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Grammars are generally understood to be the set of rules that define the re-

lationships between elements of a language. However, grammars can also be used to

elucidate structural relationships within sequences constructed from any finite alpha-

bet. In this work abstract grammars are used to model the primary and secondary

structures present in biological data. These grammar models are inferred and ap-

plied to efficiently solve various sequence analysis problems in computational biology,

including multiple sequence alignment, fragment assembly, database redundancy re-

moval, and structural prediction.

The primary structures, or sequential ordering of symbols, of biological data

are first modeled with Lempel-Ziv (LZ) grammars. The results are used to construct

a grammar based sequence distance metric which can be used to compare biological

sequences by comparing their inferred grammars. This concept is applied to solve

several problems involving biological sequence analysis including multiple sequence

alignment and phylogenetic clustering. The higher-level secondary structures of bio-

logical sequences are then modeled via two novel grammar inference methods. The

resulting context-free grammars are used to estimate structural pieces within biolog-

ical sequences, which can in-turn be used as supplemental information to help guide

various sequence analysis algorithms. The use of this approach to develop algorithms

for various sequence analysis tasks demonstrates the viability and versatility of using

abstract grammars to model biological data.
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Chapter 1

Introduction

Imagine Bob, a student of biology. Suppose Bob obtains an organic sample of un-

known origin–perhaps he simply went into his backyard and scooped up a handful of

dirt filled with many bacteria. Bob is interested in learning more about the sample.

Perhaps he would like to know from where each organism came. That is, he would

like to determine their ancestry by building a family tree. In doing so, Bob will have

identified many known organisms, but there is also a good chance that he will have

discovered something new. It turns out there are many bacterial organisms on Earth

that have never been classified. These discoveries are important for the general health

of other populations, not least of which is our own human species.

Consider the research methods that Bob uses to learn more about his sample. His

study begins by using tools to obtain his primary target, which ultimately depends

on what kind of biologist Bob is. Assuming Bob is a microbiologist, then his target is

the information contained within each living organism or colony of organisms. While

the information he is after is quite enormous, his site under study is actually very

tiny. The illustration in Figure 1.1 depicts one possible site on the far left-hand-side

being a macromolecule called a chromosome. A microbiological target is generally

a microscopic piece in a cell within a living organism such as a rose bush, or a

chihuahua, or a human. Bob uses a variety of methods and tools to initially clear the
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Figure 1.1: An illustration depicting DNA packed tightly into chromosomes, as well as
a DNA molecule unwound to reveal its double helix structure. Image freely available
from the National Human Genome Research Institute (http://www.genome.gov).

area, making it possible to focus on a specific target. Such tools might include swabs,

petri dishes, microscopes, scalpels, etc. Then, more methods and tools are used to

refine the target gaining the necessary molecular information; these tools are generally

referred to as sequencing tools and they allow Bob the ability to acquire pieces of the

target site. Referring to the illustration in Figure 1.1, the pieces that Bob has access

to are fragments of the DNA double helix depicted more on the right-hand-side.

In many analyses, Bob does not study the organism directly, but uses a schematic

representation as depicted at the very end of the illustration in Figure 1.1. Notice how

the image changes from a cartoon view of chemical molecules into sequences of letters

for the set {A,C,G, T}. It turns out that DNA macromolecules are composed of only

a few specific smaller molecules, and it is the order in which they are chained together

and the way in which they form three-dimensional shapes that represents so much

interesting information. The sequencing tools mentioned earlier take in biological

samples and produce enormous listings of sequences representing small sections of the
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organism. These fragments are then like puzzle pieces that need to be reassembled

in order to have a complete representation of the organism.

This leads to the next stage for Bob, which is analysis of his organism. After

organisms are initially sequenced, they are studied to gain as much information as

possible. The typical first step in analysis is to perform fragment reassembly, which

introduces the first problem of analysis. Bob always faces this issue, as the only

current methods available to Bob are tools that generate small pieces representing

the DNA molecules of his target site. Once the DNA has been properly reassembled,

Bob is able to catalogue and compare his organism to previously published collections

in order to classify it phylogenetically. This would allow him to identify other hosts

with similar DNA sequences. After which, a wide range of analytical techniques are

available in bioinformatic science to analyze organism composition.

One analysis technique presents Bob with an interesting problem. Imagine the

work necessary to be the first person to study a never before seen text. It represents

the ultimate puzzle in which the only clues are the visual symbols and their physical

arrangement upon the artifact. It turns out the sequences of molecules represented by

the four letters actually form a language called the genetic code. Within the strands

of DNA are regions of words and phrases that may appear alien to Bob, but ultimately

spell out the sentences and paragraphs of information necessary for an organism to

produce its life-giving proteins.

Bob is faced with millions or billions of symbols. To make the situation more

complicated, there are many complex and long-distant relationships within an organ-

ism’s microbiological functioning. To understand this further consider the two nearly

identical english phrases: 1) Time flies like an arrow. 2) Fruit flies like an apple.

Now imagine not understanding english at all. The very first problem is recognizing

word boundaries. In other words, how would someone that has never before seen an
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english alphabet identify where words begin and end? Beyond this fundamental issue,

consider how the words interact with each other in order to generate the semantic

meaning of each sentence. The middle sequential fragment “ flies like an a” occurs in

both phrases, and so a person who has never seen the english alphabet might focus

on this similarity. However, anyone understanding english recognizes that the word

“flies” changes meaning due to the surrounding words–its context. DNA sequences

exhibit similar behavior, including the initial problem of identifying word boundaries.

However, Bob’s case is made more difficult because there are no special “space” char-

acters to explicitly identify where one word ends and the next one begins. Imagine

trying to read the text on this page with all the spaces removed. Beyond this prob-

lem, the genetic words and phrases interact with each other to change their meaning,

analogous to the word “flies” in the english phrases above.

Many applications involving sequence analysis are based on understanding the

source mechanism from which the sequence was generated. Grade school students

often learn how to diagram a sentence to gain greater understanding of english gram-

mar, which are the collective rules governing the english language. For example, in

the case of the two english phrases, students are able to categorize the words as in:

• Time flies like an arrow. (noun, verb, preposition, indefinite article, noun)

• Fruit flies like an apple. (plural noun, verb, indefinite article, noun)

Once diagrammed, it is a little easier to see how the words behave together to form

a larger meaning. If Bob knew the grammar governing the genetic language of his

organism, he could diagram the DNA sequence in order to find out exactly what

is being said. Unfortunately, the genetic language and its underlying grammar are

generally unknown. If there were some way to derive an estimation of the grammar
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given a small sample of Bob’s sequence, then perhaps the resulting approximation

would be useful in subsequent analysis for the rest of the DNA sequence, kind of

like fitting a curve to a histogram of data samples in order to better predict some

unknown source behavior.

1.1 Contribution

The previous discussion represents the primary objective of this work. In this disser-

tation we utilize the information-theoretic tool called an abstract grammar to model

biological data. These grammar models are inferred and applied to efficiently solve

various sequence analysis problems present in computational biology.

We begin with a pre-existing method for estimating a grammar based upon a

classic text-based dictionary compression scheme. The resulting grammar models

for each sequence are used to create a relative distance metric. Then, comparing the

similarity of two sequences amounts to comparing their grammar rules resulting in ef-

ficient tools for performing sequence analysis, including multiple sequence alignment,

relative fragment assembly, and sequence clustering for the purpose of removing re-

dundancy within a dataset. Second, we turn our attention from the grammar models

that operate on the sequential ordering of elements to grammars that model longer

distance relationships within DNA sequences. We describe two novel grammar infer-

ence algorithms that are able to estimate a more complicated level of grammar called

a context-free grammar. The first method is a polynomial-time framework capable of

modeling the three-dimensional molecular shapes that result due to mechanical fold-

ing of the sequential strands. The second method improves upon the first by reducing

the order of execution time from polynomial to linear. Again, the result is able to

model the secondary structures responsible for the complex folding interactions. The

circle is completed by applying the structural models of the final grammar inference
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algorithm to the initial multiple sequence alignment application. The preliminary re-

sults validate the overall alignment quality improvement after using the higher-level

grammar-based model information.

1.2 Organization

This dissertation is organized as follows. Chapter 2 provides general background

information covering computational biology, problems in bioinformatics, and an in-

troduction to grammars. Chapters 3 and 4 contain applications of LZ grammars on

several bioinformatics problems. In Chapter 3, an inferred LZ grammar is used to

form a distance metric that determines the order in which sequences are progressively

aligned. The chapter concludes with a modification that allows for fragment assem-

bly against a known reference sequence. In Chapter 4, the problem of efficient data

clustering is described. In particular, an inferred LZ grammar is applied on large sets

of sequence fragments with the intent of classifying similar sequences within clusters

that are represented by a single sequence. Chapter 5 and 6 propose two new methods

for inferring CFGs for DNA or RNA sequences making use of the Chargaff rule do-

main knowledge. Both methods are designed to infer the secondary structure present

in the corpus of data, thus capturing information not available in the LZ grammars.

Chapter 5 details a polynomial-time algorithm based on a classic string classification

method, CYK. Chapter 6 presents a linear-time algorithm based on the recent Se-

quiter algorithm. The chapter finishes by modifying the multiple sequence alignment

application in Chapter 3 with the application of the secondary structural information

during the alignment process. Chapter 7 concludes this dissertation with remarks on

future research.
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Chapter 2

Fundamentals of Computational
Biology

The relatively new field of bioinformatics tends to have a nebulous coverage of topics.

In fact, the two seemingly distinct branches of science, chemistry and biology, have

sub-categories dedicated to their own version of studying problems in bioinformatics.

Crudely speaking, chemists tend to focus on the very low-level, chemical structures

and functions of various biologically-important macromolecules, including sugar, fatty

acid, nucleotides, and amino acids [17], while biologists focus on the interactions

and regulation of proteins and underlying nucleic acids. This distinction is not very

sharp and there is considerable overlap between the two disciplines. Various members

belonging to the fields of mathematics, statistics, computer science and electrical

engineering have also become interested in solving many problems that affect the

ability of chemists and biologists to perform their research. The reason for this

seemingly divergent meshing of groups stems from the gigantic amounts of information

stored in the macromolecules of interest. That is, the genetic code. It turns out the

blue-print to each living organism is held within itself in the form of chemistry-based

macromolecules. The schematic used to model the information contained in the

genetic code tends to be enormous–on the order of millions of text symbols. Born

from these concepts is computational biology, synonymous with bioinformatics, which
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is concerned with all the problems that occur after genetic information has been

obtained.

This chapter begins with a brief introduction to the fundamental components and

processes underlying the bioinformatics applications discussed in subsequent chapters.

This is a presentation of the core vocabulary in addition to the basic principles in

going from low-level chemistry to the higher-level computational realm–operating on

sequences of symbols. A balanced approach is taken to present the required concepts

without delving too deeply into details that are beyond the scope of this work. Once

navigation from molecules to sequences is complete, a summary of typical bioinfor-

matics problems is reviewed followed by an introduction to the necessary terms and

operations that define a concept from information theory called abstract grammar.

The subsequent chapters are dedicated to solving some of these problems using gram-

mars.

2.1 Biochemistry Background

Biochemistry is a large topic to cover, and is really beyond the scope of this text.

However, there are some fundamental terms, concepts and processes that deserve an

introduction. The material presented in this section was culled from [17]; more details

could be found there or in other texts on biochemistry.

All living organisms on Earth are principally made from Carbon and its character-

istic strong covalent bonds. In fact, Carbon has four electrons in its outer shell that

allows four very strong covalent bonds with various other atoms. As a result many

molecules that form the basic components of living organisms are composed largely

out of Carbon atoms covalently bonded with combinations of Nitrogen, Oxygen, Hy-

drogen and Phosphorus. It turns out the study of Carbon compounds is so important
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that it forms a branch of Chemistry called Organic Chemistry. One of the most rele-

vant Carbon compounds is a sugar which is a carbohydrate with the generic formula

Cm(H2O)n containing either an aldehyde group (CHO) or a ketone group (C = O).

The primary sugar molecule of interest, schematically shown in Figure 2.1, is a five

Carbon sugar with a ketone group, called ribose. If the Oxygen atom is removed from

HOCH2 OH
O

C

C

C

H

H

OH

C

H

OH

H

5’

4’

3’ 2’

1’

Figure 2.1: A schematic of the cyclic form of the ribose sugar molecule. The five
Carbon atoms present in the ribose molecule are numbered from 1’ to 5’ beginning
with the Carbon belonging to the ketone group.

the 2’ Carbon, the resulting sugar molecule shown in Figure 2.2 is called deoxyribose.

The ribose and deoxyribose sugar molecules provide the ‘R’ and ‘D’ to the portion of

the monomer called a nucleotide. A monomer is an atom or small molecule that may

chemically bind with other monomers to form a larger molecule called a polymer.

2.1.1 Nucleotides

Nucleotides are the molecular building blocks of the larger polymers deoxyribonucleic

acid (DNA) and ribonucleic acid (RNA). That is, nucleotides are themselves polymers

chained together forming the much larger polymers of DNA and RNA, also called

oligonucleotides. As seen in Figure 2.3, a nucleoside is formed by bonding one of

a group of nucleobases, or just bases, to the 1’ Carbon of a sugar molecule (either
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Figure 2.2: A schematic of the deoxyribose sugar molecule.

ribose or deoxyribose). A nucleotide is formed by taking the nucleoside and bonding

a phosphate group to the 5’ Carbon of the sugar.

CH2
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O P

Base

N

Figure 2.3: A schematic of the nucleotide polymer. The nucleotide is formed by
bonding a phosphate group to the 5’ Carbon and a base to the 1’ Carbon of the sugar
molecule.

2.1.2 Bases

Nucleobases, or just bases, are Nitrogen/Carbon ring molecules and act as a key

component to the functionality of DNA. They are the primary source of structure and

functioning behind the famous DNA double helix shape and the method by which
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DNA is replicated. However, they serve other interesting purposes. Perhaps most

important is their role as lexicon to the entire construction of their host organism.

That is, the four different base molecules of DNA act as an alphabet of symbols that,

when combined, form larger phrases used to define many larger components of an

organism. While there are several layers of phrases that one could consider, the most

recognizable characterization is that of a gene which will be discussed shortly.

Four of the five base molecules are shown in Figures 2.4 and 2.5. These four bases

C C
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H

1’ C of sugar 
backboneWeak 

hydrogen 
bonds with 
Thymine

C

H
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NH2

N

C C
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C

N

N

H

1’ C of sugar 
backboneWeak 

hydrogen 
bonds with 
Cytosine

C

H

N

N

NH2H

O

(a) Adenine (b) Guanine

Figure 2.4: Schematics of the two different DNA base molecules belonging to the
purine family.

are those used to bond with the deoxyribose sugar in order to build a DNA nucleotide.

In RNA, a fifth base, Uracil, replaces Thymine although it acts structurally similarly.

As a result, in many high-level bioinformatics problems, Uracil and Thymine are

treated as the same element corresponding to the respective alphabet.

Referring to Figure 2.4, Adenine and Guanine having two ring structures belong

to the family of purines while Cytosine and Thymine shown in Figure 2.5 have single



12

ring structures, and belong to the family of pyrimidines. These bases are what keep

the two strands of the DNA together via weak hydrogen bonding. In particular, the

polarity of the bases relative to how they bond with the 1’ Carbon of the sugar leads

to only two pairings that really bond well. The Chargaff rules refer to these two

pairings whereby Adenine forms two hydrogen bonds with Thymine and Cytosine

forms three hydrogen bonds with Guanine.

C C

C

C N

N

O

H

H

1’ C of sugar 
backboneWeak 

hydrogen 
bonds with 
Adenine

CH3

O

H

C C

C

C N

N

O

H

HH

NH2

1’ C of sugar 
backboneWeak 

hydrogen 
bonds with 
Guanine

(a) Thymine (b) Cytosine

Figure 2.5: Schematics of the two different DNA base molecules belonging to the
pyrimidines. In RNA, the base Uracil replaces Thymine. Uracil is able to act struc-
turally similar to Thymine because its schematic is a modification of Thymine in
which the CH3 group is replaced with H.

2.1.3 Phosphate Group

A chain of three phosphate groups, one of which is shown in Figure 2.6, provide the

necessary energy to connect nucleotides together to form an RNA or DNA polymer.

In general, two nucleosides are chained together via a single phosphate group attached

at the 5’ Carbon of one sugar and the hydroxyl group at the 3’ location of the second

sugar. The entire RNA or DNA molecule begins with a single nucleotide in which

a small chain of three phosphate groups is bonded to the 5’ location. Two of the
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O
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O P

5’ C of sugar 
backbone

3’ C of sugar 
backbone

Figure 2.6: A schematic of the phosphate group. Three of these are chained together
to provide the necessary energy for DNA and RNA molecules to grow. Once two
of the three phosphate groups break off, the remaining phosphate group acts as an
interlink between subsequent sugar molecules in the sugar-based backbone of DNA
and RNA.

phosphate monomers break away from the polyphosphate group in order to release

enough energy so the remaining phosphate group can create a bond with the hydroxyl

group at the 3’ location of another nucleotide. DNA and RNA are therefore grown

from a 5’ end towards a 3’ end. Thus, DNA and RNA have directionality, much like

written text.

2.1.4 DNA

A single strand of DNA grows in the 5’-3’ direction with the addition of each nu-

cleotide. Because of the mechanical structure of the nucleotides, each time another

is added to the chain a slight rotation occurs in physical space. The result is the

characteristic helix spiral of DNA. Two strands of DNA join with each other through

weak hydrogen bonding between their bases, as shown in Figure 2.7. One half of a

DNA molecule is a very long strand of alternating deoxyribose sugars and phosphate

groups. Often this strand is referred to as the sugar-based backbone, and it is the

foundation upon which the host organism’s genome is written. The genome contains
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Figure 2.7: A schematic of a DNA strand. Two sugar-phosphate backbones provide
the foundation necessary to hold the base molecules which store the genetic code of
the host organism. The two backbones are weakly attached together via the Adenine-
Thymine and Cytosine-Guanine hydrogen bonds.

the entire set of instructions used by the organism’s biological machinery in order

to produce all the pieces necessary for survival, including the machinery itself! This

genetic code is stored via different sequential patterns of base molecules attached to

the 1’ Carbons of each sugar molecule on the backbone.

The structure of a DNA molecule is reinforced by the presence of a second sugar-

based backbone containing what appears to be completely different sequential pat-

terns of base molecules hydrogen bonded with the bases on the first backbone. How-

ever, due to the Chargaff rules, the sequence on the second backbone needs to be

exactly paired to the first backbone. Additionally, as can be seen in Figure 2.7, the

5’ end of the second backbone is located at the 3’ end of the first backbone. As

a result, the second set of sequential patterns is said to be the reverse complement

of the first set. More accurately, each set is the reverse complement of the other.
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Notice that the information of an entire DNA molecule is specified so long as mutual

exclusive segments of each strand are known. Thus, the double strands not only pro-

vide increased robustness in physical structure, but also an information-based error

correction system as well.

Replication

It turns out that many microscopic components of all living organisms are present

for the purpose of replication, the process of copying existing DNA molecules into

new DNA molecules. Because DNA molecules are physically wound into helices,

the first step in performing replication is to unwind and separate the strands. An

enzyme called Helicase is responsible for separating the two strands by temporarily

breaking hydrogen bonds, the result of which is depicted in Figure 2.8. As it takes

5’ end

3’ end 5’ end

3’ end

Replication

Replication

Figure 2.8: A schematic of a DNA strand prepared for replication whereby Helicase
has unwound and separated the two strands.

energy to break the bonds, weaker regions often define locations where replication

begins. Because Adenine-Thymine pair with only two bonds, compared to Cytosine-

Guanine that pair with three bonds, the origin of replication is often “AT” rich,
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meaning the sequence of bases on either strand will have an increased proportion of

Adenine or Thymine. After the separation is accomplished, a physical wedge of single

strand binding protein is shoved between the strands at the replication fork. Once

stabilized, either strand may be copied after an RNA Polymerase, or just Primase,

enzyme attaches a primer RNA fragment to some specific complementary sequence

of bases. Next, DNA Polymerase enzymes begin replication by first attaching to

the primer RNA fragment and then moving along the bases in the 5’-3’ direction,

outputting two copies of the DNA stand. Eventually, the primer is stripped away

from the original DNA bases by another enzyme called an exonuclease.

Structure

Increasing in organizational hierarchy, DNA is generally organized into chromosomes.

In prokaryotes, organisms without a cell nucleus, there is usually only a single chro-

mosome with a circular structure. On the other hand, eukaryotes, organisms with a

definite cell nucleus, contain multiple linear chromosomes inside each nucleus.

As stated in the previous section, organisms contain the necessary machinery (e.g.,

enzymes) to perform DNA replication naturally. It turns out that several processes

have been developed in order to perform DNA replication artificially. For example, in

a process called Polymerase Chain Reaction (PCR), DNA is repeatedly heated and

cooled within a mixture containing both specific primers and individual nucleotides.

After the DNA is heated the strands separate, followed by cooling at which time

the bases attempt to reestablish their previous bonds. However, the presence of

the primers and nucleotides and the addition of DNA Polymerase allow artificial

replication to take place. This is just one example of many different processes available

that allow researchers the ability to discover the order in which bases occur on either

strand. Other common techniques include shotgun sequencing and pyrosequencing.
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In general, chemists and biologists have the ability to analyze organisms with the goal

of recording the entire sequential order of base molecules–its genome. This is one of

the primary transitioning points between low-level chemist/biologist and high-level

modeler, as genomes can be many millions of bases in length. The result is often a

need for efficient data searching and storage as well as a desire for accurate models

to represent or predict the information.

2.1.5 Genes

The genome, or collection of genes, contains the entire enumeration of bases along

the chromosome or set of chromosomes; much like an encyclopedia contains a specific

enumeration of alphabetic characters along each volume. While the order of letters ul-

timately matters to the meaning of text, it is difficult to understand passages without

zooming out a little, where words and sentences can be analyzed from a higher-level

context. This is true of a genome as well; bases are analogous to letters of an al-

phabet, and genes are analogous to sentences or paragraphs of prose. The following

sections introduce vocabulary and concepts important to understanding genes.

Proteins

Proteins are another class of polymers and composed of a sequence of amino acid

molecules. Amino acids are Carbon compounds with the generic structure shown in

Figure 2.9. A central Carbon atom called the αCarbon is connected to an amino

group (NH2), a carboxyl group (COOH), a hydrogen atom, and a residue. The

residue is one of several significantly different molecular chains, and is responsible for

the chemical behaviors between various other amino acids. Based on the structure of

the residues, amino acids can fall into different categories including polar/non-polar,

acidic/basic, hydrophilic/hydrophobic, etc. While there are more than 100 amino
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Figure 2.9: A schematic of the general structure for an alpha amino acid. The central
αCarbon bonds with a residue which is one of several different molecular groups that
define the chemical behavior of an amino acid.

acids in nature, only 20 are used by DNA to form proteins. Some of the 20 amino

acids can by synthesized by the host organism while others cannot and so need to be

introduced externally.

Chemical reaction between the amino group of one amino acid with the car-

boxyl group of another amino acid forms a peptide bond. Proteins are formed when

a sequence of many amino acids come together via peptide bonds. Thus proteins

are also known as polypeptides. Interestingly, DNA molecules and protein molecules

present similar sequential models. That is, DNA molecules are composed of a chain

of monomers along a sugar-based backbone, each of which can be one of four differ-

ent molecules. Similarly, protein molecules are composed of a chain of amino acid

polymers along a peptide backbone, each of which can be one of twenty different

molecules. Both macromolecules are thus recorded in databases as a sequence of al-

phabetic characters, where each letter is meant to represent a specific base or residue.

Proteins are essential to the metabolic and structural functions of organisms.

For example, the enzymes involved with replicating DNA are all proteins. Proteins

are generally responsible for all aspects of how organisms are able to function at a

molecular level. Additionally, proteins form the structural elements of an organism’s
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body, and so are responsible for how a life-form appears. Proteins are truly the

building blocks of life.

Proteins are complex, three-dimensional structures. As a result, the sequential

order of amino acids is not the only significant aspect to proteins. Many times,

long distance relationships are important resulting in the polypeptide mechanically

folding many times, forming interesting shapes that are useful in allowing the protein

to function. Just as words in a sentence can affect phrases that are far apart from

each other, so can amino acids in one area affect those in another area. That is, not

only are subsequent relationships important, but more complex local and even long-

distance interactions can be equally important. Because of the relationship between

the structure and function of proteins, a great deal of effort has gone into the study of

their organization. The sequential order due to the covalent bonding of amino acids

along the peptide backbone is referred to as the primary structure, while the local

and long-distance hydrogen bonding is referred to as the secondary structure and

tertiary structure, respectively. It turns out that proteins with related functionality

tend to have similar tertiary structures. An even higher-level structure exists called

quaternary structure in which multiple proteins combine into a multi-polypeptide

unit.

Genetic Code

As has been alluded to, proteins and DNA are related through the genetic code. In

particular, DNA may be thought of as an ordered list of instructions for building

proteins out of the amino acid components. In fact, a gene is defined as the portion

of DNA that contains the information necessary for the generation of a particular

protein. Note however, because there are only four letters in the DNA alphabet

compared to 20 different letters in the relevant amino acid alphabet, it is necessary
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that runs of DNA bases be used to determine the addition of a single amino acid. A

codon is a three-base DNA segment leading to a many-to-one relationship between

DNA codons and amino acids. In fact, other than Methionine and Tryptophan, all

other amino acids are represented by multiple codons. If n codons correspond to the

same amino acid, it is said to be n-fold degenerate. Interestingly, the presence of a

many-to-one relationship introduces yet another form of error control between the

genome and the produced proteins. That is, if a mistake were to occur during the

production of a protein, there is a possibility that it will not be fatal.

Transcription

The first step in producing a protein from DNA is called transcription or gene expres-

sion. The RNA Polymerase enzyme performs the work of constructing an appropriate

messenger RNA (mRNA) which ultimately forms the template upon which the pro-

tein is constructed. Transcription begins with an initiation stage in which the RNA

Polymerase attaches to a promoter region that is sequentially prior to the gene being

expressed. That is, the promoter region is closer to the 5’ end of the strand and is said

to be upstream so that it can flow towards the 3’ end whereby it will move across the

gene of interest. While promoter sites vary in terms of content and location from one

gene to another, there are two highly common, six-base subsequences in promoters.

These occur around 10 bases and 35 bases upstream of the gene being expressed.

The RNA Polymerase works through an elongation process in which it flows toward

the 3’ end while unwinding the DNA downstream and rewinding the region upstream

behind it. As it flows along, it constructs an mRNA strand by attaching complemen-

tary nucleotides to the currently unwound region. Eventually the process terminates

due to mechanical stopping conditions. In one condition, a physical hairpin forms

in the mRNA where a local segment of mRNA folds over and bonds with a reverse
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complement region nearby. The resulting structure is such that it physically forces

the RNA Polymerase to halt. Another condition is due to a second enzyme that has

the ability to interfere with the RNA Polymerase if it slows down too much.

Translation

Since the RNA Polymerase constructed a complementary strand of mRNA by flow-

ing across a region of DNA containing the coding information for a gene, the mRNA

strand contains the same information necessary for constructing the corresponding

protein. The mRNA fragment is carried to the ribosome which consists of many

proteins and RNA molecules. As shown in Figure 2.10, once the translation pro-

Messenger 
RNA
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Acid
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Peptide 
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Figure 2.10: Translation of messenger RNA into protein takes place in the ribosome.
The mRNA acts as the template upon which transfer RNA anti-codon tags are at-
tracted and attached to their corresponding codon location. The tags are connected
to an amino acid. So a chain of amino acids are placed next to each other, at which
time peptide bonds form resulting in the final polypeptide.

cess begins, the ribosome moves along the mRNA to manufacture the protein. The

translation of genetic information presented in the mRNA to a protein is carried out

with the help of adaptor molecules called transfer RNA (tRNA). These molecules are
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about 75 nucleotides long with an amino acid attached to the 3’ end. The tRNA frag-

ment contains multiple complementary sections that cause it to take on a cloverleaf

configuration. The three bases complementary to the codon for the particular amino

acid attached to the tRNA are located at the tip of one of the leaves. This triplet is

often referred to as the anti-codon. Once the amino acids are placed, a peptide bond

forms between neighbors ultimately resulting in the final polypeptide.

2.1.6 Genomic Variation

The preceding sections have presented a streamlined version of many fundamental

processes that take place between DNA molecules and the proteins for which they

code. Perhaps in a perfect environment processes such as replication, transcription

and translation would all occur without any errors. However, it is clear that these

tasks are performed at the molecular level without any discernible sentient control to

govern the results. In fact, this is quite remarkable and wonderful. Yet any of these

processes is prone to occasional mistakes that may lead to stable genomic variation,

which in turn drives the process of evolution. Actually, these variations might not be

thought of as mistakes, but adaptations to the organism’s environment, the result of

which allows the organism to thrive. On the other hand, some stable mistakes are

also the source of several debilitating diseases. Genomic variation can occur through

mutation, recombination and horizontal transfer of genetic material.

Genomic mutations are changes that occur to bases in DNA strands. These

changes may occur at a single site, where one base gets changed to another in a

point mutation, or a base gets introduced or deleted, the result of which is generically

referred to as an indel. Changes may also occur as a result from the transfer of a

segment of genetic material. Sometimes mutations are either neutral or beneficial,

the result of which will generally be passed on to future generations. Mutations that

persist in more than one percent of the population are called polymorphisms.



23

Genomic recombination occurs when a fragment of DNA or RNA erroneously

joins in an incorrect location or with an incorrect complementary piece. Similarly, in

bacteria, horizontal gene transfer may take place in which a segment from one genome

is erroneously copied into some other circular genome. In particular, one organism

can receive genetic information from another organism without being its descendant.

Now that many of the fundamental concepts and vocabulary terms have been

presented, the next section introduces several current problems that face the field of

computational biology.

2.2 Common Problems in Computational Biology

As bioinformatics is a relatively new field of research, the list of typical problems

is somewhat dynamic. However, there are several core topics that continue to de-

serve attention, or have recently developed due to past research. Perhaps in the

coarsest sense, there are two categories of computational tools used by bioinformatics

researchers: modeling tools and workload tools. The latter class of software tools

are developed with the intent of simplifying or reducing the amount of rote work

that exists due to the nature of the massive amounts of biological data present in

databases. These tools often provide modern implementations of classic computer

science solutions for various database problems, and include work done in the re-

cently developed field of data-mining. In contrast, the effort put forth in developing

modeling tools involves much more focus on successful analysis of a system in order to

create realistic representations that allow researchers the ability to predict behavior.

A brief introduction to a few sub-categories of problems is presented in the following

sections.
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2.2.1 Homology Search

Homology searching is the process of finding similar regions between multiple se-

quences. In particular, homologs are regions within proteins related via evolution

from a common ancestor. The importance of this task lies in the theory that known

information, either structural or functional, about one sequence implies information

about the other sequence by homology [23]. Much work is put forth discovering homol-

ogous sequences in order to determine the function of a new gene, identify additional

members of an existing family of proteins, or locate the position of similar genes in

different, yet related, organisms.

One of the earliest methods for homology searching is the dynamic programming

algorithm presented in [70] which forms a global alignment between a pair of se-

quences. The goal of a global alignment algorithm is lining up two sequences parallel

with each other in such a way that the position of each sequence matches that of the

other. Spaces are inserted in order to account for indel mutations. An early modifica-

tion to the algorithm created an overall alignment based on the combination of several

local alignments of sub-sequences. The result allows for higher accuracy in regards

to identifying homologs. The first version of this modification was presented in [93],

followed by heuristic methods including [81] which defines the very common FASTA

file format, and BLAST (Basic Local Alignment Search Tool) in [3] which is proba-

bly one of the most prevalent tools used in bioinformatics. As of 2004, the National

Center for Biotechnology Information (NCBI) BLAST server for homology searching

was queried over 100,000 times a day [11]. Additionally, tools have been developed

to form various models of sequences in order to aid in the speed and accuracy of ho-

mology searches. One popular method forms a profile hidden Markov model (HMM)

as discussed in [24], in which position-specific scores are used for database searching.
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Most recently, research has been focused on managing homology searches over whole

genomes, which will necessarily present an enormous computational problem. Thus,

work such as [63], [57], and [48] presents novel methods for faster database searching

to counteract the growing size.

2.2.2 Genomic Annotation

Genomic annotation is the process of identifying and labeling genes and their posi-

tion within a DNA sequence. This category of software includes tools used to perform

sequence assembly, genetic mapping, as well as genetic annotation. When an organ-

ism needs to be analyzed, its initially unknown DNA is processed by sequencing

techniques that, by present-day technology, are unable to output the entire sequence

as a whole. Instead, the various sequencing methods provide small sub-sequences

called fragments. Computational tools that perform sequence assembly take the set

of fragments as input and attempt to recreate the original DNA strand as an output.

Challenges occur in sequence assembly due to gaps occurring in the set of fragments

where some portion of the original DNA strand was not successfully represented, or

multiple fragments of the same region will occur. Genetic mapping and annotation

algorithms attempt to identify the position and function of important regions within

the DNA strand. These regions include genes and promoter sites, among other in-

teresting genetic features. The results of these tools is typically stored in various

databases, usually made available to the research community (e.g., NCBI database).

2.2.3 Computational Evolutionary Biology

Computational evolutionary biology is the study of phylogeny, the evolutionary re-

latedness among groups of organisms. Since descendent organisms necessarily evolve

from a common ancestor, evolution is naturally seen as a branching process. Thus,
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phylogenies are often visualized with the aid of a phylogenetic tree. As an example,

the evolutionary relationship depicted in Figure 2.11(a) contains ten different organ-

isms whose relationship was estimated by generating a multiple sequence alignment

of the 12s RNA gene from mitochondria found in the respective cells of the follow-

ing host organisms: D38113 Chimpanzee, D38114 Gorilla, D38116 Bonobo (Pygmy

Chimpanzee), U20753 Cat, V00654 Cow, V00662 Human, X72004 Grey Seal, X72204

Blue Whale, X79547 Horse, and Y07726 White Rhino. Figure 2.11 contains two

Bonobo
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(a) Neighbor-Joining (b) Grammar

Figure 2.11: Example phylogenetic trees of the mitochondria found in various eu-
karyotes. The distances among the mitochondria found in the various host organisms
generated using DRAWGRAM [31]. The distances were discovered using (a) neighbor-
joining clustering on a multiple-sequence alignment and (b) grammar-based distance.

phylogentic trees both linking the various organisms together. The path-length from

any organism to any other organism is meant to indicate the evolutionary difference

between those organisms. Thus, the trees depicted in Figure 2.11 implies that Gorilla

and Human are similar, while Gorilla and Cat are much more distant.
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The first tree in Figure 2.11(a) is typical in that the distances were estimated by

first creating a multiple sequence alignment (MSA) followed by a clustering algorithm

called Neighbor-Joining [86]. An MSA is similar to the global and local pair-wise

alignments used in the homology searching applications with the exception that more

than two sequences are aligned along each position. MSA algorithms are the topic of

Chapter 3, in which a grammar-based distance metric from [7] and [78] is introduced

as the distance metric for a new MSA algorithm. The second tree in Figure 2.11(b),

is nearly identical to the first, demonstrating the viability of the grammar-based

distance metric from [78] used to estimate the phylogeny.

2.2.4 Protein Structure Prediction

The 3-dimensional shapes of proteins often affect their behavior and functionality.

That is, the secondary and tertiary structures are often just as important as their

primary structure. Of course the higher-layers of structure are ultimately dependent

upon the low-level primary structure. As a result, a great deal of research effort

continues to go into the task of modeling the various folding and chemical bonding

that takes place as a result of the primary structure of the protein sequences. For

example, [49] utilizes position specific scoring matrices to guide the protein prediction

modeling which then feeds a neural network. These matrices are often used in many

aspects of protein analysis. They often represent the log-likelihood of two amino

acids being aligned with each other in an effort to apply statistical likelihood of point

mutations occurring. Neural networks are often used in current protein structure

prediction research, for example [66] and [65].

2.2.5 Genetic Regulatory Networks

Genetic regulation is the entire process by which an organism’s biochemical machinery

scans DNA for promoter sites, performs transcription followed by translation. Ge-

netic regulation is made more complicated by the fact that the machinery performing
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promotor-site identification, transcription and translation are themselves various pro-

teins that are typically formed via genetic regulation. Further, regulation is a spatial

process where proteins floating in the soup of the organism need to chemically bind

themselves to the DNA molecule at or near a genetic region, and then move along the

DNA strand generating mRNA molecules of the gene which are the pieces necessary

for the translation into the intended proteins. However, this ideal description is based

on a vacuum of interference. That is, organisms at the molecular level are often dense

with material such that the proteins required to bind to the DNA molecule may not

do so because other objects physically block their path. In some cases, this is unin-

tentional behavior, and may be thought of as natural noise within the process of the

system. However, current research is showing more and more evidence of intentional

behavior of the system to either impede or amplify the generation of the proteins

described by genes in the DNA. These intentional behaviors are usually realized via

other proteins found elsewhere in the organism and also generated by genetic regula-

tion. This fascinating paradox of protein-and-the-gene is controlled by what is now

referred to as a Genetic Regulatory Network (GRN ).

2.2.6 Functional Genomics

Identification of function and/or meaning of segments of biological sequences remains

an ongoing and active area of research called functional genomics. This work is ac-

complished primarily by analyzing the genes, the resultant proteins, their individual

functionality, and their interaction with other proteins, called protein-protein interac-

tion (PPI). Information is gathered and interpreted by studying the proteins expressed

by an organism in addition to the mRNAs produced due to transcription. The typical

technique used to acquire these sets of information is via DNA microarray experi-

ments. A chip is a DNA microarray consisting of a matrix of thousands of probes
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which are known specific DNA fragments. Because of the GRN, the organism to be

studied can be applied to the chip under various environmental conditions resulting

in various amounts of protein expression. The microarray experiment actually cap-

tures the amount of mRNA which occurs during transcription and will bond with the

probes on the chip. After the experiment, the microarray contains amounts of ma-

terial that correspond to the levels of transcription, which then implies the amount

of respective protein production. Like many other problems in bioinformatics, the

output of these experiments can be enormous in their amount of data. Further, ana-

lyzing the results can be a challenging task due to the size of data as well as the fact

that complex GRNs may ultimately affect whole systems of protein behaviors.

2.3 Grammar

As well be shown, the contributions made by this work are centered upon a family

of modeling tools from information theory called grammars. Necessary concepts for

understanding how a grammar model is specified are briefly reviewed in this section.

In general, standard mathematical notation as found in a typical text on automata

theory is followed (see, for example, [46]).

2.3.1 Language Terminology

An alphabet Σ is a finite, nonempty set of symbols from which finite-length sequences,

or strings, are formed. Strings are constructed via the binary operation of concate-

nation which begins with a copy of the left string and appends a copy of the right

string. Notationally, the formal symbol · is often omitted in favor of using string

juxtaposition to indicate concatenation. The power of an alphabet is the set of all

strings of a certain length from an alphabet. For example, Σk is the set of all strings

of length k whose symbols are from Σ, with ε = Σ0 being used to indicate the case of
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a zero-length string, or the empty string. Two symbolic powers are used to indicate

the sets of all strings over an alphabet Σ+ =
⋃∞

k=1 Σk and Σ∗ = Σ+ ∪ ε, the latter

extending the former by including the empty string. A language L is then defined

as a set of strings selected from some Σ∗, and a problem is defined as the question

of deciding whether a given string is a member of some particular language. That

is, given a string w ∈ Σ∗ and L a language over Σ, perform classification to decide if

w ∈ L.

As L may be infinite, it is useful to have a compact description of the strings in

L. Such an abstract model is called a grammar G, and it is said that L = L(G).

Typically, a grammar is specified by the 4-tuple G = (V, T, P, S), where V is the set

of variables and T is the set of terminals which are symbols that form the strings of

L. P is the set of productions, each of which represent the recursive definition of L,

and S ∈ V is the start symbol, which is the variable that defines L. Each production

consists of a head variable followed by the production operator → and a body string

of zero or more terminals and variables. Each production represents one way to form

strings in L from the head variable. Note that more than one body may be defined

for each head variable, resulting in a nondeterministic model. One way of using a

grammar is “top-down” in which each head variable is replaced with a body, the result

of which is scanned for other variables, which are then replaced by one of their bodies,

and so on. During this process, terminals are usually left unchanged, although there

is a class of unrestricted grammars, in which terminals may be altered.

Defining a string in L via head-to-body recursive expansion of S is referred to as

a derivation of the string. The relation symbols ⇒ and
∗⇒ are used to indicate one

derivation step from variable to string, and zero or more steps, respectively. Aside

from a derivational sentence, some classes of grammars have graphical representations

to aid in understanding their linguistic structure and/or derivations. Grammars may
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be analyzed via their directed derivation graphs [53] in which each node is uniquely

labeled by elements of (V ∪T ) such that all elements are used exactly once. Similarly,

derivations may be specified via a different directed graph, called a parse tree, in which

each interior node is labeled by some V , and each leaf labeled by some (V ∪ T ∪ ε).

If an interior node is A, and its children are X1, ..., Xk, then A → X1 · · ·Xk is a

production in P . Children of a node are ordered from left-to-right.

Given G = (V, T, P, S), the language L is defined by

L(G) = {w | w ∈ T ∗, and S
∗⇒ w}.

That is, L(G) is the set of all strings derived from S.

2.3.2 Chomsky Hierarchy

Among many other linguistic innovations, Noam Chomsky defined four categories for

types of grammars in [15] and elaborated upon in [16]. The language levels, summa-

rized in Figure 2.12, are contained in terms of complexity as 3 ⊂ 2 ⊂ 1 ⊂ 0,

where type-3 or regular grammars generate regular languages, type-2 or context-free

grammars (CFGs) generate context-free languages (CFLs), type-1 or context-sensitive

grammars (CSGs) generate context-sensitive languages (CSLs), and type-0 or unre-

stricted grammars generate recursively enumerable languages. All other languages

can be classified between type-3 and type-0. Knowing the type-containment of a cer-

tain grammar is important in understanding the computational complexity necessary

in solving linguistic problems. Problems in regular grammars, whose productions

rewrite a variable as a terminal followed by at most one variable (e.g., A→ aB), may

be solved in linear time O(N). A CFG is defined as any grammar whose productions

allow any arrangement of terminals and variables in the body (e.g., A → aBbC).

Especially within the context of studying the secondary structure of sequences, it is
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Language: Recursively enumerable Context sensitive
Grammar: Unrestricted Context sensitive

Type: 0 1
Example Grammar Rule: Baa→ A At→ aA

Automaton: Turing Machine Linear Bounded

Language: Context free Regular
Grammar: Context free Regular

Type: 2 3
Example Grammar Rule: S → gSc A→ cA

Automaton: Pushdown (stack) Finite-State Automaton

Figure 2.12: The Chomsky hierarchy and formal language theory (adapted from [91]).
From upper-left to lower-right is the most- to least-complicated grammar.

worth mentioning that strings in L(CFG) can exhibit self-embedding [16], resulting in

non-crossing dependencies; i.e., palindromes necessary for properly modeling hairpin

structures. Problems of a CFG may be solved in polynomial time O(Nk), which is

generally accepted as representing the limiting bound for a practical algorithm. The

next grammar type, CSG, is any grammar whose productions have additional symbols

in their head, but never more than in the body (e.g., Aa → bB). Again, regarding

sequential secondary structure, it is worth noting that strings in L(CSG) can exhibit

crossing dependencies–necessary for modeling pseudoknots in RNA. Unfortunately,

CSG problems are classified as computationally decidable [46], guaranteed to com-

plete in finite time but the end time is unknown, so algorithms working with CSGs

may be difficult to use realistically. Finally, an unrestricted grammar is any grammar

whose productions are unrestricted such that the head may have more elements than

the body (e.g., Aab→ B). Problems are undecidable, i.e. not guaranteed to end, and
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so there is little hope of working in this case with unrestricted grammars, in spite of

their complex modeling power.

It has been suggested [91] that the natural grammar of DNA/RNA sequences is

at least context-sensitive in order to account for some of the folding that takes place

for example in pseudoknot structures. Unfortunately, working with context-sensitive

or unrestricted grammars is impractical due to the computational time necessary for

problem solving–exponential or worse. Hence, the work presented herein operates

on type-2 or type-3 grammars. While this limitation precludes representation of

pseudoknot structures, it allows the representation of most other features present in

biological data.

2.3.3 Notation

The work presented in Chapters 5 and 6 generally adopts standard linguistic nota-

tions. Beginning with [53] and given a grammar G for language L(G), then V (G),

T (G) and P (G) shall be the convention used for the sets of variables, terminal sym-

bols and production rules of grammar G, respectively. Following [46], which uses

conventions in [16], the common conventions used to indicate symbol functionality

are

• early lower-case letters, a, b, ... ∈ T (G), represent individual terminals;

• early capital letters, A,B, ... ∈ V (G), represent individual variables;

• late lower-case letters, ..., y, z ∈ T (G)+, represent strings of terminals;

• late capital letters, ..., Y, Z ∈ (V (G)∪ T (G)), represent either individual termi-

nals or individual variables;

• lower-case Greek letters, α, β, ... ∈ (V (G)∪T (G))+, represent strings consisting

of variables and/or terminals.
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2.3.4 Lempel-Ziv Compression as a Grammar

The material presented in Chapters 3 and 4 detail applications of grammars to solve

several bioinformatics problems. As will be presented, the grammar of biological

data is typically not assumed to be known a priori, and so needs to be inferred from

the corpus of data. It was observed in [72], that a grammar G used to model a

string can be converted to an LZ77 representation in a simple way. The term LZ77

refers to Lempel-Ziv dictionary-based lossless compression detailed in [55] and [105].

Subsequently, an algorithm was presented in [12] to use an inverted process to map

an LZ77-compressed sequence into a grammar. While the inverted process is more

involved, it demonstrates the fact that Lempel-Ziv compression can be thought of as

inferring a Regular grammar from the sequence it compresses.

2.3.5 Grammar Applications in Bioinformatics

The Lempel-Ziv algorithms, though usually not thought of that way, are examples of

the use of a grammar for compression. The original concept behind abstract grammars

is that a grammar G is meant to completely describe the underlying structure of a

corpus of sequences. Because most naturally occurring sequences contain repetition

and redundancy, grammars are often able to describe sequences efficiently. Hence,

the usage of grammars can be thought of as a means to provide compression.

A block diagram describing how grammars can be used for compression is shown

in Figure 2.13. The input to the encoder is a sequence w. The encoder first infers

a grammar G specific to w. It should be noted that an orthodox linguist may not

approve of the term “grammar” in the sense provided here, as G will derive the single

string w and nothing else. However, time and engineering often find ways of modifying

and applying existing ideas to new applications. Once the grammar is estimated, it is

encoded, first into symbols then into bits, followed by storage or transmission. Upon
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Figure 2.13: A block diagram depicting the basic steps involved with a grammar-based
compression scheme.

reception, the bits are decoded into symbols and then into the inferred grammar G.

Given this kind of grammar, it is a simple matter to recover w from G by beginning

with the start symbol S, which is part of G. In a seminal paper Kieffer and Yang [53]

showed that a grammar based source code is a universal code with respect to finite

state sources over a finite alphabet.

Identification of function and/or meaning of segments of biological sequences re-

mains an ongoing and active area of research. This implies studying primary and

secondary structure of sequences. A somewhat uncommon method for predicting

RNA secondary structure focuses only on the information contained within the se-

quences. For example, [14] reviews many ways in which linguistics, specifically ab-

stract grammars, may be used to model and analyze secondary structures found in
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RNA and protein sequences. Another example [88] includes RNA secondary structure

prediction using stochastic context-free grammars (SCFGs).

Abstract grammars have been shown to be useful models of biological sequences

at various levels of detail. Surveys presented in [91] and [35] describe correlations

between linguistic structures and biological function. In particular, linguistic models

of macromolecules [10, 41], have been used to model nucleic acid structure [90, 89, 47],

protein linguistics [1, 82], and gene regulation [18, 84, 56]. Much of the work available

in the literature assumes the underlying grammar is known a priori. Hence, there is

a need for general methods to infer grammars efficiently from biological structures.

In [71] and [73] a general algorithm is presented for inferring sequential structure in

the form of CFGs for generic inputs including biological data. Two other algorithms

in which sets of arbitrary sequential data are categorized to generate a CFG are

presented in [87] and [68]. One drawback with these algorithms, is the inability to

make use of domain knowledge, although [71] discusses the improvement available

when domain knowledge is applied. In fact, the algorithm was modified in [13] to

operate specifically on DNA and makes use of the Chargaff base pairing rules to

generate a more compact model.

The most commonly known and recognized application of grammars to computa-

tional biology are in the form of SCFGs used to search for the most likely secondary

structures in RNA leading to the identification of mechanistic elements that control

various aspects of regulation [88, 69, 26, 25, 23]. The remaining primary usage of

grammars are in a data-mining paradigm, where grammars are used to efficiently

scan databases full of experimental data from the literature (e.g., RegulonDB). Some

work has briefly been done in regards to modeling GRNs using a subclass of CSGs

[18, 91, 89, 47, 5] called definite clause grammars (DCGs) developed in the efficient

computer language, Prolog. This was further developed into Basic Gene Grammars in
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[56]. The end result is a very high-level model description with a database approach

to determining the classification of sequences of data in silico.

In this dissertation we utilize abstract grammars to model the primary and sec-

ondary structures present in biological data. These grammar models are inferred and

applied to efficiently solve various sequence analysis problems present in computa-

tional biology, including multiple sequence alignment, fragment assembly, database

redundancy removal, and structural prediction. In doing so, we demonstrate the

viability and versatility of using abstract grammars to model biological data. The

next two chapters introduce applications of a grammar based sequence distance met-

ric which is useful in comparing the primary structure of biological sequences. The

similarity of two sequences can be estimated by comparing their inferred grammars.

This concept is applied to solve three common problems involving sequence analy-

sis. Chapters 5 and 6 introduce two novel grammar inference methods capable of

capturing not only the primary structure, but the higher-level secondary structure

of biological sequences. The resulting context-free grammars are used to estimate

structural pieces within sequences, which can in-turn be used as supplemental infor-

mation to help guide various sequence analysis algorithms. A preliminary example

is provided with an MSA application that uses the inferred structural information to

improve upon its alignment quality.
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Chapter 3

Biological Sequence Alignment

The first application of grammar-based models is on the problem of sequence align-

ment. This often-studied topic involves identifying common subsequences among

biological sequences. When matches are found, the associated pieces are shifted so

that when sequences are presented as successive rows–one sequence per row–each

nucleotide or amino acid residue lines-up with all others in its column. Two spe-

cific example applications were developed to solve problems involving sequence align-

ment issues. The first, GramAlign, is a progressive alignment algorithm that uses a

grammar-based distance metric to determine the order in which biological sequences

are to be pairwise aligned. The second, GramContig, is a fragment-to-reference align-

ment algorithm that uses the same grammar-based distance metric to identify se-

quence fragment, or contig, locations relative to a reference sequence. The result

allows for a fragment assembly and identifies possible regions that require additional

sequencing.

3.1 Multiple Sequence Alignment Background

Generation of meaningful multiple sequence alignments (MSAs) of biological se-

quences is a well-studied NP-complete problem, which has significant implications

for a wide spectrum of applications [17, 23]. In general, the challenge is aligning N
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sequences of varying lengths by inserting gaps in the sequences so that in the end all

sequences have the same length. Of particular interest to computational biology are

DNA/RNA sequences and amino acid sequences, which are comprised of nucleotide

and amino acid residues, respectively.

MSAs are generally used in studying phylogeny of organisms, structure prediction,

and identifying segments of interest among many other applications in computational

biology [30]. Regarding phylogeny, N sequences containing the same functionality for

different organisms are aligned. Assuming the organisms evolved from the same an-

cestor, alignments can show how the original functionality changed for each organism.

The resulting MSA may imply how closely the organisms are related to each other. In

identifying segments of interest, the functionality of at least one out of N sequences

is unknown. Here, the assumption is that the relationship between the organisms is

well understood. Consequently, the resulting MSA may imply the underlying func-

tionality of unknown segments based upon the location relative to known segments

of other organisms.

Given a scoring scheme to evaluate the fitness of an MSA, calculating the best

MSA is an NP-complete problem [17]. Differences in scoring schemes, need for expert-

hand analysis in most applications, and many-to-one mapping governing elements-to-

functionality (codon mapping and function) make MSA a more challenging problem

when considered from a biological context as well [67].

Generally, three approaches are used to automate the generation of MSAs. The

first offers a brute-force method of multidimensional dynamic programming [62],

which may find a good alignment but is generally computationally expensive and,

therefore, unusable beyond a small N . Another method uses a probabilistic approach

where Hidden Markov Models (HMMs) are approximated from unaligned sequences
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[74]. The final method, progressive alignment, is possibly the most commonly used

approach when obtaining MSAs [75].

A progressive alignment algorithm begins with an optimal alignment of two of the

N sequences. Then, each of the remaining N −2 sequences are aligned to the current

MSA, either via a consensus sequence or one of the sequences already in the MSA.

Variations on the progressive alignment method include PRALINE [92], ProbCons

[22], MAFFT [51, 50], MUSCLE [28, 27], T-Coffee [76], Kalign [54], PSalign [96],

and the most commonly used ClustalW [97]. In most cases, the algorithms attempt

to generate accurate alignments while minimizing computational time or space. Ad-

vances in DNA sequencing technology with next generation sequencers such as ABI’s

SOLID and Roche’s GC FLX provide vast amounts of data in need of multiple align-

ment. In the case of large sequencing projects, a high number of fragments that lead

to longer contigs to be combined are generated with much less time and money [95].

In addition, as more organisms’ genomes are sequenced, approaches that require MSA

of the same gene in different organisms now find a more populated data set. In both

cases computational time in MSA is becoming an important issue that needs to be

addressed.

The next sections present GramAlign, a progressive alignment method with im-

provements in computational time. In particular, the natural grammar inherent in

biological sequences is estimated to determine the order in which sequences are pro-

gressively merged into the ongoing MSA. The following sections describe the algorithm

and present initial results as compared with other alignment algorithms.

3.2 Multiple Sequence Alignment Algorithm

A general overview of the GramAlign algorithm is depicted in Figure 3.1. The set

of sequences to be aligned, S, are regarded as input to the algorithm with S =

{s1, ..., sN}, where si is the ith sequence and i ∈ {1, ..., N}.
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Figure 3.1: The algorithm operates on a set of sequences S originally read in FASTA
format. After a grammar-based distance matrix D is estimated, a minimal spanning
tree T is constructed. The tree is used as a map for determining the order in which
the sequence set is progressively aligned in A. Gaps in the alignment are grouped
together using a sliding window resulting in AAdj. Several outputs are available,
including the distance matrix and various sequence alignment formats.

3.2.1 Distance Estimation

The first step in the procedure involves the formation of an estimate of the distance

between each sequence sm and all other sequences sn ∀ n 6= m. The distance used in

GramAlign is based on the natural grammar inherent to all information-containing

sequences. Unfortunately, the complete grammar for biological sequences is unknown,

and so cannot be used when comparing sequences. However, we do know that bio-

logical sequences have structures which correspond to functions. This in turn implies

that biological sequences which correspond to proteins with similar functions will have

similarities in their structure. Therefore, we use a grammar based on Lempel-Ziv (LZ)

compression [105, 106] used in [79] for phylogeny reconstruction. This measure uses

the fact that sequences with similar biological properties share commonalities in their

sequence structure. It is also known that biological sequences contain repeats, es-

pecially in the regulatory regions [39]. When comparing sequences with functional



42

similarity, non-uniform distribution of repeats among the sequences poses a problem

for assessing sequence similarity. As shown below, the proposed distance naturally

handles such cases, which are difficult to account for by alignment or sequence edit

based measures.

An overview of the grammar-based distance calculation is shown in Figure 3.2

where a dictionary of grammar rules for each sequence is calculated. Initially, the

dictionary G1
m = ∅ is empty, a fragment f 1 = sm(1) is set to the first residue of the

corresponding sequence, and only the first element sm(1) is visible to the algorithm.

At the kth iteration of the procedure, the kth residue is appended to the k−1 fragment

and the visible sequence is checked. If fk /∈ sm(1, ..., k − 1) then fk is considered a

new rule, and so added to the dictionary Gk
m = Gk−1

m ∪
{
fk
}

, and the fragment is

reset for the start of the next iteration, fk = ∅. However, if fk ∈ sm(1, ..., k − 1),

then the current dictionary contains enough rules to produce the current fragment,

i.e., Gk
m = Gk−1

m . In either case, the iteration completes by appending the kth residue

to the visible sequence. This procedure continues until the visible sequence is equal

to the entire sequence, at which time the size of the dictionary is recorded along

the diagonal of the grammar elements matrix, Em,m =
∣∣Gm

∣∣. As will be shown,

calculating the distance between sequences requires only the number of entries in the

dictionary.

In the next step shown in Figure 3.2, each sequence is compared with all other

sequences. In particular, consider the process of comparing sequences m and n.

Initially, the dictionary G1
m,n = Gm is set to that of sequence m, a fragment f 1 = sn(1)

is set to the first residue of the nth sequence, and the visible sequence is all of sm.

The algorithm operates as described previously, resulting in a new dictionary size

Em,n =
∣∣Gm,n

∣∣. When complete, more grammatically-similar sequences will have a

new dictionary size with fewer additional entries as compared to sequences that are
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Figure 3.2: An N × N grammar-based distance matrix D is estimated from the set
of N input sequences S. The first step in generating D is to approximate the original
number of elements in each sequence’s dictionary based on an LZ complexity. Each
dictionary is extended using all other sequences resulting in new numbers of elements.
The grammar-based distance between sequences m and n is determined by considering
the amount by which dictionaries change.

less grammatically-similar. Therefore, the size of the new dictionary Em,n will be

close to the size of the original dictionary Em,m.

In the final step, the distance between the sequences is estimated using the dic-

tionary sizes. Five different distance measures were suggested in [79]. This work used

the distance measure

dm,n =
Em,n − Em,m + En,m − En,n

Em,n+En,m

2

, (3.1)

where m,n ∈ {1, ..., N} are indices of two sequences being compared. This particular

metric accounts for differences in sequence lengths, and normalizes accordingly. Thus,

the final distance matrix D is composed of grammar-based distance entries given by

(3.1). Smaller entries in D indicate a stronger similarity, at least in terms of the

LZ-based grammar estimate. Intuitively, sequences with a similar grammar should

be pairwise aligned with each other in order for progressive combining into an MSA.

To further improve the execution time, D is only partially calculated as follows.

An initial sequence is selected and compared with all other sequences. The resulting
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distances are used to split the sequences evenly into two groups, one containing the

smallest distances, and the other containing the largest distances. The process is

repeated recursively on each group until the number of sequences in a group is two.

The benefit is that only N log(N) distances need to be calculated. The validity of

only calculating these sets of distances stems from the transitivity of the LZ grammars

being inferred. That is, if the grammar-based distances di,j and dj,k are small, it is

likely that di,k is also small. By recursively dividing groups of extreme distances, only

those distances which would likely be used in the spanning-tree creation process will

actually be calculated.

Sequence Alphabet

The distance between sequences m and n as determined by (3.1) is based on how

many additional rules need to be added to each grammar in order to generate both

sm and sn. Because the real grammars are unknown, Gm and Gn are approximated

by scanning the only observations available (i.e., sm and sn). The grammar approx-

imation improves as the length of the observed sequences increases. And so, the

distance calculations are a function of sequence lengths, becoming more accurate as

the sequences increase in length. In practice, this calculation works well for DNA

sequences, even of shorter lengths, because the approximated grammar of a DNA se-

quence can only contain rules involving words composed of combinations of elements

from the alphabet {‘A’,‘C’,‘G’,‘T’}. This small alphabet allows for a rapid generation

of a reasonable grammar since there are a relatively small number of permutations of

letters.

From a grammar perspective, amino acid sequences are generally much more dif-

ficult to process correctly using (3.1). The reason being the alphabet contains 23

letters, where each element is not equally different from all other elements. Due to
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the relatively large alphabet size, much longer sequences are necessary to generate

a reasonable grammar approximation. Thus, the accuracy of distances calculated

for sets of short amino acid sequences are diminished. Additionally, consider the

substitution scores of ‘L’ and ‘M’ as taken from the GONNET250 and BLOSUM62

substitution matrices in Figure 3.3. Notice in (a) and (c), that ‘L’ receives a rela-

tively high positive value when aligned with any of {‘I’,‘L’,‘M’,‘V’}. Similarly, in (b)

and (d), ‘M’ receives a relatively high positive value when aligned with any of the

same set. Additionally, both ‘L’ and ‘M’ generally receive high negative values when

compared to letters other than {‘I’,‘L’,‘M’,‘V’}. When taking this type of scoring

into account, the elements ‘L’ and ‘M’ could be considered the same letter in a gram-

matical sense. Note that these positive and negative scores were originally derived

for an evolutionary model parameterized in terms of residue pair probabilities. Two

sequences known to be homologous were used to estimate the likelihood of amino

acid residue alignments. The pairwise scores were calculated using a log odds ratio

log pAB/qAqB, where qi is the relative frequency of residue i and pjk is the probability

that residues j and k are aligned [17].

Thus, GramAlign offers the option to use a “Merged Amino Acid Alphabet”

when calculating the distance matrix. The merged alphabet contains 11 elements

corresponding to the 23 amino acid letters grouped into the sets {‘A’,‘S’,‘T’,‘X’},

{‘B’,‘D’,‘N’}, {‘C’}, {‘E’,‘K’,‘Q’,‘R’,‘Z’}, {‘F’}, {‘G’}, {‘H’}, {‘I’,‘L’,‘M’,‘V’}, {‘P’},

{‘W’}, and {‘Y’}. These groupings were determined by considering all 23 rows of the

BLOSUM45, BLOSUM62, BLOSUM80 and GONNET250 substitution matrices, and

only grouping elements that had a strong similarity across the entire row in all four

matrices. The merged alphabet has the benefit of containing fewer elements allowing

for more accurate distance estimates based upon shorter observed sequences. Also, the



46

0 5 10 15 20

!40

!20

0

20

40

60

80

100

120

140

Amino Acid

Su
bs

tit
ut

io
n 

C
os

t V
er

su
s 

L
L Gonnet250

A B C D E F G H I K L M N P Q R S T V W X Y Z

0 5 10 15 20

!40

!20

0

20

40

60

80

100

120

140

Amino Acid

Su
bs

tit
ut

io
n 

C
os

t V
er

su
s 

M

M Gonnet250

A B C D E F G H I K L M N P Q R S T V W X Y Z

(a) GONNET250 Row ‘L’ (b) GONNET250 Row ‘M’

0 5 10 15 20
!4

!2

0

2

4

6

8

10

12

Amino Acid

Su
bs

tit
ut

io
n 

Co
st

 V
er

su
s 

L

L BLOSUM62

A B C D E F G H I K L M N P Q R S T V W X Y Z

0 5 10 15 20
!4

!2

0

2

4

6

8

10

12

Amino Acid

Su
bs

tit
ut

io
n 

Co
st

 V
er

su
s 

M

M BLOSUM62

A B C D E F G H I K L M N P Q R S T V W X Y Z

(c) BLOSUM62 Row ‘L’ (d) BLOSUM62 Row ‘M’

Figure 3.3: Bar graphs of the substitution scores for amino acid ‘L’ and ‘M’ as taken
from the Gonnet250 and BLOSUM62 substitution matrices. The scores are shown
based on an alphabetical ordering of amino acid letters from the leftmost ‘A’ to
rightmost ‘Z’.

resultant merged-alphabet substitution matrices are more consistent in that a merged-

letter score is high only when compared to itself. In practice, the average alignment

scores increased when aligning the same data sets using the merged alphabet within

the distance calculation, as compared to using the actual alphabet (results not shown).

In either case, once the distances have been calculated, a tree based on these distances

is used to determine which sequences should be pairwise aligned.
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3.2.2 Tree Construction

The next step in the algorithm consists of constructing a minimal spanning tree T

based on the distance matrix D. In particular, consider a completely connected graph

of N vertices and N(N−1)
2

edges, where the weight of an edge between vertices i and

j is given by the (i, j)th element of the distance matrix, Di,j. This work uses Prim’s

Algorithm [2] to determine a minimal spanning tree T which may be used as a guide

in determining the order for progressively aligning the set of sequences S.

3.2.3 Align Sequences

The minimal spanning tree T along with the set of sequences S, are processed by

the “Align Sequences” block in Figure 3.1. This block is presented in more detail in

Figure 3.4. The first two sequences from S to be aligned are given by T as the root

sequence of T and the nearest sequence in terms of the LZ grammar distance. At the

conclusion of the pairwise alignment process, the resulting alignment is stored in an

ensemble of sequences.

Construct 
Pairwise 

Alignment

T

S A

A(0,1)

Merge New 
Sequence 

Into 
Ensemble

A(0,...,j)

Figure 3.4: From the spanning tree T and the set of sequences S, a progressive
alignment is generated and stored in an ensemble. When no more sequences remain,
the final alignment A is available for post-processing gap adjustments.

In the following we describe the pairwise alignment procedure, the scoring system

and the method for progressive alignment.
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Dynamic Programming

At the core of most progressive MSA algorithms is some method for performing

pairwise alignments between two sequences. The implementation in GramAlign uses

a version of the Needleman-Wunsch [70] dynamic programming algorithm with affine

gap scores as discussed in [23] to generate each pairwise alignment; it requires the

six matrices partially shown in Figure 3.5. A cell in M indicates the maximum score

achievable given that for the ith column and jth row, elements xi and yj are aligned

with each other. A cell in Ix indicates the maximum score achievable given that for

the ith column and jth row, element xi is aligned with a gap. A cell in Iy indicates the

maximum score achievable given that for the ith column and jth row, element yj is

aligned with a gap. The trace-back matrices, TBM , TBIx , and TBIy , are used in the

backward pass to determine how the residues are aligned. Specifically, the (i, j) cell

in TBM will point to cell (i− 1, j − 1) in either matrix M , Ix or Iy. The significance

of which matrix is pointed to determines if the i − 1 and j − 1 residues are aligned

with each other, or if one is aligned with a gap. On the other hand, the (i, j) cell in

TBIx will point to cell (i−1, j) in either matrix M or Ix, the difference being a gap is

opened or a gap is extended, respectively. Similarly, the (i, j) cell in TBIy will point

to cell (i, j − 1) in either matrix M or Iy. The trace-back procedure is followed until

the final cell f is reached in any of the TB matrices. Note, the matrix notation used

here follows that of [23] where coordinates in the matrices are given as (i, j), in which

the column is the first coordinate. However, we deviate from [23] with the addition

of the left-most “gap column” and top-most “gap row” as depicted in Figure 3.5.

To demonstrate the pairwise alignment procedure, consider a toy example of align-

ing s0 = ACGGT and s1 = AGGT . As with all dynamic programming algorithms,

the first half of the procedure involves calculating all path distances from the finish
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− x1 x2

− 0 0 0
y1 0 c(x1, y1)
y2 0

M

− x1 x2

− f · ·
y1 · M
y2 ·

TBM

− x1 x2

− 0 −d′ −d′ − e′
y1 0 0
y2 0 0

Ix

− x1 x2

− f Ix Ix
y1 · ·
y2 · ·

TBIx

− x1 x2

− 0 0 0
y1 −d′ 0 0
y2 −d′ − e′

Iy

− x1 x2

− f · ·
y1 Iy · ·
y2 Iy

TBIy

Figure 3.5: The Needleman-Wunsch dynamic programming implementation in Gra-
mAlign uses three trace-back matrices TBM , TBIx and TBIy , and three scoring ma-
trices M , Ix and Iy.

to the start via a forward pass. The first step initializes the score matrices as follows:

M(0, j) = 0 for 0 ≤ j ≤ |s1|
M(i, 0) = 0 for 0 ≤ i ≤ |s0|
M(1, 1) = c(s0(1), s1(1))
Ix(0, j) = 0 for 0 ≤ j ≤ |s1|
Ix(1, j) = 0 for 1 ≤ j ≤ |s1|
Ix(i, 0) = −d′ −

(
(i− 1)× e′

)
for 1 ≤ i ≤ |s0|

Iy(i, 0) = 0 for 0 ≤ i ≤ |s0|
Iy(i, 1) = 0 for 1 ≤ i ≤ |s0|
Iy(0, j) = −d′ −

(
(j − 1)× e′

)
for 1 ≤ j ≤ |s1|,

where d′ is the tail gap open penalty, e′ is the tail gap extension penalty, and c is the

comparison cost function. For the example, s0 is sequence X along the top and s1 is

sequence Y along the left.
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The initialization concludes by setting the trace-back matrices as follows:

TBM(0, 0) = f
TBM(1, 1) = M
TBIx(0, 0) = f
TBIx(i, 0) = Ix for 1 ≤ i ≤ |s0|
TBIy(0, 0) = f
TBIy(0, j) = Iy for 1 ≤ j ≤ |s1|,

where f is the indication for the final cell. After initialization has completed, the

current set of score matrices for the example are as depicted in Figure 3.6. Note

− A C G G T
− 0.00 0.00 0.00 0.00 0.00 0.00
A 0.00 1.00
G 0.00
G 0.00
T 0.00

M

− A C G G T
− 0.00 −8.70 −9.10 −9.50 −9.90 −10.30
A 0.00 0.00
G 0.00 0.00
G 0.00 0.00
T 0.00 0.00

Ix

− A C G G T
− 0.00 0.00 0.00 0.00 0.00 0.00
A −8.70 0.00 0.00 0.00 0.00 0.00
G −9.10
G −9.50
T −9.90

Iy

Figure 3.6: The Needleman-Wunsch scoring matrices for the toy example after ini-
tialization.

the cost function is defined as c(xi, yj) = 1 when xi = yj and c(xi, yj) = −0.9 when

xi 6= yj, and the gap open and extension penalties are d = 8.7, d′ = 8.7, e = 0.8,
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and e′ = 0.4. The difference between d′ and d, and e′ and e is whether the gap is

initiated at either end of the alignment–the tails–or in the middle of the alignment,

respectively. The current set of trace-back matrices for the example are as depicted

in Figure 3.7.

− A C G G T
− f · · · · ·
A · M
G ·
G ·
T ·

TBM

− A C G G T
− f Ix Ix Ix Ix Ix
A · ·
G · ·
G · ·
T · ·

TBIx

− A C G G T
− f · · · · ·
A Iy · · · · ·
G Iy
G Iy
T Iy

TBIy

Figure 3.7: The Needleman-Wunsch trace-back matrices for the toy example after
initialization.

The forward pass fills out the matrices based on the following rules:

M(i, j) = max


M(i− 1, j − 1) + c(s0(i), s1(j)) =⇒ TBM(i, j) = M

Ix(i− 1, j − 1) + c(s0(i), s1(j)) =⇒ TBM(i, j) = Ix

Iy(i− 1, j − 1) + c(s0(i), s1(j)) =⇒ TBM(i, j) = Iy,

Ix(i, j) = max

{
M(i− 1, j)− d =⇒ TBIx(i, j) = M

Ix(i− 1, j)− e =⇒ TBIx(i, j) = Ix,
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and

Iy(i, j) = max

{
M(i, j − 1)− d =⇒ TBIy(i, j) = M

Iy(i, j − 1)− e =⇒ TBIy(i, j) = Iy.

Here d and e are the gap open and extension penalties, respectively. If it should

happen that multiple scores are the max, a random selection is made in determining

the entry into the appropriate trace-back matrix. To account for the end tail scoring,

when i = |s0| during the calculation for Iy, d and e are replaced with d′ and e′ respec-

tively. Similarly for Ix when j = |s1|. After the dynamic programming forward pass

completes, the score and trace-back matrices are as depicted in Figures 3.8 and 3.9.

− A C G G T
− 0.00 0.00 0.00 0.00 0.00 0.00
A 0.00 1.00 −9.60 −10.00 −10.40 −10.80
G 0.00 −9.60 0.10 −6.70 −7.50 −10.20
G 0.00 −10.00 −8.60 1.10 −5.70 −8.40
T 0.00 −10.40 −9.40 −9.50 0.20 −4.70

M

− A C G G T
− 0.00 −8.70 −9.10 −9.50 −9.90 −10.30
A 0.00 0.00 −7.70 −8.50 −9.30 −10.10
G 0.00 0.00 −18.30 −8.60 −9.40 −10.20
G 0.00 0.00 −18.70 −17.30 −7.60 −8.40
T 0.00 0.00 −19.10 −18.10 −18.20 −8.50

Ix

− A C G G T
− 0.00 0.00 0.00 0.00 0.00 0.00
A −8.70 0.00 0.00 0.00 0.00 0.00
G −9.10 −7.70 −18.30 −18.70 −19.10 −19.50
G −9.50 −8.50 −8.60 −15.40 −16.20 −18.90
T −9.90 −9.30 −9.40 −7.60 −14.40 −17.10

Iy

Figure 3.8: The Needleman-Wunsch scoring matrices for the toy example after the
forward pass. The score in boldface indicates the starting point of the trace-back,
matrix M .
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The backward pass performs a trace-back, which begins by selecting the maximum

score of the final cell in the three distance matrices,

max
{
M(|s0|, |s1|), Ix(|s0|, |s1|), Iy(|s0|, |s1|)

}
.

Should more than one cell be the maximum, a random selection is made to determine

the initial trace-back matrix. Given the choice of trace-back matrix, an appropriate

alignment is initialized.

− A C G G T
− f · · · · ·
A · M Ix Ix Ix Ix
G · Iy M Ix Ix Ix
G · Iy Iy M M M
T · Iy Iy Iy M M

TBM

− A C G G T
− f Ix Ix Ix Ix Ix
A · · M Ix Ix Ix
G · · M M Ix Ix
G · · M M M Ix
T · · M M M M

TBIx

− A C G G T
− f · · · · ·
A Iy · · · · ·
G Iy M M M M M
G Iy Iy M M M M
T Iy Iy Iy M M M

TBIy

Figure 3.9: The Needleman-Wunsch trace-back matrices for the toy example after the
forward pass. The entries in boldface indicate the path from start to finish, beginning
with matrix M .

Referring to the example, M(5, 4) contains the maximum score of -4.7, which

implies that s0(5) is aligned with s1(4). Then, looking at TBM(5, 4), the algorithm
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traces backward to TBM(4, 3) which implies that s0(4) and s1(3) are to be aligned

with each other. Again, the entry in TBM(4, 3) sends the trace to TBM(3, 2) which

means s0(3) and s1(2) are aligned. At this point, the entry in TBM(3, 2) causes the

trace to jump into a new matrix, TBIx(2, 1); resulting in the alignment of s0(2) with

a gap. The algorithm follows the entry in TBIx(2, 1) back to TBM(1, 1) where it

aligns s0(1) to s1(1). The backwards trace is complete when the final cell, f , has

been sampled in TBM(0, 0).

The final pairwise alignment has inserted a gap into s1 thereby adjusting its length

and increasing the homologous score by aligning the last three bases in each sequence.

The final rectangular array is

A C G G T
A − G G T.

Scoring System

A significant ambiguity regarding the dynamic programming procedure is the scoring

function used when comparing two elements, or when comparing an element with a

gap.

Typically, the pairwise scoring function c() is simply a matrix of values, where

each column and row represent one element in the alphabet. In this way, each cell of

the matrix corresponds to some measure representing the likelihood that two sequence

elements should be aligned with each other. The most well-known amino acid scoring

matrices are the Percent Accepted Mutation (PAM) [21], BLOck SUbstitution Matrix

(BLOSUM) [42] and GONNET [36]. GramAlign defaults to the GONNET250 substi-

tution matrix for the scoring function c(), as other progressive alignment algorithms

generally use it as the default choice (e.g., [54] and [97]).

Determining the best gap-open and gap-extension penalties is a challenging prob-

lem, made more difficult by introducing two different penalties to account for the
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beginning and ending tail gaps of alignments. The default gap penalties used by

GramAlign have been adjusted to perform well based on the alignment sets presented

in the results section.

Progressive Alignment

The ensemble is implemented as a doubly-linked list, where each node of the list

represents a single column of the alignment. Each node of the ensemble contains an

array of letters corresponding to the respective column alignment, a tally of gaps in

the column, a weighted combination of substitution scores, and two gap penalties.

Once the initial ensemble A(0,1) is constructed between the first two entries in T , the

remaining sequences need to be added to the ensemble in the order defined by T . This

is accomplished by checking T for the next sequence not already in the ensemble, call

it sequence sj where j corresponds to the order in which the sequence was added to

T ; that is, j is the priority of the sequence. To progressively add sj to the alignment,

a pairwise alignment between the ensemble A(0,...,j−1) and sj is created via the afore

mentioned dynamic programming algorithm. While the algorithm used is a pairwise

alignment algorithm the distance calculated at each step of the pairwise alignment is

an average of the distances between the particular position being aligned in the new

sequence and the corresponding amino acids or bases in the ensemble at that node.

The new pairwise alignment is merged into the ongoing ensemble based on the trace-

back. The process continues until all sequences have been added to the ensemble of

sequences. When sequence sj is added to the current ensemble A(0,...,j−1), each node

is updated to reflect the new column element.

3.2.4 Gap Adjustment

Once all N sequences have been progressively aligned, the final post-processing block

in Figure 3.1, “Adjust MSA Gaps”, is used to cluster gaps together. The adjustment
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is further detailed in Figure 3.10, where the ensemble A is scanned so a histogram H

of gaps-per-column is generated.

Create Gap 
Histogram

A
Scan 

Histogram 
and Shift 

Gaps

H AAdj

Figure 3.10: Gaps in the complete MSA ensemble A are grouped together via a sliding
window. After the histogram H of gaps-per-column is generated, an equidistant
column-window is shifted across the alignment, moving one column per interval. If
the center column contains more gaps than some parameter threshold, the columns
within the window are scanned for possible gaps that may be shifted into the center
column. The resulting adjusted ensemble AAdj is presented as the final alignment.

The histogram H is scanned using an equidistant, user-adjustable sliding window

about each column. For each column, when the number of gaps is greater than a user-

adjustable threshold percentage of gaps-per-column, the following steps are taken for

each row in the column under consideration:

1. If the current row has a gap, move to the next row;

2. Otherwise, scan the current row of the neighboring columns within the window,

beginning with the nearest columns and work outward;

3. If a neighboring column has a gap in the current row and the neighboring column

has fewer total gaps than the center column, shift the gap from the neighboring

column into the column under consideration.

As an illustration, consider a portion of the ensemble

A :


. . . x1,i−2 x1,i−1 −1,i x1,i+1 x1,i+2 . . .
. . . x2,i−2 −2,i−1 −2,i −2,i+1 x2,i+2 . . .
. . . x3,i−2 −3,i−1 −3,i −3,i+1 x3,i+2 . . .
. . .−4,i−2 x4,i−1 x4,i −4,i+1 x4,i+2 . . .
. . . x5,i−2 x5,i−1 x5,i −5,i+1 x5,i+2 . . .
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where xm,n represents any element other than a gap in column n of sequence m, and

−m,n represents a gap in column n of sequence m. And so, the gap histogram for this

section of ensemble is H = {..., 1, 2, 3, 4, 0, ...}. Assuming the gap threshold is 0.4,

then only columns with more than two gaps will be considered for adjustment. In the

example, H is scanned until column i is identified as having three gaps. Following

the procedure, each row in column i is checked until a non-gap entry is found. In the

example, the first non-gap entry x4,i is in row four. Assuming the gap window is 2,

elements in the fourth row of the neighboring columns are checked for gap entries.

In particular, column (i + 1) is checked first, with a gap entry −4,i+1. However, no

shift occurs because a quick check of H shows that column (i + 1) has more gaps

than column i. Continuing the scan, columns (i − 1) and (i + 2) are checked before

another gap is found in column (i− 2). In this case, H indicates column (i− 2) has

fewer gaps compared to column i, and so a blind shift of entries between (i− 2) and

i occurs, resulting in the ensemble

A :


. . . x1,i−2 x1,i−1 −1,i x1,i+1 x1,i+2 . . .
. . . x2,i−2 −2,i−1 −2,i −2,i+1 x2,i+2 . . .
. . . x3,i−2 −3,i−1 −3,i −3,i+1 x3,i+2 . . .
. . . x4,i−1 x4,i −4,i−2 −4,i+1 x4,i+2 . . .
. . . x5,i−2 x5,i−1 x5,i −5,i+1 x5,i+2 . . .

where original indices are kept to depict which entries are shifted into which locations.

The result is a blind movement of sparse gaps into dense regions of gaps. Numeric

simulations have shown this post-processing stage does not affect alignment scoring

based upon the method used in Section 3.2.6 (results not shown). Consequently, the

user-defined parameters are set to a threshold of 1.0 and a window of 0 columns by

default thereby disabling the gap adjustment block. Should it be known there are

conserved regions of gaps, the user may decide to enable this process to encourage

gap grouping.
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3.2.5 Algorithm Complexity

The algorithm complexity of GramAlign may be broken into five pieces, beginning

with the generation of each sequence grammar dictionary, Gi for i ∈ {1, ..., N}, where

N is the number of sequences. Suppose the average sequence length is L, then each Gi

results in complexity O(L), so all dictionaries are generated with complexity O(LN).

Next, the distance matrix D is formed by recursively extending a grammar by all other

sequences within it’s neighborhood, each of which results in complexity O(L), then

splitting the neighborhood into two halves, resulting in a complexity O(LN log(N)).

The spanning tree T is constructed by searching over D with a complexity of O(N2).

The tree is used as a map in determining the order in which to perform N − 1

pairwise alignments, each requiring a complexity of O(L2 +L). Thus, the progressive

alignment process takes O(L2N). The alignment ensemble is scanned and has gaps

shifted in O(LN) time. Thus, the entire time complexity for GramAlign is O(LN +

LN log(N) +N2 + L2N + LN), which simplifies to approximately O(N2 + L2N).

3.2.6 Numeric Simulations

In this section, example alignments are used to study the possible advantages of

GramAlign. All results were generated by compiling and executing the respective

MSA programs on the same computer; specifically, an Apple iBook with a PowerPC

G4 operating at 1.2 GHz with 1.25 Gb system memory and a 512 Kb L2 cache. Two

sets of experiments were conducted. The first set of experiments were conducted

using the unaligned FASTA files from the BAliBASE 3.0 [99] data-set, a well-accepted

benchmark database containing example amino acid sequences. The resulting aligned

FASTA files from each algorithm were scored using bali score, a program provided

with the BAliBASE distribution that generates a Sum-of-Pairs (SP) score and a

Total-Column (TC) score based on predetermined reference alignments [98].
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Given an M -column alignment of N sequences in which column i contains the

aligned elements Ai1, ..., AiN , pairwise residue comparisons are made between Aij and

Aik. Define the value pijk = 1 if residues Aij and Aik are aligned with each other in

the reference alignment, or pijk = 0 if not. For the ith column score is defined as:

Si =
N∑

j=1

j 6=k

N∑
k=1

pijk,

the SP score for the alignment is:

SP =

∑M
i=1 Si∑Mr

i=1 Sri

,

where Mr is the number of columns in the reference alignment and Sri is the Si score

for the ith column in the reference alignment.

Using the same alignment, the score Ci = 1 if all the residues in the column are

aligned in the reference alignment, or Ci = 0 if not. The TC score for the alignment

is then:

TC =
1

M

M∑
i=1

Ci.

The size of the sequences in the BAliBASE distribution are relatively small and,

therefore, not very useful in demonstrating the advantages to be obtained using a

fast algorithm. The second set of experiments were conducted using sequences gen-

erated by Rose version 1.3 to demonstrate algorithms’ capabilities on large data sets

containing either long or numerous sequences. Rose is a software tool that imple-

ments a probabilistic model of sequence evolution, so that a user is able to generate

families of related sequences from a common ancestor sequence via insertion, deletion

and substitution [94]. Rose allows for many parameter adjustments including rate

of mutation, desired average final sequence length and number of desired sequences.

The tool outputs the unaligned sequences, as well as the real alignment based on
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how mutations occur, and an evolutionary tree. The set of sequences generated by

Rose were based on the default seed file provided with the Rose software distribution,

where the seed file is the method used to input parameters to Rose.

Note the use of simulated data here is to demonstrate the speed advantage of

GramAlign, while maintaining a similar qualitative score. The default values were

used to generate the data and the algorithms were not tuned to the data. The use

of simulated data may actually provide a biased advantage in quality score to any

given alignment program, depending on how the simulated data is generated. A wider

breadth of simulated data, such as was done in [77], would provide a better assessment

of overall alignment quality.

BAliBASE Experiments

Alignment files in the BAliBASE database are separated into five categories (RV1x

through RV50), each exhibiting different classes of alignment issues (e.g., one se-

quence might be significantly longer than the other sequences in a file). The first

class is further divided into two subcategories labeled RV11 and RV12. The results

presented in Table 3.1 and Table 3.2, respectively, detail the average SP and TC scores

over each category as aligned by GramAlign version 1.14, ClustalW version 1.83, T-

Coffee version 4.45, PSAlign using ProbCons as the tree generation (no version given,

archive created on 3/2/2006), Kalign version 1.04, MAFFT version 5.861, and MUS-

CLE version 3.6. Additionally, a fast version was tested for ClustalW, MAFFT,

MUSCLE and MAFFT version 6.240. In particular, the command line options used

were clustalw -quicktree, mafft --retree 1, muscle -maxiters 1 -diags -sv

-distance1 kbit20 3 and mafft --retree 1 --parttree --partsize 50 to in-

corporate high-speed progressive options. In all cases the default parameters were

used for each program. In general, there are no significant differences in the per-

formance of GramAlign and other algorithms as far as the SP and TC scores are
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concerned. As may be seen, GramAlign provides similar alignments in terms of the

quality determined via the scoring method used.

Table 3.1: Average SP score for each algorithm for each category offered by the
BAliBASE test suite. The bold entries indicate the lowest and highest scores.

Algorithm RV11 RV12 RV20 RV30 RV40 RV50

MUSCLE (fast) 0.4904 0.8303 0.8359 0.7076 0.6904 0.6823
MAFFT (fast) 0.4801 0.8161 0.8404 0.7345 0.7187 0.7089
MAFFT v6.240 0.4790 0.8066 0.8096 0.6801 0.6610 0.6985
MAFFT 0.4914 0.8258 0.8459 0.7437 0.7347 0.7253
GramAlign 0.5089 0.8328 0.8270 0.6855 0.7239 0.6903
Kalign 0.5029 0.8504 0.8410 0.7389 0.7259 0.7299
ClustalW (fast) 0.4748 0.8367 0.8258 0.6843 0.6705 0.6715
MUSCLE 0.5578 0.8583 0.8548 0.7492 0.7623 0.7384
ClustalW 0.4908 0.8197 0.8219 0.6841 0.6950 0.6698
PSAlign 0.5924 0.8804 0.8720 0.7554 0.7937 0.7739
T-Coffee 0.5181 0.8650 0.8660 0.7588 0.7452 0.7715

Presented in Table 3.3 are the execution times necessary to generate the entire data

presented in Table 3.1 and Table 3.2. GramAlign finishes in approximately 0.4% of the

time needed by PSAlign, which generated the highest scoring alignments in five out of

the six BAliBASE categories as far as SP scores are concerned. PSAlign’s average SP

and TC score on the other hand were 9.4 and 17.5% better than GramAlign’s scores,

which was approximately 223 times faster. Out of the four approaches MAFFT,

MAFFT v6, MAFFT (fast), MUSCLE (fast), which were 17.1, 49.9, 54.0, and 55.7%

faster than GramAlign, respectively, only MAFFT had a 2% better average SP score

than GramAlign. All other average SP and TC scores were equivalent or worse than

that of GramAlign. Further, the GramAlign alignments scored equal-to or greater-

than 56.9, 59.6, 60.8, and 71.1% of the trials based on TC score, compared to MAFFT,

MAFFT v6, MAFFT (fast), and MUSCLE (fast) (results not shown). GramAlign
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Table 3.2: Average TC score for each algorithm for each category offered by the
BAliBASE test suite. The bold entries indicate the lowest and highest scores.

Algorithm RV11 RV12 RV20 RV30 RV40 RV50

MUSCLE (fast) 0.2421 0.6349 0.2599 0.2457 0.2614 0.2719
MAFFT (fast) 0.2354 0.6209 0.3094 0.2910 0.3108 0.3087
MAFFT v6.240 0.2461 0.6320 0.2978 0.2987 0.3104 0.3435
MAFFT 0.2532 0.6256 0.3168 0.3158 0.3073 0.3303
GramAlign 0.2993 0.6701 0.2917 0.2503 0.3292 0.3006
Kalign 0.2538 0.6749 0.2765 0.2955 0.3253 0.3223
ClustalW (fast) 0.2317 0.6651 0.2680 0.2513 0.2808 0.2752
MUSCLE 0.3217 0.6961 0.3077 0.3087 0.3484 0.3397
ClustalW 0.2395 0.6417 0.2602 0.2478 0.3024 0.2658
PSAlign 0.3503 0.7384 0.3517 0.2992 0.3951 0.3816
T-Coffee 0.2716 0.6986 0.3257 0.3637 0.3659 0.3974

finishes in 33% of the time required by ClustalW using -quicktree, and only 8%

needed by ClustalW, possibly the most widely used MSA program.

Long Sequence Experiments

In order to compare the performance of MSA algorithms on long data sets, two sets of

seven FASTA files each containing ten sequences were generated using Rose version

1.3. The first set of seven FASTA files contains protein sequences and the second

set contains DNA sequences. In both sets, the first file contains sequences with an

average length of 5,000 residues, with each file increasing the average sequence length

by 5,000 residues. Thus, the seventh file contains ten sequences with an average

sequence length of 35,000 residues.

Figures 3.11 and 3.12 depict the execution time required for the fastest algorithms

to align the seven large protein and DNA sequence sets, respectively. As the average

length of sequences increases, the difference in time required by GramAlign compared
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Table 3.3: Execution time necessary to align all trials in the BAliBASE test suite.

Algorithm Execution Time (sec)

MUSCLE (fast) 301
MAFFT (fast) 313
MAFFT v6.240 341
MAFFT 564
GramAlign 680
Kalign 1,329
ClustalW (fast) 2,071
MUSCLE 6,129
ClustalW 8,720
PSAlign 152,168
T-Coffee 403,815

to the other algorithms also increases. In particular, at an average sequence length

of 35,000 residues GramAlign completes the alignments in 3,363 and 3,092 seconds,

while the nearest algorithm (MAFFT in fast-mode) requires 10,362 and 6,981 seconds.

That is, GramAlign finishes in 32% and 44% of the time required by the next fastest

algorithm.

MUSCLE in fast mode encountered a segmentation fault during the Root Align-

ment step while running on the longest test sequences, and so the execution time is

not included in Figures 3.11 and 3.12.

Numerous Sequence Experiments

In order to compare the performance of MSA algorithms on data sets with many

sequences, two sets of seven FASTA files each containing sequences with an average

length of 100 residues were generated using Rose version 1.3. The first set of seven

FASTA files contains protein sequences and the second set contains DNA sequences.

In both sets, the first file contains 100 sequences, with each file increasing the number

of sequences up to the seventh file, which contains 10,000 sequences.
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Figure 3.11: Result of executing the fastest algorithms on the Rose-generated long
protein sequence sets.

As shown in [52], the authors of MAFFT added a new heuristic method for gener-

ating a spanning tree referred to as “PartTree”. The increase in performance is dra-

matic and intended for data sets involving many sequences. Thus, for this set of exper-

iments, MAFFT version 6.240 was added with the command line mafft --retree 1

--parttree --partsize 50, which matches the fastest algorithm presented in [52].

Figures 3.13 and 3.14 depict the execution time required for the fastest algorithms

to align the seven large protein and DNA sequence sets, respectively. As the number

of sequences increases, the difference in time required by GramAlign and MAFFT v6

compared to the other algorithms also increases. In particular, on the sets containing

10,000 protein and DNA sequences GramAlign completes the alignments in 162 and

68 seconds and MAFFT v6 completes the alignments in 119 and 71 seconds, while

the next closest algorithm, MUSCLE in fast-mode, requires 621 and 456 seconds.

That is, GramAlign finishes in 26% and 15% of the time required by the next fastest
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Figure 3.12: Result of executing the fastest algorithms on the Rose-generated long
DNA sequence sets.

algorithm other than MAFFT v6.

The results imply the promising viability of GramAlign, especially when aligning

either long or numerous sequences such as in whole-genome applications. Further,

better alignment scores may be achieved with little change in execution time via the

user-alterable parameters.
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Figure 3.13: Result of executing the fastest algorithms on the Rose-generated numer-
ous protein sequence sets.
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Figure 3.14: Result of executing the fastest algorithms on the Rose-generated numer-
ous DNA sequence sets.
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3.3 Multiple Contig Arrangement Algorithm

The second sequence alignment application developed is GramContig, a fragment-to-

reference sequence alignment method. Sequence assembly is a fundamental process in

computational biology because the current DNA sequencing tools are able to generate

only short sequence fragments from the source DNA material, on the order of 20 to

1000 bases in length. There are two different types of sequence assembly methods: 1)

de-novo assembly refers to constructing a new sequence from a set of fragments with-

out any additional information, while 2) mapping assembly uses an existing reference

sequence to guide the arrangement of a set of fragments. Evidently, the reference

sequence used in the latter method needs to represent a good template for aligning

the fragments.

For the mapping algorithm presented here, the grammar-based distance between

a small portion of a biological sequence–a fragment or contig–and windowed regions

of a complete reference sequence are used to identify the contig’s location relative to

the reference sequence. Then, a set of contigs can be processed resulting in a newly

assembled sequence.

One problem that commonly occurs with DNA sequencing technology is cover-

age. Sometimes regions of the source DNA material will not be represented in the

output set of contigs. This kind of fragment assembly is useful in locating regions of

gaps implying portions that may not have been properly sequenced. By locating the

gap-filled areas, the newly mapped sequence can be used to create the primers, or

small fragments used to start sequence replication, necessary to sequence the missing

subsequences. A biologist would be able to use these primers to sequence the source

DNA again with specific focus on the missing regions.

A general overview of the GramContig algorithm is depicted in Figure 3.15. A
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Figure 3.15: The algorithm operates on a reference sequence, R, and a set of contig
sequences, S, originally read in FASTA format. The reference sequence is searched
for the occurrence of each contig sequence, resulting in an initial contig alignment,
A. Based on the positions in A, each contig is pairwise aligned to the respective
subsequence of R, resulting in a final assembled sequence, Aadj.

single reference sequence, R, and the set of contig sequences to be aligned, S, are

regarded as input to the algorithm with S = {s1, ..., sN}, where si is the ith contig

sequence and i ∈ {1, ..., N}.

3.3.1 Find Sequence Positions

The first step in the procedure involves identifying the approximate alignment position

of each sequence si relative to the reference sequence R. The method implemented

in GramContig uses a two-pass approach. The first scan identifies the neighborhood

within R to which si is most likely to be aligned. As shown in Figure 3.16(a), a

coarse scan is performed with a jumping window along R. In particular, a window

length of |si| is used to divide R into d|R|/|si|e non-overlapping subsequences. The

same grammar-based distance calculation used in GramAlign is repeatedly applied to

si and each subsequence of R. At each position, the grammar-based distance is also

determined between the reverse complement of si and the respective subsequence of

R. The overall lowest distance is recorded and the associated subsequence and its

direction is marked as the neighborhood within R most likely to be aligned with si.

Once the initial region in R has been identified, a second scan is used to refine the

position prior to the final alignment step. Referring to Figure 3.16(b), the second scan
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Figure 3.16: Finding each contig position relative to the reference sequence, R, in-
volves two search rounds. A grammar-based distance is calculated between the contig
and a portion of R defined by a window length relative to the contig length. (a) The
first search procedure scans R via a coarse jumping window. (b) After identified, the
initial position in R is refined with a sliding window.

begins upstream of the position determined in the first scan. The scan includes the

subsequence of R taken from a sliding window that shifts from its upstream position

across the initial neighborhood until a portion of the window is downstream of the

coarse scan results. Again, the lowest distance and respective subsequence starting

position is recorded for the final alignment step.

3.3.2 Align Contigs to Reference Sequence

Once the approximate positions of each si have been recorded, the final step is to align

them to R. In particular, the same pairwise alignment procedure used in GramAlign

is applied to each si and an appropriate subsequence of R. Given the starting position

pi, the subsequence starting position is given by pi − (|si| × P ), where P is a user

defined percentage. Similarly, the ending position is given by pi + (|si| × (1 + P )).

The extra bases on either side of the predetermined subsequence allow for error in

the scanning process as well as the potential for evolutionary differences between si

and the region in R.

Once the pairwise alignment is performed for each contig, the final starting posi-

tions are recorded in an output file. Additionally, a new composite sequence is created
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in which each aligned contig is inserted at its determined location. The resulting two-

sequence aligned FASTA file contains a copy of the reference sequence, R, and the

composite contig alignment sequence, AAdj.

3.3.3 Example Simulations

In this section, an example contig alignment is used to illustrate the use of Gram-

Contig. The result was generated by compiling and executing GramContig and its

associated graphical user interface (GUI) on an Apple MacBook Pro with an In-

tel Core 2 Duo operating at 2.53 GHz with 4 Gb of system memory and a 3 Mb L2

cache. The reference sequence used was the complete genome of Francisella tularensis

obtained from the NCBI website (http://www.ncbi.nlm.nih.gov) using the accession

number NC 009257.1. The set of contig sequences were obtained as the result of a

454 pyrosequencing operation.

Once GramContig has been executed on the data set, the alignment information

is made available to the user. As a supplemental program, the GUI depicted in

Figure 3.17 provides the ability to view the resulting assembly alignment. This screen

Figure 3.17: A screen capture of the GUI displaying the final GramContig alignment
results. The zoomed-out window allows the user to quickly scan the overall result for
interesting areas.
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capture shows a “zoomed-out” version of the final alignment. It allows the user to

quickly scroll along the total alignment in search of any interesting areas that might

require additional attention. The user can increase visibility by “zooming-in” on

the current position within the viewing window, an example of which is shown in

Figure 3.18. This screen capture provides additional detail. In particular, the black

Reverse
Strand

Forward
Strand

Reference 
Sequence

Figure 3.18: A screen capture of the GUI displaying the final GramContig alignment
results. This zoomed-in window provides the user with a more detailed picture of the
alignment. The black bar on top represents R, and each bar on the bottom represent
a specific si. The solid bars on the bottom represent contigs aligned in the forward
direction while the cross-hatched bars on the bottom represent contigs aligned to the
reverse of R. The color of each bar indicates the final grammar-based distance, and
so implies the confidence of its location.

bar along the top of the alignment represents the reference sequence, while the colored

bars along the bottom of the window detail the contigs as they are aligned to R. The

base color of each contig is meant to imply the confidence of the identified location

and its resulting alignment. The alignment region in the window of Figure 3.18

shows four green contigs meaning their grammar-based distance is each within the

high-confidence interval, di ∈ [0.0, 0.2). Additionally, there is a very small contig that

was identified in a region already occupied by a larger contig. It is also presented in

the window on a second row below the primary row. While it is difficult to see in
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the figure, its color is yellow implying its grammar-based distance falls in a lower-

confidence interval, di ∈ [0.4, 0.65). In addition to the color, each bar is also shaded

with a pattern that implies the direction relative to R with which the contig is aligned.

In the example, there is one solid bar that indicates the associated contig is aligned

along the forward strand of R. The other three contigs have a cross-hatched pattern

implying they are all aligned along the reverse strand of R.

One of the primary applications of GramContig is identifying potential gaps in a

pyrosequencing outcome. For example, the zoomed-in area depicted in Figure 3.19

shows a significant gap between adjacent contigs. This indicates the likelihood of

Possible Missing 
Piece

Figure 3.19: A screen capture of the GUI displaying the final GramContig alignment
results. This zoomed-in area shows a relatively large gap in the alignment, which
implies the possibility of a missing contig in the data set.

a region that was not properly sequenced in the original procedure. At this point,

the user might want to re-sequence the specific area in question. That is, the user

might only be interested in the small region of the organism, without the inclusion

of the rest of the genome. What they require is the identification of a primer, which

is a portion of the genome from which replication can begin. The user can look at

the sequence occupied by the contig immediately upstream of the gap. The GUI

allows for the user the ability to click on any contig to view the individual alignment
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in addition to various statistics. As an example, Figure 3.20 shows the information

associated with “contig00020” that was aligned along the forward strand of R starting

Figure 3.20: A screen capture of the GUI displaying the statistics associated with a
specific contig alignment. This window appears in response to the user clicking on
any one of the contigs in the main window. The details include the header name
provided in the source FASTA file, the contig length, the starting position relative
to R, the direction of alignment, the final grammar-based distance, and the final
alignment which the user can scroll across.

at base 61,081. Of particular interest to finding a primer, the user has the ability

to view the entire alignment between the contig and R by scrolling along the lower

pane within the window. This particular contig had a grammar-based distance of 0.0

which implies an exact match between the contig and the subsequence of R, which is

further demonstrated by the portion of alignment shown in the lower pane.

3.4 Conclusions

This chapter introduced two alignment applications and their respective algorithms.

The grammar-based distance work presented in [79] was adapted to generate a nu-

meric metric useful in each application. Additionally, a merged amino acid alphabet
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was determined to allow an improved grammar-based distance when operating on

protein sequences. Results from extensive alignments were presented in an attempt

to study the overall quality of the resultant alignments as well as the computation

time necessary to achieve the alignments. Correctly aligning multiple biological se-

quences in an efficient amount of time is an important and challenging problem with

a wide spectrum of applications. In this chapter, we adapt existing ideas in a novel

way introducing innovative improvements.

The next chapter introduces another problem found in computational biology,

that of clustering related sequences together to reduce database search time. The

grammar-based distance used in the alignment applications is modified for the de-

veloped grammar-based clustering program, which is able to generate high-quality

clusters.
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Chapter 4

Biological Sequence Clustering

The next application of grammar-based models is on the problem of sequence cluster-

ing. Clustering involves placing similar sequences from a set into a common group;

thereby creating a partitioning of the sequences. A single sequence from each parti-

tion can be used as a representative of all sequences in the cluster. This issue applies

to database searching problems. Specifically, the amount of biological sequence infor-

mation present in public databases is already enormous and growing rapidly. Unfor-

tunately, many entries are actually quite redundant in that very similar or identical

entries are already in place. Therefore, applications that are able to remove the re-

dundancy by clustering can greatly reduce database search times. A specific example

application, GramCluster, was developed to determine high-quality clusters based on

a modified version of the grammar-based distance used in Chapter 3.

4.1 Sequence Clustering Background

The amount of biological information being gathered is growing faster than the rate

at which it can be analyzed. Data clustering, which compresses the problem space by

reducing redundancy, is one viable tool for managing the explosive growth of data. In

general, clustering algorithms are designed to operate on a large set of related values,
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eventually generating a smaller set of elements that represent groups of similar data

points. A central data element may then be used as the sole representative of a group.

Significant clustering work relating to bioinformatics may be traced to the late

1990s when methods for quick generation of nonredundant (NR) protein databases

were developed. These combined identical or nearly identical protein sequences into

single entries [45, 60, 61]. The primary benefits of these methods include faster

searches of the NR protein databases and reduced statistical bias in the query results

[45]. Similarly, computer programs such as those in ICAtools [80] were developed for

compressing DNA databases by removing redundant sequences found via clustering

resulting in faster database queries. Note that the use of the term “clustering” in these

applications differs from another use often found in the literature where clustering

refers to generating a phylogenetic distance matrix, such as in [9]. The operation of

clustering used in this work identifies groups of sequences related by phylogeny; and

it additionally applies to redundancy removal by identifying a sequence that suitably

represents similar sequences.

Recently, DNA/RNA clustering has attracted attention for a variety of reasons.

The drive to lower the expense of genome sequencing has led to the development of

high-throughput sequencing technologies capable of generating millions of sequence

fragments simultaneously. A clustering preprocessing step can be used to remove a

great amount of fragment redundancy which, in turn, allows for quicker fragment

reassembly.

One of the more popular DNA/RNA clustering algorithms is CD-HIT-EST [59]

which was based on the protein clustering methods of [60, 61] and was developed

for clustering DNA/RNA database data such as non-intron-containing expressed se-

quence tags (ESTs).
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A major application of CD-HIT has been for clustering large data sets from mi-

crobiota analysis (e.g. [19]), often as a preprocessing step to create sets of highly

related sequences representing operational taxonomic units (OTUs). These OTUs

are subsequently used as a basis for estimating species diversity between treatment

groups or quantitative relationships of taxa between treatment groups. Alternatively,

representative sequences from the OTUs are used for phylogeny-based analyses.

A recent effort in [29] to develop software tools which reduce the time required

by BLAST [4] to search large biological databases has resulted in a set of programs,

including UBLAST and USEARCH, that reduce the search time by orders of mag-

nitude. As part of the work, an additional clustering program called UCLUST was

created which utilizes the heuristic algorithm provided by USEARCH. UCLUST gen-

erates results that dramatically improve upon the time required by CD-HIT.

The next sections present GramCluster, a fast and accurate algorithm for cluster-

ing large data sets of 16S rDNA sequences based on the inherent grammar of DNA

and RNA sequences. Lempel-Ziv parsing [55] is used to estimate the grammar of

each sequence to provide a distance metric among sequences. The implementation of

this algorithm allows for fast and accurate clustering of biological information. The

following sections describe the algorithm and present results, including comparisons

with the CD-HIT-EST algorithm and the recently developed UCLUST algorithm.

4.2 Sequence Clustering Algorithm

A general overview of the GramCluster algorithm is shown in Figure 4.1. The set of

sequences, S, is regarded as input to the algorithm with S = {s1, ..., sN}, where si

is the ith sequence and i ∈ {1, ..., N}. The goal of the algorithm is to partition S

where each sequence is grouped with similar sequences from S such that all sequences

within each resulting cluster are more similar to each other than sequences from other
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clusters. The final partition is represented by the set of clusters, C = {c1, ..., cM},

where cj is the jth cluster and j ∈ {1, ...,M}. The algorithm initially generates a

suffix tree, ti, and grammar dictionary, di, associated with each sequence, si. For

each sequence, si, these data structures are used to determine if an existing cluster

contains sufficiently similar sequences to si or if a new cluster needs to be created. If

a cluster, cj ∈ C, already exists with similar sequences, the sequence si is added to

cj. However, if no cluster contains similar sequences, a new cluster containing only

si is added to C. This clustering continues for all sequences in S. The algorithm is

described in more detail below with reference to the various blocks in Figure 4.1.

Suffix Tree
Construction

Read each 
Sequence

Add to 
Cluster

Write 
Output 

Information

Dictionary
Creation

si

|di|

ti

C

Figure 4.1: The algorithm operates on each sequence, si, which is parsed into a
suffix tree, ti, and dictionary, di, for rapid distance comparison with other sequences.
Each sequence is either added to an existing cluster, cj ∈ C, or becomes the initial
representative sequence in a new cluster, ck.

4.2.1 Dictionary Creation

One of the core processes of the clustering algorithm is the formation of a distance

estimate between an unprocessed sequence, si, and each cluster, cj, already in the

partition, C. To this end, one sequence, called the representative sequence, is used

to represent all other sequences within each cluster. The distance between si and

srj
∈ cj, where srj

represents cj, is used to determine if si should be added to cj.
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Each sequence, si, is compared with, at most, the set of representative sequences,

{srj
| srj

represents cj ∈ C}, to discover the correct cluster for si.

The distance metric relies on the structural rules necessarily present in all in-

formation containing sequences. GramCluster uses the grammar estimation method

based on Lempel-Ziv (LZ) parsing [55, 105, 106] as used in [7] for language-phylogeny

inference, in [79] for phylogeny reconstruction, and in [85] and Chapter 3 to construct

a guide tree for multiple sequence alignment. A similar grammar-based distance is

also the focus of [83] which analyzes the quality of the distance metric as a function

of the length of the sequences.

The primary aspects of LZ dictionary creation are shown in Figure 4.2 where a set

of grammar rules for each sequence is calculated. Initially, the dictionary, d1
i = ∅, is

empty, a fragment, f 1 = si(1), is set to the first residue of the corresponding sequence,

and only the first element, si(1), is visible to the algorithm. At the kth iteration of the

procedure, the kth residue is appended to the fragment resulting from the (k − 1)th

step; and the visible sequence is checked. If fk /∈ si(1, ..., k−1), then fk is considered

a new rule and so added to the dictionary, dk
i = dk−1

i ∪
{
fk
}

; and the fragment is

reset for the start of the next iteration, fk = ∅. However, if fk ∈ si(1, ..., k− 1), then

the current dictionary contains enough rules to reproduce the current fragment, i.e.,

dk
i = dk−1

i . In either case, the iteration completes by appending the kth residue to the

visible sequence. This procedure continues until the visible sequence is equal to the

entire sequence, at which time the size of the dictionary,
∣∣di

∣∣, is determined for use

in the metric calculation. The distance between the sequences is estimated using the

dictionary sizes. Intuitively, sequences with a similar grammar should be clustered

together. The correlation of the LZ-based distance with phylogenetic distance was

exploited in [79] to obtain phylogenies for a set of mammalian species using complete

mitochondrial DNA and for the superfamily Cavioidea using exon#10 of the growth
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hormone receptor (GHR) gene, the transthyretin (TTH) gene, and the 12S rRNA

gene. In [6], the same distance metric was used to obtain phylogenies for fungal

species using the cytochrome b gene and internal transcribed spacer regions of the

rDNA gene complex.

...

0

si(1):

f 1:

|di1|:

...si(k):

f k:

n|dik|:

visible

(a) Step k = 1 (b) Start of step k

...si(k+1):

f k+1:

n|dik+1|:

visible

...si(k+1):

f k+1:

n+1|dik+1|:

visible

(c) Start of k + 1 (d) Start of k + 1
if fk ∈ si(1, ..., k − 1) if fk /∈ si(1, ..., k − 1)

Figure 4.2: Determining the order of the LZ dictionary,
∣∣di

∣∣, for sequence si. (a) The
initial step in which the initial fragment, f 1, is set to the first letter, si(1), of the
sequence. (b) The start of the kth step in which the kth letter, si(k), is appended
to the current fragment, fk. After the first k − 1 letters of si are scanned for the
occurrence of the fragment, fk, the two possible outcomes are (c) the fragment is
reproducible with combinations of existing rules, or (d) the fragment is unique up to
this point in the sequence, and so a new grammar rule is added to the dictionary and
the fragment is reset.

4.2.2 Suffix Tree Construction

As shown in Figure 4.1, the algorithm also constructs a suffix tree for the sequence.

Suffix trees are data structures designed to contain all L suffix substrings of a length-

L sequence [102, 64, 100]. For example, a suffix tree for the sequence “gagacat” is
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schematically shown in Figure 4.3. All seven suffixes {gagacat, agacat, gacat, acat,

a

cat ga

t

gacat catgacat catt

Figure 4.3: Completed suffix tree diagram of the string “gagacat.” Tracing a path
from root to leaf along a solid line results in a suffix of the string. The dashed lines
indicate suffix links that are useful during the creation of the suffix tree.

cat, at, t} are found by tracing a unique path from the root node to one of the

seven leaf nodes along solid lines. One valuable use of suffix trees is searching for

substrings which can be thought of as the prefix of a suffix. By using a suffix tree, a

length-L sequence can be completely scanned for a length-F fragment in O(F ) time

as opposed to O(L) for a brute force search. Also depicted in Figure 4.3 are the

dashed-line suffix links which are a fundamental feature for linear-time construction

of the suffix tree [100]. A sequence, si, can be converted into a suffix tree, ti, in linear

time and then searched for substrings in linear time based on the fragment length. As

will be shown, suffix tree sequence representation is important for reducing the time

required for GramCluster to complete all necessary grammar-based comparisons.

4.2.3 Clustering

The final component of the algorithm depicted in Figure 4.1 is represented by the

block labeled, “Add to Cluster.” The procedure for adding a sequence to a cluster

is shown in greater detail in Figure 4.4. The algorithm checks each cluster, cj ∈ C,
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until a cluster is found where the distance between the representative sequence, srj
,

and si, Dj = dist(si, srj
), is less than a user-defined threshold, T . Once this condition

is met, the cluster is updated, cj = cj ∪
{
si

}
; and processing in this block terminates.

If no clusters meet the condition of D < T , a new cluster is created with si as its first

member.

Clusters

C

Check all 
Sequences

Check 
Centroid

Centroid 
available?

cj

Yes

No

D < T ?

D

min{D}|di| , ti

Check cj+1

Yes Add si to 
cluster

No

j < |C| ?
Yes

Create cj+1
No

C

Figure 4.4: A block diagram detailing the process by which sequence si is added to a
cluster, cj ∈ C. A distance, D, is generated between si and the representative of cj.
If D is below a user-specified threshold, T , then si is added to cj, otherwise the next
cluster, cj+1, is checked. If no cluster is identified as suitable for si, a new cluster
containing si is created and added to C.

The following sections describe the cluster data structure, the representative se-

quence selection method, and the grammar-based distance calculation.

Cluster Data Structure

In order to follow the cluster classification process, it is helpful to understand the data

structure used to represent each cluster. In particular, every cluster uses a list of suffix

trees, ti, and dictionary sizes,
∣∣di

∣∣, to identify its set of sequences. The remaining
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components contained in the data structure are used to determine and specify the

representative sequence, srj
, of the cluster, cj. A good selection for srj

is a sequence

that appears grammatically similar to all other sequences within the cluster. This

implies the need to estimate the grammar-based distance between all sequences of the

cluster, a computationally expensive task. To avoid this cost, GramCluster selects

only a few specific sequences in the cluster, that we will call “basis sequences,” to

which all others are compared. The representative sequence, srj
, can be determined

by considering the sets of relative distances between all sequences and each basis

sequence. The centroid of the cluster is then defined as the vector containing the

mean values of each set of relative distances. The sequence with relative distances

nearest to the centroid is selected as srj
.

To see why this method is effective, consider that clustering is often performed in

vector spaces where each element being classified is specified by a vector. The points

spatially near each other are placed into the same cluster, and the representative is

typically selected as the point that is closest to the center of the cluster. This idea is

adapted in GramCluster, with an example depicted in Figure 4.5. The example in the

figure contains forty sequences plotted in a two-dimensional space. Each dimension

represents the grammar-based distance between the plotted sequence point and a basis

sequence. The data set used in this example contained forty 16S rDNA sequences

each from four genera (Acetobacter, Achromobacter, Borrelia, Flavobacterium). Of

the two initially selected basis sequences, one came from Acetobacter and the second

from Flavobacterium. Then, the pair of distances between each sequence and the basis

sequences was computed and plotted. As can be seen from the plot, the sequences

group into clusters which correspond to their genus. Note that the basis sequences are

not orthogonal; however, use is made of the fact that the grammar-based distances
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Figure 4.5: Forty sequences being processed via a vector quantizer. Each of the four
genera is represented by ten sequences. Every sequence is grammatically compared
to the same two sequences from within the set. The resulting pair of distances form
two-dimensional vectors in a space. When considering the clusters in this space,
the representative sequence of the cluster should be the sequence that is nearest the
cluster center.

tend to obey the transitive property such that if

Db = dist(sa, sb)

Dc = dist(sa, sc)

and if Db is close to Dc, then sb and sc tend to be grammatically similar to each

other. The example in Figure 4.5 demonstrates this by the use of basis sequences

from Acetobacter (genus one) and Flavobacterium (genus four). One would expect

that comparing all sequences to one sequence would provide separation between the

sequences from the same genus as the basis sequence and the rest. However, sequences

from the other genera also form into clusters as a result of sequences being compared

to a single basis sequence. In our example, all forty sequences are compared to just
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two sequences; and four clear clusters appear.

For comparison, 100,000 randomly generated sequences are processed using the

same concept. Each sequence is composed of 1,000 randomly selected RNA bases.

The first two sequences are the basis sequences, to which all other sequences are gram-

matically compared. As can be seen from the distance vectors plotted in Figure 4.6,

unrelated sequences tend to have a grammar-based distance that is within the range

Figure 4.6: 100,000 randomly generated sequences being processed via a vector quan-
tizer. Each sequence is composed of 1,000 randomly selected bases. Every sequence is
grammatically compared to the same two sequences from within the set. The result-
ing pair of distances form two-dimensional vectors in a space. All sequence distances
are between 0.29 and 0.55.

[0.29, 0.55]. The information depicted in Figure 4.6 implies a certain confidence level

for a grammar-based distance calculation between two unknown sequences. In par-

ticular, if a distance is below the 0.29 lower interval, then a structural relationship

between the sequences is likely to exist. For example, referring back to Figure 4.5,
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the sequences from Achromobacter (genus two) have enough grammar-based structure

relative to Acetobacter (genus one) to separate them from Borrelia (genus three).

The method presented here for building vectors of distances relative to basis se-

quences is similar to the concept of embedding presented in [9]. The work of [9]

details an algorithm called mBed that operates on a set of sequences to generate a

distance matrix representing a phylogenetic guide tree, a process that is closely re-

lated to the data clustering problem presented here. The mBed algorithm selects a

subset of t seed reference sequences that are not close together relative to a distance

metric. Then each sequence has a t-dimensional vector associated with it where each

coordinate value is the distance between the sequence and the respective reference

sequence. The distance used in [9] was selected to be the k-tuple distance measure

of [103] and implemented in ClustalW [97]. The basis sequence concept used in this

chapter is similar, with the grammar-based distance metric replacing the k-tuple dis-

tance measure being the primary difference. Additionally, a single reference subset

is used in [9] to build all vectors. The algorithm presented here creates vectors for

each sequence contained in a cluster relative to basis sequences also sampled from the

same cluster.

Representative Sequence Selection

As shown in Figure 4.4, the clustering process begins by comparing sequence si to the

representative sequence of cluster cj ∈ C. For clusters containing many sequences,

a representative sequence is determined using the basis sequence method described

above. In this case, only the representative sequence, srj
, is compared to si

D = dist(si, srj
).

However, the progressive addition of sequences to clusters means there are clus-

ters containing only a few sequences. These clusters do not contain a large enough
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sample set to yield a reliable representative. Thus, until a cluster is large enough, all

sequences are considered representative and compared to si

Dk = dist(si, sk) ∀ sk ∈ cj.

The minimum distance, min
k
{Dk}, is used as the classification metric.

Grammar-Based Distance Calculation

The distance metric used in GramCluster is a modified form of the grammar-based

distance metric introduced in [79, 83] and used in [85] and Chapter 3.

The original distance metric is computed by concatenating the two sequences

being compared into a single sequence and then performing the operations detailed in

Figure 4.2. Formally, consider the process of comparing sequences sm and sn. Initially,

the dictionary, d1
m,n = dm, is set to that of sequence sm, a fragment, f 1 = sn(1), is

set to the first residue of the nth sequence, and the visible sequence is all of sm. The

algorithm operates as described previously, resulting in a new dictionary size,
∣∣dm,n

∣∣.
When complete, more grammatically similar sequences will have a new dictionary

size with fewer entries as compared to sequences that are less grammatically similar.

Therefore, the size of the new dictionary,
∣∣dm,n

∣∣, will be close to the size of the

original dictionary,
∣∣dm

∣∣. The distance between the sequences is estimated using the

dictionary sizes, in particular

D =


∣∣dm,n

∣∣−∣∣dm

∣∣∣∣dm

∣∣ ×
∣∣sm

∣∣∣∣sn

∣∣ if
∣∣sm

∣∣ > ∣∣sn

∣∣,∣∣dn,m

∣∣−∣∣dn

∣∣∣∣dn

∣∣ ×
∣∣sn

∣∣∣∣sm

∣∣ if
∣∣sm

∣∣ ≤ ∣∣sn

∣∣. (4.1)

This particular metric accounts for differences in sequence lengths and normalizes

accordingly. Smaller values of D indicate a stronger similarity. Intuitively, sequences

with a similar grammar should be clustered with each other.



88

While this grammar-based distance metric works well, it requires that the ex-

tended sequence be rescanned for every residue in the second sequence. This means

that sm will be rescanned completely for every character in sn. This process is re-

peated as many times as the number of sequences compared to sm. As a result,

approximately 75% of the computation is devoted to string searching and concate-

nation. To improve the execution time, we introduce two significant modifications

described below.

Fragment Markers

The original distance calculation would simply repeat the process depicted in Fig-

ure 4.2 on the concatenation of two sequences being compared. Thus, for the kth

character in the second sequence, the first sequence is completely scanned along with

the initial k − 1 portion of the second sequence. However, this is quite unneces-

sary since many fragments formed from the second sequence were already found in

the second sequence during the initial scan. Formally, consider sequences sm and

sn which have already had their own dictionaries created in a previous step. Now

suppose the concatenated sequence sm·n is being processed for the kth character in

sn, at which point there is a nonempty fragment, fk. The process begins with the

fragment completely composed of consecutive letters from sn, which means that this

fragment has already been created once before when sn was processed by itself. As

long as fk was previously found within sn(1, ..., k− 1), there will be no new informa-

tion gained by scanning sm·n(1, ...,
∣∣sm

∣∣+k−1), because it is certain to be there since

sn(1, ..., k − 1) ⊂ sm·n(1, ...,
∣∣sm

∣∣ + k − 1). So, there is no need to scan for fragments

that have been previously found during any distance calculation. The inverse state-

ment is also true: fragments not previously found do need to be scanned for during a

distance calculation. This is implemented as shown in Figure 4.7, in which fragment

fk /∈ si(1, ..., k − 1), so k is added to a list of marked fragment indices.
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...si(k):

f k:

...si(k+1):

f k+1:

marked

not found

Figure 4.7: One of the implementation optimizations is marking locations in the
sequences where fragments are not found in the visible sequence. Doing so eliminates
the need to rescan sequences during the distance calculation for fragments that are
already known to be found within the original sequence.

The same distance metric given by (4.1) is used, but there is no longer a need

to perform string concatenation; and only the first string is scanned for the marked

fragments from the second string. Formally, consider the process of comparing se-

quences sm and sn. Initially, the dictionary, d1
m,n = dm, is set to that of sequence sm,

a fragment, fmarked(1), is set to the first marked substring of the nth sequence, and the

visible sequence is always just sm. The algorithm simply scans sm for an occurrence

of the fragment and adds one to the dictionary if the fragment is not found. Either

way, the fragment is updated to the next marked substring of sn; and sm is scanned

again. This continues for all marked fragments from sn resulting in a new dictionary

size,
∣∣dm,n

∣∣. This fragment marking process significantly reduces the total number of

substring searches performed, as well as the character concatenations that would be

otherwise required.

The second optimization involves a time-efficient method of searching a string for

a substring of characters, a very relevant problem for suffix trees.

Suffix Tree Searches

As stated previously, a length-L sequence stored in a suffix tree data structure can be

completely scanned for a length-F fragment in O(F ) time. To see why this is true,
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consider the simple example depicted in Figure 4.3. Every suffix is represented in the

data structure as a unique path beginning at the root node and traversing along a

solid line to a leaf node. Any substring occurring in this string has to be the start of

a suffix, so searching for a substring amounts to finding a suffix that begins with the

substring. Consider searching “gagacat” for the substring fragment “gac” which is

present in the string. The first step is to find a branch beginning with “g” leaving the

root, which is found as the third entry in the data structure. Following the branch to

the internal node indicates that all suffixes in this tree that begin with “g” are always

followed by an “a,” which is also true of the fragment. At the internal node, the next

step is to search for any branch that begins with “c,” which is found as the second

entry in the data structure, concluding the search. Next, consider searching for the

substring fragment “gact,” which follows the previous search to the internal node and

includes identifying the branch beginning with “c.” The final step is looking at the

subsequent character along the branch, which is “a,” and does not match. This search

finishes having determined that “gact” is not a substring of “gagacat.” The use of

the suffix tree in this context means that the time necessary for identifying whether

previously marked fragments from sequence sn are present in sequence sm is O(F ).

4.2.4 Algorithm Complexity

The algorithm complexity of GramCluster may be broken into three pieces, beginning

with the generation of each sequence grammar dictionary, di for i ∈ {1, ..., N}, where

N is the number of sequences. Suppose the average sequence length is L, then each di

results in complexity O(L), so all dictionaries are generated with complexity O(LN).

Next, each suffix tree, ti, has a complexity O(L2), so all sequences are converted into

trees with complexity O(L2N). Finally, suppose the average number of clusters is

M . As an upper bound, all clusters are scanned until each sequence is classified and
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each scanning process has complexity O(L). The result is a total scanning complexity

of O(LMN). Thus, the entire time complexity for GramCluster is O(LN + L2N +

LMN), which simplifies to O(L2N + LMN).

Regarding the memory complexity of GramCluster and continuing with N as the

number of sequences, suppose the average sequence header length in the FASTA file

is H. Because every header line is stored for subsequent file output, this memory

complexity is O(HN). As before, if the average sequence length is L, then each

sequence is stored in O(L). The worst-case memory usage for the clusters themselves

occurs if every cluster created has an incomplete set of basis sequences. In this case,

each cluster has a memory complexity of O(C + B + BC + LC) where C is the

number of sequences held within the cluster and B is the number of basis sequences

per cluster. Because there are N sequences stored in memory during this worst-case

scenario, a final upper bound on the memory complexity is O((H + B + L)N) in

which the most significant component has a memory complexity of O(LN).

4.2.5 Command Line Options

The following list details the user-definable command line options available in the

current GramCluster implementation.

1. -B <value> Specify the full basis amount. The value specified in this option

represents the number of nonidentical sequences added to a cluster before a

centroid sequence is determined. If this option is not specified, the default

value is 4 sequences.

2. -b <value> Specify the grammar distance identical threshold. The value spec-

ified in this option represents the grammar-based distance threshold for two

sequences to be consider grammatically identical. When a new sequence is
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added to a cluster, it has a distance less than one of the thresholds (specified

by -C or -G). In the event that two sequences are very similar (or identical),

this threshold prevents the new sequence from becoming a basis sequence. If

this option is not specified, the default value is 0.01.

3. -C <value> Specify the grammar distance-to-centroid maximum threshold. The

value specified in this option represents the grammar-based distance threshold

to the centroid sequence. If a distance calculated between a new sequence and

the centroid sequence is less than this value, then the new sequence is added to

the cluster. If this option is not specified, the default value is 0.13.

4. -G <value> Specify the grammar distance maximum threshold. The value spec-

ified in this option represents the grammar-based distance threshold to all basis

sequences for clusters that do not have a centroid already determined. If a

distance calculated between a new sequence and any basis sequence is less than

this value, then the new sequence is added to the cluster. If this option is not

specified, the default value is 0.13.

5. -c Turn on complete cluster searching. This causes the algorithm to scan every

cluster for the lowest distance before adding it. The default is greedy cluster

searching, which causes sequences to be added to the first cluster presenting a

distance lower than the specified thresholds.

6. -R Turn on reverse complement checking. This causes GramCluster to check

both the input sequence as well as its reverse complement against each cluster

representative. The lowest resulting distance is used for classification.

Note that the -C and -G options specify thresholds that function similar to the iden-

tity percentage thresholds used by other clustering programs, such as CD-HIT-EST
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and UCLUST. However, the thresholds function in just the opposite way, whereby se-

quences are only added if their grammar-based distance is calculated as a value below

the threshold value. In contrast, the identity percent thresholds of CD-HIT-EST and

UCLUST require sequences to have a metric score higher than the threshold before

they are added to the respective cluster.

4.2.6 Numeric Simulations

We performed several clustering experiments to validate GramCluster version 1.3.

In particular, we used GramCluster to cluster sets of 16S rDNA sequences. The

resulting clusters were analyzed for correctness whereby the genus of each sequence

was compared to that of all other sequences in the data set. Correct classification

is considered when sequences belonging to the same genus fall into the same cluster.

Likewise, incorrect classification occurs when sequences belonging to different genera

are placed into the same cluster.

Each output set was analyzed using several statistical quality metrics. In each

file, the header line of each sequence was replaced by an integer number associated

with that sequence’s genus. In this way, the resulting clusters could be validated for

quality by comparing the header integers with all other entries. In particular, we

used three statistical measures, identified in [40], to assess the quality of resulting

clusters, including the Rand Statistic, the Jaccard Coefficient, and the Folkes and

Mallows Index. In all cases, a count was created based on the pair-wise comparison

of each element with all other elements being clustered. When two elements were

compared, they fell into one of four possible categories: 1) the pair should be in the

same cluster and they are in the same cluster (SS), 2) the pair should be in different

clusters but they are in the same cluster (DS), 3) the pair should be in the same

cluster but they are in different clusters (SD), and 4) the pair should be in different
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clusters and they are in different clusters (DD). The goal of a clustering algorithm

is to obtain maximal values for SS and DD and minimal values for DS and SD.

The three metrics all operate on combinations of these counts in order to provide an

indication as to the quality of actual clustering versus ideal clustering, as follows:

sRS = (SS +DD)/(SS +DS + SD +DD)

sJC = SS/(SS +DS + SD)

sFMI = SS/
√

(SS +DS)(SS + SD).

Notice all metrics are bounded between 0 and 1, with 0 being a poor clustering

score and 1 a perfect clustering score. Additionally, the in-cluster classification and

sequence differentiation percentages

sin = SS/(SS + SD)

sdiff = DD/(DS +DD)

are provided. Given all sequence pair comparisons, the total number that implies a

pair of sequences belong to the same genus is (SS + SD). Of that total, only SS

pairs were actually classified into the same cluster. Thus, the in-cluster classification

is the percent of sequence-to-sequence pairs that have correctly clustered sequences

together out of all that should be clustered together. Similarly, the total number

of sequence pair comparisons that imply two sequences do not belong to the same

genus is (DS + DD). Out of the total, only DD pairs were correctly separated into

different clusters. The sequence differentiation used here was the percent of sequence

pair comparisons that have correctly classified sequences apart out of the total that

should not be clustered together.

We repeated the first two experiments using two different random permutations

of the FASTA file (results not shown). All programs produced very similar results,

thereby demonstrating that the order in which sequences are input to the algorithms

does not affect the resulting clusters.
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In order to identify the best set of default parameters for the GramCluster imple-

mentation, we used two different training methods. In the first method, we randomly

selected 10% of the sequences for training while the remaining 90% were used for

testing. In the second method, we randomly divided the genera into two sets, one

containing about 10% of the sequences and the other containing 90% of the sequences.

The smaller set was again used as a training set to obtain the parameters for the al-

gorithm. The default parameters ended up being the same as those found in the first

training experiment. In particular, a grammar-based threshold of 0.13 was found to

produce the best overall clustering metrics based on genera. We applied the same

training methods to identify the best thresholds for GramCluster when clustering

based on species. In this case, the best overall clustering metrics based on species

occurred when the grammar-based threshold of 0.03 was applied.

For comparison, CD-HIT-EST (no version given, archive created on 4/27/2009)

[59] and UCLUST version 3.0.617 [29] were also used to cluster the same 16S rDNA

sequences and analyzed using the same quality metrics. All results were generated by

compiling and executing the respective clustering programs on the same computer,

specifically an Apple MacBook Pro with an Intel Core 2 Duo operating at 2.53 GHz

with 4 Gb of system memory and a 3 Mb L2 cache. In the case of UCLUST, the

binary was downloaded from the author’s website. The experiments were conducted

using various versions of FASTA files containing 74,709 16S rDNA sequences from

7,043 different species of 2,255 genera obtained from the Ribosomal Database Project

(http://rdp.cme.msu.edu). For example, the second set of experiments involved a

processed version of the FASTA file to simulate the application of clustering a large

set of unknown fragments that typically result from high-throughput sequencing tech-

nologies, such as 454 pyrosequencing. In particular, every sequence was reduced to

only the first 200 bases; and then the entire file was repeated 14 times for a total of

1,045,926 sequences from 2,255 genera.
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Experiments with Moderate-sized Data Set

The clustering algorithm was evaluated using the Folkes and Mallows Index, the

Jaccard Coefficient, and Rand Statistic measures [40], along with in-cluster classi-

fication and sequence differentiation percentages, all defined above. The results for

GramCluster, CD-HIT-EST, and UCLUST are presented in Figure 4.8.

0 0.2 0.4 0.6 0.8 1
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Jaccard Coefficient

Folkes and Mallows Index

In Cluster Classification

Sequence Differentiation

 

 

CD HIT EST
UCLUST
GramCluster

Figure 4.8: Cluster metrics for each algorithm operating on 74,709 16S rDNA se-
quences from 2,255 different genera.

Results indicate that CD-HIT-EST achieved 17.5% in-cluster classification and

99.7% sequence differentiation out of the 2,050 total clusters determined. That is, for

sequences that were supposed to be in the same cluster, CD-HIT-EST placed them

together 17.5% of the time; and for sequences that were not supposed to be in the

same cluster, it correctly kept them in different clusters 99.7% of the time. Improved

results for UCLUST show 30.4% and 99.8% in-cluster classification and sequence dif-

ferentiation out of the 1,680 total clusters determined. By comparison, GramCluster
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achieved 84.5% in-cluster classification and 99.0% sequence differentiation out of the

2,447 total clusters identified. Clearly, GramCluster provides a significant improve-

ment in clustering sequences correctly. This improvement can be further observed

using common statistical measures for evaluating the performance of clustering algo-

rithms [40] described previously. These measures are shown for GramCluster, CD-

HIT-EST, and UCLUST operating on a set of 74,709 16S rDNA genes obtained from

2,255 different genera. The Jaccard Coefficient and Folkes and Mallows Index exceed

those of CD-HIT-EST four-fold and over two-fold, respectively. The CPU execution

time of GramCluster (1342 seconds) is on the same order as that of CD-HIT-EST

(8277 seconds), which is considered ultra-fast [58]. The UCLUST CPU execution

time (89 seconds) is much faster than GramCluster, however its quality metrics fall

significantly short of those provided by GramCluster.

Experiments with Large Data Set

In order to simulate the application of clustering a large set of unknown fragments

that typically result from 454 pyrosequencing, the previous FASTA file was modified

such that every sequence was reduced to only the first 200 bases and then repeated

14 times for a total of 1,045,926 sequences from 2,255 genera.

Figure 4.9 contains data covering the same categories as in the previous experi-

ment. CD-HIT-EST achieved only 3.3% in-cluster classification and 99.9% sequence

differentiation of the 11,758 clusters found. So, for sequences that were supposed to

be in the same cluster, CD-HIT-EST placed them together 3.3% of the time; and for

sequences that were not supposed to be in the same cluster, it correctly kept them

in different clusters 99.9% of the time. As in the previous experiment, results for

UCLUST show 5.1% and 99.9% in-cluster classification and sequence differentiation

out of the 10,686 total clusters determined. By comparison, GramCluster achieved
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Figure 4.9: Cluster metrics for each algorithm operating on 1,045,926 16S rDNA
sequences from 2,255 different genera.

21.5% and 99.9% out of the 5,917 clusters identified. GramCluster continues to show

a significant improvement in terms of clustering sequences correctly with each other.

This improvement can be seen further with the higher statistical measures, especially

in the Jaccard Coefficient and Folkes and Mallows Index which are over six and two

times those of CD-HIT-EST. Perhaps most interestingly, GramCluster identified a

more accurate number of clusters at 5,917, even though the length of the sequences

was significantly reduced, while both CD-HIT-EST and UCLUST reported identifying

over 10,000 clusters.

We also tested BLASTClust [4] on 16S sequences. The program was too slow

for classifying the original set of 74,709 sequences so we tested it using only 10% of

the sequences. The results are shown in Figure 4.10. As can be seen, the results of

CD-HIT-EST, UCLUST, and GramCluster all tend to match those of Figure 4.8. As
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Figure 4.10: Cluster metrics for each algorithm operating on 7,470 16S rDNA se-
quences from 898 different genera.

can be seen in Figure 4.10, BLASTClust resulted in lower statistical metric scores in

all categories, a high number of clusters compared to the number of genera. It is clear

that the exclusion of BLASTClust from the other experiments due to its inability to

operate on the size of the input data set has not diminished the results.

Varying Command Line Options

Next, we consider the effect of varying the command line options primarily respon-

sible for affecting the resulting data set partition. We ran two additional clustering

experiments on the original set of sequences with GramCluster and UCLUST. The

GramCluster experiments had both grammar-based distance thresholds altered from

the default setting of 0.13 to 0.15 and 0.11. Similarly, the UCLUST experiments had

the identity threshold altered from the default setting of 90% to 85% and 95%.
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Figure 4.11 contains data covering the same categories as in the previous exper-

iments. As the grammar-based distance threshold increased, sequences that were
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Figure 4.11: Cluster metrics for GramCluster and UCLUST operating on 74,709 16S
rDNA sequences from 2,255 different genera. The grammar-based distance thresholds
were both set to 0.11, 0.13, and 0.15 for GramCluster. The identity threshold was
set to 85%, 90%, and 95% for UCLUST.

increasingly dissimilar were clustered together resulting in fewer clusters and poorer

metrics. This same trend occurred with UCLUST as the identity threshold was

relaxed by reducing it. Likewise, when the grammar-based distance threshold was re-

duced, sequences with an appropriately smaller distance clustered together. Similar

behavior occurred when the UCLUST identity threshold was increased. In general,

the default parameters for both programs seem to provide the best clustering of genus

based on overall comparison of the metrics in Figure 4.11.
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Experiments Clustering on Species

The final experiment operated on the original set of sequences, but the partitioning

was based on the sequence species instead of their genus.

Figure 4.12 contains data covering the same categories as in the previous exper-

iments. In order to achieve the metrics in Figure 4.12 based on sequence species, it
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Figure 4.12: Cluster metrics for each algorithm operating on 29,566 16S rDNA se-
quences from 5,472 different species.

was necessary to modify the threshold of each clustering program. The UCLUST and

CD-HIT-EST percent identity parameter was adjusted upward to require a higher se-

quence similarity before clustering sequences together. The best overall metric scores

based on sequence species occurred at 97% identity for each algorithm. In contrast,

the grammar-based distance thresholds in GramCluster had to be lowered to restrict

the distance between sequences before classifying them together. The threshold of
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0.03 caused the best overall metrics due to sequence species. The results presented

in Figure 4.12 show a similar trend to those of the first experiment in Figure 4.8.

The results from all experiments show viable promise of GramCluster, especially

when clustering numerous sequences such as in datasets produced by high-throughput

sequencing applications.

4.3 Conclusions

This chapter introduced a computationally efficient clustering algorithm which can be

used for clustering large datasets with high accuracy. The algorithm introduced was

validated against a specific class of datasets containing 16S rDNA sequences but was

designed to cluster any set of RNA, DNA, or protein sequences. The grammar-based

distance work introduced in [79, 83] and previously used in [85] and Chapter 3 was

modified to generate an estimation of the proper classification in which sequences

are to be grouped. Results from clusters generated were presented in an attempt to

study the overall quality of the resultant classifications as well as the computation time

necessary to achieve the outputs. Accurate clustering of large numbers of biological

sequences in an efficient amount of time is an important and challenging problem

with a wide spectrum of applications. In this chapter, we adapted existing ideas in a

novel way and introduced significant improvements.

We have introduced three applications of grammar-based models on two cate-

gories of computational biology problems. In all cases, we utilized an LZ-inferred

regular grammar to generate numeric distance measures using information regarding

the primary structure of sequences. In the next two chapters, we turn our attention

to gaining additional information about biological sequences. In particular, we intro-

duce two new methods for inferring CFGs capable of estimating secondary structure

present in DNA and RNA sequences.
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Chapter 5

Polynomial-Time CFG Inference of
DNA/RNA Sequences

There is substantial interest in the primary and underlying secondary structure of bi-

ological sequences at some level of abstraction. The literature suggests the presence

of a correlation between linguistic structure and that of biological function. How-

ever, often the grammar is assumed to be known a priori, which may not always

be true. Chapters 3 and 4 used an LZ-grammar to compare the primary structure

between biological sequences. The comparisons resulted in a grammar-based dis-

tance metric that was utilized in three different programs designed to solve various

sequence analysis problems. This chapter introduces a novel framework for inferring

secondary structure via context-free grammars (CFGs) and their associated parse

trees in a polynomial-time algorithm. The grammar can be used to identify signif-

icant biological structural information present in the sequences without recourse to

thermodynamic considerations, which is typically necessary.

5.1 Background

Identification of function and/or meaning of segments of biological sequences remains

an ongoing and active area of research. This involves studying both primary and sec-

ondary structure; that is, the sequential ordering of symbols and the three-dimensional
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shapes that form due to attractions that occur among separated segments within the

sequences. Two common methods for predicting RNA secondary structure include

phylogenetic analysis of homologous RNA molecules [32] and thermodynamic model-

ing [44, 108], the latter of which has been made into web-based computer programs

[43, 107] where dynamic programming is used to minimize the free energy in a given

RNA sequence. A third method is found not by considering the physical molecules,

but focusing on the information contained within the sequences. Examples such as

[14, 88] review ways in which abstract grammars may be used to model and analyze

secondary structures found in biological data, especially RNA sequences.

The literature suggests several uses of abstract grammars for studying biological

data. For example, [91] and [35] describe correlations between linguistic structures

and biological function. Grammars have been used to model nucleic acid structure

[90, 89, 47], protein linguistics [1, 82], and gene regulation [18, 84, 56]. However, often

the literature assumes the source grammar is already known, and it is usually for a

specific set of biological data [84, 56]. This is an unrealistic assumption when analysis

involves unknown data. Hence, the need for efficient grammar inference methods on

biological data.

Previous inference work includes general algorithms presented in [71, 73], [87]

and [68] for inferring CFGs for generic sequential inputs, which includes biological

data. One drawback with all of these algorithms, is the inability to make use of

domain knowledge, although [71] discusses the improvement available when domain

knowledge is applied. This idea was exploited in [13] to operate specifically on DNA,

and is the motivating idea of the linear-time algorithm developed in Chapter 6.

The next sections introduce an algorithm for inferring grammars of unknown bio-

logical sequences via a novel method based partially upon the classical CYK linguistic

categorization approach. The CYK categorization works by testing for membership
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of a sequence to a language given a known grammar. Here we make use of the frame-

work of the categorization approach to develop an inference engine for generating a,

perhaps novel, grammar from a given sequence. This is as opposed to making use of

a known grammar for classifying a given sequence. Results are presented showing the

potential of the algorithm for detecting structure in a biological sequence. Possible

further applications are detailed for future research.

5.1.1 Admissible Grammars

An admissible grammar [53] is defined as a CFG G for which the following conditions

are true:

• G is deterministic. That is, for A ∈ V (G) then A is the head of exactly one

element in P (G);

• ε is not the body of any element in P (G);

• L(G) 6= ∅;

• G has no useless symbols. That is, for Y ∈ (V (G) ∪ T (G)) where Y 6= S, there

exists a derivation

S ⇒ α1 ⇒ ...⇒ αn ∈ L(G)

such that Y appears in αi for some 1 ≤ i ≤ n.

We will show that the grammar inferred by the algorithm presented here is always

an admissible grammar. Thus, while the algorithm was developed with the intent of

modeling secondary structure present in biological sequences, it may find application

elsewhere based on the ability to infer an admissible grammar.
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5.2 Inference Algorithm

The inference algorithm is meant to infer CFGs as part of the method for discovering

secondary structure, especially for RNA. We first describe the CYK algorithm and

then show how the basic framework of the CYK algorithm can be used to develop an

inference algorithm for inferring a grammar from a given sequence. It should be noted

that “CYK algorithm” implies the original, deterministic classification algorithm, not

the stochastic version that is well known and often used in managing SCFGs such as

detailed in [23]. Further, the goal of this work is to infer a minimal CFG in order

to model the secondary structure of biological data, as opposed to starting with an

a priori SCFG and modeling the stochastic parameters, which is the general goal of

the nondeterministic version of the CYK algorithm.

It can be shown [46] that any nonempty context-free language (CFL) without ε

has a grammar G in which all productions are in either of the two forms A → a or

A → BC, where A,B,C ∈ V (G) and a ∈ T (G). Such a grammar is said to be in

Chomsky Normal Form (CNF) and has binary parse trees, the fact of which was the

initial motivation of this research.

5.2.1 CYK Algorithm

Membership of string w in CFL L(G) may be tested efficiently given a known CNF

grammar G and using a dynamic programming technique. Referring to Figure 5.1,

the CYK algorithm (named after J. Cocke, D. Younger, and T. Kasami) begins at

row1 of the empty, lower-triangular matrix and works upward by loading the set at

each matrix cell, Xi,j, with all production heads from G that derive the corresponding

terminal subsequence ai, ..., aj. Notice that the subscript indices i and j on each set

refer to the starting and ending position of the terminal subsequence within w derived

by variables belonging to that matrix cell set. Further, the correlation between matrix
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cell and subsequence may be visualized in Figure 5.1 by starting at set Xi,j and moving

straight down the column to set Xi,i whose members all derive the sequence element

ai, which is the first terminal of the string derived by all variables belonging to Xi,j.

Next, begin with Xi,j and move along the off-diagonal down and to-the-right to set

Xj,j whose members all derive the single terminal aj, which is the end of the substring

derived by variable members of Xi,j. Hence, if A ∈ Xi,j then A
∗⇒ ai, ..., aj.

X1,1 X2,2 X3,3 X4,4 X5,5

a1 a2 a3 a4 a5

X1,2 X2,3 X3,4 X4,5

X1,3 X2,4 X3,5

X1,4 X2,5

X1,5

row1

row2

row3

row4

row5

sequence

Figure 5.1: Depicting the CYK algorithm for determining if a sequence a1, ..., a5 is a
member of the language L(G) generated via the known CNF grammar G.

To construct the matrix in Figure 5.1, the algorithm begins by initializing each

Xi,i =
{
A | A ∈ V (G), (A→ ai) ∈ P (G)

}
for 1 ≤ i ≤ N

where N is the length of w. The algorithm continues to completion by moving up

one row each step and filling in

Xi,j =
{
A | A ∈ V (G), (A→ BC) ∈ P (G), BC

∗⇒ ai, ..., aj

}
(5.1)

where indices i and j are governed as a pair by

(1, k) ≤ (i, j) ≤ (N − k + 1, N) for 2 ≤ k ≤ N

in which k is the subscript of rowk in Figure 5.1.
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Searching over V (G) for each A ∈ Xi,j of (5.1) may be completed inductively by

forming appropriate concatenations of set elements in the column below and along

the off-diagonal from the Xi,j under consideration. As an example, consider the set

X2,5. In particular, if (A → BC) ∈ P (G) where B ∈ X2,2 and C ∈ X3,5, then A

is added to X2,5. Working up the column and down the off-diagonal, members of

X2,3 and X2,4 are respectively concatenated with heads found in X4,5 and X5,5. Each

time a concatenated pair forms the body of a production in P (G), the associated

head is added to the set X2,5. When the algorithm completes, if S ∈ X1,N then

S
∗⇒ a1, ..., aN , and so w ∈ L(G).

The matrix form depicted in Figure 5.1 is the classic representation for the CYK

algorithm as presented in [46]. An alternative depiction is given in Figure 5.2, which

shifts the matrix into a pseudo-binary tree form, with the exception that neighboring

parent nodes share an inherited connection via a common child node. Additionally,

the subscripts on each Xk,(i,j) have changed, where k indicates the “inverted depth”

(ID) in the tree of the node, and (i, j) are as before. As a matter of notation, ID 0

corresponds to the frontier (i.e., bottom, or leaf-nodes) of the tree. Figure 5.2 shows

the four set concatenations used to fill in the root of the tree, X5,(1,5). In particular,

from the node under construction X5,(1,5), the algorithm traverses up the left-most

child nodes X1,(1,1), X2,(1,2), X3,(1,3) and X4,(1,4), and respectively concatenates with

elements down the right-most child nodes X4,(2,5), X3,(3,5), X2,(4,5) and X1,(5,5). This

depiction shows how all combinations of sub-string concatenations are checked within

the rules of the given grammar in order to ultimately determine if A
∗⇒ a1, ..., aN for

some A ∈ V (G). More importantly, this pseudo-binary tree form is used for the

inference algorithm because a binary parse tree immediately follows from this graph

by selectively removing nodes within.
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X1,(1,1) X1,(2,2) X1,(3,3) X1,(4,4) X1,(5,5)

a1 a2 a3 a4 a5

X2,(1,2) X2,(2,3) X2,(3,4) X2,(4,5)

X3,(1,3) X3,(2,4) X3,(3,5)

X4,(1,4) X4,(2,5)

X5,(1,5)

X1,(1,1) X1,(2,2) X1,(3,3) X1,(4,4) X1,(5,5)

a1 a2 a3 a4 a5

X2,(1,2) X2,(2,3) X2,(3,4) X2,(4,5)

X3,(1,3) X3,(2,4) X3,(3,5)

X4,(1,4) X4,(2,5)

X5,(1,5)

X1,(1,1) ·X4,(2,5) ∈ X5,(1,5) X2,(1,2) ·X3,(3,5) ∈ X5,(1,5)

X1,(1,1) X1,(2,2) X1,(3,3) X1,(4,4) X1,(5,5)

a1 a2 a3 a4 a5

X2,(1,2) X2,(2,3) X2,(3,4) X2,(4,5)

X3,(1,3) X3,(2,4) X3,(3,5)

X4,(1,4) X4,(2,5)

X5,(1,5)

X1,(1,1) X1,(2,2) X1,(3,3) X1,(4,4) X1,(5,5)

a1 a2 a3 a4 a5

X2,(1,2) X2,(2,3) X2,(3,4) X2,(4,5)

X3,(1,3) X3,(2,4) X3,(3,5)

X4,(1,4) X4,(2,5)

X5,(1,5)

X3,(1,3) ·X2,(4,5) ∈ X5,(1,5) X4,(1,4) ·X1,(5,5) ∈ X5,(1,5)

Figure 5.2: Depicting the alternative CYK graph for filling in the root node, X5,(1,5).

5.2.2 Framework

The CYK algorithm has previously been applied to grammar inference, such as in

[68] and [87] in which a tabular and a heuristic algorithm are presented, respectively.

In particular, the “Synapse” algorithm [68] uses the CYK algorithm to incrementally

verify and subsequently modify a given grammar in order to allow in-set sequences

to be generated by the grammar and disallow the derivation of out-of-set sequences.

The “TBL” algorithm [87] constructs a lower-triangular matrix (see Figure 5.1), where

each cell contains every combination of possible productions for each sequence of an
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in-set. The algorithm searches for a good grammar by using a genetic algorithm to

repeatedly partition the set of all productions until a certain fitness metric is satisfied.

By contrast, the goal of the algorithm presented here is to infer a grammar from

an unknown sequence with biological secondary structure in mind. The method does

not use the CYK algorithm directly, but builds a CFG from the bottom up based

upon scoring node entries at each depth of the pseudo-binary tree such that only a

head with the maximum score is added to the node. Then, the graph is pruned from

top down, removing unreachable rules from the grammar and resulting in a binary

parse tree representing linguistic structure in the form of repeated k-grams.

Referring to Figure 5.2, every cell at ID 1 has only one way to derive their respec-

tive 1-gram, in the form of a “type-1” rule A→ a. Similarly, all cells at ID 2 have one

production possible for their associated 2-gram derivation in the form of a “type-2”

rule A → BC. Because there are no choices, there is no apparent need for scoring

metrics. However, when the algorithm moves to ID 3 each cell has exactly two choices

of productions that will derive the proper 3-gram, A3a → B1C2 or A3b → B2C1 where

the subscripts in these two productions are used to indicate the ID of the head. If

the algorithm did not pick a single rule for each cell, the number of choices would

continue to increase exponentially, as in

∣∣Xk,(−,−)

∣∣ =
k−1∑
i=1

∣∣Xi,(−,−)

∣∣∣∣Xk−i,(−,−)

∣∣.
For example,

∣∣Xk,(−,−)

∣∣ = {1, 1, 2, 5, 14, 42, 132, ...} for k = {1, 2, 3, 4, 5, 6, 7, ...}. Thus,

while considering every possible combination would allow for the discovery of a best

linguistic model, it would be costly in performing the forward pass of the dynamic

programming, and difficult in searching over the final set of possible productions

at XN,(1,N). The inference algorithm handles the computational complexity of this

problem by scoring every rule at each ID k, and selecting only the highest scoring
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one to represent each k-gram identified by the respective cell at depth k. Thus,∣∣XN,(1,N)

∣∣ = N−1 is the largest set to be searched for the highest scoring production.

The remaining key to the algorithm is the metric used in scoring the production rules.

We will see how the inference algorithm works and introduce the scoring metrics

by using the toy example, w = acagt. The first step corresponds to creating “type-

1” productions for the nodes at ID 1. New variables are created as the heads of

production rules that derive a single terminal symbol. For the simplest inference,

duplicate productions are assumed never to exist. Thus, for a sequence of length

N , and a terminal alphabet Σ, there shall be no more than min(N, |Σ|) grammar

productions created at ID 1. For the given example, the initial grammar is V (G) =

{A0, A1}, T (G) = {a, c, g, t}, P (G) = {A0 → a,A1 → c}, and the sets in the graph

depicted in Figure 5.3 are X1,(1,1) = {A0}, X1,(2,2) = {A1}, X1,(3,3) = {A0}, X1,(4,4) =

{A′1}, and X1,(5,5) = {A′0}.

A0 A1 A0 A'1 A'0

a c a g t

Figure 5.3: Depiction of the grammar inference example after the first ID.

Because this algorithm is intended for analyzing DNA and RNA sequences, do-

main knowledge is used to improve the grammar inference and the subsequent struc-

ture identification. In particular, whenever the input sequence is known to be either
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DNA or RNA, the Chargaff base pairing rules are used within the production bodies

and the unary operator ′ is used to indicate a reverse complementary repeat. This

corresponds to a′ = t/u and c′ = g, so that at ID 1 P (G) = {A0 → a,A1 → c, A′1 →

g, A′0 → t/u}. The algorithm is designed such that if base pairing is unwanted or

unwarranted, for example in protein-sequence analysis, it may be disabled producing

tandem repeat structure identification only.

After the nodes at ID 1 have been identified, the input sequence is scanned for

every pair of non-overlapping complementary m-grams and non-overlapping tandem

repeat m-grams, where m is any integer greater than some user-defined input. The

scanning is performed using two N × N matrices, shown for the toy example in

Figure 5.4. The algorithm uses each matrix to identify common structural elements by

locating diagonal runs. The sequence is compared to itself and its reverse complement

using the tandem repeat matrix and the reverse complement matrix, respectively. The

score of cell (i, j) in both matrices is given by

M(i, j) =

{
M(i− 1, j − 1) + 1 xi = xj

0 xi 6= xj,

where xk is the kth element of the sequence along the left or the top. When complete,

each matrix contains nonzero entries that imply common subsequences. Runs in the

Figure 5.4(a) matrix indicate common tandem repeats, while runs in the Figure 5.4(b)

matrix imply common reverse complements.

Referring to the example, the elements of ID 1 shown in Figure 5.3, A0A1A0A
′
1A
′
0,

are listed along the left side of each matrix in Figure 5.4. The same sequence is

repeated across the top of the left matrix while the reverse complement, A0A1A
′
0A
′
1A
′
0,

is placed on the top of the right matrix. After the matrices have been filled with their

scores, both are scanned for nonzero diagonal runs. The coordinate pair of each

structural run is added to a set containing all identified runs from the matrices. Note
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A0 A1 A0 A′1 A′0
A0 1 0 1 0 0
A1 0 2 0 0 0
A0 1 0 3 0 0
A′1 0 0 0 4 0
A′0 0 0 0 0 5

(a) Tandem Repeats

A0 A1 A′0 A′1 A′0
A0 1 0 0 0 0
A1 0 2 0 0 0
A0 1 0 0 0 0
A′1 0 0 0 1 0
A′0 0 0 1 0 2

(b) Reverse Complements

Figure 5.4: The structural component matrices for the toy example. Each element of
the sequence along the left side is compared to each element of the sequence across
the top. In (a) the sequence along the top is the same as the sequence along the left
side, in (b) the sequence along the top is the reverse complement of the sequence on
the left side. Note that (a) is symmetric and the diagonal has a trivial run of length
N . Boldface is used in (b) to highlight the structural runs.

that the tandem repeat matrix in Figure 5.4(a) is symmetric and the diagonal has

a trivial nonzero run of length N . The only real structural runs are highlighted

by boldface in Figure 5.4(b), and they are actually equivalent as the start of one

sequence pairs with the end of the other and vice versa. When complete the set

contains
{(

(1, 2), (4, 5)
)}

indicating the subsequence x1, x2 pairs with subsequence

x4, x5.

Longer sequences will generate sets of pairs that overlap and intersect each other.

Thus, not all identified structural pieces will be included in the grammar inference.

While this is not the case of the toy example, the resulting set of possible pairs is

tested for compatibility (i.e., pseudoknot structures, and overlapping runs of bases

are not allowed). The algorithm greedily identifies the largest structural coverage

of the sequence in terms of number of bases. An efficient algorithm for solving this

classic problem is detailed in [8].

Once the various structural pieces have been identified, each base position within

a subsequence m-gram is marked with identification that it should be in a linguistic
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structural element. In the case of the example the first two and last two positions are

marked, A0A1A0A
′
1A
′
0, for subsequent use by the scoring criteria.

Similar to the CYK algorithm, the inference algorithm starts at the bottom of

the graph in Figure 5.3 and operates from left-to-right, bottom-to-top, loading each

node of the current ID prior to moving up a depth, eventually reaching the root of

the pseudo-tree. At lower IDs, the algorithm’s objective is to discover as many of

the largest, non-overlapping, repeated k-grams as possible. All nodes in Figure 5.2

at ID k necessarily derive a k-gram. Thus, any nodes with the same value at ID k

spatially appearing at least k nodes apart represent the appearance of a repeated

k-gram in the terminal sequence. Such nodes will be referred to as (linguistically)

structural elements.

Eventually, the algorithm will cease to discover structural elements. This is evi-

dent from Figure 5.5, in which all nodes overlap each other at ID k for k > bN/2c.

When the algorithm is unable to identify additional structural elements, it changes

objectives to creating a minimal pathway between structural elements. The result of

this objective is a reduced number of intermediate production rules, thereby creating

a smaller grammar model.

After ID 1, all subsequent steps correspond to creating the best “type-2” produc-

tions for the nodes within ID 2 up through ID N . In particular, for any cell at ID k,

k− 1 rules are generated, compared and one is selected based on the scoring criteria.

Each of the possible rules occur by concatenating vertices running up the left-most

descendants and down the right-most descendants of the node under consideration,

as was done in Figure 5.2 for node X5,(1,5). The inference algorithm searches over the

k − 1 appropriate concatenations by comparing two rules at a time, until the single

best rule is discovered.
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A0 A1 A0 A'1 A'0

a c a g t

Figure 5.5: The inference algorithm is unable to identify linguistic structural pieces
above ID k for k > bN/2c since the k-grams overlap each other.

Let the two rules under consideration be A → CD and B → EF , and define

the path distance to the nearest structural element as di for rule i. This value is

saved per grammar rule, and is set to 0 when a rule is determined to be a structural

element. Since each production at ID 1 is considered to be the smallest structural

component available, the path distances for the current example grammar are dA0 = 0

and dA1 = 0.

Next, define a structural component vector as an bN/2c-dimensional vector in

which the value at coordinate k indicates the number of k-gram structural com-

ponents included in the derivation of the associated production rule. Let vt,i,vr,i,

and vs,i be structural component vectors for grammar rule i, where the subscripts

t, r, and s correspond to linguistic tandem repeat components, reverse complement

components, and self-complement components, respectively. The linguistic tandem

repeat structural component vectors for the toy example grammar are vt,A0 = [1, 0]

and vt,A1 = [1, 0] since all type-1 productions are stored without complements. On

the other hand, vr,A0 = [0, 0], vr,A1 = [0, 0], vs,A0 = [0, 0], and vs,A1 = [0, 0] for the

same reason.
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Also, let vT,n and vR,n be structural component vectors for the grammar rule

at position n, where the subscripts T and R correspond to compatible pair tandem

repeat components and complementary components, respectively. While the previous

linguistic structural component vectors were defined per grammar rule, these vectors

are defined per graph node. For the example, all tandem repeat component vectors are

[0, 0], while the reverse complement component vectors are vR,1 = [1, 0], vR,2 = [1, 0],

vR,3 = [0, 0], vR,4 = [1, 0], and vR,5 = [1, 0].

Continuing the example, the inference algorithm can fill out ID 2 without any

decision making since only one rule is possible at each graph node at that inverted

depth. The current graph shown in Figure 5.6 depicts the additional type-2 rules,

A2 → A0A1, A3 → A1A0, and A4 → A0A
′
1. After each new rule is added to the

A0 A1 A0 A'1 A'0

a c a g t

A2 A3 A4 A'2

Figure 5.6: Depiction of the grammar inference example after the first two IDs.

grammar, the associated metrics are calculated based on the metrics of its constituent

rules. Consider the rule A→ BC and define the function

θ(i,vm,vn) =

{
(vn,vm) if rule i = j′ for existing rule j,

(vm,vn) otherwise

which is used to swap the tandem repeat structural component vector with the re-

verse complement structural component vector when rule i is the reverse complement
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of some previously defined rule. Then the tandem repeat and reverse complement

structural component vectors are determined by

(vt,A,vr,A) = θ(B,vt,B,vr,B) + θ(C,vt,C ,vr,C),

and the self-complement structural component vector is

vs,A = vs,B + vs,C .

Finally, the new path-distance is given by

dA = dB + dC + 1.

Define γ(i) as the non-overlapping head count for rule i. Then if γ(A) > 1 indicating

that A is a structural component, then dA = 0 and either vs,A(k) = 1 or vt,A(k) = 1,

depending on if rule A is a reverse complement of itself or not.

Returning to the example, consider the left-most node of ID 2 which contains the

rule A2 → A0A1 with initial metrics dA2 = 0 + 0 + 1 = 1, vt,A2 = [2, 0], vr,A2 = [0, 0]

and vs,A2 = [0, 0]. However, the fourth vertex of ID 2 also contains A′2 and its 2-

gram does not overlap the 2-gram of the first node. Hence, γ(A2) = 2, leading to a

revision of the final metrics of dA2 = 0, vt,A2 = [2, 1], vr,A2 = [0, 0] and vs,A2 = [0, 0].

Notice the distance has been set to zero, and because A2 = A0A1 6= A′1A
′
0 = A′2,

the tandem repeat structural component vector is modified in the second coordinate,

corresponding to ID 2. Similarly, A3 and A4 are created in the second and third

vertices, but are not modified since they are not considered structural components.

Therefore, dA3 = 1, vt,A3 = [2, 0], vr,A3 = [0, 0], vs,A3 = [0, 0], dA4 = 1, vt,A4 = [2, 0],

vr,A4 = [0, 0], and vs,A4 = [0, 0]. The new variables {A2, A3, A4} and productions

{A2 → A0A1, A3 → A1A0, A4 → A0A
′
1} are appended to the grammar and the sets

at ID 2 are X2,(1,2) = {A2}, X2,(2,3) = {A3}, X2,(3,4) = {A4}, and X2,(4,5) = {A′2}.
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Finally, the tandem repeat and reverse complement vectors are updated for this ID

by adding the corresponding vectors of the body rules giving vR,1 = [2, 0], vR,2 =

[1, 0], vR,3 = [1, 0], and vR,4 = [2, 0]. Additionally, any rules that derive a substring

completely contained in a tandem repeat or reverse complement run that is specified

in the set of compatible pairs have their depth coordinate supplemented by 1. Thus,

vR,1 = [2, 1] and vR,4 = [2, 1] since it was determined in Figure 5.4 that the ends pair

together.

The inference algorithm continues up the graph using the following prioritized

criteria to always select a single production rule to represent the corresponding k-

gram. For each choice, let the two rules under consideration be A → CD and B →

EF . Combinations of the structural component vectors and the structural distance

are used in the following comparisons to determine whether A or B is better.

1. If either (but not both) dC + dD = 0 or dE + dF = 0, then select either A or

B, respectively. If neither are 0, jump to condition 2, if both are 0 move to

sub-condition a.

These conditions occur when both body members of a new production are struc-

tural elements. Naturally, to achieve the shortest path-distance, new rules con-

structed completely from structural elements are selected before any rules that

are not directly using structural pieces.

(a) Recall γ(i) is defined as the non-overlapping head count for rule i and let

φ(i) be ID i. Then, if

γ(C)φ(C) + γ(D)φ(D) > γ(E)φ(E) + γ(F )φ(F ),

pick A, or if

γ(C)φ(C) + γ(D)φ(D) < γ(E)φ(E) + γ(F )φ(F ),
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pick B. If neither are true, check the next condition.

When both A and B are constructed using two structural elements, the

algorithm requires more criteria to determine which is better. This metric

gives precedence to recurring bodies at higher IDs, thereby keeping more-

significant structural pieces and resulting in a smaller grammar.

For the first cell of ID 3 in the toy example, the two possible productions

are AA → A0A3 and AB → A2A0. First we check the structural distances,

dA0 + dA3 = 1 and dA2 + dA0 = 0. This criteria selects rule AB for X3,(1,3).

Now consider the second cell of ID 3 which has the two possible productions

AA → A1A4 and AB → A3A
′
1. In this case, the structural distances are not able

to score one rule above the other since both are 1; thus the algorithm moves to

the second criteria.

2. Let >lex and <lex be the lexicographic comparisons of vectors such that the

highest dimension is compared first, and only subsequent dimensions are checked

if all previous are equal. If

vR,nA
>lex vR,nB

,

pick A. If

vR,nA
<lex vR,nB

,

pick B. Recall the reverse complement vectors are position dependent; here ni

represents the cell position from the left containing rule i within the current

inverted depth. If neither are true, check the next condition.

These comparisons lead to the selection of rules containing the most pieces

from the greedy compatible pairs search over the set of complementary pairs
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by selecting the production with the maximal lexicographic vector, in which

the element with the highest dimension is the most-significant position in the

comparison.

The reverse complement vectors of the example are vR,2A
= [2, 0] and vR,2B

=

[2, 0], so the algorithm moves to the third criteria.

3. If

vT,nA
>lex vT,nB

,

pick A. If

vT,nA
<lex vT,nB

,

pick B. If neither are true, check the next condition.

These comparisons lead to the selection of rules containing the most pieces

from the greedy compatible pairs search over the set of tandem repeat pairs

by selecting the production with the maximal lexicographic vector, in which

the element with the highest dimension is the most-significant position in the

comparison.

All of the tandem repeat vectors for the simple example are zero, so the algo-

rithm checks the fourth criteria.

4. If

vt,A + vr,A + vs,A >lex vt,B + vr,B + vs,B,

pick A. If

vt,A + vr,A + vs,A <lex vt,B + vr,B + vs,B,

pick B. If neither are true, check the next condition.

These comparisons lead to the selection of rules containing the most recurring

largest structural components by selecting the production with the maximal
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lexicographic vector, in which the element with the highest dimension is the

most-significant position in the comparison.

The two rules currently under consideration have the vectors vt,AA
= [3, 0],

vr,AA
= [0, 0], vs,AA

= [0, 0], vt,AB
= [3, 0], vr,AB

= [0, 0], and vs,AB
= [0, 0].

Since they are equivalent, the algorithm moves to criteria five.

5. If ∣∣∣∣∣vt,A − vr,A

∣∣− vs,A

∣∣∣ >lex

∣∣∣∣∣vt,B − vr,B

∣∣− vs,B

∣∣∣,
pick B, otherwise if∣∣∣∣∣vt,A − vr,A

∣∣∣− vs,A

∣∣∣ <lex

∣∣∣∣∣vt,B − vr,B

∣∣− vs,B

∣∣∣,
pick A. If neither are true, check the next condition.

Here the algorithm incorporates domain knowledge when an alphabet is used

such that Σ is closed under ′. In the case of DNA or RNA sequences the struc-

tural component vectors vr,i and vs,i will contain entries that identify k-grams

that are either reverse complements of other k-grams or of themselves, respec-

tively. Especially when identifying secondary structure in RNA, it is important

to locate the largest k-grams that have reverse complements, thereby identifying

the longest runs of base pairing present in the sequence. Hence, the algorithm

chooses rules that contain the most pairings between rules and inverted com-

plements by lexicographically comparing the absolute value of the difference

between the tandem repeat component vector and the two complementing vec-

tors. The rule with the smallest resultant vector is selected since it implies

that more of the largest structural components have matched up with reverse

complements.

As in the previous criteria, the component vectors are the same for the rule

being considered, so the algorithm will consider the sixth criteria next.
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6. At this point, the algorithm selects the rule that has the shortest structural

path distance between both body nodes. As mentioned previously, this will

result in fewer intermediate variables added to the grammar, thereby resulting

in a smaller model. The decision is if

dC + dD < dE + dF ,

then pick A, or if

dC + dD > dE + dF ,

then pick B. If neither are true, check the next condition.

The structural distances for the two rules being compared are both 1, so the

algorithm moves to criteria seven.

7. Next, define the variance between two rules as the difference between their ID.

The algorithm is encouraged to select the minimum-variant rule leading to an

improved parse tree shape, which has been shown to be beneficial in some coding

schemes (e.g. V.42 bis). So, if

∣∣φ(C)− φ(D)
∣∣ < ∣∣φ(E)− φ(F )

∣∣,
pick A, otherwise if

∣∣φ(C)− φ(D)
∣∣ > ∣∣φ(E)− φ(F )

∣∣,
pick B.

The variance is the same in both rules being considered in the example. The

algorithm has to use the final criteria to pick a production rule.

8. Finally, the algorithm has exhausted all criteria, and so the two rules are equiv-

alent. Thus, random selection is used to determine the final selection.
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The remainder of the forward pass for the example follows the same procedure

through the criteria list. After each node of the pseudo-tree is set, the final step

involves pruning all unused nodes and grammar rules. This is done by selecting

the rule at the root of the tree as the grammar start symbol S and generating a

derivation. All unused variables and internal tree nodes are deleted, resulting in the

inferred grammar and associated binary parse tree.

To complete the example, the resulting grammar derivation is

A6 ⇒ A2A5 ⇒ A0A1A5 ⇒ A0A1A0A
′
2 ⇒ A0A1A0A

′
1A
′
0 ⇒ acagt

and the binary parse tree is depicted in Figure 5.7. Notice the reverse complement

digram ac, represented by the variable A2, appears in the parse tree. Also, note that

A0 A1 A0 A'1 A'0

a c a g t

A2 A'2

A5

A6

Figure 5.7: Depiction of the inferred structure of example w.

vt,A6 = [3, 1], vr,A6 = [2, 1] and vs,A6 = [0, 0], indicating that there is one pair of

complementary digrams and five singletons within this derivation. Using structural

component vectors in this way, the algorithm is able to estimate a good model of the

given sequence paying special attention to the secondary structure of the input as the

algorithm moves up the graph.
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5.2.3 Symbolic Sequence

While the grammar inference is the core of this chapter, the resultant grammar is not

immediately useful without further processing. As a result, the program implementing

the inference algorithm outputs various formats including the binary parse tree of the

grammar in encapsulated postscript (see for example Figure 5.11), and a symbolic

sequence detailing the secondary structure in FASTA format as well as HTML (see

for example Figure 5.12).

The symbolic sequence is used to indicate where structural pieces have been iden-

tified within the input sequence. The symbols used are

• ‘.’ = not contained in a structural element;

• ‘(’ = contained in the first half of a complementary repeat;

• ‘)’ = contained in the second half of a complementary repeat;

• ‘*’ = contained in a tandem repeat;

• ‘[’ = contained in a tandem repeat and the first half of a complementary repeat;

• ‘]’ = contained in a tandem repeat and the second half of a complementary

repeat.

The present implementation allows the user to switch between allowing the square

brackets and just parenthesis to provide control over the importance of tandem repeats

compared to complementary repeats.

5.2.4 Example Simulations

In this section, example simulations are used to study different aspects of the inference

framework. All results were generated by compiling an executing the initial imple-

mentation, ICYK–short for “Inferring via CYK,” on an Apple MacBook Pro with an
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Intel Core 2 Duo operating at 2.53 GHz with 4 Gb of system memory and a 3 Mb L2

cache. ICYK assumes one of three possible terminal sets depending on if the input

is a sequence of amino acids, or DNA/RNA bases. Including necessary characters to

account for unknowns during sequencing, the former contains 23 different terminal

elements while the latter two contain the five well known characters {a, c, g, t/u, x},

where x is for unknown.

Experiments Detailing Grammar

The first set of experiments demonstrate several aspects of the grammar inference

framework by considering the inferred grammar in addition to the associated binary

parse trees. The experiments presented in this section will be revisited again in

Chapter 6 for comparison, especially those involving reverse complement fragments.

Beginning with two real molecules, consider the RNA input sequence gagc...gagc

taken from the Jena Library of Biological Macromolecules. This sequence is Chain W

of the TRP RNA-binding attenuation protein (TRAP) bound to an RNA molecule

containing 11 gagc repeats. The resulting grammar is given by V (G) =
{
A0, ..., A10

}
,

T (G) =
{
a, c, g

}
, P (G) =

{
A0 → a,A1 → c, A2 → A0A

′
1, A3 → A2A1, A4 →

A′1A3, A5 → A4A4, A6 → A5A4, A7 → A4A6, A8 → A7A4, A9 → A4A8, A10 → A8A9

}
,

where S = A10, and the resulting binary parse tree is depicted in Figure 5.8. As

shown in the figure, the algorithm outputs colored Ms to aid in matching repeated

rules within the same ID. Similarly, colored Os are used to indicate the reverse com-

plement of some other rule within the same ID. Not shown in this example are the

colored pentagons which represent self-complementing variables.

Consider that the example is composed of 11 continuous tandem repeats of the

4-gram gagc. It can be seen in Figure 5.8, that ID 4 contains exactly 11 interior

nodes, all of which are set to the same grammar rule A4 which has the derivation

A4 ⇒ A′1A3 ⇒ A′1A2A1 ⇒ A′1A0A
′
1A1 ⇒ c′ac′c⇒ gagc.
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Figure 5.8: Depiction of the inferred structure of an RNA molecule containing 11
gagc repeats.

The production A4 has been identified as a significant linguistic structural component

which is further validated from the description of this particular molecule. Above ID 4,

the algorithm decides that nodes A5, A6, A7, and A8 are also structural elements, as

is evident by their repetition. However, visual inspection shows that A4 is likely the

most interesting structural element, and that it is repeated many times leads to the

other structural pieces above it.

Next, consider the RNA input sequence gguauuuugguacc, which is Chain B

of the crystal structure of a 14mer RNA containing double uu bulges. Applying

the algorithm results in the grammar V (G) =
{
A0, ..., A9

}
, T (G) =

{
a, c, g, u

}
,

P (G) =
{
A0 → a,A1 → c, A2 → A′1A

′
1, A3 → A′0A

′
0, A4 → A2A

′
0, A5 → A4A0, A6 →

A3A2, A7 → A5A3, A8 → A6A
′
5, A9 → A7A8

}
, where S = A9 and the resulting binary

parse tree is depicted in Figure 5.9. This case is interesting in that the 4-gram ggua at

the beginning of the sequence has both a tandem repeat, as well as a reverse comple-

ment uacc located in overlapping fashion at the end of the sequence in gguacc. Here is

an example of using domain knowledge of the base pairing of RNA. In particular, the

algorithm favors the reverse complement rule due to criterion 5 of the scoring metrics.

Thus, rule A5 in ID 4 is used in both its forward derivation A5 ⇒ A4A0
∗⇒ ggua as
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Figure 5.9: Depiction of the inferred structure of a 14mer RNA containing double uu
bulges.

well as the reverse complement derivation A′5 ⇒ A′0A
′
4
∗⇒ uacc. The result indicates

that the 4-gram derived from A5 is structurally significant, in that it base-pairs with

A′5, forming a hairpin structure. The remaining terminal elements in between the

two A5-derived terminal sub-strings would then be the loop at the end of the hairpin

stack. Aside from the digrams generated by A2 and A3, there is not much struc-

turally significant about the loop elements, and so they are added to the parse tree

in a minimum-variant fashion.

The next result comes from analyzing the RNA sequence

gcguaaggcgcggcaccuugugc,

which was taken from an example presented in [43], in which there are two non-

crossing hairpin structures identified by underline and boldface, for convenience. An-

alyzing this sequence via RNAFold is presented in Figure 5.10 as a reference for

comparison. When analyzed via the algorithm presented in this chapter, the result-

ing grammar has 16 variables and productions and a partial parse tree as depicted

in Figure 5.11. This example also shows that colored pentagons represent the self-

complementing variable A2
∗⇒ gc.
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Figure 5.10: Depiction of the secondary structure of an RNA sequence containing two
small hairpin structures via the RNAFold software [43].
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Reverse Complements

Figure 5.11: Depiction of the inferred structure of an RNA sequence containing two
small hairpin structures.

Of particular importance within the parse tree, ID 3 and ID 4 each contain vari-

ables and their respective reverse complements, A5 and A10. Specifically, the deriva-

tions are A5
∗⇒ gcg and A′5

∗⇒ cgc, which form a hairpin with a stack of three, and

A10
∗⇒ gcac and A′10

∗⇒ gugc which also reverse complement each other resulting

in a hairpin of four base pairs. This interpretation matches the result presented in

Figure 5.10, which uses a method based upon minimization of free energy within a

dynamic programming algorithm. This further ties together the concept of secondary

structure physically present in molecules to that linguistically present in information-

carrying sequences.

The final example was fabricated during development to represent a more chal-

lenging problem of correctly identifying the structural pieces, and then using them

at higher IDs. In particular, the 7-gram gagacat is repeated seven times with small
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Figure 5.12: Symbolic sequence HTML output of an RNA sequence containing two
small hairpin structures.

random fragments of length four or less in between each occurrence. The random

fragments were inserted to make it difficult for the algorithm to identify repeated

structure. The parse tree resulting from analyzing the 67 element sequence is de-

picted in Figure 5.13. As expected, variable A9
∗⇒ gagacat is repeated seven times at
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Figure 5.13: Depiction of the inferred structure of a fabricated DNA sequence con-
taining seven tandem repeats of the 7-gram gagacat intermixed with small random
fragments.

ID 7 indicating that the algorithm was successful in finding the structural component.

As was the case in the first example, there are additional structural components dis-

covered above ID 7 that all contain A9 in their derivation of a terminal string. Again,

visual inspection would lead the user to see the most common significant element

would be the seven repeats of a 7-gram.



130

Experiments Applying the Symbolic Sequence

The second set of experiments demonstrate the ability of the inferred grammar to

capture the physical secondary structure present in DNA/RNA sequences. In each of

the following cases, small segments from the complete genome of Saccharomyces cere-

visiae mitochondria with known folding behavior were obtained from the NCBI web-

site (http://www.ncbi.nlm.nih.gov) using the accession number NC 001224.1. Each

segment was input to the RNAFold web server [43] at http://rna.tbi.univie.as.at/cgi-

bin/RNAfold.cgi, producing two different physical structure estimations: 1) Minimum

free energy (MFE) structure, and 2) Centroid structure. From the web server help

page: “the MFE structure of an RNA sequence is the secondary structure that con-

tributes a minimum of free energy. This structure is predicted using a loop-based

energy model and the dynamic programming algorithm introduced by [108].” By

comparison, “the centroid structure of an RNA sequence is the secondary structure

with minimal base pair distance to all other secondary structures in the Boltzmann

ensemble.” Both secondary structures are initially presented in “dot bracket nota-

tion,” similar to the symbolic sequence able to be output from ICYK. Additionally,

the web server is able to output a schematic image of the secondary structure in which

the sequence is drawn with base paired residues bonded to each other. The informa-

tion is equivalent to that of the dot bracket notation, but perhaps more appealing

visually.

For comparison, ICYK was used to infer each grammar. Subsequently, the addi-

tional step was applied to generate an associated symbolic sequence. Appropriate set-

tings were applied to generate only the reverse complement parenthetical sequences,

as tandem repeat information is not present in RNAFold outcomes. In all four dot

bracket listings presented in Figures 5.14, 5.16, 5.18, and 5.20, the subsequences that
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pair together have been highlighted with colored boxes. In particular, the regions

that are common among all three secondary structures are presented with the same

colored boxes. Those regions that present additional or completely different pairing

are highlighted using yellow boxes. All four cases include the folded view of the cen-

troid structure to help visualize how the dot bracket notation translates to a three

dimensional shape. These additional images are presented in Figures 5.15, 5.17, 5.19,

and 5.21.

The first segment, {68, 322 − 68, 396}, is shown in Figure 5.14. There is gen-

GGATCTGTAGCTTAATAGTAAAGTACCATTTTGTCATAATGGAGGATGTCAGTGCAAATCTGATTAGATTCGTAT
..((((...................(((((.......)))))......((((.......))))..))))......

(a) ICYK

GGATCTGTAGCTTAATAGTAAAGTACCATTTTGTCATAATGGAGGATGTCAGTGCAAATCTGATTAGATTCGTAT
(((((((..((((.......)))).(((((.......))))).....(((((.......))))))))))))....

(b) MFE

GGATCTGTAGCTTAATAGTAAAGTACCATTTTGTCATAATGGAGGATGTCAGTGCAAATCTGATTAGATTCGTAT
(((((((..................(((((.......))))).....(((((.......))))))))))))....

(c) Centroid

Figure 5.14: Depiction of Saccharomyces cerevisiae mitochondria, segment {68, 322−
68, 396}, in dot bracket notation detailing the predicted secondary structure.

erally good agreement between the grammar-based secondary structure present in
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Figure 5.14(a) and the centroid structure determined in Figure 5.14(c). In fact, they

are identical except for four extra base pairs present in the centroid result; three of

which are G·T wobble base pairs. The wobble hypothesis introduced in [20] suggested

that there may be some wobble in the pairing, such that a base pair is something other

than the standard Watson-Crick base pair. In particular, the literature suggests that

the G · U wobble base pair is a fundamental unit of RNA secondary structure [101].

Unfortunately, there are no provisions in the ICYK algorithm to allow for wobble

base pairs. This is the most common source of differences between the grammar-

based secondary structure and those estimated by the thermodynamic methods. The

MFE secondary structure presented in Figure 5.14(b) differs from the other two by

including another 4-stack hairpin that happens to include a wobble base pair. This

pair was not identified by ICYK due to the minimum structural piece length thresh-

old. This user defined threshold prevents any smaller pieces from consideration, and

it defaults to a length of four. Thus, all grammar-based secondary structures con-

tain only linguistic structural pieces of length four or more. The missing piece from

Figure 5.14(b) contains a G · T wobble pair at the outer pair; so if the threshold

were lowered from four to three, the ICYK algorithm would have captured a 3-stack

hairpin at the location of the 4-stack present in the MFE strcture.

The dot bracket notation of Figure 5.14(c) will fold together, presenting a shape

similar to the image depicted in Figure 5.15. The MFE shape would differ by includ-

ing a third inner hairpin in place of the large circular bulge on the left side of the

schematic.

The next segment considered, {67, 309− 67, 381}, is shown in Figure 5.16. These

results are similar to the previous segment, in which two of the three structures

agree, with the third presenting an additional hairpin stack. However, it is the MFE

and centroid structures that are nearly identical, where the MFE structure includes
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Figure 5.15: Depiction of the centroid-based secondary structure of Saccharomyces
cerevisiae mitochondria, segment {68, 322− 68, 396}, via the RNAFold software [43].

an additional base pair present on the leftmost inner hairpin stack; it is unclear

why the centroid structure would not include this base pair. Comparing the MFE

structure in Figure 5.16(b) to the ICYK structure in Figure 5.16(a), aside from the

additional 5-stack hairpin structure in the center, the outermost base pair differs in an

interesting way. The first seven bases of the fragment are GCTCTCT ; the underline

and boldface are used to detail the overlapping common subsequence that allow the

shift in pairing between the two different cases. The shift occurs due to the presence

of a G · T wobble pair in the outermost pair depicted in Figure 5.16(b).

The dot bracket notation of Figure 5.16(c) will fold into a shape similar to that

depicted in Figure 5.17. This is another “cloverleaf” shape in which there are smaller

hairpin elements occurring within the loop of a long distance base pairing. The ICYK

secondary structure would present a similar shape, with a third hairpin structure in

place of the large loop on the bottom of Figure 5.17.

The third segment considered, {67, 061− 67, 134}, is shown in Figure 5.18. This
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GCTCTCTTAGCTTAATGGTTAAAGCATAATACTTCTAATATTAATATTCCATGTTCAAATCATGGAGAGAGTA
...((((..((((........)))).(((((.......)))))....((((((.......)))))).))))..

(a) ICYK

GCTCTCTTAGCTTAATGGTTAAAGCATAATACTTCTAATATTAATATTCCATGTTCAAATCATGGAGAGAGTA
((((((...((((........))))......................((((((.......)))))))))))).

(b) MFE

GCTCTCTTAGCTTAATGGTTAAAGCATAATACTTCTAATATTAATATTCCATGTTCAAATCATGGAGAGAGTA
((((((...(((..........)))......................((((((.......)))))))))))).

(c) Centroid

Figure 5.16: Depiction of Saccharomyces cerevisiae mitochondria, segment {67, 309−
67, 381}, in dot bracket notation detailing the predicted secondary structure.

example details a similar amount of difference when comparing the grammar-based

and MFE structures, and then comparing the MFE and centroid structures. Both

dot bracket notations in Figure 5.18(a) and Figure 5.18(b) imply two stem cloverleaf

shapes in which the rightmost stem contains a bulge in the stack of the hairpin.

However, they differ due to two G ·T wobble pair on the green stack, and the 4-stack

yellow base pair in Figure 5.18(a) is shifted slightly to the 5-stack in Figure 5.18(b).

The ICYK algorithm would have scored these pairings the same since there are a total

of nine base pair being covered in both cases; that is, to ICYK, the red and yellow

pairings in Figure 5.18(a) have an equivalent score to those in Figure 5.18(b). The
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Figure 5.17: Depiction of the centroid-based secondary structure of Saccharomyces
cerevisiae mitochondria, segment {67, 309− 67, 381}, via the RNAFold software [43].

centroid structure present in Figure 5.18(c) differs from Figure 5.18(b) by excluding

the leftmost 5-stack hairpin; thus its folded shape depicted in Figure 5.19 is more

dissimilar to the other two, which would include a hairpin attached to the left side of

the large bulge in the middle of the structure.

The final segment considered, {63, 862 − 63, 937}, is shown in Figure 5.20. This

case resulted in identical MFE and centroid structures, and represents an example of

when the grammar-based secondary structure is quite different from the thermody-

namic structure. It turns out both Figure 5.20(a) and Figure 5.20(b) have a cloverleaf

shape in which there are local hairpins occurring within a long distance pairing. Ad-

ditionally, the end base pair segments shown in blue are nearly identical. The large

difference in identified inner base pair segments is due primarily to the presence of

G · T wobble pairs; which appear in all three of the stacks in Figure 5.20(b). As a

result of the presence of the wobble pair, the ICYK algorithm is restricted to infer the

best available set of length-4 or more base pair segments, which it found in the two
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GAGAATATTGTTTAATGGTAAAACAGTTGTCTTTTAAGCAACCCATGCTTGGTTCAACTCCAGCTATTCTCATA
(((((((...((((....))))..(((((......(((((.....)))))....))))).....)))))))...

(a) ICYK

GAGAATATTGTTTAATGGTAAAACAGTTGTCTTTTAAGCAACCCATGCTTGGTTCAACTCCAGCTATTCTCATA
(((((((.(((((.......)))))((((....(((((((.....)))))))..))))......)))))))...

(b) MFE

GAGAATATTGTTTAATGGTAAAACAGTTGTCTTTTAAGCAACCCATGCTTGGTTCAACTCCAGCTATTCTCATA
(((((((..................((((....(((((((.....)))))))..))))......)))))))...

(c) Centroid

Figure 5.18: Depiction of Saccharomyces cerevisiae mitochondria, segment {67, 061−
67, 134}, in dot bracket notation detailing the predicted secondary structure.

hairpin structures depicted in Figure 5.20(a). This example demonstrates the effect

of the inability of ICYK to take into account the wobble pair concept.

The dot bracket notation of Figure 5.20(b) will fold into the 3-stem cloverleaf

shape depicted in Figure 5.21.

The four cases presented here represent common results found in the 24 different

segments of the Saccharomyces cerevisiae mitochondria genome that were processed.

The primary differences between the grammar-based structures and those of the ther-

modynamic structures are due to the wobble pair concept that is not managed by the

ICYK algorithm; a problem left for future research.
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Figure 5.19: Depiction of the centroid-based secondary structure of Saccharomyces
cerevisiae mitochondria, segment {67, 061− 67, 134}, via the RNAFold software [43].

5.2.5 Future Research

It has been shown in [79, 85] and in Chapters 3 and 4 that inferred grammars may be

used as a viable biological sequence distance measure. The framework presented in

this chapter may be useful as a structural distance metric. In particular, a grammar

may be inferred for a sequence via the method presented followed by applying the

classic CYK algorithm using the new grammar and a different sequence. The metric

might be the height of the resultant parse tree.

A second application is the identification of significant secondary structures within

unknown sequences. However, the application executes within polynomial time.

Chapter 6 presents a second framework that provides a linear time algorithm for

inferring a CFG of DNA/RNA sequences. Hence, it is feasible for an eventual pro-

gram to be constructed that picks out significant structures within lengthy fragments

within a reasonable amount of time.

As detailed in Section 5.2.4, the present framework does not provide a means for

modeling the G · U wobble pair, a fundamental unit of RNA secondary structure
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GTTATATTAGCTTAATTGGTAGAGCATTCGTTTTGTAATCGAAAGGTTTGGGGTTCAAATCCCTAATATAACAATA
((((((((((................((((.........))))...((((.....))))...))))))))))....

(a) ICYK

GTTATATTAGCTTAATTGGTAGAGCATTCGTTTTGTAATCGAAAGGTTTGGGGTTCAAATCCCTAATATAACAATA
(((((((((((((........))))...........((((....)))).(((((....))))))))))))))....

(b) MFE and Centroid

Figure 5.20: Depiction of Saccharomyces cerevisiae mitochondria, segment {63, 862−
63, 937}, in dot bracket notation detailing the predicted secondary structure.

[101]. Future research should consider how the wobble pair may be included within a

grammar-based model; perhaps an edit grammar would be the best suited to manage

the possible “wild-card” behavior of the pairing between a G and both a C and T/U .

5.3 Conclusions

This chapter presented an algorithm for inferring a novel CFG with the intent of

modeling structural regions within biological sequences. Particular focus was applied

to RNA data, resulting in a complementary method to thermodynamic modeling for

predicting secondary structure. The CYK algorithm for performing sequence cate-

gorization given a CFG in CNF was detailed as the basis for the proposed grammar

inference algorithm. Preliminary results were provided to demonstrate the viability

of the algorithm to generate a useful depiction of the structure within a sequence

via a binary parse tree. Future research will focus on ways of applying the inference
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Figure 5.21: Depiction of the centroid-based secondary structure of Saccharomyces
cerevisiae mitochondria, segment {63, 862− 63, 937}, via the RNAFold software [43].

algorithm, beginning with constructing a method for converting the binary parse tree

into a schematic similar to those found in [44].

The next chapter presents a second approach to inferring CFGs for DNA and RNA

sequences. It improves upon the framework presented in this chapter by introducing

a linear-time algorithm for CFG inference. The examples presented in this chapter

are revisited in the next chapter to validate the approach by showing similar inferred

structures.
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Chapter 6

Linear-Time CFG Inference of
DNA/RNA Sequences

In this chapter, we continue the grammar inference work started in Chapter 5 which

resulted in a polynomial-time algorithm that could infer a context-free grammar

(CFG) for a sequence. The result was processed into a symbolic sequence that could

potentially be used in applications that require secondary structure information. Un-

fortunately, the usefulness of the ICYK algorithm suffers due to its algorithmic order

being of polynomial time. Using this fact as motivation, we present a novel CFG

inference algorithm that operates in linear time. The method is validated in two

ways: 1) the algorithm is used to infer grammars of the examples used in demon-

strating ICYK–we compare the two inferred grammars for the relevant sequences, 2)

we use a post-processed symbolic sequence as supplemental information to a modified

version of GramAlign the multiple sequence alignment (MSA) algorithm introduced

in Chapter 3. We compare the alignment-quality of the modified algorithm with

that of existing algorithms. The progressive alignment algorithm retains its use of a

grammar-based distance metric to determine the order in which biological sequences

are to be pairwise aligned. The progressive alignment occurs via pairwise aligning new

sequences with an ensemble of the sequences previously aligned. The scoring mecha-

nism used by the progressive alignment is modified to use both the primary structure



141

of the sequences as well as the secondary structure inferred by the proposed algo-

rithm. The performance of the modified MSA algorithm using the inference method

is validated via comparison to popular progressive multiple alignment approaches,

ClustalW, MAFFT, MUSCLE, and PSAlign using the BRAliBase 2.1 database of

RNA alignment files. The modified version of GramAlign has successfully built mul-

tiple alignments comparable to other programs with overall improvements due to the

inferred secondary structure information.

6.1 Background

Motivation was presented in Chapter 5 for developing a method to model the sec-

ondary structure necessarily present in DNA and RNA. The result was a polynomial-

time algorithm for inferring a CFG, which has the power to model both repeated

subsequences and biological palindromes; that is, a special version of palindromes

occur in DNA and RNA in which the Chargaff rules are enforced on the second half

of the palindrome. This provides the ability for the fragment to fold and bond with

itself thus generating spatially functional macromolecules.

The primary drawback of our grammar-based information-theoretic approach in

Chapter 5 was the polynomial-time order of execution. In [71] and [73] a linear-time

algorithm is presented for inferring CFGs for arbitrary inputs, including biological

data. One problem with the algorithm is the inability to make use of available do-

main knowledge–the Chargaff rules. However, an attempt to modify the algorithm is

presented in [13] that operates specifically on DNA sequences and makes use of the

Chargaff base pairing rules to generate a more compressed model. Unfortunately, the

proposed modification is ultimately too simplistic to capture the necessary complexity

present within DNA and RNA sequences.
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Thus, we propose a linear-time algorithm that significantly modifies the Sequiter

algorithm [71] and the subsequent DNASequiter algorithm [13]. The resulting CFG

is then used to identify subsequences that are reverse complemented. A preliminary

application is presented in which the location of these structural fragments are pro-

vided to a modified version of GramAlign, the MSA algorithm proposed in Chapter 3.

Results are presented showing the potential of the grammar inference algorithm for

detecting structure in DNA and RNA sequences.

6.2 Inference Algorithm

The starting point for the work in [13] is from a grammar inference algorithm called

Sequiter first introduced in [71]. The Sequiter algorithm is able to take any finite-

length sequence and infer a representative CFG. The primary objective being a good

approximation to that of the original for a better understanding of the machine that

generated the sequence under scrutiny.

6.2.1 Sequiter Algorithm

In general, reverse-engineering a set of rules governing a sequence involves searching

for various repetitions in the sequence. When repetitions are found, a rule might be

generated where a single symbol is used to represent that repetition. It is these rules

of repetition that formulate the grammar. The question is how should an algorithm

search for repetitions. The Sequiter algorithm operates by using the two rules:

1. Digram uniqueness requires that no two symbols can appear next to each other

more than once in the grammar.

2. Rule utility requires that any rule in the grammar must be used at least twice

somewhere else within the grammar, with the exception of the start rule, S.

These rules govern the creation of a compact CFG. To better understand these rules,

consider the following example adapted from [13].
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Sequiter Example

Suppose the observed DNA sequence is acgtcgacgt. After the first letter is processed,

the initial start rule, S, is created,

S → a.

As each subsequent letter is input to the algorithm, the two Sequiter rules are always

checked for violation. After the first five elements, the grammar has the single start

rule

S → acgtc.

After the c is added, an internal table containing digrams from all production bodies

is given by T = {ac, cg, gt, tc}. As can be seen, all digrams are unique. The next

letter input to the algorithm is g, which results in

S → acgtcg

and a digram table of T = {ac, cg, gt, tc, cg}. When g is added, the digram uniqueness

rule is violated and needs to be addressed. The violation is managed by creating a

new grammar rule, A0 → cg, and replacing all occurrences of the digram cg with the

new rule symbol, A0. The resulting grammar is

S → aA0tA0

A0 → cg

with a digram table of T = {aA0, A0t, tA0, cg}, which contains no repeating digrams.

Rule utility is also satisfied since A0 is used twice in rule S, and S is the start rule.

The next two letters input are ac which are appended to S giving

S → aA0tA0ac

A0 → cg
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and a digram table of T = {aA0, A0t, tA0, A0a, ac, cg}. Adding the letter g to S and

checking the rules

S → aA0tA0acg

A0 → cg

results in

S → aA0tA0aA0

A0 → cg

with a digram table of T = {aA0, A0t, tA0, A0a, aA0, cg}. Because digram uniqueness

is violated, another grammar rule is added, A1 → aA0. Making all the appropriate

changes results in the new grammar

S → A1tA0A1

A0 → cg

A1 → aA0

and the digram table T = {A1t, tA0, A0A1, cg, aA0}. Finally, t is added to S resulting

in

S → A1tA0A1t

A0 → cg

A1 → aA0

with the digram table T = {A1t, tA0, A0A1, A1t, cg, aA0}, which leads to a rule addi-

tion A2 → A1t, giving

S → A2A0A2

A0 → cg

A1 → aA0

A2 → A1t.
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At this point the digram table contains T = {A2A0, A0A2, cg, aA0, A1t}, and so the

digram uniqueness requirement is satisfied. However, notice that rule A1 is only used

once on the right-hand side of the grammar rules, in rule A2. This is a violation of

rule utility, in that every rule needs to be used at least twice. So, A1 needs to be

deleted and the grammar rules must be changed accordingly. The result is

S → A2A0A2

A0 → cg

A2 → aA0t

with a digram table of T = {A2A0, A0A2, cg, aA0, A0t}, which does not have any

repetitions. Also, A0 and A2 are both used twice in grammar production bodies.

The application of interest to [13] is the compressibility of DNA sequences using

Sequiter-inferred grammars. The authors introduce an interesting modification to

Sequiter in order to operate specifically on DNA sequences. Their proposed mod-

ification utilizes reverse complements in their grammar inference algorithm called

DNASequiter.

DNASequiter Example

Recall the following properties of reverse complements in DNA/RNA sequences:

• The complement of a is t/u and of c is g. The x′ notation is used to imply

complement, so a′ = t/u, t′/u′ = a, c′ = g and g′ = c.

• The reverse complement of two DNA/RNA sequences x and y satisfies (xy)′ =

y′x′. For example, say x = acg and y = tac. Then (xy) = acgtac =⇒ (xy)′ =

gtacgt = (gta)(cgt) = y′x′.

• The reverse complement of the reverse complement of a DNA/RNA sequence

is the original sequence. For example, say x = acg. Then, ((x)′)′ = ((acg)′)′ =

(cgt)′ = acg = x.



146

In light of these properties, the algorithm presented in [13] adds a new rule to the

two pre-existing rules of Sequiter. The resulting DNASequiter rules are:

1. Digram uniqueness.

2. Rule utility.

3. Reverse complement digram uniqueness and rule utility requires that digram

uniqueness and rule utility hold for reverse complements as well as the original

elements. Note that only one grammar rule is created. Whenever the rule

or its complement is used, either case counts toward satisfying the rule utility

requirement.

Based on this rule addition, reconsider the example DNA sequence acgtcgacgt.

The internal table, T , used in Sequiter is replaced with the three tables: 1) TTR to

hold tandem repeat digrams, 2) TRC to hold reverse complement digrams, and 3) TSC

to hold self-complementing digrams. Just as before, we begin with the start rule

S → a

followed by the addition of c, which gives

S → ac

with a tandem repeat digram table, TTR = {ac}, and a reverse complement digram

table, TRC = {gt}, since (ac)′ = gt. Next add g to give

S → acg

and digram tables TTR = {ac}, TRC = {gt}, and TSC = {cg}. For clarity, we have

introduced a third table to separate the digrams that are their own reverse comple-

ment, or self-complementing, such as the case of (cg)′ = cg. When t is added, we

have the grammar

S → acgt



147

with the digram tables

TTR = {ac,gt}

TRC = {gt, ac}

TSC = {cg}.

As a result, we have a reverse complement digram uniqueness violation. Hence, we

create the rule A0 → ac, resulting in the grammar

S → A0A
′
0

A0 → ac

and digram tables

TTR = {ac}

TRC = {gt}

TSC = {A0A
′
0}.

Adding the next three letters, cga, does not cause any rule violations. So, consider

the addition of the subsequent c,

S → A0A
′
0cgac

A0 → ac,

when, followed by a check of the grammar rules, results in

S → A0A
′
0cgA0

A0 → ac

with digram tables containing

TTR = {A′0c,gA0, ac}

TRC = {gA0, A
′
0c, gt}

TSC = {A0A
′
0, cg}.
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Here we have another reverse complement digram uniqueness violation because (A′0c)
′ =

gA0. So a new rule is created, A1 → A′0c, giving

S → A0A1A
′
1

A0 → ac

A1 → A′0c

and digram tables

TTR = {A0A1, ac, A
′
0c}

TRC = {A′1A′0, gt, gA0}

TSC = {A1A
′
1}.

With no violations, g is input to the algorithm, which does not result in any interesting

behavior. So, consider the addition of the final t, which begins with the grammar

S → A0A1A
′
1gt

A0 → ac

A1 → A′0c.

After checking the grammar rules and their complements, we get

S → A0A1A
′
1A
′
0

A0 → ac

A1 → A′0c

with digram tables

TTR = {A0A1,A
′
1A
′
0, ac, A

′
0c}

TRC = {A′1A′0, A0A1, gt, gA0}

TSC = {A1A
′
1}.
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With the reverse complement digram uniqueness rule in violation, the algorithm cre-

ates a new rule A2 → A0A1, which gives

S → A2A
′
2

A0 → ac

A1 → A′0c

A2 → A0A1.

But now rule A1 violates rule utility, as it is only used in the rule body of the A2

production. In response, the algorithm deletes rule A1 and makes appropriate changes

to get

S → A2A
′
2

A0 → ac

A2 → A0A
′
0c

with final digram tables containing

TTR = {ac, A′0c}

TRC = {gt, gA0}

TSC = {A2A
′
2, A0A

′
0}.

Comparing this grammar to that of the Sequiter output may not show a dramatic

difference in terms of the compressibility as was the goal of [13]. In fact, by measuring

grammars with the number of symbols in production bodies, this grammar is only

one less symbol than the Sequiter-inferred grammar. However, this grammar captures

some additional information at a higher level. Notice the start rule derivation is one

variable followed by its reverse complement. This implies the entire sequence is a

biological palindrome in which the second half of the sequence is the reverse comple-

ment of the first half. This can be an important piece of information considering the

mechanical nature of DNA and RNA fragments which form three-dimensional shapes
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due to folding and subsequent hydrogen bonding. Thus, the secondary structure

present in biological sequences is also necessarily present in the sequence schematics.

A CFG is able to model the physical secondary structure through palindromes, which

are also referred to as secondary structure in a grammar.

Unfortunately, the DNASequiter algorithm is too simplistic to consistently achieve

an accurate estimation of many real biological sequences. To see why, consider the

following example.

DNASequiter Example Failure

A more sophisticated inference algorithm is necessary to capture a better represen-

tation of the secondary structure present in DNA/RNA sequences. For example,

reconsider the DNASequiter algorithm as applied to the RNA sequence

gcguaaggcgcggcaccuugugc,

which was previously analyzed in Chapter 5 and was adapted from an example pre-

sented in [43]. As determined by hand-analysis, this RNA fragment contains two

non-crossing hairpin structures identified by underlines and boldface, for convenience.

The algorithm begins by appending eight bases to S before any governing inference

rules are violated. The current grammar is

S → gcguaagg

with digram tables of

TTR = {gu, aa, ag, gg}

TRC = {ac, uu, cu, cc}

TSC = {gc, cg, ua}.
Append c to give

S → gcguaaggc
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with digram tables

TTR = {gu, aa, ag, gg}

TRC = {ac, uu, cu, cc}

TSC = {gc, cg, ua, gc}.
The first occurrence of a digram uniqueness violation occurs in the self-complementing

table. This violation can be thought of as either a tandem repeat, or a reverse

complement; it turns out this ambiguity is the downfall of this algorithm. Continuing

on, we create the rule A0 → gc, resulting in the grammar

S → A∗0guaagA
∗
0

A0 → gc

where the superscript ∗ is introduced to help identify variables that are self-complementing.

The current digram tables are

TTR = {A∗0g, gu, aa, ag, gA∗0}

TRC = {cA∗0, ac, uu, cu, A∗0c}

TSC = {gc, ua}.
Appending the next g causes a digram uniqueness rule violation. The initial grammar

is

S → A∗0guaagA
∗
0g

A0 → gc

where the underlined symbols cause a new rule to be created giving

S → A1uaagA1

A0 → gc

A1 → A∗0g.

Now there is a rule utility violation since A0 is only used one time in rule A1. After

correcting the problem, we have the grammar

S → A1uaagA1

A1 → gcg
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and digram tables

TTR = {A1u, aa, ag, gA1}

TRC = {aA′1, uu, cu, A′1c}

TSC = {ua, gc, cg}.
The next c is added without significant effect; a subsequent g is added causing a

digram uniqueness rule violation, with the grammar before the correction being

S → A1uaagA1cg

A1 → gcg

with digram tables

TTR = {A1u, aa, ag, gA1, A1c}

TRC = {aA′1, uu, cu, A′1c, gA′1}

TSC = {ua, gc, cg, cg}.

After a new rule is created, the grammar is

S → A1uaagA1A
∗
2

A1 → gA∗2

A2 → cg

and digram tables are

TTR = {A1u, aa, ag, gA1, A1A
∗
2, gA

∗
2}

TRC = {aA′1, uu, cu, A′1c, A∗2A′1, A∗2c}

TSC = {ua, cg}.
The next five letters can be concatenated to S without any rule violations. The

subsequent u results in the grammar

S → A1uaagA1A
∗
2gcaccu

A1 → gA∗2

A2 → cg
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and digram tables

TTR = {A1u, aa, ag, gA1, A1A
∗
2, gA

∗
2, A

∗
2g, ca, ac, cc, cu}

TRC = {aA′1, uu, cu, A′1c, A∗2A′1, A∗2c, cA∗2, ug, gu, gg, ag}

TSC = {ua, cg, gc}.

After the violation is corrected, the next character is appended resulting in another

digram uniqueness rule violation. The current grammar inference is

S → A1uaA3A1A
∗
2gcacA

′
3u

A1 → gA∗2

A2 → cg

A3 → ag

and digram tables

TTR = {A1u, aA3, A3A1, A1A
∗
2, gA

∗
2, A

∗
2g, ca, ac, cA

′
3, A

′
3u, ag}

TRC = {aA′1, A′3u,A′1A′3, A∗2A′1, A∗2c, cA∗2, ug, gu, A3g, aA3, cu}

TSC = {ua, cg, gc}.

After the new rule is added, A3 appears only once and needs to be removed. After

everything is cleaned up the grammar looks like

S → A1uA4A1A
∗
2gcacA

′
4

A1 → gA∗2

A2 → cg

A4 → aag

and the digram tables are

TTR = {A1u, uA4, A4A1, A1A
∗
2, gA

∗
2, A

∗
2g, ca, ac, cA

′
4, aa, ag}

TRC = {aA′1, A′4a,A′1A′4, A∗2A′1, A∗2c, cA∗2, ug, gu, A4g, uu, cu}

TSC = {cg, gc}.
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The next two letters result in a digram uniqueness rule violation, causing the gener-

ation of another rule and resulting in the current grammar of

S → A1uA4A1A
∗
2gcA5A

′
4A
′
5

A1 → gA∗2

A2 → cg

A4 → aag

A5 → ac

with digram tables

TTR = {A1u, uA4, A4A1, A1A
∗
2, gA

∗
2, A

∗
2g, cA5, A5A

′
4, aa, ag, A

′
4A
′
5, ac}

TRC = {aA′1, A′4a,A′1A′4, A∗2A′1, A∗2c, cA∗2, A′5g, A4A
′
5, uu, cu, A5A4, gu}

TSC = {cg, gc}.
The final two letters “grow” the A5 rule by causing interleaved and repeated digram

uniqueness violations and rule utility violations. That is, A′5g pairs with the earlier

occurrence of cA5 causing the formation of A6 → cA5 which turns into A6 → cac.

When the final c is concatenated to S, A′6c pairs with the earlier occurrence of gA6

causing the formation of A7 → gA6 which becomes A7 → gcac. The final grammar is

then given by

S → A1uA4A1A
∗
2A7A

′
4A
′
7

A1 → gA∗2

A2 → cg

A4 → aag

A7 → gcac

with digram tables

TTR = {A1u, uA4, A4A1, A1A
∗
2, gA

∗
2, A

∗
2A7, A7A

′
4, aa, ag, A

′
4A
′
7, ca, ac}

TRC = {aA′1, A′4a,A′1A′4, A∗2A′1, A∗2c, A′7A∗2, A4A
′
7, uu, cu, A7A4, ug, gu}

TSC = {cg, gc}.
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Consider the derivation of the inferred start rule, where we note the location of top-

level variable boundaries with an explicit placement of the concatenation operator.

We will refer to this type of derivation as the landscape of the sequence, and it

indicates the inferred secondary structure by identifying the primary pieces that are

repeated either directly or reverse complementarily:

S ⇒ A1uA4A1A
∗
2A7A

′
4A
′
7

⇒ A1 · u · A4 · A1 · A∗2 · A7 · A′4 · A′7

⇒ gcg · u · aag · gcg · cg · gcac · cuu · gugc.

We have indicated the location of the two real hairpin structures that actually occur in

the sequence with an underline and boldface. For convenience, the known mechanical

folding of the original sequence is as indicated in the following:

gcg · uaagg · cgc · g · gcac · cuu · gugc.

As seen in the landscape derivation, the second physical hairpin stem is correctly

identified with the grammar-based reverse complement pairing of gcac and gugc.

However, the first hairpin stem has not correctly been identified because the self-

complementing gc digram caused the algorithm to greedily form a tandem-repeat

rule when the second occurrence of gc appeared in the sequence. The resulting gram-

mar implies the trigram is only repeated, and does not indicate any hairpin at all.

While the DNASequiter algorithm compressed the sequence as intended, it failed to

properly model the important secondary structure feature that occurs due to reverse

complement palindromes. The algorithm fails in this regard due to the fact that it is

attempting to infer a CFG via a greedy left-to-right parsing of the input sequence in

order to maintain linear processing time.
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6.2.2 Framework

As was the case of the algorithm presented in Chapter 5, the goal of the algorithm

presented here is to infer a grammar from an unknown sequence with biological sec-

ondary structure in mind. The primary problem with the ICYK algorithm was it’s

polynomial processing time. Thus, the second goal of the algorithm presented here is

for the algorithm to have a linear processing time, as was the case for Sequiter and

DNASequiter.

Here we introduce Inferring via Sequiter (IVS), a linear time algorithm that builds

a CFG by greedy left-to-right parsing of an input DNA/RNA sequence. Similar to

DNASequiter, we modify the violations rules in order to build the set of variables

in the inferred grammar. However, in order to focus on the reverse complement

palindromes present in DNA/RNA, the governing set of algorithm rules is significantly

different from those present in DNASequiter. The primary objective of IVS is not

necessarily compression as was the case of DNASequiter. Instead, the real objective

is to produce a landscape with the similar quality to those that result from the ICYK

algorithm from Chapter 5.

The primary problem that occurred in DNASequiter was due to self-complementing

digrams, such as (gc)′ = gc. Consider the trigram uau which has a reverse complement

trigram aua. Suppose the latter happens to have a u that occurs immediately to the

left in the sequence, so we have the 4-gram uaua. Because of the self-complementing

digrams (ua)′ = ua and (au)′ = au, there are overlapping repeats in the 4-gram uaua.

These kinds of overlapping repeats can cause the DNASequiter algorithm to greedily

match the leftmost tandem repeat, which is then replaced with a newly created vari-

able head, ATRua. When this happens, the reverse complement trigram is no longer

seen because a portion of it overlapped with tandem repeat trigram. This problem of
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tandem repeat fragments overlapping with reverse complement fragments is a result

of the self-complementing digrams, and the reason for a new set of violations rules.

Keep in mind that in order to capture a more accurate landscape, the following set of

governing rules are meant to favor the identification of reverse complement fragment

pairs over the discovery of tandem repeat fragments:

1. Terminal reverse complement trigram uniqueness requires that the reverse com-

plement of three consecutive terminal symbols can not appear in the grammar.

2. Terminal trigram uniqueness requires that no three terminal symbols can ap-

pear next to each other more than once in the grammar when at least one of

their occurrences is in the body of a variable other than the start rule, S.

3. Variable reverse complement digram uniqueness requires that the reverse com-

plement of two consecutive symbols can not appear next to each other more

than once in the grammar when at least one is a variable.

4. Rule utility.

These rules allow for the creation of a CFG with emphasis on capturing the reverse

complement palindromes present in DNA/RNA sequences. Reconsider the example

presented to demonstrate the downfall of the DNASequiter algorithm in regards to

capturing an appropriate landscape,

gcguaaggcgcggcaccuugugc.

The algorithm begins by appending three bases to S before checking any rules

S → gcg
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with an initial table containing terminal reverse complement trigrams, TRC3 = {cgc}.

It turns out that the next seven terminals are added before anything interesting

happens, at which time the grammar is

S → gcguaaggcg

with trigram table

TRC3 = {cgc, acg, uac, uua, cuu, ccu, gcc}.

At this time, a subsequent c is appended to S, causing a terminal reverse comple-

ment trigram uniqueness violation since the trigram cgc at the end of S appears in

TRC3. In response to the rule violation, the new variable A0 → gcg is added to the

grammar, the appropriate occurrences in S are replaced with A0, and two new tables

are added; one contains the terminal tandem repeat trigrams, and the other contains

the variable/terminal reverse complement digrams. The current grammar state is

S → A0uaaggA
′
0

A0 → gcg

with tables

TRC3 = {cgc, uua, cuu, ccu}

TTR3 = {gcg}

TRC2 = {aA′0, A0c}.

Notice that the only entry in TTR3 is a terminal-only trigram that is in the produc-

tion body of a variable other than that of S. As a result, only reverse complement

structures are searched for in S–should another occurrence of a previously identified

trigram appear later in S, it will be replaced with an associated variable. At this
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point, six more letters are concatenated to S before another violation occurs. Before

the violation happens, the grammar state is

S → A0uaaggA
′
0ggcacc

A0 → gcg

with tables

TRC3 = {cgc, uua, cuu, ccu, gcc, ugc, gug, ggu}

TTR3 = {gcg}

TRC2 = {aA′0, A0c, cA0}.

At this point, u is added to the body of S making a ccu trigram which is an entry in

TRC3. Thus, a new rule is created resulting in the grammar state

S → A0uaA1A
′
0ggcaA

′
1

A0 → gcg

A1 → agg

with tables

TRC3 = {cgc, ccu, gcc, ugc}

TTR3 = {gcg, agg}

TRC2 = {aA′0, A′1u,A0A
′
1, cA0, A1u}.

The next letter, u, is added to S resulting in the digram A′1u, which is an entry in

TRC2. Here is an example of variable reverse complement digram uniqueness being

violated. In response, the algorithm creates a new rule and adds it to the grammar

resulting in the current state

S → A0uA2A
′
0ggcaA

′
2

A0 → gcg

A1 → agg

A2 → aA1
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with tables containing

TRC3 = {cgc, ccu, gcc, ugc}

TTR3 = {gcg, agg}

TRC2 = {aA′0, A′2a,A0A
′
2, cA0, A2u,A

′
1u}.

Now A1 appears in only one production body which violates rule utility and results

in the grammar

S → A0uA2A
′
0ggcaA

′
2

A0 → gcg

A2 → aagg

with tables

TRC3 = {cgc, ccu, gcc, ugc, cuu}

TTR3 = {gcg, agg, aag}

TRC2 = {aA′0, A′2a,A0A
′
2, cA0, A2u}.

The next three characters are appended without incident when the final c is added.

Prior to the final letter, the grammar state is

S → A0uA2A
′
0ggcaA

′
2gug

A0 → gcg

A2 → aagg

with tables

TRC3 = {cgc, ccu, gcc, ugc, cuu, cac}

TTR3 = {gcg, agg, aag}

TRC2 = {aA′0, A′2a,A0A
′
2, cA0, A2u, cA2}.

After the c addition, the terminal-only trigram ugc is found in TRC3 causing a violation
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and resulting in a new rule addition giving

S → A0uA2A
′
0gA3A

′
2gA

′
3

A0 → gcg

A2 → aagg

A3 → gca

with tables

TRC3 = {cgc, ccu, ugc, cuu}

TTR3 = {gcg, agg, gca, aag}

TRC2 = {aA′0, A′2a,A0A
′
2, cA0, A2A

′
3, cA2, A

′
3c, A3c}.

As was done for the second DNASequiter example, consider the landscape of the

inferred grammar, where we note the location of top-level variable boundaries with

an explicit placement of the concatenation operator:

S ⇒ A0uA2A
′
0gA3A

′
2gA

′
3

⇒ A0 · u · A2 · A′0 · g · A3 · A′2 · g · A′3

⇒ gcg · u · aagg · cgc · g · gca · ccuu · g · ugc.

Again, we have indicated the location of the two real hairpin structures that actually

occur in the sequence with an underline and boldface. Recall the known mechanical

folding of the original sequence is as indicated in the following:

gcg · uaagg · cgc · g · gcac · cuu · gugc.

In this landscape derivation, both physical hairpin stems are identified with the

grammar-based reverse complement pairings of gcg-cgc and gca-ugc. The only mis-

take is the inferred length of the second hairpin stem being three bases instead of four.

This error occurred as a result of the greedy left-to-right parsing where two variables

are positional neighbors, and so the boundary between grammar pieces shifted so that
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A′2 contained the c that should have been part of A3. This is not a significant prob-

lem as the landscape was still able to show the presence of the two hairpin structures

on either end of the string. Further, this problem could be addressed by processing

a string twice; once in the forward direction as was done here, and once in the re-

verse direction. The resulting inferred grammars could be merged by comparing both

landscapes and splitting variables apart wherever there is question about overlapping

boundaries. We leave this problem for future research.

IVS Implementation

Implementing the IVS algorithm is a straight-forward matter of managing three dif-

ferent tables containing k-grams and a list of grammar production rules. However, it

is somewhat complicated by the fact that variable elements used to compose digrams

in one table have a dependency with terminal elements used to compose trigrams in

the other tables. Additionally, care must be given due to the reverse complementary

nature of the table entries. As a result, the seemingly simple table searches and string

manipulations are made more difficult. Thus, the initial design of the IVS implemen-

tation is somewhat involved; and so it is completely detailed with flowchart diagrams

in Appendix A for documentation’s sake.

Algorithm Complexity

It was shown in [71] that the Sequiter algorithm is of linear order when the implemen-

tation uses doubly linked-lists with additional side information to manage the digram

table. The IVS algorithm could be implemented with a similar technique in order to

achieve a similar linear order. For simplicity, linked lists were not used in the IVS

program. Each character, si for i ∈ {1, ..., N}, where N is the length of the sequence,

is processed one at a time. After the letter is retrieved, it is used to form either a
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trigram consisting of terminals or a digram consisting of a variable and a terminal.

The tables are searched for an occurrence of the newly formed k-gram; the worst-

case being the trigram is not in the reverse complement table so the tandem repeat

table is also checked. All tables are implemented using a binary search tree abstract

data type; meaning each table containing T k-grams can be searched on average in

O(log(T )) with an upper-bound of O(T ) occurring in a completely unbalanced tree.

In the event the trigram is found in the tandem repeat table, the worst-case contin-

ues with a new variable being created and inserted into both the reverse complement

and tandem repeat tables. Again, the binary search tree insertion procedure has an

average time of O(log(T )) and an upper-bound of O(T ). Finally, various k-grams can

be deleted from the tables, a procedure that has an average time of O(log(T )) and

an upper-bound of O(T ). Thus, an upper-bound of O(NT ) occurs with the selected

implementation. However, this is a very loose upper-bound as many times the worst-

case path is not taken. In particular, the tandem repeat table never contains any

entries until the reverse complement table has been used to identify complementary

repeats. Also, each time a digram search fails, the subsequent element is added to a

new digram that contains only terminals, and so no table searches are performed at

all. Further, it is somewhat unlikely to have completely unbalanced trees for all the

k-gram tables. Thus, a much more likely order of complexity is given by O(N log(T )).

Additionally, because T < N this complexity can be restated as O(N log(N)), which

is worse than linear but much better than polynomial-time, as was the case of the

ICYK algorithm of Chapter 5.

6.2.3 Symbolic Sequence

As was the case for the ICYK program developed in Chapter 5, the inferred grammar

is not directly applicable without further processing. As a result, the IVS imple-

mentation used in Section 6.2.4 outputs a symbolic sequence detailing the secondary

structure in FASTA format.
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The symbolic sequence is used to indicate where structural pieces have been iden-

tified within the input sequence. The symbols used are

• ‘.’ = not contained in a structural element;

• n = contained in a structural element of length n.

It was decided for this implementation to keep track of structural pieces without

considering the nature of the component. The reason being due to the existence

of dynamic structural elements such as riboswitches in which a structural piece can

form chemical bonds with different pieces in the same sequence depending on various

environmental conditions (e.g., regulations). So, instead of trying to infer the specific

behavior of a structural piece, we opt to only identify the presence of a structural

piece. Note that the inferred grammar does contain inferred behavior due to the

complementary repeat fragments, which may be useful in future research.

6.2.4 Example Simulations

Comparison with ICYK

We begin with comparing the symbolic sequences inferred by IVS to those inferred

via ICYK from Chapter 5. The first example is the RNA input sequence gagc...gagc

taken from the Jena Library of Biological Macromolecules. This sequence is Chain W

of the TRP RNA-binding attenuation protein (TRAP) bound to an RNA molecule

containing 11 gagc repeats. It was included in the ICYK examples which was capable

of identifying tandem repeated fragments. IVS was designed to identify only com-

plementary repeated regions before any tandem repeats are found. As a result, IVS

correctly identified no grammar-based fragments.

Next, consider the RNA input sequence gguauuuugguacc, which is Chain B of

the crystal structure of a 14mer RNA containing double uu bulges. Applying the IVS
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algorithm results in the grammar V (G) =
{
A0, A1, A2, A3, A5

}
, T (G) =

{
a, c, g, u, x

}
,

P (G) =
{
A0 → A5A

′
1A
′
1A
′
1A
′
1A
′
2A
′
2A
′
5, A1 → a,A2 → c, A3 → x,A5 → A′2A

′
2A
′
1A1

}
,

where S = A0. Note the addition of production A3 → x which is a type-1 rule used

as a “catch-all” for any unknown bases present in an input sequence–a feature that

was not available in the ICYK implementation. The symbolic sequence representing

the landscape is shown in Figure 6.1 clearly showing the correct identification of the

gguauuuugguacc

4444......4444

Figure 6.1: Depiction of the IVS-inferred structure of a 14mer RNA containing double
uu bulges.

4-gram complementary repeat regions at the ends. The inferred structure identified

by the IVS algorithm matches that of the inferred structure present in the ICYK

result. However, the IVS grammar is slightly more compact at a size of 15 body

elements compared to 18 used by ICYK.

The next result comes from analyzing the RNA sequence

gcguaaggcgcggcaccuugugc,

which was previously used to demonstrate the operation of the IVS algorithm. The

symbolic sequence representing the landscape is shown in Figure 6.2.

gcguaaggcgcggcaccuugugc

333.4444333.3334444.333

Figure 6.2: Depiction of the IVS-inferred structure of an RNA sequence containing
two small hairpin structures.

Analyzing this sequence via RNAFold was already presented in Figure 6.3 as a

reference for comparison, and is repeated in Figure 6.3 for convenience. Additionally,
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Figure 6.3: Depiction of the structure of an RNA sequence containing two small
hairpin structures via the RNAFold software [43].

the parse tree indicating the landscape from the ICYK-inferred grammar is repeated

in Figure 6.4 for convenience.

1’ 1

2*

1’
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0’ 0 0

3

1’

6

1’
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1 1’ 1
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1 0’ 0’
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1’ 0’ 1’

4’

1
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10’

12

14

Start

Reverse Complements

Figure 6.4: Depiction of the ICYK-inferred structure of an RNA sequence containing
two small hairpin structures.

Notice the landscape of the symbolic sequence depicted in Figure 6.2 and that

of the parse tree present in Figure 6.4. In fact, they are nearly identical with the

exception of the number of bases present in the second hairpin structure. In the

ICYK-inferred parse tree, rule A10 represents the 4-base stem of the rightmost hairpin

structure and rule A6 derives the middle reverse complement piece consisting of only

three bases. In terms of hand-analysis which agrees with the RNA-fold result in

Figure 6.3, the middle structure is not considered meaningful, as the molecules are

not able to physically fold into a shape that would allow the chemical bonding of

all three reverse complement structures. Generally, mechanical methods assume the
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least amount of energy is used to generate the physical structures. As previously

described, the IVS-inferred symbolic sequence shifts the size of the middle structure

with that of the rightmost structure because the pieces overlap and IVS operates

as a greedy algorithm which ultimately processed the middle structure before the

rightmost structure was encountered. The presence of the rightmost hairpin structure

is still intact.

As in the case of the first example, the final example included in the ICYK results

will not be meaningful as the fabricated sequence consisted of embedded tandem

repeats of the 7-gram gagacat. Thus, the results are omitted.

6.2.5 Application: Multiple Sequence Alignment

Now that we have an efficient algorithm for inferring secondary structural information

present in DNA/RNA sequences, we would like to gather and use that information in

order to guide MSAs. That is, secondary structure occurs in biological sequences for

various reasons, one of which is to perform specific mechanical functions by chemically

folding into three-dimensional shapes. Thus, as in the case of MSA, should sequences

perform similar high-level functionality, then their secondary structures should be

aligned as well as their primary structures. If we have knowledge of the location

of structural pieces within the sequences we are aligning, then we should be able to

apply that knowledge in the scoring scheme in order to improve the overall alignment.

We have created a modified version of GramAlign from Chapter 3 that allows for

the input of an IVS-inferred symbolic sequence. If enabled to do so, the modified ver-

sion of GramAlign adds the structural information to the pairwise alignment scoring.

Recall the original GramAlign which utilizes three different scoring matrices in the

Needleman-Wunsch dynamic programming method to perform pairwise alignment.

During the forward phase of the alignment, two matrices are used to score the oc-

currence of gaps with the third used to score the base pair under scrutiny. The gap
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matrices were required to keep track of the sophisticated affine scoring that included

different penalties marking the beginning of a gap, extending a gap, and noting the

difference at the tail ends. The GramAlign mechanism is made more complicated by

the fact that after two sequences are aligned, further pairwise alignments take place

between a new sequence and the previously determined ensemble sequence. Gra-

mAlign has a mechanism in place to keep track of various scoring parameters for

every aligned column associated with the ensemble sequence, generally based on the

confidence of the column contents.

By comparison, the secondary structural modification to GramAlign is somewhat

simplistic to demonstrate the viability of using the inferred structural information

generated by IVS. GramAlign is modified in two ways. First, the symbolic sequence

information is loaded per each sequence and a score is added to the substitution score

matrix used in the forward phase of Needleman-Wunsch. For the base pair being

compared, the following scoring is added to the substitution score:

• if neither base is in a grammar piece, nothing is added to the score;

• if only one base being compared is in a grammar piece, a user defined mismatch

penalty is applied to the score;

• if both bases being compared are in a grammar piece, a user specified match

benefit is added to the score.

In a sense, this simplified scoring mechanism is a “hard-decision” where the actual

size of the grammar piece is not taken into account. Perhaps in future work a “soft-

decision” scoring scheme could be used that took the grammar piece length into

consideration.

The second modification to GramAlign is the addition of the grammar piece length

information to the ensemble data structure. In particular, after two sequences have
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been aligned the ensemble sequence contains column-wise information including sym-

bol percentages that lead to per-column scoring metrics. We now add a new metric

that is simply the maximum grammar piece length found during pairwise alignment

for the column. Then, subsequent pairwise alignment with the ensemble compares

the new sequence symbolic grammar pieces with the maximum grammar piece length

previously found in the associated column under scrutiny. Again, future work may

focus on more sophisticated methods of keeping grammar pieces from splitting apart,

or pre-aligning based on grammar pieces.

To demonstrate the benefit of using the IVS-inferred symbolic sequence infor-

mation, we performed alignment experiments similar to those from Chapter 3. All

results were generated by compiling and executing the respective MSA programs on

the same computer; specifically, an Apple MacBook Pro with an Intel Core 2 Duo

operating at 2.53 GHz with 4 Gb of system memory and a 3 Mb L2 cache. The

experiments were conducted using the unaligned FASTA files from the BRAliBase

2.1 [104] data-set, a sequel that largely extended the original work of the BRAliBase

II [34] data-set. Both data-sets constructed their reference alignments using Rfam

[37, 38, 33] which is a database of sequence families of structural RNAs, including

ncRNA genes as well as cis-regulatory RNA elements. Rfam release 9.0 contains 603

families, each represented by an MSA of known and predicted representative mem-

bers of the family, annotated with a consensus base-paired secondary structure [33].

Compared to BRAliBase II, BRAliBase 2.1 used an updated Rfam version, 7.0, and

includes many more RNA families and also varies the number of sequences. The re-

sulting aligned FASTA files from each algorithm were scored using compalignp, one

of two scoring programs provided with the BRAliBase 2.1 distribution that gener-

ates a modified sum-of-pairs score (SPS) defined as the fractional sequence-identity

between a trusted reference alignment and a test alignment in [104].
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BRAliBase Experiments

Alignment files in the BRAliBase 2.1 database are separated into six categories (k2

through k15), each exhibiting an increase in the number of sequences per alignment.

In particular, each file within a subdirectory of kn contains n sequences to be aligned

with each other. Each category is further divided into 36 directories, each representing

an RNA family from the Rfam 7.0 database. The results presented in Table 6.1 detail

the average SPS score over each category as aligned by GramAlign version 1.18 both

with and without the symbolic sequence information generated by IVS version 0.1,

ClustalW version 1.83, PSAlign using ProbCons as the tree generation (no version

given, archive created on 8/19/2008), MAFFT version 6.821, and MUSCLE version

3.8.31. Additionally, a fast version was tested for ClustalW, MAFFT and MUSCLE.

In particular, the command line options used were clustalw -quicktree, mafft

--retree 1 and muscle -maxiters 1 -diags -sv -distance1 kbit20 3 to incor-

porate high-speed progressive options. In all cases the default parameters were used

for each program.

Table 6.1: Average SPS score for each algorithm for each category offered by the
BRAliBase 2.1 test suite.

Algorithm k2 k3 k5 k7 k10 k15

GramAlign 0.8089 0.8145 0.8195 0.8222 0.8299 0.8235
GramAlign w/ IVS 0.8128 0.8176 0.8250 0.8265 0.8379 0.8354

PSAlign 0.6058 0.6292 0.6570 0.6748 0.7126 0.7169
ClustalW (fast) 0.7959 0.8064 0.8205 0.8235 0.8368 0.8455
ClustalW 0.7959 0.8084 0.8261 0.8337 0.8483 0.8517
MAFFT (fast) 0.8254 0.8360 0.8511 0.8584 0.8661 0.8739
MAFFT 0.8254 0.8396 0.8569 0.8671 0.8756 0.8836
MUSCLE (fast) 0.8332 0.8407 0.8515 0.8581 0.8679 0.8722
MUSCLE 0.8332 0.8462 0.8626 0.8759 0.8869 0.8971
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Additional statistical information is provided in Table 6.2. This table contains

relative score comparisons between alignments generated via GramAlign with no ex-

tra structural information to those of GramAlign with the IVS-inferred symbolic

sequence information. In all categories, the average SPS score increased when using

the IVS structural information. Additionally, the total number of alignments with

an improved SPS score was always more than the total number of alignments with a

decreased SPS score. Further, the average amount by which the SPS score increased

was always more than the average SPS score decrease present in the alignments that

had a worse result. The net result was at least an improvement or no change to the

alignment in 80% of all categories with the greatest benefit occurring in the larger

datasets of k10 and k15 which had an average alignment improvement in over 30% of

the cases.

The preliminary results from all experiments show viable promise of the proposed

IVS algorithm.

Table 6.2: Comparison of individual SPS scores for GramAlign with and without IVS
symbolic information for each category offered by the BRAliBase 2.1 test suite.

Statistic k2 k3 k5 k7 k10 k15

SPS Increase 1718 1104 639 397 276 156
No Change 5886 2856 1290 745 427 262
SPS Decrease 1372 875 476 284 142 85
Mean SPS Increase 0.0622 0.0480 0.0546 0.0472 0.0476 0.0634
Mean SPS Decrease 0.0526 0.0433 0.0453 0.0445 0.0452 0.0458
% Dataset Improvement 19% 23% 27% 28% 33% 31%
% Dataset Improvement 85% 82% 80% 80% 83% 83%
or No Change
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6.2.6 Future Research

The IVS algorithm is in its infancy. There are already places where improvements can

be made. For example, there is the problem of neighboring and overlapping structural

pieces which leads to incorrectly identified structure lengths. One solution to some

of the cases is to perform a subsequent inference of the target sequence in reverse.

The result could be compared to the original inference resulting in an identification

of overlapping pieces. The overlaps could then be adjusted by an efficient post-

processing algorithm that takes into account the location of pieces and discounts any

that form pseudoknot structures.

As was the case for the ICYK algorithm in Chapter 5, the framework presented

here may be useful as a structural distance metric. Where using ICYK may be

prohibited by its polynomial order of execution time, the IVS algorithm or its future

derivatives may be applied instead due to its low processing time. Thus, a second

application is the identification of significant secondary structures within unknown

sequences. Additionally, future work may focus on better application of the IVS-

inferred symbolic information with regards to the MSA problem. The preliminary

method presented here was merely a demonstration of the potential; perhaps even

better results may come from re-working the scoring mechanisms in place in the

current GramAlign.

6.3 Conclusions

This work has presented an efficient algorithm for inferring a novel CFG with the

intent of modeling structural regions within biological sequences. Particular focus

was applied to RNA data, resulting in a complementary method to thermodynamic

modeling for predicting secondary structure. The Sequiter and DNASequiter algo-

rithms for performing grammar-inference were detailed as the basis for the proposed
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algorithm, IVS. Preliminary results were provided to demonstrate the viability of the

algorithm to generate useful structural information necessarily present in a biological

sequence. Future research will focus on ways of applying the inference algorithm.
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Chapter 7

Conclusions

The primary objective of this dissertation is to model biological data with abstract

grammars. These grammar models are inferred and applied to efficiently solve various

sequence analysis problems present in computational biology.

First we introduce sequence comparison algorithms using a grammar-based se-

quence distance predicated upon a classic text-based dictionary compression scheme.

The grammar-based distance work presented in [79] is adapted to generate a numeric

metric useful in each application, including: multiple sequence alignment; relative

fragment assembly; and sequence clustering for the purpose of removing redundancy

within a dataset. In Chapter 3, the grammar-based distance metric is first used in

GramAlign, a multiple sequence alignment program, to guide the order in which se-

quences are progressively aligned. Subsequently, the same grammar-based distance

metric is used in GramContig, a contig arrangement program, to identify the relative

locations of fragments from a set; thereby performing fragment assembly relative to

a reference sequence. Then, in Chapter 4, a modified version of the grammar-based

distance metric is used in GramCluster, a sequence clustering program, to determine

accurate partitioning of a set of related biological sequences.

Second we present the first of two grammar inference algorithms with the goal

of capturing secondary structural information present in biological sequences. We
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introduce a novel framework for inferring context-free grammars and their associated

parse trees in a polynomial-time algorithm. The grammar can be used to identify

significant biological structural information present in the sequences without recourse

to thermodynamic considerations. Chapter 5 details how the classic sequence classi-

fication method, CYK, is used as the inspiration for ICYK, a context-free grammar

inference program. Resultant parse tree outputs demonstrate one possible visualiza-

tion of significant structural pieces; comparisons show the pieces to be structural in

both terms of grammar as well as molecular folding. Parenthetical sequence outputs

demonstrate a second visualization of significant structural pieces; comparisons to

thermodynamic methods provide validation of the grammar inference framework and

more importantly the connection between linguistics and biological structures.

Finally, we present a second grammar inference algorithm that improves upon the

first by reducing the algorithm order from polynomial-time to linear-time. In Chap-

ter 6, we detail the novel framework for inferring context-free grammars based on

Sequiter [71] in a linear-time algorithm. The grammar is used to identify significant

biological structural information necessarily present in DNA or RNA sequences. The

inferred secondary structural information is provided to a modified version of Gra-

mAlign as supplemental information with the intent on improving pairwise sequence

alignment quality by modifying the dynamic programming scoring mechanism.

7.1 Future Research

It is shown in [79, 85] and in Chapters 3 and 4 that inferred grammars may be used

as a viable biological sequence distance measure. The inference algorithms presented

in Chapters 5 and 6 may be useful as a structural distance metric. In particular, a

grammar may be inferred for each sequence in a set followed by applying a gram-

mar comparison; for example, the classic CYK algorithm may be applied using one
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grammar and a different sequence. The metric might be the height of the resultant

parse tree. Perhaps the grammars may be compared via parenthetical sequences;

for example, the dot bracket output sequences from ICYK or IVS may be compared

against each other in a dynamic programming algorithm such as Needleman-Wunsch

or Smith-Waterman. In either case, the metric would be the distance that results due

to the shortest path resulting from the forward trace; or in the Smith-Waterman case,

local minima in the matrix would identify regions of structural similarity. Another

possibility is comparing the same parenthetical sequences using the LZ dictionary

compression method. As was done for the original sequences in Chapters 3 and 4,

the distance would be a calculation that accounts for how a dictionary is extended

in going from one parenthetical sequence to another. The biggest problem with this

idea is the lack of unique symbols, only ‘.’, ‘(’, and ‘)’. It turns out the interest-

ing information is the length and position of the structural pieces. Maybe the dot

bracket sequences can be encoded first, thereby indicating the run lengths of each

symbol. The resulting compressed sequences may provide more useful comparison

information.

A second application of the grammar inference work is the identification of signifi-

cant secondary structures within unknown biological sequences. However, as detailed

in Section 5.2.4, neither ICYK nor IVS provide a means for modeling the G ·U wobble

pair, a fundamental unit of RNA secondary structure [101]. Future research should

consider how the wobble pair may be included within a grammar-based model; per-

haps an edit grammar would be the best suited to manage the possible “wild-card”

behavior of the pairing between a G and both a C and T/U .

Similar to the wobble pair, differences can occur at the molecular level that are

not accounted for by a fixed grammar. When either ICYK or IVS infers a grammar

from a sequence it assumes there are no errors, and there is no allowance for small
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variabilities. An edit grammar allows for production rule modifications, or edits,

throughout a derivation. In this way, similar segments within a sequence can be

represented with the same grammar production rules, where each rule might have

an edit associated with it. This powerful grammar would be able to capture the

secondary structures even in the presence of small differences throughout the pieces.

The primary challenge here is creating an efficient inference algorithm.

Regarding the linear-time IVS algorithm from Chapter 6, there are areas where

improvements can be made. For example, neighboring and overlapping structural

pieces can lead to incorrectly identified structure lengths. A solution to many of the

cases is to perform a subsequent inference of the target sequence in reverse. Then the

forward and reverse inferred landscapes could be compared to identify overlapping

structural pieces. The overlaps could be adjusted by an efficient post-processing

algorithm that breaks longer runs into common shorter runs.

There is a language governing life–there can not be order without underlying

rules. We have shown many connections and relationships between our simple ab-

stract grammar models and physical molecular strands of information. We know that

biological sequences obey higher-levels of grammar due to the presence of pseudo-

knot structures. The challenge is in developing models and inference algorithms that

function within a reasonable order of execution time yet are still able to capture the

majority of structural information.
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Appendix A

IVS Diagrams

Initially, the IVS algorithm seemed simple enough to implement directly in ANSI

C. However, it quickly spiraled into a large, unmanageable mess. It was clear that

implementing the IVS algorithm required careful consideration. As a result, a sig-

nificant set of flowcharts were constructed to help guide the eventual program. The

development flowcharts are included in this appendix in Figures A.1-A.9.

The symbols used within the figures are defined as follows

• tRC3, tTR3, and tRC2 are the k-gram tables;

• S is the start rule;

• Y and Z are the penultimate and last indices used to form trigrams and digrams;

• N is the sequence length;

• i and ei are the current index and the current terminal of the sequence;

• R is the index of the next variable to be added;

• ∗x implies the terminal or variable within S at position x;

• RC(x) implies the reverse complement of x;
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• ∗x.len implies the fully-derived length of variable x;

• [h, b] is the grammar location of variable h body-index b.

S := 0 -> first 2 elements
1 -> a
2 -> c
3 -> x

R := 4

tRC3 := empty
tTR3 := empty
tRC2 := empty

Z := Current last 
        element of Rule 0
Y := Current penultimate
        element of Rule 0
N := Sequence length

i := 2

i < N Write Output 
Information

No
ei := Rule(si)

Yes

0<*Z<4 Digram = [*Zei]
No

0<*Y<
4

Yes

0 := 0.ei

Y := Z
Z := i

No

Trigram = 
[*Y*Zei]

Trigram 
in tRC3

No

No

Yes

Yes

Z := First element 
prior to i with 
nonzero length

Digram 
in tRC2

No Add RC
(Digram) to 
tRC2 [0,Z]

Digram in 
tRC2

Yes

YesNo
Num>0

Trigram in 
tTR3

Yes

i := i + 1

Trigram in 
tRC3

Add 
RC(Trigram)
to tRC3 [0,Y]

Trigram 
in tTR3

Main

Figure A.1: IVS diagram page 1–main.
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Enter

M := Number 
of copies of the 

trigram.

j := 0

j<M

No

Yes

Exit

r>3

r := Rule of 
jth entry.

j := j + 1

|r|=3

Yes

No

r is the head of the 
trigram production.

Yes

r := R

r -> RC(Trigram)
Add r to Grammar 
(usage = 0).

R := R + 1

No

j := 0
Num := 0

j<M

Yes

No

k=r

j := j + 1

Yes

k=0

No

No

Replace
Trigram
in tRC3

y<(Y-2)

Yes

No

Yes

Add 
RC(Trigram) 
to tTR3 [r,0]

M := M + 1

*y.len 
=1

Yes

No

Add 
Trigram 

to tRC3 [r,0]

Add 
Type-2 at 

end

M := M - 1
Num :=Num+1Num>0

YesDelete 
RC(Trigram) 

from tTR3 [r,0]

Delete 
Trigram 

from tRC3 [r,0]

No
k :=Rule of jth entry.
y :=Start position of 

jth entry.

Trigram in 
tRC3

Figure A.2: IVS diagram page 2–trigram in reverse complement trigram table.
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Enter

M := Number 
of copies of the 

trigram.

j := 0

j<M

No

Yes

Exit

r>3

r := Rule of 
jth entry.

j := j + 1

|r|=3

Yes

No

r is the head of the 
trigram production.

Yes

r := R

r -> Trigram
Add r to Grammar 
(usage = 0).

R := R + 1

No

j := 0

j<M

Yes

No

k=r

j := j + 1

Yes

k=0

No

No

Replace
Trigram y<(Y-2)

Yes

No

Yes

Add 
RC(Trigram) 
to tRC3 [r,0]

M := M + 1

*y.len 
=1

Yes

No

Add 
Trigram 

to tTR3 [r,0]

Add 
Type-2 at 

end

M := M - 1

k :=Rule of jth entry.
y :=Start position of 

jth entry.

Trigram in 
tTR3

Figure A.3: IVS diagram page 3–trigram in tandem repeat trigram table.
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Enter

M := Number 
of copies of the 

digram.

j := 0

j<M

Yes

r := Rule of 
jth entry.

No

j := j + 1

|r|=2
No

Yes

r := R

r -> RC(Digram)
Add r to Grammar 
(usage = 0).

Z.usage := Z.usage+1

R := R + 1

Add 
Digram 

to tRC2 [r,0]

M := M + 1

r is the head of the 
digram production.

j := 0

j<M

Yes

No

k :=Rule of jth entry.
y :=Start position of 

jth entry.

k=r

j := j + 1

Yes

No

Replace
Digram

Exit

Add 
Type-2 at 

end M := M - 1

Digram in tRC2

Figure A.4: IVS diagram page 4–digram in reverse complement digram table.
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[k,y] := r
r.usage := r.usage+1

[k,y].len := 3
[k,y+1].len := 0
[k,y+2].len := 0

Exit

Enter

Check & Delete 
(k,y) from 

tRC3 and tTR3

y>0

Yes

No

*
(y-1).len
>0

Yes

No

Check & Delete 
(k,y-1) from 

tRC3 and tTR3

Add 
RC(Digram) 

to tRC2 (k,y-1)

(y-1)>0

Yes

No

*
(y-2).len
>0

Yes

No

Check & Delete 
(k,y-2) from 

tRC3 and tTR3

Q := First element 
prior to y with 
nonzero length

Delete 
(k,Q) from 

tRC2

Add 
RC([*Q*r]) 

to tRC2 (k,Q)

(y+3)
<N

Yes
No

*(y
+3).len

=1

Delete 
(k,y+2) from 

tRC2

Add 
RC([*r*(y+3)]) 
to tRC2 (k,y)

No

Yes

Check & Delete 
(k,y+1) from 

tRC3 and tTR3

Add 
RC([*r*(y+3)]) 
to tRC2 (k,y)

(y+4)
<N

No

Yes

*(y
+4).len

=1

No

Yes

Check & Delete 
(k,y+2) from 

tRC3 and tTR3

Replace 
Trigram

Figure A.5: IVS diagram page 5–replace trigram occurrence.
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[k,y]:=r
r.usage:=r.usage+1

*Z.usage:=*Z.usage-1
*y.usage:=*y.usage-1
[k,y+[k,y].len].len:=0
[k,y].len:=|r|

Exit

Check & Delete
(k,y) from 

tRC2

Enter

y>0

Yes

No

*
(y-1).len
>0

Yes

No

Check & Delete  
(k,y-1) from 

tRC2

Add 
RC([*(y-1)*r]) 
to tRC2 (k,y-1)

(y-1)>0

*
(y-2).len
>0

Check & Delete 
(k,y-2) from 

tRC3 and tTR3

Yes

No

Yes

No

Q := First element 
prior to y with 
nonzero length

Delete 
(k,Q) from 

tRC2

Add 
RC([*Q*r]) 

to tRC2 (k,Q)

(y+|r|)
<N

NoYes

Check & Delete  
(k,y+[k,y].len) 

from tRC2

Add 
RC([*r*(y+|r|)]) 
to tRC2 (k,y)

Replace Digram

Figure A.6: IVS diagram page 6–replace digram occurrence.
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[0,Y] := RC(r)
r.usage := r.usage+1

[0,Y].len := 3
[0,Z].len := 0
[0,i].len := 0

Exit

Enter

*
(Y-1).le

n>0

Yes

No

Check & Delete 
(0,Y-1) from 

tRC3 and tTR3

Add 
RC([*(Y-1)*Y]) 
to tRC2 (0,Y-1)

(Y-1)>0

*
(Y-2).le

n>0

Check & Delete 
(0,Y-2) from 

tRC3 and tTR3

Yes

No

No

Yes

Y>0

Yes

No

Q := First element 
prior to Y with 
nonzero length

Delete 
(0,Q) from 

tRC2

Add 
RC([*Q*r]) 

to tRC2 (0,Q)

Add Type-2 Trigram 
at End

Figure A.7: IVS diagram page 7–add type-2 trigram rule at the end of the start rule.
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Enter

Z>0

*
(Z-1).len
>0

Yes

No

Check & Delete  
(0,Z-1) from 

tRC2

Add 
RC([*(Z-1)*r]) 
to tRC2 (0,Z-1)

Yes

No

Check & 
Delete 

unused rule

[0,Z] := RC(r)
r.usage := r.usage+1

[0,Z].len:=[0,Z].len+1
[0,i].len := 0

Exit

Q := First element 
prior to Z with 
nonzero length

Delete 
(0,Q) from 

tRC2

Add 
RC([*Q*r]) 

to tRC2 (0,Q)

Add Type-2 Digram 
at End

Figure A.8: IVS diagram page 8–add type-2 digram rule at the end of the start rule.
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Enter

Q := location of *Z in r
y := First entry before Q
z := Q + (*Z).len

[r,Q] := the body of *Z

Check & Delete  
(r,y) from tRC2

Check & Delete  
(r,Q) from 

tRC2

Modify each (*Z,q) from 
tRC3, tTR3 and tRC2 to 
(r,q+Q)

Need to look at [Q-2, Q-1, 
Q and Q+1].  Need to add 
either one or two entries to 
tRC3, tTR3 or tRC2.

Need to look at [z-2, z-1, z 
and z+1].  Need to add 
either one or two entries to 
tRC3, tTR3 or tRC2.

Exit

Check & Delete 
Unused Rule

Figure A.9: IVS diagram page 9–check and delete unused rule.
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