Materials 

Research Society Spring Meeting and Exhibit, April 1-5, 2013, San 

Francisco, CA, USA. 
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3. F. Parigi, Y. Gao, T. Gachovska, J.L. Hudgins, D. Patterson, Y. Lu, 

‖Impedance-Based Simulation Model of Carbon Nano-Onions 

Ultracapacitors for e-Bike with Compact Energy Storage System,‖ 

IEEE VPPC2012 Vehicle Power and Propulsion Conference. 9-12 

October 2012, Seoul, Korea. 

4. F. Parigi, T. Gachovska, T. Kim, Y. Gao, D. Patterson, J.L. Hudgins, 

Y. Lu, ―Minimal Energy Storage System Using Carbon Nanotube and 

Nano-Onion Ultracapacitors for an Electrified Bike,‖ IASTED Power 

and Energy Systems, EuroPES 2012, Jun 25-27, 2012, Naples, Italy. 

5. F. Parigi, Y. Gao, M. Casares, T. Gachovska, Y.S. Zhou, Y.F. Lu, D. 

Patterson and J.L. Hudgins, ―Investigations on the Aging Effect of 

Supercapacitors,‖ 2011 MRS Materials Research Society Spring 

Meeting and Exhibit, April 25-29, 2011, S. Francisco, CA, USA. 

6. F. Parigi, T. Gachovska, J. Hudgins, and D. Patterson, ―Wind for 

Irrigation Application,‖ IEEE Power Electronics and Machines in 

Wind Applications, PEMWA 2009, June, 24-26, 2009, Lincoln, NE. 

1.3 Literature Review 

 The literature review presented here covers different aspects of the UC world, 

including a brief history of UCs, materials, modeling, and applications. 

1.3.1 History 

 Ultracapacitors are the result of an evolutionary process that began toward the end 

of the third quarter of the 19th century. In this section, we analyze the evolution of the 
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ultracapacitor’s world from the dawn of the double layer phenomena through the latest 

carbon electrodes, such as activated carbon, carbon nanotubes, and carbon nano-onions, 

up to the awarding of the 2010 Nobel Prize in Physics to Andre Geim and Konstantin 

Novoselov for their work with graphene. 

1861 
G. Quincke introduced the concept of an electrical double 

layer [28], although he did not refer to it that way [29].   

1874 

The German physician and physicist H.V. Helmholtz, was 

the first to propose the model of the charge distribution 

around the boundary of a solid conductor and ions 

dissolved in a liquid. This intuition foresaw two opposite 

layers of charge, phasing each other at a few nanometers 

apart [30]. 

1909 

L.G. Gouy and D. Chapman extended Helmoholtz’s model 

by studying the thermal diffusion of ions and their 

diffusion distribution [31]. 

1924 

O. Stern improved the Grouy-Chapman model by 

introducing a dimension of ions and solvent molecules, 

proposing that the charge was centered in the ion and 

placed at distance d from the solid plate and adding an 

absorbed ions zone near the electrode surface in 
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conjunction with the Gouy-Chapman diffusion layer [31-

32]. 

1947 

D.C. Grahame proposed a comprehensive theory of the 

electrical double layer in a macro frame called 

electrocapillarity. Electrocapillarity studies the surface 

tension and an inert salt solution in contact with a metal. 

For Grahame, the double layer in a salt solution is an array 

of charges and dipoles between the solid and the ions. 

Also, he studied the double layer thermodynamic for 

different substances. He completed the Gouy-Chapman-

Stern-Grahame theory, arriving at what is today known as 

the double layer model [29, 33].  

1957 
H.I. Becker of General Electric patented the first electrical 

device using double layer charge storage [34].   

1962 

R.A. Rightmire, of Standard Oil Company of Ohio 

(SOHIO) filed the patent and received it in 1966 for the 

device layout used today [35].  

1969 

SOHIO commercialized ―Electrokinetic capacitor‖ energy 

storage for power rectification filtering based on high-

surface-area carbon electrodes [11]. 
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1970 

D.L. Boos of SOHIO complemented Rightmire’s patent on 

electrolytic capacitors having carbon paste electrodes [36] 

which became the technology cornerstone of modern 

electrolytic capacitors [11]. 

1972 

Panasonic’s Central Research Laboratory developed the 

first electric double layer capacitors (DLC), ideal for 

backup power and solar batteries [37].  

1974 

I.S. Lidorenko reported on a study, to the USSR Academy 

of Science, about a ―molecular energy storage technology‖ 

that led to the development of kV-rated and MJ-rated 

capacitor systems for ignition of combustion engines [38]. 

1978 

Panasonic of Kadoma, Osaka, Japan, began production of a 

DLC named ―Golden Capacitors.‖ The cell was composed 

of nonpasted electrode and nonaqueous electrolyte, rated at 

1.8 V, and had two designs:  one to replace the coin cell 

battery and a spiral-wound configuration [11]. 

 

Nippon Electric Company (NEC), of Minato, Tokyo, 

Japan, commercialized SOHIO’s Technology’s first super-

capacitor for backup power in volatile clock chips and 

consumer electronics. The novel design included the first 
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bipolar configuration, aqueous electrolyte with pasted 

electrodes. The pasted electrode was made of conducting 

powder graphite and a binder [39]. Supercapacitor is 

NEC’s registered trade name, so other names, such as 

ultracapacitor and double layer capacitor, should be used.     

1980s 

SOHIO began to produce a double layer capacitor with an 

aqueous electrolyte and dipolar configuration, rated several 

farads and 5.5 V, and labeled Maxcap
®
 [11]. Maxcap 

technology was purchased by Carborundum and then by 

Cesiwid in 1993. Today it is referred to as Kanthal Globar 

[40].     

1985 

H.W. Kroto and colleagues from Rice University, Houston, 

Texas, observed a new stable carbon structure after 

vaporizing graphite by laser irradiation.  It consisted of 60 

carbon atoms placed on each vertex of a truncated 

icosahedron. It is an Archimedean solid, a polygon with 12 

regular pentagonal faces, 20 regular hexagonal faces, with 

a total of 60 vertices and 90 edges (this shape is 

communally encountered in a soccer ball). Kroto named it 

C60: Buckminsterfullerene. Also, Kroto and colleagues 

observed that the C60 molecule had all valences satisfied by 
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two single bonds and one double bond [41].  

1987 

ELNA America, Inc., patented an electric double layer 

capacitor, later commercialized as ―Dynamocap,‖ with 

organic electrolyte in coin cell and spiral-wound designs, 

for use in backup power supplies for IT, in sizes up to 200 

F and 2.5 V, and a high power rate with an RC-time 

constant in the range of 0.1 to 1 sec [42].  

1988 

Electrochemical Power Sources (ELIT) of Kursk, Russia, 

produced the first asymmetric electrolytic capacitor (AEC), 

also referred to as ―Hybrid Combined,‖ which used two 

different electrodes and two electrochemical processes. 

The negative electrode, activated carbon, used the double 

layer to store the energy. The positive electrode, NiOOH, 

used a Faradaic process. Both electrodes were immersed in 

KOH electrolyte. The main advantage of the AEC is the 

selection of the operation voltage for each electrode 

leading to asymmetric operation of the electrodes, where 

each electrode has its own process  speed and their 

difference, therefore, dictates the limitation of the 

asymmetric electric operation. AECs are indicated as 

starters for internal combustion energy motors at low 
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temperature operation, UPSs, load-leveling systems, and 

stabilizing the energy flow in a power grid.  The technical 

parameters of an AEC system are:  20 kJ-600 kJ up to 1000 

V [43-45].  

1990 

ELIT shifted to a symmetrical design with two activated 

carbon electrodes and KOH electrolyte. Thanks to the 

prismatic form, the modules reached voltages as high as 

400-1500 V [11].   

1991 
NEC reported achieving high capacitance using activated 

carbon composite material [11].   

 

Maxwell Technology, of San Diego, CA, USA, began 

working with the U.S. Department of Energy (DoE) to 

develop a technology able to level the energy peaks in 

electric vehicle battery energy systems. The proposed 

electrode was a metal-carbon fiber composite with KOH 

electrolyte. Later, the electrolyte was changed to organic 

and the electrode material from Ni-C to Al-C cloth [11].   

 

ECOND Corporation commercialized a bipolar type of 

capacitor with a double electric layer cell stack, with 

aqueous electrolyte for transportation applications with a 
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focus on the starting energy of internal combustion engines 

[46].     

 

S. Iijima, a scientist at Fundamental Research Laboratories 

of NEC Corporation, Japan, presented a study on a new 

type of finite carbon structure in the form of needle-like 

tubes, later referred to as carbon nanotubes (CNTs). Iijima 

was fascinated by the Kroto’s C60 [41] fullerene discovery 

and graphitic carbon sheets. Using a similar setup for the 

synthesis of C60, he reported the formation of CNTs on the 

negative electrode of the arc-discharge of the evaporation 

process. The needle-like tubes were comprised of 2 to 50 

graphitic sheets with diameters from a few to a few tens of 

nanometers [47].      

1993 

The incorporation of ESMA and ELTON, a Russian joint 

stock company based in Troitsk, Moscow, Russia, created 

a team of experts on the production and distribution of 

asymmetric electrochemical capacitors for heavy duty use 

(power buses and trucks) chargeable in 12-15 minutes for 1 

hour of service. The cells were rated for 3,000-100,000 F, 

with systems rated 20 kJ-30 MJ at 14-190 V, and 10 

Wh/kg energy density. The cells formed by a series of 
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connected capacitors are inherently balanced due to the 

flooded configuration. The cells also had high cycle life 

and high power performance. The flooded battery design 

brought additional advantages with respect to organic 

electrolytes, moisture control avoidance, hermetic 

packaging removal, and material purity issues [48].    

1996 

The Commonwealth Scientific and Industrial Research 

Organization (CSIRO), Clayton South, Victoria, Australia, 

in partnership with Plessey Ducon, developed a high-

specific energy, 9 Wh/kg, spiral-wound capacitor with 

carbon electrodes, organic electrolyte, and 1 second time 

constant [11].       

1997 

Cap-XX Pty Ltd was formed from the joint venture of 

CSIRO and Plessy Ducon to develop the most powerful 

electrolytic capacitor on the market designed for mobile 

and wireless communication systems. It had a series of 

connected cells, was rated 4.5 V, with a capacitance of 

0.12- 0.8 F with ESR less than 0.1 Ω. Its RC time constant 

was less than 20 milliseconds [11].   

 
The Nippon Chemi-Con Corporation (NCC), Osaki, 

Shinagawa-ku, Tokyo, Japan, developed spiral-wound and 
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prismatic cells, rated 3000 F and 2.5 V. Their products 

were optimized for energy or power delivery, and they 

provided test data that cleared up the reliability of 

electrochemical capacitors over time. With its innovative 

design, NCC avoided the health and fire issues of organic 

electrolytes by using propylene carbonate in the 

electrolyte. Also, to avoid the gas issues that generate 

swelling caused by the reactions of impurities during 

normal, or over-temperature and over-voltage operation, 

NCC employed an innovative pressure-regulation valve in 

the package. NCC cells found application in seaport 

cranes.  They were used for storing regenerative energy 

produced while unloading container ships and reusing it in 

the lifting section of the loading process. The study showed 

40% energy savings using this capacitor in seaport cranes 

[11].  

 

C. Niu and colleagues reported on a new type of 

electrochemical capacitor (EC) with carbon nanotube 

electrodes [49]. The electrodes were made of catalytically 

grown carbon nanotubes [50] [51] with an average 

diameter of ≈ 80 Å.  Niu and colleagues, while reporting a 
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step-by-step procedure to produce the electrode sheet, 

achieved an open structure that was not comparable with 

activated carbon or carbon fiber. The researchers studied 

the EC’s capacitance at different frequencies, reporting a 

102 F/g and 49 F/g at 1 and 100 Hz, respectively, and a 

specific power of > 8000 W/Kg. The electrolyte used was 

H2SO4 (38 wt %) [49]. 

 

Wong and colleagues focused their studies on the 

extraordinary mechanical properties of nanorods and 

nanotubes [52].Tans and colleagues studied the electrical 

properties of single-walled carbon nanotubes (SWNTs), 

proving that SWNTs act as genuine quantum wires at least 

from contact to contact (140 nm) [53].             

1998 
NEC proposed a thin type of activated carbon band 

electrode rolled in a spiral-wound design [54].  

 

NESSCAP, from Giheung-gu, Yongin-si, and Gyeonggi-

do, a Korean spinoff of the Daewoo Group, developed an 

organic electrolyte EC in spiral-wound prismatic 

configuration, presenting efficiency in stacking modules, 

with cells rated at 5000 F at 2.7 V. The cells were designed 

for transportation and power quality control. Another 
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innovative design was a pseudo-capacitance high-energy 

EC with applications in solar-powered illumination along 

roads or in garden lights [11].   

1999 

Panasonic presented the ―UpCap‖ capacitor, rated 2000 F 

and 2.3 V, for transportation applications. This device 

presented a double seal  packaging, designed to prevent 

moisture from getting into the cell [11].  

 

Ma and collegues reported on an EC with CNT electrodes 

[55]. They investigated the influence of different mixtures 

and the performance of CNTs and phenolic resin powder 

as binders. They also reported a capacitance density of 15 

to 25 F/cm
3
 in H2SO4 (38 wt. %) electrolyte.   

2001 

NEC brought innovation to the packaging, introducing the 

first spiral-wound element and a low-profile ultracapacitor 

[11].  

 

J. H. Chen and colleagues focused their work on the 

electrochemical characterization of CNTs in double-layer 

capacitors. The cell used 50 nm diameter CNTs directly 

grown on graphite foil. Measurement, carried out by cyclic 

voltammetry, showed the typical double layer behavior 
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with a specific capacitance of 115.7 F/g at 100 mV/s scan 

rate in 1 M H2SO4 electrolyte [113].  

2002 

ELNA was the first to report an asymmetric 

electrochemical capacitor with carbonaceous electrodes 

using organic electrolyte and lithium salts. They reported 

16 Wh/l energy density and 4.2 V operating voltage [56], 

[57].  

 

Maxwell Technology incorporated the Swiss ―Montena 

Components‖ acquiring the knowledge to boost their 

device’s performance. Soon, Maxwell replaced the 

electrodes with carbon-coated aluminum foil and shifted to 

a spiral-wound cylindrical design as well. Cell size ranged 

5-3000 F rated 2.7 V [11], [58].   

2003 

K.S. Kenneth and colleagues presented a study on 

superhydrophobic behavior, at a microscopic level, of CNT 

forests, achieved by covering the forests with a thin film of 

poly (tetrafluoroethylene) (PTFE). Kenneth and colleagues 

grew nanotubes by a chemical vapor technique directly on 

substrate and functionalized them with PTFE coating 

[114].  
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2004 

K.S. Novoselov and co-workers discovered what has come 

to be known as graphene or 2D graphite:  a single layer of 

carbon atoms assembled into a benzene-ring structure [59]. 

This two-dimensional graphite is the building block of 

graphitic-carbon-based materials such as:  0D fullerenes, or 

carbon nano-onions, 1D nanotubes (a graphene sheet rolled 

up into a cylinder of a few nanometers in diameter), or 3D 

graphite [60].  Therefore, the authors noticed how the 

arrangement of the structure of the material (0D, 1D, 2D, 

or 3D) while having the same chemical structure, could 

lead to completely different properties [61]. 

2005 

P.L. Taberna and colleagues [62] studied a new activated 

carbon-carbon nanotube film for ultracapacitor 

applications. The performance of the cell, assembled with 

organic electrolyte (NEt4BF4 1.5 M in acetonitrile), was 

compared to pure activated carbon electrodes. A 15 wt. % 

of CNTs showed the best compromise between power and 

energy, achieving a specific capacitance of 88 F/g and 

resistance of 0.6 Ω∙cm
2
. In further study, the authors 

achieved 90 F/cm capacitance stable for 10,000 cycles 

[63].        
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2007 

ESMA and its U.S. partner (American Electric Power) 

presented the first low-cost energy grid storage system for 

night-day usage. The system, an asymmetric capacitor 

made of oxide/sulfuric acid/activated carbon, has an 

optimal five hour charge/discharge cycle. It is charged 

during low peaks of energy consumption during the night 

and discharged at high peaks during daytime. It works at 

relatively slow frequencies (cycling rate), exactly one/day, 

and is projected to complete approximately 4,000 cycles 

over its ten-year lifetime.  It is well suited for 

electrochemical capacitors and could challenge a regular 

battery system. ESMA designed a prototype system to be 

able to deliver 1 MW for 5 hours. These results are very 

encouraging from a technological point of view; however, 

they still have to prove the economic feasibility of the large 

energy-grid storage systems [11,64-65].    

2008 

P.W. Ruch and colleagues [66] studied the properties of 

SWCNTs as electrode materials for ultracapacitors, as 

suggested by previous research [67-69]. To characterize 

the electrochemical behavior of SWCNT electrodes, they 

utilized cyclic voltammetry, in situ Raman spectroscopy, 



23 

 

and in situ dilatometry and compared the results with 

activated carbon material. They found that SWCNT 

capacitance is comparable to activated carbon. 

 

M. D. Stoller et al. [70] presented the first graphene-based 

ultracapacitors. The ultracapacitor’s design takes 

advantage of the high surface area, 2630 m
2
/g, and of the 

graphene, a 1-atom thick carbon sheet. The reported 

capacitances in organic and aqueous electrolyte were 99 

F/g and 135 F/g, respectively.   

2009 

R. Signorelli and colleagues presented a detailed study on 

CNT material for EC electrodes. The voltage and 

accessible surface area limitation of activated carbon 

electrodes were discussed, and previous measurements of 

CNT EC electrodes were published. Signorelli et al. 

proposed a new vertically aligned CNT grown on substrate 

and reported a seven times higher energy density than 

commercial activated carbon ECs [116].    

2011 

M.H. Ervin et al. [71] presented a discussion on the 

fabrication methods of SWCNT ultracapacitor electrodes. 

They proposed an optimum method for fabricating 

SWCNTs based on solution-based electrodes. They 
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investigated the influence of the deposition method and 

solution preparation on the double-layer capacitance. This 

method, in contrast to the direct grown on a current 

collector is thermal and chemical stress free.  They also 

found that the deposition method might affect the porosity 

of the electrode.    

2013 

M.F.L. De Volder et al. [72] presented a review of carbon 

nanotube applications. Today, carbon nanotubes exist in 

two main forms:  single-walled (SWCNTs) and multi-

walled (MWCNTs), ranging from 0.8 to 2 nm and 5 to 20 

nm, respectively, and from 100 nm up to cm in length. 

MWCNTs have 1 TPa of elastic modulus and 100 GPa 

tensile strength. CNTs can be either metallic or 

semiconducting depending on the orientation of the 

graphene lattice. Most of the CNTs today are made by 

chemical vapor deposition; and they are utilized in thin 

films, composite materials, active material for energy 

storage electrodes, antifouling coatings, and electrostatic 

discharge shielding.    
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In summary, we can delineate historically over 150 years of breakthroughs in the research 

and development of electrochemical capacitors.  The material presented covers the 

primary contributions to the field, omitting niche markets and minor technologies.   

 

Modeling of Activated Carbon Ultracapacitors 

 A literature survey on ultracapacitors began in the Spring of 2010. This section 

covers some of the most helpful references in understanding double layer capacitors and 

the evolution of the modeling of that phenomena for different materials, such as activated 

carbon, carbon nanotubes, and carbon nano-onions. This literature review covers, among 

others, the research carried out by:  Grahame [29,33], Beliakov [44-45], Iijima [47], 

Kroto [41], Conway [13], Miller [6,11,14,65,73-74], Zubieta [75-77], Buller [20,78-80], 

Nelms [19,81-83], and Spyker [84-89].  Some authors propose, with good approximation, 

electric models to describe the double layer capacitor behavior.  

 J.R. Miller and A.F. Burke (1994) [73] published a testing procedures manual for 

electric vehicle capacitors. The manual provides test methods for evaluating the 

performance of ultracapacitors used for load leveling in battery applications on electric 

vehicles. A technique commonly used in battery technology is used for the DC signal 

characterization and a potentiostat and software from the electrochemistry field is used 

for AC impedance testing. 

 Spyker and Nelms (1996) [85,90] proposed a simple ultracapacitor model to 

simulate a DC/DC converter between the capacitor bank and a constant load. The model 

is composed of equivalent series resistance (ESR) and capacitance (C) with an equivalent 



26 

 

parallel resistance (EPR) that models the leakage effect. Hence, it will only impact long-

term performance. The authors also present a study [84] (1997) on the discharge 

performance of different capacitors in two electrolytes:  aqueous and organic. The values 

of ESR and C are obtained under different current and voltage conditions. Also, they 

examine [86] (1997) the application of ultracapacitors for high power and high energy 

storage. ESR and C are calculated under peak current capability and different load 

conditions. A DC/DC converter is used to control the voltage gain to compensate for 

voltage droops. They claim that the simple model, ESR in series with C, despite its 

simplicity, is a close approximation to real performance. During the high current 

performance study they looked at the high frequency pulse and inductance evaluation on 

a single capacitor and a short circuit test on three capacitors. They reported high peak 

current (570 A) under short circuit conditions and suggest taking these values into 

consideration when designing a DC/DC converter [87].  

 In further work [81] (1999), the authors compare the classical equivalent circuit 

with a ladder network. In particular, they focus on the slow discharge and pulse load. The 

parameters are extracted from experimental measurements through AC impedance data 

analysis. The important results in the capacitance calculation are due to a change in the 

stored energy method that is used to calculate initial capacitance, discharge capacitance, 

and capacitance change as a function of voltage. They found that ESR does not vary with 

frequency. Also, they reported that the classical equivalent circuit predicts more 

accurately the voltage of the cell during slow discharge, where in pulse load both 

equivalent circuits demonstrate good accuracy in predicting voltage drops.  
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 In (2000), [89] presented a study on how to optimize arrays of ultracapacitor 

banks under a constant load connected through a DC/DC converter. Methods of 

predicting the behavior of supercapacitors in time, and predicting the final current and 

voltage level, were presented. The study shows that using a higher rated converter to 

increase the output power reduces run time and effective specific energy. To avoid this 

issue, it is possible to add in parallel strings of supercapacitors. In (2000) [88], they 

presented a similar study on slow discharge applications in regard to ultracapacitors. The 

change in storage energy method is used to study capacitance at different levels:  initial, 

discharge mode, and dependence on voltage.  

 A.W. Leedy and R.M. Nelms studied [91] (2002) the capacitor-hybrid source for 

pulsed load applications. They presented a steady-state analysis to minimize the voltage 

deviation of a parallel system of a battery and/or fuel cell with ultracapacitors. They 

inferred that a hybrid source is suitable for pulse mode application and that the voltage 

ripple is proportional to the ESR. In PSPICE, the Ladder and classical circuit are 

simulated and compared with experimental data. Experiments and simulations are done at 

different voltage and dc bias levels.  

 Leedy and Nelms noticed that impedance magnitude increases as frequency 

decreases below 0.1 Hz; and the phase angle presents a capacity behavior below 1 Hz, a 

resistivity behavior in the mid-frequency range, and a phase angle that tends to 90 

degrees after 35 kHz due to the inductance of the test leads. They measured and 

simulated the ESR, C, and leakage current and compared them. DC bias levels do not 

much affect the phase angle and magnitude [82].  
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 Nelms et al. (2001) [83] presented an updated version of the double layer 

capacitor model represented by a Debye polarization cell. This new concept takes into 

account the chemical reactions which occur inside the capacitor. To achieve this model, 

the AC impedance is measured; and a nonlinear least square fitting method is used. 

Results of a Debye cell are compared to a regular cell. Simulation results in PSPICE are 

also presented and compared with the experimental data. 

 R. Bonet and L. Zubieta (1997) [75-76] presented a capacitor model with voltage 

dependence, capacitance, and a ―normalization‖ procedure to achieve the repeatability 

and comparability measurements. Internal charge redistribution affects terminal voltage 

even though no charge has exchanges at the capacitor terminals. The normalization 

process proposes to stabilize the charge in 24 hr. and keep the EC terminal voltage under 

1% variation. 

 F. Belhachemi et al. (2000) [32] proposed a physical model of a power electric 

double-layer capacitor based on the physics that govern the charge storage, which utilizes 

a transmission line with voltage dependence distributed capacitance.   

 E. Karden et al. (2000) [91] used impedance spectroscopy to determine the model 

structure and the model parameters of batteries with a focus on impedance, nonlinearity, 

voltage drift, stability, and data reproducibility due to the history of the battery.  

 S. Buller et al. (2001) [78] applied electrochemical impedance spectroscopy (EIS) 

to studying the dynamic behavior of ultracapacitors. The energy efficiency and the 

voltage response were simulated using Matlab/Simulink. The experiments were done at 

different temperature and voltage levels, called state of charge (SOC), for a frequency 



29 

 

range from 6 kHz to 10 microHz. The ultracapacitor was represented by a combination of 

an inductor (L), a series resistor (R), and complex impedance (Zp) that is a sequence of N 

RC circuits. Zp has only two independent parameters (t, C).  

 E. Karden and colleagues in [93] (2002) applied the EIS to model the dynamic, 

nonlinear, nonstationary behavior of electrochemical power sources. A porous electrode 

theory is included in the study. Experimental data are presented with equivalent circuit 

models under different direct current conditions. The study considers a supercapacitor, a 

lead/acid battery under charging and discharging operation, and the same type of battery 

at overcharge conditions. The authors show that the model parameters are correlated with 

the charge transfer kinetics, double layer capacitance, and pore structures of the 

electrodes. An ultralow frequency in conjunction with a DC operating current is needed 

to characterize the battery behavior. Monitoring the ohmic resistance will provide 

feedback on the state of health and state of the battery’s charge.. S. Buller et al. in [79] 

(2005) utilizes the EIS to find new equivalent circuit models for ultracapacitors and 

lithium ion batteries. The proposed nonlinear, lumped-element model satisfies the 

accuracy requirement to simulate energy storage devices. This model is suitable for 

hybrid storage devices too.   

 Y.Y. Yao and colleagues (2006) [94] studied an equivalent model of 

supercapacitor under different conditions. Their model calculates ESR and EPR; and they 

study the voltage sharing effect and the overvoltage protection in series configuration. 

Their study is focused on aircraft applications, so they reproduce the radioactive space 

environment (high energy proton, x radial, gamma radial) with Co60 radiation; and they 
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have observed that the performance of the double layer capacitors decreases 12% under 

radiation exposition.  

 V. Martynyuk et al. (2007) [95] studied the nonlinear behavior of the DLC in a 

wide frequency range from a theoretical point of view. They explain the dependence of 

the capacitance and ESR on frequency and voltage level. They calculate the real value of 

capacitance and resistance at different working currents and voltages. The authors created 

a mathematical model to calculate supercapacitor parameters without doing experimental 

analysis. 

 H. Wu and R. Dougal (2005) [96] describe a novel dynamic multiresolution 

model for ultracapacitors. The model, simulated in a virtual test bed, a simulation 

platform, is a multiorder RLC circuit that dynamically switches the different orders 

during simulation. The switching that controls the simulation order is governed by the 

model output derivative. The model is validated in the simulation of an electric vehicle 

system.        

 D.A. New (2000) [97] proposes a detailed procedure to parameterize extraction of 

a double layer capacitor model. The model under consideration is Zubieta’s model 

presented in multiple works [75-77,80].     

 F. Rafik et al. [98] (2006) use electrochemical impedance spectroscopy (EIS) to 

characterize ultracapacitors and to study the influence of frequency on ESR and 

capacitance. They analyze the frequency spectrum from 1mHz to 1 kHz. The authors 

developed an electrical model made of 14 RLC elements with parameters extracted from 
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experimental data using EIS.  Good accuracy of the model vs. the experimental results 

was reported at different frequency, temperature, and bias voltage.   

 J. Huang et al. [99] (2008) developed an interesting, complete model for 

nanoporous ultracapacitors considering diverse pore size, carbon material, and 

electrolyte. The model follows a heuristic theoretical approach taking into account the 

pore curvature and the pore sizes. The model covers different material, such as activated 

carbon and carbide-derived material, and works for different electrolytes, such as organic, 

aqueous, and ionic liquid electrolytes. Also the authors discuss the effects of the kinetic 

solvation and desolvation process. Even though this is a complete model for porous 

materials, matching successfully the endohedral ultracapacitors, it presents limitations for 

exohedral ultracapacitors, such as carbon nanotubes with diameters smaller than 100 nm.       

 N. Bertrand and colleagues (2010) [100] developed a UC model taking into 

account its nonlinear behavior for embedded applications. The model follows, at first, the 

porous electrode theory and then an approximation of the results. A group of differential 

equations with fractional derivatives represents a set of fractional linear systems. A 

global model is then obtained through integration, where for each operating voltages 

there is a set of equations that represents the behavior of the UC at that particular voltage 

level.   

 S.H. Kim (2011) [101] proposes a dynamic simulation of a model for UCs 

considering parameter variation and self-discharge. Self-discharge is modeled by a 

constant phase element (CPE). To be able to simulate the CPE model in PSPICE, the 
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authors present three equivalent RC circuits. They state that CPE effectively represents 

the dynamic characteristics and self-discharge of the UC.   

 V. Musolino and colleagues (2013) [102] presented a UC model for the whole 

frequency range, including redistribution and self-discharge, that is a combination of 

Buller’s model [20] and Zubieta’s model [77]. Also, the authors provide a simple 

procedure for extracting the parameters from the data sheet of the UC. The simplicity of 

this procedure presupposes the availability of a datasheet. So, what seems to be an 

advantage could, in fact, be a limitation in dealing with experimental ultracapacitors 

where no data are available.   

Modeling of Carbon Nanotubes Ultracapacitor 

 G.M. Odegard and colleagues (2002) [103] presented a model of a structure’s 

property relationship with the nanomaterials. This model links solid mechanics and 

computational chemistry by utilizing the equivalent continuum model instead of the 

discreet molecular structures.  The model has been used to study two different situations: 

the bending rigidity of the graphene sheet and the determination of the effective 

continuum geometry. The thickness and the bending rigidity of the graphene sheet were 

also determined.    

 A. Naeemi and J.D. Meindl (2007) [104] presented a physical model for single 

and bundles of walled carbon nanotubes valid for all voltages and lengths. The authors 

based their work on the results accomplished by M.W. Bockrath (1999) [105] and P.J. 

Burke (2002) [106] on a transmission line model on single-walled carbon nanotubes. The 
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transmission line model works as well from 1D to 3D conductor wires with nanometer 

diameters according to S. Salahuddin et al. (2005) [107].     

 A. Orphanou et al. developed a model of a carbon nanotube ultracapacitor, using 

a molecular dynamics approach based on ions’ motion in the electrolyte between the 

electrodes. The frequency-dependent impedance is computed by applying an AC voltage 

and recording the current that is a function of the electrolyte and nanotube distribution. 

Finally, the cyclic voltammetry and Nyquist plots are presented vs. the lumped-element 

equivalent circuit simulation; and they demonstrate a high agreement.    

Application of Ultracapacitors  

 Supercapacitors are used as energy storage in many commercial and military 

applications. They can be found on hybrid electric-gas propulsion systems, in hybrid 

ultracapacitor/battery solar energy storage, wind turbine pitch control systems, and 

electric metro trains, etc. In this literature review a few examples of applications will be 

presented.  

 R.M. Schupbach and J.C. Balda (2003) [108] presented a paper on how to design 

a hybrid battery-supercapacitor energy storage system. An ESS, including 

supercapacitors, offers weight and volume reduction and a better $/kW than a sole battery 

system. ESS with ultracapacitors not only maintains the same vehicle power and energy 

performance but achieves a better acceleration and an improvement in fuel consumption.  

 J.M. Miller et al. (2005) [74] presents a comparative study on ultracapacitors and 

battery energy storage systems (ESS) in hybrid vehicles with two different configurations 

of electronic continuously variable transmission. The article shows the benefits that 
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supercapacitors bring to the ESS. Pulse load supercapacitors present better performance 

than batteries, because batteries suffer from internal heating; tough ultracapacitors are 

indicated for repetitive cycling at a high pulse rate. 

 F. Rafik et al. (2006) [109] focused their work on DLC for vehicle application. 

Their study considers temperature, voltage, and frequency variations. The dynamics of 

the ions in the electrolyte are affected by the frequency, through the frequency 

dependence. At low frequency, the ions have the time to access entirely the pores’ depth 

which correspond to an increase in the capacitance and ESR. At low temperature, the 

DLC’s ESR increase. 

 R.M. Schupbach et al. (2003) [110] presents a work on the design aspects of an 

energy storage system composed of a battery and DLC for vehicle power management. 

The methodology shows how to choose the right combination between the battery and 

DLC based on energy density, power density, weight, and costs. The authors list the main 

steps to designing an energy storage system:  determine the load requirements, find out 

the rated power of the principal energy source, and size the energy storage system 

considering the limitations imposed by the main energy source and the transient 

necessity.  

 T. Wei et al. (2007) [111] presents a study on DLC for a Wind Turbine Pitch 

control system. According to the authors, DLC guarantees reliable fast blade pitch 

control. The paper shows a comparison study among different energy storage components 

in term of advantages and disadvantages for pitch control. In conclusion, the authors 
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conclude that DLC are indicated for this application due to their power density, long 

operation cycling, and wide temperature range.  

 M.E. Glavin and W.G. Hurley (2007) [77] present research on a hybrid system 

composed of a battery and DLC for solar energy storage. According to the authors, the 

batteries of a photovoltaic system represent the reliability and cost in lifetime issues. 

Using a DLC and battery extends the battery’s lifetime and makes the overall system 

more reliable and efficient. In a hybrid configuration, the DLC takes care of the peak 

power of the load; a size reduction in terms of volume and weight of the previous battery 

system.  

 Li et al. (2008) [112] presented research on an application of DLC for an energy 

storage system for wind power generation. According to the authors, the wind power 

fluctuations that affect the power quality can be improved by using a supercapacitor 

energy storage system (SCESS). The proposed SCESS system helps to smooth the 

medium frequency wind power fluctuations and helps to maintain the terminal voltage of 

the turbine at 1pu. 
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CHAPTER 2.  PHYSICS OF AN ULTRACAPACITOR 

Electrochemical energy storage devices accumulate energy in a chemical and/or 

electrostatic way. The former are referred to as a battery, which are divided into primary 

and secondary batteries (rechargeable) and made of different materials, such as lead-acid, 

NiCd, NiMH, Li-ion. The latter form of energy storage device is called a capacitor. These 

are in turn classified as electrostatic, electrolytic, and electrochemical capacitors [1-2].  

An electrolytic capacitor is a capacitor with one electrode that is not a conducting 

metal, referred to as an electrolyte. The electrolyte has lower conductivity than metal, so 

it is used when metallic electrodes are not viable. During the current flow from the anode 

to the bath cathode through the electrolyte, a dielectric layer of insulating metal oxide is 

formed on and into the anode surface. Its dielectric strength is a function of the thickness 

of the oxide layer. The oxide thickness and the associated voltage increase proportionally 

to the current flow.  The advantage of electrolytic capacitors is the high capacitance per 

unit volume and per unit cost. Their main disadvantages are the limited life cycle due to 

electrolyte degradation and high energy loss due to electrolyte resistivity and they are 

unidirectional. Electrolytic capacitors should not be confused with electrochemical 

capacitors, which are based on the electrical double layer capacitance.  

A double-layer capacitor, also called an ultracapacitor, is a charge storage device that 

accumulates charge on the interface of the double-layer formed between an electrolyte 

and an electrode when electrical potential is applied between them.  A UC can 

accumulate a much higher electric charge than a regular capacitor. A typical capacitor has 

a value ranging from micro-Farads to milli-Farads. A typical UC can reach 5000 F with 
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activated carbon electrode material. Therefore, UCs are energy storage devices that 

present high specific power, great energy density, and elevated cycling capability, 

providing an interesting tool for industrial and consumer electronics applications [1]. 

Figure 2.1 shows the schematic comparison of a conventional capacitor, a double layer 

capacitor (DLC), and an asymmetric or hybrid capacitor [3].    

 

Figure 2.1.  Schematic comparison of a:  a) conventional capacitor, capacitance ranges 

from pF to µF; b) double layer capacitor, capacitance ranges from a few Farads to 

thousands of Farads, and c) asymmetric or hybrid capacitor, capacitance ranges from 

hundreds to thousands of Farads. 

 

The UC is made of two electrodes sandwiching a separator that acts as an ionic 

conductor and electron insulator. The electrode is made of aluminum foil covered by 

activated powder carbon. The liquid electrolyte is between the electrodes and generally is 

made of various organic or aqueous solutions. When a voltage is applied to the 

electrodes, ions (anions and cations) start to migrate toward the electrode with the 

opposite polarity, creating two layers of opposite polarity near each phase boundary, 

hence the name double-layer capacitor. The capacitance, C is given by (2.1): 
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  (2.1) 

where A is the electrode surface area, d the distance between the electrode and the layer 

of ions, εr is the relative static permittivity (sometimes referred to as the dielectric 

constant) of the material between the plates (for a vacuum, εr = 1), and ε0 is the dielectric 

constant of free space (ε0 ≈ 8.854×10
−12

 F/m). Therefore, C is related to the electrodes’ 

surface area and the double-layer distance d. For activated carbon, A could reach 2000 

m
2
/g, and d a few Å thick. Figure 2.2 illustrates a conceptual scheme of a double layer 

capacitor.  

 

Figure 2.2.  Double layer capacitor. 
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The latest research on fullerene materials has opened a new era of UC research 

and development. The tremendously high surface area of the fullerene family includes 

Buckminsterfullerene, also called buckyballs or C60 [4], and carbon nano-onions and 

carbon nanotubes . The CNT material is further characterized as being either single-

walled (SWCNT) [5] or multiwalled (MWCNT) [6]. These carbon allotropes are ideal 

candidates for replacing the activated carbon of the current commercial UC electrodes. 

The CNT and CNO materials could dramatically increase UC energy and power density 

[5-7]. In Chapter 3, we will focus on carbon nano-onion material for UC electrodes.   

The great potential for large-scale use of double layer capacitors as energy storage 

devices comes from the increased amount of energy that is stored at the border of the 

double layers due to the increased electric field (voltage) available. As shown in Eq. 

(2.2), the total energy stored in the capacitor is half of the product of the capacitance and 

the squared voltage. Another advantage of supercapacitors compared to batteries is that 

they can handle a large amount of current for a constant charging/discharging mode; the 

current can be on the order of ten times higher than the average rating for a limited 

amount of time (1 sec) [8]. Ultracapacitors provide interesting mechanical properties in 

terms of robustness and almost infinite cycle life [9]. Commercial companies guarantee 

that the maximum performance degradation in ten years stays below 20% [8]. 

   
 

 
    (2.2) 

 Compared to batteries, DLCs have higher specific power due to their ability to 

charge and discharge in a very small amount of time, due to low internal resistance and 

inductance. The main disadvantages of DLCs, when compared to batteries, are the lower 
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energy storage capability and lower voltage rate.  The maximum voltage that a cell can 

reach is 3 V. This limit is due to impurities, and it is called the decomposition voltage. 

The double layer behaves as an insulator until the voltage reaches the break down level 

(3V) at which point current starts to flow [1].  
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CHAPTER 3.  SYNTHESIS OF CARBON NANO-ONION  

3.1 Chemistry of Carbon Nano-Onion 

The work done by H.W. Kroto and co-workers in 1985 with laser desorption led 

to the creation of a new carbon allotrope, a cluster of 60 atoms named C60: 

Buckminsterfullerene [1-2]. W. Kratschmer et al. developed a large scale synthesis of 

CNO by electric arc discharge [3]. This method has been followed and, with small 

variations, utilized to synthetize other nanometric graphitic structures such as 

nanoparticles by Y. Saito and co-workers [4] and nanotubes by S. Iijima [5] and T. W. 

Ebbesen [6].           

Transmission electron microscopy (TEM) has been a reliable technique used to 

study the structures of these carbon allotropes. D. Ugarte was the first to observe, using 

TEM, and label a carbon nano-onion, a nano-carbon spherical multilayered onion-like 

structure [7-8]. Fig. 3.1 is a TEM image of a CNO reproduced from reference [7]. 

  

Figure. 3.1.  Carbon nano-onion. 

 According to D. Ugarte, the concentric onion-like shells are about 0.334 nm from 

each other. This turns out to be the distance between two [220] graphitic plans [2]. Over 
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time, different synthesis techniques have been developed for CNO production. Kuznetsov 

et al. [10] synthetized CNOs by annealing 2-50 nm nanodiamonds (ND) at 800 °C. The 

ND annealing technique has a higher yield and lower cost than the electric arc technique 

as presented by W. Kratschmer et al.  NDs, in the sp
3
 diamond structure, are produced in 

bulk by detonation of RDX and TNT explosives in an inert environment [11].        

 In the literature, other different methods of synthesis of CNOs have been reported 

[12-21].  This chapter focuses on those which had a wider impact in the research field 

and presented a higher yield technique. Among them, we are focusing on nanodiamond 

annealing, arcing graphite underwater, and laser-assisted nanofabrication.  

3.2  CNO Obtained from Annealing of NanoDiamond  

 The influence of temperature on nanodiamond production that lead to CNOs has 

been studied by different groups, including S. Tomita et al. [22], V.L. Kuzntsov [23], and 

E.D. Obraztova [24]. S. Tomita and co-workers found that annealing ND in a vacuum up 

to 800 °C does not affect the structure of the material. However, above that temperature, 

noncarbonaceous materials, which are eventually nested in it, began to register thermal 

desorption. The last noncarbon intruder, hydrogen, would leave the ND surface at 

approximately 850 °C [2,25-26]. E.D. Obraztsova et al. [24] observed a reduction of the 

surface energy of ND with an increase in the annealing temperature. Also, S. Tomita [22] 

suggests that upon higher annealing temperatures, the ND phase begins to change to a 

more graphitic phase. For temperatures above 900 °C, part of the external surface of the 

ND resists graphitization; but the core is still present as an ND structure. It is around 

1100 °C where the smallest ND particles are completely transformed to a graphitic 



60 

 

structure, while the biggest particles have to reach approximately 1500 °C to complete 

the graphitic transformation. The result of the graphitization process is six or seven CNO 

shells. At temperatures between 1500-1800 °C the neighboring onions form joined 

graphitic layers. Moreover, the formation of multishell structures is observed at annealing 

temperatures above 2100 °C [2].      

 An interesting consequence regarding increases in the annealing temperature is 

the reduction of the equivalent internal resistance of electrodes from these materials, as 

reported by V.L. Kuznetsov [27]. He observed that up to the temperatures when the 

graphitization begins, the resistivity of the ND material is very high, on the order of 10
9
 

Ω∙cm
2
.  After annealing the material at up to 1300 °C, the resistivity drops to 0.2-0.5 

Ω∙cm
2
.  

3.3  CNO Obtained From Arching Graphite Underwater  

 N. Sano et al. [27-28] presented a novel method to synthetize CNOs in a cheaper 

and simpler way than other methods, by performing arc discharges underwater. CNOs are 

15-25 nm in diameter, have 20-30 shells, and are bigger compared to the 6-7 shells with 5 

nm diameter of CNOs synthetized by annealing nanodiamond.  

 Two low-defect graphite rods were placed underwater. An arc was formed by 

applying a constant potential on the order of 16-17 V at 30 A.  Then, CNOs were 

collected on the surface of the water, while other fullerenes, such as MWCNTs, were 

observed at the bottom of the pool. The floating state of the CNOs, despite their greater 

density than water, 1.64 g/cm
3
, could be ascribed to the formation of large van der Walls 

crystals, as proposed by N. Sano [29]. 
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 CNOs produced by electric arc discharge give a Brunauer–Emmett–Teller (BET) 

surface area of 984.3 m
2
/g, which it is greater than the reported values for CNTs [29]. 

The BET surface area is the measured area in m
2
/g of the electrodes obtained by the BET 

theory [30]. The three scientists in 1938 discovered the relation between the adsorption of 

gas molecules on a solid surface and the material’s specific surface area.  Niu et al. 

reported a BET of 430 m
2
/g for MWCNT [31], 357 m

2
/g for SWCNT [32], where Futaba 

et al. presented a SWCNT-solid vertically aligned structure of 1000 m
2
/g [33].  Raman 

spectroscopy has a 1450 cm
-1

 band known as the D band that can indicate the degree of 

disorder in graphene structures. Therefore, its absence implies perfect graphene 

structures. The spectroscopic 1582 cm
-1

 band of graphite is known as the G-band. One 

measure of the quality of graphene layers is to use the intensity ratio of D- and G-bands 

from the Raman spectroscopy [34]. The CNO material used in this work has measured D- 

(1344 cm
-1

) and G-bands (1569-1577 cm
-1

) from the Raman spectroscopy. Further 

discussion of the spectrum and comparison to other synthesis processes is given in [2,35] 

 Thanks to the properties of CNOs, many different applications have been 

reported, such as catalytic materials, lubricants, gas storage materials, ultracapacitors, 

optical limiters, and water purifiers [29,36-43].   

An interesting note about CNOs is that their UV-visible characteristic is very close to the 

UV absorption spectrum of interstellar dust. As result, M. Chhowalla and co-workers 

[44] suggested that interstellar clouds may contain CNOs.  

3.4  Laser-Assisted Nanofabrication of CNO  
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A.V. Kabashin and co-workers achieved, through a novel pulsed laser-assisted method, 

the fabrication of nanostructures [45]. Furthermore, this method has been used to grow 

CNTs [46-49]. Y.S. Zhou and co-workers [50] have also reported on their work with the 

laser-assisted nanofabrication of CNOs. The authors stated that exposing a material’s 

surface to a laser has consequences, such as a narrow heating zone, melting, 

photochemical reactions, decompositions, etc. The irradiation of the surface of the 

material by photon beams at resonant excitation produces the breaking of these bonds and 

localized chemical reactions. Y. Gao and co-workers [51] proposed a methodology to 

produce, at a high growth rate (up to 2.1 g/hr), quality crystalline CNOs by exciting them 

with a 10.532 µm wavelength laser through ethylene (C2H4) molecules. The process was 

conducted in open air and used C2H4 and O2 as precursors. A CO2 laser beam at the 

10.532 µm wavelength was directed into the flame generated by a welding torch. A 

silicon wafer was used to collect CNOs from the top of the flame. The G-band of the 

Raman spectra showed a crystallinity improvement when using the resonant excitation 

wavelength.  
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CHAPTER 4.  CARBON NANO-ONION ULTRACAPACITOR 

4.1  Electrophoretic Deposition 

 CNO material grown by a laser-assisted combustion process in open air was used 

for the study [1].  The CNO electrodes were fabricated by depositing CNOs on nickel 

(Ni) foam sheets using the electrophoretic deposition (EPD) technique. EPD has the 

following advantages:  short formation time, simple apparatus, and suitability for mass 

production [2]. It has been successfully used for depositing uniform films in CNTs [3]. 

A solution containing 20 mg of CNO powder, 10 ml of acetone, and 10 ml of 

ethanol and 0.03-0.05 wt.% of aluminum nitrate nonahydrate Al(NO)3·9H2O was used for 

the EPD. The solution was placed in a 40 ml beaker and dispersed by sonication for 1 

hour at room temperature (21 °C).  

 Two Ni foam sheets (thickness:  1.6 mm; surface density:  346 g/m
2
; porosity:  ≥ 

95%, 80-110 pores per square inch, from Marketech International, Inc. U.S.) were 

washed in acetone by ultrasonication for 10 min. and dried for 24 hr. at room 

temperature. During the coating, one of the electrodes (10 x 10 mm) was used as the 

substrate and the other (20 x 20 mm) as a counter. The electrodes were placed in the 

solution, and a DC voltage was applied (80 V for 240 s). CNOs were deposited onto the 

anode. After that, the electrodes were dried at 80 °C for 24 hours. The weights of the 

electrodes before and after coating were recorded. 
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4.2  Electrochemical Measurements  

A three-electrode system was used to examine the electrochemical performance of 

the ultracapacitor half-cell [4]. The system was composed of a Ni-CNO working 

electrode, an Ag/AgCl reference electrode, and a platinum wire for a pseudo-reference 

electrode; and it is shown in Fig. 4.1. The system was analyzed in 1 mol/l KNO3 

electrolyte and at room temperature. The impedance and cyclic voltammetry (CV) 

measurements were carried out using an electrochemical workstation (CH Instruments 

Model 760d, US). 

 

 

Figure 4.1.  The three-electrode system used for the experiments. 

 

The impedance between the working and reference electrodes was measured at 

0 bias voltage with a sinusoidal signal amplitude of 1 mV and a frequency range of 10 
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mHz to 10 kHz. From the complex plane representation of measured impedance spectra, 

the equivalent series and the leakage resistance were found. 

Cyclic voltammetry is a potentiodynamic electrochemical technique widely used 

for studying electrode processes [5]. A continuous cyclic potential is applied to a working 

electrode, and the working electrode current (i) vs. the applied potential (v) are recorded. 

The potential is linearly swept following a triangular waveform from the minimum (-0.4 

V) to the maximum (0 V) potential at a scan rate of 50 mV/s, and then it is swept back 

while the current is recorded. The capacitance of the CNO is calculated from the CV 

curves. The results of these measurements are presented in Section 4.4. 

4.3  Model 

 The proposed model for a CNO UC is a modified Randle’s equivalent circuit. It 

consists of an inductor, L, an equivalent series resistance, Re, a leakage resistance, Rc, a 

capacitance, Cdl, and a CPE.  

A CPE is a circuit component that has a constant phase shift over a specified 

frequency band. CPEs have been used previously to model the dynamics of porous 

electrode structures made of activated carbon in UCs [6-8], the UC’s self-discharge [9], 

and the CNO [10]. In this study, we are using the CPE to model the dynamic of the 

electrode structure of the carbon nano-onion UC. The CPE cannot be directly used in 

circuit simulation programs, such as MathWorks-Simulink
™

 or PSPICE
™

 [11]. 

Therefore, a procedure for converting a CPE into a lumped element passive RC network 

is used as a model [12]. Those parameters, in conjunction with the experimental data, 

were used as input values for ZView
™

 software (Version 3.3c). This program is often 
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used in electrochemical systems to minimize chi-squared and sum of square errors. The 

electric circuit model with the final parameters’ values were then simulated using 

National Instrument’s Multisim
™

 and compared with experimental data.  

4.4  Measurements and Results 

 For this study, CNOs grown by the laser-assisted combustion synthesis process have 

been used [1]. The scanning electron microscope (SEM) images of the CNO electrode 

material are shown in Figure 4.2. The CNO diameter is in the range of 20 to 50 nm. 
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Figure 4.2.  SEM images of: a) Plain Nickel (Ni) foam, scale 1 mm; b) Ni-foam with 

CNOs agglomerates, scale 100 µm; c) CNOs, scale 500 µm; d) CNOs scale 500 nm.     

 

The electrochemical properties of CNOs were studied by electrochemical 

impedance spectroscopy and cyclic voltammetry in 1 mol/l KNO3 electrolyte. The 

impedance spectra were investigated in the 10 mHz to 10 kHz frequency range. Fig. 4.3 
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shows the complex plane representation of the measured impedance spectra of a CNO 

UC obtained at 0 V dc bias and a sinusoidal signal amplitude of 1 mV; the inset shows its 

high frequency region.  From the results presented in the inset of Fig. 4.3, it can be seen 

that the impedance spectra crosses the real axis at 1.96 Ω, known as internal resistance, 

Re. It includes the ionic resistance related to the migration of electrolyte ions and 

resistance with the contacts.  The frequency at which the impedance spectra cross the real 

axis, also called the resonant frequency, is 3.17 kHz. In addition, from Fig. 4.3, the 

leakage resistance, Rc, 2.27 Ω, is obtained by the intersection of the tangent of the 

impedance spectra at low frequency in the Nyquist plot with the real axis. 

 

 

Figure 4.3.  Complex plane representation of measured impedance spectra of a CNO UC 

obtained at 0 V dc bias and sinusoidal signal amplitude 1 mV over the frequency range of 

10 mHz to 3 kHz. The results from 10 Hz to 3 kHz are shown in the inset. 
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 Fig. 4.4a shows the CV curves of a CNO electrode measured at a 5 mV/s scan 

rate, for three different coating time conditions:  120 s, 240 s, and 480 s, all at 80 V. The 

current level increases with the coating time and reflects the CNO deposition rate. 

 All three coating times give a rectangular CV curve shape that indicates good 

overall CNO capacitance behavior. The CV measurements demonstrate stability; and 

particular redox reactions were not observed within the optimal potential window, from -

400 mV to 0 mV. If redox reaction occurs, the CV curve will show spurious peaks that 

detract from the ideality of a capacitor. The optimum coating setup with the highest 

specific capacitance, 40 F/g, calculated using Eq. 4.1, is 120 s at 80 V/cm as can be 

observed in Fig. 4.4b. These values are  used in this study. One reason why the 

capacitance is not linear with the coating time and drops off after 240 s is that it might 

depend on the peeling off of the CNO from the Ni-foam.  

The capacitance, C, of the cell can be obtained by the integration of the 

voltammetric discharge from the cyclic voltammogram according to [13-14]: 

    
∫    

     
 (4.1) 

where i is the charging current at steady state when applying a voltage v (sweep rate, 

mV/s); and m is the CNO weight and ΔV the potential range of the CV measurement.  

 The specific power, P (kW/kg), and specific energy, W (Wh/kg), defined as (4.2) 

and (4.3), respectively, can be calculated by the following equations [13,15]: 

    ∫      
  

  
  (4.2) 

    
  

      
 ∫      
  

  
  (4.3) 
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where i is the current, V is the potential, V1 and V2 are the voltages of the potential 

window of the CV presented in Fig. 4.4a, v is the scan rate (in mV/s), and ΔV is the 

discharge potential range (in V).     

 The CNO’s specific W, P, and C are summarized in Table 1 in conjunction with 

some relevant literature regarding other carbon electrode materials, activated carbon, and 

CNTs.  
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Figure 4.4.  One cyclic voltammetry of CNO measured using a three-electrode 

configuration in 1 mol/l KNO3. a) CV curves; b) specific capacitance for the three 

coating times.    
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 Table 4.1 Specific energy, power and capacitance of different electrode materials 

in aqueous and nonaqueous electrolytes.  a) Pure CNTs-based ultracapacitor, b) values 

obtained by effects of heating, c) values obtained by effects of the addition of functional 

groups (the groups of atoms that feature the chemical reactions of those molecules) onto 

the material’s surface [16], d) values obtained by the combination of polymer and CNTs 

into a hybrid composite, and e) micrometer-sized supercapacitors.    

 
 Aqueous-Inorganic Electrolyte 

(Decomposition voltage window 1 V) 

Specific  

Energy 

Specific 

Power  

Specific  

Capacitance 

Wh/kg kW/kg F/g 

CNT
[17]a

 0.5 - 102 

CNT
[18]b

 - 20 180 

CNT
[19]c

 0.92 4.8 350 

CNT
[20]d

 228 2.25 485 

CNO
[21]c

 8.5 153 111 

CNO 5.6 2.5 40 

 
 Nonaqueous-Organic Electrolyte 

(Decomposition voltage window 2.7 V) 

Specific  

Energy 

Specific 

Power  

Specific 

Capacitance 

Wh/kg kW/kg F/g 

Activated 

Carbon
[22]

 

5-7 1-3 100 

Activated 

Carbon
[23]

 

6 5.9 94 

 

Activated CNO UCs present higher performances than regular activated carbon UC. Even 

though, it should be stated the data presented in tale 4.1 are for two different electrolytes, 

aqueous-inorganic electrolyte and nonaqueous-organic electrolyte, respectively with 1 V 

and 2.7 V voltage windows.  

4.5  Annealing 

A variety of temperature treatment studies have been done, and it has been 

concluded that heat treatment positively affects the CNO properties. Fig. 4.5 shows the 
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high frequency impedance spectra of the CNO UC treated at different temperatures under 

a nitrogen environment for 1 hour versus untreated CNOs. The equivalent series 

resistance (ESR) reduction due to the heat treatment should lead to an increased power 

density. The power density enhancement by heat treatment of single-walled CNOs has 

been observed previously [2]). 

 

Figure 4.5.  Annealing benefit for CNOs. 
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CHAPTER 5.  MODELING A CNO ULTRACAPACITOR 

 The schematic of the proposed ultracapacitor equivalent circuit is depicted in 

Figure 5.1. The CNO UC model is composed of three main sections that account for:  

parasitic internal inductance and resistance (L and Re, respectively), energy storage (Cdl), 

and leakage resistance (Rc) coupled with a constant phase element, CPE. 

 

Figure 5.1.  Proposed ultracapacitor equivalent circuit model. 

A parasitic inductance, L, will always be part of any packaged device due to the 

path for current flow.  A nonzero value is necessary to accurately describe the physical 

behavior of the UC at mid- and higher frequencies of operation.  Incorrect use of this 

term has a significant effect on the estimations of Re. Miller [1] found that the order of 

magnitude of L for activated carbon ultracapacitors is 20 nH, so this value was used as 

the initial value for the optimization process developed in this work.  

5.1.  Constant Phase Element 

The CPE impedance is calculated by Eq. (5.1); it has two independent parameters:   

a real constant, Q, and a real exponent, β, where β is in the range of 0 to 1[1]. 

              
 

   
 (5.1)  

s= jω is the angular frequency.  For β = 0, Q has conductance behavior; for β = 1, Q is an 

ideal capacitor. Otherwise, the dimension of Q is sec
β
/Ω.  

At an angular frequency, ω = 1 rad/s (0.159 Hz) the impedance magnitude of the 

CPE is |Z| = 1/ Q. From the experimental impedance data, at  = 1 Q is 0.0064 sec
β
/Ω. 
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To calculate the constant β, a plot of the imaginary part of the impedance as a function of 

frequency on a log-log scale is used. Fig. 5.2 shows the imaginary part of the measured 

impedance as the function of frequency and indicates an almost linear behavior (nearly 

constant ). Therefore, by using the data, the slope of the line gives the value of β ≈ 0.8. 

 

Figure 5.2.  Imaginary part of the impedance as a function of frequency. 

 The CPE impedance could be calculated following another approach as indicated 

in Eq. (5.2) [1]. The CPE impedance, expressed in Eq. (5.2) has two independent 

parameters, α and the exponent β (0 ≤β≤1) of the angular frequency (j). When β = 1, α, 

a derived term, has the dimensions admittance. When β = 0, α has a resistance behavior; 

otherwise it has units of Ω/sec
β
.  
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 When β = 0.5, it is also referred to as Warburg impedance, ZQ = ZW.  Eq. (5.2) has 

been shown to be described with α as given by Eq. (5.3) for this specific value of . 

    
  

√     
 
     

  √  
    (5.3) 

where R represents the gas law constant 9.314 J/Kmol; F is Faraday’s constant of 96,485 

C/mol, n = 1, the involved number of electron exchanges, T = 298 K as the absolute 

temperature, A (cm
2
) is the electrode area, C0 = 1 mol/L, the electrolyte concentration, 

and DC the ion diffusion constant.      

 The impedance function of the equivalent circuit in Fig. 5.1, Z(), can be written 

as Eq. (5.4). 

                      (5.4) 

For the circuit in Fig. 5.1, Z’ and Z” are: 
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 To find the magnitude of α, use (5.3) to match the Nyquist frequency response to 

the analytically derived impedance function (5.4) with the values presented above and 

mentioned in (5.3). 

 The diffusion constant Dc is found by iteration of (5.2), (5.3), and the 

ultracapacitor cell parameters. With Dc known, the value of α can be determined.  
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Figure 5.3 shows the two-dimensional normalized squared error in the impedance 

function, (5.2), based on variation of β and Dc. The red square box at the bottom of the 

Fig. 5.3 indicates the minimum error for β = 0.825 and Dc = 1∙10
-5

. In conclusion, we can 

state that both methods for estimating  gave comparable values, hence there is 

confidence in the value extrapolated for use in the new UC model. 

 

Figure 5.3.  Normalized Squared Error in the impedance function with variations  

in β and Dc. 

5.2  CPE Model 

 To be able to use the CNO UC model in circuit simulation/design software, it is 

desirable to model the CPE with circuit elements as well. The CPE has previously been 

modeled as a ladder network with RC components [2]. As a reminder, a CPE is an 

-6 -5 -4 -3 -2 -1

0.4
0.6

0.8
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n_power

Normalized Squared Error

b

N
o
m

a
liz

e
d
 S

q
u
a
re

d
 E

rr
o
r



90 

 

element with a constant phase shift over a given frequency band. The inputs of the design 

model procedure that interest us here are the fractional capacitor exponent β, used to 

match the impedance spectra in the low frequency zone of the Nyquist plot at which the 

phase angle is nearly constant. Fig. 5.4 shows the schematic of the CPE equivalent circuit 

used in this study. The desired frequency bandwidth dictates the number of branches 

(larger bandwidth requires more branches). The RC parameters, with R1 and C1 given, 

have recursive values, defined by (5.7) [3]: 

                                                       (5.7) 

The average phase angle in degrees is defined by (5.8): 

      
    

       
  (5.8) 

The phase ripple amplitude, Δφ, is related to parameters a and b by (5.9):  

    
    

     
   (5.9) 

Therefore, the phase angle and its ripple define parameters a and b directly. 

The bandwidth is bounded by ωmin and ωmax (5.10): 

      
 

    
       

    

       
   (5.10) 

where, m the number of branches, is determined by solving (5.10) . 

      
   (

    
    

)

       
  (5.11) 

In addition, the correction elements, Rp and Cp, due to the limited number of branches, 

are determined by (5.12): 

     
   

 

   
       

   

 
   (5.12) 
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Figure 5.4.  CPE equivalent circuit model. 

In designing the CPE, the value of φ, given in (5.8), and the tolerable ripple, Δφ, 

in the phase are chosen. From these values and the chosen bandwidth, parameters a and b 

can be found.    

The experimental values of the CNO electrode can be extracted to give Re = 1.96 

Ω, Rc = 2.27 Ω, and Cdl = 0.5 mF.  Initial values of the ladder network approximation for 

the CPE are chosen and, alongside the other equivalent circuit values extracted, are 

inserted into the model; and a simulation of operational behavior is performed using 

ZView
™

. This software is often used in electrochemical systems to minimize chi-squared 

and sum of square errors, and it is used in this study to optimize the parameters of the 

CNO model. The optimized parameters of the CPE are presented in Table 5.1.  

The complete equivalent circuit model of a CNO UC with extracted parameter 

values and optimized values for the CPE equivalent is shown in Figure 5.5. The 

experimental and simulated data, one on top of the other, are shown in Figure 5.6. 

Table 5.1.  CPE equivalent circuit model with optimized parameter values. 

K P 1 2 3 4 5 

C [mF] 2.5 100 2.79 2.92 33.6 2 

R [Ω] 7.6e8 99378 2096 18.42 17030 427 

R1 R2 R3 R4 R5Rp

C1 C2 C3 C4 C5

Cp
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Figure 5.5.  Equivalent circuit model of a CNO ultracapacitor. 

 

 

Figure 5.6.  Measured and simulated data obtained by the CNO model shown in Fig. 5.5; 

a) complex plane representation of measured and calculated impedance spectra, b) 

impedance magnitude vs. frequency, and c) phase angle vs. frequency.  
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During the experiment, 12 frequency points (independent values), representing all 

of the spectra, were investigated. All measurements between the minimum and maximum 

frequency fit the curve well. The chi-square test was used to determine the goodness of 

the fit between the equivalent circuit model simulation data (theoretical data) and 

experimental data. Therefore, according to the chi-square theory [2], there are 11 degrees 

of freedom, giving a critical value of 19.675 with a percentile of 5%. The results give a 

value of 0.01 and are, therefore, consistent with the experimental results to within a 95% 

chance of probability. Fig. 5.7 shows the equivalent model verification for a standard 

applied test excitation.  It can be seen that the UC model developed in this work fits 

exceedingly well with the experimental results for the applied excitation. 

 

Figure 5.7.  Experimental results compared to the model equivalent circuit simulation of 

the voltage response to an applied standard test current excitation. 
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5.3  CNO UC Model vs. Canonical models 

The CNO UC model is compared with two different equivalent circuits developed 

by other investigators. The UC simple model, often used for first estimates in 

ultracapacitor studies [4], is shown in Fig. 5.8a. A Randles equivalent circuit with a 

Warburg element, often used to model the interfacial electrochemical reactions of flat 

electrodes [5], is shown in Fig. 5.8b. The equivalent circuit parameters for these two 

circuits specifically using the CNO UC experimental data has been determined by 

ZSimDemo 3.30d software.  Fig. 5.9 shows the impedance magnitude comparing the 

three models under investigation with the experimental data as a function of frequency. 

and Fig. 5.10 shows the phase angle of the three models under investigation and the 

experimental data in the function of frequency.   

 

Figure 5.8.  a) Simple model: Re = 2.8 Ω, Rc = 5260 Ω, Cdl = 0.00435 F, b) Warburg 

equivalent circuit: Re = 2.6 Ω, ZW = 0.002313 S∙sec
1/2

, Rc = 2.8 Ω, Cdl = 0.0031 F.  
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Figure 5.9.  Impedance magnitude of the three models under investigation compared to 

each other and the experimental data as a function of frequency. 

 

Figure 5.10.  Phase angle of the three models under investigation compared to each other 

and the experimental data as a function of frequency.   

From Fig. 5.9, it can be seen that at the resonant frequency, 3.17 kHz (the 

frequency at which the impedance spectra cross the real axis in the Nyquist plot in Fig. 

4.3), the three models match the experimental impedance data fairly well. The phase 

angle shows a 45° slope at low frequency, which is typical of a so-called Warburg 
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impedance [5].  At low frequency, the simple model and the Warburg model deviate 

substantially from the experimental data and the newly proposed model.  The proposed 

model fits the experimental data quite well along all the frequencies of interest. Based on 

the comparison, the other two models are less accurate then the proposed model.  
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CHAPTER 6.  SUMMARY AND CONTINUING WORK 

This paper describes a novel ultracapacitor made from carbon nano-onions. The 

CNO electrodes were characterized by electrochemical impedance spectroscopy and 

cyclic voltammetry. A new CNO ultracapacitor model composed of an LRC and a 

constant phase element was developed and verified through experiments and simulations. 

This model, thanks to the high ductility of the constant phase element construction, fits 

the data better in the low frequency region than the other models considered. The 

constant phase element capability of tuning the frequency range at which the phase angle 

stays constant makes this model powerful for CNO material and makes it possible to 

match the points for a wider frequency window.    

The parameter extraction procedure for the proposed model is straightforward 

using standard electrochemical measurement techniques.  The chi-square test was used to 

determine the quality of the fit between the equivalent circuit model simulation data 

(theoretical data) and experimental data, using ZView
TM

 software. During the 

experiment, 12 frequency points (independent values) were investigated. The results 

showed that the chi-square for the equivalent circuit model and the experimental data was 

0.01. The simulations are, therefore, consistent with the experimental results to within a 

95% probability. Also, the proposed model has been compared to a simple ultracapacitor 

model and a Warburg model. Based on the comparison, the other two models are less 

accurate than the proposed one.  

Future work includes the scaling up of the cell size to reduce the equivalent series 

resistance and, therefore, to approach the real-life application where the ESR is on the 
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order of tenths of Ohms. Annealing the CNOs before assembling the UC results in the 

ESR decreasing.  This work developed the processing techniques that consistently 

produce quality electrodes for UC applications.  Further work is needed to scale up to a 

manufacturing level, but no technical barriers currently appear to limit this development. 
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