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 Today’s electric utilities  are confronted with a myriad of challenges that include 

aging infrastructure, enhanced expectation of reliability, reduced cost,  and coping 

effectively with uncertainties and changing regulation requirements. Utilities rely on 

Asset Management programs to manage inspections and maintenance activities in order 

to control equipment conditions. However, development of strategies to make sound 

decisions in order to effectively improve equipment and system reliability while meeting 

constraints such as a maintenance budget is a challenge.  

The primary objective of this dissertation is to develop models and algorithms to 

study the impact of maintenance toward equipment/system reliability and economic cost, 

and to optimize maintenance schedules in a substation to improve the overall substation 

reliability while decreasing the cost.     

Firstly, stochastic-based equipment-level reliability and economic models are 

developed depending on maintenance types. Semi-Markov processes are deployed to 

represent deteriorations, failures, inspection, maintenance and replacement states for 

reliability modeling; semi-Markov decision processes are implemented for economic cost 
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evaluations considering capital investment, operations and maintenance cost, and outage 

cost.   

Secondly, substation level reliability and economic cost models are established 

based on equipment level models. Sensitivity studies for analyzing the impact of 

equipment maintenance toward system level reliability and overall system cost are 

conducted.  

Finally, maintenance optimization scenarios and solutions are developed, to 

determine optimal equipment maintenance rates that maximize substation reliability or 

minimize overall cost, while meeting operational and economic cost constraints, based on 

Particle Swarm Optimization techniques.   

Moreover, fuzzy Markov and Markov decision processes are designed to calculate 

fuzzy reliability indices and economic cost; a parallel Monte-Carlo simulation method is 

also proposed to perform reliability evaluations through simulation method, in which the 

accuracy and computation speed are testified.  

The algorithms developed in this dissertation are valuable for system reliability 

evaluation, maintenance planning, maintenance prioritizations, and maintenance policy. 

The programs developed can assist asset managers in making maintenance-related 

decisions, to effectively balance the system level reliability and associated maintenance 

cost. 
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CHAPTER 1  
INTRODUCTION 

 

Most of the current electric utility transmission and distribution equipment in the 

United States is over 30 years old [1]. As more and more equipment and systems age, 

electric utilities will be required to develop and implement asset management strategies 

and practices to balance their investment and operation and maintenance (O&M) costs to 

increase earnings while meeting reliability requirements and operation under budget 

constraints[2], [3].  

1.1 Asset Management 

Asset management is a program in which an organization make spending 

decisions that aligns all asset-level spending budget with high-level business objectives 

[4]. Asset management defines the process of guiding the acquisition, use and disposal of 

assets to make the most of their future economic benefit, and manage the related risks 

over entire asset life [5]. Asset management is a combination of managerial view and 

technical view of assets.   

The diagram in Figure 1.1 presents the asset management activities related with 

maintenance, and organization levels in utilities.  
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Figure 1.1 Maintenance related Activities in Utilities Asset Management Process 

From an organizational standpoint, activities in Figure 1.1 are categorized into 

three parts [5]:  

• Asset-Oriented activities focus on asset as individual component (for managing 

critical equipment), or the population of assets of similar type (for managing a 

group of equipment). Usually they are the responsibilities of maintenance 

department. 

• Network-Oriented activities emphasize on outage scheduling with respect to 

system operation constraints. They are the responsibilities of operations, and some 

time coordinated with maintenance department. 

• Enterprise-oriented activities involve strategic decision on capital investment, 

overall reliability and policy setup. Generally they are managing activities. 

From engineering stand point, the activities in Figure 1.1 have other meanings. 

On the one hand, the processes from top to bottom are maintenance optimization related 

activities. The purpose from top to bottom is to optimize the limited maintenance and 
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budget resources, to ensure reliable power supply and decrease interruption 

frequency/durations. On the other hand, the activities from bottom to top are evaluation 

processes. Detailed modeling of aging / maintenance / failure histories will more 

accurately represent asset values/conditions, in order to better support maintenance 

resources optimization described before.  

1.2 Maintenance Models    

Maintenance is defined as an activity to arrest, reduce or eliminated device 

deteriorations. The purpose of maintenance is to extend equipment lifetime, increase 

asset values (equipment conditions), and avoid costly consequences of failures [6]. 

Models to establish connections between maintenance and the corresponding 

lifetime extension, asset condition, and reliability improvement are required in order to 

make sound decisions related to maintenance activities.   

Empirical Approaches and Mathematical Models  

 The relationship between maintenance and its impact can be based either on 

empirical approaches or mathematical models [6]. 

Empirical approaches are based on experience and manufacturers’ 

recommendations. A widely used empirical approach is reliability centered maintenance 

(RCM). RCM is based on condition monitoring, failure cause analysis, and investigation 

for operation needs and priorities, in order to select critical components and prioritize 

maintenance steps [6].  

In contrast, mathematical models are more flexible than heuristic policies. A 

distinct advantage of mathematical models over empirical approaches is that the 

outcomes can be optimized. Mathematical models include deterministic or probabilistic -
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based methods. Since maintenance models are used for predicting the effects of 

maintenance in the future, probabilistic methods are more appropriate than deterministic 

methods, even through probabilistic methods may increase complexity and loss in 

transparency.       

Probabilistic Mathematical Models 

Recently many utilities have replaced the scheduled maintenance activates by 

predictive maintenance, in which the schedule is based on analysis of periodic 

inspections or condition monitoring results [6]. For these applications, quantitative 

correlation between reliability and maintenance has to be developed. Probabilistic 

maintenance models are usually adopted to quantify the above correlations, as generally 

the models deal with random deteriorations, failures, aging processes, etc [7].  

1.2.1 Reliability and Economic Modeling with Maintenance for Equipment  

Equipment Reliability Modeling 

In earlier reliability research, the states of equipment were usually categorized as 

fully successful or fully failure state [8]. Maintenance was also included but only as an 

active failure [9]. However, two states are not sufficient to reflect real working conditions 

of power systems equipment. For example, equipment can still work while part of their 

material deteriorates. Recently, “imperfect repair” or “imperfect preventive maintenance” 

has been introduced into the research [10], in which deterioration states are added into 

equipment modeling [11], and minor or major maintenance was introduced into 

preventive maintenance strategies [12]. These improvements make evaluation of 

maintenance’s impact on individual equipment more practical [13].  
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Endrenyi reported that probabilistic maintenance models would provide the 

highest flexible and economical solutions to utilities maintenance policies [6]. While 

considering equipment deterioration, maintenance, failures and other states, Markov 

processes and semi-Markov processes are powerful tools for modeling the transition of 

these states [14]. In previous work, optimal maintenance policy evaluation techniques for 

power equipment have been studied using minor maintenance or major maintenance [15-

18]. This dissertation includes the addition of inspection state in equipment modeling, in 

order to better represent predictive maintenance and condition monitoring.  

Equipment Maintenance Cost Modeling 

 From the diagram presented in Figure 1.1, it is evident that maintenance cost 

assessment is an indispensable part of asset management. Generally cost and reliability 

objectives are in conflict, as increased reliability usually means higher maintenance cost, 

especially for distribution systems with aging equipment.   

  The costs associated with equipment not only include inspection / maintenance / 

repair costs that are apparent, but also contain penalty costs associated with 

failures/maintenance outages that are unapparent [19]. Brown divided the maintenance 

related costs into Utility Cost of Reliability (UCR) and Customer Cost of Reliability 

(CCR), and claims that one of the objectives of making maintenance decisions is to 

minimize the Total Cost of Reliability (TCR) combined above two costs [20].  

This dissertation adopts this idea to develop equipment economic model to study 

the impact of maintenance schedules toward the equipment cost. In addition, the 

dissertation presents how to minimize maintenance cost and to maximize the benefit 

under target availability. 
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1.2.2 Reliability and Economic Modeling with Maintenance for Substation  

 Substations play a vital role in both transmission and distributions (T&D) systems. 

Traditional reliability studies focus on generation, transmission or distribution, mainly for 

system planning [1]. Previous work on switching station or substation reliability 

evaluation incorporates maintenance as active failure or forced outage [21-25]. Recently, 

more maintenance planning is considered and evaluated in transmission planning and 

operation [26] [27]. Industry has also developed several tools for maintenance planning 

[28] [20]. Our previous works involve development of a Fuzzy-based technique, for 

determining the impact of maintenance on substation reliability evaluation including 

uncertainty of model parameters [29] [30]. However, there are certain shortcomings in 

previous research for evaluating the impact of maintenance on load point availability as 

stated below: 

• Maintenance is treated the same for the equipment life duration, while in practice 

different types of maintenance may be performed at different stages, such as 

useful-life period and wear out period. 

• Maintenance is assumed to be perfect. Traditional methods assume that 

equipment enters fully success state again after maintenance; but in practice, 

maintenance may not be perfect, in which equipment can enter a state in different 

conditions after maintenance, or enter other types of maintenance states. 

• Previous studies didn’t provide a rank or priority of the equipment. Determining 

which component is more critical for a specific load and which one should be 

maintained first are common problems in utilities asset management. 



7 

• There are no economical analyses of the substation maintenance cost, as well as 

other costs related to the equipment outage. In practice, economical evaluation is 

indispensable for utilities to make maintenance decision under limited budget. 

Based on reliability and economic models developed for equipment while 

incorporating maintenance, similar models are established for substations in this 

dissertation. This dissertation also quantifies the importance of every component in a 

substation, from the perspective of load point or entire substation.  

1.2.3 Modeling Uncertainty 

Accurate modeling of aging equipment requires historical data related to 

deterioration, failures and maintenance in order to statistically reflect the stochastic 

processes of the equipment and systems. In practice, however, historical data is either 

insufficient or uncertain. Imprecision or ambiguity is the characteristic of many reliability 

model parameters, generally because of insufficient historical data.  

Fuzzy mathematics has been developed to model these types of uncertainties [31-

33]. Recently, fuzzy mathematics has been applied successfully to power systems, e.g., 

optimal power flow [34], [35], transformer condition monitoring and diagnosis [36], 

electric machine controls [37], [38], and reactive power compensation [39].  

The inherent parameter of uncertainty in reliability evaluation techniques has also 

led several researchers to apply fuzzy set methods. Fuzzy logic was introduced to 

represent uncertain information, and basic models are presented for calculation of 

different reliability indices [33], [40]. In [41], [42], the uncertain load information is 

represented by fuzzy values while the bulk system reliability indices are calculated using 

fuzzy arithmetic. These papers initiate application of fuzzy mathematics in reliability 
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evaluation, but with relatively simple models and specific applications.  

Markov models with fuzzy inputs have also been developed in which 

uncertainties in transition rates/probabilities are represented by fuzzy values [43-45]. 

Generally in existing models, the methods for calculating the fuzzy outputs can be 

categorized into two classes. In class one, the uncertain transition rates/probabilities in 

the matrix of Markov equation are replaced directly by fuzzy membership functions, and 

fuzzy logic or arithmetic are utilized to mimic the Markov processes calculation [43][45]. 

This approach is computationally tedious and requires complex fuzzy logic calculations, 

and is only applicable for small scale Markov models with limited states. In class two, the 

reliability indices are derived, as functions of transitions rates / probabilities and then 

fuzzy arithmetic is applied to compute the fuzzy indices [44]. However this approach 

requires deriving explicit equations, which is impractical in some cases especially in 

system level models. In general, the standard framework of Markov processes with fuzzy 

transition probabilities or fuzzy transition rates is not pursued. 

In this dissertation, a general approach to develop a fuzzy Markov model is 

proposed. This approach incorporates parameter uncertainty and probability in aging 

equipment models and existing reliability models. The proposed method can also be used 

for determining the optimal maintenance rates that maximizes specific reliability indices. 

1.3 Maintenance Optimization  

 As described in Section 1.2, for mathematical maintenance models, maintenance 

optimization with regards to changes in some basic model parameters (such as 

maintenance rates) can be carried out for evaluating maximum reliability or minimum 

costs [11]. 
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 It is pointed out that preventive maintenance optimization (PREMO) can be more 

efficient than RCM. Preventive maintenance optimization is based on extensive task 

analysis rather than system analysis, with a capability of drastically reducing the required 

number of maintenance tasks in a plant. Therefore, it can be very useful in ensuring the 

economic operation of power stations [6]. 

 For maintenance optimization studies, Hilber, Bertling [46] presented a concept of 

applying a multi-objective optimization method for maintenance optimization in 

distribution systems. The process is similar to that carried out during distribution 

planning. Jiang and McCalley [47] developed a risk-based method for transmission 

system maintenance optimization, by studying the cumulative long-term risk caused by 

failure of each piece of equipment, which considers equipment failure probability, 

deterioration and outage consequence. Yang and Chang developed several approaches to 

include stochastic-based equipment models for substation and system maintenance 

optimizations, and implement evolutionary-based optimization techniques [48] [49]. 

 Based on the works cited and similar researches it is evident that the outcome of 

maintenance optimization approaches can improve equipment or system interruptions 

while decreasing maintenance related cost.  This dissertation also studies maintenance 

optimization process for substations, with detailed modeling of equipment aging and 

maintenance processes.       

1.4 Overview of Dissertation 

   The organization of this dissertation is as follows: 

• Chapter 2 provides an introduction to the problem of power equipment aging and 

deterioration. A number of stimulants that contribute to the aging process are 
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discussed. Maintenance that mitigation deterioration is presented, and a 

comparison of existing maintenance policies are provided. 

• The first part in Chapter 3 gives a complete description of how to utilize Markov 

processes to study the impact of maintenance toward equipment reliability, as 

well as determine the optimal maintenance rates to maximize equipment 

availability. 

• The second part in Chapter 3 provides how to implement Markov decision 

processes to model the economic cost for aging equipment with maintenance. 

• The first part in Chapter 4 gives the approaches of how to extend equipment 

reliability and economic modeling to substation level, and study the impact of 

equipment maintenance toward load points or overall substation reliability or cost. 

• The second part in Chapter 4 illustrates different optimization scenarios as well as 

optimization techniques that can solve these problems. 

• The first part in Chapter 5 gives an approach to calculate fuzzy reliability indices 

by fuzzy Markov and Markov decision processes. 

• The second part in Chapter 5 presents a parallel Monte-Carlo simulation approach 

for system level reliability studies, which can significantly reduce the 

computation comparing to traditional Monte-Carlo simulation. 

• Chapter 6 provides the complete case studies for each approaches developed 

through Chapters 3-5. Sensitivities studies are also conducted. 
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CHAPTER 2  
AGING EQUIPMENT 

 

 This chapter describes the aging problem in power system with emphasis on 

power transformers and circuit breakers. Different maintenance policies that are utilized 

to mitigate the aging process are also compared and summarized.    

2.1 Aging Power Equipment 

2.1.1 Concept of Aging Process 

  In electric power industry, most electrical equipment or other assets are kept 

under service. During operation, the physical and electrical strengths of equipment are 

gradually deteriorated, until some point of deterioration failure, or other types of failures. 

This process can be called as aging process [50]. The word “aging” means that the 

strength of components deteriorates, as a function of chronological time in service. 

Based on the physical causes, power system aging process can be categorized into 

four types. Table 2.1 presents the meaning and impact of four types of aging processes 

[50]. 

TABLE 2.1 CATEGORIES OF EQUIPMENT AGING AND THEIR IMPACT 

Category  Meaning and Impact  

Chronological Age 
(CA)  

Aging since construction. 
Certain materials deteriorate over time due to natural causes, most directly 
associated with chronological age.  

Cumulative Service 
Stress (CSS)  

The cumulative effect of the time that the unit has been energized, and the load 
(mechanical, electrical) it has served in that time.  

Abnormal Event 
Stress (AES)  

The cumulative impact of severe events generally not considered as “normal 
service”. This includes through-faults for transformers, storm and auto-accident 
stress for poles, etc.  

Technical 
Obsolescence (TO)  

Digital and data communications can become old by virtue, or not being compatible 
with new systems and equipment.  
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Although aging process has different categories as presented in Table 2.1, the 

term “aging” is generally referred to combination of all four effects.  

2.1.2 Contributing Factors to Aging 

In order to understand, identify, and manage aging or deterioration, it is necessary 

to develop mathematical models that represent the aging process to show the 

deterioration of power equipment, and determine the cause of aging.  

Aging can be the result of the obvious process of the passing of time. As the age 

of equipment increases, the equipment slowly deteriorates correspondingly. Table 2.2 

shows several types of deterioration that affect old equipment in power system [50].  

TABLE 2.2 TYPES OF DETERIORATION CAUSED BY AGING 

Caused by 
Type of deterioration 

CA  CSS  AES 
Comments 

Corrosion  X X X 
Chemical decomposition or combination with oxygen or 
other ambient elements, until the material loses its required 
mechanical or electrical strengths, or qualities  

Dielectric loss  X X X 
Various mechanisms (treeing, contamination) that lead to 
the loss of electrical withstands strength  

Shrinkage/Hardening  X X  
Paper rubber, synthetic gaskets and seals harden or shrink 
with age, losing their ability to keep out moisture or contain 
pressure.  

Wear   X X 
Mechanical components lose tolerance and bind, or do not 
hold with the same bond as they once did.  

Moisture retention  X   
Water is gradually absorbed into a material, degrading its 
mechanical or electric strength  

   

In addition to the classification according to physical causes, aging agents can 

also be classified as either environmental aging or operational aging [51].  

Environmental aging agents exist continuously in the environment surrounding 

the equipment, whether it is in an operational state or not. Examples include vibration, 

temperature, radiation, humidity, or simply the passing of time.  
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Operational aging agents exist primarily when the equipment is under operation. 

Examples of operational agents include internal heating from electrical or mechanical 

loading, physical stresses from mechanical or electrical surges, and abrasive wearing of 

parts. 

For example, deterioration of power transformers is primarily due to 

environmental aging agents. The deterioration failures of power transformers are usually 

due to degradation and aging of cellulose and oil used for transformer insulation [52]. 

The transformer failure has been found to be proportional to the dielectric response of the 

insulation system. The aging of the insulation is a complex process and it is irreversible. 

The aging of insulation paper and cellulose is actually a function of temperature, moisture, 

and oxygen.  

For example, for the Furan analysis that is widely utilized for assessing oil-

immersed insulation paper conditions, a study summarized the relationship between 

concentrations of furans in the transformer oil and degradation time, as presented in (2.1),  

[53]. Furans are major degradation products of cellulose insulation paper and are found 

in the insulation oils of operational transformers.  

2 2
0( ) ( ) / 2t cF A N t Akt bt ct= + = +      (2.1) 

Degradation of other parameters mostly used in transformer condition 

assessment can be found in [54]. 

 Deterioration of circuit breakers is an example of power equipment that age more 

with repeated usage, rather than with the passing of time [55]. Heavily used power circuit 

breakers may age and deteriorate at a faster rate than ones not used very often. Every 
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time that a circuit breaker performs its function, the circuit breaker deteriorates, until 

eventually reach a non-operable state. 

2.1.3 Modeling Aging Process by Bathtub Curve 

 Previous research on aging process has validated the relationship between the 

equipment likelihood of failure over a period of time. This relationship is represented by 

the well known “bathtub curve”, and can be used for all types of devices. [50].  

Figure 2.1 [50] illustrates the bathtub curve for aging equipment hazard rate or 

failure rate modeling.  

 

Figure 2.1 Traditional Bathtub Failure Rate Curve  

Systems having this hazard rate function experience decreasing failure rate in 

their early life cycle (infant mortality), followed by a nearly constant failure rate (useful 

life), then by an increasing failure rate (wear out). This curve may be obtained as a 

composite of several failure distributions [11]. 

During useful life period, exponential distribution is usually used to model the 

probability of time to failure, or constant failure rates. Most equipment reliability models 

will use this useful life period, as the failure rate within this period is constant.  

Wear out 
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mortality 

Hazard rate 

λ(t) (times 

Component Age (years) 
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t 
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Assuming the useful life period, the hazard rate or failure rate is λ, then the time 

to failure follows an exponential distribution, modeled in (2.2) [56]:  

( ) , 0Tf T e Tλλ −= >      (2.2) 

For the infant mortality or wear out periods, log-normal or Weibull distribution 

are frequently deployed to model this nonlinear failure rates.  

For example, at wear out period, the time to failure T may follow Weibull 

distribution, with scale parameter α and shape parameter β in (2.3) [56]:   

1( ) Tf T T e
ββ ααβ − −=      (2.3) 

In some cases, a function of piecewise linear failure rates is also utilized to 

represent the non-linear failure rates, such as using following piecewise linear equations 

in (2.4), to mimic the bathtub function[57]. 
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Then the time to failure follows the following distribution: 

  

2
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 (2.5) 

2.2 Equipment Maintenance Strategies 

 Maintenance is defined as any activity that will restore or retain a unit so that it 

may perform its designed function. The type and extent of the maintenance determines 

how much the condition of unit is improved.  
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2.2.1 Mitigating Aging Effects   

Although aging and deterioration effects are unavoidable, it is desirable to find a 

way to slow down the deterioration rate, and to prolong equipment’s service life.  

The aging mitigating actions are typically attempt to eliminate the stressors that 

cause the aging in the first place. This includes reducing the environmental or operational 

agents that cause deterioration. Environmental stressors such as heat and radiation are 

known to induce aging degradation, particularly in organic materials. Examples of 

adjustments in the operating environment include adding thermal insulation, venting 

electrical enclosures, or adding radiation shielding [58], [51]. However, these adjustments 

only slightly prolong the deterioration process. Deterioration failure is still the inevitable 

fate of the equipment.  

Another way to mitigate the aging effect is through maintenance. Effects of 

different maintenance policies can be studied by comparing their impacts on the 

equipment life curve.  

 As equipment deteriorate further, its asset value (or condition) decreases. The 

relationships among asset values and maintenance are shown in Figure 2.2, which is 

called equipment life curve [11]. 

 

Figure 2.2 Life Curve and the Impact of Maintenance Policies 
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 Figure 2.2 illustrates the effect of two different maintenance policies. Clearly, 

policies 1 and 2 are far superior relative to policy 0 (no maintenance) as they extend the 

equipment life. Compared with Policy 1, Policy 2 is better as it increases the asset value 

at time T. 

 However, doing maintenance may require de-energizing equipment, which will 

decrease the availability of the equipment. Maintenance may also increase the 

maintenance cost when it is carried out more frequently, and must be balanced against the 

gains resulting from improved reliability. Determining the optimal equipment 

maintenance policy, in order to prolong equipment life, improves equipment availability, 

increases the benefit, while balancing related maintenance cost. This is one of the major 

goals in this dissertation.    

2.2.2 Equipment Maintenance Classification 

A classification of various maintenance approaches is presented in Figure 2.3[6].    

 

Figure 2.3 Overview of Maintenance Approaches 
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 The chart in Figure 2.3 illustrates that in utility asset management different types 

of maintenance are utilized depending on their specific requirements and different 

characteristics.       

Unplanned Maintenance 

The restorations or replacement after failure are also called unplanned 

maintenance. Unplanned maintenance is a corrective maintenance, which is costly and 

should be avoided if possible. Once equipment reaches a completely failed state and is no 

longer in working condition, corrective maintenance is needed. The equipment may have 

reached a failed state due to either deterioration or random unexpected event. In either 

case, corrective maintenance is conducted for restoration. 

Restoration is an activity which improves the condition of a device. If the device 

is in a failed condition, the intent of restoration is the re-establishment of a working state. 

This maintenance disregards the possibility where less improvement is achieved at lower 

cost. Also, this maintenance is costly and should be avoided if possible.  

Scheduled Maintenance 

 On the other hand, equipment may be replaced or repaired at predetermined 

intervals. This type of maintenance is called scheduled maintenance. Scheduled 

maintenance (also known as preventive maintenance) is a maintenance carried out at 

regular intervals (rigid schedule) [6]. Scheduled maintenance can be used to upgrade 

equipment’s current state. As frequency of preventive maintenance increased, the 

probability of having deterioration failure is reduced. Preventive maintenance can be 

time-based, or condition-based. Time-based preventive maintenance is executed on pre-

determined date (usually constant frequency); condition-based preventive maintenance is 
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performed depending on the condition of equipment. Generally preventive maintenance 

is pre-scheduled.   

Predictive Maintenance  

 Recently, engineers discovered that the most effective maintenance is done only 

when needed, and not necessarily conducted routinely. This is called predictive 

maintenance. Predictive maintenance is a maintenance carried out based on periodic 

inspection, diagnostic test or other means of condition monitoring. Usually predictive 

maintenance is carried out when necessary; compared with preventive maintenance, 

usually the time to execute the predictive maintenance is not predefined.  

Inspection and Condition Monitoring 

 Inspection is the process of seeking the condition of equipment or vital indications 

of the residual life (or remaining working time).  

Condition monitoring is the periodic inspection of equipment to determine 

whether further maintenance is required to ensure the continuous operation of equipment 

without the risk of failure. Maintenance is then performed when required.  

 There are certain advantages that inspection-based maintenance has over 

preventive maintenance. The type of indication of equipment condition found during 

inspection determines the type of maintenance to perform. Unnecessary maintenance 

should not be done on parts of the equipment that is still adequately operable. Inspection 

provides the operators or engineers with a choice or a decision. Maintenance can either 

be done or not. If maintenance is chosen, the extent of maintenance needs to be selected 

as well. These decisions allow the engineers to have more control during the maintenance 

process [58].  
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Inspection provides the equipment operator with control over the maintenance 

schedule. A high rate of inspection gives greater control, because the operator is given 

more frequent decisions. As the time between periodic inspections is reduced and the 

inspection rate approaches infinity, called continuous monitoring, the operator is given 

ultimate control. In continuous monitoring, the instant in which equipment shows signs of 

deterioration, the operator is notified and may choose to implement maintenance [7]. 

Reliability Centered Maintenance (RCM) 

 RCM is a structured process which determines the best and most cost-effective 

maintenance approaches, based on regular assessments of equipment condition. RCM 

does not always based on condition monitoring, but on other features, such as failure 

modes and effect analysis, and an investigation of operation needs and priorities.  

 A typical RCM process includes the following steps [6]: 

• System identification and the listing of critical components and their functions. 

• Failure mode and effects analysis for each selected component, determination of 

failure history, and calculation of mean time between failures. 

• Categorization of failure effects (by using appropriate flow charts) and 

determination of possible maintenance tasks. 

• Maintenance task assignment. 

• Program evaluation, including cost analysis. 

 In power systems, equipment maintenance can also be categorized into different 

levels, according to characteristics of maintenance, and their impact on equipment after 

maintenance. Table 2.3 summarizes the characteristics and effects of different levels of 

maintenance for power equipment [57].  
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TABLE 2.3 COMPARISONS OF DIFFERENT LEVELS OF MAINTENANCE 

  Category 
Personnel that 

perform the tasks 
Contents Impact and Effect on Equipment 

Inspections 

• Often accomplished 
by using condition 
monitoring or other 
diagnosis 
instrument, and 
performed on site  

• Operation personnel 
frequently 
performing the 
maintenance tasks, 
such as lubrication, 
routine services, 
adjustments, removal 
& replacement of 
minor parts  

• The MTTR is small, the cost of inspection
is relatively less than doing maintenance; 
many inspections do not require de-
energizing of equipment, thus will not 
bring in outages or overhaul of the 
equipment. Inspections will not directly 
bring in improvement of equipment 
conditions.  

Minor 
Maintenance 

• Maintenance 
personnel that are 
employed 
specifically to 
perform the repair 
task. They have 
higher skills levels 
than those in 
inspections  

• Repair may be 
performed on 
removal components, 
or other the system 
itself. For non-
moveable system, 
maintenance personal 
may travel to site to 
perform the repair.   

• Minor maintenance requires de-energizing
of equipment for repair; the duration and 
cost of maintenance is higher than 
inspection and less than major 
maintenance.  

Major 
Maintenance 

• Usually the work is 
taken by 
manufactures’ 
professional 
personnel or 
contractors’ factor in 
a specialized depot  

• Completely overhaul 
of equipment, 
consisting of 
complete tear down 
and rebuilding of 
units.  

• Major maintenance can effectively 
improve the health condition of 
equipment and prolong life. Major 
maintenance usually include costly and 
complex components 
refurbishment/replacement  

   

2.2.3 Typical Inspections for Power Transformers and Circuit Breakers 

For the power substations studied in this dissertation, the key equipment such as 

power transformers and circuit breakers are selected for development of mathematical 

models. Therefore, the typical inspection, maintenance, and repair processes for power 

transformers and circuit breakers are briefly summarized below.  

Transformers are the basic building blocks of power systems. They alter the 

voltage-current constitution of alternating current power, and essentially change the 

economy of scale of transmission of power from one side of the transformer to another. 

Typical inspection and diagnosis processes of power transformers include [50]:   



 

 

22

• Oil Quality Assessment 

• Power Factors,  Interfacial Tension (IFT) 

• Moisture 

• Dissolved Gas in Oil Analysis (DGA) 

• Analysis of particles in transformers oils 

• Transformers turns ratio test (TTR) 

• Infrared Thermograph Analysis   

• Assessment of thermal Properties 

After inspection, various activities such as repair, maintenance or other 

refurbishment related work can be conducted on transformers. Typical maintenance and 

repair work for transformers include [50]:   

• Minor maintenance of components (bushing & joint, motor drive unit, cooler, etc)  

• Oil reclaiming 

• On-site drying  

• Disassembly and drying 

• High voltage testing 

Circuit breakers are also critical components in substations. Circuit breakers are 

electromechanical devices. They are tested for both mechanical & electrical performance 

and for signs of deterioration. Inspection techniques for circuit breakers include [50]: 

• Visibly check for noticeable corrosion, deterioration or damage, and infrared 

examination; These inspections do not require de-energizing of the equipment 

• Temperature rise test 
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• Electrical test, which include insulation resistance test, AC high potential test, and 

contact resistance test. Usually these tests require de-energizing of the equipment    

2.3 System Maintenance Strategies 

 Most maintenance programs and algorithms focus on equipment, and the 

objective is to extend equipment life, improve equipment reliability, or both. However, 

from enterprise leader’s perspective, reliability or condition of single equipment might 

not be top priority; asset managers wish to know the overall reliability performance of 

their asset, from system perspective. They prefer to have programs to optimize 

maintenance resources, and allocate maintenance budget into individual systems or 

equipment, to ensure successful operation of a system, while meeting mandatory 

reliability target, and resources/budget constraints.  

 This dissertation intends to provide an optimization program to efficiently 

dispense the available resources to individual equipment while considering detailed 

modeling of individual equipment in a substation and its configuration.  

The following aspects need to be determined, while performing system level 

maintenance optimization. 

• Maintenance Prioritization  

Due to limited maintenance resources and budget, asset managers need to 

determine which equipment or set of equipment should receive the maintenance 

first, based on condition of equipment, importance of the equipment location 

within the system, etc.   

• Maintenance Frequency  
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For equipment which will be maintained, how can the frequency of maintenance 

be determined? This should avoid the over-maintenance that utilizes the budget 

and creates unnecessary failure time, and under-maintenance that could not 

effectively reduce the equipment deterioration process.  

• Maintenance Type (or Maintenance Level)  

For each equipment, what level of maintenance or what type of maintenance 

should be taken (doing nothing, minor maintenance or major maintenance)? The 

determination of the level of repair is often an economical decision in order to 

maximize the reward or minimize the cost.  

 

This chapter focuses on summarizing contributing factors toward power 

equipment aging and maintenance actives only. Next chapter will focus on studying the 

impact of aging and maintenance toward equipment reliability and correlated economic 

cost. 
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CHAPTER 3  
RELIABILITY AND ECONOMIC MODELING OF AGING 

EQUIPMENT WITH MAINTENANCE 
 

In order to study the effect of maintenance toward aging equipment, detailed 

mathematic models to evaluate equipment reliability and economic cost with 

consideration of maintenance need to be established. This is chapter focus on how the 

models are developed, as well as their potential applications. 

3.1 Reliability, Maintainability, and Availability  

The purpose of maintenance is to extend equipment life and reduce frequency of 

service interruption and undesirable consequences. For the purpose of quantifying the 

effect of maintenance on equipment performance improvement, definitions of reliability 

indices need to be addressed [57]. 

In general, reliability is defined as the probability that a component or system will 

perform a required function, for a given period of time, when used under stated operating 

conditions [57]. In power system engineering, it is the probability of equipment or system 

that can stay in normal operating conditions [59].  

Maintainability is defined as the probability that a failed component or system 

will be restored or repaired to reach a specified condition, within a period of time when 

maintenance is performed in accordance with prescribed procedures.  

In power industry, there are various indices used to measure the reliability of 

systems. IEEE developed three standards, for term definitions in outage data reporting 

and reliability indices: IEEE Standard 762 [60] for generation reliability indices; IEEE 
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Standard 859 [61] for transmission reliability indices; and IEEE Standard 1366 [62] for 

distribution reliability indices.  

Among the reliability indices defined, availability is an important index. 

Availability is the probability that a system or component is performing its required 

function at a given point in time, or over a stated period of time when operated and 

maintained in a prescribed manner [57].  

Availability is the preferred measure when system or component can be restored, 

since it accounts for both failures (reliability) and repairs (maintainability). Therefore, 

availability is a popular adopted index for repairable equipment or systems. 

Typically, the common used term mean time to failure (MTTF) index is utilized 

to measure reliability, because reliability focused on success or failures. In the contrast, 

availability includes the consideration of both reliability (quantified by MTTF) and 

maintainability (quantified by mean time to repair, MTTR), and usually calculated by 

MTTF/ (MTTF+MTTR). Therefore, availability is the most important index to examine 

the impact of maintenance toward reliability [57].  

According to application specifications, availability may be interpreted at a given 

point in time (point availability), or over time intervals (average availability), or in the 

long run (steady-state availability).  

• Point Availability A(t) is the availability at time t. 

• Average Availability A(T) is the average availability over the interval [0, T], 

defined by (3.1) 

1( ) ( )
T

o
A T A t dt

T
= ∫        (3.1)      

• Steady-state Equilibrium Availability A is defined by (3.2)  
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lim ( )
T

A A T
−>∞

=         (3.2) 

In power systems, long-run equilibrium availability is usually used as a basic 

reliability index for reliability assessment of aging equipment and systems, as the 

purpose of the maintenance is to improve equipment condition, prolong its life, 

and increase long-run availability [59].   

Besides availability, average outage duration and outage frequency are other basic 

reliability indices commonly examined.  

• Average Outage Duration r  

r is also called Mean Outage Duration, or Mean Time to Repair (MTTR) in some 

literatures [63]. r is calculated by (3.3) 

 1

M

i
i

D
r

M
==
∑

       (3.3) 

where Di (hour) is the outage time for each outages; M is the number of outage 

events in the time span considered. The unit of r is hours per outage.  

• Outage frequency f  

f which is the average number of outages in one year. In adequacy studies, the 

steady-state reliability indices are of particular interest. The system failure 

frequency in steady-state is defined as f=f (∞).  

It should be noted that outage frequency is not the failure rate. Failure rate λ is 

defined as the number of visits from success state S to failure state in unit time. 

Conceptually an outage frequency is different from a failure rate. Their values are only 

very close, if the average repair time is very short compared to operating time [63].  
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From the above definitions, it can be seen that availability, average outage 

duration and outage frequency are related. The mathematical relationship among these 

indices is presented in (3.4). 

1 Ar
f
−

=           (3.4) 

 As long as any two are obtained from statistics, the other one can be calculated.  

3.2 Markov Processes 

Markov processes are widely adopted in power system reliability assessment. 

This dissertation also utilizes the Markov processes for modeling aging and maintenance 

of equipment. Therefore, it is necessary to provide a brief introduction of the definitions 

and calculations of various Markov processes.   

At the beginning of the 20th century, Andrei Andreevich Markov introduced a 

model that was the simplest generalization of the probability model of independent trials 

in which outcomes of successive trials are only dependent on the preceding trial [64]. 

A stochastic process is a family of random variables based on time. Stochastic 

processes are called Markov processes if the process possesses the Markovian property. 

The Markovian property states that the probability that a system will undergo a transition 

from one state to another state depends only on the current state of the system, and not on 

any previous states the system may have experienced. In other words, the transition 

probability is not dependent on the past (state) history of the system. This is also known 

as a ‘memory-less’ property [64]. 

1) Discrete-time Markov processes 

 A standard discrete-time Markov process is a process in which the state of the 

system changes at fixed time intervals [8]. A discrete-time Markov chain assumes that the 
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component will transit to future state after a given interval of time. Discrete-time Markov 

chains are useful when the initial state distribution and transition probabilities are known.  

Then, the state probabilities can be calculated step by step. The future state j, can be a 

different state or the same state for successive steps [8]. However, this is not applicable in 

many situations, such as power equipment maintenance, since the state of the system may 

change at any time, rather than being fixed in a given time interval.  

Mathematically, a discrete-time Markov chain is represented by a transition 

probabilities matrix P. In P, each element Pij represents the probability of transition from 

state i to state j. The size of the matrix is s by s, where s is the total number of the states 

in this Markov chain.  

The steady-state probability Π of a discrete-time Markov Chain can be calculated 

by Gauss - Jordan elimination method, by solving linear equations (3.5),  

1k
k s

P
π

∈

Π = Π⎧⎪
⎨ =
⎪⎩
∑       (3.5) 

or by matrix calculation of (3.6), 

Π= e· (I+E-P)-1    (3.6) 

where e is a “1 × s” row vector with all elements are “1”; I is a “s × s” identity matrix 

with diagonal elements of “1”; E is “s × s” square matrix, and all elements are 1.  

2) Continuous-time Markov Processes 

A continuous-time Markov process is a stochastic process that assumes the time 

spent in each state is exponentially distributed. In continuous-time Markov processes, 

transition rate is defined as the rate at which the system moves from state i into state j. In 

continuous-time Markov processes, i cannot be equal to j [14].  
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The state probabilities can be found for any specific time (as long as it is after the 

initial start time) using a continuous-time Markov chain, sometimes called homogeneous 

Markov chain [14]. This means that the behavior of the system must be the same at all 

points of time irrespective of the point of time being considered [8].  

A continuous-time Markov process provides an easy way to calculate the state 

probabilities by using a transition matrix. This is useful in large complex systems. For 

this reason, Markov processes have been widely used to solve numerous probability 

problems, including the reliability assessment of power systems. 

A continuous-time Markov chain has a transition rates matrix Q, where the 

element qij is the transition rate from state i to state j (i≠j); for i=j(diagonal elements), 

ii ij
i j

q q
≠

= −∑ . (3.7) is used for calculating the steady-state probabilities. 

0
1k

k s

Q
π

∈

Π =⎧⎪
⎨ =
⎪⎩
∑      (3.7) 

The steady-state distribution can also be acquired by (3.8), 

Π=e· (Q+E)-1      (3.8) 

where e is a “1 × s” row vector with all elements are “1”; E is “s × s” square matrix, and 

all elements are 1. 

3) Semi-Markov Processes 

A semi-Markov process (SMP) improves a standard Markov process by 

incorporating sojourn time. Sojourn time refers to the length of a visit in a particular state 

of a system. This is the major difference between a semi-Markov process and a standard 

Markov process. Notice that if the sojourn times of each state are equal to 1, then the 

semi-Markov process is actually a standard Markov process [65]. 
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A semi-Markov process can use any positive random variable for the sojourn time 

distribution where a continuous-time Markov process is limited to using only exponential 

distribution [65]. In other words a standard Markov process (continuous-time Markov 

process) is a special case of a semi-Markov process, when sojourn times are 

exponentially distributed.   

One of the advantages of using semi-Markov processes is that transition times 

among states follow non-exponential distributions [66]. The disadvantage is the 

additional requirement of accurately representing sojourn time. The sojourn times often 

have certain distributions and are represented by a random distribution with a calculated 

mean value. The accuracy of estimating the mean sojourn times directly results in the 

accuracy of the overall models [14].  

A semi-Markov chain has two matrices: the transition probability matrix P (or 

embedded matrix), and the expected holding time matrix H[E(hij)]. The element E(hij) is 

defined as expected time the equipment spends in state i, before making a transition to 

state j, given that it has just made a transition to state i.  

Given E(hij), one can also calculate E(hi), which is defined as the expected time 

that the chain spends in state i before making a transition, irrespective of destination state 

(including the departure state i itself).  

The steady-state probabilities of a semi-Markov chain can be calculated by the 

following steps: 

Step1: Calculate the steady-state probabilities of the embedded matrix P, by Gauss-

Jordan elimination of (3.9), 
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1

e e

e
k

k s

P
π

∈

⎧Π =Π⎪
⎨ =⎪⎩
∑       (3.9) 

or by matrix calculation of (3.10), 

Πe= e·(I+E-P)-1    (3.10)  

Step 2: Calculate the steady-state probabilities of entire semi-Markov chain, by the (3.11), 

πi=E (hi) ·πe
i / ∑ πk

e E(hi)           (3.11) 

 In conclusion, Table 3.1 summarizes the characteristics, meaning, mathematical 

modeling, and solution methods, for various types of Markov processes.  

TABLE 3.1 SUMMARIES OF MARKOV PROCESSES AND CORRESPONDING SOLUTIONS 

Name Characteristics Mathematic 
Model Solution Application Filed 

Discrete time 
Markov 
Processes 

• The time to transition are 
the same and the chance 
is defined by the 
probability 

• Simple but not very 
practical.  

1k
k s

P
π

∈

Π = Π⎧⎪
⎨ =
⎪⎩
∑  Π= e· (I+E-

P)-1 

• Calculate the system 
probability at discrete 
time point.  

• Not very applicable  

Continuous-
Time Markov 
Processes 

• The time to transition 
belongs exponential 
distribution 

• Advantages: Easy for 
calculating, especially in 
large complex systems 

• Broadly applied in 
Power System  

0
1k

k s

Q
π

∈

Π =⎧⎪
⎨ =
⎪⎩
∑  Π=e·(Q+E)-1 

• Widely used in power 
system reliability 
assessment. However, 
not applicable for 
modeling aging 
equipment, where the 
time to failure may be 
non-exponential   

Semi-Markov 
Processes 

• Introducing sojourn time  
• Can model more 

complicated stochastic 
processes 

• More general type of 
Markov processes, in 
which the continuous-
Markov process and 
discrete-Markov 
processes are special 
cases  

• Requires modeling 
sojourn times. Accuracy 
of this parameter directly 
impact the overall model 
accuracy  

1

e e

e
k

k s

P
π

∈

⎧Π = Π⎪
⎨ =⎪⎩
∑

 

Πe= e·(I+E-
P)-1 

 πi=E (hi) 
·πe

i / ∑ πk
e 

E(hi) 

• More suitable to model 
aging processes and 
maintenance, where the 
times to transitions are 
sometime non-
exponential 
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3.3 Modeling of Aging and Failures 

In conventional reliability studies, the states of equipment were usually 

categorized into fully successful or fully failure state, which is presented in Figure 3.1 

[67].  

 
 

Figure 3.1State-Space Diagram of Binary-State Model: Success and Random failure   
 

In this binary-state model, usually the MTTF and MTTR are assumed to follow 

exponential distributions. Therefore, this simple model is appropriate to represent random 

failure mainly because of its memory-less characteristics. Random failure is defined as 

the failure whose rate of occurrence (intensity) is constant, and independent of device’s 

condition. A failure is random if the density of the conditional probability that it occurs in 

the interval (t, t+Δt), given that the device was in a working condition at t, is constant 

(independent of t) [6].This model also agrees with practical experience; it gives rise to the 

widely known piece of wisdom: “if it isn’t broke, don’t fix it!” [6] 

 However, two states are not sufficient to reflect real working conditions of power 

systems equipment. For example, equipment can still work while part of their material 

deteriorates. A simple failure-repair process for a deteriorating device is shown in Figure 

3.2. The deterioration process is represented by a sequence of stages of increasing wear, 

finally leading to equipment deterioration failure [11]. 

 

Figure 3.2 State-Space Diagram Including Deterioration and Deterioration Failure 



 

 

34

In Figure 3.2, D1, D2 , …, Dk  are consecutive deterioration but workable states, and 

F1 are deterioration failure. There are two ways of defining deterioration stages: either by 

duration, or by physical signs (corrosion, wear, etc.) of appropriate level [6]. In practical 

applications, the second approach is more favorable, and various condition-monitoring 

processes are combined in which the information can be used to determine the current 

deterioration stage.  

 However, one cannot neglect the differences between random failures and 

deterioration failures, while modeling aging equipment/system [6]. This can be explained 

as follows:  

1) First, the roots of random failures and deterioration failures are different. 

In a broader sense, failures whose origins are not well understood and therefore 

are perceived as being able to occur at any time, are often said to be random. In 

mathematical modeling, it is assumed that such failure can occur at any time. And, 

the rate of random failure may depend on external conditions (i.e., lightning or ice 

storms in which the resulting random failures would be different in each season) 

[6]. In contrast, deterioration failure is caused by aging processes, where the 

condition and trend can be measured and predicted.  

2) Second, in Markov modeling, random failure has constant failure-rate while 

deterioration failure is not.   

For deterioration failure, the times from the new condition to failure are not 

exponentially distributed, even if the times between subsequent stages of 

deterioration are. In such process the hazard function is increasing. In contrast, 
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due to features of randomness of roots described in 1), usually random failures 

will be treated with constant failure rates, even in wear out stages.  

3) Third, the effect of maintenance on two types of failures is different. 

For random failure, the constant failure-rate assumption leads to the result that 

maintenance cannot produce any improvement, because the chances of a failure 

occurring during any future time-interval are the same with or without 

maintenance.  

But for deterioration failure, maintenance will make an improvement on the 

condition of equipment to bring it to the previous stage(s) of deterioration. 

Therefore, maintenance has an important role to play, when failures are the 

consequence of aging. 

Table 3.2 Summarizes the characteristics of random and deterioration failures [6]. 

TABLE 3.2 COMPARISON OF RANDOM AND DETERIORATION FAILURES  

 Random Failures F0 Deterioration Failures F1 

Definition 

A failure whose rate of 
occurrence (intensity) is 
constant, and independent of 
device’s condition. 

A failure resulting from the deterioration of a 
device, which is related with effects of usage, 
environmental exposure or passage of time,  
material deterioration, etc.  

Maintenance’s 
Impact 

Condition cannot be improved 
by maintenance for random 
failures. 

Assumed that effective maintenance will bring an 
improvement to the conditions in the previous 
stage of deterioration.  

Characteristics Constant failure rates. Increased failure rates when the equipment enters 
further deterioration stages. 

 
Endrenyi developed a model for analysis of aging equipment, which includes both 

failures F1 and F0 that are presented in Figure 3.3 [7]. 

 
Figure 3.3 State-Space Diagram for Deteriorating Power Equipment 
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In this model, equipment is represented by natural wear and deterioration which 

can eventually cause the component to fail, state F1, making the entire system 

unavailable. Equipment can also fail randomly and enter state F0 due to an unexpected 

exterior event. Unfortunately, this random failure cannot be prevented and must be 

considered as a possible transition from each working up-state, states D1 to Dk.  

After k deterioration stages, with no preventive maintenance, the component 

reaches F1, deterioration failure. From this state, corrective maintenance is needed to 

return the component to the working state D1. The corrective maintenance transition rates 

to the ‘like new’ state from the deterioration failure state is μ1 and from the random 

failure state is μ0.  The random failure transition rate from any up-state is λ0 [58].  

3.4 Maintenance Modeling  

3.4.1 Basic Markov Models of Maintenance   

Based on the above assumptions, a maintenance state can be added into the state 

diagrams of Figure 3.1 and Figure 3.2, which are shown in Figure 3.4 and Figure 3.5 

[59][67]. 

 

Figure 3.4 State-Space Diagram Including Success (S), Random Failure (F0) and Maintenance (M) 

 

Figure 3.5 State-Space Diagram Including Success (S), Deterioration Failure (F0) and Maintenances (Mi) 
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In Figure 3.4, equipment or system could enter the maintenance state. The time to 

transition from S to M state follows a specific type of distribution, for example 

exponential distribution. After carrying out maintenance, equipment/system is restored to 

success state again. In Figure 3.4, it is also possible that after maintenance, due to human 

error or other reasons, the device enters the failure state. The detailed model of including 

human error is given in the following sections. 

 However, the tri-state Markov model presented in Figure 3.4 does not recognize 

the deterioration of aging equipment, and the model assumes that all maintenances 

performed are the identical (same effect, same duration and same economic cost), which 

are inaccurate and impractical. Therefore, the model in Figure 3.4 is only applicable in 

cases where deterioration and various types of maintenance are neglected.  

The Markov model in Figure 3.5 enables modeling of equipment/system 

deterioration, and modeling of various types of maintenance. Comparing with the basic 

maintenance model in Figure 3.4, this model enables the study of deterioration and 

maintenance at each deterioration stage. Therefore, it can be used in determining the 

maintenance policies in simple applications [58].  

3.4.2 Advanced Equipment Maintenance Models 

In conventional maintenance models, there are no quantitative relationships 

involved. The capability is very limited for making predictions about the effectiveness of 

the policy or carrying out any sort of optimization. To make numerical predictions and 

carry out optimizations, mathematical models are needed which can represent the effects 

of maintenance on reliability [6].  
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In order to design general models, considering equipment deterioration, 

inspections, maintenance, replacement, failures, human errors and etc, various Markov-

based models are developed in this dissertation. 

1) Minor and Major maintenances  

Figure 3.6 present a Markov model, which can examine the effect of minor (state 

Mi) and major maintenances (state MMi) [58].  

 
Figure 3.6 General State-Space Diagram of Deteriorating Power Equipment with Minor and Major 

Maintenance 

In Figure 3.6, in each deterioration state, there is a decision making option 

(represented as rectangle), to determine which type of maintenance to select, or just doing 

nothing. After performing maintenance, equipment returns either to the current state, or 

to better/worse D-state, depending on actions and probabilities. λMiDj or λMMiDj is the rate 

in which after minor maintenance (state Mi)  or major maintenance (state MMi), the 

process enters deterioration state  Dj. 

The motivation of adding different types of maintenance is to recognize their 

differences in condition improvement and economic cost. Theoretically, the deeper the 

levels of maintenance, the better improvement it will have, towards the equipment 

conditions. However, the deeper levels of maintenance might bring longer time in which 

equipment is unavailable, as well as the higher maintenance/penalty cost.    
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2) Inspection Modeling 

 The above models neglect the process of inspection, as the inspection won’t bring 

equipment condition improvement. Compared with various types of maintenance, 

inspections time is much shorter; many inspections will not overhaul or de-energize the 

equipment; also the cost of doing inspections is much less compared with maintenance. 

Therefore, in many studies the inspection process is neglected.  

 However, in practice many utilities will make the maintenance decisions after 

doing the inspection. In addition, the development of the Smart Grid will enable more 

condition-monitoring instruments installed in substations, in which the inspection will be 

conducted automatically and in real-time. Therefore, it is necessary to consider inspection 

in existing models. A Markov model with inspection added is presented in Figure 3.7.  

 
 

Figure 3.7 State-Space Diagram of Semi-Markov Model for Aging Equipment with Maintenance and 
Inspection 

By adding I1, I2,…, Ik states for each stage of deterioration, the previous Markov 

model can be easily extended to include inspection states. This model is shown in Figure 

3.7 where the inspection rate at each stage is denoted by λIi.  

 



 

 

40

3)  Human Induced Error 

The above models assume that inspections / maintenances / replacements can be 

conducted correctly. However, errors committed by personnel during the inspection or 

maintenance procedures have often left initial good equipment in the further deterioration 

condition or even failed state. Two accidents in the nuclear power stations in 1980’s, for 

instance, were partially due to human-induced errors [59]. 

The impacts of Human error toward the equipment operation are:  

i)  In general, maintenance should bring a machine to better conditions. But due to 

human error, it may not improve its condition, or it may even worsen it to further 

deterioration state.  

ii) Occasionally, a machine is possible to be identified in a failure state where it is 

actually not. This human error may result in taking the machine into “random 

failure” state.  

Based on the above assumptions, human error state is added into the existing 

maintenance models, with inspections, minor and major maintenances, presented in 

Figure 3.8.  

In Figure 3.8, FiH represents a failure that is caused by human error, after 

inadequate maintenance. This failure is different than the random failures F0 and 

deterioration failure F1, as the root cause and the economic cost for restoration are 

different than F0 and F1.  

To quantify the human error, two probabilities (the probability of going from 

MMk to FkH , and Mk to FkH) are included. These two probabilities describe the extent in 
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which human error occurs during maintenance. The detailed sensitivity studies of the 

probabilities are given in Chapter 6.  

 

Figure 3.8 State-space Diagram of for Aging Equipment with Human error, Inspections, Minor, Major 
Maintenance and Replacement 

 In addition to human errors, predictive replacement is also added. In practice, the 

utility owners might perform scheduled replacement of old equipment, in order to prevent 

costly deterioration failures. However, the challenge is how to determine the retirement 

age for minimum life cycle cost (LCC) [57]. Too early replacement is a waste of 

investment and unnecessary overhaul cost due to replacement; too late replacement 

increases the risk of having vast failures.  

 In this model, a possibility of transition to replacement state is added, based on 

the conditions of equipment after inspections. Also a replacement rate λR is assigned 

similar to the maintenance rates. Values of λR can be acquired from historical schedule 

replacement record, or from optimization, in order to minimize LCC. It should be noted 
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that the retirement age is not directly related to the inverse of λR. The optimal age of 

equipment is the expected mean time between visiting two retirement states.  

3.4.3 Comparison of Markov Models 

Table 3.3 summarized the comparison of various maintenance models. 

TABLE 3.3 COMPARISONS OF MARKOV MODELS USED IN RELIABILITY ASSESSMENT 

# Markov model type Characteristics Advantages and Disadvantages 

1 
• Binary state 

Markov process 
(Figure 3.1) 

• Only two state, 
• usually assumed exponential 

distributions of MTTF and 
MTTR  

• Simple and clear. Can be easily 
implemented in system level reliability 
assessment, in both in analytical method 
and Monte-Carlo simulation method.  

• Not feasible to study the effect of aging and 
maintenance for equipment 

2 
• Three state Markov 

process (Figure 
3.4) 

• Add of maintenance state. • Enable studying the impact of maintenance 

3 

• Markov model 
with multi-stages 
of deteriorations 
and only random 
failure (Figure 3.2) 

• Using successive 
deterioration stages, to 
model the aging process  

• Enables using Markov model to model 
equipment in aging period, with increased 
failure rates.  

• Requires additional historical data, to 
determine the transition rate among 
different deterioration stages  

4 

• Markov model 
with multi-stages 
of deteriorations, 
random failure, and 
deterioration 
failures (Figure 
3.3) 

• Introduce deterioration 
failure and random failure  

• For power equipment random failures and 
deterioration failures, the effects are 
typically different, and the related 
restoration cost and duration are usually 
not the same.  

• More appropriate to model aging 
equipment, where the root cause of failures 
can be either randomly (random failure) or 
deterioration (deterioration failure)  

5 

• Multi-stages of 
deterioration, both 
random and 
deterioration 
failures, minor & 
major 
maintenance, and 
inspection (Figure 
3.7) 

• Use separated maintenance 
states, instead of single 
maintenance. This action 
respects the impact, cost, 
duration and other 
differences among different 
maintenance.  

• Modeling the inspection, 
and condition monitoring  

• Popular utilized in aging equipment 
modeling. 

• Accurately models the process of doing 
predictive maintenance, based on 
equipment conditions.  

• Enables optimal maintenance policy 
determination 

• Requires more reliability history data, for 
the added states. Sometime, parameter 
uncertainty will even decrease the accuracy 
of entire model.   

6 

• Based on the 
Markov model in 
Figure 3.7, and 
adding replacement 
and human error 
(Figure 3.8) 

• Add predictive replacement, 
in order to distinguish the 
corrective replacement after 
deterioration failure 

• Enables modeling of failures 
caused by human error 

• Enables the life cycle cost analysis of the 
equipment.  

• More historical data are needed to support 
the model 
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3.5 State Reduction of Multi-state Markov Models  

While the increase number of states improves the accuracy of modeling 

equipment aging and maintenance, it also brings the problem of whether proposed multi-

state models can be compatible with practical reliability studies. Moreover, for system 

reliability evaluations, most tools and programs are designed based on binary-state 

equipment models. Therefore, it is necessary to find a method to reduce the multi-state 

Markov models into binary-state or three-state models, to ensure proposed models are 

practical.   

According to [59], condition of lump ability (or merge ability) must be satisfied in 

order to lump two or more state together: A group of states can be lumped if the 

transition rate to any other state (or group of lumped states) is the same from each state in 

the group. 

1) Probability 

If a number of states j can be combined into a single state J, the probability of J, 

pJ is obtained by adding all the probabilities pj,  

J j
j J

p p
∈

= ∑      (3.12) 

The probabilities pj can be summed up because the events of being in any of the 

states j are mutually exclusive.  

2) Frequency 

The frequency of state J, fJ, is the total frequency of leaving state j from state i 

that are out side state J 

,
J ji j ji

j J i J j J i J
f f p λ

∈ ∉ ∈ ∉

= =∑ ∑ ∑      (3.13) 
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For power equipment modeling, the transition rates can be derived between two 

combined state S and F, each of which is composed of several original states with no over 

lap. Then the failure rate can be computed by  

i ij
i S j F

SF
i

i S

p

p

λ
λ ∈ ∈

∈

=
∑ ∑
∑

      (3.14) 

If the conditions of lump ability are satisfied, (3.15) can be reduced to  

ij
j F

λ λ
∈

= ∑       (3.15) 

It should be noted that although above equation was derived from the knowledge 

of Markov processes and the underlying assumption of exponential distributions, they are 

equally suitable for evaluating the long-term mean values of other distributions [69]. 

3.5.1 State-Reduction of Continuous Markov Processes with Maintenance 

For an eight-state continuous-time Markov process model with maintenance in 

Figure 3.9, it can be assumed that besides D1, D2 and D3, all other states are failure states 

(illustrated in Figure 3.10). The above state reduction techniques can then be applied to 

obtain availability, failure rate, and duration. 

 

Figure 3.9 Eight-state Continues-time Markov Process 
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Figure 3.10 Equivalent Two-state Markov Process from Eight-state Markov Process 

Availability, A, 

1 2 3= D D DA π π π+ +        (3.16) 

where Diπ  is the steady-state probability of being in Di state. 

Frequency of Success (or Failure), fsuccess, 

success
S F

1 1 0 2 2 0 3 3 0 3 1( ) ( ) ( )

ij
i j

D D F M D D F M D D F D F M

f f

π λ λ π λ λ π λ λ λ
∈ ∈

=

= + + + + + +

∑∑

 

(3.17) 

Failure rateλ ,  

successf
A

λ =
     

(3.18) 

Expected duration between failures Tfailure, 

failure
success

1 AT
f
−

=
      (3.19)

 

3.5.2 State-Reduction of Semi-Markov Processes with Maintenance 

For the 14-state semi-Markov process model presented in Figure 3.11, it is 

assumed that besides deterioration states D1, D2, D3, and inspection states I1, I2 and I3, all 

other states are failure states. Figure 3.11 gives the reduced binary-state Markov process.  
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Figure 3.11 Reduced Two-state Markov Process for Fourteen-state Markov Process 

Generally, it is not appropriate to reduce a multi-state semi-Markov process, 

because of existing non-exponentially distributed transitions among states. However, if 

the transitions among the lumped states are still represented by exponential distributions, 

it is possible to reduce a semi-Markov process into a two-state Markov process.  

Similar to the equations derived in case 1, the following equations can be derived 

for case 2.  

Availability A, 

1 2 3 1 2 3= D D D I I IA π π π π π π+ + + + +     (3.20) 

iπ  is the steady-state probability of being in state i. 

Frequency of Success (or Failure), fsuccess, 

success
S F

1 0 2 0 3 0 3

1 2 3

( ) ( ) ( )

( ) ( ) ( )

ij
i j

D I D I D f I

I M M I M M I M M

f f

n n n

π λ λ π λ λ π λ λ λ

π λ λ π λ λ π λ λ

∈ ∈

=

= + + + + + + +

+ + + + +

∑∑

  

(3.21) 

Failure rate,λ , 

successf
A

λ =
     

(3.22) 

Duration, Tfailure, 

failure
success

1 AT
f
−

=
      

(3.23) 
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In some applications, the maintenance time/cost is also desired.  In these cases, 

the multi-state Markov model should be reduced to three-state equivalent model. 

For example, in Figure 3.12, an equivalent “Maintenance” state is introduced, 

which incorporates M1, M2, M3 and the major maintenance states MM1, MM2, MM3. 

Figure 3.12 presents the equivalent model after state reduction. Reliability indices related 

with failures and maintenance can then be computed.  

 

Figure 3.12 Reduced Three-state Markov Process for Fourteen-state Markov Process 

Availability, A, 

1 2 3 1 2 3= D D D I I IA π π π π π π+ + + + +      (3.24) 

iπ  is the steady-state probability of being in i state 

Frequency of Failure, ffailure, 

1 0 2 0 3 0 3
S F

( )failure ij D D D f
i j

f f π λ π λ π λ λ
∈ ∈

= = + + +∑∑
   

(3.25) 

Frequency of Maintenance, fmaintenance, 

maintenance 1 2 3
S M

( ) ( ) ( )ij I M M I M M I M M
i j

f f n n nπ λ λ π λ λ π λ λ
∈ ∈

= = + + + + +∑∑
 

(3.26) 

When calculating the duration of outage (Tfailure+Tmaintenance), Figure 3.13 can be 

further reduced to Figure 3.13.  



 

 

48

 

Figure 3.13 Reduced Two-state Equivalents 

The frequency of transition from Success to Outage is  

foutage = ffailure + fmaintenance      

outage
outage

success outage success outage outage outage

1 1 1T Af
T T T T T T

−
= = =

+ +
i

 
   (3.27) 

outage
outage failure maintenance

1 1A AT
f f f
− −

= =
+     

(3.28) 

3.6 Maintenance Optimizations for Maximum Equipment Availability  

In power systems, there is critical equipment, for which the grid owners prefer to 

improve their availability, regardless of the economic costs or other budget constraints.  

In the previous sections, it is clear that maintenance can be utilized as a control 

mechanism that affects the reliability of equipment. Alternation of maintenance can either 

improve the reliability or decrease the reliability of equipment, in which the relationship 

is presented in Figure 3.14. 

 

Figure 3.14 Loop Relationship of Maintenance and Equipment Reliability 



 

 

49

In Figure 3.14, the relationship between maintenance and equipment reliability is 

similar to the negative feedback: altering the value of maintenance schedules, until the 

desired equipment reliability is achieved.  

3.6.1 Mathematical Model 

The following optimization problem can be formulated to maximize the 

equipment reliability by optimizing the maintenance rates.  

Objective functions:  

Maximize equipment availability, or minimize equipment frequency of failure / 

expected duration between failures.  

Decision Variables:  

Maintenance / inspection / replacement rates.  

Constraints:  

The lower and upper bound of Maintenance/Inspection/Replacement rates. 

For example, for aging equipment modeled by an eight-state continues-time 

Markov process presented in Figure 3.9, the optimal maintenance rate which can achieve 

the maximum availability is determined.  Then the optimization problem is defined as  

Objective functions:  

Maximize availability, A, as a function of maintenance rate λM: A=f (λM). 

Decision Variables:  

Maintenance rates, λM. 

Constraints:  

λM_MIN ≤ λM ≤ λM_MAX , where λM_MIN and λM_MAX are the lower and upper bound of 

maintenance rate λM. 
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3.6.2 Optimization Techniques for Equipment Maintenance Optimization  

 In the above optimization model, usually the objective functions have non-linear 

characteristics, and the increased number of states in Markov model typically increases 

the complexity. 

 There are several approaches available in solving the optimization problem: 

1) Equation Derivation 

Explicit equations of optimization function are required for this method. For 

example, the explicit equation of availability as a function of maintenance rate must be 

acquired. Then partial derivative of this equation is used to solve for the optimal decision 

variables. The optimal maintenance rates that will achieve the maximum availability 

values can be determined while satisfying the constraints. 

This approach is accurate and straight forward. However, in many cases, deriving 

the explicit equations is always a challenge. In fact, in some large Markov models, 

deriving explicit equations take too much effort and time, and it is not worth doing this 

just for the optimization purpose. Therefore, this approach is only applicable for small 

Markov models with limited number of decision variables.  

For example, in above example, the explicit objective function between 

availability A and maintenance rate λM can be derived through solving the Markov 

equation, which is presented in (3.29) 

3 6 2 9 3
M M M

4 6 2 9 3 9 4
M M M M

1.6 (9.2e10 5.8 5.5e10 1.6e10 )
1.5e10 9.4 8.8e10 2.5e10 2.5e10

A λ λ λ
λ λ λ λ
⋅ + + +

=
+ + + +

   (3.29) 

The partial derivative of the equation with respect to λM is set to zero. The optimal 

maintenance rate is then calculated as λM= 0.00271 (1/day) and the corresponding 

maximum availability is 0.9936. 
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However, in larger Markov models, or Markov models with more decision 

variables, derivation of explicit equations is not an easy task. Moreover, using partial 

derivative method only local optimal points is determined. In some cases, especially in 

complex models, global optimization approaches will be more favorable.   

2) Exhaustive Enumeration  

In this approach, the search space of the decision variables is separated equally 

into several possible points, and the objective function is evaluated at every possible 

point. Then the maximum objective function as well as the corresponding optimal point 

can be determined.  

For example, the search space of maintenance rate [0.0001 0.02] in the above case 

can be separated equally, and the availability of equipment are evaluated at every points. 

Then, the maximum availability as well as the corresponding maintenance rate (the 

optimal point) can be determined, as illustrated in Figure 3.15 [69].  
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Figure 3.15 The Optimal Maintenance Rate that Maximizes Equipment Availability  

Compared with the first approach, numerical evaluation approach is clear, and it 

avoids deriving the explicit equation of objective function. As long as the relationship 

between the equipment reliability and the maintenance rate is developed, it is not 
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necessary to derive the explicit reliability equation. Moreover, the process of doing 

optimization can be conveniently visualized.  

However, the accuracy of the result depends on the size of intervals, in which the 

searching space is separated. The optimal point might reside between adjacent interval 

points. Besides, this approach requires the evaluation of objective functions at every 

possible point within the searching space.  

3) Non-Linear Programming (NLP) 

Although NLP approach also avoids the derivation of explicit equations required 

in Approach 1), and redundant objective function evaluation in Approach 2), the NLP is 

still a local optimization method. In optimization of multi decision variable problems, the 

global optimization approach, such as Genetic Algorithm, may have more applications.  

 Table 3.4 summaries the features and applications of above three optimization 

approaches.      

TABLE 3.4 COMPARISONS OF ANALYTICAL METHODS FOR POWER SYSTEM RELIABILITY ASSESSMENT 

Approaches Advantages Disadvantages Application Cases 

Equation 
Derivation • Accurate 

• Requires deriving 
explicit equations 

• Local optimization  

• Academic illustration 
• Small Markov model with 

limited number of decision 
variables 

Numerical 
Evaluation 

• Clear 
• Visualization 
• Global 

optimization  

• High computation 
burden 

• Not as accurate as 
equation derivation 
approach 

• Markov models with limited 
number of decision variables 
( usually less than 3)   

Non-Linear 
Programming • Accurate  • Local optimization  

• Appropriate for both small and 
large models, and optimization 
with multiple decision variables  

 

In addition to the above three approaches, there are other global optimization 

techniques, such as Genetic Algorithm, Simulated Annealing, and Particle  Swarm 

Optimization, available to solve equipment maintenance optimization problems. However, 
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compared with the complexity of system level maintenance optimizations (described in 

detail in Chapter 4), equipment level optimization is relatively low. Therefore it is 

reasonable to apply above simple but clear optimization approaches, to make the 

illustration easier. 

3.7 Equipment Reliability, and Maintenance Evaluation Procedure  

 To conclude this Chapter, the procedure for equipment reliability evaluation and 

maintenance optimization is presented in Figure 3.16.   

Calculate Steady-State 
Probabilities

States Definitions

Markov model for 
Equipment Reliability 

and Maintenance

Embedded Transition 
Probability Matrix 
Holding time Matrix
Model Development

State Reductions

 Failure/maintenance/det
eriorations/rate /
probabilities data

Display Reliability Indices

Decision on 
maintenance 

scheduling and 
policies

Equipment conditions and 
reliability poster maintenance

Database with 
Historical 

Reliability data

Maintenance
Optimization

 

Figure 3.16 Flow Chart Diagram for Equipment Reliability / Maintenance Evaluation 

 The techniques discussed above can be combined, following above flow chart, for 

equipment reliability evaluation and maintenance decision making work. 

3.8 Power System Economic Cost Analysis  

Economic evaluation is crucial in power system reliability and maintenance 

engineering analysis. In fact, all maintenance optimization programs have to incorporate 
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economic or cost-benefit analysis, to determine the optimal maintenance schedules. 

Economic analysis is quickly becoming an inextricable part of reliability assessment [70]. 

In power system reliability and maintenance analysis, not only the cost of maintenance 

should be consider, the penalty of unreliability due to maintenance outage cannot be 

neglected either.  

Li [71] claimed that the economic cost model for optimal planning of power 

systems should incorporate following cost:  

Economic Cost = Investment Cost + Operation & Maintenance Cost + Penalty Cost – 

Salvage Value                                                                              (3.30) 

In this dissertation Salvage Value is neglected, as compared with other cost 

related with investment and maintenance cost, salvage value is relative small.  

For distribution substations that this dissertation focuses on, above economic cost 

can be further separated into two different parts: Customer Cost of Reliability (CCR) and 

Utility Cost of Reliability (UCR) [20].  

Customer Cost of Reliability (CCR) 

From the customers’ perspective, their concerns are mainly whether the electricity 

will be served or not; if not, how much electricity is not served? How much is the 

frequency and duration of outages? Therefore, Customer Cost of Reliability contains 

primarily the Penalty Cost. In this dissertation, CCR is represented by (3.31) 

 CCR= Coutage + Cduration + CkWh         (3.31) 

where Coutage is the Cost of interruption power (unit: $/outage); Cduration is the Cost of 

interruption duration (unit: $/hr); CkWh  is the Cost of interrupted energy (unit: $/kWh).  

Utility Cost of Reliability (UCR) 
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From grid owners’ perspective, besides the penalty cost due to electricity outages, 

grid owners also have concerns on cost related with equipment operation/maintenance 

and their assets values (conditions). Therefore, the Investment Cost and Operation & 

Maintenance Cost makes the majority part of Utility Cost of Reliability (UCR).  

In this dissertation, the UCR is represented by (3.32): 

UCR= Capital Investment Cost + Operation & Maintenance Cost  (3.32) 

where Capital Investment Cost is the  cost of purchasing new equipment (unit: $); 

Operation & Maintenance Cost is the cost of doing routine inspections repairs and any 

cost related with operation and maintenance of this equipment.  

In [20] Total Cost of Reliability (TCR) is introduced, which is the sum of Utility 

Cost of Reliability (UCR) and Customer Cost of Reliability (CCR) as described in (3.33). 

TCR=UCR+CCR      (3.33) 

The introduction of TCR meets the needs for design maintainability and 

determining the maintenance schedules. TCR is utilized as one of the objectives in the 

maintenance optimizations process, especially in publicly owned utilities. However, 

utilization of TCR might emphasis too much on customers’ benefit. According to [20], 

“without compensation, minimizing societal cost transfers wealth from utility owners to 

utility customers”. 

3.9 Economic Benefit Analysis  

In many applications, grid owners prefer economic benefit models than economic 

cost models, as the expected benefit indices are more straight forward in enterprise-level 

analysis when make maintenance related decision [57].  
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The above Economic cost model can be easily transferred to Economic Benefit 

model, by adding the portion of benefit of successfully running the equipment in a given 

period, which is illustrated in (3.34): 

Economic Benefit = - (Economic Cost) + Benefit of Successfully Running   (3.34) 

Benefit of Successfully Running represents the contribution of equipment toward 

the substation benefit when successfully operated. 

For economic cost modeling of equipment based on Markov process, usually a 

simple economic model is applied. A typical method is direct convolution of the steady-

state probabilities and the related cost of being in each state, such as the economic cost 

models in [72] [48] [49].  

Through the studies in [72] [48] [49] realized the importance of having economic 

analysis, the models are relatively simple, and only considered the cost of residing in a 

state in per unit of time. The cost related with per-visiting, such as Coutage (Cost of 

interruption power, unit: $/outage) is neglected. This dissertation will utilize Markov 

decision processes to for economic cost modeling.  

3.10 Markov Decision Process  

3.10.1 Introduction of Markov Decision Process 

Engineers are often faced with the problem of modeling equipment with decision-

making features. For example, in the multi-state Markov model presented in Figure 3.7, 

at each deterioration stages, what action (minor maintenance, major maintenance, or no 

action) to take? 

In 1960, Howard developed a model based on the standard Markov model but 

incorporating a decision-making technique [73]. This became known as the Markov 
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Decision Process (MDP). Howard’s Markov decision process is based on a reward 

scheme that provides a method of measurement and comparison for different equipment 

policies. 

3.10.2 Solving Markov Decision Process  

There are three iteration methods which are widely used to solve MDPs. Linear 

Programming is a method that solves for the policy with the greatest reward for problems 

in which a certain probabilistic constraints may exist [64]. Value-iteration method is a 

slightly more simple technique because it does not require the solution of a set of linear 

equations [74]. The policy-iteration method uses a policy to compute an average cost per 

unit of time to build another policy with a greater reward. This process continues until the 

optimal policy is obtained [65].  

In comparing the above methods, linear programming tends to require more 

iteration to reach an optimal policy; value iteration method is more appropriate for 

discrete-time Markov decision processes, where in this dissertation the process is 

continuously.  

On the other hand, the policy-iteration method is more appropriately fit this 

dissertation because it is a much more efficient search method for larger systems. The 

optimal policy is obtained in a minimal number of iterations and is directed more to 

analyzing a process of indefinite duration that makes many transitions before termination 

[73]. Policy-iteration method is utilized in this dissertation to solve Markov decision 

process. 
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3.10.3 Semi-Markov Decision Process 

The semi-Markov decision process (SMDP) takes the above standard MDP to 

another level to more accurately model power equipment, in which decision-making traits 

are present.  

Standard MDPs fails to include sojourn times for actual planning problems [75]. 

Semi-Markov processes improve upon standard Markov processes with inclusion of the 

sojourn times of each state in the state space 

SMDPs can be used for both a discrete-time process in which the state transitions 

are made at specific time epochs and a continuous-time process in which the system may 

transition at any time. The continuous-time SMDP’s ultimate goal is to use the steady-

state probabilities to find the long term maintenance policy for an infinite horizon 

problem.  

An SMDP must possess the uni-chain property as well as the Markovian property. 

The Uni-chain property declares that all the states in the state space of the model 

must be either a transient state or a recurrent state. Every state must be achievable in 

every possible policy [64].  

The Markovian property proclaims that the future state of the model depends only 

on the present state and is independent of all past states. In addition, the reward also must 

possess a form of the Markovian property. The reward for a specific transition depends 

only on the present state and the future state. Past states cannot affect the cost or reward 

for that state in any policy.  

3.10.4 Steps to Solve Semi-Markov Decision Process 

 For solving SMDP, the policy-iteration method can be separated into following 
four steps:  
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Step 1) Steady-state Probabilities  

 The first step is to solve for the state probabilities using the SMP. By using 

equations (3.9)-(3.11) in Section 3.2, the steady-state probabilities of a SMP can be 

solved.  

Step 2) Initial Policy  

For policy iteration, it is necessary to select an initial policy. Initial policy can be 

selected at random, but this may result in a number of unneeded iterations to reach to the 

final optimal policy. Therefore, in this dissertation the first step is to choose an initial 

policy based an educated guess. The initial policy d1 which the highest earning rate is 

selected for each state is selected in this dissertation.  

Let Γji
a be the probability of going from state i to state j when action a is chosen, 

and rji
a is the corresponding reward from a transition to state j from state i. Then the total 

reward of choosing action a while in state i is [17]: 

1

N
a a a

i ji ji
j

r r
=

= Γ∑
   

 (3.35)  

where N = the total number of states in the model.  

The time spent in each state must also be considered. So it is then necessary to 

find the reward per unit time called the earning rate while choosing action a. The initial 

policy found by [18]: 

/a a
j i iq r t=     (3.36) 

where ti is the sojourn time of state i; ri
a is the reward of choosing action a while in state i; 

qi
a is the reward per unit of time.  

Step 3) Policy Evaluation 
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The iteration process begins by the Policy Evaluation. It is necessary to obtain a 

measure that represents the gain of the selected alternative along with N relative values, 

vi, for the system. This is achieved using (3.37).  

1

N

i i i j ji
j

v g q t v
=

+ = + Γ∑      (3.37) 

Here the gain of the policy is the average reward per unit of time. Note that there 

are N relative values and one scalar g in which to solve, giving N+1 unknown with only 

N equations. Therefore one of the relative values, usually vN is arbitrarily set to zero [18]. 

Step 4) Policy Improvement 

In policy improvement step, test quantity of alternative of state i Gi is calculated 

for each alternative of a given state. This is achieved using the relative values obtained 

from (3.38). The test quantities are compared for each alternative in a state. The lowest 

value for each state will be the best decision for that state in the next policy. 

1
(1/ )[ ]

N
a
i i i j ji i

j
G q t v v

=

= + Γ −∑
 

    (3.38) 

 Policy Evaluation and Policy Improvement steps are repeated until the same 

policy results twice in a row. The process stops and the last iteration policy is the optimal 

policy. Figure 3.17 gives a flowchart of solving semi-Markov decision processes.  
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Figure 3.17 Flow Chart Diagram of Policy Iteration Method for Solving SMDP 

3.11 Applying Semi-Markov Decision Process 

The general semi-Markov model with inspection, minor and major maintenance 

states is used for illustrating how to apply Markov Decision Processes. In this model, 

equipment is represented by a series of deteriorating, maintenance, and failed states. It is 

assumed that the equipment can fail due to both deterioration and random causes. 

In each deterioration state there exists the opportunity to do nothing, perform 

minor maintenance, or major maintenance. Each choice is marked with a bold circle in 

Figure 3.18. The action space is defined as:  

 A = {do nothing (I), do minor maintenance (II), do major maintenance (III)} 

1. Initial Policy 
Select d1 Є D such that each 
alternative chosen satisfies  
qi

a = max ( ri
a / ti ). 

2. Policy Evaluation 
Solve for g and vi for all i. (vN set to 

0).
1

N

i i i j ji
j

v g q t v
=

+ = + Γ∑  

3. Policy Improvement 
Choose dn+1 to satisfy min(Gi

a) for 
each alternative a of each state i. 

1

(1/ )[ ]
N

a
i i i j ji i

j

G q t v v
=

= + Γ −∑  

4. Compare 
If dn = dn+1, then stop iterations with 
dn as the optimal policy. Otherwise 
go back to step 2 and increment n 
by 1. 
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Figure 3.18 State-Space Diagram of a SMDP with Inspections, Minor and Major Maintenances 

 Here, the expected economic benefit will be calculated, based on the maintenance 

rate that can achieve maximum equipment availability. The explanation of every state 

this model is available in Section 3.2. Here the policy iteration method is utilized to 

determine the optimal policy, and number of deterioration states is 3 (when k = 3, N=14).  

Determine the initial policy. Using (3.34) to determine the earning rate for each 

alternative in each state, the initial policy, d1, will be composed of the alternatives with 

the greatest earning rates for each of the three deterioration states.  

Policy Evaluation. The next step in the process is to solve for the gain and the 

relative values associated with the current policy. Equations (3.36) and (3.37) give the 

gain, g, and the 14 relative values for the policy (v14 is set to 0). The gain can then be 

compared to future policies to find the most rewarding policy possible.  

Through the iteration process, each step will produce a policy with a gain no less 

than the previous policy’s gain. This can then be used to prove that the iteration process 

finds the global optimal policy and not a local optimal policy [65].  
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Policy Improvement. The gain and the relative values are used in Equation (3.37) 

to find the test quantity, Gi
a, of every alternative, a, for each state i, where a choice is to 

be made. In this case, nine test quantities will be solved for - three alternatives in three 

states. For example, G2
1 (do nothing in D2) is compared to G2

2 (do minor maintenance in 

D2) and G2
3 (do major maintenance in D2). The lowest test quantity of the three will 

determine the alternative to be chosen in the next policy, dn+1.  

Policy Comparison. If the two policies are different, then the next policy becomes 

the current policy and the policy evaluation step is implemented. However, if the policies 

are equal, then the current policy is the optimal policy.   

After the policy iteration is completed, the optimal policy dopt. can be determined.  

Then the sum of the expected reward per unit time qi
a at deterioration states, 

corresponding to this optimal policy dopt, is the expected benefit that can be acquired by 

operating this equipment successfully. In summary, equation (3.39) gives the calculation 

of equipment benefit per unit time BEqu.:  

1 2

Equ.
, ,..., k

a
i

i D D D
B q

=

= ∑ (a is the actions under optimal policy dopt)  (3.39) 

Appendix: List of Assumptions of the Proposed Method - Equipment Modeling 

1. Assume equipment can failure due to both randomness and deterioration 

a. Random Failure 

Assume this type of failure can occur at any time, irrespective of the effect of 

maintenance. Generally random failure has constant failure rate.  

b. Deterioration failure 
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Assume the cost and severity of having deterioration failure are higher than 

random failure; the MTTR of deterioration failure is also longer than random 

failures. 

c. Maintenance’s impact on deterioration failure 

Assume maintenance can improve equipment condition, prolong equipment 

life, and decrease probability of having deterioration failures.   

2. Deterioration stages 

Assume aging equipment is separated into three deterioration stages, and the 

transition times between consecutive stages follow exponential distributions 

(therefore the corresponding transition rate can be modeled by a constant 

transition rate, such as λ12, λ23 in Figure 3.7).      

3. Human Error 

a. Occurring during  inspections 

Due to human induced error, engineer may determine unnecessary outages of 

system/equipment after inspections. This type of human error will not have 

apparently impact on equipment condition.  

b. Occurring during maintenance 

Due to human error, after maintenance, the equipment condition may worse, 

or the equipment may enter further deterioration stages, or failures. This type 

of human error will change equipment condition. 

Above development of reliability and economic cost models with respect to 

maintenance are only applicable in equipment level analysis. Chapter 4 will describe how 

these models are utilized in system level assessment. 
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CHAPTER 4  
MAINTENANCE OPTIMIZATION FOR SUBSTATIONS  

 

When make maintenance related decisions for entire system other than single 

equipment, it is desired to know the expected system reliability improvement and cost. 

Therefore, this chapter will focus on developing system level reliability and cost models 

with respect to equipment maintenance. Also, the chapter presents several scenarios 

about how to utilize the developed models to optimize maintenance decision. 

4.1 Substations 

 Electricity is generated and delivered to end customers through generation, 

transmission and distribution systems. Generation systems produce enough power to 

meet customer demand; transmission systems transport bulk power without overheating 

or jeopardizing system capacity/stability over long distances; distribution systems 

distribute power and deliver electricity to end customer’s service [70]. In terms of 

reliability, generation, transmission and distribution systems are referred to as functional 

zones [76]. A simple drawing of an overall power system in different zones is presented 

in Figure 4.1 [70].   
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Figure 4.1 Typical Structures of Electric Power Systems 

 
In Figure 4.1, substations play different roles in different systems: generation 

substations connect generation plants to transmission lines through step-up transformers, 

that increase voltage to transmission levels; transmission substations are transmission 

switch stations with transformers that step-down voltage to sub-transmission levels; there 

are also transmission switch stations which serve as nodes that allow transmission lines 

to be reconfigured; distribution substations are nodes for terminating and reconfiguring 

sub-transmission lines, with transformers that step-down voltage to primary distribution 

levels [70].   

The dissertation focuses on the distribution substations, since most customer 

failures are related with distribution systems. However, the proposed methods are general, 

and can also be applied to substations in generation and transmission systems.  
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4.2 Substation Structure 

 There are various types of substations depending on functionalities. A popular and 

simple substation diagram is presented in Figure 4.2 [70]. 

 
Figure 4.2 Single-line Diagram and Basic Components of a Distribution Substation 

 
In Figure 4.2, the source of delivering power to the substation is a single sub-

transmission line. Power is delivered across disconnect switch, through circuit breaker, 

and enters power transformer. Several current transformers (CT) and power transformers 

(PT) are connected in parallel, which are mainly for measurement purposes. The circuit 

breaker protects the transformer that steps voltage down to distribution level.  

This single-line substation structure may cause reliability concerns, due to its 

simple configuration: any major component failure will results in all feeders to be de-

energized. Consequently, many distribution substations are designed with redundancy, to 

allow portions of feeders remain energized if any major component fails or not available 

due to maintenance.  

Figure 4.3 is an “H-station” or “transmission loop-through” design substation [70]. 

This substation is able to supply both secondary buses, after the loss of either 

transmission lines or transformer. This structure also has disadvantages that faults will 

generally cause one of secondary buses to be de-energized, until switching is performed 

[70].  
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Figure 4.3 Substation with Two Sub-transmission Lines and Two Transformers 

 
Figure 4.4 is a substation that further increases substation reliability, by having an 

additional transmission line, an energized spare power transformer, primary ring-bus 

protection, motor-operated switches, and a secondary transfer bus [70]. 

 
Figure 4.4 A Reliable Substation with a Primary Ring Bus, Switches, an Energized Spare Power 

Transformer and a Secondary Transfer Bus 
 

The comparison of Figure 4.2 , Figure 4.3 versus Figure 4.4 indicates that 

reliability is improved when the number of buses or sections of buses increases. In fact, 

bus configurations play an important role for substation reliability, operational flexibility 

and economic costs [77].  

Table 4.1 gives a summary of most commonly encountered substation structures 

utilized in substation design, as well as the advantages and disadvantages [77]. 
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TABLE 4.1 SUMMARIES OF SUBSTATION BUS CONFIGURATIONS 
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In practice, because of the high reliability and relatively low cost, it is common to 

initially build a substation as a ring bus, and convert it to breaker and a half when 

required [67].  

4.3 Substation Component 

 Various types of equipment must be interconnected to construct a substation. A 

major distribution substation usually contains the following components: 

• High Voltage Disconnect Switches 

• High Voltage Buses 

• High Voltage and Current Transformers 

• Power Transformers 

• Auto Transformers 

• Protective Relays 

From the standpoints of investment cost and failure effect, the most critical pieces 

are power transformers and circuit breakers, with most aging infrastructure problems 

occurring in old substations [70]. Therefore, transformers and circuit breakers are the 

primary objectives to be studied in this dissertation.  

` Industrial surveys indicate that there are a lot of old transformers [50]. Also, in the 

past 15 years, utilities have generally loaded the transformers to higher levels. The 

combination of old chronological aging and increased thermal aging has created 

significant deterioration in many transformers. Therefore, usually the first concern of 

substations is related to aging power transformer [50].  

From criticality perspective, circuit breakers are of special concern. This is 

because circuit breakers are often at the outset of the radial distribution systems. If a 
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transformer fails, other transformers can generally serve the load entirely, while customer 

may experience momentary interruptions. However, if a feeder circuit breaker 

experiences an internal failure or deterioration failure, the entire feeder or even the entire 

bus will be de-energized.  

4.4 Substation Reliability Evaluation 

 Previous researchers have developed many methodologies for substation 

reliability evaluation [78]-[81]. The methodologies can be categorized into Network 

Reduction, Markov Modeling, Minimum Cut-Set and Monte-Carlo Simulation 

approaches. Following is a brief descriptions and comparisons of these methodologies.  

1) Network Reduction 

 This method uses an equivalent substation model to simplify the original 

substation, but excludes all feeder breakers. Equations are derived to calculate the 

equipment failure rates and durations [70]. However, this method ignores the impact of 

maintenance, and is therefore not appropriate for reliability modeling of substations with 

aging infrastructure and maintenance.  

2) Markov Modeling 

 This method is based on a Markov model in which each state of the substation is a 

combination of specific states that are utilized in equipment Markov models. The 

reliability indices can then be calculated through solving Markov equations [59].  

 This method is straightforward and has several applications, especially in small 

scale substations with limited components. However, the increased number of equipment 

or states in equipment models will greatly increase the complexity in substation Markov 
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models. (For example, if a substation has m equipment, and equipment is modeled by an 

n-state Markov model, then the substation Markov model contains nm states) [59]. 

3) Minimum Cut-Set  

 Minimum cut-set method is an alternative network reduction method. A cut-set is 

a group of components that when fails causes the system to be unavailable. A minimum 

cut-set is a smallest set of components such that if they fail, the system fails. An nth order 

minimum cut-set is identified as those which consist of n components [67] [70]. 

The minimum cut-set method has the following advantages [67]: easy 

implementation; handles complex networks that cannot be characterized by either serial 

or parallel connections; gives insight into critical component dependencies. This 

dissertation implements a minimum cut-set method for substation reliability assessment.  

4) Simulation Method 

 Simulation method is widely applied in system level reliability assessment, 

including substations. Sequential or non-sequential Monte-Carlo simulation techniques 

are used to sample the durations of events or the states of equipment, and the system 

reliability is calculated through the simulated event history [22] [82].  

 Again, the increased number states in modeling Equipment reliability by Markov 

process will increase computation burden; the simulation programs may experience long 

execution time, before converging to a satisfied value. One possible solution to decrease 

the executing time is using parallel computing techniques, in order to efficiently utilize 

the capacities of multi-processors and large memory resources.    
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4.5 Modeling of Substation Reliability  

 For analytical approaches, previous researchers either focus on network reduction 

techniques, which are based on the assumption of binary-state component model, or 

stochastic approaches which are limited by the size of systems [80] [59]. Neither of these 

approaches alone is appropriate for studying the impact of maintenance and aging 

equipment on reliability.  

 In this dissertation, a method of combining equipment Markov models and 

minimum cutest-based system reliability calculation is developed. The purpose of using 

Markov model is to study the aging process and maintenance, while applying minimum 

cut-set method to extend these studies to substation levels.  

 Figure 4.5 is the structure of the proposed method. The reliability index evaluated 

here is availability; as for the life cycle design of substation maintainability, availability 

is the most critical index. Also, the method developed is applicable for calculating 

substation failure frequency and average outage duration, based on some transformation 

techniques [83] [84]. 

 
 

Figure 4.5 Connections of Equipment, Load Point and Substation Reliability Models 

 

Calculating reliability indices and expected 
maintenance cost for Load Points 

Calculating reliability indices and expected 
maintenance cost for Equipment 

Calculating reliability indices and expected 
maintenance cost for entire Substation 
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4.5.1 Reliability Modeling of Aging Equipment with Maintenance  

The first step in Figure 4.5 is to perform reliability modeling of equipment with 

aging process and maintenance. Multi-state Markov process is utilized, which is 

described in Chapter 3. State-reduction technique is used to further reduce the multi-state 

Markov model into binary-state, as the minimum cut-set approach is based on binary-

state equipment model.    

For example, for the fourteen-state semi-Markov model in Figure 3.7, the 

equipment availability can be determined as a function of major maintenance rate λMM 

and inspection rate λI, presented in (4.1)  

. ( , )equ MM IA f λ λ=       (4.1) 

4.5.2 Load Point Availability Calculation 

The second step in Figure 4.5 is calculating load point availability. Load point 

availability is of particular interest, since in distribution systems customers are directly 

connected to specific load points. The following is an example of using minimum cut-set 

method for calculating load point availability.  

For a typical single-line structured substation presented in Figure 4.6, assuming 

sub-transmission lines are 100% reliable, the first and second order cut-sets can be 

derived, which is presented in Figure 4.7. 
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Figure 4.6 Configuration of a typical Substation 

 

 
 

Figure 4.7 The First and Second Order Cut-sets for Load Point 1 in Figure 4.6 

   
 In Figure 4.7, “I” is the first order cut-set; “II” to “V” are the second order cut-

sets. The serial connection between cut-sets “I” to “V” reflects the meaning of minimum 

cut-set’s definition: failure of any cut-set will results in the failure of the entire system. 

For example, if component 5 in “I” fails, Load Point 1 will have interruption; if 

component 1 and 2 in “II” fail simultaneously, Load Point 1 will have interruption too.  

From Figure 4.7, Load Point 1 unavailability ULP1 can be calculated by (4.2).  

LP1 (I) (II) (III) (IV) (V)
(I II) (I III) (I IV) (I V)
(II III) (II IV) (II V)
(III IV) (III V)
(IV V)

U U U U U U
U U U U
U U U
U U
U

= + + + +
− − − −
− − −
− −
−

∩ ∩ ∩ ∩
∩ ∩ ∩
∩ ∩
∩

     (4.2) 

It should be noted that ULP1 calculated by (4.2) is only an approximation. The 

probability of having three or more equipment fail simultaneously is small, and can be 

negligible. Therefore, the third and higher order cut-sets are ignored, and the 
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unavailability value in (4.2) is only the lower bound value of load point unavailability 

(consequently, the upper bound of availability) [85].  

4.5.3 Load Point Importance Quantification 

 After the load point availability is determined, the substation availability can be 

computed by combining the weighted load point reliability indices.   

Here, the weight value for each load point is the load importance LIj (j is the 

number of load points in a substation). The value reflects the load point’s relative 

importance in a substation.  

 In current power system structure, electricity users and the power providers (grid 

owner or utilities) have different concerns about the unavailability, or outages of 

substations. The definition of the load point importance should include the following 

considerations: 

• Economic Importance of a load point: EI 

EI is determined from the perspective of economic losses, when power supply for 

this load point is unavailable; the sum of the EI of all load point should be 1.  

The EI values for each load point can be determined, either by conducting surveys 

or by asset manager’s decision. The determination of EI value should consider 

frequency, duration, expected energy losses, and other factors related to outages.  

• User Importance of a load point: UI    

For electric utilities, it is reasonable to quantify the importance of users, according 

to some measures such as security, health, or convenience. UI is defined as the 

importance of users that the load point is connected to. For example, hospitals and 
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airports should have higher UI values. The determination of the UI values can be 

based on mandatory decisions.  

The load point importance values LI can be calculated by: 

1) Calculate pre-processed load point importance values, pre-LI, by (4.3)   

pre-LIj= EILj  × UILj        (4.3) 

2) Normalize:  

LIj=pre-LIj/∑pre- LIj= EIj ·UIj/∑ EIj ·UIj    (4.4) 

LIj is the final value, which represents the relative importance of a load point j.  

4.5.4 Substation Availability Calculation 

 After calculating the load point j, availability Aj, and load point importance 

factors LIj, the substation availability can be evaluated by (4.5) 

  . 1 1 2 2

1 1 2 2 1 1 2 2

( , , , ,..., , , )

( , , , ,..., , , , , , ,..., , ..., , )
Sub j j j M I M I Mn In j

M I M I Mn In j j J J

A A LI f LI

f EI UI EI UI EI UI EI UI

λ λ λ λ λ λ

λ λ λ λ λ λ

= =

=
∑ ∑   (4.5) 

where, LIj is the load point importance value; fj is the availability function for load point 

j; f() is the availability function for the entire substation; n is the total number of 

equipment in substation; J is the total number of load points.  

 Therefore, the substation availability can be expressed as a function of many 

decision variables: maintenance rates 1 1 2 2, , , ,...,M I M I Mnλ λ λ λ λ  and user input values EI1, 

UI1, EI2, UI2,…, EIj,UIj. 

 Figure 4.8 presents a flowchart that describes the procedure of calculating 

substation availability. 
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Figure 4.8 Flow Chart of Reliability Evaluation of Substations with Aging Equipment  
 

 In Figure 4.8, the user input includes the parameters for building equipment 

reliability Markov models, and EI/UI values for calculating load point importance 

factors. The accuracy of former input depends on whether historical reliability and 

maintenance data are available, and whether the method for data analysis is accurate; the 

accuracy of the latter depends on how well utility owners know their customers that are 

connected to the substation.  

4.6 Modeling of Substation Economic Benefit  

The economic modeling of substations is an indispensable part of asset 

management. The utility owner should be aware of the expected cost/benefit that will be 
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achieved based on current maintenance decisions. Also, since the objectives of 

maximizing reliability and minimizing Operations & Maintenance cost are sometime on 

the opposite directions (generally higher reliability means higher maintenance cost, 

especially for substations with aging infrastructure), the utility owner needs to carefully 

balance the reliability improvement and the maintenance cost growth. Therefore, 

economic analysis plays an important role in substation maintenance optimization.  

4.6.1 Equipment Economic Contribution Quantification   

Usually, it is desired for utility owners to quantify the annual benefits of a load 

point or the entire substation, rather than individual equipment. However, since the 

substation economical analysis is based on the economical modeling of individual 

equipment (Chapter 3), it is necessary to dispense the entire substation benefits into 

individual equipment. Therefore, methods to quantify the economic contribution of 

individual equipment towards substation benefit needs be developed.  

In this dissertation, the sensitivity values of equipment availability towards the 

load point or substation availability Si (i is the number of equipment in a substation) are 

utilized to quantify equipment’s contributions.  

 From the definition of sensitivity, Si is defined as  

.Sub
i

i

AS
A

Δ
=

Δ
      (4.6) 

where, iAΔ is the slight change in equipment availability of equipment i; SubAΔ  is the 

corresponding substation availability changes.  

 Si expresses the quantified impact of equipment availability changes, toward the 

substation availability variation. By comparing Si values for all equipment within a 
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substation, it is possible to determine which equipment is more important than others, 

with respect to their contribution on substation availability.  

 However, the sum of Si may not be 1, therefore, Si is normalized by (4.7) 

_ /i normalized i iS S S= ∑      (4.7) 

The expected economic benefit of individual equipment Bi can be calculated by (4.8) 

._ Sub. _Equ i i normalizedB R S=      (4.8) 

where RSub. is the annual substation revenue. The value of RSub can be determined, 

through estimating the contribution of this particular substation toward the annual utility 

revenue.  

It should be noted that the meaning of RSub. is different than substation benefit 

BSub. (will be explained in Section 4.6.2). BSub. not only includes consideration of revenue 

RSub. that substation earns through successful serving of the load point, but also contains 

Operations & Maintenance and penalty costs that substation incurs when fail to serve 

load points. In contrast RSub. focuses on the rewards when substations can successfully 

serve the load.    

4.6.2 Substation Economic Benefit Calculation 

Given that the expected economic benefit BEqu. of equipment is evaluated through 

equation (4.10) in Chapter 4, equipment annual benefit BEqu. can be calculated based on 

the approach presented in Chapter 4, as a function of the maintenance rate Mλ and 

inspection rate Iλ . Besides, since EI and UI also participate in substation sensitivity 

values _i normalizedS , the BEqu. Value is also a function of EI and UI.  
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Therefore, similar to equation (4.5) for equipment availability, the expected 

equipment economic benefit can be expressed as 

 Equ. 1 1 2 2( , , , , , ,..., , )Mi Ii m mB f UI EI UI EI UI EIλ λ=     (4.9) 

and the substation economic benefit can be calculated by  

'
Sub. Equ. 1 1 2 2 1 1 2 2( , , , ,..., , , , , , ,..., , )M I M I Mn In m mB B f UI EI UI EI UI EIλ λ λ λ λ λ= =∑  (4.10) 

 Examples and cases studies of developing the reliability and economic models for 

substations based on above theories are presented in Chapter 6. 

 Figure 4.9 gives a flowchart illustrating the procedures of calculating economic 

benefits for substations. 

 
 

Figure 4.9 Flow Chart Diagram of Economic Benefit Modeling of Substations 

 
 Compared with previous reliability modeling for substations or systems, the 

approaches for substation reliability and economic modeling developed here have the 

following advantages: 
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• Provide a method to perform studies of determining the impact of maintenance 

schedules of aging equipment (inspections, minor & major maintenance), on the 

entire substation reliability. 

• Incorporate detailed modeling of aging processes and maintenance on individual 

equipment, while still compatible with most existing reliability models. Therefore, 

it is flexible, and can be conveniently added to the existing system models.  

• Identify critical equipment in a substation which contributes mainly to ASub, while 

studying the sensitivity of equipment toward ASub. This approach can assist asset 

managers identifying critical equipment, which will make the most contributions 

toward system availability.  

• In the economic analysis of substations, the proposed method is based on the 

detailed economic modeling of individual equipment by SMDP, which contains 

cost of investment/replacement, maintenance, and outage penalty cost. Therefore 

the substation economic model developed in this paper is more accurate than 

other existing models. 

• Since the method developed provides the relationships between substation 

reliability and economic cost while considering the maintenance of individual 

equipment, the models can be potentially utilized for maintenance optimization 

studies in substations.  
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4.7 Background of Maintenance Optimization  

 With the growing number of aging equipment in power systems and the increased 

loading conditions, grid owners are eager to find asset management programs in which it 

can effectively manage their assets and systems, while meeting the limited maintenance 

resources/budget constraints. Therefore, maintenance optimization has become a key 

aspect in asset management.  

Through the analysis of power industry requirements and utility customers’ 

surveys, following questions are of interest when maintenance related decisions are to be 

made [70]: 

1) Which equipment should receive maintenance? 

2) How much is the frequency of maintenance; what type of maintenance? 

3) How to prioritize/rank the maintenance tasks for a substation? 

4) For a given maintenance policy, what is the expected reliability improvement 

for a load point or the entire substation, and what is the corresponding 

maintenance cost? 

5) How to dispense the limited maintenance budget to individual equipment, in 

order to maximize load point or entire substation reliability? 

6) How to minimize the maintenance economic cost, or maximize the substation 

economic benefit while meeting target availability constraints?  

7) From customer viewpoints, what is the expected reliability improvement? Are 

failure frequency / duration decreasing?  

The purpose of this chapter is to classify various maintenance optimization 

scenarios and the corresponding solution techniques, to answer the above questions.  
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4.8 Optimization Scenarios 

4.8.1 Scenario 1- Maximize Substation Availability with no Constraints 

 In this scenario, the objective of optimization is to maximize substation 

availability, regardless of maintenance cost.  

This scenario has a potential application for critical substations maintenance 

decisions. Contingency analysis or Failure Mode, Effects, and Criticality Analysis 

(FMECA) can be utilized to identify the critical substations in which failures are 

extremely undesired.  

Equations (4.11) and (4.12) describe this optimization scenario: 

Objective: 

. 1 1 2 2 1 1 2 2Maximize  ( , , , ,..., , , , , , ,..., , ..., , )Sub M I M I Mn In j j J JA f EI UI EI UI EI UI EI UIλ λ λ λ λ λ=   (4.11) 
 
 

Constraints: 

 1 1 2 2Lower Limits , , , ,..., , Upper LimitsM I M I Mn Inλ λ λ λ λ λ< <    (4.12) 

where,  

ASub. is the substation availability specified as the objective function;  

1 1 2 2, , , ,..., ,M I M I Mn Inλ λ λ λ λ λ are decision variables; 

1 1 2 2, , , ,..., ,m mEI UI EI UI EI UI  are user input variables for determining the load point 

importance factors LI, as described in Chapter 4. 

 Here, for the purpose of generality, the maintenance rates for all equipment within 

a substation are listed as decision variables. In practice, however, some equipment may 

not need maintenance, or the maintenance schedules of some equipment maybe fixed, 

due to mandatory regulation requirements. In these cases, the mathematical equations 

given above can be modified accordingly.   
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 The following examples are developed to represent the above situations. 

1) Case I- Partial Maintenance 

In this case, only a portion of substation equipment will receive maintenance, and 

the corresponding maintenance rates are decision variables that need to be optimized. 

Other equipment either have fixed maintenance rates, or receive no maintenance. For 

example, in a substation, the major maintenance rates for transformers should be 

optimized, since transformer maintenance is costly and should be avoided if unnecessary.  

Meanwhile, when the number of decision variables are less than 2 or 3, the 

optimization process and the maximum availability point can be visualized, which is an 

advantage for methodology illustration.  

2) Case II- Single Type Maintenance 

In this case, all equipment will receive maintenance. However, only one type of 

maintenance needs to be determined (for example, only the major maintenance rates). 

Other maintenance related parameters, such as inspection rates or replacement rates, are 

pre-determined.  

The purpose of this case is to provide a base line in order to compare it with the 

case of multi-type maintenance optimization.     

3) Case III- Multi-type Maintenance (or Full Maintenance) 

In this case, all maintenance related parameters for all equipment will be 

optimized. The purpose of this scenario is to examine the necessity of doing 

comprehensive maintenance optimizations among all equipment.  

For example, both inspection rates and major maintenance rates for all equipment 

in the substation will be determined. 
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The studies to illustrate above three scenarios are presented in Chapter 6.   

4.8.2 Scenario 2- Maximize Substation Benefit under Target Availability 

The target availability is defined as the availability that the substation must 

maintain. Usually this value is determined by some mandatory organizations (such as 

NERC or local regulation organizations). Equations (4.13) and (4.14) describe this 

optimization scenario (maximizing the substation benefit as an example):   

Objective: 

'
. 1 1 2 2 1 1 2 2Maximize  ( , , , ,..., , , , , , ,..., , ..., , )Sub M I M I Mn In j j J JB f EI UI EI UI EI UI EI UIλ λ λ λ λ λ=  (4.13)

 
 

Constraints: 

 1 1 2 2Lower Limits , , , ,..., , Upper LimitsM I M I Mn Inλ λ λ λ λ λ< <    (4.14) 

ASub. > target availability value        

This scenario applies widely in the electric power industry. As from utilities’ 

perspective, they would like to maximize benefits (or minimize operation and 

maintenance cost); but from society or customers’ perspective, certain target availability 

constraints still need to be satisfied.   

4.8.3 Scenario 3- Maximize Substation Availability under Limited Budget  

 Equations (4.15) and (4.16) describe this optimization scenario:  

Objective:  

. 1 1 2 2 1 1 2 2Maximize  ( , , , ,..., , , , , , ,..., , ..., , )Sub M I M I Mn In j j J JA f EI UI EI UI EI UI EI UIλ λ λ λ λ λ=  (4.15) 

Constraints:  

1 1 2 2Lower Limits , , , ,..., , Upper LimitsM I M I Mn Inλ λ λ λ λ λ< <       (4.16) 

CSub. <Maximum Budget;  
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This scenario has applications in which the budget is limited. The optimization 

process for this scenario can determine how to allocate maintenance resources to all 

equipment (or a portion of equipment in a substation that will receive maintenance), in 

order to maximize the entire substation reliability.  

In this scenario, the relationship between the maintenance cost and the 

corresponding equipment reliability improvement should be quantified. Explicit 

relationship between maintenance cost and the associate equipment reliability needs to be 

established, which is another challenge due to insufficient maintenance history records. 

The authors in [19] made the following assumption on this relationship, in Markov 

modeling of equipment reliability:  

1) If maintenance cost increases/decreases, the probability of transition to a better 

condition state after maintenance (such as M3 -> D1 or D2) increases/decreases, 

respectively.  

2) If maintenance cost increases/decreases, the time spent in maintenance state 

decreases 

However, since in this dissertation the equipment economic benefit is modeled 

(Chapter 3) instead of cost, the relationship between equipment economic benefit and 

maintenance rate, as well as substation benefit BSub. is developed explicitly. 

The following equations express Scenario 3.   

Objective: 

. 1 1 2 2 1 1 2 2Maximize  ( , , , ,..., , , , , , ,..., , ..., , )Sub M I M I Mn In j j J JA f EI UI EI UI EI UI EI UIλ λ λ λ λ λ=   (4.17) 

Constraints:  

      1 1 2 2Lower Limits , , , ,..., , Upper LimitsM I M I Mn Inλ λ λ λ λ λ< <   
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BSub. <Budget limit value         (4.18) 

Comparison of equations (4.17) and (4.18) with equations (4.15) and (4.16) 

indicates that only CSub. in (4.16) is changed to BSub. However, this change will not 

jeopardize the applicability of the proposed method, since intuitively the method 

presented in Chapter 3 can be used to model either cost or benefit. The case study of this 

scenario in Chapter 6 will follow equations (4.17) and (4.18). .  

 Beyond these three scenarios, there are other potential applications that can be 

developed when reliability and economic models of the substation are available. However, 

in the interest of time and space, they are not presented in this dissertation.  

4.9 Optimization Methodologies 

 The above three optimization scenarios have some common characteristics: 

1) Multi-decision Variables 

Considering the cases in Scenario 1, the number of decision variables is typically 

large. Generally if a substation has N equipment, and each equipment has M 

maintenance related decision variables, the number of total variables to be 

optimized in the above scenario is N×M.  

2) Unknown Characteristics 

Because of the complexity of the system, it is difficult to determine the 

characteristics of ASub. and BSub.. For optimization purpose, the characteristic of 

objective function is desired in order to select appropriate optimization solution 

techniques; for example, whether ASub. is a linear function of maintenance rates, or 

whether local minimum/maximum maintenance rates exist. Also, it is difficult to 

visualize the problem, when the number of decision variables is large.  
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4.9.1 Overview of Global Optimization Techniques 
  

To solve the above optimization problems, several techniques are available, such 

as Stochastic -based algorithms (i.e. Simulated Annealing), Evolutionary algorithms (e.g., 

Genetic Algorithm), Swarm-based optimization algorithms (e.g., Particle Swarm 

Optimization, and Ant Colony Optimization). Following is a brief description of each 

algorithm:  

• Simulated Annealing (SA) was first applied by Kirkpatrick [86]. SA is often used 

in discrete search spaces. In some cases, SA is more effective than exhaustive 

enumeration method. However, SA is unsuitable for the optimization problem 

described in previous section, since our decision variables (inspection and 

maintenance rates) are continuous. 

• Genetic algorithm (GA) is an example of evolutionary algorithms inspired by 

biology evolutionary, such as inheritance, mutation and crossover. It combines the 

function evaluation with the randomized and exchanged information among the 

solution, to arrive at a global optimal. Fraser developed a series of papers to 

artificially simulate nature selection, in which GA is inherited [87].  

• Ant colony optimization (ACO) is a member of ant colony algorithms family, 

in swarm intelligence methods. It was initially developed by Marco Dorigo in 

1992 [88]. In ACO, the simulation agents (Artificial ants) locate optimal solutions 

by moving through a searching space of all possible solutions. Each agent (ant) 

will record history position and solutions, for itself and other agents to locate 

better solutions. ACO is appropriate in problems to find optimal paths to goals, 

given the all paths exists (discrete number of search space). However, for the 
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optimization problems in this dissertation, only the search space is available, and 

decision variables are continuous not discrete. Therefore, it is not applied in this 

dissertation. 

• Particle swarm optimization (PSO) is an algorithm inspired by social behavior of 

bird flocking or fish schooling, first developed by Eberhart and Kennedy in 1995 

[89]. PSO is a global optimization algorithm for problems in which the best 

solution is represented by an n-dimensional space. Particles move among the 

search space with initially defined position and velocities; the position of the 

particle with best current fitness value is shared by other particles, based on which 

the velocities will be changed.  PSO is suitable for continuous variables, and 

generally faster than other global optimization methods [90]. In this dissertation, 

PSO is applied to solve the optimization problems.  

4.9.2 Particle Swarm Optimization (PSO) 

 In PSO, each particle represents a potential solution, and has a position in the 

problem space, represented by a position vector ix . Particles also have velocity vector iv  

to represent the speed parameter of moves through the problem solving space. At each 

time step, there is a function fi used to evaluate the fitness of ix . Each particle keeps track 

of its own best position ,i Sbestx , and the best position found? so far ,i Gbestx  is shared by all 

particles [91]. 

 At each time step, a new velocity for particle is updated by (4.19) 

1 1 , 2 2 ,( 1) ( ) [ ( ) ( )] [ ( ) ( )], 1,2,...,i i i Sbest i i Gbest iv k wv k c x k x k c x k x k i Nφ φ+ = + − + − =  (4.19) 

where c1 and c2 are positive constants representing the weight of the acceleration, that 

guide each particle toward the individual best ,i Sbestx  and swarm best position ,i Gbestx ; 1φ  
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and 2φ are uniformly distributed random numbers in [0,1]; w is a positive inertia weight 

to provide better control between exploration and exploitation; N is the number of 

particles in the swarm; iv  is limited to the range [ - maxv , maxv  ] [91]. 

The first term in (4.19) performs a global search by exploring a new search space; 

the last two terms enable each particle to perform a local search around its individual best 

position ,i Sbestx , and the swarm best position ,i Gbestx . Based on the updated velocity, each 

particle changes its position according to (4.20) [91]. 

( 1) ( ) ( 1), 1,...,i i ix k x k v k i N+ = + + =     (4.20) 

 Compared with other evolutionary computation algorithms such as GA algorithm, 

PSO enables a fast and efficient search for the optimal solution. In GA, chromosomes 

share information with each other, so the whole population moves like one group towards 

an optimal area. However, in PSO only ,i Sbestx  gives out the information to others, and it 

is a one-way information sharing mechanism. Therefore, compared with GA, all particles 

tend to converge to the best solution quickly, even in the local version in most cases. 

Because in standard GA, the next generation is generated based on crossover and 

mutations, where the position of the individual who has highest fitness value are not 

shared and directly utilized.   

4.9.3 Solution of Maintenance Optimization Problem by PSO  

 In this dissertation, depending on the scenarios, substation availability function 

ASub (in Scenarios 1 and 3) and benefit BSub (for Scenario 2) are selected as fitness 

function; maintenance/inspection rates 1 1 2 2, , , ,..., ,M I M I Mn Inλ λ λ λ λ λ  are decision variables. 

The initial values is chosen to be the middle point of the searching space 

according to (4.21) 
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0 [Lower Limits of  and , Upper Limits of  and ]M I M Ix mean λ λ λ λ=    (4.21) 

The objective of PSO is to search for the optimal estimates of 

maintenance/inspection rates.  

Also, for Scenarios 2 and 3, the target availability and minimum economic benefit 

values are applied as inequality constraints in the PSO implementations. 

In summary, Figure 4.10 is a flowchart illustrating the procedures described 

above for maintenance optimization for substations.  

In Figure 4.10, the dashed rectangle includes the processes of optimizations, in 

which PSO is applied as solution techniques. Following the flowchart, users need to input 

optimization scenarios (i.e., objective functions, constraints, stop criteria, decision 

variables, and etc.); after the optimization process is completed, the optimal maintenance 

rates, as well as the corresponding ASub.  and BSub. values are presented.  

Figure 4.10 will assist asset managers make maintenance schedule decisions, 

while meeting reliability requirement or budget constraints.   
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Figure 4.10 Flow Chart of Maintenance Optimization for Substation 

Appendix: List of Assumptions– System Reliability Modeling 

1. Equipment failures are statistically independent 

2. Only first and second-order cut-set are considered  

It is assumed that the third and higher order cut-sets can be neglected. This is 

because the probability of having three or more equipment failure simultaneously 
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is rare in substations, therefore it is reasonable to only consider first and second 

order cut-sets, as shown in Figure 4.7. 

3. It is assumed that sub-transmission lines have no outages, or the availability 

values are 100%.  

4. All switching devices operate successfully when required (availability is 100%) 

It is assumed that there is no switch delay in substations, for illustrating simplicity. 

Switching devices can be opened whenever possible to isolate a fault. Therefore, 

switch related states are not included in equipment modeling.  

5. In Figure 4.6, it is assumed that all transformers and circuit breakers are the same 

types, follow the same operation condition, and utilize the same maintenance 

actions; future maintenance decisions for all transformers and circuit breakers are 

also the same.  

6. In Figure 4.6, it is assumed that transition times among all states follow 

exponential distributions. Therefore, conventional Markov models for equipment 

reliability modeling are used (continuous-time Markov chains). 

 

The models developed in this chapter are valuable to assist evaluation of the 

impact of equipment maintenance toward system reliability and cost. Detailed case 

studies will be presented in Chapter 6. 
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CHAPTER 5 UNCERTAINTY QUANTIFICATION AND 
PARALLEL SIMULATION 

 

In this Chapter, a general approach for a fuzzy Markov model is proposed. This 

approach incorporates parameter uncertainties and probabilities in aging equipment 

models and existing reliability models for substations. The proposed method can also be 

used for determining the optimal maintenance rates that maximizes specific reliability 

indices. 

Also, this chapter describes a new method for reliability evaluation using parallel 

Monte-Carlo Simulation (MCS) for both equipment and simple systems.  

5.1 Fuzzy Set Theory 

5.1.1 Fuzzy Set and Fuzzy Membership Function 

A classical set A is a collection of distinct objects to separate the elements x of a 

given universe U into two groups: those belonging (members) and those not belonging 

(nonmembers) [32]. Zadeh introduced fuzzy sets as an extension and generalization of 

the basic concepts of crisp sets [31]. A fuzzy set A in the universe of discourse U is 

defined as a set of ordered pairs 

{( , ( )) | ,and 0 ( ) 1}A x x x U xμ μ= ∈ ≤ ≤      (5.1) 

In equation (5.1), µ(x) is the membership function (abbreviated as MF hereafter) 

of fuzzy set A, and the value of µ(x) is the grade (also called the degree or confidence 

level) of membership x in A, which indicates the degree that x belongs to A.  
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An alpha-cut (α-cut) of a fuzzy set A is a crisp set A that contains all the elements 

of the universe U that have an MF value in A that is greater than or equal to α, which is 

expressed in Equation (5.2),  

( ){ }, (0,1]A x U xα μ α α= ∈ ≥ ∈       (5.2) 

When the confidence level equals zero, the interval of the MF is called the 

support of this MF.  

5.1.2 Fuzzy extension principle 

The fuzzy extension principle is a mathematical tool for generalizing the crisp 

mathematics concepts to the fuzzy set framework and extending the crisp, point-to-point 

mapping into mappings of fuzzy sets. 

Consider an operation * which is valid with real numbers such that c=a*b; its 

extension to fuzzy numbers is achieved by [32], 

µ(c)= min{ µ(a), µ(b) }, c=a*b     (5.3) 

 This means if a pair (a, b) maps into a number c, c receives a degree equal to the 

minimum of a and b degrees; furthermore, if two pairs, (a1, b1) and (a2, b2), map into the 

same c, then the maximum of the possible membership grades that would be given to c is 

chosen as the grade of c. 

The extension principle can be easily linked with α-cut concepts, to calculate the 

interval at a confidence level. For the interval at a confidence level α, there will only be 

elements c mapped from pairs (a, b), where a and b belong to that interval of confidence 

at level α. Therefore, the extremes of an interval of confidence at a certain level α must 

be searched among all possible combinations of values (a, b) which belong to intervals of 

the same degree [32].  
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5.2 Fuzzy Markov Processes (FMP) 

5.2.1 Markov Processes for Aging Equipment 

In most reliability studies, equipment is usually categorized using two-state 

models: fully success or fully failure [9]. Figure 5.1 gives a state-space diagram of a 

general Markov process for modeling of aging equipment [7], [59], [11]. 
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Figure 5.1 State-Space Diagram of Aging Equipment with Maintenance and Inspection 

In Figure 5.1, the operable state is separated into k series deterioration stages, 

which is represented by D1, D2 to Dk. Inspection (I) was taken before making major (MM) 

or minor(M) maintenance. Detailed descriptions of each state are available in Section 

3.4.2. The transition rate of going from one deterioration state to the next deterioration 

state is represented by λi,i+1 [7],[59],[11]. 

The deterioration rate from the last operable deteriorate state, Dk, to deterioration 

failure, F1, is λkf. At each stage i, equipment can transit to maintenance state Mi with a 

particular maintenance rate for that stage denoted by λMi. Another maintenance state can 

be added to represent another type of maintenance, for example, major maintenance in 

Figure 5.1 is labeled by MMi with the rate of λMMi. From maintenance states, equipment 

returns to either better or worse operable states, or even transits into failure states, 



 

 
 

99

depending on the historical maintenance probabilities collected from data. Also, this 

Markov model can be easily extended to include inspection states, by adding I1, I2, to Ik 

states for each stage of deterioration. The inspection rate at each stage is denoted by λIi. 

The states and the transitions with dashed lines in Figure 5.1 are used for representing the 

addition of inspections. The detailed modeling can be found in [95]. 

The commonly used reliability indices include availability, A, frequency of failure, 

f, and expected duration between failures, r .The definitions are available in Section 3.1.  

However, in the fuzzy Markov model presented in Figure 5.1, it is not easy to 

derive explicit reliability indices equations as a function of maintenance, when the 

number of states increases. Therefore, during the calculation of reliability indices, state 

reduction was conducted to transform the multi-state Markov model into an equivalent 

binary-state model. 

  Following is a brief procedure for calculating the reliability indices. The detailed 

procedure as well as examples can be found in [95]. 

Step 1: Develop a semi-Markov model for equipment, and determine the corresponding 

transition rates and probability matrices; 

Step 2: Compute the steady-state probabilities using the transition rates and probability 

matrices; 

Step 3: Calculate the reliability indices (A, f, and r) for the equivalent binary-state 

Markov model, which is obtained from the original multi-state semi-Markov model.  

Fuzzy Markov processes (FMP) are proposed to incorporate the uncertainties 

associated with transition rates or probabilities. The uncertainty levels are represented by 
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the confidence level value of fuzzy MFs. After the calculation, reliability indices and 

their possibility distributions can be obtained.  

Figure 5.2 illustrates the relationship between inputs and outputs of FMP for 

equipment.  

 
Figure 5.2 The Diagram of Fuzzy Markov Processes 

5.2.2 Membership Functions Generation  

One of the primary difficulties faced in applying fuzzy sets theory is the rational 

assignment of membership values.  

One approach to determine fuzzy MFs is by a survey of experienced engineers. 

For example, the intervals corresponding to α-cut values of 0 and 1 for trapezoid MF are 

the intervals under worst conditions (support) and perfect conditions for given equipment, 

respectively. 

MFs can also integrate condition monitoring data. In practice, there are 

instruments or equipment available for monitoring equipment operation or deterioration 

conditions. The output from these instruments represents the degree of system failure 

rates or deterioration rates. There are also experienced maintenance engineers or experts 

who can provide subjective information on the degree of confidence for deterioration 

rates or ranges. The most widely used fuzzy MFs are triangular, trapezoid, and 

symmetrical Gaussian MFs. 
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5.2.3 Calculation of Fuzzy Indices by Fuzzy Extension Principles 

Previous researches suggested several methods of including uncertainties in 

Markov models where fuzzy arithmetic is applied for calculations [43]-[45]. However, 

the methods proposed in these papers are only applicable to small systems with a limited 

number of states in Markov models. This is due to the intensive calculation of fuzzy MFs 

for every element in the transition rates/probabilities matrix.   

Theoretically, any Markov model can be solved analytically; and the reliability 

indices can be expressed as a function of several parameters which can be represented by 

fuzzy MFs while including uncertainties, such as A= f(λI1,λI2,…). Then, through this 

relationship, the output fuzzy reliability indices can be derived by fuzzy arithmetic. 

However, this method is not applicable in practice since:  1) it is hard to solve the 

stochastic transition equations analytically and 2) even if it is possible to obtain the 

equations, it is not easy to extend the equations initially developed for crisp calculation 

into fuzzy calculations, as one needs to rearrange the variables to ensure that each 

variable will not be directly or indirectly subtracted or divided by itself [32]. 

In this dissertation, two fuzzy extension principle-based algorithms are proposed 

to extend the crisp calculation of Markov processes into fuzzy Markov processes.  

Approach 1):  Extension principle of nonlinear optimization  

Given a Markov model with a fuzzy transition rate of Aλ, at a confidence level of 

α, and the extremes of the transition rates as [ ,α αλ λ− + ], the extremes of the steady-state 

probabilities at state k, [ ,kP α
− , ,kP α

+ ] can be calculated by [32]: 

, min{ ( ) | : }k kP Pα α αλ λ λ λ λ− − += ∀ ≤ ≤      (5.4) 

, max{ ( ) | : }k kP Pα α αλ λ λ λ λ+ − += ∀ ≤ ≤      (5.5) 
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Equations (5.4) and (5.5) imply that the left (or right) bound of the steady-state 

probability of state k should be found from the minimum (or maximum) Pk(λ) of all 

possible λ values in the interval of [ ,α αλ λ− + ] at the confidence level of α.  

 In addition to the steady-state probabilities, other reliability indices can be 

calculated from Pk, and the extremes of these indices are obtained from the lower and 

upper bound indices where λ is in interval [ ,α αλ λ− + ]. 

Similarly, for two transition rates with fuzzy inputs, such as Aλ1 and Aλ2, the 

steady-state probability of state k should be searched from all combinations of λ1 and λ2 

in the extremes corresponding to confidence level α. Equations (5.6) and (5.7) calculate 

the extremes with two fuzzy inputs,  

, 1, 1 1, 2, 2 2,min{ ( ) | : , }k kP Pα α α α αλ λ λ λ λ λ λ λ− − + − += ∀ ≤ ≤ ≤ ≤    (5.6) 

, 1, 1 1, 2, 2 2,max{ ( ) | : , }k kP Pα α α α αλ λ λ λ λ λ λ λ+ − + − += ∀ ≤ ≤ ≤ ≤    (5.7) 

where [ 1, 1,,α αλ λ− + ] and [ 2, 2,,α αλ λ− + ] are the extremes of λ1 and λ2, at a confidence level of α. 

 In summary, in a fuzzy Markov process at a confidence-level of α, the extremes 

of the reliability indices are computed by the following optimization:  

Objective functions: 

For the left extreme, minimize the reliability index to be calculated, which is a 

function of steady-state probabilities P1, P2,…, Pn. Take the availability A for instance, 

the objective function for the left extreme is  

1 2min{ ( , ,..., , )}nA f P P P− = λ     (5.8) 

Similarly, maximize the reliability indices for the right extreme. For example, the 

right extreme for availability A is  
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1 2max{ ( , ,..., , )}nA f P P P+ = λ       (5.9) 

Constraints: 

 0; 1= =∑(M - I)P P       (5.10) 

 α α
− +≤ ≤λ λ λ       (5.11) 

Where P is the vector of steady-state probabilities; M is the transpose of the 

transition matrix, and [ ,α αλ λ− + ] are the vectors of extremes of the intervals of transition 

rates with confidence level α; I is the identity matrix. 

Random variables:  

Steady-state probabilities vector P; Transition-rates vector λ.  

Approach 1 eliminates the matrix inversion step during calculation of the steady-

state probabilities, by adding the Markov equation as a constraint in the optimization, as 

indicated in Equation (5.10).  Therefore, this approach has a merit of solving large scale 

Markov model for equipment as it avoids matrix inversion process which decreases the 

complexity.  

However, approach 1 increases the computation burden and complexity because 

of the increased number of random variables during the optimization. Moreover, the 

extension of this approach to system level calculation of reliability indices is not an easy 

task; since the number of random variables is significantly increased (each equipment 

will have its own steady state probabilities). Therefore, approach 1 was modified, in order 

to come up with a more practical solution.   

Approach 2):  A modified optimization method  

 For many cases where Markov model for equipment is not very large, current 

computers can efficiently perform the matrix inversion task, since it takes less 
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computational time compared with non-linear optimization approach. Therefore approach 

1 can be modified, by including the equality constraints of Markov equations into the 

objective functions, in order to improve the computational efficiency.   

The modified approach is formulated as follows:  

Objective function: 

Minimize the reliability index (e.g., availability) as a function of transition rates 

vector λ, minimizing A(λ). The left and right extremes for the availability index A are 

'min{ ( )}A f− = λ      (5.12) 

'max{ ( )}A f+ = λ        (5.13) 

Constraints: 

 α α
− +≤ ≤λ λ λ       (5.14) 

Random Variables:  

Transition rates vector λ. 

 In this approach, Markov equations are integrated into the objective functions, 

and the number of random variables is reduced.  

Compared to approach 1, approach 2 has the same accuracy but requires less 

computation time. The major difference between the two approaches is the inclusion of 

random variables. In approach 1, random variables are steady state probabilities P1, P2,…, 

Pn of the equipment model, and the transition rates λ. On the other hand, in approach 2 

the random variables are just the transition rates λ. Because of the decreased number of 

random variables, approach 2 has less execution time. Moreover, it can be easily 

integrated into system level calculation of fuzzy reliability indices.   
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Figure 5.3 is a flowchart of the fuzzy Markov processes, and the steps required to 

calculate fuzzy reliability indices by the extension principle.  

Given a confidence level of αi, 
obtain the input intervals , at 

that confidence level

Determine the intervals of 
the reliability indices, by 
non-linear optimizations

Input fuzzy transition 
rates/probabilities 
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reliability indices and input 
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Traditional Markov 
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Fuzzy Extension 
Principles

 

Figure 5.3 Flowchart of the Calculation Procedure of Fuzzy Markov Processes  

In Figure 5.3, an optimization technique is required for determining the minimum 

and maximum values of objective functions. The nonlinear constraints optimization 

function from MATLAB Optimization Toolbox is used in this dissertation to solve 

optimization problems.  

5.3 Fuzzy Markov Decision Processes (FMDP) 

Similar to using fuzzy Markov processes to calculate fuzzy availability values for 

equipment, the fuzzy extension principle can be applied in calculating fuzzy economic 

benefit for equipment, by fuzzy Markov decision processes (FMDP). 

Figure 5.4 gives the flowchart for calculating fuzzy economic benefit of 

equipment by fuzzy Markov decision processes, based on the existing equipment 

economic cost model developed in Chapter 4.  
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Figure 5.4 Flowchart of Fuzzy Markov Decision Process 

5.4 Reliability Evaluation through Simulation  

In station reliability evaluation studies, there are mainly two methods applied: 

Analytical methods and MCS methods.  

Analytical methods, such as Markov Processes are frequently utilized for 

reliability modeling of aging equipment and small substations, in which operations, 

maintenances, and failures can be incorporated[7][59][9][95]. The advantages of 

analytical method include high accuracy and fast computation time; the disadvantage is 

limitation of number of states to be considered, and the lack of providing more reliability 

information. Moreover, in some situations, transitions between some states do not have 

Markovian characteristics (the transition to the next state only depend on current state), 

therefore cannot be modeled by regular Markov Processes [68]. 

Compared with analytical methods, MCS methods are powerful tools to handle 

more conditions related to reliability evaluation (such as impacting of severe weather) of 
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a system, and are capable of providing more comprehensive results than analytical 

methods (such as the probability distribution of the reliability indices). Consequently, 

MCS are broadly applied for reliability evaluations in transmission [98], distribution [70], 

substations [20] and renewable energy systems [99].  

In addition to the high computation burden, several other limitations also exist 

when applying MCS in reliability evaluation of aging equipment or substations:  

1) Most studies use a binary-state model to represent the component in a system, in order 

to simplify the model and increase the convergence speed. Because of lack of modeling 

states other than operations and failures, those models mask the impact of deterioration of 

equipment, maintenances or other conditions which are common in operation of aging 

equipment or substations.  

2) Algorithms are designed to be executed on a single processor, where the computation 

capacity and memory is limited. Consequently, the size or scale of studies using MCS for 

reliability evaluation is limited, and the speed of execution is relatively slow.  

3) Few simulation approaches incorporate cost into consideration, which on the other 

hand is critical and desired by asset managers to compare different strategies and make 

decisions.  

Also, with the fast development of computer technologies, parallel computers and 

supercomputers are available which provide an environment of fast computing with large 

memory. It enables the possibility to utilize the large memories and fast computing 

facilities of parallel computers to perform reliability evaluation by simulation. Several 

pioneer studies have been taken to use parallel computers in reliability studies [100] and 

evaluating the “Reliability Test System” by distributed computers [101]. In these 
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applications, traditional MCS algorithms with binary-state component models were 

parallelized; the scale down strategies and their efficiencies were examined. However, 

simulating multi-state Markov process was not studied, and the application for system 

reliability evaluation with detailed equipment modeling was not included.  

This chapter will focus on MCS, and how to apply parallel computing techniques 

for fast and efficient simulation.  

5.5 Parallel Monte-Carlo Simulation 

5.5.1 Sequential Multi-State Monte-Carlo Simulation  

There are two approaches for MCS: state sampling and sequential sampling [21] 

[98]. In state sampling, the system states are randomly sampled based on the probability 

distributions of the component states. In sequential sampling, the chronological behavior 

of the system is simulated by sampling sequences of system operating states.  

In reliability evaluations of substations where faults of aging equipment account 

for a large portion of outages, sequential sampling outperforms state sampling, because 

equipment are frequently modeled with multi-states, and the time-to transitions among 

states may belong to different distributions [21]. 

For example, given a machine that are modeled by three states: operations 

(abbreviated by UP), failures (DN) and maintenance (M), the randomly transitions among 

those states can be modeled by a Markov Process, assuming it meets the Markovian 

characteristics [14]. The stochastic process of this model can be visualized by a set of 

continuously connected rectangles, where the color of the blocks represents the states, 

and the length of the rectangles stands for the duration of time being in this state, where it 

is named as reliability history chart for this machine. The reliability history chart 
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visualizes the stochastic transitions among the state with different hold times, and can be 

adopted for reliability evaluation. Figure 5.5 gives a reliability history chart of a three-

state machine. 

 State 

 

Figure 5.5 Equipment Reliability History Chart through Simulation 

In Figure 5.5, the blue rectangle means currently the state resides in operation 

state, and the lengths of the rectangle tUP-i (i=1,2,…) are the holding times of being in this 

operation states, before it makes a transition to another state. The destination of the 

transitions and the holding time is random and determined by the probabilistic 

characteristics among those states; the hold time sets ({tUP-i}, {tDOWN-j}, and {tM-k}) have 

specific probability distribution that can be determined by analysis of historical reliability 

data.  

Given a reliability history chart, the reliability indices, such as availability 

A(percentage of time staying in operation state), frequency of failure f ( average number 

of arriving the failure state in per unit time) and expected duration between failures r can 

be calculated from above reliability history chart, by following equations. 
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 In above equations, NUP-DN is the total number of transitions to failure state. 
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 Clearly, the reliability history chart shown in Figure 5.5 can be generated by 

sequential MCS [21]. Any update of this history chart (such as addition of a new state) 

will result in a new set of reliability indices. The final reliability indices are the mean 

values of all the sets. For example, if the total availability values calculated during the 

simulation is {Ai}, where Ai is the availability value computed after the ith iteration, the 

estimated availability from the simulation is  

1[ ]i iA E A A
N

= = ∑      (5.18) 

where N is the total number of iterations.  

For the purpose of checking the convergence and terminating the iteration 

process, there are several different types of stop criteria, such as maximum number of 

iteration, maximum execution time, or coefficient of variance. Among these criteria, 

coefficient of variance is widely utilized in MCS for reliability evaluation [21].  

The coefficient of variation (CV) is a normalized measure of dispersion of a 

probability distribution. It is defined as the ratio of the standard deviation σ to the mean μ. 

The CV values of the availability sets during simulation is  

2( [ ]) /
[ ]

i i

i

A E A N
CV

E A
−

= ∑
    (5.19) 

 The above simulation process and stop criteria enable generation of reliability 

history chart and calculation of reliability indices for equipment. However, in practice, 

recording reliability history chart and the calculating of reliability indices and stop 

criteria after addition of new state to the history chart is both time and memory 

consuming. Thus, the simulation process is modified, to separate the reliability history 

chart into different periods, where calculation of reliability indices and checking for stop 
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criteria are only activated at the end of each period. Then the original reliability history 

chart is discarded, and only reliability related data (such as total simulation time in this 

period, total transition to failure states, and total duration of being in failure state) is 

recorded.  This modification reduces computation of stop criteria and the requirement of 

memory, therefore improves the computation efficiency.  

Figure 5.6 gives a modified reliability history chart generated by this modified 

sequential MCS.  

 State 

 

Figure 5.6 Modified Reliability History Chart of Equipment 

5.5.2 Parallel Computing 

Parallel computers and supercomputers are developed as a technique to solve the 

limitation of memory latency in computation capacity. Currently there are several 

different types of parallel computers available. Based on the configurations of memory, 

the architecture of parallel computers can be separated to share memory, distributed 

memory and hybrid architecture. Distribution memory architecture is frequently utilized 

for parallel computers and supercomputers.  

The programming model adopted in the applications is master-slave model with 

communications among different processors. For the communications, several message 

passing techniques are available, where Message Passing Interface (MPI) is widely 

utilized, as it supports both shared memory architecture and distributed memory 
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architecture.  

The program in parallel programming is to maximize the utilization of processors 

and minimize the communications among different processors, in which the tasks of 

scaling down a sequential code to parallel code is the primary work. In the programming, 

the dispatching of jobs for each processor and communications among those processors 

are the key factors to achieve high performance in parallel computing.  

In this dissertation, the OnDemand (Rocks-131) Cluster in San Diego 

Supercomputer Center (SDSC) is utilized [102]. The cluster has 32 nodes with each node 

of two processors. Each node has 8G memory.  The Star-P is utilized [103] during 

programming because it enables reusing existing MATLAB models and codes, and the 

jobs of task dispatching and communications is coordinated by the Star-P server 

environment running on supercomputers.   

5.5.3 Parallel Sequential Monte-Carlo Simulation for Equipment 

Theoretically, the sequential MCS discussed in Section 5.5.1 is capable of 

modeling equipment with any number of state. In practice, the requirement of memory to 

record reliability related data and the computation and dependency on computation to 

check the stop criteria cannot always be met when running on single processor 

environment.  

But the generation of reliability history chart in Figure 5.5 is not possible to be 

directly scaled for parallel computing, because of the nature that in sequential simulation 

the determination of every state depends on its previous state. 

However, since reliability indices are calculated as the mean value of the total 

indices in the simulation, and they are  steady-state measures, the selection of initial state 
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at every period in Figure 5.6 will not have explicit influence on the results, as long as the 

number of state in a period are not too short. This hypothesis will be verified during case 

studies. 

With this hypothesis, the generation of reliability history chart for each period is 

independent of other periods. The character of independency indicates that the generation 

process can be separated into different periods and simulated independently, which is a 

typical example of task parallel application. For this task parallel application, the task 

(reliability history generation in each period) can be dispatched to a worker processor, 

and overall tasks coordination can be assigned to a master processor.  

Based on the above description, Figure 5.7 shows the reliability history chart 

generation by parallel computers, with CPU 1,2,3  as workers, and CPU 0 as master.  

Time

# 1

 State 

UP DOWN MAINTENANC

Period 1 Period 2 Period 3
CPU 1

Generate history 
chart 
Calculate 
reliability indices
Discard original 
data 

CPU 2
…
...

CPU 3
…
... CPU 0

Check stop Criteria
Calculate Result Reliability 
Record reliability related 
data

 
Set the initial state in each period to be UP state

 

Figure 5.7 Generating Reliability History Chart through Parallel Computing  

 Figure 5.8 is the flowchart of using parallel sequential MCS for reliability 

evaluation of equipment.  
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Figure 5.8 Flow Chart of Parallel Sequential MCS for Reliability Evaluation  
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5.5.4 Parallel Monte-Carlo Simulation for System  

In a system where different components are interconnected, the components are 

operated either independently or dependently (for example, protection control).  

In this dissertation, it is assumed that the components are operated independently, 

for the purpose of simplicity. Also, the impact of power flow is neglected, and it is 

assumed that every component operates under or equal to the rated power.  

Because of this independency assumption, there are two strategies available for 

parallel simulation. First, the simulation of reliability history diagram of each component 

in the system can be dispatched to different processors and simulated simultaneously; or, 

similar to the parallel simulation of equipment, the simulation can be separated into 

different periods, and the generation of reliability history of each period is executed on a 

processor.  

Comparing these two strategies, the latter strategy can also simulate the 

interdependent operation among components, because even in a period, the condition of a 

component will have impact on the transition of another component, the communication 

during the simulation in this period is within the same processor.  

Here, the latter strategy is used in this dissertation. Figure 5.9 shows the parallel 

simulation of system with independent operation components.  
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 State 

 
Figure 5.9 Parallel Sequential MCS for System Reliability Evaluation 

This chapter describes a fuzzy Markov process and fuzzy Markov decision 

process based approaches, to facilitate calculating fuzzy reliability indices and costs. The 

approaches developed here mitigate the limitation of having uncertain parameter, which 

are common in reliability engineering.  

Also, the parallel MCS algorithms developed in this chapter effectively apply the 

parallel computing resource to reduce the execution time, which are valuable to be 

extended to system level reliability evaluations. 
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CHAPTER 6  
CASE STUDIES 

 
 Previous chapters have presented the algorithms developed for reliability / 

economic modeling, as well as the maintenance optimization for equipment / substation.  

 In this chapter, case studies of applying above theories are presented for 

illustration purposes. Sensitivities studies are also performed to study the impact of 

varying input variables toward equipment or substation reliability / economic assessment, 

and the optimal maintenance rates for equipment or substation.  

6.1 Reliability Modeling with Maintenance for Aging Equipment  

The purpose of studies in this section is to demonstrate how semi-Markov 

processes (SMP) are utilized for equipment reliability modeling with aging processes and 

maintenance.  

6.1.1 Semi-Markov Processes 

In previous work [58] [92], optimal maintenance policy evaluation techniques for 

power equipment have been studied using minor or major maintenance [15-17]. 

 However, these works ignored the existence that utility usually performed 

inspection before make maintenance related decision. Natti analyzed inspection’s impact 

on circuit breaker failure probability, failure cost, maintenance cost; a method to 

determine the optimal inspection rate for lowest cost at various stages was developed [93]. 

In that method, continuous-time Markov model is used for representing aging and 

maintenance and the transition time among all states are assumed to follow exponential 

distributions, which might not be true in practice.  
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This paper includes inspection into equipment modeling by using SMP on 

reliability modeling of circuit breaker.  

Anders’s research on air blast breakers [94] indicates that the time to failure rate 

of power breakers varies according to different distributions. At “infant mortality” period, 

time to failure follows Weibull distributions, and the failure rate decreases when the time 

increases. Then the equipment enters normal life period, in which the time to failure 

follows exponential distribution. In “wear out” period, the failure rate increases, because 

the equipment goes into irreversible deterioration.  

In the model developed in this case, equipment is represented by a series of 

deteriorating, maintenance, and failed states. It is assumed that equipment can fail due to 

either deterioration (F1) or random failure (F0).  According to the degree of deterioration, 

the workable states could be categorized into k discrete deterioration states: D1, D2 to Dk. 

After k deterioration states, if there is no preventive maintenance, equipment reaches 

deterioration failure F1. Before preventive maintenance, inspections will be performed, in 

order to determine whether maintenance is not necessary (action I), or performing minor 

maintenance (action II), or carrying out major maintenance (action III). The inspection 

state is labeled as I1 to Ik accordingly. The maintenance states are labeled as M1 to Mk, for 

minor maintenance, and MM1 to MMk for major maintenance. After maintenances, 

equipment returns either to the current state or to better or worse D-state, depending on 

probabilities.  
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Figure 6.1 gives the state-space diagram of this model when k=3. 

 

Figure 6.1 State-Space Diagram with Three Successful States 

The following estimations on the transition probabilities associated with 

maintenance were made, based on historical data and relevant experience [7].  

PI-MM1 = 0;   PI-M1 = 0;             
PI-MM2 = 0;   PI-M = 1;             
PI-MM3 = .9;   PI-M3 = .1;          
 

Probabilities of going to D states after maintenance: 
 

PMM1-D1 = 1;     PMM1-D2 = 0;   PMM1-D3 = 0;  
PMM2-D1 = .9;    PMM2-D2 = .09;   PMM2-D3 = .01; 
PMM3-D1 = .9;    PMM3-D2 = .09;   PMM3-D3 = .01; PMM3-F1 = 0;   
PM1-D1 = .99;    PM1-D2 = .01;   PM1-D3 = 0;    
PM2-D1 = .3;      PM2-D2 = .6;   PM2-D3 = .1;     
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PM3-D1 = 0;       PM3-D2 = .3;   PM3-D3 =.6; PM3-F1 = .1   
 

In this case, the probability of transition from one state to itself is zero. Therefore 

it is an irreversible Semi-Markov Chain, and the steady-state probability πi
e exists, which 

can be found through (6.1) and (6.2). 

1e

i
i S

π
∈

=∑                (6.1) 

e ePΠ = Π               (6.2) 
 

where Πe is the vector of steady state probabilities of the transition probability matrix P. 

The final steady state probability should take into account of sojourn time, which 

is calculated by (6.3). 

.
1,2,3

    
e

i i
i S

i

e
i i

Equ D i
i t

tA
π

ππ π

∈

=

= =
∑∑      (6.3) 

where ti is the sojourn time of state i; πi is the steady state probability of being in a state i.  

The sum of the steady-state probabilities of D1 D2 D3 gives equipment availability 

(in some cases, inspection state can also be categorized into success, such as on-line 

monitoring, or visual/external inspections). Since in above calculation, inspection rate λI 

is a variable, the availability will be an expression in terms of the λI. Take the derivative 

of the availability with respect to λI, and set it equal to zero to solve for optimal λI that 

maximizes equipment availability.  

Sojourn time is the time that the process stays in a state before it makes a 

transition to another state. As for the Markov model in this case, the times to transition 

from current state to other state follow exponential distributions (i.e., the times to 

transition from D1 to D2, I1 or F0 state all belongs to exponential distribution,), the 

sojourn time of each state can be calculated and listed in Table 6.1.  
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TABLE 6.1 SOJOURN TIME OF ALL STATE 

State Sojourn Time State Sojourn Time
D1 1/( λ0+ λ12+ λi) MM2 1/ μmm 
D2 1/( λ0+ λ23+ λi) MM3 1/ μmm 
D3 1/( λ0+ λ3f+ λi) M1 1/ μm 
I1 1/ μi M2 1/ μm 
I2 1/ μi M3 1/ μm 
I3 1/ μi F0 1/ μ0 
MM1 1/ μmm F1 1/ μ1 

 

Table 6.2 is the deterioration, failure and repair rates utilized in this model. 

TABLE 6.2 DETERIORATIONS, FAILURES AND REPAIR RATES 

Parameters   Rates(times/day) Parameters   Rate(times/day) 
λ0 1/10000 μmm 1/5 
λ12 1/1095 μm 1/1 
λ23 1/1277.5 μi 1/(1/24) 
λ3f 1/730 μ1 1/40.15 
μ0 1/7   

 

By solving the SMP equations of (3.9) and (3.11) in Chapter 3, the relation 

between equipment availability and the λI can be expressed in (6.4).  

3 2 5

. 3 2 5 3 4

8.39 5.66 10 9.03 10
8.49 5.69 10 9.07 10 3.76 10

I I
Equ

I I I

A λ λ
λ λ λ

+ × + ×
=

+ × + × + ×
i i

i i i
    (6.4) 

And, Figure 6.2 gives the curve of (6.4). 
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Figure 6.2 Curve of the Equation (6.4) 

6.1.2 Sensitivity Study of Inspection, Maintenance on Equipment Availability  

1) Optimal inspection rate for maximum availability 

Inspection rate (1/day) 
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It is assumed that major and minor maintenance rates are constant and minor 

maintenance rates is three times of major maintenance rate (λMM). By varying inspection 

λI, the corresponding long time availability is calculated. The availability versus λI is 

shown in Figure 6.3. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.988

0.989

0.99

0.991

0.992

0.993

0.994

0.995

0.996

Inspection rate

A
va

ila
bi

lit
y

 
Figure 6.3 Optimal Inspection Rate for Maximum Availability 

 
Comparison of Figure 6.2 and Figure 6.3 shows that two curves are completed 

overlapped. This comparison validate that the relationship between availability and 

inspection can be determined by either equation derivation, or numerical trail methods.  

From Figure 6.3, the optimal λI is 0.0138 times per day (around 72 days per 

inspection), and the corresponding availability is 0.9946.  

Following observations are found to explain the optimal λI:  

i) When λI is too low, potential faults of the equipment may not be discovered, 

hence higher probability of having failures, or lower availability;  

ii) On the other hand, too much inspection will let equipment undergo 

 unnecessary inspections procedures, which also decreases equipment availability.  

2) Availability vs. inspection & maintenance rate 

Optimal Inspection 
Rate: 0.0138, 
Availability: 0.9946
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Moreover, the impact of major and minor maintenance rates can be determined 

together with the λI. Figure 6.4 shows the availability versus λI under various λMM.  
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lambm=0.0002
lambm=0.0006
lambm=0.001

  

 
Figure 6.4 Relationships of Availability and Inspection/Maintenance Rates 

(a) Availability versus Inspection Rates under Different Maintenance rates  
         (b) Availability versus Inspection Rate and Maintenance Rates 

 
3) Availability vs. inspection duration 

In order to study the impact of inspection duration towards equipment availability, 

the inspection duration is varied. The corresponding availability is presented in Figure 6.5.  
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Figure 6.5 Availability versus Inspection Duration for Equipment 

From Figure 6.5, initially availability increases when inspection duration 

decreases. But after it increases till 30 times per day, the availability approaches a 

constant value. The reason lies that the shortening of inspection duration will improve the 

efficiency to discover potential equipment failures. But inspections alone cannot improve 

equipment conditions. In order to improve the availability, the equipment needs to 

undergo fewer failures, or shorter maintenance durations.  

(a) (b) 
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In addition, this result is compared with other modeling methods in our previous 

research studies. Figure 6.6 is the comparison of different methods with the same 

experiment data.  

0.98 0.985 0.99 0.995 1 1.005

1
2
3
4

Up Median Down

 

Figure 6.6 Comparison of Availability by Various Methods 
1) Markov Processes with one Maintenance [15]; 2) SMP with one Maintenance[16]; 3) SMP with two 

Types of Maintenance [17]; 4) SMP with two Types of Maintenance and Inspection. 
 

From Figure 6.6, apparently the introduction of inspection improves equipment 

availability.  The reason is that by including inspection, the deterioration condition, or 

potential random failure could be detected earlier, therefore necessary policy can be 

implied at the right time. This model is also more realistic with real problems.  

Above examples and sensitivity studies validate the advantages of using SMP: 

1) Compared with discrete-Markov processes and continuous-time Markov 

processes, SMP are more general. SMP are more appropriate and accurate to 

model aging processes and maintenance. 

2) Similar to maintenance, inspection is indispensable in aging equipment modeling. 

The inspection may significantly affect equipment availability, if the frequency is 

not properly determined.  

6.2 Economic Modeling with Maintenance for Aging Equipment  

 This section illustrates how semi-Markov decision processes (SMDP) can be 

applied, to calculate the expect benefit of equipment, and determine optimal maintenance 

policy that achieve the maximum equipment benefit. 
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6.2.1 Semi-Markov Decision Processes  

The rewards are assigned according to transitions from a state to another. The 

values are based on levels of deterioration, maintenance, and equipment outages. The 

higher deterioration state results in lower reward value. The rewards from deterioration 

states to maintenance states are the incurred cost of maintenance and the cost associated 

with equipment outages. The longer the component is out of service, either from 

maintenance or repair or failure, the lower rewards is has.  

Therefore, rewards matrix among states can be established from historical data, 

similar to transition probability matrix P. With the steady-state probability matrix 

obtained from P, the expected rewards value at each state can be calculated. Table 6.3 

gives the expected rewards values for each state. Note that positive values indicate the 

reward earned, and negative values indicate the cost incurred.  

TABLE 6.3 EXPECTED REWARD OF EACH STATE  
State Reward Ri ($/day) State Reward Ri ($/day)
D1 12000 MM2 -14400 
D2 9000 MM3 -14400 
D3 6000 M1 -1200 
I1 -200 M2 -1200 
I2 -200 M3 -1200 
I3 -200 F0 -10000 
MM1 -14400 F1 -144000 

 

where Ri is the reward value of being in state i. 

The optimal λI that maximizes equipment availability calculated above will be 

used, to determine optimal maintenance policy that minimizes equipment cost.  

Using policy improvement algorithm, the optimal policy is found after only 2 

iterations, the optimal policy is [III II II], presented in Table 6.4. 
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TABLE 6.4 GAIN VALUES OF ALL ITERATIONS 

Iteration # Policy  (d) Benefit g($/day) 
1 
2 

[ I  I  I] 
[ III  II  II] 

150.9 
170.9 

 

This means perform major maintenance (action III) at the first deterioration stages, 

and then perform minor maintenances at other two deterioration stages. This policy will 

theoretically allow equipment to operate at minimum cost, while still providing 

maximum availability. 

In this study benefit value is used as a numeric indication. One can also use 

maintenance cost as indication, by simply negating the values in Table 6.3, and choose 

the optimal policy with minimized cost.  

6.2.2 Sensitivity Study of Inspection and Maintenance on Equipment Benefit 

 Similar to the reliability modeling of equipment, the relationship between the 

equipment economic benefit and the λI/λMM can be studied by varying the inspection/ 

maintenance rates. Figure 6.7, Figure 6.8 and Figure 6.9 present these relations, by 

varying the λI, λMM, or both, respectively.  
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Figure 6.7 Gain versus Maintenance Rates under Inspection various Rates 
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Figure 6.8 Gain versus Inspection Rates under various Maintenance Rates 
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Figure 6.9 Gains versus Major Maintenance Rates and Inspection Rates 

 
By studying the relationships presented in Figure 6.7, Figure 6.8 and Figure 6.9, 

the utility owners can find in which range, the economic benefit of equipment is sensitive 

to λI or λMM.  

6.2.3 Maintenance Optimization for Equipment  

 Maximizing equipment availability is just one objective of maintenance 

optimization. In fact, asset manager usually make operation and maintenance decisions 

by balancing reliability improvement and the corresponding maintenance cost.  

 Under this situation, three optimization cases are considered: 
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1) Maximize equipment benefit while meeting target availability  

The mathematical formulation of this optimization problem is given as: 

Objective:  Maximize BEqu         (6.5) 

Constraints:  AEqu. > Target Availability; 

A measure that determines how effective a policy is can be calculated by 

examining how much gain value is achieved by this policy. If two policies have the same 

availability, the policy with higher gain value is a better policy.   

Using the same equipment parameters, assuming that availability of .9945 is 

acceptable, will give the range of λI between 0.0086 and 0.0223. The policy with 

minimized cost or maximized benefit will then be chosen, as shown in Figure 6.10. 
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Figure 6.10 Inspection Rates that the Corresponding Availability is greater than Target Availability 

Now the SMDP can be run for the range of acceptable rates, to find the least cost 

and the corresponding policy. The best policy is still [III II II], but now the λI which 

could result in maximized gain value is 0.0223. The corresponding availability now is 

0.9945.  

2) Most cost-effective inspection/ maintenance for equipment 

λI =0.0086 λI =0.0223 

Availability= 
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Another parameter facilitates utilities to make maintenance related decisions is 

cost-effective factor. Cost-effective factor means how much availability can be achieved 

by per unit investment. Obviously the maintenance policy with higher cost-effective 

factor is more favorable. 

Since in this dissertation equipment benefit other than cost is focused, another 

parameter benefit-effective factor is defined instead. Benefit-effective means how much 

benefit can be achieved in terms of one unit of availability. 

Equation (6.6) gives the definition of benefit-effect factor 

.

.

Equ

Equ

B
benefit effective

A
− =      (6.6)

 
Equation (6.7) gives the mathematical formulation of this optimization problem: 

Objective:   maximize Benefit-effect factor. ;     
 Constraints:   AEqu. > Target Availability        (6.7) 

    BEqu. > Lower limit  
 
 Figure 6.11 gives the benefit-effect factor values under various λI.  
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Figure 6.11 Benefit Effect Values at various Inspection Rates 

Figure 6.11 shows that in this example, increasing the λI will greatly increase the 

benefit, around λI value of 0.002 times / day. However after 0.01 times/day, the benefit 

efficiency does not change too much.   
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6.3 Reliability Modeling with Maintenance for Substation 

 The purpose of this section is to illustrate how to calculate the load point and 

entire substation availability, and perform sensitivity studies of varying λI/λMM. It should 

be noted that here only availability is calculated. However, proposed methods can also be 

extended to calculate failure frequency /duration indices. Some assumption restrictions 

are applied, which are listed at the bottom of this chapter.  

6.3.1 Load Point Availability 

 Calculation of entire substation availability is based on the load point availability. 

An example illustrating load point availability calculating procedures is given in Section 

4.5.2. Here a more complicated substation is studied, in order to validate the effectiveness 

of the proposed method.     

 Figure 6.12 is the diagram of this substation.  

 
Figure 6.12 Topology of a Sectionalized Substation Modified from a Utility 

 Assume the sub-transmission lines are 100% reliable. The objective is to calculate 

load point 1 availability AL1.  

 According to minimum cut-set theory, the 1st and 2nd order cut-set for load point 

are displayed in Figure 6.13, and the equations for calculating AL1 is presented in (6.8). 
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Figure 6.13 First and Second Order Cut-sets for Load Point 1 

 
L1

L1 L1

(I) (II) ... (IX)
(I II) (I III) ... (I IX)
(II III) (II IV) ... (II IX)

...
(VII VIII) (VII IX)
(VIII IX)

1

U U U U
U U U
U U U

U U
U

A U

= + + +
− − − −
− − − −

− −
−
= −

∩ ∩ ∩
∩ ∩ ∩

∩ ∩
∩      (6.8)

 

Here the third and further higher orders of cut-sets are neglected, as the 

probability of having three or more equipment failures simultaneously are extremely 

small, comparing with first and second order cut-sets.   

Given the reliability related data for all equipment as provided in the Appendix I, 

equipment availability AEqu and unavailability UEqu= 1-AEqu can be calculated. Then by 

equation (6.8), the load point availability AL1can be determined.  

AL1 will be a function of λMM of equipment that are related with L1 (for example, 

since B6 and B7 are not related with L1, AL1 has no connection with λMM of B6 and B7, 

as presented in (6.8)).  

The plot of AL1 verses λMM of T1 and T2 are presented in Figure 6.14, giving the 

pre-defined λMM for B1, B2, …, B7, listed in Table 6.5 . 

TABLE 6.5 PREDETERMINED INSPECTION AND MAINTENANCE RATES FOR EQUIPMENT 

Equipment  B1 B2 T1 T2 B3 B4 B5 B6 B7 
λI (1/day) 
λMM (1/day) 

0.0351 
0.0006 

0.0371 
0.0008 

0.0381  
- 

0.0391 
- 

0.0401 
0.0011 

0.0411  
0.0012 

0.0421 
0.0013 

0.0431 
0.0014 

0.0441 
0.0015 
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Figure 6.14 Impacting of λMM of T1 and T2 towards the Load Point 1 Availability 

 
Figure 6.14 shows that AL1 has non-linear and complex relationship with the λMM 

for T1 and T3, due to the complex models for equipment and substation. 

Similarly, it is also reasonable to assume that AL1 has non-linear relationship with 

λI and λMM of other equipment. Therefore, during the maintenance optimization process, 

nonlinear and global optimization techniques are required to solve the problem.     

6.3.2 Load Point Importance Quantification 

In the proposed reliability models for entire substation, the Economic Importance 

values EI and User Importance values UI are needed to be provided, for calculation of 

Load Point Importance LI.  

In order to study the sensitivity of these input values, as well as their impact 

towards the substation availability, different EI and UI values are designed, for the 

purpose of comparison.  
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TABLE 6.6 INPUT ECONOMIC IMPORTANCE AND USER IMPORTANCE VALUES 

Set Load 
Point No. 

Economic 
Importance EIi 

User 
Importance UIi 

Pre- Load Point 
Importance LIi 

Load Point 
Importance LIi 

L1 0.1 0.55 0.055 0.25 
L2 0.6 0.1 0.06 0.2727 I 
L3 0.3 0.35 0.105 0.4773 
L1 0.75 0.5 0.375 0.8152 
L2 0.05 0.1 0.005 0.0109 II 
L3 0.2 0.4 0.08 0.1739 
L1 0.1 0.7 0.07 0.2917 
L2 0.8 0.2 0.16 0.6667 III 
L3 0.1 0.1 0.01 0.0417 

 
In Set I, Business customers have the hightest LI values, since from the utility 

perspective business customers have higher revenue contribution, compared with other 

load points. Similarly, in sets II and III, the Hospital and Industry customer will have the 

highest LI values, respectively. The purpose of assigning different importance values is to 

examine their impact towards the entire substation availability.  

6.3.3 Sensitivity Study of Inspection and Maintenance on Substation Availability  

1) Impact of major maintenance rates of T1 and T2 toward substation availability 

Similar to the case of studying the impact of λMM of equipment towards load point, 

the substation availability also varies under different equipment λMM values. 

Figure 6.15 shows the plot of the entire substation availability versus the variation 

of λMM for T1 and T2. Here, the load point importance sets III was selected, and λI or λMM 

for other equipment are pre-defined, according to Table 6.15 and Table 6.16 in the 

Appendix I. 
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Figure 6.15 Impacting of λMM of T1 and T2 towards Substation Availability 

 
Figure 6.15 demonstrates that the shape of the surface is similar to the load point 

availability, because the calculation of substation availability is the weighted sum of load 

points availability, therefore this linear relationship between substation availability and 

load points availability are similar.     

Also, Figure 6.15 illustrates that both under-maintenance and over-maintenance 

can jeopardize the substation availability. Over-maintenance will increase the 

maintenance related outage time, thus decrease the substation availability; similarly, 

under-maintenance will result in increased risk of failures.  

2)  Impact of inspection rates of T1 and T2 toward substation availability 

To study the impact of increasing the λI, and mimic the action of continuous 

condition-monitoring actions, the λI for T1 and T2 are increased, and the corresponding 

substation availability is plotted in Figure 6.16. 
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Figure 6.16 Impact of λI of T1 and T2 towards Substation Availability 

 
As in this study, inspection states are treaded as “success” during state reduction, 

and does not account for outages (such as condition-monitoring instrument’s operation 

will not results in equipment outages), increasing λI will increase ASub., but too much 

inspections will not have signification contributions towards availability improvement, as 

the availability will approach to a saturation point after continuously increasing of 

equipment inspections rates. 

3) Sensitivity of user input UI and EI values toward the entire substation availability 

The user input importance values UI and economic importance values EI for 

determining the load point importance also impacts ASub.. Table 6.7 gives the comparison 

of the relationships between ASub. and λMM / λI for T1 and T2, under various sets of inputs 

for UI and EI values in Table 6.6.  
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TABLE 6.7 IMPACT OF USER INPUT UI AND EI VALUES TOWARD ENTIRE SUBSTATION AVAILABILITY 

UI and EI 
value sets Impact of maintenance of T1 and T2 Impact of inspection of T1 and T2 

I 

0

2

4

6

x 10
-3

0
2

4

6
8

x 10
-3

0.977

0.978

0.979

0.98

0.981

0.982

 

Major Maint. rates of T1 (1/day)

Substation Availabilities VS Major Maint. rates of T1 & T2

Major Maint. rates of T2 (1/day)
 

S
ub

st
at

io
n 

A
va

ila
bi

lty

Substation Availability
Optimal Maintenance Point for T1 and T2

 0
10

20
30

40
50

0

20

40

60
0.976

0.978

0.98

0.982

0.984

Inspection Rate for T1 (1/day)

Substation Availabilities VS Inspection Rate of T1 & T2

Inspection Rate T2 (1/day)

S
ub

st
at

io
n 

A
va

ila
bi

lty

 

II 

0

2

4

6

x 10
-3

0
2

4

6
8

x 10
-3

0.977

0.978

0.979

0.98

0.981

0.982

 

Major Maint. rates of T1 (1/day)

Substation Availabilities VS Major Maint. rates of T1 & T2

Major Maint. rates of T2 (1/day)
 

S
ub

st
at

io
n 

A
va

ila
bi

lty

Substation Availability
Optimal Maintenance Point for T1 and T2

 
0

10
20

30
40

50

0

20

40

60
0.976

0.978

0.98

0.982

0.984

Inspection Rate for T1 (1/day)

Substation Availabilities VS Inspection Rate of T1 & T2

Inspection Rate T2 (1/day)

S
ub

st
at

io
n 

A
va

ila
bi

lty
 

III 
(Reference) 

0

2

4

6

x 10
-3

0
2

4

6
8

x 10
-3

0.977

0.978

0.979

0.98

0.981

0.982

 

Major Maint. rates of T1 (1/day)

Substation Availabilities VS Major Maint. rates of T1 & T2

Major Maint. rates of T2 (1/day)
 

S
ub

st
at

io
n 

A
va

ila
bi

lty

Substation Availability
Optimal Maintenance Point for T1 and T2

 
0

10
20

30
40

50

0

20

40

60
0.976

0.978

0.98

0.982

0.984

Inspection Rate for T1 (1/day)

Substation Availabilities VS Inspection Rate of T1 & T2

Inspection Rate T2 (1/day)

S
ub

st
at

io
n 

A
va

ila
bi

lty

 
 

 Table 6.7 indicates that varying of UI and EI values has slight impact on the 

shapes of ASub. This is true because ASub is the weighted sum of ALP, and they have linear 

relationships among each other. Therefore, in this case the different combination of UI 

and EI values only impact the values of the ASub, but not the shape. 
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6.4 Economic Modeling with Maintenance for Substations 

6.4.1 Quantify Equipment’s Contribution toward Substation Availability  

According to the definition of sensitivity in Chapter 4, one can plot the sensitivity 

of varying equipment availability towards substation availability. Figure 6.17 plots the 

sensitivity of all equipment toward substation level availability, under the input UI and EI 

values Set III. 
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Figure 6.17 Sensitivity Study of Equipment Availability toward Entire Substation Availability 

 
From Figure 6.17, it can be observed that there is a linear relationship between 

AEqu and ASub for all substation equipment. 

From (6.8) used to calculate load point availability, and (4.6) in Section 4.6.1 used 

to calculate sensitivity, the fixed sensitivity values is explainable, because both functions 

of (6.8) and (4.6) are linear.  

However, it should be noted that this is only the approximation, as in equation 

(7.8), the third and higher orders cut-sets are neglected. Therefore, the sensitivity values 

are reasonable approximation only, but not the exact true value.  
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In Figure 6.17, the sensitivity values (slope values) will be utilized as the 

equipment’s economic contribution toward substation. Figure 6.18 compares the 

differences among equipment’s sensitivity toward various load points and entire 

substation.  
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Figure 6.18 Sensitivity of Equipment Availability toward Load Points and Entire Substation Availability, 

under the Load Point Importance Set Value III 
 

In Figure 6.18, it should be noted that there are some “missing” bars. Actually 

they are not missing; just the values of the bars are zeros. For example, since equipment 7 

(B5) has no connection with L2 and L3, the sensitivity values are zero. Therefore, the 

corresponding bars are missing in Figure 6.18, and the economic contribution of 

equipment B5 toward the substation is zero.   

6.4.2 Expected Substation Benefit and Optimal Maintenance Policy 

 After the economic contribution of all equipment toward substation is determined, 

the substation benefit can be attributed to individual equipment, based on the economic 

contribution of equipment toward the entire substation, in order to determine the optimal 

maintenance policies, as well as the corresponding expected benefit.  
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For example, the percentages of equipment’s economic contribution toward the 

entire substation benefit are presented in Figure 6.19, under Set III input UI and EI values.  
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Figure 6.19 Percentage of Economic Contribution of Equipment toward Substation Benefit, under UI and 

EI sets III Values 
 

Under the condition of the λMM for T1 and T2 [λMM_T1, λMM_T2] that can achieve 

maximum substation availability in the case in Section 6.1, and the expected cost/benefit 

of being in every state listed in Table 6.17 in Appendix I, the corresponding optimal 

maintenance policies, and the associated equipment / substation expected benefit can be 

calculated, as presented in Table 6.8.  

In Table 6.8, breaker B7 has the highest expected benefit value. The result 

matches equipment sensitivity analysis results in Figure 6.19: Equipment B6 has the 

highest sensitivity, hence the highest economic contribution toward the entire substation.   

TABLE 6.8 OPTIMAL MAINTENANCE POLICIES FOR ALL EQUIPMENT UNDER MAXIMUM SUBSTATION 
AVAILABILITY 

Equipment  Optimal Maintenance Policy Expected Benefit ($/day) 
B1 [III III III] 26.4458318469804 
B2 [III III III] 22.2884937705962 
T1 [III II II] 18.2341219347696 
T2 [III II II] 14.1658378121240 
B3 [III III III] 24.0777869539366 
B4 [III III III] 24.8718477981986 
B5 [III III III] 87.8006442397341 
B6 [III III III] 221.257521231025 
B7 [III III III] 2.44254023358495 
Total - 151.1020 
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Notes: I Doing Nothing; II Doing Minor Maintenance; III Doing Major Maintenance 

It should be noted that, the Expected Benefit values in Table 6.8 might be 

negative in some cases. The negative values do not mean operating the equipment will 

generate negative benefits; they are just internal mathematic calculation results.  

6.4.3 Sensitivity Study of Inspection and Maintenance on Substation Benefit 

Similar to the sensitivity studies of load points and substation availability, the 

relationship between expected substation benefit and equipment λMM for T1 and T2 are 

visualized in Figure 6.20.  
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Figure 6.20 Impact of Inspection Rates of T1 and T2 towards Substation Benefit 
 

In the maintenance range displayed in Figure 6.20, the increased maintenance will 

increases the expected substation benefit. However, decision of optimal maintenance can 

not merely depend on this diagram, as the region of high expects substation benefit might 

not meet the target availability constraints.  
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6.4.4 Sensitivity Study of UI and EI 
 
 As described before, the changes of UI and EI values will impact the quantified 

values of equipment importance. Moreover, the variation of UI and EI values will affect 

substation benefit values, and the sensitivity of these needs to be examined.  

 Table 6.9 gives the equipment importance values under various UI and EI inputs, 

as well as the corresponding substation benefit, with regards to λMM of T1 and T2.  

TABLE 6.9 SENSITIVITY STUDIES OF VARYING INPUT UI AND EI VALUES TOWARD SUBSTATION BENEFITS 
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 Results given in Table 6.9 illustrate that variation of UI and EI values will have 

obviously impact on equipment importance values, especially for B5, B6 and B7. 

However, the variation of UI and EI does not change the shape of substation benefit and 

λMM values of T1 and T2. The reasons of insignificant change are caused by the small 

changes of T1 and T2 importance values, under different UI and EI value sets.  

6.5 Substation Optimization 

6.5.1 Scenario 1 - Maximize Substation Availability without Constraints 

Case 1: Two decision variables  
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It is difficult to visualize the “optimal” λMM value points, when the number of 

decision variables is larger than 2 or 3. Therefore, Case 1 is designed to have only two 

decision variable, for the purpose of visualization. 

Figure 6.15 gives a visualized optimal maintenance point, for the λMM of T1 and 

T2 that achieved the maximum substation availability.  

Similarly, the optimal λMM values also depend on the UI and EI values. Table 6.10 

summarizes comparison of optimal λMM under different UI and EI values sets, and the 

corresponding maximum ASub. 

TABLE 6.10 OPTIMIZE MAJOR MAINTENANCE RATES FOR TRANSFORMERS TO MAXIMIZE SUBSTATION 
AVAILABILITY (TWO DECISION VARIABLES) 

UI and EI Values Set I Set III 
0.981595920011630 0.981791265908509 Maximum Substation 

Availability ASub λMM (1/day) AEqu λMM(1/day) AEqu 
T1 0.000397317827373400 0.985487169910991 0.000363993747514243 0.985485490993851 
T2 0.000400919973687954 0.986052223692927 0.000315241936080604 0.986031869571058 

 

Case 2: Nine decision variables  

Table 6.11 presents the optimal λMM of all equipment, in order to maximize 

substation availability. At this time, the number of decision variables is 9.  

TABLE 6.11 OPTIMIZE MAJOR MAINTENANCE RATES FOR ALL EQUIPMENT (NINE DECISION VARIABLES) 

UI and EI Values Set I Set III 
Maximum Substation 

Availability 0.982881807839729 0.983704096578446 

Optimal Maintenance Rates 
and Equipment Availability λMM (1/day) AEqu λMM (1/day) AEqu 

B1 0.00143147837310296 0.985449407746721 0.000149067716997437 0.988548372705735 

B2 2.82493762634654e-06 0.987587575250540 0.000356560928018366 0.988587553511713 

T1 0.000822899296741583 0.984394553087483 0.000845349866932766 0.984300756897922 

T2 0.000505324947236865 0.985920000797705 0.000550456035047019 0.985820984631886 

B3 0.00340538537606497 0.976509952014162 0.00315557571702210 0.977489074904800 

B4 0.00590326812140218 0.967889770238115 2.68098012576060e-05 0.986708441550209 

B5 0.000573140740828589 0.985648070828731 0.000503453515953773 0.985693461850127 

B6 0.000620665567803540 0.985341504912132 0.000577876325192394 0.985385273653368 
B7 0.000520944743298776 0.985115132240230 0.000462538285992490 0.985118706433782 
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Detailed results in Table 6.11 indicate that equipment availability value after 

optimization also matches the equipment important changes. For example, from Table 6.6, 

for B6 the equipment importance value under UI EI Set I is smaller than in Set III; this 

importance is reflected by the increased equipment availability values presented in Table 

6.11(highlighted in bold font). Similar results can be observed for other equipment.  

Therefore, when the equipment importance value increases, the λMM of that 

specific equipment also changes, in order to achieve higher equipment availability.  

Case 3: Eighteen-decision variables 

TABLE 6.12 OPTIMIZE BOTH INSPECTION AND MAJOR MAINTENANCE RATES, FOR ALL EQUIPMENT 
(EIGHTEEN DECISION VARIABLES) 

UI and EI 
Values Set I Set III 

Maximum 
Substatio

n 
Availabili

ty: 

0.994404888817886 0.994106462578223 

Optimal 
Maintena
nce Rates 

and 
Equipmen

t 
Availabili

ty 

λI(times/day) λMM (times/day) AEqu λI(times/day) λMM (times/day) AEqu 

B1 47.483557638
6203 

0.00398039810980
066 

0.98848857912
4940 

12.011306216
8274 

0.00069682538462
4991 

0.99199200069
0080 

B2 31.496445962
1610 

5.14263647322899
e-05 

0.99472077882
8201 

48.184134937
1802 

0.00584632816005
944 

0.98384374439
5615 

T1 47.881427189
6449 

0.00015758791921
9030 

0.99491886564
5791 

31.043225596
2951 

0.00011685660540
3501 

0.99326123809
6784 

T2 17.592411878
3646 

0.00028383680685
0715 

0.99186150295
4502 

49.833069260
1080 

0.00086888877130
6483 

0.99482136543
2778 

B3 41.114402156
1305 

0.00507594045232
106 

0.98424303232
2999 

31.957558494
6783 

0.00237554230467
015 

0.99027757587
5726 

B4 14.741535208
3341 

0.00268672744174
929 

0.98459947151
2063 

16.779597115
7950 

0.00149237110374
575 

0.99007374758
0481 

B5 48.790738262
3306 

0.00035832994593
9991 

0.99521672375
0046 

43.506310748
0181 

4.48905711047012
e-05 

0.99443715789
6343 

B6 48.465854885
6219 

0.00048529461075
6504 

0.99511728173
4455 

48.925066006
5671 

0.00054298142198
1095 

0.99513565090
3358 

B7 49.708180679
0924 

0.00043110245013
1183 

0.99509519833
1627 

34.992712577
2247 

0.00152738177511
183 

0.99236198615
2629 
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TABLE 6.13 COMPARISONS OF MAXIMUM SUBSTATION AVAILABILITIES OF DIFFERENT CASES, UNDER 
VARIOUS UI AND EI VALUE SETS 

UI and EI Values Set I Set III 

Comparisons of  
maximum substation 
availabilities of 
different cases 

1 2 3
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Expected maximum substation avaliabilities under various cases in scenario 1 

 1 2 3
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Expected maximum substation avaliabilities under various cases in scenario 1 

 
 

 By summarizing above results, one can make the following conclusions: 

1) When the number of decision variables increases (from 2, 9 to 18), the maximum 

availability that can be achieved is also increased. This observation indicates that 

mandatory pre-determined λMM might not effectively increase entire substation 

availability. From system point of view, the maintenance of all equipment should 

be optimized, to further improve substation availability. 

2) PSO techniques is an effective method to solve maintenance optimization 

problems, because a) it is a global optimization tool; b) the computing time is 

much less, compared with traditional evolution -based tools, and the speed can be 

further reduced by applying parallel computing techniques. 

6.5.2 Scenario 2 - Maximize Substation Benefit under Availability Constraint 

 For the purpose of visualization, this dissertation only considers two decision 

variables: the λMM for T1 and T2. There are two steps in the optimization process: 

Step 1): Determine the search space of λMM that the corresponding ASub is higher than 

target availability. Figure 6.21 gives λMM values spaces that the corresponding ASub > 0.98. 

 In Figure 6.21, the blue layer represents the target availability with ASub. value of 

0.98. Only the λMM values that can achieve the availability above this layer qualify the 

narrowed search space for the maximum substation benefit decision. 
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Figure 6.21 Substation Availability and the Layer of Target Availability  

 
Figure 6.22 gives the space of λMM of T1 and T2 selected from Step 1).  

 
Figure 6.22 Space of λMM of T1 and T2 that the Corresponding ASub >=0.98 

 
Step 2):  

After the decision variable space that meets the target availability is determined, 

the maximum substation benefit can be calculated. The result is presented in Figure 6.23 

(a). Also, the original surface of substation benefit without target availability limitations 

is also presented in Figure 6.23 (b).  
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(a)                                                              (b) 

Figure 6.23 Comparisons of Maximum Substation Benefit Values, with and without Target Availability 
Constraints 

(a) With Target Availability Constraints; (b) Without Target Availability Constraints 
  

6.5.3 Scenario 3 - Maximize Substation Availability under Benefit Constraint 

 Similar to Scenario 2, the object of Scenario 3 is to determine the maximum 

substation availability, under substation benefit constraint (such as the substation benefit 

must be higher than a pre-defined value).  

 The reason of use benefit other than cost as constraint is because the equipment 

economic modeling developed in Chapter 4 is based on calculating expected benefit 

values. However, the algorithm designed here is also eligible to solve similar problems 

under cost constraint. In that situation, the economic model to estimate the substation cost 

(including inspection / maintenance / replacement cost, and penalty cost due to outages) 

should be established.  

Step 1):  

 Determine the search space of λMM that the corresponding BSub. is higher than 

$250/day. This is similar to use a virtual plane that BSub= $250/day, to cut the surface in 

Figure 6.20; only the λMM that the corresponding BSub values are above this plane qualifies 

the constraint. Then the original search space can be narrowed to Figure 6.24.  
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Figure 6.24 Space of λMM  of T1 and T2, that Meet the Substation Benefit Constraint of BSub >=$225/day 

Step 2):  

 After the search space is narrowed, the maximum substation availability can be 

determined, from searching all possible λMM values in Figure 6.24. The optimal λMM that 

corresponding to the maximum substation availability can be determined, which are 

presented in Figure 6.25 (a). Figure 6.25 (b) is the original optimal λMM that maximize 

substation availability without constraint, for comparison purposes.  
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Figure 6.25 (a) Optimal major maintenance rates of T1 and T2 that maximize substation availability, while 
meeting substation benefit constraint; (b) Original maintenance rates, without substation benefit constraint 

The case studies in Scenarios 1, 2 and 3 only give fundamental applications of 

maintenance optimization in a substation. In practice, more objectives or more constraints 

may be added:   
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1) Add other reliability indices in constraints, such as minimize failure frequency 

or outage durations. 

2) Prolong the lives of specific equipment, such as high value transformers.  

3) Minimize the life cycle cost of specific equipment, such as transformers.    

For these conditions, appropriate equality or inequality equations should be added 

or modified, to the mathematic equations in (4.15)-(4.18) in Chapter 4. Usually the added 

constraints or increased decision variables increases the complexity of optimization 

problems. Even though generally the regular PSO can solve these problems, modified 

structure or parallel PSO may be considered, to solve large scale optimization problems. 

6.6 Case Studies of FMP and FMDP 

In order to illustrate the effectiveness of the proposed method, case studies using 

fuzzy Markov processes for modeling of equipment and a small substation are conducted 

separately. Here, the results obtained from approach 2) are presented, since it takes less 

execution time with the same accuracy.  

The uncertain maintenance rates are modeled here, assuming the maintenance 

data obtained from equipment or system is incomplete or inaccurate.  

    However, the approach can also handle modeling other parameters’ uncertainties, 

such as failure rate or repair/replacement time, by selecting the appropriate membership 

function for these uncertain variables.  

6.6.1 Equipment Modeling with FMP (Case A) 

First, for demonstration purposes, a simple example of an 8-state Markov process 

(MP) with maintenance states is given. Figure 6.26 is the state-space diagram of this 

model. More information, including the transition rate data, can be found in [34]. 



 

 
 

149

 

Figure 6.26  The State-Space Diagram of a Markov Process for Equipment Modeling 

i) Existing fuzzy Markov processes  

In order to emphasize the advantages of the proposed method over existing fuzzy 

Markov models, examples of how to calculate the reliability indices through existing 

methods are presented.  

One widely used fuzzy approach is to directly replace the variables in the matrix 

of Markov equations with fuzzy membership functions. Even though theoretically one 

can always derive the corresponding fuzzy reliability indices, similar to traditional 

Markov models, in practice the derivation might be too difficult to be applied to large 

Markov models or system level reliability evaluations.  

Another approach is the derivation of the reliability indices as functions of 

transitions rates/probabilities, and applying fuzzy arithmetic to compute the fuzzy indices 

[44]. For example, the relationship between A andλM is  

 
3 6 2 9 3

M M M
4 6 2 9 3 9 4

M M M M

1.6 (9.2e10 5.8 5.5e10 1.6e10 )
1.5e10 9.4 8.8e10 2.5e10 2.5e10

A λ λ λ
λ λ λ λ
⋅ + + +

=
+ + + +

   (6.9) 

However, this approach requires derivation of explicit equations, which are 

impractical in some cases especially in system level models. Moreover, the variables in 

the equations have to be carefully placed, to avoid directly dividing by themselves, which 

will introduce errors during fuzzy calculation [32]. 
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ii) Calculation of fuzzy reliability indices 

Following the FMP procedure and given the input fuzzy maintenance rate in 

Figure 6.27, the fuzzy reliability indices are obtained, which are shown in Figure 6.27 (b) 

and Figure 6.28.  
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Figure 6.27 The input fuzzy maintenance rate (a) for Case A, and the output fuzzy availability indices (b) 
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Figure 6.28 The Fuzzy Frequency of Failure (a) and Expected Failure Duration (b) Indices for Case A 

In Figure 6.27 (a), the x-axis represents the possible maintenance rate values, 

while the y axis represents the level of confidence or possibility of a particular 

maintenance rate value.  

In comparing existing Markov models with fuzzy calculation approach, the 

proposed method does not require deriving explicit equations, or complex fuzzy 

arithmetic calculations in Markov models. Instead the extension-principle-based fuzzy 

calculation is relatively simple and clear, and it still maintains the same accuracy as the 

existing method, at a given confidence level. Moreover, in this method, addition the 
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number of fuzzy variables only increases the number of constraints in the non-linear 

optimization presented in Section 5.2.3, and will not increase the algorithm complexity.     

iii) Optimal maintenance for maximum availability 

Another application of this algorithm is the optimal maintenance determination 

using the optimization processes explained in Section 5.2.3.  

 In this dissertation, for the purpose of illustrating the capability of the proposed 

method in maintenance optimizations, case studies to determine the optimal maintenance 

rates that achieve the maximum availability for equipment and substations are presented. 

It should be noted that though in this dissertation the objective function is simply 

maximizing the availability of equipment or substations, and the parameters to be 

optimized are maintenance rates, in practice the maintenance optimizations may include 

other objectives functions, such as prolonging the equipment remaining life, minimizing 

the maintenance cost, and maximizing specific reliability indices; the parameters to be 

optimized in practical maintenance optimizations may also include the depth or types of 

maintenance at each stage. Detailed description of maintenance optimization can be 

found in [95], [72], [96]. 

For example, in this case, given the maintenance range of (0, 0.02], the maximum 

availability is 0.9936, with the corresponding optimal maintenance rate of 0.00271/day. 

This result matches well with a previous study of the same model [16], in which the crisp 

point of the optimal maintenance rate and the maximum availability are calculated as 

shown in Figure 6.29.  
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Figure 6.29 The Optimal Maintenance Rate that Maximizes Availability for Case A 

 
6.6.2 Advanced model of equipment by FMP (Case B) 

  For the purpose of illustrating the capability of proposed FMP in modeling of 

equipment, another advanced Markov model with inspections and minor and major 

maintenance states is also studied, which is presented in Figure 6.1. The description of 

each state is available in Section 5.2.1. Detailed information about this model, as well as 

results using standard Markov processes, is given in [95]. 

i) Calculation of fuzz reliability indices 

It is assumed that both inspection rates and major maintenance rates of equipment 

are not known precisely, or in other words uncertain. These rates are assumed to be 

modeled by two fuzzy MFs in which the inspection rates are modeled by a triangular MF, 

and the major maintenance rates are modeled by trapezoid MF. Figure 6.30 shows the 

plots for the input fuzzy inspection rate and fuzzy major maintenance rate. 
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Figure 6.30 Input Fuzzy Inspection Rate (a) and Fuzzy Major Maintenance Rate (b) for Case B 
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Assume that equipment can be operable during inspections. Except operable (Di) 

and inspection states (Ii), all other states are considered as failure states. Figure 6.31(a) 

and (b) show the corresponding output fuzzy availability and failure frequency.  

ii) Optimal maintenance and inspection rates  

In this case, given the range of inspection rates as (0, 0.05), and the range of 

major maintenance rates as (0, 0.00012), the maximum availability is 0.9887; and the 

corresponding optimal inspection and major maintenance rate values are 0.001026 and 

0.001602. This result also matches well with the previous study in [95], which is 

presented in Figure 6.32.  
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Figure 6.31 The Output Fuzzy Availability (a) and Fuzzy Frequency of Failure (b) for Case B 

 
Figure 6.32 The Optimal Maintenance and Inspection Rates that Maximize the Availability for Case B 
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6.6.3 Modeling of substation with FMP (Case C) 

In addition to modeling of equipment, FMP can be extended for station/substation 

reliability evaluation, in which each component is represented by a detailed Markov 

model.  

For example, for a simple substation with five components, shown in Figure 4.6, 

assume the availability of transmission lines is 100%. For simplicity, all the circuit 

breakers (CB) (labeled as 1, 2, 5) and transformers (TF) (labeled as 3,4) are assumed to 

be identical with the same operation and deterioration conditions; each component is 

modeled by a 11-state Markov process shown in Figure 6.1, in which inspection states are 

ignored. The minor maintenance rate is three times the major maintenance rate. It is 

assumed that the cut-sets of third order and higher can be neglected. 

 
Figure 6.33 Topology of a Five-Component Substation in Case C 

 
Given a triangular fuzzy maintenance rate for transformers and a symmetrical 

Gaussian fuzzy maintenance rate for circuit breakers, the corresponding fuzzy availability 

for load point 1 can be calculated. The fuzzy inputs, as well as the fuzzy outputs, are 

presented in Figure 6.34 and Figure 6.35.  
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Figure 6.34 The Input Fuzzy Maintenance Rate for Circuit Breakers (a) and Transformers (b) for Case C 
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Figure 6.35 The Output Fuzzy Availability at Load-Point 1 for Case C 

 
Moreover, the optimal maintenance rates of circuit breakers and transformers that 

maximize the availability of load-point 1, can be calculated, which is also in accordance 

with previous models shown in Figure 6.36 [96]. 

 
Figure 6.36 The Optimal Maintenance Rates for Circuit Breakers and Transformers that Maximize Load 

Point 1 Availability for Case C 
 

The above three cases also validate the following advantages of the proposed 

method over existing Markov processes with fuzzy calculations: 
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1) The proposed method is more compatible with current reliability models than existing 

fuzzy methods. It still uses the current reliability models to set objective functions for 

calculating the left and right extremes of availability index;  

2) The proposed method can be extended to calculate system-level reliability indices 

including uncertainties. Traditional fuzzy arithmetic methods rely on explicit 

reliability indices equations, and usually it is difficult to get these equations for 

system-level studies. However, the proposed method in this dissertation does not have 

that requirement. 

6.6.4 Equipment Economic Cost Modeling through FMDP  

Following is a simple case study to illustrate the FMDP. In the Markov decision 

model utilized to calculate expected economic benefit for equipment in Figure 3.18, 

assume that the cost of being in deterioration failure state (F1) is not known precisely, i.e., 

uncertain. A triangular fuzzy reward membership function is used to model this uncertain 

cost, and fuzzy Markov decision processes will be used to calculate the fuzzy economic 

benefit value for equipment. Figure 6.37 (a) gives the input fuzzy reward of state F1, and 

Figure 6.37 (b) provides the corresponding output fuzzy economic benefit value.  
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Figure 6.37 Input Fuzzy Reward of State F1 (a), and the Output Fuzzy Economic Benefit Value of 
Equipment (b) 
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Similar to fuzzy maintenance rate described in Figure 8.5, a fuzzy cost is a 

combination of range of possible cost values and the associated existing possibility of 

being at each value point. For example, in Figure 6.27, the x-axis is the possible 

economic benefit value points, and y-axis is the corresponding possibility of having that 

value.  

Comparison of Figure 6.37 (a) and (b) shows that there is little shape changes. 

This is true as the relationship between input the parameter associated with reward value 

of being in F1 and the output parameter associated with economic benefit BEqu. is 

approximately linear, which is similar to the relationship between  λI and BEqu., as plotted 

in Figure 6.7. 

However, it should be noted that although there are unapparent changes of the 

shape in output fuzzy benefit values, the optimal policy may change under various fuzzy 

cost input. Thus is because under each possible RF1 values, the MDP will determine an 

optimal policy for that specific RF1 value only.  

Similarly, as the relationship between BEqu and BSub have been established by (4.8) 

and (4.10), above algorithm can be extended to calculate substation level economic 

benefit by applying fuzzy extension principles on these two equations. Due to limitations 

of space, the process is not presented in this dissertation.  

6.7 Sensitivity Studies of Fuzzy Maintenance Rates 

In practice, determining the type of appropriate fuzzy membership functions is 

important. In this dissertation, the impact of varying fuzzy membership functions towards 

the calculation of reliability indices is studied, including varying membership function 
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types, parameters, and comparison of uncertainties associated with different membership 

functions, in order to deal with vagueness and imprecision associated with input data.  

6.7.1 Relationship between FMP and Traditional Markov Process 

Following is an example describing the comparison of FMP with MP. The 

gradual reduction in the range of the input fuzzy maintenance rate in Figure 6.27 for Case 

A decreases the range of the output fuzzy availability. Figure 6.38 shows the impact of 

reducing the fuzzy maintenance rate range on the fuzzy availability. Also, the fuzzy 

Markov process is an extension of traditional Markov process by including the fuzzy 

calculations. 

Theoretically, the traditional MP can be treated as a special case of FMP, where 

the input and output supports equal zero. The Calculation of fuzzy reliability indices is 

also based on the traditional Markov processes. 
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Figure 6.38 Reduction in the Input Fuzzy Values and the Corresponding Outputs 

(a) Input fuzzy maintenance rates for Case A; (b) Output fuzzy availability for Case A. 
 

The major difference between fuzzy Markov processes and traditional Markov 

processes is the introduction of fuzzy transition rates/probabilities, and the fuzzy 

reliability indices. The fuzzy transition rates/probabilities are capable of modeling and 

quantifying the uncertainties in data, and the fuzzy reliability indices will provide the 

possibility or confidence level of results associated with reliability indices. 
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6.7.2 Effects of Various Membership Functions 

In order to compare various MFs and their impact on reliability indices, several 

conditions should be met in order to make the comparison reasonable, e.g., under the 

same centroid or entropy values.  

Centroid x* is a measure of the center point in a fuzzy MF µ(x) as defined in 

Equation (6.10), 

* [ ( )] ( )
N N

i i i
i i

x x x xμ μ= ⋅∑ ∑            (6.10) 

where, N is the total number of discrete points in µ(x).  

This parameter is one of the frequently used defuzzification indices, which can be 

interpreted as the most possible crisp value of a MF.  

Besides the centroid, there are other defuzzification methods available, such as 

bisector of area and mean of maximum [97]. 

Entropy Y is a measure of the uncertainty of a fuzzy MF µ(x). It describes how 

much ambiguity or uncertainty a MF contains. Generally, the larger the support of a MF, 

the higher entropy value it has. Equation (6.11) gives a widely used linear entropy 

measure.  

 ( )
1

2 min ( ),1 ( )
N

i i
i

Y x x
N

μ μ
=

⎡ ⎤= −⎢ ⎥⎣ ⎦Σ     (6.11)  

The linear entropy gives a quantitative parameter for the amount of uncertainty of 

a fuzzy MF. For example, if YA and YB are the entropy values of two triangular fuzzy MFs, 

µA and µB, and YA >YB, then fuzzy MF µA contains more uncertainty information than µB.   

i) Effects of MF type 
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In order to analyze the impact of varying fuzzy MF types on the results, Case A is 

used as a base case. A trapezoidal fuzzy MF and a symmetric Gaussian MF are used as 

replacements for the original triangular MF in Figure 6.27. In order to make the studies 

comparable, the centroid and linear entropy of the new input fuzzy MF are the same as 

the original triangular MF in Figure 6.27 (centroid x*=0.00175, linear entropy Y=0.1954). 

The trapezoid and symmetric Gaussian input MFs and the corresponding fuzzy 

availability, frequency, and duration are shown in Figure 6.39 and Figure 6.40.  
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Figure 6.39 (a) The Input Trapezoid and Symmetrical Gaussian Membership Functions for Case A; (b) The 

output fuzzy availability for Case A 
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Figure 6.40 (a) The Output Fuzzy Frequency; (b) The output fuzzy durations 

Table 6.14 gives the comparison of the centroid and linear entropy values of these 

input MFs. As entropy is a measure of uncertainty, Table 6.14 also indicates that the FMP 

merely transfers the uncertainties from the input MF to the output fuzzy reliability indices. 

The FMP alone does not generate any uncertainty, and the traditional Markov processes 

can be treated as a special fuzzy MP, where the uncertainty equals zero (or the entropy is 

zero). 
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TABLE 6.14 MEMBERSHIP FUNCTIONS 

Input Fuzzy 
Maintenance Rates 

Output Fuzzy 
Availabilities 

Output Fuzzy 
Frequencies 

Output Fuzzy 
Durations  

Membership 
Function 

Type Centroid Entropy Centroid Entropy Centroid Entropy Centroid Entropy 
Triangular  0.00175 0.1953 0.99309 0.24515 0.70420 0.24515 3.68061 0.24515 
Trapezoid 0.00175 0.1940 0.99295 0.24515 0.70558 0.24515 3.97211 0.24515 

Symmetrical 
Gaussian 0.00175 0.1942 0.99307  0.2451 0.70441 0.2451 3.72742 0.2451 

 

ii) Shifting input fuzzy MFs  

Another issue of interest to engineers is to determine the range in which the 

output fuzzy reliability indices will be sensitive to the input fuzzy maintenance rates. This 

can be addressed by shifting the input fuzzy MF in a given range and comparing the 

shapes of the output fuzzy reliability indices.  

For example, in Case A, given a symmetrical Gaussian MF with a centroid value 

of 0.00175 and shift it to the values of 0.00215, 0.00255, 0.00295, the corresponding 

fuzzy availability, frequency, and durations are calculated. The fuzzy maintenance inputs, 

as well as the outputs, are presented in Figure 6.41.  
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Figure 6.41 (a) Shifting of Input Fuzzy Maintenance Rates in Case A; (b) The Corresponding Fuzzy 

Availability Changes; (c) The Corresponding Fuzzy Frequency of Failure in Case A; (d) The 
Corresponding Fuzzy Expected Duration  

⎯ Centroid=0.00175; --- Centroid = 0.00215; … Centroid = 0.00255; -.- Centroid =0.00295 
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By comparing the change in shape of fuzzy reliability indices, one can observe in 

which range the FMP model is more sensitive to the fuzzy input MFs. For example, the 

fuzzy availability indices are more sensitive when the centroid range of fuzzy input is 

(0.00175, 0.00215) rather than the range of (0.00255, 0.00295). 

Similarly, from Figure 6.41(c), the fuzzy frequency of failure indices has no 

distinct sensitivity among the ranges. In Figure 6.41 (d), the fuzzy expected duration of 

failure indices are more sensitive when the centroid range of fuzzy input is (0.00255, 

0.00295) rather than the range of (0.00175, 0. 00215). The variations are caused by the 

nonlinear characteristics of the Markov model among different reliability indices.  

 Furthermore, the intuitive relationship between fuzzy reliability indices and the 

input boundaries are shown in Figure 6.42. 

Given the maintenance rates with uncertainties represented by an interval, the 

corresponding availability interval can be calculated. However, the information on how 

much uncertainty exists at each possible availability value within the interval is still 

unknown. This is indicated in Figure 6.42 (b). In contrast, the utilization of fuzzy 

availability MF can be used to meet the shortcoming of quantified uncertain information, 

which is presented in Figure 6.42 (a).  
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Figure 6.42 The Relationship of Fuzzy Reliability Results and Reliability Intervals 

 
6.8 Summary of FMP and FMDP 

A fuzzy Markov model incorporating uncertain transition rates/probabilities is 

developed in which the extension principle is used for calculating reliability indices. 

Examples of how FMP can be applied in modeling aging equipment and substations are 

given where the fuzzy reliability indices are calculated and illustrated. Sensitivity studies 

are also performed to determine the impact of varying input fuzzy MFs.  

Results obtained from case studies and the sensitivity analyses validate the 

advantages of including fuzzy set theory in reliability evaluations: The fuzzy reliability 

indices not only calculate the boundaries of the indices but also provide quantified 

information for the degree of possibility or confidence in reliability indices. 

Compared with traditional MP and fuzzy Markov models in previous research, the 

algorithm developed in this dissertation has the following advantages: 

1. The algorithm provides a general approach for solving Markov models with uncertain 

transition rates/probabilities. This method is compatible with current Markov models 
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for modeling aging equipment or substations, and can be treated as an extension to the 

traditional Markov processes;  

2. The fuzzy reliability indices calculated in this dissertation provide more valuable 

information than crisp reliability indices, where the quantitative information of how 

much uncertainty is associated with every parameter value can be incorporated; 

3. The method is also capable of determining optimal maintenance to maximize/minimize 

reliability indices. 

6.9 Case Studies of Parallel Monte-Carlo Simulation 

6.9.1 Validation of Sequential Multi-State MCS for Equipment 

An analytical method, such as Markov Processes is selected as reference, to 

validate the correctness of sequential MCS for reliability evaluation of equipment with 

multi-state.  

Figure 6.43 is a Markov Process for equipment with operation (UP), maintenance 

(M) and failure (DN) states.  

 

Figure 6.43 State-Space Diagram of a Three-state Markov Process 

 In Figure 6.43, the transition times for all transitions are assumed to be 

exponentially distributed. Calculation of availability A, frequency of failure f, and 

expected duration between failures r from analytical approaches are available from [9]. 

The values of the parameters of this model are chosen to be λ=1/1095 failures/yr, μ=1/40 

replacement/yr, λM=1/365 maintenance/yr, μM=1/10 repair/yr. In this model, repair and 
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maintenance are modeled separately, where repaired process is embedded into failure 

(DN) state.  

 Following the procedures described in Section 5.5.1, the reliability history chart is 

generated by sequential MCS, and the reliability indices as well as the probability 

distributions of reliability indices are presented in Figure 6.44, and Figure 6.45. The 

analytical results are also plotted in these figures as a reference.  
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Figure 6.44 Simulation Results of the Reliability Indices of a Three-state Equipment.  

(a) Availability A ; (b) Frequency of failure f  ; (c) Duration between failures r 
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Figure 6.45 The Probability Distributions of the Reliability Indices of a Three-state Equipment 

 
From Figure 6.44 to Figure 6.45, it can be observed that the sequential MCS 

provide very close results, compared with the results acquired by analytical method (the 

relative error for A, f and r are 0.0357%, 0.41%, 0.193%, respectively).  

Firstly, Figure 6.44 validates the correctness of the hypothesis that the selection of 

initial state in every period doesn’t have explicit impact on the final result. The sensitivity 

study of the impact of the selection of the length of a period is omitted in this dissertation.  

Moreover, this result clearly validates the correctness and accuracy of the 

modified sequential MCS in equipment reliability evaluation.  

However, it should be emphasized that, for equipment and small system reliability 

evaluations, analytical method such as Markov Processes would be the first choice. The 

simulation of equipment with multi-states provides a foundation for studying large scale 

system reliability evaluation, where impact of equipment toward the system reliability 

needs to be studied.  

6.9.2 Validation of Parallel MCS for equipment 

The same model in Figure 6.43 is scaled and executed on 4 nodes on the Rock-

131 supercomputers in SDSC [102]. In order to examine the improvement of the 

computation efficiency, the maximum iterations number of 2,000,000 (number periods is 
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10,000, transitions within each period is 200) is selected as the stop criteria, rather than 

the coefficient of variance.  

Figure 6.46 and Figure 6.47 show the results of parallel simulation. The results 

are compared with both the results from single processor simulation, and the results from 

analytical method. 
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Figure 6.46 Parallel Simulation Results of the Reliability Indices of a Three-state Equipment  

(a) Availability A; (b) Frequency of failure f ;(c) Duration between failures r 

 
Figure 6.47 The Probability Distributions of the Reliability Indices of Three-state Equipment from Parallel 

Simulation 
 
 Again, the parallel simulation can achieve very close results compared with 

analytical method. However, the execution time is much less than using a single 

processor demonstrated in Case A.  
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 It should be noted that, the difference between the values of reliability indices 

calculated from a single processor and parallel processors is caused by the difference 

between the adopted random number generated on Star-P and MATLAB. In parallel 

simulation program on Star-P environment, the algorithms for random number generation 

is different with the algorithm used by MATLAB, which result in the slight difference 

among reliability indices, and the probability distribution of those indices.   

6.9.3 Parallel MCS for a Parallel System 

A simple parallel connected system is used as a demonstration of using parallel 

simulation for system reliability evaluation.  

Suppose in the parallel connected system, each component is modeled by a three-

state Markov process in Figure 6.43. The parameters for each model are chosen as 

λ1=1/1095, μ1=1/40, λM1 =1/365, μM1=1/10 ; λ2=1/543, μ2=1/20, λM2 =1/180 , μM2= 1/5. 

Following the procedure to generate reliability history chart described in Figure 

5.9, the reliability indices are calculated. Figure 6.48 and Figure 6.49 are the system 

reliability results achieved by the parallel simulation, as well as the analytical results 

given as a reference.  
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Figure 6.48 Parallel Simulation Results of the Reliability Indices of a Parallel Connected System 

(a) Availability Asys (b) Frequency of failure fsys (c) Expected duration between failures rsys 
 

 
Figure 6.49 The Probability Distributions of the Reliability Indices of a Parallel Connected System 

 
Again, Figure 6.48 and Figure 6.49 validate the accuracy of using parallel 

simulation method, for system level reliability studies.  

6.9.4 Parallel MCS for Substation 

 Moreover, parallel MCS method is applied for reliability assessment of a 

substation, to validate the correctness of this method, and its advantages in computation 

efficiency.  
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 The simple substation presented in Figure 4.6 will be studied. Equipment 

(transformers and circuit breakers) within this substation are modeled by a three-state 

model, and the algorithm will study the load point 1 availability, through parallel MCS 

method. For simplicity, it is assumed that the availability of sub-transmission lines is 

100% (no fault).  

  The load point 1 availability acquired by parallel MCS method is presented in 

Figure 6.50. For validation purposes, the availability values calculated by analytical 

approaches and traditional sequential MCS method are also presented for comparison.  
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Figure 6.50 Comparison of Load Point Availability Conducted by Parallel MCS and other methods  

 
 Again, Figure 6.50 validates that the result achieved by parallel MCS method is 

very close to the result calculated by analytical or traditional MCS methods, while 

significantly reduces the execution time. Figure 6.51 provides the execution time length 

(unit: Second) of the parallel MCS method, when utilizing 8, 16, 32, 64 and 96 CPUs, 

which prove the advantages of parallel MCS in reducing execution time.   
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Figure 6.51 Comparison of Execution Time under different number of CPU 

 
 It should be noted that, the difference between the availability values calculated 

from parallel MCS, and traditional MCS is caused by the difference between the random 

number generation approaches adopted on Star-P and MATLAB. This is similar to the 

difference in results obtained in Figure 6.46 and Figure 6.48.  

6.10 Summary of Parallel MCS 

• Performance study of parallel computing in developing the methodology to scale 

down an existing algorithm and run on parallel computers is necessary. This study 

is preferred to be performed by rewriting the algorithm in C or FORTRAN codes, 

rather than high level computer languages such as Star-P, because it allows 

manual controls distribution of tasks to different processors and coordinate the 

communications among the processors. However, this dissertation aims at 

developing algorithms rather than scale down an existing algorithm, thus studies 

to examine the speedup and efficiency thing parallelizing strategy is not presented.  
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• Variance reduction techniques, such as important sampling [21] and antithetic 

variates method [59] may be necessary when the number of states increases. 

Because if the number of rare events sampled is insufficient, the accuracy of the 

reliability indices as well as the convergence speed will be reduced.  

• In parallel simulation, the random number generated among different processors 

must be irrelevant. It is very important to assure the low relevance of the random 

numbers generated among the processors, to achieve high accuracy of the results. 

This can be achieved by selecting different seed, or utilized some toolbox for 

simultaneously generating random numbers among different processors.   
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Appendix I: Input Values 

Tables 6.15 and 6.16 give the transition rates and probabilities all equipment. 

TABLE 6.15 TRANSITION RATES AND REPAIR RATES OF EQUIPMENT 

Failure/R
epair 
Rates 

B1(times/
day) 

B2(times/
day) 

T1(times/
day) 

T2(times/
day) 

B3(times/
day) 

B4(times/
day) 

B5(times/
day) 

B6(times/
day) 

B7(times/
day) 

λ0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
λ12 0.0009 0.0009 0.0009 0.0009 0.001 0.001 0.0012 0.0013 0.0013 
λ23 0.0008 0.0008 0.0007 0.0007 0.0009 0.0009 0.0011 0.0011 0.0012 
λ3f1 0.0014 0.0014 0.001 0.001 0.0014 0.0014 0.0014 0.0014 0.0014 
μ0 0.1429 0.1429 0.0714 0.0714 0.1429 0.1429 0.1429 0.1429 0.1429 
μ1 0.025 0.025 0.0167 0.0167 0.025 0.025 0.025 0.025 0.025 
μMM 0.2 0.2 0.1429 0.1429 0.2 0.2 0.2 0.2 0.2 
μM 1 1 1 1 1 1 1 1 1 
μI 24 24 24 24 24 24 24 24 24 
K 3 3 3 3 3 3 3 3 3 
 

TABLE 6.16 TRANSITION PROBABILITIES OF MARKOV MODELS FOR EQUIPMENT 

Source State – Destination State B1 B2 T1 T2 B3 B4 B5 B6 B7 
MM1-D1 1 1 1 1 1 1 1 1 1 
MM1-D2 0 0 0 0 0 0 0 0 0 
MM1-D3 0 0 0 0 0 0 0 0 0 
MM2-D1 0.9 0.89 0.88 0.9 0.9 0.9 0.9 0.9 0.9 
MM2-D2 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
MM2-D3 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 
MM3-D1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
MM3-D2 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
MM3-D3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
MM3-F1 0 0 0 0 0 0 0 0 0 
M1-D1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
M1-D2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
M1-D3 0 0 0 0 0 0 0 0 0 
M2-D1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
M2-D2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
M2-D3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
M3-D1 0 0 0 0 0 0 0 0 0 
M3-D2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
M3-D3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
M3-F1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 6.17 provides the expected cost of all equipment. 

TABLE 6.17 EXPECTED COST OF BEING IN EVERY STATE OF ALL EQUIPMENT IN SUBSTATION  
(Unit: $/day, the negative sign means the cost) 

Source State – 
Destination State B1($) B2($) T1($) T2($) B3($) B4($) B5($) B6($) B7($) 

I1 -200 -200 -500 -500 -200 -200 -200 -200 -200 
I2 -200 -200 -500 -500 -200 -200 -200 -200 -200 
I3 -200 -200 -500 -500 -200 -200 -200 -200 -200 
MM1 -14400 -14400 -36000 -36000 -14400 -14400 -14400 -14400 -14400 
MM2 -14400 -14400 -36000 -36000 -14400 -14400 -14400 -14400 -14400 
MM3 -14400 -14400 -36000 -36000 -14400 -14400 -14400 -14400 -14400 
M1 -1200 -1200 -3000 -3000 -1200 -1200 -1200 -1200 -1200 
M2 -1200 -1200 -3000 -3000 -1200 -1200 -1200 -1200 -1200 
M3 -1200 -1200 -3000 -3000 -1200 -1200 -1200 -1200 -1200 
F0 -100000 -100000 -200000 -200000 -100000 -100000 -100000 -100000 -100000 
F1 -144000 -144000 -1000000 -1000000 -144000 -144000 -144000 -144000 -144000 
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Appendix II: List of Assumptions 

1. Assume equipment can fail due to both random and deterioration failures. 

2. Assume minor and major maintenance rates is constant; minor maintenance rate is 

three times of major maintenance rate. 

3. Assume all equipment is operated under normal power ratings.  

4. Assume the random failure rate λ0 and repair rate μ0 are constant, in equipment 

reliability models   
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CONCLUSION AND FUTURE RESEARCH 
 

Conclusion  

In this dissertation, the approaches for studying and optimizing equipment 

maintenance for substations were designed. Several stochastic-based algorithms were 

developed for evaluating substation reliability and economic cost, and determining the 

optimal maintenance schedules/policies that improves substation reliability. 

Following is a summary of the contributions of this dissertation. 

1) Equipment Reliability Modeling including Maintenance, Aging, and Human Error 

An algorithm for developing multi-state SMP-based equipment reliability models 

which incorporate deteriorations, inspections, maintenances, failures, human errors, and 

replacements was provided. Compared with our previous studies and similar researches, 

the algorithm has following advantages: 

• It covers most frequently occurring activities related with equipment reliability, 

including inspection, minor and major maintenances, failures, replacement, and 

human errors. Compared with previous Markov models for reliability studies, it is 

more accurate and practical.  

• It incorporates inspections that enable studying condition monitoring as well as 

predictive maintenance decisions in stochastic models. 

• It includes human error that enables studying the sensitivity of human induced 

errors toward equipment reliability indices. 

2) Equipment Economic Modeling based on Semi-Markov Decision Process 
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The economic cost models based on semi-Markov decision process provide a 

probabilistic approach, for computing the expected cost of equipment. The model can be 

used for determining optimal maintenance policies at each deterioration stage. Compared 

with existing economic cost models based on Markov models (a brief description of a 

typical model is available in Section 3.9), the SMDP-based model has the following 

advantages: 

• It considers the possibility of having various actions at each deterioration stage, 

while other models do not.  

• It determines the optimal maintenance policy by using policy iteration algorithm 

in semi-Markov decision process. 

• By combining equipment reliability and economic cost model, an optimization 

scenario that maximizes equipment benefit while satisfying target availability 

constraint is developed. This scenario is valuable for making preventive 

maintenance decisions (maintenance rate) and predictive maintenance decision 

(optimal maintenance policy) together, for critical equipment.  

3) Substation Reliability and Economic Cost Modeling  

One of the significant contributions of this dissertation is to develop models for 

substation level reliability evaluation and economic analysis, based on equipment level 

models utilizing minimum cut sets approaches. Case studies of reliability evaluation and 

economic cost analysis with detailed modeling of equipment maintenance for a nine-

equipment substation are conducted.  

The proposed approaches have the following advantages: 
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• They enable studying the impact of equipment maintenance schedules of aging 

equipment toward reliability indices of entire substation. 

• They incorporate detailed modeling of aging processes and maintenance on 

individual equipment, while still compatible with most existing reliability models. 

• They include an algorithm to quantify the equipment’s contribution toward entire 

substation availability, considering both topology locations and relative 

conditions of equipment. The algorithm can assist asset managers identifying 

critical equipment within a system. 

• Because the proposed substation economic cost model is based on the detailed 

equipment models that contain investment/replacements, maintenance, and outage 

penalty costs, it is more accurate and practical. 

4) Maintenance Optimization for Substations   

A Particle Swarm Optimization-based optimization process was developed to 

determine the optimal maintenance rates for all equipment in a substation. Case studies of 

different scenarios were presented that demonstrate the process of computing optimal 

maintenance rates to: 1) maximize substation availability; 2) maximize substation 

economic benefit with target availability constraints; or 3) maximize substation 

availability with economic benefit constraints. The optimization process has following 

advantages 

• It extends the concept of maintenance optimization from equipment to system 

level. 
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• The comparison results indicate that maintenance optimization should be 

considered globally for all equipment in a system, in order to efficiently improve 

overall substation availability. 

• The adoption of PSO technique enables optimizing multi-decision variables with 

less computation time, which is an effective tool for substation maintenance 

optimization. 

• The scenarios developed can be easily extended, to solve maintenance 

optimization problems with multi-constraints for practical applications.    

5) Fuzzy Markov Process  

A fuzzy Markov model incorporating uncertain transition rates/probabilities was 

developed in which the extension principle is used for calculating reliability indices. 

Results obtained from case studies and the sensitivity analyses validate the advantages of 

including fuzzy set theory in reliability evaluations: the fuzzy reliability indices not only 

calculate the boundaries of the indices, but also provide quantified information for the 

degree of possibility or confidence in reliability indices. 

Compared with traditional Markov process and fuzzy Markov models in previous 

researches, the algorithm developed in the research has the following advantages: 

• It provides a general approach for solving Markov models with uncertain 

transition rates/probabilities. This method is compatible with current Markov 

models developed for aging equipment or substations, and can be treated as an 

extension to the traditional Markov processes. 

• The fuzzy reliability indices calculated in this paper can provide more valuable 

information than crisp reliability indices, where the quantitative information of 
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how much uncertainty is associated with every parameter value can be 

incorporated. 

• It is capable of determining optimal maintenance to maximize/minimize 

reliability indices. 

6) Parallel Monte-Carlo Simulation 

A method to simulate the multi-state stochastic processes of equipment and 

system was developed, by generating the reliability history charts based on sequential 

MCS. A parallel Monte-Carlo simulation algorithm was developed, to separate the 

simulation and execute them simultaneously on different CPUs.  

Compared with traditional MCS, the parallel Monte-Carlo simulation algorithm 

developed here has the following advantages:     

• It reduces the total simulation execution time while maintain high accuracy and 

simulation details.  

• It efficiently utilizes multi-processors and large memory resources that will be 

widely adopted among personal computers in next decades. 

• It extends traditional sequential MCS with the capability to simulate and study the 

impact of equipment maintenance toward system level reliability changes.   

Recommendation for Future Research  

Equipment-level Maintenance Optimization 

• Retirement Planning 

Optimal retirement/replacement management is an important part of asset 

management. Minimizing life cycle cost (LCC) is an important object adopted by 

many utilities, which aims reducing long term investment / maintenance costs. 
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Effective retirement / replacement plan will reduce failures. However, extensive 

studies of the impact of replacement plan toward equipment reliability and 

economic cost should be conducted. The equipment economic cost model 

developed in this dissertation can potentially be used to answer this question. 

• Maintenance Delay 

In practice, maintenance may be approved but the action may be delayed, due to 

insufficient crews, maintenance resources, or operational reasons. However, 

whether the delay improves the risk of equipment or system failures are not 

examined. The equipment reliability model developed in this dissertation can 

potentially incorporate this, and study the impact of maintenance delay.  

Substation-level Maintenance Optimization  

• Incorporating Flexible AC Transmission System (FACTS) in Substation Reliably 

Evaluation 

With the further deployment of Smart Grid, FACTS has been implemented in 

many utilities. FACTS can provide dynamic reactive power compensation (such 

as Static Var Compensation-SVC), reduce transmission resistance (such as Series 

Compensation-SC), improve distribution reliability indices (such as Battery 

system), etc. Therefore, development of substation reliability and cost models, 

while incorporating FACTS systems are potential future researches.  

• Incorporating Intermittent Generation and Stochastic Load Profiles in 

Maintenance Optimization   

Over-loading will increase equipment deterioration speed. Usually utilities have 

standard to set a maximum operation power over certain equipment (such as 
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operate transformer should be less than 80% of its rated power). However, this 

deterministic limit can be violated due to stochastic load changes. Similarly, for 

substations that deliver intermittent power (such as substations connecting to wind 

farms), the characteristics of random generation will increase the difficulty in 

maintenance policies decisions. Therefore, how to incorporate these stochastic 

load changes in maintenance optimizations is another valuable research.   

Fuzzy Analysis  

 This dissertation only studied the impact of uncertain maintenance rates toward 

equipment, and substation level availability. But its impact on larger systems is not 

conducted. A study to extend the algorithm developed in Section 5.2 to the areas of 

transmission or composite systems studies can be performed.   

Parallel Monte Carlo Simulation 

• Perform the economic cost simulation, to simulate the operation and maintenance 

cost for equipment or systems  

• Extend the algorithm for larger scale reliability simulations, to exam its potential 

in reliability evaluations of practical systems, with detailed modeling of every 

component.
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