
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

Summer 8-2012

Classification of Genomic Sequences by Latent
Semantic Analysis
Samuel F. Way
University of Nebraska-Lincoln, samfway@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses

Part of the Bioinformatics Commons, Computational Biology Commons, and the Other
Electrical and Computer Engineering Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Way, Samuel F., "Classification of Genomic Sequences by Latent Semantic Analysis" (2012). Theses, Dissertations, and Student Research
from Electrical & Computer Engineering. 42.
http://digitalcommons.unl.edu/elecengtheses/42

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses/42?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages

CLASSIFICATION OF GENOMIC SEQUENCES
BY LATENT SEMANTIC ANALYSIS

by

Samuel F. Way

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Electrical Engineering

Under the Supervision of Professor Khalid Sayood
and Professor Ozkan Ufuk Nalbantoglu

Lincoln, Nebraska

August, 2012

CLASSIFICATION OF GENOMIC SEQUENCES

BY LATENT SEMANTIC ANALYSIS

Samuel F. Way, M. S.

University of Nebraska, 2012

Adviser: Khalid Sayood and Ozkan Ufuk Nalbantoglu

Evolutionary distance measures provide a means of identifying and organizing related

organisms by comparing their genomic sequences. As such, techniques that quantify

the level of similarity between DNA sequences are essential in our efforts to decipher

the genetic code in which they are written.

Traditional methods for estimating the evolutionary distance separating two ge-

nomic sequences often require that the sequences first be aligned before they are

compared. Unfortunately, this preliminary step imposes great computational burden,

making this class of techniques impractical for applications involving a large number

of sequences. Instead, we desire new methods for differentiating genomic sequences

that eliminate the need for sequence alignment.

Here, we present a novel approach for identifying evolutionarily similar DNA se-

quences using a theory and collection of techniques called latent semantic analysis

(LSA). In the field of information retrieval, LSA techniques are used to identify text

documents with related underlying concepts, or “latent semantics”. These techniques

capture the inherent structure within a collection of documents, and in much the

same way, we extend these approaches to infer the biological structure through which

a collection of organisms are related. In doing so, we develop a computationally ef-

ficient means of identifying evolutionarily similar DNA sequences that is especially

well-suited for partitioning large sets of biological data.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my committee and academic advisors

for their help throughout my graduate studies. In particular, no words could ever

express my appreciation for Dr. Khalid Sayood and the impact that he has had on

my life, both academically and personally. I feel very fortunate to have found an

advisor who is as patient and caring as he is, and I can’t thank him enough for his

support and guidance.

I would also like to thank Dr. Michael Hoffman for his invaluable insight and

help in preparing this research. He and Dr. Sayood have shown me how absolutely

fun research can be, and I thank them both for making my time at UNL incredibly

enjoyable. Next, I would like to thank Dr. Ufuk Nalbantoglu for being a great friend

and constant source of ideas throughout my graduate career.

Beyond my committee, I want thank Dr. David Russell, who has been an amazing

role model, teacher, and friend over the past few years. His high expectations have

motivated me to always strive to do quality work, and with him, I also thank my other

co-workers at Red Cocoa, especially Mark Nispel, David McCreight, Chris Hruby, and

Andy Lenhart. I also need to thank Dr. Mark Bauer for his incredible support and

guidance, as well as our collaborators at Names for Life and the University of Nebraska

Medical Center. I owe a special thanks and many boxes of cookies to Cheryl Wemhoff

and Terri Eastin for helping me get everything lined up to graduate this semester.

They helped me to overcome a number of obstacles this summer, and I thank them

for all of their patience. I also need to thank Jay Carlson for his help with Adobe

Illustrator and for letting me vent my frustrations.

Finally, my thanks also go to my family and friends for their amazing support

throughout my academic journey. Since day one, my parents have provided me with

iv

the means and inspiration to accomplish great things, and they’ve always been there

to help me in any way they can. Words can’t express how grateful I am for their many

sacrifices and undying support. Lastly, I would like to thank my beautiful girlfriend,

Laura Norris, whose love and encouragement has carried me through the last nearly

eight years of my life. She inspires me to become a better person every day, and this

work would not have been possible without her support.

v

Contents

Contents v

1 Introduction 1

2 Biology Background 3

2.1 Introduction to DNA Structure . 3

2.2 Function of DNA . 6

3 Comparing DNA Sequences 8

3.1 Alignment-based Distance Measures 8

3.1.1 Jukes-Cantor . 9

3.1.2 Kimura . 13

3.2 Alignment-free Distance Measures . 15

3.2.1 Relative Complexity Metric 16

3.2.2 K-mer Based Genomic Signatures 19

3.2.2.1 The Average Mutual Information Profile 20

3.2.2.2 The Relative Abundance Index 22

4 Latent Semantic Analysis 25

4.1 Introduction to LSA . 27

vi

4.2 Dimensionality Reduction Techniques 31

4.2.1 Singular Value Decomposition 32

4.2.1.1 Mathematical Derivation 33

4.2.1.2 Dimensionality Reduction via SVD 35

4.2.2 Non-negative Matrix Factorization 36

4.2.2.1 Mathematical Derivation 38

4.2.2.2 Dimensionality Reduction via NMF 40

4.3 Adaptation to Sequence Data . 41

5 Visualizing High-Dimensional Datasets 43

5.1 Method . 45

5.2 Implementation . 47

5.3 Results and Discussion . 48

5.3.1 Validation of Taxonomy Data 49

5.3.2 Map Creation From Proximity Data 50

5.3.3 Discussion . 51

6 Clustering of 16s Ribosomal Genes 54

6.1 Background Information . 54

6.2 Method . 55

6.3 Results and Discussion . 56

7 Identification and Removal of Host DNA Fragments from Metage-

nomics Datasets 67

7.1 Construction of a synthetic dataset 68

7.2 Method . 70

7.3 Results . 73

vii

7.4 Discussion . 77

8 Using LSA-NMF to Design Microarray Probes 79

8.1 Background Information . 79

8.2 Method . 81

8.3 Results and Discussion . 82

9 Conclusion and Recommendations for Future Work 89

9.1 Recommendations for Future Work 90

Bibliography 94

1

Chapter 1

Introduction

Since the days of the Human Genome Project, the world has witnessed an ongoing

revolution in the field of biology. In fact, the changes in this area are so profound

that many believe we are currently experiencing the advent of a “New Biology”,

one that relies on concepts and approaches from engineering, computational sciences,

mathematics, and many other fields[1]. The integration of these disciplines signi-

fies the emergence of biology as an informational science and is necessitated by the

introduction of many new technologies for producing biological data.

Some of the most important examples of these new technologies are platforms

for massively parallel, next-generation DNA sequencing. Next-generation sequencing

(NGS) replaces the traditional Sanger sequencing method with automated, high-

throughput technologies that produce unprecedented amounts of sequence data at

ever-increasing speeds. What’s more, the cost to purchase and operate these platforms

has declined rapidly over the years, and as a result, the number of research centers

using these technologies has skyrocketed.

Given the ability to quickly sequence genetic material, scientists are constantly

discovering new applications for next-generation platforms. However, with so many

2

scientists generating such massive amounts of sequence data, it is becoming increas-

ingly difficult to make sense of all this new information. As such, it is imperative that

we devise efficient techniques for classifying and organizing genomic sequences such

that they may be quickly identified and retrieved.

Traditional methods for sequence comparison are often computationally inefficient

and therefore should not be used in large-scale implementations. Instead, in this re-

search, we present a new approach for differentiating genomic sequences based on

latent semantic analysis, a theory and collection of techniques born out of the fields

of natural language processing and information retrieval. Using this new means com-

parison, we explore several experiments that will demonstrate the approach as an

attractive alternative to traditional distance measures that is especially well-suited

for large-scale applications.

3

Chapter 2

Biology Background

Before we go about introducing methods for comparing DNA sequences, we should

first provide some biological background to establish what these sequences are and

why they are important. It is commonly understood that DNA is a sort of genetic

code or blueprint that is used to construct living things. For the purposes of our

discussion, we will require only a slightly more detailed explanation, which we present

here. In addition, this section will be used to introduce most of the terminology and

conventions that will be used throughout subsequent chapters.

2.1 Introduction to DNA Structure

DNA stands for deoxyribonucleic acid and is a double-stranded macromolecule com-

prised of four basic structural units called nucleotides. Nucleotides can be thought of

as the building blocks for creating DNA sequences, and much like how we form sen-

tences using strings of letters from our alphabet, we will see that DNA is essentially

a string of nucleotides.

A nucleotide molecule consists of three main parts: a five-carbon sugar, a phos-

4

phate group, and a nitrogenous base or nucleobase. As previously mentioned, there are

four different nucleotides, each differing only in the nucleobase. The four nucleobases

are Adenine (A), Guanine (G), Thymine (T), and Cytosine (C). When referring to a

nucleotide, we typically mean to indicate the attached base, which we denote using

its one letter abbreviation. Accordingly, this set of four letters forms the basis for our

“DNA alphabet”.

In 1952, scientists James Watson and Francis Crick noticed that certain bases

naturally pair or bind to one another. Specifically, adenine pairs with thymine (A-T),

and guanine with cytosine (G-T). These complementary nucleotides are held together

by hydrogen bonds which link the two molecules, forming a base pair. Because DNA

is essentially a string of these pairs, we typically express the length of a sequence in

terms of its number of base pairs or “bp” for short. These chemical properties ensure

that each nucleotide bonds only to its pair, which we refer to as its complementary

Figure 2.1: A section of DNA. This particular section features three base pairs, for a
total of six nucleotides. Labeled features include the individual nucleotide

components as well as the 5’ and 3’ ends of each strand.

5

base or simply its complement.

Figure 2.1 illustrates a small section of DNA, consisting of three base pairs. As

shown in the figure, the DNA macromolecule includes two, complementary strands

of nucleotides which are held together by hydrogen bonds. Also labeled in this image

are the so-called 5’ (read as “five prime”) and 3’ ends of each strand. As it turns out,

the chemical structure of the macromolecule provides directionality in the way that

DNA is constructed. Appropriately, when we talk about reading a DNA sequence,

we are simply naming off the bases from the 5’ end towards the 3’ end on one of the

strands.

In order differentiate between the two complementary strands of DNA, we typ-

ically label one as the forward strand and refer to the other as the reverse strand.

To demonstrate, let’s call the left strand shown in Figure 2.1 as the forward strand.

Using the 5’ end as our starting point, the forward strand is read as ACT . Similarly,

starting from its 5’ end, the reverse strand is read as AGT . Conventionally, for a

given segment of DNA, we refer to the corresponding portion of the opposite strand

as the reverse complement. In the example above, we would say that AGT is the

reverse complement of ACT .

Finally, in Figure 2.1, we note that the DNA macromolecule looks a lot like a

ladder, with the nucleobases forming rungs which connect the two sugar-phosphate

backbones. However, due to the opposite or antiparallel orientation of the two strands

and the stacking forces between nucleobases, a DNA macromolecule actually twists

around itself. This twisting forms the familiar double-helix structure which we often

associate with DNA. Figure 2.2 illustrates this structure.

6

Figure 2.2: Double-helix structure of DNA

2.2 Function of DNA

The primary function of an organism’s genome (or complete DNA sequence) is to

store the genetic code or set of instructions that determine how the organism is to

be built. Portions of the genome, called genes, contain specific instructions for how

to create proteins and can also be used to send signals within the cell or even control

other genes.

Proteins can be thought of as the machinery inside every cell of every living thing.

They perform virtually every function from converting food into energy to defending

our bodies from harmful bacteria. In fact, the word “protein” itself comes from the

Greek word “prota” meaning “of primary importance” [2]. Naturally, because they’re

so important, we’re very interested in studying proteins and, in our case, the DNA

7

used to create them.

Because of the macromolecule’s double-helix structure, DNA sequences are in

general very well-protected, and the likelihood of a change occurring is very low.

When a change or mutation does occur, it can have a wide variety of impact on the

organism. Typically, mutations have little impact and are either ignored or corrected

by error-checking proteins inside the cell. Less frequently, a mutation will significantly

affect some function within the organism. This change could be advantageous, or as

is the case with certain types of cancer, the mutation could be lethal. If the mutation

is advantageous or has little to no impact on the organism, it stands a chance of being

permanently incorporated into the organism’s genome and being passed on to future

generations.

When a change is incorporated into a genome, particularly one that benefits the

organism, we say that the organism has evolved in some capacity. These changes,

however slowly, contribute to the level of genetic diversity between species. From

this, assuming that all forms of life have evolved from a common ancestor, it follows

that the level of similarity in the genomic sequences for two species provides an

indication of their evolutionary distance and, thus, functional similarity.

The focus of this research is to discover computationally efficient techniques for es-

timating the evolutionary distance between DNA sequences. By clustering or group-

ing sequences together based on evolutional similarity, we are able to identify and

investigate the similarities and differences between related organisms. In turn, this

ability to compare sequences provides us with a means of deciphering the genetic code

in which they are written.

8

Chapter 3

Comparing DNA Sequences

Many biological applications are reliant on our ability to identify and investigate

groups of related genomic sequences. In effect, these applications require a means

of approximating the evolutionary distance separating two organisms. As one might

expect, because this task is so important, a number of approaches have been developed

over the years. Here we introduce several popular distance measures, dividing them

into two categories: ones that require the sequences to be aligned prior to comparison

and others which are “alignment-free” distance measures.

3.1 Alignment-based Distance Measures

Of the many approaches for approximating evolutionary distance, a large number

of them require sequence alignment as a preliminary step. When two sequences

are said to be aligned, in general, they are thought to be positioned such that we

have maximized the amount of overlapping regions in common to the two sequences.

Table 3.1 depicts two sequences that have been aligned, with *’s indicating matching

bases.

9

* * *
T A C G A A T
- - C G T A -

Table 3.1: Two aligned sequences

As can be seen, this particular arrangement of the two sequences produces the

maximum amount of overlap between the pair, and at this point we can begin to

evaluate their level of similarity. While these particular sequences are somewhat

trivial to align, it’s not hard to imagine that sequence alignment can be a very difficult

problem, especially as the length of the sequences increases. As such, there are a

number of different algorithms addressing this issue, each with its own interpretation

of and procedure for finding maximal overlap. Popular algorithms include the classic

Needleman-Wunsch algorithm [3], Smith-Waterman [4], and the more recent (and

more efficient) algorithms GramAlign [5] and MAFFT [6].

At this point, we turn our attention to a few classical techniques for approximating

evolutionary distance. The following distance measures will assume that sequences

have been aligned using one of these algorithms, however, one should not underesti-

mate the computational burden and complexity of this preliminary operation.

3.1.1 Jukes-Cantor

In the 1960’s, before DNA sequencing was really even possible, scientists Charles R.

Cantor and Thomas H. Jukes hypothesized about ways of estimating the evolutionary

distance between two organisms using their DNA sequences. The method that they

developed is known as the Jukes-Cantor model [7], and despite being one of the

simplest metrics for approximating evolutionary distance, it is still widely used today.

In fact, as new models are developed, they are often compared to Jukes-Cantor as

10

the de facto standard for measuring evolutionary similarity.

The simplicity behind the Jukes-Cantor model comes from a number of assump-

tions. First, the model assumes that each site in which the two sequences differ has

evolved or mutated independently of all other sites. In addition, it is assumed that

all bases are equally likely (i.e. pA = pC = pG = pT = 1
4
) and that substitution from

one base to any other base occurs with the equal probability and mutation rate.

A

C

G

T

α

α

α

α

α α

Figure 3.1: Probability of base substitutions in the Jukes-Cantor model

The state transition diagram shown in Figure 3.1 illustrates the probabilities with

which a single base changes to any other base, according to the Jukes-Cantor model.

As indicated, the probability PXY of a single nucleotide changing from any base X

to any base Y where X 6= Y is α.

In order to devise a distance metric using this model, let us define q(t) to be the

proportion of nucleotides in the two sequences S1 and S2 that are the same at some

time instance t. Naturally, it follows that p(t), the fraction of differences between the

two sequences is given by

p(t) = 1− q(t). (3.1)

11

At time t + 1, the proportion of nucleotides that are the same between S1 and

S2 includes the nucleotides that were the same at time t and remained the same

plus any nucleotides that were different but are now the same. The proportion of

nucleotides that stayed unchanged since time instance t is given by the product of

q(t) with the probability of no change occurring in the corresponding bases of S1 and

the probability of no change in those nucleotides in S2, which is simply q(t)(1− 3α)2.

On the other hand, for the nucleotides that were different but have since become

the same, this change could have occurred in any of three ways. First, the nucleotide

in sequence S1 could have changed to match the corresponding base in S2. Similarly,

the nucleotide in S2 could have changed to match the corresponding base in S1.

Lastly, the nucleotide could have changed in both sequences, and now we have a

match. Putting everything together, the proportion of similarities between the two

sequence at time t+ 1 is

q(t+ 1) = q(t)(1− 3α)2 + (1− q(t))(α(1− 3α) + α(1− 3α) + α2). (3.2)

Because α is very small, we can ignore terms involving powers of α, leaving us

with

q(t+ 1) = q(t)(1− 6α) + (1− q(t))2α

= q(t) + 2α− 8αq(t)

or

12

q(t+ 1)− q(t) = 2α− 8αq(t).

As we make the interval smaller, in the limiting case we get

dq

dt
= 2α− 8αq

Solving this differential equation, we get the integrating factor

µ = ke8αt

and the solution for q(t) as

q(t) =
1

4
+ ce−8αt (3.3)

Since we assume that all organisms evolved from a common ancestor, we can say

that S1 and S2 were at one point identical, and therefore we can solve for c using the

initial value q(0) = 1. Obtaining c=3
4
, we are left with

q(t) =
1

4
+

3

4
e−8αt, (3.4)

and

p(t) = 1− q(t)

=
3

4
(1− e−8αt). (3.5)

Returning to our transition diagram, we notice that the probability of a change

in a nucleotide per time unit is 3α. Since this is the case for both sequences, the

13

distance d for a time period t will be 6αt. Rearranging Equation 3.5, we obtain

e−8αt = 1− 4

3
p

or

−8αt = ln(1− 4

3
p).

By substituting d = 6α, we finally obtain

d = −3

4
ln(1− 4

3
p) (3.6)

Looking at Equation 3.6, it is easy to imagine why the Jukes-Cantor metric has

remained so popular throughout the years – it’s remarkably simple. After alignment,

all that remains is to count the number of mismatches between the sequences, divide

by the length of the overlapping portion, and enter this number into the provided

equation. What’s more, despite having some rather egregious assumptions in its

derivation, the metric yields a surprisingly useful estimate for evolutionary distance.

3.1.2 Kimura

After the introduction of the Jukes-Cantor metric, a number of similar distance mea-

sures emerged, attempting to replace some of its underlying assumptions with more

biologically accurate predictions. One such measure is the Kimura model which was

published in 1980 and is named after its creator, Motoo Kimura [8].

Like Jukes-Cantor, the Kimura model also assumes that all bases are equally likely,

however Kimura makes an important distinction in the probabilities with which any

one base changes to another. When a single nucleotide undergoes a point mutation,

14

the substitution is classified as either a transition or a transversion, which as we are

about to see, do not occur with equal probabilities.

A transition occurs when a purine changes to another purine (A ↔ G) or a

pyrimidine to another pyrimidine (C ↔ T). A transversion, on the other hand, occurs

when a purine is replaced by a pyrimidine or vice versa. Transversions involve a more

drastic change in the chemical structure of the DNA molecule and therefore occur

much less frequently than transitions. Knowing this, Kimura modified the Jukes-

Cantor distance measure to accept two parameters that account for the mutation

rate differences between transitions and transversions.

A

C

G

T

β

α

β

α

β β

Figure 3.2: Probability of base substitutions in the Kimura model

As shown in Figure 3.2, the Kimura model contains two parameters to account for

the differing mutation rates for transitions(α) and transversions(β). From here, the

derivation closely follows that of the Jukes-Cantor metric, resulting in the equation

below for estimating evolutionary distance.

d = −1

2
ln(1− 2ftransition − ftransversion)− 1

4
ln(1− 2ftransversion) (3.7)

Because this model distinguishes between the types of substitutions that can occur,

15

it follows that the resulting approximation relies on two parameters. First, ftransition

denotes the fraction of differences due to transition, and similarly, ftransversion repre-

sents the fraction of differences due to transversion.

Like the Jukes-Cantor model, Kimura is inherently simple to implement and

produces very similar yet arguably more biologically relevant results. Somewhat

unsurprisingly, since the release of the Kimura metric, several other models have

been introduced, attempting to further replace the simplifying assumptions made

by Jukes, Cantor, and Kimura. These models include the work of Felsenstein in

1981 [9]; Hasegawa, Kishino, and Yano in 1985 [10]; Tavar in 1986 [11]; and Tamura

in 1992 [12] and 1993 [13]. Many of these metrics, like Kimura, distinguish between

mutation rates for transitions and transversions but add additional parameters to

account for unequal base frequencies and other biases.

3.2 Alignment-free Distance Measures

In each of the distance measures presented thus far, DNA sequences must be aligned

before they are compared. As was noted, this preliminary step imposes great compu-

tational burden upon each of these metrics, despite the relatively simple steps that

follow.

To appreciate this burden, consider the case in which you would like to compare

the genomes of two eukaryotes and estimate their evolutionary distance. Potentially

billions of bases in length, these two sequences would be horribly difficult to align and

would require incredible computational resources. In addition, while alignment may

reveal the majority of similarities between the two sequences, this class of distance

measures fails to address the issue of genomic rearrangements. A rearrangement

occurs when a portion of the genome, for a variety of reasons, is relocated to a different

16

position along the sequence. As a result, when using alignment-based approaches,

large portions of similar genomes might be incorrectly identified as differences due to

rearrangement.

In hopes of overcoming some of the limitations of alignment-based distance mea-

sures, we now introduce several alignment-free metrics. These approaches, in general,

attempt to construct statistical characterizations or profiles for DNA sequences which

are then compared to profiles of other sequences in order to approximate their evolu-

tionary distance.

3.2.1 Relative Complexity Metric

Our first example of an alignment-free distance measure is the relative complexity

measure, which was originally devised by Hasan Otu and Khalid Sayood in 2003 [14].

In a recent and pending publications by the authors, the relative complexity measure

has been demonstrated to produce results similar to what is obtained using the Jukes-

Cantor model but with a huge computational performance advantage.

The relative complexity measure is based on an approximation of Kolmogorov

complexity [15], achieved using the Lempel-Ziv complexity measure [16]. The Lempel-

Ziv (LZ) complexity of a sequence is given by the number of distinct phrases in a left-

to-right parsing of its bases. A distinct phrase is one which has not been encountered

in the history of the sequence. As an example, consider the sequence Q = gagacagt.

Initially the history of the sequence is the empty string. As g is not in the empty

string, g becomes the first distinct phrase. The history of the sequence now consists of

the single letter g. Continuing, because a is also not found in the history, a becomes

the second unique phrase. The history of the sequence is now ga. The next two

letters are g and a. Because the sequence ga already exists in the history we keep

17

building the phrase until we get to gac which is not in the history of the sequence.

Thus, gac is the third unique phrase. The history is now the sequence gagac. The

next unique phrase in the sequence is agt, as ag is found within in the history. Thus

the sequence gagacagt can be represented by four unique phrases and therefore has

an LZ complexity of four. We can represent the parsing by

Q = g · a · gac · agt (3.8)

and the LZ complexity by c(Q), or the number of distinct elements in Q. We

can see that sequences with more diversity will result in higher LZ complexity, and

sequences that are more uniform will result in smaller LZ complexity. Further, if we

concatenate a sequence with another, similar sequence, the increase in complexity will

be quite small. On the other hand, if the appended sequence is, in general, dissimilar

from Q, we will observe a large increase in the LZ complexity. To demonstrate,

consider the sequence R = gagacat and the parsing for the concatenated sequence

QR:

QR = g · a · gac · agt · gagacat (3.9)

Despite being nearly twice as long as the original sequence Q, the concatenated

sequence QR has an LZ complexity of just five, only one more than the LZ complexity

of Q alone. If, on the other hand, we were to concatenate Q with a sequence with

notably dissimilar composition, we observe a greater increase in LZ complexity. To

demonstrate, consider the sequence T = tcgctta and the parsing for the concatenated

sequence QT :

QT = g · a · gac · agt · tc · gc · tta (3.10)

18

As expected, the LZ complexity of QT goes up to seven, notably higher than

the complexity of QR and an increase which is proportional to the length of the

concatenated sequence.

In light of these observations, we can construct a distance metric by comparing

the relative complexities of two DNA sequences. To do this, consider the difference

between the magnitudes of c(Q) and c(QR), where QR is the sequence formed by

appending R to the end of Q. As previously stated, if the sequences are similar, c(QR)

will be only slightly larger than c(Q). We can therefore estimate the two sequences’

relative complexity by observing the difference in these two values. Finally, in order to

produce a symmetric measurement, we must consider the differences between c(RQ)

and c(R). Putting all of this together, the relative complexity measure is defined by

d(Q,R) =
c(QR)− c(Q) + c(RQ)− c(R)

c(QR)+c(RQ)
2

(3.11)

where the denominator provides normalization to account for differences in se-

quence length. Recalling that similar sequences will exhibit small relative complexi-

ties, smaller values produced by this metric can be used to indicate stronger similarity,

at least in terms of the LZ-based complexity estimate.

A highly efficient implementation of the relative complexity measure can be ac-

cessed as part of the GramAlign software package [5]. Given the impressive perfor-

mance of the application, it is clear that the relative complexity measure provides an

excellent alternative to alignment-based distance metrics. In addition, since the algo-

rithm uses LZ complexity to approximate evolutionary distance, this approach offers

a distinct advantage over alignment-based measures when comparing entire genomes

or sequences long enough to be affected by genomic rearrangement.

19

3.2.2 K-mer Based Genomic Signatures

In the relative complexity measure which we have just discussed, a distance metric was

constructed by parsing DNA sequences into lists of distinct subsequences of variable

length. Now, we focus our attention on a large collection of alignment-free distance

measures that are based on the frequency of occurrence of fixed-length subsequences

or “k-mers”.

A k-mer refers to an oligonucleotide (“oligo”) or polymer of length k that typically

denotes a portion or subsequence of some larger sequence. As an example, we could

say that gagacagt from our example above is a k-mer of length eight or, simply, an

“8-mer”. Going a step further, we could say that gagacagt contains the 3-mers (or

“trigrams”) gag, aga, gac, aca, cag, and agt. Since we have four bases in our alphabet,

these trigrams are just a small subset of the 4k or, in this case, 43 = 64 possible k-mers.

Thinking about how we could use k-mers the basis for a distance metric, recall

our previous discussion on the relative complexity measure. There we concluded that

similar sequences would have many phrases or subsequences in common, and thus, a

low relative complexity. Similarly, we can expect sequences with similar composition

to have a large number of k-mers in common.

To demonstrate this property and justify using k-mers as a suitable basis for cre-

ating distance measures, let us return for a moment to the example from our previous

discussion in which we had defined the sequences Q = gagacagt, R = gagacat, and

T = tcgctta. Again, QR will be used to denote the sequence created by appending R

to the end of Q. Ultimately, we would like to see that Q has more k-mers in common

with QR than QT , so we begin by constructing the sets of k-mers contained within

each sequence, which we will denote using Z.

20

ZQ = {gag, aga, gac, aca, cag, agt}

ZQR = {gag, aga, gac, aca, cag, agt, gtg, tga, cat}

ZQT = {gag, aga, gac, aca, cag, agt, gtt, ttc, tcg, cgc, gct, ctt, tta}

We can now consider the number of additional k-mers found going from Q to

QR and QT . Once again, ideally, more similar sequences will have more k-mers in

common, so the number of additional trigrams will be smaller.

|ZQR \ (ZR ∩ ZQR)| = 3

|ZQT \ (ZT ∩ ZQT)| = 7

As was expected, in comparing the sets of k-mers used to construct each con-

catenated sequence, QR required fewer additional k-mers than QT . Based on this

observation, we can once again correctly assume that Q is more similar to R than

T . More importantly, though, we have given reason for using k-mers as a basis for

constructing distance measures.

3.2.2.1 The Average Mutual Information Profile

In the simple example above, we saw that two sequences with similar composition are

comprised of very similar sets of distinct k-mers. If we were to increase the length of

the sequences being compared, however, this information alone might not be enough

to differentiate between the two. As a result, in order to a build a more effective

characterization or profile for a piece of DNA, we will need to incorporate more of

21

the information that is embedded within the sequence.

A very natural example of such a characterization is the average mutual informa-

tion (AMI) profile by Bauer et al. [17]. The AMI profile is an information theoretic

measure that describes the amount of information that an individual nucleotide car-

ries about the base that will occur k positions downstream. In other words, if we

come across a c in our sequence, does this make us any more certain about what to

expect three bases away?

As a simple example, consider the following sequence:

S = gagatctga

Moving along S, we notice that whenever we encounter a g, the next base is

always an a. Similarly, whenever we encounter an a, we always see a t three bases

downstream. In terms of mutual information, the appearance of a g completely erases

any uncertainty that we might have about the next letter being an a. In this case, we

see that a g carries a great deal of information about the next base in the sequence.

The AMI profile extends this idea by computing the average amount of information

carried by each base about every other base separated by k positions. Repeating this

process for a range of distances from 1 to k, we obtain a vector of length k that can be

used as a statistical characterization for the sequence. The elements Ik of this vector

can be expressed as

Ik =
∑
X∈A

∑
Y ∈A

pk(X, Y)log
pk(X, Y)

p(X)p(Y)
(3.12)

whereA is our DNA alphabet, consisting of the four nucleotides {A,C,G, T}. Finally,

a distance measure can be formed by simply computing the correlation coefficient for

22

two AMI vectors.

In their studies, Bauer et al. demonstrated the AMI profile as an effective yet

computationally inexpensive means of comparing DNA sequences. The profile is

pervasive in the sense that a small fragment will produce a very similar AMI profile

to what would be generated for the entire sequence from which it was taken. In

addition, the size of the vector used to characterize a sequence is typically small (<50

elements), making the profile very compact and inexpensive to store in memory.

All of these properties make the AMI profile a very attractive method for com-

paring genomic sequences. We should note, however, that in the interest of forming

a compact profile, each element in the vector represents the average of sixteen differ-

ent measures. By taking this average, we are effectively throwing away information.

Consider the case where we have a number of measurements with high values and an

equal number low values. The average of these measurements will fall somewhere in

the middle, but through this process, we have lost the information of which entries

had high values–information that might be useful in distinguishing the two sequences

that we are comparing. For this reason, as we go about developing new distance

measures, we should be mindful of the type and amount of information that we are

willing to sacrifice.

3.2.2.2 The Relative Abundance Index

The relative abundance index by Nalbantoglu et alis an example of k-mer based

comparison metric that, unlike the AMI profile, forfeits compactness in favor of pre-

serving more information about the sequence [18]. For a chosen k-mer size k, this

model begins by measuring the frequencies or abundances of each of the 4k possible

k-mers. Next, each of these frequencies is compared to an expected value, indicating

whether each particular k-mer is over- or underrepresented relative to some expected

23

frequency.

The expected frequency in this measure is based on Markov assumptions. To

demonstrate, Nalbantoglu offers the example in which we start with a particular k-

mer, x1, x2, . . . , xk whose probability is p(x1, x2, . . . , xk). Using Markov assumptions,

we can rewrite this probability as

p(x1, x2, . . . , xk) = p(xk|x1, x2, . . . , xk−1)p(x1, x2, . . . , xk−1). (3.13)

Assuming that each base occurs independently of each other, the conditional prob-

ability on the right-hand side of Equation 3.13 can be re-written as

p(xk|x1, x2, . . . , xk−1) = p(xk). (3.14)

Under this assumption, we can now compute the log odds ratio to form the relative

abundance index of zeroth order, rai0:

rai0(x1, x2, . . . , xk) = log2
p(x1, x2, . . . , xk)

p(xk)p(x1, x2, . . . , xk−1)
(3.15)

If we were to instead assume that nucleotides follow a nth order Markov model,

it follows that the corresponding relative abundance index would be written as

rain(x1, x2, . . . xk) = log2
p(x1, x2, . . . xk)p(xk−1, . . . xk−n)

p(xk, xk−1, . . . , xk−n)p(x1, x2, . . . , xk−1)
(3.16)

In the final step, we combine multiple relative abundance indices, computed for a

range of orders to form the final RAI profile,

24

rai(x1, x2, . . . xk) =
k−2∑
n=0

rain(x1, x2, . . . , xk). (3.17)

At this point, having compared each k-mer’s frequency to an expected value, the

scores in the RAI profile will be positive if the corresponding k-mer appears more

frequently than expected and negative if it appears less frequently. Once again, as

was the case with the AMI profile, we can form a distance metric by simply correlating

or otherwise comparing two profile vectors.

As demonstrated by its authors[18], the relative abundance index profile performs

quite well when used as a similarity measure. Classifying sequenced reads of 400bp

in length, RAIphy, an open-source implementation of the RAI profile, outperformed

other popular similarity-search-based binning programs CARMA [19], MEGAN [20],

and PhymmBL [21] in nearly all tests. In addition, it should be noted that the

RAI profile was demonstrated using DNA fragments 100bp to 1kbp in length. For

comparison, the AMI profile was evaluated on fragments from 1kbp up to 10kbp.

Because of this ability to differentiate such small fragments, the RAI metric is a very

attractive distance measure for partitioning short-read datasets like those generated

by high-throughput, next-generation sequencing platforms.

25

Chapter 4

Latent Semantic Analysis

Having just introduced a variety of techniques for comparing genomic sequences, we

must now ask ourselves: where do we go from here? Looking at the collection of

distance measures presented above, each technique offered a unique advantage over

the rest. For instance, the alignment-based measures were ideal for directly compar-

ing specific, highly-related genomic sequences. On the other hand, the alignment-free

metrics were much more computationally efficient and provided a means of differen-

tiating even very short fragments of DNA. As we look to devise a new method for

sequence comparison, perhaps a better question might be: what do we need?

In answering this question, we should be mindful of a relatively new complication

facing today’s biologists that didn’t exist when we first started comparing genetic se-

quences. This complication, which has been dubbed the “biological data explosion”

is, of course, the sheer volume of data that is currently being generated by labs all

across the world [22]. Fueling this explosion are a number of high-throughput tech-

nologies like next-generation DNA sequencers that are currently capable of producing

on the order of 100 megabases of data in one hour [23].

To put this number in perspective, consider the Human Genome Project, which

26

took a team of biologists from twenty research centers in six different countries nearly

thirteen years to assemble [24]. Using next-generation sequencing technologies, this

same amount of data can be generated in a matter of hours, and as demonstrated

in 2009 by Li et al., a human genome can now be assembled in about two days[25].

What’s more is that while the speed of sequencing improves, operating costs continue

to fall.

In report issued by the National Institutes of Health’s National Human Genome

Research Institute, we see that the cost of obtaining a megabase of sequence data has

plummeted since the days of the Human Genome Project, which was completed in

2003 [26]. The findings of this report are shown in Figure 4.1.

Figure 4.1: The cost of obtaining genomic sequence data over the past decade.
Moore’s law is shown to provide a growth reference. Source: [26]

As demonstrated in the figure, the cost of obtaining DNA sequence data is de-

creasing at an astonishing rate, especially since the introduction of next-generation

technologies in early 2008. For comparison, the graph also shows Moore’s law, which

describes the rate of progress in integrated circuit technologies. The cost of gener-

ating sequence data is declining at a rate that completely overshadows this already-

27

impressive rate of growth, and as prices fall, the volume of a data being generated is

skyrocketing.

For this reason, biologists today are tasked with managing an overwhelming

amount of data, an amount that promises to continue to grow in the years to come.

As a result, returning to our question, what we need are tools that will help us to

conquer the mountains of data that we are creating. We need ways of partitioning

and organizing this data so it can be utilized more efficiently.

With this need in mind, in order to partition sets of genomic sequences, a logical

first step would be to investigate existing methods for organizing large collections of

data. Perhaps the largest dataset that we can imagine is the Internet, which consists

of billions of webpages or text documents written on every conceivable topic and in

nearly every language. And, yet, in a matter of seconds, search engines are able to

retrieve entire lists of relevant documents for a provided word search. Imagine if we

could design a similar system to organize our genomic sequences!

In this chapter, we introduce latent semantic analysis (LSA), a theory and collec-

tion of techniques traditionally used to identify and partition similar text documents.

For our purposes, we hope to extend these techniques to identify and partition evo-

lutionarily similar genomic sequences.

4.1 Introduction to LSA

Latent Semantic Analysis refers to a theory and standard collection of techniques

that attempt to identify similar documents in a text corpus based on their underlying

concepts or knowledge content [27]. The theory was introduced in 1988 by Dumais,

Furnas, Landauer, Deerwester, and Harshman as method for improving the field of

Information Retrieval [28]. At that time, most search engines relied on simple lexical

28

matching to gather documents for a user’s query. However, when we use a search

engine, what we really want to discover are documents that discuss a particular topic,

regardless of whether or not they contain the exact terms that we’ve entered into our

search. As such, these authors devised a method of retrieving documents based on

their semantics using classical dimensionality reduction techniques.

LSA, in general, involves these four steps [29]:

1. Formation of a term-document matrix.

2. Transformation/modified weighting of term-document matrix.

3. Dimensionality reduction.

4. Clustering of documents in the reduced space.

As shown, the basis of all LSA approaches starts with the formation of a term-

document matrix, which uses a vector space model to describe text documents based

on the words they contain. To demonstrate, imagine for a moment that we have a

language L, consisting of the set of words

L = {“good”, “nice”, “play”, “The”, “was”}. (4.1)

Although not very many, we can construct a few sentences using this language.

For example, let’s define the following couple sentences:

S1 = “The play was good”

S2 = “The play was nice”

In a simple LSA model, we could represent these sentences with binary vectors

whose elements indicate the presence or absence of every word in our language. This

29

type of representation is known as a “bag-of-words model”, in which a sentence or en-

tire text document is characterized by an unordered collection of words. Accordingly,

using the language L, we could describe S1 with the vector

vS1 = < good?, nice?, play?, The?, was? >

= < 1, 0, 1, 1, 1 >

and S2 with

vS2 =< 0, 1, 1, 1, 1 > .

Next, these vectors are compiled into a matrix called a term-document matrix in

which the rows represent individual terms or words, and the columns represent our

collection of documents. This matrix forms the starting point for all LSA techniques,

and from here, we can begin comparing document vectors. Before moving any further,

however, there are a number of issues that we need to address.

First off, much like was the case in our discussion of k-mer based distance measures,

a binary weighting used to denote the presence or absence of individual terms might

not be enough information to distinguish between two documents. Moreover, at

least in the case of natural languages, we expect certain words to appear in every

document. For instance, words like “and”, “a”, and “the” are statistically very likely

to occur in every document that we’re comparing. As a result, in order to highlight

the differences between documents, many approaches start by removing frequently

occurring “stop words”. In addition, most all techniques replace the binary weighting

30

scheme with a more detailed measure.

A common alternative to binary is the “term frequency” (tf) weighting scheme.

This weighting simply counts the number of occurrences for every term in the lan-

guage and normalizes the term-document vector by the total number of words in the

document. After normalization, each element in the vector indicates the fraction of

the document represented by the corresponding term.

An extension to the tf weighting and one of the most the popular weighting

schemes is the “term frequency–inverse document frequency” or tf-idf measure [30].

This weighting attempts to emphasize the presence of words that occur infrequently

and deemphasize words that appear throughout the corpus. To compute the inverse

document frequency for a term ti, we define ni to be the number of documents in

the corpus that contain ti [31]. If the total number of documents is N , the inverse

document frequency for ti is given by

idfi = log
N

ni
. (4.2)

By multiplying each element of a term-document vector by the corresponding

term’s inverse document frequency, we reduce the strength of terms that appear

frequently throughout the corpus, and in doing so, we identify terms that can be used

to differentiate our documents. A nice property of this technique is that, because stop

words occur so frequently, they are essentially removed by the weighting, eliminating

the need to manually detect and remove stop words.

A final and perhaps most important issue before we attempt to compare document

vectors is one of word choice. In a study conducted by the founders of LSA, it was

discovered that when tasked with assigning something a name, people very rarely

agree on what to call things [32]. In fact, the authors noted that two people will

31

favor the same term with a probability of less than 20%. This issue of multiple words

sharing the same meaning is known as synonomy, and as one can imagine, it poses

an enormous problem for information retrieval systems, particularly those based on

lexical matching. To demonstrate, consider our sentences S1 and S2 from above. By

searching for a “good play”, a system based solely on lexical matching would return

S1 but would leave out S2, despite its similar, unenthusiastically positive review.

As a second half to our word choice issue, consider that not only can multiple

words share a single meaning, but single words can have multiple meanings. This is

known as polysemy and can be a major problem even for semantics-based searches.

In our sentences S1 and S2, depending on how you spend your free time, you might

have assumed that these sentences describe some theatrical production. But what

if S1 is talking about a play in a the first half of a football game? Assuming S2 is

talking about something completely different, how do we separate these items?

Clearly, synonymy and polysemy present significant hurdles that must be resolved

before we can move any further in our discussion. Fortunately, latent semantic anal-

ysis was formulated with these very issues in mind. To overcome them, LSA utilizes

various dimensionality reduction techniques to identify sets of correlated words that

are used to describe a similar topic. In doing so, we achieve a means of comparing

and retrieving documents that is immune to discrepancies in word choice.

4.2 Dimensionality Reduction Techniques

Dimensionality reduction is the heart of any LSA-based technique. By mapping term-

document vectors into some lower-dimensional space, we resolve two very important

issues. First, dimensionality reduction reduces the size of our problem. Natural lan-

guages contain a very large number of words, and for practical reasons, we would

32

like to avoid vectors of this length. Secondly, as previously mentioned, dimensional-

ity reduction provides us with a method of grouping correlated words into a single

dimension. This helps us to address issues that arise out of linguistic ambiguities, or

difference in word choice.

Here we present two popular methods for dimensionality reduction: singular value

decomposition (SVD) and non-negative matrix factorization (NMF). To indicate

which dimensionality reduction routine is used, LSA techniques will often use the

notation “LSA-SVD” or “LSA-NMF” to denote LSA via SVD or NMF, respectively.

Because SVD was the reduction technique used in the original paper, approaches are

typically assumed to be using SVD, unless otherwise noted [28]. Finally, to avoid pos-

sible confusion, “latent semantic indexing” (LSI) is a term used to imply LSA-SVD

but is often mistakenly treated as a synonym for LSA.

4.2.1 Singular Value Decomposition

In their 1988 paper, the founders of LSA presented singular value decomposition as

a powerful method for identifying and combining contextually related words into a

reduced-dimensional space [28]. In LSA-based information retrieval systems, recall

that from Section 4.1 that we begin with a t × d term-document matrix X, where t

represents the number of terms in our language and rows in X, and d is the number

of documents in our corpus. Using dimensionality reduction techniques like singular

value decomposition, we can find an approximation for X that groups collections of

correlated terms into a small number of dimensions. Using SVD, we transform our

data into a new set of fewer variables that capture the majority of the variance in

our original variables, highlighting the primary characteristics of the data. Here we

provide a mathematical derivation for SVD, followed by a word on its application to

33

latent semantic analysis.

4.2.1.1 Mathematical Derivation

Using SVD, a t× d matrix X is factorized as

X = UΣV T . (4.3)

Here, U is a t × n unitary matrix in which the columns represent orthonormal

eigenvectors of XXT , where n ≤ d and typically d � t. Similarly, the rows of V T

are orthonormal eigenvectors of XTX, forming an n × d matrix, and Σ is an n × n

diagonal matrix with entries sorted in descending order. The diagonal entries of Σ are

called the singular values or principal values of X, and they represent the necessarily

real, non-negative square roots of the eigenvalues of XTX and XXT [33].

The factorization itself is based on the notion that we can construct n eigenpairs

{λi, vi}i=1..n for the matrices XTX and XXT , where vi is an eigenvector with cor-

responding eigenvalue λi. Recall for a moment that the eigenpair {λi, vi} is defined

such that the following equation holds:

Avi = λivi (4.4)

In other words, by transforming or multiplying vector vi by the matrix A, we

obtain a scalar multiple (λi) of the vector itself. Replacing A in Equation 4.4 with

the matrix XTX, we notice the following property:

34

(XTX)vi = λivi

X(XTX)vi = Xλivi

(XXT)Xvi = λiXvi (4.5)

From Equation 4.5, we see that for an eigenvector vi ofXTX, Xvi is an eigenvector

of XXT with the same eigenvalue λi. As such, we can construct the singular value

decomposition of X by finding the eigenvectors of XTX and XXT and arranging them

into matrices U and V T such that the ith column of U and ith row of V T correspond

to the same singular value σi in Σ. Again, for convenience, we arrange these matrices

such that the singular values of Σ are listed in descending order of magnitude.

Most modern algorithms and implementations of SVD compute these eigenpairs

based on an approach that was introduced by Golub and Kahan in 1965 [33]. In this

method, a matrix X is first reduced to a bidiagonal matrix, which then gets reduced to

a diagonal matrix containing the singular values. Typically, for performance reasons,

QR factorization is added as a preliminary step before bidiagonalization, resulting in

the following steps for SVD [34, 35]:

1. Compute QR factorization of X. (X = QR)

2. Reduce R into a bidiagonal matrix using orthogonal transformations. (R =

U1BV1)

3. Reduce B to a diagonal matrix Σ using an iterative approach.

After computing these steps, our original matrix X will be factorized as X =

UΣV T . Essentially, this leaves us with an encoding for our original set of documents

35

that uses an orthogonal basis set to capture the majority of the variance in X. The

diagonal matrix Σ provides us with an indication of which of these basis vectors

correspond to dimensions with the most variance. These vectors will correspond to the

highest singular values in Σ, and as such, we will see that by ignoring dimensions with

relatively low variance, we achieve a means of dimensionality reduction that captures

the underlying structure of our data while minimizing the impact of correlated words.

4.2.1.2 Dimensionality Reduction via SVD

After performing singular value decomposition on a term-document matrix X, our

set of document vectors are approximated by linear combinations of orthogonal basis

vectors or “pseudo-documents”. Some of these basis vectors are considered to be

more important than others in the sense that they capture more of the variance in X

and are therefore more essential in reconstructing its rows and columns. As a result,

if we take only the k most important vectors, corresponding to the k largest singular

values in Σ, we are left with a “truncated SVD” that can be used to approximate X.

X ≈ UkΣkV
T
k . (4.6)

This truncated SVD forms a least squares approximation for X that uses k di-

mensions to describe a majority of the variance in the original matrix. Through this

process, correlated dimensions in the original term-space are collapsed into a single

dimension in the reduced, “LSA space”. As a result, we are left with the rows Uk

forming a collection of uncorrelated, basis vectors that can be used to reconstruct

term-vectors in the reduced space. Similarly, the columns of V T
k form a basis set for

reconstructing document vectors.

As it turns out, by expressing text documents as linear combinations of these basis

36

vectors, the impact of linguistic disparities like synonymy and polysemy is greatly

reduced, and nearby vectors in the LSA space are related based on their conceptual

content [28]. Finally, an information retrieval system can be defined by projecting a

query vector into this space and gathering or clustering nearby documents.

4.2.2 Non-negative Matrix Factorization

If we examine the set of matrices produced by the singular value decomposition of

a term-document matrix, we notice a interesting property. In this method, when

approximating a document vector in an LSA space, the contribution of a basis vector

(which indicates the presence of a group of one or more correlated terms) is allowed

to take on a negative value. We can trace this property back to the requirements for

orthogonality in the basis set, but it’s certainly odd to imagine a word or set of words

having a negative contribution in the reconstruction of a document.

Perhaps a more intuitive method for dimensionality reduction would allow for the

reconstruction of items using only non-negative multiples of a set of basis vectors. In

this way, vectors either possess a certain quality or not—there is no such thing as

the negative presence of a feature. A collection of algorithms implementing this very

type of decomposition is known as “non-negative matrix factorization” (NMF).

Non-negative matrix factorization was originally introduced in 1994 by Paatero et

al. [36] (as “positive matrix factorization), but the technique was popularized in the

late 1990’s by Lee and Sebastian when they presented NMF as a method for learning

parts of objects from digital images [37, 38]. At that time, principal components

analysis was the primary analysis tool used for image processing applications like

face detection and facial recognition. In a facial recognition system, for example, an

image would be encoded using a set of basis images designed to capture the variance

37

in a collection of training images [39]. These basis images, called eigenfaces, represent

the principal components of the training images and appear as distorted, “ghostly”

outlines of whole faces.

Figure 4.2: Original facial image to be reconstructed. Source: [38]

Figure 4.3: Facial image reconstruction as a combination of principal components
basis images (or “eigenfaces”). Source: [38]

Figure 4.3 shows the reconstruction of Figure 4.2 using a linear combination of the

eigenfaces/basis images shown on the left. The middle matrix indicates the weights

or contribution amounts for each basis image. In the figure, red is used to indicate

negative values, while black represents a positive value, and the intensity of either

color signifies its magnitude.

As can be seen in the final image, this approach works rather well, but the set

of basis images lacks any sort of intuitive interpretation. This goes against how we

38

believe humans recognize objects, which indicates that our perception of an object

is based on our perception of its parts [40, 41, 42]. Accordingly, the authors of

non-negative matrix factorization aspired to devise an algorithm that would learn

the essential parts of, say, a collection of facial images and encode the images as a

combination of these parts.

4.2.2.1 Mathematical Derivation

NMF works by approximating a non-negative matrix X (which can be a collection of

2D images or term-document vectors) as the product of two non-negative factors A

and Y ,

X ≈ AY (4.7)

where A is an t × k matrix of basis elements, and Y is a k × d matrix of coeffi-

cients/encodings. Here, d indicates the number of vectors being approximated, t is

the size of these vectors, and k is the number of elements in the basis set. Each col-

umn in X is therefore approximated by a linear combination of k basis vectors, using

the weights found in the corresponding column of Y . As indicated, NMF imposes a

non-negativity constraint on the matrices A and Y . The result of this constraint is

that basis elements are not allowed to have a negative contribution in the approxima-

tion of a vector, and as a result, we are left with, essentially, a set of “feature vectors”

as our basis set.

The approach of finding reduced rank non-negative factors to approximate the

non-negative matrix X, according to Berry and Browne[43], can be stated generically

as

The NMF problem:

39

“Given a non-negative matrix X ∈ Rt×d and a positive integer k < min{t, d} find

non-negative matrices A ∈ Rt×k and H ∈ Rk×d to minimize the functional”:

minA,Y f(A, Y) ≡ 1

2
||X − AY ||2F , s.t. A, Y ≥ 0, (4.8)

where || · ||F is the Frobenius norm and A, Y ≥ 0 means that every element of A and

Y is non-negative. The product AY is therefore a k-dimensional approximation for

X, where typically k � min(t, d). Naturally, our choice for k will have a great impact

on the quality of the approximation, but as we will see in later chapters, this number

will be application- and even data-specific.

Some of the earliest and indeed simplest algorithms for computing the non-negative

matrix factorization of a matrix are based alternating least squares (ALS) methods.

This class of algorithms begins by constructing a random or otherwise initialized set

of basis vectors and continues by applying pairs of “alternating” least squares steps

to iteratively refine the starting matrix. These methods are based on the fact the

optimization problem presented in Equation 4.8 is convex in either A or Y separately

but not simultaneously. Instead, given one matrix, these methods optimize the other

using a simple least squares computation in alternating fashion [43].

In addition to providing the generalized description of the NMF presented shown

in Equation 4.8, Berry and Browne also supplied the following pseudocode to describe

a basic algorithm for computing NMF using ALS.

40

Algorithm 1: Basic NMF algorithm using alternating least squares

A = rand(t, k) ; /* randomize/initialize A */

for i = 1 to numIterations do

Solve for Y using ATAY = ATX; /* (Least squares step 1) */

Set negative entries of Y to zero; /* (Enforce non-negativity) */

Solve for A using Y Y TAT = Y XT ; /* (Least squares step 2) */

Set negative entries of A to zero; /* (Enforce non-negativity) */

end

As can be seen in Algorithm 1, NMF via alternating least squares is a remarkably

simple procedure. In fact, because of their simplicity, ALS algorithms lend themselves

to fast implementations and have been found to outperform other NMF techniques

and even SVD. Finally, since the introduction of the first ALS techniques, a number of

algorithms have emerged offering modifications and improvements, typically involving

the initialization of the starting matrix A [44, 43].

4.2.2.2 Dimensionality Reduction via NMF

Figure 4.4: Facial image reconstruction as a combination of basis images formed
using non-negative matrix factorization on a set of training images. Source: [38]

41

To compare the results of non-negative matrix factorization versus singular value

decomposition, Figure 4.4 demonstrates our facial image from above, reconstructed

using a set of basis images that were obtained by performing non-negative matrix

factorization on a set of training images. As can be seen, this method also successfully

recreates the original test image, but just as importantly, it does so using a set of

basis images that have some meaningful interpretation. For instance, the basis set

contains individual elements roughly corresponding to eyes, a nose, and a mouth.

This is a result of the sparse, non-negative basis set produced by our factorization,

and appropriately, the test image is recreated with a combination of each of these

elements.

As an end result, we are left with a means of approximating a collection of vec-

tors or images in terms of the parts from which they are constructed. In the facial

recognition example, we saw that basis images loosely corresponded to facial fea-

tures. Returning to our discussion on information retrieval, by using NMF on a

term-document matrix, we find that the resulting set of basis vectors defines a k-

dimensional latent semantic space in which each axis signifies a particular topic [45].

In other words, we can now represent text documents as a linear combination of a set

of base topics, and we can identify related documents as neighboring vectors in the

latent sematic space.

4.3 Adaptation to Sequence Data

Up until this point, we have presented latent semantic analysis as a means of identi-

fying semantically similar text documents. Recall, however, that our aim is to modify

these techniques to identify evolutionarily similar sequences. To do this, consider our

previous discussion on k-mer based distance measures.

42

With each technique that was presented, a DNA sequence was characterized by

some statistical interpretation of the k-mers from which it was comprised. In effect,

these techniques model a sequence as an unordered collection of distinct k-mers, a

“bag-of-k-mers”, if you will. Since latent semantic analysis techniques are based on

the bag-of-words model for representing text documents, we can easily modify them

by treating k-mers as the words in our genetic language. As a result, in the methods

presented above, we can simply replace the notion of term-document matrices with

k-mer–sequence matrices.

In the interest of discovering possible new information about the construction of

genomic sequences, from this point forward, we limit our discussion to using LSA-

NMF to identify evolutionarily similar sequences. By using NMF to profile sequences,

we anticipate the set of basis vectors to be indicative of some type of “biological

signals”. If these signals can be used to differentiate organisms, they themselves may

be worth investigating.

As a final concern before discussing potential biological applications of LSA-NMF,

in order to evaluate the results of our experiments, we will require a means of visu-

alizing high-dimensional data. In each of our experiments, we will be projecting

k-mer–sequence vectors into high-dimensional latent semantic spaces (which we will

simply call “feature spaces” because we are using LSA-NMF). To evaluate the close-

ness of sequences in these feature spaces, we will require a means of visualizing this

information in fewer dimensions. In the following chapter, we present nSpect, an

exploratory visualization tool for analyzing and inspecting high-dimensional data in

three dimensions. We will be making extensive use of this utility to visualize the

results of our attempts to differentiate genomic sequences.

43

Chapter 5

Visualizing High-Dimensional

Datasets

Visualization provides valuable insight into the overall structure and defining char-

acteristics of a system by reorganizing and mapping data to a visual reference. A

problem arises, however, when the data describing our system involves more than

two or three attributes. Such is the case with the high-dimensional feature spaces

in which we hope to evaluate k-mer–sequence vectors. In this example, our entire

collection of information cannot be represented perfectly in an intuitive, Euclidean

space. To address this problem, much research has been done to efficiently reduce

the dimensionality of a dataset such that as much information as possible can be

represented graphically, using two or three dimensions [46, 47, 48, 49, 50].

For the purposes of our discussion, we will consider only data that can be described

using a dissimilarity matrix (proximity data). A dissimiliarity matrix (or distance

matrix) is a square, symmetric matrix containing scores which indicate the similarity

of each pair of objects in a collection. Since most applications typically involve more

than just two or three items, in order to visualize the dissimilarity matrix, we will

44

require some form of dimensionality reduction.

The collection of techniques used to embed an N×N dissimilarity matrix into a

lower-dimensional space is called Multidimensional Scaling (MDS). These techniques

attempt to map high-dimensional data to a low-dimensional representation while pre-

serving pairwise distances as best as possible [47]. Traditionally, the most popular

MDS technique is Principal Component Analysis (PCA), which attempts to reduce

the dimensionality of a dataset consisting of a large number of interrelated variables

by transforming the data to a new set of uncorrelated variables called principal com-

ponents [51]. Principal components are ordered or ranked such that the first few

variables capture most of the variation present in the original set of attributes. Di-

mensionality reduction is typically accomplished using the assumption that these first

few components convey the majority of the information contained in the original data,

and, thus, the remaining components can be ignored.

One key problem in using PCA for information visualization stems from the fact

that the data is now being described in terms of its principal components. Through

this transformation of our data, we lose any sort of intuitive explanation for the dimen-

sions being presented, as we are visualizing derived variables that lack any meaning

that was carried by the original set of attributes. In addition, dimensionality reduc-

tion using PCA often assumes that since the first few principal components capture

most of the variance in the data, the rest are thought to contain little information

and are discarded. This assumption, however, is not always the case, as low vari-

ance for a component does not necessarily imply that the corresponding component

is unimportant or uninformative [52, 53]. As a result, by throwing away principal

components with low variance, we risk throwing away the very information that we

wish to visualize. A more recent and particularly interesting MDS algorithm is Re-

lational Perspective Mapping (RPM), which arranges objects on a closed surface in

45

accordance with their pairwise similarity measures [49]. The algorithm treats each

item in the dissimilarity matrix as an object in a force-directed, multi-particle system

with mutual repulsive forces between each pair of objects. Items with larger relational

distances between them exhibit larger repulsive forces, which propel the two objects

away from each other on the surface of a torus. Once the objects have reached a

stable configuration, the torus is unwrapped to create a two-dimensional relationship

mapping.

Because this model assigns repulsive forces between every pair of objects in the

dataset, the resulting visualization incorporates information from all of the original

N dimensions. Here, we present nSpect, an exploratory visualization tool which uses

a similar, repulsive force-driven system to visualize high-dimensional proximity data

in three dimensions. This application is an adaptation of a visualization technique

presented in 2008 by Bauer et al˙ [17]. Unlike RPM, which maps objects onto a

closed surface, nSpect treats each element in the visualization as a particle in a three-

dimensional free space. The resulting visualization allows users to view and interact

with the 3D model as it progresses in real-time.

5.1 Method

nSpect requires as input a dissimilarity matrix in the standard, PHYLIP format [54].

This matrix serves as a table of values indicating the distances between every pair of

objects in the visualization. An entry, ti,j, then denotes the relative, ideal distance

separating the ith and jth elements. The value of ti,j should range from 0.0 to 1.0,

where 1.0 indicates maximum dissimilarity, and 0.0 suggests equivalency.

Using these distances, nSpect computes repulsive forces between the collection of

objects such that the movement produced by these forces will result in a new, more

46

appropriate configuration at the next time instance.

In order to compute the force between two objects, nSpect first evaluates the error

in actual displacement versus a scalar multiple of the ideal distance, ti,j, separating

the pair.

ei,j = (S × ti,j)− di,j (5.1)

Here, the scalar S has been empirically chosen to produce an appropriate size for

the visualization. Using this equation, we see that the error indicates the quality of

the current arrangement of objects. As such, we define the repulsive force separating

two items with the following equation.

fi,j = ei,j × xi,j (5.2)

Using the error as a weighting, the force vector fi,j acts to repel the ith and jth

elements along the three-dimensional direction vector xi,j which separates the two

objects. A force equal in magnitude and opposite in direction is applied in the second

element. Finally, the net force acting upon the ith element is computed as

fi =
∑
j

fi,j (5.3)

This force vector is calculated for each object in the visualization and is used

to determine an appropriate direction and velocity with which to move the particle

during the next time instance. The velocity of an object is calculated by

v
(n+1)
i = α(v

(n)
i + β × f

(n)
i) (5.4)

Here, the superscripts denote the time iteration in the visualization. As is shown,

47

the velocity vector at the next time instance v
(n+1)
i is determined by the object’s

current velocity plus some additional amount induced by its force vector.

l
(n+1)
i = l

(n)
i + γv

(n+1)
i (5.5)

The object’s new location l
(n+1)
i is determined using its current location and com-

puted velocity vector v
(n+1)
i . In the equations above, the constant α introduces a

drag force or decay in velocity. If chosen to be too strong, the drag force could keep

objects from escaping local minima, and if too weak, the system is slow to converge.

The parameter β is similarly chosen to calculate an appropriate velocity for an object

given the amount of force applied to it. If chosen to be too strong, the system will

not reach a stable condition. If too weak, the rate of convergence suffers consider-

ably. Finally, γ represents a default step size, which determines how far an object

should move. If the step size is chosen to be too large, the system will not be able

to reach a stable condition. If too small, the system will be slow to converge. These

constants were experimentally determined to provide a good tradeoff between rate of

convergence and jitter.

Lastly, as the visualization progresses and objects move into a stable arrangement,

one must consider the possibility of objects settling in local minima. To address this

issue, objects are randomly displaced by a series of perturbations occurring when the

average velocity of the system falls below a threshold. These perturbations diminish

in intensity until their effect is negligible.

5.2 Implementation

nSpect is built as a standard, makefile-based project written in C++. It makes use of

the freely available OpenGL Utility Toolkit (GLUT) framework for display-rendering

48

and input event processing. In addition, nSpect has been multi-threaded using the

POSIX threading API, “Pthreads”.

When starting the application, the only required input file is a standard, PHYLIP-

formatted dissimilarity matrix. The user does have the option, however, to provide

additional configuration files to customize the visualization. These files can be used

to define the name, color, size, and shape of each object in the collection.

Upon launching the program, the user is presented with a view of the three-

dimensional free space in which the visualization takes place. Using the controls

described in the on-screen window, the user can explore the space by rotating, pan-

ning, and zooming in or out. Clicking on an object “pops” the item, removing it from

the visualization and printing its name to the console window. Popped items can

be returned to the visualization as described on the controls menu. To pop multiple

objects, simply click and drag to select a group of items. Upon releasing the mouse

button, the names of all items underneath the selection will be printed to the console

window, and the corresponding objects will be removed from the visualization.

Because the objects in the visualization are given randomized starting locations

and perturbations, the orientation of the final arrangement is also non-deterministic.

Acknowledging this fact, the user has the ability to restart the visualization by “jum-

bling” or randomizing the starting locations of the objects. In addition, the user can

manually issue perturbations or shakes to the collection of items.

5.3 Results and Discussion

Here, we present two example applications for nSpect. The first makes use of the

relative complexity measure to compare a set of DNA sequence. To demonstrate the

versatility of this technique and provide perhaps a more intuitive application, the

49

second example shows the reconstruction of a map using only the pair-wise distances

between a collection of cities.

5.3.1 Validation of Taxonomy Data

nSpect has successfully been used to identify inconsistencies and misclassifications in

a taxonomy database. Occasionally when organisms are given a scientific name, they

are incorrectly classified in the sense that there exists another taxonomy group that

is evolutionally more similar than the one that was chosen or, in the rare case, the

organism constitutes a new group altogether.

To approximate the evolutionary distance from one organism to another, we used

the relative complexity measure that was introduced in Section 3.2.1. The program

GramAlign provides a fast implementation of this algorithm and, in this example,

was used to obtain the distance matrix for a FASTA file containing 16s sequences for

organisms representing five genera [5]. The five genera represented in this experiment

are Bulkholderia, Chryseobacterium, Desulfovibrio, Nocardioides, and Shewanella.

By preparing the optional display configuration files, we were able to color the items

in the visualization according to the genus to which they are assigned in the taxonomy

database. If all organisms in the experiment are appropriately labeled, they should

cluster together in free space with other organisms from the same genus. What we

see in Figures 5.1 & 5.2, however, is that certain objects do not cluster as expected

and appear to be misclassified.

Figures 5.1 and 5.2 are screenshots of nSpect, taken after the visualization reached

a stable configuration. Figure 5.2 is simply a rotated view of the same scene shown

in Figure 5.1. In both figures, several regions of interest have been noted. Labeled

regions 1 and 2 show outliers from Chryseobacterium and Desulfovibrio respectively.

50

Figure 5.1: Front view of the
five-genera taxonomy visualization

Figure 5.2: Rotated view of the
five-genera taxonomy visualization

These objects have been repelled by objects of the same genus, implying these organ-

isms are evolutionally distant from their assigned taxonomic group and, therefore,

might have been misclassified or mislabeled.

5.3.2 Map Creation From Proximity Data

As a second example, we attempt to illustrate the versatility of nSpect and its ability

to visualize proximity data from any source. One very natural example of proximity

data is that of physical proximity. Consider the case where we would like to visualize

the distances between cities in the world but lack any sort of geographic coordinate

system. In other words, how do we construct a map without using the standard

longitude and latitude coordinates for each location?

Despite not having this global coordinate structure, it turns out that, using nSpect,

we can recreate a map using only the pairwise distances between cities. For demon-

stration, we have selected primarily coastal cities from the Western Hemisphere and

computed all city-city distances. After formatting this data into a dissimilarity ma-

trix and creating a configuration file to color North and South American cities, our

51

results are shown in Figures 5.3 & 5.4.

Figure 5.3: Zoomed-out view of the
visualization for pair-wise city data

Figure 5.4: Zoomed-in view of the
visualization for pair-wise city data

As can be seen in the figures, nSpect accurately positions the city objects, revealing

the outline of the continents and the United States in particular. Figure 5.3 shows a

zoomed-out view, in which Honolulu, Hawaii and several northern Canadian cities can

be seen. This reconstruction of city-to-city data provides a very natural interpretation

of how, given a set of pair-wise distances, this approach can be used to analyze the

overall structure and underlying relationships in our data.

5.3.3 Discussion

With nSpect, high-dimensional proximity data is visually approximated in a simu-

lated, three-dimensional free space. In order to evaluate the quality of this approxi-

mation, we can compute the percent error between the original set of distances and

the distances separating objects in the free space. Ideally, if our data were perfectly

represented, the distances in the visualization space would be a scaled version of the

original data.

52

To determine this scale factor, let us first define X to be the dissimilarity matrix

formed by compiling the distances separating each pair of objects in the visualization

space, and Y is the distance matrix driving the visualization. In other words, X is

an approximation of Y . Since these matrices are symmetric, we can determine an

appropriate scale factor by adjusting the elements of X such that SX , the sum of the

upper triangular portion of X is equal to SY , the sum of the upper triangular portion

of Y .

SX =
N∑
i=1

N∑
j=i+1

Xi,j

SY =
N∑
i=1

N∑
j=i+1

Yi,j

Using SX and SY , we define the scale factor α to be

α =
SY
SX

.

Finally, we compute the percent difference between matrices X and Y as

% error =

∑N
i=1

∑N
j=i+1 ||α× Yi,j −Xi,j||∑N
i=1

∑N
j=i+1 Yi,j

(5.6)

Computing the percent error for the examples presented above, we find that the

5 genera test has an error of 18.5%, while the map example has a percent error of

only 0.7%. This difference in error rate should be expected, as in the case of the

map example, our data was originally obtained from a three-dimensional model and

53

Figure 5.5: Percent Error for Visualizing Randomized Data of N Dimensions

thus lends itself nicely to a three-dimensional representation. In the 5 genera test,

however, our data comes from a higher dimensional source and therefore is not as

perfectly represented in three dimensions.

As one can imagine, perhaps the worst possible scenario for this visualization

scheme would be attempting to approximate randomized data. In this case, the data

does not necessarily lend itself to any amount of dimensionality reduction, and thus

we expect high error rates for its visualization. In Figure 5.5, we see how the percent

error increases with the number of elements in a randomized distance matrix. As

expected, the error increases with dimensionality, but interestingly, the error seems

to saturate beyond just a few hundred dimensions.

Moving forward, in our experiments, we will be analyzing data that has an ex-

pected underlying structure of relatively few dimensions. As such, we can use nSpect

to visualize our results while anticipating low error rates. These visualizations will

help us to evaluate the performance of our LSA-based techniques for partitioning ge-

nomic sequence data and will provide us with a means of comparing these techniques

to standard approaches.

54

Chapter 6

Clustering of 16s Ribosomal Genes

To demonstrate how LSA-NMF could be used to partition a collection of genomic

sequences, we begin by attempting to cluster a collection of 16s ribosomal genes. In

Section 5.3.1, without providing much explanation as to why this was possible, we

used the relative complexity measure and nSpect to estimate the evolutional similarity

of a small sample of these sequences. Here we explain why these sequences were chosen

and perform a similar experiment using LSA to compare them.

6.1 Background Information

When we talk about a “16s sequence” (or, more formally, a “16s rDNA sequence”),

we are actually referring to a specific gene that is used in the production of ribosomes.

Ribosomes can be thought of as the machinery inside a cell which is responsible for

assembling proteins. Naturally, these pieces of machinery are incredibly important,

and every type of organism has them. In fact, because ribosomes are so essential, the

genes used to produce them are typically very similar across species, and any differ-

ences in these genes can be used as a means of differentiating between the species [55].

55

The 16s gene itself is fairly small at around 1,500 bases in length. Although short,

from our earlier discussion, we know that this length is sufficient for constructing

functional statistical characterizations. Another attractive property of this particular

sequence is that there are methods of sequencing it directly and therefore quickly and

relatively inexpensively[56]. With these things combined, we have a short, informative

sequence that is easy to obtain and inexpensive to store. For these reasons, 16s se-

quences are very popular for constructing phylogenies and taxonomic databases. As a

matter of fact, ribosomal sequence databases like Ribosomal Database Project (RDP)

are amongst the largest collections available for studying related organisms [57].

In this example, for comparison with the relative complexity measure, we will ap-

ply LSA-NMF to the same set of 16s sequences that were evaluated in Section 5.3.1.

Recall that this collection consisted of 268 sequences taken from 5 genera: Bulkholde-

ria, Chryseobacterium, Desulfovibrio, Nocardioides, and Shewanella.

6.2 Method

We begin with the formation of a k-mer–sequence matrix, X. In a series of tests, we

found that a k-mer size of 7 provides a good trade-off between specificity and profile

size for this dataset. Lowering the k-mer size reduces the amount of information being

used to compare sequences, effectively lowering our resolution. Going higher than

7, however, yields a case of diminishing returns in which the additional resolution

is not sufficient to justify the increased memory requirements and computational

burden. As such, our k-mer–sequence vectors are 47 = 16, 384 elements long, and X

is a 16,384x268 matrix. After obtaining k-mer frequency counts for each of the 268

sequences, tf-idf weighting was applied to X in order to deemphasize any similarities

and highlight any differences between the k-mer counts.

56

At this point, we are ready for the most important step in any LSA algorithm:

dimensionality reduction. In this and subsequent experiments, we will be making use

of the NMF MATLAB Toolbox by Li and Ngom [58]. This toolbox provides a collec-

tion of standard non-negative matrix factorization routines and was demonstrated as

a means of analyzing gene expression data from microarray experiments. As we are

just beginning to evaluate NMF, we will restrict ourselves to perhaps its most basic

implementation, which is based on an alternating non-negative least squares algo-

rithm. A number of other, more advanced techniques for non-negative factorization

exist [59, 60, 61], but evaluating each of them individually will not be necessary for

the purposes of this research.

6.3 Results and Discussion

In this example, we happen to already know the number of distinct groups in our

dataset—there are five genera. Knowing this information, we will start by approxi-

mating X using 5 basis vectors. Using the standard, least squares-based algorithm,

we obtain the factorization

X ≈ AY, (6.1)

where A is, again, our set of basis vectors compiled into a matrix of size 16,384x5.

Similarly, Y is the 5x268 matrix of encodings from which we can reconstruct the

original k-mer–sequence vectors using the basis set A.

If we focus on Y for a moment, effectively, these encodings are short profiles that

represent our original set of vectors and, thus, can be used as a basis for comparing

them. As a result, we can form a distance measure by simply computing the Euclidean

distance or correlation coefficient for each pair of vectors. With this, we have finally

57

arrived at an LSA-NMF-based distance metric.

Figure 6.1: Five-genera clustered using
Euclidean distance of LSA encodings.

Figure 6.2: Five-genera clustered using
correlation coefficient of LSA encodings.

To evaluate our new metric, we have constructed two distance matrices by comput-

ing the Euclidean distance and correlation coefficient of each pair of sequences. Using

nSpect, we obtain Figures 6.1 and 6.2, which approximate how these profiles cluster

in high-dimensional space. Again, the colors of the objects in each figure indicate the

genus to which each sequence belongs (red=Burkholderia, blue=Chryseobacterium,

green=Desulfovibrio, yellow=Nocardioides, and violet=Shewanella). As can be seen,

these measures provide a great deal of separation in the 5-dimensional feature space.

We can compare these images to Figure 6.3, in which sequences are clustered using

their relative complexity measures.

Looking at Figure 6.3, we notice that our clusters are much more well-defined

using the LSA-based techniques. This makes sense, as the dimensionality reduction

stage in our approach attempts to capture the majority of the variance in our data. As

a result, vectors which are heavily correlated, like ones representing organisms from

the same genus, appear to be very similar when projected into the feature space.

58

Figure 6.3: Five-genera example using relative complexity measure.

Recall that in the field of information retrieval, dimensionality reduction allowed us

to recognize related documents in spite of large differences in word choice due to

the authors’ vocabulary and writing style. Here, this same effect provides a level of

“noise-reduction” that makes our technique less sensitive to small differences between

genomic sequences.

From our results, it appears that NMF has effectively identified a set of basis

vectors that correspond to the centroid of each of the five genera. Remember that

these basis vectors represent sets of k-mers whose presence denotes a feature in the

projected space. Here, the features seem to indicate the genus of the organism.

Figure 6.4 demonstrates a sample of elements from the encoding matrix, Y . Each

column in the figure presents a grayscale rendering of a column in Y . White indicates a

maximum level of contribution for the feature vector. As can be seen, most sequences

from a particular genus associate very strongly with just one feature vector. On

the other hand, a few columns from the genus Nocardioides are not well-defined by

any single feature. These columns, to our delight, correspond to the same outliers

59

Figure 6.4: Level of contribution for each feature vector

Figure 6.5: Five-genera example using LSA-NMF with 3 feature vectors.

discovered in Section 5.3.1!

Up to this point, we have made use of the fact that we know how many genera

are present in our dataset. So what happens if this information is not available?

How does the number of feature vectors affect our results? If we lower the number of

feature vectors to k = 3, we see the clustering shown in Figure 6.5.

Using this new set of three basis vectors, we see that our genera have been divided

into three relatively distinct groups. The largest of these three groups contains the

three genera Burkholderia, Desulfovibrio, and Shewanella, while the other two genera

60

seem to correspond to their own feature vectors.

Upon inspection, the genera Burkholderia, Desulfovibrio, and Shewanella are all

Gram-negative genera in the phylum of Proteobacteria. On the other hand, Chry-

seobacterium and Nocardioides, the remaining genera, belong to the phyla of Bac-

teroidetes and Actinobacteria, respectively. As such, it appears that our new set of

feature vectors loosely correspond to three taxa at the phylum level.

Suppose, instead, that we were to increase the number of feature vectors in our ba-

sis set. From what we have seen, we would expect that the clusters that corresponded

to individual genera would now be split into smaller subgroups. As an example, we

generate another set of feature vectors, this time with with k = 7 elements in the

basis set.

As shown in Figure 6.6, by increasing the number of feature vectors, we further

divide our collection of sequences. For instance, Burkholderia samples (shown in red)

that were deemed similar in less-detailed feature spaces have now been separated by

this new set of basis vectors. As can be seen in Figure 6.7, there appear to be three

Figure 6.6: Five-genera example using LSA-NMF with 7 feature vectors.

61

distinct clusters within this genus, which have been labeled for convenience.

Inspecting the three clusters, we find that these groupings are consistent with

the results of a 2005 study by Payne et al˙ [62]. In this work, a phylogenetic tree

was constructed for the entire Burkholderia genus using the Jukes-Cantor model to

measure variations in the recA gene. The study used the recA gene as they believed

it provided finer resolution than the 16s gene for this particular genus. A portion of

the phylogenetic tree from this study is shown in Figure 6.8.

From these results, it appears that our LSA-based method works rather well in

differentiating between organisms at varying levels of evolutional similarity, especially

when we have a rough idea of how many groups into which we would like to partition

our data. If we were to extend this approach, we could use our comparison method

to construct a phylogenetic tree like the one shown in Figure 6.8.

As a reference, Figure 6.9 shows a phylogentic tree constructed for the Burkholde-

ria genus, using the Jukes-Cantor distance measure. This tree is noticeably different

than the one shown in Figure 6.8, but this was to be expected based on the findings

of Payne[62]. Figure 6.10 demonstrates a phylogenetic tree constructed for this same

set of Burkholderia species but by correlating the encoding vectors used to represent

sequences in an LSA-NMF feature space.

Comparing these trees, we see that, in general, our LSA-based method performs

reasonably well and has captured the overall structure of the genus. Figure 6.10

does, however, expose a potential problem that should be noted. This tree was

constructed using 5 feature vectors, and, as can be seen in the lower portion of

the tree, this number probably should have been higher to increase resolution and

provide more separation. As a result of this issue, species like Burkholderia cepacia

and Burkholderia vietnamiensis appear misleadingly similar despite the fact that we

know they can be separated.

62

Figure 6.7: Three clusters of Bulkholderia.

Figure 6.8: Phylogenetic tree for the entire Burkholderia genus. Source: [62]

63

Figure 6.9: Pylogenetic tree constructed with Jukes-Cantor

Beyond constructing phylogenetic trees, the original partitioning of Burkholderia

shown in Figure 6.7 leads us to a final observation for this example and an idea that

will lead into our next experiment. Consider that the genus of Burkholderia contains

a large number of pathogenic species, many of which are antibiotic resistant and are

considered to be especially dangerous. In fact, some of the more hazardous species

are feared as potential biological warfare agents and must be handled with extreme

caution. Examining the lists of species within clusters A & C from the figure, we

notice an interesting trend.

64

Figure 6.10: Pylogenetic tree constructed with LSA-NMF method

Tables 6.1 and 6.2 demonstrate the risk factor associated with each of the species

found in clusters A & C. These risk factors are taken from the Technical Rules for

Biological Agents (TRBA) from the German Federal Institute for Occupational Safety

and Health (BAuA), and the levels indicate the risk of infection for an extensive list of

species[63]. On the BAuA’s scale, a risk factor of 1 denotes an agent with a relatively

low risk of infection, while agents with risk factors of 2 or higher are particularly

virulent.

From these tables, it is clear that cluster C is, in general, more dangerous than

65

cluster A. As a potential application for our LSA-based techniques, imagine a system

that could be used to approximate an unknown sample’s risk of infection. Naturally,

we could try to compare the unknown sample to all known species, find the best

match, and assign our estimate accordingly. A more efficient approach, however,

could use our LSA-based technique to identify a set of basis vectors that have been

trained to recognize a set of features that are indicative of harmful agents. Such a

system would require the ability to query or project new items into a predetermined

feature space in order to avoid recalculating the NMF for every test.

In the next chapter, we present an experiment which uses LSA-NMF to define

high-dimensional feature spaces that allow for the differentiation and elimination of

unwanted DNA samples from an environmental sample. This experiment introduces

a simple technique for querying feature spaces that will be useful in a number of

different applications.

66

Genus Species Risk Score
Burkholderia bryophila 1
Burkholderia caledonica 1
Burkholderia caribensis 1
Burkholderia ferrariae 1
Burkholderia fungorum 1
Burkholderia ginsengisoli 1
Burkholderia graminis 1
Burkholderia heleia ?
Burkholderia hospita 1
Burkholderia kururiensis 1
Burkholderia megapolitana 1
Burkholderia mimosarum 1
Burkholderia nodosa 1
Burkholderia phenazinium 1
Burkholderia phenoliruptrix 1
Burkholderia phymatum 1
Burkholderia phytofirmans 1
Burkholderia sabiae ?
Burkholderia sacchari 1
Burkholderia sartisoli 1
Burkholderia sediminicola 1
Burkholderia silvatlantica 1
Burkholderia terrae 1
Burkholderia terricola 1
Burkholderia tropica 1
Burkholderia tuberum 1
Burkholderia unamae 1
Burkholderia xenovorans 1

Table 6.1: Burkholderia Cluster A with
risk scores.

Genus Species Risk Score
Burkholderia ambifaria 2
Burkholderia arboris 2
Burkholderia cenocepacia 2
Burkholderia cepacia 2
Burkholderia cocovenenans ?
Burkholderia diffusa 2
Burkholderia gladioli ?
Burkholderia glumae 1
Burkholderia lata ?
Burkholderia latens 2
Burkholderia mallei 3
Burkholderia metallica 2
Burkholderia multivorans 2
Burkholderia oklahomensis 2
Burkholderia plantarii 1
Burkholderia pseudomallei 3
Burkholderia pyrrocinia 1
Burkholderia seminalis 2
Burkholderia stabilis 2
Burkholderia thailandensis 1
Burkholderia ubonensis 1
Burkholderia vandii ?
Burkholderia vietnamiensis 2

Table 6.2: Burkholderia Cluster C with
risk scores.

67

Chapter 7

Identification and Removal of Host

DNA Fragments from

Metagenomics Datasets

In the previous chapter, we demonstrated how LSA-NMF could be used to construct

high-dimensional feature spaces in which the dimensions indicate the presence of

specific biological “feature” present in a genomic sequence. Here we extend this idea

and present an application which uses predefined feature spaces to filter out unwanted

samples of DNA.

A perfect example of where such a “DNA filter” could be enormously beneficial is

in the field of metagenomics. Metagenomics is a relatively new area of study which

focuses on sequencing genetic material that has been taken directly from environment

samples. This approach differs widely from traditional methods of sequencing an or-

ganism, which begin with the isolation and amplification of an organism’s cells. The

problem with the traditional approaches is that we now know a very large number

of organisms cannot be cultured in isolation and therefore cannot be sequenced by

68

conventional techniques. Metagenomic studies, on the other hand, do not attempt to

remove an organism from its natural environment, but instead, sequence it directly

along with anything else that happens to be in the sample. As a result, metage-

nomic studies often involve identifying and even assembling genomic sequences from

a microbial colony containing a diverse mixture of organisms.

A common problem in metagenomic studies is that many of the microbial colonies

that we wish to study are found inside other living organisms. As a result, when a

sample is taken from, for example, the gut of an animal or a human, the sample will

also contain DNA from the host organism. More often than not, the host will have a

large and very complex genome that when sequenced will almost inevitably contain

portions that look very similar to the bacterial samples that we wish to study. To

make matters worse, typically a large percentage of the sequenced data will belong to

the host, and we are left with a biological version of finding a needle in the haystack,

except in our case, the needle looks a lot like the hay.

Faced with these difficulties, it would be extremely beneficial to be able to remove

at least a portion of the host DNA from a sequenced metagenomic sample. In our

approach to this problem, we will attempt to filter out unwanted DNA fragments by

constructing feature spaces that have been trained to distinguish the host DNA from

the bacterial samples that we wish to keep.

7.1 Construction of a synthetic dataset

Without access to an actual metagenomic dataset, our only option is to generate one

synthetically. To do this, we have attempted to simulate the results of sequencing

a gut sample from Mus musculus, the common house mouse. The species in our

synthetic mixture are based on the findings of 2012 study by Chung et al. which

69

notes the types of bacteria found in a gut sample as well as the amounts in which

they appear [64]. These bacteria are divided into three primary phyla: Bacteroidetes,

Firmicutes, and Proteobacteria. For the purposes of our experiment, the two most

dominant genera from each phylum were included in the mixture. These genera

are Alistipes and Bacteroides from Bacteroidetes; Bacillus and Clostridium from

Firmicutes; and Acinetobacter and Enterobacter from Proteobacteria.

The complete genomes for each of these bacteria as well as all chromosomes from

Mus musculus were collected and randomly sampled to create 1kbp fragments, simu-

lating shotgun sequencing. The fragments from each organism were then combined to

form a collection of nearly 10,000 fragments, made up of approximately 90% mouse

DNA and 10% bacterial DNA. Finally, the number of samples taken from each group

of bacteria was chosen based on their average relative abundance amounts presented

by Chung et al. and for the mouse, an equal number of samples were taken from

each chromosome.

Group Sample Count % of Total
Host (Mus musculus) 8,771 89.74%
Bacteroidetes 693 7.09%
Firmicutes 260 2.66%
Proteobacteria 50 0.51%

Table 7.1: Amount of samples from each major group of organisms.

Phylum Genus Sample Count % of Bacteria Total
Bacteroidetes Alistipes 343 34.20%
Bacteroidetes Bacteroides 350 34.90%
Firmicutes Bacillus 65 6.48%
Firmicutes Clostridium 195 19.44%
Proteobacteria Acinetobacter 25 2.49%
Proteobacteria Enterobacter 25 2.49%

Table 7.2: Amount of samples from bacterial genus.

70

7.2 Method

With the synthetic dataset assembled, we are now ready to start designing a filter. To

begin, we will base this approach on a few important assumptions. First, we assume

that, whether in whole or in part, we have access to the host organism’s genome.

In addition, we also assume that we know of and have access to genomic sequences

for at least one of the bacteria in the microbiome. As we are about to see, these

sequences will be used to construct the feature spaces in which we will determine

which fragments to keep and which to discard.

In the experiment demonstrated in Chapter 6, sequences were clustered in feature

spaces that were obtained by performing non-negative matrix factorization on the

entire collection of sequence profiles. In a real metagenomic dataset, however, our

collection might contain millions of sequences, and as such, we would like to avoid

this computationally inefficient step. Instead, we now introduce the concept of using

a set of training data to define a feature space and use a projection matrix to map

k-mer–sequence vectors into this space.

For this experiment, we would like to define a feature space that can be used to

differentiate between host fragments and samples that belong to the microbial colony.

Accordingly, we will perform NMF on a small set of known samples taken from the

host’s DNA as well as the bacteria that we presume is in the mixture. In this example,

we trained an initial feature space using a collection of just under 1,000 sequences, half

of which were taken from Mus musculus. The other half were obtained by randomly

sampling Bacteroides fragilis, which is an organism from the most populous genus in

the mouse’s gut microbiome.

These sequences were then profiled as k-mer frequency vectors using a k-mer size

of 7, and the results were compiled into a k-mer–sequence matrix, XK , representing

71

the profiles of our known set. Next, we apply tf-idf weighting followed by the same

standard, non-negative least squares implementation of NMF on XK to obtain the

approximation

XK ≈ AKYK . (7.1)

In anticipation of a diverse set of samples in our mixture, we chose to use k = 25

basis vectors for the factorization. Moving forward, recall that AK is the set of

basis vectors which define a high-dimensional feature space, and YK is a collection of

encodings that can be used to reconstruct our original set of vectors using this basis

set. At this point, we introduce a method of projecting new samples into a feature

space that has been obtained through NMF. For the purposes of our filter, this will

allow us to project new samples into the feature space and determine whether or not

they appear to be from the mouse genome.

Given an unknown sample x, its approximation in the feature space defined by

the set of basis vectors A can be written as

x ≈ Ay, (7.2)

where y is the encoding used to reconstruct x using the elements of A. In our eyes,

y is a k-dimensional profile (a “feature profile”) that characterizes x, so we desire

a means of transforming x into y. Solving for y in Equation 7.2, we obtain the

projection matrix B as follows:

72

x ≈ Ay

ATx ≈ (ATA)y

(ATA)−1ATx ≈ (ATA)−1(ATA)y

(ATA)−1ATx ≈ y

(ATA)−1ATx , Bx ≈ y (7.3)

Now, given an unknown sample x, we can perform a simple matrix multiplication

to project x’s k-mer–sequence vector into a predetermined feature space. For example,

we can project an item into the feature space defined by AK using the projection

matrix B = (ATKAK)−1ATK . Once samples are in the feature space, we can identify

similar objects, which in our case means determining whether or not a sequence

appears to have been taken from the host’s genome.

Having known sequences from both the host and the microbial colony, there are

a number of ways in which we could partition the feature space in order to identify

samples that should be removed. One approach would be to project and cluster

known fragments along with our set of unknown samples. By noting how the known

sequences cluster, we can determine which groups of sequences should be filtered out.

For simplicity’s sake, we will use k-means clustering to group elements in the feature

space. Clearly, there are more accurate and efficient means of doing this, (a few of

which we will discuss later), but this technique will suffice to demonstrate our point.

Finally, putting everything together, our approach for filtering a host’s DNA from

a sequenced metagenomic sample can be described by the following steps:

1. Construct a projection matrix, B, using known samples.

73

2. Project known and unknown samples into the feature space with B.

3. Cluster the feature profiles.

4. Eliminate groups containing known-host samples.

5. Repeat steps 1-4 as needed, using different known samples.

7.3 Results

As stated in the previous section, we began this experiment by constructing a k-

mer–sequence matrix using a set of roughly 1,000 known fragments randomly chosen

from the host’s genome and the microbial colony. This matrix was then used to train

an initial feature space with corresponding projection matrix B0. Next, a collection

of 200 known-host fragments, 200 known-bacteria fragments, and the entire set of

approximately 10,000 unknown samples were projected into the feature space defined

by B0. It should be noted that the 200 known-host and known-bacteria fragments

were different than those used to train B0.

Once in the feature space, all projected samples were clustered into 20 groups

using k-means to identify sequences with similar feature profiles. The composition of

these clusters are presented in Table 7.3. Note that this table presents several bits of

information. First, there are separate columns denoting the clustering of known and

unknown samples. If we were to implement this algorithm, the “Known” columns

represent the information that we would use to determine whether or not remove the

cluster. Supposing we require a large majority of known-host samples and perhaps

a maximum number for the removal of known-bacteria samples, we could make the

removal predictions shown in the right-most column. For our experiment, we will

assume that we only have this information available and require a four-times majority

and maximum of ten known-bacteria samples in the clusters we remove.

74

Cluster Known Samples Unknown Samples Remove?Host Bacteria Host Bacteria
1 45 0 2060 0 Y
2 2 0 15 0 Y
3 12 0 537 0 Y
4 0 99 5 280 N
5 14 1 553 0 Y
6 3 0 111 0 Y
7 7 0 257 0 Y
8 10 0 192 0 Y
9 2 0 78 0 Y
10 0 68 2 243 N
11 1 0 54 0 Y
12 6 0 280 0 Y
13 31 17 1182 145 N
14 8 0 273 0 Y
15 3 0 209 0 Y
16 5 0 152 0 Y
17 51 9 2720 0 Y
18 0 6 22 168 N
19 0 0 6 167 N
20 0 0 64 0 N

Table 7.3: Round 1 Clustering of Mouse Metagenomic Data.

From Table 7.3, we can see the number of unknown samples that we removed in

this round of filtering. Notice that we didn’t lose any unknown bacterial samples

but were able to remove 7,491 of the unknown mouse fragments. In just one pass

of the filter, we successfully removed over 85 percent of the host DNA, leaving 1,280

samples. Looking at cluster 20, for example, we might have been able to remove even

more if our set of known samples were larger. Also worth noting, looking at cluster

13, if we increased the number of known-bacteria samples that we were willing to

throw away, we could have eliminated almost another 13.5% of the host DNA, which

would have left just 98 samples or 1.1% of the host DNA while retaining 85% of the

bacterial samples.

At this stage, we have essentially three options. We can decide that this is good

enough and that we’d like to stop; we could repeat this same set of steps using a

75

Cluster Known Samples Unknown Samples Remove?Host Bacteria Host Bacteria
1 78 1 0 0 Y
2 1 0 0 0 Y
3 7 0 29 0 Y
4 0 0 0 135 N
5 10 0 6 0 Y
6 16 4 75 0 Y
7 0 34 0 226 N
8 0 84 9 34 N
9 1 54 2 203 N
10 0 0 63 0 N
11 1 0 0 0 N
12 3 4 32 94 N
13 9 1 294 2 Y
14 0 1 0 141 N
15 10 7 273 43 N
16 0 2 0 117 N
17 33 8 470 7 Y
18 4 0 24 0 Y
19 10 0 0 0 Y
20 17 0 4 0 Y

Table 7.4: Round 2 Clustering of Mouse Metagenomics Data.

different projection matrix; or we could place everything that remains along with the

known samples back into the feature space and repeat the clustering and removal

process. Going with latter option, we repeat the clustering with the same set of

known samples and obtain the round 2 results presented in Table 7.4.

In this round, we see that we lost 9 bacterial fragments but eliminated another

902 host fragments. After round 2, we are down to 378 samples or 4% of the original

amount of host DNA, and we still have over 99% of the original 1,003 bacterial

samples. Continuing in this fashion for a few more rounds we obtain the results

shown in Table 7.5. This same information is presented graphically in Figure 7.1. In

the table, a ∗ next to the round number indicates that a projection matrix, trained

on a new group of host and bacterial samples was computed prior to this stage. In

addition, with each of these rounds, a new set of known samples was chosen to be

76

clustered in this and subsequent rounds.

Round Remaining Remaining Remaining Remaining
Host Samples Host % Bacterial Samples Bacterial %

(Start) 8771 100.0 1003 100
1∗ 1280 14.59 1003 100
2 378 4.30 994 99.1
3 235 2.68 985 98.2
4∗ 68 0.775 974 97.1
5 65 0.741 973 97.0

Table 7.5: All Rounds of Filtering Mouse Metagenomics Data. (∗ indicates that a
new projection matrix and set of known sequences was introduced in this round.)

Figure 7.1: Remaining percentage of unclassified samples after each round of
filtering.

Stopping after either round 4 or 5, the final percentage of host samples remaining

is less than one percent of its starting amount, while preserving about ninety-seven

percent of the original unclassified bacterial samples. In addition, throughout this

77

process, the composition of our mixture went from 90% host DNA down to about 6%

in the final set.

7.4 Discussion

In this experiment, we demonstrated a method for filtering host DNA from a se-

quenced metagenomics dataset. In doing so, we were able to greatly reduce the

amount of host DNA in the mixture. Had we been willing to sacrifice a larger num-

ber of bacterial samples, we could have completely eliminated all host fragments.

Earlier, we mentioned that there are a number of ways to partition a feature

space in order to recognize and eliminate fragments which appear to be very similar

to the host’s DNA. In our example, we used k-means to accomplish this partitioning

but noted that other methods might perform better or provide a more appropriate

solution for large-scale implementation.

A possible solution to this problem might make use of an important property that

stems from the non-negativity constraint that we have imposed on our dimensionality

reduction procedure. Under LSA-NMF, a sample either exhibits a particular feature

or not. Up until this point, however, we’ve made little use of the strength with which

a sample associates with a given feature vector. Indeed, a crude method of clustering

can be achieved by simply noting the feature vector with the greatest contribution

for a collection of samples [58].

Unfortunately, in our tests, clustering items by their strongest feature was perhaps

a bit too crude for most applications. There is hope, however, for a slight modification

of this simple idea. To demonstrate, if we observe the contributions of each feature

vector in the reconstruction of a sequence, we note that a few dimensions have very

large components, and the rest die off rather quickly.

78

Figure 7.2: Distribution of feature vector strength sorted by magnitude.

Figure 7.2 demonstrates the average level of contribution for a collection of 500

feature profiles of length 25 that have been sorted by their magnitude. As can be seen,

most sequences are almost completely characterized by five or fewer components. An

extremely efficient means of clustering samples might be possible by devising a clever

method of expressing sequences as a combination of features. In the same way that a

semantic topic may be combination of multiple subtopics in the realm of information

retrieval, we would express sequences as a combination of a set of biological features.

As a result, feature profiles would serve as a sort of hyper-spectral coloring that could

be used to distinguish between highly similar sequences with very low computational

overhead.

79

Chapter 8

Using LSA-NMF to Design

Microarray Probes

In this third and final experiment, we investigate yet another potential biological

application for latent semantic analysis via non-negative matrix factorization. In the

two previous experiments, LSA-NMF was used to construct high-dimensional feature

spaces in which genomic sequences were classified in some manner. Up until this point,

however, we have paid little attention to the feature vectors themselves, which, as we

are about discover, have a very natural application in the design of DNA microarray

probes.

8.1 Background Information

A DNA microarray is a technology that uses a large collection of short DNA probes

to detect the presence of specific sequences in a mixture. The probes are actually

short pieces of complementary DNA that bind or hybridize to a matching sequence

if it is found in the mixture. As one can imagine, this technology is incredibly useful

80

and has been incorporated into a wide variety of applications.

One the most popular uses for DNA microarrays is for gene expression profiling.

When a gene is transcribed or copied by the enzymes inside a cell, a piece of messenger

RNA (mRNA) is created. This piece of mRNA is essentially a set of instructions that

directs the machinery inside the cell to perform some function. By convention, when

a gene is transcribed into mRNA, we say that the gene has been expressed. If a

particular gene is used to perform some routine task, it might be expressed very

frequently or in large amounts. On the other hand, if the gene gets used only under

special conditions, it will have a relatively low rate of expression.

With a DNA microarray, we can design a set of probes to measure the expression

of an entire collection of genes simultaneously. By noting when and how much genes

are expressed, we observe an organism’s “gene expression profile”. As it turns out,

this profile differs between individuals and even in different parts of the body. By

comparing a set of expression profiles, we obtain information that can be used for

a variety of purposes like predicting a gene’s function or evaluating the status of a

disease.

In addition to gene expression profiling, DNA microarrays are also frequently

used to detect pathogenic species in an environmental sample. By designing a set

of probes that indicate the presence of certain organisms, we can use microarrays

to diagnose infectious diseases or even monitor the safety of our food, water, and

air [65]. Thinking back to our previous experiments, the role that microarray probes

play in each of these applications sounds remarkably similar our use of feature vectors

to identify and differentiate between organisms. In this experiment, we attempt to

devise a novel method for designing microarray probes by reverse engineering the

feature vectors in an LSA-NMF space.

81

8.2 Method

In previous examples, we have used the feature vectors or dimensions of an LSA-NMF

space as evidence of some presumed biological feature that is exhibited by a genomic

sequence. In our first experiment, for instance, these features were clear indicators

of the genus or some other taxonomic group to which the organism belonged. The

presence of this feature, however, is signaled by the presence of a set of one or more

k-mers in a k-mer–sequence vector. As a result, by investigating which k-mers are

found in these sets, we will have recovered a collection of distinct k-mers that together

can be used to indicate a biological feature.

Unfortunately, in the process of constructing a feature space using NMF, there is

no simple method for observing which k-mers get mapped into each feature vector.

We can, on the other hand, project individual k-mers into a predetermined space

and note how strongly they associate with a particular feature. In an information

retrieval system, this method would be the equivalent of querying a semantic space

with individual words and noting how strongly they indicate a semantic group. In

effect, this procedure identifies potential keywords or, in our case, distinct k-mers

whose presence is indicative of a semantic group or biological feature.

Finally, by varying our choice of k-mer size and the number of dimensions in our

factorizations, we may be able to devise a simple method for establishing collections of

variable-length oligonucleotides that can be used to design efficient sets of microarray

probes. As demonstrated by our first experiment, using a feature space of lower

dimensions results in a less-specific partitioning of our collection of elements. In

detecting the presence of a distinct organism, perhaps we can employ a series of

feature spaces to search for a species at varying levels of precision.

82

8.3 Results and Discussion

To evaluate our proposed method of designing microarray probes, we will once again

make use of the 5-genera dataset presented in our first experiment. An actual metage-

nomic dataset would almost certainly contain a much more diverse mixture of species,

but this collection will suffice to demonstrate our concept.

Recall that by training a feature space of five dimensions on this collection of

sequences, the elements in the resulting basis set roughly correspond to the five genera

found in the mixture. This is demonstrated in Figure 8.1, which shows the amount of

contribution for each the five feature vectors in reconstructing each sequence in the

collection. A value of 1.0 in this figure means that a sample is best approximated

using only one of the elements from the basis set.

Figure 8.1: Relative contribution amounts used in the reconstruction of each sample
from the set of five basis vectors.

Clearly, this set of feature vectors can be used to predict the genus of a sample,

but how do we interpret the feature vectors themselves? Consider that when a basis

83

vector is used in the reconstruction or approximation of a sample, we indicate that

the sample’s DNA sequence contains some distinct collection of k-mers. As a result, if

we can determine which k-mers are in these collections, we can use them to construct

a set of microarray probes that can detect this same set of features.

To determine which oligos best represent a particular feature (our “keywords”), we

can project individual k-mers into our feature space and note how well they associate

with the corresponding basis vector. Note that this is equivalent to simply observing

the columns of the projection matrix B = (ATA)−1AT for a basis set A. In this

matrix, the magnitude of each element Bi,j provides an indication of the strength

with which the jth k-mer implies the ith feature.

Figure 8.2: Levels of association for the
k-mer ctgttat

Figure 8.3: Levels of association for the
k-mer tggggtc

Figures 8.2 and 8.3 demonstrate the relative levels of association for the k-mers

ctgtta and tgggtc with each of our five basis vectors. In these figures, the “relative

level of association” indicates the amount that each feature vector contributes in the

approximation of the k-mer, relative to the average contribution amount (the mean

of B). As noted, we can use this measure as an indication of k-mer’s association with

each feature. Demonstrated in Figure 8.2, we can see that ctgttat is somewhat weak

indicator of features 1, 3, and 4. On the other hand, tggggtc appears to be a clear

indication of feature vector 5 and, thus, the genus Nocardioides.

84

Figure 8.4: Relative contribution amounts used in the reconstruction of each sample
from the set of five basis vectors.

In Figure 8.4, we see the levels of association for feature vector 5 over a range of

the 16,384 possible 7-mers. Shown in the right, index number 13,663 corresponds to

the k-mer tggggtc, which we just noted as a strong representative of this feature. From

these figures, it seems that we can construct a set of microarray probes by simply

finding the collection of k-mers with the highest levels of association for each of the

features that we wish to detect. To test this theory, we select a set of candidate

microarray probes for Nocardioides by sorting the list of k-mers by their level of

association and picking the top five.

Rank k-mer Level of Assoc. TP FP TN FN
1 gacccca 25 47 0 221 0
2 tggggtc 25 47 1 220 0
3 agcaacg 22 47 3 218 0
4 cgttgct 22 3 0 221 44
4∗ agcaacg 22 47 3 218 0
5 gcatgcg 21 46 0 221 1

Table 8.1: Candidate probe oligos (∗ indicates the previous round was repeated with
the reverse complement of the k-mer.)

Table 8.1 shows the results of searching for each candidate oligo in our collection

85

of 268 samples. A true positive (TP), then, indicates the number of the 47 possible

Nocardioides species that contain the k-mer in question and thus should hybridize

to the probe. The number of false positives (FP) indicates the number of species

outside of Nocardioides that also contained the oligo. As can be seen in the table,

this collection of probes works very well in detecting only the target sequences. We

do, however, notice a cause for concern in the fourth k-mer.

Recall that when we build our k-mer–sequence vectors, we account for the fact

that DNA contains two complementary strands by counting k-mers as well as their

reverse complements when we profile the sequence. As an result, in the case of probe

4 in our table, we have actually found the reverse complement of the probe that we

want. By using the probe’s complement in row 4∗, we obtain much better performance

and results that are consistent with the rest of the table.

If we are not trying to detect double-stranded genetic material, like is the case

with RNA probes, we could instead profile sequences without counting reverse com-

plements as we profile the sequence. Table 8.2 shows results for the same experiment

repeated using this method of profiling.

Rank k-mer Level of Assoc. TP FP TN FN
1 cgcagat 35 47 1 220 0
2 cagcaac 34 47 3 218 0
3 ttgggcg 34 47 3 218 0
4 agcaacg 34 47 3 218 0
5 cgtcacg 33 46 0 221 1

Table 8.2: Candidate probe oligos found by using alternative profiling method
(without counting reverse complements in k-mer profile)

As can be seen, this approach yields similar results but with slightly higher levels

of association. This makes sense, considering that because we’re not counting reverse

complements in our profile, there is a lower chance of two unrelated sequences con-

86

taining the same k-mer. That said, despite using a different profiling scheme, both

approaches produce similar sets of candidate oligos, with agcaacg being found in the

top five for both.

Looking at the results from these two examples, in both cases we were able to

identify a unique set of k-mers that reliably detect the presence of our target collection

of Nocardioides samples. In addition, by requiring that a microarray contains a

combination of these probes, we can maintain a high level of detection while further

reducing our already-small number of false positives. As a final demonstration, we

now apply this same technique to a larger data set.

Our new dataset contains a total of 750 16s sequences, with 75 taken from each

of the following, randomly selected genera: Bacillus, Burkholderia, Corynebacterium,

Enterococcus, Halomonas, Nocardia, Pseudomonas, Streptococcus, and Vibrio. We

begin as before by training a projection matrix for this collection of sequences, using

10 feature vectors to define the LSA-NMF space.

Figure 8.5: Relative contribution amounts used in the reconstruction of the larger
dataset from the set of ten basis vectors.

87

Figure 8.5 demonstrates which feature vectors are used in the approximation of

each sample in the collection. As can be seen, our feature vectors roughly correspond

to the ten genera but not perfectly. The encodings corresponding to genera Bacillus

and Pseudomonas are wildly unpredicatable and do not seem to associate well with

any one particular feature vector. Upon inspection, these results are consistent with

biological research that indicates a high level of diversity in the 16s sequences for

Bacillus [66] and Pseudomonas [67]. In fact, a number of species from Psuedomonas

have even been relocated into other genera like Burkholderia[68]. This research points

out that it may not be possible to perfectly reconstruct phylogenies using only 16s

sequences. As a result, we should not expect to be able to construct feature vectors

that reliably detect these genera.

With these considerations in mind, Figure 8.5 suddenly looks much better, and we

are ready to select the oligos for our microarray probes. To demonstrate, we will use

feature vector that seems to best indicate Streptococcus, shown in red in the figure.

Rank k-mer Level of Assoc. TP FP TN FN
1 ctgaagt 37 64 1 674 11
2 taggtcc 35 73 1 674 2
3 tcggtga 35 68 86 589 7
4 aagggac 33 74 1 674 1
5 aggtccc 33 73 0 675 2
6 gtgctag 33 75 1 674 0
7 aggtgtt 33 74 2 673 1
8 gttgtat 33 71 0 675 4
9 gtaggtc 33 74 2 673 1
10 ctttccg 32 71 0 675 4

Table 8.3: Candidate probe oligos for Streptococcus

Table 8.3 shows the ten oligos with the highest levels of association for the Strep-

tococcus feature vector. As shown, this set of probes very reliably detects the presence

of our target samples, while producing an extremely low number of false positives in

88

nearly every case. Again, by requiring a combination of these k-mers, we can further

reduce the likelihood of false positives.

To make a few final observations on these results, recall that when selecting can-

didate oligos for our probes, we made use of a k-mer’s “relative level of association”

with each feature vector. In our experiments, we simply chose the subset of oligos

with the highest levels of association. By doing this, however, we have perhaps in-

correctly assumed that the k-mer has little association with any other feature vector.

This problem can be avoided by applying a weighting to deemphasize k-mers which

are highly associated with multiple features.

Finally, in a large, diverse dataset, it might be the case that no oligo is highly

representative of a feature. By increasing our k-mer size, though, we increase the

number of possible keywords that can be used to define a feature, and by keeping

track of the relative levels of association for a dataset, we can determine whether

or not the k-mer size should be increased. While 7-mers were used in this small

example, in practice, we presume that larger probe sizes will be required to keep

false positive rates low. Naturally, by increasing the length of our probes, we achieve

higher specificity, but by doing so only when and where necessary, we can design an

efficient set of microarray probes of minimal length.

89

Chapter 9

Conclusion and Recommendations

for Future Work

In this research, latent semantic analysis was evaluated as a potential collection of

techniques for differentiating and classifying genomic sequences by modeling them as

unordered sets of distinct, fixed-length words. In the presented experiments, dimen-

sionality reduction was performed using non-negative matrix factorization to identify

sets of basis vectors to approximate sequences in high-dimensional LSA-NMF spaces.

These basis vectors, due to the non-negativity constraints of NMF, represent col-

lections of oligonucleotides whose collective presence was shown to indicate latent

biological features.

By projecting sequences into these high-dimensional feature spaces, we found that

the encodings or contributions of each element in the basis set provides a short profile

that can be used to identify groups of sequences with similar biological features. By

computing the distance or correlation coefficient between pairs of these profiles, a new

form of evolutionary distance measure was created and was used to construct phylo-

genetic trees, cluster 16s ribosomal genes, and remove unwanted host DNA fragments

90

from a synthetic metagenomic sample. Finally, the feature vectors themselves were

found provide a collection of biological keywords, or sets of oligonucleotides whose

collective presence is indicative of some biological feature.

Throughout each of these three experiments, we made reference to a number of

considerations for large-scale implementation. At their core, each of the presented

applications relies on linear algebra techniques to rotate, scale, or otherwise trans-

form elements in a vector space. These elements were noted as being particularly

sparse, and as a result, these techniques lend themselves to simple yet highly efficient

implementations. In addition, many practical applications could be designed around

pre-computed projection matrices to further minimize their level of computational

burden.

For each of these reasons, we conclude that latent semantic analysis provides a

collection of techniques that will be greatly beneficial in dividing and organizing the

enormous amounts of biological information being generated by today’s scientists.

And as new technologies emerge and these amounts become even larger, LSA-based

techniques provide efficient methods for retrieving and interpreting data in ways that

enhance our efforts of decoding the genetic language in which we are written.

9.1 Recommendations for Future Work

In Chapters 6 and 7, it was shown that LSA-NMF may be used to construct high-

dimensional feature spaces capable of distinguishing between relatively short (∼1kbp)

genomic sequences. We might be able to extend this approach to allow for the clas-

sification of longer and even whole-genome sequences, but there are several consider-

ations that we should bear in mind.

First, in the presented experiments, a k-mer size of 7bp was chosen, resulting in

91

k-mer–sequence profiles of 16,384 elements. It’s not hard to image, however, that

when comparing sequences that are several billion bases in length, this number of

elements might not be enough to distinguish between two samples. As a result, in

order to effectively distinguish between longer sequences, perhaps much larger k-mer

sizes should be investigated.

Alternatively, because we have seen that LSA-NMF can be used to classify short

sequences, it may be possible to use a sliding window approach to sample a whole

genome, classify each windowed region, and use a list of the classified elements as

a profile to characterize the sequence. For example, consider that certain genes like

the 16s ribosomal sequences that we have seen are remarkably similar across species,

and as such, we could theoretically train a set of feature vectors to detect such genes.

With this ability, we could classify sequences not by unordered collections of k-mers

but by unordered collections of genes.

Supposing that it is possible to reliably detect specific genes in this manner, we

are led to another potential application involving the construction of phylogenetic

trees. Recall that in Chapter 8 it was noted that the 16s ribosomal gene alone may

not be enough to perfectly reconstruct phylogenies [66]. On the other hand, if we are

able to detect and therefore extract other genes which carry phylogenetic signals (like

the recA gene that was used to differentiate between species of Burkholderia [62]),

we may be able to characterize samples using a combination of several genes in order

to construct more accurate phylogenies. Such a system could attempt to classify an

unknown sample using each gene separately and combine the results to identify the

species.

This notion of using a series of classifications or clusterings to profile a genomic

sequence, as effective as it may be, sounds incredibly inefficient at first mention.

However, recall that when projecting a sample into an LSA-NMF space, due to our

92

non-negativity constraints, a crude form of clustering may be achieved by simply

noting the feature vector (or perhaps subset of feature vectors) with the largest con-

tribution in the reconstruction. Combining this with the fact that we can devise and

precompute a collection of projection matrices, suddenly, the idea of using a series of

classifications sounds much more feasible.

In fact, this leads us to a final and particularly exciting potential application

for LSA-NMF which involves using a series of projection matrices to partition and

search large collections of sequences. Suppose, for example, that given an unknown

sample, we would like to find the most similar item in a very large database of known

organisms. Using the method described above, it may be possible to construct a

collection of projection matrices that classify a sequence at various levels of taxonomic

specificity, providing a sort of hashing function into the database.

To illustrate this idea, consider Figure 9.1 which describes a system in which an

incoming sample is profiled as a k-mer–sequence vector. This profile is then projected

into an initial feature space using the projection matrix B0, which has been designed

to differentiate organisms at, say, the phylum level. Next, having identified the sample

B0

B1,1 B1,n

B2,1 B2,n

. . .

. . .

Figure 9.1: Using projection matrices to construct a divide and conquer databs

93

as belonging to phylum m, we select the corresponding projection matrix B1,m which

breaks this phylum into smaller subgroups. This process is repeated for as many

steps are necessary to classify the sample, providing a divide and conquer strategy

for searching large sequence collections.

As a final remark, it is worth repeating that each of the techniques presented

in this research are, at some level, reliant on linear algebra methods for factorizing

and multiplying matrices. These types of operations lend themselves to extremely

efficient implementations using recent advancements in parallel computing platforms

like Nvidia’s CUDA architecture [69]. As a suggested direction for future work, final

implementations of the LSA-NMF based methods described in this work could benefit

greatly from using the CUDA architecture and the CULA library of GPU-accelerated

linear algebra routines [70].

94

Bibliography

[1] Committee on and National Research Council. A New Biology for the 21st Cen-

tury. National Academies Press, November 2009.

[2] D. R. Mattoon and B. Schweitzer. Profiling protein interaction networks with

functional protein microarrays. In Yuri Nikolsky, Julie Bryant, and John M.

Walker, editors, Protein Networks and Pathway Analysis, volume 563 of Methods

in Molecular Biology, pages 63–74. Humana Press, 2009.

[3] S. B. Needleman and C. D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443 – 453, 1970.

[4] T. F. Smith and M. S. Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[5] D. J. Russell, H. H. Otu, and K. Sayood. Grammar-based distance in progressive

multiple sequence alignment. BMC Bioinformatics, 9(306), July 10, 2008.

[6] K. Katoh and H. Toh. Parallelization of the MAFFT multiple sequence alignment

program. Bioinformatics, 26(15):1899–1900, 2010.

[7] T. H. Jukes and C. R. Cantor. Evolution of Protein Molecules. Academy Press,

1969.

95

[8] M. Kimura. A simple method for estimating evolutionary rates of base substitu-

tions through comparative studies of nucleotide sequences. Journal of molecular

evolution, 16(2):111–120, 1980.

[9] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood

approach. Journal of Molecular Evolution, 17:368–376, 1981.

[10] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape splitting

by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution,

22:160–174, 1985.

[11] S. Tavaré. Some Probabilistic and Statistical Problems in the Analysis of DNA

Sequences, volume 17, pages 57–86. Amer Mathematical Society, 1986.

[12] K. Tamura. Estimation of the number of nucleotide substitutions when there are

strong transition-transversion and G+C-content biases. Molecular Biology and

Evolution, 9(4):678–687, 1992.

[13] K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions in

the control region of mitochondrial DNA in humans and chimpanzees. Molecular

Biology and Evolution, 10(3):512–526, 1993.

[14] H. H. Otu and K. Sayood. A new sequence distance measure for phylogenetic

tree construction. Bioinformatics, 19(16):2122–2130, 2003.

[15] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Appli-

cations. Springer, 1997.

[16] A. Lempel and J. Ziv. On the complexity of finite sequences. Information Theory,

IEEE Transactions on, 22(1):75 – 81, 1976.

96

[17] M. Bauer, S. M. Schuster, and K. Sayood. The average mutual information

profile as a genomic signature. BMC Bioinformatics, 9(48), January 25, 2008.

[18] O. U. Nalbantoglu, S. F. Way, S. H. Hinrichs, and K. Sayood. RAIphy: Phyloge-

netic classification of metagenomics samples using iterative refinement of relative

abundance index profiles. BMC Bioinformatics, 12(41), July 31, 2011.

[19] L. Krause, N. N. Diaz, A. Goesmann, S. Kelley, T. W. Nattkemper, F. Rohwer,

R. A. Edwards, and J. Stoye. Phylogenetic classification of short environmental

DNA fragments. Nucleic Acids Research, 36(7):2230–2239, 2008.

[20] D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. MEGAN analysis of metage-

nomic data. Genome Research, 17(3):377–386, 2007.

[21] A. Brady and S. L. Salzber. Phymm and PhymmBL: metagenomic phyloge-

netic classification with interpolated Markov models. Nature Methods, 6:673–676,

2009.

[22] C. W. Schmidt. Data explosion: Bringing order to chaos with bioinformatics.

Environ Health Perspect, 111(6), 05 2003.

[23] J. Shendure and H. Ji. Next-generation dna sequencing. Nature Biotechnology,

26(10):1135 – 1145, 2008.

[24] F. S. Collins, M. Morgan, and A. Patrinos. The human genome project: Lessons

from large-scale biology. Science, 300(5617):286–290, 2003.

[25] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,

K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang. De novo assembly of

human genomes with massively parallel short read sequencing. Genome Research,

2009.

97

[26] K. A. Wetterstrand. DNA sequencing costs: Data from the NHGRI large-scale

genome. http://www.genome.gov/sequencingcosts, 2012.

[27] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic

analysis. Discourse Processes, 25(2-3):259–284, 1998.

[28] S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman.

Using latent semantic analysis to improve access to textual information. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

CHI ’88, pages 281–285, New York, NY, USA, 1988. ACM.

[29] S. T. Dumais. Latent semantic analysis. Annual Review of Information Science

and Technology, 38(1):188–230, 2004.

[30] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.

Information Processing & Management, 24(5):513 – 523, 1988.

[31] S. Robertson. Understanding inverse document frequency: On theoretical argu-

ments for IDF. In Journal of Documentation, volume 60, 2004.

[32] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabu-

lary problem in human-system communication. Commun. ACM, 30(11):964–971,

November 1987.

[33] G. Golub and W. Kahan. Calculating the Singular Values and Pseudo-Inverse of

a Matrix. Journal of the Society for Industrial and Applied Mathematics, Series

B: Numerical Analysis, 2(2):205–224, 1965.

[34] G. Golub and C. Reinsch. Singular value decomposition and least squares solu-

tions. Numerische Mathematik, 14:403–420, 1970. 10.1007/BF02163027.

98

[35] S. Rajamanickam. Efficient Algorithms for Sparse Singular Value Decomposition.

PhD thesis, University of Florida, 2009.

[36] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor

model with optimal utilization of error estimates of data values. Environmetrics,

5(2):111–126, 1994.

[37] D. D. Lee and H. S. Seung. Unsupervised learning by convex and conic coding.

In Advances in Neural Information Processing Systems 9, pages 515–521. MIT

Press, 1997.

[38] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

[39] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1):71–86, January 1991.

[40] S. E. Palmer. Hierarchical structure in perceptual representation. Cognitive

Psychology, 9(4):441 – 474, 1977.

[41] E. Wachsmuth, M. W. Oram, and D. I. Perrett. Recognition of objects and

their component parts: Responses of single units in the temporal cortex of the

macaque. Cerebral Cortex, 4(5):509–522, 1994.

[42] N. K. Logothetis and D. L. Sheinberg. Visual object recognition. Annu. Rev.

Neurosci., 94:4577–621, 1996.

[43] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons. Algorithms and

applications for approximate nonnegative matrix factorization. Computational

Statistics & Data Analysis, 52(1):155–173, September 2007.

99

[44] P. Paatero. The multilinear engine: A table-driven, least squares program for

solving multilinear problems, including the n-way parallel factor analysis model.

Journal of Computational and Graphical Statistics, 8(4):854–888, 1999.

[45] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix

factorization. In Proceedings of the 26th annual international ACM SIGIR con-

ference on research and development in information retrieval, SIGIR ’03, pages

267–273, New York, NY, USA, 2003. ACM.

[46] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufmann Publishers, 1999.

[47] L.J.P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimension-

ality reduction: A comparative review. http://www.iai.uni-bonn.de/~jz/

dimensionality_reduction_a_comparative_review.pdf, 2007.

[48] R. L. Somorjai, B. Dolenko, A. Demko, M. Mandelzweig, A. E. Nikulin, R. Baum-

gartner, and N. J. Pizzi. Mapping high-dimensional data onto a relative distance

plane–an exact method for visualizing and characterizing high-dimensional pat-

terns. Journal of Biomedical Informatics, 37(5):366 – 379, 2004.

[49] J. X. Li. Visualization of high dimensional data with relational perspective map.

Information Visualization, 3(1):49–59, 2004.

[50] J. Venna. Dimensionality Reduction For Visual Exploration of Similarity Struc-

tures. PhD thesis, Helsinki University of Technology, 2007. PhD Thesis.

[51] E. S. Tzafestas, A. Nikolaidou, and S. G. Tzafestas. Performance evaluation

and dynamic node generation criteria for ‘principal component analysis’ neural

networks. Mathematics and Computers in Simulation, 51(3-4):145 – 156, 2000.

100

[52] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[53] I. T. Jolliffe. A Note on the Use of Principal Components in Regression. Applied

Statistics, 31(3):300+, 1982.

[54] J. Felsenstein. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed

by the author. Department of Genetics, University of Washington, Seattle, 2003.

[55] C. R. Woese. Bacterial evolution. Microbiological Reviews, 51(2):221–271, June

1987.

[56] D. J. Lane, B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace.

Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses.

Proceedings of the National Academy of Sciences, 82(20):6955–6959, October

1985.

[57] J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-

Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, and J. M. Tiedje.

The ribosomal database project: improved alignments and new tools for rRNA

analysis. Nucleic Acids Research, 37(suppl 1):D141–D145, 2009.

[58] Y. Li and A. Ngom. Non-negative matrix and tensor factorization based clas-

sification of clinical microarray gene expression data. In Bioinformatics and

Biomedicine (BIBM), 2010 IEEE International Conference on, pages 438–443,

dec. 2010.

[59] J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like

method and comparisons. SIAM J. Scientific Computing, 33(6):3261–3281, 2011.

101

[60] C. H. Q. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix

factorizations. IEEE Trans. Pattern Anal. Mach. Intell., 32(1):45–55, January

2010.

[61] C. Lin. Projected gradient methods for non-negative matrix factorization. In

Neural Computation, volume 19, pages 2756–2779, 2007.

[62] G. W. Payne, P. Vandamme, S. H. Morgan, J. J. LiPuma, T. Coenye, A. J.

Weightman, T. H. Jones, and E. Mahenthiralingam. Development of a recA

Gene-Based Identification Approach for the Entire Burkholderia Genus. Applied

and Environmental Microbiology, 71(7):3917–3927, July 2005.

[63] BAuA. Classification of bacteria and archaea in risk groups. http://www.baua.

de, 2010.

[64] H. Chung, S. J. Pamp, J. A. Hill, N. K. Surana, S. M. Edelman, E. B. Troy,

N. C. Reading, E. J. Villablanca, S. Wang, J. R. Mora, Y. Umesaki, D. Mathis,

C. Benoist, D. A. Relman, and D. L. Kasper. Gut immune maturation depends

on colonization with a host-specific microbiota. Cell, 149(7):1578 – 1593, 2012.

[65] R. B. Stoughton. Applications of DNA microarrays in biology. Annual Review

of Biochemistry, 74(1):53–82, 2005.

[66] G. E. Fox, J. D. Wisotzkey, and P. Jurtshuk. How close is close: 16S rRNA se-

quence identity may not be sufficient to guarantee species identity. International

Journal of Systematic Bacteriology, 42(1):166–170, 1992.

[67] F. Widmer, R. J. Seidler, P. M. Gillevet, L. S. Watrud, and G. D. Di Giovanni.

A Highly Selective PCR Protocol for Detecting 16S rRNA Genes of the Genus

102

Pseudomonas (Sensu Stricto) in Environmental Samples. Applied and Environ-

mental Microbiology, 64(7):2545–2553, 1998.

[68] B. W. Holloway. Pseudomonas genetics and taxonomy, pages 22–32. ASM Press,

Washington, D. C., 1996.

[69] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture

Programming Guide. NVIDIA Corporation, 2007.

[70] EM Photonics. CULA Tools: GPU Accelerated Linear Algebra. http://www.

culatools.com/, 2010.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 8-2012

	Classification of Genomic Sequences by Latent Semantic Analysis
	Samuel F. Way

	tmp.1343690544.pdf.KoX6h

